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Introduction

Immunoglobulin G4 (IgG4) is a member of the human immunoglobulin G (IgG) subclass, a protein involved in immunity to pathogens and the body’s resistance system. IgG4-related diseases (IgG4-RD) are intractable diseases in which IgG4 levels in the blood are elevated, causing inflammation in organs such as the liver, pancreas, and salivary glands. IgG4-RD are known to be more prevalent in males than in females, but the etiology remains to be elucidated. This study was conducted to investigate the relationship between gut microbiota (GM) and serum IgG4 levels in the general population.





Methods

In this study, the relationship between IgG4 levels and GM evaluated in male and female groups of the general population using causal inference. The study included 191 men and 207 women aged 40 years or older from Shika-machi, Ishikawa. GM DNA was analyzed for the 16S rRNA gene sequence using next-generation sequencing. Participants were bifurcated into high and low IgG4 groups, depending on median serum IgG4 levels.





Results

ANCOVA, Tukey’s HSD, linear discriminant analysis effect size, least absolute shrinkage and selection operator logistic regression model, and correlation analysis revealed that Anaerostipes, Lachnospiraceae, Megasphaera, and [Eubacterium] hallii group were associated with IgG4 levels in women, while Megasphaera, [Eubacterium] hallii group, Faecalibacterium, Ruminococcus.1, and Romboutsia were associated with IgG4 levels in men. Linear non-Gaussian acyclic model indicated three genera, Megasphaera, [Eubacterium] hallii group, and Anaerostipes, and showed a presumed causal association with IgG4 levels in women.





Discussion

This differential impact of the GM on IgG4 levels based on sex is a novel and intriguing finding.





Keywords: Megasphaera, immunoglobulin G4, causal relationship, direct linear non-Gaussian acyclic model, gut microbiota, IgG4-related disease




1 Introduction

Immunoglobulin G4 (IgG4) is a protein involved in immunity and the body’s resistance system against pathogens, such as bacteria and viruses (Davies and Sutton, 2015; Maslinska et al., 2022). Although IgG4 is the least common human Immunoglobulin G (IgG) subclass in the serum, IgG4-related diseases (IgG4-RD) are intractable diseases that result in elevated levels of IgG4 in the blood. These diseases cause swelling and inflammation in various tissues throughout the body, including organs like the liver, pancreas, kidneys, blood vessels, tear glands, and salivary glands (Wallace et al., 2020; Umehara et al., 2021). The development of IgG4-RD is characterized by the infiltration of lymphocytes, IgG4-positive plasma cells, and fibrosis, which leads to simultaneous or sequential swelling, nodules, and thickened lesions in multiple organs (Lu et al., 2021). The regulation of IgG4 production generally involves CD4 follicular T helper cells, T regulatory cells, and Th2 cells, with interleukin-4 (IL-4) and IL-13 promoting IgG4 and Immunoglobulin E (IgE) production (Lanzillotta et al., 2020). However, the underlying cause of elevated IgG4 levels remains unclear.

In recent years, there has been increasing attention in medical research towards the gut microbiota (GM). It has been found that the GM plays a crucial role in maintaining human health and influencing the development of diseases (Clemente et al., 2012; Yatsunenko et al., 2012; Chen et al., 2021). Additionally, the GM is involved in maintaining the delicate balance between host defense and immune tolerance and is believed to have a substantial impact on the pathogenesis of autoimmune diseases and allergies (Yatsunenko et al., 2012; Jiao et al., 2020; Xu et al., 2022). For instance, a human intervention study by Wastyk et al. showed that consuming highly fermented foods increased the diversity of the GM and reduced levels of inflammatory markers, such as IL-6 and IL-10 (Wastyk et al., 2021). Furthermore, Vujkovic-Cvijin et al. reported that GM is associated with an enhanced systemic IgG response, based on both human epidemiological and animal studies (Vujkovic-Cvijin et al., 2022). Furthermore, differences in GM composition ratios may mediate the activation of plasmacytoid dendritic cells to produce IFN-α and IL-33 and cause IgG4-RD (Yoshikawa et al., 2021).

To date, no studies have examined the causal relationship between GM and serum IgG4 levels in the general population. The GM varies widely according to sex (Yatsunenko et al., 2012; Koliada et al., 2021; Yoon et al., 2021). IgG4-RD has also been reported to show sex-related differences in terms of onset and treatment (Wang et al., 2019). The study hypothesized that gender differences in GM by gender might influence IgG4 levels, as they show gender differences with regard to the development and treatment of IgG4-RD. This study aimed to analyze GM of each male and female patients and use causal inferential methods to determine the relationship between IgG4 levels and GM in the general population.




2 Materials and methods



2.1 Participants

The participants were 398 residents (191 men and 207 women) aged 40 years or older, of Shika-machi, Hakui-gun, Ishikawa Prefecture, Japan, whose fecal samples were collected in 2019. The following five conditions were excluded from the analysis. 1) participants without measured serum IgG4 levels, 2) patients taking immunosuppressive drugs as described below; Methotrexate and Enbrel, 3) patients taking medications that significantly affect GM as described below; antibiotics, steroids, bowel regulators and antibacterial agents, proton pump inhibitor (PPI), 4) patients suspected cancer and IgG4-related disease, 5) individuals with missing data, 6) patients with inflammatory bowel disease (IBD).




2.2 Data collection

Data from the Shika-machi Super Preventive Health Examination, a population survey aimed at establishing preventive methods for lifestyle-related diseases, were used. The survey was conducted between 2019. The four model districts selected from the Shika area were Horimatsu, Higashimasuho, Tsuchida, and Higashiki (Karashima et al., 2018; Nagase et al., 2020).

The Shika-machi Super Preventive Health Checkup data regarding parameters such as age, sex, medical history, medication status, allergy status, and alcohol consumption/smoking status were collected using a questionnaire. The body mass index (BMI) was calculated by dividing the current weight (kg) by the square of the height (m2). Venous blood was collected early in the morning after a 12-hour fast. The 24-hour urinary sodium excretion was calculated based on the 24-hour urinary creatinine and sodium excretion values (Nagase et al., 2020). The estimated daily salt intake was calculated using 24-hour urinary sodium excretion.

Immune-related blood samples were measured using the following test kits; IgG4 (IgG4 subclass BS-TIA3 IgG4, MEDICAL & BIOLOGICAL LABORATORIES CO., LTD., Tokyo, Japan); Immunoglobulin G (IgG) (N-assay TIA IgG-SH Nittobo, NITTOBO MEDICAL CO., LTD., Tokyo, Japan); Immunoglobulin E (IgE) (ImmunoCAP Total IgE, THERMO FISHER SCIENTIFIC INC., Waltham, MA, USA); 50% hemolytic unit of complement (CH50) (auto CH50-L eikenII, DENKA COMPANY LIMITED, Tokyo, Japan); Anti-CCP antibody (Stacia MEBLux test CCP, MEDICAL & BIOLOGICAL LABORATORIES CO., LTD., Tokyo, Japan); antinuclear antibody (ANA) (anti-nuclear antibody (ANA) (FA) [FR], FUJIREBIO INC., Tokyo, Japan); Aniti-SS-A/Ro antibody (stacia MEBLux test SS-A, MEDICAL & BIOLOGICAL LABORATORIES CO., LTD., Tokyo, Japan); rheumatoid factor (RF) levels (LZtest ‘eiken’ RF, EIKEN CHEMICAL CO., LTD., Tokyo, Japan).




2.3 DNA extraction and next-generation sequencing

Fecal samples were collected using previously described methods (Miyajima et al., 2022) and stored at −80°C until DNA extraction. The processing of fecal samples was carried out in a non-proliferation level 2 (P2) laboratory. The DNA extracted from the GM was processed to identify the 16S rRNA gene sequence using a previously reported next-generation sequencing method (Miyajima et al., 2022).




2.4 Microbiome analysis

For microbiome analysis, QIIME2 software was used (Bolyen et al., 2022). Demultiplexed paired-end sequence data were denoised with DADA2, and the Silva 16S rRNA database (release 132) naïve Bayes classifier was used for Amplicon Sequence Variant classification (Quast et al., 2013). Samples with fewer than 5000 sequences were removed from the analysis.




2.5 Statistical analysis

Statistical analysis and machine learning were performed using Python (version 3.10.9) (Pedregosa et al., 2011) or R, using R-studio (version 4.2.3, RStudio, Boston, MA, United States).

The clinical information of the participants underwent a normality assessment using the Shapiro-Wilk test. Normally distributed data are expressed as mean ± standard deviation, while non-normally distributed data are presented as median (25th–75th percentile). The significance of differences in clinical information between the groups was assessed using Student’s t-test for normally distributed data and the Wilcoxson rank-sum test for non-normally distributed data.

The patients were categorized into two groups, high and low, based on the median values of IgG4. Quade’s non-parametric ANCOVA and Tukey’s HSD test were used to compare the relative proportions of GM between the high and low IgG4 groups. Confounders such as age, sex, BMI, daily salt intake, frequency of alcohol consumption per week, and smoking were adjusted for (Vujkovic-Cvijin et al., 2020). Additionally, the clinical background variables that exhibited significant differences between the high and low IgG4 groups were included as new confounding factors. The significance level for all tests was set at P < 0.05. Alpha diversity was evaluated using the Shannon index, with Amplicon Sequence Variant values (Willis, 2019). To assess the beta diversity, non-metric multidimensional scaling analysis with the Bray-Curtis dissimilarity metric from the “vegan” package in R was used, along with permutation multivariate analysis of variance (Dixon, 2003). To identify GM associated with IgG4, linear discriminant analysis effect size (LEfSe) was employed (Segata et al., 2011).

The odds ratios and P-values were calculated using the least absolute shrinkage and selection operator logistic regression model (LASSO logistic regression) from the “glmnet” package in R (Tibshirani, 1996). Multicollinearity was assessed using the variance expansion factor (VIF) and only bacterial genera with a VIF smaller than 10 were used in the LASSO analysis. Correlation coefficients and P-values were calculated using Spearman’s rank correlation coefficient in R’s “Package ppcor” after adjusting for the variables listed above. The correlation coefficients were plotted using “Package pheatmap”.

The heat maps were visualized as dendrograms using hierarchical clustering, which was based on similarity by correlation coefficient. Bacterial genera that were significantly correlated with IgG4 and one bacterial genus with the closest inter-cluster distance was set up as a new bacterial genus group. The closest bacterial genus was not grouped if it was a population of several bacterial genera.

The direct linear non-Gaussian acyclic model (LiNGAM) model was built using “LiNGAM” in Python (Shimizu et al., 2011). The bacterial genera chosen for LiNGAM algorithm were selected based on their significant associations identified in at least one of the following analyses: ANCOVA, Tukey’s HSD, LEfSe, LASSO, and Correlation analyses. To demonstrate the robustness and consistency of the causal relationships, the occurrence rates and partial regression coefficients of the causal relationships were presented. Unselected bacterial genera were entered exhaustively as noise, and their impact on causality was observed (Mizoguchi et al., 2023).





3 Results



3.1 Clinical background

Data on GM were procured from the fecal specimens of 234 study participants. The study dismissed 138 samples lacking IgG4 quantification, six individuals under immunosuppressive or gut flora-altering medications, one potential cancer case, and one suspected IgG4-RD case. None of the participants had IBD. In total, 88 patients (46 females and 42 males) participated in the analysis. Supplementary Figure 1 contains a flowchart on sample selection. Table 1 elucidates their clinical data. Participants were sorted into high and low categories based on their median serum IgG4 values. The median IgG4 value for all participants was 41.7 mg/dL. By gender, the median values stood at 34.8 mg/dL for females and 57.1 mg/dL for males. Significant discrepancies in BMI, IgG4, IgE, alcohol consumption, and smoking prevalence were observed between genders. Supplementary Tables 1–3 respectively offer a comparative overview of the immunological landscape of high and low IgG4 cohorts of all participants, women and men, respectively.

Table 1 | Clinical characteristics of study participants categorized by sex.


[image: A table comparing health data between all subjects, females, and males with P-values. It includes measurements like age, BMI, IgG4, IgG, IgE, CH50, antibodies, and lifestyle factors. Significant differences (P < 0.05) appear in BMI, IgG4, IgE, alcohol consumption, and smoking rates between females and males.]



3.2 Comparison of gut microbiota composition

Figure 1A displays stacked plots showing the mean relative abundance of the top 30 bacterial genera among women and men. The top 30 bacterial genera accounted for an average of 81% of women and 85% of men. Figure 1B demonstrates the mean relative abundance of the top 30 genera in the high IgG4 and low IgG4 groups for all participants. Among female participants, the top 30 bacterial genera accounted for an average of 83% of the high IgG4 group and 83% of the low IgG4 group. When segregated by gender, they constituted 83% for both IgG4 groups among women (Figure 1C), while for men, they accounted for 82% and 62% in the high and low IgG4 groups, respectively (Figure 1D).

[image: Stacked bar chart showing relative abundance of various bacterial genera across different groups. Each chart, labeled A to D, represents abundance by sex (female, male) and condition (high, low). Colors represent different genera, with a legend on the right detailing each one.]
Figure 1 | Comparison of relative abundance ratios at the genus level for the top 30 bacterial genera with mean abundance ratios by sex (A). Differences in gut microbiota between female and male groups. Differences in gut microbiota between high and low IgG4 groups in all participants (B), women (C) and men (D).

Figures 2A–D and 2E–H depict the alpha and beta diversities, respectively, and the analyses revealed no significant disparities in gut GM diversity between sexes (Figures 2A, E) or among the high and low IgG4 groups (Figures 2B–D, F–H).

[image: Graphs labeled A to D show box plots of the Shannon index comparing different groups: females vs. males, high vs. low for all, females, and males, with p-values of 0.534, 0.697, 0.537, and 0.595, respectively. Graphs labeled E to H display NMDS scatter plots with red and blue ellipses centered around data points, indicating variability within groups.]
Figure 2 | Comparison of gut microbiota diversity. Comparison between female and male groups. a-diversity (A; P = 0.534), β-diversity (E; P = 0.224) (P = 0.534). Red and blue indicate females and males, respectively. Comparison between the high and low IgG4 groups in all participants. a-diversity (B; P = 0.697), β-diversity (F; P = 0.706). Comparison between the high and low IgG4 groups in women. a-diversity (C; P = 0.537), β-diversity (G; P = 0.854). Comparison between men in the high and low IgG4 groups a-diversity (D; P = 0.224), β-diversity (H; P = 0.623),. Red indicates the high IgG4 group and blue indicates the low IgG4 group.

Figure 3 demonstrates the significant differences in the presence of specific bacterial genera between IgG4 groups and sexes: Anaerostipes were more prevalent in women than men (Figure 3A). In all participants, the proportion of Faecalibacterium present in the High IgG4 group was significantly lower than in the Low IgG4 group, and the proportion of Megasphaera present in the High IgG4 group was significantly higher than in the Low IgG4 group (Figure 3B). Women exhibited a significantly lower representation of Anaerostipes in the High IgG4 group (Figure 3C), while men in the High IgG4 group had significantly diminished proportions of Faecalibacterium and Ruminococcus.1 (Figure 3D).

[image: Graphs A to D display box plots comparing the relative abundance of various bacteria (Anaerostipes, Faecalibacterium, Megasphaera, Ruminococcus 1) across different conditions, such as gender and IgG4 levels, with p-values indicating significance. Graphs E to H show LDA scores (log 10) for bacterial taxa associated with gender and IgG4 levels, with bars in red for females or high IgG4 and green for males or low IgG4.]
Figure 3 | Comparison of gut microbiota between groups. Comparison between men and women by ANCOVA (A). Bacterial genera showing significant differences between high and low IgG4 groups in all participants (B), women (C) and men (D). Comparison between men and women by LEfSe (E). Bacterial genera with Linear discriminant analysis (LDA) score of 2 or higher between high and low IgG4 groups in all participants (F) females (G), and males.

LEfSe revealed that the relative abundance of Blautia, Megamonas, Prevotella 9, Megasphaera, Ruminococcus.1, Anaerostipes, Subdoligranulum, Escherichia-Shigella has difference among women and men (Figure 3E). In all patients, the relative abundance of Megasphaera was higher in the high IgG4 group, and the relative abundances of Anaerostipes and Faecalibacterium were lower in the low IgG4 group (Figure 3H). In females, that of Lachnospiraceae was higher in the high IgG4 group (Figure 3G). In males, that of Megasphaera was higher in the high IgG4 group, and the relative abundance of Faecalibacterium and [Eubacterium] hallii group was lower in the low IgG4 group (Figure 3H).




3.3 LASSO model for predicting the classification of high and low IgG4 groups

A predictive model for classifying high/low IgG4 groups was developed using GM data in a LASSO logistic regression model. Thirteen bacterial genera (Blautia, Bifidobacterrium, Subdoligranulum, Streptococcus, Collinsella, Enterobacteriaceae, Fusicatenibacter,. [Eubacterium] hallii group, Anaerostipes, Veillonella, Romboutsia, Lactobacillus, and Ruminococcus.1) had VIF <10 in all participants. In LASSO in all participants, none of the 13 bacterial genera had statistically significant odds ratios. The classification prediction model in all participants was the area under the receiver operating characteristic curve showed 0.658, sensitivity 0.750, and specificity 0.568 (Figure 4A).

[image: Two ROC curve graphs are shown. Graph A for "all" has an AUC of 0.658, sensitivity of 0.750, and specificity of 0.568. Graph B for "male" has an AUC of 0.907, sensitivity of 0.857, and specificity of 0.857. Both graphs plot sensitivity against 1 minus specificity.]
Figure 4 | Receiver operating characteristic curve curves for LASSO analysis in all participants (A) and male (B). In women, the LASSO model could not be applied because Parabacteroides was the only bacterial genus with a dispersal expansion coefficient below 10.

Twelve bacterial genera (Blautia, Bifidobacterium, Parabacteroides, Collinsella, [Eubacterium] hallii group, Fusicatenibacter, [Eubacterium] coprostanoligenes group, Megasphaera, Anaerostipes, Veillonella, and Romboutsia) had VIF <10 in male. Of the 12 bacterial genera, only Romboutsia was statistically significant with an odds ratio of 2.696 (95% confidence interval 1.031-7.050, P=0.043) (Supplementary Table 4). The classification prediction model in males was the area under the receiver operating characteristic curve showed 0.907, sensitivity 0.857, and specificity 0.857 (Figure 4B). Only Parabacteroides had a VIF of less than 10, and other bacterial genera showed multicollinearity in women. For Parabacteroides alone, no predictive model could be built by LASSO and no ROC curve could be drawn.




3.4 Correlation and causality diagram between IgG4 and GM

Figure 5 illustrates the correlation between IgG4 levels and the top 30 intestinal bacterial species, considering the relative abundance. Megasphaera and Lactobacillus displayed significant positive correlations with IgG4 levels in the entire cohort, while Faecalibacterium and [Eubacterium] hallii group exhibited significant negative correlations. In women, IgG4 levels were correlated positively with Megasphaera and negatively with [Eubacterium] hallii group. In men, a negative correlation was observed with Ruminococcus.1.
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Figure 5 | Correlation between serum IgG4 levels and bacterial genera. Spearman’s correlation coefficient, the color intensity of the heatmap is defined by Spearman’s correlation coefficient. Hierarchical cluster analysis allowed relationships between bacteria to be visualized by dendrograms based on correlations with IgG4. (*: P < 0.05).

Based on the similarity of correlation coefficients between IgG4 values and bacterial genera visualized in a dendrogram, three groups were redefined: Group A encompassed Bifidobacterium and Lactobacillus; Group B incorporated Ruminococcus.1 and Ruminococcus.2; and Group C comprised the [Eubacterium] hallii group and Anaerostipes.




3.5 Causal inference by LiNGAM model

Causal inference with the direct LiNGAM model using bacterial genera were significantly associated with IgG4 in ANCOVA, Tukey’s HSD, LefSe, LASSO, and Correlation analyses.

Supplementary Figure 2 shows the results of LiNGAM with bacterial genera and IgG4 listed in Supplementary Table 5. No causal relationships were estimated between bacterial genera and IgG4.

Figure 6 shows the estimated causal relationship with IgG4, including the redefined bacterial groups. In all participants and women, an increase in Megasphaera was also associated with an increase in serum IgG4 levels, while an increase in group C ([Eubacterium] hallii group and Anaerostipes) was associated with a decrease in serum IgG4 levels. In the robustness analysis of causal results, a causal direction from Megasphaera to IgG4 was detected in 82.6% of cases (partial regression coefficient 385.0 ± 45.9) and from group C to IgG4 in 78.3% of cases (partial regression coefficient -359.4 ± 62.9) in all participants. A causal direction from Megasphaera to IgG4 was detected in 81.8% of cases (partial regression coefficient 673.7 ± 73.7) and from group C to IgG4 in 59.1% of cases (partial regression coefficient -710.0 ± 84.3) in women. In contrast, no causal relationship between bacterial genus and IgG4 could be inferred in males.

[image: Diagram showing the associations in three panels labeled A, B, and C. Panel A shows interactions between Megasphaera, Group C, Group A, and IgG4. Panel B focuses on female-specific interactions between Group C, Megasphaera, and IgG4, with Lachnospiraceae also present. Panel C highlights male-specific interactions between IgG4, Eubacterium hallii group, and Group B, including other bacteria like Megasphaera, Romboutsia, and Faecalibacterium. Arrows indicate relationships with numerical values representing some quantitative measures.]
Figure 6 | Causal inference between IgG4 levels and bacterial genus by GM group. Causal inference results are presented separately for all participants (A), female participants (B) and male participants (C). The arrows indicate the direction of causality between two connected indicators. Values are partial regression coefficients. Groups A, B, and C were grouped based on phylogenetic trees according to the correlation between bacterial genera and IgG4. Group A includes Bifidobacterium + Lactobacillus, Group B includes Ruminococcus.1 + Ruminococcus.2 and Group C includes [Eubacterium] hallii group + Anaerostipes. IgG4 is highlighted in blue, and bacterial genera and bacterial groups presumed to be causally related in each group are highlighted in pink.





4 Discussion

Women had a significantly higher proportion of Anaerostipes than men in the general population. Causal inference in women showed that Megasphaera increased IgG4 levels, while the groups including [Eubacterium] hallii group and Anaerostipes decreased IgG4 levels. In men, Megasphaera, [Eubacterium] hallii group, Faecalibacterium, Ruminococcus.1, and Romboutsia were important bacterial genera for classifying high IgG4 groups and low IgG4 groups. No bacterial genera presented a causal relationship with serum IgG4 levels in men. Serum IgG4 levels may be associated with changes in the gut bacterial genera.

Several studies have reported on the association between IgG4-RD and GM (Wang et al., 2019; Liu et al., 2021; Plichta et al., 2021). Yoshikawa et al. reported that abnormalities in the GM mediate the activation of plasmacytoid dendritic cells, which produces IFN-α and IL-33, causing experimental autoimmune pancreatitis and IgG4-RD (Wang et al., 2019). Liu et al. also found that in IgG4-related sclerosing cholangitis, marked depletion of Blautia and elevated succinate may be responsible for hepatitis (Liu et al., 2021). These reports reinforce the relationship between GM and IgG4-RD development. However, the bacteria they reported were not entirely consistent with the bacterial genera in this study that identified the relationship.

Megasphaera is a genus of anaerobic bacteria that metabolizes short-chain fatty acids such as acetic, butyric, and isobutyric acid (Jeon et al., 2017). In the Japanese population, Megasphaera is more prevalent in males than in females (Hatayama et al., 2023). In our study, the LEfSe analysis also identified the proportion of Megasphaera composition as a significant bacterial flora characteristic distinguishing between men and women. Furusawa et al. reported that butyric acid produced by microorganisms induces the differentiation of regulatory T cells, which play a role in suppressing allergic reactions (Furusawa et al., 2013). Moreover, Dong et al. reported an association between Megasphaera and IgA nephropathy, in which IgA, a type of immunoglobulin, is deposited in the glomeruli (Dong et al., 2020).

The [Eubacterium] hallii group and Anaerostipes were categorized as closely related based on the similarity of their correlations with IgG4. Shetty et al. have demonstrated the close relationship between [Eubacterium] hallii group and Anaerostipes using a multifaceted approach and have recommended their reclassification (Shetty et al., 2018). They both can convert lactic acid to butyric acid, a short chain fatty acid, and may have similar functional roles in the gut (Belenguer et al., 2006). Additionally, [Eubacterium] hallii group was found to be enriched in the GM of patients with chronic inflammatory demyelinating polyneuritis, a chronic autoimmune disease affecting the peripheral nerves, compared to healthy subjects (Svačina et al., 2023). Furthermore, the abundance of Anaerostipes was found to differ significantly between the immune antibody-positive and -negative groups in patients with immune antibody-positive-related repeated miscarriages (Jin et al., 2020).

These findings suggest a close relationship between IgG4-RD, immune diseases, and GM development and pathogenesis, which may be mediated by GM-derived short-chain fatty acids. Fatty acids play a crucial role in the differentiation of Th0 cells into TH2 cells, which are responsible for the release of interleukin-4 (IL-4) (Asarat et al., 2015). IL-4, IL-10, IL-21, IL-13, and B cell-activating factors have been found to be correlated with IgG4 production (Maehara et al., 2012; Tanaka et al., 2012; Watanabe et al., 2013; Akiyama et al., 2018; Maehara et al., 2018; Lanzillotta et al., 2020). Therefore, it is plausible that short-chain fatty acids may influence IgG4 production through their impact on inflammatory cytokines.

We have newly redefined bacterial groups based on the similarity of correlations of bacterial genera to IgG4. As gut bacteria are thought to interact with each other to create a favorable habitat, it is necessary to not only find a relationship between one bacterial genus and IgG4 but also to evaluate bacterial genera with similarities to each other. Both Lactobacilli and Bifidobacteria are non-spore-forming, gram-positive, lactic acid-producing bacteria. Despite some common properties, Lactobacilli and Bifidobacteria belong to two taxonomically distinct groups: the genus Lactobacillus in the phylum Firmicutes and the genus Bifidobacterium in the phylum Actinobacteria, respectively (Vlasova et al., 2016). Ruminococcus.1 and Ruminococcus.2 are also considered part of the phylum Bacillota, the Bacillota web, and the order Eubacteriales and are classified as Ruminococcus.1 and Ruminococcus.2 in the SILVA database (Bolyen et al., 2022). These combinations have been reported to show high genetic similarity by comparison of 16S rRNA sequences (Vlasova et al., 2016; Henderson et al., 2019), therefore, it is reasonable to redefine them as a group. Direct LiNGAM inferred a causal relationship between bacterial genera and bacterial groups, but the complexity of gut-bacterial interactions is high and many aspects need to be clarified and require further research.

This study has several limitations that should be considered. Firstly, although the three bacterial genera Megasphaera, [Eubacterium] hallii group, and Anaerostipes identified in this study are known to produce butyrate, it cannot be definitively concluded that these bacteria are causally related to IgG4. Other SCFA-producing bacteria may also be involved, and the underlying mechanisms of action of these bacteria need further investigation. Secondly, lifestyle factors involved in IgG4-RD may not be adequately considered. Some researchers have argued that lifestyle habits, such as smoking, contribute to the development of IgG4-RD (Wallwork et al., 2021; Tsuji et al., 2023). The Direct LiNGAM model cannot correctly analyze for unobserved confounders. It cannot be ruled out that lifestyle differences based on gender may be a confounding factor for gut bacteria and high IgG4 levels. Further studies should therefore be conducted, e.g. in animal models that are unaffected by gender differences in lifestyle. Finally, it should be noted that the participants were not patients with IgG4-RD. However, no report has attempted to identify a causal relationship between GM and serum IgG4 levels in the general population, which underlines the importance of this study. Further studies are needed to clarify the influence of GM on IgG4-RD development.

In conclusion, Megasphaera, [Eubacterium] hallii group, and Anaerostipes were identified as bacterial species that potentially have a causal relationship with IgG4 levels in women. The fact that the impact of the GM on IgG4 levels differs according to gender is a novel and interesting finding. Particularly, the following two points should be considered with caution. (i) the results revealed in the present study, in which the proportion of Anaerostipes present in a suspected causal role in reducing IgG4 was significantly higher in women, and (ii) the previously reported fact that women have a lower incidence of IgG4-RD than men. These results may lead to a new hypothesis that women are less likely to develop IgG4-RD than men due to the abundance of Anaerostipes in the gut. To elucidate the pathogenesis of IgG4-RD of unknown cause, the metabolites derived from gut bacteria that regulate serum IgG4 levels need to be investigated in detail in the future.
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Background

The gut microbiota (GM) is believed to be closely associated with symptomatic carotid atherosclerosis (SCAS), yet more evidence is needed to substantiate the significant role of GM in SCAS. This study, based on the detection of bacterial DNA in carotid plaques, explores the characteristics of GM in SCAS patients with plaque bacterial genetic material positivity, aiming to provide a reference for subsequent research.





Methods

We enrolled 27 healthy individuals (NHF group) and 23 SCAS patients (PFBS group). We utilized 16S rDNA V3-V4 region gene sequencing to analyze the microbiota in fecal samples from both groups, as well as in plaque samples from the carotid bifurcation extending to the origin of the internal carotid artery in all patients.





Results

Our results indicate significant differences in the gut microbiota (GM) between SCAS patients and healthy individuals. The detection rate of bacterial DNA in plaque samples was approximately 26%. Compared to patients with negative plaques (PRSOPWNP group), those with positive plaques (PRSOPWPP group) exhibited significant alterations in their GM, particularly an upregulation of 11 bacterial genera (such as Klebsiella and Streptococcus) in the gut, which were also present in the plaques. In terms of microbial gene function prediction, pathways such as Fluorobenzoate degradation were significantly upregulated in the GM of patients with positive plaques.





Conclusion

In summary, our study is the first to identify significant alterations in the gut microbiota of patients with positive plaques, providing crucial microbial evidence for further exploration of the pathogenesis of SCAS.





Keywords: carotid atherosclerosis, gut microbiota, plaque, inflammation, microbial function




1 Introduction

Stroke is currently the second most common cause of death worldwide and the primary cause of disability in adults (Feigin et al., 2022). Carotid atherosclerosis (CAS) plaque formation, leading to carotid stenosis, rupture and detachment of unstable plaques, and local thrombosis, are key contributors to ischemic stroke (IS), significantly impacting clinical prognosis. Patients with symptomatic carotid atherosclerosis (SCAS) typically present with mild cerebral ischemic symptoms, such as minor ischemic stroke, transient ischemic attacks, or temporary blindness, and have a higher risk of recurrent cardiovascular and cerebrovascular events compared to those with asymptomatic carotid atherosclerosis, often requiring close monitoring and active treatment (Thapar et al., 2013; Wabnitz and Turan, 2017). Factors like male gender, smoking, alcohol consumption, dysregulated glucose and lipid metabolism, and inflammatory states are significant risk factors influencing CAS development and plaque stability (Willerson, 2002; Song et al., 2020). Therefore, the prevention and treatment of SCAS have become urgent health issues needing resolution.

The human gut microbiota (GM) constitutes a vast “ecosystem,” with bacteria comprising over 99% of its makeup, closely associated with human health and disease. Recent studies have identified a close relationship between GM and carotid atherosclerosis (CAS). On one hand, significant changes in GM have been observed in SCAS patients, potentially promoting the development of SCAS by influencing the body’s inflammatory regulatory pathways (Karlsson et al., 2012). On the other hand, DNA from various bacteria originating from the oral cavity and gut, as well as some live bacteria, have been detected in CAS plaques, potentially exacerbating local inflammation within the plaques (Kozarov et al., 2005; Koren et al., 2011).

The stability of atherosclerotic plaques is often associated with multiple factors such as local inflammation, endothelial dysfunction, and angiogenesis (Willerson, 2002; Ylä-Herttuala et al., 2013). Increasing evidence suggests that bacteria within plaques might have the potential to affect plaque stability. Previous studies have shown a positive correlation between bacterial DNA in plaques and the number of inflammatory cells present (Koren et al., 2011), and can activate Toll-like receptors in macrophages and endothelial cells within the plaques (El-Zayat et al., 2019), inducing processes like foam cell formation and endothelial cell damage (Jin et al., 2023). Additionally, live bacteria in plaques, such as Porphyromonas gingivalis, have the ability to translocate through oral epithelium into the bloodstream, adhere to, and invade vascular endothelial cells (Farrugia et al., 2021), inducing endothelial dysfunction, promoting foam cell formation, proliferation and calcification of vascular smooth muscle cells, as well as angiogenesis within the plaque (Zhang et al., 2021). Biofilms enhance bacterial resistance, and bacteria have been reported to exist as biofilm deposits in plaques. Hormonal levels in the body can promote the dispersion of biofilms, increasing the risk of plaque rupture (Lanter et al., 2014).

In this study, we investigated the microbiota in fecal and plaque samples from SCAS patients, focusing particularly on the GM of patients with positive bacterial genetic material in plaques. This provides foundational theoretical evidence for subsequent exploration of prevention and treatment methods for SCAS patients in Northern China.




2 Methods



2.1 Study population

We consecutively enrolled 23 SCAS patients (2 females, 21 males) who underwent carotid endarterectomy (CEA) at the Neurosurgery Department of Liaocheng People’s Hospital from April 2020 to May 2021, along with 27 healthy individuals (12 females, 15 males) confirmed through health examinations at the same hospital’s medical examination center during the same period. The diagnosis of all patients was primarily confirmed by digital subtraction angiography (DSA) of the whole brain MRS and assisted by carotid ultrasound. Basic information and clinical data of all participants were collected through interviews and laboratory tests. Written informed consent was obtained from all participants, and the study was approved by the Ethics Committee of Liaocheng People’s Hospital (Approval Number: 2021120).

Inclusion criteria for patients were as follows: (1) age greater than 18 years; (2) presence of atherosclerotic plaque formation in the left, right, or bilateral carotid arteries (defined as intima-media thickness >1.4 mm or focal wall thickening at least 50% greater than the surrounding vessel wall); (3) presence of mild ischemic stroke symptoms, such as episodic headaches, transient ischemic attacks, or temporary visual disturbances; (4) patients diagnosed with carotid atherosclerotic stenosis by DSA examination and requiring surgical treatment.

