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There are two views on whether command-and-control policy can promote carbon emission reduction: the “compliance cost” theory and the “innovation compensation” theory. In this paper, we construct an evolutionary game model among energy-intensive enterprises, verification agencies, and local governments from the game theory perspective to explore the impact of command-and-control policy on the low-carbon transition of energy-intensive enterprises. The interaction mechanism of the three actors and the main factors affecting the low-carbon transition of the enterprises are further analyzed with the help of the MATLAB simulation method. The study results show that command-and-control policies can promote the low-carbon transition of enterprises and have a suppressive effect on bribery behavior. In the actual game process, enterprises will compare the cost of low-carbon transition with that of no low-carbon transition. The cost of low-carbon transition is higher when the government’s incentives and penalties are small, so there is a “compliance cost” effect, and the government cannot promote low-carbon transition by increasing the intensity of regulation. On the contrary, when the government’s incentives and penalties are strong enough, enterprises will make a low-carbon transition spontaneously in the face of continuously increasing environmental regulation intensity, which supports the theory of “innovation compensation.” In addition, increasing the profitability of product sales and increasing the cost of bribes are also effective ways to promote low-carbon transition. Finally, relevant policy recommendations were proposed based on the main conclusions. This work opens up a new perspective for environmental regulation theory and provides a theoretical reference and practical basis for developing low-carbon transition.
Keywords: command-and-control policy, low-carbon transformation, carbon verification, environmental regulation, tripartite evolutionary game
1 INTRODUCTION
In recent years, the frequency of air quality problems, such as rising greenhouse gas emissions, has shown the urgency of implementing effective energy efficiency and emission reduction measures (Tong et al., 2018). In the process of achieving carbon peak and carbon neutrality goals, China is facing arduous carbon emission reduction tasks. Measures must be taken to limit the consumption of petrochemical energy, reduce economic dependence on the energy industry, and encourage more energy enterprises to undergo clean transformation to reduce carbon emissions throughout the industry (Jiang et al., 2023). In various industries of the national economy, the carbon emissions of energy-intensive industries are enormous, becoming a key goal of national carbon emission reduction work (Liu et al., 2022). Energy-intensive enterprises (hereinafter referred to as “enterprises”), as one of the social agents with the largest CO2 emissions, their active implementation of carbon reduction strategies is inevitably required for China to successfully reach its carbon peak and carbon-neutral targets (Li and Wang, 2023).
However, due to the public nature of environmental goods, the negative externalities of environmental problems, and the scarcity of energy, it is difficult to achieve environmental friendliness by market regulation alone, so environmental regulation is needed to compensate for market failures. Without the full function of market-based instruments such as the carbon trading market, the means to promote carbon emission reduction in China is still dominated by government-led command-and-control policies (Blackman et al., 2018; Jiang et al., 2022). Since the 21st century, many researchers have been investigating the relationship between environmental regulation and carbon emissions reduction. Although there are various opinions on the nature of this effect, researchers agree that environmental regulation reduces carbon emissions (Mandal, 2010; Bi et al., 2014; Dirckinck-Holmfeld, 2015; Murray and Rivers, 2015; Hancevic, 2016; Galeotti et al., 2020). In the 1990s, Porter challenged the traditional economics view that “environmental protection and economic growth are mutually suppressive” and pioneered the “Porter hypothesis,” which states that appropriate environmental regulation not only does not increase costs but also stimulates innovation, generates net benefits, and improves the competitive advantage of firms, thereby improving environmental quality (Porter, 1996). Currently, “compliance cost” and “innovation compensation” theories have been further developed.
The “compliance cost” theory suggests that environmental regulation will make it more difficult for enterprises to manage and increase environmental inputs such as sewage charges, resulting in less profitable investment in production, lower capital gains, and thus less investment in technological innovation, which is detrimental to environmental protection. The choice of environmental regulatory instruments significantly affects the process of low-carbon transition. Command-and-control (CAC) policies are fast-acting because of their coercive nature, but they are prone to market distortions and even adverse emission reduction effects (Tombe and Winter 2015; Chen et al., 2018), while market-based instruments (MBIs) can promote the green transition of enterprises through incentive guidance, but their effects may fade quickly after the policy is withdrawn. Unlike market-incentive instruments, command-and-control policies are less conducive to stimulating enterprises to conduct green technology R&D and innovation and promote low-carbon transition. Excessive environmental regulation or command-and-control policies may slow technological innovation or cause a rebound in energy demand. This could be more conducive to improving energy efficiency and reducing environmental pollution. In addition, command-and-control policies hurt technological innovation and indirectly hurt energy efficiency (Hu et al., 2020; Miao et al., 2021). At the same time, for some enterprises, the increase in investment in emission reduction and pollution control tends to neglect the expenditure on factors of production. It has a greater demand for energy than before, which will keep the increase in its earnings stable by increasing carbon emissions (Hu et al., 2021).
The “innovation compensation” theory is based on the Porter hypothesis, which believes that appropriate environmental regulations can promote technological progress and improve production efficiency, thus compensating for or exceeding the “compliance costs.” This will generate innovation spillovers and reduce environmental pollution. Relevant studies have shown that environmental regulation promotes innovation in firm development (Wang et al., 2020; Zhang et al., 2020; Du et al., 2021). Rather than passively paying fines, firms face CAC policies and take the initiative to adjust their decisions, improve their technological innovation, and reduce the additional costs associated with CAC policies through the long-term benefits brought by technological innovation (Porter and Linde, 1995; Chen et al., 2020). As the government and society pay more attention to the environment, the increased intensity of environmental regulations may cause firms to face continuously high costs of following environmental regulations. Faced with the continuously increasing intensity of environmental regulations, rational firms will adopt technological innovation to increase the scale of technological innovation investment on the one hand and improve the efficiency of technological innovation, on the other hand, to cope with the challenges brought by environmental regulations for the long-term development of firms (Lanoie et al., 2011; Rubashkina et al., 2015). At the same time, while using CAC policies, the government often supports enterprise innovation financially or industrially to alleviate the problems of difficult and risky financing for enterprise technological innovation, to solve the worries of enterprise innovation reform, and to actively guide enterprise innovation (Cheng et al., 2017; Pan et al., 2019; Yin et al., 2019). CAC policies will directly influence enterprise innovation and indirectly promote enterprise low-carbon transformation through factors such as attracting foreign direct investment (Song et al., 2019).
The existing research on low-carbon transformation mainly focuses on exploring development models (Wu et al., 2020), constructing indicator systems (Lou et al., 2019), and evaluating the process of low-carbon transformation (Li et al., 2018; Shari et al., 2020). In terms of studying the influencing factors of low-carbon transformation, scholars have explored the different impacts of energy intensity (Zhang C. et al., 2019), industry scale (Du et al., 2018), economic development (Shen et al., 2018), technological innovation (Yin and Li, 2018; Wang et al., 2021), energy structure (Cui et al., 2020; Quan et al., 2020), and investment (Li and Li, 2020; Zhang et al., 2021). However, there is very little literature on the impact of command-and-control policies on low-carbon transformation of enterprises, this article compensates for the shortcomings of existing literature in this regard.
In terms of evolutionary game models, in recent years, the perfect rationality and complete information conditions based on traditional game players have been challenging, and the evolutionary game’s bounded rationality hypothesis is more realistic. More and more scholars have used evolutionary game theory to explore the low-carbon emission reduction of enterprises. For example, Zhang S. et al. (2019) and Chen et al. (2022) built an evolutionary game model between the government and manufacturers. Their results show that the cost of carbon emission reduction of enterprises, the government’s punishment for excess emissions, and the Carbon emission trading price will simultaneously affect the government’s choice of carbon policy and the implementation of enterprise production and emission reduction. Tong et al. (2019) and Kang et al. (2019) constructed a two-party evolutionary game between retailers and manufacturers in the same supply chain. The results show that Carbon emission trading prices, carbon quotas, and consumers’ low-carbon preferences are the key factors affecting the decision-making behavior of the subject. Previous literature mainly studied from the perspective of how the evolutionary game between the government and related enterprises affects the low-carbon transformation of enterprises, without considering the positive role played by verification agencies as carbon emission supervisors in the low-carbon transformation of enterprises.
In summary, there is no consensus on whether the effect of CAC policies on carbon emissions is a “compliance cost” effect or an “innovation compensation” effect. In this regard, most of the previous literature is based on data obtained from the practical experience of environmental regulation in various countries using data modeling. However, data modeling is often limited by the sample, which may lead to different results. For example, there are differences in the selection of samples between developed and developing countries, periods, regional sizes, and industries. In addition, it is also a question of what kind of environmental regulation is appropriate in the Porter hypothesis, what level of government incentives and penalties, and the profitability of firms. This work provides supportive insights into the interaction process between stakeholders, including enterprises, verification agencies, and local governments. In particular, it is based on evolutionary game theory, which can exclude the influence of regional differences and differences in sample characteristics, and the results are more general. By constructing a three-way evolutionary game model consisting of local governments, enterprises, and verification agencies, we explore the impact of various parameter changes on players’ strategic choices and enterprises’ low-carbon transition and analysis the “innovation compensation” and “compliance cost” effects that exist in the low-carbon transformation process of enterprises. In addition, some management strategies and practical insights into the low-carbon transition process for energy-intensive enterprises are presented. This work opens up a new perspective for environmental regulation theory and provides a theoretical reference and practical basis for the development of the low-carbon transition of enterprises.
This paper is structured as follows. Section 2 presents the model assumptions and model construction. Section 3 performs the system stability analysis. Section 4 conducts numerical simulation analysis. Finally, in Section 5, conclusions are drawn, and policy recommendations are given.
2 UNDERLYING ASSUMPTIONS AND MODEL CONSTRUCTION
2.1 Basic assumptions
Under the carbon trading mechanism, Enterprises must adhere to the specified carbon quota standards and regulate their carbon emissions strictly, or they may face substantial fines from the government (Li W. et al., 2023). In this process, enterprises often replace traditional energy sources and optimize their production processes to promote a low-carbon transition (Pan and Dong, 2023; Yu et al., 2023). The ability of the verification agency to accurately verify a company’s carbon emissions and report them truthfully to relevant authorities determines the success of low-carbon transformation efforts (Li Y. et al., 2023). Enterprises and verification agencies might conspire to pursue their benefits, resulting in obstacles to low-carbon transformation initiatives (Chen et al., 2023). Additionally, government oversight may be lacking, which can directly contribute to a decrease in intrinsic motivation for transitioning to low-carbon practices (Zhang et al., 2023). Given the presence of interaction mechanisms among governments, verification agencies, and enterprises, a game theory emerges as an optimal approach for examining the behavior and strategies of these three stakeholders in the low-carbon transition process.
We can construct a logical relationship diagram between energy-intensive enterprises, verification agency, and local government, as shown in Figure 1.
[image: Figure 1]FIGURE 1 | Illustration of the game relationships among game players.
To construct a game model, analyze the stability of various strategies and equilibrium points, as well as the impact relationships of various factors, the following assumptions are made.
Hypothesis 1. Enterprises, verification agencies and local governments are all finite rational participants. During decision-making, participants need access to all information and thus cannot develop strategies to maximize their interests. However, they can learn, imitate, and adjust their strategies to achieve optimal results. As a result, their strategy choices evolve and become stable.
Hypothesis 2. The probability of enterprises choosing low-carbon transition is x, “x = 0” means no participation in the low-carbon transition, and “x = 1”means participation in the low-carbon transition; the probability of verification agencies choosing verification is y, when y = 0 and y = 1, which means no verification and verification respectively; the probability that the local government chooses to regulate is z. When z = 0, the government adopts lax regulation; when z = 1, the government adopts strict regulation, where x, y, z ∈ [0,1].
Hypothesis 3. Energy-intensive enterprises are a type of enterprise that relies heavily on energy and consumes a lot in the production process, which products mainly include non-ferrous metals, fossil fuels, glass, etc (Lo et al., 2015; Posch et al., 2015). The profit from product sales of the enterprises is RP, the production cost of enterprises engaged in the low carbon transition is CL, and the production costs for enterprises not participating in the low carbon transition is CH, CL > CH. When an enterprise participates in the low-carbon transition, it can meet the carbon emission standard set by the government and pass the verification agency’s verification; when an enterprise does not participate in the low-carbon transition, its carbon emission often exceeds the standard, then the enterprise bribes the verification agency to pass the verification. The bribery amount of the enterprise is BT, BT<(CL-CH), and the enterprise also has falsifying behaviors such as falsifying production records and false propaganda (Liang et al., 2023), and the cost is CP.
Hypothesis 4. The benefit of the verification agency providing services to local government is VT. When enterprises do not participate in the low carbon transition, the enterprises’ carbon emission exceedance is discovered if the verification agency rejects the bribe from enterprises. If the verification agency accepts the bribe, it colludes with enterprises. If the verification agency accepts the bribe, its speculative cost is CT, which mainly includes falsifying verification records, issuing false reports, and enhancing information security.
Hypothesis 5. When local governments strictly regulate, violations by enterprises and verification agencies will be discovered. Enterprises not participating in low-carbon transformation and exceeding carbon emissions will be fined FP. If the verification agency accepts bribes, it will be fined FT. If the enterprise engages in low-carbon transformation, it will receive a subsidy of MP from the local government, and the local government will reward MT to the verification agency that fulfills its supervisory responsibilities. When the local government is lax, the enterprises’ and monitoring agencies’ information is unavailable, and the government regulators will not give rewards and punishments. Let the cost of strict regulation by local governments be CG.
Hypothesis 6. The participation of enterprises in low-carbon transition benefits public health, economic development and social stability and brings social benefits to local governments AG. When enterprises do not participate in the low-carbon transition and collude with verification agencies, they pollute and damage the environment, increase environmental cleanup costs, affect public health and economic development, and cost the local government DG to maintain social stability and regulate the carbon trading market. The central government has an essential responsibility for the exercise of the authority of local governments, which needs to monitor the entrusted affairs executed by localities to prevent the execution of affairs from deviating from the central government’s intended “double carbon” goals(Hong, 2017; Sun et al., 2021). When the local government adopts a loose regulatory strategy, resulting in a lack of regulation and excessive carbon emissions by enterprises, the central government will hold the local government accountable with an administrative penalty amount of TG, TG>CG.
2.2 Payoff matrix and dynamic replication equation
Parameters and definitions related to the tripartite evolutionary game model for the low-carbon transition of enterprises are outlined in Table 1.
TABLE 1 | Parameters symbol descriptions.
[image: Table 1]Table 2 below displays the payoff matrix for the tripartite evolutionary game of enterprises’ low carbon transition, using the parameters and definitions listed in Table 1.
TABLE 2 | Payoff matrix among each game player.
[image: Table 2]According to the payment matrix of the tripartite low-carbon transition of enterprises in Table 2, the expected benefits of enterprises choosing participation or non-participation in the low-carbon transition and the average expected benefits are as follows:
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The dynamic replication equation for enterprises choosing to participate in the low-carbon transition strategy is as follows:
[image: image]
The expected benefits of the verification organization selecting a verification or non-verification approach and the average expected benefits are expressed as:
[image: image]
The dynamic replication equation for the verification agencies’ choice of verification strategy can be obtained as follows:
[image: image]
The expected benefits of local governments choosing strict or lax regulation and the average expected benefits are as follows:
[image: image]
The dynamic replication equation for the local governments’ choice of strict regulatory strategy is expressed as follows:
[image: image]
The dynamic replication equation provides a framework for studying strategy choice and changes in evolutionary games. It can help us better understand the changes in individual agents’ behavior, which can help us design more effective strategies to solve the problem. In conclusion, Eqs 2, 4, and 6 constitute a set of dynamic replication equations for the low-carbon transition system of enterprises.
3 SYSTEM STABILITY ANALYSIS
The dynamics of enterprises, verification agencies and local government strategies evolve as the game progresses. According to the principle of stability in differential equations, when the replicated dynamic equations for the three parties in the game converge to zero, the system approaches a stable state.
From F(x) = 0,F(y) = 0,F(z) = 0, we can get eight system local equilibrium points: E1 (0,0,0), E2 (1,0,0), E3 (0,1,0), E4 (0,0,1), E5 (1,1,0), E6 (1,0,1), E7 (0,1,1), E8 (1,1,1). The partial derivatives of F(x), F(y), and F(z) concerning x, y, and z are solved separately to obtain the Jacobi matrix:
[image: image]
According to the Lyapunov stability theorem for ordinary differential equations, an equilibrium point that meets the condition of having all negative eigenvalues in the Jacobian matrix is considered an evolutionarily stable strategy (ESS) for the dynamic replicator system. By inserting each of the eight equilibrium points into the Jacobian matrix, the associated eigenvalues for each point can be determined, as displayed in Table 3. The analysis of the evolutionary stability strategy of the equilibrium points is shown in Table 4.
TABLE 3 | The eigenvalues of the Jacobi matrix for each equilibrium point.
[image: Table 3]TABLE 4 | Analysis of the evolutionary stabilization strategy (ESS) at equilibrium points.
[image: Table 4]From Table 4, only points E4 (0, 0, 1) and E5 (1, 1, 0) satisfy the condition that all eigenvalues are negative under certain conditions, so the rest of the equilibrium points are unstable. When CH - CL + CP + BT + FP + MP < 0 and MT + FT + CT - BT < 0, the replicated dynamic system has a stable point E4 (0, 0, 1). From CL > CH + BT + BT + CP + FP, we know that the explicit cost of bribing the verification agency is (CH + BT + CP) and the implicit cost is (FP + MP) for the firm. FP can be seen as the penalty that the enterprise will receive for making the bribe, and MP can be seen as the reward that the enterprise will not receive for choosing to bribe. The cost of making the low carbon transition CL is greater than the total cost of bribing the verification agencies, so enterprises will choose to bribe the verification agency to conceal the carbon emission overrun from the government. From BT - MT > CT + FT, we know that for the verification agency, the amount of bribe BT is so large that even after subtracting the reward MT for performing regulatory duties, it is still greater than the sum of the cost of counterfeiting CT and the government fine FT and the verification agency will often accept the bribe from the enterprise so as not to conduct carbon verification for the enterprise. It indicates that when the cost of low carbon transition is high, the local government’s penalty and reward are small, and the benefit of bribing the verification agency is high, the evolutionary game stabilization strategy is (no participation, no verification, strict regulation). It means that when the amount of penalties and rewards set by the local government is not enough to restrain the behavior of enterprises and verification agencies effectively, the strategy of enterprises and verification agencies tilted in the direction of non-participation in low carbon transformation and non-verification, and the lack of effectiveness of local government regulation. In this case, enterprises perceive that the cost of low-carbon transition is higher than that of no low-carbon transition, and the strict regulation by local governments cannot promote the low-carbon transition of enterprises, and even increase the transition cost of enterprises, which also a reflection of the “Compliance cost ” effect.
When FP + MP > CL—CH—CP—BT > 0 and MT + FT > BT—CT > 0, both government incentives (MP and MT) and penalties (FP and FT) for firms and verification agencies are high, and the system has only one stability point E5 (1, 1, 0). It shows that when the local government gives considerable incentives to enterprises and verification agencies, and the penalties are also substantial, the three-party game system will not be a lousy strategy combination of (non-participation, non-verification, and strict regulation), but will become the ideal state of (participation, verification, lax regulation). With the continuous increase of government penalties, rational enterprises will adopt technological innovation and carry out low-carbon transformation to reduce carbon emissions, which embodies the “innovation compensation” effect. Moreover, the changes in the sales revenue of enterprises, the cost of strict regulation by local governments, and the number of administrative penalties for poor regulation by local governments still need to change the evolutionary stability. Therefore, the government should consider the interests of all parties when setting the reward and punishment mechanism to ensure that the cost of collusion between enterprises and verification agencies is higher to avoid the emergence of redundant equilibrium points so that the combination of strategies for the ideal state (participation, verification, lax regulation). In the ideal state, enterprises spontaneously make the low-carbon transition, verification agencies refuse to bribe for verification, and the government’s regulatory pressure is effectively relieved. A reasonably designed reward and punishment mechanism by the government can guarantee the orderly implementation of the low-carbon transition of enterprises.
4 NUMERICAL SIMULATION ANALYSIS
To explore the optimization path of the low-carbon transition efforts of enterprises, we present numerical simulations of the evolutionary paths of enterprises, verification agencies, and local governments under setting different parameter variations. The values of the parameters in this paper are determined by analyzing the behavior of parties involved in the low-carbon transition process using relevant parameter settings from carbon emission reduction-related research (Meng et al., 2022; Qin and Wang, 2022; Wei et al., 2022).
Suppose that the profit from product sales of the enterprises RP = 150, the production costs of enterprises participating and not participating in the low carbon transition CL = 185 and CH = 100, the bribery amount of the enterprise BT = 40, the cost of falsifying behaviors for enterprises CP = 10, the penalties for companies exceeding carbon emission limits FP = 40, the subsidy for enterprises from the local government MP = 20, the speculative cost of bribes accepted by verification agencies CT = 10, the penalty amount of testing agency FT = 20, the rewards for verification agencies that fulfill their supervisory responsibilities MT = 15, the cost of strict government regulation CG = 15, and the administrative penalties imposed by the central government on local governments for inadequate supervision TG = 40. Let the array 1 be: RP = 150, CL-CH = 85, CP = 10, BT = 40, FP = 40, MP = 20, CT = 10, FT = 20, MT = 15, CG = 15, TG = 40. Based on array 1, analyze the influence of RP, BT, MT, MP, FT, and TG on the process and outcome of the evolutionary game.
First, to assess the impact of RP variation on the evolutionary game’s progress and outcomes, RP values of 100, 150, and 200 were assigned. Figure 2 displays the simulation outcomes after replicating the dynamic equation system for 50 iterations. Figure 3 displays the simulation results obtained by assigning BT values of 20, 40, and 60 to analyze its influence on the evolutionary game process and outcome.
[image: Figure 2]FIGURE 2 | The impact of profit from product sales of the enterprises.
[image: Figure 3]FIGURE 3 | The impact of the bribery amount of the enterprise.
As seen from Figure 2, during the evolution of the system to the stabilization point, the increase in corporate profits can accelerate the evolution of corporate stabilization in participating in low-carbon transition strategies. As RP increases, the probability of corporate participation in low-carbon transition rises. The probability of strict regulation by local governments decreases. Therefore, for enterprises with large carbon emissions from backward production technology, preferential policies can be used to increase their income to promote low-carbon transition. Figure 3 shows that in the evolutionary process, as BT increases, the probability of enterprises participating in low-carbon transition increases, and the probability of verification agencies rejecting bribes for verification decreases. The government can increase the cost of bribery by increasing the power of media disclosure, expanding the influence of corporate reputation, fostering public awareness of environmental protection, and other market measures to enhance the willingness of companies to make a low-carbon transition.
Next, the simulation results are shown in Figure 4 for FT = 0, 20, 40 and Figure 5 for MT = 0, 15, 30. Figure 4 shows that before the probability evolution of enterprises’ participation in low-carbon transition stabilizes at 1, the probability of strict regulation by local government increases when FT increases. After the probability evolution of enterprises’ participation in low-carbon transition stabilizes at 1, the probability of strict government regulation gradually decreases and stabilizes at 0. The increase of FT increases the probability of verification agencies’ refusal to bribe for verification. Figure 5 shows that, in the evolutionary process, an increase in MT decreases the probability of strict regulation by local governments. Therefore, local governments should reasonably develop reward and punishment mechanisms to replace fixed payments for services in the form of bonus dividends so that verification agencies can share the responsibility with the government to ensure the stable advancement of enterprises’ low-carbon transition efforts.
[image: Figure 4]FIGURE 4 | The impact of penalty amount of verification agencies.
[image: Figure 5]FIGURE 5 | The impact of rewards for verification agencies that fulfill their supervisory responsibilities.
Further, the simulation results of replicating the dynamic equation system with 50 times of time evolution by assigning MP = 0, 20, 40, respectively, are shown in Figure 6; the simulation results of assigning TG = 0, 20, 40, respectively, are shown in Figure 7. Figure 6 shows that in the evolutionary stabilization process, the probability of strict regulation by local governments decreases as MP increases, and the probability of verification by verification agencies increases. Figure 7 shows that after the probability of enterprises’ participation in the low-carbon transition stabilizes at 1, an increase in TG leads to an increase in the probability of strict government regulation. Although the incentive mechanism of local government for enterprises can promote their participation in the low-carbon transition, it could be more conducive to the performance of regulators themselves. Severe administrative penalties imposed by the central government can maintain a higher probability rate of strict regulation by local governments, which further increases the willingness of enterprises to make a low-carbon transition.
[image: Figure 6]FIGURE 6 | The impact of subsidy for enterprises from the local government.
[image: Figure 7]FIGURE 7 | The impact of administrative penalties on local governments.
Assign array 2: RP = 150, CL-CH = 105, CP = 10, BT = 50, FP = 25, MP = 15, CT = 10, FT = 18, MT = 12, CG = 15, TG = 40, satisfying the conditions for the existence of stable point E4 (0, 0, 1). The two sets of values evolved 50 times over time from different initial strategy combinations, and the results are shown in Figures 8, 9.
[image: Figure 8]FIGURE 8 | Array 1 evolves 50 times.
[image: Figure 9]FIGURE 9 | Array 2 evolves 50 times.
As shown in Figure 8, the system has only one stabilization point (1, 1, 0) when only one combination of evolutionary stabilization strategies (participation, verification, and lax regulation) exists, consistent with the findings in the previous paper. Figure 9 shows that the system has two evolutionary stability points (0, 0, 1) and (1, 1, 0), i.e., the strategy combinations of firms, verification agencies, and local governments (non-participation, non-verification, strict regulation) and (participation, verification, lax regulation) are two evolutionary stability strategy combinations. Therefore, the local government should strengthen the information construction and examine the interests of enterprises and verification agencies in many aspects to ensure that enterprises choose to carry out low-carbon strategies need lower costs and avoid the situation that irregularities such as bribery hinder the low-carbon transition work of enterprises. As can be seen, the simulation analysis is consistent with the conclusions of the previous stability analysis. Its validity is a practical guide for the low-carbon transition work of energy-intensive enterprises.
In summary, RP, BT, MT, MP, FT, and TG are all factors that influence enterprises to make a low-carbon transition during the implementation of command-and-control type policies. Enterprises compare the total cost of participating and not participating in the low-carbon transition and make decisions that determine whether command-and-control environmental regulations are effective. Previous studies have used samples from different industries in different countries, such as China, the United Kingdom, and Denmark (Bi et al., 2014; Dirckinck-Holmfeld, 2015; Murray and Rivers, 2015), the cement industry versus the coal-fired power generation industry, and so on (Mandal, 2010; Hancevic, 2016). Therefore, these samples differ in corporate profitability, the extent of policy implementation, and the severity of regulatory penalties. In addition, it has been noted that CAC policies can produce significant environmental benefits in developing countries (Blackman et al., 2018). These may all lead to a debate on whether “compliance cost” or “innovation compensation.”
5 CONCLUSION AND POLICY RECOMMENDATIONS
5.1 Conclusion
In implementing imperative environmental regulation tools, they are achieving low-carbon transformation of enterprises resulting from game interaction among three stakeholders. In the context of “double carbon” objectives, this paper analyzes the system’s stability conditions and evolutionary paths under each strategy based on the tripartite evolutionary game among local governments, enterprises, and verification agencies under environmental regulation. It uses MATLAB numerical simulation to explore the optimization paths of local governments to promote the low-carbon transition of energy-intensive enterprises. Compared with the previous literature that used data modeling for research, this study is based on evolutionary game theory, which can eliminate the impact of regional differences and sample characteristics differences, and the results are more general. The main conclusions are summarized as follows.
(1) Command-and-control policies can promote the low-carbon transformation of energy-intensive enterprises while inhibiting bribery between enterprises and verification agencies. Strict regulation and law enforcement make bribery more difficult and risky, reducing enterprises’ motivation to evade environmental regulations through bribery.
(2) In the actual process of the game, enterprises weigh the costs of low-carbon transition and those of not, and the costs of low-carbon transition are higher when the government rewards and punishments are small. On the contrary, when the government’s incentives and penalties are strong enough, enterprises will make a low-carbon transition spontaneously in the face of continuously increasing environmental regulation intensity, which supports the theory of “innovation compensation.”
(3) Improving product sales profitability can increase enterprises’ motivation to engage in low-carbon transformation. If low-carbon products can obtain higher market demand and prices, enterprises will have greater motivation to invest in low-carbon technology and innovation.
(4) Increasing the cost of bribery can reduce the incentive effect of bribery. If bribery costs are high, companies are more inclined to improve product competitiveness and profitability through legal means rather than relying on bribery to evade environmental regulations.
5.2 Policy recommendations
Based on the above findings, policy recommendations are obtained as follows:
In terms of command-and-control policies: 1) Strengthen environmental regulation and law enforcement efforts to ensure adequate supervision of the low-carbon transformation of energy-intensive enterprises. Increase the resources and capabilities of verification agencies to reduce the occurrence of bribery; 2) Develop strict regulations and systems, clearly define the low-carbon transformation requirements that energy-intensive enterprises should comply with. Moreover, clarify punishment measures. These will increase the risk and cost of companies evading environmental regulations through bribery, thereby reducing their motivation; 3) Strengthen information sharing and cooperation among industries to more effectively monitor and prevent bribery. Establish a reporting mechanism and reward system to encourage employees and the public to expose behaviors involving bribery.
In terms of reward and punishment mechanisms: 1) Establish low-carbon transformation incentive measures, such as tax exemptions, subsidies, rewards, etc., to reduce the cost of low-carbon transformation for enterprises. The government can provide technical support and consulting services to assist enterprises in implementing low-carbon technology and innovation; 2) Increase the penalties for enterprises that do not meet the requirements of low-carbon transformation, such as fines and revocation of licenses, to increase the motivation for enterprises to follow low-carbon transformation.
In terms of corporate profitability: 1) Promote market demand and price recognition of low-carbon products, and improve consumers’ awareness and preference for low-carbon products through publicity and education activities; 2) Establish a low-carbon product certification and standard system so that consumers can clearly distinguish and choose low-carbon products, thus encouraging enterprises to invest in low-carbon technology and innovation; 3) Encourage enterprises to carry out green finance and sustainable development investment, and provide loans and financial support to enterprises committed to low-carbon transformation.
In terms of regulating enterprise behavior: 1) Strengthen the formulation and implementation of anti bribery laws and regulations, and improve the legal risk and punishment of bribery; 2) Increase the protection of bribery reporting mechanism, protect the rights and interests of informants, and reward effective reporting; 3) Strengthen the internal compliance mechanism and moral education of the enterprise, cultivate employees’ integrity awareness, and reduce the occurrence of bribery.
5.3 Research limitations of this paper
Under the strict supervision of the government, due to the problems of administrative ability and professional quality, the government cannot fully guarantee to find the problem of fraud in carbon emission reporting. In addition, although MATLAB numerical simulation can intuitively provide valuable information about system behavior and is more cost-effective, it is still the result of approximate calculation. The model used is usually based on assumptions and simplification, which may not capture the complexity and nonlinear behavior of the system entirely and accurately. Finally, based on evolutionary game theory, this paper only discusses the relationship between energy-intensive enterprises, verification agencies, and the government. The feedback mechanism between other stakeholders, such as the public and other subjects, needs further study.
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Green hydrogen generation driven by solar-wind hybrid power is a key strategy for obtaining the low-carbon energy, while by considering the fluctuation natures of solar-wind energy resource, the system capacity configuration of power generation, hydrogen production and essential storage devices need to be comprehensively optimized. In this work, a solar-wind hybrid green hydrogen production system is developed by combining the hydrogen storage equipment with the power grid, the coordinated operation strategy of solar-wind hybrid hydrogen production is proposed, furthermore, the NSGA-III algorithm is used to optimize the system capacity configuration with the comprehensive performance criteria of economy, environment and energy efficiency. Through the implemented case study with the hydrogen production capacity of 20,000 tons/year, the abandoned energy power rate will be reduced to 3.32% with the electrolytic cell average load factor of 64.77%, and the system achieves the remarkable carbon emission reduction. In addition, with the advantage of connect to the power grid, the generated surplus solar/wind power can be readily transmitted with addition income, when the sale price of produced hydrogen is suggested to 27.80 CNY/kgH2, the internal rate of return of the system reaches to 8% which present the reasonable economic potential. The research provides technical and methodological suggestions and guidance for the development of solar-wind hybrid hydrogen production schemes with favorable comprehensive performance.
Keywords: solar-wind hybrid power, hydrogen production, capacity optimization, comprehensive performance, NSGA-III
1 INTRODUCTION
With the increasing energy demand and fossil fuel consumption, serve issues of energy shortage and environmental pollution are in urgent need to be addressed (Hussain et al., 2023). The development and utilization of renewable energy can effectively promote the transformation of clean and efficient energy structures and enhance the overall efficiency (Jaber et al., 2008; Kumar and Majid, 2020).
Wind and solar power have been extensively adopted in various sectors, including industrial production (Roesch et al., 2019), residential areas (Graça Gomes et al., 2023) and agriculture (Acosta-Silva et al., 2019), owing to their environmental-friendly attributes and associated advantages. However, the intermittent and unstable natures of wind speed and solar irradiation result in significant randomness and fluctuations of power output, which posing a substantial challenge to the reliable and stable functioning of the power grid (Wahbah et al., 2022; Teferra et al., 2023). In order to mitigate these fluctuations and enhance the grid stable operation, several approaches have been proposed, including wind and solar forecast (Kamani and Ardehali, 2023), energy storage (Wu and Zhang, 2021; Deymi-Dashtebayaz et al., 2022), and electrochemical conversion (Han et al., 2023; Liu et al., 2023).
The energy storage methods consist of battery energy storage, hydrogen energy storage, and flywheel energy storage. These three methods enable the flexible utilization of wind and solar resources (Amry et al., 2023; Fosso Tajouo et al., 2023; Liu et al., 2023). Nevertheless, as wind and solar resources continue to progress, greater demands emerge for enhancing the economic viability of batteries and technological advancements (Hutchinson and Gladwin, 2023). Meanwhile, hydrogen storage presents a more straightforward scaling approach, rendering it applicable in numerous scenarios, including the chemical industry and energy sectors, thereby resulting in heightened economic advantages (Tang et al., 2022; Kakavand et al., 2023).
Water electrolysis hydrogen production stands out as an electrochemical conversion method that strikes a balance between safety and economic feasibility, utilizing the wind and solar resources effectively and reducing the wind and solar energy curtailment by converting low-grade and fluctuating electrical energy into high-grade hydrogen energy (Shiva Kumar and Lim, 2022; Shin et al., 2023).
Currently, hydrogen production technology mainly includes Alkaline Electrolysis (AE), Proton Exchange Membrane Electrolysis (PEME), Anion Exchange Membrane Electrolysis (AEME), Solid Oxide Electrolysis Cell (SOEC). Among them, AE and PEME technologies have been commercialized, while AEMWE and SOEC have demonstrated improvements in hydrogen production efficiency and stability, but they are still under the experimental stage due to challenges of durability and cost considerations (Lim and Kim, 2022; Wappler et al., 2022). Thus, the solar-wind hybrid hydrogen production system is constructed by the integration of wind turbines, photovoltaic panels and water electrolysis cells, which enhances the competitiveness of solar-wind power in the energy market and advances the goal of carbon neutrality (Shen et al., 2021; Wang et al., 2021). developed a multi-energy system composed of alkaline electrolyzer, wind turbine, which can achieve stable power output and energy storage capabilities, and effectively address the power supply problem in remote areas (Temiz and Dincer, 2022; Zhang F. et al., 2023). proposed the solar-wind-hydrogen multi-energy system to meet residents energy demands (Song et al., 2022). concluded that the optimal cost-effective solution for carbon neutrality in the context of solar-wind energy-based power supply is the integration of complementary solar-wind hybrid hydrogen production system, which could further reduce the carbon emissions in industrial and transportation parts.
However, with the enlarged scale of solar-wind power plant and the trend towards large-scale hydrogen production, the issue of investment and maintenance costs for the hydrogen production and storage system needs to be considered, and thus the optimization of system capacity configuration becomes crucial (Prestat, 2023). To address these challenges (Kiehbadroudinezhad et al., 2022), developed a capacity configuration optimization model for the solar-wind combined seawater hydrogen production system, and proved the environmental benefits of the optimized system. It has contributed to alleviating the environmental limitations of wind and solar power generation hydrogen production applications (Al-Buraiki and Al-Sharafi, 2022). optimized the capacity configuration of a solar-wind hybrid hydrogen production system in a certain area, achieving a hydrogen production cost of up to 36.32 $/kg under reasonable conditions of loss of hydrogen supply probability (LHSP), it provides a framework for achieving a more stable and economical production of green hydrogen. Yang et al. (Zhang P. et al., 2023) optimized the capacity configuration of the solar-wind hybrid hydrogen production system based on government subsidies and environmental benefits, resulting in a 38.9% increase in annual profit for the optimized hybrid system, optimizing the system based on local policies to attain economic benefits demonstrates that policy support is a crucial factor influencing the cost of hydrogen production (Izadi et al., 2022). optimized the solar-wind hybrid hydrogen production system in buildings based on installation cost, CO2 production and loss of power supply probability, showing that the optimized hybrid system can meet 70%–80% of urban building electricity, it provides an important scheme for the high proportion utilization of renewable energy in the future (Nasrabadi and Korpeh, 2023). optimized the capacity configuration of the hydrogen production system based on minimizing the system cost, leading to an increased exergy efficiency of 20.7% and hydrogen production rate of 1% with the total cost rate value reduction of 2%. Additionally (Al-Ghussain et al., 2023), took the supply-demand relationship and energy cost as the capacity configuration optimization objectives of the solar-wind hybrid hydrogen production system. The optimized system required a higher storage capacity by 75.77%, but the hydrogen production cost is more competitive (Lv et al., 2023). optimized the capacity configuration of solar-wind hybrid hydrogen production system based on the fluctuation of green electricity transaction price and hydrogen demand. The optimized system hydrogen demand increased by 40%, which effectively improved the ability to resist the uncertainty of hydrogen demand, considering the demand of power grid and the price of power transaction to adjust the system and formulate the scheduling strategy can improve the flexibility of wind and solar resource scheduling and contribute to improving the market competitiveness of green hydrogen Lu et al. (2023). optimized the solar-wind complementary hydrogen production system in green buildings with the goal of minimizing system cost and maximizing reliability, the optimized improvement of the system's energy supply stability helps to promote the high proportion of renewable energy in life. The optimal configuration of the system occurs when the reliability of the system is 12% and 15%. Based on Levelized Cost of Hydrogen (Superchi et al., 2023), optimized the capacity configuration of solar-wind hybrid hydrogen production system. The results show that the optimized system can still achieve competitive hydrogen production cost under the current technical conditions (Behzadi and Sadrizadeh, 2023). optimized the solar-wind hybrid hydrogen production system with the optimal operating state, the optimized system carbon emissions and the cost are reduced by 8% and 38%, respectively, taking the economy of hydrogen production and carbon emissions as the measurement indicators, the further optimization research on green electricity hydrogen production can enhance the market competitiveness of green hydrogen, promote low-carbon environmental protection, and further promote the clean transformation of energy structure.
Along with being a crucial component in large-scale hydrogen production, the size of wind and solar power generation, the capacity configuration of electrolytic cells, energy storage, and other equipment all have a significant impact on the system’s overall performance. Therefore, considerations like economy, environment, and energy consumption aspects will be taken into account and transformed into multi-objective optimization problems in order to better measure system performance from different viewpoints. To further improve the system, a redesigned system capacity configuration optimization method using the NSGA-III algorithm is proposed, in order to optimize the solar-wind hybrid hydrogen production system. In addition, the comprehensive performance and dynamic operation of the optimized system are thoroughly evaluated. The main contribution can be outlined as follows:
(1) The system capacity configuration optimization approach based on the NSGA-III algorithm is suggested for large-scale hydrogen production scenarios, with the aim of thoroughly optimizing the grid-connected solar-wind complementing hydrogen production system.
(2) A comprehensive performance evaluation of the optimized capacity design is thoroughly assessed in terms of economy, environment and utilization efficiency, and the monthly and daily conditions are further examined.
(3) Based on the proposed control strategy of solar-wind hydrogen production, the complementary characteristics of solar-wind power generation and the dynamic operation of the system under typical monthly cycles are analyzed.
The rest is organized as follows: the process of conceptual and mathematical modeling is descripted in Section 2. Section 3 introduces evaluation indicators and optimization objectives. The results and analysis are discussed in Section 4. In Section 5, the main conclusions are summarized.
2 SOLAR-WIND HYBRID HYDROGEN PRODUCTION SYSTEM AND PERFORMANCE EVALUATION METHOD
The combination of water electrolysis hydrogen production technology and solar-wind power generation has multiple advantages, providing an effective approach to convert the renewable energy, and also provides an effective and feasible way for large-scale production of green hydrogen.
2.1 Solar-wind hybrid hydrogen production system
In this work, a green hydrogen generation system driven by solar-wind hybrid power with the water electrolysis technology is developed. The system will stabilize the output of hydrogen as the main goal, but also to meet the requirements of large-scale green hydrogen production throughout the year. It consists of wind turbines, photovoltaic arrays, alkaline electrolyzers, energy storage batteries and hydrogen tanks, as shown in Figure 1. The wind turbine and photovoltaic systems are employed as the primary power generation equipment to supply eco-friendly energy for electrolyzing hydrogen production. Concurrently, to mitigate the impact of fluctuations on hydrogen production, battery and hydrogen storage tanks are utilized as coordination equipment for power and hydrogen transmission, effectively enhancing system stability. Furthermore, the incorporation of the power grid enables the absorption of surplus wind and solar power, thereby optimizing the utilization of these renewable sources while also furnishing additional power to the electrolytic cell, further bolstering the system’s stability.
[image: Figure 1]FIGURE 1 | To further study the system capacity configuration optimization from green hydrogen generation system driven by solar-wind hybrid power, a brief and complete system is developed, which mainly consists of wind turbines, photovoltaic arrays, alkaline reactors (AE). Energy storage batteries and hydrogen tanks.
Due to the instability of the wind speed and solar radiation throughout the year, in order to further realize the demand of generating stable hydrogen load, the basic operation strategy of grid-connected solar-wind hybrid hydrogen production system is developed. Firstly, the hydrogen output load is predetermined, and the system utilizes this load as a stable output, with wind and solar power generation serving as the primary power supply sources. Based on the hydrogen load and available wind power, two modes of operation can be identified:
(1) Wind-solar power exceeds the power required for hydrogen output load: In this scenario, the hydrogen production rate of the electrolytic cell surpasses the hydrogen output load, leading to an excess of hydrogen, which is then stored in the hydrogen storage tank. Any surplus power generated is directed towards charging the battery. If the battery capacity reaches its upper limit, the surplus power can be transmitted to the grid for external use;
(2) Wind-solar power is less than the power required for hydrogen output load: In such cases, the hydrogen production rate of the electrolytic cell is unable to meet the required hydrogen output load. Consequently, the hydrogen from the hydrogen storage tank is simultaneously utilized to meet the demand. If there’s not enough hydrogen in the tank, power from the battery will be utilized to enhance the hydrogen production rate of the electrolytic cell. If both reserves prove insufficient, the system resorts to purchasing electricity from the grid to augment the hydrogen production rate.
Compared with the off-grid type system, by considering the power grid connection scenario, the grid-connected hydrogen production system allows for the maintenance of a minimum operating interval for the electrolyzer, thus minimizing start-stop cycles, and also enhancing the hydrogen production capacity and the operational lifespan of the electrolyzer. This operational strategy ensures the fulfillment of stable hydrogen load requirements while guaranteeing the safe and stable operation of each equipment component.
2.2 Solar-wind hybrid hydrogen system modeling
2.2.1 Solar and wind power output modeling
The energy source of the whole system comes from the wind turbine and photovoltaic array, and the wind turbine output power PWT is mainly dependent on the wind speed v, so the wind power has the significant and irregular fluctuation characteristics. The output power by the wind turbine can be calculated as follows (Chaichan et al., 2022; Kiehbadroudinezhad et al., 2022):
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where vin, vout are the cut-in and cut-out wind speed, respectively. vr is the rated wind turbine speed. NWT means the number of installations. PWT_r is the rated wind turbine power and can be calculated as follows:
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where ρ means the air density. SWT means the swept area of the rotor, and τ represents the coefficient of performance of the wind turbines.
Photovoltaic array converts the solar radiation into electrical energy through photoelectric effect, and the photovoltaic output power PPV can be calculated as follows (Praveenkumar et al., 2022).
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where Nb and Nc are the number of photovoltaic cells in parallel and photovoltaic cells in series, respectively. Iph and Irs mean photo-generated current and the reverse saturation current of the diode, respectively. UPV is the output voltage of photovoltaic cells. TPV is the output temperature of photovoltaic cells. α and β represent the diode quality factor and electron charge, respectively. K is the Boltzmann constant.
2.2.2 AE electrolyzer modeling
The AE is adopted as one of the critical equipment in this hydrogen production system. Its operating power is mainly affected by its own polarization characteristics. According to its polarization characteristics, the power PAE of the electrolyzer can be calculated as follows (Fang and Liang, 2019).
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where IAE is the AE input current. TAE and AAE mean the cell temperature and the electrolytic cell effective area, respectively. w1, w2, w3, w4 and w5 are empirical coefficients. U0 is reversible voltage and s is the electrode overvoltage coefficient.
And then the molar rate of hydrogen production nH2 is obtained as follows:
[image: image]
where NAE represent the number of electrolytic cells. F is the Faraday constant of 96487 C/mol.
2.2.3 Battery and hydrogen storage modeling
In order to further improve the utilization rate of wind and solar energy, the lithium iron phosphate battery is employed as an energy storage device, which enables the storage of the excess wind and solar energy power after the hydrogen production and to supplement when the power is insufficient. The capacity EBA(t) at time t can be expressed as follows:
[image: image]
where σ means the self-discharge rate of the battery. ηBA_in and ηBA_out represent charging efficiency and discharging efficiency respectively. EBA_max and PBA(t) are the max total capacity and power of the battery. In addition, when PBA(t) > 0 the battery will be charged, and when PBA(t) < 0, the battery will be discharged.
Moreover, considering the volatility inherent in solar-wind hydrogen production, the inclusion of hydrogen storage equipment is crucial to enhance the stability of hydrogen transportation. Within this solar-wind hybrid hydrogen production system, gaseous high-pressure hydrogen storage technology is primarily employed for short-term storage of hydrogen, ensuring efficient and reliable operation. According to the Clapeyron equation, the state of the tank can be obtained by Eq. 7.
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where QHT is the volume of the hydrogen storage tank. JHT(t) and nHT(t) are the volume of the hydrogen storage tank and the hydrogen production rate at time t, respectively. THT is the thermodynamic temperature of hydrogen storage, and R represents the ideal gas constant.
3 SOLAR-WIND HYBRID HYDROGEN PRODUCTION SYSTEM COMPREHENSIVE EVALUATION METHOD
3.1 System comprehensive evaluation method
The implementing the operation strategy of solar-wind hybrid hydrogen production system contributes to effectively achieving the goal of stable hydrogen production, meanwhile, in order to make full use of the renewable energy, a grid-connected solar-wind hybrid hydrogen production system is established. The operational dynamics and capacity configuration of this system significantly influence the comprehensive benefits throughout the life cycle, subsequently impacting the expansion and investment in solar-wind hydrogen production. As a result, it plays a vital role in the development of related investments and requires comprehensive performance evaluation methods for assessing its overall benefits, as depicted in Figure 2.
[image: Figure 2]FIGURE 2 | To comprehensively assess the overall benefits of the solar-wind hybrid hydrogen production system, including economic performance, environmental performance, and energy efficiency, a set of rigorous performance evaluation methods is employed. These methods facilitate a holistic analysis of the system’s effectiveness. The accompanying optimization flow chart visually outlines the process.
While the evaluation encompasses economic performance evaluation, quantifying the economic benefits throughout the system’s life cycle; environmental performance evaluation, assessing the environmental friendliness during the system’s life cycle; and energy efficiency evaluation, measuring the energy utilization during system operation.
Initially, the key indicators corresponding to each evaluation criterion are defined as the foundation for optimizing the capacity configuration. Specifically, a multi-objective optimization approach is employed to optimize the capacity configuration of wind turbines, photovoltaic arrays, alkaline electrolyzers, energy storage batteries, hydrogen storage tanks, and other components in the solar-wind hybrid hydrogen production system. The NSGA-III algorithm is applied to achieve an optimal configuration that maximizes the overall performance. Subsequently, the optimized scheme is thoroughly analyzed using comprehensive performance indicators, resulting in the development of a comprehensive evaluation methodology for solar-wind hybrid hydrogen production system.
3.2 Comprehensive performance evaluation modeling
The performance evaluation model comprises three categories of performance indicators, establishing a comprehensive framework for evaluating the solar-wind hybrid hydrogen production system. This model is utilized to simulate and assess the system’s performance by evaluating its economic performance, environmental performance, and energy efficiency.
3.2.1 Economic evaluation
The primary objective of the solar-wind hybrid hydrogen production system is to utilize water electrolysis for hydrogen generation, and the produced excess electricity will be transmitted and sold by the connected power grid. In this regard, the economic analysis of hydrogen production, specifically LCOH, serves as a vital metric for assessing the economic viability of the solar-wind hybrid hydrogen production system, as expressed by Eq. 8 (Almutairi et al., 2021):
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where IIC and OM means the initial investment cost and operation and maintenance costs, respectively. RS is the residual value of fixed assets. y is the lifetime from the project. f is the inflation rate and i is the interest rate of 8%. L and MH2 are the lifetime and the mass of hydrogen production.
The internal rate of return (IRR) is used to measure the investment efficiency and also reflect the project profitability, which can be represented by Eq. 9 (Emrani et al., 2022).
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where CI and CO are cash inflows and cash flow.
Payback Period (PP) is introduced to evaluate the project financial investment recovery ability, and the dynamic investment of pay-back period can be calculated by Eq. 10
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where θ is the number of years in which the cumulative net cash flow of each year is positive or zero for the first time.
The total investment profit rate (ROI) indicates the profitability of the total investment of the project, which can be calculated by Eq. 11
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where EPIT is annual earnings before interest and tax, and TI means the total investment of the project.
3.2.2 Environmental evaluation
The utilization of renewable energy sources, such as wind or hydrogen, in lieu of fossil fuels for electricity and hydrogen supply, leads to a reduction in fossil fuel consumption and the consequent pollutant emissions, particularly carbon dioxide. In this study, the emission coefficient is employed to evaluate CO2 emission reduction.
The solar-wind hybrid power generation systems are grid-connected, operating within the permissible limits set by the grid. The electricity generated through these systems contributes to a decrease in CO2 emissions. In order to investigate the carbon emission of this system, the carbon emission reduction CERWT_PV is defined as Eq. 12 (Pan et al., 2021; Wang et al., 2023).
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where EFele is the carbon emission factor of grid. DWT_grid and DPV_grid means the on-grid electricity of wind and solar power generation during the operation period and Dgrid_AE is the down-grid electricity to AE.
The hydrogen produced by the solar-wind hybrid hydrogen production system is characterized by its absence of CO2 emissions upon combustion. The output of per cubic meter hydrogen needs to consume 4.5–5.5 kWh of electricity, and the carbon reduction benefit of hydrogen production will be quantified by comparing the equivalent electricity consumption of the power grid for the same amount of hydrogen. (Rezaei et al., 2018). Therefore, the carbon emission reduction of the hydrogen produced CERH2 can be calculated by Eq 13.
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where WH2 is electricity consumed for the unit of hydrogen production, and ρH2 is the density of hydrogen.
Green hydrogen ratio (GHR) measures the proportion of green hydrogen in the system, indicating the amount of renewable energy in the system, which can be expressed as Eq. 14
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3.2.3 Evaluation of energy efficiency
The utilization of renewable energy during the operation of the electrolytic cell can be measured by abandoned energy power rate (AEPR), with the expression of:
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During the real-time operation of the electrolytic cell, the dynamic performance of the cell is assessed based on the electrolytic cell load rate. The electrolytic cell load rate is calculated as Eq. 16:
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where ΔG is the Gibbs free energy of the electrochemical reaction.
4 CAPACITY OPTIMIZATION CONFIGURATION MODEL BASED ON NSGA-III
To meet the hydrogen production requirements and ensure the efficient solar-wind hybrid hydrogen generation, an operation strategy that satisfies the load operation is essential. In addition, the NSGA-III multi-objective optimization algorithm is used to optimize the capacity configuration.
4.1 Optimization of objects
With the target annual hydrogen output capacity of 20,000 tons, the solar-wind hybrid hydrogen production system defines the optimization objective based on the comprehensive performance evaluation criteria. The following contents are taken as the optimization objectives: (1) minimizing the levelized cost of hydrogen (LCOH) to improve the economy of the system; (2) maximizing the carbon emission reduction (CER) to reduce environmental impact and increase hydrogen production; (3) minimizing the abandoned energy power rate (AEPR) of wind and solar energy to improve the utilization of renewable energy. These objectives are formulated as the objective functions for optimization, while various constraints are employed to ensure system stability. The optimization algorithm, specifically the NSGA-III algorithm, is employed to solve the comprehensive optimization of the system. Additionally, to comply with the requirements of the NSGA-III algorithm, the maximization of CER is transformed into the minimization of the reciprocal of CER. Therefore, the optimization goal is expressed by Eq. 17
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4.2 Decision variables and constraints
According to the objective function, the rated capacity of wind turbines, photovoltaic arrays, electrolyzers, batteries, and hydrogen storage tanks are selected as decision optimization variables, and expressed by Eq. 18
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where EWT, EPV and EAE are the construction scale capacity of wind turbine, photovoltaic array and alkaline electrolyzer cell, respectively.
In order to improve the system reliability, the following constraints should be satisfied. During operation, it is imperative for the system to uphold law of conservation of energy, ensuring that power input and output adhere to the following balance constraints:
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where Paban is the abandoned power of solar-wind power generation.
Energy storage state constraints: ensuring that the pressure in the hydrogen storage tank remains within operational requirements. Battery charge and discharge constraints: maintaining the state of charge within the desired range. These constraints are expressed as Eq. 20
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where JHT_min and JHT_max mean the upper and lower pressure constraint values of hydrogen storage tank. SOCess_min and SOCess_max are the upper and lower limits of the battery state of charge.
Power operation constraints: during the system operation, it is necessary to ensure the service life of the electrolyzer and the safe transmission of the power grid. Therefore, the power operation constraints of the electrolyzer and the transmission power constraints of the power grid line can be expressed as Eq. 21
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where PAE_min and PAE_max are the upper and lower constraint values of the power of the electrolytic cell, respectively. Pgrid_min, Pgrid_max are the transmission power limits of power down and power up.
4.3 NSGA-III algorithm
The capacity configuration optimization of solar-wind hybrid hydrogen production system is a multi-objective and multi-constrained optimization problem. Therefore, the Non-dominated Sorting Genetic Algorithm (NSGA) III algorithm is adopted. Compared with the NSGA-II algorithm, NSGA-III uses widely distributed reference points to maintain the diversity of decision variables, which reduces the time complexity of the algorithm and improves the effect on high-dimensional problems (Sharma et al., 2023). The specific algorithm optimization process is shown in Figure 3.
(1) Initialize the scale of wind turbines, photovoltaic arrays, alkaline electrolyzers, batteries, hydrogen storage tanks and other equipment to form a population of N, form initial variables and select reference points on the hyperplane;
(2) According to the operation strategy of the grid-connected solar-wind hydrogen production system, and initialize the population;
(3) The optimal individual is selected by the tournament method, and the progeny individual is generated through crossover and variation, and different non-dominated layers are obtained by further non-dominated sorting;
(4) Normalize the population operation and the individuals in the critical layer are associated with the reference line according to the reference point;
(5) According to the number of individuals associated with the reference line, the population individuals are selected from the critical dominant layer to enter the new generation of parents, and the number of iterations is added by 1;
(6) Repeat operation (2)–(5) until the number of iterations reaches the maximum number of iterations.
[image: Figure 3]FIGURE 3 | To accurately configure the optimal capacity of the system, the NSGA-III algorithm is employed with AEPR, LCOH, and CDER serving as the optimization objectives. The decision variables in this optimization process are the capacity configuration of each equipment within the system.
The economic parameters of the solar-wind green hybrid hydrogen production system in this study including the construction costs, operation costs, and other relevant economic factors associated with the main equipment, are presented in Table 1. In addition, in order to ensure the rationality of the system simulation and capacity configuration optimization process, the technical and operational parameters of each individual device are kept within the design range, as shown in Table 2. Among them, the maximum pressure of one hydrogen tank volume is 5 MPa, and the maximum SOC of one battery is 0.9.
TABLE 1 | Investment costs of equipment and economic data of a hydrogen production system.
[image: Table 1]TABLE 2 | Technical and operating data of the WT&PV-hydrogen system.
[image: Table 2]5 RESULTS AND DISCUSSION
The solar-wind hybrid hydrogen production system enhances the competitiveness of solar and wind energy. In order to improve the thermodynamics and economics potential, the capacity of the solar-wind hybrid hydrogen production system and its dynamic operation characteristics need to be optimized and investigated.
5.1 Analysis of multi-objective optimal capacity optimization results
The meteorological data from a specific region in Taonan, Jilin Province of China is utilized as input for the configuration optimization. The wind speed and solar irradiation data for the area are sampled at hourly intervals over the course of 1 year. Wind speed and solar irradiation are crucial parameters for assessing wind power and solar power potential. The variation trends of these parameters are depicted in Figure 4. It reveals that there is a certain complementarity between wind and insolation, which is better between summer and autumn of resources. Further calculation and analysis of cases are performed based on this weather data.
[image: Figure 4]FIGURE 4 | To quantitatively assess solar and wind resources in Taonan area of China Jilin Province, the hourly wind speed and solar irradiance data for a specific year were collected and analyzed, to further understand the complementary utilization of wind and solar resources, the monthly variations in wind and solar resources were statistically compared.
Aiming at the grid-connected solar-wind hybrid hydrogen production system, the NSGA-III algorithm is employed to address the capacity optimization configuration problem. The optimization objectives include the levelized cost of hydrogen, the reciprocal of carbon dioxide emission reduction, and the rate of wind and solar curtailment. Considering the diversity and operation of the solution set, the population size is set to 500, and the number of iterations is 100 generations. The resulting optimal solution set is illustrated in Figure 5, the Pareto surface exhibits clear patterns, and the distribution of the target solutions appears wide and uniform, indicating that the distribution of the solution set has diversity.
[image: Figure 5]FIGURE 5 | The optimization results of the capacity configuration were obtained using the NSGA-III algorithm, with a population size of 500 and 100 generations of iterations. To determine the optimal capacity configuration under multi-objective optimization, it is necessary to comprehensively consider the system in the AEPR, CDER and LCOH, the performance of AEPR, CDER and LCOH in the multi-objective capacity configuration are evaluated.
Based on the diversity scheme resulting from the capacity configuration optimization, a final optimization scheme can be selected through analysis. As for the side-view projection of optimization results, it is a curve depicting the reciprocal of carbon emission reduction and the rate of wind and solar curtailment, showing a clear negative correlation trend. Specifically, there is a positive correlation between carbon emission reduction and the rate of wind and solar curtailment. As the rate of wind and solar curtailment decreases, the carbon emission reduction also decreases. This trend indicates that although reducing the rate of solar and wind curtailment allows for increased utilization of renewable energy, it results in a decrease in the overall carbon emission reduction, reflecting a reduction in the overall level of comprehensive accessibility and carbon emission reduction.
Based on the face projection of optimization results and the top view projection of optimization results, it can be seen that among the schemes with lower LCOH, there are variations in the wind and solar curtailment rate and carbon emissions, but the three optimization objectives exhibit a non-linear relationship with each other. Consequently, a single scheme cannot simultaneously achieve the optimal solution for all three objectives. Therefore, a weighting method is employed to select the scheme. Firstly, the scheme is preliminarily selected based on the requirement of the solar-wind hybrid hydrogen production system, that is, f ≤ [25, 1.0 × 10−6, 5]. Then, the solution of the Pareto solution sets are normalized. Finally, the weighted method is used to get the final scheme. Given the significance of economy in the design process, a weight ω = [0.6, 0.2, 0.2] is applied to sort and select normalized schemes. By calculating the fitness of the solution in the Pareto solution set, the scheme with the minimum fitness is selected as the design scheme. Finally, the corresponding objective function values are f = [16.69, 9.76 × 10−7, 3.32], and the configuration of each device is shown in Table 3. Through the NSGA-III algorithm, the capacity configuration scheme for the solar-wind hybrid hydrogen production system is determined based on these three categories of indicators.
TABLE 3 | Configuration optimization solutions.
[image: Table 3]5.2 Performance analysis of solar-wind hybrid hydrogen production system
Through the application of the multi-objective optimization algorithm, an optimized scheme for solar-wind hybrid hydrogen production has been obtained. Based on the capacity optimization configuration results, a comprehensive analysis of the scheme is conducted using various performance indicators. The calculation results are presented in Table 4. Notably, the LCOH is determined to be 16.69 CNY/kgH2, and Initial cost is 5.60×109 CNY. To ensure economic viability, a recommended sales price of 27.80 CNY/kgH2 is proposed, along with a payback period of 12.18 years and a total investment profit rate of 10.60%.
TABLE 4 | Scheme comprehensive index calculation results.
[image: Table 4]Otherwise, under this specific capacity configuration scale, the system demonstrates notable environmental performance indicators, with a CER of 1.02×106 tCO2. A predominant contribution of renewable energy sources and the grid primarily serves the role of load regulation, resulting in a high proportion of 98.51% for green hydrogen ratio, further enhancing its environmental friendliness. Concerning energy utilization parameters, the wind and solar energy curtailment rate is recorded at 3.32%, indicating satisfactory utilization of scenic power resources. Moreover, the average load factor of the electrolyzer stands at 64.77%, falling within the conventional range for electrolyzers. Thus, it is evident that the proposed capacity configuration method yields a comprehensive and well-performing solution for a solar-wind hybrid hydrogen production system, meanwhile to further enhance the economic benefits, as the cost of related equipment decreases. Therefore, it is crucial to emphasize the carbon reduction advantages of green hydrogen production and integrate them into the overall economic evaluation of the project through measures like carbon taxation and carbon trading. This would ultimately contribute to the reduction of green hydrogen production costs.
In the solar-wind hybrid hydrogen production design scheme, the initial investment cost plays a significant role, as depicted in Figure 6. To ensure the stability of hydrogen production in the electrolytic cell and mitigate the fluctuations of wind and solar energy, an ample amount of energy storage equipment is employed. Among these, the battery construction cost constitutes 27.34% of the total cost, while the hydrogen storage equipment exhibits high capacity, the unit equipment cost is low, accounting for only 0.33% of the total construction cost. The construction cost distribution reveals that the photovoltaic, wind turbine, and electrolyzer components contribute 36.99%, 12.66% and 22.68%, respectively. The electricity utilized for hydrogen production is predominantly sourced from wind power, photovoltaic, and the grid. Specifically, wind power and photovoltaic sources contribute 23.66% and 73.02%, while the grid occupies a marginal portion of 3.32%. This distribution underscores the substantial reliance on solar and wind energy sources in providing energy for the system solution, resulting in predominantly green hydrogen production.
[image: Figure 6]FIGURE 6 | To assess the initial investment of the solar-wind hybrid hydrogen production system, the initial investment combined with the capacity configuration optimization results. of each major equipment and the distribution of the hydrogen consumption electricity sources were calculated.
Due to the variations of solar-wind resources throughout the year, the monthly solar-wind power generation and hydrogen production levels differ. Therefore, Figure 7 illustrates the calculated monthly solar-wind power generation and the hydrogen production load of the electrolytic cell. Compared with the two electricity generation, solar-wind power is the main power supply of the system. Concurrently, the power generation of photovoltaic and wind power is the highest in April, which is 1.17 × 105 MWh and 5.76 × 104 MWh respectively, while the power generation is the lowest in November and December. In contrast, the monthly load of the electrolytic cell remained basically stable in the range of 9.06×104–1.03×105 MWh. In order to maintain the hydrogen production and solar-wind utilization rate of the electrolytic cell, as for the transmission power, when the power generation is sufficient, the excess power is connected to the grid, and the maximum power on the grid in April is 6.35×104 MWh. Concurrently, it supplies power to the electrolytic cell when it is insufficient, and the maximum power supply in December is 8.65×103 MWh.
[image: Figure 7]FIGURE 7 | Due to the difference of wind and solar resources in each month, the wind and solar power generation and the corresponding electrolytic tank load power in different months are analyzed, and the power grid is used as the power regulation method of the system. Further analysis of the monthly power grid up and down.
Further comparing the hydrogen production for each month, as shown in Figure 8, the hydrogen production is consistent with the trend of the load power of the electrolytic cell. The highest hydrogen production in March is 1,713 tons, and the lowest hydrogen production in February is 1,536 tons.
[image: Figure 8]FIGURE 8 | In order to analyze the hydrogen production under different solar-wind resources in different months, the changes of hydrogen production in different months were compared.
Moreover, the annual economic cost recovery relies primarily on the output of electrolytic hydrogen production and grid-connected solar-wind hybrid power generation. Thus, a detailed analysis of daily electrolytic hydrogen production and solar-wind hybrid power generation throughout the year is conducted, as illustrated in Figure 9. The average daily hydrogen production is 54.76 tons of H2, the amount of hydrogen produced per day exhibits lower fluctuations around the average. Simultaneously, as the solar-wind hybrid power generation is capable of fulfilling the hydrogen production capacity, the surplus power is integrated into the grid. According to the power integration, the average daily online power is 1,007 MWh, accounting for 8.92% of the total solar and wind hybrid power generation, thereby further enhancing the utilization rate of solar and wind power. However, seasonal variations have an impact, the daily grid-connected power generation fluctuates significantly.
[image: Figure 9]FIGURE 9 | The annual economic cost recovery is a crucial factor in evaluating the performance of the system. It can be divided into two main components. The first component is the annual benefit derived from hydrogen production. To analyze this, the daily hydrogen production capacity of the system was assessed. The second component involves analyzing the daily electricity sales of the system. This can be examined by assessing the annual grid connection volume of the electrolytic cell hydrogen production and solar-wind hybrid power generation.
5.3 Dynamic operation analysis of solar-wind hybrid hydrogen production system
For the solar-wind hybrid hydrogen production system with the selected capacity configuration scheme, dynamic operation analysis is performed on typical weeks representing each month by the seasons.
The power generation profiles of wind power and photovoltaic systems during these weeks, highlighting their complementary characteristics. The dynamic operation analysis of the system is carried out for the typical weeks of the specific months of season. The dynamic behaviors observed during three typical weeks in spring, and three typical weeks in summer, as shown in Figure 10, exhibit similar patterns. Notably, there is a favorable complementarity between PV and wind power generation. SOC of the energy storage device remains relatively stable, while SOH experiences significant fluctuations. This is attributed to the ample availability of solar and wind power generation, causing the battery to reach its upper limit of energy storage. Consequently, the primary objective of ensuring a stable hydrogen supply is primarily achieved through the utilization of hydrogen storage equipment. This operational strategy prioritizes the adjustment of the hydrogen output rate and the smoothing of hydrogen production fluctuations through hydrogen storage equipment. Additionally, the charging and discharging of the battery are employed to regulate the electrolytic hydrogen production rate, further enhancing the stability of the solar and wind complementary hydrogen production system.
[image: Figure 10]FIGURE 10 | The fluctuations of the solar-wind will affect the stable operation of the energy storage device, so the key to formulating a scheduling strategy that matches the volatility is to accurately evaluate the year-round complementarity of the solar-wind, the solar-wind complementarity of typical weeks in four seasons of spring, summer, autumn, winter is evaluated.
In the autumn typical weeks and the winter typical weeks shown in Figure 10, both wind and PV power generation are comparatively lower, with less noticeable complementarity between the two. The generation capacity of wind and solar power is significantly lower during the winter typical weeks. In contrast to typical weeks in spring and summer, batteries and hydrogen storage devices are now adjusted more frequently. Additionally, there are instances where the steady hydrogen output criteria cannot be met by energy storage and wind and solar power generation. In these situations, the electrolyzer receives power from the power grid to meet the standard. In this system, the grid can effectively control the load power of the electrolyzer, ensure a consistent output of hydrogen, and absorb solar power generation, increasing the rate at which solar power is utilized.
However, due to the region’s superior photovoltaic resources compared to wind resources, the former generates more electricity than the latter. The calculations reveal that during typical weeks in spring and summer, the average power generation of photovoltaic is 24,208 MWh and 26,589 MWh, respectively, which is much higher than the average power generation of photovoltaic typical weeks in autumn and summer (17,135 MWh and 17,022 MWh), while during the typical weeks in summer, the average power generation of wind power is 10,425 MWh, which is much higher than the average power generation of typical weeks in other seasons (3,451 MWh in spring, 4,298 MWh in autumn and 4,575 MWh in winter). Despite notable variability in the power generation capacity of power throughout different seasons, the electrolytic hydrogen production system can ensure basic operation through the regulation of energy storage devices and grid infrastructure. Its typical weekly load power remains stable, reaching 22,766 MWh, 24,208 MWh, 23,171 MWh and 22,123 MWh across all seasons, thereby guaranteeing the consistent hydrogen production.
As mentioned above, in order to achieve stable hydrogen output, according to the dynamic operation strategy, the smoothing ability of low-cost hydrogen storage equipment in wind and solar output scenarios is first fully utilized. This reduces the use of the battery and the frequency of charge and discharge, thereby improving its operating life. At the same time, combined with the power grid to adjust, it also ensures the system power balance and meets the load demand of electrolytic water hydrogen production. Consequently, this solar-wind hybrid hydrogen production strategy is well-suited to leverage its advantages in large-scale hydrogen production scenarios.
6 CONCLUSION
This study focuses on optimizing the capacity configuration of a solar-wind green hybrid hydrogen production system using the NSGA-III algorithm with the goal of achieving a comprehensive index. The main conclusions are summarized as follows:
(1) The capacity configuration optimization of a solar-wind hybrid hydrogen production system can be achieved by employing the NSGA-III algorithm and the optimization method of comprehensive performance objective function. The resulting solution set offers a diverse distribution, enabling the selection of a design scheme that meets the design requirements in a comprehensive manner.
(2) This study determined the multi-index optimal scheme using a specific method. With the addition income of surplus solar/wind power by transmitting to the grid, the internal rate of return of the system reaches to 8% when the hydrogen sale price is suggested to 27.80 CNY/kgH2. Additionally, this system achieves the carbon emission reduction of 1.02×106 tCO2, and the abandoned energy power rate reduced to 3.32%.
(3) Through the cooperative hydrogen production strategy proposed in this paper, the demand for hydrogen production of 20,000 tons per year can be met. At the same time, the adjustment ability of hydrogen storage equipment and battery is fully utilized. Finally, the stability of hydrogen output is improved, and the hydrogen production load of electrolytic water in the typical cycle of four seasons is within the range of 22,123 MWh-24,208 MWh.
This study reveals that the capacity configuration method of solar-wind hybrid hydrogen production based on comprehensive performance index can meet the demand of large-scale hydrogen production throughout the year, and provide technical and methodological suggestions and guidance for the formulation of solar-wind hydrogen production scheme with favorable comprehensive performance.
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Introduction: In recent years, with the rapid development of renewable energy generation, the stability of the power grid has been greatly reduced. In response to this problem, integrating the user side transferable load into the power market has become the key to the development of future power grid. At present, large transferable loads have entered the electricity market in some pilot areas of China, but the relevant research on small and medium-sized transferable users entering the electricity market is still few.
Methods: This paper proposes the concept of generation load aggregators. A two-stage generation load aggregator robust optimization model is developed to obtain the scheduling scheme with the lowest operating cost under the worst scenario. The model consists of distributed renewable power, transferable load, self-provided power, energy storage, etc. Uncertainties of renewable energy and load are introduced in the model. By using the column constraint generation algorithm and strong pairwise theory, the original problem is decomposed into the main problem and sub-problems to be solved alternately, so as to obtain the scheduling scheme with the lowest operating cost in the worst scenario under different conservatism.
Results: The solved results are compared with those without the generation load aggregator, illustrating the role of the generation load aggregator in relieving peak and valley pressure on the grid from the load side, reducing the cost of electricity for loads, and promoting the consumption of renewable energy. The comparison with the deterministic optimization algorithm shows a significant decrease in the total cost and validates the performance of the selected solution algorithm. The boundary conditions for the use of energy storage by generation load aggregators for peak and valley reduction under the time-sharing tariff mechanism are also derived.
Discussion: This study can provide reference for the investors of generation load aggregators when planning whether to install energy storage or the scale of energy storage, and also help the power market management department to design a reasonable incentive mechanism.
Keywords: generation load aggregator, two-stage robust optimization, uncertainty optimization, economic dispatch, column constraint generation algorithm
1 INTRODUCTION
In recent years, with the rapid development of wind power, photovoltaic, and other renewable energy generation, the intermittent volatility of renewable energy generation has posed an increasing challenge to the power grid, and the problem of curtailed wind and PV caused by the balance of supply and demand power has become increasingly prominent. In addition, the gradual increase in the peak-to-valley load difference and the continuous growth of peak loads have reduced the stability of the safe operation of the power market (Li and Wang, 2021; Wu et al., 2022b; Sambodo et al., 2022). In response to the aforementioned problems, incorporating customer-side transferable loads into the power system has become the key to future grid development. Transferable loads are loads that actively respond to price signals and incentives to change the behavior of the original electricity consumption pattern (Chen et al., 2021). At this stage, large transferable loads have entered the power market in some pilot areas in China and are dispatched by the grid company. Research related to the access of small- and medium-sized transferable users to the power market remains scarce. To solve this problem, the concept of generation load aggregators is proposed in this paper. Small- and medium-sized transferable users sign agency contracts with generation load aggregators, and users participate in the electricity market through generation load aggregators. The generation load aggregator is mainly a load aggregator, which also aggregates distributed energy, energy storage, electric vehicles, self-provided generator on the load side, etc. Load aggregators are able to consolidate dispersed adjustable potential to form the scalable user-adjustable capacity that the market needs and respond to the grid’s price signals for profit (Li et al., 2022). When power consumption peaks or other periods of high electricity prices, power sources, and energy storage in generation load aggregators choose to operate at high power, at the same time, the transferable loads therein operate at as low a power as possible. When the power supply runs at a low power or even shuts down during low hours or other periods of lower electricity prices, the energy storage will charge and the transferable load will use electricity at a higher power at this time. The generation load aggregator participates in the market bidding for load regulation behavior as a demand response product, and the winning load resource is compensated with the corresponding market clearing price. The difference between generation load aggregators and electric power companies is that they do not make money in the same way. Electric power companies primarily make money by buying low and selling high. Generation load aggregators earn grid regulation fees primarily by regulating electricity use. The difference between generation load aggregators and microgrids is in the integrity of the system. Microgrids are smaller, decentralized, stand-alone systems that can be operated individually for extended periods. The generation load aggregators rely mainly on purchasing power in the electricity market, where the captive power supply is not sufficient to support the load for a long period. The difference between generation load aggregators and virtual power plants is their different roles in the electricity market. The virtual power plant belongs to the generation side, and the generation load aggregator is effectively an adjustable electricity consumer.
Economic scheduling of aggregators is a hot issue in research related to aggregators, generally intending to minimize operating costs. Smaller operating costs with constant revenues imply higher profits (Iria et al., 2020; Kim et al., 2022). Zhang et al. developed a two-stage optimization model for industrial load aggregators considering the uncertainty of load response and the satisfaction of users (Zhang et al., 2018). Xu et al. established an optimal scheduling model for an electric vehicle charging aggregator to solve the profit maximization of the aggregator by genetic algorithm (Xu et al., 2020). With the development of distributed energy sources, energy storage, etc., aggregators contain not only industrial and residential loads but also distributed power output from photovoltaic, wind power, etc., and the stochastic nature of load power consumption brings challenges to the operation of aggregators (Sheikhahmadi et al., 2018). How to effectively cope with the uncertainties within the aggregator and achieve reliable and economical operation has become the key to the study of the economic scheduling problem of aggregators (Xu et al., 2020). For such problems, stochastic programming is often used to model uncertain variables and simulate the impact of uncertainty on the operation of aggregators’ stochastic programming which uses random variables to describe uncertain information and optimizes to obtain the scheduling solution with the minimum expected cost (Kim et al., 2021). The key to stochastic programming is to model uncertain variable properties with a limited number of scenarios (Wang and Nie, 2022). Vahid-Ghavidel proposed a hybrid stochastic optimization model to deal with electricity market price and consumer participation rate uncertainty (Vahid-Ghavidel et al., 2021). Vatandoust described the joint optimization of electric vehicles and energy storage aggregators in the day-ahead electricity market to improve the profitability of the aggregators with a stochastic mixed integer linear programming model considering the uncertainty of energy and frequency regulation prices (Vatandoust et al., 2019). Since stochastic programming methods seek the solution set with the maximum/minimum expected value of the objective function, the risk of irrational decision making exists for a certain scenario. Nguyen combined stochastic programming and conditional value-at-risk constraint methods so that the expected return in the corresponding scenario is not lower than the given confidence level, thus reducing the system risk (Nguyen and Le, 2015). However, both stochastic programming and scenario analysis methods require deterministic probability curves to generate scenarios, which may lead to models that are not accurate enough to reflect the actual situation (Wang et al., 2015a).
Compared with the aforementioned methods, robust optimization replaces the exact probability distribution of random variables with an uncertainty set and obtains the scheduling solution of the system under the “worst-case” scenario through optimization, which is more suitable for practical engineering needs (Alvim et al., 2021). Lu considered the uncertainty of charging and discharging of EV aggregators, built a two-stage robust optimization model, used distributed robust optimization to improve the average economic performance of the model, and applied Farkas’ Lemma and robust optimization to ensure the safety of the distribution system operation (Lu et al., 2021). Najafi proposed a hybrid decentralized robust optimization-stochastic programming (DRO-SP) model based on the multiplicative alternating direction method to coordinate the optimization of load aggregators, using a stochastic programming approach to model the uncertainty of the electric vehicle model and a robust optimization approach to model the uncertainty of the location marginal price (Najafi et al., 2021). Wang proposed a distribution uncertainty model where the probability distribution of load power can vary around a given reference distribution (Wang et al., 2015b). However, the robust models in the aforementioned literature do not allow for flexible adjustment of the conservativeness of the scheduling scheme.
The main contributions of this research can be summarized as follows.
1. To solve the problem that small- and medium-sized adjustable users on the load side are difficult to enter the electricity market, this paper proposes the concept of generation load aggregators for the first time. The basic framework of the generation load aggregator is built, and a robust optimization model of a two-stage generation load aggregator with a min–max–min structure is established.
2. The model considers the coordinated control of PV power sources, load uncertainty, energy storage, two types of industrial transferable loads, and distributed power sources within the generating load aggregator. Using a column-constrained generation algorithm and strong pairwise theory obtains an economic dispatch scheme for the worst-case scenario under different conservatisms. Uncertainty adjustment parameters have been added to the scheme to provide flexibility in choosing the degree of conservatism in the scheduling scheme.
3. The solved results are compared with other sets of results to determine that the generation load aggregator model has the effect of relieving the peak and valley pressure on the grid, reducing the cost of electricity for loads, and promoting the consumption of renewable energy. The dispatch program obtained can withstand the risk of real-time market price fluctuations in electricity. We derive the boundary conditions for the analytical model to use energy storage for peak shaving and valley filling under the time-of-day tariff mechanism, which will provide a theoretical basis for the future construction planning of generation load aggregators as well as the entry of small- and medium-sized adjustable users into the electricity market.
The main study of this paper is as follows. The first part, as the introductory part of the article, briefly introduces the background of the study as well as the research progress on the issues related to generation load aggregators in recent years. The second part builds the framework of the generation load aggregator system. The third part is to develop a two-stage robust optimization model for generation load aggregators. The fourth part is the numerical simulation and the related discussion and analysis of the results. The fifth part is the summary of the paper and the prospect of future research.
2 MATERIALS AND METHODS
2.1 Generation load aggregator system framework
Figure 1 shows the basic framework of a generation load aggregator, which consists of a collection of distributed PV, self-provided generator, energy storage, transferable load, and other components. The transferable load can be divided into the start/stop time delay-type transferable load and power sizing-type transferable load due to the actual needs of the industry. Generation load aggregators provide an opportunity for small- and medium-sized customers to participate in the regulation of the electricity market. Small- and medium-sized customers do not reach the minimum level of load elasticity to participate in demand response and cannot find a way to participate in power trading. As an intermediary, a generation load aggregator can integrate customer demand response resources and bring them into the market for trading, making idle load resources useful while relieving the pressure on the power system from the load side during special times such as peak and valley. On the other hand, power generation load aggregators fully explore the potential of load demand response, under the help and guidance of power generation load aggregators, and form a scientific and economic way of electricity consumption, to reduce the cost of electricity for users. The generation load aggregator needs to summarize the electricity consumption curve of the load on D-1, the generation curve of each power source, and the curve of the need to buy or sell electricity from the external grid before day D. If the reported curve is different from the actual curve, it needs to buy or sell electricity from the external grid.
[image: Figure 1]FIGURE 1 | Structure of generation load aggregators.
2.1.1 Self-provided generator
The self-provided generator of the generation load aggregators are mainly micro-gas turbines, and the cost of micro-gas turbine generation [image: image] can be expressed as a linear function (Wang et al., 2015b).
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where [image: image] and [image: image] are cost coefficients; [image: image] is the output power of the micro-gas turbine in time slot [image: image]; and [image: image] is the scheduling step, which takes the value of 1 h. The power response time of the micro-gas turbine is negligible compared to the hourly scheduling step, so the ramping constraint of the micro-gas turbine is not considered and only the output power constraint is considered.
[image: image]
where [image: image] and [image: image] denote the maximum/minimum output power of the micro-gas turbine, and the maximum/minimum output power is limited by its rated power and minimum load factor, respectively.
2.1.2 Energy storage
The cost of energy storage [image: image] is mainly composed of the investment cost, operation cost, and maintenance cost of energy storage (Xu et al., 2010), and the average charging and discharging cost at time [image: image] during the payback period can be expressed as
[image: image]
where [image: image] is the unit charge/discharge cost of energy storage after considering investment cost, operation cost, and maintenance cost; [image: image] and [image: image] denote the charge/discharge power of energy storage in time [image: image]; and [image: image] is the charge/discharge efficiency of energy storage, respectively. The constraints to be satisfied during the operation of energy storage include
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[image: image]
[image: image]
[image: image]
Equation 4 and Equation 5 are the charging/discharging power constraints of energy storage, which are the maximum charging/discharging power of energy storage, mainly limited by the capacity of the grid-connected inverter, respectively. [image: image] indicates the charging/discharging state of energy storage, [image: image] indicates that energy storage is discharged in time [image: image] and [image: image] indicates that energy storage is charged in time [image: image]. Equation 6 is the constraint to ensure that the power stored in energy storage at the beginning and end of the dispatch cycle is equal, which is conducive to the cyclic scheduling of energy storage, and [image: image] is the scheduling cycle and takes the value of 24. Equation 7 indicates the power constraint of energy storage in each time, [image: image] is the power of energy storage at the initial moment of scheduling, and [image: image] and [image: image] are the maximum/minimum power allowed for energy storage during the scheduling process, respectively, and the main purpose of this constraint is to prevent energy storage from overcharging or over discharging to prolong its service life.
2.1.3 Transferable load
Industrial loads have some differences in control and scheduling methods due to different factors such as industry, production shift system, and operation of power-using equipment. Most industrial transferable loads can be divided into two categories: start–stop time delay and power size regulation (Kumar et al., 2022).
2.1.4 Start–stop time delay transferable load
The start–stop time delay of transferable load is a more common type of transferable load. Except for the start–stop periods, the start–stop time delay class of transferable loads consumes relatively flat power for most of the work cycle. And with thermal inertia, starting after a short delay does not affect production. However, the load curve must shift in time as a whole, as shown in Figure 2A.
[image: Figure 2]FIGURE 2 | (A) Schematic diagram of start–stop time delay transferable load and (B) schematic diagram of power sizing transferable load.
The power consumed by the start–stop time delay type of transferable loads is shown as follows:
[image: image]
where [image: image] is the actual dispatch power of the generation load aggregator for the transferable load at time [image: image]; [image: image] is the power-on time of transferable load; and [image: image] is the time it takes from power-on to stability. [image: image] is the time required to shut down the equipment until the power is 0; [image: image] is the moment when the power is 0; [image: image] is the rated power of transferable load; and [image: image] is the fluctuating power coefficient when the transferable load reaches the steady-state operation, usually 5%–20%.
Considering the case where the generation load aggregator contains a start–stop time delay type of transferable load, its electricity consumption characteristics in providing load regulation services can be expressed by the following constraint:
[image: image]
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where [image: image] is the total electricity demand of the transferable load during the dispatch cycle and [image: image] and [image: image] are the maximum/minimum electricity demand of the transferable load at time [image: image], related to the customer’s requirements for its efficiency, respectively.
Since the daily load of the start–stop time delay transferable load is relatively stable, the starting and interruption time of each start–stop time delay transferable load is relatively fixed. The power plan of the transferable load can be adjusted, and the regulation of the transferable industrial load can be achieved by appropriately advancing or delaying the start/stop time. However, the change in the schedule will affect the industrial customers’ habitual use of electricity. Therefore, the generation load aggregator needs to be compensated appropriately, and the dispatch cost [image: image] can be expressed as
[image: image]
where [image: image] is the unit dispatch cost of the start–stop time delay transferable load and [image: image] is the expected power of the start–stop time delay transferable load at time [image: image]. The absolute value term in Eq. 11 represents the deviation between the actual power and the desired power, which can be reduced to the linear form shown in Eq. 12 by introducing auxiliary variables [image: image] and [image: image] and constraints (13–14).
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2.1.5 Power sizing transferable load
Power sizing transferable load is another common type of regulated industrial load. This type of load reduces the peak-to-valley load difference and reduces operating costs by transferring the power size during peak hours to other load hours, as shown in Figure 2B.
The power of the transferable load of the power sizing type can be expressed by the following equation:
[image: image]
where [image: image] is the actual power dispatched by the generation load aggregator to the transferable load in time [image: image] and [image: image] is the average power consumption of power size regulation transferable load. [image: image]is the maximum regulation power. [image: image] is the participation adjustment factor, when [image: image], power increases and when [image: image], power reduces. To ensure that the efficiency of work does not change, the power size adjustment type can transfer the load to increase and reduce the total amount of power used equally.
Considering the case of a generation load aggregator that contains a transferable load of the power sizing regulation type, its electricity consumption characteristics during the provision of load regulation services can be expressed by the following constraint:
[image: image]
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where [image: image] is the total demand of the transferable load in a dispatch cycle and [image: image] and [image: image] are the maximum/minimum demand of the transferable load in time [image: image], respectively.
The power sizing transferable load can also flexibly adjust the demand response load schedule, but the generation load aggregator also needs to compensate the transferable load enterprise, and the dispatch cost [image: image] required for time [image: image] can be expressed as
[image: image]
where [image: image] is the unit dispatch cost of the power sizing load and [image: image] is the expected power consumption of the power sizing load at time [image: image]. The absolute value term in Eq. 18 is used to represent the deviation between the actual dispatched power and the desired power consumption, which can be reduced to the linear form shown in Eq. 19 by introducing auxiliary variables [image: image] and [image: image] and constraints (20–21).
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2.1.6 External grid-interactive power
When the self-provided generator, renewable energy, and energy storage within the generation load aggregator cannot meet the load demand, it needs to purchase power from the external grid; conversely, the generation load aggregator can sell the surplus power to the external grid to obtain revenue (Jiang et al., 2021). The interactive power between the generation load aggregator and the external grid is subject to the following balancing constraints:
[image: image]
where [image: image] and [image: image] are the power of the generation load aggregator to buy or sell electricity to the external grid in time [image: image], respectively. Wind power is rarely located in industrial areas due to large land areas and other factors. Therefore, in this paper, only renewable power sources are considered for photovoltaic power generation. [image: image] is the PV output power of the generation load aggregator in time [image: image]. [image: image] is the conventional load power in time [image: image].
The interactive power between the generation load aggregator and the external grid needs to satisfy
[image: image]
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where [image: image] is the maximum value of the power exchanged between the load aggregator and the external grid, which is determined by considering the capacity of the transformer at the connection between the external grid and the load aggregator and the specific policies. [image: image] is the purchase and sale status of the load aggregator to the external grid, [image: image] is the purchase of power by the load aggregator to the external grid, and [image: image] is the sale of power by the load aggregator to the external grid. In time [image: image], interaction cost [image: image] between the load aggregator and the external grid can be expressed as
[image: image]
where [image: image] is the day-ahead traded tariff of the external grid.
2.2 Two-stage robust optimization model
The generation load aggregator model has the minimum daily operating cost as the optimization objective, as shown in Eq. 22, and the model constraints include Eq. 2, Eq. 4–Eq. 7, Eq. 9–Eq. 14, Eq. 16–Eq. 21, and Eq. 23–Eq. 24.
[image: image]
When the uncertainties of PV and load are not considered, the deterministic optimization model for the aforementioned generation load aggregator economic dispatch problem can be formulated in a compact form as
[image: image]
where [image: image] and [image: image] are optimization variables, and the specific expressions are
[image: image]
where [image: image] is the objective function (26) column vector coefficients; [image: image], [image: image], [image: image], [image: image], and [image: image] are the coefficient matrices of the variables under the corresponding constraints; and [image: image] and [image: image] are constant column vectors. In Eq. 27, the first row of the constraints represents the inequality constraints in the generation load aggregator model, including Eq. 2, 7, Eq. 10, Eq. 14, Eq. 17, and Eq. 21. The second row is the equality constraint, including Eqs. 6 and 9, Eq. 12, Eq. 13, Eq. 17, Eq. 19, and Eq. 20. The third row corresponds to Eq. 4 and Eq. 5 and Eq. 23 and Eq. 24. Line 4 indicates that in the deterministic optimization model, the PV and load take the corresponding predicted values in time [image: image], where
[image: image]
where [image: image] and [image: image] denote the predicted values of PV output and load power in time [image: image], respectively.
The aforementioned model is a mixed-integer linear programming problem, which can be solved by deterministic optimization methods, and the optimal solution depends on the accuracy of the predicted values. However, generation load aggregators are affected by many stochastic factors, which makes it difficult to guarantee prediction accuracy. In summary, deterministic optimization schemes often appear to be too “risky."
Therefore, in practice, the impact of uncertainty on the model needs to be accounted for. The box uncertainty set [image: image] considers the fluctuation range of PV output and load power.
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where [image: image] and [image: image] are uncertain variables introduced into PV as well as load after adding uncertainty and [image: image] and [image: image] are the maximum fluctuation deviation allowed for PV output and load power, respectively, both of which are positive.
The objective of the two-stage robust optimization model for generation load aggregators constructed in this paper is to find the economically optimal scheduling solution for the worst-case scenario of uncertain variables [image: image] within an uncertain set [image: image], having the following form:
[image: image]
where the outer layer is minimized to the first stage master problem with the optimization variable [image: image] and the maximum minimization of the inner layer is the second stage subproblem with optimization variables [image: image] and [image: image]. The second stage minimization problem is equivalent to the objective function of Eq. 26, which represents the minimum operating cost. The expressions for [image: image] and [image: image] are shown in Eq. 28. [image: image] denotes the feasible domain of the optimization variables [image: image] given a set of [image: image]. The specific expressions are as follows:
[image: image]
where [image: image] denote the pairwise variables corresponding to each constraint in the minimization problem of the second stage.
For each set of uncertain variables [image: image], a deterministic optimization model shown by Eq. 26 can be obtained, and the purpose of the max-structure in the robust optimization model is to find the worst-case scenario.
2.3 Column constraint generation algorithm
For the aforementioned two-stage robust optimization model of the generation load aggregator, the column constraint generation algorithm (C and CG) is chosen to solve the model (Fanzeres et al., 2020). The C and CG algorithm is similar to the Benders decomposition algorithm in that the problem is first decomposed into a master problem and a subproblem and solved alternatively to obtain the optimal solution to the original problem (Alvarez et al., 2020). The difference between the two algorithms is that the C and CG algorithm continuously introduces variables and constraints related to the subproblems in the process of solving the master problem to obtain more compact lower bounds on the objective function values, thus reducing the number of iterations (Shi et al., 2020).
The decomposition of Equation 31 yields a master problem of the form
[image: image]
where [image: image] is the current number of iterations; [image: image] is the solution of the subproblem after the [image: image] iteration; and [image: image] is the value of the uncertain variable [image: image] under the worst-case scenario obtained after the [image: image] iteration.
The decomposed subproblem takes the form
[image: image]
From the aforementioned analysis, the inner minimization of Eq. 34 is a linear problem for a given set of [image: image]. According to the strong dual theory and the correspondence of Eq. 32, the problem can be transformed into the max problem and combined with the outer max problem to obtain the dual problem as shown in the following equation:
[image: image]
where there exists a bilinear term [image: image]. According to the conclusions of the literature (Bertsimas et al., 2013), [image: image] corresponding to the optimal solution of this pairwise problem is a pole of the uncertainty set [image: image]; that is, Eq. 35 takes its maximum value when uncertain variable [image: image] should be taken to be the boundary of the fluctuation interval described by Eq. 30. In the generation load aggregator, the operating cost of the generation load aggregator is the largest when the PV output is the minimum value and the load power is maximum, which is more consistent with the definition of the “worst-case” scenario. Therefore, Eq. 30 is rewritten in the following form:
[image: image]
where [image: image] is a binary variable, and a value of 1 indicates that the uncertain variable is the boundary of the interval at the ecoupled into main time [image: image]. [image: image] and [image: image] are the “uncertainty regulation parameters” for PV and load, respectively (Wang et al., 2016), which are integers in the range of 0[image: image] and represent the total number of periods in which PV and load take the boundary values of the fluctuation interval in a scheduling cycle. After substituting the expression for the uncertain variables in Eq. 36 into Eq. 35, it will appear in the form of a product of binary and continuous variables, which is linearized by introducing auxiliary variables and associated constraints (Pistikopoulos, 1998) to obtain the following equation:
[image: image]
where [image: image] and [image: image] are continuous auxiliary variables and [image: image] is the upper bound of the pairwise variables and is a sufficiently large positive real number.
After the aforementioned derivation and transformation, the two-stage robust optimization model for the generation load aggregator is decoupled into the main problem and subproblem with a mixed integer linear form, and the model is solved by the C and CG algorithm, shown in Figure 3.
1) The uncertain variable [image: image] is set as the initial worst-case scenario, the lower bound [image: image], the upper bound [image: image], and the number of iterations [image: image].
2) The first stage of a two-stage robust optimization: The master problem in Eq. 33 for the optimal solution [image: image] is solved according to the worst-case scenario [image: image], with the value of the master problem objective function as the new lower bound [image: image].
3) The second stage of a two-stage robust optimization: The solution [image: image] of the master problem is substituted into the subproblem in Eq. 37 to obtain the objective function value [image: image] of the subproblem and the uncertain variables [image: image] and the upper bound [image: image] are updated.
4) The convergence threshold is set to [image: image]. If [image: image], the iteration is stopped and the optimal solutions [image: image] and [image: image] are returned. Otherwise, the variable [image: image] and the following constraint are added:
[image: image]
[image: Figure 3]FIGURE 3 | Flow chart of the two-stage robust optimization model.
Let [image: image], and we skip to 2) until the algorithm converges.
3 RESULTS AND DISCUSSION
The generation load aggregator shown in Figure 1 is used as an example for this study. The simulation analysis includes three aspects: economic scheduling of generation load aggregator, comparison among optimization models, and boundary conditions of energy storage scheduling.
3.1 Economic dispatch scheme for generation load aggregators
In the economic scheduling scheme of the generation load aggregator, the uncertainty regulation parameter of the load power is set to 12, which means that the load power will reach the maximum value of the forecast interval for at most 12 periods during the scheduling optimization process (Liu et al., 2018). The uncertainty regulation parameter of the PV output is set to 6, which means that the minimum value of the forecast interval will be reached for at most six periods during the optimization process and the rest of the periods will be equal to the forecast value. The operating parameters of the generation load aggregator during the simulation are shown in Table 1(Li, 2020).
TABLE 1 | Operating parameters of generation load aggregators.
[image: Table 1]In practice, the maximum allowed fluctuation deviation of load power and PV output within the generation load aggregator can be set based on the historical forecast deviation in the past. This article takes as an example a typical weekday on a sunny spring day in Yongqiang Industrial Park in Shenyang, Liaoning Province, China. The predicted curves and actual curves of its load power and photovoltaic output are shown in Figures 4A,B, respectively. Also, the shaded parts are the uncertainty sets considered in this paper with values of 10% and 15% of the predicted values of load power and PV output (China, National Education Association, 2013). The residential electricity step tariff of a city in China is used as the day-ahead trading tariff for power exchange between the external grid and the generation load aggregator, as shown in Figure 4C.
[image: Figure 4]FIGURE 4 | (A) Forecast/actual load power curve of a typical working day at Yongqiang Industrial Park in Shenyang, (B) forecast/actual PV output curve for a typical working day at Yongqiang Industrial Park in Shenyang, and (C) external grid day trading tariff.
The two-stage robust generation load aggregator scheduling optimization process used in this example is shown in Figure 5A, and it stabilized in the 2nd iteration.
[image: Figure 5]FIGURE 5 | (A) Two-stage robust generation load aggregator scheduling optimization process, (B) power of each component within the generation load aggregator after two-stage robust optimization, (C) micro-gas turbine output power and generation load aggregation commercial power purchase and sale, (D) energy storage charging and discharging power, (E) start/stop time delay type transferable load actual/desired power consumption plan, and (F) power sizing-type transferable load actual/desired electricity usage plan.
The scheduling results are shown in Figures 5A-E. Figure 5B shows the overall results of the two-stage robust generation load aggregator optimized scheduling. Figure 5C shows the micro-gas turbine output power and the power purchased and sold by the generating load aggregator to the external grid, taking negative values when the generating load aggregator purchases power from the external grid. Figure 5D shows the energy storage charging and discharging power, negative when charging and positive when discharging. Figure 5E shows the start–stop time delay transferable load actual and desired power usage schedule. Figure 5F shows the power sizing transferable load actual and desired power usage schedule.
As shown in Figure 5B, in 1–7 h and 19–24 h, the PV output is 0, and the load of the generation load aggregator relies entirely on the micro-gas turbine, energy storage, and external grid supply. At this time, when the day-ahead traded tariff of the external grid is lower than the unit power generation cost of the micro-gas turbine, the micro-gas turbine operates at the minimum output power, as shown in Figure 5C for 1–7 h and 24 h. During the rest of the period, the micro-gas turbine outputs maximum power, reducing the purchased power to the external grid (e.g., 8 h, 12–22 h, and 24 h) and selling power to the external grid during peak tariff hours (e.g., 9–11 h and 23 h), thus reducing operating costs.
As can be seen in Figure 5D, under the time-sharing tariff mechanism and the periodic conditions of PV output, the charging of energy storage units during lower tariff hours or PV output hours, such as 5–6 h, 16–18 h, and 24 h, and discharging during peak tariff hours, such as 9–11 h and 21–23 h, can achieve not only peak shaving and valley filling but also lower operating costs. As shown in Figure 5E, the expected electricity consumption plan for the start–stop time delay type of transferable load is not much different from the peak and valley values of the load compared to the conventional load due to the three shifts. However, the system reformulates the production plan without affecting the conditions of production, advance, or stagger part of the load. The system will arrange as many loads with large power as possible during the period of low electricity prices, such as transferring part of the electricity power from 11–13 h to 6–8 h and transferring part of the electricity power from 18–23 h to 24–5 h. Because the system works 24 h a day, the operational space for load shifting is not very large. This observation was also made by Chen (2020). As shown in Figure 5F, the desired electricity consumption schedule for the power sizing type of transfer loads is similar to that of conventional loads, with electricity consumption mainly concentrated in peak tariff hours. Under the premise of satisfying the total electricity demand and the electricity consumption constraint of each period, the power consumption in the 11–24 h period is reduced and the power consumption in the 1–10 h period is increased, thus reducing the power that the generation load aggregator needs to purchase in the peak tariff period.
3.2 Comparison of the system with and without generation load aggregators
In the absence of a generation load aggregator, small- and medium-sized transferable loads can only be purchased from the external grid as non-regulated loads, without subsidies for peak and valley shifting, because their electricity consumption and regulation do not meet the requirements for participation in the electricity market. Power generation and energy storage cannot participate in power market trading due to the small installed capacity, and the electricity generated will not be sold to the external grid and can only be used as a self-provided generator for the load (Khan et al., 2021; Wu et al., 2022a). Its daily operating cost is shown in Eq. 39, with constraints as in Eq. 2, Eq. 4–Eq. 7, and Eq. 23.
[image: image]
where [image: image] is the cost of electricity for the load. The operating costs of the optimized system with and without generation load aggregators are shown in Table 2, which shows that the operating costs of the system with generation load aggregators are significantly lower than those without generation load aggregators because generation load aggregators sell electricity when prices are high and buy it when prices are low through price differentials. The comparison of load purchases from the grid in the case of generation load aggregators and the traditional dispatch mode is shown in Figure 6. If no generation load aggregator exists, although each load has its own distributed PV, which can reduce the load during the noon hour, the electricity consumption period of 19–22 h is still a peak. If a generation load aggregator exists, the internal transferable load can participate in the power market through the generation load aggregator to shift the peak and fill the valley in exchange for subsidies and reduce the cost of electricity. The generation and storage facilities can participate in the power market through the generation load aggregator as a power source to supply electricity to the external grid to gain profit. In addition, in the presence of a generation load aggregator, the load gets a certain degree of rise during the trough period of electricity consumption in the external grid, and in some areas where renewable energy is more concentrated, the generation load aggregator can promote the consumption of renewable energy. In contrast, during the peak periods of the external grid, the demand of the generation load aggregator to purchase power from the outside is low, and it can even serve as a temporary power source to supply the external grid. Also, during peak periods on the external grid, as can be seen in the 9–13 time period, although the system’s electricity consumption is at its peak, the generating load aggregator has a very low need to purchase power from the outside world and is even able to act as a temporary source of power to the external grid when the price of electricity is high. Generation load aggregators have a peak shifting effect, shifting the high point of the evening peak of the required purchased power from the 20–22 time period to the 16–17 time period. Electricity prices are low during the 6–17 time period because it is not the peak of electricity consumption on the external grid. Reducing the cost of electricity consumption also contributes to mitigating peak-to-valley differences in the external grid. So, power prices are low, reducing the cost of electricity while also contributing to the external grid to mitigate peak-to-valley differences. In summary, generation load aggregators can relieve peak and valley pressure on the external grid from the load side.
TABLE 2 | Comparison of operating costs of systems optimized with and without generation load aggregators.
[image: Table 2][image: Figure 6]FIGURE 6 | Comparison of power purchased from the grid by loads with and without generation load aggregator.
Table 3 shows the comparison of the cost of electricity consumption for each type of load with and without generation load aggregators. The costs of electricity consumption for the start/stop time delay-type transferable load, power sizing-type transferable load, and the non-regulated load are $696, $229, and $3,796, respectively, in the absence of a generation load aggregator. With load aggregators, the cost of electricity drops to $563, $84, and $3,786, respectively. Power sizing-type transferable load has the largest percentage reduction in electricity costs due to its deeper involvement in peak shaving and valley filling. The non-regulated load does not participate in peak and valley reduction, but the cost of electricity consumption is reduced due to the presence of generation and storage components. In summary, the rationale for the participation of each type of load in the generation load aggregator and the function of the generation load aggregator to reduce the cost of electricity for the load can be demonstrated.
TABLE 3 | Comparison of electricity costs for various types of loads with and without generation load aggregators.
[image: Table 3]3.3 Comparison of optimization models
The two-stage robust generation load aggregator optimization model proposed in this paper and the deterministic optimization model (Hansen et al., 2015) are compared in two dimensions: the effectiveness of determining the worst-case scenario and the performance of the chosen method.
The two-stage robust generation load aggregator optimization model is based on the uncertainty regulation parameters [image: image] and [image: image]. The worst-case scenario is that the load power takes the maximum value of the prediction interval 12 times from 7 to 13 h and 18–22 h, and the PV output takes the minimum value of the interval six times from 10 to 14 h and 16 h. The deterministic optimization model for the control group is shown in Equation 23 and is solved using a mixed integer linear programming approach. To verify that the scenarios taken from the robust optimization model scheduling scheme selected in the paper are the worst-case scenarios. Several times were randomly selected as the boundary of the prediction interval in the model. It is shown in Table 4 for the following three comparative scenarios.
TABLE 4 | Parameterization of deterministic optimization models in three scenarios.
[image: Table 4]The two-stage robust generation load aggregator optimization model and three deterministic optimization models were used to solve the day-ahead operating costs of the generation load aggregators, and the results are shown in Table 4. In Scenario 1, the load power is taken to all peak hour tariff periods as the maximum period of the forecast interval. In Scenario 2, the PV output minimum period of the deterministic optimization model increases the peak tariff period by 9 h compared to the robust model. However, the day-ahead operating costs of both scenarios are lower than the results of Scenario 3. The time selected for Scenario 3 is the same as that for the deterministic optimization model, and the day-ahead operating cost is also the same.
To verify the flexibility of the two-stage robust generation load aggregator optimization model to adjust the conservativeness of the scheduling scheme, five sets of uncertainty regulation parameters, as well as a set of deterministic optimization models, are selected to compare the results. The parameter settings, corresponding day-ahead operating costs, purchased power, and sold power are shown in Table 5.
TABLE 5 | Comparison of operation cost between the robust optimization model and deterministic optimization model.
[image: Table 5]As can be seen from Table 6, the results of the uncertainty robust optimization model are the same as those of the deterministic optimization model with a day-ahead operating cost of $4,575 for the uncertainty adjustment parameter. As the uncertainty in the regulation parameters increases, the operating cost of the generation load aggregator increases as well, amounting to $5,346 for groups [image: image] and [image: image]. In other words, the more the generation load aggregator considers the uncertainty of the load power and PV output when developing the day-ahead dispatch planning scheme, the more conservative the scheme obtained and the higher the operating cost. The change in operating costs is mainly due to the change in power purchased and sold by the generation load aggregator to the external grid. The larger the value of the uncertainty parameter Γ, the greater the number of periods in which the load power is taken to the maximum value of the forecast interval and the PV output is taken to the minimum value of the forecast interval. Therefore, the higher the surplus power of the load aggregator, the higher the total purchased power.
TABLE 6 | Day-ahead operating costs and purchased/sold power for generation load aggregators with different uncertainty regulation parameters.
[image: Table 6]The operating cost of the generation load aggregator using the deterministic optimization model in Table 6 is smaller than that of the robust optimization model, but this does not mean that the deterministic optimization model is “better” than the robust model. The generation load aggregator needs the corresponding generation and consumption plan submitted in the day-ahead market, and the inequality between the planned generation and the actual volume on day 2 caused by the forecast error needs to be purchased in the real-time market (Lankeshwara et al., 2022). Electricity purchase prices in the real-time market are generally higher than those in the day-ahead market, and electricity sales prices are generally lower than those in the day-ahead market (Agrawal, 2022), so forecast errors can lead to higher final transaction costs. In summary, the scheduling scheme obtained from the robust optimization model has stronger robustness and the ability to resist the risk of real-time market price fluctuations. To verify the aforementioned conclusions, the performance of the two-stage robust optimization method and the deterministic optimization method proposed in this paper is compared with [image: image] and [image: image] as examples. The electricity purchase price in the real-time market is assumed to be 1.5 times the price of the corresponding period in the previous day’s market, and the electricity sale price is assumed to be 0.5 times the price of the previous day’s market. The final operating costs for the robust optimization method and the deterministic optimization method are shown in Table 7, using the actual and predicted values of load and PV shown in Figures 5A,B as references. The balancing operating comparison is shown in Figure 7, with positive values indicating the additional power that the generation load aggregator needs to purchase in the real-time market and negative values indicating the additional power sold by the generation load aggregator. The power purchased in the real-time market by the day-ahead scheduling scheme using robust optimization is much less than that of the deterministic optimization method. This results in an equilibrium cost of $287, which is much lower than the equilibrium cost of $5,411 for the deterministic optimization method, thus reducing the final operating cost from $5,860 to $5,411.
TABLE 7 | Comparison of the final operating costs of the system after optimization by robust and deterministic optimization methods.
[image: Table 7][image: Figure 7]FIGURE 7 | Imbalance power generated by real-time power markets.
3.4 Energy storage scheduling boundary conditions
The time-sharing tariff mechanism between the generation load aggregator and the external grid shown in Figure 7 allows the generation load aggregator to use energy storage to utilize the power purchased in the valley hours in the peak hours under the condition that the energy storage portion of the generation load aggregator needs to meet the constraint (Agrawal, 2022). Based on this premise, the boundary conditions for the use of energy storage for peak shaving by generation load aggregators can be further deduced; in other words, generation load aggregators will use energy storage only under the condition that energy storage can reduce the operating cost of the system. The dispatch cost of energy storage is less than or equal to the difference between the revenue from power sales during peak hours and the cost of power purchases during valley hours (Yang et al., 2020).
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where [image: image] and [image: image] are the traded tariffs for the valley and peak hours, respectively. According to Eq. 6, Eq. 41 can be further simplified as
[image: image]
Equation 41 is the boundary condition for the use of energy storage for peak and valley reduction by generation load aggregators, and its value depends on the relationship between the unit charge and discharge cost of energy storage and the peak and valley tariffs (Talluri et al., 2021). Using the parameters in Table 1 as an example, the generation load aggregator dispatches energy storage boundary conditions as shown in Figure 8A. When the value of [image: image] is below the plane shown in Figure 16, the generation load aggregator schedules energy storage to reduce the total operating cost; conversely, the generation load aggregator will not schedule the charging and discharging of energy storage.
[image: Figure 8]FIGURE 8 | (A) Generation load aggregator scheduling energy storage boundary conditions and (B) energy storage utilization.
In the time-sharing tariff mechanism shown in Figure 6, the peak hour tariff is $0.194/(kW⋅h) and the valley hour tariff is $0.069/(kW⋅h), and the boundary condition for energy storage dispatched by the generation load aggregator can be obtained from Eq. 41 as [image: image] is not greater than $0.057/(kW⋅h). To verify the validity of the aforementioned conclusions, the ratio of the total amount of electricity charged or discharged by the generation load aggregator to the rated capacity of the energy storage during a dispatch cycle is defined as [image: image] (Karimi and Kwon, 2021).
[image: image]
where [image: image] is the rated capacity of the energy storage. As [image: image] varies, the variation curve of energy storage usage by generation load aggregators is shown in Figure 8A.
As can be seen in Figure 8B, when the unit charge/discharge cost of energy storage is greater than $0.057/(kW⋅h), the generation load aggregator will no longer charge/discharge energy storage. In other words, in practical application, if the unit charging and discharging cost of energy storage is higher than the boundary condition of energy storage dispatch under the corresponding time-sharing tariff mechanism, energy storage can be installed without other incentive mechanisms.
4 CONCLUSION
In this paper, the concept of generation load aggregator is proposed to address the problem that small- and medium-sized regulating customers have fewer ways to participate in the electricity market. A generation load aggregator framework is established that can internally include self-provided generator, energy storage, renewable distributed power, two types of transferable loads, and non-regulated loads. Considering the uncertainty of renewable power sources and loads within the generation load aggregator, this paper establishes a two-stage robust generation load aggregator model to optimize its economic dispatch. To relieve the pressure on the power system from the load side during special hours such as peak and valley and to provide a theoretical basis for future investment and construction planning by generation load aggregator investors and for small- and medium-sized adjustable users to enter the electricity market, the results are analyzed as follows:
(1) The proposed model of generation load aggregator considering uncertainty can be solved by column constraint generation algorithm to obtain the most economical scheduling scheme under the “worst-case” scenario. In this scheme, the generation load aggregator can make full use of self-provided generator, energy storage, and transferable load to reduce the power cost of the system.
(2) A comparison of the results with and without generation load aggregators illustrates the rationality of the generation load aggregator framework by relieving peak and valley pressure on the external grid from the load side, reducing the cost of electricity for loads, and promoting the consumption of renewable energy.
(3) The optimization method used in this paper reduces the operating cost from $5,860 to $5,411 compared to the deterministic optimization method, and the resulting day-ahead scheduling scheme is more robust and resilient to the risk of real-time market price fluctuations. Also, the optimization algorithm used in this paper can adjust the conservativeness of the generation load aggregator optimization scheme by varying the uncertainty regulation parameters to accommodate the use of generation load aggregator operators with different mental risk-taking capabilities. The power generation load aggregators with weak psychological risk-taking ability choose the scheme with high conservative type and the uncertainty regulation parameters are larger.
(4) The scheduling plan for energy storage by the generation load aggregator depends on the relationship between the peak tariff, the valley tariff, and the unit charge/discharge cost of energy storage under the time-sharing tariff mechanism. By analyzing the utilization rate curve of energy storage, the energy storage will no longer be meaningful for generation load aggregators when the unit charge/discharge cost of energy storage is greater than $0.057/(kW⋅h) under the existing tariff conditions. The findings can provide a reference for generation load aggregator investors when planning whether to install energy storage or the scale of energy storage installation and also help the power market management to design reasonable incentive mechanisms.
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Against the backdrop of increasingly prominent environmental issues, new energy consumption issues, and energy supply and demand balance issues, the optimization of multi time scale operation of distributed electro hydrogen coupling systems has become a research focus. Based on this, this article optimizes the multi time scale operation of a distributed electric hydrogen coupling system that takes into account grid interaction. By designing a system framework for distributed electro hydrogen coupling systems, operational strategies for each system were proposed. Analyzed the uncertainty and response characteristics of wind and solar power generation units and load demand, and constructed a multiple uncertainty model for distributed electric hydrogen coupling system. At the same time, a three stage, multi time scale operation optimization model of the electric hydrogen coupling system was constructed based on the response characteristics of the distributed electric hydrogen coupling system. The construction of these models reduced scheduling costs by 12.55% and increased clean energy consumption rate by 13.50%.
Keywords: multiple uncertainties, electro-hydrogen coupling, multi-timescale, operational optimization, grid interaction
1 INTRODUCTION
Under the “dual carbon” goal, environmental issues and energy supply and demand balance are becoming increasingly prominent (Ren et al., 2022). In this context, the production of clean wind and solar new energy has developed on a large scale, but problems such as uncertainty, volatility, and inability to fully absorb remain unresolved (Li et al., 2022). Utilizing uncontrollable wind and solar new energy to generate hydrogen and locally supply regional hydrogen load demand can reduce transportation costs. At the same time, hydrogen energy, as a secondary energy source, has advantages such as flexible conversion and long-term energy storage (Gorre et al., 2020; Zhang et al., 2022). Therefore, coupling the electric energy network with the hydrogen energy network into an electric hydrogen system has significant economic value (Zhang et al., 2022). Optimizing the operation of the coupling system lays the foundation for the development of distributed electric hydrogen coupling systems. However, at different timescales, the accuracy of wind, photovoltaic, and load prediction in the electric hydrogen coupling system is inconsistent (Li et al., 2022). It is necessary to conduct research on the multi-timescale operation of the electric hydrogen system.
Regarding research on multiple timescales, most of the existing research focuses on integrated energy systems. Based on the differences in energy characteristics in integrated energy systems, Li et al. (2020) optimized the scheduling time resolution of cooling, heating, and electricity and constructed a mixed day-to-day timescale scheduling optimization model for integrated energy systems. Xu et al. (2019) designed a comprehensive response architecture that considers multiple timescales to achieve orderly scheduling of user demand responses, which can reduce overall operating costs. Wang et al. (2022) proposed a two-stage scheduling optimization plan with the objective function of minimizing operating costs, taking the combined cooling, heating, and power system as the research object. Jin et al. (2019) focused on microgrid systems and also proposed a two-stage scheduling optimization plan. On the basis of the two-stage rolling optimization of “day-ahead–day-in,” Yuan et al. (2019) (Bao et al., 2016) proposed a multi-timescale scheduling optimization method that considers “day-ahead–day-in–real-time,” where day-ahead takes 1 h as the scheduling response time, the day-in response time is 15 min, and the real-time response time is 5 min. Furthermore, based on the optimization of “day-ahead–day-in–real-time,” Zhao et al. (2020) proposed a long-term optimization model with an annual cycle, with the objective function of minimizing annual investment cost, to optimize the capacity allocation and investment decision-making of the comprehensive energy system. From the existing multi-timescale optimization research, on the one hand, there is a lack of operational optimization research focusing on distributed electro-hydrogen coupling systems in the research object. On the other hand, in terms of multi-timescale research, the growth of scheduling response time is mostly 1 h in the day-ahead, 15 min in the day-in, and 5 min in the real-time, without in-depth consideration of equipment and energy characteristics.
In the operation process of distributed electric hydrogen coupling systems, due to the existence of multiple uncertainties in wind power, photovoltaic, and load, the study of uncertainty is also crucial for distributed electric hydrogen coupling systems. Pan et al. (2022) used robust coefficients to characterize the uncertainty of renewable energy sources and other sources. Hou et al. (2021) described the uncertainty of wind and solar output based on the typical scenario method. Lu et al. (2022) used the interval method to describe the uncertainty of user-end load. In addition to considering the unilateral uncertainty of the source and load ends, Cui et al. (2022) (Zhai et al., 2020) also considered the uncertainty of new energy generation and comprehensive demand response and verified through examples that considering multiple uncertainties can improve the risk resistance ability of the comprehensive energy system. The existing research on uncertainty can consider the uncertainty of source-side output and load-side demand response. However, in distributed electro-hydrogen coupling systems, demand response is an important resource for its invocation, and the accuracy of resource invocation will also affect the uncertainty of the system. Existing research has little consideration for the uncertainty of load-side demand response.
Based on the aforementioned research, this paper conducts a multi-timescale operation optimization study of a distributed electric hydrogen coupling system that takes into account grid interaction. Compared with the existing research, this work incorporated the following innovations:
(1) In terms of uncertainty analysis, not only the uncertainty of the source and load ends is considered, but also the uncertainty of the load demand response in the coupled system is innovatively considered.
(2) In terms of operational optimization, based on the response characteristics of the equipment, a three-stage multi-timescale operational optimization model of “day-ahead–day-in–real-time” is proposed. Considering the adjustment and response level of equipment in the day-in and real-time stages, a “day-in–real-time” two-stage adjustment plan is developed, which differs from traditional overall adjustment.
(3) In terms of scheduling time, the traditional response scheduling time of 1 h in the day-ahead, 15 min in the day-in, and 5 min in the real-time is optimized based on system equipment and various energy characteristics.
The remainder of this paper is arranged as follows: in Section 2, the framework of the electric hydrogen coupling system is designed, and the operation strategy of the coupling system unit is proposed. In Section 3, based on the system unit modeling, the uncertainty and response characteristics of the coupled system are analyzed. In Section 4, a coupled system operation optimization model with three timescales of day before day, day within day, and real time is constructed. In Section 5, taking a coupled system as an example for empirical analysis, the effectiveness of the model was verified.
2 DESIGN OF THE ELECTRIC HYDROGEN COUPLING SYSTEM
2.1 System framework
The electric hydrogen coupling system includes three networks: electric energy network, hydrogen network, and thermal network. The distributed power supply network consists of wind turbines, photovoltaic panels, external networks, and electrical loads. The hydrogen network consists of an electrolytic cell, hydrogen fuel cell, hydrogen storage tank, and hydrogen load. The thermal energy network is composed of electric to heat equipment, electrolytic cell, and cooling water circulating device inside the hydrogen fuel cell. Distributed power supply, hydrogen network, and thermal network are coupled together and coordinated and dispatched by the control center of the electric hydrogen coupling system. When there is a shortage demand in the coupling system, energy is purchased from external networks. If the system exceeds supply, energy is sold to external networks (Figure 1).
[image: Figure 1]FIGURE 1 | Framework diagram of the electric hydrogen coupling system.
2.2 System unit operation strategy
2.2.1 Electric energy network
In order to reduce wind and solar power abandonment rates and achieve the consumption of wind and photovoltaic power generation, the control center of the electric hydrogen coupling system conducts full scheduling of wind and photovoltaic power generation. On the one hand, when wind power and photovoltaic power cannot meet the electricity load demand, electricity is purchased from the external grid to meet the electricity load demand shortage. On the other hand, the hydrogen is released from the hydrogen storage tank and generated by the hydrogen fuel cell. When wind and photovoltaic power generation exceeds the electricity load demand, the electrolysis cells use the excess electricity to produce hydrogen, and the generated hydrogen is stored in hydrogen storage tanks to supply the local hydrogen load demand.
2.2.2 Hydrogen energy network
When wind and photovoltaic power generation exceeds the electricity load demand, the electrolytic cell uses excess electricity to produce hydrogen, and combined with the electricity price situation, the generated hydrogen is stored in the hydrogen storage tank. If the power load of the system is insufficient and the electricity price is high, the hydrogen in the storage tank will be supplied to the hydrogen fuel cell to generate electric energy and heat energy to obtain benefits. If the system’s electricity load is insufficient, the electricity price is low, and the purchased electricity meets the system’s electricity load demand with higher efficiency, the generated hydrogen will be stored in hydrogen storage tanks to supply the regional hydrogen load demand.
2.2.3 Thermal network
The heat load demand of the thermal energy network is met by the electric-to-heat equipment, hydrogen fuel cell, and electrolytic cell. Among them, the heating efficiency of hydrogen fuel cells is higher than the power supply efficiency. In hydrogen fuel cells, we first consider the heat load demand to control the hydrogen consumption of hydrogen fuel cells and then consider the power load demand. Therefore, hydrogen fuel cells and electrolytic cells are first used to meet the heat load demand in the heat energy network. If hydrogen fuel cells and electrolytic cells cannot meet the heat load demand, then the power is purchased from the external network or the excess power from wind and solar power generation is used to supply heat through the electric-to-heat equipment.
3 UNIT MODELING AND UNCERTAINTY ANALYSIS OF THE ELECTRO-HYDROGEN COUPLING SYSTEM
3.1 System unit modeling
This section considers the characteristics of each unit equipment and constructs corresponding models.
3.1.1 Wind turbines
The output of wind power at each moment is the product of the installed capacity and output coefficient of the wind power plant, as shown in Eq. 1:
[image: image]
where [image: image] is the output of the wind power plant at time t; [image: image] is the output coefficient of the wind power plant at time t; and [image: image] is the rated power of the wind power plant.
3.1.2 Photovoltaic unit
Photovoltaic power generation is influenced by regional light intensity, and the beta distribution is used to fit the radiation pattern of light. The output of photovoltaic power generation is shown in Eq. 2:
[image: image]
where [image: image] is the photovoltaic power generation output at time t; [image: image] is the area of the photovoltaic panel; [image: image] is the light intensity at time t; [image: image] is the efficiency of the photovoltaic panel in absorbing light intensity; [image: image] is the solar-cell efficiency; and [image: image] is the loss coefficient of the photovoltaic panel.
3.1.3 Electric tank
Electrolytic cells include an alkaline electrolyzer, a high-temperature steam electrolyzer, and a proton-exchange membrane electrolyzer. Due to their advantages of easy maintenance and wide application (Liu et al., 2022), alkaline electrolyzers are suitable for the electric hydrogen coupling system constructed in this paper for park scenarios. Based on this, an alkaline electrolytic cell is used in this section. The real-time balance between the electrical energy consumed and the energy generated during the operation of an alkaline electrolytic cell is shown in Eq. 3:
[image: image]
where [image: image] is the electrical power consumed by the electrolytic cell; [image: image] and [image: image] are the quality and efficiency of hydrogen gas produced by the electrolytic cell, respectively; [image: image] and [image: image] refer to the thermal energy generated during the operation of the electrolytic cell and the heat dissipation loss, respectively; and [image: image] is the conversion coefficient of the electrolytic cell.
Under constant temperature and pressure conditions, the hydrogen production efficiency of the electrolytic cell is related to the current efficiency and voltage efficiency, as shown in Eq. 4:
[image: image]
where [image: image] and [image: image] represent the current efficiency and voltage efficiency of the electrolytic cell, respectively; [image: image] is the operating current of the electrolytic cell; [image: image] is the thermal neutral voltage; and [image: image] is the voltage of electrolysis of water.
Under certain temperature and pressure conditions, the electrolysis of water voltage of the electrolytic cell depends on the current density, as shown in Eq. 5:
[image: image]
where [image: image], [image: image], [image: image], and [image: image] refer to reversible voltage, resistance voltage drop, hydrogen overpotential, and oxygen overpotential, respectively; [image: image], [image: image], and [image: image] represent temperature, pressure, and current density, respectively; [image: image] is the resistance of the electrolyte; [image: image] and [image: image] are universal gas and Faraday constant, respectively; [image: image], [image: image], and [image: image] are the charge transfer coefficient, electron transfer number, and current density of the cathode, respectively; [image: image], [image: image], and [image: image] are the charge transfer coefficient, electron transfer number, and current density of the anode.
Referring to the relevant parameters of the electrolytic cell in Liu et al. (2022), the non-linear relationship between the input power of the electrolytic cell and the hydrogen production efficiency of the electrolytic cell is shown in Figure 2. The electrolysis cell has the highest hydrogen production efficiency when the input power accounts for approximately 20% of the rated power; however, the hydrogen production amount is small. The optimal operating range is (50%, 100%) of the rated power.
[image: Figure 2]FIGURE 2 | Relationship between the input power of the electrolytic cell and hydrogen production efficiency of the electrolytic cell.
3.1.4 Hydrogen storage tank
Based on different pressure requirements, hydrogen storage tanks mainly involve three types of hydrogen storage methods: solid, liquid, and gaseous. Among them, high-pressure hydrogen storage in the gaseous state has been the most widely used, mature, and low-cost method, with a pressure of up to 20 MPa. When the pressure is less than 10 MPa, the ideal equation of state can be used to build the relationship between the mass and pressure of the hydrogen storage tank. However, due to the small relative molecular weight of hydrogen, when the pressure exceeds 10 MPa, it is easy to lead to explosion. At this time, the ideal equation of state does not accurately describe the relationship between mass and pressure. Fan’s equation can characterize the mass and pressure of hydrogen storage tanks by considering the repulsive and gravitational forces between molecules, as shown in Eq. 6:
[image: image]
where [image: image] is the pressure of the hydrogen storage tank at time t; [image: image] and [image: image] are Fan’s coefficients; [image: image] is the amount of hydrogen in the hydrogen storage tank; [image: image] is the volume of the hydrogen storage tank; [image: image] is a constant; [image: image] is the temperature of hydrogen gas; and [image: image] is the relative molecular weight of hydrogen gas.
According to Eq. 5, the relationship between the pressure and mass of the hydrogen storage tank is shown in Eq. 7:
[image: image]
The capacity of the hydrogen storage tank is shown in Eq. 8:
[image: image]
where [image: image] is the hydrogen mass of the hydrogen storage tank at time t+1; [image: image] is the hydrogen mass of the hydrogen storage tank at time t; and [image: image] is the hydrogen release amount of the hydrogen storage tank at time t.
3.1.5 Hydrogen fuel cell
The hydrogen fuel cell can be regarded as the reverse reaction of electrolyzed water, and its energy model is shown in Eq. 9:
[image: image]
where [image: image] is the hydrogen consumed by the hydrogen fuel cell; [image: image] and [image: image] are the electric energy and thermal energy generated by the hydrogen fuel cell, respectively; [image: image] is the heat energy lost by the hydrogen fuel cell; [image: image] is the electrical efficiency of the hydrogen fuel cell; [image: image] is the operating voltage of the hydrogen fuel cell; [image: image] is the enthalpy value of hydrogen gas; and [image: image] is the conversion coefficient of the hydrogen fuel cell. The relationship between fuel cell power generation and voltage is shown in Figure 3.
[image: Figure 3]FIGURE 3 | Relationship between fuel cell power generation and voltage.
3.1.6 Electric heat transfer equipment
Electric heat transfer equipment converts electrical energy into thermal energy through consumption, and its conversion model is specifically shown in Eq. 10:
[image: image]
where [image: image] is the thermal energy generated by the electric heat transfer equipment at time t; [image: image] is the conversion efficiency of the electric heat transfer equipment; and [image: image] is the electrical energy consumed by the electric heat transfer equipment.
3.2 Analysis of system uncertainty and response characteristics
This section analyzes the uncertainties faced by distributed hydrogen systems and the response characteristics of various pieces of equipment in the system, laying the foundation for constructing a multi-timescale operation optimization model in Section 4.
3.2.1 Wind and photovoltaic power generation units
In terms of response characteristics, wind and photovoltaic power generation units can quickly abandon wind and light when they exceed the maximum output value, and their adjustability is strong. The response time of the distributed electric hydrogen coupling system for wind and solar power generation units is short, and the response timescale is set to [image: image]. In terms of uncertainty, wind and solar power have high output uncertainty due to the influence of geographical location, environmental temperature, light intensity, and wind speed. Based on this, Bai et al. (2021) used a combination of clustering and particle swarm optimization algorithms to determine n typical wind and solar output scene sets and weighted and stacked n output scenes and further used the uncertainty set of wind and solar output to represent the uncertainty of wind and solar output, as shown in Eqs 11, 12:
[image: image]
[image: image]
where [image: image] is the uncertainty set of wind power generation; [image: image] is the actual output of wind power generation at time t; [image: image] and [image: image] are the upper and lower limits of wind power generation, respectively; [image: image] is the robustness factor for the uncertainty set of wind power generation; [image: image] is the uncertainty set of photovoltaic power generation; [image: image] is the actual output of photovoltaic power generation at time t; [image: image] and [image: image] are the upper and lower limits of photovoltaic power generation, respectively; and [image: image] is the robustness factor for the uncertainty set of photovoltaic power generation.
3.2.2 Wind and photovoltaic power generation units
The coupling unit mainly includes electrolytic cell, hydrogen fuel cell, electric heat transfer equipment, and hydrogen storage tank equipment. In terms of response characteristics, the response time of coupling equipment such as electrolytic cells and electric heat-transfer equipment is longer than that of wind and solar power generation units. The alkaline electrolytic cell has a fast start and stop speed, with a dynamic response time of approximately 10 min, which is slower than that of wind and solar power generation units. The dynamic response timescale is set to [image: image]. The response speed of electric heat-transfer equipment is equivalent to that of electrolytic cells, and its dynamic response timescale is [image: image]. The dynamic response time of the hydrogen fuel cell is equivalent to that of the alkaline electrolyzer, and the dynamic response timescale is [image: image]. The hydrogen storage tank has the advantage of fast adjustment, and its dynamic response timescale is between the wind and solar power generation unit and the electrolytic cell, with a dynamic response timescale of [image: image]. For the uncertainty analysis of coupled units, due to the control feedback system inside the coupled units, the overall conversion output is relatively stable, so its uncertainty is not considered temporarily.
3.2.3 Wind and photovoltaic power generation units
The distributed electric hydrogen coupling system constructed in this article mainly includes three types: electrical load, thermal load, and hydrogen load. In terms of response characteristics, it is mainly scheduled through demand response. It is divided into three categories based on the length of the response timescale: the first type is a long-term demand response, including food processing industry and long-term electric heating, which is not flexible enough and requires scheduling and planning 1 day in advance. The dynamic response timescale is set to [image: image]. The second type is demand response with a short timescale, including short-term electric heating, which is consistent with the response timescale of alkaline electrolytic cells as [image: image]. The third type is demand response at an ultrashort timescale, including electric irrigation, which is consistent with the response timescale of [image: image] in the wind and solar power generation unit.
The uncertainty analysis of load demand is mainly influenced by user subjectivity and energy prices, and its uncertainty is characterized by the load deviation rate, as shown in Eqs 13–15:
[image: image]
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where [image: image], [image: image], and [image: image] are the demand intervals for electrical load, thermal load, and hydrogen load at time t, respectively; [image: image], [image: image], and [image: image] are the expected electrical load, thermal load, and hydrogen load at time t, respectively; and [image: image], [image: image], and [image: image] are the expected deviation rates between electrical load, thermal load, and hydrogen load, respectively.
The response timescales of different call outputs and loads are summarized in Eq. 16:
[image: image]
4 OPTIMIZATION MODEL FOR MULTI-TIMESCALE OPERATION OF THE ELECTRIC HYDROGEN COUPLING SYSTEM
4.1 Operational optimization ideas
Based on the analysis results of response characteristics of different pieces of equipment in Section 3.2 of the system, it can be seen that due to the coupling of distributed power supply, hydrogen network, and thermal network, the output characteristics of each type of energy unit are different, resulting in different scheduling response times for each part. Therefore, this paper depends on day-ahead–day-in–real-time rolling optimization for optimization design. In the day-ahead stage, determine the start and stop operation plans for each unit, and in the day-in stage, determine the adjustment plans for each unit based on the errors between the wind and solar output and load demand in the day ahead and day in stages. In the real-time stage, the adjustment plan for each unit is determined based on the error between the daily and real-time stages of wind and solar output and load demand. The optimization design concept is shown in Figure 4:
[image: Figure 4]FIGURE 4 | Design ideas for multi-timescale optimization of coupled systems.
Plan development should be carried out 1 day in advance, i.e., 24 h in advance, with a scheduling timescale of [image: image]. In the day-ahead phase, based on the forecast results of wind and solar power and various loads, the startup and shutdown plans and output plans of electrolyzer, hydrogen storage tank, hydrogen fuel cell, and electric-to-heat equipment in the system are determined with the minimum initial operating cost of the system, and the first type of a long-term demand response scheduling plan is formulated.
In the day-in rolling optimization stage, the scheduling period is 4 h. In order to coordinate the response timescale between the hydrogen storage tank and other coupling equipment, the scheduling timescale is selected as the least common multiples of [image: image] and [image: image] and set to [image: image]. At the same time, according to the deviation between the wind power and load forecast and the day-ahead forecast results in the rolling optimization, taking into account the flexibility of response, the demand response scheduling of the second type of timescale is mainly used, supplemented by the deviation adjustment of the hydrogen storage tank electrolyzer and hydrogen fuel cell. The rolling optimization goal at this stage is to minimize the cost of deviation adjustment.
In the real-time rolling optimization stage, the scheduling cycle is 15 min, and the scheduling timescale is [image: image]. This stage is based on the deviation between the predicted results of real-time rolling optimization for wind and solar power, load forecasting, and intraday rolling optimization. The adjustment is mainly based on the third type of demand response. If it is insufficient, it is adjusted by interacting with the external network to purchase or sell electricity. At this stage, the rolling optimization goal is also to minimize the deviation adjustment cost.
4.2 Day-ahead optimization model
4.2.1 Objective function
In the current optimization stage, the distributed electric hydrogen coupling system aims to minimize the total operating cost of the coupling system as the objective function. The operating costs of the previous stage include the start-up and shutdown costs of the unit, the operating costs of the unit, the demand response call costs, the external network interaction costs, and the uncertainty costs caused by multiple uncertainties in the system, as shown in Eq. 17:
[image: image]
where [image: image] is the total operating cost of the distributed electric hydrogen coupling system in the day-ahead stage; [image: image], [image: image], [image: image], [image: image], and [image: image] refer to the operating costs of the distributed electric hydrogen coupling system in the early stage, including the start-up and shutdown costs of the unit, the operating costs of the unit, the demand response call costs, the external network interaction costs, and the uncertainty costs caused by multiple uncertainties in the system, respectively; [image: image] is the start-up and shutdown costs of unit I; [image: image] is a Boolean variable, [image: image] represents the start of the unit, otherwise the unit will not start; [image: image], [image: image], [image: image], [image: image], and [image: image] are the output plan of wind turbine generator set, photovoltaic generator set, electrolytic cell, hydrogen fuel cell, and electricity-to-heat equipment at time t in the day-ahead stage, respectively; [image: image] and [image: image] are the hydrogen storage and release capacities of the hydrogen storage tank at time t, respectively; [image: image], [image: image], [image: image], [image: image], [image: image], and [image: image] are the unit operating costs of wind turbine generator set, photovoltaic generator set, electrolytic cell, hydrogen fuel cell, hydrogen storage tank, and electric heat-transfer equipment, respectively; [image: image] is the first type of demand response unit scheduling cost; [image: image] and [image: image] represent the purchased and sold electricity of the distributed electric hydrogen coupling system when interacting with the external network at time t, respectively; [image: image] and [image: image] are the unit electricity purchase and unit electricity sale costs when the distributed electric hydrogen coupling system interacts with the external network, respectively; and [image: image] is the unit uncertainty cost.
4.2.2 Constraint condition
The constraints of the distributed electric hydrogen coupling system in the early stage include power balance constraints and equipment operation constraints. The power balance constraints mainly include electrical energy balance, thermal energy balance, and hydrogen energy balance, as shown in Eq. 18:
[image: image]
Equipment operation constraints mainly include wind and solar power unit operation constraints, coupled unit operation constraints, and demand response constraints, as shown in Eq. 19:
[image: image]
where [image: image] and [image: image] are the minimum and maximum output of unit i; [image: image] and [image: image] are the minimum and maximum values for unit i to climb the slope; [image: image] and [image: image] are the minimum and maximum output of the electric heat-transfer equipment; [image: image] and [image: image] are the minimum and maximum values for the climbing of the electric heat transfer equipment; [image: image] and [image: image] are the minimum and maximum hydrogen storage capacities of the hydrogen storage tank; [image: image] and [image: image] are the minimum and maximum output of the electrolytic cell; [image: image] and [image: image] are the minimum and maximum values for climbing the electrolytic cell slope; and [image: image] and [image: image] are the minimum and maximum scheduling amount for the first type of demand response, respectively.
4.3 Day-in rolling optimization model
4.3.1 Objective function
In the day-in rolling optimization stage, based on the day-ahead scheduling plan, the scheduling of the second type of demand response and the output adjustment of coupled units are carried out. The optimization goal of the day-in rolling stage is to minimize the adjustment cost, as shown in Eq. 20:
[image: image]
where [image: image] is the scheduling cost for the second type of demand response in the day-in stage; [image: image] is the adjustment cost for the ith unit during the day-in stage, [image: image]; [image: image] is a Boolean variable, [image: image], indicating that unit i participates in the intraday adjustment, otherwise it will not participate; [image: image] and [image: image] are the scheduling quantity and unit scheduling cost for the second type of demand response, respectively; [image: image], [image: image], and [image: image] are the adjustment amounts of electrolytic cell, hydrogen fuel cell, and electric heat-transfer equipment in the day-in stage, respectively; [image: image], [image: image], and [image: image] are the unit adjustment costs of electrolytic cell, hydrogen fuel cell, and electric-to-heat equipment in the day stage, respectively; [image: image] and [image: image] are the hydrogen release and storage adjustment amount of the hydrogen storage tank, respectively; and [image: image] represents the unit adjusted cost of the hydrogen storage tank.
4.3.2 Constraint condition
The constraints in the day-in stage also include power balance constraints and equipment operation constraints. The power balance constraints are shown in Eq. 21, and the equipment operation constraints are in the same form as Eq. 19.
[image: image]
4.4 Real-time optimization model
4.4.1 Objective function
In the real-time optimization stage, based on the daily rolling optimization plan, the third type of demand response and hydrogen fuel cell output adjustment are carried out. The optimization goal of the real-time rolling stage is to minimize the adjustment cost [image: image], as shown in Eq. 22:
[image: image]
where [image: image] is the scheduling cost for the third type of demand response in the real-time phase; [image: image] is the adjustment cost of the hydrogen fuel cell in the real-time phase; [image: image] is the cost of interaction between the real-time distributed electric hydrogen coupling system and the external network; [image: image] is a Boolean variable, and [image: image] is the output of the hydrogen fuel cell adjusted in the real-time phase, otherwise it will not be adjusted; [image: image] is also a Boolean variable, where [image: image] indicates correction and adjustment through external network interaction, otherwise the opposite is true; [image: image] and [image: image] are the scheduling quantity and unit scheduling cost for the third type of demand response, respectively; [image: image] and [image: image] are the adjustment amount and unit adjustment cost of the hydrogen fuel cell in the real-time phase, respectively; [image: image] and [image: image] refer to the purchase and sale of electricity during the real-time phase and external network adjustment, respectively.
4.4.2 Constraint condition
The system balance constraints in the real-time phase are the same as Eq. 18, and the equipment operation constraints are shown in Eq. 23:
[image: image]
4.5 Model solution
The multi-timescale optimization model of the distributed electro-hydrogen coupling system is a complex uncertain mixed integer non-linear programming problem, and the methods for solving uncertainty mainly include approximation and decomposition methods. The decomposition method includes the Benders decomposition algorithm and column-and-constraint-generation algorithm (C&CG). Due to the fact that the C&CG algorithm considers the constraints and variables of the subproblem compared to the Benders decomposition algorithm, which can accelerate convergence, this section adopts the C&CG algorithm for solution. The C&CG algorithm iteratively converges the main problem and subproblems to solve. The main problem is the optimal solution that satisfies the conditions under a known finite distribution, providing a lower bound (LB) value for the robust optimization model. The subproblem is to seek the worst-case distribution and provide an upper bound (UB) value for the robust optimization model under the given conditions of the decision variables in the first stage. The specific model of the C&CG algorithm is referenced in Song et al. (2023), and Cplex is further used for solution.
5 EXAMPLE ANALYSIS
5.1 Basic data
Multiple demonstration projects for electric hydrogen coupling have been put into operation in a certain province of China, with rich experience in electric hydrogen coupling systems. Therefore, in order to verify the effectiveness of the model, a distributed electric hydrogen coupling system for parks in this province was selected as an example for simulation analysis. The deviation rates for wind power generation, photovoltaic power generation, and demand response in the day-ahead, day-in, and real-time stages are set to 5%, 3%, and 1%, respectively. The unit scheduling costs for the first type of load demand response, the second type of load demand response, and the third type of load demand response are 0.6, 0.85, and 1.00 yuan/kWh, respectively. According to the characteristics of each device, the response time for daily, intraday, and real-time scheduling is determined to be 30, 10, and 5 min, respectively. A distributed electric hydrogen coupling system was set up to connect to the external network at 10 kV and interact with the external network using the peak-to-valley electricity prices of general industrial and commercial industries from 1 to 10 kV in the province. At the same time, the specific purchase and sale electricity prices are shown in Table 1 (Tan et al., 2021; Han et al., 2022):
TABLE 1 | Electricity prices during peak and valley periods.
[image: Table 1]The operating parameters of various units are shown in Table 2 (Jiang et al., 2022):
TABLE 2 | Operating parameters of various units.
[image: Table 2]The day-ahead, day-in, and real-time predicted values for wind and photovoltaic power generation are shown in Figures 5, 6 (Tan et al., 2021):
[image: Figure 5]FIGURE 5 | Wind power output at different time periods.
[image: Figure 6]FIGURE 6 | Photovoltaic power output at different time periods.
5.2 Example results
5.2.1 Scheduling optimization results for multiple timescales
Based on the predicted values of wind power generation, photovoltaic power generation, and various loads in real-time, in order to minimize the system operating cost, the scheduling optimization results at different timescales are obtained and analyzed. The optimization results of day-ahead, day-in, and real-time scheduling for each unit are shown in Figures 7–9, respectively. Due to the large amount of data under the 5-min scheduling time, the readability of the graph is poor. This paper selects one data at every 12 scheduling points to display day-ahead, day-in, and real-time stages in the graph.
[image: Figure 7]FIGURE 7 | Scheduling results in the day-ahead stage.
[image: Figure 8]FIGURE 8 | Scheduling results in the day-in stage.
[image: Figure 9]FIGURE 9 | Scheduling results in the real-time stage.
From Figures 7–9, it can be seen that the scheduling time for the first, second, and third types of demand response in the day-ahead, day-in, and real-time stages is approximately 19:00–22:00, overlapping with the peak load period. In order to maintain the balance between supply and demand in the recent stage, there are many challenges with the external network. Among them, the electricity purchase is carried out at 22:00–8:00 during the low-price period, and the low-price electricity is converted into hydrogen and stored in the hydrogen storage tank through the electrolytic cell equipment. During the peak power period, the hydrogen fuel cell consumes the hydrogen in the hydrogen storage tank to generate electricity. In the day-in stage, deviation adjustment is mainly carried out by adjusting the hydrogen storage tank and the second type of demand response. The adjustment amount of electric heat-transfer equipment and electrolytic cells is relatively small, and only minor adjustments are made. In the real-time stage, compared to the day-ahead stage, the amount of interaction with the external network is significantly reduced. This is because the deviation in the real-time stage is reduced after adjustment in the day-in stage, and most of the deviation adjustment needs can be met through the third type of demand response.
5.2.2 Effectiveness analysis of uncertainty
In order to analyze and consider the effectiveness of system uncertainty, this paper sets up the following four scenarios for analysis:
Scenario 1: Set the wind and solar power output and load demand of the distributed electric hydrogen coupling system to be determined in three stages: day ahead, day in, and real time;
Scenario 2: Set the wind and solar output of the distributed electric hydrogen coupling system to be determined in three stages: day ahead, day in, and real time, taking into account the uncertainty of load demand in these three stages;
Scenario 3: Set the load demand of the distributed electric hydrogen coupling system to be determined in three stages: day ahead, day in, and real time, taking into account the uncertainty of wind and solar output in these three stages;
Scenario 4: Considering the wind power output and load demand of the distributed electric hydrogen coupling system simultaneously, uncertainty is determined in the three stages of day ahead, day in, and real time.
The scheduling costs of the distributed electric hydrogen coupling system in three stages under four scenarios are shown in Table 3.
TABLE 3 | Scheduling cost of the distributed electric hydrogen coupling system.
[image: Table 3]From Table 3, it can be seen that among the four scenarios, scenario 1 under the deterministic scenario has the highest scheduling cost in the three stages of day ahead, day in, and real time, with a total scheduling cost of 40,289.79 yuan. Scenario 4, which simultaneously considers multiple uncertainties, has the lowest scheduling cost among the three stages, with a total scheduling cost of 35,231.9 yuan. Compared with Scenario 1, the total scheduling cost of Scenario 4 decreases by 12.55%. This is because uncertainty costs are not considered in deterministic scenarios. When there is a significant deviation between wind and solar power output and load demand, it will cause significant adjustments to the output of each unit in the day-in and real-time stages and even significantly increase the interaction cost with the external network, resulting in an increase in the overall adjustment cost. Although Scenario 2 considers the uncertainty of load, it does not consider the deviation of wind and solar output. On the one hand, when there is a significant deviation in wind and solar output, the accuracy of the unit output plan developed in the day-ahead stage is low. On the other hand, in the day-in and real-time stages, in addition to affecting the supply of electricity load, wind and solar power, as the supply end of electrolytic cells and electricity to heat transfer, will have an impact on the heat load and hydrogen load, increasing scheduling costs. Scenario 3 shows that the accuracy of load forecasting affects the scheduling of demand response. In the real-time stage, the third type of load demand invocation is mainly used. When the load deviation is large, the cost of daily adjustment increases. This indicates the necessity of considering the deviation between wind and solar output and load demand in distributed electric hydrogen coupling systems.
Furthermore, in order to explore the impact of wind and solar output deviation and load demand deviation on wind and solar consumption rate, taking the day-ahead stage as an example, the wind and solar output deviation and load demand deviation rates were set to vary in the range (−5%, 5%). The wind and solar consumption rate under different deviation rates is shown in Figure 10.
[image: Figure 10]FIGURE 10 | Wind power and photovoltaic absorption rates under different deviation rates.
As shown in Figure 10, when the negative deviation of wind and solar output increases in the opposite direction, the absorption rate of wind and solar energy increases. This is because when the load demand is constant and the reverse deviation rate of wind and solar energy increases, the system will fully absorb the wind and solar output, resulting in an increase in the absorption rate of wind and solar energy. When the load deviation rate increases positively, due to the increase in load demand, in order to ensure the balance of supply and demand and reduce other unit adjustments, the wind and solar output increases, resulting in an increase in the wind and solar consumption rate.
5.2.3 Effectiveness analysis of multi-timescale scheduling strategies
In order to evaluate the effectiveness of the multi-timescale optimization model proposed in this paper, effectiveness analysis that involves planning in the day-ahead stage and adjusting based on device priority in the day-in and real-time stages is demonstrated. On the one hand, it is compared with the key technologies proposed in Jin et al. (2019) in the two stages of “day-before-day–within-day”. On the other hand, it is compared with Liao et al. (2022), in which the model operates on a three-stage multi-timescale of “day-ahead–day-in–real-time” but does not consider the priority of device adjustment and the response characteristics of the device. The key technologies in Jin et al. (2019) and Liao et al. (2022) were applied to the distributed electro-hydrogen coupling system constructed in this paper. The cost and overall clean energy consumption rate of the system at different stages are shown in Table 4:
TABLE 4 | Cost and overall clean energy consumption rate of the system at different stages.
[image: Table 4]It can be seen from Table 4 that although there is no real-time stage cost in Jin et al. (2019), its day-ahead scheduling cost and day-in scheduling cost are far higher than Liao et al. (2022) and the proposed method. This is because in the current stage, Jin et al. (2019) did not make further adjustments and error correction in the real-time stage, which will lead to an increase in uncertainty and deviation costs. At the same time, the clean energy consumption rate of Jin et al. (2019) is lower than that of Liao et al. (2022) and the method proposed in this article. This is because from Figure 10, it can be seen that when the wind and solar deviation reaches 5% in the positive direction, the wind and solar consumption rate decreases, and there is no real-time adjustment, which cannot fully carry out new energy consumption, resulting in a decrease in the clean energy consumption rate. From this, it can be seen that it is necessary to conduct a three-stage scheduling of “day-ahead–day-in–real time.” Compared with the method proposed in this paper, the cost difference in the day-to-day stage is not significant, but the cost in the day-in stage and the real-time stage is higher than that of the method proposed in this paper. This is because Liao et al. (2022) did not consider the level of equipment adjustment and response characteristics, which cannot achieve efficient coordination and optimization among various devices and resource allocation, resulting in an increase in cost.
5.2.4 Effectiveness analysis of scheduling timescale optimization
In order to analyze the effectiveness of scheduling timescale optimization proposed in this paper, the evaluation indicators in Li et al. (2023) were compared with those in Yuan et al. (2019) and Bao et al. (2016). The comparison indicators are the supply and demand imbalance rate [image: image], the number of real-time adjustments within the day [image: image], and the proportion of adjustments [image: image], as shown in Eqs 24–26, respectively:
[image: image]
[image: image]
[image: image]
where [image: image] and [image: image] are the total aggregate supply and demand of energy, respectively; [image: image] is the total number of load data; [image: image] is the number of adjustments made by device i during the day-in and real-time phases, [image: image]; and [image: image] represents the total number of devices.
The supply and demand imbalance rate a, daily real-time adjustment frequency b, and adjustment proportion c of Yuan et al. (2019), Bao et al. (2016), and this paper are shown in Table 5.
TABLE 5 | Evaluation indicators for scheduling timescale optimization.
[image: Table 5]From Table 5, it can be seen that compared with Bao et al. (2016), using the method proposed in this paper for scheduling time optimization can reduce the supply–demand imbalance rate and ensure the stability of energy supply in the distributed electric hydrogen coupling system. On the other hand, compared with Jin et al. (2019) and Yuan et al. (2019), the method proposed in this paper has lower frequency and proportion of adjustments in these two indicators. This is because this article considers the response characteristics of heterogeneous energy sources such as electricity and heat loads and coupled equipment, which can coordinate the slow response time of heat loads and coupled equipment, as well as the fast response characteristics of wind, electricity loads, and hydrogen storage tanks. Therefore, the scheduling duration optimization method proposed in this article can simultaneously balance the dual optimization strategy of adjusting costs and energy supply stability.
6 CONCLUSION
This paper conducts a study on the optimization of multi-timescale operation of distributed electro-hydrogen coupling systems considering multiple uncertainties. Through case analysis, the following conclusions are drawn:
(1) It is necessary to consider the deviation between wind and solar output and load demand in a distributed electric hydrogen coupling system, and it can reduce the total scheduling cost by 12.55% compared to deterministic scenarios.
(2) The three-stage scheduling optimization strategy proposed in this article, which considers the level of equipment adjustment and response characteristics, can achieve efficient coordination and optimization among various devices, optimize resource allocation, and improve the consumption rate of clean energy.
(3) The scheduling duration optimization method proposed in this article is a dual optimization strategy that simultaneously considers adjustment costs and energy supply stability.
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Low carbonization of the traction system is the key to low-carbon rail transit operation, and its preliminary plan decision plays a decisive role in whether low carbon can be achieved in later stages. Therefore, how to achieve scientific decisions of energy storage traction systems in a low-carbon background is a problem that needs to be solved. The innovation of this paper is as follows: first, aiming at the reality of the rail transit energy storage traction system, a decision index system of the energy storage traction system which contains seven attributes and 18 criteria is constructed; second, aiming at the uncertainty of decision information and the decision makers’ aversion to risk, the decision model adapted to the energy storage traction system decision is constructed based on the interval Pythagorean intuitionistic fuzzy number and VIKOR model principle. The decision index system and decision model together constitute the decision framework. The case study results show that the decision index system can provide scientific guidance for the decision of the energy storage traction system, and the decision model can provide risk aversion type decision results with good robustness.
Keywords: rail transit, energy storage traction system, plan decision, interval Pythagorean, VIKOR
1 INTRODUCTION
On 22 September 2020, at the 75th United Nations General Assembly, President Xi Jinping proposed that China’s carbon dioxide emissions should strive to reach the peak by 2030 and strive to achieve the dual carbon goals of carbon peaking and carbon neutrality by 2060. Therefore, all fields are facing an important transformation of low-carbon development. From a global perspective, compared to other fields, such as construction and industry, low-carbon transportation development has always been a global challenge due to factors such as high resource utilization and unreasonable energy consumption. Meanwhile, due to the rapid development of urbanization in China, the rapid development of the transportation industry has brought about a sharp increase in pressure on energy conservation and emission reduction.
In the transportation industry, rail transit has been favored by government departments due to its advantages, such as large volume, fast speed, dense schedules, safety and comfort, high punctuality rate, all-weather operation, and low freight costs. Its proportion in the transportation industry is increasing day by day. The main energy consumed by rail transit is the use of electricity generated by burning coal, and its rapid growth will greatly increase carbon emissions, which is not conducive to achieving the dual carbon target of China.
The main energy consumption of rail transit comes from the traction system in the electrical system. Therefore, in the context of dual carbon targets, to achieve the low-carbon development of rail transit, the low-carbon development of the traction system is crucial, and an energy storage traction system (ESTS) is one of the important directions for the low-carbon development of the traction system.
In the decision stage of newly built rail transit projects, the design unit will provide multiple sets of ESTS plans. However, how to scientifically select suitable plans based on the characteristics of specific rail transit lines is an urgent problem that needs to be solved in the current low-carbon development process of rail transit.
1.1 Literature review on the decision index system of an energy storage traction system plan for rail transit
The energy storage devices in the ESTS can be divided into capacitor-based energy storage devices and flywheel energy storage devices (Dan et al., 2020), and capacitor-based energy storage devices are widely used. Decision-making research on the ESTS mainly focuses on the following aspects: when it is a renovation project, that is, the traction system has been determined, the main research focus is on the selection of energy storage batteries, for example, Hou Pengqi’s research on the plan of energy storage systems based on supercapacitors through ESTS simulation (Pengqi et al., 2022); when it is a new project and the energy storage system and traction system are not determined, the optimization research of the system is mainly based on simulation, for example, Dong Wenzhe’s research on the optimization operation of integrated hybrid energy storage and the RPC traction power supply system (Wenzhe et al., 2023); Li Ling studied an energy storage train with supercapacitors as the sole power source and verified the feasibility of traction system operation through simulation (Ling et al., 2018).
The aforementioned research studies are mainly based on simulation technology and scenario analysis methods to study the impact of new energy storage batteries and new ESTS techniques on rail transit operation and to select energy storage equipment or optimize system design based on the obtained characteristics of energy storage batteries and system operation.
The aforementioned research provides a good foundation for this study, but the plan of the ESTS should not only consider the characteristics of the equipment but also consider the cost of the system, as well as reliability, availability, maintainability, and safety, abbreviated as RAMS, to ensure the sustainability of rail transit projects.
Therefore, the development of ESTS plans needs to be considered from seven aspects: energy storage battery characteristics, system operation characteristics, system cost, reliability, availability, maintainability, and safety. Currently, there is a lack of relevant decision index systems to guide the plan and decision of ESTS plans.
1.2 Review of relevant literature on decision models for the ESTS in rail transit
To achieve scientific decision of ESTS plans, in addition to a scientific decision index system, it is more important to develop a scientific decision model, and the most important aspect of the scientific nature of the decision model is its suitability for the specific decision environment. The characteristics of ESTS decisions are the uncertainty of decision information and risk aversion decision.
The uncertainty of decision information mainly comes from the qualitative evaluation of the system. Due to the need for qualitative evaluation to be scored by experts, who are limited by their knowledge level and background limitations, hesitation is inevitable when facing newly developed systems, such as the ESTS. Therefore, the qualitative evaluation values provided by experts are inevitably uncertain.
Fuzzy mathematics is often used to deal with the uncertainty of decision information, such as intuitionistic fuzzy numbers (IFNs) (Kumar and Chen, 2022), interval-valued intuitionistic fuzzy numbers (IVIFNs) (Percin, 2022), interval-valued Pythagorean intuitionistic fuzzy numbers (IVPIFNs) (Peng and Yang, 2016), or directly using linguistic terms, such as the probability linguistic term set (Malik et al., 2018)[6].
Due to the large amount of engineering data involved in the ESTS plan, the evaluation value of the plan is mainly based on quantitative data, so it is best to use fuzzy mathematics. According to the data expression ways of the IFN, IVIFN, and IVPIFN, as shown in Table A1, the sum of the satisfaction degree and non-satisfaction degree of the IVPIFN can be greater than 1, and this feature enables it to better handle uncertainty. Therefore, the IVPIFN will be used in this article.
In addition, the decision of the ESTS plan belongs to the risk aversion decision because rail transit involves people’s life and property safety, so the ESTS does not have to have the best performance, but must not have accidents.
The commonly used decision models in the field of rail transit are the AHP (Dong et al., 2022), ANP (Peng et al., 2022), and TOPSIS methods (Yin et al., 2022), which pursue the maximization of utility value (refer to Table 2 for details). Therefore, there is an implicit assumption that criteria can compensate each other, and the mutual compensation between criteria will lead to risk preference decision results. For example, the evaluation values of ESTS plans X and Y on the energy storage battery characteristic criterion (marked A) and reliability criterion (marked B) are ( [image: image] = 8, [image: image] 1) and ( [image: image] = 4, [image: image] 4). If the weights of criteria A and B are both 0.5, then the scores of plans X and Y are 4.5 and 4, respectively. However, the alternative plan X is significantly weaker in reliability criterion than the alternative plan Y. Choosing option X will result in lower system reliability.
In the field of decision science, the VIKOR method is different from other methods. It is a risk aversion decision-making method, which is the judgment standard for the optimal plan to determine whether the degree of regret is the minimum or not. Therefore, it is more suitable for the ESTS plan decision (Kim and Ahn, 2020).
1.3 Contributions and originality
This article will construct a decision index system for the rail transit ESTS from seven aspects, energy storage battery characteristics, system operation characteristics, system cost, reliability, availability, maintainability, and safety, to make scientific decisions. On this basis, the IVPIFN is used to deal with the uncertainty of the decision information of the rail transit ESTS, and the VIKOR model is used to deal with the risk aversion problem. Based on the decision index system and decision model, a decision framework for the ESTS of rail transit is jointly constructed to achieve scientific decisions. The specific innovation points are as follows:
• The decision index system for the ESTS in rail transit is established, providing direction for scientific decision.
• The IVPIFN is used to handle uncertainty in decision information and improve the robustness of decision results.
• A decision model of the rail transit ESTS based on the VIKOR model is constructed to realize risk aversion decisions and conform to the decision habits of decision makers.
2 RESEARCH ON THE DECISION INDEX SYSTEM OF AN ESTS PLAN OF RAIL TRANSIT
In the introduction, the ESTS needs to be considered from seven aspects: energy storage battery characteristics, system operation characteristics, system cost, reliability, availability, maintainability, and safety. However, availability is reflected through relevant data on reliability and maintainability during post-project evaluation because availability cannot be reflected during the decision stage. Therefore, this factor is not considered when constructing a decision index system. In this article, the decision index system for ESTS plans is mainly examined from energy storage battery characteristics, system operation characteristics, system cost, reliability, maintainability, and safety attributes. The specific decision criteria, criteria characteristics, and sources under each attribute are shown in Table 1. The data of alternatives on each criterion in the decision index system can be obtained through expert scoring, experimentation, or examining projects of the same type.
TABLE 1 | Decision criterion system for the ESTS plan from the perspective of low-carbon development.
[image: Table 1]The energy storage traction system can be transformed from the determined traction system to the energy storage traction system. Since the traction system has been determined at this time, the problem of studying the energy storage battery is to consider the characteristics of the energy storage battery as an attribute when making the decision and meet the low-carbon, economical, efficiency, and sustainability requirements. To make planning decisions for energy storage traction systems from a low-carbon perspective, it is necessary to evaluate the system economy. To meet the dual carbon goals, high-performance batteries must be selected to meet the economic requirements of low-carbon development in energy storage traction systems. Otherwise, the battery life is short and the economy is poor. Therefore, the cycle life of energy storage batteries should be considered as an indicator. When the battery energy density and capacity are high, the power supply and storage efficiency of the system are higher, so energy density and battery capacity should be used as indicators. At the same time, when it belongs to a new project, the energy storage system and traction system are still uncertain, and optimization research based on simulation is needed for the system. Therefore, the operational characteristics of the system should be taken as the attribute. Because the main energy consumption of the project during system operation comes from the traction system, the total energy consumption of the system traction should be considered. In addition, the stable state of the system should be considered during operation, while the energy storage traction system should be applied in rail transit, so the control state of train operation should be considered.
To meet the requirements of low-carbon environmental protection and economy, the energy feedback percentage of regenerative braking should also be considered.
The energy storage traction system is an important heart that provides power for the normal operation of rail transit and is a core component of the entire high-speed railway system. The operation of high-speed railways is risky and accidents might occur due to the influence of the environment and operating conditions. Moreover, due to the nature of the high-speed railway system’s work and operation, which involves people’s livelihoods, the consequences and subsequent impacts of accidents are very serious and severe. According to statistics, the proportion of accidents causing rail operation interruption due to traction system failures is quite large in all types of rail transit accidents. Therefore, to avoid rail transit accidents, the reliability, maintainability, and safety of the system should be considered in the planning and decision making of the rail transit energy storage traction system.
Under the reliability attribute, its characteristic quantity is generally a quantitative indicator that reflects the overall reliability of the system. Therefore, the average number of faults in the system and the number of tripping faults in the traction power supply system should be counted. Based on this, the interval time and fault frequency should be calculated, and the reliability of the system in terms of sustainability should be represented by the interval time and fault frequency between system faults. Since the energy storage traction system provides energy for the rail transit system and the unavailability represents the ratio of the system failure time to the sum of the failure time and the normal power supply time, the unavailability of the system in the stable state is also an important indicator to measure the system reliability.
Under the maintainability attribute, it is very important to quickly check the cause of system faults when a system malfunctions. Therefore, the convenience of system fault detection, identification, and location of system faults should be considered. The modularization level of the system can make it easier to check the system’s partition. Therefore, to facilitate inspection and maintenance, it should also become a key indicator in decision making and planning.
Under the safety attribute, the probability of safety accidents occurring can directly reflect the safety level of the system, and the maintainability of safety-related components and the safety level of the system operation can indirectly reflect the safety of the system.
When evaluating a system solution, cost is an essential attribute. It can be divided into construction cost and operating cost, of which construction cost is inevitable but can be compressed through improved project plans and construction cost is a factor that must be considered before project implementation. The operating cost is directly related to the profitability and survival and development of the project, which can directly reflect the competitiveness and sustainable development ability of the project, and is conducive to resource allocation. Therefore, operating cost is also a necessary indicator to consider.
3 RESEARCH ON THE DECISION MODEL OF THE ESTS PLAN FROM THE PERSPECTIVE OF LOW-CARBON DEVELOPMENT
After determining the decision index system for the ESTS plan, it is necessary to determine the decision model based on the decision characteristics of the ESTS plan. In this paper, the IVPIFN will be used as the data expression of decision values to reduce the impact of uncertainty, and risk aversion decisions will be realized through the basic principles of the VIKOR model. In this section, the relevant theories of the IVPIFN are introduced first, and based on this, a decision model for ESTS plans will be constructed based on the basic principles of the VIKOR model and the decision characteristics of the ESTS plan.
3.1 Relevant theory of the IVPIFN
Definition 1. (Peng and Yang, 2016). Let X be a finite nonempty set, and the IVPIFN can be defined as follows:
[image: image]
where [image: image] indicates the degree of satisfaction, [image: image] indicates the lower limit of satisfaction, [image: image] indicates the upper limit of satisfaction, [image: image] denotes the non-satisfaction degree, [image: image] indicates the lower limit of non-satisfaction, [image: image] indicates the upper limit of non-satisfaction, and satisfaction and non-satisfaction satisfy the following relationship: [image: image]. In addition, the IVPIFN also has interval hesitation, which is [image: image], [image: image], and [image: image]. [image: image] is the i-th element in the X set. The IVPIFN can be expressed as [image: image]; for convenience of expression, [image: image] is used to represent [image: image], [image: image] is used to represent [image: image], [image: image] is used to represent [image: image], and [image: image] is used to represent [image: image]. Therefore, [image: image] can be expressed as [image: image] in this article.
Definition 2. (Peng and Yang, 2016). We assume [image: image], [image: image], and [image: image] for three IVPIFNs, and [image: image]。. Then, the operation is defined as follows:
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Definition 3. (Peng and Li, 2019). According to the Shannon entropy, the IVPIFN entropy [image: image] on the j-th criterion can be calculated by using the following equation:
[image: image]
Definition 4. (Peng and Yang, 2016). Assuming [image: image] and [image: image] are two IVPIFNs, the distance between [image: image] is defined as follows:
[image: image]
where [image: image] or [image: image].
Definition 5. (Peng and Yang, 2016) For any IVPIFN [image: image], [image: image] and [image: image] are the score function and accuracy function of the IVPIFN p. Their calculation equations are as follows:
[image: image]
If [image: image], then [image: image]; if [image: image], there are two situations:
• When [image: image], then [image: image].
• When [image: image], then [image: image].
3.2 Decision model for the ESTS plan based on the IVPIFN
For the sake of expression, assuming that there are m alternative ESTS plans [image: image], n criteria [image: image], the flowchart of the decision model is shown in Figure 1.
[image: Figure 1]FIGURE 1 | Flowchart of the decision model for the ESTS plan based on the IVPIFN.
3.2.1 Phase 1: establishing a decision matrix for ESTS plans based on the IVPIFN
Step 1:. Converting the quantitative decision values of the ESTS plan into the IVPIFN. The quantitative decision value of the ESTS plan can be converted into the IVPIFN decision value by the following equation:
[image: image]
where [image: image] and [image: image] are the maximum and minimum decision values on the i-th decision criterion, [image: image] refers to the decision value of the j-th ESTS plan on the i-th decision criterion, [image: image] is a set of positive decision criteria, [image: image] is a set of negative decision criteria, and [image: image], [image: image], [image: image], and [image: image] are the upper and lower limits of the IVPIFN decision value.
Step 2:. Obtaining IVPIFN decision values for ESTS plans based on qualitative decision criteria. Experts evaluate ESTS plans based on qualitative decision criteria. First, the interval value of the satisfaction degree and the interval value of the non-satisfaction degree are determined between [0,1], respectively. The satisfaction and non-satisfaction degrees together form the IVPIFN decision value of ESTS plans on the qualitative decision criterion. When the qualitative decision criterion is negative, it should be converted into complementary values through Eq. 6.
Step 3:. Building a decision matrix for the ESTS plan. We sort the IVPIFN decision values on qualitative and quantitative decision criteria in the order of decision criteria and alternative ESTS plans. A decision matrix for ESTS plans is constructed by the following equation:
[image: image]
3.2.2 Phase 2: determining the weight of decision criteria for ESTS plans
Step 1:. Determining the weight of subjective decision criteria. Experts determine the importance of decision criteria between [1,10], with larger values indicating greater importance. The importance of the i-th decision criterion is marked as [image: image]. The calculation equation for the subjective weight of the decision criterion is shown in the following equation:
[image: image]
where [image: image].
Step 2:. Determining the weight of objective decision criteria. The objective weight of the decision criteria for the ESTS plan is calculated by using the entropy weight method, where the IVPIFN entropy on each criterion can be calculated using Eq. 7, while the objective weight calculation equation is
[image: image]
Step 3:. Determining the comprehensive weight of decision criteria. The comprehensive weight can be obtained through the following equation:
[image: image]
where [image: image] is the objective weight of the i-th decision criterion, [image: image] is the subjective weight of the i-th decision criterion, and [image: image] is the comprehensive parameter that determines the proportion of subjective weight and objective weight.
3.2.3 Phase 3: obtaining the optimal plan through the IVPIFN–VIKOR model
Step 1:. Determining the positive and negative ideal solutions according to Definition 4, [image: image] and [image: image] are the positive and negative ideal solutions, which can be found by Eqs 15, 16, respectively.
[image: image]
[image: image]
Step 2:. The group utility measure [image: image], individual regret measure [image: image], and compromise measure [image: image] of the alternative ESTS plan [image: image] are determined based on the positive and negative ideal solutions and the following equations:
[image: image]
[image: image]
[image: image]
where [image: image], [image: image], [image: image], [image: image], and [image: image] is the weight of the group utility maximization strategy; generally speaking, [image: image].
Step 3:. Assuming that the optimal ESTS plan is determined based on the size of the compromise measure Q, and the minimum compromise measure value is optimal, [image: image] is the optimal solution sorted based on the compromise measure, and two conditions need to be met:
C1: The alternative ESTS plan [image: image] has an acceptable advantage, which is [image: image], where [image: image].
C2: The alternative ESTS plan [image: image] has acceptable stability, which means that the optimal alternative is also the optimal solution when ranked based on the group utility measure [image: image] or individual regret measure [image: image].
If one of the conditions is not met, a set of compromise solutions can be submitted, but the following conditions must be met:
• If only condition C1 is satisfied, then there is a compromise solution set {[image: image], [image: image]}
• If only condition C2 is satisfied, then the inequality can be satisfied as [image: image]; in this case, the maximum value m is taken to obtain a compromise solution set of {[image: image], [image: image],…, [image: image]}.
4 CASE STUDY
4.1 Data sources
The data, in this case, come from the feasibility study report, preliminary design plan, and meeting minutes of the previous plan argumentation of Kunming Metro Line 5. The IVPIFN decision value, importance score of decision attributes, and importance score of decision criteria for the alternative ESTS plans are derived from the statistical analysis of expert scoring in plan argumentation.
4.2 Case analysis
Kunming Metro Line 5 starts from Expo Park Station in the north and ends at Baofeng Village Station in the south. It runs through Panlong District, Wuhua District, Xishan District, Resort, and Guandu District, connecting tourist attractions, such as Expo Park, Yuantong Park, Cuihu Lake, and the International Convention and Exhibition Center. The total length of the line is about 26.45 km, and it is laid underground with a total of 22 stations. The construction of this rail transit project needs to reflect the concept of “ecological livability in Kunming—harmonious coexistence between humans and nature.” Therefore, from this perspective, the decision of ESTS plans is made, and the most important thing is to reflect the low-carbon nature of the traction system. Therefore, in the preliminary design stage, three ESTS design plans are proposed, labeled S1, S2, and S3 in this case.
Experts have demonstrated these three alternative ESTS plans and simulated the operation of the ESTS on rail transit. Based on the organization of the aforestated data, the decision data of these three alternatives are shown in Table 2. At the same time, experts rate the importance degree of decision attributes and criteria, and the attribute weights, criterion weights, and criterion weights considering attribute could be calculated using Eqs 12–14, the weights can been seen in Table 3. From the weight of decision attributes, it can be seen that experts have less consideration for cost, and the importance of system reliability, maintainability, and safety is slightly higher than that of energy storage battery performance and system operating characteristics. This means that under the influence of policies, it is necessary to strike a balance between system reliability, maintainability, and safety and energy storage battery performance and system operating characteristics, and cost has instead become a non-important criterion.
TABLE 2 | Decision values of the ESTS.
[image: Table 2]TABLE 3 | Weights of decision criteria for the ESTS.
[image: Table 3]On this basis, the group utility measure, individual regret measure, and compromise measure of these three ESTS plans are calculated based on the IVPIFN–VIKOR model, as shown in Table 4. According to the VIKOR optimal solution judgment rules, from the compromise measure Q, S2 is optimal, but the difference between the Q value of S3 and the Q value of S2 in the second place is not greater than 0.5. Therefore, according to the judgment condition: if only condition C2 is met, then the inequality can be satisfied: [image: image]; in this case, the maximum value m is taken to obtain a compromise solution set of {[image: image], [image: image], …, [image: image]}. Therefore, the optimal solution is two S2 and S3.
TABLE 4 | Optimization results of plans based on VIKOR.
[image: Table 4]5 DISCUSSION
The sensitivity analysis is conducted to test the robustness of the decision results. The specific steps are to adjust the parameter [image: image] in the calculation process of the compromise measure. The value range of [image: image] is [0,1]. The sensitivity analysis starts from 0 and takes values every 0.1 intervals, so there are 11 sensitivity analysis results, which are shown in Table 5. According to the calculation results, it was found that the results are still S2 and S3, so the results have sufficient robustness. Experts choose S3 as the best plan based on maximizing group utility.
TABLE 5 | Sensitivity analysis.
[image: Table 5]To prove the progressiveness of the model, this paper uses real numbers instead of IVPIFNs as comparison scenario 1 and the TOPSIS method instead of the VIKOR model as comparison scenario 2 for the comparison experiments. The comparison experimental results are shown in Table 6. According to comparison scenario 1, after using real numbers, the compromise measure of S2 decreases due to the influence of uncertainty, but S1 and S3 do not change. This effect, which causes the difference between values to change, will lead to changes in the decision results in the VIKOR model. That is, when the two values are exactly at the boundary of C1 conditions, the change in the difference between values will lead to changes in the decision results. According to comparison scenario 2, after the TOPSIS model is adopted, S2 is the optimal solution, but this solution does not take into account the biggest weakness of alternatives, which cannot meet the needs of risk aversion decision makers. Therefore, the model proposed in this article can better solve the problem of ESTS plan decisions.
TABLE 6 | Cross comparison.
[image: Table 6]6 CONCLUSION
The main energy consumption of rail transit projects comes from the electrical system, and the main power consumption system is the traction system. Therefore, in the context of the dual carbon targets, if the low-carbon development of rail transit is to be achieved, the low-carbon development of the traction system is crucial. To achieve low-carbon traction systems, the ESTS is an important development direction. For new projects, the following problems must be faced when scientifically selecting an ESTS: ① lack of a scientific decision index system for ESTS plans; ② the adverse impact of uncertainty in decision information on the scientific nature of decision; and ③ the decision of the ESTS belongs to risk aversion decision.
Therefore, based on the ESTS characteristics, this article constructs a decision index system for ESTS plans. The criterion system includes six decision attributes and 18 decision criteria, among which the decision attributes are energy storage battery characteristics, system operation characteristics, system cost, reliability, maintainability, and safety. According to the characteristics of the plan decision of the ESTS, this paper uses the IVPIFN as the expression form of the decision data to reduce the adverse impact of uncertainty on the scientificity of the decision and realizes risk aversion decisions through the VIKOR model.
In this case, experts have given less consideration to cost, and the importance of system reliability, maintainability, and safety is slightly higher than that of energy storage battery performance and system operating characteristics. This means that under the influence of policies, it is necessary to strike a balance between system reliability, maintainability, safety, and energy storage battery performance and system operating characteristics, and cost becomes a non-important criterion.
The issues that need further research in this article are as follows: the correlation between decision criteria was not considered in this study, and the correlation between criteria also has a significant impact on the scientific nature of the decision. Therefore, how to scientifically measure the correlation between the ESTS decision criteria is a problem that needs to be solved.
TABLE A1 | Summary of fuzzy mathematics.
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As the main body of resource aggregation, Virtual Power Plant (VPP) not only needs to participate in the external energy market but also needs to optimize the management of internal resources. Different from other energy storage, hydrogen energy storage systems can participate in the hydrogen market in addition to assuming the backup supplementary function of electric energy. For the Virtual Power Plant Operator (VPPO), it needs to optimize the scheduling of internal resources and formulate bidding strategies for the electric-hydrogen market based on external market information. In this study, a two-stage model is constructed considering the internal and external interaction mechanism. The first stage model optimizes the operation of renewable energy, flexible load, extraction storage, and hydrogen energy storage system based on the complementary characteristics of internal resources; the second stage model optimizes the bidding strategy to maximize the total revenue of the electricity energy market, auxiliary service market and hydrogen market. Finally, a typical scenario is constructed and the rationality and effectiveness of the strategy are verified. The results show that the hybrid VPP with hydrogen storage has better economic benefits, resource benefits and reliability.
Keywords: virtual power plant, electricity market, hydrogen market, hydrogen storage system, bidding strategy
1 INTRODUCTION
1.1 Background and motivation
With the implementation of China’s “double carbon” strategy, new energy sources such as wind power and photovoltaic will see more rapid development, and the penetration rate of new energy sources will continue to increase, which will increase the impact of new energy power fluctuations on the safety and stability of microgrid and its access system and the difficulty of operation and scheduling (Ashish et al., 2021). On the one hand, the uncertainty of renewable energy power generation puts higher demands on the grid’s regulation capacity, and smoothing the volatility and indirectness of renewable energy power generation is an urgent problem to be solved. On the other hand, with the increasing installed capacity of renewable energy, the phenomenon of abandoning wind, light and water is getting more and more serious, and the full consumption of renewable energy and the improvement of energy utilization efficiency is also one of the challenges being faced (Huang et al., 2021; Liu et al., 2021). As a smart energy system, VPP has the characteristics of bidirectional trend, which can be used as a controllable power source to strengthen the power supply capacity to the grid and carry out peak regulation, and as a controllable load to increase the power consumption with the system to achieve the valley filling, smooth the system output and demand, and provide a guarantee for the stability of the power system (Nosratabadi et al., 2017; Saleh Sadeghi et al., 2022; Chen et al., 2023). In addition to providing security for the operation of the power system to obtain compensation revenue, VPPs can also participate in the power market at all levels as a flexible resource for capacity, power, and ancillary services to obtain economic benefits through market transactions (Dai et al., 2022). Energy storage can make up for the inherent defects of new energy in terms of random volatility and fundamentally solve the problem of a high percentage of new energy consumption. The charging and discharging characteristics of energy storage can smooth out the system power fluctuations, improve the new energy consumption capacity, reduce the frequency of power fluctuation impact of a microgrid on its access system, and realize the friendly grid connection of microgrid (Li et al., 2021). Hydrogen storage enables the smooth operation of power systems through the conversion of hydrogen energy to electrical energy. When electricity is sufficient, the technology of hydrogen production by electrolysis of water is used to make full use of electricity by storing hydrogen; when electricity output is insufficient, the stored hydrogen energy can be used by hydrogen fuel cells or hydrogen combustion turbines to re-generate electricity and return to the system. As a clean and efficient energy source, hydrogen energy storage can play an important role in VPPs (Furat et al., 2022; Qiu et al., 2022).
1.2 Literature review
The research on energy storage in VPPs mainly includes market participation strategy, capacity allocation, optimal scheduling, and benefit allocation. This study focuses on the research from the perspective of market strategy for VPP.
Many scholars have researched the strategy of VPPs participating in the power market. VPPs as flexible resource-rich subjects can play an important role in the electricity market (Shafiekhani et al., 2019). In addition, with the development of integrated energy systems, multi-energy complementarity has gradually become a trend for resource optimization within VPPs, which can also participate in multi-energy markets as independent subjects (Naughton et al., 2020; Ju et al., 2022). The current research on the participation of VPPs in the electricity market mainly includes the design of market mechanisms (Ahmad, 2022; Morteza et al., 2022) and the study of trading strategies (Tang and Yang, 2019; Dai et al., 2022; Zheng et al., 2022). For example, Rahimi Mahdi et al. constructed a VPP with wind turbines, PV, conventional generators, energy storage systems, and controllable loads and proposed a strategy for VPP participation in day-ahead and real-time electricity markets considering demand response (Mahdi et al., 2022). Bo Li et al. proposed a market participation strategy and compared the benefits of VPPs with and without energy storage to participate in electricity energy markets and ancillary services markets (Li and Ghiasi, 2021). Alahyari, Arman, et al. constructed a VPP consisting of wind power, energy storage, and flexible load, and proposed an optimization strategy considering the stochasticity of renewable energy output and the uncertainty of electricity market price uncertainty (Alahyari et al., 2020). Henao, MM et al. proposed a bidding strategy for VPP participation in the market while determining the optimal size of the energy storage system (Henao Michelle and Oviedo Jairo José, 2022). Appino, Riccardo R et al. considered the uncertainty of renewable energy output and the volatility of energy prices to optimize the strategy of VPPs with hydrogen energy storage participating in the real-time electricity market (Han et al., 2021). The above studies take VPP bidding as the research object and put forward a two-tier strategy of internal resource optimization and energy management considering uncertainty. Specifically, these studies only consider VPPS ‘strategies for participating in the electricity market, ignoring the multiple energy attributes of VPPS.
Some scholars have also considered how a multi-energy coupled VPP can participate in a multi-energy market. For example, Zhang, Tao et al. introduced a VPP consisting of a natural gas network, power-to-gas equipment, flexible loads, and energy storage, and studied an optimization model considering dual energy markets by developing different scenarios (Zhang and Hu, 2022). Ju Liwei et al. constructed a VPP including cogeneration units, wind turbines, power and thermal storage systems, and controllable loads, and considered the impact of different energy market price fluctuations on the profit risk of VPP (Ju et al., 2022). Liu Xiaoou constructed a VPP operation model including wind turbines, electric vehicles, gas turbines, and controllable loads, and constructed an optimal carbon-electricity integration bidding strategy for VPPs by further analyzing the carbon-electricity integration market characteristics (Liu, 2022).
Although many studies have considered the strategy of VPP participation in multi-energy markets, the role of electric energy storage in a single electricity market is still only considered for energy storage resources in VPP (mainly electric energy storage resources, excluding thermal and gas storage devices). Unlike electrochemical energy storage, hydrogen energy storage can participate not only in the electric market but also in the hydrogen market. However, few studies have been conducted to evaluate the participation of hydrogen energy storage systems in VPPs. Unlike other energy storage systems, HSSs can not only fully consume the abandoned wind, light, and water resources as energy storage to ensure power supply, but also serve as a source of hydrogen feedstock to enhance the added value within the system and improve the ability of VPPs to participate in external markets (Zheng et al., 2020; Liu, 2022).
1.3 Contribution and research structure
Most of the above studies have considered how VPPs without hydrogen energy storage participate in the power market or multi-energy market, and few studies have explored the role of hydrogen energy storage systems in VPPs and how VPPs with hydrogen energy storage participate in the multi-energy market. In this study, the resource complementary characteristics of renewable energy, flexible load, pumped storage, and hydrogen storage are considered, a two-layer optimization model is constructed, and an external multi-energy market bidding and internal resource optimization strategy are proposed. The structure of the VPP is shown in Figure 1.
[image: Figure 1]FIGURE 1 | Schematic diagram of VPP structure.
The VPP consists of renewable energy generating units, pumped storage plants, flexible loads, and HSSs. The VPP operator collects market information and gives operating instructions to the VPP. The VPP optimizes its internal resources through the instructions given by the VPP operator.
Traditionally, the VPP participates in the power market mainly through peak-hour sales on the power side, peak-to-valley arbitrage on the energy storage side, and demand response on the load side to provide ancillary services.
In this study, the VPP participates in the day-ahead energy market and the peaking auxiliary service market and participates in the day-ahead power market as a price receiver. After obtaining the market information (purchase and sale prices, peak and valley hours, etc.) of the energy market and the peaking market (peak hours and peak compensation prices for peak filling and peak shaving) released by the power dispatching agency, the VPP coordinates its internal resources according to the bidding strategy. After coordinating internal bidding resources according to the bidding strategy, the company further adjusts the bidding plan in the energy market and the peaking market through optimization and reports the information on the electricity bidding in the energy market and the peaking market to the power dispatching agency. Both HSSs and pumped storage plants can participate in the peaking auxiliary service market, but for HSSs, the total amount of resources for their participation in either the electric auxiliary service market or the hydrogen market is fixed, so decisions need to be made based on prices.
The possible innovations and contributions of this study are as follows.
(1) The application of hydrogen energy storage systems in VPPs is explored.
(2) The participation of VPPs in external markets and the optimization of internal resources are both considered.
(3) The role of a combined clean energy storage strategy for participation in multiple markets is considered for VPP.
(4) The impact of energy market price changes on the market participation strategy of VPPs is evaluated.
The rest of this paper is structured as follows: Section 2 constructs a two-layer model of VPP participation in the electricity-hydrogen market. Case studies are performed and analyzed in Section 3. Section 4 highlights the conclusions.
2 A MODEL FOR VPP PARTICIPATION IN MULTIPLE MARKETS
2.1 Bidding strategy for the upper layer of the VPP
2.1.1 Objective function
The goal for the VPP operator is to maximize total system revenue, which includes revenue from the sale of electricity in the energy market, revenue from the provision of ancillary services, and revenue from the sale of hydrogen in the hydrogen market.
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Where [image: image] and [image: image] are the time-of-day price information obtained by the VPP operator in the ancillary services market and the electricity market, respectively. [image: image] is the market price of hydrogen, which is a fixed price. [image: image], [image: image] and [image: image] are the quoted quantities of the VPP operator for the ancillary services market, the electricity market, and the hydrogen market, respectively.
Among them, regulating peak auxiliary services are further divided into peak-shaving auxiliary services and valley-filling auxiliary services, and the service prices of peak-shaving auxiliary services and valley-filling auxiliary services are different, therefore, the revenue that VPP operators can obtain by providing auxiliary services can be refined into the following model.
[image: image]
[image: image] and [image: image] are the valley-filling price and peak-shaving price respectively, [image: image] is the valley-filling capacity of the VPP operator, and [image: image] is the peak-shaving capacity of the VPP operator.
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[image: image] and [image: image] are the charging power of the pumped storage plant and HSS involved in valley filling and the load increase of the flexible load involved in valley filling, respectively; [image: image] and [image: image] are the discharging power of the pumped storage plant and HSS involved in peak shaving and the load reduction of the flexible load involved in valley filling, respectively.
2.1.2 Constraints
VPPO’s bids in the energy and ancillary services markets affect each other, and the limited and fixed flexibility resources available to VPPs require VPP operators to choose the allocation of resources between the energy and ancillary services markets.
[image: image]
where [image: image] denotes the system flexibility of the VPP at moment [image: image], provided by the lower layer.
2.2 Optimization model for the lower layer of the VPP
2.2.1 Objective function
For the lower-layer model of the VPP, the objective is to minimize the total system operating cost. Its system operating costs [image: image] include the penalty cost of wind and light abandonment [image: image], the penalty cost of load loss [image: image], the cost of power purchase [image: image], the cost of equipment start-up and shutdown [image: image], and the cost of equipment operation [image: image].
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[image: image], [image: image] and [image: image] are the abandonment penalty tariff, the loss of load penalty tariff, and the purchase tariff, respectively, and [image: image], [image: image] and [image: image] are the abandoned power, the lost power, and the purchasing power, respectively.
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[image: image] and [image: image] are the positive and negative standby cost coefficients of the system equipment, and [image: image] is the start-stop status of the equipment in the period of [image: image]. A factor of 0 indicates a shutdown status, and a factor of 1 indicates a start-up status.
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[image: image] indicates the unit operating cost of the equipment and [image: image] indicates the output of the equipment.
2.2.2 Constraints
2.2.2.1 Power balance constraint