Exclusion criteria included: (1) concomitant inflammatory bowel disease and a history of gastrointestinal surgery in the past 3 months; (2) severe coagulation disorders; (3) poorly controlled diabetes, with blood glucose levels exceeding 300 mg/dl; (4) use of antibiotics, probiotics, prebiotics, or gastrointestinal medications within the past 3 months; (5) the presence of severe cardiovascular, pulmonary, hepatic, renal, hematologic, endocrine, or neoplastic diseases; (6) pregnancy or the perinatal period.




2.2 Data collection and specimen collection

All participant information was collected through face-to-face interviews by attending physicians at our hospital, including age, gender, and medical history. Digital Subtraction Angiography (DSA) via the femoral artery route was used to examine and confirm the cerebral vascular status of all patients. Blood samples from all participants were collected and analyzed after fasting for 10 hours, with tests including blood cell count, blood glucose, and lipid metabolism indicators. After standard collection of fecal samples from all participants, they were immediately frozen and stored at -80°C. Plaques excised from the carotid bifurcation to the origin of the internal carotid artery during CEA in all patients were immediately frozen and stored in liquid nitrogen tanks for future use.




2.3 Sample DNA extraction, DNA library construction, sequencing, and operational taxonomic unit analysis

Microbial DNA extraction from fecal and plaque samples was performed using the TIANamp Micro DNA Kit (TIANGEN, Beijing, China). The V3-V4 region of 16S rDNA has been chosen as the target interval for PCR amplification, utilizing 341F (CCTAYGGGRBGCASCAG) and 806R (GGACTACNNGGGTATCTAAT) as primers (Rintala et al., 2017). Subsequently, sequencing libraries were prepared using the TRUSEQ® DNA PCR Sample Preparation Kit (Illumina, USA). The quality of the prepared libraries was assessed using a Qubit® 2.0 Fluorometer (Thermo Scientific) and an Agilent Bioanalyzer 2100 system. High-quality libraries were subjected to sequencing using the Illumina HiSeq 2500 platform (CapitalBio Technology Co., Ltd., Beijing, China). Sequence data were then clustered into operational taxonomic units (OTUs) based on a 97% similarity threshold using Usearch (Version 11.0.667). Taxonomic analysis of representative OTU sequences at the 97% similarity level was performed against the Silva database (Release 132). The QIIME software was employed to generate microbial abundance information at various taxonomic levels.




2.4 Statistical analysis

Statistical analyses were performed using R version 3.6.0 and SPSS version 27. Various statistical methods, including Student’s t-test, Wilcoxon rank-sum test, Tukey’s test, Kruskal-Wallis test, chi-square test, and Linear Discriminant Analysis, were utilized to analyze clinical data, microbial abundance data, and microbial functional data. Continuous variables were presented as means ± standard deviations. Prior to analysis, normality was assessed, with a P-value of ≥0.05 indicating normal distribution. Subsequent parametric or non-parametric tests were conducted, with a P-value of <0.05 indicating statistical significance. Categorical variables were represented numerically, and chi-square tests were employed for difference testing, with a P-value of <0.05 indicating statistical significance. R version was employed for microbial community diversity analysis, differential significance analysis, and Spearman correlation analysis.





3 Results



3.1 Demographic and clinical characteristics of the subjects

We conducted a statistical analysis of the clinical data (Supplementary Table 1) of the participants and found significant differences in smoking and drinking between the 23 patients (PFBS group) and the 27 healthy adults (NHF group). In terms of risk factors, the PFBS group had significantly higher levels of Lp(a), WBC, FBG, TyG, N, NLR, and SUA compared to the healthy control group. Conversely, levels of HDL-C, ApoA-I, and L were lower in the PFBS group, with no significant differences in the remaining indicators (Table 1).

Table 1 | Clinical characteristics of patients and healthy subjects.
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Subsequently, based on the detection of bacterial DNA in plaque samples, the 23 patient samples were divided into a positive plaque group (PP group, 6 cases) and a negative plaque group (17 cases). Further, based on the plaque results, the patients’ fecal samples were categorized into a positive plaque patient group (6 cases, PRSOPWPP group) and a negative plaque patient group (17 cases, PRSOPWNP group). There were no significant differences in lifestyle habits (smoking, drinking) between the two groups. However, in terms of laboratory data, the positive plaque patients exhibited significantly higher levels of ApoE, WBC, FBG, N, and NLR compared to the negative plaque patients, with no significant differences in the other indicators (Table 2).

Table 2 | Clinical characteristics of patients with positive and negative plaques.
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3.2 Community diversity and statistical analysis



3.2.1 Species composition analysis

Bacterial DNA was detected in 6 of the 23 SCAS patient plaque samples, yielding a positivity rate of approximately 26%. We identified 15 bacterial phyla, 24 classes, 43 orders, 78 families, and 224 genera common to both the PP and PRSOPWPP groups. We created bar charts of the species composition analysis for all participant sample groups at five taxonomic levels: phylum, class, order, family, and genus (Supplementary Tables 2, 3). These charts visually represent and compare the microbial community composition between the NHF and PFBS groups (Figures 1A–E), between the PP and PRSOPWPP groups (Figures 1F–J), and between the PRSOPWPP and PRSOPWNP groups (Figures 1K–O).
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Figure 1 | Bar charts of species composition at the phylum, class, order, family, and genus levels. (A-E) Composition and abundance of the core microbiota in the NHF and PFBS groups. (F-J) Composition and abundance of the core microbiota in the PP and PRSOPWPP groups. (K-O) Composition and abundance of the core microbiota in the PRSOPWPP and PRSOPWNP groups.




3.2.2 Alpha diversity and beta diversity analysis of microbiota

Statistical tests such as the T-test for the Shannon index (P<0.05 indicating significant difference) and the Wilcoxon rank-sum test for the Simpson index (P<0.05 indicating significant difference) can be used to reflect the statistical differences in species α-diversity between groups. Our results show no statistical difference in species α-diversity between the NHF and PFBS groups (Shannon index, P= 0.47, Figure 2A; Simpson index, P= 0.92, Figure 2B), between the PP and PRSOPWPP groups (Shannon index, P= 0.09, Figure 2C; Simpson index, P= 0.06, Figure 2D), and between the PRSOPWPP and PRSOPWNP groups (Shannon index, P= 0.57, Figure 2E; Simpson index, P= 0.47, Figure 2F).
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Figure 2 | Comparison of α-diversity and β-diversity of microbiota. (A-F) Comparison of α-diversity as determined by Shannon and Simpson indices between the NHF and PFBS groups, PP and PRSOPWPP groups, and PRSOPWPP and PRSOPWNP groups. (G-I) Comparison of β-diversity as determined by Principal Coordinate Analysis (PCoA) between the NHF and PFBS groups, PP and PRSOPWPP groups, and PRSOPWPP and PRSOPWNP groups.

Principal Coordinates Analysis (PCoA; Adonis multivariate analysis of variance, where R² indicates the explanatory power of the grouping for sample differences, P<0.05 indicating significant difference) results can reflect similarities and differences in species β-diversity. Our results indicate significant statistical differences in microbial community β-diversity between the NHF and PFBS groups (Adonis, R²=0.08, P<0.05; Figure 2G), between the PP and PRSOPWPP groups (Adonis, R²=0.40, P<0.05; Figure 2H), and between the PRSOPWPP and PRSOPWNP groups (Adonis, R²=0.11, P<0.05; Figure 2I).




3.2.3 Significance analysis of microbial community differences

Our primary focus was on the differences in microbial communities between the NHF and PFBS groups, and between the PRSOPWPP and PRSOPWNP groups.

Firstly, we employed Analysis of Molecular Variance (AMOVA, P<0.05 indicating significant difference) to test for significant differences between the microbial communities of the groups. Results showed significant differences between the NHF and PFBS groups (P<0.05), and between the PRSOPWPP and PRSOPWNP groups (P<0.05). Secondly, Anosim analysis (R> 0 indicating greater inter-group than intra-group differences, P<0.05 indicating significant difference) and Multi Response Permutation Procedure (MRPP) analysis (A> 0 indicating greater inter-group than intra-group differences, P<0.05 indicating significant difference) were used to determine whether the differences between the groups were greater than within the groups, thus validating the significance of the grouping. Our results indicated that both the NHF and PFBS groups (Anosim, R=0.24, P<0.05; MRPP, A=0.04, P<0.05; Figure 3A), and the PRSOPWPP and PRSOPWNP groups (Anosim, R=0.28, P<0.05; MRPP, A=0.07, P<0.05; Figure 3B) exhibited greater inter-group differences, confirming meaningful group distinctions. Finally, we employed Linear Discriminant Analysis Effect Size (LEfSe, LDA score >3, P<0.05 indicating significant difference) to identify taxa with significant differences in abundance between groups (Lin and Peddada, 2020). At the genus level, 22 differentially abundant bacteria (LDA score >3) were identified between the NHF and PFBS groups, with each group enriched in 11 different genera (Figure 3C). In the PRSOPWPP and PRSOPWNP groups, 2 phyla, 4 classes, 7 orders, 12 families, and 20 genera (LDA score >3) were identified as differentially abundant. Specifically, the PRSOPWPP group was enriched in 1 phylum, 1 class, 2 orders, 8 families (1 unknown), and 16 genera (1 unknown), while the PRSOPWNP group was enriched in 1 phylum, 3 classes, 5 orders, 4 families (1 unknown), and 4 genera (1 unknown) (Figure 3D) (Supplementary Table 4).

[image: Box plots and bar graphs display microbiome analysis results. Panels A and B show rank distributions for different classes with significance values (A: R=0.238, P=0.001; B: R=0.282, P=0.012). Panels C and D present bar charts illustrating LDA scores for various microbial taxa. In C, taxa are categorized by NHF (red) and PFBS (green). In D, taxa are categorized by PRSOPWNP (red) and PRSOPWPP (green). Each plot highlights differences in microbial abundance across the classes.]
Figure 3 | Significant analysis of differences in gut microbiota between groups. (A, B) Anosim analysis (analysis of similarity) for NHF and PFBS groups, and PRSOPWPP and PRSOPWNP groups. This non-parametric test, with p < 0.05, indicates meaningful group differentiation. (C, D) Identification of significantly different gut bacteria between NHF and PFBS groups, and PRSOPWPP and PRSOPWNP groups using LEfSe (Linear Discriminant Analysis Effect Size). An LDA score > 3 and p < 0.05 denote significant differences. LEfSe is used to assess the effect size of linear discriminant analysis.

Specifically, we found that the GM of both the NHF and PFBS groups was primarily composed of four abundant phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria), with Verrucomicrobia and Actinobacteria significantly enriched in the PFBS group. The GM of patients in the PRSOPWPP and PRSOPWNP groups was similarly dominated by these four phyla. Notably, Bacteroidetes, enriched in the PRSOPWNP group, and Euryarchaeota, enriched in the PRSOPWPP group, exhibited significant differences between the two groups.

At the genus level, there were 22 genera with significant differences in abundance between the NHF and PFBS groups. Eleven genera (Collinsella, Akkermansia, Ruminococcaceae_UCG_014, Parabacteroides, Phascolarctobacterium, Alistipes, Ruminococcus_torques_group, Odoribacter, Lactobacillus, Enterococcus, Barnesiella) were significantly enriched in the PFBS group, while the remaining genera (Lachnospira, Ochrobactrum, Lachnoclostridium, Tyzzerella_3, Megasphaera, Lachnospiraceae_NK4A136_group, Dorea, Prevotellaceae_NK3B31_group, Sarcina, Paraprevotella, Lachnospiraceae_UCG_004) were significantly enriched in the NHF group.

At the genus level, Escherichia-Shigella had the highest abundance in the PRSOPWPP group, differing from the PRSOPWNP group (Bacteroides). Additionally, Acinetobacter_sp._CAG196, Anaerococcus, Anaerofustis, Blautia, CHKCI002, Christensenella, Christensenellaceae_R_7_group, Clostridium_sensu_stricto_1, Intestinibacter, Klebsiella, Methanobrevibacter, Romboutsia, Ruminococcaceae_UCG_013, Ruminococcus_2, Streptococcus, and an unknown genus belonging to Mollicutes_RF39 were significantly enriched in the PRSOPWPP group; while Bacteroides, Flavonifractor, Parasutterella, and an unknown genus belonging to Rhodospirillales, enriched in the PRSOPWNP group, showed significant differences between the groups.

Furthermore, we discovered that 11 genera significantly enriched in the gut of patients with positive plaques were present in the plaques, namely Streptococcus, Blautia, Klebsiella, Clostridium_sensu_stricto_1, Romboutsia, Ruminococcaceae_UCG-013, Ruminococcus_2, Intestinibacter, Christensenellaceae_R-7_group, Anaerococcus, and Methanobrevibacter.





3.3 Association between gut microbiota and clinical characteristics

We employed Spearman correlation analysis to explore the intrinsic connections between significantly different GM and clinical features. The results revealed that among the 11 bacterial genera significantly enriched in the PFBS group’s gut, 6 were positively correlated with FBG levels, 6 negatively correlated with ApoA-I levels, 3 positively correlated with TyG levels, 3 positively correlated with Lp(a) levels, 2 positively correlated with NLR levels, 2 negatively correlated with L levels, 1 positively correlated with N levels, 1 positively correlated with TG levels, and 1 positively correlated with VLDL-C levels. (Figure 4A).
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Figure 4 | Correlation between gut microbiota and clinical characteristics. (A) Correlation between significantly different bacterial genera and clinical characteristics between NHF and PFBS groups, and (B) between PRSOPWPP and PRSOPWNP groups.

Furthermore, we found that the 15 known genera significantly enriched in the PRSOPWPP group had close relationships with clinical features. Specifically, 8 bacteria were positively correlated with ApoE levels, 7 with NLR levels, 5 with N levels, 4 with WBC levels, and 2 with FBG levels. Additionally, 4 bacteria were negatively correlated with VLDL-C levels, and 1 with L levels. (Figure 4B).




3.4 Functional profile of the microbiota

We used PICRUST 2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) software based on the Greengenes database to predict functional profiles of microbial genes. We conducted predictive analyses on Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clusters of Orthologous Groups (COG) functional categories to observe differences and changes in functional gene expression related to metabolic pathways and protein functions in the microbial communities (Supplementary Table 5).

We found that there were no significant differences in the expression of predicted metabolic pathways between the gut microbiota of the NHF and PFBS groups (Figure 5A). However, there were significant differences in the expression of 9 predicted protein functions (Figures 5B, C). Compared to the NHF group, 6 predicted protein functions were significantly upregulated in the PFBS group, with a notable upregulation of COG1900, an enzyme involved in anaerobic homocysteine biosynthesis.
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Figure 5 | Predictive analysis of functional expression of gut microbiota. (A) Volcano plot of the differential analysis of KEGG metabolic pathways between NHF and PFBS groups. (B, C) Volcano plots of differential COG protein functions analysis between NHF and PFBS groups, and clustering heatmaps of significantly different protein functions. (D, E) Volcano plots of the differential analysis of KEGG metabolic pathways between PRSOPWPP and PRSOPWNP groups, and clustering heatmaps of significantly different metabolic pathways. (F) Volcano plot of the differential analysis of COG protein functions between PRSOPWPP and PRSOPWNP groups.

In the gut microbiota of the PRSOPWPP and PRSOPWNP groups, significant differences were observed in the expression of 8 predicted metabolic pathways (Figures 5D, E), but no significant differences were noted in the expression of predicted protein functions (Figure 5F). Compared to the PRSOPWNP group, the PRSOPWPP group showed significant upregulation in 4 predicted metabolic pathways: Fluorobenzoate degradation, Dioxin degradation, Atrazine degradation, and beta-Lactam resistance.




3.5 Correlation between functional expression of gut microbiota, clinical features, and differentially abundant bacterial genera

We employed Spearman correlation analysis to explore the potential connections between microbial functional expression, clinical indices, and differentially abundant bacterial genera.

The results indicated that in the PFBS group, the significantly enriched genera Enterococcus, Lactobacillus, Collinsella, and Ruminococcus_torques_group were positively correlated with the expression of COG4841, COG3548, COG5584, and COG5416, respectively. Phascolarctobacterium, Ruminococcaceae_UCG-014, Barnesiella, Alistipes, and Odoribacter were positively correlated with the expression of COG2122 and COG1900 (Figure 6A). Furthermore, all upregulated predicted protein functions in the PFBS group were negatively correlated with ApoA-I levels, and four predicted protein functions (COG4841, COG3548, COG5584, and COG5416) were positively correlated with levels of TG, TyG, and FBG (Figure 6B).
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Figure 6 | Correlation analysis between functional expression of gut microbiota, clinical characteristics, and different bacterial genera. (A) Correlation between significantly different bacterial genera and differential protein functions between NHF and PFBS groups. (B) Correlation between differential protein functions and clinical characteristics between NHF and PFBS groups. (C) Correlation between significantly different bacterial genera and differential metabolic pathways be-tween PRSOPWPP and PRSOPWNP groups. (D) Correlation between differential metabolic pathways and clinical characteristics between PRSOPWPP and PRSOPWNP groups.

We also discovered that within the PRSOPWPP group, the Dioxin degradation pathway showed the most numerous positive correlations with significantly enriched bacterial species (n=11, p<0.05), followed by Atrazine degradation (n=10, p<0.05), and beta-Lactam resistance (n=7, p<0.05) (Figure 6C). Additionally, significantly upregulated predicted metabolic pathways were positively correlated with lipid indices, inflammatory markers, FBG, and TyG levels (Figure 6D).





4 Discussion

The primary objective of this study was to investigate the characteristics of the gut microbiota in patients with positive arterial plaques and their potential link to carotid artery plaques. We observed that compared to the NHF group, individuals in the PFBS group had more prevalent smoking and drinking habits. Clinical data indicated metabolic dysregulation in these patients, such as impaired glucose and lipid metabolism and inflammatory states, which might contribute to the development of carotid atherosclerosis and affect plaque stability (Tang et al., 2018; Sterpetti, 2020; Lubrano and Balzan, 2021). Furthermore, based on the detection of bacterial DNA in plaques, we compared clinical data between patients with positive and negative plaques, marking the first comparative study of these two groups in clinical aspects. The findings showed that patients with positive plaques had significantly higher levels of ApoE, FBG, WBC, N, and NLR. These indicators suggest more severe metabolic dysregulation and inflammatory states in patients with positive plaques, potentially exacerbating CAS progression and plaque instability.

Given the potential link between GM and CAS, we analyzed the GM of all participants. We found dysbiosis in the GM of SCAS patients, with certain bacteria like Collinsella significantly enriched in the gut, consistent with previous studies (Karlsson et al., 2012). We also analyzed the microbiota in SCAS patient plaques and found that some bacteria in the plaques were shared with the GM of patients with positive plaques, further confirming that at least some plaque bacteria may originate from the gut, in line with previous findings (Koren et al., 2011). As previously discussed, the bacteria in plaques may have a potential connection with plaque stability. The likelihood of bacterial translocation to the plaque and the amount translocated (i.e., the bacterial DNA content) often relate to the host’s physiological state, the characteristics of the plaque region, and the bacteria’s inherent properties (Pizarro-Cerdá and Cossart, 2006). We hypothesize that the GM of patients with positive plaques may differ from those with negative plaques, possibly related to more severe physiological abnormalities in the former and potentially linked to translocation of gut bacteria to the plaques.

We found significant differences in β-diversity of GM between patients with positive and negative plaques. Further analysis revealed 16 genera (1 unknown) significantly enriched in the gut of patients with positive plaques, indicating a marked difference in GM compared to those with negative plaques. Correlation analysis showed that most bacteria enriched in the gut of patients with positive plaques were significantly positively correlated with elevated clinical indicators, suggesting that changes in GM could be one of the factors exacerbating abnormal physiological states.

We conducted a predictive analysis of the gut microbiota’s functional expression in all participants to explore potential changes in the functionality of the gut microbiota (GM) and its potential associations with physiological states of the body. We discovered that the predicted expression of an enzyme involved in the biosynthesis of anaerobic homocysteine (COG1900) was significantly upregulated in the gut microbiota of SCAS patients. Previous research has shown that elevated homocysteine levels are independently associated with the morphology and increased area of carotid artery plaques (Alsulaimani et al., 2013), closely linked to plaque progression and vulnerability (Yang et al., 2014; Ben et al., 2020), and a subclinical marker for stroke risk (Zhang et al., 2020; Rabelo et al., 2022). This suggests that GM might indirectly promote the development of SCAS by upregulating the expression of COG1900. Furthermore, we found significant upregulation in specific predicted metabolic pathways in the gut microbiota of patients with positive plaques. Specifically, the Fluorobenzoate degradation pathway was most upregulated in patients with positive plaques. This metabolic pathway is also upregulated in inflammatory diseases such as osteoarthritis and Crohn’s disease (Gevers et al., 2014; Wang et al., 2021), indicating its potential involvement in the body’s inflammatory regulation. The aryl hydrocarbon receptor (Ahr) is associated with human inflammatory responses (Rothhammer and Quintana, 2019), and Dioxin, involved in activating Ahr (Furue et al., 2021), can attenuate inflammation through mechanisms like thymic atrophy, apoptosis, Treg induction, and induction of myeloid-derived suppressor cells upon activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, one of the Dioxin compounds) (Cannon et al., 2021). Therefore, upregulation of the Dioxin degradation pathway might reduce Ahr activation, weakening its anti-inflammatory role in the body. The significant upregulation of Beta-Lactam resistance suggests that drug-resistant bacteria might predominate in the gut of patients with positive plaques, potentially triggering aberrant inflammatory responses of the immune system and affecting the body’s ability to resist infection (von Klitzing et al., 2017). In summary, these three upregulated predicted metabolic pathways may be associated with the more severe inflammatory state in patients with positive plaques. Clostridium, a potential Atrazine-degrading bacterium (Fang et al., 2015), belongs to the same family as Clostridium_sensu_stricto_1. In our results, Clostridium_sensu_stricto_1 was enriched in patients with positive plaques and showed the greatest positive correlation with the expression of the Atrazine degradation pathway. Therefore, we speculate it might be a potential Atrazine-degrading bacterium. Correlation analysis indicated that the 16 bacterial genera enriched in the gut of patients with positive plaques were significantly positively correlated with most of the upregulated metabolic pathways, suggesting these genera might participate in the expression of these metabolic pathways.

Our study found that 11 bacterial genera significantly enriched in the gut of patients with positive plaques were also present in the plaques themselves, suggesting that these bacteria might have the potential to translocate from the gut to the plaques. The integrity of the gut barrier, composed of the mucous layer, intestinal epithelial cells, and immune cells, is crucial for human survival, health, and defense (Farhadi et al., 2003; Vancamelbeke and Vermeire, 2017). Patients with positive plaques were mostly elderly, and aging is a key potential factor in gut barrier dysfunction (Man et al., 2014; Untersmayr et al., 2022). Coupled with these patients’ history of alcohol consumption, significant hyperglycemia, and systemic inflammation, these factors likely facilitate bacterial translocation from the gut to the bloodstream (Leclercq et al., 2014; Li et al., 2016; Thaiss et al., 2018). Macrophages and neutrophils in the blood can phagocytize bacteria that enter the bloodstream (Sharma et al., 2022), and immune cells carrying bacteria can migrate and accumulate in areas of carotid atherosclerosis under the influence of chemotactic factors (Gencer et al., 2021), potentially indirectly increasing the amount of bacterial DNA in the plaques.The characteristics of the bacteria themselves are also a crucial determinant of translocation. Some bacteria within the Klebsiella genus, such as Klebsiella pneumoniae, can translocate across intestinal epithelia via a cell invasion mechanism dependent on Rho GTPases and phosphatidylinositol 3-kinase/Akt (Wyres et al., 2020). Streptococcus and Klebsiella can adhere and colonize through adhesion molecules like pili and adhesins (Nobbs et al., 2009; Chen et al., 2023). Some species of Blautia have genes encoding phage and transposons, facilitating their adherence and colonization (Shen et al., 2020; Liu et al., 2021). Overgrowth of Clostridium_sensu_stricto_1 is associated with necrotizing enterocolitis (Yang et al., 2019), which may facilitate its translocation across intestinal epithelia (Ciftci et al., 2012). Species of Clostridium_sensu_stricto_1 are linked to various infectious diseases (Gubler et al., 1989; Tappe et al., 2009; Daganou et al., 2016), and there have been case reports of Romboutsia causing human marrow necrosis (Seviar et al., 2022), suggesting these genera may have certain adhesive and colonization capabilities (Boyle and Finlay, 2003). Mucins play a significant role in the gut barrier mechanism (Breugelmans et al., 2022), and Ruminococcus_2 is associated with their degradation (Hatayama et al., 2023), indicating that this genus might translocate by disrupting the integrity of the gut barrier. Anaerococcus, commonly residing in the skin and gastrointestinal tract, can cause infections and lead to bacteremia under certain conditions (Murphy and Frick, 2013; Badri et al., 2019; Cobo et al., 2021), indicating its adhesive and colonization capabilities. Additionally, evidence shows that Streptococcus (Domenech et al., 2012), Klebsiella (Alcántar-Curiel et al., 2013), and Methanobrevibacter (Bang et al., 2014) have the ability to form biofilms, suggesting strong survival capabilities. If they exist in plaques as biofilm deposits, they might increase plaque instability. The abnormal physiological state of patients with positive plaques might exacerbate pathological changes like endothelial dysfunction in CAS areas, facilitating the adherence and colonization of free bacteria (Lemichez et al., 2010).

Interestingly, there were no significant differences between Streptococcus, Klebsiella, Blautia, and Clostridium_sensu_stricto_1 in the NHF and PFBS groups, while significant differences were observed between patients with positive and negative plaques, and these genera were present in the plaques. Therefore, we speculate that these genera may not have the potential to cause CAS but may affect plaque stability.

This study has several limitations. First, our patient recruitment strategy, which involved continuous enrollment, did not adequately balance gender distribution. However, previous research indicates that GM variations are mainly due to strokes or TIAs caused by major artery atherosclerosis (Yin et al., 2015), similar to our study population. Therefore, the impact of gender on our GM results might be minor. Second, this is a single-center study with a small sample size. Future multi-center studies with larger sample sizes are needed to validate our findings. Lastly, we did not fully consider the potential impact of antidiabetic medications on GM, which will be addressed in future large-scale studies through subgroup analyses to mitigate such potential influences.

In summary, patients with positive plaques exhibit more severe metabolic disorders and inflammatory states, along with significant enrichment of bacteria in the gut, particularly those capable of translocating across the intestinal barrier, adhering, colonizing, and forming biofilms. These capabilities provide favorable conditions for their translocation to plaque regions and local infection, increasing the bacterial DNA content in the plaques. This may promote plaque instability and, consequently, increase the risk of ischemic stroke.




5 Conclusion

Our study demonstrates that patients with symptomatic carotid atherosclerosis (SCAS) exhibit metabolic disorders and inflammatory states, along with significant changes in their gut microbiota (GM), consistent with previous research findings. By analyzing bacterial DNA in plaques, we compared for the first time the clinical characteristics and GM differences between patients with negative and positive plaques. We found that patients with positive plaques have more severe physiological abnormalities, which may further damage the endothelial integrity in the carotid plaque regions (facilitating bacterial adhesion and colonization) and compromise plaque stability. Significant differences were observed in the GM between patients with positive and negative plaques, particularly the significant enrichment of 11 bacterial genera in the gut of patients with positive plaques, which were also present in the plaques. Some of these bacteria have the ability to translocate to the plaques, potentially exacerbating plaque instability through increased local infection, inflammation, and bacterial DNA content. In conclusion, these findings may enhance our understanding of plaque stability in SCAS and help identify patients at high risk of plaque instability. Future research should further explore the differing roles and specific molecular mechanisms of various microbes in plaque formation and evolution, as well as how GM modulation could intervene in the plaque stability of SCAS.
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Endometriosis (EMs) is a prevalent gynecological disorder characterized by the growth of uterine tissue outside the uterine cavity, causing debilitating symptoms and infertility. Despite its prevalence, the exact mechanisms behind EMs development remain incompletely understood. This article presents a comprehensive overview of the relationship between gut microbiota imbalance and EMs pathogenesis. Recent research indicates that gut microbiota plays a pivotal role in various aspects of EMs, including immune regulation, generation of inflammatory factors, angiopoietin release, hormonal regulation, and endotoxin production. Dysbiosis of gut microbiota can disrupt immune responses, leading to inflammation and impaired immune clearance of endometrial fragments, resulting in the development of endometriotic lesions. The dysregulated microbiota can contribute to the release of lipopolysaccharide (LPS), triggering chronic inflammation and promoting ectopic endometrial adhesion, invasion, and angiogenesis. Furthermore, gut microbiota involvement in estrogen metabolism affects estrogen levels, which are directly related to EMs development. The review also highlights the potential of gut microbiota as a diagnostic tool and therapeutic target for EMs. Interventions such as fecal microbiota transplantation (FMT) and the use of gut microbiota preparations have demonstrated promising effects in reducing EMs symptoms. Despite the progress made, further research is needed to unravel the intricate interactions between gut microbiota and EMs, paving the way for more effective prevention and treatment strategies for this challenging condition.
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1 Introduction

Endometriosis (EMs) is a common gynecological disorder where the normal glandular and stromal tissue of the uterus grows outside the uterine cavity, causing symptoms such as progressive dysmenorrhea, dyspareunia, chronic pelvic inflammation, and infertility. EMs is most commonly diagnosed in women aged 25-45, with a global prevalence of approximately 10%-15%, and the highest incidence observed in Asian women (Smolarz et al., 2021).

Despite decades of research, its exact pathogenesis is still not well understood. The main pathophysiological theories include the implantation theory, retrograde menstruation theory, metaplastic theory, and genetic expression differences theory. Among them, the most well-accepted hypothesis is based on retrograde menstruation, which proposes that endometrial tissue fragments shed during menstruation and flow back through the fallopian tubes and implant in the pelvic cavity, leading to the formation of endometriotic lesions. However, it is estimated that only 10% of women with retrograde menstruation develop EMs, indicating that this theory cannot fully explain the pathogenesis of the disease (Ahn et al., 2015b; Laschke and Menger, 2016). Recent studies suggest that although EMs is a benign condition, some of its biological characteristics, such as infiltration, migration, and recurrence, are similar to malignant tumors. The “Eutopic endocardium determinism” theory has been considered a breakthrough to supplement the retrograde flow theory, which suggests that mutations in certain determinants of endometrial tissue may contribute to stronger angiogenesis, migratory and invasive ability, leading to the development of EMs. This theory has explained to a certain extent the phenomenon mentioned above.

EMs lesions mainly occur in the pelvic cavity, which is also a container for holding the small intestine and colorectum. The intestine contains a large number of gut microbiota, which exert an important role in maintaining pelvic stability (Rahman-Enyart et al., 2021). Several studies have confirmed the idea that gut microbiota is involved in many inflammatory, immune, and proliferative diseases (Chadchan et al., 2021; Jiang et al., 2021; Shan et al., 2021). Similarities between EMs and irritable bowel syndrome(IBS) or inflammatory bowel disease(IBD) include recurrent abdominal pain, cramping, anxiety, and a local inflammatory microenvironment in lesions (Peters, 2022). Indeed, patients with EMs in a large-scale study had a 50% increased risk of inflammatory bowel disease compared with the general population (Chiaffarino et al., 2020). Around 20% of endometriosis patients also present with symptoms indicative of IBS (Salmeri et al., 2023b). Growing evidence has shown dysbiosis is involved in the occurrence, development, and aggravation IBD and IBS (Inczefi et al., 2022; Salmeri et al., 2023b), and there is a similar link between gut dysbiosis and the pathogenesis of EMs. In addition, many studies have provided a correlative relationship between EMs and gut microbiota. Therefore, changes in the pelvic environment may contribute to the pathogenesis of EMs, and gut microbiota may be a key regulator in the development of EMs.

This article aims to review the latest research progress and explore the relationship between gut microbiota imbalance and the development of EMs, to provide a theoretical basis and clinical treatment strategies for the management of this disease. At the same time, more research is badly needed to better understand the pathogenesis of EMs and help prevent and treat this condition more effectively.




2 Overview of gut microbiota

The gut microbiota refers to a diverse and abundant microbial system in the human intestine, which includes the gastrointestinal microbiota, cyanobacteria, spirochetes, and anaerobic microorganisms (Mańkowska et al., 2022). These microorganisms maintain a stable balance through mutual constraints and also participate in the metabolism and absorption of intestinal nutrients, providing energy and protecting the normal function and immune regulation of the body. However, when the body’s immune system is compromised or when gastrointestinal infections occur, the balance of gut microbiota is disrupted, resulting in a reduction in beneficial bacteria and an increase in pathogenic bacteria, leading to inflammatory reactions and gastrointestinal infections. Moreover, gut microbiota imbalance can also cause diseases such as diabetes, hypertension, colon cancer, allergic reactions, and autoimmune diseases (Gholizadeh et al., 2019). Studies have shown that the proportion of harmful bacteria has increased significantly in the intestines of patients with gut microbiota imbalance and they can release exogenous cytotoxins into the bloodstream, which are significantly correlated with the expression of COX-2 and PGE2 (Biarc et al., 2004). In addition, the complex network relationship between gut microbiota and the enteric nervous system has led to the concept of the microbiota-gut-brain (MGB) axis (Erny et al., 2015), which is a bidirectional regulatory pathway that includes the endocrine system, immune system, autonomic nervous system, gut microbiota metabolism system, and enteric nervous system (Kim and Shin, 2018).




3 Gut microbiome in EMs

The gastrointestinal tract is a complex ecosystem consisting of a stable balance of intestinal mucosal cells, immune cells, and microbial communities. Eubiosis is characterized by high levels of Firmicutes and Bacteroidetes (>90%) and a low percentage of Proteobacteria, while dysbiosis is linked to an altered F/B ratio (Qin et al., 2010).

In recent years, with the continuous improvement of gene sequencing technology, more and more studies have uncovered the significant roles of the gut microbiota in the pathogenesis of EMs, albeit with conflicting results. A systematic review published by Leonardi et al. in 2019 found that endometriosis is associated with an increased presence of Proteobacteria, Enterobacteriaceae, Streptococcus, and Escherichia coli across various microbiome sites (Leonardi et al., 2020). In EMs patients, several abnormal gut microbiota have been identified, including Gardnerella, Streptococcus, Enterococcus, and Escherichia coli, which are present in higher amounts than in healthy women. In addition, the ratio of Shigella and Escherichia coli is significantly different in fecal samples from severe EMs patients (Kovács et al., 2021). 16S rRNA sequencing analysis had shown that the alpha and beta diversity of gut microbiota is lower and the abundance of 12 genera, such as Bacteroides, Parabacteroides, Clostridium difficile, Streptococcus, and Gamma Proteobacteria, was higher in EMs patients compared with those in normal individuals (Svensson et al., 2021). Shan et al. performed 16S rRNA gene sequencing on the gut microbiota of fecal samples of 12 stage III-IV EMs patients and 12 healthy controls, with results showing that the alpha diversity of the gut microbiota in the EMs group was lower than that in the control group, and the ratio of Firmicutes/Bacteroidetes was higher (Shan et al., 2021). The endometriosis and mock mice shared similar alpha diversity gut microbiota (Yuan et al., 2018), and this was also reported in a clinical study from stage 3/4 endometriosis and healthy controls (Ata et al., 2019). The beta diversity index was significantly higher in the endometriosis mice group, compared with controls (Yuan et al., 2018). There were significant differences in the abundance of Actinobacteria, Tannerellaceae, Blautia, Bifidobacterium, Dialister, and Streptococcus between the two groups. The human peritoneal microbiome analysis revealed the abundance of Acidovorax, Devosia, Methylobacterium, Phascolarctobacterium, and Streptococcus in the peritoneal fluid of endometriosis patients were more abundant than the matched controls (Yuan et al., 2022). In EMs rats, the gut microbiota alters with an increase in the ratio of Firmicutes to Bacteroidetes and a decrease in the abundance of Ruminococcaceae, which is closely related to inflammation (Cao et al., 2020). In a recent study, endometriotic lesion growth is reduced by depletion of the gut microbiome, and the feces from mice with endometriosis can aggravate lesion growth, which proved there is a close connection between gut microbiota and endometriosis (Chadchan et al., 2023). These studies demonstrate that there are significant differences in gut microbiome expression between EMs patients and healthy women. The precise alterations in the microbiome related to endometriosis are still under investigation. However, the significance of these changes is supported by the existence of several proposed mechanisms through which the gut microbiota influences endometriosis.




4 Possible mechanism of intestinal flora imbalance affecting EMs pathogenesis



4.1 The intestinal microbiota is involved in immune-mediated chronic inflammatory regulation in EMs

EMs has been considered as an immune-compromised chronic inflammatory disease, emphasizing the indispensable role of immunological factors in the pathogenesis of EMs (Kvaskoff et al., 2015). Observations of continuous growth of endometrial lesions in ovariectomized animals suggest that the immune system in the pelvic environment may regulate the growth of ectopic lesions (Novella-Maestre et al., 2012). Both local and systemic immune mechanisms favor the growth and maintenance of endometriotic lesions due to imbalanced immune cell populations and altered cytokine profiles (Berkkanoglu et al., 2003; Han et al., 2023). A multicenter case-control study suggests that the presence of concomitant autoimmunity in endometriosis has a significant additive negative impact on embryo implantation (Salmeri et al., 2023a).

The capacity of the intestinal microbiota to shape immune responses outside of the intestine is well documented (Kau et al., 2011). Studies have highlighted the ability of the microbiota and specifically segmented filamentous bacteria to support the development of autoimmune arthritis (Wu et al., 2010) and experimental allergic encephalomyelitis (Lee et al., 2011), both of which have been linked to excessive Th17 responses. Disturbance of gut microbes of the mucosal immune system or “dysbiosis” affects normal physiological function (Allaire et al., 2018) with implications for inflammatory disease (Islam et al., 2018). Dysbiotic bacteria can digest the intestinal protective mucus layer and interact directly with enterocytes, typically leading to an increase in local and systemic inflammation (Blander et al., 2017). Studies suggest that metabolites and endotoxins produced by the intestinal microbiota can increase intestinal mucosal permeability, and ultimately lead to weakened intestinal barrier function and increased intestinal mucosal permeability, a condition known as “leaky gut”. This allows various inflammatory factors and toxic substances to enter the bloodstream and trigger antigen-antibody binding and immune reactions (Khan et al., 2017). Mohling et al. investigated whether patients with laparoscopically confirmed endometriosis exhibit higher rates of impaired intestinal permeability compared to healthy controls and pelvic pain patients without endometriosis. Out of 20 patients with laparoscopically defined endometriosis, 45% had impaired intestinal permeability, whereas none of the 9 patients without endometriosis (control subjects) showed impairment (P=0.027). The study suggests a potential association between impaired intestinal permeability and endometriosis, emphasizing the need for further research to understand its role in the pathogenesis and potential diagnostic implications for endometriosis (Mohling et al., 2023). Xholli et al. explored the role of zonulin, a protein responsible for regulating intestinal permeability, which could help elucidate the presence of gastrointestinal symptoms in endometriosis patients (Xholli et al., 2023).



4.1.1 Immune cells



4.1.1.1 Macrophages

Depending on activation state and surface markers, macrophages are classified as ‘classically activated’(M1) or ‘alternatively activated’(M2). M1 secrete pro-inflammatory factors, IL-12, IL-23, and NOS, which activate T helper 1(Th1) T cells and lead to a pro-inflammatory cascade. Whereas M2 is involved in angiogenesis, coordination of tissue repair, and production of IL-10, which leads to an immunosuppressive phenotype and activation of Th2 cells (Ning et al., 2016).

Early and active lesions of pelvic endometriosis and their adjacent peritoneum harbor abundant macrophages involved in the growth of endometriosis (Khan et al., 2004). The concentration and proportion of macrophages in the ascites of patients with endometriosis were significantly increased, with an enhanced M2:M1 ratio (Zou et al., 2021). M2 predominating in lesions and peritoneal fluid may contribute to pain experienced by women with endometriosis by promoting nerve fiber growth (Bacci et al., 2009). Macrophages in the peritoneal fluid of women with endometriosis exhibit activation of the NF-kB pathway (Lousse et al., 2008). Ectopic endometrial cells may escape removal by macrophages with reduced phagocytic ability (Liu et al., 2019). The fibrogenesis ability and decreased phagocytotic ability of macrophages contribute to endometriotic fibrotic foci formation and lesion proliferation (Duan et al., 2018). The predominance of the endometrial M1 pro-inflammatory phenotype and pro-inflammatory cytokine secretion provides an inhospitable environment for pregnancy.

The number of macrophages and the concentration of peritoneal IL-1β, TNF-α, IL-6, and TGF-β1 is lower in mice endometriotic lesions treated with broad-spectrum antibiotics like ampicillin or metronidazole compared with that in vehicle-treated mice (Chadchan et al., 2019; Jeljeli et al., 2020). Escherichia coli-derived endotoxin-induced macrophage- and TLR4-mediated higher pro-inflammatory reactions in the pelvis of women with endometriosis (Khan et al., 2010). Gut dysbiosis may lead to abnormal β-glucuronidase secretion, promoting M0 to M2 polarization affecting endometrial stromal cell proliferation, invasion, and migration, as well as induced macrophage infiltration and development of endometriotic lesions in the EMs mouse model (Wei et al., 2023).




4.1.1.2 Neutrophils

The number of neutrophils is increased in the peritoneal cavity of women with endometriosis. In addition, neutrophil extracellular traps are increased in the peritoneal fluid of women with endometriosis (Berkes et al., 2014). Angiogenic factors such as VEGF and pro-inflammatory cytokines, including IL-8 and CXCL10, and also reactive oxygen species produced by neutrophils may increase the number of endometriotic lesions to promote disease progression (Lin et al., 2006; Takamura et al., 2016).




4.1.1.3 CD4+ T cells

Upon stimulation, naive CD4+ T cells can differentiate into four major subtypes: T helper 1 (Th1), Th2, Th17, or regulatory T cell (Treg). These various CD4+ T cell subtypes are distinguished by their expression of various transcription factors and cytokines. Th1, Th2, Th17, and Treg cells are increased in peritoneal fluid and blood of endometriosis compared to controls (Podgaec et al., 2007; Li et al., 2014; Gogacz et al., 2016). In endometriotic lesions, CD4+ Th1 is decreased but Treg is increased compared to eutopic endometriosis endometrium (Olkowska-Truchanowicz et al., 2013; Takamura et al., 2015). The percentage of Th17 cells in the pelvic peritoneum of endometriotic patients with stage III/IV endometriosis was higher than that in patients with stage I/II endometriosis (Gogacz et al., 2016). IL-17 is an immune regulatory factor mainly produced by Th17 cells, which could stimulate the secretion of angiogenic factors and pro-inflammatory cytokines, accelerating the establishment and growth of ectopic lesions (Ahn et al., 2015a). The number of Treg cells significantly increased in the peritoneal lesions of patients with ovarian endometrioma compared with patients without endometriosis (Khan et al., 2019). A large of studies confirmed that Treg cells suppress the immune response and promote the progression of endometriosis (Basta et al., 2014; Tanaka et al., 2017; Olkowska-Truchanowicz et al., 2021).

Chadchan, S.B. et al. showed that there are a lower number of immune cell populations such as M2-like macrophage, CD19+ B cells, total T cells, CD4+ T cells, and CD8+ T cells, and smaller endometriotic lesions in the peritoneum of microbiota-depleted mice compared to the control group (Chadchan et al., 2023). The Firmicutes and Clostridium species in the intestinal microbiota metabolize to produce butyrate, while Bifidobacterium and Actinobacteria produce acetate. Butyrate can promote the differentiation of primary T cells into regulatory T cells (Tregs) and directly regulate T cell responses. Acetate and butyrate can regulate the interaction of dendritic cells and T cell complexes (DC-T) by inhibiting the expression of nuclear factor κB through histone deacetylase inhibitors (HDACi) and inducing the transcription of anti-inflammatory genes, leading to the differentiation of Tregs and the maintenance of immune balance (Kedmi et al., 2022).

Gut microbiota such as segmented filamentous bacteria and Clostridia can participate in the differentiation of Th17 cells and promote the induction, migration, and proliferation of Treg cells (Wu et al., 2010; Goto et al., 2014). Gut-residing segmented filamentous bacteria induce an increase in the number of arthritogenic or encephalitogenic Th17 cells, resulting in exacerbation of arthritis and experimental autoimmune encephalomyelitis (Lee et al., 2011; Liu et al., 2020). Polymorphic rod-shaped bacteria and Firmicutes have been found to significantly increase in colon cancer tissue, and their metabolites can regulate intestinal immune function, including the differentiation of Th17 and Treg cells (Cong et al., 2022). IL-37 is a natural anti-inflammatory cytokine that participates in the regulation of gut microbiota and immune response. Dysbiosis of gut microbiota can increase the expression of IL-37, recruit neutrophils and natural killer cells in the colonic lamina propria and mesenteric lymph nodes, cause damage to the intestinal epithelial barrier, and increase inflammatory responses and immune dysfunction (Zhang et al., 2010).

Further research has revealed the overexpression of programmed death receptor-1 (PD-1) and programmed death ligand-1 (PD-L1) on the surfaces of these immune cells (Dai et al., 2014). On the surface of normal immune cells, the expression of PD-1 and PD-L1 is low. However, the PD-1/PD-L1 signaling pathway is overactivated accompanied by stimulated inflammation, which inhibits the activation and proliferation of T cells in the local inflammatory microenvironment. At the same time, the cytotoxic effect of T cells on abnormal cells have been greatly reduced, leading to immune tolerance and subsequently reducing the body’s immunity, resulting in immune escape (Vallvé-Juanico et al., 2019). Therefore, the sustained stimulation and activation of the PD-1 pathway by a large amount of bacterial endotoxin caused by dysbiosis of gut microbiota leads to overexpression of PD-1 and PD-L1, which induces exhaustion of immune T cells and immune escape.





4.1.2 Inflammatory mediators

It is well-established that peritoneal inflammation, attributable to the high local cytokine concentration, is a hallmark of endometriosis(Allaire et al., 2023). Several key inflammatory mediators, including COX-2, IL-1β, IL-8, tumor necrosis factor (TNF)-α, PGE2, and E2, are elevated in endometriotic lesions compared with eutopic endometrium. Increased anti-inflammatory cytokines, such as IL-6, IL-10, IL-15, and TGF-β in the peritoneal fluid may mitigate the pro-inflammatory effects of PGE2 and NF-κB (Wang et al., 2018). The binding between lipopolysaccharide and TLR-4 significantly increases the concentration of peritoneal cavity immune cells, especially macrophages (Emani et al., 2015), which produce TNF-alpha, IL-1 receptor, vascular endothelial growth factor (VEGF), IL-6, IL-8, and IL-17, and which can promote the formation, infiltration, and neoangiogenesis of endometriotic peritoneal nodules (Khan et al., 2010; Khan et al., 2018). In 2021, Jiang et al. hypothesizes that dysbiosis lead to the elevation of proinflammatory cytokines compromising the immunosurveillance, creating an environment that maintain the vicious cycle of endometriosis onset and progression (Jiang et al., 2021).




4.1.3 Angiogenesis-related substances

In women with endometriosis, there are a large number of neovascularizations around the ectopic lesions in the abdomen, and vascular formation is an important factor in ectopic lesion adhesion, proliferation, and repeated bleeding. The adhesion-invasion-vascularization process is required for ectopic endometrium to grow in the abdomen.

Vascular endothelial growth factor (VEGF) is the main regulator of vascularization, promoting endothelial cell differentiation, proliferation, migration, and inducing gut inflammation. Coordinated efforts by both M1 and M2 macrophages are required for angiogenesis and scaffold vascularization (Spiller et al., 2014).

The angiopoietin (ANG) protein family is associated with angiogenesis, upregulated in various cancers (Miyake et al., 2015). ANG is involved in hypoxia-induced angiogenesis in endometriosis and the expression of ANG in endometriotic tissue is upregulated (Fu et al., 2018). ANG plays an important role in regulating gut microbiota balance and inhibiting inflammation. There is an ANG-microbiota axis in the gut, and ANG can regulate gut microbiota in the form of antimicrobial peptides. In mice with dysbiosis of gut microbiota, the absence of ANG leads to a decrease in Helicobacter species but induces an inflammatory response when the α-Enterobacteriaceae strains in the colon increase (Korecka et al., 2013; Carbone et al., 2018; Sun et al., 2021). Ang4, induced by Bacteroides thetaiotaomicron, influences gut microbial ecology and shape innate immunity. Mouse Ang1 and human angiogenin, circulating proteins induced during inflammation, exhibit microbicidal activity contributing to systemic responses to infection (Hooper et al., 2003). Whether the ANG-microbiota axis contributes to the pathogenesis of endometriosis requires further investigation.




4.1.4 Metabolites

Intestinal microbiota breaks down excess polysaccharides in the gut into short-chain fatty acids (SCFAs). SCFAs such as acetate, propionate, n-butyrate, pentanoic (valeric) acid, and hexanoic (caproic) acid are used as an energy source by enterocytes or are transported into the bloodstream, which functions as protecting the gut mucosal barrier, regulating metabolism and immune function (den Besten et al., 2013). Feces from mice with endometriosis contained less of SCFAs and n-butyrate inhibited human endometriotic cell survival and lesion growth through G-protein–coupled receptors, histone deacetylases, and a GTPase activating protein, RAP1GAP (Chadchan et al., 2021). In vitro studies have shown that SCFAs can inhibit the activation of TLR4 signaling pathways, inhibit the secretion of pro-inflammatory cytokines, and reduce gut inflammation (Kim, 2023). The concentration of butyrate in the lumen is positively correlated with the number of Tregs (Arpaia et al., 2013). Butyrate can modify the cytokine production profile of helper T cells and promote intestinal epithelial barrier integrity, which in turn can help limit exposure of the mucosal immune system to luminal microbes and prevent aberrant inflammatory responses (Kau et al., 2011). Butyrate and propionate can block the production of dendritic cells by influencing specific transcription factors of dendritic cell precursors but do not affect granulocyte production (Singh et al., 2010). Future studies are needed to determine how SCFAs influence ectopic endometrial implantation and propagation by regulating immune response.

Arpaia et al. found that butyrate is essential for extrathymic but dispensable for thymic Treg-cell differentiation (Arpaia et al., 2013). Tregs are mainly produced in the thymus from where they migrate to the circulation as natural Tregs(nTregs), and a much smaller subpopulation differentiates in the periphery from naïve T cells into induced Tregs(iTregs) (Tanoue et al., 2016). It was postulated that peripheral regulatory T-cell changes induced by decreased butyrate may not influence the establishment of an anti-inflammatory environment by suppressing the activation of the immune system evoked by the endometriotic foci. Loss of balance between Th1/Th2/Th17 and Tregs leads to inappropriate secretion of T-cell-related cytokines and inflammation that induces the progression of endometriotic lesions (Szukiewicz et al., 2022).

In summary, the metabolites of gut microbiota may play a crucial role in intestinal immune function, while more in-depth functional studies are warranted to uncover the precise mechanism of specific immune cells influenced by gut microbiota. Imbalance of gut microbiota may lead to inflammation and immune dysfunction, thus regulating the balance of gut microbiota is one of the important strategies for the prevention and treatment of gut-related diseases.





4.2 The intestinal microbiota affects the generation of serum LPS and participates in the pathogenesis of EMs

Dysbiosis of the intestinal microbiota can lead to an increase in Gram-negative bacteria, causing a large amount of LPS to enter the circulatory system inducing chronic inflammation (He et al., 2019). A study of macaques found that there are significant changes in the fecal bacteria of the EMs group compared to the control group, showing a decrease in bifidobacteria and an increase in Gram-negative bacteria. Moreover, the incidence of intestinal inflammation was higher in the EMs macaques group than in the control group (Bailey and Coe, 2002).

LPS is an important component of the outer membrane of Gram-negative bacteria, which normally exists in various parts of the human body such as the skin, oral cavity, and gastrointestinal tract. However, when the level of LPS increases, it can cause a large amount of growth and reproduction of intestinal pathogens while inhibiting the activity of beneficial bacteria (Maldonado et al., 2016). LPS stimulates the endometrial stromal cells to produce a large amount of tumor necrosis factor-alpha (TNF-α) and IL-8, and promotes the mitotic activity of human endometrial stromal cells (Khan et al., 2010). At the same time, the expression of COX-2 and PGE2 is upregulated, promoting the proliferation and invasion of human endometrial stromal cells (Iba et al., 2004).

LPS induces the production of inflammatory factors and vascular endothelial growth factors, allowing the refluxed endometrial fragments to implant and form ectopic lesions in the abdominal cavity (Matsuzaki et al., 2020). LPS can promote ectopic endometrial adhesion and invasion by inducing the expression of adhesion molecules between endometrial and pelvic peritoneal cells (Keyama et al., 2019). Chenodeoxycholic acid (CDCA), a component of the secondary bile acid biosynthesis, increases in the intestine of EMs mice (Ni et al., 2020). It is closely related to gut microbiota and contributes to promoting intestinal homeostasis. CDCA blocks LPS-induced activation of the myosin light chain kinase pathway, thereby protecting against the LPS-induced impairment of the intestinal epithelial barrier function (Gadaleta et al., 2011; Song et al., 2019).

Epithelial-mesenchymal transition (EMT) also plays an important role in the adhesion and invasion of ectopic epithelium in EMs, and it is also an important factor for successful implantation and lesion migration of ectopic epithelium (Xiong et al., 2015; Xiong et al., 2016). LPS upregulates TLR4 expression, induces EMT phenotype, and contributes to the invasion of ectopic endometrium (Ying et al., 2018, 4). TLR4 is a type I transmembrane protein that plays an important role in innate immunity. In vitro cell and animal experiments have confirmed that the intestinal microbiota LPS-TLR4 pathway is involved in various inflammatory bowel diseases. As the main type of TLR, TLR4 is a natural immune receptor that mediates LPS response and can be recognized by LPS receptors in the cell wall of Gram-negative bacteria. After binding to LPS, TLR4 can induce an inflammatory cascade reaction, causing the release of a large number of inflammatory mediators, thereby causing inflammatory damage to the digestive tract. The inflammatory reaction involving the intestinal microbiota LPS-TLR4 pathway is mainly caused by Bacteroides, and patients with dysbiosis of the intestinal microbiota are accompanied by elevated levels of peripheral blood monocyte TLR4 and peripheral blood inflammation (Li et al., 2021).

In women with endometriosis, the body is in a state of low inflammation. When the bile acid receptor 1 on white blood cells is activated, their phagocytic ability decreases, while LPS-induced pro-inflammatory cytokines such as TNF-α, IL-1α, IL-1β, and IL-6 are inhibited. The downregulation of LPS-induced TNF-α expression inhibits macrophage inflammatory responses (Peng et al., 2020). On the other hand, TLR4 forms a dimer with leukocyte differentiation antigen 14, activating downstream MyD88 and TIR domain-containing adaptor protein signaling pathways to upregulate the expression of pro-inflammatory cytokines, chemokines, and interferons, exacerbating gut inflammation (Li et al., 2020).

When the gut microbiota is imbalanced, the proportion of tight junction proteins and occludin proteins between the host intestinal epithelial cells decreases, increasing intestinal mucosal permeability. Gut microbiota metabolizes LPS, which enters the bloodstream and binds to lipopolysaccharide-binding protein (LBP). LBP then activates the receptor CD14 on the surface of immune cells, which helps to recognize and activate TLR4, thereby activating the MyD88/NF-κB signaling pathway and promoting the release of IL-1, IL-6, TNF-α, and other inflammatory mediators. This leads to a cascade of inflammatory reactions in the body, inducing EMs and placing the body in a state of low-grade inflammation (Płóciennikowska et al., 2015).




4.3 Gut microbiota involve in hormonal regulation

High levels of estrogen can induce proliferative diseases such as EMs, uterine fibroids, and endometrial cancer by stimulating the proliferation of female reproductive tract epithelial cells (Somasundaram et al., 2020). Intestinal bacteria play an important role in estrogen metabolism, evidenced by the observation that estrogen levels are reduced because of the use of antibiotics (Chadchan et al., 2019). Also the gut bacterial species and proportion altered in many sex hormone-driven cancers, such as endometrial, prostate, and breast cancer (Sepich-Poore et al., 2021).

Gut microbiota participates in the estrogen cycle, forming the estrogen-gut microbiota axis. Gut microbiota including Firmicutes, Bacteroidetes, and Bifidobacterium have genes related to glucuronidase activity, thus could be indicative of an altered astrobleme and dysregulated estrogen metabolism in mice with endometriosis compared to controls (Pradhan et al., 2016; Baker et al., 2017). Ecological imbalance increases circulating estrogen levels, stimulates ectopic endometrial invasion and growth, and is accompanied by cyclic bleeding and pain. The β-glucuronidase secreted by gut microbiota participates in estrogen regulation by metabolizing estrogen from a bound form to an unbound form, which is then reabsorbed and involved in the regulation of circulating estrogen levels through enterohepatic circulation (Junkka and Ohlsson, 2023). β-glucuronidase can affect the growth of hormone-dependent tumors in the body by participating in intestinal estrogen metabolism (Baker et al., 2017). It is suspected that increased β-glucuronidase-producing bacteria in the gut of endometriosis patients leads to an increase in circulating estrogen levels, disrupting the balance between circulating estrogen levels and gut microbiota.

Estrogen metabolism analysis of EMs patients shows that there are significant differences in the expression of 17β-estradiol, 16-keto-17β-estradiol, 2-hydroxyestrone, and 2-hydroxyestradiol compared to healthy individuals, and gut microbiota of EMs patients are positively correlated with urinary estrogen (Ser et al., 2023). In addition, bacteria such as the genus Bacteroides in the gut express 17β-dehydrogenase, which can decompose testosterone into androstenedione, demonstrating the involvement of gut microbiota in sex hormone synthesis and metabolism (Baker et al., 2017; Le et al., 2021).

The gut microbiota are equally important for the metabolism and circulation of androgens. One study measured the level of non-glucuronidated testosterone in mice and found that the distal colon of germ-free mice showed high levels of glucuronidated testosterone and 5α-dihydrotestosterone, but significantly lower levels of free dihydrotestosterone, suggesting that gut microbiota affect intestinal androgen metabolism and glucuronidation of dihydrotestosterone (Shin et al., 2019). Therefore, gut microbiota plays an important regulatory role in the biotransformation of estrogen, which can affect hormonal balance.





5 Mouse models used to address relationship between gut microbiota dysbiosis and endometriosis

Manipulation of gut microbiota in animal models constitutes a key experimental approach to demonstrate causality between gut microbiota dysbiosis and the occurrence of a given disease. In particular, mouse models have been increasingly used over the last years to address the causal role of microbiota in endometriosis, getting further insights into the role of these microorganisms in the occurrence or chronicity of endometriosis.

Germ-free mice generated by surgically delivering pups, sterilizing them, and rearing them in germ-free isolators, which are considered as the gold standard to study the effect of the complete absence of microbes, to establish mice with precisely defined microbiota composition or to perform intestinal microbiota transfer experiments. However, surgically inducing endometriosis in germfree isolators is extremely challenging and germ-free mice lack an educated immune system with several developmental defects (Al-Asmakh and Zadjali, 2015).

Microbiota-depleted (MD) mice are generated by raising mice under standard conditions and treated with broad-spectrum antibiotics. Antibiotics provided in drinking water or via oral gavage t. However, administration of broad-spectrum antibiotics in drinking water may increase baseline morbidity and mortality in mice (Hill et al., 2010).

The limited microbiota in laboratory mice is a growing concern in human immunology and clinical research. As wild mice live in natural habitats similar to humans, they had higher proportions of effector and memory T cells and higher cytokine production, whereas laboratory mice lacked memory CD8+ T cell subsets that experienced protection against pathogen invasion (Beura et al., 2016). Utilizing the wild mice microbiome could be an option to investigate immunological properties. It has been reported that the rewilded laboratory mouse via wild microbiota colonization showed similar microbial community and immune system fitness (Rosshart et al., 2019). Therefore, the wildling or humanized model by fecal transfer would improve the value of preclinical findings.

Many parameters should thus be considered by investigators before selecting one of these protocols.




6 The prospects of gut microbiota for the diagnosis and treatment of endometriosis

With the continuous development of gene sequencing technology, it has become increasingly clear that the gut microbiota plays an important role in the pathogenesis of EMs. Researchers have found significant differences in gut microbiota between EMs patients and healthy individuals, among which the genus Streptococcus is considered a potential biomarker for EMs patients. Another study indicated that the depletion of Lachnospiraceae Ruminococcus in the gut might be a biomarker for endometriosis. Four differential metabolites, namely chenodeoxycholic acid (CDCA), ursodeoxycholic acid (UDCA), ALA, and 12,13s-epoxy-9z,11,15zoctadecatrienoic acid (12,13-EOTrE) are found through fecal metabolomics and gut microbiota research of the EMs animal model, suggesting their potential as important biological indicators to distinguish the disease (Ni et al., 2020). Research has shown that the abundance of Bacteroides in the feces of EMs mice is higher than that of normal mice. After treatment with metronidazole, Bacteroides was not detected in the feces of EMs mice, and the ectopic lesions decreased in size (Chadchan et al., 2019). Subsequently, gavage with fecal bacteria from EMs mice previously treated with metronidazole significantly reduced the size of ectopic endothelial lesions, indicating that the development of EMs can be weakened by antibiotics.

Clinical animal experiments have shown that gut microbiota preparations have achieved certain therapeutic effects in the treatment of EMs, among which fecal microbiota transplantation (FMT) is considered an important way to treat gut dysbiosis in EMs. FMT therapy mainly involves the infusion of healthy donor fecal suspensions into recipients to regulate gut microbiota dysbiosis and treat EMs.

In addition, gut microbiota can produce butyrate, which activates the protein Rap1GAP through GPCR, HDAC, and Rap1 GTPase to inhibit the survival and growth of endometrial ectopic cells. Studies have shown that butyrate treatment in an EMs mouse model can reduce ectopic endometrial lesions, providing some insights for clinical treatment. Therefore, the use of gut microbiota preparations for the diagnosis and treatment of EMs has research prospects, but further exploration and improvement are still needed.




7 Limitations and future directions

In summary, endometriosis (EMs) is a common gynecological disease that seriously affects the physical and mental health of female patients due to its adhesive, invasive, and recurrent characteristics. The relationship between EMs and gut microbiota imbalance is under-studied, intestinal microbiota may participate in the pathogenesis of EMs through immune regulation, LPS generation, pro-inflammatory cytokine, and ANG release, and other mechanisms Figure 1. Clinical studies have shown that intestinal microbiota preparations also have certain efficacy in the treatment of EMs, providing a research direction and theoretical basis for the diagnosis and treatment of EMs patients with intestinal microbiota. Upper genital tract and gut microbiota might be cofactors causing the development and growth of endometriosis, only the latter has been elaborated on this review. However, the present explanations are speculations arising from interesting observations, but there is a paucity of robust studies to demonstrate causal relationships. Future efforts could explore the role of particular microbiota or derived metabolites on immune cells or inflammatory mediators in endometriosis patients. In-depth functional studies with specific immune cell-deficient mouse models will uncover the precise mechanism by which gut microbiota drives peritoneal immune function in endometriosis. Since intestinal microbiota are numerous and diverse and play important roles in various systems of the human body, robust studies that employ rigorous controls, phenotypic characterization, longitudinal sampling, and rich patient metadata are required to (1) identify the characteristic microbial changes involved in EMs and their cause-effect relationships, (2) elaborate deeply the underlying mechanisms contributing to the pathogenesis of EMs, and (3) determine whether the inflammatory environment of EMs is involved in an imbalance of intestinal microbiota. The postulated mechanisms of EMs involvement in gut dysbiosis also deserve deep investigation. Indeed, there are still many challenges to developing gut microbiota-target therapeutics for EMs. Therefore, further exploration and research are needed in the future.

[image: Illustration showing gut microbiota balance and imbalance. On the left, balanced microbiota with normal cell lining. On the right, imbalance features damaged cell lining, increased glucuronidase activity, bacterial endotoxins, and proinflammatory cytokines. Insets indicate decreased barrier function and increased immune imbalance, dysregulated estrogen metabolism, and endotoxins. Various cells and symbols represent CD17+ T cells, regulatory T cells, dendritic cells, macrophages, estrogen, short-chain fatty acids, and cytokines.]
Figure 1 | The influence of gut microbiota on the pathogenesis of endometriosis. Metabolites and endotoxins produced by the intestinal microbiota can lead to weakened intestinal barrier function and increased intestinal mucosal permeability. Multiple aspects such as immune system regulation, release of inflammatory factors, angiogenesis-related substances involvement, hormonal regulation, and endotoxin production are comprehensively involved in creating a favorable environment for the occurrence and development of endometriosis.
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Autoimmune thyroiditis (AITD) is a T-cell-mediated, organ- specific autoimmune disease caused by interactions between genetic and environmental factors. Patients with AITD show thyroid lymphocyte infiltration and an increase in the titer of thyroid autoimmune antibodies, thereby altering the integrity of thyroid follicle epithelial cells and dysregulating their metabolism and immune function, leading to a decrease in multi-tissue metabolic activity. Research has shown that patients with AITD have a significantly higher risk of adverse pregnancy outcomes, such as infertility and miscarriage. Levothyroxine(LT4) treatment can improve the pregnancy outcomes of normal pregnant women with thyroid peroxidase antibodies(TPOAb) positivity, but it is not effective for invitro fertilization embryo transfer (IVF-ET) in women with normal thyroid function and positive TPOAb. Other factors may also influence pregnancy outcomes of patients with AITD. Recent studies have revealed that the gut microbiota participates in the occurrence and development of AITD by influencing the gut-thyroid axis. The bacterial abundance and diversity of patients with Hashimoto thyroiditis (HT) were significantly reduced, and the relative abundances of Bacteroides, fecal Bacillus, Prevotella, and Lactobacillus also decreased. The confirmation of whether adjusting the composition of the gut microbiota can improve pregnancy outcomes in patients with AITD is still pending. This article reviews the characteristics of the gut microbiota in patients with AITD and the current research on its impact in pregnancy.
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1 Background

Autoimmune thyroiditis (AITD) is a T-cell-mediated, organ-specific autoimmune disease that mainly manifests as Hashimoto’s thyroiditis (HT) and Graves’ disease (GD) (Antonelli et al., 2015). The incidence rate of AITD is approximately 5%, and is more common in women of childbearing age (Lee et al., 2015). It is accompanied by lymphocyte infiltration and elevated titers of thyroid autoimmune antibodies, such as thyroid peroxidase antibodies (TPOAb) and thyroid globulin antibodies (TgAb) (Fröhlich and Wahl, 2017), which are associated with varying degrees of hypothyroidism (Caturegli et al., 2014). Infiltrating lymphocytes can directly produce cytotoxicity in thyroid follicular cells or may indirectly affect their vitality and function through cytokines; this alters cell integrity and dysregulates their metabolism and immune function, leading to thyroid gland enlargement, gland fibrosis, decreased thyroid hormone (TH) levels, and ultimately reduced metabolic activity in multiple tissues (Ajjan and Weetman, 2015; Mori et al., 2012). It can cause a decrease in cardiovascular contractility and intestinal activity, coronary artery disease, hyperlipidemia, infertility, and neurosensory and musculoskeletal changes (Chaker et al., 2017).Therefore, it is crucial to reduce the incidence of AITD.