[image: image]
Among them, [image: image], [image: image], [image: image], [image: image] and [image: image] indicate wind power, photovoltaic power, pumped storage power, fuel cell power, and purchasing power, respectively. [image: image], [image: image], [image: image], [image: image] and [image: image] indicate the adjusted flexible load, electrolyzer power, pumped storage power, sold power, and abandoned power, respectively.
2.2.2.2 Standby capacity constraint
To realize the full consumption of wind power and PV, VPP keeps the corresponding positive and negative standby to cope with the deviation of wind power and PV output through a pumped storage power station and flexible load.
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[image: image]
Where [image: image] and [image: image] are the positive deviations of wind power and PV output. [image: image] and [image: image] are the negative deviations between wind power and PV output. [image: image] and [image: image] are the positive and negative standby of pumped storage plants, [image: image] and [image: image] are the positive and negative standby of flexible loads.
2.2.2.3 Equipment output constraints
The wind power output constraints are as follows.
[image: image]
[image: image] is the rated output power of wind power, [image: image], [image: image], [image: image] and [image: image], are the access wind speed, rated wind speed and cut-off wind speed and actual wind speed of the system, respectively.
The photovoltaic output constraint is as follows.
[image: image]
[image: image] is the amount of solar radiation per unit area, [image: image] is the rated installed capacity of PV, and [image: image] is the overall system efficiency, generally taken as 0.8.
The power output constraint of the pumped storage power plant is as follows.
[image: image]
[image: image] and [image: image] are the minimum and maximum technical output of the pumped storage plant under power generation conditions, respectively.
[image: image]
[image: image] is the operating state variable of the pumped storage plant at [image: image] time of pumping conditions, and [image: image] is the rated pumping power of the pumped storage plant.
[image: image]
Among them, pumped storage power plants are not pumped storage and discharge at the same time.
The hydrogen energy storage system output constraints are as follows.
[image: image]
[image: image]
[image: image] is the amount of hydrogen produced, [image: image] is the coefficient of hydrogen conversion, and [image: image] is the efficiency of hydrogen conversion. [image: image] is the coefficient of hydrogen to electricity, [image: image] is the efficiency of hydrogen to electricity, and [image: image] is the amount of hydrogen consumed.
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[image: image] is the amount of hydrogen sold per hour, and [image: image] is the amount of hydrogen stored in real-time.
The cumulative hydrogen storage capacity of the hydrogen storage facility satisfies the following constraints.
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[image: image], [image: image] and [image: image] are the rated power of the electrolyzer, the maximum discharge power of the fuel cell, and the maximum hydrogen storage capacity of the hydrogen storage tank, respectively.
[image: image]
The electrolysis tank and the fuel cell do not work simultaneously.
2.2.2.4 Equipment start/stop constraint
For pumped storage plants and HSSs, frequent start-ups and shutdowns not only increase the cost but also affect the normal use of the equipment and increase the wear and tear of the equipment. Therefore, the number of starts and stops of energy storage systems in a typical operating day needs to be kept within a reasonable range.
[image: image]
[image: image] indicates the number of equipment starts and stops, and [image: image] indicates the maximum number of equipment starts and stops in a typical day.
2.2.2.5 Peak shaving constraints
For flexible loads, the following peaking constraints are satisfied.
[image: image]
[image: image] is the adjustable amount of flexible load, [image: image] is the maximum adjustable amount of flexible load. The flexible load needs to participate in the peaking market according to the period of the peaking auxiliary service market for load adjustment, and the amount of peaking at other time is 0.
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[image: image] and [image: image] are the flexible load filling and peak shaving power respectively, and [image: image] and [image: image] are the filling and peak shaving flags respectively, which are 0–1 variables and are not 1 at the same time.
2.2.2.6 Loss of load constraint

[image: image]
[image: image] indicates the predicted value of the flexibility load at [image: image] time.
2.3 Method
In this study, a combination of particle swarm optimization (PSO) algorithm and Cplex solver is used to solve the problem as shown in Figure 2, which is implemented in the MATLAB 2019a platform. The particle swarm algorithm has been widely used as one of the heuristic algorithms for solving optimization problems. Compared with other heuristics such as genetic algorithm (GA) and ant colony optimization (ACO), the PSO algorithm enhances global and local exploration capabilities through a flexible and balanced mechanism. The specific process is as follows.
(1) Initialize the particles, given the initialized velocity and position for each particle in the upper model for the decision variables of the electric energy market bid volume, the auxiliary service market bid volume, and the hydrogen market bid volume.
(2) The lower layer Cplex solver optimizes the internal resources of the VPP according to the lower layer objective function to obtain the optimal power purchase and sale strategy and updates the number of flexibility resources within the VPP to feedback to the upper layer.
(3) The upper-layer particle swarm algorithm updates the bid quantity based on the flexibility resource quantity fed back from the lower layer and calculates the total revenue to evaluate the change in total revenue.
(4) If the model has reached the termination condition, the optimization search process ends and the algorithm terminates; otherwise, the velocity and position of the particles are updated and return to step (2).
[image: Figure 2]FIGURE 2 | Method flow chart.
3 CASE STUDY
3.1 Parameters and scenario design
Since it is difficult for VPPs to influence market prices in both the electricity and hydrogen markets, this paper sets VPPs as recipients of market prices and makes decisions on quoted quantities based on price information. In this paper, the VPP operator rationalizes the allocation of flexibility resources within the VPP by aggregating them according to the demand of the power dispatching agency and the price information obtained from the power market and the hydrogen market to achieve the maximum total system revenue. Renewable energy generation, flexible loads, pumped storage plants, and HSSs can all participate in the peaking demand of the power market, and HSSs can also participate in the hydrogen market. The peaking periods and the prices of power purchase and sale and auxiliary services are shown in Figure 2. VPPs can participate in the electricity energy market in all 24 time periods.
The price of the electricity market is shown in Figure 3. According to the output characteristics of wind power and PV and load demand characteristics, four typical days in spring, summer, autumn, and winter are selected in this study, as shown in Figure 4.
[image: Figure 3]FIGURE 3 | Price parameters.
[image: Figure 4]FIGURE 4 | Typical daily output and load.
In this paper, the maximum adjustment of the flexible load is set to 20% of the load in that period. The access condition of the auxiliary service market is that the single-day bidding power is not less than 5,000 kW. During the peak-shaving period, the maximum power purchase of the VPP is 250 kWh. The other parameters of this paper are set as shown in Table 1.
TABLE 1 | Parameter table.
[image: Table 1]Based on the participation of subjects within the VPP and the combination strategy of clean energy storage, four typical scenarios are constructed in this study, as shown in Table 2 below.
TABLE 2 | Scenarios design.
[image: Table 2]3.2 Results
3.2.1 Method validity verification
In order to quantitatively analyze the effectiveness and applicability of the PSO algorithm to solve the model built in this paper, the GA and ACO algorithms are selected as a comparison, and their running time, iteration times, and result efficiency are compared. Since there are many scenarios involved in this paper, Case 4 (spring) is taken to verify the effectiveness of the proposed solution algorithm as shown in Figure 5.
[image: Figure 5]FIGURE 5 | Comparison results of different algorithms.
3.2.2 Analysis of VPP bid results
3.2.2.1 Electric energy market bidding results
Figure 6 shows the bidding results of the electric energy market. The bidding results of scenario 1 and scenario 2 in the electricity energy market in different seasons are consistent. There are two reasons for this: First, pumped storage does not directly participate in the upper grid electric energy market, but provides ancillary services by prioritizing the optimization of resources within the VPP and reducing the flexible load, because the price of purchasing power is higher than the price of sold power. Reducing power purchases is the strategy that achieves the greatest total net benefits. Second, in both Scenario 1 and Scenario 2 renewable energy generation provides electric energy services during normal and peak periods. For pumped storage, the price difference between peak and flat hours does not make it profitable, so renewable energy generation participates in the electricity energy market during normal hours. The bidding results for Scenario 3 and Scenario 4 are the same and lower than Scenario 1 and Scenario 2 in different seasons. After aggregating hydrogen storage, the total revenue obtained from hydrogen production through wind power and PV in the ordinary period is higher than the revenue from electricity sales by participating in the electricity energy market. Therefore, for scenarios 3 and 4, renewable energy generation in the normal period does not participate in the electricity market.
[image: Figure 6]FIGURE 6 | Electric energy market bidding results.
3.2.2.2 Ancillary services market bidding results
The bidding results of typical days in different seasons under different scenarios are shown in Figure 7. It can be seen that in scenario 1, with only renewable energy generation and flexible load participating in the ancillary services, the benchmark conditions for the ancillary services market can barely be met only in summer. In the other three seasons, VPP cannot participate in the ancillary services market, but only in the electric energy market and the hydrogen market. In the case of aggregated single hydrogen storage (scenario 3), VPP can participate in the ancillary services market only in summer and autumn and barely meets the benchmark conditions in autumn. In spring, it comes close to meeting the auxiliary service benchmark conditions. In contrast, for scenarios 2 and 4, VPP can participate in the ancillary services market in all four seasons, mainly because of the larger capacity of the aggregated pumped storage plant compared to just the aggregated HSS. The regulation capacity is stronger when both pumped storage power plants and hydrogen storage participate in the auxiliary service market.
[image: Figure 7]FIGURE 7 | Ancillary services market bidding results.
Figure 8 shows the auxiliary service market bidding by specific periods. The positive value indicates participation in peak-shaving auxiliary services, and the negative value indicates participation in valley-filling auxiliary services. In Scenario 1, since the energy storage system is not aggregated, the valley filling capacity is only realized through flexible load demand response, so the auxiliary service capacity is low. The peak-shaving auxiliary service is mainly satisfied by wind power and photovoltaic power output. Since VPP in Scenario 1 only reaches the peak-shaving benchmark in summer, it can only participate in the auxiliary service bidding in summer. Unlike Scenario 1, VPP can participate in auxiliary services in all seasons in Scenario 2. In addition, it can be seen that both the valley filling capacity and peak shaving capacity of Scenario 2 are better than that of Scenario 1. This is because by aggregating pumped storage plants in Scenario 2, VPP can provide valley filling service through pumped storage to purchase electricity from the distribution network in the valley filling auxiliary service phase and reduce the demand for the flexible load to the upper grid through pumped storage in the peak shaving auxiliary service phase. In addition, pumped storage can achieve peak-to-valley arbitrage through peak-to-valley price difference. Compared to Scenario 2, the auxiliary service capability of the VPP alone aggregated HSS in Scenario 3 is inferior. This is because the capacity of the pumped storage plant and the HSS aggregated by the VPP are different, and the capacity of the HSS is only one-third of the pumped storage. However, it can be seen that compared to Scenario 1, after aggregating the HSS, the VPP can participate in the auxiliary service market in both summer and autumn, and its peak-shaving and valley-filling capacity is slightly improved. In scenario 4 where VPP aggregates HSS and pumped storage power plant at the same time, the auxiliary service capacity is significantly increased.
[image: Figure 8]FIGURE 8 | Ancillary services market bidding results by period.
3.2.2.3 Hydrogen market bidding results
The results of the hydrogen market bidding are shown in Figure 9. It can be seen that VPP does not participate in the hydrogen market bidding in scenario 3 in both summer and fall, which is because the VPP reaches the threshold for bidding in the ancillary services market after aggregating hydrogen storage resources. Since the overall benefits of energy storage participation in the electricity energy market and ancillary services market are higher than those in the hydrogen market, all of the hydrogen storage in this scenario is used to participate in the electricity market by aggregating resources within the VPP. Unlike summer and fall, it is difficult for VPPs with only aggregated HSSs in spring and winter to meet the entry threshold for the ancillary services market. When it is impossible to participate in the auxiliary service market, the benefit of just participating in the electric energy market is lower than the benefit of participating in the hydrogen market, so all the hydrogen is used to participate in the hydrogen market.
[image: Figure 9]FIGURE 9 | Hydrogen market bidding results.
Compared to scenario 3, in scenario 4 when VPP aggregates both pumped storage and HSSs, the threshold for ancillary services can be reached in all four seasons. The pumped storage system is prioritized to meet the electricity demand, and the HSS can be used to trade in the hydrogen market after meeting the output of the auxiliary service threshold. Therefore the hydrogen market bidding volume for Scenario 4 is higher than that of Scenario 3.
3.2.3 VPP internal resource optimization results
3.2.3.1 Scenario 1
Figure 10 shows the demand response of the flexible load. The higher demand response during peak hours in summer and winter is attributed to the maximum purchasable power designed in this paper. If the flexible load is still larger than the maximum purchasable power after the demand response, the loss of load phenomenon will occur and the energy storage output is needed to compensate.
[image: Figure 10]FIGURE 10 | Demand response results for flexible loads.
3.2.3.2 Scenario 2
Figure 11 shows the charging and discharging of the pumped storage power plant on a typical day. The pumped storage power plant gives priority to consuming abandoned electricity from renewable energy sources, and if the capacity limit of the pumped storage power plant has not yet been reached, it can buy electricity in the distribution network to achieve peak-valley arbitrage. It can be seen that pumped storage power plants store energy in the valley hours and discharge it in the peak hours. Since pumped storage power plants operate consistently in all seasons, the summer season is used as an example.
[image: Figure 11]FIGURE 11 | Charging and discharging of the pumped storage power station.
3.2.3.3 Scenario 3
As shown in Figure 12, the operation of the HSS is consistent in spring and winter, and summer and fall. In spring and winter, since the VPP cannot participate in the ancillary services market, the fuel cells of the HSS do not work and all the hydrogen produced is used for storage and traded in the hydrogen market on the second day. In summer and fall, VPP can participate in the ancillary services market, and the hydrogen produced by the HSS is first used by the fuel cell, and the excess hydrogen is sold in the market.
[image: Figure 12]FIGURE 12 | Hydrogen production, storage, and utilization.
According to Figure 13, it can be seen that the HSS does not generate electricity in spring and winter. In the summer and autumn peak hours, electricity is generated in the valley, and during flat hours electricity is consumed to produce hydrogen. In addition, the HSS purchases electricity to produce hydrogen during the flat hours in both autumn and winter because the maximum capacity limit of the hydrogen production unit has not yet been reached after consuming the abandoned electricity.
[image: Figure 13]FIGURE 13 | Charging and discharging of hydrogen energy storage system.
3.2.3.4 Scenario 4
According to Figure 14, during the valley hours, the abandoned electricity from renewable energy sources is used for hydrogen production in priority, and the excess abandoned electricity is used for pumped storage power plants. Due to the capacity of the pumped storage plant, it gives priority to consuming the abandoned power, and the part that has not yet reached the capacity limit can be satisfied by purchasing power in the grid. The renewable energy output in flat hours is used for the HSS and pumped storage power station because the sum of the reduced power purchase cost and auxiliary service revenue is higher than the revenue from power sales in the electricity energy market. During peak hours, the VPP prioritizes the consumption of pumped storage energy, and when the pumped storage energy does not meet the demand, the fuel cell starts to make up for the shortfall. This is because pumped storage power plants can only gain revenue through the electricity market, while HSSs can gain revenue from both auxiliary services and the hydrogen market. The revenue of HSS participating in the electric energy market and auxiliary service market is lower than its participation in the hydrogen market, but the sum of the reduction of the power purchase cost and the increase of auxiliary service revenue due to the generation of HSS in peak hours is higher than the revenue in the hydrogen market, so the HSS chooses to participate in the hydrogen market based on meeting the load demand in peak hours.
[image: Figure 14]FIGURE 14 | Charging and discharging of combined energy storage.
As shown in Figure 15, the situation tends to be consistent in spring and autumn, with hydrogen consumption for fuel cell generation in the second peak hour, due to the priority use of pumped storage generation and fuel cell start-up to make up for the shortfall when pumped storage cannot meet the load demand. It can be seen that in summer, the fuel cell does not work because the pumped storage power plant output is sufficient to match the flexible load during peak hours. In winter, the fuel cell starts working in the first peak hour because the pumped storage power plant output is difficult to meet the load demand. Compared to the other three seasons, the amount of hydrogen stored in winter is close to zero at the end of a typical day. This is due to the high load demand in winter when hydrogen production is almost entirely used for fuel cells and no excess hydrogen is traded in the hydrogen market.
[image: Figure 15]FIGURE 15 | Hydrogen production, storage, and utilization.
3.3 Discussion
3.3.1 Benefits analysis
3.3.1.1 Economic benefits
Table 3 shows the total revenue of the VPP for a typical day in spring. 1) In terms of revenue in the electricity market, scenario 3 has the lowest revenue because both scenario 1 and scenario 3 do not reach the peaking benchmark of the ancillary services market and cannot participate in the ancillary services market but only in the electricity energy market. For scenario 3, the revenue of renewable energy generation for hydrogen production in flat hours is higher than the revenue from participating in the electricity energy market, so the revenue of the electricity energy market for scenario 3 is lower than that of scenario 1. 2) The hydrogen revenue of scenario 3 is greater than that of scenario 4. In scenario 3, VPP has not reached the threshold of the electricity auxiliary service market, and the hydrogen revenue from HSS is greater than the revenue from electricity sales of fuel cells based on meeting the load demand. As for scenario 4, because VPP has reached the auxiliary service benchmark condition, the revenue from auxiliary service is greater than the revenue from hydrogen sales, so the excess hydrogen from HSS is only used for trading in the hydrogen market on the premise of maximizing the demand for auxiliary service that can be participated. 3) The power purchase cost of scenario 3 is higher than that of scenario 2 because the capacity of HSS is lower than that of pumped storage. 4) Compared to Scenario 2 and Scenario 4, Scenario 3 still has the abandonment penalty due to the capacity of the HSS. 5) After aggregating the energy storage system, there is no load loss in the VPP. The revenue for a typical winter day is shown in Table 4 and is similar to that of spring.
TABLE 3 | Total bidding revenue for a typical spring day/CNY.
[image: Table 3]TABLE 4 | Total bidding revenue for a typical winter day/CNY.
[image: Table 4]According to Tables 5, 6, the situation is similar in summer and autumn. 1) In the summer of Scenario 1, VPP can participate in the auxiliary service market so its revenue in the electricity market is higher than that in the autumn; 2) Compared with the spring, in the summer and autumn of Scenario 3, VPP can participate in the auxiliary service market so its revenue is higher than that in Scenario 1, but its revenue is lower than that in Scenario 2 due to the capacity of the HSS; 3) There is no revenue in the hydrogen market in both the summer and fall, which is because the sum of the power purchase cost to compensate for the reduction of flexible load demand and the revenue from ancillary services is higher than the income in the hydrogen market, so all the hydrogen is used for fuel cells.
TABLE 5 | Total bidding revenue for a typical summer day/CNY.
[image: Table 5]TABLE 6 | Total bidding revenue for a typical autumn day/CNY.
[image: Table 6]3.3.1.2 Resource benefits
Restricted by the electricity market, wind power, and PV can only provide auxiliary services during peak-shaving service hours. During valley hours and flat hours, there will be power abandonment because the superior grid has a strong supply capacity itself and does not need additional power output. According to Figure 16, there is no power abandonment in Scenario 2 and Scenario 4, because compared with Scenario 1, VPP aggregates energy storage resources and can fully utilize the resources of wind and PV. In scenario 3, the VPP still has the abandonment phenomenon, which is limited by the capacity of the aggregated hydrogen storage, but the abandonment phenomenon is significantly alleviated compared to scenario 1.
[image: Figure 16]FIGURE 16 | Abandoned power.
3.3.1.3 Reliability benefits
As shown in Figure 17, the VPP will have a loss of load only in Scenario 1. Due to the limitation of the power available to be purchased from the grid, there will be load loss during peak hours because the VPP load demand is higher than the power available to be purchased. In other scenarios, there is no load loss because the VPP aggregates energy storage resources and can cover its power shortfall.
[image: Figure 17]FIGURE 17 | Loss of load.
3.3.2 Sensitivity analysis
Figure 18 shows the sensitivity analysis of the changes in electricity and hydrogen prices. The market participation strategy of the VPP changes as a result of price changes in the electricity and ancillary services markets and the hydrogen market. In Scenario 1 and Scenario 2, a single change in electricity market price causes a linear change in total revenue because no hydrogen market is involved. In scenarios 3 and 4, total revenue does not show a linear change due to changes in the electricity market price as well as the hydrogen market price. The VPP chooses the optimal strategy that maximizes the total revenue due to the changes in hydrogen and electricity prices, which implies a change in the proportion of hydrogen resources participating in the electricity and hydrogen markets based on the existing prices. In addition, as the prices in the electricity and hydrogen markets increase simultaneously, the total revenue does not always increase, but peaks at a certain price. This is because the amount of hydrogen resources allocated in the electricity market and the hydrogen market does not change when the electricity price and the hydrogen price increase in the same proportion. But when the price changes in the electricity market and the hydrogen market in different proportions, hydrogen resources do not necessarily prioritize the demand for ancillary services, but rather tilt more resources to the higher-priced hydrogen market.
[image: Figure 18]FIGURE 18 | Sensitivity analysis of the prices.
4 CONCLUSION
This paper investigates the bidding strategy for a VPP in the electricity and hydrogen markets and constructs a two-layer model that considers the bidding strategy and internal resource operation optimization strategy based on the complementary characteristics of renewable power, flexible load, pumped storage, and hydrogen storage resources. The internal resources are optimally dispatched and the optimized flexibility capability is fed back to the VPP operator to adjust the bidding strategy until the optimal bidding strategy is achieved, taking into account the objectives of maximizing the total revenue of the VPP to participate in the external market and minimizing the internal abandonment penalty and load loss penalty. In this paper, the particle swarm algorithm combined with the Cplex solver is used for solving the problem, and the results show that.
(1) The inside-outside two-layer optimization model constructed in this paper can guarantee that the VPP makes optimal bidding decisions based on information from the external power and hydrogen markets and optimally adjusts internal resources based on the bidding situation to achieve the goal of maximizing total net benefits.
(2) In the current market environment, pumped storage power plants can achieve peak-to-valley arbitrage by interacting with the grid. However, for HSSs, it is uneconomical to compensate for peak hour load demand by purchasing power in the valley hours. However, in the case of the hydrogen market, HSS can earn hydrogen sales by purchasing power from the grid to produce hydrogen in the valley and the flat hours.
(3) In the absence of a benchmark threshold for ancillary services, the benefits of HSSs to reduce the cost of power purchase by reducing the demand for flexible loads are smaller than the benefits of participating in the hydrogen market but larger than the benefits of participating in the electricity market. However, due to the threshold of auxiliary services, HSS will sacrifice part of the benefits of direct participation in the hydrogen market and give priority to participating in the electricity auxiliary services market.
(4) For a VPP with multiple complementary energy storage, it is more profitable to fully consider the electricity-hydrogen market and the multi-functional properties of hydrogen storage than to merely equate the HSS with other energy storage as a backup power source. (Emmanouil et al., 2022).
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Distorted energy prices cause resource mismatch and hinder the coordinated development of economic growth and carbon emission reduction (CDEC) in China. Therefore, it is essential to determine the optimal levels of energy price distortions. This paper first measures the price distortions of fossil and renewable energy sources and applies a panel smooth transition regression model to assess the optimal threshold values for the degree of energy price distortions. The results show that 1) Fossil energy price distortions are negative, and the price distortion for renewable energy is positive. 2) Energy price distortions inhibit CDEC, and this effect is regionally heterogeneous. 3) The panel smooth transformation model results indicate that distorted energy prices have a nonlinear impact on CDEC. CDEC is significantly hampered in the low regime by distorted fossil energy prices and facilitated in the high regime. In contrast, the distorted renewable energy price shows positive in the low regime and negative in the high regime. We also obtain the optimal intervals for the degree of energy price distortions that promote CDEC. With the target of “growth” and “carbon reduction,” this study provides a reference for improving the energy pricing mechanism and exploring the effective ways of CDEC.
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1 INTRODUCTION
China’s economy has grown unprecedentedly due to reform and opening up. However, energy market reform has progressed relatively slowly and has “asymmetric” characteristics. As an essential input for national economic development (Cleveland et al., 1984; Stern, 1993), energy affects a country’s core competitiveness. For the sake of economic stability as well as strategic needs, energy prices in China have long been government-dominated, resulting in deviations from their equilibrium levels and more severe distortions (Lin and Du, 2013). The distorted energy prices do not reflect the actual energy cost, resource scarcity, and environmental externalities. As a result, energy supply and demand imbalances are exacerbated, resulting in excessive fossil fuel consumption while weakening resource allocation efficiency. Thus, it becomes a bottleneck restricting the coordinated development of economic growth and carbon emission reduction (CDEC) in China.
The emergence of distortions in energy prices in China has its unique historical background and realistic circumstances. Before the Reform and Opening-up, the “catching-up strategy” of prioritizing heavy industries and leveraging the country’s resource agglomeration advantage and mobilization capacity to manage factor allocation resulted in several institutional arrangements that skewed energy pricing (Lin, 1994). After that, the government was exceedingly cautious in reforming energy pricing for economic stability and growth, as the low energy price policy adopted not only maintained Chinese enterprises’ and products’ international competitiveness but also prevented price hikes and inflation. Moreover, under the pressure of GDP growth as the assessment performance, local governments will tighten the control of energy prices to achieve rapid economic growth. As a result, under the government-led pricing mechanism, energy prices are not fully created by supply and demand, resulting in price distortions. Compared to the more comprehensive market-based energy pricing mechanisms in industrialized nations, China’s market-based energy prices need further improvement.
China’s economy increased at a 6.6% annual pace from 2013 to 2021, faster than the world’s average annual growth rate of 2.6% during the same period, and its GDP contributed more than 30% to global economic growth, making it a significant powerhouse of global economic development. China’s economy has long run at a breakneck pace, relying on massive amounts of energy, capital, and labor factors, particularly excessive use of low-cost energy, resulting in a host of problems such as energy scarcity, carbon emissions, and environmental damage (Ouyang et al., 2018; Wang et al., 2019). The previous crude development paradigm of high input, high pollution, and low yield has highlighted the conflict between economic development and environmental optimization (Ge et al., 2023). As a crucial link between economic growth and carbon emission reduction, optimizing resource allocation by enhancing the energy pricing mechanism has become an efficient means of exploring CDEC (Song and Cui, 2016; Zhang and Adom, 2018).
Considering that distorted energy prices affect economic growth and reduction of carbon emissions via resource allocation (Restuccia and Rogerson, 2008; Bartelsman et al., 2013), which in turn threatens CDEC. Therefore, this paper proposes the following questions: Will energy price distortions inhibit CDEC? Whether correcting energy price distortions would promote CDEC, and whether there is an optimal level of distortions to achieve CDEC is a valuable research topic. China aspires to realize CDEC. Accordingly, the feasibility of achieving CDEC through energy pricing marketization policies has become a hot topic. As the world’s largest energy consumer and carbon emitter, China’s contradiction between economic development and environmental protection is relatively prominent (Wang and Feng, 2021). Unfortunately, existing research has concentrated on a single dimension of the economy or environment affected by energy price distortions. Existing studies rarely discuss the relationship between distorted energy prices and CDEC and rarely explore the possibility of the optimal level of distortion. With China’s energy price reform deepening, policymakers are exploring ways to keep energy price distortions at an optimal level to coordinate growth and emission reductions.
The contributions lie in the following aspects. First, this paper extends the measure of energy price distortions to the renewable energy sector, which systematically illustrates the evolutionary characteristics of distortions in energy prices and enriches the studies on the measurement of distortions. Second, this study estimates the effects of energy price distortions on CDEC and regional heterogeneity, which effectively expands the research on the relationship between energy price distortions and CDEC and provides a reference for exploring effective ways to achieve CDEC. Third, this paper extends the analysis of the nonlinear relationship between distorted energy prices and CDEC and estimates the optimal intervals in which energy price distortions promote CDEC, providing a basis for the degree of distortion correction and the selection of an appropriate correction strategy.
The rest of the paper is arranged as follows. Section 2 conducts a review of the relevant literature. Section 3 shows the research methodology and discusses the construction of the panel smooth transformation model. Section 4 provides the empirical results. The conclusions and policy implications are listed in Section 5.
2 LITERATURE REVIEW
When actual energy prices deviate from their equilibrium level under distortions, energy cannot achieve Pareto optimal resource allocation (Lin and Wang, 2009; Wang et al., 2009; Li et al., 2020). Most studies often regard energy as a factor to examine the degree of price distortions (Atkinson and Cornwell, 1998; Tao et al., 2009). Lin and Du (2015) used a marketization index to measure the degree of factor price distortions, including energy. Skoorka (2000) employs a production frontier analysis that measures factor price distortions using the gap between actual and potentially optimal production points. Subsequently, several studies have used the shadow price approach to measure factor price distortions (Atkinson and Halvorsen, 1984; Ouyang and Sun, 2015). Based on a shadow price model, Tao et al. (2009) found that energy prices were severely distorted in China’s industrial sector, second only to labor price distortion. The production function approach is the most commonly used method to calculate factor price distortions. Ouyang et al. (2018), Tan et al. (2019), and Guan and Xing (2022) measure energy price distortions using the Cobb-Douglas production function. Moreover, using other methods, some scholars measured the price distortions of different energy products such as coal, electricity, and natural gas (Chai et al., 2009; Brown et al., 2017; Cui and Wei, 2017; Shi and Sun, 2017).
Two opposing opinions exist on distorted energy prices affecting economic growth: the “inhibition view” and the “promotion view.” The “inhibition view” argues that distorted energy prices hinder economic growth by impeding the efficient allocation of energy sources (Brandt et al., 2013; Shi and Sun, 2017). Lin and Wang (2009) pointed out that energy prices are mainly government-led and have been low for a long time in China. Regulations enacted in 2008 preventing refined oil and natural gas from adjusting prices have led to distorted energy prices that harm the economy. Ju et al. (2017) suggested that distorted energy prices significantly impeded China’s economy. According to the “promotion view,” energy price distortions promote economic growth. Distortions transmit the wrong price signals, leading to an underestimation of energy prices (Lin and Jiang, 2011; Ouyang and Sun, 2015) and thus a significant reduction in production costs. The high consumption of low-cost energy stimulates economic growth in the short term. Ouyang et al. (2018) found that firms obtained production factors at lower costs when energy prices are distorted, thereby promoting economic growth. Sun and Lin (2013) suggested that government regulations on energy prices have contributed to economic development by reducing excessive increases in energy prices.
Studies have concluded that price distortions promote carbon emissions. Distorted energy prices have reduced costs significantly, but they have also led to excessive consumption of high-emission, high-polluting sources, increasing carbon emissions. The IMF (2013) report suggested that price distortions undermined the allocation of resources by stimulating the overconsumption of energy, and therefore exacerbating carbon emissions. Wang et al. (2019) suggested that distorted oil prices promote CO2 emissions in China’s transportation sector. Li et al. (2019) analyzed the effects of energy prices and population on environmental pollution in China by constructing a time-varying coefficient panel data model, and concluded that energy price distortions exacerbated environmental pollution.
CDEC refers to reducing carbon emissions while ensuring economic development goals (Pata and Aydin, 2020). Previous studies rarely explored how distorted energy prices affect CDEC, and scholars mainly focused on the influence of price distortions on energy resource allocation efficiency. Distorted energy prices reduce the efficiency of energy resource allocation (Ouyang et al., 2018; Lin and Chen, 2019). As China’s economy enters a new growth model emphasizing efficiency, accelerating market-oriented reforms in energy pricing becomes urgent (Dai and Cheng, 2016). Tan et al. (2019) found that relative price distortions between capital and energy, labor and energy, inhibit the improvement of total factor energy efficiency in China’s secondary industry. Sha et al. (2021) showed the inhibiting effect of fossil energy price distortions on green economic efficiency in China. According to Gao and Yuan (2022), energy price distortions significantly hindered industrial green productivity in China. The optimal allocation of energy resources has become a significant determinant in the achievement of CDEC. Considering that price distortions lead to misallocating energy resources, which hinders CDEC. To achieve CDEC, exploring the characteristics of energy price distortions and their impact on CDEC is necessary.
By sorting out the above literature, this paper concludes: First, energy is typically considered a factor in previous studies to measure the distortion of prices, ignoring different energy products’ price distortion characteristics. Some studies have measured and analyzed the distortions in fossil energy prices, but none have analyzed the renewable energy price distortion. Second, most studies generally concentrated on the effects of distorted energy prices on a single dimension of the economy or the environment without examining both aspects simultaneously. The achievement of CDEC is an essential prerequisite for China’s high-quality economic development and an important manifestation of the country’s independent emissions reduction. The theoretical basis of this paper is mainly based on the literature on energy price distortions and resource misallocation, which inspires this study to adopt a new perspective that energy price distortions affect CDEC by influencing energy resource allocation. As distortions negatively affect the economy and carbon reduction, it is necessary to explore further ways of encouraging CDEC under the constraints of distortions. Third, the existing literature seldom discusses the nonlinear effects of energy price distortions and the potential for correcting distortions. Owing to the historic reform of energy prices and the complex structure and size of the energy industry, the relationship between distorted energy prices and CDEC is more complex than linear. Therefore, exploring the nonlinear effects of energy price distortions and analyzing the optimal levels for moderate correction of energy price distortions is necessary.
3 METHODOLOGY
3.1 Panel smooth transformation model (PSTR)
This paper introduces a frontier method that deals with nonlinear relationships between variables, namely, the panel smooth transformation model (PSTR). It can handle nonlinear relationships with sharp or smooth switches between variables without existing information about structural changes in transition variables (Ulucak et al., 2020). Based on the panel threshold model proposed by Hansen (2000), the PSTR model not only inherits its advantages but also avoids the drawback that the indicator function of interval division can only take 0 or 1. The PSTR model has two advantages: First, it allows parameter variation across individuals and over time (Tiba, 2019; Pan et al., 2021). Second, the model has strong applicability in the case of endogeneity and nonlinear effects. The model is depicted below.
[image: image]
[image: image]
In Eq. 2, [image: image] represents energy price distortions, referring to [image: image], [image: image], [image: image], and [image: image], respectively. [image: image] is the coefficient of the linear part. [image: image] is the coefficient of the nonlinear part. [image: image] indicates the conversion function, which value is between 0 and 1. [image: image] denotes the random disturbance term. In Eq. 3, [image: image] is the position parameter, that is, the threshold value. [image: image] represents the smoothing parameter (i.e., slope coefficient), which measures the transformation’s smoothness and the conversion speed between different systems. [image: image] is the number of position parameters of the transformation variables, generally taken as [image: image] or [image: image]. [image: image] indicates that the model is in the low regime; [image: image] denotes the model is in the high regime. Equation 2 performs a continuous nonlinear smoothing transformation between the low and high regimes since [image: image] transforms continuously between 0 and 1.
Before performing PSTR model estimation, testing whether the model has nonlinearity features is necessary. According to the study of Gonzlez et al. (2005), the following auxiliary regression function needs to be constructed at the first-order Taylor expansion of [image: image].
[image: image]
where [image: image] is the coefficient of [image: image]. [image: image]; [image: image]. To test the parameters in the auxiliary regression equation, an asymptotically equivalent LM value (subject to the [image: image] distribution), LMF value (subject to the F statistic), and LRT statistic need to be constructed.
If the null hypothesis H0: [image: image] is accepted, it means that there is no nonlinear effect in the model; if the null hypothesis H0 is rejected, it demonstrates the presence of a non-linear effect and the analysis should be continued using the PSTR model. Additionally, it is necessary to test whether the model has a unique transformation function or at least two. In other words, a test for residual nonlinearity. When H0: [image: image] is no longer rejected, [image: image] is the number of transition functions of the model.
3.2 Measurement of distortions in energy prices
This paper applies the marginal opportunity cost pricing approach to the measurement of the theoretical price of fossil energy.
[image: image]
MPC (Marginal Production Cost) is associated with energy extraction; MUC (Marginal User Cost) corresponds to the expense spent for immediate use (Serafy, 1981). MEC (Marginal External Cost) indicates the degree of environmental damage caused by exploiting energy resources (Chen et al., 2005; Lei, 1996).
Based on the measures of Ju et al. (2019) and Sha et al. (2022), this paper calculates the degrees of price distortions for the four energy sources, and the data sources are similar to that literature. The degree of fossil energy price distortions is calculated using the deviation between the actual and theoretical energy prices, as follows.
[image: image]
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where [image: image], [image: image], and [image: image] are coal, oil, and natural gas price distortions, respectively. [image: image], [image: image], and [image: image] implies the actual prices. [image: image], [image: image], and [image: image] are theoretical prices.
The distortion in renewable energy price ([image: image]) is measured as follows.
[image: image]
where [image: image] denotes the actual price and [image: image] is its theoretical price.
3.3 Measurement of CDEC
Based on coupling theory and coordination theory, this paper builds a coupled coordination degree model for measuring the degree of CDEC, which is expressed in the following way.
[image: image]
Where [image: image] and [image: image] represent the combined score of the economic growth system and carbon emission reduction system, respectively. [image: image] denotes the coupling degree of economic growth and carbon emission reduction. [image: image] is the adjustment factor, usually taken as 2.
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[image: image] indicates the comprehensive evaluation index of CDEC. [image: image] and [image: image] stand for the weights of economic growth and carbon emission reduction systems, respectively. This paper considers economic growth and carbon reduction systems equally important, so the weight is taken as [image: image]. [image: image] represents the coupled coordinated degree. Moreover, to reduce the bias caused by the subjective evaluation of indicators, this paper adopts the entropy weight method and TOPSIS method (Li et al., 2021) to assess the comprehensive evaluation index of the economic growth system and carbon emission reduction system.
3.4 Variables description
The degree of CDEC is used as the dependent variable. Based on the basic principles of science, feasibility, and hierarchy (Li and Yi, 2020; Wu, 2021), this paper constructs the evaluation indicator system for economic growth and carbon emission reduction as follows (Table 1):
TABLE 1 | Evaluation indicator system for economic growth and carbon emission reduction.
[image: Table 1]The degree of openness (Open) and the total exports and imports to GDP, ratio is used to represent this variable. Industrial structure (Indus) is measured by the share of value added of secondary industry in the GDP, of each province. The provincial population at the end of the year serves as a proxy for population (Pop). Urbanization (Urban) is measured as the proportion of the population that lives in urban areas.
This paper adopts the panel data of 30 provinces in Mainland China (except Tibet) from 2006 to 2020. Data related to the calculation of energy price distortions and other data mentioned above are from the CEIC, database, Price Statistical Yearbook, Annual BP, statistical yearbook, Annual Reports of China Shenhua Energy Company Limited, National Bureau of Statistics, Annual Reports of China National Petroleum Corporation, Wind database, National Energy Administration, China Energy Statistical Yearbook, China Environmental Statistical Yearbook, China Statistical Yearbook, provincial statistical yearbooks, and Almanac of China Guodian Corporation.
4 EMPIRICAL RESULTS
4.1 Analysis of distortions in energy prices
Table 2 shows that the prices of all four energy products are distorted. Fossil energy prices are negatively distorted, with coal (−0.171) being the highest, with oil (−0.090) and natural gas (−0.058) following closely behind; renewable energy price distortion is positive, at 0.541. The negative distorted fossil energy prices indicate that the current energy pricing policy implemented by the government keeps fossil energy prices low for a long time to reduce production costs, stimulate rapid economic development, and maintain the international competitiveness of Chinese products.
TABLE 2 | Average price distortions of four energy products over the period 2006–2020.
[image: Table 2]Several reasons contribute to the highest degree of coal price distortion. First, coal still dominates the energy consumption mix in China, with coal consumption accounting for 56.9%1 of total energy consumption in 2020. Although coal plays an imperative role in industrial development, its high environmental cost causes the price difference between its actual price and theoretical benchmark to grow. Second, the competitive function of the coal pricing mechanism has not been fully released. Coal trading market transactions are still far from getting to the requirements of a national unified market. Third, after nearly 5 years of downward price movement, the supply-side capacity clearing overlaid with the capacity removal policy, China’s coal prices have been upward since 2016. To stabilize coal prices, the National Development and Reform Commission (NDRC) adopted a “benchmark price + floating price” pricing method for LCCs (Zuo, 2018). Therefore, the coal price is still under control, with a gap with the expected market-based price mechanism.
Negative distortions in oil and gas prices indicate that the prices are not fully marketized (Rioux et al., 2019; Lin and Kuang, 2020). As the Chinese government has been reforming oil prices since 1998, the pace of marketization was slow. However, the oil price distortion decreased by 46.8% in 2009, indicating that reforming refined oil prices in 2009 was crucial to alleviating distortions (Lin and Ouyang, 2014; Zhu and Chen, 2019). Natural gas has a lower MEC and is less distorted than other fossil fuels. Natural gas price distortion declined significantly in 2010, down 65.6% from the previous year, primarily owing to the 2010 natural gas resource tax reform. However, the reform of the market-based mechanism of natural gas pricing is still lagging, so its price distortion still exists.
The positive distorted renewable energy price implies that its actual price is larger than the theoretical benchmark, which the following reasons may cause. First, renewable energy is most commonly converted into electricity (Jiang et al., 2020; Lin and Xu, 2021). Electricity market price reform needs to be faster, which restricts the formation of the market-oriented pricing mechanism of renewable energy, causing apparent distortions. Second, due to technology, scale, and market, the investment in R&D of renewable energy is high, leading to a high power generation cost (Ge et al., 2022). Compared with coal-fired power generation, renewable energy electricity prices lack a competitive advantage (Zhao et al., 2011; Trujillo-Baute et al., 2018). Third, renewable energy generation accounts for a small percentage of total energy production. Because renewable energy is intermittent and discontinuous, its quality is inferior to conventional energy. It is still necessary to subsidize renewable energy development. While subsidies can help cover high costs, the gap between the subsidized funds and the cost of renewable energy continues to widen (Zhang et al., 2020), further reducing the competitiveness of renewable energy.
The data used to calculate energy price distortions in this paper are from Sha et al. (2022), but unlike that, the time span is updated to 2020. There are several reasons for updating the time period: 1) To accurately measure the degrees of distortions and present more current information on energy price distortions in China. The results show that the degree of energy price distortions is coal (−0.171), oil (−0.090), natural gas (−0.058), and renewable energy (0.541), lower than coal (0.177), oil (−0.105), natural gas (0.084) and renewable energy (0.585) in the previous study. This result confirms that China’s energy price distortions gradually improve as the market-based energy pricing reform deepens. 2) After updating the time period, it is shown that price distortions for coal, oil, and renewable energy, have continued to decrease. However, natural gas price distortion has been increasing. The result indicates that reforming the market-based mechanism of natural gas pricing among fossil energy sources is lagging. Compared to the previous article, the updated time period reveals the significance of this result. 3) Updating the time span not only enriches the information conveyed by the data but also shows the impact of the energy price reform policies implemented by the Chinese government on the degrees of energy price distortions, which helps this paper to analyze the current situation of energy price distortions in China.
The average values of distortions across regions show that fossil energy price distortions are higher in the C-W areas than in the E area. However, the opposite result is observed for renewable energy price distortion. The results prove that China’s energy market is regional, coinciding with the study by Ma and Oxley (2011).
4.2 Description of CDEC

(1) National level
The national average value of CDEC is 0.436, which means China’s CDEC belongs to the transitional phase of the grinding process. As shown in Figure 1, the mean value of the national CDEC is increasing, rising from 0.387 in 2006 to 0.478 in 2020, an increase of 23.42%. This result indicates that the interaction between our economic growth and carbon reduction system is strengthened. The government’s awareness of the importance of coordinating economic growth with carbon emission reduction is a significant reason. With the introduction of the concept of green development in the 11th Five-Year Plan, the government has begun to formulate and implement measures to reduce carbon emissions and balance economic growth and reduction efforts.
[image: Figure 1]FIGURE 1 | Trends in CDEC at the national level during 2006–2020.