The etiology of AITD remains unclear. Epidemiological studies have shown that AITD is caused by interactions between genetic and environmental factors (Taylor et al., 2018). Genetic susceptibility plays a crucial role in autoimmune disorders, and immune modification genes (such as human leukocyte antigen classes I and II) and sites related to cytotoxic T lymphocyte-associated protein 4 (CTLA-4) may be involved in the autoimmune process. The interactions between these gene loci and environmental factors may affect the phenotype and severity of HT (Ajjan and Weetman, 2015). Environmental factors that may trigger the development of AITD include excessive iodine intake; deficiencies in selenium, iron, zinc, and vitamin D; intake of gluten (Liontiris and Mazokopakis, 2017), and alcohol; excessive stress; pregnancy; and the use of interferon, key immune modulators, such as iprimumab and alenzumab (Topliss, 2016).However, a study has found that smoking can reduce the risk of AITD (Effraimidis and Wiersinga, 2014). Recently, extensive research has indicated that the gut microbiota may play an important role in triggering AITD (Köhling et al., 2017), thus providing new ideas for treating AITD.




2 The correlation between AITD and gut microbiota



2.1 Gut microbiota

Gut microbiota is a general term for the microorganisms that parasitize the human intestine. It comprises bacteria, fungi, viruses, and archaea, with bacteria accounting for the majority. There are approximately 2000 species of gut microbiota, and more than 100 species have been identified by phylum classification. The main phylum categories include Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Verrucomycetes (Hardin et al., 2019). Among them, Firmicutes and Bacteroidetes account for > 90% of gut microbiota. The Firmicutes phylum has the highest number of bacteria, consisting of over 200 genera, including Lactobacillus, Mycoplasma, Bacillus, and Clostridium. The phylum Bacteroidetes includes more than 20 genera (Benson et al., 2010).

The gut microbiota undergoes corresponding changes owing to factors such as host genetics, diet, and environment, which can promote the growth of pathogenic bacteria (Kashtanova et al., 2016). Dysfunction of the gut microbiota not only causes a variety of gastrointestinal diseases, such as diarrhea, constipation, and enteritis, but can also induce chronic diseases, such as obesity, cardiovascular disease, diabetes, and metabolic syndrome (Marchesi et al., 2016; Cho and Blaser, 2012). Recent research has also shown that the intestinal flora and its metabolites may play a key role in the regulation of the immune system response and the development of autoimmune diseases, such as rheumatoid arthritis (RA) (Sun et al., 2019),multiple sclerosis (MS) (Cantoni et al., 2022), systemic lupus erythematosus(SLE) (Luo et al., 2018), type 1 diabetes(T1D) (Knip and Honkanen, 2017), and HT (Belvoncikova et al., 2022). The abundance of Prevotella in the feces of RA patients is higher (Alpizar-Rodriguez et al., 2019), and the genera Faecalibacterium and Bacteroides are reduced (Maeda and Takeda, 2019). Prevotella and Pseudomonas typically shows a decrease in the feces of patients with MS (Miyake et al., 2015), while the Akkermansia muciniphila typically increase (Ventura et al., 2019). Gut microbial diversity is significantly lower in patients with SLE with active disease than in non-SLE controls (Luo et al., 2018). In SLE patients, the relative abundance of Firmicutes decreased compared to the non-SLE controls, while Bacteroidetes increased (Hevia et al., 2014). A study conducted by Knip et al., to explore the relationship between gut microbiota and T1D, showed that children with positive islet-autoantibodies had a higher Bacteroidetes/Firmicutes ratio and lower Shannon diversity in the gut microbiota (Knip and Honkanen, 2017).




2.2 Characteristics of gut microbiota in patients with AITD

As shown in Table 1, some studies have proposed compositional modifications and bacterial ecological imbalances arise in the gut microbiota of patients with AITD, indicating that specific bacterial overgrowth and its impact on the gut-thyroid axis may play key roles in the occurrence and progression of AITD (Knezevic et al., 2020). This cross-sectional study compared 45 patients with HT of normal thyroid function (HTN), 18 patients with HT of hypothyroid status (HTH), and 34 healthy controls (CON). The bacterial abundance and diversity in patients with HTN and HTH were significantly lower than those in the healthy group, and patients with HTH showed the lowest intestinal microbial abundance (Liu et al., 2020a).

Table 1 | Characteristics of gut microbiota in patients with autoimmune thyroid disease.
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Sequencing analysis by Zhao et al. identified specific differences in the microbiota. The feces of patients with HT showed an increase in Firmicutes and Actinobacteria levels, whereas Bacteroides and Proteobacteria decreased. The ratio of Firmicutes to Bacteroides was significantly increased, and patients with HTN had a higher abundance and diversity of gut microbiota than the CON group (Zhao et al., 2018). A recent study found that compared to patients with Graves’ disease, patients with HT had more abundant Firmicutes, fewer Bacteroidetes, and more Proteobacteria and Actinobacteria levels than the normal control group (Zhao et al., 2022). Ishaq et al. also proposed that the relative abundance of Proteobacteria in the feces of patients with HT was significantly increased, whereas the relative abundance of Firmicutes and Bacteroidetes was decreased (Ishaq et al., 2017). These three studies found that the HT group had high levels of Spirochaetaceae, Enterobacteriaceae, Alcaligenaceae, Trichocomaceae, Erythrobacteraceae, and Bacteroidaceae. In contrast, the levels of Prevotella, Ruminococcus, and Vibrio were decreased in the HT group (Zhao et al., 2018; Zhao et al., 2022; Ishaq et al., 2017).

At the genus level, the relative abundances of Bacteroides, fecal Bacillus, Prevotella, and Lactobacillus in the fecal samples of patients with HT decreased, while the relative abundances of Blautia, Ruminococcus, Rose, Clostridium, Longbuti, Dorea, and Eubacterium increased significantly (Zhao et al., 2018). Studies have also suggested a decrease in Prevotella levels in the feces of patients with HT (Ishaq et al., 2017). A meta-analysis showed that the abundance of Firmicutes, Bifidobacteria, and Lactobacillus in patients with AITD was lower than that in healthy controls; patients with HT having slightly higher levels of Bacteroides than in other bacteria. These taxa are associated with clinical indicators, such as an altered host metabolism or TPOAb and TgAb positivity in the host (Gong et al., 2021). A cross-sectional study of 22 patients with HT and 11 healthy individuals conducted by Zhao et al. showed that 18 genera in the microbiota of patients with HT were positively correlated with TPOAb or TgAb, whereas six genera were negatively correlated. In addition, the Heterobacteria genus is positively correlated with free thyroxine, Clostridium genus is negatively correlated with free thyroxine, and Pleurotus genus is negatively correlated with serum thyrotropin (TSH) (Zhao et al., 2018).




2.3 The mechanism of gut microbiota affecting the development of AITD

As shown in Figure 1, extensive research has been conducted on the mechanism by which the gut microbiota affects AITD development. Minerals such as selenium, iron, and zinc have a significant impact on the interactions between the host and gut microbiota (Knezevic et al., 2020), which affect TH levels by regulating iodine uptake, degradation, and hepatic-intestinal circulation (Fröhlich and Wahl, 2019). The gut microbiota produces its own antigens through protein post-translational modifications, activates Toll-like receptor 4 induced by lipopolysaccharide (LPS), induces T helper cell translocation from type 1 (Th1) to type 2 (Th2), reduces the integrity of intercellular connections, and promotes AITD development through intestinal leakage (Lerner et al., 2017). Some scholars also believe that changes in gut microbiota occur through post-translational modifications of luminal proteins, the transition of the intestinal mucosa to a pro-inflammatory environment, intestinal ecological imbalances leading to damage of the intestinal barrier, antigen entry into the circulation, activation of the immune system antibodies in the circulation, which react with bacterial antigens to enhance inflammatory body activations in the thyroid gland, and excessive bacterial growth that participates in the development of autoimmune thyroiditis (Mu et al., 2017; Cayres et al., 2021; Tomasello et al., 2015). Another theory suggests that a decreased population of beneficial bacteria such as Lactobacillus and Bifidobacterium is related to the development of AITD. Lactobacillus has been proven to protect TH17 cells and support their barrier integrity by secreting IL-22 and IL-17. The Th17/Treg imbalance may cause inflammatory disorders, indicating that Lactobacillus participates in the immune system balance. Bifidobacterium and Lactobacillus exhibit anti-inflammatory effects and protect the body from pathogens. Moreover, increased Bacteroides fragilis may account for the upregulation of IL-18, IL-1β, and caspase-1, promoting an inflammatory response (Kiseleva et al., 2011). It has been proposed that bacterial strains participate in the development of HT by influencing glutathione and arachidonic acid metabolism, and purine and pyrimidine metabolism pathways; however, further validation is still needed (Zhao et al., 2022).
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Figure 1 | The possible mechanism of gut microbiota affecting the development of AITD.





3 The impact of AITD on pregnancy

Numerous studies have shown that AITD increases the risk of adverse pregnancy outcomes. Women may experience changes in hormone levels and metabolic needs during pregnancy, such as an increase demand for THs to meet the needs of fetal growth and brain development. Therefore, thyroid diseases are frequently observed during pregnancy (Krassas et al., 2010). Thyroid dysfunction during pregnancy can include overt hypothyroidism (OH) and subclinical hypothyroidism (SCH). The relative incidence rates of OH and SCH are approximately 0.3–1.0% and 4.0–17.8%, respectively (Shan and Wang, 2022). AITD is the main cause of hypothyroidism in pregnant women, with an average incidence of 7.8% (Krassas et al., 2015).



3.1 AITD and infertility

The incidence of infertility in women with AITD is high, with a prevalence of 52.3% in patients with GD and 47.0% in patients with HT (Quintino-Moro et al., 2014). In a prospective study, 438 women with infertility and 100 healthy women in postpartum were compared, and it was found that the prevalence of TPOAb positivity was significantly higher among women with infertility factors than those of the healthy group (Poppe et al., 2002).




3.2 AITD and miscarriage

AITD is associated with recurrent miscarriage (RM). Some scholars believe that autoimmunity in women with AITD affects embryo implantation by inducing endometrial receptive defects (Kim et al., 2011; Liu et al., 2020b; Wu et al., 2019), leading to an increase in fetal miscarriages. Some scholars also believe that, in women affected by thyroid autoimmunity, the thyroid may have insufficient TH release in the early stages of pregnancy, and their increased miscarriage rate may be due to TH deficiency rather than a systemic overreaction of the immune system (Abalovich et al., 2007). The local effects of TH on female reproductive organs and embryos during embryo implantation are crucial for successful pregnancies (Stavreus Evers, 2012).

A prospective cohort study conducted in women with infertility found that the median serum TSH levels were significantly higher in TPOAb- and TgAb-positive women than in women without AITD (Unuane et al., 2013). The TSH level is a sensitive indicator of thyroid function during pregnancy (Tortosa, 2011). The upper limit of the normal value of TSH in early pregnancy should be 4.0 mU/L, and 2.5 mU/L≤ TSH< 4.0 mU/L is called the normal high value of TSH. Women with positive thyroid antibodies or those undergoing assisted reproduction require levothyroxine (LT4) (Shan and Wang, 2022). Therefore, some scholars used LT4 intervention as adjuvant therapy in 227 women with AITD who suffered from RM and it was found that low-dose LT4 treatment can, to some extent, prevent miscarriage (Dal Lago et al., 2021). Another study also showed that administering LT4 treatment to pregnant women with a history of hypothyroidism and TPOAb-positivity can improve their live birth rates and reduce miscarriages (Leng et al., 2022). However, some studies have found that LT4 treatment did not increase live birth rates in women with RM, normal thyroid function, and positive TPOAb (van Dijk et al., 2022). Hong et al. also confirmed that LT4 treatment did not reduce miscarriage rates or increase live birth rates in women undergoing in vitro fertilization embryo transfer (IVF-ET) with intact thyroid function and positive TPOAb (Wang et al., 2017). The use of glucocorticoids and aspirin as adjunctive therapies in euthyroid women with AITD undergoing IVF-ET may not improve pregnancy or live birth rates either (Zhou et al., 2022).




3.3 AITD and other adverse pregnancy outcomes

After analyzing 35 studies, we found that TPOAb-positive women had a higher risk of premature birth than TPOAb-negative women. The relationship between TPOAb positivity and premature birth appears to be related to TSH concentration. TPOAb-positive women with TSH concentrations higher than 4.0 mU/L have a higher risk of premature birth (Korevaar et al., 2019). Tang et al. found that with an increase in TPOAb and TgAb (in early and mid-pregnancy), the maternal risk of gestational diabetes mellitus (GDM) significantly increased. Therefore, the presence of thyroid antibodies can predict postpartum glucose abnormalities in individuals with GDM (Tang et al., 2021). Some studies have evaluated the impact of LT4 on the risk of miscarriage, premature birth, preeclampsia, placental abruption, birth weight, gestational age at delivery, and neonatal admission rate in TPOAb-positive pregnant women with normal thyroid function; nevertheless, no significant differences between the LT4 administrated and control groups were found. However, there has been a downward trend in premature births and miscarriages.





4 Gut microbiota and pregnancy

In recent years, increasing evidence has shown that sex hormones can affect the structure of gut microbiota, and sex hormones act through steroid receptors directly regulate the metabolism of bacteria (Yoon and Kim, 2021). Autonomous diseases are typically more prevalent in women than in men (Quintero et al., 2012). A role for gut microbiota in the sex bias in autoimmunity has been revealed by different studies in animal models. This bias is at least partially mediated by the microbial metabolism of sex hormones (Ortona et al., 2016). Pregnancy is a special period for women, as the body undergoes various physiological changes, which provides the fetus with the best growth and development conditions (Costantine, 2014).Changes of hormones in pregnancy can alter the gut microbiota structure of pregnant women (Koren et al., 2012). As pregnancy progresses, there is a significant enrichment of Neisseria, Brautia, Collins, and Bifidobacterium genera. The increase in relative abundance of Bifidobacterium is highly likely mediated by progesterone (Nuriel-Ohayon et al., 2019). Throughout pregnancy, significant changes occur in the gut microbiota of mothers, which subsequently affect the gut microbiota of infants. Changes in microbiome composition occur between the first and third trimesters of pregnancy (Gorczyca et al., 2022). Scholars transplanted fecal microbiota from the first and third trimesters of pregnancy into sterile mice. Compared with mice transplanted with the first trimester of pregnancy microbiota, mice transplanted with the third trimester of microbiota showed significant weight gain, insulin resistance, and greater inflammatory response (Koren et al., 2012). Akkermansia, Bifidobacteria, and Firmicutes populations increase, which is related to an increase in energy storage requirements. Proteobacteria and Actinobacteria levels increase, owing to their pro-inflammatory properties, and have protective effects on both mothers and fetuses (Rodríguez et al., 2015). The mechanism of these changes involves the regulation of the brain and intestinal axes by production of maternal estrogen and progesterone, as well as immune activation of the intestinal mucosa (Mulak et al., 2014; Stanislawski et al., 2017).

As shown in Table 2, many studies have demonstrated that the gut microbiota is associated with many diseases during pregnancy. A study conducted among 100 women showed that 26 pregnant women with preeclampsia had a significantly lower abundance of Prevotella, Porphyromonas, Varibaculum, and Lactobacillus than pregnant women without this complication (Huang et al., 2021). Liu also reported significant structural changes in the gut microbiota of patients with preeclampsia. In these patients, there was an overall increase in the pathogenic bacteria Clostridium perfringens and Bulleidia moorei, but a reduction in the probiotic bacteria Coprococcus catus (Liu et al., 2017). Fetal growth restriction (FGR) is a common obstetric complication and also known as intrauterine growth restriction (IUGR) (Sharma et al., 2016). By 16S rDNA amplicon sequencing of samples, collected from pregnant women in the FGR and control groups, it was revealed that the genera Bacteroides, Faecalibacterium, and Lachnospira were highly abundant in the FGR group (Tu et al., 2022). GDM is one of the most common metabolic complications of pregnancy and its prevalence has significantly increased over the last few years (Filardi et al., 2019). Cortez et al. found an increase in Firmicutes and a decrease in Bacteroides levels in patients with GDM, as well as an increase in Firmicutes/Bacteroides (F/B) ratio in late pregnancy (Cortez et al., 2019). The increase in the F/B ratio is associated with low-grade inflammation, insulin resistance, and obesity (Pascale et al., 2019). Sililas et al. also found that the F/B ratio in the third trimester of pregnancy was higher in patients with GDM than in those of the control group (Sililas et al., 2021). Specific shifts in microbial composition were also associated with maternal factors such as BMI, weight, and weight gain during pregnancy. A higher number of Bifidobacterium organisms and lower levels of Staphylococcus may protect the mother from developing excess weight (Collado et al., 2008; Santacruz et al., 2010). A study found that overweight participants had significantly higher fecal concentrations of the genus Bacteroides and a lower F/B ratio (Schwiertz et al., 2010).

Table 2 | Characteristics of gut microbiota in pregnant women with other diseases.
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5 Summary

AITD increases the risk of infertility, miscarriage, and other adverse pregnancy and neonatal outcomes. The use of LT4 intervention can reduce adverse outcomes in patients with normally high TSH levels. However, it is not effective in euthyroid patients with AITD who undergo IVF-ET assisted pregnancy. It is not clear whether other factors affect adverse pregnancy outcomes in patients with AITD (van Dijk et al., 2022). Therefore, a new interventional approach is required to reduce adverse outcomes. Some researchers have found differences in the composition of the gut microbiota between patients with AITD and the normal population. Specific bacterial overgrowth and its impact on the gut-thyroid axis may promote thyroid antibody production. Currently, little research has explored the relationship between specific differences in gut microbiota composition in patients with AITD, and especially of those who are pregnant. It is unclear how the gut microbiota contributes to adverse pregnancy outcomes in TPOAb-positive women. Whether it is possible to improve the pregnancy outcomes of patients with AITD by regulating the composition of the gut microbiota still needs to be confirmed.
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Background

Gut microbiota has been associated with dermatological problems in earlier observational studies. However, it is unclear whether gut microbiota has a causal function in dermatological diseases.





Methods

Thirteen dermatological diseases were the subject of bidirectional Mendelian randomization (MR) research aimed at identifying potential causal links between gut microbiota and these diseases. Summary statistics for the Genome-Wide Association Study (GWAS) of gut microbiota and dermatological diseases were obtained from public datasets. With the goal of evaluating the causal estimates, five acknowledged MR approaches were utilized along with multiple testing corrections, with inverse variance weighted (IVW) regression serving as the main methodology. Regarding the taxa that were causally linked with dermatological diseases in the forward MR analysis, reverse MR was performed. A series of sensitivity analyses were conducted to test the robustness of the causal estimates.





Results

The combined results of the five MR methods and sensitivity analysis showed 94 suggestive and five significant causal relationships. In particular, the genus Eubacterium_fissicatena_group increased the risk of developing psoriasis vulgaris (odds ratio [OR] = 1.32, pFDR = 4.36 × 10−3), family Bacteroidaceae (OR = 2.25, pFDR = 4.39 × 10−3), genus Allisonella (OR = 1.42, pFDR = 1.29 × 10−2), and genus Bacteroides (OR = 2.25, pFDR = 1.29 × 10−2) increased the risk of developing acne; and the genus Intestinibacter increased the risk of urticaria (OR = 1.30, pFDR = 9.13 × 10−3). A reverse MR study revealed insufficient evidence for a significant causal relationship. In addition, there was no discernible horizontal pleiotropy or heterogeneity.





Conclusion

This study provides novel insights into the causality of gut microbiota in dermatological diseases and therapeutic or preventive paradigms for cutaneous conditions.





Keywords: dermatological diseases, gut microbiota, mendelian randomization analysis, inference, therapeutics





Background

The gut microbiota comprises the entire consortium of microorganisms that inhabit the intestinal tract, with the normal adult gut microbiota predominantly localized within the colon and the distal small intestine. Due to its prolific gene-carrying capacity, it is termed the “second human genome” (Pasolli et al., 2019). Age, sex, lifestyle, and environmental variables significantly affect the composition of the gut microbiota (De Filippo et al., 2010; Takagi et al., 2019). The imperative role of the gut microbiota in upholding intestinal well-being is beyond contention; however, it concurrently preserves the dynamic equilibrium of overall organismal metabolism and immunity by actively participating in a multitude of intricate physiological and biochemical processes.

The skin is one of the distant organs that has been specifically linked to gut microbiota. It has been postulated that signaling pathways governing epidermal keratinization, a pivotal factor in maintaining skin barrier integrity, can be subject to the gut microbiota (Abhishek and Krishnan, 2016). The advent of the gut–skin axis has highlighted a nexus between the gut microbiota and skin disorders, including atopic dermatitis (AD), acne, psoriasis, rosacea, and melanoma (Searle et al., 2020; Fang et al., 2021; Buhaş et al., 2022; Makaranka et al., 2022; Sánchez-Pellicer et al., 2022; Maronese et al., 2023). For instance, in the context of AD, discernible alterations include diminished gut microbial diversity and marked reductions in beneficial microbes, such as Lactobacillus and Bifidobacterium, juxtaposed with elevated proportions of Escherichia coli, Clostridium difficile, and Staphylococcus aureus (Fang et al., 2021). Additionally, a comprehensive appraisal of psoriasis and gut microbiota has underscored an evident dysbiosis in patients with psoriasis, marked by the depletion of Lachnospira, Faecalibacterium, and Akkermansia muciniphila, while witnessing escalated levels of E. coli and Ruminococcus (Buhaş et al., 2022). Furthermore, burgeoning research on oral probiotics, prebiotics, and dietary modifications has garnered empirical validation for their potential to ameliorate diverse skin conditions (Ellis et al., 2019; Yu et al., 2020; Sinha et al., 2021). Although previous studies have described interactions between gut microbiota and dermatological diseases, the exact causal relationship remains unclear. Confounding elements such as reverse causation and variables encompassing infections, dietary habits, antibiotic usage, and deleterious lifestyle practices inherent within observational studies may cast a shadow on the conclusion.

Mendelian randomization (MR) analysis, a genetic statistical approach, is based on by Mendel’s second law. It harnesses genetic variants closely entwined with exposure factors as instrumental variables (IVs) to evaluate the statistical causality underpinning exposures and outcomes meticulously. This circumvents the vulnerabilities of conventional statistical methods that are susceptible to extraneous influences, thereby furnishing more robust conclusions (Burgess et al., 2015). Notably, the precedence of the genotype over the phenotype empowers the results to ignore the interference of reverse causality. Two-sample Mendelian randomization (2SMR) utilizes MR methods to estimate the causal estimates of GWAS summary datasets of two distinct studies. In an era where the expansive tapestry of contemporary GWASs explores the genetic variant-disease nexus, the application of 2SMR has emerged as a potent tool for plumbing the depths of causal interrelationships between gut microbiota and skin diseases.

Hence, we employed 2SMR to probe the causal relationship between the gut microbiota and various dermatological diseases, including AD, vitiligo, acne, rosacea, urticaria, seborrheic dermatitis, psoriasis, psoriasis vulgaris, psoriatic arthritis, malignant melanoma, non-malignant melanoma skin cancer, facial aging, and hidradenitis suppurativa. Based on these findings, our aim was to elucidate the involvement of the gut microbiota in dermatological diseases, seeking to provide novel insights into their pathogenesis. This exploration is anticipated to contribute to the development of innovative therapeutic approaches, including but not limited to probiotic therapy, prebiotic therapy, dietary modifications, and fecal microbiota transplantation, thus fostering advancements in dermatological care.





Methods

A schematic representation of the analysis is shown in Figure 1. The causal relationship between genetically predicted gut microbiota and 13 dermatological diseases was explored using rigorously screened single-nucleotide polymorphisms (SNPs) as IVs for 2SMR and sensitivity analysis. The SNPs were selected to rigorously satisfy three major premises of the MR analysis: First, the relevance premise: IVs are highly linked with the relevant exposure; second, the independence premise: IVs lack any confounders related to the exposure or outcome; and third, the exclusion premise: IVs only influence the outcome via exposure (Davey Smith and Hemani, 2014). Furthermore, reverse MR analysis was performed to evaluate reverse causation. All statistical analysis were performed in the R Version 4.3.1 using packages “TwoSampleMR” (version 0.5.6) and “MR-PRESSO” (version 1.0).

[image: A diagram explaining the study design for gut microbiota and 13 dermatological diseases GWAS. It includes data on 18,340 samples within 24 cohorts for gut microbiota and a list of 13 dermatological diseases. The workflow involves data preparation, MR analysis, and sensitivity analysis, exploring relationships with gut microbiota-associated SNPs, confounders, and assumptions of MR. Techniques such as inverse-variance weighted analysis, MR-Egger regression, and sensitivity tests like MR-PRESSO are highlighted. The diagram concludes with an indication of reverse MR analysis.]
Figure 1 | Overall workflow of the study and the premises of Mendelian randomization. GWAS, Genome-Wide Association Study; IVs, instrumental variables; SNP, single nucleotide polymorphisms.




Data sources

The MiBioGen Consortium provided a GWAS dataset of the human gut microbiota (Kurilshikov et al., 2021). The present investigation integrated profiles of 16S rRNA gene sequencing and genotyping data derived from a cohort comprising 18,340 participants (13,266 participants from Europe), originating from 24 multiethnic population-based cohorts. This encompassed the analysis of 211 distinct bacterial taxa, of which 15 microbial taxa without specific species designations were omitted. Consequently, a comprehensive total of 196 bacterial taxa (consisting of 119 genera, 32 families, 20 orders, 16 classes, and nine phyla) were included within the scope of this study. Dermatological statistics from the most recent large GWAS datasets are available. More specifically, the Early Genetics and Life Course Epidemiology (EAGLE) Consortium offered a GWAS for AD (n = 116,863), which was conducted in 22 cohorts of European ancestry and four cohorts of non-European ancestry. We then obtained the summarized statistics for a GWAS meta-analysis of vitiligo (n = 44,266) conducted among individuals of European ancestry from the GWAS Catalog (GCST004785). GWAS summary data for rosacea (n = 299,421) were derived from the findings of the GWAS on FinnGen R7, while GWAS summary data for acne (n = 44,266), psoriasis (n = 339,050), psoriasis vulgaris (n = 335,993), psoriatic arthritis (n = 333,887), urticaria (n = 340,278), seborrheic dermatitis (n = 309,188), and hidradenitis suppurativa (n = 329,547) were derived from the results of the GWAS on FinnGen R8. The detailed data are available on the FinnGen webpage. In addition, we obtained GWAS data from the UK Biobank for melanoma (n = 375,767) and malignant non-melanoma skin cancer (n = 395,710). Summary statistics for facial aging (n = 423,999) were assessed by the Medical Research Council-Integrative Epidemiology Unit (MRC-IEU). The details of the GWAS information are presented in Supplementray Table 1.





Instrumental variable selection

The subsequent quality assurance processes employed for the section on genetic predictors related to microbiota were utilized to guarantee the correctness of the conclusion regarding the causal effect of gut microbiota on dermatological diseases. SNPs associated with taxa at the locus-wide significance threshold (p <1.0 × 10−5) were selected as potential IVs. Subsequently, we meticulously curated independent IVs for each distinct bacterial taxon by conducting linkage disequilibrium analysis (R2 <0.001, window size = 10,000 kb), thereby preemptively curbing the potential for skewed causal estimations (1000 Genomes Project Consortium et al., 2012). We subsequently extracted the pertinent data of the designated SNPs from the GWAS outcome data, systematically excluding SNPs with a direct association with the outcomes (p >1.0 × 10−5). To guarantee that the allelic impact of SNPs on exposure and their impact on outcome remained identical throughout the harmonization procedure, palindromic SNPs were eliminated. F-statistics were used to measure the strength of the IVs (Burgess et al., 2011). The F-statistic of each IV was computed using the following formula: [image: The formula \( F = \frac{R^2 (N-2)}{1-R^2} \) is shown, where \( F \) is a function of \( R \) and \( N \), representing the computation involving a squared correlation coefficient.]  where R2 is the percentage of exposure variance that can be accounted for by genetic variations and N denotes the size of the entire exposure GWAS sample. Using the formula [image: R squared equals beta squared over beta squared plus error sum of squares times N.]  where β is the beta value and Se is the standard error, the R2 of each IV was determined. The candidate IV sets were devoid of inferior IVs, with F-statistics <10.





MR analysis

Five effective MR methods were utilized in this investigation to check for causal relationships: The inverse variance weighted (IVW) method employs a meta-analysis amalgamating the Wald estimates of SNPs associated with each taxa, yielding a comprehensive estimation of their impact on distinct dermatoses, which can provide unbiased results in the absence of pleiotropy (Bowden et al., 2015); Based on the instrument strength independent of direct effect (InSIDE), MR-Egger produces a regression result that is consistent with IVW if the intercept term is 0, which denotes the absence of horizontal pleiotropy (Burgess and Thompson, 2015); The weighted median facilitates accurate determination of causality even in scenarios where as much as 50% of the IVs prove invalid (Bowden et al., 2016); The weighted mode estimate has been found to have greater power than MR-Egger to detect causal effects, less bias, and lower type I error rates when the InSIDE assumption is violated (Hartwig et al., 2017); While the statistical efficacy may not rival that of the IVW, the simple mode still yields robust outcomes even amidst the presence of pleiotropy (Milne et al., 2017). Given the slightly augmented statistical potency of the IVW method in summary-level MR, it was adopted as the principal outcome, with the remaining four methods serving as a supplementary analysis. The random-effects IVW regression model, if devoid of SNPs that breach the IV assumption of independence, provides an unbiased estimate of the causal impact that endures scrutiny (Burgess et al., 2013). To further safeguard against spurious findings, we implemented the False Discovery Rate (FDR) correction to establish a threshold for multiple testing significance, denoted as PFDR <0.05 (Storey and Tibshirani, 2003). FDR correction was executed, with pFDR <0.05, being deemed indicators of significant causal relationships. Suggestive causalities between gut microbiota and dermatological diseases were discerned at p <0.05, but pFDR ≥0.05 (Gu et al., 2023).





Sensitivity analysis

Both the IVW and MR-Egger approaches employed Cochran’s Q statistic to assess the presence of heterogeneity, with a significance threshold of 0.05. Cochran’s Q statistic, with a p-value below 0.05, would provide evidence of notable heterogeneity among the IVs (Bowden et al., 2018). Following this, we conducted an iterative leave-one-out analysis, removing individual SNPs to ascertain the singular influence of each SNP (Burgess, 2014). In addition, we examined the MR-Egger intercept to investigate the potential presence of horizontal pleiotropy. We considered the horizontal pleiotropy of IVs to have an insignificant impact on causal inferences if the corresponding p-value exceeded 0.05 (Bowden et al., 2015). In conjunction with this analysis, we employed a more refined version of the MR-PRESSO global test. A p-value exceeding 0.05 in the MR-PRESSO global test indicated the absence of pleiotropy. If evidence of horizontal pleiotropy was detected among the selected single nucleotide polymorphisms (SNPs), the analysis was repeated after excluding these pleiotropic SNPs (Verbanck et al., 2018).





Bidirectional MR analysis

To probe the potential causal implications of dermatological diseases on the identified bacterial genera, reverse MR analysis was conducted, employing SNPs associated with each dermatological disease. For the selection of IVs, we opted for SNPs falling below the genome-wide statistical significance threshold (5 × 10−8), except for rosacea (p <5 × 10−7), seborrheic dermatitis (p <5 × 10−7), and hidradenitis suppurativa (p <5 × 10−6), due to the insufficient number of SNPs attainable for MR analysis under the conventional threshold. Subsequent steps in the analysis closely followed the previously outlined MR procedure. Notably, in instances where only a single SNP is present, we employ the Wald ratio as the analytical method.






Results




Selection of instrumental variables

Following linkage disequilibrium clumping, we identified 124, 223, 279, 469, and 1,531 SNPs associated with the gut microbiota at the phylum, class, order, family, and genus levels, respectively, displaying a permissive statistical threshold (p <1 × 10−5). After harmonization, retained SNPs were used as IVs in the formal MR analysis. All the IVs used in the identified causal associations are listed in Supplementray Table 2. The F-statistic values for these SNPs ranged between 17 and 85, indicating a robust IV selection. Notably, an inherent hierarchical relationship within bacterial taxa classifications occasionally led to substantial SNP overlap, as exemplified by the family Bacteroidaceae and the genus Bacteroides.





Significant causal associations between gut microbiota and dermatological diseases

Five MR methods were used to explore the causal relationship between each pair of bacterial taxa and dermatological diseases. We used IVW as the primary outcome indicator. After multiple-testing correction, five significant causal associations (p < 0.05, pFDR < 0.05) associated with the three skin diseases were monitored. We found that the genus Eubacterium_fissicatena_group (OR = 1.32, 95% confidence interval [CI] = 1.16–1.50, p = 3.66 × 10−5, pFDR = 4.36 × 10−3) was causally associated with psoriasis vulgaris; the family Bacteroidaceae (OR = 2.25, 95%CI = 1.48–3.42, p = 1.37 × 10−4, pFDR = 4.39 × 10−3), genus Allisonella (OR = 1.42, 95%CI = 1.18–1.70, p = 2.16 × 10−4, pFDR = 1.29 × 10−2) and genus Bacteroides (OR = 2.25, 95%CI = 1.48–3.42, p = 1.37 × 10−4, pFDR = 1.29 × 10−2) were causally associated with acne; while the genus Intestinibacter (OR = 1.30, 95%CI = 1.14–1.48, p = 7.67 × 10−5, pFDR = 9.13 × 10−3) was causally associated with urticaria (Table 1).

Table 1 | MR estimation of the significant causal relationships and tests for heterogeneity and horizontal pleiotropy.