(2) Regional level
Figure 2 presents apparent differences in CDEC degree among regions in China, showing high levels in the E area and low levels in the C-W areas, which aligns with the study of Weng et al. (2022). The mean value of CDEC in the E area is 0.448, which is higher than the national average and the C-W areas (0.429). The main reason for the difference is the higher economic agglomeration in the E area and the high investment in emissions reduction technology and environmental protection. High-energy-consuming enterprises are clustered in the C-W areas. Thus, the industrial structure of the C-W areas is unreasonable, economic development relies on resource development, and environmental protection needs to be more protected, resulting in low CDEC. A trend of increasing CDEC has been observed in the C-W areas between 2016 and 2019, probably attributed to the significant effect of removing production capacity in coal and steel industries during the 13th Five-Year Plan period. CDEC of the E area rose again after 2019, undoubtedly related to the region’s good economic base, energy technology innovation, and other factors.
[image: Figure 2]FIGURE 2 | Trends in CDEC at the regional level during 2006–2020.
4.3 Basic regression results
Table 3 indicates that the coefficients of [image: image], [image: image], [image: image] and [image: image] are all negative and are significant at 5%, suggesting that distorted energy prices inhibit CDEC. Similar findings were also found in the studies of Lin and Chen (2018); Du et al. (2021). When each percentage of price distortions increases, the degree of CDEC decreases by 6.8%, 3.4%, 3.0%, and 2.2%, respectively, suggesting differences in the influence of price distortions for various energy sources on CDEC.
TABLE 3 | The effects of energy price distortions on the national CDEC.
[image: Table 3]Specifically, coal price distortion has the most significant inhibiting effect on CDEC. Distorted energy prices fail to reflect the scarcity of energy resources, the actual supply and demand, and environmental externalities, which weakens the resource allocation efficiency and results in a loss of economic output while exacerbating the high-carbon energy consumption, thereby inhibiting CDEC. Coal price distortion has the most significant negative impact on CDEC, which can be explained by the fact that coal remains China’s dominant energy source. Due to the long-term reliance on coal resources, the industry forms a monopoly with a single economic structure. With an imperfect market trading mechanism, coal price distortion hinders CDEC. Furthermore, most control variable results align with this paper’s expectations.
In Table 4, all distorted energy prices in the E and C-W areas significantly negatively impact CDEC, indicating that energy price distortions hinder regional CDEC. Distorted oil, gas, and renewable energy prices impede CDEC of the E area. Due to the “cumulative cycle effect,” both the pace and scale of economic development in the E area have increased, boosting the demand for oil, gas, and renewable energy. Thus, the hindering effects of these three energy price distortions are more significant. There is a more significant inhibiting impact of coal price distortion on CDEC in the C-W areas, mainly because its industrial mix is dominated by coal, and the distorted coal price contributed significantly to its economic development, thereby increasing dependence on coal. The inertia of the crude development model has slowed the restructuring of the industrial structure in the C-W areas, and backward production cannot generate substantial economic benefits. Additionally, the C-W areas lack sufficient investments in the R&D of clean energy technologies, which hinders emissions reduction efforts.
TABLE 4 | The impact of energy price distortions on the regional CDEC.
[image: Table 4]4.4 Robustness test
The replacement of core variables, sub-sample regression, and the generalized method of moments for robustness tests are applied to test the robustness of the basic regressions. First, use green total factor productivity to replace the dependent variable (CDEC). Second, according to each province’s marketization degree and market mechanism, the total sample is divided into the developed and post-developed provinces. Third, because of the possible bias in estimation due to endogeneity issues, this paper employs the differential GMM method (DIF-GMM) and system GMM method (SYS-GMM) for robustness tests. Overall, the three robustness estimations demonstrate that energy price distortions inhibit CDEC, indicating that the model estimates are robust.
4.5 Nonlinear effect analysis
Table 5 presents the results of linear and nonlinear residual tests. The results of linearity tests show that the LM, LMF, and LRT tests of the four energy price distortions reject the null hypothesis [image: image] at the 1% significance level, suggesting that distorted energy prices exert a nonlinear impact on CDEC. The nonlinear residual test shows that the p-values of the LM, LMF, and LRT for the four models of energy price distortions are greater than 0.05, which indicates that the null hypothesis [image: image] cannot be rejected. The result suggests that all four PSTR models of energy price distortions contain only one nonlinear transition function, that is, [image: image] is the optimal number of transformation variable functions. Moreover, the number of location parameters is determined by the AIC and BIC criteria. [image: image] in which [image: image] is located corresponds to AIC and BIC values less than [image: image] for the transition variable, and its optimal location parameter is [image: image]. The AIC and BIC values corresponding to transition variables at [image: image] in the models of [image: image], [image: image] , and [image: image] are less than [image: image], and the number of position parameters is determined as [image: image].
TABLE 5 | Results of linear and nonlinear tests of the PSTR model.
[image: Table 5]From the PSTR results in Table 6, the location parameters of the models in which [image: image], [image: image], [image: image], and [image: image] are located are −0.193, −0.061, −0.262, and 0.118, respectively. The effects of distortions on both sides of the location parameters are significantly different, indicating that the effects of distorted energy prices on CDEC are nonlinear and have prominent threshold characteristics. The coefficients of [image: image], [image: image], and [image: image] are negative at the 1% level in the low regime and significantly positive at the 1% level in the high regime. The coefficient of [image: image] has a positive value in the low regime and a negative one in the high regime. They are significant at the 5% level.
TABLE 6 | Estimation results of the PSTR model.
[image: Table 6]Specifically, when [image: image], [image: image], and [image: image] are below −0.193, −0.061, and −0.262, respectively, the distortions result in a low price of fossil energy, which increases fossil energy consumption, thereby hindering CDEC. However, when the degrees of fossil energy price distortions are greater than the respective location parameters, the distortions facilitate CDEC. In other words, as market-based energy pricing reforms continue to deepen, fossil energy prices have increased, and distortions have decreased, thus reducing the inhibiting effect of distortions on CDEC. If [image: image] is less than 0.118, the renewable energy price distortion is reduced and its price decreases, which promotes renewable energy consumption and contributes to CDEC. In contrast, when [image: image] exceeds 0.118, renewable energy becomes more expensive and has no price advantage compared with fossil energy, thus increasing the potential for fossil energy substitution. Therefore, it has an inhibiting effect on CDEC.
Based on different smoothing parameters and location parameters, the transformation functions of energy price distortions are shown in Figure 3. The transformation functions of distortions for all energy products’ prices exhibit a gradual change, which indicates that the choice of the PSTR model is reasonable.
[image: Figure 3]FIGURE 3 | Transformation functions of energy price distortions.
The PSTR results indicate that the impact of the four energy price distortions on CDEC is not monotonically facilitated or inhibited. The higher the fossil energy price distortions, the more pronounced the inhibiting effect on CDEC. The degree of CDEC is higher when the distorted renewable energy price is lower. This result is similar to the study of Du et al. (2021). According to Du et al. (2021), the nonlinear effect of energy price distortions on CDEC may be attributed to the reduced marginal contribution of energy price distortions to the constraint effect of CDEC. Furthermore, the effective intervals in which price distortions for different energy types contribute to CDEC are coal price distortion [image: image], oil price distortion [image: image]; natural gas price distortion [image: image], and renewable energy price distortion [image: image], respectively.
5 CONCLUSION AND POLICY IMPLICATIONS
This paper estimates the impact of price distortions of four energy products on CDEC in China and further analyzes the nonlinear effects of distortions.
Following are the main conclusions. 1) The prices of all four types of energy are distorted. Fossil energy price distortions are negative, with coal (−0.171) being the highest, with oil (−0.090) and natural gas (−0.058) following closely behind. Renewable energy price distortion is positive at 0.541. 2) The national CDEC of economic growth and reduction of carbon emissions has an average value of 0.436 during the study period, which belongs to the teething process of the transition phase. CDEC is uneven across regions in China, showing high in the E area and low in the C-W areas. 3) Distorted energy prices inhibit CDEC in China, and there are differences in the effects of price distortions of different energy products. Distorted coal price has the most significant inhibitory impact on CDEC. Additionally, the impact of distortions on CDEC is regionally heterogeneous. Distorted oil, natural gas, and renewable energy prices impede eastern China’s CDEC. In contrast, distorted coal price has a more substantial impeding effect on the C-W areas’ CDEC. 4) Distorted energy prices exert a nonlinear impact on CDEC. The results of the PSTR model show that with the continuous correction of energy price distortions, the role of the promotional impact on CDEC gradually increases. Furthermore, the optimal intervals of distortions to promote CDEC are coal price distortion [image: image], oil price distortion [image: image]; natural gas price distortion [image: image], and renewable energy price distortion [image: image], respectively.
Based on the empirical results, this paper proposes the following policy recommendations.
First, improving the market mechanism of energy prices and building a national unified price system. Coordinate the pace of pricing market reform of different energy products and rationalize the price ratios between various types of energy, such as fossil and renewable energy. According to the national unified large market construction guidance, accelerate the construction of a multi-energy systematized pricing mechanism and establish a unified system of energy prices to enhance the effective transmission of prices between the different types of energy. With the establishment of an energy pricing mechanism that reflects environmental externalities, resource scarcity, and supply and demand, energy price distortions can be corrected to obtain an optimal allocation of energy resources and ultimately achieve CDEC.
Second, formulating differentiated regional policies of energy prices. For eastern China, it should allow the market to play a fully effective role in energy pricing, reduce inefficient or even ineffective policy measures, guide enterprises to accelerate the renewal of energy-efficient capital and maximize the benefits of energy input. For the central-western areas, the dominance of energy pricing should gradually shift from the government to the market, making energy prices reflect the actual supply and demand and the scarcity of energy resources. Use of market-based instruments to regulate energy prices, unblock the impact of energy prices on demand, and provide more support for investment policies to increase access to financing and channels for energy companies to renew their capital. Moreover, it should break up the energy market’s division, encourage the energy factor’s free movement across regions, ensure that energy resources are allocated effectively, and promote CDEC.
Third, strategies to correct energy price distortions should be optimized. The estimation indicates that energy price distortions nonlinearly impact CDEC. Therefore, the government should clarify the policy measures and implementation efforts for adjusting energy prices in light of energy price distortions. With the changes in energy prices domestically and internationally, it is prudent to grasp the level of price deregulation and release of market-driven intensity. In this regard, the government should determine what level of price distortions to correct for different energy products and how to adjust them according to the economic development and emission reduction realities at the national, regional, and provincial levels. Taking the results of the optimal levels of energy price distortions in this paper as a reference, the government should actively promote the energy market-based pricing mechanism, adhere to the resource tax reform, and optimize energy price subsidies. In addition, efforts should be made to develop the digital economy, improve the construction of the carbon market, promote technological innovation, and alleviate distortions in energy prices so that the market-based mechanism can play a leading role in CDEC.
Although this study provides a valuable exploration of the relationship between energy price distortions and CDEC, due to the availability of data, the subject of this paper does not deeply explore the issue of relative energy price distortions. The relative distortions between energy product prices may affect the consumption proportionality of energy sources, thereby influencing CDEC. Therefore, it is necessary to analyze the relative energy price distortions further to understand the interactions between the prices of different energy products, which could provide a more detailed characterization of energy price distortions in China. Furthermore, it will be significant for policymakers if the study scope is expanded from China to emerging economies in future research.
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With the continuous development of the electricity market and the gradual expansion of the number and scale of participation in market transactions, the traditional energy trading model has limited the formation of a competitive pattern of multi-agents. In this paper, a new multi-microgrid energy storage alliance energy trading model based on Nash negotiation is proposed. This model takes energy storage, multi-microgrid, and superior power grid enterprises as the main participants and establishes an energy market trading model with “buy–sell” cooperation and competition coexisting within the alliance based on Nash negotiation theory. Through the interaction of electricity between different entities, energy conversion and complementary utilization are increased, achieving reasonable allocation of resources, enhancing the overall flexibility of the alliance, and promoting the local consumption of a high proportion of new energy. The simulation results of the example show that the energy trading model based on Nash negotiation can fully leverage the initiative of demand-side participation in scheduling and improve the utilization rate of energy storage systems while ensuring the payment benefits of all participating entities, which can provide technical support for energy complementarity among multiple entities and provide new technological paths for the sustainable development of energy sharing mechanisms.
Keywords: Nash negotiation, cooperative and competitive, multi-buyer and seller, multi-energy complementary, energy trading
1 INTRODUCTION
Under the policy of liberalizing electricity generation and consumption plans, diversified market entities such as energy storage, electric vehicles, and microgrids gradually participate in electricity trading. These participants form an alliance to meet their own load needs while transmitting energy to each other, achieving energy mutual assistance trading among multi-market entities within the alliance (Pan et al., 2023), gradually forming a multi-buyer and seller electricity market pattern. This market trading mechanism can achieve reasonable allocation of resources, enhance the overall flexibility of the alliance, and promote the local consumption of a high proportion of new energy (Fang et al., 2022), which can also accelerate carbon peaking, achieve carbon neutrality, and accelerate structural reforms on the energy supply side.
The sharing pattern of energy exchange among multi-market entities can enable users to use resources without ownership. Users can negotiate to form a shared market price, achieving the goal of supply and demand balance and maximizing the use of resources (Sivasankari and Narayanan, 2022). Vernay et al. (2023) provided a detailed explanation of the business model and transaction process of the aforementioned shared governance energy trading mechanism. Ko et al. (2022) pointed out that the shared market can significantly improve economy and resource utilization. Taking shared energy storage as an example, it saves 2.53%–13.82% in electricity costs compared to single user energy storage and increases utilization efficiency by 3.71%–38.98%. In addition, relevant explorations have been made on the pricing mechanisms of shared markets in the trading process, such as methods based on fixed prices (Yin and Yang, 2023), peak valley prices (Shen and Chen, 2022), profit or cost allocation (Siqin et al., 2022), and auction prices (Gabrielli and Willington, 2023), which have been widely studied and applied.
However, as a new business model, the energy exchange within the multi-market entity alliance also faces new difficulties in the comprehensive promotion process, such as the issue of fair transactions between multi-market entities. The interests of different market participants are showing a trend of diversification, and each market entity needs to consider its own and other market participants’ impact on itself when making decisions and how to handle conflicts of interest between different market entities. Nash negotiation (Montazeri et al., 2020) can balance the conflicts of interest between different participating parties and is used to solve the problem of profit distribution between multi-participating parties in the buy and sell process. At present, its most applications in the power system are concentrated in the operation between wind power and multi-hydrogen production stations (Zhao et al., 2023), wind solar hydrogen energy systems (Liu et al., 2023), and so on. There are many participants and types involved in energy trading within a multi-market entity alliance, and different participants have the right to choose and make decisions. In energy trading within the alliance, they will simultaneously act as buyers or sellers. Nash negotiation is one of the best technical means for scientifically analyzing and allocating the complex interest relationships mentioned previously.
Based on the aforementioned analysis, in order to accelerate the development of new energy and promote the local consumption of new energy, a multi-microgrid energy storage alliance energy trading model based on Nash negotiation is constructed. This model takes energy storage, multi-microgrid, and superior power grid enterprises within the multi-microgrid energy storage alliance as the participating entities and constructs a “buy–sell” cooperation and competition coexisting electricity market trading model based on the cooperation and competition relationship between each entity. Then, we establish an optimization decision making model to maximize the payment benefits of each participating entity within the alliance and utilize the improved moth to fire algorithm to solve the optimization decision model. Finally, the effectiveness and feasibility of the energy trading strategy of the multi-microgrid energy storage alliance based on Nash negotiation were demonstrated through simulation. The benefits of the non-cooperative mode (NCM) and cooperative mode (CM) based on Nash negotiation were compared, the initiative of demand-side participation in scheduling in the multi-microgrid was analyzed, and the utilization situation of shared energy storage under different trading modes was explored.
This article’s major innovation points are as follows:
1) An energy trading strategy for multi-microgrid energy storage alliance was proposed based on Nash negotiation
2) Based on the characteristics of the optimization model in this article, the moth to fire algorithm is improved to solve the problem
3) The profitability, demand-side participation and scheduling initiative, and shared energy storage utilization of multi-microgrid energy storage were compared under the NCM and CM based on Nash negotiation
2 MULTI-MICROGRID ENERGY STORAGE ALLIANCE ENERGY TRADING ARCHITECTURE
2.1 Non-cooperative mode
There is a lack of market response and self-regulation ability in China’s existing energy trading. Market entities such as microgrids, new energy stations, energy storage, and controllable loads do not have decision-making and discourse power and still follow the pricing mechanism of power grid enterprise buying, selling, and monopolizing. New energy power generation has been connected to the grid as planned, resulting in large-scale wind and solar abandonment and ineffective utilization of resources. In this energy trading mode, the microgrid is only provided with electricity and natural gas by the superior energy grid and is forced to accept the transaction pricing of the superior power grid. Energy storage belongs to the superior power grid and is used to meet the inertia support and frequency regulation needs of the superior power grid. At the same time, only the superior power grid charges the energy storage to meet the operational needs of the energy storage during the scheduling cycle. Renewable energy sources such as wind power and photovoltaic are managed by power grid enterprises through government electricity prices and tax subsidies, which are planned for grid access. Each participating entity has no other choice except to conduct electricity trading with the superior power grid, resulting in prominent issues such as information asymmetry and opacity and the dominance of power grid enterprises, which is not conducive to the sustainable development of the power economy.
2.2 Cooperative mode based on Nash negotiation
The transaction mode of the multi-microgrid energy storage alliance under the cooperation mode is as follows.
Different from the energy trading under NCM, in Figure 1, all participating entities participate in market-oriented cooperation and competition through reasonable price incentives, promoting the sustainable development of electricity economy. Microgrid, power grid enterprises, and energy storage system form an alliance. The information among participants in the alliance is completely open and transparent, and all participating entities have equal status in the power trading process. Under the premise of ensuring the balance of power supply and demand and safe and stable operation of all participating entities, a true “buy–sell” cooperative and competitive power market trading model was achieved. This model is based on Nash negotiation theory and determines the trading volume and price between each participating entity and other entities through negotiation. Its multi-party governance and sharing electricity trading model can promote healthy competition among participating entities within the alliance and attract more participating entities to join. The specific energy exchange and trading methods are as follows:
1) When the electricity supply of microgrid i is less than the demand, the transaction price can be determined by the superior power grid, energy storage, or other microgrids competing with each other based on the demand of microgrid i.
2) When there is a surplus of electricity in microgrid i, it can be used to compensate for the electricity demand of other microgrids, sold to superior power grids to meet frequency regulation needs, or sold to energy storage to meet operational needs during the scheduling cycle. The price of electricity sold by microgrid i is determined through competition with other participating entities in the alliance.
3) Energy storage is used not only to meet the inertia support and frequency regulation needs of the superior power grid but also to compensate for the electricity demand of the microgrid. The price for selling energy storage is determined through competition with other participating entities in the alliance.
4) When the energy storage needs to be charged to maintain normal operation during the scheduling cycle, the superior power grid and microgrid group can cooperate and compete to determine the transaction price and quantity of electricity charged to the energy storage based on the required charging quantity.
5) For superior power grid enterprises, their inertia support and frequency regulation needs can be met by energy storage or microgrid groups. Based on the electricity required for auxiliary services, energy storage or microgrid groups compete to determine the trading partner, electricity quantity, and price.
[image: Figure 1]FIGURE 1 | Energy trading mechanisms of multi-microgrid energy storage alliance under the cooperative mode.
3 ENERGY TRADING MECHANISMS FOR MULTI-MICROGRID ENERGY STORAGE ALLIANCE BASED ON NASH NEGOTIATION
3.1 Energy trading mode
Nash negotiation, also known as the bargaining model, is one of the earliest studied problems in game theory and an important theoretical basis for cooperative games (Churkin et al., 2021). The purpose of bargaining is to hope for greater benefits for oneself, but due to conflicts of interest among the participating parties, the degree of benefits is limited, and beyond the boundaries, the negotiation will break down. For the participating entities in the shared alliance in this article, applying Nash negotiation theory can yield
[image: image]
where [image: image] is the payment benefits obtained by each participant i through the cooperative relationship and [image: image] and [image: image] represent the optimal benefits of each participating entity in the NCM and CM based on Nash negotiation, respectively. The optimal benefit [image: image] of each participating entity in the NCM is based on the Nash negotiation breakdown point. To ensure the effectiveness of all participating parties in the CM based on Nash negotiation, there are [image: image]. By solving the Pareto–Nash equilibrium, the optimal energy trading strategy for the superior power grid, energy storage, and microgrid is obtained, achieving energy interactive trading among multi-participating entities in the CM.
This article is based on the Nash negotiation cooperation model, establishing an alliance consisting of four participating entities: superior power grid enterprises, microgrid A, microgrid B, and energy storage. To maintain generality, this article selects general comprehensive energy system architecture, including equipment such as electricity, heat, cooling, natural gas, and energy storage, as the structural framework of the microgrid. The specific structure is shown in the work of Li et al. (2021), including a gas turbine (GT), waste heat recovery (WHR), gas boiler (GB), and electric cooler (EC). The controllable equipment is the elastic load, which is divided into the reducible electrical load (RLe) and transferable cold/heat load (TLc/TLh) according to the type of electricity used. The optimization process of negotiating the electricity trading volume and corresponding trading prices between each participating entity and other entities is shown in Figure 2.
[image: Figure 2]FIGURE 2 | Optimization process of energy mutual assistance among participating entities in Nash negotiations.
Under the CM based on Nash negotiation, each participating entity negotiates the electricity trading volume and corresponding trading price with other entities. Driven by the electricity trading volume and trading price with other entities, the participating entities have the following optimization process:
1) Superior power grid enterprises optimize internal thermal power units
2) Microgrids optimize the scheduling plan for controllable resources
3) The energy storage system optimizes the hourly charging and discharging capacities
The transaction prices decided by each entity will affect the electricity trading volume between other entities and that entity. The electricity trading volume will further affect the scheduling plan of controllable resources within each participating entity and also the entity’s decision making on trading prices.
In this “buy–sell” cooperative and competitive electricity market trading model, energy conversion and complementary utilization can be increased through the interaction of electricity between different entities, thereby improving the overall revenue of the shared energy storage alliance. When the overall revenue of the alliance increases, the revenue of each participating entity also increases accordingly. During the optimization process, the information of each participating entity is transmitted to each other, ultimately achieving the Pareto–Nash equilibrium.
3.2 Energy trading process
The energy trading strategy of the multi-microgrid energy storage alliance based on Nash negotiation mainly aimed at the day-ahead scale electricity trading in the spot market. To ensure complete transparency of information among participants in the alliance and equal status of all participants in the electricity trading process, the trading process is shown in Figure 3. Taking a day-ahead scale scheduling process as an example, it is described as follows:
1) Data packets are generated from the capacity of thermal power units in the superior power grid, rated capacity and power of energy storage, and various load demands in the microgrid and broadcasted to the participating entities of the multi-microgrid energy storage alliance.
2) After receiving the demand for natural gas, the superior gas network formulates the unit natural gas price and forms a data packet again, which is broadcasted to the multi-microgrid energy storage alliance.
3) After receiving two broadcasts of information, the participating entities in the multi-microgrid energy storage alliance obtain the optimal transaction plan based on the Nash negotiation model of each participating entity.
4) Transaction prices and quantities are negotiated into data packets broadcasted to the entire network to reach consensus.
5) Permits are issued for transactions that have already reached a consensus for confirmation. The transaction is declared invalid without reaching a consensus, and all participating entities synchronously update their status and requirements before proceeding to step one again.
[image: Figure 3]FIGURE 3 | Energy trading process of multi-microgrid energy storage alliance.
4 ENERGY TRADING MODEL FOR MULTI-PARTICIPANTS BASED ON NASH NEGOTIATION
4.1 Superior power grid enterprises
4.1.1 Economic benefits
The benefits of the superior power grid when the energy trading mode is the NCM and CM are expressed as follows:
[image: image]
where [image: image] and [image: image] represent the power generation and frequency regulation costs of thermal power units in superior power grid enterprises. To clearly describe the interactive behavior of power grid enterprises in multi-microgrid energy storage alliances, only the energy supply and frequency regulation needs within the alliance are considered. The specific calculations are shown in Eqs 3, 4. [image: image], [image: image], and [image: image] represent the price at which the superior power grid enterprise sells electricity to microgrid A, B, and energy storage; [image: image], [image: image], and [image: image] represent the corresponding transaction volume.
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where [image: image] and [image: image] represent the operating cost coefficients of thermal power unit i in the superior power grid enterprise, [image: image] represents the number of thermal power units participating in power generation by the superior power grid enterprise to meet the power supply demand within the alliance, and [image: image] represents the output of thermal power unit i in the superior power grid enterprise.
[image: image]
where [image: image] represents the cost coefficient of thermal power units participating in frequency regulation. [image: image] represents the cost coefficient of other market entities participating in frequency modulation, and n represents the set of market entities participating in frequency modulation, including microgrid A, microgrid B, and energy storage, respectively, represented by the letters MGA, MGB, and ES. [image: image] represents the power of thermal power units participating in frequency regulation, and [image: image] represents the power of other market entities participating in frequency regulation.
In the NCM, the superior power grid only has its own thermal power units and energy storage coordinated to meet the frequency regulation needs. Therefore, Eq. 4 can be rewritten as
[image: image]
4.1.2 Constraint condition
The superior power grid enterprise also has the following constraints.
1) Power balance constraint:
[image: image]
The superior power grid enterprise sells electricity to the microgrid and energy storage to ensure the balance of power supply and demand in the microgrid and the demand for energy storage operation.
2) Frequency modulation capacity demand constraint:
[image: image]
where [image: image] represents the frequency regulation demand of the superior power grid. This chapter simplifies the calculation by using the product of the uncertain power generation and consumption within the alliance and the disturbance ratio [image: image] as the boundary constraint of the frequency regulation demand. The general value of [image: image] is 5% of the load, and the additional demand capacity after the addition of renewable energy is 10%–20% of the renewable energy generation output, which is set as 20% in this article. The sum of the frequency modulation power of market entities participating in frequency modulation should not be less than the frequency modulation demand of the superior power grid.
3) Thermal power unit operational constraints:
The thermal power unit operational constraints including output constraint and climbing constraint are shown in Eqs 8, 9, respectively.
[image: image]
where [image: image] and [image: image] represent the minimum and maximum output boundaries of thermal power unit i.
[image: image]
where [image: image] and [image: image], respectively, represent the maximum downward and upward climbing values of thermal power unit i.
4.2 Energy storage
4.2.1 Economic benefits
The benefits of energy storage when the energy trading mode is the NCM and CM are expressed as follows:
[image: image]
Equation 10 shows that the income from the energy storage is the income from selling electricity to other market entities minus the cost of purchasing electricity from other market entities to charge energy storage while maintaining normal operation of energy storage. According to the analysis in Section 2.1, in the NCM, energy storage’s energy is only sold to the superior power grid enterprise to meet the frequency regulation needs of the power grid and can only accept power supply from the superior power grid. In this case, [image: image]. According to the analysis in Section 2.2, in the CM, energy storage’s energy can be sold to any participant within the multi-microgrid energy storage alliance and can also receive power from any participant. In Eq. 10, [image: image] and [image: image], respectively, represent the transaction price and quantity of electricity sold to participant n, while [image: image] and [image: image], respectively, represent the transaction price and quantity of electricity when energy storage participates in the frequency regulation of the superior power grid, in order to meet the power supply and demand balance of each microgrid and the safety and stability of the superior power grid. [image: image] and [image: image] represent the transaction price and transaction quantity of energy storage charged by participant i in order to maintain the balance of energy storage charging and discharging and ensure the normal operation of energy storage.
Based on the energy storage economic benefits shown in Eq. 10, it can be inferred that the total power of energy storage charging at time t is [image: image], and the total power of energy storage discharging at time t is expressed as [image: image].
4.2.2 Constraint condition
The energy storage also needs to meet the following constraints during operation.
1) Energy storage charging/discharging power constraint:
[image: image]
where [image: image] and [image: image], respectively, represent the maximum charging and discharging powers of energy storage. [image: image] and [image: image] represent the charging and discharging status of energy storage, which is a Boolean variable.
2) Energy storage charging/discharging state constraint:
In order to avoid simultaneous charging and discharging of energy storage at the same time period, there is the following constraint:
[image: image]
3) Energy storage charging/discharging power constraint during the total scheduling cycle:
At the same time, in order to ensure the sustainable development and healthy operation of the energy storage, the sum of the charging and discharging powers of the energy storage during the total scheduling cycle is set to 0.
[image: image]
4) Energy storage capacity constraint:
To avoid deep charging and discharging of energy storage, in order to delay the usage time of energy storage, the use of energy storage is generally forcibly stopped when the energy storage capacity is low or high. In this case, there is a capacity constraint for energy storage, as shown in Eq. 14. The capacity of energy storage at current time t is related to the charging and discharging powers at that time and the capacity at the previous time. The specific calculations are shown in Eqs 15, 16.
[image: image]
where [image: image] represents the capacity of energy storage at time t, [image: image] represents the rated capacity of energy storage, and [image: image] and [image: image] represent the minimum and maximum numbers of charges to ensure the normal operation of energy storage.
[image: image]
where [image: image] represents the self discharge rate of energy storage.
[image: image]
where [image: image] and [image: image] are the charging and discharging rates of energy storage.
4.3 Microgrid
4.3.1 Economic benefits
The benefits of the microgrid in the energy trading mode of the NCM and CM are expressed as follows:
[image: image]
where [image: image] and [image: image], respectively, represent the operating cost of CCHP units and the call cost of controllable loads in the microgrid; the specific calculation formulas are shown in Eqs 18, 19. [image: image] represents the energy purchase cost of the microgrid in the NCM of Section 2.1 and the CM of Section 2.2, and the specific calculation formulas are shown in Eqs 20, 21.
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where [image: image] and [image: image] represent the conversion power cost coefficient and conversion power of CCHP units in the microgrid during operation. i belongs to the collection of CCHP units, including the gas turbine, waste heat recovery, gas boiler, and electric cooler, represented by letters {GT, WHR, GB, and EC}.
[image: image]
where [image: image], [image: image], and [image: image] represent the call cost coefficients of reducible electrical loads and transferable cold and hot loads, respectively, while [image: image], [image: image], and [image: image] represent the corresponding call powers.
In the NCM, microgrids only purchase energy from superior power grids and gas grids, and the cost of energy purchase is expressed as follows:
[image: image]
where [image: image] and [image: image], respectively, represent the cost coefficient and quantity of electricity purchased from the superior power grid, while [image: image] and [image: image], respectively, represent the cost coefficient and quantity of gas purchased from the superior gas grid.
In the CM, microgrids can accept energy supply from any other participating entity within the alliance; at the same time, when there is an energy surplus within the microgrid, energy can also be mutually beneficial to meet the needs of other market entities. Based on the aforementioned analysis, the energy purchase cost is expressed as follows:
[image: image]
where i is the collection of market entities that have energy interactions with the analyzed microgrid, including other microgrids, superior power grids, and energy storage. [image: image] and [image: image] represent the price and quantity of electricity purchased from market entity i. [image: image] and [image: image] represent the price and quantity of electricity sold to market entity i.
The CCHP units in the microgrid have the following conversion relationships:
[image: image]
where [image: image] is the electricity converted by the gas turbine, [image: image] is the thermal low value of the gas turbine, [image: image] is the conversion efficiency of the gas turbine, and [image: image] is the volume of natural gas consumed by the gas turbine. [image: image] is the heating capacity of the gas boiler, [image: image] is the low calorific value of the gas boiler, [image: image] is the conversion efficiency of the gas boiler, and [image: image] is the volume of natural gas consumed by the gas boiler. The amount of gas purchased from the superior gas network, [image: image], is the total amount of natural gas consumed by the gas turbine and gas boiler. [image: image] represents the heating capacity of the waste heat recovery device, which is related to the heating ratio [image: image], heating efficiency [image: image], and the waste heat [image: image] generated by gas turbine power generation. The waste heat [image: image] generated by gas turbine power generation is related to the output power of the gas turbine, the heating efficiency of the waste heat recovery device, and the heat dissipation loss rate [image: image]. [image: image] is the cooling capacity of the electric cooler, [image: image] is its cooling efficiency, and [image: image] is the electricity consumption of the electric cooler.
4.3.2 Constraint condition
The microgrid also needs to meet the following constraints during operation.
1) Energy balance constraint:
The real-time power balance including electrical energy is shown in Eq. 23. For cold and hot energy, due to its large inertia and storage capacity, only the cooling and heating needs can be guaranteed, as shown in Eq. 24.
[image: image]
where [image: image] represents the renewable energy generation, which is the sum of the generation of photovoltaic [image: image] and wind turbine [image: image]. [image: image] represents the total amount of the electrical load.
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where [image: image] and [image: image] represent the total amount of heating and cooling loads. [image: image] and [image: image] represent the dispatch power of transferable loads, and >0 represents transfer, resulting in a decrease in the total load; <0 indicates an increase in the total load transferred in.
2) CCHP unit operation constraints:
The operational constraints of CCHP units in the microgrid are simplified as upper and lower bound constraints for energy conversion:
[image: image]
where [image: image], [image: image], [image: image], and [image: image], respectively, represent the maximum conversion power of the gas turbine, gas boiler, waste heat recovery, and electric cooler.
3) Controllable load call constraints:
The call of the controllable load should be within its maximum load loss ratio, as shown in Eq. 26. The transferable cold and hot loads should ensure that the total amount of transferred power remains unchanged during the total scheduling cycle and should also include upper and lower limit constraints on the transferred power and total transfer amount constraint. Transferable hot load is taken as an example to illustrate:
[image: image]
where [image: image] is the proportion of the maximum power loss load.
[image: image]
where [image: image] represents the maximum thermal power limit that can be transferred each time the heat load is transferred and [image: image] represents the maximum power limit that can be transferred during the total scheduling cycle.
5 SOLUTION OF THE ENERGY TRADING MODEL
The energy trading model of the multi-microgrid energy storage alliance has the characteristics of non-linearity and complex constraints. To solve the aforementioned model, a novel swarm intelligence algorithm, the improved moth–flame optimization (IMFO) algorithm, is proposed. The solution flowchart is shown in Figure 4. The improvement strategies are as follows:
1) Average entropy initialization is introduced to ensure global diversity.
2) Levy flight is introduced to avoid “precocity” in the algorithm.
3) Variable scale chaotic strategy is adopted to increase local search performance.
4) The scaling factor concept is integrated in differential thinking into the MFO algorithm to enhance the algorithm’s ability to solve large-scale problems.
[image: Figure 4]FIGURE 4 | Improved moth–flame optimization algorithm process.
The specific strategy collaboration can be found in the work of Wu et al. (2023).
In order to overcome the randomness of the metaheuristic algorithm during the solving process, the results of the examples in this paper are all the optimal values of the improved moth to flame algorithm after running independently for 30 times. For complex constraints such as energy storage, elastic load operation constraints, and power balance equation constraints, dynamic relaxation constraint processing (He et al., 2021) is used to ensure the feasibility of the solution.
6 EXAMPLE ANALYSES
6.1 Situation description
Based on the alliance structure in Figure 1, the participating individuals of the multi-microgrid energy storage alliance in the calculation example are determined including superior power grid enterprise, energy storage, microgrid A, and microgrid B. The efficiency values of CCHP units in the microgrid mainly refer to the work of Roy and Das (2023), and some units such as waste heat recovery devices have been modified according to the actual situation. The call cost coefficients of each CCHP unit refer to the work of Ma et al. (2023), and the specific settings are shown in Table 1. Based on the actual situation and the work of Gough et al. (2023), the virtual power plant is extended to a virtual energy plant, and the schedulable loads and parameters of various virtual energy plants contained within two microgrids are shown in Table 1.
TABLE 1 | Parameter settings related to intelligent microgrids.
[image: Table 1]The maximum proportion of the load that can be reducible during the operation is the proportion of the total load that can be reducible in the microgrid. The daily forecast of various loads and renewable energy output in each microgrid is shown in Figure 5.
[image: Figure 5]FIGURE 5 | Prediction of various loads and renewable energy outputs of each microgrid. (A) Prediction of various loads and renewable energy output of microgrid A, and (B) Prediction of various loads and renewable energy output of microgrid B.
6.2 Analysis of energy trading results in the non-cooperative mode
In the NCM, both electricity and gas prices are set by the superior power grid and gas grid, as shown in Figure 6, and other participating entities are forced to accept them. The operating cost coefficients are [image: image] = 0.217 and [image: image] = 0.2189 for the generator set. The frequency regulation quotation of the generator set and energy storage is approximate to the marginal cost of each system. The call cost coefficients for each elastic load are shown in Figure 6.
[image: Figure 6]FIGURE 6 | Hourly electricity/gas price and elastic load call cost coefficient.
The scheduling plans for each CCHP unit in microgrids A and B are shown in Figures 7A, B; the controllable load scheduling plan is shown in Figures 7C, D, and the scheduling plans for the superior power grid and energy storage are shown in Figure 7E.
[image: Figure 7]FIGURE 7 | Microgrid, superior power grid, and energy storage scheduling plan in the non-cooperative mode. (A) Microgrid A CCHP units scheduling plan, (B) Microgrid A controllable load scheduling plan, (C) Microgrid B CCHP units scheduling plan, (D) Microgrid B controllable load scheduling plan, and (E) Superior power grid and energy storage scheduling plan.
Figures 7A, C show that microgrids A and B can achieve energy supply and demand balance within their respective regions by dispatching CCHP units. In order to reduce the cost of purchasing electricity from microgrids, the main power supply equipment, the gas turbine, reaches its rated power at multiple times, and the power curve is driven by real-time electricity prices. Figures 7B, D show that in the NCM, except for the participation of the RLe-type load in scheduling during certain periods, TLh/c did not effectively participate in scheduling, and the initiative of the demand side was not fully utilized. Figure 7E shows that the frequency regulation demand of the superior power grid is mainly led by the thermal power unit, and the energy storage cooperates to complete the total frequency regulation demand. From the scheduling curve of the energy storage, it can be seen that energy storage is not effectively utilized in the NCM.
6.3 Analysis of energy trading results in the cooperative mode
In the CM, all participating entities in the alliance determine the transaction price and electricity consumption through negotiation. The trading price is set with different fluctuation ranges according to the peak/valley of electricity consumption (Mei et al., 2023), as shown in Table 2.
TABLE 2 | Division of electricity price for different time periods.
[image: Table 2]Starting from the transaction methods and scheduling plans of participating entities in the alliance in the NCM and CM, this section compares the revenue situation of the two modes, analyzes the initiative of demand side participation, and explores the utilization of energy storage under different transaction modes.
6.3.1 Comparison of revenue
The comparison of the costs and benefits of the microgrid, superior power grid, and energy storage between the NCM and CM is shown in Table 3.
TABLE 3 | Comparison of costs or benefits among participating entities under two trading modes.
[image: Table 3]Table 3 shows that in the CM, the cost of the microgrid group is reduced by 31.06% compared to the NCM and the cost of the superior power grid is reduced by 10.11%. This is because in the NCM, the microgrid only receives power from the superior power grid and has no other options except for electricity trading with the superior power grid. This makes it difficult for microgrids to effectively consume surplus electricity while meeting their own energy needs, resulting in resource waste. The abandoned electricity of microgrids in the NCM is shown in Figure 8. The CM grants participants the right to choose and make decisions, and the microgrid sells surplus electricity to any other entity, thereby reducing costs.
[image: Figure 8]FIGURE 8 | Abandoned power of microgrids in the non-cooperative mode.
Figure 9 shows the average transaction price of electricity sold by entities within the alliance under the CM. The transaction prices during each period are controlled by the alliance and are within the pre-set peak/valley fluctuation range, which is energy storage > microgrid B > superior grid > microgrid A. This is because microgrid A contains a large amount of wind and solar power generation, and renewable energy is not included in the power generation cost in the text, greatly reducing the purchase cost of microgrid A and making the transaction price of electricity sold through microgrid A the lowest. The energy storage does not contain energy generation devices and can only maintain its own charging and discharging balance by purchasing electricity, resulting in the highest transaction price for selling electricity through energy storage. Microgrid B and the superior grid each contain a small number of photovoltaic and thermal power units with intermittent characteristics, and the power generation cost of thermal power units is lower than the cost of purchasing electricity from other entities. Therefore, the transaction price of electricity sold through microgrid B and the superior grid is between shared energy storage and microgrid A.
[image: Figure 9]FIGURE 9 | Average transaction price of electricity sold by each participating entity.
6.3.2 Comparison of demand-side response levels
Under the CM, the scheduling plan for controllable loads in microgrids A and B is shown in Figure 10.
[image: Figure 10]FIGURE 10 | Microgird controllable load scheduling plan in the cooperative mode. (A) Microgrid A controllable loads scheduling plan, and (B) Microgrid B controllable loads scheduling plan.
Comparing Figure 10 with Figures 7B, D, it can be seen that under the influence of the “buy–sell” competitive market trading model, the CM can promote the demand side to fully leverage its initiative. Driven by transaction prices, the demand side in the microgrid participates in scheduling as much as possible during peak electricity consumption periods. The microgrid sells surplus electricity to other participating entities in the alliance to obtain more profits, which is consistent with the analysis of the results shown in Table 3.
6.3.3 Comparison of energy storage utilization
Under the CM, the charging/discharging plan for shared energy storage within the alliance is shown in Figure 11. Comparing Figure 11 with Figure 7E, it can be seen that energy storage belongs to the superior power grid under the NCM, and there is only electricity exchange with the superior power grid, which makes the energy storage system not effectively utilized. In the CM, energy storage transactions are conducted among multiple parties, motivated by price incentives, to purchase electricity from market entities with lower transaction prices while meeting the electricity demand of other participating entities, in order to maintain their own charging and discharging balance. Under this trading mode, the utilization rate of the energy storage system has increased, and the profits have also correspondingly increased, which is consistent with the results of the increased benefits of shared energy storage in Table 3.
[image: Figure 11]FIGURE 11 | Energy storage charging and discharging plans under the cooperative mode.
7 CONCLUSION
Against the backdrop of accelerating the transformation of energy supply side structure in China, a multi-microgrid energy storage alliance energy trading strategy based on Nash negotiation is proposed for the electricity market mechanism and trading mode of multi-market entities in the micro grid with a high proportion of renewable energy access, with a “buy–sell” electricity market pattern. Through simulation, the following conclusions can be drawn:
1) A “buy–sell” cooperative and competitive electricity market trading model was constructed based on Nash negotiations, promoting healthy competition among participating entities within the alliance, attracting more participants to join, and promoting sustainable development of the electricity economy
2) The cooperation model based on Nash negotiation can significantly reduce/improve the costs/benefits of participating entities in energy trading
3) The cooperation model based on Nash negotiation can fully leverage the initiative of demand-side participation in scheduling, improve the utilization rate of energy storage systems, and promote the sustainable development of effective energy utilization and sharing mechanisms
In subsequent research, the regulatory needs of various market entities at different time scales will be considered, and further research will be conducted on the configuration and operation strategies of shared energy storage systems under stable support needs at multi-time scales.
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In order to further improve the efficiency of energy utilization, Integrated Energy Systems (IES) connect various energy systems closer, which has become an important energy utilization mode in the process of energy transition. Because the complex and variable multiple load is an important part of the new power system, the load forecasting is of great significance for the planning, operation, control, and dispatching of the new power system. In order to timely track the latest research progress of the load forecasting method and grasp the current research hotspot and the direction of load forecasting, this paper reviews the relevant research content of the forecasting methods. Firstly, a brief overview of Integrated Energy Systems and load forecasting is provided. Secondly, traditional forecasting methods based on statistical analysis and intelligent forecasting methods based on machine learning are discussed in two directions to analyze the advantages, disadvantages, and applicability of different methods. Then, the results of Integrated Energy Systemss multiple load forecasting for the past 5 years are compiled and analyzed. Finally, the Integrated Energy Systems load forecasting is summarized and looked forward.
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1 INTRODUCTION
1.1 Motivation and background
Energy is the basis for human survival and development and the lifeblood of the national economy. How to ensure the sustainable supply of energy for human society while reducing environmental pollution in the process of energy use is a common concern in the world today. The further consumption of non-renewable energy leads to serious energy crisis and environmental pollution, which forces us to break the original mode of separate planning, separate design, separate construction and independent operation of each energy source and ultimately to achieve the construction and development of IES. In other words, the development and construction of IES is an inevitable choice to solve the energy crisis, improve environmental pollution, achieve optimal energy efficiency, and promote the use of renewable energy on a large scale.
The IES takes the electric power system as the core and realizes cooperative management and complementary mutual assistance among various energy systems through its many types of energy conversion equipment and energy storage equipment (Li et al., 2021; Zhu et al., 2021). The synergistic operation of multiple energy systems results in a strong coupling of multiple loads, which makes multiple load forecasting more complex and allows a greater amount of internal information to be mined than traditional single load forecasting. Therefore, it is of great practical significance to explore the load forecasting under the coupling conditions of multiple loads of integrated energy systems. In this context, it is crucial to keep track of the latest research progress of load forecasting methods and grasp the current research hotspots and directions of load forecasting for the development and construction of integrated energy systems.
1.2 Research methodology
The methodology of this paper takes four important steps: step 1, choosing electronic databases; step 2, setting the query formulations and search scope; step 3, conducting preliminary search; step 4, performing manual filter.
In Step 1, it was decided to use four publicly available databases - Springer Link, Elsevier, IEEE Xplore, and MDPI. These databases cover a large number and variety of journals, and more influential factors are considered in the citation index, making these databases include a wider range of disciplines, more comprehensive and objective content, and higher authority in relevant research fields. Therefore, it would be more authoritative to screen the literature from these databases for research that fits the topic of study.
In Step 2, the query formulations and search scope are set in these databases. The query formulations consist of key words, logical operators, and search instructions. The keywords were set to load forecasting in the field of integrated energy systems, multi-energy systems, energy internet or multi-energy co-generation systems. The following query formulations were entered to search for relevant literature matching the research topic in the time frame from January 2019 to March 2023:
l) (“Integrated energy system” OR “multi-energy system” OR “energy internet” OR “energy coupling system”) AND (“load forecasting” OR “multiple load forecasting”) AND (“machine learning” OR “deep learning” OR “intelligent learning algorithm”).
2) (“integrated energy system” OR “multi-energy system” OR “energy internet” OR “energy coupling system”) AND (“load forecasting” OR “multiple load forecasting”) AND (“statistical analysis” OR “regression analysis” OR “time series”).
In step 3, the preliminary search result data obtained after step 2 is shown in Figure 1. Figure 1 presents the number of published papers concerning multiple load forecasting for IES from January 2019 to March 2023. Among them, there are 1827 compliant papers in Springer Link database, 2637 compliant papers in Elsevier database, 1788 compliant papers in IEEE Xplore database, and 2257 compliant papers in MDPI database. Despite the fact that 2023 is not over yet (the research was conducted until 31 March 2023), it is easy to see a growing trend in the number of papers published in the years 2019–2022. This confirms that the topic of multiple load forecasting for IES is current. The increasing trend in the annual publications indicates that multiple load forecasting for IES is a developing field of study and has received a lot of attention from scholars.
[image: Figure 1]FIGURE 1 | Graphic representation of preliminary search results in four electronic databases.
In Step 4, the papers from the initial search are manually filtered. Considering the lack of artificial intelligence when searching the literature using these databases, the mismatched papers need to be removed. The search results were carefully screened, analyzed and filtered to ensure that the core contents of the literature were consistent with the topic of integrated energy system load forecasting. The preliminary filtered literature was browsed in full to ensure that the papers focused on load forecasting. A total of 61 papers were finally selected. A generalized analysis of these 61 selected articles shows that load forecasting methods can be divided into two categories: traditional forecasting methods and intelligent forecasting methods. Among them, there are 15 papers related to traditional forecasting methods and 46 papers related to intelligent forecasting methods. The specific screening process is shown in Figure 2.
[image: Figure 2]FIGURE 2 | Manual filtering process and results.
1.3 Paper structure
The rest of the paper is structured as follows. Section 2 provides a brief overview of integrated energy systems and load forecasting. Section 3 discusses the commonly used forecasting methods in two directions: traditional forecasting methods based on statistical analysis and intelligent forecasting methods based on machine learning, and analyzes the advantages, disadvantages, and applicability of different methods. Section 4 summarizes and analyzes the results of IES multivariate load forecasting in the past 5 years. Finally, Section 5 concludes the paper with a summary and outlook on IES load forecasting. The structure of this paper is shown in Figure 3.
[image: Figure 3]FIGURE 3 | Diagram of paper structure.
2 INTEGRATED ENERGY SYSTEM LOAD FORECASTING
2.1 Structure and types of IES
2.1.1 Coupling structure of IES
IES is based on energy input, conversion, storage and output to achieve the coupling and complementarity of different energy sources, promote the full consumption of renewable energy and flexible conversion between supply and demand of multiple energy sources, so as to meet the demand of multiple loads and improve the efficiency of energy utilization. The IES is a multi stream integrated system, which breaks the traditional compartmentalized state of multiple energy streams such as cold, heat, electricity, and gas. Figure 4 shows the structure of the IES, in which the multi energy coupling characteristics are shown visually.
[image: Figure 4]FIGURE 4 | Schematic diagram of integrated energy system structure.
Multiple energy flows in the system operate in concert through energy conversion devices. These include electricity to gas, electricity to heat, electricity to cold, and combined cooling heating and power (CCHP). A CCHP system typically include Waste Heat Boiler, Absorption Refrigerator and Gas Turbine. The gas uses the gas grid to supply natural gas combustion to generate electricity to the power grid, while the combustion produces flue gas to provide heat to the system through a waste heat boiler and cold energy to the system through an absorption refrigerator.
2.1.2 Different types of IES
Multiple types of I applications, i.e., classification of integrated energy systems. This chapter discusses the categorization for different application scenarios and application subjects, subdividing the integrated energy system into industrial park integrated energy system, agricultural integrated energy system and urban integrated energy system. These categorized integrated energy system multi-energy coupling structures are designed to combine specific application subjects on the basic structure. Integrated energy systems containing renewable energy generation and hydrogen storage are also mentioned in the classification discussion.
Integrated energy systems for industrial parks are the most common type of application. Industrial parks are dominated by industrial loads, and the forms of terminal energy use are mainly electricity, heat, gas and cold, etc. The characteristics of energy loads are complex, the requirements for reliability and stability of energy supply are harsh, the operation and scheduling of transmission and distribution systems are complicated, and there is a strong demand for clean, highly efficient, reliable, and economical integrated energy supply services.
The agricultural integrated energy system focuses on gas supply and synergizes renewable energy sources such as solar, wind and geothermal energy to meet the energy needs of the three farmers (farmers, rural areas and agriculture). Farmers’ energy use includes residents’ daily life and travel, rural energy use includes medical care, catering and commerce, and agricultural energy use includes cultivation and harvesting. Comprehensive energy systems for agriculture can realize local energy use and local utilization and alleviate the crisis of industrial and urban energy use.
Unlike the integrated energy system for industrial parks, the urban integrated energy system is closer to the lives of residents with limited energy resources, and focuses more on energy saving and environmental protection (Ke et al., 2022a). The system takes solar energy, distributed wind power, natural gas, and external grid as energy sources, and utilizes internal coupling elements, such as gas turbines, gas boilers, heat pumps, etc., to connect cold, hot, and electrical multi-energy streams as a whole to ensure the load demand of urban residents in their daily lives. The load demand of the residents is usually the cold load for air conditioning, the heat load for heating, the gas load for kitchen and other electrical loads to maintain the normal life of the residents.
At this stage, integrated energy systems that include renewable energy generation (Ke et al., 2022b; Xu et al., 2020a) and hydrogen storage (Xu et al., 2020b) are widely used. For example, the wind-photovoltaic-hydrogen storage integrated energy system (Ke et al., 2023) consists of five parts: an electric power subsystem, a hydrogen storage subsystem, a thermal energy subsystem, a cryogenic subsystem and a natural gas subsystem, where large-scale wind and solar power generation is incorporated into the electric power subsystem, and unabated power is converted into hydrogen energy for storage by using electrolysis cells. The stored hydrogen can be rationalized and used whenever needed regardless of time, location and grid capacity.
2.2 Multiple load forecasting of IES
As the basis for optimal design, operation scheduling and energy management of IES, multiple load forecasting plays an important role. Adopting accurate forecasting methods can make the operation of IES more stable and reliable (Talaat et al., 2020). Short-term multiple load forecasting follows roughly the same steps as short-term load forecasting for power systems. In general, the input and output vectors are first determined based on the characteristic analysis and the actual demand, and then a suitable forecasting model is established for multiple load forecasting. The general steps are shown in Figure 5. In recent years, the traditional statistical analysis-based forecasting method has a more mature theoretical system, mainly using regression analysis (Wu et al., 2022; Feng et al., 2022; Nano et al., 2019) and time series (Ervural et al., 2016; Yu et al., 2019; Wu et al., 2020; Guefano et al., 2020). Their models are simple to calculate and easy to implement, but in the face of complex nonlinear load data, the forecasting effect is unstable and the forecasting accuracy cannot meet the research demand.
[image: Figure 5]FIGURE 5 | IES multiple load forecasting steps.
2.3 Performance evaluation metrics of the load forecasting results
In order to cope with complex nonlinear load data and coupling relationships, intelligent prediction methods based on machine learning are widely used in integrated energy system load forecasting. Due to the wide variety of equipment involved in the system, diverse energy coupling relationships, and complex internal structure, feature selection for multivariate load forecasting is crucial, and it is also a research difficulty in the field of multivariate load forecasting at this stage. Some researchers consider the comprehensiveness of the influencing factors and try to exploit all the factors as input features as much as possible, but this will lead to some irrelevant factors being input into the prediction model, which will affect the accuracy of the prediction; some researchers analyze the correlation of the influencing factors in order to select the most relevant factors as the input features, e.g., the correlation analysis is used to select the input features, but the actual relationship between the multiple loads and the influencing factors is not completely linear. However, the actual multivariate load and the influencing factors are not completely linear, and the application of correlation coefficient has strict condition constraints, and the correlation degree between the factors and the load obtained by correlation analysis may be biased, which affects the final prediction accuracy.
Highly accurate load forecasting is of great importance to the planning and operation of IES. However, there must also be errors between the forecast results and the actual values that cannot be completely eliminated. We can analyze the errors in depth through a series of scientific methods, which can help us have a clearer perception of the forecast results and model performance. The most used metrics and their calculation formulas are discussed in Table 1. In these formulas, [image: image] is the actual value, [image: image] is the forecasting value, [image: image] is the mean value of all of the data and [image: image] is the number of forecasting samples. Usually, the performance evaluation metrics of forecasting (Rafi et al., 2021) contains Mean Square Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and R-squared (R2). The smaller the value of MAE, RMSE and MAPE, the smaller the error, the more accurate the forecasting result and the better the performance. R2 takes a range between 0 and 1, and the closer the value is to 1, the better the fitting effect, and the closer the forecast result is to the true value.
TABLE 1 | Model performance evaluation metrics.
[image: Table 1]MSE and RMSE are squared operations on the difference value, so the larger error value will have a greater impact on the fit, which helps to capture the prediction error of the model more sensitive. Because the squared difference of outliers will be magnified, these two performance evaluation indicators are greatly affected by the outliers. When using them for model evaluation, it is necessary to pay attention to the treatment of outliers and the robustness of the model.
MAE and MAPE have little influence on outliers and are not affected by the positive or negative direction, but do not consider the square of the difference, so it does not magnify the square of the difference value. These two performance evaluation indicators reflect the absolute size of the prediction error rather than the square size of the error relative to MSE and RMSE.
Higher R2 values indicate that the model can fit the data well and its predictive value can explain the variability of the dependent variable. However, R2 can only measure the goodness of fit of the model to the dependent variable, and cannot judge whether the model is overfit or suitable for application in other data sets. Therefore, when using R2 values, other indicators and domain knowledge should be combined for comprehensive evaluation.
3 LOAD FORECASTING METHOD
Current load forecasting methods can be divided into traditional forecasting methods based on statistical analysis and intelligent forecasting methods based on machine learning. This chapter briefly introduces the forecasting methods such as Regression Analysis, Artificial Neural Network (ANN), Support Vector Machine (SVM), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN). It also summarizes and outlines the advantages, disadvantages and applicability of each forecasting method in order to provide reference for future load forecasting.
3.1 Traditional forecasting method based on the statistical analysis
3.1.1 Regression analysis
The regression analysis method builds a regression equation to predict the future trend of the dependent variable based on the analysis of the dependent and independent variables. The model is simple to construct and faster to predict. However, regression analysis requires high historical data, its structural form is too simple, and for more complex problems, it tends to ignore the intrinsic regularity of load changes and has low forecasting accuracy. To solve the problems of slow forecasting speed and low forecasting accuracy of regression analysis model (Wu et al., 2022), proposed an improved regression model based on small batch stochastic gradient descent. Experimental results show that the improved algorithm has significantly improved the forecasting speed than the traditional algorithm. In order to better load forecasting with the help of massive data (Feng et al., 2022), proposed a load forecasting method based on a combination of clustering and iterative logistic regression by taking data analysis as the entry point and choosing logistic regression method as the basic model (Nano et al., 2019). used “calendar” as an important influencing factor as an entry point and used multiple linear regression for load forecasting on different dates to test the feasibility and applicability of load forecasting on Indian calendar with two data sets.
In short, the regression analysis model has a simple principle and structural form and cannot describe the relationship between multiple influences on the fac-tors and load forecasts in detail. Therefore, it is a suitable basis model for addressing short- and medium-term load forecasting problems with large historical data sets.
3.1.2 Time series
3.1.2.1 Univariate time series forecasting
A univariate time series is a series with a single time-dependent variable. The commonly used analytical methods are autoregressive (AR) (Ren et al., 2022), Moving Average (MA) (Hu et al., 2013), Autoregressive Moving Average ARMA (Ervural et al., 2016) and Autoregressive Integrated Moving Average (ARIMA) (Yu et al., 2019; Wu et al., 2020). The advantages, disadvantages and applicability of the four analytical methods are shown in Table 2. Among them, the ARMA model constructed by combining the structural advantages of AR and MA is more accurate and flexible in fitting the data in univariate time series forecasting scenarios (Ervural et al., 2016). constructed a combined forecasting model to improve the accuracy of natural gas load with the help of ARMA model in combination with genetic algorithm (GA). Validated against actual data from a residential and commercial area, the combined GA-ARMA model forecasting results deviated less from the actual data and provided more accurate and effective forecasting.
TABLE 2 | Summary of univariate time series load forecasting methods.
[image: Table 2]The three methods, AR, MA and ARMA, are suitable for forecasting smooth time series. And ARIMA model has good ability to handle smooth series or unsteady series and has become a widely used time series forecasting model for most of the scenario forecasting. The ARIMA model attempts to extract the time series patterns hidden behind the data by means of autocorrelation and differencing of the data, which are then used to predict future data (Yu et al., 2019). Integrated ARIMA model and ANN model to deal with the strong dynamic of electricity load data by integrating seasonal and cyclical characteristics of power load data (Nano et al., 2019). optimized the parameters of ARIMA model with the help of Cuckoo Search (CS) algorithm cuckoo search algorithm to forecast based on the actual electricity load data and proved that ARIMA model showed relatively high accuracy and effectiveness in forecasting short-term electricity load.
3.1.2.2 Multivariate time series forecasting
Multivariate time series have two or more variables that change over time. Each variable is affected not only by its own historical data but also by other variables. Commonly used analytical methods are Vector Autoregressive (VAR) (Jeong et al., 2021) and Vector Autoregressive Moving Average (VARMA) (Razghandi et al., 2021). The VAR model is a generalization of the univariate autoregressive model to a vector autoregressive model consisting of multivariate time series variables. It is used to predict time series vectors or multiple parallel time series (Guefano et al., 2020). combined Grey Model and VAR to construct GM-VAR forecasting model. The MAPE value of the GM-VAR forecasting model was 1.628%, which was validated by the real data set, and achieved a good forecasting result. The higher-order model of the vector autoregressive model, VARMA, incorporates the moving average, which makes the model have stronger time series modeling ability and can also smooth out the noise in the time series data.
The time series method establishes a mathematical model describing the change of load over time based on historical load data, then builds a load forecast expression based on the model, and finally forecasts the future load. This method only considers the time variable, requires less data, and has a fast prediction speed, but the model theory is complex, the smoothing degree of the original data is required to be taught, and other uncertainty influencing factors are not considered, which makes the final prediction accuracy error is larger.
The advantages and disadvantages and the scope of application of traditional prediction methods based on statistical analysis are shown in Table 3. The theoretical system is relatively mature and has the advantages of simple calculation and easy implementation. However, when dealing with large-scale data of diversity, complexity and nonlinearity, the prediction effect is unstable, and the prediction accuracy cannot meet the research needs. Therefore, scholars have shifted their research direction to intelligent prediction methods based on machine learning.
TABLE 3 | Summary of univariate time series load forecasting methods.
[image: Table 3]3.2 Intelligent forecasting methods based on machine learning
In recent years, the amount of multivariate load has increased significantly, and the number of factors affecting multivariate load is increasing, and the difficulty of load forecasting has also increased. This makes the limitations of traditional load forecasting methods based on statistical analysis significant. In order to consider multivariate loads and multiple influencing factors in forecasting, machine learning-based load forecasting methods have shown better forecasting performance in the field of load forecasting and are therefore widely used.
Machine learning is divided into three main categories: supervised learning, unsupervised learning, and reinforcement learning. In supervised learning, we can have an accurate knowledge of the class of the object of study and the model can predict the output based on prior experience. It mainly addresses two types of problems, regression and classification, and commonly used methods include Linear Regression (Dhaval and Dhshpande, 2020), Logistic Regression (Alquthami et al., 2022), SVM (Emhamed and Jyoti, 2021), and ANN (Xu and Wang, 2022). In unsupervised learning, we can analyze the commonalities and differences between the studied objects. It mainly addresses two types of problems, clustering and association, and commonly used methods include K-means (Xiao et al., 2022) and Principal Component Analysis (Veeramsetty et al., 2022). And reinforcement learning (Park et al., 2020) is different from the first two. It does not require any data to be given in advance, but obtains learning information and updates model parameters by receiving feedback from the environment on the actions. It is used to describe and solve the problem of learning strategies by an intelligent body during its interaction with the environment in order to reach reward maximization or achieve a specific goal. In this paper, it is important to introduce SVM, ANN, CNN, RNN and Ensemble Learning (EL) related models. The algorithms are summarized in Table 4.
TABLE 4 | Summary of intelligent forecasting methods based on machine learning.
[image: Table 4]3.2.1 Support Vector Machine
SVM was first used mainly for data classification and has been widely used to deal with load forecasting problems due to its good nonlinear data handling capabilities. Emhamed et al. [21] used SVM to predict the electric load. With the help of real data the MAPE of SVM is minimum compared to other forecasting models. It is proved that SVM has become a reliable and useful forecasting model. SVM converges fast and does not have the problem of number of network layers and local optimal solutions, but the difficulty in determining hyperparameters leads to its poor forecasting results. Therefore, optimization of SVM hyperparameters with optimization algorithms is a key research direction (Dai et al., 2022). proposed a hybrid model incorporating feature selection and parameter optimization to improve SVM (Li et al., 2022). designed an improved sparrow search algorithm to solve the hyperparameter selection problem of SVM models (Zulfiqar et al., 2022). carefully tuned the three parameters of SVM using Multivariate Empirical Modal Decomposition (MEMD) and Adaptive Differential Evolution (ADE) algorithms (Zhao et al., 2022). optimized the combination of SVM hyperparameters by maximizing the fitness function based on particle swarm optimization algorithm. The optimized and improved SVM model outperformed other comparative methods with the lowest MAE, RMSE, MAPE and the highest R2, improving the accuracy and stability of forecasting, as verified by the respective test sets.
The SVM can be extended from classification problems to regression problems to obtain Support Vector Regression (SVR). The SVR model solves forecasting and regression problems by seeking the optimal hyperplane, which can be well suited for high-dimensional computations and reduces generalization errors (Tan et al., 2020; Liu et al., 2022) combined Multivariate Phase Space Reconstruction (MPSR) and SVR. The two complement each other and the predicted values of hot and cold electrical loads derived from this model have minimal errors with the true values, which strongly demonstrates the effectiveness of the SVR forecasting model (Valente and Maldonado, 2020). proposed a kernel penalized SVR algorithm for automatic lag selection and nonlinear regression. The improved SVR algorithm has significant advantages over time series methods and state-of-the-art automated model selection methods in terms of forecasting performance and correct identification of relevant lags and seasonal patterns.
3.2.2 Artificial Neural Network
ANN is a mathematical model based on the basic principles of neural networks in biology, which simulates the processing mechanism of the nervous system of the human brain for complex information. It has good nonlinear feature learning ability and generalization ability (Yu et al., 2019). The model has the function of associative memory, high accuracy of classification, strong distributed parallel processing capability, and strong robustness and fault tolerance for data sets containing a large amount of noisy data. However, ANN also has many drawbacks, such as the large number of parameters required for neural networks, the difficulty of tuning parameters, and the need for extensive data pre-processing work for non-numerical data (Chen and Wang, 2022). applied a multi-objective grasshopper optimization algorithm to optimize the parameter settings of ANN (Xu and Wang, 2022). built a dynamic ANN model based on a simple ANN by applying meta-learning and continuous adaptive ideas. The simulation results show that the optimized ANN model has high accuracy and robustness. However, the deviation of the predicted value from the actual value is also an important indicator to judge the effectiveness of the model. Therefore, to address the deviation forecasting problem (Khwaja et al., 2020),combined integrated learning with ANNs to construct bagged-boosted ANNs models, and (Oreshkin et al., 2021) used the pinball-mape loss function to control the forecasting deviation and achieve a model with lower forecasting error lower and smaller variance and bias.
3.2.3 Deep learning
Under the background of continuous upgrading of computational tools and large-scale increase in the amount of training data, the application of deep learning methods in the field of load forecasting has been widely emphasized. Deep learning models show strong performance in load forecasting by extending the implicit layers or superimposing some specific structures to improve the nonlinear fitting ability. The widely used algorithms are CNN and RNN.
3.2.3.1 Convolutional Neural Network
CNN are used to extract features from things with certain models, and later classify, identify, predict or decide on that thing based on the features, etc. Its structure is highly scalable, and the deep model using multiple layers has a stronger expressive power and can handle more complex classification problems (Aouad et al., 2021; Huang et al., 2022a). However, manual adjustment of parameters is required, model training requires a large sample size, and its physical meaning is unclear. Therefore, research scholars have adopted the “CNN+" approach and combined it with other algorithms to build a combinatorial forecasting model to solve the problems of CNN (Aouad et al., 2021). proposed a CNN-Seq2Seq model with an attention mechanism (Walser and Sauer, 2021). proposed a combinatorial model by combining the advantages of two basic models, decision trees and CNN (Wu et al., 2022). used a K-shape clustering method to divide users with the same electricity consumption habits and characteristics, which provided a better choice of user clusters for forecasting, and then applied CNN to capture the features, making CNN has better performance in load forecasting. It is experimentally demonstrated that the new combined model has significantly reduced the values of several performance evaluation indexes such as MAE, RMSE and MAPE compared to the related forecasting models, which improves the overall quality of forecasting.
3.2.3.2 Recurrent Neural Network
RNN is an extension of traditional feedforward neural network. It can handle variable length sequences and effectively solve the gradient vanishing and explosion problems. RNN are roughly divided into two broad categories: derived RNN and combined RNN.
The first class is derived RNN, which modifies the internal structure of RNN. For example, Gate Recurrent Unit (GRU) to solve the long-term dependency relationship problem, Long Short-Term Memory Neural Network (LSTM) to solve the gradient disappearance or gradient explosion problem, and Bi-directional Recurrent Neural Network (BiRNN) to solve the bi-directional information acquisition problem.
1) Long Short-Term Memory Neural Network
(Ouyang et al., 2023) used LSTM forecasting algorithm for electric cooling load forecasting (Wu et al., 2023). developed a load forecasting model based on LSTM neural network for industrial enterprises. It was proved by example that LSTM performs well in load forecasting. However, the LSTM itself has a complex structure and has a significant drawback that it has more parameters and is not easy to adjust the parameters than a normal neural network. To address this problem (Hu et al., 2022), applied the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and the Improved Grasshopper Optimization Algorithm (IGOA) were applied to the parameter optimization of LSTM to obtain a load forecasting model with optimal parameters. With the help of test set validation, the optimized LSTM ranks highest in forecasting performance and has higher forecasting accuracy when performing load forecasting compared to related models (He et al., 2019). used variational mode decomposition (VMD) method to optimize LSTM based on Bayesian optimization algorithm (BOA). The proposed forecasting method is applicable to time series data of various types of loads. Using data from four-quarters of a certain year in Hubei Province, China for simulation, the results show that the forecasting model can better fit the actual load curve and has high forecasting accuracy.
The problem of “long-term dependence” is common in RNN training, resulting in gradient disappearance or gradient explosion, which is effectively solved by LSTM (Sun et al., 2022). used LSTM model for load forecasting and optimized the model with parameter values. After the test set validation, the load forecasting curve derived with the help of LSTM model is more consistent with the actual load curve and has good forecasting performance. Although the LSTM can solve the long-term dependence problem, there is still the problem of not capturing the short-term interdependence when the time series is too long. To solve this problem (Ren et al., 2022), used an autoregressive algorithm that combines LSTM and CNN to extract spatio-temporal features in multiple time dimensions. The combined CNN-LSTM model was compared with ARIMA and LSTM forecasting models, and the forecasting accuracy was improved by 2.169% and 17.887%, respectively, proving that the model has higher forecasting accuracy in the short-term load forecasting performance of electricity, heat and cooling.
In recent years, to further load the forecasting accuracy, research scholars have proposed many variants of LSTM to obtain shorter training time and better forecasting results. For example (Pei et al., 2020), changed the characteristics of the original gates of the LSTM and the transmission method of the units to perform multi-step forecasting (Zheng et al., 2021). improved the LSTM infrastructure in order to solve the nonlinear relationship between multiple loads and the influencing factors in IES, and proposed the Deep Bidirectional Long and Short-Term Memory (DBiLSTM). This model learns historical load data simultaneously in both forward and backward directions to mine more useful information (Deepanraj et al., 2022). construct an Attention-based Bidirectional Long and Short-Term Memory (ABiLSTM) (Wang et al., 2021). construct a multitask learning model based on ResNet-LSTMand attention mechanism. With the help of MAE, MAPE, RMSE, R2 and other indicators to evaluate the electric cooling and heating gas load forecasting results, it can be concluded that the variant model has better forecasting performance and higher forecasting accuracy than the base model, and will still play an important role in the field of load forecasting in the future.
2) Gate Recurrent Unit
RNN is difficult to capture dependencies with large time step distances in time series in practice. The GRU is proposed to capture this layer of dependencies better. Compared with the LSTM, the GRU has fewer parameters and is faster to train and run. However, GRU cannot consider the state at future time, so the forecasting accuracy cannot be further improved. To solve this problem, (Xuan et al., 2021). Improved the traditional one-way GRU into a Bidirectional Gated Recurrent Unit (BiGRU) to capture valid information from the past and the future. Compared with a single CNN and GRU forecasting model, the hybrid CNN-BiGRU model has smaller values for two evaluation metrics, MAPE and RMSE, which respond to the degree of deviation of the predicted value from the true one. To make GRU play a greater role in load forecasting (Wang et al., 2021), incorporated quantum-weighted neurons into the GRU to construct a Quantum-Weighted GRU (QWGRU) with stronger information processing and optimization capabilities and higher forecasting accuracy than the traditional GRU.
The second category is combinatorial RNN. It combines simple RNN with other algorithms or forecasting models. The combined models have complementary advantages, which results in better model results and is a very effective means.
(Li et al., 2022) proposed a combined CNN-GRU forecasting model based on IES small sample data by combining the advantages of coupled feature extraction of CNN and time series processing of GRU. The combined model extracts coupling and correlation features from the input data better than other models, further optimizing the model performance. Using this model, the forecasting accuracy of hot and cold electrical loads is improved. In terms of the performance metric MAPE, the CNN-GRU model improved the forecasting accuracy by at least 1% compared to the single model and other combined models. Du et al. (Du et al., 2020) combined three-dimensional CNN (3D CNN) and GRU to extract valuable data from three dimensions, depth, width, and height, to capture the temporal attributes with features. The features are then mapped to future predictive loadings using nonlinear regression with memory. Finally, the forecasting error evaluation index values of MAE and RMSE are 2.14% and 2.76%, respectively, as verified by the test set, and the combined forecasting scheme achieves good accuracy and stability.
3.2.3.3 Deep learning combination model
Deep learning models can mine the features of load datasets at a deeper level and improve the forecasting accuracy. However, problems such as complex model framework and difficult parameter selection need to be solved. Selecting models with complementary strengths for combination is a very effective solution.
It is known from the above introduction that LSTM can accurately capture the pattern information of time series, and CNN can extract valuable features from time series. Therefore, research scholars integrate the advantages of both the long time series processing potential of LSTM and the feature extraction capability of CNN to construct forecasting models as a way to improve the speed and accuracy of load forecasting. Ren et al. (Ren et al., 2021) proposed a hybrid CNN-LSTM. The convolutional layer of CNN is used to capture the features of power load data and LSTM unique cellular structures are used for power load forecasting. Zhang et al. (Zhang, 2022) extracted data features by CNN to construct feature vectors, and then input the feature vectors into the Simulated Annealing Particle Swarm Optimization (SAPSO) modified LSTM by simulated annealing particle swarm optimization algorithm for training. Shang et al. (Shang et al., 2021) proposed a multivariate and multistep hybrid model based on CNN and LSTM by considering historical load data and influencing factors such as weather, date and economy, namely, MMCNN-LSTM. After experimental demonstration and comparative analysis, the combined model containing CNN-LSTM has the best performance in error performance index, with high accuracy and good practicality and stability.
3.2.4 Ensemble Learning
Ensemble Learning (EL) belongs to the algorithmic model of machine learning. It is different from the principle of combinatorial model building. Instead of combining individual sub-models complementarily, it accomplishes the task by building multiple learners. Firstly, it generates a set of base learners and then combines these base learners according to certain rules to improve the generalization ability of the model, which has good results and is widely used in various fields (Xu and Wang, 2022; Yao et al., 2022). The commonly used EL algorithms are Bagging, Boosting, Stacking and Blending.
Bagging is one of the first EL algorithms. It is simple in structure but superior in performance. Bagging takes several weak machine learning models and aggregates their forecasting to produce the best forecasting. Bagging greatly reduces errors due to random volatility of training data, thus avoiding overfitting and improving forecasting accuracy and stability (Cai et al., 2022; Qiu et al., 2017) used the Bagging algorithm to sampling to construct a sample set, and used historical load data and influencing factors such as weather conditions as input data to construct a combined kernel function vector machine forecasting model for short-term load forecasting, which effectively reduced the forecasting error and improved the forecasting accuracy.
Boosting is similar to Bagging. It also obtains multiple base learners by repeated sampling, and then finally a strong learner is obtained. However, unlike the Bagging, Boosting is weight-based learner integration where the sample weights are continuously updated (Khwaja et al., 2020). combined bagging and boosting to train ANN to construct a combined bagged-boosted ANN forecasting model. This combined model contains several ANN models trained in parallel and the forecasting load results from these models are averaged to obtain the final forecasting load, which effectively reduces the forecasting error and improves the forecasting accuracy.
Stacking integrates multiple primary learners. It combines the advantages of different learners to make the forecasting model with strong generalization capability. Further, meta-learner is used to optimize the output results of primary learners to improve the overall forecasting accuracy (Gao et al., 2022; Chen and Wang, 2021) developed an IES electric load forecasting model considering load synergy based on Stacking Ensemble Learning, combining Back Propagation network, SVR, Random Forest and Gradient Augmented Decision Tree. It was experimentally verified that the synergistic forecasting model has lower MAE and MAPE metrics and higher forecasting accuracy (Shi et al., 2023). proposed a load forecasting method based on multiple differentiated models under Ensemble Learning architecture. The validity of the model was verified by using Swiss load data to calculate multiple model forecasting error metric values.
The Blending fusion algorithm consists of two forecasting parts, the base learner and the meta-learner. The data is divided into two parts: training data and test data. The training data is subdivided, and after the division, part of the training data is used to train the base model and part is used as a new feature to train the meta-model after model forecasting. The test data is similarly predicted by the base model to form the new test data. The Blending model can take advantage of the differences in the forecasting principles of each model to achieve the complementary advantages of each model (Xu and Wang, 2022). selected weak machine learning models such as KNN, GRU, SVR, etc. to embed the EL model of Bagging as the base learner of the Blending fusion model to enhance the stability of the model. Finally, the model is validated with New England electricity load data. The proposed model has the lowest forecasting error and the best stability and generalization ability of the forecasting model compared with other related models.
To summarize, machine learning-based forecasting models have been widely used for short-term load forecasting. However, some models ignore the importance of feature mining, parameter fine-tuning, and forecast stability. Therefore, intelligent forecasting methods based on machine learning are still in the process of optimization and upgrading.
4 CURRENT STATUS OF MULTIPLE LOAD FORECASTING RESEARCH
Through the literature collation and analysis in the past 5 years, the difficulties of load forecasting in IES are mainly reflected in two aspects: complex influencing factors and difficulties in solving the forecasting model. Since IES comprehensively covers energy forms such as electricity, gas, heat and cold, it will be influenced by numerous factors, such as time, weather and economy. Ignoring these influencing factors will greatly reduce the accuracy of forecasting. The complexity and diversity of the influencing factors also lead to a significant increase in the difficulty of solving IES load forecasting models.
Some researchers consider the comprehensiveness of the influencing factors and try to exploit all the factors as input features as much as possible, but this will lead to some irrelevant factors being input into the prediction model, which will affect the accuracy of the prediction; some researchers analyze the correlation of the influencing factors in order to select the most relevant factors as the input features, e.g., the correlation analysis is used to select the input features, but the actual relationship between the multiple loads and the influencing factors is not completely linear. However, the actual multivariate load and the influencing factors are not completely linear, and the application of correlation coefficient has strict condition constraints, and the correlation degree between the factors and the load obtained by correlation analysis may be biased, which affects the final prediction accuracy.
4.1 Multiple load forecasting of the influencing factors
Therefore, research scholars explore the coupling relationship between loads and loads and loads and influencing factors in the integrated energy system, and construct a combined forecasting model with multi-model fusion to improve the efficiency and accuracy of multivariate load forecasting.
In contrast to a single energy system, the different types of energy in IES are coupled to each other through energy conversion equipment. Therefore, different types of loads are coupled with each other. It is necessary to consider the coupling relationship between different types of loads when making integrated energy load forecasting.
Ren et al. (Ren et al., 2022) analyzed the nonlinear relationships among cold, heat, and electricity loads and the relationships between loads and influencing factors such as temperature and holidays based on Copula theory, and screened the input factors for load forecasting based on the degree of influence (Li et al., 2022). used Pearson correlation coefficients to quantify the coupling relationships among loads and the temperature and humidity, wind speed, and solar intensity, etc. and the correlation information between historical loads. The most correlated influences were selected as input variables for the model, reducing the redundancy of influences (Niu et al., 2022). used Pearson correlation coefficients to analyze the correlation between cold, heat, and electrical loads and external factors (e.g., new energy power, temperature, and humidity) (Liu et al., 2022). qualitatively analyzed the coupling characteristics between IES cold, heat, and electrical loads and used Pearson correlation coefficients the coupling characteristics. And Pearson correlation coefficient is used to quantitatively describe the correlation between multiple loads (Zhang, 2022). introduced a multi-task learning method to extract the coupling relationship between IES temperature, humidity, wind speed and multiple energy sources (Wang et al., 2020). constructed a coupling feature matrix to represent the multi-energy coupling characteristics. It breaks the independence between different forms of energy, effectively reflects the cross-influence between cooling, heating and electrical loads, and achieves a comprehensive multi-energy analysis of IES. Huang et al. (Huang et al., 2022) used feature clustering to analyze the influence of different environmental factors on the electric cooling, heating and air load forecasting results, and then used the K-means clustering algorithm to establish feature clustering models of various energy loads to obtain IES load forecasting results. In the subsequent experimental validation, it is known that the load forecasting error of the model considering the coupling relationship between loads is the smallest, which confirms the necessity of coupling analysis.
In summary, there are four categories of possible input variables for the IES multivariate load forecasting model.
1) weather factors: temperature, humidity, wind speed, and barometric pressure.
2) Temporal factors: weekdays, holidays.
3) Economic factors: GDP per capita, electricity price, electricity, new energy, carbon trading price, hydrogen price.
4) Technical conditions: historical load data such as cold, heat, electricity, gas, and hydrogen (Ke et al., 2023).
Analyzing the load historical data and influencing factors, considering the coupling relationship between load and other factors in the system, makes the multivariate load forecasting with high forecasting efficiency and accuracy. It can better guide the optimal design and energy management of IES, thus ensuring that IES can operate economically, safely and reliably.
4.2 Combined forecasting methods for multiple load
The complexity and diversity of influencing factors lead to a significant increase in the difficulty of solving IES load forecasting models. The selection of models with complementary strengths for combination construction is a hot topic in current load forecasting research.
Different multivariate load prediction models differ greatly in terms of sample processing, feature selection, model parameter optimization, etc., which makes it difficult to have a complete prediction model that can be applied to all data analysis domains, i.e., each model has its own advantages and applicable scenarios. Meanwhile, real data often contain many uncertainties, such as noise, random interference, distortion, missing values, etc., which all have a great impact on the performance of prediction models. At this time, different types of models can be combined to play their respective advantages, avoiding the shortcomings of each model to achieve the purpose of improving the prediction performance. The common form of the combined prediction model is the weighted average of the individual prediction models, so the focus of the combined prediction model is on the determination of the weighting coefficients. If the weighting coefficients of the individual prediction models are assigned reasonably, the prediction accuracy of the whole combined prediction model will be improved accordingly.
From the literature review results, it can be found that CNN combined with LSTM for correlated multivariate load forecasting is widely used (Qi et al., 2020). constructed a CNN-LSTM combined model to extract the coupling features between electric, cooling and thermal loads using CNN and input the coupling features into LSTM for load forecasting. The experimental results show that the combined CNN- LSTM model has higher forecasting accuracy than the wavelet neural network model, CNN model and LSTM model (Ren et al., 2022). effectively combined the linear statistical capability of AR with the ability of CNN and LSTM to extract features to build a multidimensional feature fusion AR-CNN-LSTM multi-load forecasting model. This model can extract coupled and periodic features implied in IES load data from multiple time dimensions (Wang et al., 2020). proposed a CNN-BiLSTM-based load forecasting method to fully exploit the temporal and spatial correlation of data and improve the forecasting accuracy (Yao et al., 2022). constructed Attention-CNN based on the attention mechanism -DBILSTM for short-term load forecasting method. With the help of real IES data for forecasting, the proposed model reduces the average forecasting error by about 2%, which effectively improves the forecasting accuracy.
In addition, multi-task learning (Guo et al., 2022) has also received much attention in model design because it can effectively extract features (Zhang, 2022). constructed a CNN-Seq2Seq model with the help of a multi-task learning approach to extract the complex coupling relationships between different energies of IES, taking into account the coupling relationships of temperature, humidity, wind speed and multiple energy sources. The training set validation yielded that the cold, heat and electricity load forecasting results were closer to the real values (Huan et al., 2020). proposed a load forecasting method based on deep learning and multi-task learning. The forecasting curves of electricity, hot and gas loads were validated by the actual data set loads, and the MAPE values of the proposed model for electricity, hot and gas were lower than those of the comparison model. It proved that the proposed forecasting model has excellent performance in terms of computational efficiency and forecasting accuracy (Wang et al., 2022). used a multi-task model to establish a joint electric-heat-cool load forecasting model considering the strong and complex coupling characteristics among multi-energy loads. The average variation value of MAPE obtained from the experiment was 0.0356%, and the forecasting error was extremely small (Zhang et al., 2020). proposed a deep multitask learning method for electricity, hot and gas loads forecasting based on deep belief networks and multitask regression layers, with the help of which the model can effectively analyze the complex coupling relationships between several input information types, resulting in an improvement in the forecasting accuracy of all three loads by The forecasting accuracy is significantly improved by about 2%.
5 CONCLUSION AND FUTURE RESEARCH TRENDS
5.1 Review summary
Nowadays, demand is changing dramatically and the total demand for energy continues to grow. IES has achieved rapid development and widespread application in the field of energy to meet the different energy needs, while ensuring as much efficiency and efficiency as possible in energy supply. Complex and interdependent loads require accurate and effective load forecasts to provide data support for subsequent system planning. In this context, the paper examines many references to track the latest research progress of load forecasting methods and to understand current research points and load forecasting directions. The results of the IES multi-load forecast research over the past 5 years have been compiled and screened, and detailed comparisons and analyses are carried out to provide intuitive and practical references for subsequent multi-variable load forecast research.
1) Introduction of integrated energy systems’ coupling structures and energy conversion equipment, analysis of the coupling relations between energy conversion pathways, transmission characteristics, and multiple energy sources such as heat and cold, and studies of the intrinsic connections between multiple loads and related factors such as climate (such as temperature and humidity, solar radiation intensity, wind speed, rainfall), economy (such as GDP, energy prices), and date. The intrinsic link has shown that IES can successfully achieve optimal planning and synergistic use between different energy systems and maximize the benefits of IES while increasing the proportion of renewable energy.
2) Traditional statistically-based forecasting methods (such as regression analysis, one-variable time series, and multivariable time series) are introduced, and three aspects are studied in comparison to commonly used forecasting methods: advantages, disadvantages, and applicability. Today, integrated energy systems collect large amounts of data with decentralization, diversity, complexity and real-time characteristics. Therefore, traditional statistical analysis prediction methods require a high requirement for sample sizes, dimensions, depths and data quality, and in future research, input data sets must be improved to obtain more accurate forecast results.
3) Intelligent forecasting methods based on machine learning, such as SVM, ANN, DL, EL and combinatorial prediction, are introduced, and relevant derivative models, such as GRU, LSTM and DbiLSTM, are further explored on the basis of simple models. By studying the intelligent forecasting methods, it can be concluded that, firstly, the forecasting effect of the combined model is significantly better than that brought by a single model in the case of large amount of data and many influencing factors. Second, with the powerful feature learning ability and fault tolerance of deep learning, applying it to traditional machine learning algorithms, such as SVM and genetic algorithm, can effectively handle the massive data and complex calculations in load prediction and improve the precision of multivariate load prediction. However, the training process is more complex and time consuming, and hyperparameter optimization is difficult, which requires in-depth research in related fields in the future. Third, deep learning algorithms based on an integrated learning framework can effectively extract the advantages of each base model, discard the shortcomings of deep learning algorithms in model training, weight setting, hyperparameter optimization, etc., and then use metamodels for classification and achieve excellent forecasting results.
5.2 Future research trends
At present, IES multiple load forecasting is still a relatively cutting-edge topic, and the related theoretical system is not yet perfect. It is believed that in the near future, a more complete system and more accurate forecasting methods will appear. In this paper, only some of the IES multiple load forecasting methods are summarized, and the methods not covered still need to be studied in depth. Regarding the future research directions, based on the literature study in this paper, the following points are proposed:
First, there are many factors affecting IES multiple load, and only some current mainstream and highly relevant influencing factors are selected for discussion in this paper. However, the influencing factors always increase with the development of IES, such as geographic conditions like topography and landscape, demand response, user characteristics, and major social events also affect the accuracy of multiple load forecasting to some extent, which should continue to be explored in depth in the subsequent research.
Second, as the structure of new power systems becomes more and more complex, data-driven methods that are more adapted to the development of IES should be applied, and the future development trend is more focused on deep learning, integrated learning, reinforcement learning, migration learning, and new machine learning such as meta-learning and fuzzy reasoning. Among them, Deep Learning algorithms are the most widely used among many data-driven methods, and the three areas of hyperparameter optimization, parameter training tuning and performance evaluation of its prediction models are the focus of future scholars’ research. Processing with heuristic algorithms, such as particle swarm optimization algorithm, ant colony optimization and simulated annealing method, can make the load forecasting based on DL algorithms more effective.
Third, the goal of combinatorial predictive modeling is to take advantage of the strengths of the models involved, integrate the strengths of different models through an effective combination approach, and overcome the shortcomings of each of the models, so that the combinatorial predictive model can better mine the useful information present in the data. At the present stage, the combined prediction model is based on the weight assignment method, which assigns different weights according to the performance of individual models. The method is easy to be realistic and has strong adaptability to the data, and the prediction performance is relatively stable, but the weights of individual models are often assigned based on experience or simple calculations, which is not very scientific. In the future, more attention should be paid to the combination method based on model structure and parameter selection. Because the hyperparameters determine the solution rate and accuracy of the model, this combination method is to optimize the prediction model to improve the performance of the model, and it is also one of the key research directions in the field of multivariate load forecasting in the future.
Fourth, after the new energy sources, such as wind power and photovoltaic, and the new loads, such as energy storage, electric vehicles and virtual power plants, are connected to the grid on a large scale, the integrated energy system presents highly complex volatility and uncertainty, and the large amount of multiple heterogeneous data increases the difficulty of data analysis. In this context, with the help of the deterministic forecasting methods discussed in this paper, the forecasting results are subject to ineradicable errors, and the multiple loads are difficult to be accurately forecasted. Therefore, the future research direction may be more inclined to probabilistic forecasting. Probabilistic forecasting differs from deterministic forecasting methods in that the output result is not a definite value, but the probability distribution, quantile, and forecasting interval of the forecasting object as the output form. Meanwhile, machine learning algorithms such as neural networks and deep learning have powerful nonlinear mapping capabilities, which can significantly improve the reliability of probabilistic forecasting when combined with probabilistic forecasting methods, and should be widely applied in subsequent research.
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China’s commitment to decarbonization has become a foundational principle guiding policymaking at national, provincial, and local levels across diverse sectors. This commitment is especially evident in the active promotion of low-carbon energy transitions by all provinces, aligning with the national goal of carbon neutrality. This paper focuses on Ningxia Province and constructs five scenarios for low-carbon energy transition, adopting the multi-level perspective. These scenarios include the business-as-usual scenario (BAU), high electrification scenario (HES), high outward electricity scenario (HOS), low carbon scenario (LCS), and energy saving scenario (ESS). Utilizing the LEAP-Ningxia model, we simulate energy demand across various sectors until 2060. The quantitative analysis covers primary energy production, secondary energy conversion, final energy consumption, and CO2 emissions. Notably, under scenarios incorporating carbon capture and storage (CCS) and carbon credits, the total CO2 emissions in Ningxia are projected to decrease to 17∼23 Mt CO2 until 2060 under BAU, HES, and HOS. In LCS and ESS, a remarkable achievement is forecasted with 6∼93 Mt CO2 of negative emissions from the energy sector in Ningxia until 2060. The findings underscore the importance of diverse CO2 reduction measures and their impacts on achieving a zero-carbon energy transition in Ningxia. The implications of scenarios with CCS and carbon credits showcase significant reductions in CO2 emissions, aligning with China’s broader decarbonization goals. The results provide valuable scientific support and insights for policymakers and stakeholders involved in steering Ningxia towards a sustainable and low-carbon future. 
Keywords: energy transition, decarbonization, multi-level perspective, carbon neutrality, CO2 reduction measures
1 HIGHLIGHTS

1) Achieving a zero-carbon energy transition in Ningxia requires coupling and balancing multiple sectors and energy sources.
2) The zero-carbon energy transition in Ningxia Province requires the integration and cooperation of a series of factors, including technology, economy, policies and social regime.
3) If carbon capture and storage and carbon credits are ignored, Ningxia can realize carbon peaking by 2030, but cannot realize the carbon neutrality goal by 2060.
2 INTRODUCTION
In September 2020, Chinese President Xi Jinping declared China’s commitment to achieve carbon neutrality before 2060 in the United Nations General Assembly (Zhao, 2022). He then further announced China’s intention to submit its updated Intended Nationally Determined Contributions (NDC) soon. In October 2021, the leadership group of CPC Central Committee launched the “1 + N” climate policy system for carbon peak and carbon neutrality. This initiative began with one top-level guideline document and several additional core documents, each outlining detailed measures for achieving sector-specific decarbonization (Wu, 2023). The Central Government has proposed that regions, sectors and enterprises equipped with the conditions should proactively lead efforts. Both sectors and local governments are encouraged to formulate plans for carbon peak and carbon reduction (Qi et al., 2023).
Global efforts to address climate change have undergone significant transformations. China’s commitment to carbon neutrality goal signifies a long-term economic vision centered around decarbonization. In the post-COVID era, numerous countries have turned to the green stimulus packages. The global green recovery initiative has prioritized the development of renewable energy, clean transportation, green buildings, low-carbon technologies, etc., aiming to stimulate economy recovery and CO2 emission reduction simultaneously. China has developed policies such as “dual-carbon” goals, the national 14th Five-Year Plan and the provincial carbon peaking action plan, signaling the acceleration of the inclusive low-carbon transition in Ningxia.
Ningxia, as China’s first national-level comprehensive new energy demonstration zone, enjoys the unique advantage of abundant wind and solar resources within a small land area, coupled with reliable power grid and stable transmission infrastructure. Moreover, Ningxia’s energy consumption used to rely on coal resources heavily, posing a challenge to sustainable practices and the low-carbon energy transition (Gan et al., 2021). In 2021, coal resources constituted over 85% of Ningxia’s energy consumption (compared to the national level of 57%), and the GDP per unit of energy consumption was four times higher than the national average. To achieve the “dual-carbon” goal, Ningxia Province must expedite the development of a new energy-dominated system which is clean, low-carbon, safe and efficient. This involves not only controlling total energy consumption but also decoupling energy CO2 emissions from economic growth, ensuring a continuous decline in both GDP per unit of energy consumption and carbon emissions. Shifting towards cleaner and renewable energy sources is instrumental in securing the sustainability of Ningxia’s economy. This transition not only bolsters local energy security but also has the potential to attract additional investments, fostering job creation. Conversely, an excessive dependence on conventional energy sources may result in environmental pollution and resource exhaustion. Energy transition plays a pivotal role in ameliorating Ningxia’s environmental quality and mitigating adverse impacts on the ecosystem. Through the modeling of the zero-carbon energy system transition path and the mechanism design of CO2 reduction measures, practical guidance can be provided to promote the development of green energy systems towards sustainable growth in Ningxia Province.
The paper is organized as follows. Section 2 reviews the perspectives and models of the energy transition in the literature. Section 3 describes the methodology we use to analyze the low-carbon energy transition in Ningxia Province. Section 4 describes the data and scenario setting. Section 5 presents the results, and Section 6 concludes.
3 LITERATURE REVIEW
To achieve the goal of carbon neutrality, in recent years, the process of the low-carbon energy transition has been accelerated both in China and abroad (Tian et al., 2022). Globally, numerous countries are advocating for a transition from fossil fuel-dominated energy system to those dominated by non-fossil fuels. Various measures have been adopted to incentivize a gradual shift from coal, oil, natural gas to renewable sources such as wind, solar and hydro. (Wang et al., 2016). Achieving a feasible and economically viable energy transition characterized by a high proportion of renewables involves shifting primary energy consumption to an energy system dominated by renewable energy. This requires coordinated efforts across various energy sectors, including electricity, heating, transportation and industrial sectors (Hansen et al., 2019). Consequently, various countries and regions have implemented pertinent energy transition strategies. The European Commission has put forward a series of policy initiatives in the European Green Deal, aiming to achieve climate neutrality in Europe by 2050 (Kougias et al., 2021). Germany has stated it would shift from fossil fuels and older technologies to the new fuels and technologies, and would gradually phase out nuclear and coal power stations (Bartholdsen et al., 2019). The United Kingdom has passed legislation with the aim of reducing greenhouse gas emissions to net zero by 2050 (Yang et al., 2022). Meanwhile, various local governments are practicing local low-carbon energy initiatives by regulation adjustment and policy innovation, in alignment with the efforts to combat climate change and to avoid carbon lock-in (Warbroek and Hoppe, 2017).
Based on the imperative to mitigate the impact of climate change and the heightened significance of energy security and independence under geopolitical warfare (Sovacool et al., 2023), the world’s major economies are aware of the necessity of a rapid transition to a low- or zero-carbon energy system. China’s proposal of a “dual-carbon” goal is not only a national commitment, but also an urgent requirement for the transformation of its domestic economy. It has demonstrated the development concept of “lucid waters and lush mountains are invaluable assets”, indicating that China’s future economic and energy development must be restructured (Xu and Liu, 2019). Towards achieving the “dual-carbon” goal, China has to address long-term issues, including encouraging energy users to adopt renewable energy, establishing a new energy-dominated power system, and reducing emissions while guaranteeing the safe energy supply (Abbasi et al., 2022).
Low-carbon energy transition is a multifaceted and intricate process, encompassing various dimensions such as technology, market, policy, and environment (Geels et al., 2016). In terms of technology, recent years have witnessed the emergence of renewable energy, energy storage and electric vehicles as pivotal technologies (King and Van Den Bergh, 2018). Technological innovations have spurred investment in renewable energy. The continuous progress in renewable energy technologies (Kobo et al., 2016) has witnessed significant decreases of cost, as well as exponential growth in renewable energy power capacity (De La Peña et al., 2022). Market mechanism plays a crucial role in facilitating low-carbon energy transition. The design of electricity, carbon and green finance markets all contribute to shaping the trajectory of low-carbon energy transition. The electricity market and carbon market have accelerated the phase-out of fossil fuels and provided business-friendly conditions for renewable energy (Wainstein and Bumpus, 2016; Mo et al., 2021). Policy interventions are pivotal, and it is essential to provide financial support and opportunities for emerging low-carbon technologies (Tu et al., 2018). Green financial support and private capital are particularly influential in driving renewable energy deployment, especially in developing countries (Rogge and Johnstone, 2017; Anbumozhi et al.,. 2018). Environmental considerations are integral to the discourse on low-carbon energy transition. Attention has been directed towards developing CO2 emissions accounting tools and implementing measures for CO2 emissions reduction (Pichancourt et al., 2018).
The energy system is complicated, featuring in a huge number of branches, multiple energy categories and sectors, interaction among branches, and high correlation among society, economy and environment (Zou et al., 2023). Existing modeling techniques for energy system complexity include top-down energy model, bottom-up energy model and mixed-energy model from hierarchical perspective (Feng et al., 2023). Top-down models are usually based on economic models, with energy prices and economic elasticity as the main economic indicators (Ismail et al., 2023). Focusing on the energy consumption and energy production, top-down models are used for macroeconomic analysis and energy policy design. Examples include CGE, ARE, etc., but such models usually neglect the potential of technological advances (Rhodes et al., 2022). Bottom-up models are usually based on engineering models, which explain and simulate the technologies used in the process of energy consumption and energy production (Chatterjee et al., 2022), but require a large amount of data. Examples include LEAP, WEM, etc. Mixed energy models include both top-down models that consider macroeconomics and bottom-up models that consider energy supply and demand (Liu, 2023). Examples include GCAM, TIMES, etc. Given the model difficulty and data complexity, the mixed energy model is less compatible (Wilson and Swisher, 1993).
Most existing studies have modelled energy transition pathways from a techno-economic perspective, and then analyzed the potential CO2 emission reduction of key sectors (Wang et al., 2007; Lin and Xie, 2014; Zhou et al., 2018; Wu et al., 2020), pointing out that power and transportation are vital for CO2 emission reduction in the future (Huang et al., 2022). However, there is a lack of analysis regarding the contribution of feasible CO2 emissions reduction measures in microregions from the multi-level perspective. This paper provides an empirical analysis of the energy transition in Ningxia from the multi-level perspective, which is crucial for the region to determine effective strategies for the application of CO2 emission reduction measures. In this study, we introduce economic, environmental, and energy factors into the LEAP-Ningxia model, setting up five scenarios for the different feasible measures through the multi-level perspective. Subsequently, we simulate the zero-carbon energy transition pathways in Ningxia based on the scenarios, and analyze the contribution of CO2 emissions reduction drivers.
4 METHODOLOGY
4.1 The multi-level perspective for energy transition
The multi-level perspective (MLP) is an important analytical framework in the theory of socio-technical system transformation (Geels, 2011). Schot and Kanger, (2018) explored the concept of “deep transitions” and how it extends MLP to understand transformative changes in societal systems. It is argued that the transformation is not a simple cause-and-effect relationship caused by a single factor or driving force (Markard and Truffer, 2008), but rather an evolutionary process formed by the interaction of three aspects: the policy landscape at the macro-level, the socio-technical paradigm at the meso-level, and the niche technology at the micro-level. It is an evolutionary process formed by the interaction of these three aspects. A framework for analyzing the regional energy transition from a multilevel perspective is given in terms of the synergistic effects of policy, socio-technical and techno-economic, as shown in Figure 1.
(1) Policy perspective refers to issues and policies related to energy, such as achieving national modernization, bolstering energy independence, or alleviating energy poverty (Cherp et al., 2018). In terms of policy, a facet of energy transition involves measures undertaken by the government to pursue the national interest. These measures aim to maintain internal order by achieving the supply-demand balance of energy, ensuring a reliable power supply, securing the independence on the external energy by minimizing energy imports or maximizing exports, and guaranteeing industrial competitiveness. Additionally, they contribute to increasing employment and achieving economic growth through energy development. Secondly, policymakers establish rules and institutional mechanisms that both support and constrain energy development. These mechanisms aim to aggregate the actions of market participants, facilitate the efficient allocation of energy resources, enhance international influence, and achieve carbon neutrality goal.
(2) Socio-technical perspective refers to information flows such as knowledge and practices related to energy extraction, conversion and utilization. A primary focus lies in the emergence and diffusion of new technologies, which usually first appear in the core countries, and then diffuse to other countries. Technology development follows an “S-curve”, delineating a cycle encompassing infancy, growth, maturity and decline (Grodal et al., 2023). Another focus is on assessing the established energy innovation system. For example, the expansion of newly introduced elements within the existing system may either foster innovation or clash with prevailing interests, hindering innovation, and leading to technology lock-in. However, typically, new elements have the potential to overcome technology lock-in, propelling new technologies toward maturity and competitiveness. This entails the development of energy systems with more flexible participants, rules and practices.
(3) Techno-economic perspective refers to the energy flows associated with the processes of energy exploitation, conversion, production, and consumption, primarily coordinated by the energy market. On the one hand, it focuses on the energy supply side, involving the exploitation of resources such as wind, solar, hydro, oil and natural gas. On the other hand, the focus is on the energy demand side, such as the electrification of transportation and building (Zhou et al., 2019). The techno-economic perspective necessitates achieving a balance between supply and demand through the intelligent information system. This means that any alteration in the supply or utilization of one particular type of resources must be counterbalanced by other types of resource with a matching amount of energy. For example, the expansion of renewable energy generation creates an increase in energy supply, necessitating a corresponding increase in electricity consumption demand, a gradual phase-out of fossil fuels, or an elevation in the outward electricity transmission to sustain the balance (Ma et al., 2023).
[image: Figure 1]FIGURE 1 | Three perspectives related to energy transition.
The new energy development landscape proposed by the government is giving pressure to the existing energy system. However, it also presents an opportunity for new technologies, propelling the transformation of the socio-technical system. Breakthrough innovations stemming from micro-technologies, coupled with continuous learning and efficiency improvements will garner growing intrinsic motivations and exert an impact on the existing socio-technical system. The system is undergoing gradual change, with resource development shifting towards decentralized and distributed. Customers are increasingly opting for more economical and environmental friendly energy choices, while energy technology and infrastructure are becoming more flexible and low-carbon. As shown in Figure 2, driven by the integration of policy, socio-technical and techno-economic factors, a new socio-technical regime is expected to be gradually established. This will facilitate the transition to the new energy-dominated system and contribute to the realization of national development goals.
[image: Figure 2]FIGURE 2 | Analytical framework of energy transition from the multi-level perspective.
4.2 Introduction of LEAP-Ningxia model
The LEAP (Low Emissions Analysis Platform) energy model is a system designed for mid- and long-term planning, encompassing energy, economy, and environmental considerations. It serves as a valuable tool for long-term energy alternatives planning, policy analysis and climate change mitigation assessment. It is a comprehensive “bottom-up” energy environment accounting tool based on scenario analysis, as shown in Figure 3. This method predicts the energy demand, supply and environmental impact of various sectors through mathematical models. Furthermore, the LEAP model offers comparative cost-benefit analyses under different scenarios, enhancing its utility in informed decision-making.
[image: Figure 3]FIGURE 3 | The LEAP-Ningxia model under the multi-level perspective.
In this paper, the LEAP-Ningxia model is based on the characteristics of energy supply and consumption in Ningxia Province. There are four core modules: socio-economic development, final energy demand, primary energy production and environmental emissions.
(1) Socio economic development module
The socio-economic development module captures the socio-economic factors influencing energy dynamics in Ningxia Province, including the industrialization and urbanization. It forecasts the population, economic value added and other major macro-economic indicators, mainly including population growth rate and the economic value added by sectors, which are the basic data for the next-step prediction.
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Where, [image: image] is the economic value added of the sector (i) in the year (t), t represents the year, i represents the sector. i refers to agriculture, industry, construction, transportation, commerce and other sectors respectively. [image: image] is the growth rate of economic value added of the sector (i) in the year (t).
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Where, [image: image] is the sum of economic value added of all the sectors in the year (t).
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Where [image: image] is the population in the year (t). [image: image] is the population growth rate in the year (t).
(2) Final energy demand module
The final energy demand module takes account of economic and social development, energy and technological progress, energy policies and other factors. It forecasts final energy demand by sectors and types of energy in the future. First, it predicts the final energy use intensity of per-GDP economic value added of different sectors and per capita household energy use intensity. Secondly, based on the results of economic value added of different sectors and [image: image] (population) from the first module, multiplying [image: image] (economic value added of sector i) and [image: image] (final energy use intensity of per-GDP economic value added of sector i) together will give [image: image] (sum of final energy consumption of sector i). Multiplying [image: image] (population) and [image: image] (per capita household energy use intensity) together will give [image: image] (sum of household final energy consumption). Adding up the values will have [image: image] (sum of final energy consumption).
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Where, [image: image] is the final energy consumption of the sector (i) in the year (t), from 1 to 5, i refers to agriculture, industry, construction, transportation, commerce and other sectors respectively. When i = 1,2,3,4,5, [image: image] is the per-GDP final energy use intensity of the sector (i) in the year (t).
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Where, [image: image] is the total population of the year (t). When i = 6, [image: image] is the per capita household energy use intensity in the year (t).
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Where, [image: image] is the sum of final energy consumption in the year (t).
Considering the potential, utilization technology and economic benefits of different types of energy, this module predicts the proportion of energy consumption by sectors and by types of energy. Based on the final energy demand of different sectors, the module projects the final energy consumption of different sectors and different types of energy.
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Where, [image: image] is the final energy consumption of the energy type (j) in the year (t), j represents the energy type. From 1 to 6, j refers to coal, oil, gas, electricity, heat and hydrogen respectively. [image: image] is the proportion of the energy (j) in sector (i) of the year (t).
(3) Primary energy production module
The primary energy production module takes account of the balance between energy supply and demand, processing and conversion efficiency, factor endowments, etc., to forecast the sum of primary energy production by sectors and types of energy in the future.
The gradual shift of an energy system dominated by fossil fuels to one dominated by new energy means that the power sector will be the core of pursuing the carbon neutrality goal. Therefore, the energy balance focuses on plans and policies related to power and energy. The power supply structure is predicted through the balance of electricity and power, which is bas.ed on Eq. 8. Equations 9, 10, representing the constraints of electricity balance and power balance, respectively. Then, the power generated by each energy type is converted to the standard unit of energy according to the power conversion factor, thus calculating the primary energy consumption required for power generation.
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Where, [image: image] is the electricity generation of Ningxia Province in the year (t), [image: image] is the local electricity consumption of the whole province in the year (t), considering a 15% reserve margin and a 15% new energy uncertainty margin. [image: image] is the outward electricity transmission in the year (t). When [image: image], it represents inward electricity, [image: image], it represents outward electricity, [image: image], it represents the balance of inward and outward electricity in Ningxia.
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Where, [image: image] is the power generation of supply type (g) in the year (t), g represents the power supply type, and N is the amount of power supply types, including coal, oil, gas, coal with BECCS, hydro, nuclear, wind, solar, etc.
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Where, [image: image] is the peak load of Ningxia in the year (t). [image: image] is the outward generation of supply type (g) in the year (t).
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Where, [image: image] represents the amount of coal equivalent converted to primary energy consumption by the power supply type (g) in the year (t), [image: image] represents the equivalent conversion coefficient of electricity.
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Where, [image: image] represents the amount of coal equivalent converted to outward electricity by the power supply type (g) in the year (t). [image: image] represents the proportion of power generated from coal in the outward electricity.
Next, the paper calculates the total primary energy consumption including the primary energy consumption of power generation, intermediate conversion and final fossil fuel.
(4) Environmental emission module
LEAP-Ningxia model includes a tool with emission factors corresponding to various energy types to calculate the emissions of greenhouse gases and air pollutants. This paper uses IPCC reference value to calculate carbon dioxide emissions. Carbon dioxide emitted in the whole society is counted by the scope of energy activities, including direct carbon dioxide emissions from fossil fuel consumption in Ningxia Province and indirect emissions from power transmission.
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Where [image: image] is the amount of CO2 emission in the year (t). [image: image], [image: image], [image: image] represents the consumption of coal, oil and gas in the year (t), respectively, and [image: image], [image: image], [image: image] represents the CO2 emission factor of coal, oil and gas, respectively (refer to Supplementary Table S1).
5 DATA AND SCENARIO SETTING
5.1 Prospect of economic and social development
The population growth in Ningxia Province is decelerating and is projected to turn negative after 2030. Furthermore, the economic growth engine will shift from demographic dividend to talent dividend. Referring to the data from the seventh census and the historical population growth rate, China’s overall population growth has notably decelerated, and forecasts indicate a peak around 2030 (NDRC, 2017). The implementation of the new birth policies and other supportive measures related to education and taxation may alleviate the downward population trend in the future. Since 2021, the average annual population growth rate every 5 years of Ningxia will reach 0.3%, 0.1%, −0.1%, −0.1%, −0.2%, −0.3%, −0.3%, −0.3%. The total population in 2060 will fall back to the level of 2016 (refer to Figure 4), reaching 6.94 million. In 2020, population with tertiary education accounted for 20%–30% in Ningxia. With the spread and improvement of education, the quality of the population is expected to enhance further. Additionally, the working-age population will play a crucial role in providing support for innovation and human resources for industrial upgrading and economic development. As a result, it is anticipated to bring a counterbalance or potential surpass of the negative impact on economic development resulting from negative population growth.
[image: Figure 4]FIGURE 4 | The population outlook in Ningxia.
The economic development of Ningxia has embraced two tasks: stock adjustment and growth optimization. Achieving this necessitates a shift in the driving force, aiming to restructure the modern industrial system and establish the economic growth as its foundation. As the quality of population improves in Ningxia, the momentum of economic growth in the future will shift from being resource-driven to being innovation-driven. Leveraging its advantages in energy resources and geography, Ningxia will efficiently develop and utilize clean energy. Additionally, there will be a strong emphasis on promoting industries with local features, such as tourism and organic food (Ningxia and NX, 2021; Ningxia and NX, 2022). The target is to double Ningxia’s GDP (gross domestic product) in 2035 and quadruple in 2060 compared to 2020. Since 2020, the projected average annual growth rate of GDP every 5 years will be 6.0%, 5.5%, 5%, 4.5%, 3.9%, 3.3%, 3.0% and 2.7%. Consequently, the GDP is expected to reach 2 trillion CNY by 2060.
The industrial structure plays a pivotal role in influencing environmental quality and CO2 emissions. With the development of economy and society, the industrial structure of Ningxia is expected to undergo further optimization. Examining the primary industry (agriculture, forestry, animal husbandry and fishery, below referred to as agriculture), since agriculture is the fundamental guarantee of food security, it is anticipated to maintain a share of around 5% by 2060. Considering the secondary industry (industry and buildings), the scale of the industrial sector generally correlates directly with CO2 emissions. The correlation between CO2 emissions and per capita GDP resembles an inverted U shape, which is similar to that between industrial sector and per capita GDP. Currently, the proportion of value added from industrial output in most developed countries ranges between 15% and 25%. Consequently, the proportion of Ningxia’s value added from industrial output is projected to reach 21% by 2060. The value added from building output of Ningxia is anticipated to be 5.5% by 2060. This projection is based on factors such as the declining total population, the deceleration of urbanization rates, and an aging population, all contributing to a reduced the demand for building sector. In terms of the tertiary industry, with the continuous growth of income, the demand for service-oriented products will rise, which will also increase the value added from the tertiary industry. The proportion of value added from commerce in Ningxia is targeted to be 61% by 2060. The proportion of value added from different sectors and the outlook of Ningxia are shown in Supplementary Table S2 and Figure 5.
[image: Figure 5]FIGURE 5 | The GDP outlook in Ningxia.
5.2 Prospect of energy and power demand
5.2.1 Prospect of final energy consumption
Considering the socio-economic indicators such as economic development objectives, industrial restructuring, population growth changes, and urbanization progress in Ningxia, this study sets two scenarios of final energy consumption (FEC), namely, the baseline scenario and energy saving scenario.
(1) In the baseline scenario, with reference to historical energy use intensity and taking account of utilization efficiency improvements, the proportion of the FEC by sectors at key time points is set in this paper. Since 2020, the average annual growth rate of total FEC every 5 years will be 4.5%, 2%, 0.5%, 0.2%, −1%, −2%, −3% and −3%, reaching a peak of 81.08Mtce by 2040, and declining to 51.4Mtce by 2060, reverting to the 2019 level, as shown in Supplementary Table S3.
(2) In the energy saving scenario, with the development of the socio-technical system, the terminal infrastructure will reduce energy use intensity through adopting energy-saving technologies. The energy conversion process will further improve the efficiency of energy conversion and utilization. Since 2020, the average annual growth rate of total FEC every 5 years will be 3.5%, 1.8%, 0.5%, −0.3%, −1.0%, −2.0%, −3.0% and −3.5%, peaking at 75.76Mtce in 2035, and 46.1Mtce in 2060, dropping back to the level in 2018, as detailed in Supplementary Table S4.
5.2.2 Prospect of public electricity demand
As urbanization and electrification accelerate and people’s living standards improve, the potential for substantial growth in per capita electricity consumption in Ningxia Province persists. Based on Ningxia’s economic development and benchmarked against electricity consumption in developed countries, the electricity demand in Ningxia is predicted, delineating two scenarios, namely, the general scenario and the electrification scenario.
(1) In the general scenario, with Ningxia persistently promoting electricity substitution and adapting conventional energy-using technologies on the demand side, the energy efficiency is anticipated to gradually plateau. Electrification across various energy-using sector is expected to increase steadily. The gas-fired power supply will increase, the development of coal-fired power will slow down, but the increase of new energy power generation will accelerate. It is estimated that public electricity consumption will reach 250 TWh, with the peak load reaching 40 GW in 2060, as detailed in Supplementary Table S5.
(2) In the electrification scenario, with improved people’s living standards in Ningxia, electricity substitution on the demand side sees a substantial increase. The widespread use of electrical equipment, such as electric heating, electric vehicles and smart home devices, contributes to a significant enhancement of societal electrification. On the supply side, power generation from conventional energy faces limited energy-efficiency improvement, while new energy substitution is expected to accelerate. The cost of new technologies is projected to decrease with more experience. The full potential of distributed energy will be harnessed, and the interconnection of electricity will be further enhanced. It is estimated that the public electricity consumption will reach 260 TWh, with the peak load reaching 42 GW in 2060, as detailed in Supplementary Table S6.
5.2.3 Prospect of outward electricity
The main outward electricity transmission lines in Ningxia Province encompass Yindong DC (银东直流), Lingshao DC (灵绍直流), Zhaoyi DC (昭沂直流), and Ningxiang DC (宁湘直流). Ningxiang DC is expected to become operational around 2025 (BJX.Peoples Republic Of China, 2023).
Before 2025, the scale of outward electricity transmission from Ningxia will basically remain unchanged, at about 9.5 TWh. After 2025, with the completion of the Ningxiang DC (also named Tiandushan DC) project, the outward electricity transmission will be divided into the low scenario and high scenario, the annual outward electricity transmission will amount to 12 TWh under the low scenario, and 13 TWh under the high scenario, as detailed in Supplementary Tables S7, S8. The distribution of the outward electricity transmission line is set as follows: before 2030, the proportion of direct current transmission from thermal power in operation is 80%, and the proportion of transmission from newly constructed lines is 50%. After 2030, the proportion of all direct current transmission from thermal power will gradually decline.
5.3 Scenario setting of zero-carbon energy transition
Based on the multi-level perspective analysis framework, the transition to a zero-carbon energy system in Ningxia Province necessitates the integration of key elements, including technology, economics, policy and social system, as shown in Figure 6. From the perspective of policy, Ningxia Province needs to continuously ensure energy safety and reliable supply, continue to implement the national “West-East Power Transmission (WEPT)” project, and promote energy development to enhance industrial competitiveness, increase jobs and economic growth, and achieve carbon neutrality goal. From the socio-technical perspective, Ningxia needs to stimulate the diffusion of new energy technologies, shift the coal-based energy system to a new energy-based one, and get rid of “carbon lock-in”. From the techno-economic perspective, Ningxia needs to increase efficient infrastructure with clean energy on the supply side, encourage electricity substitution and accelerate electrification of final energy consumption on the demand side. Thus, through the interaction of the three perspectives of micro-level niche technology, meso-level socio-technical paradigm and macro-level policy landscape, Ningxia Province will become independent of coal consumption, realize the transition to a system dominated by new energy.
[image: Figure 6]FIGURE 6 | Scenario setting of energy transition in Ningxia from the multi-level perspective.
According to the differences of public electricity demand, outward electricity demand, energy, power capacity supply and final energy consumption, this paper sets up five scenarios (see Table 1) and describes the specific scenarios according to their characteristics.
TABLE 1 | Scenario setting.
[image: Table 1]Scenario 1- Business-as-usual scenario (BAU): Considering the impact from the policy perspective, the zero-carbon energy transition is required to meet the balance of supply and demand for energy safety and reliable supply. According to relevant policies and plans in Ningxia Province, BAU, scenario is set with reference to the historical level and policy intensity. The sectoral primary energy consumption data are obtained from China Energy Statistical Yearbooks (2009–2021). The proportion of electricity and hydrogen in final energy consumption in 2060 will be 55% and 7%, respectively, and the proportion of renewable energy in heat and hydrogen supply will be 10% and 80%, respectively.
Scenario 2- High electrification scenario (HES): Based on scenario 1, considering the impacts on the demand side from the techno-economic perspective, HES reflects an additional electricity consumption from the whole society, an improvement of terminal electrification, and an increasing proportion of electricity and hydrogen in the energy conversion process. The proportion of electricity and hydrogen in final energy consumption in 2060 will be 60% and 8%, respectively, and the proportion of renewable energy in the heat and hydrogen supply will be 20% and 90%, respectively.
Scenario 3- High outward electricity scenario (HOS): Based on scenario 2, considering the impacts on the demand side from the techno-economic perspective, transmission of outward electricity is increased in HOS, in which the proportion of final energy consumption is increased. The proportion of electricity in the final energy consumption will be 65% in 2060.
Scenario 4- Low carbon scenario (LCS): Based on scenario 3, considering the impacts on the supply side from the techno-economic perspective, the proportion of power, heat and hydrogen supply from green energy is increased in LCS. The installed capacity of new energy power generation such as wind power and photovoltaic power will increase, and the rate of electrification will be 70%. Heat and hydrogen supply from renewable energy will be 20% and 90% in 2060, respectively.
Scenario 5- Energy saving scenario (ESS): Based on scenario 4, considering the impact on the development of energy-saving technologies from the socio-technical perspective, through the application of enhanced energy-saving technologies, in ESS, the intensity of final energy consumption will be further reduced, the efficiency of energy conversion and utilization will be improved, and the total amount of final energy consumption will be reduced.
According to different scenario settings, the total amount of final energy consumption and the proportion of different types of energy are set (see Figure 7). The total amount of final energy consumption remains consistent from S1 to S4, while in S5, the Energy saving scenario, the total final energy consumption is relatively lower. But the proportions of different types of energy in S4 and S5 remain consistent.
[image: Figure 7]FIGURE 7 | Proportion of final energy consumption by energy types.
6 RESULTS
The design of BAU is crafted upon the existing energy reform and development policies in Ningxia Province, meticulously benchmarked against international advanced standards. It takes into account various critical factors, including China’s national requirements on carbon peaking and carbon neutrality, the ongoing accelerated electrification process in Ningxia Province, the large amount of outward electricity, the rapid development of clean energy alternatives and non-fossil energy, as well as the anticipation of vigorous promotion of user-end energy-saving measures. In this paper, based on data availability and the effective time period of related plans, 2021 is identified as the base period and 2022-2060 as the forecast period. The LEAP-Ningxia model is applied to generate the results of PEP, SEC, FEC, and CO2 emissions for scenarios including BAU, HES, HOS, LCS and ESS.
PEP in Ningxia Province by sectors under different scenarios until 2060 is shown in Figure 8. PEP is mainly derived from the industrial sector, reaching the maximum in HOS. This is due to the increasing demand for primary energy triggered by the increase of both local electricity demand and the outward transmission. As more power supply comes from new energy and the user-end energy-saving technologies are being applied, PEP will experience a relatively large decline. Compared with HOS, the total PEP in LCS and ESS will drop by 1.8% and 8.9% respectively.
[image: Figure 8]FIGURE 8 | PEP by sectors under different scenarios.
SEC in Ningxia Province by energy types under different scenarios until 2060 is shown in Figure 9. From the aspect of power supply, with a 15% of reserve margin and another 15% of margin for uncertainty in new energy output, the available power supply in Ningxia will rise from about 215 to 225 TWh/a in 2022 to about 360–400 TWh/a in 2060. From the aspect of the power supply structure, the power supply from wind and solar will grow significantly in the future, reaching 222–236 TWh/a by 2060, accounting for 57%–62% of the total power supply. The power supply from coal will increase from about 142 to 159 TWh/a in 2022 to about 187–200 TWh/a in 2030, then gradually decrease to about 69–128 TWh/a in 2060. For power supply from coal applying BECCS to reduce CO2 emissions, 76% will be achieved in HOS, 83% in HES, and over 90% in LCS and ESS. From the aspect of heat supply, after reaching its peak, the population will gradually decrease, and the total heat supply will increase from about 215 to 221 million GJ/a in 2022 to about 311–332 million GJ/a in 2037, then gradually decrease to about 125–139 million GJ/a in 2060. From the aspect of hydrogen supply, the production will gradually increase from 2023 to 2060, with the total production reaching about 130–145 million GJ/a in 2060, of which the green hydrogen will account for 88%–97%.
[image: Figure 9]FIGURE 9 | SEC by energy types under different scenarios.
FEC in Ningxia Province by energy types under different scenarios until 2060 is shown in Figure 10. The total FEC remains consistent in S1 to S4, only each energy type making up different proportions. In S5, namely, the Energy Saving Scenario, a lower total FEC is projected compared with other scenarios.
[image: Figure 10]FIGURE 10 | FEC by energy types under different scenarios.
The total CO2 emissions without CCS and carbon credits under different scenarios, as illustrated in Figure 11, are calculated based on primary energy production, the CO2 emission intensity of different types of energy in power sector (refer to Figure 12), and the CO2 emission factor of coal, oil and gas. It is evident from the analysis that under the five scenarios, disregarding CCS and carbon credits, Ningxia will achieve carbon peaking in 2030, but it seems unattainable to meet the carbon neutrality goal in 2060. The total CO2 emissions of the province in 2060 will reach about 74–101 Mt, signifying a considerable gap from attaining the zero-carbon energy system. Despite the progress towards carbon peaking, substantial efforts and additional measures are imperative to bridge this significant distance.
[image: Figure 11]FIGURE 11 | CO2 emissions under different scenarios (without CCS and carbon credits).
[image: Figure 12]FIGURE 12 | CO2 emission intensity of different types of energy in power sector.
By implementing biomass and coal co-firing with carbon capture devices and utilizing BECCS in power sector, significant reductions in CO2 emission intensity and the attainment of negative emissions are achievable, as depicted in Figure 13. Generally, the energy contained within 1 tonne of biomass equals 0.5 tonnes of coal equivalent, and 1 tonne of biomass fully combusted emits about 1.33 tonnes of CO2. Therefore, the total biomass available in Ningxia corresponds to a carbon sink of 14.1 MtCO2, as detailed in Supplementary Table S9 (Wei et al., 2021). According to the total CO2 emissions with CCS and carbon credits under different scenarios in Figure 13, it can be found that the total CO2 emissions in Ningxia can be decreased gradually since carbon capture and storage (CCS) and carbon credits are contributing to the reduction of CO2 concentration in the atmosphere. In scenarios such as BAU, HES and HOS, the total CO2 emissions in Ningxia are projected to decrease to a range of 17–23 MtCO2 until 2060. In scenarios LCS and ESS, the energy sector in Ningxia could achieve 6–9 Mt of negative CO2 emissions until 2060.
[image: Figure 13]FIGURE 13 | CO2 emissions under different scenarios (with CCS and carbon credits).
Further analysis is conducted on the contribution of various CO2 emission reduction measures from different aspects, as illustrated in Figure 14. From the policy perspective, main measures are from outward electricity and carbon credit, and the reduction contribution will decrease from 29% in 2025 to 21% in 2060. In the mid- and long-term, Ningxia Province will continue to play a vital role in guaranteeing China’s West-East Power Transmission Project. Over the period from 2023 to 2060, an additional 655 TWh outward electricity will be produced compared with BAU, generating about another 314 MtCO2. But as the proportion of outward electricity from thermal power gradually decreases, the corresponding CO2 emissions are also gradually decreasing. Ningxia Province continues to strengthen the protection of biomass diversity. Through measures such as afforestation and vegetation restoration, as well as processes, activities or mechanisms that can reduce the concentration of greenhouse gases in the atmosphere, about 14.1 MtCO2 of carbon credits can be generated per year based on the existing amount of biomass in Ningxia.
[image: Figure 14]FIGURE 14 | CO2 reduction contribution evolution of various measures (A) represents the absolute amount and (B) represents the contribution degree.
From the socio-technical perspective, measures are mainly from new energy and CCS technologies, with a reduction contribution increasing from 28% in 2025 to 76% in 2060. Through accelerating the progress to harness renewable energy and gradually making it a main source of electricity and hydrogen, 703 MtCO2 can be reduced compared with BAU. Embedding CCS equipment in electricity infrastructure is the most effective measure in reducing CO2 emissions. The reduction of 1,304 MtCO2 from 2023 to 2060 is the key to achieve zero or even negative carbon emissions in Ningxia by 2060.
From the techno-economic perspective, main measures are from electrification and energy saving, with a reduction contribution decreasing from 42% in 2025 to 12% in 2060. Despite the increase in the demand for electricity, the total CO2 emissions will decrease to some extent, by about 400 MtCO2 compared with BAU. Meanwhile, through the energy efficient technologies equipped in the infrastructure, about 189Mtce of energy consumption and about 422 MtCO2 can be reduced from 2023 to 2060 compared with BAU.
7 DISCUSSION
Achieving carbon peaking and neutrality necessitates a unified effort spanning various sectors and energy sources. It is crucial to succinctly outline the evolution and patterns of the zero-carbon energy transition, starting from the multi-level perspectives to balance the triangle paradox of “safety and reliability, cleaning and low carbon, as well as energy justice”. The formulation of a scientifically grounded path for CO2 emissions reduction holds paramount significance. This study, rooted in Ningxia’s present energy landscape, projects low-carbon transition scenarios by considering future trends in population, economy, and industrial structure adjustments from 2023 to 2060. Leveraging the LEAP-Ningxia model and employing multi-level perspectives, the analysis encompasses PEP, SEC, FEC, and CO2 emissions simulations.
The imperative for a successful zero-carbon energy transition in Ningxia Province lies in the intricate integration and collaboration of various factors, encompassing technology, economy, policies, and societal structures. A nuanced examination under five low-carbon energy transition scenarios reveals crucial dynamics, firstly, without considering Carbon Capture and Storage (CCS) and carbon credits, Ningxia is poised to achieve carbon peaking by 2030. However, the ambitious goal of carbon neutrality by 2060 remains unattainable. Secondly, under scenarios with CCS and carbon credits, in BAU, HES and HOS, the total CO2 emissions in Ningxia will drop to 17–23 MtCO2 until 2060. In LCS and ESS, 6–9 MtCO2 of negative emissions from the energy sector in Ningxia can be achieved until 2060. Overall, high outward electricity will increase local CO2 emissions in Ningxia, while measures such as adopting terminal energy-saving technologies, raising electrification rate, increasing the supply of new energy, installing CCS equipment and conserving biomass resources can reduce CO2 emissions.
From the techno-economic perspective, the energy transition in Ningxia encounters challenges related to economic growth, carbon budgets and technologies advancements. The current financial support for CO2 reduction is deemed insufficient, necessitating a delicate equilibrium between stable economic growth, cost reduction and fostering innovation. From the socio-technical perspective, Ningxia’s energy development used to depend on coals, as well as the entire coal industry chain, i.e., the existing energy suppliers, deeply ingrained in the coal sector, play a pivotal role in Ningxia’s industrial development. To realize Ningxia’s energy transition requires dismantling the monopoly held by local traditional industries. Market mechanisms, such as the carbon market, stand out as vital tools to incentivize and facilitate the green and low-carbon transition. From the policy perspective, as an important province in the West-East Power Transmission project, Ningxia bears the responsibility of ensuring secure energy supply while balance regional development. Policymakers must navigate the dual objectives to foster a sustainable and equitable energy transition in the region.
Towards the zero-carbon energy transition, Ningxia Province should delineate clear milestones for distinct periods, fostering coordinated interactions across the multi-level perspective. In the short term (2023–2025), the focus lies on transforming and optimizing the existing status through the implementation of terminal energy-saving technologies, coupled with increased investment to spur technological innovation. Moving into the medium term (2025–2035), the emphasis shifts to technological substitution, systematically upgrading existing mechanisms with the integration of new energy sources, while also recognizing the impact on the social landscape and systems. Looking ahead to the long term (2035–2060), the strategic focus turns to reconfiguration, involving gradual adjustments and restructuring to seamlessly integrate emerging innovations into the existing system. This includes introducing novel technologies, such as combining biomass and coal co-firing with Carbon Capture and Storage (CCS) equipment and green hydrogen initiatives, as supplements or replacements. This triphasic strategy ensures a progressive, adaptive, and holistic zero-carbon energy transition for Ningxia Province.
The rapid evolution in energy sector has significant implications for the ongoing research. Currently, the studies may not have kept pace with the latest technological advancements and innovations, which, in turn, can hinder our ability to accurately predict potential changes in the future. Furthermore, it is important to note that our present research is based on a specific moment in time, focusing on the prevailing policies. However, it is crucial to recognize that policy adjustments in the future may impact the effectiveness of energy transition efforts profoundly. This underscores the need for a more comprehensive consideration of these factors in the upcoming research endeavors. Accordingly, additional research is indispensable. This research aims to assess the effectiveness of various policy instruments and practices from Ningxia government to support the zero-carbon energy transition. A specific area of focus is to evaluate the subsidies and their impact on the energy transition. While the LEAP-Ningxia modeling tool has proven valuable in assisting the region in its pursuit of climate mitigation goals, it is essential to acknowledge there are limitations in terms of technology options and underlying assumptions of the tool. For the success of Ningxia’s zero-carbon energy transition initiatives, it is imperative to further enhance and refine both policy measures and modeling capabilities. This will ensure that the region is better equipped to navigate the evolving energy landscape and achieve its sustainable development.
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Carbon trading mechanisms and the development of integrated energy systems are important ways to realize the “carbon peaking and carbon neutrality” goal, and the problem of benefit distribution is of paramount importance to achieving the goal. The article innovatively takes the supply side of the provincial integrated energy system as the entry point, considers the economic value of carbon, and focuses on the rational allocation of each subject obtained by comparing different methods. The paper mainly uses the Shapley value of the cooperative game and the kernel method to establish the initial allocation to the main actors, and subsequently, it considers the introduction of the risk level, resource input, environmental pollution, technological innovation, and profit of the main actors to modify the result of the benefit allocation. This paper takes the power generation data of the Xinjiang region as an example, and the results show that 1) thermal power still has the most weight among all power generation modes and obtains 522.83, 503.48, and 406.30 billion yuan under the initial, nucleolus, and modified allocation methods, respectively, and receives the most revenue. 2) Considering that the multi-factor allocation method pays more attention to the allocation of fairness, compared with the initial allocation, thermal power gains decreased by 22.29%, while wind and solar power gains were improved by 17.87% and 60.90%, respectively. The result could be a stronger push for the development and transformation of power energy. 3) The feasibility of this game as a convex game should be verified, the improvement method should be demonstrated through examples, and the results should be compared with reality. Finally, policy recommendations are proposed, which will be useful for realizing the “carbon peaking and carbon neutrality” goal and the synergistic development of integrated energy systems.
Keywords: integrated energy system, modified Shapley value method, cooperative games, multi-dimensional index system, nucleolus method
1 INTRODUCTION
In recent decades, due to the needs of human production and life leading to large-scale emissions of greenhouse gases, thus creating a serious climate situation, the development of a low-carbon environment has currently become the priority of world countries that are in search of a new development model out of necessity. In the context of the transition to low-carbon economy (AK-BHD M., 2021), developed countries and relevant international organizations, mainly the United States and Japan, have proposed to strive to achieve net-zero carbon dioxide emissions by 2050 and have formulated relevant strategic measures. In September 2020, China also proposed the goal of achieving carbon neutrality by 2060 (Mallapaty S., 2020). On 21 October 2022, China proposed that due to its own advantages in energy resources, it will gradually promote the realization of the “carbon peaking and carbon neutrality” goal and adhere to the planned and step-by-step goal of achieving carbon peaking. In promoting the transformation of the energy structure, it will adhere to the principle of building up before breaking down and strive not to affect people’s livelihoods and the economy.
In this context, the “14th Five-Year Plan” for energy development emphasizes the need to continue to promote the positive and orderly development of international energy services and to promote the “intelligent and green enhancement of energy utilization scenarios.” The integrated energy system (IES) is an integrated system of energy production, supply, and distribution formed by the integrated optimization of the “production, distribution, use, and storage” of all types of energy in planning, operation, and trading. It was first studied in Europe as an emergency measure in the 1950s (Xie and Wang, 1984; Capuder and Mancarella, 2014; Liu B et al., 2021). The further development of regional integrated energy systems means that the overall energy utilization efficiency and operational economy of the system can be effectively improved through the complementary coupling between multiple energy sources (Peng et al., 2017). Theoretically, the essence of integrated energy systems is not a completely new concept, and the essence of promoting the development of integrated energy systems is the coupling of cleaner energy with traditional gas, kerosene, and other energy power sources. The share of non-fossil energy consumption is approximately 15% in recent years, and the share of end-use electricity will account for only 25%, of which the share of non-fossil energy in the last 10 years is shown in Figure 1. Although the international community and organizations have made significant progress in clean energy in recent years, the realization of the goal of carbon neutrality requires the accelerated integration of the entire economic and social system to transform and upgrade to low-carbon development, which will lead to a profound change in the energy system. In this regard, China, being the largest carbon-emitting country, faces enormous challenges and implementation difficulties.
[image: Figure 1]FIGURE 1 | Percentage of non-fossil energy consumption in China in the last 10 years.
The western region is China’s traditional energy base, with approximately 70% of China’s coal, oil, and natural gas reserves in the northwestern region. The study of energy development in the west is an important strategy for China’s development. Xinjiang is a vast area, accounting for approximately one-sixth of China’s land area, and is extremely rich in fossil and renewable energy resources, with the potential to take the lead in achieving carbon neutrality. The total amount of coal in Xinjiang is expected to reach 2.19 trillion tons, accounting for approximately 40 percent of China’s total amount of coal and ranking first in the country. Xinjiang is also rich in renewable energy resources. The theoretical wind energy reserves (10-m-high layer) amount to 872 million kilowatts, accounting for approximately 20.8% of China’s total wind energy reserves and ranking second in China. The annual solar irradiance of Xinjiang is 5.5–6.6 million kilojoules per square meter, and the annual sunshine hours are 2,550–3,500 h, ranking second in China in terms of total resources. However, due to the low level of economic development, the distribution ratio of clean energy to traditional fossil energy is not balanced. The total energy consumption in Xinjiang has been on the rise since the “13th Five-Year Plan.” In the power industry, the installed thermal power capacity of Xinjiang in 2020 increased to 63.37 million kilowatts, with an annual thermal power generation capacity of 325.76 billion kW hours, accounting for 58.9% of the installed capacity and 80.8% of the power generation capacity in Xinjiang, respectively (data source Xinjiang Statistical Yearbook 2021). Thermal power is the absolute main source of power in Xinjiang, both in terms of installed capacity and power generation, which will also lead to excessive energy consumption and pollution in the Xinjiang region (as shown in Table 1, energy consumption in Xinjiang’s Electricity Industry, data source Xinjiang Statistical Yearbook 2001, 2012, 2020, 2021), thus not conducive to achieving the “carbon peaking and carbon neutrality” goal for the entire Xinjiang region.
TABLE 1 | Energy consumption in Xinjiang’s power industry (unit: ten thousand tons of standard coal).
[image: Table 1]Since the energy consumption of the power industry plays an important role in industrial and regional development, the development of the current integrated energy systems in the region cannot be separated from the coupling of traditional energy generation and clean new energy power. Therefore, the distribution of benefits between thermal, wind, and photovoltaic power generation in the region studied in this paper has become a crucial issue in the current environment. Therefore, it is necessary to analyze the distribution of benefits among the three power generation subjects within the framework of regional integrated energy systems and identify ways to optimize the path of benefit distribution to accelerate progress in clean and low-carbon power energy in Xinjiang.
Based on the aforementioned ideas, Section 1 mainly describes the research background, purpose, and significance of this paper, pointing out that this paper focuses on the problem to be solved. Section 2 compares, analyzes, and summarizes the related literature at home and abroad, understands their research ideas and methods, summarizes insights gained from them, and points out the differences between this paper and the previous research. Section 3 constructs the theoretical model, establishes the revenue calculation system and benefit distribution mechanism, and clarifies the revenue sources of different subjects. Section 4 analyzes specific examples using the Shapley value, kernel method, and improved Shapley value for calculation, and the results are compared and verified. Section 5 provides the main conclusions and recommendations and summarizes the findings of the whole study. It also outlines the need for the development of more detailed regional and cross-regional integrated energy systems to enhance the planning program and build a more perfect distribution mechanism, providing crucial insights for decision-making.
2 LITERATURE REVIEW
2.1 Distribution of benefits from cooperative game in integrated energy systems
Any product is the result of multiple factors of production, and each factor of production involved in the production of a good product makes its own contribution to the outcome and therefore deserves a share of the outcome (Raad E et al., 1999). In the case of energy activities, this means that the benefits generated are distributed and that the interests of the various actors in the cooperation are reasonably distributed in order to stimulate more people to build IES through cooperation.
2.1.1 Subjects of benefit distribution
An IES is a system formed by the combination of several independent individuals, and each subject in the system has a different mode of operation and generates mutual cooperation within the system in order to obtain revenue. In determining the subjects of IES, each scholar studies a different number of subjects. Some scholars have discussed the optimal operation of a regional integrated energy system (RIES) from the perspective of game theory, with users as followers and energy sales companies as leaders, and analyzed the mutual relationship between the two (Luo F et al., 2017). Analyzing the demand-side response strategy from the user’s side, the supply and demand sides are considered the two main actors involved in setting prices in the energy market (Paudel A et al., 2018). The aforementioned scholars and other research subjects are two-sided; the analysis is mainly based on game theory in the cooperative game to analyze the relationship between users and the supply side. The focus of the study on the two-party subjects is characterized by a clear relationship, but the limited number of subjects may lead to an analysis that lacks depth.
Among these, using game theory to allocate the capacity of the IES, in which wind power, photovoltaic, and energy storage devices are different subjects, allows for the optimization of the interests of these different subjects while guaranteeing the operation of the system (Liu X et al., 2018). Synergistic optimization is achieved via a multi-layer, multi-zone optimization approach that simultaneously optimizes the energy interactions between the three main bodies of the industrial park, residential area, and commercial area (Guo L et al., 2013). Through the use of the cooperative revenue approach, the benefits of six areas, namely, combined cooling, heating, and power (CCHP) cogeneration units, ground-source heat pumps (HPs), electric refrigeration (ER) units, electrochemical energy storage (EES) devices, wind turbines (WTs), and photovoltaics (PVs), are rationally distributed based on optimizing operating costs and carbon emissions (WANG et al., 2022a). At present, most scholars researching the distribution of the main body of the study focus on cases involving three or more parties, with most studies centered on the system of a machine or energy-using party. In contrast, research on the power generation side of energy supply is relatively limited. The article selects thermal, wind, and solar power as the research subjects for benefit allocation in the provincial power generation mode, establishes a reasonable benefit-sharing mechanism, and realizes the win–win development of multiple subjects.
2.1.2 Methods of benefit distribution and improvement
Game theory is a classical theory of balancing the interests between different subjects, which mainly studies the decision-making behavior of multiple subjects with mutual influence and interaction. In the traditional monopoly power market, the power generation company usually holds sole pricing authority and lacks an effective competitive mechanism (Diao et al., 2001). Currently, there have been domestic and foreign scholars who have introduced the game theory method into the study of the distribution of benefits of the system in order to coordinate the distribution of competitive cooperation between energy supply, capacity, and energy use in the regional integrated energy system. Scholars use different allocation methods according to the relationship between different research subjects. Based on the Stackelberg game to determine the Nash equilibrium, a game model for grid construction considering the demand response is developed to optimize the overall economic efficiency of the system (Tang R et al., 2019). In exploring the distribution of benefits, a methodology for sharing the benefits of electricity substitution is proposed by utilizing a combination of kernel and Shapley values. Chen X. et al. (2019)analyzed and quantified the value of electricity substitution in reducing production costs, operation costs, and pollution emissions. The dominant-subordinate game in game theory is mainly applicable when the allocating agents have upward and downward relationships, and it is not applicable for this paper.
The Shapley value approach is the most popular of all cooperative game approaches, with the advantage of highlighting marginal contributions and maintaining the stability of the overall coalition. However, these factors alone are not sufficient, and a small number of scholars have used it more convincingly in conjunction with the kernel approach. A methodology for profit distribution is proposed and validated using an improved non-dominated sorting genetic algorithm based on the improved Shapley value method combined with the kernel method (Wang et al., 2022b). In terms of cooperation and gaming, a methodology for shared alternative electrical energy gains is proposed using kernel and Shapley values. The value of electrical energy substitution in reducing production costs, operation costs, and pollution emissions was analyzed and quantified (Chen F. et al., 2019).
Furthermore, several scholars have used a modified Shapley method based on the initial allocation to make the outcome more equitable; however, the method of improvement varies slightly from scholar to scholar. A cooperative revenue model is proposed that considers the stochastic nature of PV output and incorporates risk control; it analyzes cooperative transactions between existing consumers and community IES (Ma L et al., 2018). A different regional alliance and a way of gaming and optimization are discussed through a benefit distribution approach with different RIESs as the gaming subjects (Cong et al., 2019). In the improved Shapley model species, the physical cloud center of gravity method is utilized for redistribution, and relevant indicators such as service quality, total input, and risk are proposed so as to ensure the fairness and impartiality of the charging pile benefit distribution (Wang D. et al., 2023). In order to achieve the goal of IES reliability enhancement, a theoretical framework system is proposed using the indicator of risk reduction, with fairness as the basic criterion, and it involves the incorporation of the probability of failure events as the weight factors, which are then multiplied by the result (Cao M et al., 2022). In the cooperative operation involving hydropower plants at different levels, the principles of compensation and fairness should be consistently applied to ensure the distribution of benefits of hydropower plants at all levels. The coefficient of variation method is applied to the Shapley value model under multiple subjects using different weights of individuals as the index system (Wang L et al., 2021). Amidst the free energy market, a methodology is proposed to guide consumers by calculating the extent of the losses in the distributed generation distribution system (DS). The weighting factors presented contain the average of the marginal contributions of the different subjects (Singh V et al., 2023).
2.1.3 IES benefit analysis
Scholars at home and abroad have established IES efficiency evaluation models from different perspectives and at different levels to verify the effectiveness and good distribution of the system operation so as to correctly evaluate the overall efficiency of the IES operation. These include analytic hierarchy process (AHP) methods, entropy weighting methods, gray correlation methods, multi-attribute decision-making methods, intelligent algorithms, and various combinations of methods. For example, a study has taken the electric-thermal coupled multi-coupled energy system as the research object, selected the benefit evaluation indexes from the perspective of technical and economic evaluation, elaborated the meaning, calculation formula, application scenarios, and limitations of each evaluation index, and established a basically complete system of benefit evaluation indexes (Biezma and San Cristobal, 2006). Based on a detailed combination of existing research results, the evaluation index information of the multi-energy system is analyzed from multiple perspectives. A corresponding comprehensive evaluation method is then used to reflect the level of benefits provided by the multi-energy system compared to the traditional energy system, and appropriate measures are put forward (Mancarella, 2014). In the construction of evaluation indicators, a combination of subjective and objective weights was utilized, employing analytic hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS), and finally, an assessment and ranking of the impact factors of IES were conducted to evaluate barriers and strategies for building resilient energy systems (Xu K et al., 2022). The further development of IES was analyzed and evaluated from a holistic perspective, and five indicators and evaluation criteria related to economic, environmental, and energy use efficiency were established and modeled (Zhou J et al., 2019). When exploring the indicators of the evaluation method, we start by considering the relevant impact indicators of technology, economy, environment, and society. Through the use of correlation analysis, the subjective and objective weights affecting the effectiveness of the model were derived, and the relevant weight coefficients were obtained by combining the maximum entropy principle with the minimum weighted total distance to the ideal solution. Finally, the optimal solution was determined based on the gray correlation method (Yang, K et al., 2018).
2.2 Relationship between carbon trading mechanisms and RIES synergies
The emissions trading method based on Coase’s property rights theorem is an effective means of environmental regulation, while the carbon trading mechanism originates from emissions trading, which is a system that regulates the international carbon trading market. Scholars have studied the optimal use of different loads in the micro-integrated energy system while introducing the carbon trading mechanism, which not only brings economic benefits but also promotes the further optimization of the environment, allowing for their synergistic development.
In RIES, a new low-carbon optimization and regulation model is proposed by introducing small nuclear power units and carbon trading mechanisms into it, and a validation analysis is conducted based on the structural data of North China, which concludes that it has good economic and low-carbon environmental effects (Li Y et al., 2022). A model for CCHP and carbon capture devices is discussed, and its optimal dispatchability is improved by applying aspects such as the demand-side response. The results indicate that the invocation of carbon trading and demand response is essential to reduce the amount of load used and carbon emissions, which is important for ecological and regional development (Yang P et al., 2023). In achieving the reduction of carbon emissions, due to the uncertainty of the scale of wind power usage and the stochastic nature of carbon emissions, this paper proposes a new economic dispatch method that addresses the reduction of economic uncertainty while increasing revenue generation (Jin J et al., 2019). In terms of improving the solution efficiency, an optimization model based on Anderson’s acceleration with alternating direction method of multipliers (AA-ADMM) is proposed (Wang Y. et al., 2023). In the context of trading carbon emissions and renewable energy mix in China, a cost optimization model is proposed and applied to an integrated wind-power–photovoltaic cogeneration power dispatch system in Xinjiang, and finally, real-life cases in the northern and southern regions of China are compared. The analysis of the results shows that carbon emissions trading in the application of renewable energy installations can effectively increase the proportion of renewable energy installations and achieve the goal of reducing carbon emissions (Tan Q et al., 2021).
In summary, current research by both domestic and foreign scholars focuses on the operation and dispatch optimization of IES, and with the establishment of carbon neutral objectives, the combination of research with IES optimization under the “carbon peaking and carbon neutrality” framework is deepening. However, there are still many research points that have not been covered yet, and this paper contributes in the following ways:
1) This paper considers the main body of IES benefit distribution from the macro-level, and the target of distribution is not the micro-machine or the energy user but the thermal power, wind power, and photoelectricity of energy supply. 2) Through carbon trading, the value of the environment is quantified so that carbon trading and IES are synergistically linked and then allocated to the main actors. The combination of these two mechanisms can theoretically provide us with the maximum realization of a low-carbon economy. 3) Game theory is increasingly being used in IES, with different authors using different game methods for different subjects. The article innovatively uses the Shapley value, kernel method, and improved Shapley value to allocate the subjects, comparing the allocation results to arrive at a fairer, more reasonable, and more reliable benefit allocation result. The obtained results are verified using the calculation cases’ results. The shortcoming of the article is that it only considers the game between the three parties. Currently, in some areas, nuclear power has become the main component of power generation, and therefore, the three-party game is incomplete and requires a deeper four-party or five-party game in order to get a fairer and more reasonable distribution.
3 INTEGRATED ENERGY SYSTEM BENEFIT CALCULATION AND DISTRIBUTION MODEL
3.1 Calculation model for the integrated regional energy system
IES is a multi-level, complex coupled system of multiple energy inputs, conversions, and outputs, which includes a variety of energy coupling devices. At present, the vast majority of terminals are still in a single way for the use of equipment, unable to achieve multi-energy coupling, but also not conducive to economic efficiency and emission reduction efforts. With the promotion of IES in parks, so that multiple operating entities share information with each other and form a cooperative alliance, energy can be staggered and graded within a park, the efficiency of equipment is significantly enhanced, and the economic and environmental effects are immediate. The benefits of cooperative power supply. The internal energy flow diagram of a regional IES is shown in Figure 2. The external power conduction diagram of the integrated regional energy system is shown in Figure 3.
[image: Figure 2]FIGURE 2 | Energy flows within an integrated regional energy system.
[image: Figure 3]FIGURE 3 | External power transmission of the integrated regional energy system.
This paper deals with three modes of power generation: thermal, wind, and solar, with the total return calculated as follows:
[image: image]
where [image: image] represents the total revenue obtained, [image: image] represent the fees charged for thermal, wind, and photovoltaic power, respectively, [image: image] represents the amount of electricity generated by a certain power, [image: image] represents the cost of subsidies for a certain power, [image: image] represents the carbon emission factor for electricity in the region in that year, [image: image] represents the carbon price, and [image: image] represents the cost of a certain power. In this paper, we consider the revenue distribution of different power generation modes from the macro-supply side of the integrated energy system, without involving the work performed by specific machines, and the revenue generated under different power generation modes is calculated as the difference between the sum of the fees charged for electricity consumption, the government subsidies given to new energy power generation, and the carbon price for the consideration of environmental factors and the actual cost of power generation.
3.2 Distribution model of the integrated regional energy system
3.2.1 Improved Shapley value method
Cooperative games, the symmetry of non-cooperative games, are a type of game. Cooperative games emphasize collective rationality, efficiency, fairness, and equity. Maximizing the collective interest is called “collective rationality.” The Shapley value method is used to solve the problem of distributing members’ benefits in cooperative games, which distributes benefits to each member based on the average of the marginal benefits created by that member for participation in the coalition. This method satisfies four properties: symmetry, validity, redundancy, and additivity. The Shapley value method of benefit allocation is calculated as
[image: image]
Where member i has [image: image] kind of ordering, when participating in an S-coalition. [image: image] denotes the number of members contained in the union S, while the remaining [image: image] members are ordered with [image: image] kinds. The different combinations of rankings in which all members i participate divided by the random combination of rankings of n members is the weight of the benefit to be shared by member i for the coalition as a whole, denoted as [image: image]. The marginal contribution created by member i participation in different coalitions S for its own participation in the coalition is denoted as [image: image] denotes the set after removing element i from the set S.
The aforementioned Shapley value method only considers the single marginal benefit contribution of each subject to the cooperative alliance, completely ignoring the other contributions made by the subjects during the entire operation of the alliance. So, a single influencing factor is far from sufficient. According to the development trend of China’s policy and in alignment with the scholars’ efforts to improve the Shapley value and other research analyses, five aspects of multidimensional considerations should be incorporated: the level of risk, resource inputs, environmental pollution, technological innovation, and the profit factor. The level of risk includes both external and internal risks, and risk factors cannot be ignored in any indicator system, as different risks have a significant impact on the results, as shown in Table 2. Resource inputs include both tangible and intangible resources, which are explicit or invisible costs to the subject before they generate benefits and should be taken into account when allocating them. Environmental factors have become indispensable indicators, and we should consider other pollution alongside that causes carbon emissions. Technology innovation is also an important indicator, in the case of electricity, in terms of the controllability and stability of power generation and the technical treatment of surplus power. The marginal contribution is considered in the improved methodology, but it is important to consider not only the profit side of the equation but also the degree of contribution and growth rate.
TABLE 2 | Evaluation system indicators.
[image: Table 2]The specific calculation steps are as follows: first, five experts and scholars in the field of energy and electricity were invited to score the primary and secondary indicators that affect different subjects related to each other in the regional energy system, and the primary indicator fuzzy matrix and secondary indicator fuzzy matrix were derived by two-by-two comparison, and the ratio of the degree of influence of element [image: image] and element [image: image] on target A was expressed by [image: image], which was scored according to Table 3 on a 1–9 scale so as to derive the importance level of each indicator, and then the consistency test was performed to determine whether it passes or not.
TABLE 3 | Scale of 1–9.
[image: Table 3]Next, the weights were calculated and checked for consistency.
First, the approximate value of the eigenvectors of the judgment matrix is found based on the root method.
[image: image]
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Finally, a logical consistency test of expert preferences is required for scoring the results of different experts. If the consistency test is not met, it means that there is a conflict in the experts’ judgment on the relative importance of the indicators.
The entropy weighting method is an objective determination method that utilizes the amount of information entropy contained in an indicator to determine the weight of the indicator. As the name suggests, the information entropy can be used to estimate the degree of discretization of the indicator; the lower the entropy value, the higher the degree of discretization of the indicator, and the greater the influence of the indicator on the overall assessment. The specific calculation steps are as follows:
First, the factors are normalized according to the number of each option.
Positive indicators:
[image: image]
Negative indicators:
[image: image]
Next, the entropy value of the [image: image]th term is calculated:
[image: image]
Then, the weights of each indicator are calculated:
[image: image]
The final weights of each indicator are obtained and can be ranked according to their magnitude to determine their level of importance in the decision.
For real-life problems, the use of only subjective or objective weighting methods can result in a certain lack of information, which can affect the final assessment results. The AHP method relies on the evaluator’s experience, is generally not affected by the values of the attributes, and is more stable; however, due to its strong subjectivity, it may overlook some laws within the data. The entropy weighting method can directly reflect the data of the sample as well as the distribution pattern, ensuring the absolute objectivity of the weights, but it does not include the connection of each indicator in the sample and is less stable, which may lead to the situation that the weighting results are contrary to the actual situation and cannot directly reflect the importance of the indicators. In this study, the two methods are combined for the weighting assignment. The formula is as follows:
[image: image]
where [image: image] denotes the modified factor weights and [image: image] and [image: image] denote the weights of subjective and objective evaluation indicators, respectively, which can be calculated according to the aforementioned steps. The subjective and objective scores denote the scores of different evaluation indicators, which can be weighted according to their relative weights to obtain the final evaluation results.
3.2.2 Nucleolus distribution
The nucleolus method is known as the “solution” to the game, and for a cooperative game [image: image], any allocation scheme [image: image] is chosen. For a coalition [image: image], in order to assess the satisfaction of S with [image: image], a beyond indicator is defined as follows:
[image: image]
The magnitude of [image: image] reflects the satisfaction of [image: image] with [image: image]. The larger the [image: image] is, the less satisfied the [image: image] is with the distribution since the sum of the distributions of its participants falls far short of the surplus value [image: image] it creates. When [image: image] is negative, all participants in [image: image] have allocated not only the cooperative surplus [image: image] that they have created but also the value created by other coalitions. Let [image: image] be the gains generated between the participants running coalition [image: image]. Then,
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where [image: image] is the return generated by the participant [image: image] alone. This is then solved using linear programming:
[image: image]
where [image: image] represents an arbitrarily small real number, in this case, a proxy for [image: image], [image: image] represents the set of all participants in the coalition, and [image: image] is the set of all different modes of operation.
In this paper, the participants refer to the distribution of benefits received by thermal, wind, and photovoltaic power; the distribution of benefits received in the kernel method shall be the proceeds of the other collaborations of the union plus the proceeds generated when operating separately, as in the following equation:
[image: image]
4 CALCULATION ANALYSIS
Xinjiang is a traditional energy base and a new energy-rich region in China, and it is one of the best regions for the realization of an integrated regional energy system. In this paper, the three types of electricity generation in Xinjiang in 2020 are used as a case study and the benefits of the synergistic generation are analyzed. The Xinjiang region’s electricity generation in 2020 is taken from the Statistical Yearbook. Data source Xinjiang Statistical Yearbook 2013, 2015, 2021. The share of hydroelectric power generation in the Xinjiang region from 2015 to 2020 is shown in Figure 4. As the share of hydroelectric power generation is not high and does not match the characteristics of Xinjiang’s resource development and as it can be seen from the figure that the total amount of hydroelectric power has not changed significantly in recent years, the allocation of hydroelectric power generation is not considered in this study. The share of hydroelectric power generation in the Xinjiang region from 2010 to 2020 is shown in Figure 4. As the proportion of hydropower generation is not high and does not meet the characteristics of the development of resources in Xinjiang. Therefore, this study does not consider the allocation of hydropower generation. The data used in this paper are the most recently available data in the public domain, and the 2020 data are highly representative and not affected by other factors such as epidemics.
[image: Figure 4]FIGURE 4 | Percentage of hydropower in the Xinjiang region during 2010–2020.
The subsidy for wind power is approximately RMB 0.03/kWh, and for photovoltaic power, it is approximately RMB 0.05/kWh. The national price for carbon trading rights in 2020 is taken as an average of approximately RMB 45/ton, and the carbon emission factor for electricity is approximately 565 g CO2 per kWh. The data are shown in Table 4 (Costs and subsidies vary by region, data from Xinjiang Statistical Yearbook, Notice of the National Development and Reform Commission on Matters Relating to the Policy on Feed-in Tariffs for Photovoltaic Power Generation in 2020, IRENA, 2023).
TABLE 4 | Xinjiang 2020 power generation table.
[image: Table 4]4.1 Initial Shapley value allocation
It is first necessary to calculate the revenue generated by each generation method when working in isolation (all the following calculations are in 100 million of Chinese Yuan: thermal power, wind power and solar power are numbered 1, 2 and 3 respectively. c(1) = 358.90, c(2) = 59.99, c(3) = 11.85. When both approaches form an alliance operation, c(1,2) = 541.63, c(1,3) = 422.25, c(2,3) = 100.88. When all generation methods cooperate, c(1,2,3) = 864.47. Based on the aforementioned information, the Shapley value method was used to calculate the distribution of benefits that each generation method would receive for the operation of the entire union as follows: [image: image], and then [image: image]. Similarly the data can be substituted into 2 and 3 to obtain the distribution of the benefits obtained by the other two in the overall union, [image: image] and [image: image]. We then substitute the results for the properties and conditions required by the Shapley value, and the results are all satisfied, with the benefits of each generation method being greater than the benefits of working alone. In addition, the benefits of cooperation between two or three methods also satisfy superadditivity, ensuring that the results of the three allocations add up to exactly the same as the total benefits obtained by the whole alliance.
4.2 Modified Shapley value method assignment
According to the comprehensive subjective and objective assignment method described previously, five experts were invited to score the five primary indicators, risk level, resource input, environmental pollution, technological innovation, and profit factor, and 10 secondary indicators, such as external risk and physical resources, the degree of mutual influence, and fuzzy evaluation, to establish 1,065 sub-nodes based on the scoring results, after arithmetic averaging, according to the aforementioned formulas (3) and (4). The average summation was divided, and the results of each indicator are denoted as CR = CI/RI = 0.0 [image: image] 0.1, indicating that the results scored by the experts passed the one-time test. The relevant indicators and the weights of each factor are shown in Table 5, and the standardized risk assessment matrix is shown in Table 6.
TABLE 5 | Impact weights for each factor.
[image: Table 5]TABLE 6 | Elements of the standardized risk assessment matrix.
[image: Table 6]Calculation of the objective weighting factor using the entropy weighting method according to equations 5 and 8 resulted in [image: image] = (0.18, 0.21, 0.31, 0.21, and 0.09). The data were normalized, where the subjective factor may have a large effect; so [image: image] was set to 0.425 and [image: image] to 0.575 to obtain the corrected factor results: [image: image]. After the evaluation of the risk indicators and the correction, according to formula (9), the final benefit distribution correction weights for thermal, wind, and solar power are [image: image] = (0.21, 0.37, and 0.42), respectively. The original ratios of thermal, wind, and solar power were [image: image] (0.60, 0.25, and 0.15), respectively. The final weights are [image: image] (0.47, 0.29, and 0.24), respectively. That is, the gains shared by thermal, wind, and solar power under the modified Shapley value method are 406.3, 250.7, and 207.47, respectively.
4.3 Nucleolus method allocation
Based on the analysis of the underlying data in Section 4.1, it is clear that the payoff is maximized when the three-party electric field is cooperatively allied and that it is not only much greater than the payoff generated when operating alone but also greater than the sum of the individual payoffs of the two-party alliance and the other party. The aforementioned characteristics are typical of a three-party cooperative game problem, and we can use the nucleolus method for allocation. The additional gains arising from coalition cooperation can be calculated using Equation 11, which yields Eq. 14.
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where [image: image] represents the three cooperative alliances, thermal power, wind power and solar power are numbered 1, 2 and 3 respectively. [image: image] represents the additional benefits generated by mutual cooperation in alliance [image: image], and [image: image] represents the actual benefits generated under the different cooperative alliances. A linear programming approach is then used to calculate the corresponding portion [image: image] of the additional benefits accruing to each party from the cooperative alliance using Equation 12, which yields Equation 15.
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The optimal solution was obtained using the optimization solution toolbox CVX in MATLAB solution software: [image: image]. Finally, Equation 16 is used to calculate the benefits accruing to each subject of the alliance: [image: image], [image: image], and [image: image]. That is, thermal, wind, and solar power received 503.48, 204.57, and 156.43, respectively, under the nucleolus allocation method.
4.4 Analysis of allocation results
The values obtained using the initial Shapley value, nucleolus, and modified Shapley value methods of allocation are compared, as shown in Figure 5 and Table 7.
[image: Figure 5]FIGURE 5 | Comparison of the results of the three benefit allocations.
TABLE 7 | Results of the three benefit allocations (100 million CNY).
[image: Table 7]We find that the initial Shapley value method and nucleolus allocation both provided similar results, and in the following paragraph, we will verify whether this benefit allocation is a convex game problem using the data from the nucleolus allocation as an example.
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Based on the aforementioned equations, it can be verified that the benefit allocation problem solved in this paper is a convex cooperative game problem, and it is for this reason that the initial Shapley values are similar to the nucleolus allocation results. All three of these allocations satisfy the overall distributional rationality. In other words, the total benefits are the same as the total revenue, which satisfies the individual benefit rationality and the cooperative alliance benefit rationality, proving that the alliance cooperation is effective and relatively stable.
Figure 6, Figure 7, and Figure 8 represent the share of revenue of each power generation subject under the initial, improved, and kernel allocation methods, respectively. As can be seen from the figure, no matter which allocation method is used, thermal power obtains the largest proportion of revenue, and the proportion in the initial allocation even reaches 60%. This is because the Xinjiang region is actively promoting the share of new energy generation, but the current dominance of thermal power generation has not changed. The major advantage of thermal power, compared to the other two new energy generation sources, is its stable power supply, which can be used at any time. This is why in our efforts to promote power reform, thermal power is not completely abandoned. Instead, we focus on technological innovation and transformation based on the maturity of thermal power technology. This approach aims to improve the efficiency of thermal power generation and minimize environmental pollution. The biggest change in the improved Shapley value is solar power generation, with a 10% increase in revenue share. Due to the geography of Xinjiang, most of the area has sufficient light hours, which meets the basic requirements of solar power generation and results in less pollution in the environment. However, at the same time, there are some shortcomings to solar power, including the high capital requirements for construction and uncertainty and weather-related risks associated with its power generation. On the one hand, we should actively build the solar power industry and make full use of the geographical advantages of Xinjiang. On the other hand, we should also acknowledge the problem of its instability. Wind power has increased its share of revenue after improved methods, and the advantages and disadvantages of wind power and photovoltaic power are similar.
[image: Figure 6]FIGURE 6 | Initial Shapley value distribution.
[image: Figure 7]FIGURE 7 | Modified Shapley value distribution.
[image: Figure 8]FIGURE 8 | Nucleolus distribution.
5 CONCLUSION AND RECOMMENDATIONS
In this paper, we have used the “carbon peaking and carbon neutrality” goal to allocate the electricity revenue in the Xinjiang region in three different ways. Using the improved Shapley value method is more to provide a fairer and more reasonable solution for our allocation and contribute to the synergistic development of the integrated regional energy system under the “carbon peaking and carbon neutrality” goal. The findings of this paper are as follows:
(1) At this stage, the importance of thermal power generation in the Xinjiang region remains unchanged. Among the three different allocation results, thermal power receives the highest benefit, which is also related to the proportion of total power generation accounted for by thermal power generation. At present, the thermal power generation technology in Xinjiang is relatively mature; therefore, this paper argues that the next development direction is to maximize the efficiency of power generation and the secondary use of surplus power.
(2) In particular, adding environmental and risk factors and considering environmental factors are in line with the requirements of China’s sustainable development. Electricity is closely related to people’s lives, and the stability of power generation is a problem we need to consider, which is also one of the reasons why new energy power generation technology cannot completely replace thermal power generation for the time being.
(3) The significant increase in gain in the improved Shapley value is solar power generation. So when we promote the development of the new energy generation industry in the future, we should pay more attention to the development according to local conditions so that we can better utilize our own advantages and improve the efficiency of resource use.
In order to better promote the development of a regional or even cross-integrated regional energy system and achieve the “carbon peaking and carbon neutrality” goal of Xinjiang’s power-related industries, the following policy recommendations are further proposed:
(1) The Xinjiang region should vigorously develop high-efficiency power generation and energy-saving and consumption-reducing technologies for coal power units. This includes increasing the introduction, promotion, and large-scale commercial application of advanced ultra-supercritical power generation technologies and supercritical circulating fluidized bed technologies. Additionally, there should be focus on the development of deep peaking and flexible power generation technologies for coal power units, leading to the transformation and upgrading of coal power units in the Xinjiang region. At the same time, the proportion of renewable energy generation will be increased to achieve energy structure transformation, accelerate the technological innovation of energy saving and consumption reduction of coal power units, deeply explore the peaking potential of coal power units, comprehensively improve the operational flexibility of coal power units, and support the transformation to an energy system based on renewable energy. Combining coal-fired power generation with solar energy can save energy, reduce pollution, achieve joint development of coal-fired units and renewable energy generation, and vigorously develop coupled coal-fired power generation technology with biomass and solid waste. Partial replacement of fuel can reduce carbon emissions from coal-fired power units, and comprehensive use of biomass, solid waste, and other resources can improve the flexibility of power generation from coupled units. The Xinjiang region should develop and utilize energy resources efficiently, cleanly prioritize the development of renewable energy, reasonably develop fossil energy resources and distributed energy resources according to local conditions, accelerate the pace of energy transformation, optimize the transformation of the energy structure, and vigorously develop CCUS technology to support the clean and low-carbon development of electricity.
(2) We should promote research, development, and breakthroughs in key technologies for China’s IES and accelerate the development of provincial-level action roadmaps for the power sector geared toward achieving the “carbon peaking and carbon neutrality” goal. We should promote the establishment of China’s IES in cross-regional, intra-regional, and key energy-using industries to facilitate sustainable and synergistic regional development and low-carbon and green industrial transformation. This will contribute to the construction of a clean and low-carbon, secure, and efficient energy security system and facilitate the transformation of energy supply and demand structures in China. At the same time, the development of relevant policies according to local conditions is needed not only to encourage the relatively high level of economic development of the provinces for industrial transformation and green upgrading but also to strongly support the level of economic development in not-so-high but resource-rich provinces, make full use of their own advantages, and accelerate the promotion of clean electricity reform.
(3) We should actively promote the development of the carbon trading mechanism and leverage the economic incentives of the carbon trading mechanism. As an important policy tool for achieving carbon neutrality in China, the carbon trading mechanism still has problems such as insufficient connection with the overall climate policy objectives and inactive market players. We need to strengthen the disclosure of climate information to the public and consider prioritizing the inclusion of renewable energy and industries not covered by the carbon market in the carbon trading system so that the carbon price level in China can increase steadily.
(4) We need to promote synergistic mechanisms for IES driven by carbon neutrality targets. In light of the rapid changes in the energy system, economy, and society driven by the carbon neutrality target, the status, role, and form of IES in national sustainable development will be re-conceptualized. By integrating carbon neutrality targets, regional and sectoral synergistic development, and IES construction, the carbon neutrality target dimension is added to the existing conceptual understanding, theoretical approaches, and optimization models, and a satisfactory combination of planning and layout, engineering, and governance and management measures is sought. At the same time, from the perspective of the carbon neutrality target, we will re-examine the multi-energy complementarity in the processes of clean production and circular economy and reconstruct the corresponding low-carbon industrial system.
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Wind and solar energy are the important renewable energy sources, while their inherent natures of random and intermittent also exert negative effect on the electrical grid connection. As one of multiple energy complementary route by adopting the electrolysis technology, the wind-solar-hydrogen hybrid system contributes to improving green power utilization and reducing its fluctuation. Therefore, the moving average method and the hybrid energy storage module are proposed, which can smooth the wind-solar power generation and enhance the system energy management. Moreover, the optimization of system capacity configuration and the sensitive analysis are implemented by the MATLAB program platform. The results indicate that the 10-min grid-connected volatility is reduced by 38.7% based on the smoothing strategy, and the internal investment return rate can reach 13.67% when the electricity price is 0.04 $/kWh. In addition, the annual coordinated power and cycle proportion of the hybrid energy storage module are 80.5% and 90%, respectively. The developed hybrid energy storage module can well meet the annual coordination requirements, and has lower levelized cost of electricity. This method provides reasonable reference for designing and optimizing the wind-solar-hydrogen complementary system.
Keywords: wind-solar-hydrogen hybrid system, water electrolysis, fuel cell, fluctuation smoothing, capacity configuration
1 INTRODUCTION
The use of fossil fuels has produced a large amount of greenhouse gases, exacerbating global warming and climate change (Temiz and Dincer, 2023). Renewable energy can mitigate the drawbacks of fossil fuels by meeting energy demand requirements, ensuring long-term sustainable production and reducing the negative environmental impacts. Among them, wind and solar are the two most widely used renewable energy power generation technologies. They hold promise as clean and efficient sources of renewable energy, contributing to achieving net-zero emissions and reducing dependence on fossil fuels (Eltayeb et al., 2023; Ma et al., 2023).
Therefore, the development of wind and solar power generation is crucial for promoting the transformation of energy structure. Nevertheless, the uncertainty and volatility of wind and solar power generation pose significant challenges to the secure operation of power systems (Han et al., 2023; Zhou et al., 2024), and how to alleviate this situation has become a necessary research topic. In this case, storage units become essential, albeit at a higher cost, and more sophisticated wind-solar grid-connected strategies need to be further developed to reduce energy abandonment rates (Das et al., 2022). To address this issue, the researchers proposed an intermediate buffer system to coordinate the supply side and the user side from solar-wind hybrid generation. In order to alleviate the impact of intermittent wind and solar power generation on residential electricity consumption, Tajouo et al. (2023) and Zarate-Perez et al. (2023) proposed a multi-energy complementary system comprising PV/Wind/Battery. Through the real-time load comparison with power generation and energy storage, the integration of an energy storage system extends the full load operation time of the electrolytic cell and reduces the cost of hydrogen production. The flywheel energy storage system is also adopted as an energy storage solution (Erdemir and Dincer, 2020; Amry et al., 2023; Hutchinson and Gladwin, 2023). The implementation of flywheel energy storage holds significant potential in enhancing the Net Present Value, reducing the load capacity, and optimizing the economic benefits. This allows for flexible resource scheduling without compromising the system’s economic viability. Liu et al. (2023b) and Nejadian et al. (2023) utilized a wind-solar hybrid hydrogen production system to mitigate fluctuations, enhance resource utilization, and contribute to the standardization strategy of wind-solar hybrid hydrogen production systems. Compared to the other energy storage methods, hydrogen energy storage offers the advantage of versatility across various fields, such as the chemical industry and energy sector, resulting in higher economic benefits (Tang et al., 2022; Kakavand et al., 2023). By combining water electrolytic with wind and solar power generation, the fluctuating power from wind and solar sources is converted into high-quality, high-calorific value green hydrogen. This transformation helps to alleviate the problem of abandoning wind and solar in power generation (Ruhnau, 2022; Prestat, 2023). Moreover, it provides multiple advantages, such as mitigating power fluctuations, ensuring power system stability, and improving market value (Temiz and Dincer, 2022; Superchi et al., 2023).
With the increasing scale of wind and solar power generation, the system complexity, equipment capacity, and initial investment also increase. To achieve the stable operation and enhance the economic efficiency, it is essential to coordinate the capacity configuration optimization and control strategy of the multi-energy complementary system (Zhang and Maleki, 2022; Bai et al., 2023). Liu et al. (2023a) proposed a wind-solar-hydrogen multi-energy supply system integrated with the power grid to distribute the power load, and evaluate the optimization potential for each component of the optimized subsystem using exergy destruction efficiency as an indicator, providing a foundation for subsequent optimization. To optimize the hydrogen load demand and investment costs according to the user requirements, Huang et al. (2023) put forward a day-ahead optimal scheduling strategy based on the principle of aligning energy demand values with the system supply. Compared to the traditional scheduling strategy, the daily profit increased by 12.5%. Liu et al. (2022) introduced a multi-level control method suitable for a wind-solar-storage multi-energy complementary system, enhancing both the stability of the power grid and energy consumption capacity. Through economic analysis of the same optimization target using different control methods, it was found that the new control method significantly reduces the investment cost. Zhang et al. (2023) proposed a system regulation model considering thermal inertia and user comfort, which has a positive impact on the high proportion utilization of renewable energy. Wang et al. (2022) proposed an economic optimal scheduling method with the objective of maximizing system profit, which proves to be highly effective in adapting to the market demand and achieving higher economic benefits. Ibáñez-Rioja et al. (2023) optimized the control method and system capacity based on the minimization of the Levelized Cost of Hydrogen, leading to an increased running time of the electrolytic cell at full load. Balancing economic considerations with enhancements and meeting various scenario requirements, Li et al. (2022) conducted a multi-objective optimization on the capacity configuration and control method of a wind-solar-pumped hybrid storage system to minimize investment costs and maximize system economic benefits. Behzadi and Sadrizadeh (2023) proposed a multi-energy complementary system of wind-solar-hydrogen to optimize the system capacity configuration, reduce the peak capacity and energy cost. The two-way connection with the heating network and power grid enables the system to adequately satisfy the energy demand in the building. Pan et al. (2023) optimized the control method with the goal of minimizing the operating cost of the wind-solar hybrid power generation system. As a result, the integration of a wind-solar power grid system with hydrogen energy storage enhances the utilization efficiency of wind and solar resources, leading to improved economic benefits. It provides a more effective and flexible allocation control scheme, especially when integrating numerous new energy power generation systems, by connecting renewable energy to the grid.
To satisfy the requirements of wind-solar power grid connection, and then enhance the system’s stability and economic efficiency, the capacity configuration method of the multi-energy complementary system has been optimized, and thus improved the system control strategy. These enhancements will significantly improve the power supply stability and economic feasibility of the system. Additionally, the fluctuating outputs of solar and wind power impact the frequent start and stop of the electrolyzer in energy storage devices, reducing their lifespan and hydrogen production efficiency. To address these issues and ensure the system’s stable operation, this work focuses on constructing a hybrid energy storage module integrating batteries, electrolyzers, and fuel cells. A wind-solar-hydrogen multi-energy complementary grid-connected system has been developed. Furthermore, the influencing factors of alkaline electrolyzers are analyzed, and a grid connection strategy and capacity configuration optimization method are proposed in conjunction with the hybrid energy storage unit. The economic benefits and dynamic performance of the optimized system are further analyzed. The main contributions of this research can be outlined as follows:
(1) The wind-solar-hydrogen multi-energy complementary system is constructed. A smoothing strategy of power generation grid connection based on sliding average method is proposed, which mitigates the influence of wind-solar power rapid fluctuation. The dynamic process of the system under this strategy is further analyzed.
(2) The alkaline electrolyzer, battery, hydrogen tank and fuel cell equipment are combined to form a hybrid energy storage module. The energy management strategy is further developed, and the module is used to coordinate the grid connection of wind and solar power generation. In addition, the system performance and dynamic operation characteristics are evaluated.
(3) In order to improve the economic benefits of the wind-solar-hydrogen complementary multi-energy complementary system, the capacity configuration optimization model of the system is established. And the differential evolution algorithm is used to optimize the capacity configuration. The system investment construction cost is further analyzed.
The rest of this paper is organized as follows: The process of conceptual and mathematical modeling is introduced in Section 2. The hydrogen production characteristics of alkaline electrolysis cell and the capacity configuration model of wind-solar-hydrogen coupled multi-energy complementary system is established in Section 3. The main results and analysis are presented in Section 4 and the main conclusions are summarized in Section 5.
2 WIND-SOLAR-HYDROGEN HYBRID MULTI-ENERGY COMPLEMENTARY SYSTEM AND MODEL
2.1 Wind-solar-hydrogen hybrid multi-energy complementary system
In order to address the issue of fluctuations caused by the large-scale integration of wind and solar energy into the grid, this study proposes a multi-energy complementary system of wind-solar-hydrogen hybrid by combining wind-solar hybrid power generation, electrolytic water hydrogen production, and fuel cell system. The system’s operational process is illustrated in Figure 1. The key equipment of this system includes wind turbines, photovoltaic generators, alkaline electrolyzers, pressure hydrogen storage equipment, battery equipment, and fuel cells.
[image: Figure 1]FIGURE 1 | Wind-solar hydrogen coupling multi-energy complementary system.
In the integrated system, wind power generation and photovoltaic power generation serve as the primary power sources. The smoothed power generated is directly fed into the grid for utilization. Excess clean green electricity is stored through battery technology or utilized to drive the alkaline electrolyzer for high-quality hydrogen production, which facilitates chemical energy storage. Moreover, the hydrogen storage equipment and fuel cell are employed as supplementary components for power generation, thereby enhancing the overall stability of the system’s operation.
The whole wind-solar-hydrogen hybrid multi-energy complementary grid-connected constitutes an “electricity-gas-electricity” closed-loop structure. The wind and photovoltaic output power are adjusted by the control system to reduce the fluctuation of on-grid power and configure the hydrogen production. The alkaline electrolyzer, hydrogen storage equipment, battery and fuel cell together constitute a hybrid energy storage module. When the proportion of wind and solar power generation in the system exceeds the on-grid power, the module adopts the measures of battery and alkaline electrolytic water hydrogen production to absorb excess wind and solar power generation energy. When the wind and solar power generation power in the system is insufficient, the battery is used to supplement the shortage of wind and solar power generation. When the hydrogen energy storage is sufficient, the fuel cell is used to supplement the shortage to further smooth the system‘s on-grid power, as shown in Figure 2. In order to achieve the goal of economic operation of the system, it is necessary to optimize the capacity of equipment such as hydrogen production and fuel cell with levelized cost of electricity(LCOE) as the target (Ang et al., 2022).
[image: Figure 2]FIGURE 2 | Smooth grid connection and shortage supplement schematic diagram.
2.2 Wind-solar hybrid hydrogen system modeling
2.2.1 Wind and solar power output modeling
Wind turbine and photovoltaic array serve as the energy supply components of the multi-energy complementary system. The wind turbine’s output power, denoted as PWT, is contingent on the wind speed v, thus wind power exhibits characteristics of fluctuation and intermittency. The wind turbine’s output power is calculated as Eq. 1 (Chaichan et al., 2022; Nasrabadi and Korpeh, 2023):
[image: image]
where ρ is the air density, AWT is the swept area by the rotor and Cp is the coefficient of performance of the wind turbine, respectively.
Photovoltaic array converts the solar radiation into electrical energy based on photoelectric effect, and the photovoltaic output power PPV can be calculated as Eq. 2 (Praveenkumar et al., 2022):
[image: image]
where D and D0 are actual the solar irradiance and reference solar irradiance, respectively. Tpv and Ta are the temperature of PV and ambient temperature, NPV is the number of PV cell units, μ is the temperature coefficient of module efficiency.
2.2.2 Alkaline electrolyzer modeling
As for the electrolyzers, the load power is adapted by adjusting its current, and the temperature-dependent electrode kinetics of the alkaline electrolytic cell stack can be modeled as Eq. 3 (Fang and Liang, 2019):
[image: image]
where VAE and Vrev are the voltage and reversible voltage, respectively. TAE is the temperature of the electrolyzers, r is the ohmic resistance parameter of the electrolyte, AAE is the effective area of the electrolyzers, and s is the electrode overvoltage coefficients.
The molar rate of hydrogen production nH2 is obtained by Eq. 4 (Fang and Liang, 2019):
[image: image]
where NAE and IAE represents the number of electrolyzer and electrolyzer current, respectively. F is the Faraday constant of 96487 C/mol.
The electrolysis efficiency ηAE is formulated as Eq. 5 (Fang and Liang, 2019):
[image: image]
where ΔG is the Gibbs free energy of the electrochemical reaction.
2.2.3 PEMFC modeling
The fuel cell converts the stored hydrogen into electricity to supplement the grid shortage. The output power of fuel cell is mainly affected by its own polarization characteristics, and its output power PFC can be expressed by Eqs. 6–10 (Jia et al., 2009; Li et al., 2021):
[image: image]
where IFC represents output current of fuel cell and Vnernst, Vact, Vonmic and Vcon present thermodynamic potential, activation losses, ohmic losses and concentration losses, respectively. NFC is the number of fuel cells.
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where TFC is the temperature of fuel cell, R represents the ideal gas constant, pH2, pO2 and pH2O are the pressures at the reaction interface. Rohm is the resistance to H+ flow in the exchange membrane. ξ1, ξ2, ξ3 and ξ4 are empirical parameters, B0 represents the oxygen concentration at the cathode gas level, jFC is the current density.
2.2.4 Battery and hydrogen storage modeling
To further enhance the utilization of wind and solar energy, a lithium iron phosphate battery is used as energy storage device. This enables the storage of the excess wind and solar energy power after the hydrogen production, supplementing power during the period of insufficiencies. The capacity of battery Ebat(t) at time t can be expressed as Eqs. 11, 12 (Tajouo et al., 2023):
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where σ means the self-discharge rate of the battery. ηbat_in and ηbat_out represents charging efficiency and discharging efficiency, respectively. Pbat(t) is the power of the battery. When Pbat(t) > 0 the battery will be charged. Conversely, the then battery will be discharged when Pbat(t) < 0.
Moreover, the inclusion of hydrogen storage equipment is crucial to enhance the stability of hydrogen transportation. Gaseous high-pressure hydrogen storage technology is primarily employed for short-term storage of hydrogen, ensuring efficient and reliable operation. According to the Clapeyron equation, the state of the tank can be obtained by Eq. 13.
[image: image]
where pHT and QHT are the pressure and volume of the hydrogen storage tank, respectively. nHT is the hydrogen molar amount. THT is the thermodynamic temperature of hydrogen storage, and R represents the ideal gas constant.
In the wind-solar hybrid hydrogen production system, the key parameters of the main equipment are presented in Table 1 (Su et al., 2023).
TABLE 1 | Key parameters used for the modeling of the hydrogen system.
[image: Table 1]3 CAPACITY CONFIGURATION METHOD OF WIND-SOLAR HYBRID MULTI-ENERGY COMPLEMENTARY SYSTEM
In the multi-energy complementary system of wind-solar-hydrogen hybrid, the alkaline electrolyzer plays a crucial role in the hybrid energy storage module. Its operational characteristics and dynamic behavior directly impact the stabilization characteristics of the entire multi-energy complementary system. Additionally, the scheduling strategy and capacity configuration method employed in the system also have significant effects on the operation cost of the entire system.
3.1 Operating characteristics of alkaline electrolyzer for hydrogen production
The alkaline electrolyzer, battery, hydrogen storage tank and PEMFC constitute the energy storage and consumption link of the multi-energy complementary system of wind-solar-hydrogen coupling. The battery is used as an electrochemical energy storage device, which has the characteristics of fast cycle speed and low cycle life, while the corresponding speed of PEMFC is milliseconds to seconds, both of them can adapt to the rapid fluctuation of power. In contrast, the alkaline electrolyzer has a slower response speed and a certain lag, and its operating state will greatly affect the operating state of the hybrid energy storage module. This work will mainly analyze the operation characteristics of alkaline electrolyzer in wind and solar power generation. The analysis holds great significance in formulating a coordinated grid-connected operation strategy for the system and enhancing its overall stability.
In the wind-solar power generation hydrogen production system, the wind-solar power as the power input source, which will affect the hydrogen production process of electrolytic water. External environmental conditions, such as wind speed, radiation intensity and other factors affecting wind and solar power generation power, indirectly affect the rate of hydrogen production from electrolytic water. In addition to the indirect factors, the hydrogen production rate of alkaline electrolyzer is also affected by the working current, working temperature and operating characteristics. The operating characteristics of alkaline electrolyzer in the actual operation process are as follows:
(1) Working fluctuation characteristics: Electrolyzers can operate efficiently within a range of 15%–100% of their nominal capacity (Lüke and Zschocke, 2020). Within this range, the electrolyzer offers fine-grained power regulation capabilities. Operating the electrolyzer below 15% of its rated power for an extended period can lead to the risk of explosion in the electrolytic cell. Conversely, operating the electrolyzer at a current density higher than the rated current density can cause damage to the stack material. Consequently, the minimum rated power of 15% is a critical specification adhered to by most manufacturers.
(2) Start-stop characteristics: At this time, the alkaline electrolyzer is in a long-term non-working state, consuming no power and ceasing hydrogen production. Upon restarting, power consumption is initially directed towards raising the temperature of the alkaline electrolyzer since it may not be sufficiently high to initiate hydrogen production (Ulleberg et al., 2010).
(3) Thermal insulation characteristics: During the shutdown of the alkaline electrolyzer, an environmental control device is employed to maintain the cell’s temperature within a specific range, ensuring that hydrogen production requirements can still be met. Under this state, provided that the fluctuating power supply is replenished promptly, the alkaline electrolyzer can resume operation within a certain period after being shut down (Shen et al., 2018).
Hence, based on the operating characteristics of the alkaline electrolyzer, a sensitivity analysis of the working current and working temperature will be conducted to simulate and analyze the dynamic operation of hydrogen production through electrolytic water under fluctuating power conditions. Additionally, during practical operation, utmost emphasis will be placed on ensuring the safety and stability of the electrolyzer, enabling it to operate efficiently even under varying loads.
3.2 Control strategy of wind-solar-hydrogen coupling multi-energy complementary system
3.2.1 Wind-solar power generation grid-connected smoothing strategy
In this paper, the sliding average method is used to smooth the output power of wind and solar power and improve the utilization rate of these renewable energy resources. Through the meteorological prediction parameters of wind speed and radiation, the wind and solar power generation model is used to calculate the wind and solar power generation power, and the grid-connected power is further smoothed by the sliding average method. The basic principle is to smooth the data by calculating the average value of the data in a certain window. The expression is expressed as Eq. 14
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where Pgrid is the grid-connected power, and l is the window scale, which is the important parameter of the moving average method. The larger the value is, the smoother the grid-connected power is. If the window scale is too large, a higher energy storage system needs to be configured. If the window scale is too small, it cannot meet the grid-connected requirements.
By employing the maximum fluctuation rate as a measure of the peak-valley difference in power fluctuations, one can systematically determine an appropriate window scale. Additionally, to comprehensively capture the overall dynamics of power fluctuations, output standard deviation (Eq. 15) and maximum fluctuation rate (Eq. 16) will be utilized as indicators to evaluate the effectiveness of power fluctuation (Ren et al., 2023).
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where d is the standard deviation of output, the smaller the standard deviation, the smaller the fluctuation of wind power. Pmax presents the maximum operating power.
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where kmax is the maximum fluctuation rate, which reflect the maximum fluctuation of wind and solar power.
As a result, by setting the grid-connected power fluctuation within a 10-min time interval as a constraint, the minimum window scale that adheres to the specified fluctuation limit will be identified. Subsequently, the grid-connected power of wind-solar power generation will be calculated using this minimum window scale. Any disparities between the grid-connected power and the actual power generated by wind-solar sources will be managed and balanced through the utilization of a hybrid energy storage module. This approach ensures efficient coordination and management of the power fluctuations, contributing to a stable and reliable grid-connected power system.
3.2.2 Energy management strategy of hybrid energy storage mode
In this hybrid energy storage module, both the battery and PEMFC are capable of achieving rapid power regulation, while the alkaline electrolyzer can perform large-scale power regulation at a minute level. However, the electrolyzer should not be operated at low power levels for extended durations. With the objective of ensuring the operational range of each device, this strategy utilizes the state of charge (SOC) of the battery reserve as a crucial benchmark for power regulation. At the same time, due to the different power between the wind-solar and the grid-connected at each moment, the charging and discharging state of the hybrid energy storage module can be reflected. The difference charging state(Pad) is combined with the SOC of battery to form the following operating mode, as shown in Figure 3.
[image: Figure 3]FIGURE 3 | Diagram of energy management strategy for hybrid energy storage module.
Mode 1: When the hybrid energy storage is in the charging state (Pad > 0), the excess power after grid-connected is stored by the battery and the electrolytic cell:
(1) When the module meets the following conditions, as expressed by Eq. 17:
[image: image]
There is an excess margin of the battery, which will be stored through the battery.
(2) When the module meets the following conditions, as expressed by Eq. 18 the electrolytic cell is mainly used for hydrogen production to convert electrical energy into chemical energy:
[image: image]
The battery has no excess energy storage, so the electrolyter works. When Pad does not meet the minimum hydrogen production power, the battery will be supplemented to meet its minimum operation and less outage time. When Pad is in the power range of the electrolyzer will be used for normal hydrogen production, and the hydrogen will be stored in the hydrogen storage tank, and the excess hydrogen can be transported as a product. In addition, the power exceeding the working range of the electrolyzer will be discarded.
Due to the operating characteristics of the alkaline electrolyzer, it requires a certain time for restarting up. To enhance its operation duration, the SOCAE is established within the SOC operating interval. When the alkaline electrolyzer is in operation and the SOC is more than the SOCAE, because of the battery storing sufficient power, the Pad and battery supply power to ensure the lowest power operation. However, when the SOC is less than SOCAE, the alkaline electrolyzer ceases operation to prevent rapid shutdown.
Mode 2: When the hybrid energy storage is in the discharge state (Pad < 0), the battery and PEMFC in the hybrid energy storage module are needed to supplement:
(1) When the module meets the following conditions, as expressed by Eq. 19:
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Under this condition, the battery has enough power to supplement the shortage, and thus, the shortfall is directly supplemented through battery discharge.
(2) When the module meets the following conditions, as provided in Eq. 20 the PEMFC is mainly used to consume hydrogen to generate electricity to supplement the shortage:
[image: image]
In this situation, the battery no longer supplements the shortage, and the PEMFC starts consuming the hydrogen from the hydrogen storage tank for discharge. If the hydrogen level of the tank falls below the minimum value, the PEMFC will shut down without consuming hydrogen any more, and alternative flexible resources will be scheduled for compensation. However, when the quantity of hydrogen in the tank is sufficient, the PEMFC will operate at rated power and prioritize the power supply to grid. If the power supply is insufficient, other resources will be utilized to compensate. Conversely, if the power supply is sufficient, the excess power will be directed to charge the battery.
By implementing the above energy management strategy, effective coordination among the battery, alkaline electrolyzer, hydrogen storage tank, and PEMFC will be achieved, enabling a seamless grid connection of wind and solar power generation. And setting the state condition of SOCAE, it provides a buffer for the running of the electrolyzer and improves coordination. In addition, compared with conventional energy storage, the adopted hybrid energy storage is also conducive to reducing the total scale of energy storage capacity.
3.3 Capacity configuration optimization model of wind-solar-hydrogen coupling multi-energy complementary system
Based on the grid-connected smoothing strategy of wind-solar power generation and the energy management strategy of hybrid energy storage module, the capacity configuration optimization model of multi-energy complementary system with wind-solar-hydrogen coupling is further established to improve the economy of the system.
3.3.1 Objective function and decision variables
The LCOE of the multi-energy complementary system is used as the optimization objective function, and the alkaline electrolyzer, battery, fuel cell and hydrogen storage are used as decision variables to optimize the capacity configuration of the equipment by minimizing the LCOE. The objective function is expressed as Eq. 21 (Sultan et al., 2023):
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where RS is the scrap value of fixed assets, L is the lifetime, f is the inflation rate, and i is the interest rate 8%. MH2 is the mass of hydrogen production, cH2 is the unit hydrogen price. Cinv is the total investment cost of each equipment. CO&M is the total operating cost of each equipment, and Ccomp is the additional power supplement cost. The equipment investment cost and operation and maintenance cost corresponding to each equipment are shown in Table 2 (Buttler and Spliethoff, 2018; Dowling et al., 2020; Zhao et al., 2022; Al-Ghussain et al., 2023; Han et al., 2023).
(1) The investment cost includes the initial investment in wind power generation equipment, photovoltaic arrays, alkaline electrolyzers, batteries and fuel cells, which can be calculated by Eq. 22:
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where cinv is the unit equipment purchase cost of each equipment, and E is the total capacity of each equipment.
(2) The operation and maintenance is the sum of the operation and maintenance cost of each equipment in the system life cycle, which can be calculated as Eq. 23:
[image: image]
where cO&M is the unit operation and maintenance cost of each equipment, and E is the total capacity of each equipment.
(3) The additional power compensation cost can be calculated as Eq. 24:
[image: image]
TABLE 2 | Cost of the main components for wind-solar power and electrolysis.
[image: Table 2]In addition, IRR is used to evaluate the economic characteristics of the system, with the expression of as Eq. 25 (Meng et al., 2023):
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where Cin and Ccost are the revenue and expenditure of the system in year y, respectively.
3.3.2 Constraint condition
During system operation, the wind-solar-hydrogen coupling multi-energy complementary system must prioritize safe and stable operation, which necessitates the implementation of certain constraints.
(1) Power balance constraint. The dynamic operation of the system satisfies the energy conservation constraint, that is, the difference between the wind-solar complementary output power generation and the grid-connected power is adjusted by the hybrid energy storage module, which can be expressed as Eq. 26:
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(2) Equipment operation constraints. Alkaline electrolyzer and fuel cell operating power should be within the allowable range, with the power constraints being expressed as Eq. 27:
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(3) Energy storage and hydrogen storage constraints. The battery and hydrogen storage tank, serving as energy storage and hydrogen storage equipment, need to be constrained within a certain reserve range due to safety limitations. The formulation is Eqs. 28, 29:
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where SOC is the battery state of charge, SOH is the state of hydrogen tank.
(4) The on-grid power of wind-solar power generation should be guaranteed within a safe range. The formulation is Eq. 30:
[image: image]
where ∆Pgrid_10 is the difference of on-grid power at a 10-min interval. (EWT+EPV) is the installed scale of wind-solar power generation, with the unit of megawatt.
4 RESULTS AND DISCUSSION
This section conducts an in-depth analysis of the capacity configuration and dynamic operation of the wind-solar-hydrogen coupling multi-energy complementary system, incorporating the operation strategy and capacity configuration optimization method. Specific application cases are examined to analyze the influencing factors of hydrogen production in alkaline electrolyzers. This analysis will lead to further optimization of the capacity configuration for each device, followed by a comprehensive investigation into the dynamic operation characteristics of the system.
4.1 Operating characteristics analysis of alkaline electrolyzer
In the wind-solar-hydrogen coupling multi-energy complementary system, the process of hydrogen production through water electrolysis with the alkaline electrolyzer is subject to various influencing factors, including equipment parameters, power fluctuations, and environmental conditions. The influence of equipment parameters on its operating state is first examined. Figure 4 illustrates the relationship between the working voltage, working power, and input current of a single alkaline electrolyzer. As the temperature of electrolyzer increases, the working voltage of the electrolyzer gradually decreases due to the activation of the electrolysis catalyst. Meanwhile, with the increase in current density, the voltage gradually increases, indicating that the electrolyzer is non-linear resistive. Moreover, the power of the electrolyzer also decreases with the increasing temperature. It can be seen that an appropriate increase in temperature is conducive to alkaline electrolysis water hydrogen production.
[image: Figure 4]FIGURE 4 | The relationship between current and voltage and current at different temperatures.
Figure 5 depicts the relationship between electrolysis efficiency and current in different temperatures. It shows that there is a clear correlation between the state of the alkaline electrolytic cell and the input current. The electrolytic cell efficiency initially increases with rising current. When the current reaches 70 A, the efficiency decreases after reaching the peak, furthermore, both of the maximum efficiency of the electrolytic cell and the corresponding current rise with the increasing working temperature. At lower current density, the working temperature exerts minimal influence on the electrolysis efficiency, while the efficiency increases with increasing temperature at the work load conditions.
[image: Figure 5]FIGURE 5 | Relationship between electrolysis efficiency and current in different temperatures.
During the stable operation period, the continuous operation of the electrolytic cell at a predetermined temperature and rated power level can be ensured by accurately adjusting the input current. However, when the current input to the electrolyzer fluctuates, the electrolyzer cannot be guaranteed to operate continuously within the optimal operating rang, which will directly affect the hydrogen production efficiency and stability of the system. As depicted in Figure 6, the input fluctuation power supply is used to simulate different states of the electrolytic cell, including start-up, normal fluctuation states and large volatility fluctuation states. After an initial 10-min shutdown, the electrolyzer experiences a start-up lag of more than 30 min before commencing hydrogen production. When the electrolytic cell reaches the rated working state, the load power further increased resulting in an increase in temperature and a decrease in electrolysis efficiency. Subsequently, the load power remains stable at the rated operating condition, resulting in an energy loss of 82.6% throughout this process. At the 50 min, the input power enters in a fluctuating state. During the periods of decreased input power, the load power of the electrolyzer also decreases, affecting the reaction speed. During this period, the load power of the electrolyzer performs similar to the input power. While at the increasing periods of the input power, the load power exists a slight lag affected by reaction speed. At the 70 min, the input power reaches 0, causing the cell to shut down and electrolytic efficiency decrease to 0. About 5 min later, the input power returns to the rated power while the load power gradually increases according to the limits of the power regulation speed without experiencing another start-up time. The energy loss of the process is reduced to 20.7%, indicating that the short-term shutdown of the electrolytic cell is beneficial for the recovery of working power due to its thermal insulation characteristics.
[image: Figure 6]FIGURE 6 | The operating state diagram of the electrolytic cell under simulated fluctuating power.
In the practical operational scenario, the power fluctuations of wind and photovoltaic power generation are more complex compared to the simulated fluctuating power in the previous case. A two-day dataset with a time resolution of 10 min was further simulated for a specific area in Jilin Province, China. The installed capacity of both wind and photovoltaic power systems is set as 2 MW, and the installed capacity of alkaline electrolyzer is 2 MW as well. The simulation results are presented in Figure 7. In the investigated situation, the photovoltaic system operates solely during the daytime, while the wind turbine operates throughout the day, and its power generation at night is higher. Additionally, the volatility of wind power generation is more pronounced compared to photovoltaic power generation. Photovoltaic hydrogen production experiences only a slight lag during the start of photovoltaic power generation. However, wind power exhibits frequent fluctuations, with the maximum volatility reaching as high as 47.2%. Consequently, the lag of the electrolytic cell in response to wind fluctuations is more significant. Overall, the simulation results indicate that wind power has a more substantial impact on the hydrogen production of the electrolytic cell when compared to photovoltaic power generation. The frequent and larger fluctuations in wind power pose greater challenges for maintaining stable hydrogen production in the electrolytic cell.
[image: Figure 7]FIGURE 7 | Two consecutive days of wind-solar power generation and electrolytic cell load power in Jilin Province, China.
4.2 Capacity configuration optimization of multi-energy complementary system
The large-scale application scenarios of the capacity configuration method of wind-solar-hydrogen coupling multi-energy complementary system are studied. The analysis will cover a total time scale of 1 year, and the case will involve an installed capacity of 150 MW for both wind and photovoltaic power systems. Considering the standard of grid-connected power, a maximum fluctuation rate limit of 16.7% for a 10-min interval is imposed. To satisfy this limit, the approach involves increasing the window scale for calculating fluctuations. Through this method, it is observed that when the window scale is set to 4, the maximum fluctuation rate for a 10-min time interval reduces to 12.6% (after smoothing) from 51.3% (before smoothing), resulting in a substantial reduction of 38.7%. This improvement of the maximum fluctuation rates after smoothing is shown in Figure 8. Due to the application of the smoothing technique, the grid-connected power fluctuations can achieve the required standards, effectively achieving control over grid-connected power fluctuations using the sliding average method.
[image: Figure 8]FIGURE 8 | The maximum fluctuation rate of 10 min before and after wind and solar power smoothing.
Further the particle swarm optimization algorithm is used to optimize the minimization of LCOE. It’s configured with a particle swarm size of 100 and a total of 80 iterations. the capacity configuration optimization results and system costs of each device can be obtained, as presented in Table 3. The final optimization results show that the LCOE is 0.0324 $/kWh, and the total investment cost is 233.3 million dollars. Additionally, there is an extra power compensation cost of 1.167 million dollars due to the limitation of the hybrid energy storage module in stabilizing the entire power output.
TABLE 3 | System capacity configuration optimization results.
[image: Table 3]Under this capacity configuration scale, hybrid energy storage equipment accounts for 8.3% of the scale of wind and solar construction. In addition, the proportion of initial investment on wind power generation, photovoltaic power generation, electrolytic cell, battery, PEMFC, hydrogen storage tank and other equipment is shown in Figure 9. Among them, wind turbines and photovoltaic generators are the main power generation equipment, and their purchase costs account for the highest proportion, which is 54.6% and 35.8% respectively. After wind and solar power generation, most of the power is used for grid-connected utilization, so their investment accounts for the largest proportion. For the hybrid energy storage module, the single-machine construction cost of FC is high, so the initial investment cost is the highest. Compared with it, the cost of the battery is lower, but its service life is also shorter (10 years). In the middle of the life of the multi-energy complementary system, a batch of battery equipment needs to be replaced, and its total investment is higher.
[image: Figure 9]FIGURE 9 | The proportion of initial investment cost of each equipment.
Wind-solar power integration serves as the primary means to reap the benefits of the system. The system achieves an annual grid-connected amount of 867.5 million kWh. The monthly grid-connected power generation volumes are illustrated in Figure 10, with the highest grid-connected power occurring in April at 104 million kWh, and the lowest in November at 53 million kWh. This data indicates that the grid-connected volume is lower during winter months, while it is higher in spring and summer. On average, the monthly grid-connected power for the year amounts to 72 million kWh. Considering the current LCOE of 0.0324 $/kWh, setting the electricity price at 0.04 $/kWh allows for an economic analysis. The internal rate of return (IRR) is calculated to be 13.67%, demonstrating the system’s favorable economic performance. This positive IRR reflects the economic feasibility of the multi-energy complementary system.
[image: Figure 10]FIGURE 10 | The grid-connected amount of wind and solar power generation in each month of the year.
4.3 Operation analysis of wind-solar-hydrogen coupling multi-energy complementary system
Through the above capacity configuration of the multi-energy complementary system of wind-solar-hydrogen coupling, the scale of hybrid energy storage equipment under the total installed capacity of 300 MW is obtained. This section further analyzes the system operation process. This strategy first divides the wind and solar power generation power into two parts by the moving average method, namely, the wind and solar grid-connected power and the hybrid energy storage coordinated power, as shown in Figure 11. The annual real-time wind-solar grid-connected power is relatively smooth, and the standard deviation is reduced to 22.63%. The fluctuation rate of the hybrid energy storage regulation power is significantly low, with the maximum value of 60.0%. It is difficult for the battery, alkaline electrolytic cell, fuel cell and other equipment in the hybrid energy storage module to coordinate excessive power fluctuations, for the module mainly coordinates the power in the range of [-16,16] MW. Moreover, the proportion of data points distributed in this range is 90.3%. Therefore, the module can meet the power smoothing situation in most cases, and the annual coordinated power accounts for 80.5% of the total volume. The additional missing power can be supplemented by other flexible power sources, ensuring good coordination of the system.
[image: Figure 11]FIGURE 11 | Real-time grid-connected power and hybrid energy storage adjustment power throughout the year.
As shown in Figure 12, two consecutive days are selected to analyze the operation of each device of the multi-energy complementary system. From the actual operating power of each device, the energy storage device plays a crucial role as the main adjustment mechanism. However, the power fluctuation requiring adjustment exceeds the limit of the hybrid energy storage’s capabilities. When the compensating power is negative, power needs to be supplied to the grid. Batteries and fuel cells can guarantee most of the power supply, while coordinated power adjustments are necessary to regulate the remaining fluctuations. This ensures the safety of electricity consumption and meets the requirements for adjusting grid-connected power. On the other hand, when the compensating power is positive, the battery remains the primary regulating device, with the alkaline electrolyzer coordinating. However, when the power generation exceeds the system storage, the excess part will be wasted.
[image: Figure 12]FIGURE 12 | Operation of each equipment of multi-energy complementary system.
In contrast, the electrolyzer and fuel cell regulate electricity through the generation and utilization of hydrogen, serving as auxiliary devices. During their operation, they exhibit lower volatility and there are instances of equipment standby. And hydrogen energy serves as a form of energy storage, it enables prolonged energy storage. Moreover, during power supplementation, the fuel cell facilitates rapid replenishment. Due to the relatively slow response of the alkaline electrolyzer, it exhibits lower operational volatility compared to the fuel cell, and there is a lag in hydrogen production. However, by integrating energy storage devices such as the electrolyzer, fuel cell, and battery, the fluctuation in wind and solar power output can be effectively reduced, and the total energy storage capacity is also lower.
In order to ensure the stable operation of the system, it is necessary to understand the working environment of the battery. Therefore, real-time charge and discharge power and the energy storage SOC of the battery are further analyzed and summarized in Figure 12. From the data, it is evident that the battery meets the adjustment requirements within its operating range and undergoes frequent charging and discharging cycles. Additionally, the SOC of the battery is maintained between 0.2 and 0.8, effectively avoiding overcharging and overdischarging, which can be detrimental to the battery’s lifespan. In summary, although the hybrid energy storage module cannot fully coordinate all the power fluctuations, it satisfactorily meets the coordination requirements for most of the electricity throughout the year. The battery’s operation ensures good regulation within its designed operating range. Furthermore, the use of power compensation facilitates stable and safe electricity consumption, contributing to the overall efficient operation of the multi-energy complementary system.
5 CONCLUSION
The study primarily focuses on power grid smoothing, operation strategy and capacity configuration optimization of hybrid energy storage modules for large-scale wind and solar power grid-connected scenarios. The main conclusions can be summarized as follows:
(1) The operating state and hydrogen production efficiency of the alkaline electrolyzer are influenced by the current density and operation temperature. Fluctuating power supplies have a significant impact on the electrolytic cell, leading to energy losses during start-up to the rated state (82.6%) because of the power adjustment speed limits (20.7%). In the practical operation, frequent wind fluctuations exacerbate the lag of the electrolytic cell.
(2) The study employs the sliding average method to reduce the grid-connected power fluctuations of wind and solar power generation. Through capacity configuration optimization, with an LCOE of 0.0324 $/kWh, the hybrid energy storage module accounts for 8.3% of the wind-solar system’s total capacity, with a total cost of 233.2 million dollars. The annual grid-connected capacity reaches 8.7 million kWh.
(3) By employing the wind-solar-hydrogen hybrid multi-energy complementary system and the control strategy, real-time annual wind-solar power can smoothly connect to the grid with the standard deviation reduction of 22.63%. The hybrid energy storage module can achieve majority coordination requirements, with annual coordinated power accounting for 80.5% of the total and covering 90.3% of the time period.
This study proposed a grid-connected smoothing strategy and capacity configuration optimization method of the wind-light-hydrogen coupled multi-energy complementary system. It offers technical and methodological suggestions and reference for the formulation of wind-solar hydrogen production scheme with excellent overall performance.
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The worsening of climate conditions is closely related to the large amount of carbon dioxide produced by human use of fossil fuels. Under the guidance of the goal of “carbon peaking and carbon neutrality goals”, with the deepening of the structural reform of the energy supply side, the hybrid energy system coupled with renewable energy has become an important means to solve the energy problem. This paper focuses on the comprehensive evaluation of hybrid energy systems. A complete decision support system is constructed in this study. The system primarily consists of four components: 1) Twelve evaluation criteria from economic, environmental, technological, and socio-political perspectives; 2) A decision information collecting and processing method in uncertain environment combining triangular fuzzy numbers and hesitation fuzzy language term sets; 3) A comprehensive weighting method based on Lagrange optimization theory; 4) Solution ranking based on the fuzzy VIKOR method that considers the risk preferences of decision-makers. Through a case study, it was found that the four most important criteria are investment cost, comprehensive energy efficiency, dynamic payback period and energy supply reliability with weights of 7.21%, 7.17%, 7.17%, and 7.15% respectively. A1 is the scheme with the best comprehensive benefit. The selection of solutions may vary depending on the decision-maker’s risk preference. Through the aforementioned research, the decision framework enables the evaluation of the overall performance of the system and provides decision-making references for decision-makers in selecting solutions.
Keywords: hybrid energy system, comprehensive evaluation, comprehensive weights method, VIKOR method, hesitant fuzzy linguistic term set
1 INTRODUCTION
1.1 Background and motivation
Energy is the cornerstone of human survival and development. Faced with multiple challenges such as resource shortage, environmental damage and climate change, traditional energy production and supply modes cannot meet the needs of social development (Zhang et al., 2023). As the world’s largest carbon emitter, China’s main source of carbon dioxide emissions is the burning of fossil fuels, accounting for 88% (Zeng et al., 2023). Therefore, it is urgent to carry out clean and efficient reform of China’s energy supply system and consumption structure.
New energy sources such as wind and solar power, due to their abundant resources and zero emissions, will play a supporting role in the entire transition process (Niu et al., 2022). However, the mismatch between the output characteristics and the load of renewable energy, resulting in low actual utilization, still hinders its large-scale distribution (Liu et al., 2019; Liu et al., 2022a; Yong et al., 2022). With the continuous development of energy management, energy monitoring, energy storage (ES), and distributed generation technologies, the hybrid energy system (HES) that incorporates renewable energy generation is regarded as a crucial solution to address future energy challenges (Ke et al., 2022). HES achieves an organic coordination and optimization of energy production, transmission, distribution, conversion, storage, and consumption across multiple time scales, enabling an integrated supply of energy production and consumption (Liu et al., 2022b), as shown in Figure 1.
[image: Figure 1]FIGURE 1 | Structure map of hybrid energy system.
However, the layout and promotion of HES are still in the early stage, with limited demonstration projects. As an energy project, the lack of a comprehensive evaluation system during the investment decision-making stage is a significant obstacle to the development of HES. Decision-makers (DMs) need a comprehensive understanding of the project to be motivated to invest in its construction. Therefore, in order to address this issue and promote the sustainable development of HES, this study establishes a comprehensive evaluation framework for HES.
1.2 Literature review
HES, consisting of renewable and fossil energy sources, is an important approach to addressing energy supply issues (Li et al., 2018). As a result, researchers have conducted extensive studies on HES. Devrim and Bilir, (2016) investigated a system that integrates wind turbines, photovoltaic panels, and fuel cells to meet the electricity demand of residential buildings. Zhou et al. (2019) studied the performance of the entire system after incorporating wind and solar power generation into the integrated energy system. Sezer et al. (2019) proposed a multi-output system that stores and converts concentrated solar, wind, and hydrogen energy. Ruiming (2019) optimized a hydrogen-integrated energy system, including wind turbines, photovoltaics, electrolyzers, and fuel cells. Eriksson and Gray, (2017) provided a detailed review of energy systems that couple renewable energy generation, hydrogen storage, and fuel cells, conducting a comprehensive comparative analysis and outlook while maintaining a positive outlook on the industry’s development. Building on this foundation, Zhang et al. (2022a) proposed that the capacity configuration optimization of a HES is the basis for system development, with the goal of increasing system economics. Liu et al. (2022a) studied the optimal size of HES considering economic, environmental, and thermal comfort benefits and solved the model using NSGA-II. The aforementioned studies primarily focus on the structural characteristics and capacity configuration optimization of HES, revealing that HES with integrated renewable energy sources has a solid theoretical and practical foundation and provides significant environmental and social benefits.
Conducting a comprehensive evaluation of HES is important both for assessing the overall performance of the system and providing decision-making guidance for selecting appropriate solutions. Current research on the comprehensive evaluation of HES mainly includes the establishment of evaluation indicator systems, determination of indicator weights, and ranking of alternative solutions. Zhou et al. (2020) constructed performance analysis indicators from five aspects: energy utilization, economy, environment, technology, and society, to optimize decision-making for integrated energy systems coupling renewable energy generation. Yang et al. (2018) considered economic, technical, social, and environmental analysis indicators to comprehensively evaluate planning schemes for distributed energy systems. Ke et al. (2022) conducted a comprehensive evaluation of HES using nine indicators in four aspects: economic, energy utilization, environmental impact, and social acceptance. Building on this, Zhang et al. (2021) considered the comprehensive grid loss rate to analyze the overall benefits of HES driven by wind and solar energy, and conducted case studies. It is evident that the comprehensive evaluation of HES needs to consider multiple aspects, constituting a multi-criteria decision-making (MCDM) problem. The determination of indicator weights is an important step in solving MCDM and can be approached through subjective weight methods, objective weight methods, and integrated weight methods (Wu et al., 2016; Wu et al., 2018; Qian et al., 2021; Zhang et al., 2021; Yong et al., 2022). Subjective weight methods reflect the subjective preferences of decision-makers (Wu et al., 2023a), while objective weight methods focus on the intrinsic relationships among data. Integrated weight methods combine the two through certain mathematical methods to achieve a balance between subjectivity and objectivity (Zhang et al., 2022b). Yong et al. (2022) employed a combination of Step-wise Weight Assessment Ratio Analysis (SWARA) and entropy method using Lagrange optimization, achieving effective weight optimization solutions that might provide insights for this paper. As for the ranking of alternative solutions, commonly used methods include Analytic Hierarchy Process (AHP), Analytic Network Process (ANP), Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS), among others. However, many of these methods do not adequately account for DMs` bounded rationality. The VIse Kriterijumski Optimizacioni Racun (VIKOR) method is capable of effectively addressing the aforementioned issues. Kamali Saraji et al. (2023) utilized the VIKOR method to rank eight challenges related to the adoption of renewable energy in rural areas. Abdul et al. (2022) employed the VIKOR method to prioritize the selection of solar energy, wind energy, hydropower, and biomass energy in developing countries. These studies demonstrate the mature application of the VIKOR method in the energy sector. Moreover, due to its ability to reflect decision-makers’ subjective preferences, this paper intends to use the VIKOR method to rank alternative scenarios for HES. However, the traditional VIKOR method may not fully meet the practical decision-making requirements, prompting further improvements in this study.
Through the summary and analysis of related literature, the critical findings are as follows:
(1) Existing comprehensive evaluation studies mostly focus on HES that provide combined heat, power, and cooling, and there is a lack of research that incorporate renewable energy for hydrogen production.
(2) The existing comprehensive evaluation indicators for HES commonly suffer from deficiencies such as the lack of rational selection of indicators and difficulties in quantifying them.
(3) Current comprehensive evaluation research on HES lacks considerations for collecting complete decision-making information and addressing information loss during processing.
1.3 Objectives and contributions
The above literatures provide significant inspiration for this study, but it also highlights certain deficiencies in current research. Therefore, the main objectives of this paper are to address the existing gaps in research and construct a rational and comprehensive framework for the comprehensive evaluation of HES, providing DMs with solid theoretical and methodological support. The main contributions of this paper are as follows:
(1) This paper addresses the comprehensive evaluation of HES that incorporate renewable energy for hydrogen production, expanding the research in this field.
(2) This paper establishes a complete and operational decision support system for decision-makers. The HES comprehensive evaluation decision support system consists of three parts: evaluation indicators, indicator weight determination, and alternative solution ranking. DMs can directly apply this model to conduct comprehensive evaluations of various HES. Additionally, each part of the decision support system takes into account the subjective preferences of DMs.
(3) This paper thoroughly considers and resolves the issues of fuzziness and randomness in the decision-making environment. Extended fuzzy logic is employed for collecting and processing decision-making information in order to maximize information gathering and minimize losses.
The remainder of this paper is organized as follows: Section 2 establishes a comprehensive evaluation index system of HES; Section 3 utilizes a series of methods to construct the HES comprehensive evaluation model; Section 4 uses a park in Gansu Province to carry out empirical analysis; Section 5 analyzes and discusses the calculation results, including sensitivity analysis and comparative analysis; Section 6 gives the conclusion and outlook.
2 EVALUATION CRITERIA SYSTEM FOR HES
The indicator system serves as an important foundation for conducting comprehensive evaluations of HES. A good indicator system should encompass comprehensiveness, rationality, and innovation. Therefore, this paper will first review the indicator systems used in relevant studies to explore the common indicators for HES comprehensive evaluation, as shown in Table 1. Secondly, since the experts are distributed in different regions, Delphi technology is used to collect the decision-making information of the experts. The information in Table 1 and the architecture of HES were sent to a number of experts. Experts analyze and select the comprehensive evaluation indicators. We aggregated the reports of each expert to form a preliminary indicator system, which is then distributed to the experts for analysis. So repeated, and eventually formed a generally recognized indicator system. Finally, based on this, innovative indicators applicable to HES systems including hydrogen production processes will be proposed.
TABLE 1 | Index aggregation in relevant literature.
[image: Table 1]Based on the above analysis, this paper constructs a comprehensive benefit evaluation indicator system for HES from four aspects: economy, environment, technology, and socio-policy.
2.1 Economic criteria
The economic indicators of evaluation index system are as follows:
Investment cost (C11): Investment cost refers to all expenses incurred in the initial stage of HES construction. It determines to a certain extent the difficulty of system construction and economic benefits. Since labor costs can be neglected compared to equipment procurement costs, the initial investment can be simplified as the cost of equipment procurement during the construction period. C11 is a cost criterion.
[image: image]
where [image: image] refers to investment cost; [image: image] is unit investment cost of the device [image: image]; [image: image] indicates the capacity of the device [image: image].
Dynamic payback period (C12): The dynamic payback period refers to the time required for a project’s net returns to offset the total investment, taking into account the time value of money. This metric examines the ability of the project to recover its investment and is related to investment risk (Li et al., 2022a). C12 is a cost criterion.
Operation and maintenance cost (C13): The operation and maintenance costs of HES consist of two parts. Firstly, there are the costs incurred from purchasing energy from external sources, which mainly include the gas consumption of the CCHP unit and the purchased electricity from the external grid when renewable energy generation is insufficient. The second part includes the management expenses and labor costs associated with operating the equipment (Ke et al., 2022). C13 is a cost criterion.
[image: image]
where [image: image] refers to operation and maintenance cost; [image: image] and [image: image] indicate electricity purchases and gas purchases respectively; [image: image] and [image: image] are the price of electricity and gas; [image: image] is the maintenance cost of device [image: image]; [image: image] is the planned operating cycle of HES.
Hydrogen yield rate (C14): The ratio between the economic benefits obtained from the hydrogen production process and the input costs. This ratio can be used to evaluate the economic feasibility and profitability of the electrolytic hydrogen production equipment (Liang and Wang, 2023). C14 is a beneficial criterion.
[image: image]
where [image: image] refers to hydrogen yield rate; [image: image] and [image: image] indicate the price and the yield of hydrogen; [image: image] and [image: image] are the electricity consumed and operation and maintenance cost of EHP.
2.2 Environmental criteria
The environmental indicators of evaluation index system are as follows:
Carbon dioxide emissions (C21): This indicator refers to the annual total carbon dioxide emissions from HES (Qin et al., 2021). C21 is a cost criterion.
[image: image]
where [image: image] refers to carbon dioxide emissions; [image: image] indicates grid emission factor; [image: image] is the amount of carbon dioxide released by per cubic meter natural gas combustion.
Air pollutant emissions (C22): This indicator refers to the annual total emissions of SO2, NOx, and particulate matter generated by HES each year. C22 is a cost criterion.
[image: image]
where [image: image], [image: image] and [image: image] are SO2, NOx and particulate matter emissions per cubic meter natural gas combustion.
Land occupation (C23): The construction of HES will require land, which will have a certain impact on natural scenery and urban planning (Wen et al., 2021). C23 is a cost criterion.
Noise (C24): Due to the presence of various energy supply equipment in HES, there will be some noise generated during operation. The noise can cause disruptions to the normal lives of workers and nearby residents and, in the long run, can have significant health impacts on the human body (Qian et al., 2021). C24 is a cost criterion.
2.3 Technical criteria
The technical indicators of evaluation index system are as follows:
Comprehensive energy efficiency (C31): The comprehensive energy utilization rate reflects the degree of coupling and complementary utilization of multiple energy flows at different time scales, and can be used to measure the level of comprehensive energy utilization in a system (Zheng and Wang, 2020). C31 is a beneficial criterion.
[image: image]
where [image: image] refers to comprehensive energy efficiency; [image: image] and [image: image] represent the annual electric energy and heat energy consumed in the park respectively. [image: image] is the total amount of clean energy entered into the system by new energy equipment; [image: image] is the low calorific value of natural gas.
Energy supply reliability (C32): The ES in the park and their connection to the external power grid significantly reduce the impact of the intermittency of renewable energy and power equipment failures on the system’s reliability. Therefore, this study considers reflecting the system’s reliability by evaluating the energy supply-demand imbalance within the park when the system is operating in island mode (Ke et al., 2022). C32 is a beneficial criterion.
[image: image]
where [image: image] refers to energy supply reliability; [image: image], [image: image] and [image: image] indicate the electricity, heat and cooling consumption of users, respectively; [image: image], [image: image] and [image: image] are the deviation of the electricity, heat and cooling consumption.
Device utilization rate (C33): The equipment utilization rate represents the ratio of the actual output power of the energy generation devices installed in the park to their rated power, reflecting the efficiency of the equipment’s production. C33 is a beneficial criterion.
[image: image]
where [image: image] refers to device utilization rate; [image: image] and [image: image] indicate the output power and rated power of device [image: image] respectively.
ES equivalent utilization coefficient (C34):The ES equivalent utilization coefficient represents the utilization rate of the ES in HES, reflecting the significance of ES and the rationality of capacity allocation. C34 is a beneficial criterion.
[image: image]
where [image: image] refers to ES equivalent utilization coefficient; [image: image] and [image: image] indicate annual total charging capacity and annual discharging capacity of ES respectively; [image: image] is the rated capacity.
2.4 Social-political criteria
The social-political criteria indicators of evaluation index system are as follows:
Level of advancement (C41): The level of advancement refers to the level of advancement of the HES compared to similar projects domestically and internationally. It influences the extent of policy and financial support that the project can receive after construction and implementation. This indicator is related to the technological advancement, innovative mode, and scalability of the project. C41 is a beneficial criterion.
Public satisfaction (C42): Public satisfaction is mainly related to two aspects: firstly, the public’s acceptance of the project’s construction, which is related to the engineering implementation plan and operational mechanisms; secondly, the users' intuitive experience with the HES. This indicator has a significant impact on the promotion and later operation of the project. C42 is a beneficial criterion.
Job creation (C43): The construction and operation of HES will stimulate local employment and the development of the service industry. The research and development, as well as the manufacturing of related equipment, will promote the employment of engineering and technical personnel (Qian et al., 2021). C43 is a beneficial criterion.
Compatibility with policies (C44): As a new type of energy utilization model, most HES are still in the planning and initial construction phase. Therefore, adopting system solutions that are more compatible with national policies is more conducive to obtaining financial support from the government. This aspect plays a significant role in determining whether the project can obtain feasibility approvals. C44 is a beneficial criterion.
3 MATERIALS AND METHODS
3.1 Methods of collecting decision-making information
The collection and processing of decision information are among the most crucial issues in the field of MCDM. In the investment decision-making process for the HES, there will be a significant amount of uncertainty due to its novelty and cutting-edge nature. Uncertainty can introduce ambiguity and randomness into the decision environment, making it challenging for DMs to assess the HES. Therefore, it is essential to address the significant issue of how to gather decision information that reflects the most authentic thoughts of DMs. Additionally, the process of handling decision information should minimize information loss as much as possible to ensure the rationality of evaluation results.
3.1.1 Hesitant fuzzy linguistic term set
In a fuzzy environment, the decision-making process often brings significant hesitation to DMs. Especially when evaluating qualitative indicators, DMs does not necessarily have an in-depth study of all aspects of HES. They may hesitate between adjacent measurement levels, unable to provide precise and singular decision information. Hesitant fuzzy linguistic term set (HFLTS) can obtain expert subjective evaluation information more flexibly, thereby maximizing the integrity of decision information (Yong et al., 2023).
The definitions related to HFLTS are as follows:
Definition 1:. A linguistic term set [image: image] is a finite ordered collection of linguistic variables with an odd number of terms. The language term set used in this article consists of seven linguistic variables, which are set as follows:
[image: image]
Definition 2:. HFLTS allows DMs to evaluate the HES by selecting one or multiple linguistic variables [image: image] and assigning corresponding degrees of belief [image: image] to each linguistic variable. A set of ordered linguistic terms [image: image] obtained based on this provision can be represented as follows:
[image: image]
Definition 3:. The conversion relationship between the evaluation information provided by DMs based on the linguistic term set and HFLTS is as follows:
(1) [image: image];
(2) [image: image];
(3) [image: image];
(4) [image: image].
Based on the above definition, experts can give evaluation terms that look like the following expression:
[image: image]
3.1.2 Triangular fuzzy number
The expert evaluation information can be collected more comprehensively using HFLTS. However, this information is currently in qualitative form and cannot be directly analyzed and computed quantitatively. Triangular fuzzy numbers (TFNs) are widely used to transform qualitative information into quantitative information due to their ability to preserve fuzzy information and their advantages of simplicity and ease of operation. The main definitions and formulas involved in TFNs are as follows:
Definition 4:. When an information set [image: image] satisfies [image: image], it is called a TFN. When all the elements have values distributed between 0 and 1, the TFN is referred to as a standard TFN, and its membership function [image: image] is defined as follows:
[image: image]
By performing the defuzzification operation on TFNs, their crisp values can be obtained:
[image: image]
The specific representation of TFNs in this paper is the quantitative characterization of linguistic terms in set [image: image]. Therefore, the correspondence between triangular fuzzy numbers and the linguistic term set [image: image] is shown in Table 2.
Based on the theoretical analysis above, further processing can be performed on the decision information represented by [image: image].
[image: image]
TABLE 2 | The fuzzy scale.
[image: Table 2]Definition 5:. In the optimization of the HES, it involves comparing different evaluation values. Therefore, the distance formula between two TFNs [image: image] and [image: image] is defined below:
[image: image]
3.2 Methods of calculating criteria weights
The evaluation results of the HES are determined by a combination of multiple indicators. However, the contributions of different indicators may vary, which is reflected in the weights assigned to the indicators. Therefore, this section will discuss the methods for determining the indicator weights. Additionally, to account for both the subjectivity of the DM and the objectivity of the indicator values, this paper adopts a comprehensive weighting method that combines subjective and objective aspects to calculate the relative importance of each indicator.
3.2.1 SWARA method–Subjective weights
HES is a novel mode of energy production and utilization; Thus, the proper subjectivity of DMs is important to ensure the rationality of the evaluation results. The SWARA method, which effectively reflects the DMs’ viewpoints and balances operability and scientific rigor, has been widely used for determining the subjective weights of indicators (Ghenai et al., 2020).
The main steps of SWARA are shown as below:
Step 1:. According to the DM’s preferences, the indicators are ranked in descending order of importance. Additionally, the relative importance between the top-ranked indicator and the remaining indicators is evaluated. The evaluation language and the corresponding quantitative values are presented in Table 2.
Step 2:. (Akhanova et al., 2020): Starting with the second attribute, calculate the relative importance between the criterion (marked [image: image]) and the previous criterion (marked [image: image]). This ratio represents the comparative importance of [image: image] value.
Step 3:. The coefficient value [image: image] of all criteria is calculated as follows:
[image: image]
Step 4:. Calculate the correction weight value [image: image].
[image: image]
Step 5:. Compute the subjective weights [image: image].
[image: image]
3.2.2 Entropy weights method–Objective weights
The evaluation indicator system for the HES includes a large number of quantitative indicators. When determining the weights of these indicators, ignoring the influence of numerical values can result in a lack of objectivity in the decision-making process. Therefore, this paper adopts the entropy method to determine the objective weights of the indicators. The main steps of the entropy method are as follows (Wu et al., 2023a):
Definition 6:. To eliminate the influence of different properties of the indicators on the data dimensions and scale, it is necessary to perform a standardization operation on the TFNs. The standardization formula for [image: image] to [image: image] is shown below (Yong et al., 2022):
[image: image]
where [image: image] and [image: image] are beneficial indicator and cost indicator respectively. [image: image] and [image: image].
Step 1:. Construct the initial decision matrix as shown below:
[image: image]
where [image: image] indicates the evaluation value of alternative [image: image] under criterion [image: image]. And [image: image], [image: image].
Step 2:. Standardize the initial decision matrix through Definition 6. And calculate the mean value of criterion [image: image]:
[image: image]
Step 3:. The entropy measure [image: image] can be obtained as follows:
[image: image]
[image: image]
Step 4:. Calculate the objective weight of the [image: image] criteria:
[image: image]
3.2.3 Lagrange optimization–Comprehensive weights
According to the principle of minimum discriminant information, the comprehensive weight should reflect the subjective and objective characteristic information as much as possible. Thus, Lagrange optimization is used to obtain the comprehensive weights (Huang et al., 2021).
[image: image]
where [image: image], [image: image] and [image: image] mean the combined, the subjective and objective weights respectively. In addition, the above formula should satisfy the following constraints:
(1) [image: image]
(2) [image: image]
Then
[image: image]
3.3 Method of sorting the alternatives
After obtaining the weight information of the indicators, integrating it effectively with expert evaluation language becomes a crucial step in the selection of the optimal solution for the HES. The VIKOR method is a compromise-based MCDM method that ranks alternative solutions by comparing their proximity to the positive and negative ideal solutions (Meniz and Ozkan, 2023). The VIKOR method can fully consider the DMs' subjective preferences for the HES and balance the trade-offs between the benefits and harms of each solution. However, the effectiveness of the VIKOR method can be greatly influenced by uncertain environments. Therefore, this paper improves the VIKOR method using TFNs to enhance its applicability in such environments. The main steps of the fuzzy VIKOR method are as follows.
Step 1:. Based on the normalized initial evaluation matrix obtained from the fuzzy entropy method, determine the best [image: image] and the worst [image: image] among all the standard evaluation values.
[image: image]
[image: image]
Step 2:. Compute the social utility value [image: image] and individual regret value [image: image].
[image: image]
[image: image]
Step 3:. Compute the collective benefit coefficient [image: image].
[image: image]
where [image: image] is the compromise coefficient, which represents the proportion of the collective utility and regret utility in the decision-making process.
Step 4:. Sort the solutions in ascending order based on their values of [image: image], [image: image], and [image: image]. A smaller value indicates a better solution.
Step 5:. To determine the compromise solution, the alternative solution [image: image] with the lowest [image: image] value is chosen as the optimal solution, provided that it satisfies the following two conditions:
Condition 1:. [image: image]. [image: image] and [image: image] are the benefit coefficient values of the top-ranked and second-ranked solutions respectively. [image: image] represents the total number of solutions.
Condition 2:. Acceptable Stability: If, based on the ranking according to [image: image] and [image: image], [image: image] remains in the first position.
If either of the two conditions mentioned above is not satisfied, a set of compromise solutions is obtained:
(1) If only Condition 2 is not satisfied, both [image: image] and [image: image] are compromise solutions.
(2) If Condition 1 is not satisfied, the maximum value of [image: image] is obtained from the relationship [image: image], and [image: image] is close to the ideal solution.
3.4 Decision-making framework
The decision framework of this paper is shown in Figure 2.
[image: Figure 2]FIGURE 2 | The framework of this study.
4 CASE STUDY
4.1 Case background
Gansu Province is an important base for new energy in China, ranking among the top in wind power generation and photovoltaic power generation. Therefore, this article selects an industrial park in Lanzhou, Gansu Province as the service object of HES for a case study. The industrial park is located in the northwest of Lanzhou City and has abundant wind and solar resources, making it suitable for the development of renewable energy generation. The area of the park available for solar energy is 17,500 square meters, with a solar irradiation intensity of 1,300 (kW·h)/m2. The average wind speed is 5.5 m/s. The electricity load in the park is 3.75 MW, with separate loads for heating (2.1 MW) and cooling (2.8 MW), and a gas load of 3.8 MW. The wind and solar resource data are obtained from the NASA, and the load data is provided by the local power company.
4.2 Comprehensive evaluation of the alternatives for HES
4.2.1 Data and decision information collection
Based on the network architecture of the HES shown in Figure 1, this paper has formulated six different schemes in Table 3 to meet the energy demands of the industrial park. Among them, A1, A2, and A3 compare the advantages and disadvantages of investing in photovoltaic and wind power in the park. A4 and A5 compare the advantages and disadvantages of electric boilers and gas boilers. A6 primarily utilizes CCHP units as the main heat source, coupled with small-scale gas boilers.
TABLE 3 | Six different HES capacity configuration schemes.
[image: Table 3]To maximize daily profits using the aforementioned six schemes, a four-season typical daily scheduling is conducted. Based on the scheduling results and the calculation methods of the three-level indicators in this paper, the quantitative data for the six alternative schemes in the comprehensive evaluation index system of HES are shown in Table 4.
TABLE 4 | Quantitative and qualitative data for the six alternatives.
[image: Table 4]The qualitative data for the six alternatives is sourced from an expert committee. The committee is composed of four experts who have long been engaged in research on integrated energy systems. The experts used HFLTS to evaluate the qualitative indicators of the alternative schemes. The evaluation results for the six alternative schemes are presented in Table 4.
4.2.2 Criteria weights calculation
4.2.2.1 Subjective weight calculation
In this paper, the TFNs-SWARA method is used to calculate the subjective weights of the indicators. The four experts evaluate the priority order of the various indicators based on their own expertise. The initial evaluation matrix by the experts is shown in Table 4.
Based on Table 5, the defuzzification operation is performed using Eq. 14. Afterwards, the subjective weights of the HES composite evaluation indicators can be obtained through Eqs 17–19.
TABLE 5 | Subjective weight evaluation matrix of indicators and algorithm steps of SWARA.
[image: Table 5]4.2.2.2 Objective weights calculation
In this paper, the entropy method based on TFNs is used to calculate the objective weights of the indicators. Firstly, the information from Table 4 is integrated to form an initial decision matrix. Then, the qualitative decision information in the initial decision matrix is quantified using Eq. 15. Finally, the objective weights of the indicators can be obtained using Eqs 20–25, as shown in Table 6.
TABLE 6 | Algorithm steps of objective indicators and comprehensive weights.
[image: Table 6]4.2.2.3 Comprehensive weights calculation
In order to incorporate both the subjective judgments of the experts and the inherent patterns of objective data, this paper integrates the results of two types of weights. In this process, it is important to minimize the loss of information. Therefore, the Lagrange optimization method is chosen in this paper. The integrated weights can be seen in Table 6.
It can be seen from the calculation result that economic index and technical index are the two most important first-level indexes. In the secondary index, C11 (Investment cost), C12 (Dynamic payback period), C31 (Comprehensive energy efficiency) and C32 (Energy supply reliability) are the most important criteria, which the DMs need to prioritize when making decisions.
4.2.3 Alternatives sorting
Once the weight calculation for the indicators is completed, this paper will conduct a comprehensive evaluation of the six alternative scenarios for the HES. Firstly, the normalized initial decision matrix obtained during the objective weight calculation process is used as the basis for the comprehensive evaluation. Secondly, the real values of the indicators are transformed by inversely utilizing the defuzzification formula to expand them into TFNs. For example, (0.75, 0.75, 0.75) = 0.75. Then, the best and worst indicator values are selected among all the standards, and the group utility value and individual regret value are calculated using Eqs 30, 31, as shown in Table 6. Finally, the group benefit coefficient is calculated using Eq. 32, as shown in Table 7. It is worth noting that the compromise coefficient [image: image] is chosen in this paper to simultaneously pursue maximizing group utility and minimizing individual regret for decision-making.
TABLE 7 | Calculation results of group utility value, individual regret value, and collective benefit coefficient.
[image: Table 7]According to the compromise solution determination rules of the VIKOR, A1 is the optimal solution in [image: image], [image: image] and [image: image]. And [image: image]. Thus, A1 is the optimal option in the six alternatives.
5 DISCUSSION AND ANALYSIS
In the previous chapter, this paper obtained the comprehensive evaluation results of HES, including index weight results and scheme ranking results. Therefore, the above results will be analyzed in this chapter. In addition, sensitivity analysis and comparative analysis will be employed to discuss the model. These two types of methods will respectively verify the robustness and rationality of the model.
5.1 Results analysis
5.1.1 Analysis of criteria weights results
The weight reweighting of HES comprehensive evaluation indicators is shown in Table 6. From the subjective weight of indicators, C11 (Investment cost), C31 (Comprehensive energy efficiency), C12 (Dynamic payback period) and C32 (Energy supply) reliability) has a high weight of 8.34%, 8.34%, 8.28%, and 7.95%, respectively. Among them, C11 and C12 are economic indicators, which mainly reflect the economic feasibility and investment risk of the program. C31 and C32 are technical indicators, which are the embodiment of system efficiency and supply assurance ability. From the objective weight of indicators, the weight of C24 (Noise) has a significant advantage over other indicators, which is 7.46%. The weights of the remaining indicators are between 6% and 6.5%. It indicates that there are some differences in technical scheme and comprehensive performance among the alternatives, but they are not very obvious. The obvious difference in the noise of each scheme is due to the greater noise of wind turbines. As a result, a scenario with more wind turbines would have a poorer C24 performance. From the comprehensive weight of indicators, the highest weights are C11, C31, C12 and C32, which are 7.21%, 7.17%, 7.17%, and 7.15% respectively. It is consistent with the trend of subjective weight, but the weights are reduced, which indicates that the comprehensive weight method can better reflect the subjective decision of experts and objective data information in the final weight.
5.1.2 Analysis of alternatives sorting
The fuzzy VIKOR method was used to rank HES alternatives, and the results are shown in Table 7. The final sorting result of the determined scheme is A1>A3>A2>A5>A4>A6. This result shows the relative advantages of each scheme considering group interests and individual regrets. However, when only the group benefits of each scheme are considered, the ranking results are A1>A3>A5>A4>A2>A6. This is because in the comprehensive evaluation, although the program may perform very poorly in one aspect, it will eventually be smoothed out by other aspects, resulting in large shortcomings in the implementation process of the project. VIKOR method takes this factor into account and reduces the impact of extreme results on comprehensive evaluation by introducing individual regret value. In all scenarios, A1 has the best performance in terms of group benefits and individual regrets. Therefore, A1 is the optimal solution.
5.2 Sensitivity analysis
5.2.1 Sensitivity analysis of criteria weights
The calculation of indicator weights is a crucial step in the comprehensive evaluation of HES, as it affects the final ranking results of alternatives. Therefore, this section will observe the trend of changes in the final evaluation results by altering the weights of indicators. Based on the calculated comprehensive weights obtained earlier, the weights of each indicator will be adjusted by ±10% and ±20% respectively. It should be noted that the sum of weights for all indicators remains unchanged.
The sensitivity analysis results of the four sub-indicators in the economy are shown in Figure 3. It can be observed that regardless of how the weights of the indicators change, A1 consistently remains the best-ranked option while A6 remains the worst. With an increase in the weight of C11, the ranking of A2 drops from third to fifth, indicating that A2 is sensitive to changes in the weight of C11. By examining the original indicator values for each scheme, it is evident that A2 has a significant disadvantage in C11 compared to other schemes. Conversely, DMs can prioritize A2 by lowering the weight of C11. Similarly, A5 is sensitive to changes in C12 and C14. Furthermore, the ranking results of the schemes do not undergo significant changes with variations in the weights of economic indicators.
[image: Figure 3]FIGURE 3 | Sensitivity analysis results of economic indicators.
The sensitivity analysis results of the environmental indicators are shown in Figure 4. A6 consistently remains the worst alternatives. A1 only drops to the second priority when the weight of C24 increases to 20%. When the weights of C12, C22, and C23 change, there is no change in the ranking results of all the schemes. By observing the sensitivity analysis results of C24 (Noise), it can be seen that as the weight of the indicator gradually increases, the ranking of A2 increases from third to first. This is due to the significant noise pollution generated by wind power compared to solar power, giving A2 a clear advantage over the other schemes in this indicator.
[image: Figure 4]FIGURE 4 | Sensitivity analysis results of environmental indicators.
The sensitivity analysis results of the technical indicators are shown in Figure 5. The ranking results of A1 and A6 do not change with the variation of technical indicator weights. By observing the sensitivity analysis results of C32 and C34, it can be concluded that A2, A4, and A5 are sensitive to C32, while A3 is sensitive to C34. This indicates that these schemes have noticeable advantages or disadvantages compared to other schemes in these two indicators. Furthermore, the ranking results of all alternatives do not undergo significant changes with variations in the weights of the indicators.
[image: Figure 5]FIGURE 5 | Sensitivity analysis results of technical indicators.
The sensitivity analysis results of the social-political indicators are shown in Figure 6. The best and worst schemes among the six alternatives remain A1 and A6, respectively. By observing the sensitivity analysis results of all the indicators, it can be seen that A4 is sensitive to C41 and C42. A2 is sensitive to C43. Additionally, only a few schemes experience minor changes in their priority ranking.
[image: Figure 6]FIGURE 6 | Sensitivity analysis results of social-political indicators.
By employing the sensitivity analysis method on the variation of indicator weights, it can be observed that the priority ranking of A1 and A6 remains largely unchanged. Additionally, the ranking results of all alternatives do not undergo significant changes with variations in the weights of individual indicators.
5.2.2 Sensitivity analysis of decision support coefficient
The advantage of VIKOR method over other MCDM methods primarily lies in its ability to reflect the DMs’ subjectivity, allowing them to make more aggressive or conservative decisions. This advantage is manifested in the specific calculation method through the choice of the compromise coefficient. A higher compromise coefficient indicates a greater emphasis on maximizing the overall group utility and less consideration for the personal regrets of the dissenting individuals, which reflects a risk-seeking DM. Conversely, a lower compromise coefficient represents a decision mechanism that aims to minimize individual regrets and belongs to the risk-averse category. [image: image] represents different trade-off approaches that consider the majority group’s interests and the minority’s dissenting opinions, thereby representing risk-neutral DMs. Therefore, in this paper, by observing changes in the ranking results of the alternatives through variations in the compromise coefficient, the robustness of the model is validated.
From Figure 7, it can be observed that regardless of how the DMs' strategy changes, A1 and A6 consistently remain the best and worst options, respectively. As the compromise coefficient gradually increases, the priority of the A2 option decreases, indicating that A2 has a significant advantage in a certain criterion. Conversely, the priority of the A3 option increases, suggesting a more balanced performance across multiple indicators. Furthermore, the ranking of the alternative schemes does not undergo significant changes with variations in the compromise coefficient.
[image: Figure 7]FIGURE 7 | Sensitivity analysis results of compromise coefficients [image: image].
5.3 Comparatives analysis
To validate the rationality of comprehensive evaluation model, this paper compares it with several commonly used MCDM methods in the field, as shown in Figure 8. In addition to the VIKOR method, TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution), TODIM, and FCE (Fuzzy Comprehensive Evaluation) have been widely used by many scholars in the field of comprehensive evaluation. By observing Figure 8, it can be noted that A1 and A3 are consistently ranked among the top two options across all methods. Furthermore, except in the case of FCE, A1 is the optimal solution in all methods, as FCE does not consider the specificity of the solutions and the DMs' preferences. Additionally, the ranking of the alternatives remains relatively stable across all methods. Therefore, the model constructed in this paper demonstrates rationality.
[image: Figure 8]FIGURE 8 | The results of comparative analysis.
6 CONCLUSION AND OUTLOOK
Sustainable development is a consensus and goal of the entire human society. With the continuous maturation of new energy generation technologies and storage technologies such as hydrogen energy, HES represents the inevitable trend towards integrating energy sources and loads in future energy systems. However, the lack of a comprehensive evaluation system hinders the development and layout of HES. Therefore, this paper constructs a comprehensive evaluation framework for HES from three aspects: system architecture, evaluation indicators, and evaluation models. Firstly, the energy flow of HES, including electricity, heating, and cooling, is clearly decomposed and presented. Secondly, 12 indicators related to the comprehensive evaluation of HES are identified from four dimensions: economic, environmental, technological, and social-policy. Specific quantitative methods are provided for the quantitative indicators. Then, a comprehensive evaluation model based on fuzzy theory and MCDM theory is constructed. Finally, the robustness and rationality of the proposed method are verified through sensitivity analysis and comparative analysis. The main conclusions derived from this study are as follows:
(1) C11(Investment cost), C31 (Comprehensive energy efficiency), C12 (Dynamic payback period) and C32 (Energy supply reliability) are the four most important criteria, with weights of 7.21%, 7.17%, 7.17% and 7.15% respectively. C11 and C12 reflect the economic characteristics of HES as an energy project. C31 and C32, on the other hand, represent the energy supply characteristics of HES.
(2) A1 is the optimal alternative for the layout of the HES in a certain industrial park in Gansu. However, A1 has shortcomings in land occupation, noise, and ES equivalent utilization coefficient. DMs can optimize this scheme in these three aspects to maximize the benefits of the HES.
(3) When collecting and processing expert information, the reasonable use of fuzzy theory can maximize the acquisition and retention of original decision information, and it can fully reflect the psychological factors of DMs.
(4) In the application process of the fuzzy VIKOR method, DMs can change the compromise coefficient to reflect the changes in decision psychology and influence the final determination of the scheme.
The comprehensive evaluation framework of the HES constructed in this article is universal and can serve as a reference for the layout of HES in places with abundant wind and solar resources. However, There are still some shortcomings in this paper: ① Since this decision support model has not been used in real HES, the true performance of the optimal scheme selected based on this model is still open to question. ② In the VIKOR method, the combination coefficient of group benefit value and individual loss value is 0.5, which is the value used in most literature. Therefore, how to improve the value of coefficient is also an important direction of optimization model; ③ Comprehensive evaluation index system of HES is established in the current development background. When the future socio-economic situation changes or disruptive technologies emerge, the indicators should also be adjusted accordingly. Therefore, we will continue to optimize the model and solve the problems in the above three aspects in the follow-up research work.
DATA AVAILABILITY STATEMENT
The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.
AUTHOR CONTRIBUTIONS
XC: Conceptualization, Formal Analysis, Investigation, Methodology, Writing–original draft, Writing–review and editing. CC: Conceptualization, Methodology, Writing–review and editing. GT: Data curation, Investigation, Methodology, Project administration, Supervision, Writing–review and editing. YY: Investigation, Methodology, Resources, Supervision, Writing–review and editing. YZ: Conceptualization, Funding acquisition, Investigation, Project administration, Supervision, Validation, Visualization, Writing–review and editing.
FUNDING
The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
REFERENCES
 Abdul, D., Wenqi, J., and Tanveer, A. (2022). Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology. Renew. Energy 184, 1018–1032. doi:10.1016/j.renene.2021.10.082
 Akhanova, G., Nadeem, A., Kim, J. R., and Azhar, S. (2020). A multi-criteria decision-making framework for building sustainability assessment in Kazakhstan. Sustain. Cities Soc. 52, 101842. doi:10.1016/j.scs.2019.101842
 Devrim, Y., and Bilir, L. (2016). Performance investigation of a wind turbine–solar photovoltaic panels–fuel cell hybrid system installed at İncek region – ankara, Turkey. Energy Convers. Manag. 126, 759–766. doi:10.1016/j.enconman.2016.08.062
 Eriksson, E. L. V., and Gray, E. M. (2017). Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – a critical review. Appl. Energy 202, 348–364. doi:10.1016/j.apenergy.2017.03.132
 Ghenai, C., Albawab, M., and Bettayeb, M. (2020). Sustainability indicators for renewable energy systems using multi-criteria decision-making model and extended SWARA/ARAS hybrid method. Renew. Energy 146, 580–597. doi:10.1016/j.renene.2019.06.157
 Huang, R., Han, L., Zhang, F., and Peng, H. (2021). Application of the fuzzy interval multi-attribute assessment in the analysis of water quality. Yellow River 43 (05), 104–109. 
 Kamali Saraji, M., Aliasgari, E., and Streimikiene, D. (2023). Assessment of the challenges to renewable energy technologies adoption in rural areas: a Fermatean CRITIC-VIKOR approach. Technol. Forecast. Soc. Change 189, 122399. doi:10.1016/j.techfore.2023.122399
 Ke, Y., Liu, J., Meng, J., Fang, S., and Zhuang, S. (2022). Comprehensive evaluation for plan selection of urban integrated energy systems: a novel multi-criteria decision-making framework. Sustain. Cities Soc. 81, 103837. doi:10.1016/j.scs.2022.103837
 Li, H., Wang, X., Gao, Y., and Liang, H. (2018). Evaluation research of the energy supply system in multi-energy complementary park based on the improved universal generating function method. Energy Convers. Manag. 174, 955–970. doi:10.1016/j.enconman.2018.08.068
 Li, J., Qu, C., Li, C., Liu, X., and Novakovic, V. (2022a). Technical and economic performance analysis of large flat plate solar collector coupled air source heat pump heating system. Energy Build. 277, 112564. doi:10.1016/j.enbuild.2022.112564
 Li, Z., Wang, J., Zhou, H., Zong, X., Sun, Y., and Xiong, J. (2022b). Evaluation method for park-level integrated energy system planning considering the interaction of multiple indices. Electr. Power Constr. 43 (10), 98–110. 
 Liang, S., and Wang, Y. (2023). Evaluation of an integrated energy system planning scheme for an industrial park based on an improved cloud matter-element model. Power Syst. Prot. Control 51 (09), 165–176. doi:10.19783/j.cnki.pspc.221097
 Liu, C., Wang, H., Wang, Z., Liu, Z., Tang, Y., and Yang, S. (2022b). Research on life cycle low carbon optimization method of multi-energy complementary distributed energy system: a review. J. Clean. Prod. 336, 130380. doi:10.1016/j.jclepro.2022.130380
 Liu, D., Gao, X., An, H., Qi, Y., Sun, X., Wang, Z., et al. (2019). Supply and demand response trends of lithium resources driven by the demand of emerging renewable energy technologies in China. Resour. Conservation Recycl. 145, 311–321. doi:10.1016/j.resconrec.2019.02.043
 Liu, Z., Cui, Y., Wang, J., Yue, C., Agbodjan, Y. S., and Yang, Y. (2022a). Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties. Energy 254, 124399. doi:10.1016/j.energy.2022.124399
 Meniz, B., and Ozkan, E. M. (2023). Vaccine selection for COVID-19 by AHP and novel VIKOR hybrid approach with interval type-2 fuzzy sets. Eng. Appl. Artif. Intell. 119, 105812. doi:10.1016/j.engappai.2022.105812
 Niu, X., Zhan, Z., Li, B., and Chen, Z. (2022). Environmental governance and cleaner energy transition: evaluating the role of environment friendly technologies. Sustain. Energy Technol. Assessments 53, 102669. doi:10.1016/j.seta.2022.102669
 Qian, J., Wu, J., Yao, L., Mahmut, S., and Zhang, Q. (2021). Comprehensive performance evaluation of Wind-Solar-CCHP system based on emergy analysis and multi-objective decision method. Energy 230, 120779. doi:10.1016/j.energy.2021.120779
 Qin, G., Zhang, M., Yan, Q., Xu, C., and Kammen, D. M. (2021). Comprehensive evaluation of regional energy internet using a fuzzy analytic hierarchy process based on cloud model: a case in China. Energy 228, 120569. doi:10.1016/j.energy.2021.120569
 Ruiming, F. (2019). Multi-objective optimized operation of integrated energy system with hydrogen storage. Int. J. Hydrogen Energy 44 (56), 29409–29417. doi:10.1016/j.ijhydene.2019.02.168
 Sezer, N., Bicer, Y., and Koç, M. (2019). Design and analysis of an integrated concentrated solar and wind energy system with storage. Int. J. Energy Res. 43, 3263–3283. doi:10.1002/er.4456
 Shen, M., Zhang, G., and Zhang, K. (2022). Comprehensive evaluation method and application study of campus-level regional integrated energy system. J. Of Beijing Inst. Of Technol. Soc. Sci. Ed. 24 (04), 52–65. doi:10.15918/j.jbitss1009-3370.2022.1649
 Song, X., Su, Y., Zhang, L., and Li, S. (2022). Benefit evaluation of rural comprehensive energy system based on improved matter-element extension model. Price theory Pract. (02), 170–174. doi:10.19851/j.cnki.CN11-1010/F.2022.02.082
 Wen, Q., Liu, G., Wu, W., and Liao, S. (2021). Multicriteria comprehensive evaluation framework for industrial park-level distributed energy system considering weights uncertainties. J. Clean. Prod. 282, 124530. doi:10.1016/j.jclepro.2020.124530
 Wu, Y., Yong, X., Tao, Y., Zhou, J., He, J., Chen, W., et al. (2023a). Investment monitoring key points identification model of big science research infrastructures -- Fuzzy BWM-entropy-PROMETHEE Ⅱ method. Socio-Economic Plan. Sci. 86, 101461. doi:10.1016/j.seps.2022.101461
 Wu, Y., Zhang, J., Yuan, J., Geng, S., and Zhang, H. (2016). Study of decision framework of offshore wind power station site selection based on ELECTRE-III under intuitionistic fuzzy environment: a case of China. Energy Convers. Manag. 113, 66–81. doi:10.1016/j.enconman.2016.01.020
 Wu, Y., Zhou, J., Hu, Y., Li, L., and Sun, X. (2018). A TODIM-based investment decision framework for commercial distributed PV projects under the energy performance contracting (epc) business model: a case in east-Central China. Energies 11, 1210. doi:10.3390/en11051210
 Yang, K., Ding, Y., Zhu, N., Yang, F., and Wang, Q. (2018). Multi-criteria integrated evaluation of distributed energy system for community energy planning based on improved grey incidence approach: a case study in Tianjin. Appl. Energy 229, 352–363. doi:10.1016/j.apenergy.2018.08.016
 Yong, X., Chen, W., Wu, Y., Tao, Y., Zhou, J., and He, J. (2022). A two-stage framework for site selection of underground pumped storage power stations using abandoned coal mines based on multi-criteria decision-making method: an empirical study in China. Energy Convers. Manag. 260, 115608. doi:10.1016/j.enconman.2022.115608
 Yong, X., Wu, Y., Zhou, J., Tao, Y., and Chen, W. (2023). Prospects and barriers analysis framework for the development of energy storage sharing. Sustain. Cities Soc. 89, 104368. doi:10.1016/j.scs.2022.104368
 Zeng, B., Zheng, T., Yang, Y., and Wang, J. (2023). A novel grey Verhulst model with four parameters and its application to forecast the carbon dioxide emissions in China. Sci. Total Environ. 899, 165648. doi:10.1016/j.scitotenv.2023.165648
 Zhang, H., Jiang, J., Song, M., and Yong, X. (2022b). Comprehensive benefit evaluation of transmission and substation project for renewable energy connection: a case in China. Energy Rep. 8, 12653–12667. doi:10.1016/j.egyr.2022.09.085
 Zhang, L., Chai, J., Xin, H., and Zhao, Z. (2021). Evaluating the comprehensive benefit of hybrid energy system for ecological civilization construction in China. J. Clean. Prod. 278, 123769. doi:10.1016/j.jclepro.2020.123769
 Zhang, S., Shi, B., and Ji, H. (2023). How to decouple income growth from household carbon emissions: a perspective based on urban-rural differences in China. Energy Econ. 125, 106816. doi:10.1016/j.eneco.2023.106816
 Zhang, Y., Sun, H., Tan, J., Li, Z., Hou, W., and Guo, Y. (2022a). Capacity configuration optimization of multi-energy system integrating wind turbine/photovoltaic/hydrogen/battery. Energy 252, 124046. doi:10.1016/j.energy.2022.124046
 Zhao, E., Zhang, B., Li, H., Wu, Z., and Lei, X. (2022). Economic benefit evaluation of regional integrated energy system based on improved minimum cross entropy method. Electr. Power Eng. Technol. 41 (02), 215–223. 
 Zheng, G., and Wang, X. (2020). The comprehensive evaluation of renewable energy system schemes in tourist resorts based on VIKOR method. Energy 193, 116676. doi:10.1016/j.energy.2019.116676
 Zhou, J., Wu, Y., Dong, H., Tao, Y., and Xu, C. (2020). Proposal and comprehensive analysis of gas-wind-photovoltaic-hydrogen integrated energy system considering multi-participant interest preference. J. Clean. Prod. 265, 121679. doi:10.1016/j.jclepro.2020.121679
 Zhou, J., Wu, Y., Wu, C., Deng, Z., Xu, C., and Hu, Y. (2019). A hybrid fuzzy multi-criteria decision-making approach for performance analysis and evaluation of park-level integrated energy system. Energy Convers. Manag. 201, 112134. doi:10.1016/j.enconman.2019.112134
Conflict of interest: Authors XC, CC, and GT were employed by State Grid Hebei Electric Power Co., Ltd.
The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2023 Chen, Chen, Tian, Yang and Zhao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 08 January 2024
doi: 10.3389/fenrg.2023.1332474