[image: A detailed table presents data on various exposures and outcomes, including Psoriasis vulgaris and Acne, analyzed by different methods like MR Egger and Weighted median. It lists the number of SNPs, odds ratios with confidence intervals, p-values, along with p-values for false discovery rate correction, heterogeneity, pleiotropy, and global tests.]
In tandem with the IVW method, four robust methods, namely, MR–Egger, weighted median, weighted mode, and simple mode, were applied to evaluate the reliability of the causal estimates in our analysis. Partial methods generated similar and significant causal estimates while all methods exhibited concordant directional causal estimates (Figure 2 and Table 1), i.e., the genus Eubacterium_fissicatena_group promoted the induction of psoriasis vulgaris (PIVW = 3.66 × 10−5, Psimple mode = 2.99 × 10−2, Pweighted median = 5.90 × 10−3), genus Intestinibacter promoted the induction of urticaria (PIVW = 7.67 × 10−5, Pweighted median = 3.41 × 10−2), family Bacteroidaceae (PIVW = 1.37 × 10−4, Pweighted median = 4.01 × 10−2), and genus Allisonella (PIVW = 2.16 × 10−4, Pweighted median = 1.04 × 10−2) promoted the induction of acne. The scatter plots of these significant associations are shown in Figure 3. It is noteworthy to highlight that the IVW method (OR = 1.22, p = 1.81 × 10−4, pFDR = 2.15 × 10−2) suggests an increased risk of psoriasis associated with the genus Eubacterium_fissicatena_group, in stark contrast to the direction derived from MR-Egger (OR = 0.82). Considering this disparity, we opted to exclude this contentious causal association. In summary, we assert that the results of the IVW regression analysis remain steady and substantiated.

[image: Forest plot showing the association between gut microbiota and dermatological diseases using different statistical methods. Each row represents a method with horizontal lines indicating confidence intervals and dots showing effect sizes. Blue dots represent a positive effect with \(P \geq 0.05\), while orange dots indicate a positive effect with \(P < 0.05\). The background colors correspond to different bacterial genera and conditions, including psoriasis, acne, and urticaria. A legend on the right explains the color coding.]
Figure 2 | Forest plots of the MR results for the five identified significant causal effects. The horizontal coordinate represents the odds ratio value, dots depict the point estimate of odds ratio, and horizontal bars depict the 95% confidence interval. Orange represents significant results, whereas blue represents non-significant results. The arrow in the figure indicates that the upper limit of the 95% confidence interval of the odds ratio value under the method exceeds the upper limit of the horizontal coordinate, which is what we did for the aesthetics of the image.

[image: Five scatter plots display SNP effects on various microbiome genera and related skin conditions. Each plot includes data points with error bars and colored lines for different statistical models: inverse variance weighted, MR Egger, simple mode, weighted median, and weighted mode. The conditions studied are Psoriasis vulgaris, acne, and urticaria, linked to Eubacterium fissicatena, Bacteroidaceae, Allisonella, Bacteroides, and Intestinibacter. The x and y axes represent SNP effects on the genus and the condition, respectively.]
Figure 3 | Scatter plots of estimates for significant associations between gut microbiota and dermatoses. Causal influence is represented by the slope value, which is equal to the b-value computed using the five methods. A positive slope indicates a risk factor for exposure.





Suggestive causal associations between gut microbiota and dermatological diseases

We considered causal relationships with p-values <0.05 but pFDR ≥0.05 derived from the IVW method as potential or suggestive, while at the same time we discarded those associations in which horizontal pleiotropy was detected by MR-Egger intercept and MR-PRESSO even after pleiotropic SNP culling. In total, 94 suggestive relationships were identified (Figure 4 and Supplementary Tables 3, 4).

[image: Circular heatmap depicting a hierarchical classification of bacteria at different taxonomic levels, including genus, family, order, class, and phylum. Color gradient represents p-values, ranging from blue for lower values to light green for higher values. Labels detail various bacterial groups.]
Figure 4 | Suggestive causality of the gut microbiota in dermatoses derived from the inverse variance weighted method. Estimates with p <0.05 were shown in purple or blue, while estimates with p ≥0.05 were shown in white or green.




Atopic dermatitis

Although no flora were found to have a significant association with AD, we still found eight taxa with a potential causal relationship: At the family level we were surprised to find that family Bacteroidaceae (OR = 1.36, p = 1.19 × 10−2) and family Christensenellaceae (OR = 0.81, p = 2.96 × 10-2) had inducing and protective effects, respectively; In addition, genus Eubacterium_fissicatena_group (OR = 1.12, p = 4.98 × 10−2), genus Eubacterium_nodatum_group (OR = 1.11, p = 2.98 × 10−2), genus Bacteroides (OR = 1.36, p = 1.19 × 10−2), genus Christensenellaceae R_7 group (OR = 0.71, p = 3.84 × 10−3), genus Roseburia (OR = 1.22, p = 3.96 × 10−2), genus Ruminiclostridium_5 (OR = 0.79, p = 2.63 × 10−2) have been observed to have a suggestive causal associations.





Vitiligo

We identified 15 taxa potentially associated with vitiligo, including two classes, two orders, three families, and eight genuses. Among them, we found class Gammaproteobacteria (OR = 0.67, p = 3.29 × 10−2), class Melainabacteria (OR = 0.78, p = 2.06 × 10−2), order Gastranaerophilales (OR = 0.81, p = 4.24 × 10−2), family Bacteroidales S24-7group (OR = 0.73, p = 4.67 × 10−2), family Porphyromonadaceae (OR = 0.55, p = 3.78 × 10−2), family Victivallaceae (OR = 0.83, p = 3.25 × 10−2), genus Anaerotruncus (OR = 0.66, p = 1.72 × 10−2), genus Erysipelatoclostridium (OR = 0.77, p = 1.76 × 10−2), genus Lachnospiraceae ND3007group (OR = 0.38, p = 2.47 × 10−3), genus Marvinbryantia (OR = 0.72, p = 2.33 × 10−2), genus Oxalobacter (OR = 0.82, p = 3.12 × 10−2) had a potential protective effect, while order Burkholderiales (OR = 1.54, p = 7.94 × 10−3), genus Lachnospira (OR = 1.79, p = 1.71 × 10−2), genus Catenibacterium (OR = 1.28, p = 2.56 × 10−2), genus Adlercreutzia (OR = 1.43, p = 1.02 × 10−2) appear to be associated with an increased risk of vitiligo.





Acne

It seems that, as expected, we found that increased abundance of the order Bifidobacteriales and family Bifidobacteriaceae (OR = 0.69, p = 2.52 × 10−2) was potentially associated with a reduced risk of acne development. Furthermore, family Lactobacillaceae (OR = 0.78, p = 3.77 × 10−2), genus Ruminococcust_orques_group (OR = 0.53, p = 8.42 × 10−3), genus CandidatusSoleaferrea (OR = 0.75, p = 1.31 × 10−2), genus Fusicatenibacter (OR = 0.71, p = 2.71 × 10−2), genus Lactobacillus (OR = 0.72, p = 4.55 × 10−3) were also found to have a potential protective effect against acne. While family Clostridiaceae 1 (OR = 1.67, p = 7.06 × 10−3), family FamilyXIII (OR = 1.73, p = 1.44 × 10−3), family Porphyromonadaceae (OR = 1.57, p = 3.56 × 10−2) that are potentially associated with an increased risk of developing acne.





Rosacea

After MR-Egger intercept and MR-PRESSO analysis we discarded four suggestive causal associations, but even then, we still found that genus Butyrivibrio (OR = 0.83, p = 1.36 × 10−2) and genus Prevotella7 (OR = 0.78, p = 6.95 × 10−3) were associated with a potential reduced risk of developing rosacea.





Urticaria

We found that family Victivallaceae (OR = 1.10, p = 1.84 × 10−2), genus Coprococcus3 (OR = 1.24, p = 4.16 × 10−2), and genus DefluviitaleaceaeUCG011 (OR = 1.19, p = 2.92 × 10−2)may increase the risk of urticaria, while increased abundance of genus Eubacterium_eligens_group (OR = 0.75, p = 2.99 × 10−2), genus Eubacterium_xylanophilum_group (OR = 0.84, p = 2.89 × 10−2), genus Lachnospiraceae NK4A136group (OR = 0.88, p = 4.55 × 10−2), genus LachnospiraceaeUCG010 (OR = 0.80, p = 9.62 × 10−3), genus RuminococcaceaeUCG011 (OR = 0.89, p = 1.62 × 10−2), and genus Veillonella (OR = 0.80, p = 3.50 × 10−2)may be associated with a reduced risk of urticaria.





Seborrheic dermatitis

We found a potential causal association between phylum Tenericutes, class Mollicutes (OR = 1.34, p = 3.30 × 10−2), and an increased risk of seborrheic dermatitis, and similar effects were observed in genus RuminococcaceaeUCG014 (OR = 1.47, p = 9.90 × 10−3) and Victivallis (OR = 1.24, p = 3.51 × 10−2). In contrast, genus Eubacterium_eligens_group (OR = 0.53, p = 9.57 × 10−2), genus Butyrivibrio (OR = 0.82, p = 7.91 × 10−3), genus Howardella (OR = 0.77, p = 2.68 × 10−3), genus Ruminiclostridium5 (OR = 0.67, p = 3.08 × 10−2), and genus RuminococcaceaeUCG004 (OR = 0.73, p = 1.60 × 10−2)were found to have a potential protective effect against seborrheic dermatitis.





Psoriasis

Two taxa were found to have a potential protective effect, namely phylum Bacteroidetes (OR = 0.81, p = 3.30 × 10−2)and genus Prevotella9 (OR = 0.87, p = 4.47 × 10−2).





Psoriasis vulgaris

We identified six taxa with potential protective effects, which were genus Alloprevotella (OR = 0.85, p = 4.03 × 10−2), genus Collinsella (OR = 0.73, p = 1.80 × 10−2), genus Gordonibacter (OR = 0.89, p = 3.76 × 10−2), genus Lachnospira (OR = 0.57, p = 2.08 × 10−2), genus Odoribacter (OR = 0.74, p = 2.37 × 10−2), and genus Terrisporobacter (OR = 0.79, p = 4.58 × 10−2).





Psoriatic arthritis

After excluding one finding with horizontal pleiotropy based on MR-Egger intercept, we still found eight taxa with potential associations with psoriatic arthritis, where class Bacteroidia (OR = 0.79, p = 4.58 × 10−2), order Bacteroidales (OR = 0.79, p = 4.58 × 10−2), genus RuminococcaceaeUCG002 (OR = 0.79, p = 4.58 × 10−2) associated with a reduced risk of developing psoriatic arthritis; while order Pasteurellales (OR = 1.22, p = 3.33 × 10−2), family Pasteurellaceae (OR = 1.22, p = 3.33 × 10−2), genus Eubacterium_fissicatena_group (OR = 1.21, p = 2.83 × 10−2), genus Blautia (OR = 1.46, p = 1.36 × 10−2), genus Methanobrevibacter (OR = 1.27, p = 2.59 × 10−2) were associated with an increased risk of developing psoriatic arthritis.





Melanoma

We identified six taxa with suggestive causal associations. Four showed weak protective effects: genus Blautia (OR = 0.997, p = 3.28 × 10−2), genus Erysipelatoclostridium (OR = 0.998, p = 2.77 × 10−2), genus Prevotella7 (OR = 0.999, p = 4.47 × 10−2), genus RuminococcaceaeUCG013 (OR = 0.996, p = 7.11 × 10−3); Two showed weak evoked effects: genus Parabacteroides (OR = 1.003, p = 2.59 × 10−2) and genus Veillonella (OR = 1.003, p = 2.38 × 10−2).





Malignant non-melanoma skin cancer

In addition to genus Turicibacter (OR = 1.005, p = 4.64 × 10−2) which has the potential to increase the risk of skin cancer development, four other taxa including genus Holdemanella (OR = 0.995, p = 1.73 × 10−2), genus RuminococcaceaeUCG013 (OR = 0.992, p = 1.38 × 10−2), genus RuminococcaceaeUCG014 (OR = 0.993, p = 1.28 × 10−2) and genus Sutterella (OR = 0.994, p = 4.16 × 10−2) were potentially protective as well.





Facial aging

Although our MR analysis found a potential protective effect of genus Butyricimonas on facial aging, the MR-PRESSO results showed some level of pleiotropy (global test P-value = 2.92 × 10−2) and were not corrected after SNP culling, so we were skeptical of this result and excluded it. In addition, we observed that one, two, and nine taxa at the phylum, family, and genus levels, respectively, were potentially associated with facial aging. Phylum Verrucomicrobia (OR = 0.989, p = 3.83 × 10−2)was observed to have a potential protective effect; family Victivallaceae (OR = 1.007, p = 1.00 × 10−2) and family Lactobacillaceae (OR = 0.989, p = 2.25 × 10−2) had weak induced and protective effects, respectively; suggestive causal associations were also found between genus Eubacterium_coprostanoligenes_group (OR = 1.012, p = 3.92 × 10−2), genus Anaerofilum (OR = 0.993, p = 4.15 × 10−2), genus Blautia (OR = 1.011, p = 3.41 × 10−2), genus FamilyXIIIUCG001 (OR = 0.987, p = 3.21 × 10−2), genus Lactobacillus (OR = 0.991, p = 4.83 × 10−2), genus Parabacteroides (OR = 0.984, p = 4.04 × 10−2), genus Parasutterella (OR = 1.014, p = 6.25 × 10−3), genus Phascolarctobacterium (OR = 0.989, p = 3.62 × 10−2), genus RuminococcaceaeUCG005 (OR = 0.988, p = 1.79 × 10−2) and facial aging.





Hidradenitis suppurativa

MR analysis revealed that the genus Lachnospira (OR = 0.434, p = 4.73 × 10−2) constituted a risk factor, whereas the Family XIII (OR = 2.272, p = 3.01 × 10−2) was identified as a protective factor.






Sensitivity analysis

Among the five significant causal associations, the robustness of our conclusions was underscored by the absence of detected heterogeneity or horizontal pleiotropy (Table 1 ). Additionally, with respect to the 94 suggestive causal associations identified, the vast majority exhibited homogeneity according to the Cochrane Q test (Supplementray Table 6). Sporadic instances of heterogeneity were accommodated within the framework of the IVW random effects model. Notably, out of the extensive analysis performed, a mere six (5.66%) exhibited pleiotropic effects, as identified through the MR Egger intercept (Supplementray Table 5) and MR-PRESSO (Supplementray Table 7), which is detailed in the Results section. Ultimately, the leave-one-out test did not identify any biased SNPs (Figure 5 and Supplementray Table 8).

[image: Five forest plots illustrating MR leave-one-out sensitivity analyses. Top left: genus Eubacterium fissicatena group on Psoriasis vulgaris. Top center: family Bacteroidaceae on Acne. Top right: genus Allisonealla on Acne. Bottom left: genus Bacteroides on Acne. Bottom right: genus Intestinibacter on Urticaria. Each plot shows individual SNPs on the y-axis and effect estimates on the x-axis, with confidence intervals visualized by horizontal lines. Red lines represent the overall effect estimate.]
Figure 5 | Leave-one-out plots for significant associations between gut microbiota and dermatoses.





Reverse MR analysis

The inverse correlations that we found were suggestive and not significantly causal. Psoriasis vulgaris was linked to an increased relative abundance of the genus Alloprevotella (beta = 0.20, p = 2.63 × 10−2, pFDR = 0.18); psoriatic arthritis was linked to an increased relative abundance of class Bacteroidia (beta = 0.042, p = 4.72 × 10−2, pFDR = 0.13), order Bacteroidales (beta = 0.042, p = 4.72 × 10−2, pFDR = 0.13), and genus Ruminococcaceae UCG002 (beta = 0.046, p = 2.10 × 10−2, pFDR = 0.13). We also found that vitiligo may lead to an increase in the abundance of the order Burkholderiales (beta = 0.022, p = 1.33 × 10−2, pFDR = 0.20), while urticaria leads to the family Victivallaceae (beta = -0.26, p = 3.35 × 10−2, pFDR = 0.34) decrease. Finally, there was a potential relationship between facial aging and increased abundance of the family Lactobacillaceae (beta = 0.63, p = 1.90 × 10−2, pFDR = 0.19) and genus Lactobacillus (beta = 0.59, p = 2.87 × 10−2, pFDR = 0.19). The results of reverse MR analysis are presented in Supplementray Tables 9, 10. None of the above analyses revealed heterogeneity or pleiotropy (Supplementary Tables 11–13).






Discussion

In the present study, we found 99 promising associations between the genetically predicted abundance of specific bacterial taxa and 13 dermatological diseases using large-scale GWAS summary data via bidirectional 2SMR analysis. After correction for multiple testing, we found that the enrichment of five taxa, namely Eubacterium_fissicatena_group, Bacteroidaceae, Allisonella, Bacteroides and Intestinibacter, was significantly associated with an increased risk of developing skin diseases.

The skin and intestines are intricate, dynamic immune and neuroendocrine organs that act as the body’s primary contact points for the external milieu. Both organs are imperative for upholding the equilibrium of physiological homeostasis (O’Neill et al., 20162; Coates et al., 2019). The gut is replete with microorganisms and it is estimated that it contains approximately 1014 microbial cells (Williams, 1973). The strong immunomodulatory potential of the gut microbiota, particularly in distal organs including the lungs, brain, and skin, has given rise to the gut–lung axis, gut–brain axis, and gut–skin axis as hot study fields (Chen et al., 2021; De Pessemier et al., 2021). Several studies have linked gastrointestinal health to skin homeostasis, and there is evidence of a bidirectional link between gut microbiota dysbiosis and skin homeostatic imbalance. Gut microbiota dysbiosis plays a specific role in the pathophysiological processes of several dermatologic diseases, involving the immune and neuroendocrine systems (Shah et al., 2013; Thrash et al., 2013; Salem et al., 2018). Disturbances in the gut microbiota can lead to increased epithelial permeability of the intestinal mucosa and activation of effector T cells, disrupting the balance between the gut microbiota and intestinal mucosa, whereas proinflammatory cytokines can further increase epithelial permeability and promote chronic systemic inflammation (Brown et al., 2019). The gut microbiota can produce noxious substances that are subsequently taken up by the bloodstream and circulate, harming faraway places such as the skin. For example, gut microbiota constituents, such as C. difficile, can metabolize aromatic amino acids to produce free phenols and p-cresols, which can enter the blood circulation and accumulate in the skin (Dawson et al., 2011). In vitro experiments have shown that p-cresol and phenol reduce keratin 10 expression in keratinocytes, thereby affecting epidermal differentiation and barrier function (Miyazaki et al., 2014). In addition, intestinal bacteria themselves may also enter the circulation through the damaged intestinal barrier and then reach the skin to cause disease; for example, some studies have discovered that the blood of patients with psoriasis contains DNA originating from intestinal bacteria (Ramírez-Boscá et al., 2015).

Bacteroides is a gram-negative anaerobic bacterium and a core member of Bacteroidetes, which has multiple roles as a beneficial microorganism, intestinal competitor, and an opportunistic pathogen. It metabolizes long-chain polysaccharides and oligosaccharides to provide nutrients to other gut microorganisms via a comprehensive system of glycoside hydrolases, polysaccharide lyases, sugar transporters, and carbohydrate-degrading enzymes (Zafar and Saier, 2021). Overpopulation of Bacteroides causes degradation of intestinal mucus, which can lead to disruption of the intestinal barrier and thus may allow translocation of pathogenic microorganisms across the gut (Desai et al., 2016). It also acts as an opportunistic pathogen that can cause infections by colonizing the intestinal tract (Michaudel and Sokol, 2020). In this study, we found that enrichment of the family Bacteroidaceae and genus Bacteroides was significantly associated with an increased risk of acne development, while we also found a positive correlation between AD and the genus Bacteroides. There have been studies revealing the possible mechanisms of Bacteroides in the pathogenesis of acne. Bacteroides, a gram-negative bacterium, is rarely found on the skin; however, Li et al. found that the abundance of Bacteroides was significantly elevated in the skin flora of patients with severe acne and suggested that the possible mechanisms include promotion of inflammation in acne, impairment of immune defenses, reduction of tissue repair, and inhibition of resident skin bacterial growth (Li et al., 2019). In addition, given the increased intestinal permeability caused by Bacteroides overgrowth, more gram-negative bacterial lipopolysaccharides (LPS) may enter systemic circulation and contribute to the development of inflammation and acne lesions through the action of Toll-like receptor (TLR) 2 and TLR4, whose expression is upregulated in acne (Juhlin and Michaëlsson, 1983; Terhorst et al., 2010; Maronese et al., 2023). Toxin-producing strains of Bacteroides have been shown to be associated with ulcerative colitis, toxin-mediated acute diarrhea, etc., because they have the most complex polysaccharide structure of any enterobacteria and the potent virulence factors, hemolysin/cytolysin, capable of lysing and killing host immune cells (Zamani et al., 2017; Valguarnera and Wardenburg, 2020; Zafar and Saier, 2021). We hypothesized that these properties are important in the mechanism by which the bacterium exacerbates acne, but the exact mechanism still needs to be elucidated. We know very little about Bacteroidaceae, except that Bacteroides is the most important member of the family; perhaps the positive effects on acne that we have found are the result of Bacteroides or other genera within the family may also contribute, but these conclusions require additional research and analysis. A correlation between Bacteroides and AD has also been reported, with two studies in 2021 reporting a higher abundance of Bacteroides in patients with AD (Su et al., 2021; Ye et al., 2021). The abundance of Bacteroides is influenced by pregnancy, feeding status, and antibiotic use early in life, and lower intestinal bacterial diversity in infancy and higher levels of Bacteroides are thought to be associated with an increased risk of atopic diseases (Wall et al., 2009; Lee et al., 2014). It has been found that higher levels of Bacteroides in allergic patients may lead to the persistent production of LPS, which induces an imbalance between the Th1 and Th2 immune responses through overactivation of TLRs, damage to the epidermal barrier, and itch-induced scratching, ultimately leading to the development of AD (Sipka and Bruckner, 2014; Behzadi et al., 2021; Fang et al., 2021). In addition, although we did not find a causal relationship between Bacteroides and psoriasis, we found that the phylum Bacteroidetes had a probable protective effect in patients with psoriasis, which is in line with the results of previous studies (Huang et al., 2019; Polak et al., 2021). Previous research has suggested that Bacteroidetes can produce acetate and propionate, both of which are anti-inflammatory, help maintain the epithelial barrier, protect against colitis, reduce oxidative stress, and regulate the balance between Th17/Treg lymphocytes (Myers et al., 2019), which may have a protective effect against psoriasis. There are currently conflicting findings on changes in the abundance of Bacteroides in the gut of patients with psoriasis; with one study (Tan et al., 2018) reported an increase in abundance and three studies (Codoñer et al., 2018; Hidalgo-Cantabrana et al., 2019; Dei-Cas et al., 2020) reported the opposite, a point of contradiction that deserves follow-up. In conclusion, Bacteroides is a key component of the gut microbiota and a double-edged sword that can provide nutrients to other flora through robust metabolism, generate short-chain fatty acids (SCFAs) that exert anti-inflammatory and immunomodulatory effects, and become pathogenic when their abundance and colonization status are changed. Skin may be a target organ for pathogenicity in an imbalanced state (Zafar and Saier, 2021).

In addition to Bacteroides, three other members of the flora that were strongly dermatologically associated attracted our attention. The Eubacterium_fissicatena_group, a specific group within Eubacterium, can metabolize and produce SCFAs, and Eubacterium is currently considered to play a beneficial role in human health, along with Lactobacillus and Bifidobacterium (Mukherjee et al., 2020). However, we made a groundbreaking discovery that the genus Eubacterium_fissicatena_group enrichment leads to a potentially increased risk of psoriasis, psoriasis vulgaris, and psoriatic arthritis in hosts, and its causal association with psoriasis vulgaris was more significantly correlated after a more stringent FDR correction. In fact, a previous Spearman correlation analysis revealed that the Eubacterium_fissicatena_group was positively associated with proinflammatory markers such as TNF-α, IL-6, and IL-8, negatively associated with anti-inflammatory markers such as IL-10, and associated with colonic inflammation in inflammatory bowel disease (IBD) (Liu et al., 2022). In addition, some researchers have found that Eubacterium_fissicatena_group is highly correlated with obesity and obesity-related metabolic disorders (Song et al., 2021). Both IBD and obesity have been shown to be associated with a high risk of developing psoriasis, and gut microbiota dysbiosis is thought to mediate the development of both condidtions (Maronese et al., 2021; Rogler et al., 2021; Barros et al., 2022). Therefore, we hypothesized that the Eubacterium_fissicatena_group may contribute to the pathogenesis of psoriasis by inducing colonic inflammation and metabolic disorders. However, details of this mechanism remain unclear. We also found a significant positive causal relationship between genus Allisonella and acne. To our knowledge, this is the first report of a relationship between this bacterium and acne, which utilizes histidine decarboxylation as its sole source of energy, and is a histamine-producing bacterium (Garner et al., 2002). Histamine can cause vasodilation and increase vascular permeability, as well as modulate immune cell activity and inflammatory factor release (Koh et al., 2002). We hypothesized that the bacterium may play a proinflammatory role in the development of acne-associated inflammation by releasing histamine, but this hypothesis needs to be confirmed by further studies. Intestinibacter belongs to the Clostridiaceae family in the phylum Firmicutes and is a genus of SCFA-producing bacteria (Dong and Yang, 2014). Despite growing evidence of significant differences in gut microbiota composition and metabolic function in patients with urticaria compared to healthy populations (Lu et al., 2019; Wang et al., 2021; Zhang et al., 2021), our study showed for the first time a significant correlation between increased abundance of the genus Intestinibacter and the risk of urticaria development, which was statistically significant even after FDR correction. There is limited research on this flora constituent, and studies have reported that the abundance of Intestinibacter is associated with type 2 diabetes mellitus (Neri-Rosario et al., 2023), Crohn’s disease (Forbes et al., 2018), prenatal depression (Fang et al., 2023), and osteoporosis (Akinsuyi and Roesch, 2023) and is also influenced by the HLA genotype (Forbes et al., 2018), but its definitive role remains unknown. Functional analysis of Intestinibacter has shown that it is able to degrade fucose, suggesting an indirect involvement in intestinal mucus degradation (Mueller et al., 2021), leading to a compromised intestinal barrier that allows microbes and toxins to infiltrate the body’s circulation and skin, triggering an immune response; however, whether there is a link between this activity and the development of urticaria remains to be investigated.

The gut microbiota has also been more broadly associated with dermatological diseases, and there are links between multiple taxa and multiple dermatological diseases. Although these associations are considered only suggestive, due to our application of rigorous statistical methods, they still provide some explanation for the role of the flora in the pathogenesis of dermatological diseases, at least qualitatively and with a clear causal direction. Prevotella is an SCFA-producing bacterium that has been found to enhance intestinal barrier function and reduce the levels of inflammatory indicators in the cecum (Neyrinck et al., 2011, 2012). Our study showed the protective effects of the genus Prevotella7 against melanoma and rosacea and the likely protective effects of the genus Prevotella9 against psoriasis. An analysis of the gut microbiota of 15 rosacea patients and 15 healthy individuals showed that Prevotella was more enriched in the intestines of healthy individuals than in patients (Moreno-Arrones et al., 2021). Given that Prevotella has been found to be more scarce in the gut of Parkinson’s disease patients and that rosacea and Parkinson’s disease are epidemiologically linked, further exploration of the role of this bacterium in the brain–gut–skin axis is warranted (Egeberg et al., 2016; Gerhardt and Mohajeri, 2018). Cutaneous melanoma is a highly malignant and metastatic tumor. The advent of immune checkpoint inhibitor (ICI) therapies has made it possible to harness the immune system to treat cancer. Inhibitory programmed cell death 1/programmed cell death ligand 1 or cytotoxic T-lymphocyte-associated protein 4 pathways allow malignant tumors to evade the immune system. By blocking these signaling pathways, ICI therapy allows the immune system to re-identify and kill tumors (Marincola et al., 2003; Gopalakrishnan et al., 2018). Peters et al. found that Prevotella stercorea was associated with longer survival during ICI treatment of metastatic melanoma (Peters et al., 2019), albeit with a different strain than the one we found, which was sufficient to focus our attention on the genus Prevotella. A point of contradiction occurs in the relationship between Prevotella and psoriasis, as a case–control study from Brazil showed an increased abundance of Prevotella copri in patients with psoriasis (Schade et al., 2022), whereas 16S rRNA sequencing by Shapiro et al. showed a decrease in the abundance of Prevotella copri in patients with psoriasis (Shapiro et al., 2019), which seems to support the latter finding. However, a study by Zhao et al. showed that after transplanting the fecal microbiota of psoriasis model mice with a severe skin phenotype to mildly symptomatic mice, the latter exhibited an exacerbation of psoriasis-like skin inflammation, including increased Th17 infiltration and differentiation, as well as an increase in Prevotella abundance in the colon (Zhao et al., 2023). In addition, they found that altered Prevotella abundance caused disturbances in fatty acid metabolism in the gut, such as an increase in oleic and stearic acid levels, both of which have been shown to exacerbate psoriasis-like skin inflammation by promoting the differentiation of Th17 cells and inducing IL-23 secretion by dendritic cells of monocyte origin (Zhao et al., 2023).

Despite accounting for less than 1% of the total number of human distal gut bacteria, Lactobacillus can have a profound impact on human health (Heeney et al., 2018). Lactobacillus can promote intestinal health by improving intestinal bacterial composition, protecting the intestinal mucosal barrier, and modulating the intestinal immune response, which in turn improves the health of the body (Ingrassia et al., 2005; Seth et al., 2008; Heeney et al., 2018). Unexpectedly, we identified a potential protective effect of the genus Lactobacillus and family Lactobacillaceae against acne and facial aging. Previous studies have shown a decreased abundance of Lactobacillus in patients with acne compared to healthy populations (Deng et al., 2018; Thompson et al., 2020), and many studies have confirmed the ameliorative effect of Lactobacillus probiotics on acne (Yu et al., 2020). Some Lactobacillus strains have been found to reduce sebaceous triglyceride levels, enhance skin hydration, upregulate the expression of the moisturizing factor ceramide, inhibit Propionibacterium acnes proliferation, ameliorate insulin resistance, normalize IGF-1 gene expression, and improve epidermal barrier function (Gueniche et al., 2010; Fabbrocini et al., 2016; Kim et al., 2021; Tsai et al., 2021). The relationship between the gut microbiota and aging has also been recognized in recent years, with the results of a Korean study showing that elderly individuals in long-lived villages had a higher abundance of Lactobacillus (Kim et al., 2019). Lactobacillus can interact with dermal fibroblasts in a photoprotective manner to exert an anti-skin aging effect and exerts an anti-inflammatory effect by regulating intestinal cell tight junctions and downregulating matrix metalloproteinase (MMP) expression (Lee et al., 2021). Lactobacillus can also prevent skin wrinkles from photoaging by inhibiting the activities of MMP and elastase (Lim et al., 2020). In addition, a recent study showed that nutritional supplements, including Lactobacillus, can increase telomere length in healthy middle-aged adults (Tsoukalas et al., 2019). Ruminococcaceae is a group of strictly anaerobic bacteria present in the colonic mucosal biofilm of healthy individuals (D. C. Rubin et al., 2014). Ruminococcaceae plays an important role in the maintenance of gut health through their ability to produce SCFAs. Our results showed that there is an association between different genera within Ruminococcaceae and different dermatological diseases. Among them, genus RuminococcaceaeUCG002, genus RuminococcaceaeUCG013, genus RuminococcaceaeUCG014, and genus Ruminococcus torques group likely had protective effects against psoriatic arthritis, melanoma, malignant non-melanoma skin cancer, and acne, respectively. Several previous studies have found that Ruminococcaceae may be a risk factor for patients with psoriasis, and that the abundance of Ruminococcaceae is increased in patients with psoriasis, leading to a decrease in the levels of medium-chain fatty acids, a potential protective factor in psoriasis (Chen et al., 2018; Hidalgo-Cantabrana et al., 2019). Gopalakrishnan et al. (2018) found that patients with a higher relative abundance of Ruminococcaceae in the gut microbiota had higher frequencies of effector CD4+ and CD8+ T cells and maintained cytokine capacity in the somatic circulation, which could be enhanced during ICI therapy by increased antigen presentation and improved effector T-cell function in the tumor microenvironment that enhances systemic and antitumor immune responses. Investigations into circulating T-cell counts as prognosticators of ICI efficacy in melanoma and non-malignant cutaneous neoplasms have been undertaken, and we posit that, in forthcoming inquiries, Ruminococcaceae may emerge as a prospective biomarker for predictive assessment (Zelin et al., 2022). Furthermore, Ruminococcaceae produces butyrate, which can effectively inhibit inflammation and is a potentially beneficial flora constituent for patients with acne (Deng et al., 2018; Sánchez-Pellicer et al., 2022). However, because our findings are only at the genus level, the specific mechanisms of the interaction between these genera and dermatological diseases remain to be determined.

The role of the flora is not generalized, as the same flora may play completely opposite roles in different dermatological diseases, such as Victivallaceae, which has a potential protective effect against vitiligo but is a risk factor for urticaria and facial aging, and Blautia, which is potentially protective against melanoma but is a risk factor for psoriatic arthritis and facial aging, suggesting that the flora may act through multiple mechanisms in the development of dermatological diseases. The same group of bacteria may play different roles in different gut microenvironments; however, these specific mechanisms are unclear and require further investigation. Based on the results of the inverse MR, we did not find a significant causal effect of dermatological diseases on the gut microbiota. Although the specific mechanisms are not yet clear, recent research suggests that the gut–skin axis represents a bidirectional relationship (Sinha et al., 2021; Mahmud et al., 2022). For example, it has been found that food allergies may be the result of skin barrier damage and that AD patients are allergic to peanuts due to exposure to peanut proteins in household dust, which ultimately leads to IgE-mediated mast cell expansion and degranulation in the gut (Bartnikas et al., 2013; Brough et al., 2015). Probiotics can manipulate the host microbiome and confer health benefits on patients. To date, many studies have explored the use of probiotics for the treatment of dermatological diseases. The probiotics commonly used today include the genera Bifidobacterium, Enterococcus, Escherichia, Lactobacillus, Saccharomyces, and Streptococcus (Al-Ghazzewi and Tester, 2014; Fijan, 2014). Probiotics can reduce intestinal and skin inflammation by increasing serum IL-10 levels and inducing expression by regulatory T cells, while decreasing IL-17 levels, can act as antioxidants, and can induce the expression of tumor-suppressor genes to fight tumor cells (Geuking et al., 2011; Levkovich et al., 2013; Zhong et al., 2014). SCFAs are a product of the fermentation of dietary fiber by many probiotics, and their components, such as acetate, propionate, and butyrate, can improve the function and integrity of the intestinal epithelial barrier by increasing the expression of the tight junction proteins claudin-1 and zonula occludens-1, inhibiting the proliferation, migration, and adherence of inflammatory cells, as well as the production of cytokines, such as IFN-γ, to ultimately suppress inflammation and immune response (Maslowski et al., 2009; Wang et al., 2012; Sun et al., 2017). These SCFAs are essential carbon and energy sources for colonic enterocytes (Wong et al., 2006), and their absence results in functional disorders of colonic mucosa (Vb and Tm, 2004). A meta-analysis of 1,070 children reported a significant reduction in AD score (SCORAD) in patients with AD who were orally administered the probiotics Lactobacillus fermentum, Lactobacillus salivarius, or mixed strains (Huang et al., 2017). Jung et al. described a probiotic treatment for acne. The probiotic group demonstrated equivalent efficacy to the minocycline group in a 12-week experiment using Lactobacillus acidophilus, Lactobacillus delbrueckii bulgaricus, and Bifidobacterium bifidum to treat acne, with the occurrence of skin lesions decreasing by 67% and fewer adverse effects (Jung et al., 2013). Currently, there is little research on the therapeutic benefits of probiotics, many of which focus on AD, acne, psoriasis, and melanoma. Additional fundamental research and clinical studies are needed to better understand the microbiome as a risk factor for several dermatological illnesses and as a target for a cure.