[image: image2]
A multi-objective dispatching model for a novel virtual power plant considering combined heat and power units, carbon recycling utilization, and flexible load response
Hailin Yang1*, Xu Tian1, Fei Liu1, Liantao Liu1, Lixin Li2 and Qian Wang2
1Economic and Technological Research Institute of State Grid Qinghai Electric Power Company, Xining, Qinghai, China
2China Electric Power Research Institute, Beijing, China
Edited by:
Shenbo Yang, Beijing University of Technology, China
Reviewed by:
Xiaobao Yu, Shanghai University of Electric Power, China
Hongye Wang, Dalian University of Technology, China
Nie Yan, Lanzhou University, China
* Correspondence: Hailin Yang, b_zero2023@163.com
Received: 03 November 2023
Accepted: 07 December 2023
Published: 08 January 2024
Citation: Yang H, Tian X, Liu F, Liu L, Li L and Wang Q (2024) A multi-objective dispatching model for a novel virtual power plant considering combined heat and power units, carbon recycling utilization, and flexible load response. Front. Energy Res. 11:1332474. doi: 10.3389/fenrg.2023.1332474

To optimize the energy supply potential and complementary advantages of distributed energy, this paper focuses on the dispatching optimization of cogeneration virtual power plant considering uncertainty. First of all, wind power, photovoltaic, combined heat and power (CHP) units, electric boilers, and controllable loads are integrated into a CHP virtual power plant. Then, carbon capture and electric-to-gas devices are introduced to realize carbon recycling. Furthermore, quantify the risk of real-time dispatching of virtual power plants through uncertainty scenario generation and conditional value at risk (CVaR) theory, and the multi-objective stochastic dispatching optimization model of virtual power plants is built with the aim at minimizing the operation cost, carbon emissions, and operation risk as the objectives, and the CRITIC weighting method is adopted to solve it. Finally, the calculation results show that: 1) the electric boiler can use wind and photovoltaic power to supply heat for the system, reduce the dependence of the virtual power plant (VPP) on the CHP unit, and make the electric output of the unit more flexible. 2) The risk quantification method proposed can fully measure the risk situation in real-time dispatching, arrange the wind and photovoltaic power generation plan and backup plan more reasonably, and enable the VPP to get more benefits while avoiding the risks in real-time dispatching.
Keywords: virtual power plant, distributed new energy, conditional value at risk, combined heat and power, carbon capture
1 INTRODUCTION
Distributed energy is energy efficient, less polluting, more flexible, and larger in scale, and is the key to alleviating the energy shortage in China (Bin et al., 2021). But distributed energy has characteristics of small capacity, large quantity, and uneven distribution, which makes it hard to involve in power grid dispatching directly (Yingxuan et al., 2021). Virtual power plants (VPPs) use advanced communication technology to realize the aggregation of different distributed energy sources, effectively play the complementary ability of various resources in time and space, and fully excavate the energy supply potential of distributed energy sources (Yafei et al., 2023).
Moreover, every winter heating period, combined heat and power (CHP) units in Northeast China often operate in the mode of “power determined by heat”, which causes the waste of wind power and photoelectric resources (Jun et al., 2023). If CHP units and various distributed energy sources are aggregated into a CHP-VPP, the complementary advantages between resources can be used to achieve “thermoelectric coupling” and promote the consumption of renewable energy. Many scholars have now studied the optimal dispatching of CHP-VPP (Shitong et al., 2022; Hamzeh and Sadegh, 2023; Kumar et al., 2023). In Ref. (Fang et al., 2020), electric storage devices (ESDs), wind power plants (WPPs), photovoltaic power plants (PV), and controllable loads are aggregated into a CHP-VPP, and a VPP dispatching optimization model with the goal of maximizing economic benefits is established. In Ref. (Wang et al., 2023), the CHP-VPP is equipped with electric boilers to absorb wind power, and the scheduling optimization model of CHP-VPP is established with the objective of minimum economic costs. The above documents only focus on the economic benefits of VPPs. However, in the background of “carbon peaking and carbon neutrality”, carbon emission will be a key indicator for optimizing VPP dispatch (Guo et al., 2022).
In recent years, the maturity of carbon capture and power to gas (P2G) technology has provided an effective way for the low-carbon development of VPPs (Caixia et al., 2021; Xiaojie et al., 2023). In Michael et al. (2022); Liu et al. (2023), the thermal power units and carbon capture equipment are combined into carbon capture units, which promotes the utilization of wind power and makes carbon emission reduction more significant. In Yungao et al. (2022); ZhangHu (2022), P2G is used to utilize excess wind power generation and convert CO2 into CH4, effectively reducing VPP carbon emission. The above literature provides a theoretical basis for the incorporation of carbon capture and electricity to gas into VPPs, but does not consider the combined use of the two to achieve carbon cycle. In Qingyou et al. (2021), although carbon cycle is realized through a gas power plant carbon capture (GPPCC) device and P2G, the influence of the coupling operation mode of GPPCC and P2G on the degree of carbon cycle is not considered. To solve the problem, carbon storage device is introduced to decouple CO2 capture and treatment process, and a hydrogen storage device is introduced to realize time shift of renewable energy power (Liwei et al., 2022; Shuaishuai et al., 2022). Therefore, if the carbon storage and hydrogen storage devices are used together with GPPCC and P2G, it will effectively decouple the carbon capture and electricity to gas processes, and maximize the carbon emission reduction potential.
To solve the problems in the aforementioned analysis, this paper proposes an optimal scheduling method for CHP-VPP considering carbon capture and P2G. First of all, GPPCC and P2G are introduced in the CHP-VPP for carbon recycling, and carbon storage and hydrogen storage units are added to decouple carbon capture from the power generation and gas production process. Then, the risk of VPP real-time dispatching is quantified through the generation of uncertainty scenarios and CVaR theory. With the operation cost, carbon emission, and operation risk as the objectives, a multi-objective stochastic dispatching optimization method of CHP-VPP is propounded, and the CRITIC weighting method is used to address it. Finally, a simulation is designed to validate the conclusiveness and applicability of the proposed method.
2 VPP STRUCTURE AND MODELING
2.1 Structure description
The CHP-VPP in this paper mainly includes distributed power/heat output module and carbon cycle module. The distributed power/heat output module includes distributed wind power and photovoltaic, electric boiler, controllable load, and the power storage device. Carbon cycle module mainly includes the gas CHP unit, GPPCC, P2G, and gas storage device. The VPP realizes the recycling of CO2 through GPPCC and P2G. GPPCC captures CO2 generated by the CHP unit, and P2G converts CO2 into CH4. The carbon storage and hydrogen storage devices can be used to store excess CO2 and H2 at a certain time, so as to decouple carbon capture and electric conversion process. The electric boiler can use the surplus renewable energy to generate electricity to supply heat for the system, reduces the dependence of VPP on the heat output of CHP unit, and increases the flexibility of CHP unit operation. The controllable load and power storage device can cut peak and fill valley, and provide spare output for VPP. Figure 1 shows the energy flow diagram of CHP-VPP.
[image: Figure 1]FIGURE 1 | Energy flow diagram of the VPP.
VPP coordination control center conducts information interaction with each unit in the VPP through communication technology, so that it can sense the operation status of each device and issue dispatching instructions to each unit. On this basis, the VPP forecasts the WPP and PV output of the next day, and then consider the operating status of each unit, the demand for VPP internal electrical load and thermal load, and formulate the next day’s operation plan of each unit and form the next day’s electricity purchase and sale strategy in the public grid.
2.2 Operation modeling
2.2.1 Distributed power/thermal output module modeling
The distributed power/thermal output module is mainly responsible for meeting the electric heating load of the system by calling various distributed energy sources. Among them, the electric boiler is an auxiliary heating equipment for “thermoelectric decoupling”. Controllable loads and power storage devices can be used as flexible resources to follow the change of WPP and PV output. In addition, the power storage device can be charged during low price hours and discharged during peak price hours to promote the use of renewable energy.
(1) Distributed WPP and PV modeling
In this study, the distributed WPP is modeled as a whole, and the VPP predicts the wind power output of the next day. Therefore, in the process of day ahead dispatching, the declared output of distributed wind turbines should meet the following relationships:
[image: image]
where [image: image] and [image: image], respectively, represent the declared output and predicted output of the WPP at time [image: image]. However, wind power forecasting often has certain errors, and its actual output can be obtained by adding the predicted output and the predicted output error, as follows:
[image: image]
In Eq. 2, [image: image] represents the actual output of the wind turbine at time t; [image: image] represents the predicted output error of the wind turbine. When the scale of wind turbines is large and the geographical distribution is wide, it can be considered that the prediction error follows the normal distribution of (0, [image: image]). [image: image] is calculated as follows:
[image: image]
where [image: image] is the whole installed capacity of wind turbine.
The principle of distributed photovoltaic modeling is the same as that of the distributed wind power, refer to Eqs 1, 2. The probability distribution function of photovoltaic prediction error will not be repeated in this paper.
(2) Electric boiler
As an auxiliary heating equipment in VPPs, the electric boiler can use wind power generation to meet the thermal load of the system, reduce the dependence of the system on the thermal output of CHP unit, so as to achieve “thermoelectric decoupling”, and increase flexibility in the operation of CHP units. The relationship between the heat generating power [image: image] of the electric boiler and the electric power [image: image] consumed is as follows:
[image: image]
where [image: image] represents the electric heat transfer efficiency of the electric boiler.
(3) Controllable load
Demand response methods include price-based demand response (PBDR) and incentive-based demand response (IBDR). Incentive-based demand response on user side controllable load is primarily considered. Users can sign a contract with the VPP to reduce power consumption during peak hours or increase power consumption during valley hours, and obtain certain benefits. At the same time, users can also provide backup services for the VPP to smoothing the fluctuation of wind power output (Ju et al., 2016).
[image: image]
where [image: image] is the controllable load response at time t; [image: image] is the number of users; [image: image] and [image: image] are the positive/negative response output provided for the user k at time t, respectively; and [image: image] and [image: image] represent the status of positive/negative response output, which is 0–1 variable, respectively.
(4) ESD
ESD can realize energy transfer across time periods and coordinate the imbalance between source and load. Among them, the electric energy storage can realize peak load cutting and valley filling through “peak time discharge and valley time charging”, thus the ability of the grid to absorb renewable energy can be improved and the operating cost of VPP can be reduced. The relationship between the storage capacity of the ESD and the charging and discharging shall be in accordance with the following relationship:
[image: image]
where [image: image] represents the ESD energy storage capacity at time t; [image: image] and [image: image] represent the ESD charging/discharging power at time t, respectively; [image: image] and [image: image] represent charging/discharging efficiency of the ESD, respectively; and [image: image] represents the ESD electric energy loss rate.
2.2.2 Carbon cycle module
The carbon cycle module mainly uses the surplus wind power generation for carbon recycling, reducing carbon emissions while cogenerating. Among them, GPPCC will capture CO2 generated by the CHP unit, and P2G will convert CO2 into CH4, which will be supplied to the CHP unit as fuel. The module also includes the carbon storage and hydrogen storage devices, which are used to decouple the generation and processing of CO2. The hydrogen storage devices can realize the time shift of electric energy by storing H2.
(1) CHP unit
The extraction type CHP unit is used to extract some steam from the two stages of the turbine as the heat source for external heating. When the thermal power is fixed, the extraction type unit can adjust the electric power within a certain range, with higher flexibility. However, when the thermal power gradually increases, the adjustable range of electric power will be reduced.
[image: image]
where [image: image], [image: image] and [image: image] are the generating power, net generating power, and heating power of the unit [image: image] under the pure condensing condition at time t, respectively, and [image: image] represents the electrothermal conversion coefficient.
The CO2 produced and natural gas consumed can be calculated by Eq. 8:
[image: image]
where [image: image] and [image: image] represent the mass of CO2 generated and the volume of natural gas consumed, respectively; [image: image] represents the carbon emission intensity; [image: image] represents the generating efficiency of the unit; and [image: image] represents the low calorific value of natural gas, and 3.6 is the standard unit conversion coefficient.
(2) GPPCC
GPPCC energy consumption is directly met by unit output. In order to better control the operation of GPPCC, this paper defines the following operation indicators:
The flue gas [image: image] split ratio represents the ratio of the flue gas flow into the GPPCC to the total flue gas flow of the CHP unit and has a value of 0–1.
GPPCC operation energy consumption [image: image] refers to the variable energy consumption of GPPCC operation, mainly including regenerative heat energy and compressed electric energy, indicating the operation level of GPPCC.
The flow direction of CO2 in GPPCC is as follows:
[image: image]
where [image: image]、 [image: image] and [image: image] represent the CO2 being processed, successfully captured and discharged into the atmosphere by GPPCC, respectively. [image: image] represents the CO2 capture rate of GPPCC.
The energy consumption of GPPCC can be calculated by Eq. 10
[image: image]
where [image: image] represents the fixed energy consumption of carbon capture, which can be regarded as a constant value because of its small proportion and [image: image] represents the power consumption per unit CO2.
In addition, GPPCC can store excess CO2 into the carbon storage unit. For the convenience of calculation, the volume [image: image] under standard condition will be replaced by [image: image]
[image: image]
where [image: image] represents the density of carbon dioxide at standard conditions. Therefore, the CO2 captured by GPPCC and consumed by P2G can be expressed by Eq. 12
[image: image]
where [image: image]、 [image: image] and [image: image] represent CO2 entering the carbon storage unit from GPPCC, P2G from the carbon storage unit, and P2G directly from GPPCC, respectively, and [image: image] represents the total amount of CO2 consumed by P2G at time t.
(3) P2G
P2G mainly includes two processes: electrolytic water and methanation, and energy conversion efficiencies of about 75%–85% for electrolysis of water and 75%–80% for methanization, for a total efficiency of about 45%–60%. In this paper, electrolytic water and methanation are modeled separately, and the specific expression is as follows:
[image: image]
where [image: image] and [image: image] represent H2 consumed by electrolytic water generation and methanation, respectively; [image: image] represents the efficiency of electric hydrogen conversion; [image: image] represents the calorific value of hydrogen; [image: image] represents the methanation consumes electricity per unit H2; and [image: image] and [image: image] represent the power consumption of electrolytic water and methanation, respectively. The total operating power of P2G is
[image: image]
P2G stores surplus H2 in the hydrogen storage unit. Therefore, H2 produced by electrolytic water and consumed by methanation can be expressed by Eq. 15
[image: image]
where [image: image], [image: image] and [image: image] represent H2 entering the hydrogen storage unit from the electrolytic cell, methane reactor from the hydrogen storage unit, and methane reactor directly from the electrolytic cell, respectively.
Taking [image: image] to indicate CH4 generated by P2G. According to the chemical reaction equation of methanation, the ratio of [image: image], [image: image] and [image: image] is [image: image].
(4) Gas storage device
In this paper, carbon storage and hydrogen storage devices are added to GPPCC and P2G, respectively, which can be used together to flexibly control the two raw materials required for methanation, achieve maximum absorption of wind power generation, and improve the degree of carbon recycling. The modeling of hydrogen and carbon storage devices can refer to the power storage devices, as shown below:
[image: image]
where [image: image] refers to the gas stored at time t; [image: image] and [image: image] represent the gas stored and withdrawn at time t, respectively; and [image: image] and [image: image] are charge/discharge efficiency, respectively.
3 MULTI-OBJECTIVE STOCHASTIC DISPATCHING OPTIMIZATION MODEL
3.1 Generation of uncertainty scenarios
Wind and photovoltaic power generation often have strong uncertainty, which will bring risks to the real-time operation of VPPs. Since the uncertainty of new energy output mainly comes from the prediction error, this paper constructs the joint probability distribution function according to the correlation of wind power and photoelectric output error. Then, the inverse transformation method is adopted to generate typical scenarios of wind-photoelectric output, and the random model is transformed into a deterministic model through the generation of uncertainty scenarios while retaining the wind-photoelectric output correlation. In order to take into account the randomness and correlation of the scene output at each moment, the scene output scene is generated.
(1) Constructing the covariance matrix [image: image] of the full cycle wind and solar forecast error, as follows:
[image: image]
where [image: image] represents the covariance period i and period j of time t and [image: image] is the covariance key parameter, which is used to control the correlation strength.
(2) The multivariate normal distribution [image: image] of the prediction error of full cycle scenery is constructed, and each random variable follows the standard normal distribution. Then, the [image: image] function is called in MATLAB to randomly generate [image: image] samples.
(3) According to the probability distribution function in Section 1.2.1, inverting the sample values of each period to obtain the full cycle wind power and photovoltaic forecast error, and the N wind and solar output scenarios are obtained from Eq. 2. Figure 2 is a schematic diagram of the inverse transform.
[image: Figure 2]FIGURE 2 | Diagram of inverse transform.
Then, in order to reduce the amount of computation, k-means clustering is used to reduce scenes [image: image] to typical scenes n. The specific steps are as follows:
(1) Initial cluster centers [image: image] are randomly generated within the value range of the n above N scenarios.
(2) Each scene and the nearest cluster center are divided into one category, and the center of each category is used as the new cluster center.
(3) If any i or both are satisfied [image: image] or satisfied [image: image], [image: image] will be used as the reduced scene. Otherwise, steps (1) and (2) are repeated until conditions are met.
(4) Repeating steps (1), (2), and (3) for 100 times, and selecting the best clustering result as the final [image: image] scenery typical output scene.
Finally, the typical output scenarios for wind and PV are combined to obtain the final typical output scenario [image: image] for wind and PV. The flow chart of [image: image] uncertainty scenario generation in this paper is shown in Figure 3.
[image: Figure 3]FIGURE 3 | Flow chart of uncertainty scenario generation.
3.2 Multi-objective dispatching optimization model
To improve the economy, promote the low-carbon development of VPP, and respond to the national call for “double carbon”, operating costs and carbon emissions are used as the optimization objectives of the VPP in this paper.
(1) Operating cost
The operation cost of the VPP includes the generation cost [image: image] of CHP units, the operation and maintenance cost [image: image] of various equipment, the cost [image: image] of controllable load, and the revenue [image: image] from the electricity trading on the public grid.
[image: image]
The generation cost of the CHP unit includes fuel cost and startup and shutdown cost, which are calculated as follows:
[image: image]
where [image: image] represents the price of natural gas and [image: image] represents the start-up/shut-down costs.
The operation and maintenance costs include operation costs of wind power, photovoltaic, GPPCC, P2G, electric boilers, and power storage devices, which are calculated as follows:
[image: image]
where [image: image]、 [image: image]、 [image: image]、 [image: image]、 [image: image] and [image: image] represent the operating cost coefficients of wind power, photovoltaic, GPPCC, P2G, electric boiler, and power storage device, respectively.
The controllable load cost includes the response output cost and the standby output cost. The specific calculation is as follows:
[image: image]
where [image: image] and [image: image] denote the cost coefficient of providing positive/negative response output for the user k, respectively; [image: image] and [image: image] are the positive/negative spare capacity that can be provided by the user k, respectively; and [image: image] and [image: image] denote the cost coefficient of providing positive/negative standby output for user k, respectively.
The revenue from electricity purchase and sale of public grid is calculated as follows:
[image: image]
where [image: image] denotes the electricity price of public power grid and [image: image] indicates electricity sold (purchased) to the public grid for VPP.
(2) Carbon emissions
Considering that China is still dominated by thermal power generation, the equivalent carbon emissions of purchased public grid electricity are also reckoned in the carbon emissions of CHP-VPP. The expression is written in the following form:
[image: image]
where [image: image] represents the carbon emission coefficient per unit of electricity.
The constraints of VPP conventional dispatching model mainly include electric/thermal power balance constraints, CHP unit output constraints, controllable load constraints, equipment operation constraints, and gas storage device constraints.
(1) Electric/thermal power balance constraints
The VPP proposed in this paper includes two kinds of energy flows, electric and thermal, and needs to meet both power/thermal balance constraints.
[image: image]
(2) CHP unit output constraints
The CHP unit output constraints primarily include the upper and lower limit constraints of the unit thermal output, electrical output, and total output:
[image: image]
where [image: image] represents the maximum value of thermal output; [image: image] and [image: image] are the max/min total output, respectively; [image: image] represents the elastic coefficient of electric power and thermal power and can be considered as a constant; and [image: image] represents a constant.
(3) Controllable load constraints
Controllable load constraints mainly include upper limit constraints
[image: image]
where [image: image] and [image: image] represent the maximum positive/negative response output that can be provided by user k, respectively.
(4) Equipment operation constraints
The equipment operating constraints consist primarily of upper and lower limit constraints and climb constraints for the GPPCC, P2G, and electric boilers.
[image: image]
where [image: image] and [image: image] are the min/max operating power of type equipment, respectively. [image: image] and [image: image] represent uphill/downhill climbing ability, respectively.
(5) Energy storage/gas device constraints
Constraints on energy or gas storage devices mainly include energy storage/gas capacity constraints, upper limit of charging and discharging rate constraints, charging and discharging state constraints, and equal energy storage/gas capacity limitations at the beginning and end of the cycle. Taking the gas storage devices as an example:
[image: image]
where [image: image] represents the maximum storage capacity of the gas storage unit; [image: image] and [image: image] represent the storage and venting states, respectively, and are 0–1 variables; and [image: image] and [image: image] represent the maximum rates of gas storage and venting, respectively.
(6) System backup constraints
Because of the uncertainty of variable renewable energy, the conventional dispatching model of the VPP also requires consideration of system reserve constraints. This paper emphasizes the effect of load loss on the system when the actual generation power of wind power and PV is lower than the predicted power. The upper rotation reserve constraint is considered.
[image: image]
where [image: image] and [image: image] represent upper rotational reserve coefficients of WPP and PV, respectively, and [image: image] is an upper rotation backup available for VPP. The reserve capacity [image: image] provided for the power storage device. The operation mode of controllable load and power storage device is flexible, which can provide a certain reserve capacity for the VPP. However, the CHP unit has poor flexibility, so this paper does not consider it as a standby power supply.
[image: image]
where [image: image] represents the maximum input or output power of the power storage device and [image: image] represents the operating power of the ESD, which is equal to [image: image] when it is positive and equal to [image: image] when it is negative.
3.3 Multi-objective stochastic dispatching optimization model
Based on value at risk (VaR), CVaR takes into account the distribution of risk outside the confidence level, and can reflect the maximum possible loss in the full probability interval of the portfolio under a given level of confidence. Therefore, in this paper, the CVaR theory is utilized to quantify the risk of load loss in real-time dispatching of VPPs and is used as an optimization objective reflecting the operational risk of VPPs to cope with the uncertainty of variable renewable energy. The approximate formula of CVaR is as follows:
[image: image]
where x and y represent portfolio vectors and random vectors, respectively; [image: image] represents the loss function; [image: image] represents the confidence; α represents the VaR value; [image: image] is the joint probability density function of the random vector [image: image]; and [image: image] represents [image: image].
When the analytic formula [image: image] is difficult to obtain, the integral term of Eq. 31 can be estimated by historical data or sample data obtained by Monte Carlo simulation. In this paper, the scenarios generated in Section 2.1 are used as samples, which are expressed as follows:
[image: image]
where [image: image] represent [image: image] samples of [image: image]. The loss function values [image: image] of each sample is arranged from large to small, and the [image: image] first is the value of [image: image].
Risk metrics are often related to the amount and duration of load loss, so by taking the penalty cost of VPP load loss as a loss function, and the specific calculation is as follows:
[image: image]
where [image: image] and [image: image] indicate deviations from actual wind and PV generation, respectively, and [image: image] represents the penalty cost coefficient of load loss.
A multi-objective random dispatching optimization model for the VPP is as follows:
[image: image]
4 MULTI-OBJECTIVE MODEL SOLVING
The VPP dispatching optimization model has three objectives: operation cost, carbon emissions, and operation risk. The multi-objective model needs to be transformed into the single-objective model, and then the CRITIC weighting method is used to solve the VPP multi-objective optimization model. It is also necessary to linearize the model and dimension the objective function before solving.
4.1 Model linearization
It can be seen from Eq. 9 that the calculation process of [image: image] needs to be linearized by multiplying [image: image] and [image: image]. First, [image: image] will be discretized into 100 linear combinations of 0–1 variables. Since the value of [image: image] is between 0 and 1, this operation is equivalent to limiting the precision of [image: image] to 0.01. The details are as follows:
[image: image]
where [image: image] represents the 0–1 variable. The results showed that
[image: image]
Then, by making [image: image], and adding the appropriate constraints, the goal of linearizing [image: image] calculation process is achieved. The details are as follows:
[image: image]
where M represents a large enough number. Similarly, the formula for multiplying other binary variable and continuous variable can be linearized.
4.2 Dimensioning of objective function
Since the three objective functions in this paper have different orders of magnitude, the method based on fuzzy satisfaction is used for dimensioning the objective function (Gong et al., 2011). The fuzzy satisfaction theory can reflect the satisfaction degree of the objective function compared with the single-objective optimization, and its principle is to use the membership function of the fuzzy theory to quantify the solution of the objective function. First, each objective function is taken as the optimization object, the single-objective model is solved, and the values of other objective functions are calculated. See Table 1 for details. * denotes that the objective function is used as the optimization object.
TABLE 1 | Input–output of objective function.
[image: Table 1]The optimal values of each objective function can be obtained from Table 1, namely, [image: image], [image: image] and [image: image]. Then, the maximum value [image: image], [image: image], and [image: image], is determined and can be scaled appropriately according to the preferences of the decision maker and the situation on the ground.
[image: image]
Finally, the objective functions are all optimized in the direction of minimization, and each objective function uses ascending semi-linear membership functions as membership functions. The details are as follows:
[image: image]
where [image: image] represents the membership function of objective function [image: image].
4.3 CRITIC weighting method
The entropy weight method is the most widely used method for solving VPP multi-objective problems. However, the entropy weight method mainly empowers through the degree of dispersion of each objective, ignoring the horizontal influence generated by the correlation between the objectives. CRITIC is an objective weighting method that considers the impact of index correlation. The principle is to determine the weight according to the contrast strength of the evaluation index and the correlation between the indexes, which can reduce the influence of the correlation between the indexes on the final weight and make the results more objective and reasonable. The general process of the CRITIC method is as follows:
(1) First, suppose there are m plans and n goals, respectively. Taking the solutions of [image: image], [image: image] and [image: image] as objectives are taken as three CRITIC weighted schemes, and the following evaluation matrix is obtained.
[image: image]
where [image: image] denotes the dimensioned value of the first [image: image] target of the first [image: image] scheme.
(2) Then, the standard deviation and correlation coefficient were calculated for each target, as follows:
[image: image]
where [image: image] is the standard deviation of the target [image: image]; [image: image] indicates the correlation coefficient between target i and target k; and [image: image] is the covariance of lines [image: image] and [image: image].
(3) Calculating the amount of information contained in each goal and acquiring the weight of each goal, as follows:
[image: image]
where [image: image] represents the information amount of the target and [image: image] represents the quantitative indicator of the conflict between the first goal [image: image] and other goals.
Finally, the combined objective function is as follows:
[image: image]
5 EXAMPLE ANALYSIS
For the sake of verifying the validity and applicability of the model designed in this study, a simulation is established on MATLAB R2020a and the model is solved using CPLEX solver.
5.1 Example data
For the purpose of this study, an industrial park in Lankao County, Henan Province is selected as the research object. The VPP of the park has two 0.8 MW CHP units, the total capacity of wind and PV is 1.2 MW and 0.4 MW, and the energy storage capacity is 0.1 MW. The maximum response outputs for the electric boiler capacity and controllable loads are 0.15 MW and 0.03 MW, respectively. The maximum operating power of carbon capture device is 0.1 MW, and the maximum operating power of electrolytic cell and methane reactor is 0.3 MW and 0.15 MW, respectively. In the conventional dispatching model, the spinning reserve coefficients of WPP, PV, and load are 0.25, 0.15, and 0.1, respectively. In the uncertain dispatching model, the penalty cost coefficient of load loss is 800 yuan/MW, and the confidence level of the CVaR value is 0.8. Figure 4 shows the wind power, photovoltaic output and electrothermal load predicted by the VPP dispatching center in day ahead. Figures 5, 6 show the actual output scenarios and the reduced typical scenarios of wind charge photovoltaic generated in this paper, respectively. In a typical output scenario for wind and photovoltaic power generation, there is a certain correlation between the output values, while the output values at each time also retain a certain degree of randomness, which is more in line with the actual output of wind power and photovoltaic.
[image: Figure 4]FIGURE 4 | WPP and PV output and electric heating load predicted by the VPP dispatching center in the day ahead.
[image: Figure 5]FIGURE 5 | Actual output scenarios of wind charge and typical scenarios after reduction.
[image: Figure 6]FIGURE 6 | Photovoltaic actual output scenarios and typical scenarios after reduction.
5.2 Scenario setting
This paper proposes a carbon recycling module considering the carbon capture device and power-to-gas device, and creatively decouples the generation and utilization process of CO2 through carbon storage and hydrogen storage devices, while realizing the time shift of surplus renewable energy power. In addition, a risk quantification method based on CVaR theory is proposed. For the sake of verifying, the conclusiveness of the method propounded in this study, the following four scenarios are set up for simulation and analysis.
Scenario 1: Basic scenario. This scenario does not include carbon recycling module and the risk quantification method, but the conventional system backup constraint is applied to deal with the uncertainty of new energy.
Scenario 2: Carbon recycling scenario. This scenario introduces the carbon recycling module and does not adopt the risk quantification method in this paper.
Scenario 3: Risk quantification scenario. This scenario adopts the risk quantification method in this paper, without introducing the carbon recycling module.
Scenario 4: Comprehensive scenario. This scenario introduces the carbon recycling module and adopts the risk quantification method.
5.3 Example results
According to the multi-objective weighting method in Section 3, the weights of the objective functions of minimum operation cost, minimum carbon emissions, and minimum operation risk in Scenario 3 and Scenario 4 are 0.26, 0.3, and 0.44, respectively. Since Scenario 1 and Scenario 2 do not use the risk quantification method, and only include the minimum operating cost and the minimum carbon emissions, using the entropy weight method to calculate the weight, which are 0.59 and 0.44, respectively. Table 2 shows the optimization results of each scenario.
TABLE 2 | Optimal results in different cases.
[image: Table 2]According to Table 2, the operation cost, carbon emissions, and operation risk of Scenario 1 are 10,606.46¥, 8,594.14 kg, and 7.6¥, respectively. Compared with Scenario 1, Scenario 2 utilize the surplus wind power generation to achieve the recycling of CO2 owing to the introduction of carbon recycling module, reduce the fuel cost of CHP units, and reduce the operating cost and carbon emissions by 23.95¥ and 280.6 kg, respectively. Scenario 3 measures the risk level in the real-time operation of the VPP by adopting the risk quantification method, and develops a dispatching scheme with risk and economy, which reduces the operation cost and carbon emissions by 456.38¥ and 153.75 kg, respectively, while the operation risk only increases by 81.02¥. Based on Scenario 2 and Scenario 3, the operating cost and carbon emissions of Scenario 4 are further reduced by 689.95¥, 257.52¥, 245.47 kg, and 372.32 kg. Figure 7 shows the operating power of each unit in the VPP under each scenario.
[image: Figure 7]FIGURE 7 | Operating power of different units in the four cases.
According to Figure 7, the CHP unit is limited by the thermoelectric ratio and the minimum output, and maintain high output level all the time. The electric boiler uses wind power to supply heat for the system in periods 1–8 and 22–24, and conducts thermoelectric decoupling. The controllable load and power storage device mainly maintain the power balance of the VPP, providing access space for wind power and photovoltaic, and reserve capacity for the VPP. During periods 1–8, 11–16, and 23–24, the output of WPP and PV is high, and VPP sells surplus renewable energy power on the main network. On this basis, this section will further analyze the carbon emission reduction capability of the proposed carbon recycling module and the uncertainty response capability of the risk quantification method. Compared with Scenario 1, the operating power of the CHP unit in Scenario 2 increases slightly, the operating power of electric boilers is higher, and more electric energy is sold in the electricity market. Scenario 2 introduces the carbon recycling module, which requires more power consumption. The consumption of wind power and photovoltaic is greatly increased, increasing of downlink calls of controllable load, to improve the uplink spare space.
Compared with Scenario 1, the operating power of the CHP unit in Scenario 3 is slightly lower, and more electric energy is sold in the power market because Scenario 3 adopts the risk quantification method, and chooses to absorb more scenic calls to improve the economy of VPP, while taking certain risks. Therefore, the number of calls of controllable loads in Scenario 3 is less, to save the backup cost of VPP.
5.3.1 Analysis of GPPCC and P2G carbon recycling capacity
Scenario 2 and Scenario 4 utilize the surplus wind power generation in the VPP through GPPCC and P2G to recycle some CO2 generated by CHP units, reducing the carbon emissions of VPP, and saving the fuel cost of CHP units. The example results show that 293.57 and 360.26 kg of CO2 are recycled in Scenario 2 and Scenario 4, respectively, which fully demonstrates the carbon recycling capacity of GPPCC and P2G. In addition, in order to improve the carbon recycling degree of the VPP, carbon storage and hydrogen storage devices are also considered in the process of carbon recycling to decouple the generation and utilization of H2 and CO2, realizing the time shift of renewable energy power. Figures 8, 9 show the storage of CO2 and H2 and the production of CH4 in Scenario 2 and Scenario 4, respectively.
[image: Figure 8]FIGURE 8 | Devices’ operating power and gas volume in case 2.
[image: Figure 9]FIGURE 9 | Devices’ operating power and gas volume in case 4.
On the basis of Figure 8, to achieve full utilization of renewable energy for power generation, electrolytic water, and methanation are mainly conducted in periods 1–7, 12–16, and 24–25. In addition, the operating power of the equipment in Scenario 4 is slightly higher than that in Scenario 2 due to the risk quantification method. For both scenarios, the operation of electrolytic water, methanation, and carbon capture is relatively independent, and the operation plan can be flexibly arranged according to the WPP output and CHP unit output information in the VPP, to effectively improve the operational efficiency of the carbon recovery module. To reduce the frequent use of carbon capture equipment, the VPP will choose to centrally capture a certain amount of CO2 in periods 1–4 according to the carbon recycling capacity of GPPCC and P2G. However, most of the H2 generated by electrolytic water is produced and used immediately. When there is more renewable energy surplus electricity, storing excess H2 in the hydrogen storage unit, hence the time shift of renewable energy power is achieved. In addition, the periods of CH4 generation and CO2 storage under the two scenarios are roughly the same. However, H2 is mainly stored before time 14 in Scenario 2 and after time 15 in Scenario 4. After fully measuring the risk of VPP real-time operation, so as to take advantage of the renewable energy power available in Scenario 4 for periods 15–16 and 23–24, it is decided to increase the power of electrolytic hydrogen production in periods 15–16, and store the surplus H2 in the hydrogen storage device, during the period 23–24, and H2 is intensively consumed at a high operating power for methanation to produce CH4. Table 3 shows the dispatch results before and after adding the gas storage device for Scenario 4. Figure 10 shows the operating power of each equipment in Scenario 4 without the carbon storage and hydrogen storage units.
TABLE 3 | Optimal results in different cases.
[image: Table 3][image: Figure 10]FIGURE 10 | Devices’ operating power without HS and CS in case 4.
According to Figure 10, the three processes of carbon capture, electrolytic hydrogen production and methanation are coupled, and the operation flexibility is poor. On the basis of Table 3, although the operation cost has only decreased by 8.59 after the addition of the carbon storage and hydrogen storage units, the amount of carbon recycling has increased by 33.48 kg, and the degree of carbon recycling has increased by 10.25%. Description of the above analysis shows that the carbon recycling method can realize the recycling of CO2, and the carbon storage and hydrogen storage devices can flexibly control the generation and consumption of CO2 and H2, so as to improving the degree of carbon recycling.
5.3.2 Effectiveness analysis of risk quantification methods
Scenario 3 and Scenario 4 use the risk quantification method to measure the risk of VPP operation, thus, the decision maker can formulate a dispatching scheme with both risk and economy. Figure 11 shows the wind power generation plan and upstream backup plan of the VPP under each scenario. It can be seen that Scenario 1 and Scenario 2 adopt the conventional system reserve constraint, and arrange the reserve capacity according to the fixed proportion of the wind power plan output, so that part of the wind power generation cannot be consumed, resulting in a large opportunity cost. Scenario 3 and Scenario 4 adopt the risk quantification method in this paper, which can fully consider the real-time risk situation. Compared with Scenario 1, Scenario 3 arranges more planned output for wind power at the time of 18 and 21, and takes certain risks to obtain greater benefits. Compared with Scenario 2, Scenario 4 arranges more planned output for wind power in time periods 2, 5–7, 18, and 24, and takes certain risks to obtain greater benefits. However, the planned output of wind power will be reduced in time periods 3–4, 8, and 20, and some potential benefits will be given up to avoid the risk of load loss. In addition, compared with Scenario 1–2, Scenario 3–4 can arrange the standby plan according to the risk situation, and the standby output of controllable load is generally low, saving the standby cost for the VPP. The above analysis shows that the risk quantification method in this paper can fully measure the risk situation in real-time dispatching, and more reasonably arrange the wind and solar power generation plan and backup plan, so that the VPP can avoid the risk in real-time dispatching while obtaining more benefits. Figure 12 shows the target values under different confidence levels [image: image] in Scenario 4.
[image: Figure 11]FIGURE 11 | Up reserve plan and the plan of wind and photovoltaic power generation in different cases.
[image: Figure 12]FIGURE 12 | Objective values with different in case 4.
According to Figure 12, with the increase of confidence, the attitude of decision makers becomes conservative, which makes the operation cost and carbon emissions gradually increase, and the operation risk gradually decreases. While [image: image], the operation cost and operation risk changed rapidly, and the model was highly sensitive to risks. When [image: image] or [image: image], the change of operation cost and operation risk is relatively gentle, and the model is less sensitive to risk. While [image: image], the operation risk quickly converged to zero, which may be because the risk attitude was very conservative, resulting in the over matching of the dispatching plan and wind power output scenario.
6 CONCLUSION
In this paper, GPPCC and P2G are introduced into CHP-VPP, and also the carbon storage and hydrogen storage units are added. Then, based on the uncertainty scenario generation and CVaR theory, the load loss risk of VPP is quantified in real time, and the VPP multi-objective stochastic scheduling optimization model is constructed with the objectives of min operating cost, min carbon emission, and min operating risk. Finally, the credibility and relevance of the model are verified by designing an example, and the conclusions are as follows.
(1) The electric boiler can use wind power generation to supply heat for the system, reduce the dependence of VPP on the heat output of CHP, which makes the power output more flexible, and effectively realize “thermoelectric decoupling”.
(2) The risk quantification method in this paper can fully measure the risk status in real-time dispatching, and more reasonably arrange the wind and solar power generation plan and backup plan, so that the VPP can get more benefits while avoiding the risk in real-time dispatching. The example analysis shows that when the confidence level is (0.6, 0.8), the operating cost and operating risk of the system are in a more appropriate range.
(3) GPPCC and P2G can effectively realize the recycling of CO2, and carbon storage devices and hydrogen storage devices can flexibly control the generation and consumption of CO2 and H2, which can effectively separate carbon capture, electrolytic hydrogen production, and methanation processes to enhance carbon recycling.
(4) The carbon storage and hydrogen storage devices can flexibly control the generation and consumption of CO2 and H2, and their combined use can effectively decouple the carbon capture and electricity to gas processes, while achieving the time shift of renewable energy power, so as to improve the degree of carbon recycling. The example analysis shows that the degree of carbon recycling increased by 10.25% by adding two devices at the same time.
(5) In the future, the influence of new power sources such as concentrating solar power plants on CHP-VPP will be considered.
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With the continuous promotion of the unified electricity spot market in the southern region, the formation mechanism of spot market price and its forecast will become one of the core elements for the healthy development of the market. Effective spot market price prediction, on one hand, can respond to the spot power market supply and demand relationship; on the other hand, market players can develop reasonable trading strategies based on the results of the power market price prediction. The methods adopted in this paper include: Analyzing the principle and mechanism of spot market price formation. Identifying relevant factors for electricity price prediction in the spot market. Utilizing a clustering model and Spearman’s correlation to classify diverse information on electricity prices and extracting data that aligns with the demand for electricity price prediction. Leveraging complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to disassemble the electricity price curve, forming a multilevel electricity price sequence. Using an XGT model to match information across different levels of the electricity price sequence. Employing the ocean trapping algorithm-optimized Bidirectional Long Short-Term Memory (MPA-CNN-BiLSTM) to forecast spot market electricity prices. Through a comparative analysis of different models, this study validates the effectiveness of the proposed MPA-CNN-BiLSTM model. The model provides valuable insights for market players, aiding in the formulation of reasonable strategies based on the market's supply and demand dynamics. The findings underscore the importance of accurate spot market price prediction in navigating the complexities of the electricity market. This research contributes to the discourse on intelligent forecasting models in electricity markets, supporting the sustainable development of the unified spot market in the southern region.
Keywords: similar-day filtering, deep learning algorithms, electricity price decomposition, electricity markets, electricity price forecasting
1 INTRODUCTION
China’s electricity market is growing and maturing. In recent years, the Chinese government has deepened the reform of the power industry and gradually realized the opening and diversification of the power market. In the development of China’s power market, the southern regional power market has shown great vitality. China’s power market is developing rapidly, and the southern regional power market has become a signaling source, leading the industry’s development. By the end of 2022, more than 130,000 market players were registered in the southern region, a 48% year-on-year increase. A total of 738.9 billion kWh of electricity was traded in the five southern provinces in the medium- and long-term in 2022, a year-on-year increase of 27%, accounting for more than 50% of the total.
In terms of the electricity spot market, the southern regional electricity spot market was the first spot market in the country to launch a simulated trial run and a settlement trial run. Since 2021, the market has gone through multiple tests and has gradually become a benchmark model for the industry. The southern region’s electricity spot market is characterized by openness and transparency, fewer operational constraints, and a higher freedom of optimization. Overall, the development of China’s power market is entering a brand new stage, and the southern regional power market has shown strong development momentum and good operation in this stage.
The development of the power market, on one hand, helps improve the freedom and diversification of the market, but on the other hand, for the market players in the transaction, the risk is further increased, so in order to cope with the risks of the market, power market players need to effectively predict the market risk, in which the tariff prediction is an effective response to the risks of the power market, to improve the transaction of the decision-making program of favorable measures (Beltrán et al., 2022).
Electricity price forecasting refers to the estimation of the price of electricity in a certain period of time in the future. It is an important research direction in the field of energy economics, which mainly involves the price formation of the electricity market, the forecast of electricity demand and supply, and policy analysis (Boubaker, 2021). The research significance of electricity price forecasting is to help power market participants develop more reasonable power purchase and sales strategies and improve the transparency and stability of the power market.
At present, domestic and foreign researchers have proposed a series of electricity price prediction methods, including statistical learning, machine learning, and deep learning. Among them, statistical learning mainly includes linear regression, support vector regression, and plain Bayesian classifier, which can effectively deal with time series data and analyze the influencing factors of electricity price (Dong et al., 2022). Machine learning methods include decision trees, random forests, and neural networks, which can automatically extract features from data and show better generalization performance. Deep learning, as an emerging machine learning method, has a strong adaptive ability and robustness and can handle high-dimensional data (Yang and Schell, 2021). There are several current methods and techniques for electricity price forecasting:
1) Forecasting method based on time series
Time series forecasting is a method of forecasting electricity prices based on historical data. It focuses on forecasting future prices by analyzing historical price data and discovering trends and patterns in them. Commonly used time series forecasting methods include ARIMA, SARIMA, VAR, and VECM. The advantage of this method is that it can handle high-noise data and is highly adaptable to changes in the data (Yang et al., 2022). However, it ignores the influence of other factors, such as policy adjustments and weather changes, and therefore has limited forecasting accuracy (Mohammadzadeh et al., 2022).
2) Machine learning-based forecasting method
The machine learning-based forecasting method is a data-driven electricity price prediction method based on data (Dong et al., 2023). It predicts future prices by automatically extracting features from data and learning patterns from historical data. Commonly used machine learning-based forecasting methods include decision trees, random forests, neural networks, and support vector machines (Zhao et al., 2020). The advantages of this method are that it can automatically extract features, shows strong generalization performance, and is better at handling nonlinear data. However, it requires a large amount of labeled data and has higher requirements for data preprocessing and greater computational complexity (Wang et al., 2022).
3) Deep learning-based forecasting method
The deep learning prediction method is an artificial neural network-based electricity price prediction method (Elmore and Dowling, 2021). It abstracts the data layer by layer by constructing a multilevel neural network structure to predict the future price. Future research can explore these problems in depth and propose more effective solutions to provide more power for the development of electricity price prediction (Jdrzejewski et al., 2021; Yakoub et al., 2023). With the continuous development of the energy market and the continuous innovation of data technology, we believe that future research on electricity price prediction will achieve more significant results.
4) Hybrid method
Hybrid methods are a hot direction in the research of electricity price prediction in the spot market of electricity in recent years (Lago et al., 2021). This type of method mainly improves the prediction accuracy by fusing the advantages of different algorithms to overcome the shortcomings of a single method. For example, Zhao et al. (2023) proposed a hybrid prediction method by fusing a statistical learning-based linear regression model and a neural network-based deep learning model. Experiments show that the method has high accuracy and robustness in electricity price prediction in the electricity spot market. In addition (Lin et al., 2022), Shi et al. (2021) integrated support vector regression based on time series analysis with a neural network model and applied it to electricity price forecasting in the UK electricity market.
From the research situation at home and abroad, we can see that the technology of the electricity price prediction is relatively rich and the applied technology is relatively mature, but we also see that different technologies still have shortcomings. For example, the time series cannot respond to the impact of factor changes on the price of electricity; although machine learning can reflect the characteristics of the data very well, it has high demand for data processing, and deep learning algorithms require a large amount of data. So, this paper, in order to circumvent these shortcomings, uses hybrid models. The advantages and disadvantages of these three methods refer to the time series model, machine learning algorithm and deep learning algorithm. The specific modifications are as follows :Based on the advantages and disadvantages of time series, machine learning algorithm and deep learning algorithm, the concept of hybrid model is adopted.first of all, the use of similar-day screening and data preprocessing improve the effectiveness of the original data to ensure that the information with the forecast date is more consistent, to eliminate some of the ineffective information on the impact of the electricity price prediction, and second, the use of decomposition models to decompose the historical price of electricity to reduce the volatility of the original curve, but in order to relevant factors in the role of electricity price prediction, the classification tree is used to match the decomposition curve with the factors to maximize the display of the role of factors, and finally, a combination of machine learning and deep learning is used to provide the computational ability of the prediction model to achieve the scientific nature of electricity price prediction.
2 BASED ON FUZZY CLUSTER ANALYSIS–SPEARMAN CORRELATION-BASED SIMILAR-DAY SCREENING FOR THE ELECTRICITY SPOT MARKET
2.1 Analysis of the principles of electricity price formation in the spot market
In the day-ahead market, market participants are required to formulate the next day’s trading strategy on the platform of the trading center based on the released information on the power system, which generally includes the strategy of quoting quantity and price (Zhao et al., 2021). The trading center will summarize the transactions of market participants to achieve the pre-clearing price, and the results of the current stage of the summarized transactions will be sent to the dispatch center to do security checks if the results of such summaries to meet the security of the power system are passed, and sent to the trading center to form the final clearing price; otherwise, it will be further aggregated to circulate this step until it can be bathed in the balance of the power system (David et al., 2021). Therefore, in the electricity price forecast modeling and forecasting, to fully consider the supply and demand situation of the power system, in the multi-big data market, such data will be made public to the market player (Tschora et al., 2022).
Figure 1 shows that the spot electricity market is the result of the joint action of various market players and trading institutions, which is influenced by the balance of supply and demand in the power system, the behavioral decisions of market players, and the output characteristics of different market players (Trull et al., 2021). In the medium- and long-term market, due to the long cycle, the supply and demand is relatively stable and market players tend to develop trading strategies based on past market conditions, but the spot market has a short information effectiveness and high volatility, so there is a need to make the most accurate judgment with limited information. Therefore, there is a need to have new technology to support the development of trading strategies. The tariff prediction is a preview of the trend of the electricity price in the spot market, and it can provide the market players with price. The tariff forecast is a prediction of the trend of electricity price in the spot market, which can provide the price for market players.
[image: Figure 1]FIGURE 1 | Spot market electricity price formation process.
2.2 Spearman correlation-based integrated similarity ranking of historical information
The previous section explains the formation of spot market electricity price, which is formed by the joint action of a variety of factors. This paper summarizes the research on the following existing electricity price forecasting factors: historical electricity price, market demand, thermal power output, new energy output, provincial load adjustment, and market player strategy (JI et al., 2022).
The history of electricity price, according to the electricity market before the result, is divided into the day-ahead spot price and real-time spot prices. The market demand includes the market main body, the different time scales of market demand, market demand prediction deviation, intra-provincial transactions and inter-provincial transactions, etc., between thermal power output including history and actual output of thermal power, scheduling, and modulate and participate in peak shaving, and modulate the and so on (HAN et al., 2023).
New energy output includes the historical output of new energy, forecast deviation of new energy output, and proportion of new energy output in market demand. Provincial load adjustment mainly includes medium- and long-term transaction power and inter-provincial spot transaction power (Zhang et al., 2022).
Combined with the current status of domestic and foreign electricity price forecasting research and the actual operation of China’s spot pilot, this paper selects the provincial load, thermal power output, new energy output, non-market power, and outgoing power as the correlation factors of electricity price forecasting. These correlation factors are the inputs of the electricity price forecasting model and the basis of the screening of the similarity day. In order to verify the validity of these factors selected in this paper, a province of the spot pilot was selected to run the actual operation of the electricity price forecasting model. The correlation coefficient is calculated herein. In order to verify the validity of the factors selected in this paper, the actual operating data on a province in the spot pilot are chosen as the data for factor correlation analysis, and Spearman’s correlation is used for correlation analysis. Spearman’s correlation coefficient can also be expressed in terms of rank value. Spearman’s correlation between two variables can be expressed as the Pearson correlation between the rank values of two variables. Its main formula is expressed as follows (Wu et al., 2021):
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In the equation, [image: image] represents the rank difference between subjects, n represents the number of observations, and [image: image] represents the correlation between two subjects.
Through the above equation, the correlations of unified scheduling load, inter-provincial demand load, new energy output, non-market output, and thermal power output are obtained: 0.8214, 0.5790, −0.7954, 0.6254, and 0.9655, respectively. It can be seen that thermal power space has the strongest correlation with the spot price, followed by the unified scheduling load, and finally, the inter-provincial demand load. In the selection of similar days, the correlation coefficient is taken as the relevant factor of weight.
2.3 FCM-based similar-day screening
The Fuzzy C-means (FCM) model is a multivariate analysis method based on partitioning. FCM is a multivariate analysis method based on division. The general steps of the algorithm can be divided into data standardization, calibration (establishing a fuzzy similarity matrix), and clustering (solving a dynamic cluster diagram matrix) and clustering (dynamic clustering map) (Cheng et al., 2022).
Data standardization: First, the dataset of correlation factors of different factors with multiple days is [image: image] through Spearman’s filtering, and each key correlation factor has m values constituting. Then, the original data matrix [image: image] is represented as
[image: image]
In order to unify the magnitude of the data on different correlation factors, it is necessary to standardize the original data parameters, and the original factor data matrix is compressed to the interval [0,1] by using polar transform pairs.
[image: image]
Calibration (establishment of the fuzzy similarity matrix): According to the theory of the fuzzy clustering algorithm, in order to facilitate the analysis and comparison between statistical indicators, the similarity degree of two elements in the domain U is calculated as [image: image]. The traditional cluster analysis method of the angle cosine method of the data matrix for fuzzy processing is used to obtain the fuzzy similarity matrix R of the relevant factors. Then, the calibration model of the angle cosine method represented is as follows:
[image: image]
Clustering (seeking the dynamic clustering diagram): The fuzzy similarity matrix has self-inversion and symmetry but not necessarily transferability. In order to realize the classification of different relevant factors, it is necessary to convert the fuzzy similarity matrix R into the fuzzy equivalence matrix R*. The quadratic method is used to obtain the transfer closure t(R) of the fuzzy similarity matrix, and the transfer closure t(R) is the required fuzzy similarity matrix R*, which is t(R) = R*. For different confidence levels, λ is divided into large and small to obtain the dynamic clustering diagram of different electricity price-related factors.
In order to ensure the accuracy of similar-day screening, this paper adopts the Spearman–FCM model to screen the historical data and select the historical data that best meet the prediction demand as the base data for electricity price prediction. The specific steps are shown below:
1) A collection of factors related to electricity price factors is constructed. Then, according to the degree of influence of different factors on the electricity price, the key factors that best meet the demand for electricity price prediction are screened. This paper mainly chooses Spearman's correlation as the factor screening model.
2) According to the first step to obtain the core key factors of electricity price forecasting, further screening out the historical day and forecast day market-related factors most closely match the data. First, the different key factors are constructed to form a multi-day factor matrix, and second, the FCM model is used to cluster the different relevant factors on the forecast day and the historical day, and the clustering intervals where the different factors are located are selected.
3) According to the clustering intervals of different factors obtained in the third step, the aggregated clustered data on different factors are integrated, and the data with the highest degree of similarity obtained by clustering are sorted. Then, the data on the first 50 days are screened out as the basic data for tariff prediction.
The similar-day screening process is shown in Figure 2.
[image: Figure 2]FIGURE 2 | Similar day screening process.
3 RESEARCH ON THE MULTI-LAYER DECOMPOSITION MODEL OF THE ELECTRICITY PRICE SEQUENCE BASED ON CEEMDAN-XGT
3.1 CEEMDAN model analysis
Complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is a signal decomposition method based on adaptive noise control further developed on the basis of CEEMD. Different from CEEMD, CEEMDAN employs an adaptive control strategy in the construction and addition of random noise in order to better control the size and distribution of the noise, thus improving the accuracy and stability of the signal decomposition (Iruela et al., 2021).
The basic process of CEEMDAN is as follows:
1) Let the original signal be [image: image]. A normally distributed Gaussian white noise is added to obtain k times the preprocessing sequence [image: image] as in Formula (4):
[image: image]
In the formula, [image: image] is the noise factor and [image: image] is the noise of the ith residual component.
2) The input sequence is decomposed using EMD to obtain the first EMD decomposed component, the mean value is taken as the decomposed signal component, and the residual component is calculated, as in Formula (5)–Formula (7):
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In the formula, [image: image] is the first signal component (IMF) after CEEMDAN decomposition; [image: image](t) is the EMD decomposed signal component; and [image: image] is the residual fraction.
Similar to step 2, the jth residual component is added to the corresponding Gaussian white noise. After adding the corresponding Gaussian white noise to the jth residual component, we continue to decompose the residual signal using EMD. The decomposed signal components and residual components are shown in Formula (8) and Formula (9), respectively:
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In the formula, [image: image] is the jth component of the CEEMDAN decomposition; [image: image] is the EMD decomposed components; [image: image] is the coefficient of noise; and [image: image] is the residual fraction.
The above steps are repeated until the extreme point is less than 2 or the artificially set number of components, and then, the decomposition is finished. At this point, the original signal is decomposed into K signal components and a residual component r(t), as in Formula (10):
[image: image]
In the formula, [image: image] is the margin signal and [image: image] is the ith signal component.
After CEEMDAN decomposition, a set of IMF functions with different scales can be obtained, which have good adaptive properties and can reflect the essential characteristics of the signal at different time scales and frequencies. Compared with traditional methods such as wavelet decomposition and spectral decomposition, CEEMDAN can handle nonlinear and nonsmooth signals with better adaptability and accuracy.
3.2 XGBoost model analysis
eXtreme Gradient Boosting (XGBoost) is a machine learning library focusing on gradient boosting algorithms, developed by Tianqi Chen in February 2014 at the University of Washington. In his research, he deeply appreciated the computational speed and accuracy problems of existing libraries and built the XGBoost project for this reason (Yin et al., 2022).
Suppose we have the following objective function:
[image: image]
At each step, we add a tree to the previous step, and this new tree is added to fix the deficiencies of the previous tree. We denote the prediction at step t by y to denote
[image: image]
For the set [image: image] of electricity price correlation factors after data preprocessing, where X [image: image] denotes the nth dimensional feature vector of the ith sample, i.e., the n eigenvalues of the input electricity price decomposition curve, and y denotes the labeled value of the ith sample; the correlation factor M is inputted into XGBoost for training to obtain a K-tree, which can be represented as
[image: image]
where [image: image] denotes the prediction result of the ith sample; F is the base learner, i.e., the set of K-trees; [image: image] denotes the kth regression tree; and [image: image] denotes the fraction of the leaf node q. The objective function during the training process is as follows:
[image: image]
where l is the loss function used to calculate the error between the predicted value and the true value,φ is a function that represents the complexity of the tree. The smaller the value, the lower the complexity and the stronger the generalization ability. Its expression is represented as follows:
[image: image]
where N denotes the number of leaf nodes and w denotes the value of the node. Intuitively, the goal is to keep the prediction error as small as possible, the number of leaf nodes N as small as possible, and the value of nodes w as less extreme as possible.
By continuously optimizing in the gradient direction, the objective function becomes lower and lower because the predicted value [image: image] can be obtained after the Tth iteration by adding the sum of the output values of the previous T-1 iterations and the value [image: image] of the tree structure computed in the Tth iteration so that the objective function O is converted into
[image: image]
where C is a constant and the above equation can be optimized by a second-order Taylor expansion:
[image: image]
where [image: image] is the first-order derivative of the prediction error with respect to the current model and [image: image] is the second-order derivative of many prediction errors with respect to the current model.
Since the residuals of the model at T-1 are known at the Tth iteration, the objective function is converted into the form of leaf-node accumulation by removing the constant term [image: image] and expanding the above equation as follows:
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where I denotes the set of samples on each leaf node, [image: image], [image: image] is the tree structure function, [image: image] denotes the output of each leaf node of the tree fraction, N denotes the number of leaf nodes in the split tree, and γ is the weight factor, which are used to control the weights of the corresponding parts.
After creating the boosted decision tree, the feature importance of each feature is obtained by calculating the gain. Similar to the information gain and Gini index in decision trees, the XGBoost algorithm adds a gain to the existing leaves at each attempt. The XGBoost algorithm calculates the gain of selected features every time it tries to add a partition to an existing leaf. The XGBoost algorithm calculates the gain of the selected feature every time it tries to add segmentation to an existing leaf.
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where the subscripts L and R denote the left and right subtrees, respectively; [image: image] denotes the left subtree score; [image: image] denotes the right subtree score; and [image: image] denotes the score of the current node that is not split.
The importance of a feature is calculated in a single boosted tree by the gain of each feature split point; the larger the gain, the larger the weight. The more lifting trees a feature is selected from, the more important the feature is. Finally, the results of a feature in all the boost trees are weighted and averaged to obtain the importance score. After sorting the features in the descending order of importance score, m (m < n) important features affecting electricity price are filtered out by setting different thresholds.
3.3 Construction of the CEEMDAN-XGT tariff decomposition model
Since the spot market is a short-term market, the spot market price shows strong volatility, and this volatility is mainly due to the rapid change in market information. At the same time, this large volatility will affect the accuracy of the electricity price prediction, so this paper adopts the CEEMDAN-XGT model to decompose the similar-day dataset to obtain the historical data that can reflect the characteristics of the electricity price so as to provide the accuracy of the prediction model, and the specific steps are as follows:
1) The historical electricity prices in the similar-day data are decomposed using CEEMDAN to form multiple decomposition curves, which represent the trend of electricity prices;
2) The different decomposition curves obtained through step 1 can reduce the error of electricity price prediction to a certain extent, but different decomposition curves have different structures of influencing factor composition. So, for different decomposition sequences, the XGT model is used to screen to obtain the most consistent with the requirements of each decomposition curve factor ranking as the input for the next step of prediction.
3) Different decomposition curves of electricity price and the corresponding factor relationships are brought into the prediction model, which can reduce the influence of electricity price volatility on the prediction model error and also find the degree of influence of different factors on different days.
The electricity price curve decomposition process is shown in Figure 3.
[image: Figure 3]FIGURE 3 | Electricity price curve decomposition process.
4 CONSTRUCTION OF THE MPA-CNN-BILSTM ELECTRICITY PRICE PREDICTION MODEL CONSIDERING MARKET INFORMATION VOLATILITY
4.1 Marine predators optimization algorithm
The marine predators algorithm (MPA) is a new meta-heuristic optimization algorithm proposed by Afshin Faramarzi et al. in 2020. MPA optimization is divided into three stages: the initialization stage, optimization stage, and fish aggregation device (FAD) effect or eddy current stage [28]. The specific MPA optimization process can be described as follows:
1) Initialization phase: The algorithm parameters are set to initialize the location of the prey within the search scope. It can be described as
[image: image]
In Formula (22), [image: image] and [image: image] denote the search space of the prey and rand() is a random number within [0,1].
2) Optimization stage: The optimization phase is divided into early iteration, middle iteration, and late iteration. At the beginning of the iteration, the current iterations are less than 1/3 of the maximum iterations. Predators are faster than their prey and updating prey through Brownian random movement.
[image: image]
In Formula (23), [image: image] is the step size, [image: image] is the Brownian random walk vector with normal distribution, [image: image] is the prey matrix with the same dimension as the static matrix, [image: image] is the elitist matrix constructed by the top predator, [image: image] is a multiplicative operation item by item, P equals 0.5, and R is a [0,1] uniform random vector. N is the population size, and [image: image] and [image: image] represent the current and maximum iterations, respectively.
In the middle of an iteration, the current iteration is less than 2/3 of the maximum. The population is divided into two parts, in which the prey does the levy movement and is responsible for the algorithm development in the search space. Predators perform Brownian motion, responsible for the algorithm to explore in the search space, and gradually develop from exploration to a development strategy.
At the end of the iteration, the current iteration number is more than 2/3 of the maximum iteration number. In particular, to improve the local development, the predator is slower than the prey, and predator roaming is based on the Levy distributed random vector.
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In the above equation, [image: image] is the Levy distributed random vector and [image: image] is the adaptive parameter controlling predator movement compensation.
3) FAD effect or eddy current: Fish aggregation devices (FADs) or vortex effects often change the behavior of marine predators, which enables the MPA to overcome the premature convergence problem and adjust the local extremum.
[image: image]
In Formula (25), [image: image] is the influence probability, which is 0.2; [image: image] is the binary vector; [image: image] is the random number in [0,1]; and [image: image] and [image: image] are the random indexes of the prey matrix.
4.2 Principles of convolutional neural network modeling
A convolutional neural network (CNN) consists of five parts, namely, the input layer, convolutional layer, pooling layer, fully connected layer, and output layer, in which the alternation of the convolutional layer and pooling layer can better extract the local characteristics of the data and reduce the feature dimensions; the sharing of weights not only reduces the number of weights but also the complexity of the model [29]. The formula of convolution is
[image: image]
where the prescribed input layer is layer [image: image], [image: image] denotes the sth feature of the input layer, the output layer is layer l, [image: image] denotes the jth feature of the output layer, [image: image] denotes the elements of the convolution kernel, [image: image] is the bias term, and σ is the activation function.
4.3 Principles of BiLSTM modeling
LSTM has special memory and forgetting patterns; thus, flexibly adapting to the basic cell structure of the LSTM network includes input gates, output gates, and forgetting gates.
The specific formula is as follows:
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where [image: image], [image: image], and [image: image] are states of input gates, oblivion gates, and output gates, respectively; [image: image], [image: image], and [image: image] are states of input nodes, state units, and intermediate outputs, respectively; [image: image] is the sigmoid function; [image: image] is the tanh function; [image: image] is the corresponding gate weights; [image: image], [image: image], [image: image], and [image: image] are the corresponding biases of the corresponding gates; and [image: image] is the element-by-element multiplication.
The structure of BiLSTM is shown in Figure 4, which consists of two LSTM networks in the forward and reverse directions, and can utilize the before-and-after change rule of the data to make a bi-directional prediction. BiLSTM has more advantages than LSTM for the information feature extraction of the complex power data in the spot tariff prediction, and it has not increased the requirements for the amount of data. Therefore, using BiLSTM for electricity price prediction can improve the model prediction accuracy.
[image: Figure 4]FIGURE 4 | Structure of BiLSTM algorithm.
4.4 Constructing an MPA–CNN–BiLSTM electricity price prediction model for market information volatility
The generation of electricity price in the spot electricity market has a large uncertainty and contains a large amount of uncertainty information, which leads to a lot of parameters affecting the prediction accuracy of the prediction model. Therefore, the prediction of electricity price for the spot electricity market cannot rely on a single model and requires an effective data processing method and a scientific combination of the model, which identifies the interplay of factors, reduces the error, and improves the prediction accuracy.
Therefore, this paper adopts a three-stage structure to construct the electricity price prediction model for the spot electricity market based on the consideration of the volatility of market information. The first stage is optimizing the original data and extracting similar-day information. The FCM–Spearman method is mainly used to classify and evaluate the original dataset and the relevant factor information on the forecast day, and select the days with the highest trend of change in the relevant information on the forecast day as the training set of the forecast day; the second section improves the interaction characteristics between the relevant factors and the electricity price, and reduces the impact of the stronger volatility of the electricity price on the prediction of the electricity price. In this part, CEEMDAD is mainly used to decompose the original electricity price data, and the volatility of the original electricity price data is hierarchically divided into sequences. Then, the XGT model is used to match the different decomposition sequences with the relevant factors, and the factor with the closest influence of each relevant factor is selected as the data input for the next segment. In the third segment, the data on different segments in the second segment are inputted into the MPA–CNN–BiLSTM model, which can realize the complementary characteristics of the model and achieve the effect of error reduction compared with the traditional single model, and at the same time, optimization using the MPA algorithm can realize the rationalized configuration of the model parameters.
The first two breaks of this paper were elaborated in the previous sections, and this section further analyzes the process of MPA–CNN–BiLSTM. When the electricity price prediction is carried out, the BiLSTM model will be trained by extracting the local features from the CNN, which can make the two models complement each other and obtain better prediction results. The CNN–BiLSTM model is optimized by the MPA algorithm, and then, the CNN–BiLSTM model is constructed for electricity price prediction. The CNN model consists of two convolutional layers and two maximum pooling layers, and the ReLU function is used as the activation function.
The MPA–CNN–BiLSTM algorithm flow is shown below:
Step 1. The decomposition data on similar days are divided into a training set and test set and performed dimensionless.
Step 2. The model with the number of hidden layer units, the learning rate, and the convolution kernel in the model is initialized as the optimization object, and the MPA is initialized.
Step 3. The fitness of the model is calculated based on the local optimum and the dissuasion optimum of the MPA algorithm, and the mean square error (MSE) is selected as the evaluation criterion.
Step 4. The MPA is iteratively updated using formula (23) to calculate the latest optimized position.
Step 5. When the iteration is completed or the optimal position is searched, then the termination condition is satisfied, and the optimal hyperparameters are obtained. If it is not satisfied, step 3 is repeated to iterate again.
Step 6. A CNN–BiLSTM model is constructed using the optimal hyperparameters.
Step 7. The CNN performed feature extraction of the electricity price.
Step 8. The processed data are input into the BiLSTM model, and model training is performed to output the final prediction results.
In this paper, in order to verify the effectiveness of the model, the performance of the electricity price prediction model using the root mean-square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), and [image: image]. The formula for the specific effectiveness evaluation index is shown below:
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The specific flow of the electricity price prediction model proposed in this paper considering market information is shown in Figure 5.
[image: Figure 5]FIGURE 5 | Spot market electricity price forecasting modelling process.
5 SIMULATION ANALYSIS
5.1 Scenario description
According to the characteristics of electricity price formation in the spot electricity market, this paper proposes an electricity price forecasting model considering market volatility. In order to verify the validity of the model proposed in this paper, the operation data on a provincial spot pilot in China are used. Compared with the construction of a foreign electricity market, the diversity of China’s electricity market is more representative. Therefore, the data on China’s spot pilot can not only reflect the operation characteristics of China’s electricity market but also meet the business needs of different electricity market players in our country, which is of practical significance. Some of the data are shown in Figure 6.
[image: Figure 6]FIGURE 6 | Basic scenarios.
The above is part of the original dataset selected for this paper, mainly the selected thermal power output, new energy output, non-market output, outgoing power, and provincial load data. In order to further show the relevance of these data and the market price trend, this paper intercepts the simultaneous electricity price trend data, as shown in Figure 6F.
In order to implement the model proposed in this paper, MATLAB 2020B is used as the implementation tool, and the computer uses Windows 10, running memory 16 GB, and a hard disk capacity of 2 TB.
5.2 Electricity price prediction model implementation
The dataset selected in this paper is the day-ahead electricity price data on a provincial spot pilot from 1 January 2022 to 31 May 2023. The time granularity of the electricity price is 15-min nodes, i.e., 96 points per day. At the same time, in order to show that the model proposed in this paper can achieve effective electricity price forecasting and apply it to practical work, 31 May 2023 is selected as the forecasting day for comparative analysis. According to the model process mentioned above, the steps of similar-day screening, electricity price sequence decomposition, and electricity price forecasting are carried out to form a complete electricity price forecasting validity verification. The forecast day market information is shown in Figure 7.
[image: Figure 7]FIGURE 7 | Forecast day market information.
Electricity price forecasting is a comprehensive technology, which includes computer information processing technology, and information technology emphasizes that correct input can produce correct output. Therefore, electricity price forecasting needs to ensure the accuracy of the data. In order to achieve this goal, it is necessary to screen out the historical days with similar market conditions as the basic data. This is the role of similar-day screening. This paper chooses Spearman–FCM as the similar-day screening model.
In the previous section, the Spearman model was used to screen out the relevant factors, which will not be repeated here. The focus is to use the FCM model to find the most similar dates of different related factors for the selected related factors. The specific screening diagram is shown in Figure 8.
[image: Figure 8]FIGURE 8 | The specific screening diagram.
Figure 8A shows that the running FCM model divides the forecast day into historical similar day scenario 1. The thermal power output in the historical similar day scenario presents two peaks compared with other scenarios, but compared with the sixth scenario, the trough runs higher, indicating that the day’s new energy is still unable to meet the needs of the market during the period of large-scale development, and thermal power is needed to ensure the operation of the market. At the same time, according to the scene classification of historical similar days, there are 186 days of data that can meet the similar scenes of the forecast day. These data will be used as the basic data source for comprehensive discrimination.
According to Figure 8B, the new energy output of the forecast day is divided into historical similar scene 1. The new energy output of the historical similar scene conforms to the general characteristics of the new energy output. Historical similar scene 1 and historical similar scene 5 have the opposite operation trend. Scene 1 is less in the early morning and more in the evening. Scene 5 is the opposite. This is mainly due to seasonal differences. Historically similar scenario 3 combines the changing trends of scenarios 1 and 5. In a historically similar scenario 1, there are 157 historically similar days as alternatives.
According to the above Figure 8C, the non-market output shows a lot of uncertainty. This part of the electricity is mainly caused by the instability of the system. The division of the forecast day is mainly concentrated in the similar day scenario 1, with a total of 213 days of similar output.
Figure 9A shows that there is some similarity in the historical similarity scenarios 1, 2, and 3, with lower demand during the early morning hours and higher during the midday hours. However, there are many differences in the trends of the three scenarios in the peak period, which leads to the inconsistency in the market’s supply and demand. The judgment of the similarity of outgoing power needs to be combined with the supply and demand of the outer provinces, and outgoing power on the forecast day is classified into similarity scenario 1, and there are a total of 151 days.
[image: Figure 9]FIGURE 9 | Similar day screening.
Figure 9B shows that the provincial load has a certain degree of regularity, and the trend of fluctuation has a certain degree of similarity. The main difference is that the local volatility is different; the number of peaks presented and the location of the inconsistency, which indicates that the corresponding provincial load is stable as a whole, and the forecasting day of this paper are classified into the historical similarity day scenario 2, with a total of 82 similarity days.
Through the clustering of various factors above, the historical similarity days of different factors are formed, and these similarity days can only represent the degree of similarity of the respective factors in the history, while the electricity price is the result of the integrated effect. So, it is necessary to further sort out the historical similarity days of various related factors to form the integrated historical similarity days as the data source of electricity price prediction. The specific steps are shown as follows.
The same dates of different historical similarity days are screened out to form a comprehensive historical similarity day dataset; this is because only the historical information about the same day can have a direct impact on the electricity price on that day. The above results show that the total number of historical similarity days of thermal power is 186, the total number of historical similarity days of new energy is 157, the total number of historical similarity days of non-marketed output is 213, the total number of similar days of external transmission load is 151, and the total number of similar days in history of provincial load is 82.
These similar days in history are extracted from the original data source, and the total number of days that meet the requirements is 65. Second, the integrated historical similar-day dataset of 65 days is sorted according to the degree of deviation of different factors, and the smaller the deviation, the higher degree of similarity, which is mainly calculated as
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In the above equation, [image: image] denotes the degree of composite similarity of the historical day, [image: image] denotes the correlation factor of the jth similarity factor of the prediction day, and [image: image] denotes the jth similarity factor of the historical composite similarity day of the ith day. The higher the degree of composite similarity, the higher the adoption of information on that day. The specific consolidated ranking results are shown in Table 1.
TABLE 1 | Similarity and ranking of similar days.
[image: Table 1]The following conclusions can be obtained through the similar-day screening model: a) the Spearman model shows that the two factors that have a greater impact on the price of electricity are thermal power and new energy, which is mainly due to the fact that, at present, the largest market subject is still thermal power, and second, the new energy belongs to the full consumption, so it has a greater impact on the price of electricity; b) the province’s thermal power outlets, new energy outlets, and the provincial loads have a certain degree of regularity, which indicates that the market is relatively stable, and the installed capacity of new energy has no changes, which is in line with the current status quo of the province’s current development of the electricity market. The sorting of similar days is shown in Figure 9C.
In this paper, 40 days of historical days with a high similarity are screened according to the similar-day screening model, and these data are used as inputs to the CEEMDAD–XGT–MPA–CNN–BiLSTM model. Among them, CEEMDAD–XGT, as the second stage of tariff prediction, decomposes the raw tariff data, and then uses XGT to screen the different decomposition curves for their respective correlations, which is described in detail in the next part of this paper.
In this paper, there are a total of 40 days of historical electricity price as the main sequence and five related factors as the secondary sequence of input, but the volatility of the original electricity price is large and will affect the impact of the learning ability of the prediction model. So, decomposition–refactoring reduces the impact of volatility on the prediction model but retains the trend of changes in the original sequence, so this paper chooses the CEEMDAD decomposition. Part of the decomposition curve is shown in Figure 10.
[image: Figure 10]FIGURE 10 | Comparison of results from different tariff decomposition models.
Figures 10A,B show the curves of CEEMDAD and EEMD of the same-day electricity price, respectively. The above results show that the number of IMFs of the two kinds of decomposition is different, indicating that the gradual decomposition of the electricity price curve is different. Compared with the traditional model, the IMF sequence obtained by the CEEMDAD model selected in this paper is more and more detailed. At the same time, the final reintegration of the data is relative to the EEMD of the bias of the reduction of the data is applied to ensure that the original sequence of the characteristics of the original sequence.
Figure 10C represents the box plot of the number of internal envelope iterations for CEEMDAD; Figure 10D represents the box plot of the number of internal envelope iterations for EEMD. The box plots represent the minimum, lower quartile, median, upper quartile, and maximum values of different IMF iterations. CEEMDAD decomposes a total of seven IMFs and one RES, and EEMD decomposes a total of five IMFs and one RES. The box plot distributions of the initial decomposition curves and the final decomposition curves of the two decompositions have the same integral, but the intermediate several decomposition curves are very different, which is mainly caused by the different processing abilities for noise.
The above results show that the CEEMDAD used in this paper is more explicit than the traditional EEMD of the tariff curve. The error of the decomposition reconstructed curve is relatively small, and the number of iterations of each decomposition curve is relatively stable. Since XGT mainly extracts the relevant factors from the main sequence to match different curves, the role of the relevant factors is similar to that of the Spearman model in the previous section. Next, this paper predicts the different decomposition curves to form the final electricity price prediction results.
According to the previous description, this paper takes 40 days of similar-day data as the basic data for tariff prediction, and decomposes these 40 days of tariff data using the CEEMDAD model and matches different factors to decompose the curves one by one using the XGT model to form different combinations of model inputs, forming a multi-input model. The third stage of the tariff prediction model adopts the MPA–CNN–BiLSTM model. The model MPA belongs to the heuristic algorithm. In order to ensure the reasonableness of the optimization algorithm, this paper sets the basic parameters of the MPA model to the maximum number of iterations, 1,000, the number of search groups is set to 50, and the FADs are set to 0.3. In addition, in order to verify the effectiveness of the model proposed in this paper, the number of the EEMD–MPA–CNN–BiLSTM, CNN–BiLSTM, BiLSTM, LSTM, and other models is increased for comparative analysis.
Figure 11 shows that the model proposed in this paper predicts the trend of electricity price, and the actual electricity price is basically consistent, which, to a certain extent, is in line with the needs of the power market players to make trading decisions. At the same time, Figure 11 shows that the absolute error of the model proposed in this paper is relatively low, especially in the morning and evening hours, and the main error is distributed in the midday hours, which is mainly due to the midday hours being subjected to the new energy output uncertainties. This is mainly due to the uncertainty of the new energy output in the noon time, so the model proposed in this paper has certain applicability.
[image: Figure 11]FIGURE 11 | CEEMDAD-MPA-CNN-BiLSTM electricity price forecast curve.
5.3 Analysis of model validity
In order to better verify the validity of the model proposed in this paper, different models are used for comparison, i.e., EEMD–MPA–CNN–BiLSTM, CNN–BiLSTM, BiLSTM, and LSTM. On one hand, it is verified that the decomposition proposed in this paper is superior to the traditional decomposition, and on the other hand, it is verified that the prediction model proposed in this paper is superior to the traditional model of the same series. The prediction results of these models are shown in Figure 12.
[image: Figure 12]FIGURE 12 | Comparison of prediction effects of different prediction models.
Figure 12 shows that the model proposed in this paper is closer to the real electricity price curve than the other models, especially in the evening and night, followed by the EEMD–MPA–CNN–BiLSTM model prediction results. The predicted curves are slightly worse than those of the model proposed in this paper but better than those of the CNN–BiLSTM, BiLSTM, and LSTM models, which indicates that the structure of the prediction model proposed in this paper is effective and can meet the needs of the electric price forecasting. However, the prediction results of the noon hour are slightly in error compared with those of the other hours, which is mainly due to the increase of output of new energy at noon, which leads to the increase of load uncertainty. In order to further illustrate the advantages of the model proposed in this paper, the prediction results of different models are next fitted with the actual results to verify the validity, and the specific results are shown in Figure 13.
[image: Figure 13]FIGURE 13 | Prediction bias of different prediction models.
The fitting results given in Figure 13 show that the model proposed in this paper has the highest fit, followed by EEMD–MPA–CNN–BiLSTM, which indicates that the model chosen in this paper, as well as the structure of the constructed tariff prediction model, is more reasonable and can meet the needs of tariff prediction, and at the same time, Figure 13 shows that the basic model adopted in this paper, BiLSTM, also has a certain prediction advantage, which indicates that the model in this paper meets the basic needs of electricity price prediction. From this, we obtain the order of the prediction result advantage as follows: CEEMDAD–MPA–CNN–BiLSTM > EEMD–MPA–CNN–BiLSTM > CNN–BiLSTM > BiLSTM > LSTM.
To better illustrate the advantages of the model proposed in this paper, SSE, MSE, RMSE, and R2 are used to verify that the error of the proposed prediction model is low. The errors of the prediction model in this paper are all lower than those of the other four prediction models. Compared with the model of EEMD decomposition, SSE is reduced by 0.6706 and MSE is reduced by 0.007, which indicates that the prediction error of this model is lower and can provide price reference for market players. The specific error results are shown in Table 2.
TABLE 2 | Different model errors.
[image: Table 2]Table 2 shows that the model errors of this paper are all the lowest, and the results of R2 are better among the five models, which shows that the model of this paper has a certain degree of sophistication. At the same time, combined with the prediction curves of different models in the previous section, the following conclusions can be obtained: first, China’s electricity market is still in the development stage, resulting in the existence of great volatility in electricity prices, and the historical market scenario is more dispersed, which leads to the fact that there is still a certain amount of error in the prediction of electricity prices, and second, all the current models present a high level of error at the midday hours, which is mainly due to the fact that China still prioritizes the consumption of new energy. The new energy output at noon has a great impact on the electricity price, so we should focus on the development of new energy in the future. Third, the evening peak price of electricity is calibrated by several models, and future market players can focus on the trend of electricity prices during these hours.
6 CONCLUSION
In this paper, a similar daily screening model is proposed based on the improved Spearman–FCM model by analyzing the relevant factors of the spot market and further screening the raw data to ensure the reasonableness of the forecast data. By introducing CNN–BiLSTM and MPA models, the Spearman–FCM–CEEMDAD–MPA–CNN–BiLSTM model is constructed on the basis of considering the components of CNN–BiLSTM. The model is validated by spot electricity price proposed previously, and the prediction results of five models, including EEMD–MPA–CNN–BiLSTM, CNN–BiLSTM, BiLSTM, and LSTM, are compared, and the following conclusions are drawn.
Screening the raw data using the Spearman–FCM model to obtain the number of historical days similar to the market scenario on the prediction date can optimize the raw data structure, ensure the accuracy of the input data on the prediction model, reduce the generalization ability of the strengthened prediction model, and improve the prediction accuracy of the prediction model.
Combined with the relevant data on the spot market, the five models are predicted, and it is verified that Spearman–FCM–CEEMDAD–MPA–CNN–BiLSTM can handle the peak tariffs better than the other models, realizing the requirement of the full-cycle prediction, and avoiding the prediction problem of a single model that can only deal with the less volatility.
Both the proposed model and the validation model in this paper have errors, and the errors are concentrated in the outliers of the market electricity price, which indicates that in the process of electricity price prediction, not only should the public information released by the market trading institutions be taken into account but also the behavioral characteristics of the market players. The factors such as the power system security scheduling should also be considered, which will affect the trend of the market electricity price.
At present, China’s spot market is in the primary stage of construction, the trend of electricity prices is not stable, and there will be the problem of electricity price adjustment. Therefore, in the process of electricity price forecasting, corrections should be made according to market characteristics.
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To study the spillover effect of the digital economy development on carbon emissions, this study innovatively constructs different spatial weight matrices, based on 2011–2020 panel data covering 30 Chinese provinces, and it explores the direct spillovers, conducted spillovers, and spillovers from different spillover channels, such as human capital, service industry development, and information development of digital economy development on carbon emissions through the spatial Durbin model combined with a mediating effect model. The results show that there is significant spatial heterogeneity in digital economy development; in terms of regions, the eastern region has the highest average development level and the central region has the highest average annual growth rate. Digital economy development can directly suppress carbon emissions, and it can also indirectly suppress carbon emissions by driving technological innovation and optimizing the energy consumption structure, and there exists a spatial spillover effect. Under human capital, service industry development and information development matrices, the spatial spillover effect of digital economy development on carbon emissions is significantly negative. Regions with the same level of information development are more likely to exert a spatial spillover effect of digital economy development on carbon emissions.
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1 INTRODUCTION
All countries in the world today are confronted with a significant and pressing challenge in the form of climate change. Reducing carbon emissions (CE) to mitigate climate change has become an urgent task that requires concerted efforts by all countries to share this task, more than 130 countries and regions around the world have now proposed carbon neutrality targets. In 2015, the international community signed the Paris Agreement, urging parties to accelerate the development of national and regional greenhouse gas emission reduction programs tailored to local conditions and strive to achieve peak CE. The 27th Conference of the Parties to the United Nations Framework Convention on Climate Change (COP27) on 6 November 2022, emphasized the advocacy of green actions and expected countries to promote the realization of carbon neutrality and the building of a community of human destiny through legislation, policies and projects. China, being the foremost global energy consumer and a significant generator of CO2, the share of coal consumption is 30 percentage points higher than the world average, is facing the dilemma of fossil energy shortages and increasing pressure to reduce its CE, and it has responded positively and taken great measures to control greenhouse gases. In 2020, China proposed that it will strive to achieve peak CE by 2030 and carbon neutrality by 2060. China has been accelerating the green transformation of its economy and society to achieve this goal, becoming the main force of global “greening”. Based on data published by the World Bank, China’s cumulative energy savings surpassed half of all global energy savings from 2005 to 2020. Additionally, from 2012 to 2021, China supported an average economic growth of 6.5% accompanied by an annual energy consumption growth rate of 3%, saving a total of approximately 1.4 billion tons of standard coal and accordingly decreasing CE by 3.7 billion tons. Not only do these outcomes mean that China has achieved great results in CE reduction, but they also fully reflect China’s role as a great power in addressing climate change issues.
In the current era, the digital transformation is a major trend, and the Chinese government has issued a series of significant strategic plans and initiatives to support digital economy development (DIGDE). In 2021, China’s DIGDE grew to a scale of 45.5 trillion yuan, with the digital industrialization sector alone accounting for 8.35 trillion yuan. The rapid emergence of DIGDE has received sustained attention from academics, and as a more advanced economic and social form following agricultural and industrial economies, the digital economy has been endowed with higher green “expectations”. It is widely believed that DIGDE can accelerate the flow of innovation factors by virtue of its intelligent, Internet-based economy and sharing characteristics, and through the embedded integration and application innovation of digital technologies in key CE areas, such as buildings, energy and transportation, new energy is injected to promote the low-carbon transition (Qi and Xiao, 2020), which is a powerful impetus to drive the entire society into a new type of highly efficient, intelligent, and green low-carbon society. Recently, the Chinese government has prioritized synchronized regional development, emphasizing the fully utilization of DIGDE, guiding the linkage of regions and gradually narrowing regional disparities through the efficiency and cost advantages brought about by digitization and intelligent technologies. The government is doing so by encouraging the common construction and sharing of large-scale facilities between regions to promote energy savings and consumption reduction, leveraging the comparative advantages of each region, magnifying the superposition effect of digital technologies on green value and releasing the enormous potential for low-carbon development. However, it is worth noting that digital economic activities are also among the main sources of CE because of the deficiency in key sectors’ innovative capacity and the incomplete governance system in China’s DIGDE. How to form a virtuous circle of digital green practices is still an important focus for strengthening, optimizing and enlarging China’s DIGDE and achieving China’s CE reduction goals.
In this context, studying the impact of China’s DIGDE on CE is of great significance for promoting global carbon neutrality, facilitating economic transformation and development, and solving the synergistic problems of the global economy and the environment.
With DIGDE and the low-carbon transformation, there is still room for expansion in this field. Can China’s DIGDE become a new path for reducing CE? Does DIGDE have a geographic spillover effect on CE? Through which channels does DIGDE affect CE? Under different conditions, what are the characteristics of the spatial spill-over effect (SSE) of DIGDE on CE? Which conditions are more conducive to exerting SSE of DIGDE? This study centers on the above issues, and as a result, the marginal contributions of this study are: 1) In light of the ongoing iterative advancements in digital technology, the authoritative and harmonized standard does not exist for constructing and assessing a DIGDE index system. The present study endeavors to establish a comprehensive measurement index system for DIGDE by synthesizing the literature and incorporating available data resources. 2) Although some existing studies have used spatial measures that can account for the SSE inherent in CE, not enough attention has been paid to the SSE of the transmission mechanism through which DIGDE affects CE. In this study, the SDM is combined with a mediating effect model to study the trans-mission mechanism from a spatial perspective. 3) Studies on the SSE of DIGDE and CE are mostly based on a single matrix, and they focus on regions with similar geographic proximity and a similar economic level. They do not explore the possibility of spillovers due to other factors, and there are limitations in the choice of perspective and the discussion of the mechanism of the spatial effects of DIGDE. Referring to the research results in the literature, this study selects three major influencing factors, namely, human capital, service industry development and information development, and it constructs a spatial weight matrix innovatively to investigate the SSE of DIGDE on CE under these factors to provide useful policy insights to give full play to the green value and economic value of DIGDE and promote coordinated regional development. Providing insights and suggestions for regions to explore synergistic development paths, build synergistic governance mechanisms, and collaborate to realize carbon peaks has both academic value and practical significance.
The rest of this study is structured as follows. Section 2 is the literature review; Section 3 analyzes the impact mechanism and formulates hypotheses; Section 4 details the research design and data; Section 5 presents the empirical results and discusses the results of the benchmark regression, spatial effect regression and mediating effect regression; and Section 6 concludes the paper and offers policy recommendations.
2 LITERATURE REVIEW
2.1 Literature on the concept and measurement of the digital economy
The digital economy is vigorously emerging worldwide. US academic Tapscott first conceptualized the digital economy at the beginning of internet development in the 20th century (Tapscott, 1996). Since then, scholars have increasingly directed their attention toward the digital economy. Studies have been conducted to define and measure DIGDE from different perspectives. According to Bukht et al. (2017), DIGDE is a type of economic production that is derived entirely from or that mostly relies upon digital technology, where digital goods or services are the base point.
Scholars in China and elsewhere have made many useful attempts to measure DIGDE. These attempts are typically divided into two groups. The first consists of direct methods, which estimate the corresponding DIGDE index to examine and compare the DIGDE index within each region (Eurostat, 2017; ITU, 2022; UNCTAD, 2021). The second category consists of construction methods, in which a multidimensional evaluation index system is constructed based on different perspectives (Cheng et al., 2023; Lin and Huang, 2023) and is subsequently used to measure DIGDE by assigning weights to the indicators.
2.2 Literature on the spatial differences in CE and the influencing factors
Research on CE has focused on carbon accounting along with differences in the spatial distribution of CE and influencing factors. There have been various concepts and methods of carbon accounting. For example, in 2011, the Chinese Academy of Sciences (CAS) started the “Climate Change: Carbon Budget and Relevant Issues” project to build a visualization system by integrating various utilization sector data to obtain the consumption factors of different energy types. The China Emissions Accounting and Datasets (CEADs) team used these CE factors to calculate and publish the corresponding CE inventory. Cai et al. developed a bottom-up urban greenhouse gas (GHG) accounting approach that can systematically reduce the uncertainty in emission variables and activity levels (Cai et al., 2018; Liu et al., 2021).
Numerous studies have confirmed that the distribution of CE varies significantly in space (Tong, 2020; Pan et al., 2023; Xu et al., 2023) and is determined by factors such as government intervention (Xiang et al., 2023), energy intensity (Chai et al., 2023), renewable energy (Azam et al., 2022), the economic output trend (Song et al., 2022) and industrial development (Cai et al., 2023). The research methods are focused on quantitative analysis. For example, Wang et al. (2023) employed structural decomposition analysis (SDA) as a method to assess the contributing factors affecting bilateral CE in 30 Chinese provinces, and they found that the technology effect can suppress bilateral CE, while the demand effect promotes bilateral CE. Azam et al. (2023a) used a panel autoregressive distributed lag (ARDL) found that negative synergy is perceived between CE and agricultural productivity.
(ARDL) model and found a negative synergy between CO2 emissions and agricultural productivity.
2.3 Link between DIGDE and CE
Established theoretical studies have argued that the carbon reduction impact of DIGDE is formed based on several aspects with the addition of digital technologies. At the governance level, digital governance theory holds that remote sensing technologies, big data, and cloud computing applications can increase the precision and efficacy of governmental environmental control (Yang et al., 2021) to enhance ecological governance (Thierer and Castillo, 2015), contributing to the realization of CE reductions. The flow of information between policymakers and the masses has been changed by enabling information interoperability and sharing between the government and society through digital media as a result of digital technology (Nulman and Ozkula, 2016; Bai et al., 2023). Simultaneously, the distribution of interactive information and internet environmental monitoring enable innovative interactive contact mechanisms between society and the government, promoting collaborative governance among all parties in the preservation of the ecosystem (Yang et al., 2020), which will enhance the efficiency of government governance (Chen et al., 2023b), and jointly promote the development of a low-carbon economy. From the perspective of energy efficiency, DIGDE can overcome limitations of time and space, accelerate the flow of factors and reduce energy consumption during transmission (Zhang et al., 2022). Meanwhile, digital technology strengthens green finance, accelerates the adoption of renewable energy, further promotes energy transformation (Han and Li, 2022) and improves energy use efficiency, which curbs CE. The findings of some research support this view. For example, Xie et al. (2024) found that DIGDE increases CE in the short term and exerts a carbon reduction effect in the long term. Wang et al. (2022) found that DIGDE is beneficial for reducing urban CE. Cheng et al. (2023) found that DIGDE reduces carbon emission intensity when the DIGDE index exceeds 0.419. Ma et al. (2022) conducted a study at the provincial level and found that DIGDE in China reduces the level of CE, while investments in research and development related to digitization also have a dampening effect on CE. Niu et al. (2024) found that DIGDE affects the transfer of CE between regions and reshapes resource trade relations.
Many beneficial explorations of DIGDE and CE have been conducted in the available literature, laying a rich foundation for our study. This study is based on the typical fact that DIGDE affects CE, and cuts in from the spatial perspective. Compared with the existing studies, this study focuses on SSE, by combining SDM with the mediating effect model to develop the study of the transmission mechanism from the spatial perspective. It also innovatively constructs a spatial weight matrix to empirically examine SSE of DIGDE on CE under different factors, such as human capital, service industry development and information development. To provide empirical support and policy references to give full play to the advantages of DIGDE, maximize support for the realization of spillover effects, and further develop its positive role in promoting synergistic low-carbon development in the region.
3 THEORETICAL HYPOTHESES
3.1 Direct spillover mechanism of the impact of DIGDE on CE
DIGDE has led to a series of technological innovations (TEI) and management innovations that have been collected, integrated and distributed through the internet to maximize the effective use of resources. DIGDE has an impact on CE at three main levels. The first is the emission reduction effect of optimal resource allocation. DIGDE integrates information on production factors and resources through digital technology, optimizing resource allocation and the energy use structure, and thus reducing CE. At the same time, by promoting multiparty cooperation and group agglomeration, DIGDE has a positive externality effect on neighboring regions and even the whole economic system, i.e., it has an SSE. The second is the emission reduction efficacy in the low-carbon development model. DIGDE has broken the spatial and temporal barriers to production activities and has facilitated the regional circulation of production factors (Li and Wang, 2022), bringing positive externalities to overall output through local innovation activities (Park, 1995). The “digitalization of environmental sustainability” is promoted using monitoring technologies, enabling the generation of real-time CE data (Kloppenburg et al., 2022). Third, there is the emission reduction effect of environmental governance model innovation. Digital technologies are widely used in environmental governance, weakening geographic and organizational boundaries through digital platforms, attracting various stakeholders to construct and solve problems (Ozman and Gossart, 2017), and promoting the formation of informal environmental regulation dominated by the networked public (Certoma, 2022). Under the new pattern of information opening and sharing, through the role of competition and demonstration effects, the positive SSE of DIGDE on regional high-quality development can be brought into play, and the green transformation ability of surrounding regions can be improved. Thus, the following hypotheses is proposed.
H1. There is SSE on the impact of DIGDE on CE.
3.2 Conductive spillover mechanism of the impact of DIGDE on CE
DIGDE promotes changes in research and development (R&D) and innovation paradigms, provides new means and channels for innovation information access, and enhances innovation efficiency and quality (Lai et al., 2022). TEI on the energy supply side can accelerate the development of clean energy and the use of low-carbon technologies, promote the formation of new industrial and value chains, and facilitate the sharing and dissemination of low-carbon technologies and experiences. Thus, there are so-called innovation spillover benefits. TEI on the energy consumption side can improve energy efficiency. The application of low-carbon technologies in the transportation, construction, and chemical industries, directly contributes to CE reduction and drives the upgrading of green technologies in neighboring regions through cross-regional environmental collaboration.
At present, the resource endowment and scientific and technological development are hindering regional economic development and the realization of CE reduction targets in China. The realization of the goal of ecological civilization construction not only requires the guidance of TEI but also places higher demands on the energy supply system. DIGDE brings digital support to energy consumption structure (ECS) adjustment, which can support the government in quickly perceiving and making quick decisions by creating new tools to guide the real-time flow of energy factors (Ferreira et al., 2023). The widespread use of clean energy and new technologies can enhance the use of renewable energy and reduce the total CE from economic activities, ultimately forming a diversified and low-carbon energy supply pattern. Since the industrial chains and energy supply chains of neighboring regions are interrelated, the industrial adjustment and transfer brought by ECS optimization in a region can affect CE of neighboring regions through the cross-border flow of energy and production factors. Through the comprehensive analysis conducted above, the following hypothesis is proposed.
H2. DIGDE can influence CE by driving TEI and optimizing the ECS.
3.3 Differential spillover mechanism of the impact of DIGDE on CE
3.3.1 Human capital level
DIGDE has increased the demand for laborers’ skills in digital innovation, data processing and analysis, and digital technology applications. As a key factor leading innovation-driven development, human capital provides advanced knowledge and skills to support innovation development, and it is the main driver promoting innovation output and accelerating innovation transformation. In the DIGDE industry, the rapid influx of information and capital, and the corresponding labor input are more inclined toward highly skilled and high-quality talent. Regions with similar human capital levels have frequent knowledge exchange and high talent flow rates, which greatly improve the value-added of knowledge and innovation performance, and this improvement can facilitate regional industrial structure optimization and collaborative development. DIGDE is data-driven by nature, breaking the restrictions of time and space on production and life activities and making interregional cooperation and communication more convenient. Digital interactive tools such as online communication platforms, remote training and virtual reality technology, reduce the CE generated by outgoing traffic. It follows that the green development effect brought by DIGDE will inevitably spread to areas with strong human capital ties.
3.3.2 Service industry development level
Currently, the digital services brought by the digital revolution have become the new growth point of the service industry. DIGDE has promoted the digital transformation of the service industry, and thus, it not only has become the booster of Chinese-style service industry digitalization but also has tapped the potential and space of service consumption through the link effect, trust effect, empowerment effect and innovation effect. An increasing number of traditional brick-and-mortar services, such as retail, restaurant and entertainment businesses, are providing online services to consumers through digital platforms. Not only does this trend reduce the demand for physical stores and the associated energy consumption, but its digital features also reduce energy waste in the service supply chain through accurate consumer demand forecasting and resource management. The service industry generates knowledge and technology SSE on external industries when engaging in a series of exchanges, such as industry-university-research cooperation and school-enterprise alliances. In particular, regions with similar service industry levels are related in various aspects, such as inputs and outputs, which in turn increases the degree of knowledge and technology spillover, thus realizing the sharing of technology and experience.
3.3.3 Information development level
Unlike the eras of the agricultural economy and industrial economy, the key production factors in the DIGDE era are data and information. With the continuous advancement of the information process, the interactive network of producers has gradually improved, the traditional industrial boundaries have been broken, and the industrial correlation between regions has become increasingly close. With the rapid progress of big data and information transmission technology, the cost of information storage, transmission and processing has dropped significantly, and thus, DIGDE can realize the dissemination at a lower cost by virtue of its network externality, providing a broader reference and decision-making base for other regions and industries. Regions with similar levels of information development have similar digital infrastructure configurations, and enterprises in these regions can be connected through digital platforms and the internet, so that energy management technologies and experiences can be disseminated and absorbed more efficiently. Meanwhile, the utilization of modern information technology can enhance energy efficiency and effectively reduce the scale of CE.
Accordingly, combining Hypothesis 1, we propose the following hypothesis.
H3. DIGDE affects CE through a variety of spillover channels, and an SSE exists not only between neighboring regions, but also between regions with similar levels of human capital, service industry development and information development.
Combining the above analysis, the model of the framework is shown in Figure 1.
[image: Figure 1]FIGURE 1 | Theoretical framework diagram.
4 METHODS AND DATA
4.1 Static panel model
The stochastic impacts by regression on population, affluence, and technology (STIRPAT) model is a common model for analyzing the influence of economic elements on the environment. This model can take into account the unequally proportional influence of human factors on the environment and has good scalability. This study extends the STIRPAT model and constructs a baseline regression model by incorporating the theoretical analysis above as follows:
[image: image]
Here, in Eq. 1 lnCEit and lnDIGDEit denote the level of CE and DIGDE at year t in region i, respectively. lnGOV, lnOS, lnFD, lnUR and lnLY denote government financial support, the degree of marketization, the degree of openness to the outside world, the urbanization level and the level of per capita income, respectively. The area fixed effect is denoted by μ, the time fixed effect is denoted by σ, and the random disturbance term is denoted by ε.
4.2 SDM
Not only are CE directly influenced by the policies and economy of a region but they are also influenced by related factors in surrounding areas (Chen et al., 2023a). To adequately consider these influencing factors, this work studies the influence of DIGDE on CE by establishing an SDM. Moran’s I can test whether there is spatial autocorrelation in the data, and SDM can be used to explore its specific correlation. The specific construction of SDM requires a series of tests, the use of Hausman’s test can determine whether the model should be selected as a random-effects model (REM) or a fixed-effects model (FEM) (Azam et al., 2023b), the LR test can be used to further determine the fixation of the individual or time or both, and the combination of the WALD test can ultimately select the most appropriate model.
[image: image]
In Eq. 2 lnDEC is the explanatory variable, which includes DIGDE and the corresponding control variables, ρ0 denotes the spatially lagged regression coefficient. The remaining parameters are set as in Eq. 1.
4.3 Spatial weight matrix
Based on the previous theoretical analysis, referring to the results of existing research on the impact factors of DIGDE on CE (Grigorescu et al., 2021; Williams, 2021; Jiang et al., 2023; Pan et al., 2023; Wang et al., 2023), this study considers four major factors: geographic proximity, human capital development, service industry development, and information development. Four spatial weight matrices are used to process the SDM in this study. The first is the adjacency spatial weight matrix (W1), which uses 0 and 1 to mark the spatial adjacency between regions. Wij = 0 when region i, and region j are neighboring and Wij = 1 when region i and region j are not neighboring.
The second is the human capital matrix (W2), which takes the average annual employment in each province as a measure. When the level of human capital in two regions is similar, the greater weight of the two regions is considered, assuming that the levels of human capital in region i and region j are hi vs. hj.
The third is the service industry development matrix (W3), which, as a measure, is calculated by using the proportion of output value of the tertiary industry to GDP as the service industry development level in the two regions, assuming that the level of development of the service industry in the two regions is si and sj.
The fourth is the information development level matrix (W4), which, as a measure, is calculated by using the average annual telecommunication business revenue in each province, assuming that the level of information development in the two regions is di and dj.
The matrix construction formula is as follows.
[image: image]
In Eq. 3 zi denotes different variables in spatial weight matrix setting hi, si, and dij; zj denotes hj, sj and dj.
4.4 Mediating effect model
To verify whether TEI and the ECS act as mediating variables in accordance with the previous theoretical hypotheses, this study conducts a multiple mediating effect test based on the stepwise regression method combined with the SDM.
First, the regression coefficients of CE and DIGDE are tested to verify whether DIGDE has a direct impact on CE, as in Eq. 1.
Second, whether there are direct effects of DIGDE on the mediating variables is examined in Eq. 4.
[image: image]
Finally, the indirect and total effects of DIGDE and the mediating variables on CE are examined.
[image: image]
Where Mit denotes the mediating variable in Eq. 5.
4.5 Variable selection
4.5.1 Explained variable (CE)
Carbon Emissions (CE). According to the “Energy Statistics Reporting System” (2022), the consumption of various energy sources in use is equal to the sum of process conversion input losses, transportation, transmission and distribution losses, and final consumption. No combustion occurs in the energy lost for transportation and transmission and distribution, for this reason, this part measured only the CE of thermal power generation and heat supply input energy, ignoring the CE of other process energy losses. To avoid double counting, the portion used for industry is deducted from the final energy consumption.
In calculating the final CE, this study overcomes the problem of overly simple statistics of various types of final energy consumption leading to large calculation errors by referring to the method of Jing et al. (2019). The relevant data based on the energy balance of each province are used to determine the CE in the “China Energy Statistics Yearbook” by converting the total consumption amount of energy consumed across all forms of energy into standard consumption and multiplying the CO2 emission coefficients of different types of energy as follows:
[image: image]
In Eq. 6 Ei, Efi, Ehi, Eei and Eyi denote the ith energy consumption after conversion, consumption in thermal power generation, consumption used for heating, end consumption, and the portion of end consumption used for industry, respectively, and Si denotes the converted standard coal coefficient for each type of energy.
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where λi denotes the ith energy CO2 emission coefficient in Eq. 7.
4.5.2 Explanatory variable (DIGDE)
This study constructs a DIGDE evaluation index system (Table 1) by fully considering the connotation of DIGDE and referring to the results of existing research (Zhao et al., 2023; OECE, 2018; Shahbaz et al., 2022). The subjective weighting method relies on the intention of decision-makers when assigning weights to indicators, which is not appropriately objective. The entropy weighting method assigns weights to indicators by comprehensively considering the information entropy of each evaluation indicator, avoiding the influence of subjective factors on the weights, so the results are more objective and reliable, the entropy weight method is utilized to estimate the amount of DIGDE in this work (Yi et al., 2022).
TABLE 1 | DIGDE level indicator system.
[image: Table 1]The results of DIGDE are shown in Figure 2. Over time, the level in each region has risen yearly, and many regions lagging behind in DIGDE have accelerated their development and transformed into catching-up regions. Specifically, the overall average value of DIGDE has increased from 0.0648 to 0.2732, with a 14.78% yearly rate of increase on average, and the development level of provinces has also increased significantly. In 2020, Beijing, Shanghai, Zhejiang, Jiangsu, and Guangdong held the top development positions, with all four exceeding 0.4. In addition, Tianjin, Shandong and Shanxi are developing rapidly and are in the catching-up ranks of development. However, there is still a noticeable interprovincial disparity; for instance, the development levels in Beijing and Shanghai in 2020 were 3.26 times and 3.10 times those of Guizhou, respectively. However, the growth rate of lagging areas is high, and the catch-up trend is obvious.
[image: Figure 2]FIGURE 2 | China’s DIGDE level in 2011, 2015, 2020.
From the perspective of individual regions, the eastern region has the largest overall average level of DIGDE, the central region has the highest average annual growth rate, indicating that the region’s digital economy is developing rapidly and has great potential for development. And although the growth rate of the western region is slightly lower than that of the central region, it also has a large space for development. From the point of view of the development level, the eastern region has a higher level of DIGDE, and its development is significantly better than that of other regions. Other regions have a weaker digitalization foundation, which makes the DIGDE level between regions have a large gap. It is still an urgent task to take effective measures to improve the level DIGDE in relatively underdeveloped regions, narrow the gap between regions and prevent the further widening of the “digital divide.” This is not only an important task at present, but also the key to the future DIGDE.
4.5.3 Other variables
4.5.3.1 Mediating variables
TEI: This study measures the level of regional TEI by using the proportion of science and technology expenditure in local general public budget expenditure (Wang et al., 2020).
ECS: This study draws on Shao et al. (2019) and uses the share of coal consumption in total energy consumption to measure the ECS.
4.5.3.2 Control variables
FD: FD is conducive to attracting foreign enterprises that have high energy-saving and emission-reducing technologies to enter the market to learn from them. The proportion of a region’s total imports and exports in GDP is used to evaluate this variable (Wang et al., 2022).
UR: UR implies a shift from an agricultural population to a nonagricultural population, and the change in the production, lifestyle and residence patterns of the group shifting from the agricultural population to the nonagricultural population is a shift in energy consumption demand, with consequent effects on CE. UR is expressed by the proportion of the urban population to the total population in this study (Zheng et al., 2020).
LY: LY can be used to measure people’s living standards, providing a reference basis for formulating important policies. We use 2011 as the benchmark period to process the GDP data in current-year prices, and we use real GDP per capita to measure LY (Zheng et al., 2020).
OS: An increase in marketization adjusts the allocation of resources and leads to changes in the organization of production. This variable is measured by using the marketization index developed by Fan et al. (2011).
GOV: Government support affects the local economy to varying degrees. This variable is measured by fiscal spending as a share of GDP (Zhang et al., 2022).
4.6 Data descriptions
Data are primarily taken from the China Statistical Yearbook, the National Bureau of Statistics, and relevant regional statistical yearbooks. The Peking University Digital Inclusive Finance Index comes from the Institute of Digital Finance, Peking University. Due to excessive missing data for Tibet, Taiwan, Macao and Hong Kong, they are not discussed in this study.
Missing data are filled in through linear interpolation. To avoid pseudoregression and eliminate heteroskedasticity, all variables are transformed using logarithmic scales.
Table 2 lists the descriptive statistics of each variable made in this paper, Table 3 lists the descriptive statistics of each variable: the maximum values of lnDIGDE and lnCE are 6.2405 and 11.7487, respectively, and the minimum values are 2.2721 and 8.1360, which are basically consistent with the measurements observed in the literature. lnOF has the maximum value of 7.5183 and the minimum value of 0.4164, which indicates that the level of openness to the outside world is uneven among different regions, and polarization is serious. This may be due to different geographic locations; coastal areas have developed freight transportation, so their level of openness to the outside world is higher. The standard deviation of lnLY is the largest at 1.3058, and the standard deviation of lnOS is the smallest at 0.2620, which indicates that per capita income levels vary widely across different regions in the sample, and the degree of marketization does not vary greatly.
TABLE 2 | Abbreviation comparison table.
[image: Table 2]TABLE 3 | Variables statistics.
[image: Table 3]5 RESULTS AND DISCUSSION
5.1 Spatial autocorrelation test
This study explores the agglomeration features of DIGDE and CE from 2011 to 2020 based on Moran’s I (Table 4), the findings of which demonstrate that Moran’s I is positively significant under W1. It is inferred that the close connections among different cities and their generated correlations can affect the spatial correlation of DIGDE and CE.
TABLE 4 | Results of Moran’s I.
[image: Table 4]5.2 Benchmark regression test
The baseline regression model of Eq. 1 is first estimated, and the benchmark test results are shown as the regression findings in Table 5. The three columns show the results of mixed OLS, fixed effect and cluster standard errors. By comparing the model results, it can be seen that the model’s goodness of fit, significant levels of variables and coefficients do not change much in the three regressions, which indicates that the variables entered into the model are relatively stable. That is, the inhibitory effect of DIGDE on CE is stable and reliable. In summary, the regression results confirm Hypothesis 1 that DIGDE can suppress CE. Further spatial studies can be carried out on this phenomenon.
TABLE 5 | Benchmark regression results.
[image: Table 5]5.3 Spatial model test
To determine the most effective model for exploring the relationship between DIGDE and CE, this study uses the LM, Wald, and LR tests (Chen et al., 20233), indicating that the SDM with time fixed effects is the best choice, the Hausman test supports the fixed effect model (Zhao and Wang, 2022) (Table 6). The partial differential method is applied to decompose the impact of the local region and neighboring regions into direct effects, indirect effects and total effects (LeSage and Pace, 2009) (Table 7).
TABLE 6 | Results of three major test.
[image: Table 6]TABLE 7 | Results of the SDM regression in Eq. 3.
[image: Table 7]The coefficients of the impact of DIGDE on CE and the SSE are both significantly negative under W1. Compared with Table 6, the impact of DIGDE on CE will be underestimated when the SSE is ignored, which is not conducive to effective regional environmental regulatory policies and DIGDE. The coefficient of the indirect effect of DEIGDE on CE is −1.4450, which is 1.7397 times the direct effect. This result indicates that DIGDE in a region can influence CE in neighboring regions, and when the level of DIGDE in a region increases by 1%, its inhibitory effect on CE in neighboring regions is 1.7297 times higher than that in the region. This phenomenon is due to the accelerated development of internet trading platforms, which accelerates the cross-regional flow of production factors. Through open sharing, the development of internet trading platforms promotes the productivity of neighboring regions, thus contributing to the optimization of resource allocation. It can be assumed that if neighboring regions also accelerate DIGDE, the overall level of CE reduction in an area will be improved, thus forming a virtuous circle of the “snowball effect” between regions.
Under W1 the coefficient of the control variable lnLY exhibits a positive effect on CE in surrounding areas and a negative effect on CE in region. The scale and development of production activities in an area are largely determined by the level of consumption of residents. High-income groups tend to have a higher demand for environmental standards and affordability. This higher demand has prompted enterprises to implement green production and sustainable development strategies and shift industries that are not environmentally friendly to neighboring areas. lnUR increases CE in a region, while it exhibits a lowering effect on adjacent areas. The rise in the urbanization level implies a more pronounced population agglomeration effect, which is accompanied by a shift in the labor force and a change in economic activity patterns, thus increasing transportation CE due to population migration. The lnOS and lnGOV variables increase local CE, and because the environmental effects have a relatively long and low return cycle, local governments tend to be more likely to invest in fields with faster economic return. If the direction of marketization and government financial support is oriented toward increasing productivity, then it will promote production scale expansion, which is not conducive to ECS and CE reduction (Shao et al., 2013). Furthermore, the promotion of new environmental protection technology industries and the impact of government regulation on the environment often have a certain time lag. Therefore, current period market-based reforms do not necessarily have a significant dampening effect on CE. However, sharing infrastructure with neighboring regions can effectively avoid duplication of investment in construction and waste of resources and reduce the land occupation, energy consumption and material extraction required for new projects, thus helping neighboring cities save energy and reduce CE.
5.4 Mediating effect test
The results of the stepwise regression and the decomposition of the mediating effects are listed in Tables 8, 9, and the results in model (2) satisfy the prerequisites for the subsequent stepwise regression in the theory of Judd and Kenny, (1981).
TABLE 8 | Stepwise regression results of the mediation model.
[image: Table 8]TABLE 9 | Decomposition results of the mediation model.
[image: Table 9]Regarding the mediating transmission mechanism of TEI, DIGDE can significantly promote TEI, and after adding the mediating variable TEI, CE are shown to be significantly slowed by DIGDE and have a significant SSE. This result indicates that TEI holds as a mediating variable. Regarding the mediating transmission mechanism of the ECS, in model (3), the coefficient of the effect of DIGDE on the ECS is significantly negative. DIGDE on CE is negative, and the ECS on CE is positive in model (4). These results indicate that DIGDE can promote CE reduction, and at the same time, the increase in the proportion of coal consumption leads to higher CE levels, which once reaffirms that China’s “high-carbon” ECS with an abnormally high reliance on coal is an important reason for the hindrance in CE reduction (Shao et al., 2019). The coefficient shows that DIGDE has a strong promoting effect on TEI, and when the intermediary variable TEI exists, DIGDE has a more positive inhibiting effect on CE. DIGDE has driven the intelligent transformation of traditional industries and improved the efficiency of resource utilization, reducing the use of fossil fuels in the production process, and achieving the effect of saving energy to reduce emissions at the source. The SSE of the mediation effects decomposition results in Table 8 is also consistent with the expected assumptions. That is, DIGDE can lead regional green collaborative development through TEI and by optimizing the ECS.
5.5 Robustness test
The CE estimation method above uses regional CE for measurement, and there are still many studies in the literature that use per capita CE to measure CE levels. In Table 10, when lnPCE is used as the dependent variable, the mediating effect and SSE are still valid, which confirms the robustness of the results above.
TABLE 10 | Results of the robustness test.
[image: Table 10]In econometric regression, to obtain consistency in the effects, it is important to address possible endogeneity. Different from traditional ordinary least squares (OLS) regression, the SDM makes it possible to obtain estimates that are not biased by amplification, thus avoiding endogeneity due to omitted variables (LeSage and Pace, 2009). Drawing on Wang and Guo (2023), this study uses the generalized spatial two-stage least squares (GS2SLS) model to control for the endogeneity problem of the key variables and lags the explanatory variables by one period. The regression results in Table 11 show that after mitigating the potential endogeneity problem, the study’s conclusions still hold, and the mediating effect remains.
TABLE 11 | GS2SLS results.
[image: Table 11]5.6 SSE
In Table 12, the SSE of DIGDE on CE also exists among regions with similar human capital, service development, and information development and is similar to the effects under W1. Additionally, the indirect effects are all larger than the direct effects, confirming H3. The coefficient of the indirect effect of DIGDE on CE is the largest under W4.
TABLE 12 | Spillover channel test results.
[image: Table 12]In the context of digitalization and intelligence, human capital has become an important resource for regions, and innovative and high-tech companies have improved their innovation efficiency and green transformation capabilities by adjusting workforce involvement through effective talent management (Zahoor et al., 2022). Green enterprises promote carbon reduction in regions with higher environmental standards and more sophisticated energy-saving technologies, and can play a positive role in leading and regulating the development of regions with similar human capital. Meanwhile, DIGDE involves the Internet of Things and other fields with high intensity R&D investment, which can produce strong SSEs. These effects change the development model of the service industry through the intellectual capital and human capital needed by the service industry, and they promote its digital transformation. Through online platforms and applications, many traditional processes can be optimized, reducing energy consumption and CE in physical service processes. Regions with similar levels of service industry development have similar industrial structures and usually have closer flows of technological elements and industrial interconnection, which can promote green synergy through technology promotion and resource sharing. DIGDE drives the efficient operation of material flow and technology flow with information flow, and it promotes the optimal allocation of resource elements between industries. The symbiotic union of different types of industries is becoming increasingly common, and industrial integration is deepening, prompting the gradual adjustment of the industrial structure to be high grade, low carbon and green. Therefore, in regions with similar human capital and service development, DIGDE can exert an SSE that reduces CE. In addition, regions with similar levels of information technology development have high levels of networked synergy. Open platforms based on information technology provide a borderless space for information sharing, which fully reduces information asymmetry in the process of rapid information flow (Asongu et al., 2017), making the transmission of green technology ideas and environmental protection more effective. Therefore, compared with W2 and W3, it is easier to bring into play the SSE of DIGDE on CE under the W4 matrix.
6 CONCLUSION AND POLICY IMPLICATIONS
6.1 Conclusion
Given the typical fact that DIGDE affects CE, this study starts from the spatial perspective, and based on the panel data of 30 provinces and regions in China from 2011 to 2020, it innovatively constructs different spatial weight matrices on the basis of measuring the level of DIGDE and combines SDM with the mediation effect model to investigate the mechanism of the impact of DIGDE on CE and the multiple SSE from the spatial perspective. The following conclusions were drawn from this study. First, there is obvious spatial heterogeneity in DIGDE. The eastern region has the highest overall average level of DIGDE, which has reached a certain scale and height. The rapid growth of DIGDE in the central region, with the highest average annual growth rate, showing great potential and opportunities for development. The average annual growth rate of the western region is slightly lower than that of the central region, it also shows a stable development trend and broad development space. Second, DIGDE can suppress CE and have a significant SSE. This means that with DIGDE, not only can CE be reduced directly, but its influence can also be transferred between regions and have a dampening effect on CE in neighboring regions. DIGDE can indirectly reduce CE by driving TEI and optimizing ECS. Third, the impact of DIGDE on CE is also influenced by other factors, under the role of human capital, service industry development and the information development matrix, DIGDE has a negative SSE on CE. Regions with a similar level of information development are more likely to exert SSE of DIGDE on CE. This further emphasizes the important impact of synergies between DIGDE and other elements of development on CE.
6.2 Policy implications
Mitigating climate change and reducing CE is the common responsibility of all mankind. Based on the findings, the policy implications of this study are as follows.
The policy insights obtained from this paper are as follows. First, DIGDE is conducive to reducing CE, and in addressing the challenges of climate change, we should continue to increase the level of DIGDE. Continuously unleashing the dynamism of demand, including investment and information consumption, in DIGDE, and give full play to the leading role of DIGDE in green development. In response to SSE, interregional economic ties should be strengthened, and efforts should be made to narrow the gap in DIGDE between regions by exploiting different regions and forming a pattern of coordinated regional development by building a mechanism of synergistic development and complementary advantages between regions. Second, we should fully consider the transmission mechanism through which DIGDE affects CE and focus on improving the level of TEI and strive to drive the rise of low-carbon industries through the development of digital technology. The restructuring of ECS should be accelerated, the level of conversion and application of new energy should be improved, and a clean, low-carbon, safe and efficient energy system should be built. The government can strengthen the awareness of energy saving and emission reduction of enterprises by strengthening supervision and forcing them to optimize their own ECS. Third, considering the strongest SSE of DIGDE on CE under the information development level matrix, in exploring the practice of DIGDE and CE reduction, we should focus on learning from regions with similar levels of information development to quickly and effectively accumulate experience and give full play to the important role of information development in driving regional synergistic development.
The limitations of this study are as follows. First, digital technology is constantly iteratively developing, and methods of evaluating DIGDE can be further explored. Second, this study focuses on the impact of TEI and the ECS. Subsequent studies can also proceed from the perspectives of environmental regulation and economic ag-glomeration to further explore the impact path of DIGDE on CE. Finally, from the perspectives of service industry development, human capital and information development, this study examines the SSE of DIGDE on CE. Follow-up studies can also be carried out from the perspectives of other context elements.
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This paper studies the problem of considering customer satisfaction in the no-battery-swap mode and in the power-swap mode. First, with the goal of maximizing customer satisfaction, the total cost of charging and discharging and the minimum construction cost of swapping stations, the customer time window, and the load constraints of electric vehicles are considered. A model of electric vehicle charging and discharging route optimization and replacement station location without battery swapping behavior, considering customer satisfaction, is established, and then, a two-stage improved ant colony–genetic algorithm is designed to solve the model, and finally, the comparative analysis considers customer satisfaction. Based on the path optimization results and location decisions considering the cost of charging and discharging, the following conclusions are obtained: 1) electric vehicle route optimization and swap station location planning considering customer satisfaction can not only effectively reduce logistics distribution costs and replacement costs but also improve customer satisfaction levels. 2) Reducing the number of route crossings in the process of logistics distribution routes can save electricity costs for electric vehicles and logistics distribution costs, and help reduce the total cost of the entire logistics distribution network. 3) The gradient setting of the electricity price for electricity exchange will reduce the cost of electricity exchange, improve the utilization efficiency of the battery, reduce the cost of logistics and distribution, and improve the electricity exchange revenue of the electricity exchange station.
Keywords: electric vehicle, two-stage hybrid algorithm, path optimization, site selection of battery swapping stations, customer satisfaction
1 INTRODUCTION
As the economy and society rapidly advance, the demand for energy consumption has steadily risen, and energy shortage and environmental problems have become increasingly prominent. In terms of urban transportation, carbon emissions account for about a quarter of energy carbon emissions, of which urban road transport carbon emissions account for about 80% of the carbon emissions of the transportation industry, which is an important area for transportation carbon reduction (BAI et al., 2021). Electric vehicles that couple power and transportation have become important new energy vehicles because of their near-zero carbon emissions, low cost, and convenient energy-saving charging. According to China’s “New Energy Vehicle Industry Development Plan (2021–2035)” (The General Office, 2020), from 2021 onwards, China clearly proposed that the key areas of new energy logistics vehicles should not be less than 80%, and anticipated by 2035, pure electric vehicles will emerge as the predominant choice among newly sold vehicles, which provides a guarantee for the development of electric logistics vehicles in the field of urban distribution. To this end, electric vehicles show potential to replace traditional fuel vehicles and become an important means to solve transportation and travel. The Transportation sector is characterized by high carbon emissions. Logistics distribution is characterized by high demand, complex routes and road congestion, resulting in high carbon emissions and high vehicle costs. Electric vehicles have the characteristics of a relatively fixed driving range, focusing on short and medium distances, convenient centralized charging, and near-zero carbon emissions. In order to alleviate environmental pressures, the public sector and logistics distribution companies have begun to choose electric vehicles as the main means of transportation. At the same time, the electric vehicle as a means of transport makes the traditional fuel vehicle path planning method no longer applicable, thereby resulting in the electric vehicles to provide kinetic energy with batteries; in order to complete the distribution task, the driving process is limited by battery capacity and mileage in the long-distance distribution, the need for power supply in the middle, and the current set of charging/replacing facilities. There is a slow construction and unreasonable planning, with the increase in the demand for electricity for electric vehicles if the problem of electric energy supply of electric vehicles cannot be solved. It will limit the development of electric vehicles in the logistics industry. Considering the charging time and investment cost, it is recommended that the logistics enterprises cooperate with government departments to build and operate the replacement station, therefore, this paper will consider the replacement station as an electric energy supply facility and carry out the research on the logistics distribution path and site selection of the electric vehicle substation.
1.1 Literature review
The central challenge in logistics distribution lies in optimizing vehicle paths; considering the distribution of goods involves time scheduling problems, many scholars integrate the concept of time windows into the optimization problem of logistics distribution paths, forming a logistics distribution path optimization problem with a time window. In order to solve such problems, the current algorithm selection is very diverse; commonly used algorithms include genetic algorithms, particle swarm algorithms, ant colony algorithms, and taboo search algorithms.
In terms of path planning of electric vehicles, Guo et al. (2022) proposed a travel path planning method, considering the power supply of electric vehicles with the optimization goals of travel distance, travel time, travel energy consumption, and charging price. Ming et al. (2016) considered the mutually exclusive constraints of path selection, battery capacity, and charge and discharge status; integrated the optimal travel time of users and charging cost into the cost function; and studied the path selection problem of electric vehicles under the optimal two different decision-making goals under the time-of-use electricity price mechanism. DONG et al. (2018) considered factors such as path selection, time, battery capacity, and cargo capacity, and studied the optimization of logistics distribution paths and charging strategies for electric vehicles with the goal of optimizing the cost of driving time, battery loss, and fast charging cost of electric vehicles. Zhang et al. (2022) studied the SAEV path optimization problem considering the charging plan, unpredictable travel duration, and service timing, and developed a branch-price algorithm to introduce a customizable label-setting algorithm for identifying resilient and viable routes with feasible charging strategies. Berk and Bülent (2022) aimed to minimize the costs associated with battery degradation and total energy consumption against the backdrop of the traveling merchant problem with time windows, using commercial solvers to solve small-scale instances to examine the impact of battery degradation on routing decisions in different scenarios. Yang et al. (2023) proposed an optimal EV scheduling method on the load side that combines incentive scheduling with orderly scheduling so that the load curve tends to be flat and used to optimize the EV path. Saeed et al. (2023) proposed a vehicle routing optimization model based on the Al-Biruni earth radius optimization algorithm, considering user preferences, availability of charging infrastructure, and distance to the destination. Ren et al. (2020) proposed a shared car path optimization model that considers the operating costs of SEVs, the cost of user time, the cost of user car rentals, and the rewards of user sharing. Wang et al. (2015) analyzed the relationship between variables in the power battery distribution path optimization problem, constructed a priority function to determine the initial population, and suggested an enhanced genetic algorithm to address the path optimization problem for delivery vehicles with time windows, including simultaneous pick-up and delivery scenarios. Appiah and Xiong (2019) aimed to minimize total transportation costs by solving a unitary model through a particle swarm optimization algorithm to determine the path for vehicles traveling from the distribution center to serve a specific customer and return to the distribution center.
In terms of the site selection of battery swapping station, Deng et al. (2021) considered the two stages of electric vehicles during distribution and back to the distribution center, and studied the logistics distribution path planning and charge and discharge management problems of electric vehicles, considering customer satisfaction in the power exchange mode. In Zhang et al. (2023), based on new energy vehicles' daily driving habits and charging methods, the Monte Carlo sampling algorithm is adopted to establish the new energy car battery load model, the scheduling for electric vehicle charging behavior, and related facility construction that provides a direction. Zhou and Tan (2018) proposed the problem of distribution path and site selection of electric vehicles in the automobile assembly line, developed a mathematical programming model aimed at optimizing by minimizing the overall expenses within the system, and proposed a two-stage dynamic programming algorithm to obtain the optimal solution of the small-scale problem. Li et al. (2022) constructed a mathematical model of potential substation site selection under multi-path conditions, and on this basis, the relationship between the cruising range of electric vehicles and the cost of station construction, as well as the relationship between the number of substations and service flow, was analyzed. An et al. (2023) proposed a location optimization method that comprehensively considered many factors such as EV charging and discharging cost, power grid load stability, and user demand. Cheng et al. (2023) proposed an EV charging load prediction method based on variational mode decomposition and the Prophet-LSTM neural network to solve the problem of the charging station location. Zhao and Liang (2023) proposed a new charging scheduling and energy management approach for smart grid electric vehicles based on genetic algorithms (GAs), gated recurrent unit (GRU) neural networks, and reinforcement learning (RL) algorithms. Wang et al. (2020) proposed a BSS site selection framework based on the MCDM (multi-project decision method), which takes into account the lack of information in the site selection process of the replacement station and uses triangular fuzzy numbers to deal with uncertainty. Zu and Sun (2022), based on the site selection planning of charging stations and substations, considering the user’s behavioral capabilities, dynamically analyzed the correlation between crucial parameters and outcomes using the YALMIP/CPLEX method to solve the model. Qin and He (2021) determined the service radius of the substation from the aspects of driver driving preference, substation service objectives, and the mileage of electric vehicles, and used the grid method and position allocation model to analyze the distribution of substations with the smallest number of stations and the largest coverage.
In summary, although domestic and foreign scholars have considered the charging/replacing problems of electric vehicles in logistics distribution, they have not considered the relationship between the logistics distribution path of electric vehicles and the site selection results of their substations, and few literature studies have considered the combination of time window, logistics path optimization, and substation site selection. The main contribution of this paper is to establish the path optimization problem of electric vehicles without power exchange behavior and the site selection decision model of electric vehicle power exchange facilities distributed in urban distribution under the power exchange mode. The model comprehensively considers the impact of user satisfaction, the opportunity/penalty cost generated by the violation of the customer satisfaction time window, and the power exchange cost corresponding to the remaining battery power on the path planning and site selection decision of the power exchange facility. Finally, a two-stage hybrid ant colony algorithm is designed to solve the above model in order to obtain the urban distribution path optimization and site selection scheme suitable for electric vehicles, which can provide reference for the actual operation and management decisions of logistics enterprises.
2 PROBLEM DESCRIPTION AND MODELING
2.1 Problem description
The specific problem description is as follows: assuming that an enterprise has a logistics distribution center point O in a certain place and puts multiple electric vehicles with the same loading capacity and the same battery capacity into the logistics distribution service, the location of each customer point C and its cargo demand are known, and the logistics distribution center can meet its service needs. The distribution center serves as both the starting and ending points of the logistics distribution path, necessitating the vehicle to return to the distribution center upon completion of its service; owing to the electric vehicle having a power constraint, some of the longer sub-paths need to be replenished with electricity, the electric vehicle through the replacement station or back to the distribution center should reach the battery full state, and each electric vehicle should leave from the starting point and return to the end point through the replacement station no more than once. Therefore, enterprises need to reasonably arrange the logistics and distribution path of electric vehicles, which minimizes logistics and distribution costs. At the same time, it is crucial to factor in the expenses associated with replacing electric vehicles and ensure customer satisfaction, and select and build the replacement power station on a reasonable distribution path. The goal of the problem is how to reasonably design the electric logistics vehicle transportation path of the distribution center under the condition of limited distribution vehicles so as to meet the needs of customer points and achieve the goal of minimizing the total cost of the urban logistics distribution network and maximizing customer satisfaction.
For these cases, we need to consider the time window of the distribution route, the opportunity cost or penalty cost, the maximum cargo capacity of the electric vehicle, and so on. 1) The vehicle routing optimization problem with the time window is based on the classic vehicle routing optimization problem, adding that each customer point has a logistics distribution time limit; we call the customer point time limit as the time window. When enterprises use electric vehicles for services, electric vehicle distribution may be delayed or result in early arrival, and when in need to consider the distribution route time window problem, this article considers the choice of the soft time window constraint and all customers know the time window. Failure to deliver within the required time window will incur opportunity costs or penalty costs. 2) Because the enterprise needs to replace the electric vehicle in time, the distribution center also has the function of power exchange, and the electric vehicle can be replenished in the distribution center after returning to the distribution center. 3) The total customer demand on each distribution route does not exceed the maximum cargo capacity of electric vehicles, and the demand of each customer point can only be completed by one electric vehicle. 4) In order to consider making the electric vehicle power exchange work orderly and preventing the electric vehicle from re-entering the power exchange station to affect the power exchange of other electric vehicles and causing resource occupation, the replacement price will be set according to the remaining power level of the electric vehicle; if the remaining electricity is high, the corresponding purchased electricity price is correspondingly higher, and the conversion price is converted according to the remaining level of the remaining electricity. 5) The electric vehicle used in this article does not consider the loss to the battery due to charge and discharge during the power exchange process. 6) The power of an electric vehicle is not affected by the driver’s driving style and the difficulty of driving on the road. The schematic diagram of the electric vehicle path optimization problem in this paper is shown in Figure 1.
[image: Figure 1]FIGURE 1 | Schemes following the same formatting.
2.2 E-VRPTW model considering customer satisfaction
2.2.1 Objective construction
Considering the economic factors of logistics distribution costs and the influence of logistics distribution customer service time window on customer waiting time, the paper formulates a multi-objective optimization model which aims at maximizing the overall satisfaction of the system and minimizing the delivery time and total cost of the system.
(1) Minimizing the logistics distribution services cost
Considering the logistics integrated transportation service of electric vehicles in logistics distribution services and the site selection and construction of the replacement station, the logistics distribution cost of this paper mainly includes the total cost of electric vehicle power exchange cost, electric vehicle fixed cost, replacement station construction cost, and time window penalty cost. The cost of electric vehicle power exchange is related to the electricity exchange price and power exchange; the higher the electricity exchange price and the more the electricity exchange, the higher the power exchange cost; for this reason, it is necessary to optimize the power exchange of electric vehicles into the power exchange station. The length of the driving path of electric vehicles determines the cost of their logistics distribution travel time, and choosing a suitable location to build a replacement station can make the electric vehicle exchange power in its suitable power exchange during the driving distance while reducing the time cost; the longer the route travel time corresponds to the higher the route travel time cost, so the path should be reasonably selected during the route driving process so that the electric vehicle can be replenished. The specific mathematical expression is as follows:
[image: image]
The cost of electric vehicle replacement is related to the remaining electricity and power exchange price of electric vehicles driving into the power exchange station during distribution; taking into account the prevention of electric vehicles from re-entering the power exchange station multiple times and affecting the power exchange of other electric vehicles resulting in resource occupation, the replacement price will be set according to the remaining power level of electric vehicles; if the remaining electricity is more, the corresponding purchased electricity price is correspondingly higher. The expense linked to power exchange is associated with the frequency of power changes in electric vehicles during distribution, the remaining power to the power exchange station, and the electricity exchange price, and the calculation method is the sum of the purchase cost of the new replacement battery and the cost of a single battery rental.
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The construction cost of the substation is related to the construction cost of a single substation and the number of substations under construction, as shown in the following equation.
[image: image]
Electric vehicle distribution costs are divided into variable costs and fixed costs. Variable costs are related to the length of the driving path of electric vehicles; the farther the driving distance, the greater the variable cost. Fixed cost is the total cost of the vehicle paid by the enterprise to purchase an electric vehicle that is put into use.
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Considering the impact of the service time of delivery on customer delivery service satisfaction, the cost caused by the delivery time in violation of the merchant’s requirements in the objective function also takes into account the total cost, and this paper establishes a mathematical model based on the soft time window constraint, describing it as follows: if the delivery vehicle [image: image] delivers the goods before and the unit opportunity cost is [image: image], if the delivery vehicle delivers the goods afterward [image: image], resulting in a decrease in satisfaction, and the unit penalty cost is [image: image]. The cost calculation is shown in Figure 2.
[image: Figure 2]FIGURE 2 | Penalty function for soft time windows.
The total time cost is shown below:
[image: image]
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(2) Minimizing the total distribution distance of the logistics system.
Considering the reasonable planning of the site selection of the layout of the substation and the distribution path of the logistics enterprise, the logistics distribution distance can be reduced, and the expression of the logistics distribution distance F2 is given as follows:
[image: image]
(3) Maximum customer satisfaction.
Customer satisfaction is used to evaluate the service level of logistics distribution enterprises based on the logistics distribution time window. The length of its delivery time will directly affect the customer’s evaluation of its satisfaction. Its linear function expression F′3 is
[image: image]
For ease of calculation, customer dissatisfaction is considered, and customer dissatisfaction is represented by F3, and the F3 expression is expressed as follows:
[image: image]
2.2.2 Constraints
The planning and replacement management of electric vehicle logistics distribution routes should meet the following constraints: 1) Logistics distribution constraints: the constraints of logistics distribution mainly include path constraints, load constraints, arrival/departure time constraints, and remaining power constraints.
(1) Path constraints
Path constraints will restrict vehicle movement, considering the number of vehicles entering and leaving a node.
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Eq. 10 indicates that each vehicle enters a node and leaves a node an equal number of times. Eq. 11 indicates that each customer can receive service from at most one electric vehicle. Eqs 12, 13 indicate that the distribution path of the electric vehicle forms a closed loop connecting end to end. Eq. 14 indicates that each electric vehicle departs from the distribution center and ends up in the distribution center. Eq. 15 defines that the value of a decision variable can only be 0 or 1. Eq. 16 indicates that the station can be visited many times.
(2) Load constraints
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Formula 17 indicates that the total customer service of each electric vehicle cannot exceed the maximum cargo capacity of electric vehicles. Eq. (18) represents the overall count of electric vehicle transfers.
(3) Arrival/departure time constraints
When a customer provides delivery within an acceptable timeframe, there is zero opportunity cost and penalty cost. If the time window is exceeded, the penalty cost will be paid according to the length of the violation.
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Eq. 19 means that the electric vehicle delivery time cannot exceed the customer’s maximum tolerable time window, Formula 20 and Formula 21, respectively, represent the time when the electric vehicle leaves the logistics distribution center and arrives at the customer, and Formula 22 represents the total time of the entire logistics distribution network electric vehicle to complete the logistics distribution use.
(4)Power constraints
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Formula 23 indicates that the remaining power of the electric vehicle cannot exceed its power limit. Eqs 24–26 represent the electric vehicle leaving the distribution center and the customer node and the power level of the replacement station. Formula 27 represents the relationship between the remaining power of the electric vehicle leaving the previous customer point and the next customer point. Formula 28 represents the relationship between the power of two customer nodes. In summary, the multi-objective optimization model of electric vehicle logistics distribution path optimization and power exchange strategy considering customer satisfaction is represented as follows:
[image: image]
3 DETAILED EXPLANATION OF THE ALGORITHM PROCESS
3.1 Multi-objective model solving
Since the three objective functions in this paper have different orders of magnitude, the method based on fuzzy satisfaction is used to dimensioning the objective function. The entropy weight method is the most widely used method for solving multi-objective problems. However, the entropy weight method mainly empowers through the degree of dispersion of each objective, ignoring the horizontal influence generated by the correlation between the objectives. CRITIC is an objective weighting method that considers the impact of index correlation. The general process of the CRITIC method is represented as follows:
(1) First, suppose there are m plans and n goals respectively. Take the solutions of F1, F2 and F3 as objectives are taken as three CRITIC weighted schemes, and the following evaluation matrix is obtained:
[image: image]
where [image: image] denotes the dimensioned value of the first [image: image] target of the first [image: image] scheme.
(2) Then, the standard deviation and correlation coefficient were calculated for each target, as follows:
[image: image]
where [image: image] is the standard deviation of the target [image: image]; [image: image] indicates the correlation coefficient between the target i and the target k; and [image: image] is the covariance of lines [image: image] and [image: image].
(3) The amount of information contained in each goal is calculated, and the weight of each goal is obtained, as follows:
[image: image]
where [image: image] represents the information amount of the target and [image: image] represents the quantitative indicator of the conflict between the first goal [image: image] and other goals.
Finally, the combined objective function is expressed as follows:
[image: image]
3.2 Two-stage hybrid algorithm design
Obviously, the problem solved by this model is an NP-hard problem, so combined with the characteristics and actual situation of this model, the positive feedback method — ant colony algorithm — which is robust and does not rely on the initial route selection is selected. In this paper, an improved two-stage hybrid algorithm solves the path optimization model when there is no power exchange behavior and the site selection model of the station in the power exchange mode. First of all, when designing the distribution path optimization model without power exchange behavior, in order to better integrate the advantages of the A* algorithm and the ant colony algorithm, the initial path suitable for the optimization of the logistics distribution path of electric vehicles is searched by the A* algorithm in the early stage, and the initial solution of the ant colony algorithm is formed; the positive feedback of the ant colony algorithm is used in the later stage, and the advantages of high solution accuracy are used; the method of combining the A* algorithm and the ant colony algorithm is used to generate the optimal path based on the pheromone iteration, and the load and mileage constraints of the electric vehicle are considered in the evaluation process and EV delivery time window constraints. Second, based on the optimal path of electric vehicle distribution, the genetic algorithm of the second stage is designed to solve the site selection model of the replacement station. While conducting the site selection process, the price of power exchange and the construction cost of the power exchange station are considered, and the cost constraint of the power exchange is based on the residual electricity of the electric vehicle so as to find the site selection scheme that meets the minimum cost of power exchange and construction of the power exchange station.
3.3 Improved ant colony algorithm to solve the path optimization model without power exchange behavior
3.3.1 Initial pheromone settings
The A* (A-Star) algorithm is the most efficient direct search method for solving the shortest path and is a common heuristic for many other problems. Its heuristic function is
[image: image]
The above equation [image: image] when each node is searched, its corresponding heuristic function, in this article, represents the valuation function that reaches the customer point C; [image: image] consists of two parts, of which the first part [image: image] represents the actual cost of customer n to the distribution center current customer; the second part [image: image] is to estimate the cost of the current square to the destination, that is, the distance between the previous customer point and the next customer point when the electric vehicle is delivered. Each time the algorithm scales up, it picks the node with [image: image] having the lowest value as the next node on the optimal path.
This article assumes that the distance between customer points is the Euclidean distance [image: image]. [image: image] represents the cost of an electric vehicle from customer point C to the logistics distribution center. [image: image] is the cost value between any customer and the next customer. In this article, we select logistics distribution center O as the starting point and add all customer points to the open list. At this time, the minimum value in the opening list is taken, and only one node in the logistics distribution center O is opened in the initial stage. So, remove the O-points from the open list and add the O-points to the off-list. Take the adjacent customer points of the O point and add the customer points with the smaller valuation function to the open list. At this point, these adjacent customer points are the parent nodes of the adjacent points; delete these parent nodes in the open list, and then, center on the parent node; look for the customer point with the smallest neighbor valuation function, and cycle through the above steps until all customer delivery needs are met. When exploring the path, consider the load limit of the electric vehicle and the power level of the electric vehicle, and return to the distribution center if its load limit is exceeded. Set open list to [image: image], and the closed list is [image: image]. At this point, the vehicles are connected from front to back in the set of nodes in the v table. The resulting path is the optimized solution. Suppose the initial pheromone it generates is [image: image], [image: image] is a pheromone for other paths. [image: image] is greater than 1.
The specific steps are as follows.
1) Build the initial function, and initialize the start list [image: image] and the closed list [image: image], which calculates the valuation function for adjacent customer points [image: image] of logistics distribution center O. Substitute logistics distribution center O and its neighbors into [image: image].
2) Determine whether the open list is empty, if not, continue the iteration, and if it is empty, it ends because the optimal path cannot be found. If it is not empty, substitute the logistics distribution center O into [image: image], and the points in this list are not considered.
3) Calculate the value of the point [image: image], [image: image], and [image: image] in the open list, at which point is set [image: image] to substitute the customer point C with the least estimated cost into [image: image].
4) Determine whether the distribution volume of the electric vehicle distribution path exceeds the electric vehicle load capacity D, and if it exceeds it, return to step①.
5) If a customer point C is already in [image: image], its estimated cost needs to be recalculated and judged against the fact whether its parent node needs to be updated, and if so, substitute that customer point C into [image: image] and remove from [image: image].
6) [image: image], determine whether the target path is reached; if not, continue to step②, and if it is reached, it ends.
3.3.2 Construction path
After the A* algorithm is calculated, the initial optimal solution is obtained. Ants transfer from customer point i to select the next customer point j through certain probability selection rules. In the traditional ant colony algorithm, the state transition probability of ant m from node i to node j is expressed as shown in Eq. 31:
[image: image]
In Eq. 31, [image: image] represents all nodes that ant m can select next, C represents a collection of customer points that can be selected after ant m passes through customer point i, and α is a pheromone heuristic factor and reflects the factors that affect the path of pheromones on the ant’s selection path.β is the desired heuristic factor, and the relative importance of visibility is expressed in the path.
The heuristic factor [image: image] is the expectation of the ant from the customer point i to the customer point j, which is the key to the ant choosing the next node. This paper studies the distribution strategy with the lowest cost of logistics and distribution services, the smallest logistics distribution distance, and the greatest customer satisfaction. Combining the above factors as heuristic factors affects the optimal distribution strategy. Therefore, this study will design the heuristic factorial as follows:
[image: image]
The cost of logistics distribution services, logistics distribution distance, and customer satisfaction are used as the denominator of the heuristic factor in order for the vehicle to select the next customer demand point j by the customer point i, and the expectation is that the total cost is the smallest, the logistics distribution distance is the smallest, and the customer satisfaction is the largest. The transfer probability of customer points that meet the conditions of small total cost, short distance, and high satisfaction is increased so that vehicles are prioritized for customer points with small total distribution costs.
3.3.3 Pheromone volatile factor design
The pheromone volatility factor pertains to the rate at which pheromones dissipate. Its value intricately influences both the algorithm’s global search capacity and convergence speed. If set too high, pheromones evaporate rapidly, causing the exclusion of potentially superior paths. Conversely, a value set too low results in excessive residual pheromones along the path, thereby impacting the algorithm’s efficiency.
The size of the pheromone volatilization factor ρ-value in the ant colony algorithm determines the persistence of the above pheromone retention in the optimization path. Therefore, this paper selects the size of ρ for segmentation and adjusts the size of the pheromone volatilization factor as the number of iterations increases.
[image: image]
where n represents the current number of iterations and N represents the total number of iterations of the algorithm. Start setting ρ to a smaller value, guided by pheromones, to find the optimal path. After 0.5 N, the pheromone accumulation on the path is too high, and ρ is set to 0.3 to improve the pheromone volatilization effect and avoid the risk of falling into local optimization. When the number of iterations is more than 0.75 N, the pheromone concentration on the path reaches a large value, resulting in the corresponding increase of the ρ-value.
3.3.4 Pheromone update strategy
To make the search process more instructive, after all ants have formed their paths, the established paths are updated globally, and only the path of the ants that find the globally optimal path is updated with pheromones. The update rules are
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where G is the total amount of pheromones left by ants passing through the optimal path and [image: image] is the path length corresponding to the current total cost of the smallest. When information is flooded, the residual information needs to be updated after each ant traversal is completed. Thus, at the time t + n, the information update rules on the optimal path (i, j) are as follows:
[image: image]
For edges (i, j) that are not optimal paths, the update rules are
[image: image]
where [image: image] represents a pheromone volatile factor.
3.4 Improved genetic algorithm to solve the site selection model of the substation in the swap mode
First, the first-stage ant colony algorithm solves the path optimization model to obtain the optimal distribution path, and the function randomly generates the initial population, that is, different site combinations. Using the evaluation process to consider the cost of the power exchange, the fixed cost and the opportunity/penalty cost are minimized, and the sum of the costs of accessing the individual replacement stations is compared. The crossing operation is done by transposing the middle part of the parent’s tangent location. It then goes through multiple crossovers, variations, and iterations. Finally, the individual satisfies the constraints and makes the adaptation optimal so as to solve the site selection scheme that meets the minimum total cost of the replacement station site. The solution process is as follows:
1) The function is used to generate an initial population with a population of 100, the number of genes in the population equals the total number of customers, and the length of the individual is equal to the total number of demand points in each path.
2) The cross rate, number of evolutions, and number of iterations are set, considering the actual situation of the construction cost of the replacement power station. In this paper, the crossover rate is set to 0.5, the rate of variation is 0.05, and the number of iterations of the algorithm is 200.
3) The constraint subfunction is set; this stage considers the electric vehicle power level constraint, customer satisfaction time window, and power change path constraint. Among them, the power exchange power is negatively correlated with the remaining power of the electric vehicle, and the power exchange time is fixed.
4) The fitness function is set, the individual fitness degree in the genetic algorithm is directly proportional to the adaptability, and the goal of this paper is to minimize the total power exchange cost, including the additional electricity cost and opportunity penalty cost generated by visiting the replacement station.
5) Parental cross-mutation, the cross-operator that acts on the population, crosses by transposing, exchanges some genes between paired chromosomes, and crosses the part to mutate.
6) When the number of iterations reaches the specified number of iterations, the loop ends and outputs the final result.
According to the above algorithm introduction, the main steps of the two-stage hybrid algorithm are shown in Figure 3.
[image: Figure 3]FIGURE 3 | Two-stage hybrid algorithm design diagram.
4 STUDY ANALYSIS
In order to verify the applicability of the site selection model in the power exchange mode, this section uses the model solution case to study the optimal distribution path and the best site selection scheme and the total cost of distribution in this context, and compares the site selection decision and logistics distribution cost under the power exchange mode in order to draw realistic conclusions. In this paper, the different results of the objective function have been standardized and dimensionally unified in the calculation process.
4.1 Experimental data
The study data selected in this paper are shown in Table 1, assuming that a distribution center and 30 customers are distributed in a square area with a side length of 80 km, the coordinate unit is km, the customer’s demand for goods is generally 0–2 t; the location coordinates of the logistics distribution center and 30 customers, and the customer’s cargo demand and time window are shown in Table 1. Assuming that there are a total of 10 electric logistics vehicles of the same type in the distribution center, the maximum load capacity is 8 t, the average driving speed is 40 km/Li, the electricity cost per kilometer in the distribution process is 1 yuan, the unit time opportunity cost of the early arrival of the vehicle is 10 yuan/hour, the unit penalty cost of late arrival is 30 yuan/hour, and the fixed travel cost of the vehicle is 200 yuan/car. According to the above conditions, it is required to meet the constraints of the vehicle load and customer time window and make the total distribution cost and customer satisfaction the greatest by reasonably arranging the distribution route of the vehicle. Table 2
TABLE 1 | Study data table.
[image: Table 1]TABLE 2 | Electric vehicle-related parameters.
[image: Table 2]4.2 The result of the model solution
4.2.1 Considering the results of logistics distribution route optimization for time windows
According to the experimental data given in Table 1, this paper uses the method of combining the A* algorithm and the ant colony algorithm to generate the optimal route based on the pheromone iteration, and the optimal distribution path and optimal roadmap are obtained, as shown in Table 3 and Figure 3.
TABLE 3 | Optimal route for electric vehicle distribution.
[image: Table 3]When there is no power exchange behavior, the improved ant colony algorithm in the first stage of this paper design is used to solve the path planning model and obtain the optimal distribution route, and the total cost of distribution generated under the path is 1942.85 yuan. From the path optimization results, it can be seen that subjected to the constraints of the customer’s time window, the first, second, and third paths require multiple electric vehicles for joint distribution to meet the customer’s time window needs, and the total number of delivery vehicles required for distribution is 5. The resulting fixed cost of electric vehicles is 1000 yuan, the distance cost of electric vehicles is 698.67 yuan, and the penalty cost and opportunity cost of the time window are the smallest, 244.16 yuan. It can be seen from this that the distribution route should be reduced as much as possible under the condition of meeting the constraints of the customer’s time window, and the number of vehicles used, that is, the fixed cost expenditure. The optimal delivery route diagram in this article is shown in Figure 4.
[image: Figure 4]FIGURE 4 | Optimal path for electric vehicles.
4.2.2 The result of the site selection of the substation in the power exchange mode
Based on the optimal path optimization map of logistics and distribution obtained above, this paper will next solve the site selection problem of the replacement station, considering the cost of the electric vehicle power exchange and the construction cost of the power exchange station. The difference between model solving in the power-swap mode and no swapping behavior is when the car has less power left, and it will enter the designated substation for power exchange. The entire power exchange process takes a shorter and fixed time than the charging time. The penalty cost and opportunity cost of the time window in this mode will have an impact, as well as the cost of replacing the electricity. Based on the optimal path optimization map, the location coordinates of the candidate points of the alternative station are obtained in this paper, as shown in Table 4.
TABLE 4 | Location coordinates of the candidate point of the substation.
[image: Table 4]Since the vehicle enters the power exchange station for power exchange will delay a certain amount of time, resulting in a change in the time when the electric vehicle arrives at each customer point, the corresponding time window penalty cost and opportunity cost will also change. According to the optimization results of the logistics distribution path obtained above considering the time window, the relevant parameters of the electric vehicle and those of the substation are combined. Considering the load capacity and power constraints of electric vehicles, the second stage of the two-stage hybrid algorithm–genetic algorithm solution is used to minimize the cost of power exchange, the construction cost of the power exchange station, and the total distribution cost. Thus, obtaining the total cost of power exchange for electric vehicles to reach each substation for power exchange, the total cost of each path is shown in Table 5 below.
TABLE 5 | Parameters related to the substation.
[image: Table 5]From the results in Table 6, it can be seen that in the power exchange mode, the electric vehicle has insufficient endurance of paths 2 and 3, the customer point 11 of path 1 has an insufficient power problem, the reachable candidate points are 1 and 5, and the total cost of the path to reach candidate point 1 is the smallest, so customer 12 chooses to change power at candidate point 1. In the same way, it can be known that customer points 5, 8, 13, and 9 are replaced at candidate points 5, 5, 1, and 1, respectively. Vehicle 1 in paths 1, 4, and 5 selects candidate point 1, while paths 2 and 3 select candidate point 5, mainly because the customer point in path 1 requires a later delivery time, and the power change mode of the electric vehicle reduces the power replenishment time. As a result, vehicles have plenty of time to travel to distant substations, reducing their opportunity costs. Based on the above results, the best candidate addresses for the replacement station in the power exchange mode are candidate points 1 and 5, and the single power exchange cost is 1139.2 yuan, of which the electricity cost is 338.3 yuan, and the opportunity cost and penalty cost are 445.5 yuan. In the following analysis, this article will discuss the path optimization and site selection of different time windows and power exchange rates.
TABLE 6 | Total cost of distribution for each route in the case of a power swap (yuan).
[image: Table 6]4.3 Analysis of influencing factors
Mainly based on the following four situations for analysis and comparison, scenario 1 is the model and method mentioned in the text, and the compromise values in the text are selected for comparative analysis; scenario 2 does not consider customer satisfaction, and the goal is to solve the lowest logistics and distribution costs; scenario 3 does not consider the cost of distribution, and the goal is to achieve the highest customer satisfaction; and scenario 4 targets minimal replacement costs and maximum customer satisfaction.
4.3.1 Time window influencing factors
Based on the definition of the above scenario, the logistics distribution path of the logistics distribution center in scenarios 1, 2, 3, and 4 is shown in Figure 5, and the corresponding logistics distribution journey cost, upper time window opportunity cost, lower time window penalty cost, fixed cost, power replacement cost, and customer satisfaction results are given in Table 7.
[image: Figure 5]FIGURE 5 | Logistics distribution routes in four scenarios.
TABLE 7 | Logistics distribution costs and customer satisfaction.
[image: Table 7]Based on Figure 5, it can be seen that the electric vehicle logistics distribution path in scenario 1 has fewer crossovers, scenario 2 has less, scenario 3 has more crossover paths, and scenario 4 has the most crossovers. According to Table 4, with the increase in the number of path crossings, in order to meet the goal of maximum customer satisfaction, the corresponding logistics distribution costs and power exchange costs will increase. Based on scenario 2, it can be seen that the total cost of logistics distribution is lower when the goal of maximum customer satisfaction is not considered. At this time, the total cost of logistics distribution is 1995.27, which will only be distributed under the premise of meeting the time window with the shortest path as the goal, although the distance distribution cost and power replacement cost are reduced, but due to the lack of consideration of the customer’s time window factor, the customer’s satisfaction level decreases to 0.67. For scenario 3, the customer satisfaction level is the largest, 0.87; compared with scenario 2, the satisfaction level increased by 20%, and the total cost of logistics distribution under this scenario is 2012.54, mainly because the logistics distribution center delivers the goods within the specified time window, and the electric vehicle driving route needs to be adjusted in the logistics distribution process, which brings more logistics distribution path crossover and power exchange costs. Scenario 4 considers the goal of the minimum power exchange cost and the maximum customer satisfaction level of the electric vehicle; it can be seen from Table 4 that the customer satisfaction level of scenario 4 has increased by 15% compared with scenario 2, and the power exchange cost is 208.11, which is 97.12 yuan lower than the replacement cost of the electric vehicle and the loss cost of the electric vehicle.
4.3.2 Factors affecting the amount of power exchanged
In order to prevent electric vehicles from re-entering the power exchange station for power exchange due to more remaining electricity, it will affect the normal power exchange order of the power exchange station. This paper assumes that when the residual power of the electric vehicle is less than 20%, the profit factor of the replacement station is 1.2, and it is ascending in steps, and the profit factor of the replacement station increases by 0.1 for every 20% increase in the remaining electricity. This section discusses the impact of the remaining power exchange on the site selection decision, logistics and distribution costs, and power exchange costs of the replacement station. The relationship between the amount of electricity exchanged and the cost of exchanging electricity is shown in Figure 6.
[image: Figure 6]FIGURE 6 | Diagram of the relationship between the amount of power exchanged and the cost of the power exchange.
As can be seen from Figure 6, the remaining power of electric vehicles is 0%–100%, and with the reduction of the remaining power of electric vehicle batteries, the total cost of logistics and distribution of electric vehicles has dropped from 2019.37 yuan to 1942.34 yuan, and the cost of power replacement has dropped from 354 yuan to 40 yuan. At the same time, the opportunity cost and penalty cost on the time window are also slowly increasing, from 293.27 yuan to 300.37. From the perspective of the degree of change in the cost of power exchange, the main reason is that with the reduction of the remaining power of electric vehicles, the profit factor of the replacement station is reduced, so when the remaining electricity is closer to 0, the unit replacement cost is smaller. From the perspective of the opportunity cost and penalty cost of the time window, the more the remaining power of the electric vehicle, the more it can ensure that the electric vehicle meets the distribution needs of the remaining customers, and there will be no need to replace the electricity in the middle, which will make the electric vehicle better meet the needs of customers, and the opportunity cost and penalty cost of the time window will be reduced.
Therefore, in order to meet the goal of the minimum total cost and the greatest customer satisfaction of logistics distribution, the gradient electricity price can be set according to the remaining electricity of the electric vehicle to reduce the unit replacement cost. On one hand, it can motivate electric vehicles to choose a power exchange station for power exchange, improve the income of the power exchange station, reduce the number of times the electric vehicle re-enters the replacement station, and effectively improve the battery utilization rate. On the other hand, due to the fixed power change time, electric vehicles can decide whether to change electricity according to their own remaining electricity and the time window needs of customer orders, effectively improving the efficiency of electric vehicle distribution.
5 CONCLUSION
Based on the impact of time window requirements on customer satisfaction, combined with the implementation of the gradient management of power exchange prices, this paper establishes a logistics distribution path optimization and site selection model for electric vehicles based on the maximum customer satisfaction and the lowest total cost. Among them, the total cost includes logistics and distribution costs, power station construction costs, power exchange costs, and fixed costs of electric vehicles. Aiming at the path optimization and site selection problem of electric vehicles, this paper designs a two-stage hybrid algorithm combining the ant colony algorithm and genetic algorithm to solve the problem, takes a distribution center as an example to select the study data to solve the model, performs numerical analysis, and analyzes whether the time window is set and the impact of the amount of power exchange on the total cost. The results of this paper show the following:
(1) The optimization of electric vehicle paths and the site selection planning of the replacement station considering customer satisfaction can not only effectively reduce the cost of logistics distribution and the cost of power exchange but also improve the level of customer satisfaction. When the cost of travel decreases from 793.4 to 698.67, customer satisfaction also increases from 0.8 to 0.82.
(2) Reduction in the number of path crossings during logistics and distribution routes saves 3.28% of the cost of electric vehicle electricity and logistics and distribution costs, and helps reduce the total cost of the entire logistics distribution network.
(3) The gradient setting of the electricity exchange price will reduce the cost of power exchange, improve the utilization efficiency of the battery while reducing the cost of logistics and distribution, and improve the power exchange income of the power exchange station.
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Deflectors offer a cost-effective solution for enhancing airflow distribution. The purpose of this paper is to investigate the effect of the deflector on the indoor airflow velocity distribution under natural ventilation conditions. The results obtained from numerical simulations are validated through experimental measurements using a reduced-scale model. Subsequently, the validated reduced-scale numerical model was extended to full-size rooms. A full-size numerical simulation method is used to analyze the effect of no deflector, deflectors with different opening width-to-height ratios and deflectors with different opening shapes on the percentage of indoor velocity partitions under natural ventilation conditions. The findings reveal that the judicious installation of deflectors can enhance indoor airflow velocity distribution and increase the percentage of the indoor comfort zone. Deflectors with different opening width-to-height ratios exert distinct influences on indoor airflow velocity distribution. When the deflector opening width-to-height ratio is set at 7/6, the indoor comfort zone percentage reaches its maximum at 75.98%. Furthermore, the shape of the deflector’s opening significantly affects indoor airflow velocity distribution, and when the opening shape is a rhombus shape of 4.00 cm × 9.00 cm, the proportion of indoor velocity comfort zone is the largest, which is 75.56%. This study provides a reference for the design and practice of natural ventilation in buildings.
Keywords: deflector, velocity distribution, natural ventilation, numerical simulation, reduced-scale model
1 INTRODUCTION
Reducing carbon emissions in the construction sector is crucial for China’s strategic goals of achieving carbon peaking and carbon neutrality. The substantial use of non-renewable energy in the construction industry has emerged as a significant contributor to global warming and environmental degradation (Alhamami et al., 2023; Nie et al., 2023). Hence, the prevailing global trend is to develop clean energy technologies like wind energy to mitigate greenhouse gas emissions. Natural ventilation, as a passive green building technology measure (Wang and Malkawi, 2019), can improve the building environment by increasing the level of indoor thermal comfort, which aids in preventing the development of “sick building syndrome” and reducing the risk of epidemic transmission (Fantozzi et al., 2022; Ren et al., 2022). Buildings incorporating natural ventilation often exhibit energy costs that are 40% lower than those relying on air conditioning. In regions with comfortable outdoor climates, natural ventilation serves as a cost-free cooling resource (Ayata and Yıldız, 2006; Odi et al., 2022; Qin et al., 2022). Beyond delivering fresh air to interior spaces, promoting indoor air circulation, and eliminating indoor air pollutants to enhance indoor air quality (Lei et al., 2017), effective use of natural ventilation can curtail the demand for air conditioning, reduce indoor temperatures, ameliorate indoor heat and humidity conditions (Liping and Hien, 2007), and enhance thermal comfort (Wong et al., 2002; Costanzo and Donn, 2017).
Understanding how natural ventilation affects the indoor environment of a building, primarily ventilation rates and indoor air temperatures, is crucial for evaluating the design of these low-energy buildings. Various methods are employed to forecast and assess ventilation performance, including full-size model experiments, empirical formulas, scale model experiments, and CFD numerical simulations (Chen, 2009). Field measurements of the indoor thermal environment in full-size buildings are, however, more challenging to conduct in much research. This is due to the fact that external climatic conditions are often complicated, ever-changing, and uncontrollable during field tests in prototype buildings (Omrani et al., 2017a), particularly for ventilation that is solely buoyancy-driven. Consequently, there is a growing interest in investigating the indoor thermal environment using reduced-scale models. In order for the reduced-scale model results to be applicable to full-size buildings, the primary similarity criterion should be satisfied with equal values. Many scholars have employed reduced-scale model experiments in their research. For instance, Guo et al. (2018) developed a reliable and effective methodology to evaluate the performance of buoyancy-driven ventilation in large-space buildings, using reduced-scale experimental models and numerical simulations of full-size prototypes. Liu et al. (2009) used scaled-down modeling tests to predict the performance of buoyancy-driven ventilation for atrium buildings and used internal heat loads to simulate as a heat source for building-driven buoyancy; furthermore, it evaluated the efficiency of buoyancy-driven ventilation under hot and humid climatic conditions. Le Roux et al. (2012) highlighted the significance of accounting for the effect of wind on airflow in mechanically ventilated buildings through scaled-down model experiments. They developed a new methodology to study steady-state and transient isothermal flows in buildings equipped with ventilation systems.
Computational Fluid Dynamics (CFD) is another method for examining the impact of natural ventilation on a building’s indoor environment. The benefits of CFD include low cost, high efficiency (Yang et al., 2015; Tian et al., 2018; Zhang and Ryu, 2021), and the capacity to compute pertinent non-measurable parameters (Liu et al., 2009). CFD technology has rapidly advanced alongside computer science and technology. Through CFD analysis of the wind environment within buildings, it becomes possible to predict indoor airflow distribution (Zou et al., 2021), assess indoor air quality, and evaluate comfort levels. In 1974, Nielsen of Denmark pioneered the application of CFD technology for airflow simulation in ventilated rooms (NIELSEN, 1974). Wang Y. et al. (2021) systematically compared the ventilation characteristics of different window opening configurations using computational fluid dynamics (CFD) simulations, combining ventilation rates and thermal comfort to provide a comprehensive evaluation of window ventilation performance. Yang et al. (2015) numerically simulated the transient development of buoyancy-driven natural ventilation by modeling. And numerical simulation was used to analyze the airflow characteristics in three cases where the initial indoor temperature is equal to, higher than and lower than the outdoor temperature. Asfour and Gadi (2008) used Computational Fluid Dynamics (CFD) to study the effect of a vaulted roof as a wind inducing device in a building on the performance of natural ventilation, and evaluated the performance of the natural ventilation based on the value of the airflow rate and the quality of the internal airflow distribution.
In contemporary urban planning and building design, natural ventilation is often disregarded as a passive green building technology. Typically, local seasonal wind directions are not considered when planning and designing residential and workplace environments. While it is relatively simple to introduce fresh outdoor air into a building’s interior through doors and windows to enhance indoor air quality (Prueksakorn et al., 2015; Wen and Hiyama, 2018), this approach can lead to excessive wind speeds in localized indoor areas and result in uneven indoor airflow distribution. In fact, for maintaining thermally comfortable environments, the recommended upper limit for indoor airflow velocity is 1 m/s. When the wind speed exceeds 1 m/s, this is when the airflow begins to pick up light weight objects (ASHRAE, 2020). Therefore, there is an urgent need to implement effective and practical methods for directing airflow to enhance indoor airflow distribution.
Currently, numerous scholars have conducted research on air deflectors. The working principle of airflow deflectors relies on utilizing the pressure differential created by their physical structure to induce directional changes in airflow. Consequently, the reasonable installation of deflectors can significantly enhance indoor airflow distribution. Che et al. (2022) have conducted an investigation into the impact of airflow deflector designs installed in external windows on airflow distribution performance and the risk of infection in a wind-driven naturally ventilated classroom. Different sizes of airflow deflectors were designed based on four external window openings, and the performance was compared to obtain the best deflector. Liu et al. conducted a study examining the influence of deflector adjustments on diffusers, with performance assessed using air diffusion performance index values. The findings revealed that the upward blade deflector significantly enhances the air diffusion performance index value of the blade grille. In general, downward jets reduce the air diffusion performance index value for each adjustable diffuser type when operating under cooling conditions (Liu and Novoselac, 2016). Song et al. (2021) improved the trajectory of cold airflow from perforated bricks to the rack by implementing deflectors in the cold aisle. This optimization enhanced the uniformity of airflow distribution vertically and overall thermal environment around the rack. Cheng et al. (2023) have conducted experiments on deflection ventilation for winter heating. The effects of different air supply speeds, air supply temperatures and deflection angles on air distribution were analyzed, and the thermal comfort and energy efficiency were comprehensively evaluated.
Most of the aforementioned studies have focused on air-conditioning air supply outlets, exploring various deflector forms such as louvers and grille types, as well as the application of deflectors in internal equipment like fans and ducts. However, there is a paucity of research regarding the implementation of deflectors in buildings operating under natural ventilation conditions. Therefore, the purpose of this study is to analyze the effects of setting different opening width-to-height ratios and different opening shapes of deflector panels on the indoor airflow velocity distribution in a room under natural ventilation conditions. An office in Hefei area is used as a research object for experiment and simulation. Numerical simulations and experiments employ a reduced-scale model, with experimental results used to validate numerical findings. The validated reduced-scale numerical model is extended to the full-size room, and then full-size numerical simulation is used to analyze the effects of no deflector, deflector with different opening width-to-height ratios, and deflector with different opening shapes on the percentage of indoor velocity comfort zones under natural ventilation conditions, reflecting the indoor airflow distribution of the actual building. This study helps to set up indoor deflectors more scientifically and rationally under specific conditions to improve indoor airflow distribution and increase the proportion of indoor velocity comfort zone in order to avoid excessive indoor air velocity caused by cross ventilation. Moreover, the findings of this study provide a reference for the design and practice of natural ventilation in buildings.
2 METHODS
2.1 Experimental methods
2.1.1 Experimental site and apparatus
This study focuses on an office space situated in the Hefei area. The office has dimensions of 3.6 m in length, 4.0 m in width, and 3.0 m in height. It features a south-facing opening measuring 0.6 m × 1.2 m and a north-facing opening measuring 0.9 m × 2.1 m. Notably, the north-south opening is situated directly opposite. During the transitional season and summer in Hefei, the prevailing natural ventilation wind direction is from the southeast, with an average wind speed of 3.2 m/s in the southern direction.
The apparatus used in the experiment included a 5 mm thick acrylic plate model, an electric fan and a thermosensitive anemometer, as shown in Figure 1. The thermosensitive anemometer used is the SMART SENSOR AR866A model, with a measurement accuracy of ±1% and a resolution of 0.01 m/s. The probe diameter is 11 mm, which can be stretched to 920 mm, and the instrument and the line are about 2.1 m long. Additionally, the instrument featured a USB interface enabling real-time measurement and data recording on a computer. It also had the capacity to store data for up to 500 sets.
[image: Figure 1]FIGURE 1 | Experimental apparatus: (A) Acrylic plate model; (B) Electric fan; (C) Thermosensitive anemometer; (D) Schematic diagram of thermosensitive anemometer probe.
2.1.2 Similarity analysis
In this test, the medium used in the model and the prototype is air, and the air flow is turbulent, non-isothermal, incompressible, viscous three-dimensional steady flow, and the basic differential equations of the viscous fluid are dimensionally-processed to obtain the following functional equations.
[image: image]
Where [image: image] is the Prandtl number; [image: image] is the Reynolds number; [image: image] is the Froude number; [image: image] is the Euler number.
Since the medium used in both the model and the prototype is air (Xie et al., 2021), i.e., [image: image], [image: image] is a non-qualitative characteristic number, [image: image], thus, Eq. 1 can be rewritten as.
[image: image]
In practical engineering and modeling tests, air flow is generally in the drag square region, the Reynolds number [image: image] is generally greater than 4,000. The air flow along the drag coefficient [image: image] is only related to the equivalent roughness [image: image], but not related to [image: image], that is, the flow into the Reynolds self-simulating region (Walker et al., 2011). The reduced-scale model experiments in this paper satisfy this condition, and the [image: image] number need not be considered in the simulation process. Therefore Eq. 2 can be transformed into.
[image: image]
The Froude number ([image: image]) in Eq. 3 is defined as:
[image: image]
Where [image: image] is the air supply velocity, m/s; [image: image] is the free fall acceleration, m/s2; [image: image] is the characteristic length, m.
When designing using the Froude criterion, it is required that the rooms and models have equal Froude numbers, which can be expressed according to Eq. 4 as follows: (Xie et al., 2021).
[image: image]
where the mark "′" is added to indicate the corresponding parameter of the prototype. Let the free-fall acceleration scale [image: image], geometric scale [image: image], and velocity scale [image: image]′.
When the model test conditions are basically similar to the prototype conditions, [image: image] can be assumed, and the velocity scale can be derived from Eq. 5 as follows.
[image: image]
In the experiment of this paper, the geometric scale [image: image], and the actual incoming wind speed is 3.2 m/s. According to Eq. 6, the inlet wind speed can be calculated as [image: image]. Therefore, the southward inlet wind speed in this reduced-scale model experiment is 1.0 m/s.
2.1.3 Experimental model
The reduced-scale model experiment employs a room model with dimensions of 36 cm in length, 40 cm in width, and 30 cm in height, as depicted in Figure 2. The size of the south-facing opening of the model is 6 cm × 12 cm, the height from the bottom is 9 cm, the size of the north-facing opening is 9 cm × 21 cm, and the size of the indoor set deflector is 12 cm × 12 cm, the height from the bottom is 9 cm, and the distance from the south-facing opening is 14 cm, which is scaled down by 10 times. Geometric similarity between the model and the prototype is upheld, with the model crafted from specially treated plexiglass acrylic plate of 5 mm thickness. The chosen acrylic plate boasts notable advantages, including robust impact resistance, high recyclability, ample rigidity and strength, ease of processing and molding, and simple maintenance. Importantly, the acrylic plate remains resilient against significant vibrations and deformations throughout the experimental course.
[image: Figure 2]FIGURE 2 | Reduced scale experimental model.
The arrangement of measurement points for the experimental model is illustrated in Figure 2. At the top of the model, a circular hole with a diameter of 15 mm (11 mm diameter of the thermosensitive anemometer probe) serves as the designated measurement point. These measurement points are symmetrically positioned along the centerline of the building model, as depicted in Figure 3. The total count of measurement points corresponds to 14.
[image: Figure 3]FIGURE 3 | Schematic diagram of measurement point layout.
2.1.4 Experimental scheme design
To investigate the impact of varying width-to-height ratios and distinct shapes of deflector plate openings on the indoor velocity partitioning ratio within the context of natural ventilation, this paper introduces the subsequent experimental plan: 1) a hole was opened in the deflector plate, and eight deflector plates with different width to height ratio openings were set, the opening sizes of the deflector plates were shown in Table 1, and the schematic diagram of the openings was shown in Figure 4; 2) A hole is opened in the deflector plate with the same opening area, and the opening shapes are circular, 4.00 cm × 9.00 cm rhombic, square and 9.00 cm × 4.00 cm rhombic. The shape and size of the specific deflector opening is shown in Table 2, and the schematic diagram of the opening is shown in Figure 5.
TABLE 1 | Table of deflector opening dimensions.
[image: Table 1][image: Figure 4]FIGURE 4 | Schematic diagram of the different width to height ratio openings of the deflector: (A) Width to height ratio 3/6; (B) Width to height ratio 4/6; (C) Width to height ratio 5/6; (D) Width to height ratio 6/6; (E) Width to height ratio 7/6; (F) Width to height ratio 8/6; (G) Width to height ratio 9/6; (H) Width to height ratio 10/6.
TABLE 2 | Different shape opening size table.
[image: Table 2][image: Figure 5]FIGURE 5 | Schematic diagram of different shapes of deflector openings: (A) Circular; (B) 4.00 cm × 9.00 cm Rhombus; (C) Square; (D) 9.00 cm × 4.00 cm Rhombus.
2.1.5 Experimental steps
The experimental protocol commenced by establishing the model’s fixed position, followed by meticulous adjustments to both the distance and height between the fan and the window opening. Drawing from similarity theory (Han and Li, 2021), a hot-wire anemometer was deployed to gauge the wind speed at the entrance, thereby maintaining a constant inflow velocity of 1.0 m/s. The experiment aims to measure the wind speed at a 15 cm height within the model. To minimize experimental errors, it is essential to maintain the thermal probe of the thermosensitive anemometer perpendicular to the incoming flow direction. The experimental measurement diagram is shown in Figure 6. Then, use the anemometer to test the wind speed at 14 measurement points. To ensure the accuracy of the measurement results, take 10 consecutive instantaneous velocity values for each measurement point and calculate the average value as the final velocity value at each measurement point.
[image: Figure 6]FIGURE 6 | Experimental measurement diagram.
2.2 Simulation methods
2.2.1 Geometric model and numerical methods
Airpak software is now widely used to simulate indoor and airflow organization distribution (Zhang and Ryu, 2021; Zhang et al., 2023). In this study, we employed the Airpak software to construct a scaled-down numerical model of a room, measuring 36 cm in length, 40 cm in width, and 30 cm in height. During the simulation, all doors and windows remained open. The room model is depicted in Figure 7, with the x-axis denoting the depth direction, the y-axis representing height, and the z-axis indicating width. The arrangement of numerical simulation measurement points is the same as that of the reduced-scale model experiment. The velocity values of each measurement point were calculated directly by Airpak software when the deflectors with different opening width to height ratio and different opening shapes were set in the room.
[image: Figure 7]FIGURE 7 | Schematic diagram of the room geometry model.
In order to study the flow of indoor air in the real state, a 1:1 full-scale modeling was conducted, and the room model size was 3.6 m × 4.0 m × 3.0 m (length × width × height). The natural ventilation of the room with all windows and doors open is simulated. The airflow distribution in the cross-section at the height of y = 1.5 m (height of human activity) was investigated by numerical simulation of the room without deflector, with deflectors with different opening width-to-height ratios and deflectors with different opening shapes.
Indoor air flow is incompressible and low-speed turbulent. This paper employs the indoor zero-equation model for its extensive validation, characterized by rapid computational speed and stable convergence when predicting various airflow scenarios, including natural convection (Vera et al., 2010), forced convection, mixed convection, and displacement ventilation within a room. This model is well-suited for forecasting indoor airflow distribution and has demonstrated its effectiveness, particularly under mixed convection conditions (Ling et al., 2015). In this study, the SIMPLE (semi-implicit method for pressure dependent equations) pressure-velocity coupling algorithm is used (Fan et al., 2022; Liu et al., 2022; Mohamed et al., 2022).
2.2.2 Boundary conditions
The boundary conditions of the reduced-scale model are determined based on the full-size working conditions as well as similar scales. The boundary conditions of this simulation are as follows: the pressure boundary is chosen, and the southward inlet wind pressure of the room is determined according to [image: image]. The wind pressure at the northward opening is negligible. The boundary conditions of the full-size and reduced-scale models are set as shown in Table 3.
TABLE 3 | Boundary condition settings.
[image: Table 3]2.2.3 Mesh generation
The simulation was conducted using the Airpak software to mesh the computational region with a hexahedral unstructured grid. As an example, five different grid schemes were selected for the simulation when a circular hole was opened in the deflector of the reduced-scale model. The number of divisions for these schemes was 14,520, 17,664, 22,818, 34,210, and 44,404 grid cells, respectively. To investigate the grid independence (Strasszer and Xydis, 2020; Yuan et al., 2020; Wang Z. et al., 2021), the measurement point was chosen at the center of the deflector opening. Figure 8 illustrates the wind speed variations at the measurement point for different grid numbers. When the number of grids is less than 22,818, there is a noticeable difference in air velocity at the measurement point. However, when the number of grids is equal to or greater than 22,818, the air velocity at the measurement point remains relatively stable. The air velocities at the measurement point for grid counts of 22,818, 34,210, and 44,404 are recorded as 0.66 m/s, 0.66 m/s, and 0.67 m/s, respectively. The air velocity deviation among the three grid schemes is within 5%. Therefore, 22,818 grid cells were selected as the meshing scheme for this study, as shown in Figure 9. The meshing quality is good and meets the requirements for the simulation.
[image: Figure 8]FIGURE 8 | Grid independence analysis.
[image: Figure 9]FIGURE 9 | Mesh division.
2.3 Indoor air velocity interval division
Indoor air velocity significantly influences indoor airflow distribution and is intricately linked to human thermal comfort (Prianto and Depecker, 2002; Omrani et al., 2017b). This study, considering existing research findings along with regional and indoor work characteristics, adopts a range of 0.25 m/s to 1.00 m/s as the benchmark for evaluating indoor wind speed comfort. Below 0.25 m/s, indoor wind speeds are too low for occupants to readily perceive, while wind speeds above 1.00 m/s cause discomfort to the occupants. Wind speeds in the range of 0.25 m/s to 1.00 m/s provide for human comfort. Consequently, this paper classifies indoor wind speed intervals under natural ventilation conditions as follows: the low wind speed zone ranges from 0.00 m/s to 0.25 m/s, the comfortable speed zone ranges from 0.25 m/s to 1.00 m/s, and wind speeds exceeding 1.00 m/s fall into the high wind speed zone.
3 RESULTS AND DISCUSSION
3.1 Experimental results and discussion
The measured and simulated outcomes from the reduced-scale model experiments are compared and analyzed to validate the reasonableness and effectiveness of the simulation approach. The following is a comparison between the measured results and simulated results for the deflector plate with different opening width to height ratio and different opening shape respectively.
Velocity measurements were taken at 14 specific points located at a cross-sectional height of y = 15 cm, while varying the opening width-to-height ratios and shapes of holes within the deflector’s center. The measured velocity values at each measurement point of the reduced-scale model and numerical simulation are shown in Figures 10A, B when the holes with different width-to-height ratios are opened in the middle of the deflector. The measured and numerical simulation values of velocity at each measurement point of the reduced-scale model are shown in Figures 10C, D when a hole of different shapes is opened in the middle of the deflector. As can be seen from the figure, as the width-to-height ratio of the deflector opening and the shape of the opening change, the velocity values at each measurement point change accordingly, but the overall trend remains consistent. The flow of outdoor air enters through windows, passes through the room’s deflector opening, and exits through the opposite door, creating cross-ventilation. Consequently, measurement points 1, 5, 11, and 14 exhibit higher velocity values. As air velocity decreases from the room’s entrance to the exit of the incoming flow, airflow velocity gradually diminishes. Obstructions in airflow occur at unopened holes of the deflector plate, generating vortices in the area behind the deflector plate, leading to near-zero velocity values at measurement points 4 and 6. With decreasing air velocity, measurement points 7, 8, 9, 10, 12, and 13, situated farther from the entry point, also exhibit lower and near-zero velocity values.
[image: Figure 10]FIGURE 10 | (A) Measured speed diagram of different width-to-height ratio openings; (B) Simulated speed diagram of different width-to-height ratio openings; (C) Measured speed diagram of different shapes of openings; (D) Simulated speed diagram of different shapes of openings.
The numerical simulation data at 14 measurement points in this experiment were compared with the measured data of the reduced-scale model. As shown in Figure 10, the experimental measurements of the reduced-scale model are slightly larger than those of the numerical simulation, but the overall trend remains consistent. Table 4 lists the mean absolute error and root mean square error between the experimental and simulated results for the deflectors with different opening width to height ratio and deflectors with different opening shapes. After analysis, it was found that the maximum value of the mean absolute error between the simulated and measured values of wind speed is 0.0721 m/s, and the maximum value of the root mean square error is 0.0834 m/s, and these errors are within the acceptable range. Therefore, the results of the numerical simulation can better reflect the experimental results. The validated numerical model can be used for full-size working condition expansion, and the results can truly reflect the airflow distribution inside the building.
TABLE 4 | Comparison of numerical simulation results with experimental measurements.
[image: Table 4]3.2 Full-scale simulation results and analysis
The full-size simulation comprises three cases: under natural ventilation conditions, the indoor airflow velocity distribution is simulated and analyzed in scenarios with no deflectors, with deflectors of varying opening width-to-height ratios, and with deflectors of different shapes. The role of the deflector is to increase the wind pressure of the environment or guide its flow direction to change through some way and equipment construction, the windward side of the deflector is the positive pressure area, and the backward side of the deflector is the negative pressure area.
3.2.1 No deflector
As depicted in Figure 11, the velocity distribution at a height of y = 1.5 m in the absence of a deflector is illustrated. Outdoor air enters the room through the southern entrance and exits through the northern air vent, establishing cross-ventilation. The air velocity is highest at the south side inlet, and localized areas in the middle section have higher air velocities due to cross ventilation.
[image: Figure 11]FIGURE 11 | Velocity cloud at y = 1.5 m height without deflector.
As indicated in Table 5, in the absence of a deflector within the room, the velocity cloud diagram of the cross-section at a height of y = 1.5 m comprises 3.06% in the low wind speed zone, 62.11% in the comfort speed zone, and 34.83% in the high wind speed zone.
TABLE 5 | Distribution of each velocity partition in numerical simulation without deflector.
[image: Table 5]3.2.2 Deflectors with different width-to-height ratio openings
Illustrated in Figure 12, outdoor air flows into the room through the southern entrance, with the highest wind speed observed at this inlet. Encountering the obstruction at the unopened place of the deflector plate, vortex will be generated at the back of the deflector plate, resulting in the value of the air velocity at the back of the deflector plate in a large area close to zero. Through the openings in the room deflector, air flows from one side of the room to the other, creating cross ventilation and resulting in higher air velocities in localized areas. As the width-to-height ratio of the deflector opening increases, the percentage of the low-wind-speed zone in the velocity cloud diagram at the cross-section of y = 1.5 m height decreases, while the proportion of the comfortable-speed zone and high-wind-speed zone increases.
[image: Figure 12]FIGURE 12 | Velocity cloud at y = 1.5 m height when the deflector is opened with different width-to-height ratio openings: (A) Width to height ratio 3/6; (B) Width to height ratio 4/6; (C) Width to height ratio 5/6; (D) Width to height ratio 6/6; (E) Width to height ratio 7/6; (F) Width to height ratio 8/6; (G) Width to height ratio 9/6; (H) Width to height ratio 10/6.
Figure 13 illustrates the effect of variations in the width-to-height ratio of the deflector openings on the percentage of indoor velocity partitioning. As the width-to-height ratio increases from 3/6 to 7/6, there is a continuous reduction in the proportion of the low wind speed zone, decreasing from 11.79% to 3.75%, representing an 8.04% decrease. Concurrently, there is an increase in the proportion of the speed comfort zone, rising from 72.38% to 75.98%, indicating a 3.60% increase. Additionally, the proportion of the high wind speed zone rises from 15.83% to 20.27%, reflecting a 4.44% increase. Subsequently, when the width-to-height ratio of the deflector opening increases from 7/6 to 8/6, the percentage of the low wind speed zone experiences an increase from 3.75% to 7.33%, a growth of 3.58%. Simultaneously, the percentage of the speed comfort zone decreases from 75.98% to 71.38%, representing a 4.60% decrease. Additionally, the percentage of the high wind speed zone increases from 20.27% to 21.29%, signifying a 1.02% increase. Lastly, when the width-to-height ratio of the deflector opening is increased from 8/6 to 10/6, the percentage of the low wind speed zone decreases from 7.33% to 2.98%, indicating a 4.35% decrease. Correspondingly, the percentage of the speed comfort zone increases from 71.38% to 73.01%, reflecting a 1.63% increase. Furthermore, the percentage of the high wind speed zone increases from 21.29% to 24.01%, representing a 2.72% increase.
[image: Figure 13]FIGURE 13 | The percentage of each velocity zone when the width-to-height ratio of the deflector opening is varied.
3.2.3 Deflectors with differently shaped openings
As shown in Figure 14, the flow state and the reason for its formation are in general agreement with Figure 12. The different shapes of the deflector opening have a greater influence on the proportion of each wind speed zone in the velocity cloud map of the cross-section at the height of y = 1.5 m.
[image: Figure 14]FIGURE 14 | Velocity cloud at y = 1.5 m height when the deflector plate is opened with different shapes of openings: (A) Circular; (B) 4.00 cm × 9.00 cm Rhombus; (C) Square; (D) 9.00 cm × 4.00 cm Rhombus.
In Figure 15, we observe changes in wind speed zones related to different deflector opening shapes. When the deflector opening has a 9.00 cm × 4.00 cm rhombus shape, the percentage of the low wind speed zone measures 13.78%, while with a square deflector opening, it decreases to 6.04%. The highest percentage of the speed comfort zone, at 75.56%, is recorded when the deflector opening takes the form of a 4.00 cm × 9.00 cm rhombus, and the lowest percentage, 66.83%, is observed when the deflector opening is in the shape of a 9.00 cm × 4.00 cm rhombus. The percentage of the high wind speed zone shows relatively little variation.
[image: Figure 15]FIGURE 15 | Percentage of each velocity zone when the deflector plate is opened with different shaped openings.
The effects of the above three scenarios on the indoor airflow distribution under natural ventilation conditions are simulated and analyzed, keeping the wind pressure at the entrances and exits constant and the position of the deflector plate constant. In the absence of a deflector plate in the room, the indoor speed comfort zone occupies the smallest proportion, accounting for 62.11%. The percentage of indoor speed comfort zone increased significantly when deflectors with different opening width-to-height ratios and deflectors with different opening shapes were installed indoors. The percentage of the indoor speed comfort zone varied with changes in the opening width-to-height ratio of the deflector plate. When the deflector plate had an opening width-to-height ratio of 7/6, it reached its highest value at 75.98%, marking a significant increase of 13.87%. The shape of the deflector opening had a more pronounced effect on the indoor speed comfort zone percentage. When the deflector opening took on a rhombus shape measuring 4.00 cm × 9.00 cm, it reached its highest value at 75.56%, reflecting a substantial increase of 13.45%.
4 CONCLUSION
In this study, a 1:10 scale experimental model and a numerical model were established based on similarity theory. The experimental measurements from the reduced-scale model were compared and analyzed alongside the simulation results, confirming the rationality and effectiveness of numerical simulations. Subsequently, the validated reduced-scale numerical model was extended to a full-size room. The study investigated the impact of deflectors, including different opening width-to-height ratios and shapes, as well as the absence of deflectors, on the percentage of indoor velocity partitions under natural ventilation conditions using full-scale numerical simulations. Based on the aforementioned findings, the following conclusions can be drawn:
1) A comparative analysis of the experimental measurements from the reduced-scale model and the simulation results indicates that the experimental results obtained from the reduced-scale model are slightly greater than the numerical simulation results, while the overall speed trend remains consistent. Consequently, the CFD numerical simulation better mirrors the experimental results, and the validated numerical model can be applied to extend to full-size working conditions. The results of the full-scale numerical simulation accurately portray the indoor airflow velocity distribution within the building.
2) In the context of natural ventilation, the judicious installation of indoor deflectors can effectively augment the percentage of the indoor speed comfort zone, mitigating excessive indoor wind speeds resulting from cross-ventilation and thereby enhancing human comfort and improving the distribution of indoor airflow velocity.
3) Various deflector plate opening width-to-height ratios yield distinct impacts on both the indoor speed comfort zone percentage and indoor airflow velocity distribution. The maximum percentage of the indoor speed comfort zone, at 75.98%, is achieved when the width-to-height ratio of the deflector opening stands at 7/6.
4) Different shapes of deflector openings exert a more significant influence on the percentage of the indoor speed comfort zone and indoor airflow velocity distribution. The largest percentage of the indoor speed comfort zone, amounting to 75.56%, is observed when the deflector opening takes the form of a rhombus measuring 4.00 cm × 9.00 cm.
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Cost of a single rental battery T, (¥/kw - h™')
Power change time consumption ag (h)
Maximum load capacity D(t)
Cost of electricity per mileage 8/¥
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Swap station profit factor \/¥
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6 (568, 51.1) 14 (41,103)
7 (572, 30.6) 0.2 09, 6.1)
8 (62.1,28) 05 (5.1,103)
9 (452, 35.5) 0.9 (24,65)
10 (52, 40.6) 0.4 (4.8, 8.4)
1 (32.1,42) 02 92, 147)
12 (118, 35) 08 (34,125)
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18 (13,13) 12 (6.1,9.8)
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Assuming that 10 vehicles participate in logistics distribution and electric vehicles use medium-sized truck models, the specific relevant parameters are shown.
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Unit