In recent years, the methods of MR analysis have evolved, and because they can effectively overcome the disadvantages of traditional statistical methods, which are susceptible to the influence of external factors, and because the genotypes appear before the phenotypes, the results are not biased by the interference of reverse causality, making the conclusions more reliable and rigorous (Burgess et al., 2015; Bowden et al., 2018). Our investigation delved into SNPs derived from GWAS meta-analyses with substantial sample sizes, showing robust correlations with the gut microbiota and manifestations across diverse dermatological disease databases. Five robust analytical methods and rigorous statistical corrections were used to derive quantitative relationships. Sensitivity analysis showed no pleiotropy or heterogeneity, suggesting that our results are statistically robust, and that the strongly related taxa and multiple dermatological disease-related taxa identified in this study could provide a basis for future work. Notably, there is some discrepancy between our results and those of previous studies, which may be due in part to differences in sample size, ethnic background, dietary habits, sex distribution, and age among the subjects in different studies. Our study has some limitations. First, because the study population was largely of European origin, this may have led to biased estimates and affected the generalizability of the conclusions. Second, although the gut microbiota GWAS is the largest to date, its sample size remains modest and the number of loci tested is relatively limited. Third, for conducting sensitivity analyses and horizontal pleiotropy testing, sufficient genetic variants were required as IVs, consequently rendering the SNPs utilized in the analyses incapable of meeting the conventional GWAS significance threshold (p < 5 × 10^-8), potentially increasing the risk of false positives. Fourth, because the lowest taxonomic level in the gut dataset was genus, we could not further explore the causal relationships between the gut microbiota and dermatological diseases at the species level. Fifth, although our analysis supported conclusions regarding the causal relationship between certain flora constituents and dermatological diseases, their roles in pathogenesis remain unclear. We believe that future research should apply an integrated approach that utilizes multiple genomics, metabolomics, model recruitment transfer experiments, and relevant clinical trials to deepen the understanding of the influence of gut microbiota on the pathogenesis of dermatological diseases in the context of complex interactions between genes and the environment over time. Larger clinical trials of oral probiotics can also be conducted to identify the most effective species-specific combinations, dosages, and treatment durations for specific dermatological diseases, as well as to assess their safety and long-term benefits.





Conclusions

In summary, our MR analyses yielded compelling evidence for a comprehensive, albeit suggestive, linkage between gut microbiota and pan-dermatological diseases, suggesting that diverse taxa may exert either predisposing or protective influences in the pathogenesis of various dermatoses. Moreover, we found five distinct cohorts of causal relationships marked by significant correlations. Our investigation provides a pivotal cornerstone in understanding the gut–skin axis, underscoring the potential for future multi-omics inquiries to elucidate the intricate mechanisms governing these causal associations and to facilitate the advancement of microbiota-centric preventive and therapeutic modalities.
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Polycystic ovary syndrome (PCOS) is a common systemic disorder related to endocrine disorders, affecting the fertility of women of childbearing age. It is associated with glucose and lipid metabolism disorders, altered gut microbiota, and insulin resistance. Modern treatments like pioglitazone, metformin, and spironolactone target specific symptoms of PCOS, while in Chinese medicine, moxibustion is a common treatment. This study explores moxibustion’s impact on PCOS by establishing a dehydroepiandrosterone (DHEA)-induced PCOS rat model. Thirty-six specific pathogen-free female Sprague-Dawley rats were divided into four groups: a normal control group (CTRL), a PCOS model group (PCOS), a moxibustion treatment group (MBT), and a metformin treatment group (MET). The MBT rats received moxibustion, and the MET rats underwent metformin gavage for two weeks. We evaluated ovarian tissue changes, serum testosterone, fasting blood glucose (FBG), and fasting insulin levels. Additionally, we calculated the insulin sensitivity index (ISI) and the homeostasis model assessment of insulin resistance index (HOMA-IR). We used 16S rDNA sequencing for assessing the gut microbiota, 1H NMR spectroscopy for evaluating metabolic changes, and Spearman correlation analysis for investigating the associations between metabolites and gut microbiota composition. The results indicate that moxibustion therapy significantly ameliorated ovarian dysfunction and insulin resistance in DHEA-induced PCOS rats. We observed marked differences in the composition of gut microbiota and the spectrum of fecal metabolic products between CTRL and PCOS rats. Intriguingly, following moxibustion intervention, these differences were largely diminished, demonstrating the regulatory effect of moxibustion on gut microbiota. Specifically, moxibustion altered the gut microbiota by increasing the abundance of UCG-005 and Turicibacter, as well as decreasing the abundance of Desulfovibrio. Concurrently, we also noted that moxibustion promoted an increase in levels of short-chain fatty acids (including acetate, propionate, and butyrate) associated with the gut microbiota of PCOS rats, further emphasizing its positive impact on gut microbes. Additionally, moxibustion also exhibited effects in lowering FBG, testosterone, and fasting insulin levels, which are key biochemical indicators associated with PCOS and insulin resistance. Therefore, these findings suggest that moxibustion could alleviate DHEA-induced PCOS by regulating metabolic levels, restoring balance in gut microbiota, and modulating interactions between gut microbiota and host metabolites.
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1 Introduction

Polycystic ovary syndrome (PCOS) stands as the most prevalent endocrine and metabolic disorder among women of childbearing age. Its clinical manifestations encompass hyperandrogenism, ovulatory dysfunction, and the characteristic polycystic ovary morphology (PCOM). The prevalence of PCOS is about 26%, which comes with appearance changes like hairy, obese and black acanthosis (Bayona et al., 2022). Beyond these external manifestations, alterations in oocyte and endometrial quality directly impact the reproductive outcomes and fertility potential (Palomba et al., 2017) of women with PCOS, significantly elevating the risk of infertility (Palomba, 2021; Palomba et al., 2021). Moreover, even upon successful conception, individuals with PCOS are at an increased risk for pregnancy-related complications, including gestational diabetes, pregnancy-induced hypertension, and preterm birth (Palomba et al., 2015). Consequently, PCOS contributes to substantial physical and mental discomfort and fertility anxiety to women, is an urgent medical problem to be solved in the field of female reproductive endocrinology (Chen et al., 2018; Hamilton et al., 2019).

PCOS is widely regarded to be closely related with glucose and lipid metabolism disorders, often combined with insulin resistance (IR), hyperinsulinemia, obesity and other diseases (Liao et al., 2021). Among them, insulin resistance is one of the pivot characteristics of PCOS. Studies have shown that 60% -80% of PCOS patients are accompanied by varying degrees of insulin resistance (Wang et al., 2019; Hu et al., 2020; Amisi, 2022). Therefore, in the clinical treatment of PCOS, it is of vital necessity to take the regulation of glucose and lipid metabolism into account. As we all know, metformin is a powerful weapon to regulate the disorder of glucose and lipid metabolism in patient with PCOS, which acts an assistant role in the treatment of PCOS (Palomba et al., 2009; Liu et al., 2023b). However, prolonged metformin use leads to produces gastrointestinal side effects such as diarrhea, abdominal pain, abdominal distension and taste disorder (Ramu et al., 2022). In contrast, moxibustion therapy, an usual treatment of PCOS in traditional Chinese medicine, achieves therapeutic effects through warm stimulation and drug stimulation of body surface acupoints. It is characterized by its non-invasive nature, minimal adverse effects, simplicity of operation, and effectiveness (Xu et al., 2021).

Currently, the exact pathogenesis of PCOS remains incompletely understood. However, numerous studies have shown that the disorder of intestinal flora is closely related to PCOS, and can even directly affect the incidence of PCOS (Guo et al., 2022; Liu et al., 2023a). Intestinal tract is known as the ‘ second brain ‘ of human beings. The metabolism of intestinal flora has important feedback-and-regulation effects on the physiological functions of the body (Reutov and Sorokina, 2022). Research has demonstrated that metformin can ameliorate the metabolic and endocrine profiles of PCOS patients, as well as the diversity and abundance of intestinal flora (Gan et al., 2023). Therefore, in this experiment, we employed HE staining to assess the impact of moxibustion on the ovarian morphology of PCOS rats, and then the effect of moxibustion on PCOS was observed from the aspects of body weight, serum testosterone level, fasting blood glucose (FBG), serum insulin level, insulin sensitivity index (ISI) and insulin resistance level (HOMA-IR). Combined with metabolomics based on nuclear magnetic resonance (NMR) technology and microbiome based on 16S rRNA technology, the effects of moxibustion on PCOS metabolomics and microbiome were studied to explore the potential mechanism of moxibustion in the treatment of PCOS, and to provide some experimental basis for moxibustion in the treatment of PCOS.




2 Materials and methods



2.1 Animals

36 Female Sprague-Dawley (SD) rats aged 22 to 23 days were purchased from Beijing Vital River Laboratory Animal Center (Beijing, China). The ethical approval for this study was obtained from the Xiamen University Experimental Animal Center Ethics Committee (permit number XMULAC20230172). The rats were housed in a Specific Pathogen-Free (SPF) environment at the Xiamen University Laboratory Animal Center, maintaining a room temperature ranging from 22°C to 26°C and humidity levels at 60%-70%. The rats were subjected to a 12-hour light/dark. Random allocation was performed to divide the 36 rats into four groups, with 9 rats in each group: CTRL, PCOS, MBT, and MET.




2.2 DHEA-induced PCOS rat model

Prior to commencing the experiments, the rats underwent a one-week acclimation phase during which they had unrestricted access to water. PCOS modeling was induced in all rats by daily subcutaneous injections of 60 mg/kg of DHEA (dissolved in 0.2 ml of sesame oil) (Roy et al., 1962; Paixão et al., 2017), except for the CTRL group. The rats in the CTRL group received daily injections of 0.2 ml of sesame oil.




2.3 Treatment

After the PCOS modelling, the rats in the CTRL and PCOS groups were only immobilized on the frame for 20 minutes daily over a 14-day period, without receiving any additional treatment. In the MBT group, the rats were immobilized on the frame and received daily moxibustion treatment at Guanyuan acupoint (CV4) for 20 minutes over the same 14-day period. The moxibustion was carried out using special animal-specific moxa sticks (dimensions: height 5 mm, diameter 5 mm, “Han Medicine,” Nanyang, China), held 2 cm above the CV4. The selection of CV4 in the Ren Meridian for moxibustion treatment was based on the guidelines outlined in “Chinese Veterinary Acupuncture and Moxibustion” (Liu, 2013). As for the MET group, the rats were administered metformin through daily gavage at a dose of 300mg/kg for 14 days (Figure 1).

[image: Experimental diagram illustrating four groups of rats: CTRL, PCOS, MBT, and MET, across three time points: Day 1, Day 22, and Day 35. CTRL group receives 0.2 milliliters of sesame oil. PCOS, MBT, and MET groups receive intraperitoneal injections of 60 milligrams per kilogram DHEA in sesame oil. On Day 22, PCOS rats are immobilized for 20 minutes. MBT undergoes 20-minute moxibustion, while MET receives 300 milligrams per kilogram metformin intragastrically. Samples collected on Day 35 include fecal, blood, and ovarian tissue.]
Figure 1 | Experimental grouping and procedure.




2.4 Sample collection

Throughout both the modelling and treatment phases, the rats’ body weight was diligently monitored on a daily basis. Following completion of the treatment, the rats underwent a 12-hour fasting period, during which a final body weight measurement was conducted before euthanizing all the rats for further analysis. The ovaries were collected for histopathological examination, while blood samples were obtained for subsequent biochemical analysis. Moreover, fecal samples were collected and transferred into cryogenic storage tubes, frozen in liquid nitrogen, and preserved at -80°C for subsequent 1H NMR-based metabolomics testing and 16S rDNA analysis.




2.5 H&E staining of ovarian tissue

Ovarian tissue samples were collected and washed with sterile 0.9% NaCl solution on aseptic equipment. Subsequently, the tissues were immersed in a 4% paraformaldehyde solution for 48 hours. Sections of paraffin, each with a thickness of 5µm, were meticulously prepared, subjected to dewaxing, and then stained using the haematoxylin and eosin (H&E) method. These stained sections were observed under a Leica Aperio Versa 200 microscope in Tokyo, Japan, to assess the extent of pathological damage.




2.6 Measurement of serum biochemical markers

Blood samples were collected from rats and coagulated for 40 minutes. After centrifugation at 3,000 r for 20 minutes, the serum was stored at −80°C. Serum levels of FBG, fasting insulin, and testosterone were measured using an enzyme-linked immunosorbent assay (ELISA) following the manufacturer’s protocol. The testosterone ELISA kit (E-EL-0155c) and insulin ELISA kit (E-EL-M2614c) were procured from Elabscience, while the blood glucose kit (JL-T1253) was obtained from Jianglai Biotechnology. The coefficient of variation (CV) for all utilized assay kits was less than 10%. For detailed parameters, refer to Tables 1, 2.

Table 1 | CV for Testosterone Assay Kit.


[image: Table displaying intra-assay and inter-assay precision data for three samples. For each sample, it lists number of assays (n), mean concentration in nanograms per milliliter, standard deviation, and coefficient of variation percentage. Intra-assay sample means: 1.33, 5.22, 10.88; inter-assay sample means: 1.54, 5.73, 10.02. Corresponding standard deviations are 0.11, 0.35, 0.46 for intra-assay, and 0.14, 0.35, 0.68 for inter-assay. Coefficients of variation are 8.13%, 6.72%, 4.27% for intra-assay, and 9.23%, 6.18%, 6.75% for inter-assay.]
Table 2 | CV for Insulin Assay Kit.


[image: Table showing intra-assay and inter-assay precision for three samples. Each sample has measurements for n (20), mean in nanograms per milliliter (ranges from 1 to 8.7), standard deviation (0.1 to 0.4), and coefficient of variation in percentage (CV%) ranging from 3.45 to 10.]



2.7 16S rDNA gene sequencing

Fresh fecal samples collected from the sacrificial rats were aseptically placed in sterile EP tubes and stored at -80°C for subsequent processing. Total bacterial DNA was extracted from the fecal samples using the FastDNA®SPIN Kit for Soil (Omega Bio-tek, Norcross, GA, USA) following the manufacturer’s instructions. The concentration and purity of the DNA were assessed using a NanoDrop 2000 UV-vis spectrophotometer (Thermo Scientific, Wilmington, USA). Subsequently, the hypervariable region V3-V4 (Liu et al., 2016) of the bacterial 16S rDNA gene was amplified using an ABI GeneAmp® 9700 PCR thermocycler (ABI, CA, USA). The selected primers were 338F (ACTCCTACGGGAGGCAGCAG) and 806R (GGACTACHVGGGTWTCTAAT). The PCR amplification of the 16S rRNA gene involved an initial denaturation at 95°C for 3 minutes, followed by 30 cycles of denaturation at 95°C for 30 seconds, annealing at 55°C for 30 seconds, extension at 72°C for 45 seconds, and a final extension at 72°C for 10 minutes. The PCR reactions were conducted in triplicate, and the resulting PCR products were combined and purified using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) in accordance with the manufacturer’s instructions. DNA quantification was carried out using a Quantus™ Fluorometer (Promega, USA), and the purified pooled samples underwent sequencing analysis on the Illumina MiSeq platform (Illumina, USA).




2.8 Samples preparation and 1H NMR experiments

Metabolites in faeces were analyzed using 1H NMR-based metabonomics. Fecal samples weighing 50 to 60 mg were kept on ice and subsequently homogenized in 1 ml of PBS (0.1 M) containing 50% D2O. The homogenization process involved vortexing for 1 minute. Afterwards, the samples underwent two freeze-thaw cycles using liquid nitrogen and were then centrifuged at 4°C and 12,000 r for 10 minutes. The resulting supernatants were then transferred to new microcentrifuge tubes (2 ml). The pellets were reconstituted with 0.6 ml of PBS solution, vortexed for 30 seconds, and then centrifuged once again at 4°C and 12,000 r for 10 minutes. The supernatants were combined, and 40 μl of D2O containing disodium terephthalate (Wang et al., 2022) was added. After further centrifugation at 4°C and 16,000 r for 10 minutes, the resulting supernatants (0.55 ml) were transferred to 5 mm NMR tubes.

The NMR analysis was performed using a 500 MHz Bruker spectrometer (Bruker AV500, Bruker Corporation, Switzerland) employing the Carr Purcell Meiboom-Gill (CPMG) pulse sequence. The specific scanning parameters were configured as follows: a spectral width of 12.019 kHz, a relaxation time of 320 ms, 32 scanning times, FID conversion, a line broadening factor (LB) of 0.3 Hz, a pulse width (PW) of 30°C (12.7 μs), and a relaxation delay (RD) of 1.0 s. Following the acquisition of 1H NMR spectra with the Bruker NMR spectrometer, metabolite identification was conducted using our team’s NMR metabolites database, published literature, and chemical shift databases such as BMRB (http://www.bmrb.wisc.edu/Metabolomics/) and HMDB (http://www.hmdb.ca/).




2.9 Data processing

The processing of fecal samples, encompassing signal denoising, phase correction, and baseline adjustments, was performed using MestReNova version 9.0.1, developed by Mestrelab Research in Santiago de Compostela, Spain. The spectra were standardized by aligning them to their peak values, setting the reference peak of the internal standard at 7.88 ppm. Subsequently, the spectra were segmented into intervals of 0.01 ppm within the range of δ 0.6–9.5 ppm, with the exclusion of the water peak falling within the range of δ 4.70–4.90 ppm. To account for differences in sample concentrations, integral values from each spectrum were normalized relative to the sum of all integrals within that spectrum, facilitating subsequent multivariate analysis. The spectral data were imported into SIMCA-P version 14.1 software, developed by Umetrics in Sweden, and Pareto-scaling (Par) was applied to reduce noise and eliminate artifacts within the model. Intergroup separation was evaluated using Partial Least Squares Discriminant Analysis (PLS-DA). Subsequently, potential variables were analyzed through Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA), following an assessment of the OPLS-DA model’s quality based on model goodness of fit (R2) and prediction ability (Q2). Endogenous differential metabolites were identified based on their importance in the project (VIP > 1), log2 fold change (|log2FC| > 0.5), and the independent sample t-test (p < 0.05).




2.10 Statistical analysis

All statistical analyses were performed using GraphPad Prism 9.0 software (GraphPad Software Inc, San Diego, CA, USA). One-way analysis of variance (ANOVA) was employed to assess variances in each variable among the four groups, and the data were visually presented in plots. The values are reported as the mean ± standard error. Statistical significance was established at a significance level of p < 0.05. To investigate the relationship between fecal metabolite levels and the relative abundance of genera, Spearman correlation analysis was conducted using the correlation test function from the R package “stats.” Correlation analysis was limited to those genera (p < 0.05) and metabolites (p < 0.05, VIP > 1, |log2FC| > 0.5) that displayed statistically significant distinctions among the groups.





3 Results



3.1 Moxibustion improves ovarian dysfunction in PCOS rats

At the end of the modelling process, notable dissimilarities in body weight were observed between the CTRL and PCOS groups, with a substantial increase in body weight recorded in the PCOS group (Figure 2A). As the experimental period concluded, both the MET and MBT groups revealed lowering in body weight compared to the PCOS group (Figure 2B).

[image: Graphs and histology images compare weight, testosterone, fasting insulin, FBG, ISI, and HOMA-IR among control, PCOS, MBT, and MET groups over time. Histology images depict ovary sections from each group. Bar graphs I and J show the count of cystic follicles and corpora lutea, indicating significant differences among groups.]
Figure 2 | Moxibustion alleviates ovarian dysfunction and insulin sensitivity in DHEA-induced PCOS rats. (A) Body weight changes in DHEA-Induced Rats. (B) Changes in body weight of rats throughout the entire experimental process in each group. * indicates significance (* p < 0.05, ** p < 0.01) compared with the MBT group, # indicates significance (# p < 0.05, ## p < 0.01) compared with the MET group. (C) Expression of testosterone. (D) Expression of fasting insulin. (E) Expression of FBG. (F) The insulin sensitivity (ISI) index was calculated as follows: 1/[(fasting insulin × fasting glucose) ^ 0.5]. (G) The homeostasis model assessment of insulin resistance (HOMA-IR) index was calculated as follows: (fasting glucose) × (fasting insulin]/22.5). (H) H&E staining of ovarian tissue. (I) The number of cystic follicles (CF). (J) The number of corpora lutea (CL). Data are mean ± s.d. n = 6. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Serum testosterone levels were assessed. In contrast to the CTRL group, the PCOS group displayed an elevation in testosterone levels. Metformin treatment obviously reduced testosterone levels in PCOS rats, while moxibustion treatment showed no significant impact on serum testosterone levels (Figure 2C). Considering the close association between PCOS and metabolic disorders, we evaluated insulin sensitivity within the various groups. Fasting insulin levels displayed a distinct increase in PCOS rats, and both moxibustion and metformin treatments effectively decrease fasting insulin levels in PCOS rats (Figure 2D). Although moxibustion and metformin treatments did not show significant differences in FBG levels (Figure 2E), rats in the PCOS group demonstrated lower ISI and higher HOMA-IR compared to those in the CTRL group. Both moxibustion and metformin treatments substantially enhanced ISI (Figure 2F) and diminished HOMA-IR (Figure 2G) in PCOS rats.

Subsequently, we conducted H&E staining to assess ovarian pathological changes in different groups (Figure 2H). In the CTRL group, the ovaries displayed follicles at various developmental stages and some fresh corpora lutea. In contrast, the PCOS group exhibited a higher prevalence of cystic follicles and decreasing of corpora lutea compared to the control group. Remarkably, both moxibustion and metformin treatments reduced the number of cystic follicles (Figure 2I) and tends to promote corpora lutea formation (Figure 2J).




3.2 Effect of moxibustion on gut microbiota in PCOS rats

We used 16S rDNA sequencing of fecal samples to investigate the impact of moxibustion on the composition and levels of intestinal microbiota in PCOS rats. To ensure the suitability of fecal samples for sequencing and subsequent analysis, we analyzed rank-abundance curves (Figure 3A). Afterward, we assessed bacterial community abundance and diversity using rarefaction (Figure 3B) and Shannon curves (Figure 3C), as well as four α-diversity indices including Chao (Figure 3D), Shannon (Figure 3E), Sobs (Figure 3F) and coverage index (Figure 3G). The sequencing data was seen to be reliable, as there were levelling-off of rarefaction curves once the sequence count reached 10,000. Similar results were observed in the Shannon curves, indicating comprehensive coverage of sample diversity through sequencing. Post-DHEA intervention revealed no significant alterations in α-diversity indices, indicating DHEA’s minimal impact on gut microbiota α-diversity, in contrast to the marked effects of moxibustion and metformin treatments. Noteworthy, the MET group displayed lower Shannon and Sobs indices than the PCOS group (Figures 3E, F), and the MBT group’s Coverage index was reduced compared to the PCOS group (Figure 3G).

[image: A collage of nine graphs labeled A to I. A shows rank-abundance curves comparing CTRL, PCOS, MBT, and MET groups. B displays rarefaction curves for the same groups, while C illustrates Shannon curves. D to G contain box plots from Wilcoxon rank-sum tests, indicating diversity metrics across groups with notable differences. H is a PLS-DA plot highlighting distinct group clusters. I presents a distances box plot comparing OTU level distances among sample groups. Each graph uses different colors to represent the four groups.]
Figure 3 | Effect of Moxibustion on diversity of gut microbiota. (A) The Rank-Abundance curve of gut microbiota. (B) The Rarefaction curve of gut microbiota. (C) The Shannon index of gut microbiota. (D–G) Alpha diversity of gut microbiota in the rats receiving different treatments, including (D) Chao index, (E) Shannon index, (F) Sobs index, and (G) Coverage index. (H) PLS-DA analysis of microbiota. (I) Anosim analysis was used to detect differences between the groups. Data are mean ± s.d. n = 6. * p < 0.05, ** p < 0.01.

Subsequently, we employed PLS-DA to evaluate the β-diversity of gut microbiota among the different groups (Figure 3H). Our findings unveiled substantial distinctions in the overall gut microbiota composition among the CTRL, PCOS, MET, and MBT groups. This suggests distinct gut microbiota profiles among these four groups of rats, particularly between the CTRL and PCOS groups. Additionally, the MET group is more akin to the CTRL group, while the MBT group exhibits clear differences from the other three groups. Anosim analysis also supported the statistical significance of these group differences. Compared with the CTRL group, the PCOS group demonstrated augmented diversity, which suggests an alteration in the gut microbiota due to PCOS. Intriguingly, MBT and MET treatments were associated with lower median diversity values, potentially indicative of their role in moderating the gut microbiota towards the CTRL group’s baseline. The interquartile range overlap between the MBT and MET groups intimates a potential concordance in their effects on gut microbiota diversity (Figure 3I).

To further investigate specific taxonomic groups influenced by moxibustion and metformin treatments, we utilized the Linear Discriminant Analysis Effect Size (LEfSe) method (Segata et al., 2011) to analyze validated sequences (Figure 4A), and presented the results based on LDA scores greater than 3 (Figure 4B). Clostridia and the Clostridium_methylpentosum_group were enriched in the CTRL group, whereas Desulfobacterota, Anaerovoracaceae, Defluviitaleaceae, and Alloprevotella were enriched in the PCOS groups. Additionally, Cyanobacteria, Actinobacteria, Bacilli, Staphylococcales, Christensenellales, and Monoglobale showed enrichment in the MBT group, while the MET group exhibited enrichment of Enterococcaceae and Lachnospiraceae_UCG-001. Burkholderiales were enriched in both the MBT and CTRL groups. These findings suggest that moxibustion may have a more profound impact on reshaping the gut microbiota structure in PCOS rats compared to metformin treatment.

[image: A composite image showing various microbiome data visualizations. A) Cladogram illustrating the phylogenetic relationships among microbial taxa, with colored sections indicating different classifications. B) LEfSe bar charts displaying LDA scores for feature significance across four groups: CTRL, PCOS, MBT, and MET. C) Community bar plot analysis for relative abundance of major phyla across the groups. D) Comparison of relative abundance for two phyla in each group. E) Community bar plot analysis depicting genus-level abundance across the groups. F) Bar chart showing relative abundance of specific genera, with statistical significance indicated. G) COG function classification chart indicating gene function distribution across categories, with color-coded functions.]
Figure 4 | Effect of moxibustion on the taxonomic composition of the gut microbiota. (A) Cladograms representing the linear discriminant analysis effect size (LEfSe) results. (B) Linear discriminant analysis (LDA) results between different experimental groups. LDA > 3.00 is shown. (C) Microbial distribution at the phylum level. (D) Significant changes in abundance at the phylum level. (E) Microbial distribution at genus level (F) Significant changes in abundance of the top 15-genus level. (G) Box plot for statistical classification of Clusters of Orthologous Groups (COG) functions. Data are mean ± s.d. n = 6. * p < 0.05, ** p < 0.01, *** p < 0.001.

Furthermore, we conducted a comparative analysis of the overall gut microbiota composition among the four groups at the phylum and genus levels. At the phylum level, Firmicutes, Bacteroidota, and Actinobacteriota were identified as the dominant phyla (Figure 4C). DHEA intervention led to an increase in Desulfobacterota abundance and a decrease in Cyanobacteria abundance, while moxibustion therapy seemed to restore the balance in the gut ecosystem by mitigating these changes (Figure 4D). At the genus level, Romboutsia, norank_f:Muribaculaceae, Lactobacillus, norank_f:norank_o:Clostridia_UCG-014, and UCG-005 were the dominant genera (Figure 4E). Specifically, DHEA intervention increased the abundance of norank_f:Oscillospiraceae, norank_f:Ruminococcaceae, norank_f:Eubacterium_coprostanoligenes_group, Colidextribacter, Ideonella, and Desulfovibrio, while reducing the abundance of UCG-005, Turicibacter, and Staphylococcus. Notably, moxibustion treatment effectively mitigated these changes (Figure 4F).




3.3 Regulation of moxibustion on differential fecal metabolites in PCOS rats

We conducted a comprehensive investigation of rat fecal metabolic profiles using 1H NMR technology. The identification of endogenous metabolites in the spectra was based on existing literature (Lin, 2022), and their authenticity was further confirmed through 2D NMR spectroscopy (Figure 5). Metabolic profile model assessment was conducted using PLS-DA, and relationship models among different groups were established under supervised discriminant analysis employing OPLS-DA. The results obtained from the metabolic profiles displayed (Figures 6A B) clear inter-group separations for all four groups, indicating distinct metabolic differences among them. Interestingly, the metformin and moxibustion groups showed trends that were closer to the control group, suggesting that moxibustion or metformin treatment might directly or indirectly contribute to the restoration of metabolite levels to normal. Additionally, pairwise comparisons between each group revealed distinct inter-group separations with statistically significant differences, further confirming the reliability of our model’s quality evaluation (Figures 6C–H).

[image: Spectra comparison of MBT (red) and MET (blue) displaying various chemical compounds. Peaks are labeled for acetate, butyrate, propionate, and amino acids like threonine, glycine, and leucine. Horizontal axis shows chemical shift in parts per million (ppm). Vertical axis indicates intensity.]
Figure 5 | Typical 1H NMR spectra of extractive from faeces.

[image: Eight-part chart comprised of scatter plots and line graphs, labeled A through H. Chart A shows multicolored data points representing CTL, PCOS, NGT, and IGT. Chart B shows a linear trend with green and blue points. Charts C, D, and E display comparisons between different groups with separate color-coded data points. Charts F, G, and H illustrate linear relationships with green and blue data points, each including trend lines. Each chart is labeled with axes denoting statistical terms and units.]
Figure 6 | Effect of moxibustion on the metabolite composition of PCOS rats. (A, B) PLS-DA analysis of fecal metabolites and corresponding permutation testing (R2X = 0.79 cum, R2Y = 0.574 cum, Q2 = 0.351 cum). (C, F) OPLS-DA scores plots and corresponding permutation testing in CTRL and PCOS (R2X = 0.935 cum, R2Y = 0.947 cum, Q2 = 0.785 cum). (D, G) OPLS-DA scores plots and corresponding permutation testing in PCOS and MET (R2X = 0.906 cum, R2Y = 0.943 cum, Q2 = 0.896 cum). (E, H) OPLS-DA scores plots and corresponding permutation testing in PCOS and MBT (R2X = 0.948 cum, R2Y = 0.985 cum, Q2 = 0.949 cum). Data are mean ± s.d. n = 6.

Based on the VIP > 1, p < 0.05, and |log2FC| > 0.5, a total of 14 and 10 endogenous metabolites in fecal tissues were found to be significantly different between the MBT group and the PCOS group, and the MET group and the PCOS group, respectively. These metabolites included Butyrate, Isoleucine, Valine, Propionate, Lactate, Lysine, Leucine, Acetate, Methionine, Taurine, Glycine, Threonine, Citrulline, and Alanine (Tables 3, 4). Notably, these differentially produced endogenous metabolites in the two treatment methods exhibited an upward trend compared to the PCOS group.

Table 3 | The metabolites identified in feces following moxibustion treatment and their fold change values compared to the PCOS group.


[image: Table listing compounds with their formulas, abbreviations, δ¹H/ppm values, p-values, log₂FC values, and types. Compounds include Butyrate, Isoleucine, Valine, among others, all marked as UP type. Specific data, such as p-values ranging from 0.000206 to 0.017565 and log₂FC values from 1.0506 to 2.8211, are provided for each entry.]
Table 4 | The metabolites identified in feces following metformin treatment and their fold change values compared to the PCOS group.


[image: A table listing chemical compounds with columns for number, formula, compounds, abbreviate, delta H in ppm, p-value, log2FC, and type. Rows include details like butyrate (C₄H₇O₂⁻), valine (C₅H₁₁NO₂), and glycine (C₂H₅NO₂), all marked as UP in type.]
Further analysis using the MetaboAnalyst website (https://www.metaboanalyst.ca/) and the existing human metabolome database (https://hmdb.ca/) explored the endogenous differential metabolites produced in the PCOS-induced rat faeces under moxibustion and metformin treatment. The metabolic pathways associated with the differential metabolites produced by moxibustion and metformin treatment were found to be similar, including Aminoacyl-tRNA biosynthesis; Valine, leucine, and isoleucine biosynthesis; Valine, leucine, and isoleucine degradation; Pyruvate metabolism; Glycolysis/Gluconeogenesis; Glyoxylate and dicarboxylate metabolism; Glycine, serine, and threonine metabolism (Figures 7B, C, E, F). Enrichment analysis revealed that moxibustion affected the Glycine and Serine Metabolism; Alanine Metabolism; Glutathione Metabolism; Carnitine Synthesis; Valine, Leucine, and Isoleucine Degradation pathways in faeces (Figures 7A, D). Overall, the metabolic mechanisms of moxibustion therapy for PCOS might be similar to metformin treatment, involving carbohydrate metabolism, amino acid metabolism, and translation.