Micro-gas turbine

Energy storage

Transferable load | Start/stop time delay type

Power size adjustment type

External grid interactive power

Parameter Value
PO KW 1,000

PO kW 100
alb(yuan/kW.h) | 0.7210
PP W 1200
EP=/kW.h 4,500

EPRIKW.h 800
E(0)/kW.h 2,500
K/ (yuan/kWh) | 0.62
n 095

Karl (yuan/kWh) | 0.55
Dor/kW.h | 6,480
Ko (yuan/kw .h) | oss
Dou/kW 2,140
PP kW 6,000
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1 9-12,16-23h 10-14h,16h
2 7-13h,18-22h 9-14h

3 7-13h,18-22h 10-14h,16h
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Robust optimization 5124
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Uncertainty parameter

Purchased power/kWh Sold power/k

Deterministic optimization 4,575 27,958 1,392
I =0,Tp =0 [ 4,575 | 27,958 | 1,392

T =6Tp = 4,903 28,489 1,368
5,124 28,983 | 1,174

Ty =18,Tpw =9 5,178 | 29,432 1,082
Tp=24Tp =12 | 5,346 30,803 908.2
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Robust optimization Deterministic optimization

Day-ahead operating cost/$ Equilibrium cost/$/$ Total cost/$ Day-ahead operating cost/$ Equilibrium cost/$ Total cost/$

5124 287 5411 4575 1,285 5,860
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Mode Cost of electricity consumption/$

Start/stop time delay-type transferable Power sizing-type transferable Non-regulated
load load load

Without generation load
aggregator

With generation load aggregator
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bles Ob: St Mean
InDIGDE 300 07200 | 22721 48779 62405
InCE 300 0.7617 8.1360 10.2743 11.7487
InTEI 300 11188 12179 | 21976 7.0637
InECS 300 0590 | 19601 58557 65397
InFD 300 11666 | 04164 | 52207 75183
InLY 300 13058 13545 | 48657 7.6829
InUR 300 0.1994 12516 17434 21928
oS 300 02620 | 12116 | 20402 24794
mGov 300 0.5865 19543 | 37701 51639
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Abbreviat Full nam:

DIGDE Digital economy development
CE Carbon emissions
TED Technological innovations
ECS Energy consumption structure
SSE Spatial spillover effect
FD Degree of openness to the outside world
UR Urbanization level
Ly Level of per-capita income
0s Degree of marketization
Gov Government financial support
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escription of indicators (units) Properties

Digital infrastructure Cell phone penetration rate (units per 100 people) +
Number of Internet domain names (pcs) +

Internet broadband penetration rate +

Optical cable density (km/km?) +

Digital industrialization Number of employed persons in information transmission, software and +
information technology services (10,000)

Number of digital TV subscribers (million) +

Software product revenue scale as a proportion of GDP +

Total telecom business per capita (10,000 yuan/person) +

Digitalization of industries Peking University Digital Inclusive Finance Index +
Per capita express business volume (pieces/person) +

The proportion of enterprises with e-commerce trading activities +

Digital governance Average years of education (years) +
Number of patent applications for inventions (items) +

Technology contract turnover (billion yuan) +
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Collections

Customer points and changeovers in the system
Logistics distribution center

Customer collection

Non-decision variables and parameters

Distance from point i to point j

Amount of goods demanded for customer i

Cost of driving a unit distance for an electric vehicle
Cost of establishing a substation at point i

Travel speed for electric vehicles

Power purchase price of the power exchange station

Remaining power for the electric vehicle when it arrives at
substation S

Cost of a single rental battery
Time at which the K vehicle performs the task at point i

Earliest tolerable time and the latest toleration time accepted by
the customer, respectively

Power change time for the vehicle k in the station changeovers
Power change time for the vehicle k in the station changeovers

Actual arrival time of the car k

Remaining power for the car k to reach point j

Whether the car K goes from point i to point ]
‘Whether car K serves customer i

Candidate stations for the replacement station
Virtual meeting point for the substation visited
Virtual meeting point for unvisited changeovers
Electric vehicles

Load capacity for electric vehicles

Cost of electricity per mileage

Fixed costs for each electric vehicle purchased
Total number of dispatches of electric vehicles
Opportunity cost per unit time for early arrivals

Penalties for late arrival per unit of time

Power of the electric vehicle after the power exchange station
Swap station profit factor

Expect service time windows

Earliest and latest time to reach the demand point, respectively
‘Time when the car k arrives at point i

Battery capacity

Amount of power consumed per unit of journey

Remaining power for the car k leaving point j

Whether to build a substation at point S
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Direct InDIGDE ~02951"** (~2.87) ~02295"* (-2.59) 02966 (-3.22)
Effect InED 00049 (0.13) ~0.0013 (-0.04) 00666 (2.13)
Ly 01339 (-1.03) 03683 (-4.12) ~03304"** (~3.46)
InUR 02153 (-1.09) 0.1401%** (0.86) ~0.1487 (-0.82) 7
1n0s 02206 (0.77) 05163+ (3.24) ~10272* (4.68)
nGov 10983 (5.60) 11780 (18.68) 11152 (18.88)
Indirect InDIGDE ~04606** (~2.30) 06315 (-2.61) ~07877%* (-4.52)
Effect InFD 00514 (-2.43) 0.0437 (0.46) ~0.6013*** (-9.78)
Ly 02961 (0.89) -42261** (-7.76) 04645 (253)
InUR 02799 (1.73) 31248 (4.42) 0.2253 (0.66)
1n0s 10946 (2.57) 14168° (2.40) 11659 (3.09)
nGov 01299 (~0.57) 11678 (4.13) 0.1623 (1.42)
Total InDIGDE ~07557* (-4.57) ~0.8609°** (~2.90) ~1.0842°%* (-6.51)
Effect InFD 0.0563 (1.32) 0.0424 (039) 05347 (-9.18)
InLy 0.1622 (1.49) 45944 (-7.53) 0.1341 (1.04)
InUR ~0.4952* (~2.00) 32649 (4.17) 00767 (0.28)
1n0s 13152 (4.93) 193314 (3.05) 21931 (6.73)
nGov 0.9684°* (1151) 23458 (7.24) 12775 (11.63)
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Variables

LInDIGDE ~0.019* 0643 ~0.137% 0,042+ ~0.022°%
(-4.94) (1.74) (~1.86) (-285) (-2.58)
InTEI -0.019%
(-2.78)
InECS 0013
(1.74)
Control Yes Yes Yes Yes Yes
Time Yes Yes Yes Yes Yes
First-F-Test 2205 17449 190705+ 38914 22231
Second-F-Test 19408 2,689 91968 36765 20518
Observations 270 270 270 270 270
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Variables

Direct InDIGDE 04937 | 04611 | 02950
Effect (-494) (-4.83) (-386)
InTEI 00493+
(-229)
InECS 07253+
(14.64)
Indirect InDIGDE ~06721%* ~0.6341% ~02801*
Effect (-1.88) (-2.14) (-1.13)
InTEI 01523+
(-2.78)
InECS 04813+
(3.14)
Total InDIGDE SL16S8T | -10952%t | 05750
Effect (-272) (-3.06) (-192)
InTEI 02016
(-3.02)
InECS 12066
(6:86)
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Variables

Direct InDIGDE 0.7041°** (3.05) -02477%% (-3.05) ~04845°* (~4.52) 03189 (-3.50)
Effect InTE ~0.0637** (~2.66)

InECS 07292 (12.59)
Indirect InDIGDE ~0.0472 (-0.09) 03359 (~148) ~12373* (-3.53) 08478 (~2.90)
Effect InTEI ~01717°* (-2.83)

InECS 04968+ (2.94)
Total InDIGDE 0.6569+ (1.04) ~0.5839** (-2.13) —17218 (-4.09) ~11667* (-3.31)
Effect InTEI ~02355"* (-3.18)

InECS 1.2260%** (6.45)
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Variables

InDIGDE 0.6911°** (3.00) 02466 (-3.18) 04186 (~4.45) 02748 (-343)
InTEL ~0.0531* (-2.26)
InECS 0.7042°** (11.98)
InFD 00256 (031) 00281 (1.02) 0.0066 (0.20) 00119 (-0.42)
InLY ~0.1196 (~0.55) ~0.9282*** (~12.62) ~0.5082*** (-5.75) 0.1583* (1.69)
InUR -0.8208* (-1.79) ~0.1329 (-0.84) 00477 (0.25) 0.2809* (1.70)
1n0s 03394 (~0.63) 09521 (5.32) 07973+ (3.70) 0.0426 (022)
InGov ~0.8072* (~4.54) 0.1013* (1.69) 10112+ (13.29) 09956+ (15.91)

Adjust-R* 04056 05154 04721 07666
Rho 01999 00432 02820 02815

Sigma2_e 10589+ 01195 01706 01234+

Observations 300 300 300 300
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Variables

Coefficien

W*Coefficient

Wy

Direct effect

Indirect effect

Total effect

InDIGDE ~07577** (-8.45) \ ~09242*** (-4.11) ~0.8306"** (-8.35) ~1.4450% (-4.28) ~22755"* (-5.70)
InFD ~00212 (-058) ‘ 0.0820 (1.20) 00181 (-051) 0.0942 (1.06) 00761 (0.75)
InLY ~03507*** (~3.70) ‘ 12961 (6.66) ~0.2605*** (~3.03) 15606 (6.01) 13001 (5.03)
InUR 02199 (1.10) ‘ ~07667** (~2.19) 0.1629 (0.85) -0.8956** (~1.93) 07327 (~136)
1n0s 06480 (2.78) ‘ 07157 (1.37) 07012+ (3.11) 10915 (1.530) 17927 (2.20)

InGoV 12428 (17.15) \ 06404 (-3.59) 12257 (15.90) ~03823" (~1.65) 08432 (299)
Rho 026417

Sigma2_e 02076+

R-squared 02450
Obs 300
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Model test p-value
LM lag test 7.799 0.000
LM error test 35373 0000
‘Wald-SDM-SLM 62.83 0.000
‘Wald-SDM-SEM 104.56 0.000
LR-SDM-SLM 5363 0000
LR-SDM-SEM 88.77 0.000
Hausman test 67.90 0.000






OPS/images/fenrg-12-1358093/fenrg-12-1358093-t005.jpg
Variables

Mixed OLS

InCE

Fixed effect

Cluster standard errors

InDIGDE ~03193*** (-3.45) ~0.3287** (-3.10) ~0.3006"* (~3.64)
InFD. 00286 (0.85) 0.0362 (0.97) -0.0027 (0.08)
InLY ~0.1960** (-2.31) ~0.2059"* (-2.32) ~31.3837*** (-5.87)
InUR ~0.3396* (~1.68) -0.3458* (-0.69) 42.8529*** (5.80)
n0s 0.4294* (1.94) 0.4371* (1.88) ~0.0590 (-0.23)

InGov 1.1206*** (15.80) L1176 (15.28) 1.1938*** (13.10)
Constants 6.8168** (18.69) 6.8090°* (17.53) 09927+ (0.92)
Adjust-R* 0.5539 05423 05862

Observations 300 300 300

Note: ***, **, and * represent significance at the 1%, 5% and 10% levels, respectively, and the values in brackets are t-values; the following tables are the same as those above.
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year InDIGDE InCE year InDIGDE InCE
2011 0167+ 0207+ 2016 0,166 0,170
(1.948) (1.983) (1.909) (1.692)

2012 0167 0192 2017 0201 0157
(1.936) (1.868) (2255) (1568)

2013 0133* 0207+ 2018 0202+ 0.129%
(1.604) (1.986) (2239) (1359)

2014 0136 0190 2019 0,196 0,138
(1641) (1.843) (2173) (1421)

2015 0153+ 0177+ 2020 0209 0216
(1.801) (1.746) (2279) (2076)

Note: *, **, and *** indicate significance at the 10%, 5% and 1% levels, respectively, and Z-statistic values are in parentheses.
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Balancing poi

1

A3

E,(00,0) CurC+Cp+ By “Br+ Cr Ep+ Tg + Fr-Co
E5(1,0,0) Cy-Ci-Cp-Br Cr Fr-Co-Mp
E5(0,1,0) CurCL+Cp+Rp B-Cr. Ep-My-Cq
Ei(00,1) Ci-Cp + Cp+ Br+ Fp + Mp M+ Fr+ CrBr Co-FrFrTo
E5(1,1,0) Ci-Cy-Cp-Rp -Cr -Co-Mp-My
E(1,0,1) Ci-C-Cp-Br-Fo-Mp Fr+ Mr+Cr Co + Mp-Fr
E0,1,1) CyCy + Cp + Rp+ Fp+ Mp Br-Mr-Fr-Cr Co+ MrFp
Eg(1,1,1) Cy-Cyr-CoRp-Fp-Mp -Fr-Mp-Cr Co+ M+ Mp
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£ oa0 Unstable -
5000 (hetet) Unstable -
£ 010 ot) Unstable -
& onn ESS Cu-Cy + Cp + Br+ Fp + Mp < 0, My + Fr + Cr-Br<0
500 ESS -
o0 [ (&) Unstable -
5 o (i) Unstable -
s [ Unstable -
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Parameters Descriptions

Rp The profit from product sales of the enterprises
C Production costs of enterprises engaged in the low-carbon transition
Cu Production costs for enterprises not participating in the low-carbon transition
Br The bribery amount of the enterprise
G The cost of falsifying behaviors for enterprises
Vr Profits from services provided by verification agencies
‘ Cr The speculative cost of bribes accepted by verification agencies
Co The cost of strict government regulation
Fp Penalties for enterprises exceeding carbon emission limits
Fr The penalty amount of the verification agencies
My The subsidy for enterprises from the local government
My Rewards for verification agencies that fulfill their supervisory responsi
Ac The social benefits of enterprises engaged in the low-carbon transition
Do The cost of cleaning up the environment for the local government
To Administrative penalties imposed by the central government on local governments for inadequate supervision
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Game players Enterprises

Participation x Non-participation 1-x

Verification agencies Verification agencies

Refusal of Acceptance of bribes 1-y  Refusal of bribes y  Acceptance of bribes 1-y
bribes y

Local Strict Ry-Cy+ Mp Vi -Co | RprCy + Mp Vi-CrFr -C-Mp+ | -CyCy-FpVy+ M -Cg + | Ro-Cir-Cy-Br-Fp Vi-Cr + Br-Fr- -Co +
government regulation z |+ Ag Fr+ FpMr Fp+ Fr-Dg
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Al .v3 A3 A4 A5 A6 ow; sw;
cu -0.32 -028 -029 -0.32 -031 -0.26 064 6.13% 8.34% 721%
c2 -031 -029 -030 -0.32 -028 -0.28 064 6.11% 8.28% 7.17%
c13 -031 -030 -031 -031 -030 -0.25 064 6.14% 633% 628%
cla -0.30 -0.30 -030 -0.32 -027 -0.29 064 6.11% 561% 5.90%
c1 -031 -0.30 -031 -030 -030 -0.27 064 6.10% 7.11% 6.64%
c2 -0.30 -0.30 -030 -0.30 -030 -0.29 065 6.07% 6.83% 6.49%
c23 -029 -032 -031 -030 -029 028 064 6.11% 446% 527%
c24 -025 -036 -025 -022 -027 -0.22 057 7.46% 412% 5.59%
c31 -0.30 -0.30 -030 -030 -030 -029 065 6.07% 8.34% 7.17%
[e3] -0.30 -028 -035 -026 -032 -0.24 063 6.32% 7.95% 7.15%
C33 -0.30 -0.30 -0.30 -0.30 -0.31 -0.28 065 6.08% 6.60% 6.38%
c3 030 -030 -029 -0.30 -030 -031 065 6.07% 5.39% 577%
ca1 -0.30 -029 -031 -0.27 -0.30 -0.32 064 6.11% 477% 544%
ca2 -0.30 -035 -032 -021 -032 -0.24 063 6.42% 497% 570%
ca3 -0.31 -025 -027 -0.31 -031 -0.31 064 6.15% 481% 548%
ca4 -033 -0.30 -033 -0.28 -033 -0.15 062 6.54% 6.08% 636%
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Day-ahead scheduling cost Day-in adjustment cost Real-time adjustment cost Total scheduling cost

(yuan) (yuan) (yuan) (yuan)
Scenario 1 34846.44 3756.32 1687.03 40289.79
‘ Scenario 2 3241199 [ 320653 147081 3708933
‘ Scenario 3 32849.23 336018 144924 37658.65
Scenario 4 3131866 280139 111185 352319
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Installed Upper power limit  Lower power limit = Upper climbing limit  Lower climbing limit

capacity

Wind turbines 400 KW 400 KW 0KW - -

Photovoltaic panels [ 4MW 4MW oMW [ - | -

Hydrogen fuel cell 240 KW 240 KW 48 KW 100%/min -

Flectric tank 400 KW 400 KW 80 KW 100%/min | -

Hydrogen storage tank 400 KG - — - -
Blectrc heateranster | 300 KW 300 KW | 0KW [ 52%/15 min | 65%/15 min

equipment






OPS/images/fenrg-11-1251231/fenrg-11-1251231-t001.jpg
Period of time Electricity price (yuan/kWh)

‘ Peak hour 19:00-21:00 1.1636
‘ Rush hour 8:00-11:00, 13:00-19:00, and 21:00-22:00 0.8656

‘ Valley period 11:00-13:00 and 22:00-8:00 03536
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Quantitative data Al A2 A3 A4 A5 A6
cn 7558 10015 8867 75132 77088 11070.6
c12 59 68 63 55 73 77
ci3 643.26 657.09 650.87 62111 670.19 99436
cu 1381 1407 1354 1589 1083 1276
ca 176 19 185 199 194 244
2 283 295 29 301 299 312
c23 107 84 95 104 13 121
a3l 8831 86.58 8748 86.98 8974 8483
c32 4037 3562 6133 3077 4855 2585
c33 6829 67.43 6927 7139 7298 613
c3 38071 38683 368.05 401.49 38821 4109

o {84 e s G| e i
o {229} i) {5541 5224 5} 474
o ) e e 24 () 4
o ) ) 41 i i )
o oy 48 {8989 8.8 ey )
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Criteria E1 E3 Ell EZ
cu (LLY) (LLY) (0.833,1,1) (LL1) 1.00 1.00 0.97 1.00
c2 [{88Y) (0833,1,1) (0.833,1,1) (R 100 097 097 1.00
Cc13 (0.5,0.667,0.833) (0.5,0.667,0.833) (0.667,0.833,1) (0.5,0.667,0.833) 067 0.67 083 0.67
cl4 (0.333,0.5,0667) (0333,0.5,0.667) (0.5,0.667,0.833) (05,0.667,0.833) 050 050 067 067
c21 (0.5,0.667,0833) (0.667,0.833,1) (0.667,0.833,1) (0833,1,1) 067 083 083 097
c2 (0.5,0.667,0.833) (0.5,0.667,0.833) (0.667,0833,1) (0.833,1,1) 067 067 083 097
c23 (0,0,0.167) (05,0.667,0.833) (05,0.667,0.833) 003 067 003 067
c2 (0,0,0.167) (0.333,05,0.667) (0,0,0.167) (0.333,0.5,0.667) 003 050 003 050
c31 (0833,1,1) [(R8)) L) L) 097 1.00 1.00 1.00
[¢5) (0.833,1,1) (0833,1,1) [{8R)) (0.667,0.833,1) 097 097 1.00 083
c33 (0.667,0.833,1) (05,0.667,0.833) (05,0.667,0.833) (0.667,0.833,1) 083 067 067 083
c3 (0.333,0.5,0.667) (0333,0.5,0.667) (0.5,0.667,0.833) (0333,0.5,0.667) 050 050 0.67 050
cal (0.333,0.5,0667) (0.167,0333,05) (0.333,0.5,0.667) (0.167,0.333,0.5) 050 033 050 033
ca2 (0.167,0.333,0.5) (0.5,0.667,0.833) (0.167,0.333,0.5) (0.333,0.5,0.667) 033 067 033 050
ca3 (0.167,0.333,0.5) (0.667,0833,1) (0333,0.5,0.667) (0,0,0167) 033 083 050 003
ca (0.5,0.667,0833) (0.667,0.833,1) (0.333,0.5,0.667) (0.50.667,0833) 067 083 050 067
cu 099 1.00 1.00 8.34%
c31 099 000 1.00 1.00 8.34%
C12 099 0.01 1.01 0.99 8.28%
cn 094 004 104 095 7.95%
c21 083 012 112 085 7.1%
c2 078 004 104 082 6.83%
c33 075 0.03 1.03 079 6.60%
ci3 071 004 1.04 076 6.33%
ca4 067 004 1.04 073 6.08%
Cl14 058 0.08 1.08 0.67 5.61%
C3 054 004 1.04 065 5.39%
C42 046 0.08 1.08 0.60 4.97%
ca3 042 003 1.03 058 481%
ca1 042 001 1.01 057 477%
c23 035 007 1.07 054 4.46%
c2 026 008 1.08 049 412%






OPS/images/fenrg-11-1294391/fenrg-11-1294391-t002.jpg
quistic scale Response scale
Equally important (VH) ‘ (B8]
Slightly less important (H) (0833,1,1)
Moderately less important (RH) [ (0.667,0.833,1)
Less important (M) (0.5,0.667,0.833)
Very less important (RL) | (0.333,0.5,0.667)
Much less important (L) | (0.167,0.333,0.5)
Totally less important (VL) | (0,0,0.167)
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vice nam Al A2 A3 A4 A5
Wind Power 2700 0 1400 | 2700 | 2700 | 2700
PV 0 2700 | 1400 0 0 0
Gas Boiler 2800 | 2800 | 2800 | 6000 0 2000
Electric Boiler 2800 | 2800 | 2800 0 6000 0
CCHP 4100 | 4100 | 4100 | 3900 | 4300 | 8000
Energy Storage 650 650 650 650 | 650 | 650
Electrolyzer 1800 | 1800 | 1800 | 1800 | 1800 | 1800
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Factors

Investment cost v
Internal rate of return v
Operation and maintenance cost v
Dynamic payback period v v
Annual Nox emission reduction v
Carbon dioxide emissions v v
Air pollutant discharge v
Land occupation v v
Noise v v
Renewable energy penetration v
Comprehensive energy efficiency v v
Energy supply reliability v
Comprehensive network loss rate
Device utilization rate v
Exergic efficiency v
Level of advancement
Social welfare
Public satisfaction
Industrial benefit v
Job creation v v
Compatibility with policies v v

References: 1= (Song etal., 2022); 2= (Liang and Wang, 2023); 3= (Li etal., 2022b); 4= (Zheng and Wang, 2020); 5= (Shen et al, 2022); 6= (Zhao et al, 2022); 7= (Ke et al., 2022); 8= (Zhang et .,
‘Wen et al,, 2021); 11= (Qian et al,, 2021).

2021);

(Qin et al,, 2021); 1
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Parameters

i output coefficient of the wind power plant at time ¢

e area of the photovoltaic panel

A efficiency of the photovoltaic panel in absorbing light intensity

Ao loss coefficient of the photovoltaic panel

Ay AY, current efficiency and voltage efficiency of the electrolytic cell

ugrugmuR U reversible voltage, resistance voltage drop, hydrogen overpotential, and oxygen overpotential, respectively
Rq resistance of the electrolyte

9imj, charge transfer coefficient, electron transfer number, and current density of the cathode, respectively
ae Fan’s coefficient

Vense volume of the hydrogen storage tank

My relative molecular weight of hydrogen gas

mils hydrogen mass of the hydrogen storage tank at time ¢

g hydrogen consumed by the hydrogen fuel cell

H heat energy lost by the hydrogen fuel cell

Vi operating voltage of the hydrogen fuel cell

Aews conversion efficiency of the electric heat-transfer equipment

P;min pPmax upper and lower limits of wind power generation, respectively

Gr,., uncertainty set of photovoltaic power generation

Ty Robustness factor for the uncertainty set of photovoltaic power generation

) A9 A, N expected electrical load, thermal load, and hydrogen load at time t, respectively
e hydrogen storage and release capacity of the hydrogen storage tank at time f; kg, respectively
Phor first type of demand response unit scheduling cost; yuan/kWh

minimum and maximum output of unit i; kWh, respectively

Hpyy ™" Hpy ™ ‘minimum and maximum output of the electric heat-transfer equipment, respectively
s ™ s ™ minimum and maximum hydrogen storage capacity of the hydrogen storage tank, respectively
Aty ™0 Ay mx minimum and maximum values for climbing the electrolytic cell slope, respectively
Phor scheduling unit scheduling cost for the second type of demand response; yuan/kWh
gzt unit-adjusted cost of the hydrogen storage tank; yuan/kg

e unit adjustment cost of the hydrogen fuel cell in the real-time phase; yuan/kWh
P rated power of the wind power plant; kWh

Font light intensity at time ¢

Auran solar-cell efficiency

mida quality and efficiency of hydrogen gas produced by the lectrolytic cell

1 operating current of the clectrolytic cell

TPj temperature, pressure, and current density

EY universal gas and Faraday constant

9, charge transfer coefficient, electron transfer number, and current density of the anode
nase amount of hydrogen in the hydrogen storage tank

Tu temperature of hydrogen gas

Megisin hydrogen mass of the hydrogen storage tank at time £+1

s, hydrogen-release amount of the hydrogen storage tank at time ¢

iy, H, electric energy and thermal energy generated by the hydrogen fuel cell

Mg Electrical efficiency of the hydrogen fuel cell

AH), enthalpy value of hydrogen gas

Gross uncertainty set of wind power generation

Noind robustness factor for the uncertainty set of wind power generation

upper and lower limits of photovoltaic power generation, respectively

PouyPuate unit electricity purchase cost and unit electricity sales cost when the distributed electric hydrogen coupling system interacts with the external
network; yuan/kWh, respectively

CeeEheatiy expected deviation rate between electrical load, thermal load, and hydrogen load

Puind PpuP Py Dens e Unit operating cost of the wind turbine generator set, photovoltaic generator set, electrolytic cell, hydrogen fuel cell, hydrogen storage tank,
and electric heat-transfer equipment; yuan/kWh, respectively

Voun unit uncertainty cost; yuan
AP, ™in AP; max minimum and maximum values for unit i to climb the slope, respectively

AHpy ™" AHgy ™ ‘minimum and maximum values for the climbing of the electric heat-transfer equipment, respectively

gy ™ gy ‘minimum and maximum output of the electrolytic cell, respectively

Fintymacl ‘minimum and maximum scheduling amount for the first type of demand response, respectively

uG Ut ug Unit adjustment cost of electrolytic cell, hydrogen fuel cell, and electric-to-heat equipment in the day stage; yuan/kWh, respectively

B Scheduling unit scheduling cost for the third type of demand response; yuan/kWh
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Al A3 A4 A5

cn 0.00 0.06 003 0.00 001 0.07
c12 0.02 0.05 0.03 0.00 0.06 0.07
ci3 0.01 0.01 001 0.00 001 0.06
[t} 0.02 0.02 003 0.00 0.06 0.04
c2 0.00 0.02 001 0.03 002 0.07
2 0.00 0.03 0.02 0.04 0.04 0.06
23 0.04 0.00 0.02 0.03 0.04 0.05
cu 0.05 0.00 005 0.06 005 0.06
c31 0.02 0.05 003 0.04 0.00 0.07
c2 0.04 0.05 0.00 0.06 003 0.07
c33 0.03 0.03 0.02 001 0.00 0.06
C34 0.04 0.03 0.06 0.01 0.03 0.00
ca 0.03 0.04 001 005 002 0.00
ca2 0.03 0.00 0.02 0.06 002 0.05
a3 0.00 0.05 0.04 0.00 0.00 0.00
c44 0.00 0.02 0.00 0.03 0.00 0.06

S 0.32 045 038 042 039 0.1
Rank i 5 2 4 3 6
Gi 0.05 0.06 0.06 0.06 0.06 0.07
Rank 1 2 3 4 5 6
Q 0.00 025 021 035 033 1.00
Rank 1 3 2 5 4 6
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2012 -0227 | -0.120 | -0.093 | 0517
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2014 -0.171 | -0.087 | -0.075 = 0551

2015 0129 | 006 | 0019 | 0575

2016 -0080 0026 0039 | 0,601

2017 -0.146 0018 0.056 | 0428

2018 -0.157 0008 0079 | 0312
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Social Development
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GDP per capita
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Total fixed asset investment
GDP growth rate
Resource allocation efficiency
Contribution of primary industry to GDP
Contribution of secondary production to GDP
Contribution of tertiary production to GDP
Urbanization rate

Employment rate

Carbon emission reduction Energy and Environment

Energy Scale

Energy mix

Carbon emissions per capita

Carbon intensity

Carbon emissions efficiency

Coal consumption

Clean Energy Consumption

High-carbon energy consumption ratio

Low-carbon energy consumption ratio

Clean energy consumption ratio

Resource Environment

Forest coverage
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Note: +, indicates a positive indicator; -, indicates a negative indicator.
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Dt -0016" (0.009) 0037 0011)
Du 0264 (0099) 00217 (0.007)
Dy 0013 (0006) 001" (0006)
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InPop 0036 (0008) 0031 (0021) 0002 (0.002) 0009+ (0003) 0064+ (0012) -0.001 (0.001) 0057 (0011) 0001 (0001)
Inrban 0246 (0.049) -0.03 (0054) -0019 (0012) -0.068 (0.054) 0144 (0032) 0011 (0004) 0088+ (0032) 0008 0.004)
Constant 0672 (0065) 0638 (0.174) 0396 (0370) 0725 (0029) -0011 (0089) 0094 (0066) -0012 (0.086) 0873 (0009)
Wald test 158.24 (0000 15837 [0000] 14408 (0.000) 15230 0000 76117 [0.000] 83787 [0.000] 74099 [0.000] 74081 (0.000]
Log likelihood 31909 31916 31574 31791 6071 61108 59782 o777
IR test 11524 (0000 14479 [0000] 15159 (0.000] 15352 [0000] 45825 [0.000] 11,63 [0.000] 15992 [0.000] 38535 (0.000]
N 165 165 165 165 25 285 285 285
Noter P <001

p<00s.
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Variables

(1)

2)

Dot ~0068** (0.031)

Dot ~0.034** (0.006)

Dju 0030 (0.015)<

D, ~0.022*** (0.008)
InOpen 0,016+ (0.006) 0.002** (0.001) 0.015°** (0.005) ~0.001 (0.005)
Inlndus 0,005 (0.024) 0.002 (0.002) 0.005 (0.019) 0106 (0.031)

InPop 0,004 (0.005) 0.001* (0.001) 0036+ (0.011) 0026 (0.011)
InUrban 0,020 (0.027) ~0.010** (0.003) 0.113+% (0.026) 0254 (0.019)
Constant 0.402+* (0.059) 0.791** (0.007) 0.203** (0.089) 0579+ (0.104)
Wald test 878.69 [0.000] 878.62 [0.000] 89170 [0.000] 409.94 [0.000]

Log likelihood 944,04 94405 946,02 850,07
| LR fest 605.73 [0.000] 604.55 [0.000] 609.95 [0.000] 488.07 [0.000]
N 450 450 450 450

Note: ***P<0.01.
“*P<0.05.

*P < 0.1, respectively. Robust standard errors are in parentheses and p-values are in brackets.
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Data type Expression form References
Intuitionistic fuzzy number (s, vy, where y is the member level and v is the non-member level, 0< s+ v<1, such as €0.7,0.2) ~ Kumar and Chen
(2022)
Interval-valued intuitionistic fuzzy number | ((u*, i), (v, W)), where u and 4 are the higher and lower member levels and viand W are the Percin (2022)

higher and lower non-member levels, 0<u¥ + W <1, such as ((0.65,0.70), (0.15,0.25))

Interval-valued Pythagorean intuitionistic | { (4, p), (v, )y, where u* and j are the higher and lower member levels and v*and /"' are the Percin (2022)
fuzzy number higher and lower non-member levels, (4 (x))* + (W (x))* <1, such as ((0.7,0.9), (0.1,0.2))
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Scenario 2 Retain Replace with the TOPSIS method TOPSIS model Score 037 067 | 057






OPS/images/fenrg-11-1248605/fenrg-11-1248605-t005.jpg
No. n S1 S2
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3 0200 1.00 005 027
4 0.300 1.00 007 024
5 0.400 1.00 0.09 020
6 0.500 1.00 011 017
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10 0.900 1.00 020 003
1 1.000 1.00 023 0.00
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cs2 6 [ 033 | 022 028 0.05
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A3
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A6

Attribute No. Index haracterist

Energy storage battery cn Energy density Positive
characteristics
c2 Cycle life Positive
[SE] Battery capacity Positive
System operation characteristics | C21 Control the status of train operation Positive
2 Total traction energy consumption Positive
c23 Energy feedback percentage of regenerative braking Positive
System cost c31 Construction cost Negative
1= Operating cost Negative
System reliability ca Mean time between failures (months) Positive
C42 | Trip fault time interval of traction power supply system Positive
(months)

ca3 Fault frequency (times/month) Negative
ca4 Steady-state unavailability Negative
System maintainability cs1 ‘The convenience of system fault detection Positive
cs2 Convenience in identifying and locating system faults Positive
cs3 ‘The degree of modularity of the system Positive
System safety co1 Probability of safety accidents occurring Negative
c62 Maintainability of safety-related components Positive
c63 System operation safety Positive

Positive criteria indicate that a larger value is better, while negative criteria indicate that a smaller value is better.

Source

Khodaparastan et al. (2019)

Alshammari et al. (2011)

Shaojie (2015)

Ding, 2019; Lu et al. (2022)

Ding, 2019; Alencar (2023)

Ding, 2019; Fanget al. (2022)
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Classification Advantages Disadvantages Applicability

AR less information required; fast calculation | high requirement for the smoothness of | Short and medium-term load forecasting with large amounts of
speed the original time series historical data; broadly smoothed data; autocorrelateds highly
influenced by own historical factors

MA climinate the effects of cyclical and | large amount of historical data required | can be uncorrelated; short-term and ultra-short-term load
random fluctuations in the time series forecasting with large amounts of historical data
ARMA solve the problem of random noise | cannot deal with non-stationary time | for non-stationary time series, especially those with both short-
variations series term and long-term correlation
ARIMA simple modeling cannot handle non-linear relationships | processing of smooth and non-white noise time series for load

forecasting
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Classification Advantages Disadvantages Applicability

VAR rich structure to capture more | large number of model parameters; | capturing linear relationships between multiple variables in a time series;
data features large sample size load forecasting by analyzing the influence relationship between different
variables
VARMA strong modeling capabilities complex structure Multivariate time series suitable for removing trend and seasonal
components

rich parameterization process large number of operations
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ANN

NN
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overcome dimens

nal catastrophe and o
diffecentiabilty

high paralll distribution processing capabilitys
tolerance for noise

automatic feature extracion; stess-fee for high-
dimensional data processing

access o historcal and fotureinformation at pointinthe
sequence

solve the long-term dependency problem and gradient
dissppearance problem

efective suppression of gradient disappearance or
explosion

Good feature extraction abiliy; can effectively avaid
discrete spatialization

good leaening abilty

high forecasting

aceuracy

Disadvantages

ining samples; unsatisactory for solving.
ter problems

ffcult to implement fo large-scale t
‘mult-category

the need for @ large number of iniial parameters: lon tra

‘o memory function; need to manally adjust parameters; need a lrge number of
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unable to process whi receiving sequences
complex model tructures ime-consuming tsiing;diffcult parametersletion
Non-parlel computation
many Byperparameters dificalt 0 djut the parametrs: comples model

structur; long traiing time

‘complex traning process

Applicability

short-term load forecastng for small smples

load forecasting by analyzing large amounts of data and m,
factors

ifluencing
extract coupld interaction features from large amounts of data for load
forecasting

handi the problem that the preceding sequence clements cannat sense the
output of the following sequence
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solve load forecasting with complex impact factors
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