[image: Graphs and network diagrams visualize enriched metabolite sets. Charts A and D display the top 25 metabolite sets ranked by p-value, with dot size indicating enrichment ratio and color signifying p-value significance. Networks B and E show interconnected metabolite pathways, with node size based on enrichment. Scatter plots C and F illustrate pathway impact versus negative logarithm of p-value, highlighting pathways like aminacyl tRNA and valine, leucine, and isoleucine biosynthesis.]
Figure 7 | The metabolic pathways associated with moxibustion treatment in PCOS rats. (A) Enriched analysis of moxibustion treatment in PCOS rats. (B, C) Pathway analysis of moxibustion treatment in PCOS rats. (D) Enriched analysis of metformin treatment in PCOS rats. (E, F) Pathway analysis of metformin treatment in PCOS rats. Data are mean ± s.d. n = 6.




3.4 Associations between gut microbiota and metabolites

For in-depth research of connection between the abundance of circulating metabolites and the gut microbiota influenced by moxibustion, we conducted Spearman analysis to investigate the correlation between 15 genera and these metabolites (Figures 8A, B). Among the metabolites resulting from moxibustion treatment, namely lactate, alanine, and methionine, there were no statistically significant correlations observed with any of the genera. Conversely, in the case of metabolites produced by metformin treatment, specifically butyrate, there was no significant correlation found with any of the genera. Subsequently, our investigation turned towards the metabolites influenced by moxibustion. Among these metabolites, which encompass isoleucine, valine, taurine, and glycine, we observed notable correlations with one or two genera. In contrast, a set of seven metabolites, specifically butyrate, propionate, leucine, lysine, acetate, threonine, and citrulline, displayed substantial correlations with a minimum of three genera. In the final phase of our analysis, we scrutinized the metabolites affected by metformin treatment. Within this category, we considered five metabolites. In this context, two or three genera displayed significant correlations, with two metabolites revealing significant correlations with as many as four genera.

[image: Scatterplots A and B show correlations between metabolites (rows) and various microbial taxa (columns). Circle sizes and colors represent correlation strength and direction, with a scale from minus one (green) to one (purple). Asterisks indicate statistical significance.]
Figure 8 | Associations between gut microbiota and metabolites. (A) The correlation analysis of metabolites and microbiota in the PCOS Group and MBT Group. (B) The correlation analysis of metabolites and microbiota in the PCOS Group and MET Group. Data are mean ± s.d. n = 6. * p < 0.05.

In summary, Spearman analysis unveiled varying degrees of correlation between the abundance of circulating metabolites and specific genera influenced by moxibustion treatment, shedding light on the complex interactions within the gut microbiota-metabolite network.





4 Discussion

PCOS patients typically exhibit elevated androgen levels (Zeng et al., 2020). Elevated androgen levels are linked to the pathophysiology of PCOS, promoting the simultaneous development of multiple follicles in the ovaries. These follicles often fail to ovulate normally, leading to the formation of ovarian cysts and the onset of PCOS. Moreover, elevated androgen levels can lead to insulin resistance, increasing the risk of metabolic disorders in PCOS patients (Cadagan et al., 2016; Zhang et al., 2016). IR can also trigger further excess androgen production, creating a vicious cycle. Additionally, research (Zhang et al., 2019a) suggests that androgens, in inducing phenotypes resembling PCOS, can disrupt the gut microbiota balance in rodents. These findings have been validated in rat models of PCOS, where DHEA, an androgen originating from the adrenal glands (Poojary et al., 2022), was administered to mimic the development of PCOS. In this study, we have demonstrated the multifaceted effects of moxibustion in a DHEA-induced PCOS rat model, effectively reducing body weight, promoting follicle development and maturation, enhancing insulin sensitivity, regulating gut microbiota, and ameliorating metabolic disorders, thus improving ovarian dysfunction in PCOS rats.

The combined effects of insulin resistance and elevated androgen levels are likely the primary contributors to PCOS (Ding et al., 2021). Research indicates that (Rosenfield and Ehrmann, 2016) insulin plays a role in driving excess androgen production, serving as a gonadotropin for androgens. Excess insulin may lead to elevated androgen levels (Baillargeon and Carpentier, 2007), a phenomenon validated in animal experiments. Insulin signaling can directly impact androgen production (Wu et al., 2014) or stimulate the release of gonadotropins from the pituitary and hypothalamus (Adashi et al., 1981), inducing abnormal androgen production and ovarian dysfunction. Moreover, elevated androgen levels can disrupt metabolism, potentially affecting ovarian development and increasing insulin resistance, ultimately giving rise to the metabolic features of PCOS (Abi Salloum et al., 2015). This endocrine and metabolic dysregulation not only leads to PCOS but also plays a crucial role in causing infertility by disrupting the normal ovulation process and egg development, thus affecting women’s fertility. Insulin resistance and hyperandrogenism can create a vicious cycle, exacerbating PCOS symptoms and increasing infertility risks. Moxibustion is a traditional treatment for gynaecological disorders, which has shown efficacy in improving symptoms of PCOS in clinical trials. Furthermore, researchers have found that moxibustion can enhance the success rate of in vitro fertilization-embryo transfer (IVF-ET) treatment by improving endometrial blood flow, morphology, and hormone levels (Chen and Hau, 2015). Our experimental results demonstrate that, in comparison to the PCOS group, moxibustion intervention significantly improved androgen levels, insulin resistance, and ovarian tissue pathology. This suggests that moxibustion can ameliorate androgen levels and regulate insulin resistance as a treatment for PCOS. Metformin, a type of insulin sensitizer, is commonly used as a first-line anti-insulin resistance medication (Sanchez-Rangel and Inzucchi, 2017). Research suggests that metformin can effectively enhance insulin sensitivity and appears to mitigate insulin-mediated androgen production, alleviating hyperandrogenism in PCOS patients and improving ovarian function (Velazquez et al., 1994; Palomba et al., 2009; Pauli et al., 2011). Consequently, in this study, metformin was selected as the positive control agent for the treatment of PCOS. In the current study, there were no significant differences in biochemical indicators such as FINS, FBG, HOMA-IR, and ISI between the MET and MBT groups.

In recent years, numerous studies have emphasized a close association between microbial dysbiosis and PCOS (Torres et al., 2018; Jobira et al., 2020; Yang et al., 2021). Some researchers (Deng, 2019) conducted experiments involving the transplantation of gut microbiota from PCOS patients into mice. The experimental findings suggested that dysbiosis of the gut microbiome could trigger the development of PCOS, potentially serving as one of the contributing factors in PCOS pathogenesis. Additionally, research indicates that disruptions in the gut microbiota would lead to the production of lipopolysaccharides (LPS) and alterations in intestinal mucosal permeability (Tremellen and Pearce, 2012). LPS, known for its endotoxin properties, can interact with toll-like receptors on the surface of intestinal epithelial cells, thereby activating the nuclear factor κB (NF-κB) pathway and triggering an inflammatory response (Yurtdaş and Akdevelioğlu, 2020). Some researchers have also found that the gut microbiota can mediate insulin resistance through LPS (Ganie et al., 2019). This process is closely associated with the chronic inflammatory state observed in PCOS patients (Zhu et al., 2016), highlighting the substantial connection between gut microbiota and metabolic health. In this study, an analysis of gut microbiota diversity indicated a tendency towards increased α-diversity in DHEA-induced PCOS rats. While this aligns with previous research findings, it did not reach statistical significance (Zhu et al., 2020; Yang et al., 2021). Furthermore, moxibustion has obvious impact on the gut microbiota, resulting in substantial changes in the microbial communities associated with PCOS. We observed marked disparities in the gut microbiota composition between the CTRL group and the DHEA-intervened rats, with moxibustion treatment partially mitigating some of these distinctions. Notably, Desulfovibrio (Moreno-Indias et al., 2016) a bacterium known for generating Gram-negative endotoxins associated with heightened gut permeability and gut-derived antigens, had previously been observed in elevated levels in the intestines of DHEA-induced PCOS mice (Huang et al., 2022). In our study, we similarly detected increased levels of Desulfovibrio in the PCOS group, which significantly decreased following moxibustion treatment. These findings imply that Desulfovibrio may be one of the principal pathogens contributing to PCOS, and moxibustion may impede the proliferation of harmful bacteria. In the MBT group, the prevalence of the UCG-005 genus was significantly higher than in the PCOS group. UCG-005 is believed to play a pivotal role in preserving gastrointestinal mucosal barriers and preventing metabolic disorders associated with IR (Chen et al., 2021). It has the capacity to enhance mitochondrial activity, improve energy metabolism, and stimulate intestinal gluconeogenesis, thereby inducing beneficial metabolic effects (Hartstra et al., 2015). Currently, UCG-005 is regarded as a probiotic that holds promise for the prevention and treatment of obesity, type 2 diabetes, and other metabolic disorders. Furthermore, clinical research (Chen et al., 2021) has substantiated a negative correlation between the abundance of UCG-005 and IR, as well as the risk of type 2 diabetes in patients. Hence, the potential impact of moxibustion on PCOS through the gut microbiota might be associated with the increased prevalence of UCG-005. Consequently, moxibustion could potentially ameliorate PCOS in rats, at least partially, by improving the gut microbiota. It is imperative to note that the bacterial composition in faeces may not comprehensively reflect the overall alterations in the host’s gut microbiota. Turicibacter is a crucial constituent of the gut microbiota closely intertwined with host metabolic shifts (Browne et al., 2016; Jiao et al., 2018). Research has indicated that Turicibacter modifies host bile acids and lipid metabolism (Lynch et al., 2023). In our investigation, Turicibacter exhibited significantly higher levels in the MET group compared to the PCOS group, suggesting that moxibustion might influence PCOS through interactions with specific metabolites via the gut microbiota. Further exploration using metabolomics approaches is warranted to thoroughly investigate these interactions.

Metabolomics involves the qualitative and quantitative analysis of blood, urine, faeces, and tissues to enhance our comprehension of specific metabolites, diseases, and their developmental variations (Yang et al., 2005). The human body is increasingly recognized as a superorganism (Sleator, 2010), housing trillions of symbiotic microorganisms both within and around it. These microorganisms interact through specific pathways to produce metabolites, exerting profound effects on the host’s homeostasis (Wang et al., 2018; Schoeler and Caesar, 2019; Zhao et al., 2022). Therefore, we utilize a combination of fecal metabolomics and 16S rRNA gene sequencing to further elucidate the intricate relationship between the microbial community and the host. After conducting 1H NMR metabolomics analysis of rat faeces, it is intriguing to note that we found differential metabolites produced in the MET group, which served as a positive control, to be highly similar to those in the MBT group. Furthermore, pathway and enrichment analyses of the differential metabolites in both groups revealed certain similarities in the associated metabolic pathways. This suggests that the metabolic mechanisms of moxibustion therapy for PCOS may bear some resemblance to the treatment with metformin. Simultaneously, microbiome functional prediction analysis (Figure 4G) indicates that the gut microbiota may play a pivotal role in influencing metabolic functions, especially in Amino acid transport and metabolism; Translation, ribosomal structure and biogenesis; Transcription, as well as Carbohydrate transport and metabolism, interestingly, this aligns with the pathways affected by differential metabolites.

Through correlation analysis, it was found that the levels of fecal acetic acid, propionic acid, and butyric acid were significantly correlated with the abundance of several genera in the gut microbiota, suggesting that short-chain fatty acids (SCFAs) may be the primary host metabolites interacting with the gut microbiota. Acetic acid, propionic acid, and butyric acid are prominent SCFAs synthesized by intestinal bacteria from various substrates, and they are metabolites derived from the microbial community (Cook and Sellin, 1998). Research indicates that SCFAs are primarily produced by the microbial process of sugar fermentation (Macfarlane and Macfarlane, 2003), which aligns with the metabolic pathways affected by moxibustion or metformin treatment for PCOS. Additionally, small amounts of SCFAs can also arise during the catabolism of branched-chain amino acids like valine, leucine, and isoleucine. It’s well-known that SCFAs have various impacts on host physiological functions, including improving energy metabolism, particularly by regulating disruptions in glucose and lipid metabolism (He et al., 2020). Previous studies have suggested that SCFAs, especially butyric acid (Gao et al., 2009), stimulate the release of glucagon-like peptide-1 (GLP-1) in mice through the activation of the G protein-coupled receptor FFAR2 (Tolhurst et al., 2012), and GLP-1 promotes insulin secretion and enhances insulin sensitivity in the body (Meier, 2012). Additionally, research on db/db mice found that a complex probiotic supplement could can augment GLP-1 secretion by increasing levels of SCFA-producing bacteria and SCFAs themselves (Wang et al., 2020). Furthermore, SCFAs can influence the secretion of regulatory hormones. Experiments have shown that SCFAs affect the synthesis and secretion of progesterone and estradiol in porcine ovarian granulosa cells through the cAMP-PKA pathway mediated by GPR41 and GPR43 (Li, 2015). In a high androgen environment, SCFAs can protect the body from oxidative stress-induced tissue damage by blocking androgen receptors and mineralocorticoid receptors (Usman et al., 2021). Clinical investigations have also indicated that the interaction between the gut microbiota and SCFAs may play a crucial role in the regulation of sex hormones in PCOS patients (Zhang et al., 2019b). In our study, we observed a substantial increase in the concentrations of acetic acid, propionic acid, and butyric acid after moxibustion treatment in rats with DHEA-induced PCOS. Furthermore, moxibustion treatment led to a positive correlation between the differential fecal microbiota UCG-005 and Turicibacter and fecal metabolites SCFAs (acetic acid, propionic acid, and butyric acid), while Desulfovibrio showed a negative correlation. Interestingly, UCG-005 is a producer of SCFAs, whereas Desulfovibrio is known for producing LPS. Based on these observations, we hypothesize that the gut microbiota of rats with DHEA-induced PCOS undergoes significant changes following moxibustion treatment, promoting the production of metabolites such as SCFAs. Through the combined action of the gut microbiota and metabolites, insulin resistance and metabolic disturbances in rats with PCOS are improved.

However, it’s important to note that SCFAs primarily come from plant-based foods (Dalile et al., 2019), and moxibustion, as an external thermal stress therapy, may promote the production of SCFAs under heat stress conditions (Wang et al., 2016). Nevertheless, further research is imperative to elucidate the precise mechanisms by which moxibustion affects the gut microbiota-metabolism in PCOS rats.




5 Conclusion

Our research indicates that moxibustion can facilitate the restoration of ovarian dysfunction, improve insulin resistance-related markers, influence the abundance of UCG-005, Turicibacter, and Desulfovibrio, and promote elevated levels of short-chain fatty acids (acetic acid, propionic acid, and butyric acid) associated with gut microbiota.
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Background

Ulcerative colitis (UC) is a multifactorial chronic inflammatory bowel disease (IBD) that affects the large intestine with superficial mucosal inflammation. A dysbiotic gut microbial profile has been associated with UC. Our study aimed to characterize the UC gut bacterial, fungal, and metabolic fingerprints by omic approaches.





Methods

The 16S rRNA- and ITS2-based metataxonomics and gas chromatography–mass spectrometry/solid phase microextraction (GC–MS/SPME) metabolomic analysis were performed on stool samples of 53 UC patients and 37 healthy subjects (CTRL). Univariate and multivariate approaches were applied to separated and integrated omic data, to define microbiota, mycobiota, and metabolic signatures in UC. The interaction between gut bacteria and fungi was investigated by network analysis.





Results

In the UC cohort, we reported the increase of Streptococcus, Bifidobacterium, Enterobacteriaceae, TM7-3, Granulicatella, Peptostreptococcus, Lactobacillus, Veillonella, Enterococcus, Peptoniphilus, Gemellaceae, and phenylethyl alcohol; and we also reported the decrease of Akkermansia; Ruminococcaceae; Ruminococcus; Gemmiger; Methanobrevibacter; Oscillospira; Coprococus; Christensenellaceae; Clavispora; Vishniacozyma; Quambalaria; hexadecane; cyclopentadecane; 5-hepten-2-ol, 6 methyl; 3-carene; caryophyllene; p-Cresol; 2-butenal; indole, 3-methyl-; 6-methyl-3,5-heptadiene-2-one; 5-octadecene; and 5-hepten-2-one, 6 methyl. The integration of the multi-omic data confirmed the presence of a distinctive bacterial, fungal, and metabolic fingerprint in UC gut microbiota. Moreover, the network analysis highlighted bacterial and fungal synergistic and/or divergent interkingdom interactions.





Conclusion

In this study, we identified intestinal bacterial, fungal, and metabolic UC-associated biomarkers. Furthermore, evidence on the relationships between bacterial and fungal ecosystems provides a comprehensive perspective on intestinal dysbiosis and ecological interactions between microorganisms in the framework of UC.





Keywords: inflammatory bowel disease, ulcerative colitis, dysbiosis, gut microbiota, gut metabolism, intestinal biomarkers, multi-omic integrated approaches




1 Introduction

The human gut microbiota, mycobiota, metabolome, and their interactions contribute to gastrointestinal (GI) health and immune system homeostasis (Strati et al., 2021). An alteration in the composition or function of the intestinal microbiota establishes a dysbiotic state of the gut (Sovran et al., 2018; Lee et al., 2022), which is associated with several human diseases, including inflammatory bowel diseases (IBDs) (Lee et al., 2022).

IBDs are multifactorial diseases whose etiopathogenesis resulted from the complex interactions among immune system dysregulation, genetic and environmental factors, and intestinal homeostasis disorders (Wijmenga, 2005; Knights et al., 2014). Based on disease manifestation, IBD is classified into two major subtypes: ulcerative colitis (UC) and Crohn’s disease (CD) (Xavier and Podolsky, 2007). In particular, UC, the most common form of IBD, affects the large intestine (colon and rectum) with mucosal inflammation that can lead to complications (i.e., ulceration, severe bleeding, toxic megacolon, and fulminant colitis) (Chang, 2020). UC is associated with several risk genic loci (Anderson et al., 2011) involved in epithelial barrier dysfunction, apoptosis and autophagy, and transcriptional and adaptive immune dysregulation (Danese and Fiocchi, 2011). CD results in transmural ulceration of any portion of the GI, most often affecting the terminal ileum and colon (Xavier and Podolsky, 2007).

Both CD and UC are characterized by chronic inflammation of the GI tract, caused by an abnormal immune response to a dysbiotic gut microbiota marked by an overgrowth of harmful bacteria and concomitant depletion of beneficial members (McDowell et al., 2023). This dysbiotic condition plays a pivotal role in the triggering and maintenance of intestinal inflammatory processes in these diseases (Bryan et al., 2016; Zheng and Wen, 2021; Wiredu Ocansey et al., 2023).

Moreover, it is noteworthy to consider the effects of the changes in the composition of intestinal mycobiota in these patients. Some studies have reported low levels of Saccharomyces cerevisiae and high levels of Candida albicans in UC patients compared with healthy subjects (Sokol et al., 2017; Imai et al., 2019; Chen et al., 2022). Furthermore, the Basidiomycota/Ascomycota ratio was high in UC patients during flares but normal in remission, suggesting their involvement in the inflammatory processes (Sokol et al., 2017; Imai et al., 2019; Chen et al., 2022).

As a result of microbiota and mycobiota dysbiosis, broad changes in gut microbial metabolism have been reported in IBD patients with dysbiosis (Heinken et al., 2021). For example, alterations in fecal bile acids (BAs) and in inflammatory responses have been demonstrated in UC patients as a result of the dysregulation of the gut microbiota (Gallagher et al., 2021; Sultan et al., 2021; Yang et al., 2021). Furthermore, the increase of fecal amino acids in UC has been correlated with intestinal dysbiosis and malabsorption caused by persistent intestinal inflammation (Marchesi et al., 2007).

There are several studies that have dealt with defining the role of the intestinal microbiota in IBDs with single omics approaches, while there are still few integrated omics studies that offer a holistic point of view on this topic.

The purpose of this study was to define the gut bacterial, fungal, and metabolomic profiles of UC patients, by an innovative and complete biocomputational approach. Moreover, by the integration of these omic profiles, we targeted the identification of disease-associated biomarkers. Finally, by the ecological interkingdom connection study, we aimed to establish synergistic and/or divergent interactions between bacteria and fungi and their role in intestinal dysbiosis.




2 Materials and methods



2.1 Patients and samples

In this study, patients in the active stage of UC, according to the Mayo clinical score, were enrolled at the Internal Medicine and Gastroenterology Division at Fondazione Policlinico Universitario “A. Gemelli” IRCCS Hospital.

The inclusion criteria were as follows: diagnosis of UC, mild to moderate active disease (Mayo clinical score, MCS ≤4) or moderate to severe active disease >4, naive to biologic therapies or having failed no more than one line of biologic treatment, and candidate to second-generation therapies. The exclusion criteria were the presence of infectious, ischemic, and actinic colitis or other significant comorbidities.

Healthy subjects, selected for gender and age matching with UC patients, were enrolled at the Human Microbiome Unit of Bambino Gesù Children’s Hospital in Rome, during an epidemiological survey. Subjects with a family history of autoimmune or IBD diseases, with gastrointestinal diseases, and using either antibiotics or pre-/probiotics in the previous 2 months from enrollment were excluded. Fecal samples were collected and stored to generate a reference sample biobank of healthy subjects (BBMRI Human Microbiome Biobank, OPBG).

This study was approved by the Ethics Committee of Fondazione Policlinico Universitario “A. Gemelli” IRCCS Hospital (Protocol 25062019 n.884) and of Bambino Gesù Children’s Hospital, IRCCS (healthy subjects: No. 1113_OPBG_2016), and was conducted in accordance with the Principles of Good Clinical Practice and the Declaration of Helsinki. All participants provided written informed consent for participation in this study.




2.2 16S rRNA and ITS2 loci sequencing

For bacterial metagenomic analysis, 200 mg of stools were submitted to DNA extraction by QIAmp Fast DNA Stool mini kit (Qiagen, Germany), according to the manufacturer’s instructions.

A 16S rRNA gene fragment, comprising the V3 and V4 hypervariable regions, was amplified using primers reported in the MiSeq rRNA Amplicon Sequencing protocol (Illumina, San Diego, CA, USA).

The approach used for fungal metagenomic analysis started with the lysis step obtained by the incubation of 200 mg of stools resuspended in 500 μl of lysis solution (50 mM of Tris [pH 7.5], 10 mM of EDTA, 28 mM of 2-mercaptoethanol, 10 U/ml of lyticase) (Merck KGaA, Darmstadt, Germany) at 37°C for 30 min in agitation at 850 rpm. After the lysis step, DNA extraction was obtained as described above.

The ITS2 region of approximately 350 bp was amplified using the primers ITS2 5′-GTGARTCATCGAATCTTT-3′ and 5′-GATATGCTTAAGTTCAGCGGGT-3′ (Lemoinne et al., 2020; Del Chierico et al., 2024) under the following conditions: 94°C for 2 min, 35 cycles of 15 s at 94°C, 52°C for 30 s, and 72°C for 45 s. The PCR products were purified using AMPure XP Beads (Beckman Coulters, Brea, CA, USA). A second step of PCR was performed with Illumina-adapted ITS2 primers: 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGARTCATCGAATCTTT-3′ and 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATATGCTTAAGTTCAGCGGGT-3′, following the previously reported PCR conditions applied for 15 cycles.

After a second step of DNA purification, an amplicon PCR indexing step was performed (Nextera XT Index Kit, Illumina) (Del Chierico et al., 2024).

Both bacterial and fungal final libraries were quantified by Quant-iT™ PicoGreen® dsDNA assay kit (Thermo Fisher Scientific, Waltham, MA, USA), pooled, and sequenced on an Illumina MiSeq™ platform, according to the manufacturer’s specifications. For all amplification steps, negative and positive controls were used to exclude eventual internal and external contaminations for both 16S rRNA and ITS2 sequencing approaches.

All raw sequencing reads are available at the NCBI BioProject database (PRJNA996768 and PRJNA996917) (https://submit.ncbi.nlm.nih.gov/subs/sra/).




2.3 16S rRNA and ITS2 data analyses

Bioinformatics analysis was performed by QIIME2 v.2022.2 software (Bolyen et al., 2019), using DADA2 (Callahan et al., 2016) plugin for quality check, trimming of forward and reverse fastq files, denoising, chimera filtering, and merging reads. The representative sequences of each amplicon sequence variant (ASV) produced with a cutoff of 99% similarity were annotated by using a naive Bayes classifier against the Greengenes reference database (v13.8, http://www.greengenes.secondgenome.com) (DeSantis et al., 2006) for bacteria and the UNITE ITS dynamic database (v9.0, https://unite.ut.ee) (Nilsson et al., 2019) for fungi.

Statistical analyses were performed with R software v4.0.4. For α- and β-diversity analyses, rarefaction was applied on the feature table with absolute frequency, filtering out 16,140 and 2,870 ASVs for 16S and ITS2, respectively. Statistical analyses on α-diversity indices were performed using the non-parametric Mann–Whitney and Kruskal–Wallis tests. The PERMANOVA test was applied to β-diversity matrices. For further analyses, a raw feature table was normalized with the cumulative sum scaling (CSS) method (Paulson et al., 2013).




2.4 Metabolomic profiling determination

To characterize and quantify volatile organic compounds (VOCs), 119 stool samples were analyzed with gas chromatography (GC) combined with mass spectrometry (MS) coupled with solid-phase microextraction (SPME) (Douny et al., 2019). The carboxen-polydimethylsiloxane-coated fiber (CAR-PDMS) (85 μm) and the manual solid-phase microextraction (SPME) (Supelco Inc., Bellefonte, PA, USA) were exposed to each sample, for 45 min. The latter was then inserted into the GC injection port for the desorption phase of the samples for 10 min, and GC–MS analyses were carried out using the Agilent Technologies 7890B GC coupled to a 5977A mass selective detector by operating in electron impact mode, equipped with an Agilent DB-HeavyWaX (60 m length, 0.25 mm ID, 0.25 µm) capillary column. All processes were performed under the same conditions reported by Vernocchi et al. (2020).

A match probability of 80%, or greater, was used for VOC identification followed by manual visual inspection of the fragment patterns when necessary. Furthermore, 4-methyl-2-pentanol (final concentration, 400 ppm) was used as an internal standard (IS) in all analyses to quantify the compounds via interpolation of the relative areas in comparison to the IS area (expressed as mg/kg).

VOCs were identified by using a two-step process: the peak spectrum was tested against the NIST (NIST version 2005, NIST 14MS database; National Institute of Standards and Technology, Rockville, MD, USA) mass spectral library database and literature (Garner et al., 2007), and thereafter, in case further confirmation is needed for the NIST identification, it was confirmed by comparing the retention times of the peaks of interest vs. retention times obtained for the reference standards.




2.5 Statistical analysis and omic data integration

ASVs (bacteria: present less than 25% of THE total samples and with relative abundance <0.01; fungi: present less than 25% of the total samples) and metabolites (present less than 10% of the total samples) were filtered out.

Metadata distribution was analyzed by the Shapiro–Wilk test. Gender, age, and clinical features (i.e., corticosteroid therapy, previous therapy, and failure to previous therapies) were evaluated as confounding factors by microbiomeMarker v1.6.0 R package. Age was tested further with the PERMANOVA test by adonis2 function of Vegan v2.6 R package and by linear discriminant analysis (LDA) effect size (LEfSe) (Segata et al., 2011) to exclude it as a confounding factor.

To evaluate the differences in the microbiota, mycobiota, and metabolic profiles between the control (CTRL) and UC patient groups, univariate and multivariate approaches have been applied: linear discriminant analysis effect size, principal component analysis (PCA), and partial least squares-discriminant analysis (PLS-DA). Bacteria function profile was predicted with the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States of Correlation 2 (PICRUSt2) software (Douglas et al., 2020) on 16S rRNA metagenomic data. The p-values were corrected by the Benjamini and Hochberg method to control the false discovery rate (FDR). In all statistical analyses, differences with an adjusted p-value <0.05 were considered significant.

Correlation networks between bacterial and fungal communities were built using Spearman’s correlation by means of the graph and corrr R packages (v1.74.0 and v0.4.4, respectively).

PCA was applied to bacterial, fungal, and metabolite matrices. Then, differential -omic features were screened using variable importance in the projection (VIP) values >1 of the first two principal components of the PLS-DA model and compared with those obtained by differential log fold change of univariate analysis by the Mann–Whitney U test.

The integration of multiple omic data was performed with multivariate approaches: unsupervised ComDim (Common Dimension) multiblock method (Qannari et al., 2000), unsupervised multiblock principal component analysis (MBPCA) (Tchandao Mangamana et al., 2019), and supervised multiblock partial least squares-discriminant analysis (MBPLS-DA) (Brandolini-Bunlon et al., 2019). Each omic matrix (data blocks) was normalized with Frobenius’s method, to harmonize concentration values of metabolites with the relative abundance of microorganisms (Curtasu et al., 2020). Finally, all matrices were joined into a final unique matrix to perform multivariate analyses. MBPLS-DA was validated with the area under the receiver operating characteristic (AUROC) curve, RMSE, Q2, and R2 values.





3 Results



3.1 Characteristics of the overall cohort

In this observational study, 53 patients with UC and 37 healthy subjects (CTRL) were enrolled. The cohort characteristics are reported in Table 1.

Table 1 | Characteristics of the UC and CTRL groups.


[image: Table comparing characteristics between UC and CTRL groups. UC: 53 participants, CTRL: 37 participants. Gender: UC has 47.2% male, 52.8% female; CTRL has 46% male, 54% female. UC mean age is 40.47 years, CTRL is 50.70 years. UC disease duration mean is 8.83 years. Clinical features for UC: 77.3% received corticosteroid therapy, 39.6% had previous therapy, 33.9% failed previous therapies. CTRL group has no data for disease duration or clinical features. SD denotes standard deviation.]



3.2 Gut microbiota was independent from gender, age, and clinical characteristics

By metataxonomic analysis of fecal samples, we obtained 10,729 bacterial and 1,484 fungal ASVs.

We tested gender, age, and some clinical variables as confounding factors in our analyses. No differences in gut microbiota taxa and metabolite distribution were observed for gender, corticosteroid therapy, previous therapy, and failure of previous therapy (Supplementary Table 1). On the contrary, age resulted as a confounding factor for gut microbiota analysis (p-value = 0.032). Then, we performed the beta-diversity analysis on the microbial, fungal, and metabolic variables of subjects grouped by median age (46 years) by the Bray–Curtis algorithm. The PERMANOVA test applied to the dissimilarity matrix showed no statistical significance between the two groups (p-value > 0.05) (Supplementary Figure 1). This result was also confirmed by the LEfSe univariate analysis that revealed no differences in bacterial, fungal, and metabolomic distribution by median age (FDR > 0.05) (Supplementary Table 2).




3.3 Gut bacterial and fungal dysbiosis in UC

Comparing UC and CTRL, the α-diversity analysis, calculated on the bacterial composition, revealed no statistically significant differences between UC and CTRL (Supplementary Figure 2A), while a significant decrease of the Shannon–Wiener index, calculated on the fungal dataset, was found (p-value = 0.01) (Supplementary Figure 2B).

The β-diversity analysis based on the Bray–Curtis algorithm revealed two distinct clusters for UC and CTRL (PERMANOVA p-value < 0.05) (Supplementary Figures 2C, D) and an increase of intragroup distance in UC than in CTRL (p-value = 0.0001), for both bacterial and fungal ecosystems (Supplementary Figures 2E, F).

To investigate the differences in gut microbiota and mycobiota composition between UC and CTRL, we applied multivariate and univariate approaches (Figure 1).

[image: Two comparative microbiota analyses illustrating gut microbiota and gut mycobiota.   Left panel:  A shows a PCA plot with two clusters labeled CTRL and UC, highlighting bacterial genera like Bacteroides and Akkermansia.  B is a scatter plot with CTRL and UC groups.  C is a bar chart of loadings for bacterial genera, emphasizing differences between groups.  D is an LDA plot showing differential abundance of bacterial genera.  Right panel:  E displays a PCA plot with yeast genera like Saccharomyces and Candida for CTRL and UC.  F is a similar scatter plot.  G presents loadings of yeast genera.  H shows an LDA plot for yeast genera differentiation. Both panels use blue and orange to distinguish CTRL and UC.]
Figure 1 | Compositional analysis at the genus level of UC and CTRL gut microbiota (left panel) and mycobiota (right panel). Unsupervised multivariate analysis [principal component analysis (PCA) plot] (A, E); supervised multivariate analysis plot [partial least squares-discriminant analysis (PLS-DA)] (B, F) and loading variables plot (filtered for VIP > 1 and for fungi, for loading coefficient > 0.1) (C, G). Bacterial PLS-DA is characterized by root mean square error (RMSE) = 0.336, R2 value = 0.544, and Q2 = 0.418. Fungal PLS-DA is characterized by RMSE = 0.226, R2 = 0.761, and Q2 value = 0.168. LDA plots on LEfSe univariate analysis (D, H). Bacterial taxa enriched in UC patients have negative LDA scores (orange), while bacterial and fungal taxa enriched in CTRL have positive scores (blue).

By the fusion of these results, we assigned Streptococcus, Bifidobacterium, Enterobacteriaceae, TM7-3, Granulicatella, Peptostreptococcus, Lactobacillus, Veillonella, Enterococcus, Peptoniphilus, and Gemellaceae to UC and Akkermansia, Ruminococcaceae, Ruminococcus, Gemmiger, Methanobrevibacter, Oscillospira, Coprococus, and Christensenellaceae to CTRL gut microbiota (Figures 1A–D).

For fungi, PCA identified Didymellaceae, Saccharomycetales, Malassezia, Wickerhamomyces, Cutaneotrichosporon, Saccharomyces, Clavispora, Alternaria, and Candida as major fungal markers (Figure 1E). PLS-DA analysis revealed the distinctive fecal fungal markers associated with UC (Figures 1F, G). Univariate analysis showed a predominance of fungal markers such as Clavispora, Vishniacozyma, and Quambalaria in the CTRL group compared to the UC group, confirming a remarkable difference in the fecal mycobiota between the two groups (Figure 1H).

The area under the ROC curve (AUROC) was 0.9393 for bacteria and 0.9951 for fungi, indicating that the applied models have high accuracy in group classifications (Supplementary Figures 3, 4, respectively).

The global composition of the gut microbiota of the study cohorts, represented by the distribution of the ASVs at the phylum, family, and genus levels, is shown in Supplementary Figure 5. Compared with healthy subjects, the following bacterial markers were more representative in the microbiota of UC patients: Actinobacteria, Proteobacteria, and Bacteroidetes at the phylum level (Supplementary Figure 5A); Ruminococcaceae, Enterobacteriaceae, Bifidobacteriaceae, and Streptococcaceae at the family level (Supplementary Figure 5B); and Streptococcus, Faecalibacterium, Bifidobacterium, and Bacteroides at the genus level (Supplementary Figure 5C). Furthermore, the fungi Ascomycota, Chytridiomycota (Supplementary Figure 5D), Saccharomycetaceae, Pleosporaceae, Didymellaceae (Supplementary Figure 5E), and Saccharomyces, Malassezia, and Alternaria (Supplementary Figure 5F) were the main components of the gut mycobiota in UC patients.

To assess the microbial metabolic pathways, inferred by 16S rRNA sequences, we performed the prediction of pathways of the two cohorts, shown in the LDA plot (Supplementary Figure 6). Twenty pathways, belonging to nine defined metabolic classes and one undefined one, have been associated with the UC profile. Of these, the following pathways were increased in UC: amino acid biosynthesis, aspartate superpathway, carbohydrate degradation, enzyme cofactor biosynthesis, fermentation to lactate, fermentation to lactate/acetate, generation of precursor metabolites and energy, generation of precursor metabolites and energy, purine nucleotide biosynthesis, purine nucleotide de-novo biosynthesis, and terpenoid biosynthesis.




3.4 Bacterial and fungal interkingdom interactions

To gain insight into the relationship between taxa from different kingdoms and to gain a more comprehensive understanding of the microbial ecosystems, we applied the interkingdom correlation network analyses to the bacterial and fungal profiles in both cohorts (Figures 2A, B).

[image: Network plots comparing microbial correlations. Panel A titled "UC" shows relationships with bacteria and fungi, indicated by orange and blue nodes, respectively. Panel B titled "CTRL" displays similar relationships but is more complex with additional connections. Positive correlations are shown in green lines and negative correlations in red lines.]
Figure 2 | Bacterial and fungal interkingdom correlation network in UC (A) and CTRL (B). Each node represents bacteria (orange circles) and fungi (blue circles). Green and red edges indicate positive and negative correlation values, respectively. Only correlations statistically significant (p-value < 0.05) are reported.

The UC cohort network was characterized by eight nodes connected by five edges, a relative connectedness of 0.625, and an average number of neighbors of 2.25 (Figure 2A). The CTRL cohort network was characterized by 63 nodes connected by 82 edges, a relative connectedness of 1.30, and an average number of neighbors of 3.6 (Figure 2B). All significant correlations between bacteria and fungi are listed in Supplementary Table 3.




3.5 Distinctive metabolome in UC

We identified 95 filtered molecules by the metabolomic analysis of fecal samples. PCA analysis revealed the presence of two distinct metabolic profiles in UC patients and CTRLs, consisting mainly of 24 metabolic markers (Figure 3A).

[image: Image consisting of four panels: Panel A displays a principal component analysis (PCA) biplot differentiating CTRL (blue circles) from UC (orange triangles) based on component scores. Panel B illustrates a scatter plot with ellipses for CTRL and UC, showing variance distribution. Panel C is a bar chart of loadings for chemical compounds, with phenylethyl alcohol highlighted for UC. Panel D presents a bar chart of log2 fold changes for various compounds, showing significant differences, where CTRL is blue and UC is orange.]
Figure 3 | Multivariate and univariate analyses on metabolic profiles of UC and CTRL. The biplot shows the first 24 loadings predicted by PCA analysis (A). The second biplot shows the sample clustering calculated with PLS-DA analysis [blue dots (CTRL) and orange triangles (UC)] (B). The barplot describes the value of loadings in each group, which are calculated by PLS-DA analysis and filtered for loading coefficient >0.1 and VIP value >1 (C). Root mean square error (RMSE) = 0.329, R2 = 0.526, and Q2 value = 0.382. Univariate plot based on log2 fold change values (D). The Mann–Whitney test confirms that phenylethyl alcohol is increased in the UC group.

The PLS-DA analysis showed a low RMSE value (0.329), indicating a high accuracy of the model in predicting the subject classification and highlighting more molecules associated with CTRLs with UC (Figures 3B, C). The VIP features are shown in Supplementary Figure 7A, and the AUROC was 0.9944 (Supplementary Figure 7B). Finally, the univariate analysis confirmed the results reported by the multivariate approaches (Figure 3D). The combination of multivariate and univariate test results highlighted the increase of phenylethyl alcohol and the decrease of cyclopentadecane; 5-octadecene; 5-hepten-2-ol, 6 methyl; 6-methyl-3,5-heptadiene-2-one; hexadecane; 2-butenal; caryophyllene; indole, 3-methyl-; 3-carene; p-Cresol; and 5-hepten-2-one, 6-methyl- in UC.




3.6 Different integrative multi-omic approaches confirm the presence of a typical shape and function of UC gut microbiota

To reduce the complexity of these multi-omic results, we finally applied three integrative multi-omic approaches to the three omic datasets. The first two were predictive analyses, based on an unsupervised MBPCA and a supervised MBPLS-DA, able to predict discriminant variables (loadings), maintaining multi-omic data separated. The third one was an exploratory approach, carried out by multivariate unsupervised ComDim, in which the three omic matrices were integrated before the analysis. As reported in Figure 4A, the MBPCA identified two distinct gut bacterial, fungal, and metabolic profiles in UC and CTRL.
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Figure 4 | Integrated multi-omic analyses confirm the presence of a typical shape and function of UC gut microbiota. Multiblock principal component analysis (MBPCA) plot (A), loadings plot (filtered for loading coefficient > 0.1) (B), and multiblock partial least squares-discriminant analysis (MBPLS-DA) plot (C). Root mean square error (RMSE) = 0.128, R2 = 0.935, and Q2 value = 0.567. VIP values are reported on the horizontal axis (D). ROC analysis of the MBPLS-DA model (E). The value of AUROC = 0.9947 indicates a high accuracy of the prediction model.

The MBPLS-DA analyses identified loadings for each sample set (Figures 4B, C). Regarding UC, the MBPLS-DA revealed an increase of Bifidobacterium; Streptococcus; TM7-3; 1-hexanol, 2-ethyl-; phenol; benzaldehyde; methyl isobutyl ketone; and 2-heptanone, 4-methyl.

In CTRL, we found the increase of Akkermansia; Gemmiger; Coprococcus; Ruminococcaceae; Christensenellaceae; Clavispora; Vishniacozyma; cyclopentadecane; 3-carene; 1-tridecene; hexadecane; indole, 3-methyl; hexanoic acid ethyl ester; caryophyllene; alpha-pinene; anethole; 2-butenal; p-Cresol; pentadecanal; 2-tetradecene; and 1-heptanol. The RMSE and R2 values were 0.128 and 0.935, respectively, indicating a high performance of this model. The bar plot of VIPs from MBPLS-DA is shown in Figure 4D. The ROC analysis (Figure 4E) revealed an AUROC value of 0.9947, indicating a high accuracy of the prediction model.

The application of the ComDim analysis on the three omic matrices integrated confirmed the presence of two distinct UC and CTRL profiles, characterized by bacterial, fungal, and metabolic markers (Figures 5A, B).
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Figure 5 | Bacterial, fungal, and metabolic markers in UC and CTRLs. Biplots show the result of ComDim analysis. Teal circles represent the UC patients and red circles represent CTRL subjects (A). Bacterial, fungal, and metabolic markers are labeled in red, green, and blue, respectively (B).





4 Discussion

While several studies have investigated the gut microbiota composition in the UC context analyzing omic datasets singularly, we aimed to elucidate, for the first time, the gut bacterial, fungal, and metabolomic profiles of UC patients with innovative biocomputational approaches based on multivariate models applied on separated and integrated omic datasets. With this statistical design, we were able to show a string and well-defined gut microbial and metabolomic fingerprint in UC condition.

Before exploring the gut microbiota composition between UC and CTRL, we excluded age, gender, corticosteroid therapy, previous therapy, and failure to previous therapies as confounders of our analyses.

Consistent with the scientific literature that reports a dysbiotic profile of UC patients with lower gut ecology than CTRL (Xu et al., 2022; Zuo et al., 2022), our results showed a lower UC fungal α-diversity than CTRL, indicating a lower richness and evenness of fungal ecology. This finding was confirmed by the results of the network analysis, in which the UC gut microbiota showed less complexity than those of the CTRL, with a reduced number of intra- and interconnections between bacteria and fungi, probably due to the proinflammatory UC gut microenvironment affecting the microbes and vice versa.

By the combination of multivariate and univariate test results, we showed in UC gut microbiota the increase of Streptococcus, Bifidobacterium, Enterobacteriaceae, TM7-3, Granulicatella, Peptostreptococcus, Lactobacillus, Veillonella, Enterococcus, Peptoniphilus, and Gemellaceae and the decrease of Akkermansia, Ruminococcaceae, Ruminococcus, Gemmiger, Methanobrevibacter, Oscillospira, Coprococus, and Christensenellaceae. These results agree with other studies describing the composition of the gut microbiota in IBD and specifically in UC, reinforcing the evidence that bacterial intestinal dysbiosis is a strong signature of this disease. Today, microbial biomarkers are proposed for monitoring and evaluating disease activity, predicting recurrence or response to treatment, and treating diseases (Guo et al., 2022; Zheng et al., 2022; Huang et al., 2023).

There is increasing evidence of the relevance of fungal dysbiosis in the pathogenesis of IBD (Sokol et al., 2017; Gu et al., 2019; Balderramo et al., 2023). Fungi can exert direct proinflammatory effects or modify the bacterial composition via interkingdom, opening the possibility of modulating fungal microbiota as a therapeutic approach (Sokol et al., 2017).

In our study, we showed a decrease in Clavispora, Vishniacozyma, and Quambalaria in the CTRL group with UC. Clavispora, a member of the Saccharomyces genus, exerts a positive effect on the gut by the production of the anti-inflammatory interleukin (IL)-10 (Meng et al., 2022). Moreover, Clavispora and Vishniacozyma were negatively correlated with Sutterella in CTRL, suggesting a negative effect of these two fungi on Sutterella growth. Low levels of Sutterella in the gut microbiota have been associated with gut immune homeostasis and high levels of IgA, which protect the gut against pathobiont invasion (Kaakoush, 2020). Interestingly, in our study, the UC gut microbiota was enriched with Sutterella. This microorganism seems capable of degrading IgA molecules, activating the pattern recognition receptors (PRRs), and producing IL-8, creating a pathological gut microenvironment (Kaakoush, 2020). Furthermore, in the CTRL network, Sutterella was also negatively correlated with Rhizophydium. We can speculate that fungi could either directly or indirectly reduce Sutterella levels, indicating their possible use as probiotics to modulate the presence of bacterial pathobionts in the intestine. Another evidence supporting the influence of fungi on pathobiont increase was represented by the positive correlation between Rhizophydium and Haemophilus in the UC network. The last, together with Veillonella, is known to be associated with disease progression and clinical severity in UC (Basha et al., 2023). Moreover, in our UC cohort, Cryptococcus and Prevotella were positively correlated, reinforcing the evidence that Cryptococcus neoformans and Prevotella could contribute to intestinal dysbiosis (Li et al., 2023a). In particular, the genus Prevotella, already identified as a UC biomarker (Zois et al., 2010), exhibits enhanced proinflammatory properties, releasing inflammatory mediators and promoting mucosal Th17 immune responses and neutrophil recruitment (Larsen, 2017). In fact, Prevotella produces mucin-degrading sulfatases (Wright et al., 2000) and contributes to chronic inflammation by altering the barrier function of epithelial cells in active UC (Tsai et al., 1992, Tsai et al., 1995; Lucke et al., 2006), affecting disease outcomes (Larsen, 2017).

In IBD patients, high levels of fungi with potential proinflammatory effects such as Candida and Malassezia and low levels of fungi with anti-inflammatory effects such as Saccharomyces were reported (Krawczyk et al., 2023). In our study, Saccharomyces was effectively present in the CTRL network and positively correlated with Parabacteroides. Regarding Malassezia, it was present in both networks and was positively correlated with Acinetobacter, which is a known IBD biomarker (Yang et al., 2021). Malassezia is a lipid-dependent opportunistic basidiomycetous yeast that is capable of epithelial barrier disruption, inflammatory factor accumulation, and proinflammatory cytokine production (Nelson et al., 2021; Balderramo et al., 2023).

These findings suggest that the interaction between gut bacteria and gut fungi is important in the pathology of UC in particular and of IBD in general. However, whether it is bacterial dysbiosis that favors fungal growth or whether it is the expansion of fungal populations that leads to bacterial dysbiosis remains to be fully elucidated.

In terms of metabolic fingerprint, through the combination of multivariate and univariate test results, we showed the increase of phenylethyl alcohol and the decrease of cyclopentadecane; 5-octadecene; 5-hepten-2-ol, 6 methyl; 6-methyl-3,5-heptadiene-2-one; hexadecane; 2-butenal; caryophyllene; indole, 3-methyl; 3-carene; p-Cresol; and 5-hepten-2-one, 6 methyl in the UC gut. Phenylethyl alcohol is produced by fungi such as C. albicans (Han et al., 2013) and Saccharomyces (Lu et al., 2023) as well as by bacteria such as Bifidobacterium (Yan et al., 2022). Interestingly, our results showed high levels of phenylethyl alcohol and its producers in UC. Among the metabolites higher in the CTRL, p-Cresol is a methyl phenol produced via microbial degradation of tyrosine and other aromatic amino acids (Hinai et al., 2019). In our study, we observed that pathways involved in the biosynthesis of aromatic amino acids, such as tyrosine and phenylalanine, were more enriched in the gut microbiota of UC patients than CTRLs, suggesting a negative correlation between the production of p-Cresol and the aromatic amino acid biosynthesis in the gut microbiota of UC patients. However, p-Cresol was also suggested as a biomarker of protein intake (Patel et al., 2012). Surprisingly, indole, 3-methyl-, which is a metabolic product of bacterial tryptophan (Trp) metabolism and is involved in gut dysbiosis, was found to be more abundant in the gut microbiota of CTRLs than in UC patients. However, the occurrence of indole, 3-methyl- in the gut depends on many factors, such as the high intake of Trp-containing proteins, polyphenols, and dietary fiber (Zgarbová and Vrzal, 2023). The combination of polyphenol and fiber fermentation in the colon contributes to a reduction in bacterial populations and an increase in the production of harmful metabolites, including indole, 3-methyl- (Zgarbová and Vrzal, 2023). Furthermore, caryophyllene was also observed to be more abundant in the gut microbiota of CTRLs, and it has been reported in a recent paper as a metabolite with potential benefits in anti-inflammatory responses (Li et al., 2023b). High levels of enones (i.e., 5-hepten-2-ol, 6-methyl-; 6-methyl-3,5-heptadiene-2-one; and 5-hepten-2-one, 6-methyl-) may be related to the host dietary habits rather than specific bacterial metabolism (Escobar Rodríguez et al., 2021). Among the metabolites higher in the CTRL, 3-carene shows anti-inflammatory properties, by slowing down bacterial growth and leading to bacterial metabolic dysfunction and cell membrane disruption (Shu et al., 2019; Wang et al., 2022). In addition, we observed new metabolites that were decreased in the gut microbiota of UC patients, such as cyclopentadecane, 5-octadecene, hexadecane, and 2-butenal, which have not been previously reported in IBD.

Finally, given the high complexity of our large-scale omic datasets, we applied different integrated biostatistical approaches that allowed data dimension reduction, sample clustering, and the association among variables with different numerical scales, useful in UC-associated biomarker prediction. In particular, we applied two unsupervised models (i.e., ComDim and MBPCA) based on an exploratory approach to describe the clustered distribution of UC and CTRL subjects and a supervised model (i.e., MBPLS-DA) to emphasize the most important omic signatures that highlighted the differences between UC and CTRL groups. Compared with the unsupervised models, the MBPLS-DA performed a prediction with prior knowledge of the subjects’ groups and thus showed more clustering of the UC and CTRL groups.

Our results are novel and promising, but there are some limitations in our study. Even if our patient cohort is well homogeneous for clinical features and the CTRL cohort matches for age and gender with patients, the two cohorts were relatively small. Further studies on larger cohorts would undoubtedly reduce the error rate, produce stronger correlations, and validate the compositional and functional gut microbiome profiles characterizing UC.

In conclusion, we are the first to apply both a separate and an integrated omics approach. We have defined a distinctive gut microbiota, mycobiota, and metabolic signature that advances our knowledge of the etiopathogenesis of UC. The multivariate models applied on multi-omic datasets allowed us to have a holistic view of the gut environment in UC. Moreover, we are confident that the proposed statistical approach, based on the coupling of separated and integrated omic datasets, is an innovative way to uncover novel gut microbiota-related biomarkers. Finally, exploiting the gut bacteria and fungi ecological networks provided a comprehensive perspective on intestinal dysbiosis.
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Objective

To investigate the structure, composition, and functions of the gut microbiota in elderly patients with hyperlipidemia.





Methods

Sixteen older patients diagnosed with hyperlipidemia (M group) and 10 healthy, age-matched normal volunteers (N group) were included. These groups were further subdivided by sex into the male normal (NM, n = 5), female normal (NF, n = 5), male hyperlipidemia (MM, n = 8), and female hyperlipidemia (MF, n = 8) subgroups. Stool samples were collected for high-throughput sequencing of 16S rRNA genes. Blood samples were collected for clinical biochemical index testing.





Results

Alpha- and beta-diversity analyses revealed that the structure and composition of the gut microbiota were significantly different between the M and N groups. The relative abundances of Bacteroides, Parabacteroides, Blautia, Peptococcus, and Bifidobacterium were significantly decreased, while those of Lactobacillus, Helicobacter, and Desulfovibrio were significantly higher in the M group. There were also significant sex-related differences in microbial structure between the NM and NF groups, and between the MM and MF groups. Through functional prediction with PICRUSt 2, we observed distinct between-group variations in metabolic pathways associated with the gut microbiota and their impact on the functionality of the nervous system. Pearson’s correlation coefficient was used as a distance metric to build co-abundance networks. A hypergeometric test was used to detect taxonomies with significant enrichment in specific clusters. We speculated that modules with Muribaculaceae and Lachnospiraceae as the core microbes play an important ecological role in the intestinal microbiota of the M group. The relative intestinal abundances of Agathobacter and Faecalibacterium in the M group were positively correlated with serum triglyceride and low-density lipoprotein levels, while the relative abundance of Bifidobacterium was negatively correlated with the serum lipoprotein a level.
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1 Introduction

The prevalence of hyperlipidemia has increased in parallel with the development of the social economy and improvements in living standards (Teramoto et al., 2008). Hyperlipidemia is a medical condition characterized by the abnormal concentration beyond the normal range of one or more types of lipids in the bloodstream and is a result of metabolic disorder (He and Ye, 2020). Abnormal blood lipids affect normal physiological functions, and are closely related to a variety of chronic metabolic diseases (DeBose-Boyd, 2017). They are also considered a main predisposing factor of cardiovascular illnesses, including atherosclerotic disease, coronary heart disease, and myocardial infarction (Wang et al., 2013; Oliveira and Raposo, 2020).

There are about 100 trillion non-pathogenic microorganisms in the human intestine. The number of microorganisms per gram of colon contents can reach 1012 (Kim and Jazwinski, 2018). The gut microbial population collectively encodes millions of genes, which gives it the ability to modify and regulate the physiological functions of the host. Changes in the gut microbiota have typically been related to age, host genes, lifestyle, and epigenetic changes (Adak and Khan, 2019). There are differences in the gut microbiota of healthy people of different physiological ages. For example, the gut microbiota compositions of infants, adults, and the elderly are different (Milani et al., 2017; Salazar et al., 2017). The diversity of the gut microbiota in stool samples of children is significantly lower than that of adults (Iglesias-Vázquez et al., 2020). Studies have shown that the changes in the gut microbiota significantly with age (O’Toole and Jeffery, 2015).

Chronic metabolic diseases such as hyperlipidemia and hyperglycemia occur mostly in elderly people (Ducharme and Radhamma, 2008). Further research has revealed a close relationship between the gut microbiota and hyperlipidemia. Our previous animal experiments showed that the gut microbiota of mice with diet-induced hyperlipidemia is significantly different from that of normal mice, and that the gut microbiota also affects the metabolism of lipids and bile acids in mice (Chen et al., 2019). Another study found that material energy metabolism, the inflammatory response, and insulin resistance in the host all involve the participation of the gut microbiota (Tosti et al., 2018). Increasingly more scholars have come to believe that there is a correlation between hyperlipidemia and the gut microbiota, and the gut microbiota likely plays a role in the occurrence and development of metabolic diseases such as hyperlipidemia (Busnelli et al., 2018; Huang et al., 2019).

In this study, we used high-throughput sequencing of 16S rRNA genes in the fecal microbiota of elderly patients with hyperlipidemia and healthy elderly volunteers to examine differences in the gut microbiota between the two groups and to identify correlations between the gut microbiota and hyperlipidemia. This study may provide guidance and new ideas for the prevention and clinical treatment of hyperlipidemia.




2 Materials and methods



2.1 Participants

The M group (n = 16) comprised patients who were previously diagnosed with hyperlipidemia (total cholesterol [TC] > 5.7mmo/L) and recruited from the First Affiliated Hospital of Dalian Medical University. The normal (N) group (n = 10) comprised age-matched healthy (TC < 5.2mmol/L) volunteers. The M and N groups were subdivided by sex into the male normal (NM, n = 5), female normal (NF, n = 5), male hyperlipidemia (MM, n = 8), and female hyperlipidemia (MF group, n = 8) groups.

The inclusion criteria were as follows: 1) male or female; 2) meeting diagnostic criteria for hyperlipidemia (M group only) without receiving any lipid-lowering treatment for hyperlipidemia; and 3) body mass index (BMI) within the range of 20–30 kg/m2 for all participants. The exclusion criteria for all participants were as follows: 1) a history of metabolic diseases, including diabetes and thyroid disease; 2) a history of peptic diseases, including intestinal inflammatory ulcers; and 3) use of antibiotics, probiotics, prebiotics, postbiotics, or immunosuppressive agents in the previous 2 months. The study was conducted in accordance with the principles of the Declaration of Helsinki, and the study protocol was approved by the First Affiliated Hospital Ethical Committee of Dalian Medical University (approval number: PJ-KS-KY-2021–90).




2.2 Sample collection and DNA extraction

Blood samples were separated by centrifugation at 3000 rpm at 4°C for 20 min to obtain serum, which was used to measure levels of the following: uric acid (UA), homocysteine (HCY), fasting blood glucose (FBG), alanine aminotransferase(ALT), aspartate aminotransferase (AST), creatinine (Cre), prealbumin (PAB), albumin (ALB), globulin (GLB), total protein (TP), alkaline phosphatase (ALP), γ-glutamyl transpeptidase (γ-GT), total bilirubin (T-BIL), lipoprotein a (LPa), TC, triglycerides (TG), high -density lipoprotein (HDL), and low-density lipoprotein (LDL).

Fresh samples of feces (200 mg) were collected from each participant into a sterile container and immediately stored at −80°C until further processing. The Stool DNA Isolation Kit (Foregene, China) was used to extract genomic DNA from stool samples, in accordance with the manufacturer’s instructions.




2.3 16S rRNA gene amplification and sequencing

The V3-V4 hypervariable variable regions of genomic DNA samples were amplified by polymerase chain reaction (PCR) using primers 338F (5’-ACTCCTACGGGAGGCAGCA-3’) and 806R (5’-GGACTACHVGGGTWTCTAAT-3’). PCR products were subjected to 16S rRNA gene high-throughput sequencing by Shanghai Maggi Biomedical Technology Co., Ltd., using an Illumina MiSeq PE300. The 16S rRNA gene sequences were defined as one operational taxonomic unit (OTU) based on 97% similarity. The abundance-based coverage estimator (ACE) index, observed species (Sobs) index, Shannon diversity index, and Faith’s phylogenetic diversity (PD) were used to reflect the alpha diversity of samples. Principal component analysis (PCA) and principal co-ordinates analysis (PCoA) were used to analyze beta diversity. Linear discriminant analysis (LDA) was used to screen for dominant microbial communities (Huang et al., 2021). Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was applied to predict functional profiles of the gut microbiota resulting from reference-based OTU picking against the Greengenes database. The predicted genes were then summarized by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway categorization. Pearson’s correlation coefficients were calculated using the difference-rich OTU, and network analysis was conducted. Gephi was used for topology analysis and visualization purposes.




2.4 Statistical analysis

All experimental data are presented as the mean ± standard deviation (SD). SPSS version 22 (IBM, USA) was used to analyze and process data. Statistical analysis of KEGG pathway data was performed with STAMP v2.1.3 using Welsh’s t-test (P < 0.05). R software version 3.5.2 was used to analyze bioinformatics results. Graph Pad Prism Version 8 (Graph Pad Software Inc., USA) was used to draw statistical charts. One-way analysis of variance (ANOVA) and Duncan’s multiple range tests were used to analyze statistical data. A P value < 0.05 was considered to indicate statistical significance; *P < 0.05, **P < 0.01, ***P < 0.001.





3 Result



3.1 Basic clinical information and serum biochemical indicators in elderly hyperlipidemia patients and healthy volunteers

Age and BMI were not significantly different between the M and N groups (P > 0.05; Table 1). Serum lipid levels (TC, TG, HDL, LDL, LPa) were significantly higher in the M group than in the N group (P < 0.05; Table 1). There were no significant between-group differences in other serum parameters (UA, HCY, FBG, ALT, AST, Cre, PAB, ALB, GLB, TP, ALP, γ-GT, T-BIL; P > 0.05; Table 1), indicating the comparability between the hyperlipidemia and healthy groups.

Table 1 | Basic clinical information and biochemical indicators of the patient.


[image: Table comparing normal and hyperlipidemia groups. Each group includes 10 males and 16 females. Metrics like BMI, uric acid, glucose, liver enzymes, and lipoproteins are detailed. Significant differences with p-values less than 0.05 include total cholesterol (p < 0.001), triglycerides (p = 0.001), and lipoproteins a and b.]



3.2 Quality evaluation of DNA samples and 16S rRNA gene amplification and sequencing

Fecal DNA samples with a concentration > 50 ng/µL and a purity ratio of A260/A280 > 1.8 were used to prepare libraries and conduct sequencing (Supplementary Table 1). We used the extracted data volume as the abscissa and the Sobs and Shannon index values as the ordinate to draw the rarefaction curve. Curve flatness was used to determine that the amount of sequence data was sufficient. As shown in Supplementary Figure 1, the sparse Sobs and Shannon curves of the M and N groups both tended to be stable, indicating that the depth of the sequencing data was sufficient to cover most of the microbial information.




3.3 Distinctions in relative abundances of gut microbes between elderly hyperlipidemia patients and healthy volunteers

The compositions of the gut microbiota at the phylum and genus levels are shown in Figure 1. There were obvious changes in the gut microbiota in the M group. At the phylum level, the top nine most prevalent phyla are shown in Figure 1A. Firmicutes and Bacteroidetes were the dominant phyla in all samples, followed by Desulfobacterota, Campilobacterota, Actinobacteriota and Deferribacterota. The abundances of Campilobacterota and Deferribacterota were significantly higher in the M group than in the N group (P < 0.0001). In the M group, the abundance of Proteobacteria and Cyanobacteria was significantly decreased (P < 0.0001). At the genus level the relative abundances of Bacteroides (P = 0.001), Parabacteroides (P < 0.0001), Blautia (P < 0.0001), Peptococcus (P < 0.0001), and Bifidobacterium (P < 0.0001) were significantly decreased, whereas those of Lactobacillus (P = 0.004), Helicobacter, and Desulfovibrio (P = 0.004) were significantly increased in the M group compared with those in the N group (Figure 1B).

[image: Panel A shows bar graphs representing the percent community abundance at the phylum level across various samples, with a color-coded legend for different bacterial phyla. A side-by-side comparison of specific phyla proportions and their 95% confidence intervals is also depicted, indicating statistical significance with p-values. Panel B features bar graphs illustrating percent community abundance at the genus level for the same samples, with a detailed color-coded legend for different genera. Below, scatter plots depict the relative abundance of selected genera between two groups, N and M, with significant differences marked.]
Figure 1 | Analysis of the composition of gut microbiota in the N and M group. (A) Microbial distributions of different groups at the phylum level. (B) Microbial distributions of different groups at the genus level. N: normal group (n=10). M: hyperlipidemia group (n=16). **P<0.01, ***P<0.001, ****P<0.001 compared with the normal group.




3.4 Distinctly different patterns of the gut microbial interactions between in elderly hyperlipidemia patients with hyperlipidemia and normal healthy volunteers

Alpha-diversity analyses of the gut microbiota in the N and M groups are shown in Figures 2A–D. The Sobs (P = 0.008) and Shannon (P = 0.047) indices based on Kruskal–Wallis analysis showed that the richness and diversity of the gut microbiota were significantly lower in the M group compared with those in the N group. The ACE index (P = 0.023) and Faith’s PD (P = 0.002) metrics further confirmed this result.

[image: Box plots comparing OTU level indices between groups N (blue) and M (red): (A) Sobs index, (B) Pd index, (C) Shannon index, and (D) Ace index. Significant differences are denoted with asterisks.]
Figure 2 | Alpha diversity of the gut microbiota in the N and M group. (A) Sobs index of OUT level. (B) Pd index of OUT level. (C) Shannon index of OUT level. (D) Ace index of OUT level. N: normal group (n=10). M: hyperlipidemia group (n=16). *P<0.05, **P<0.01, ***P<0.001, compared with the normal group.

Figure 3A illustrates the beta-diversity of the gut microbiota in the two groups as hierarchical cluster trees at the OTU level based on Bray–Curtis dissimilarity (Figure 3A). PCA and PCoA revealed that the microbial structures of the M and N groups were significantly different (Figures 3B, C), supporting the difference in gut microbiota composition between healthy individuals and hyperlipidemia patients shown above. Next, we used LDA of effect size (LEfSe) to further screen for dominant microbial communities between the two groups at the genus level. The results indicated that Lactobacillus was enriched in the M group, whereas Parabacteroides and Lachnospiraceae-NK4A136 were enriched in the N group (Figures 3E, F). Bacterial typing analysis categorized the gut microbiota of the N and M groups into four types (Figure 3D). Coincidentally, when sex was considered as a grouping element, elderly healthy participants and hyperlipidemia patients were divided into four groups.

[image: Cluster of six scientific visualizations related to operational taxonomic units (OTU) analysis. Panel A shows a hierarchical clustering tree. Panel B displays a PCA plot with ellipses indicating group N (blue circles) and group M (red triangles). Panel C presents a PCoA plot with similar group distinctions. Panel D features a scatter plot identifying groups and types with colored ellipses. Panel E depicts a circular phylogenetic tree with group highlights. Panel F contains a LEfSe bar chart comparing LDA scores of group N and group M taxa in red and blue bars, respectively.]
Figure 3 | Analysis of the structure and communities of gut microbiota in the N and M group. (A) The microbial composition with the cluster at the OTU level. (B) Principal component analysis (PCA) with the cluster. (C) Principal co-ordinates analysis (PCoA) with cluster. (D) Bacteria typing analysis. (E) Cladogram. (F) LDA distribution. N: normal group (n=10). M: hyperlipidemia group (n=16).




3.5 Influence of sex differences on gut microbiota characteristics between in elderly hyperlipidemia patients with and hyperlipidemia and normal healthy volunteers

To further investigate the potential impact of sex on the distribution of intestinal microbes, we analyzed the male and female subgroups of elderly healthy volunteers and hyperlipidemia patients (Figure 4). There were significant differences in gut microbial diversity between the male and female subgroups within both the N and M groups, with significant clustering observed on PCA and PCoA. Among the elderly healthy volunteers, the NF subgroup was rich in Parabacteroides, whereas the NM subgroup was rich in Bacteroides. Among the elderly patients with hyperlipidemia, Lachnospiraceae-NK4A136 was enriched in the MF subgroup, whereas Lactobacillus and Alistipes were enriched in the MM subgroup.

[image: Six-panel diagram depicting microbial data analysis. Panel A shows a hierarchical clustering tree on the OTU level. Panel B presents a PCA plot, while Panel C features a PCoA plot, both displaying groupings by color and shape. Panel D provides another PCA plot with ellipses representing group types. Panel E displays a cladogram with color-coded branches. Panel F is a bar chart of LEfSe analysis indicating significant taxonomic differences among groups. Each panel uses colors to represent different groups: NF, NM, MF, and MM.]
Figure 4 | Analysis of the structure and communities of gut microbiota in the NF, NM, MF and MM groups. (A) microbial composition with the cluster at the OTU level. (B) principal component analysis (PCA) with cluster. (C) principal co-ordinates analysis (PCoA) with cluster. (D) bacteria typing analysis. (E) cladogram. (F) LDA distribution. NF group, the female normal group; NM group, the male normal group; MM group, the hyperlipidemia male patient group; MF group, the hyperlipidemia female patient group. NM, male normal group (n=5); NF, female normal group (n=5); MM, the hyperlipidemia male patient group (n=8); MF, hyperlipidemia female patient group (n=8).




3.6 Potential functions and identification of co-abundance networks of OTUs in the two groups

KEGG level 2 functional pathway analysis indicated that the nervous system, amino acid metabolism, biosynthesis of other secondary metabolites, endocrine system, transport and catabolism, excretory system, signaling, and cellular processes were significantly reduced in the M group compared to those in the N group. Conversely, infectious disease (bacterial), genetic information processing, circulatory system, drug resistance (antineoplastic), and aging pathways were significantly increased in the M group compared to those in the N group (Figure 5A).

[image: Bar charts labeled A and B display differences in mean proportions for various biochemical pathways with 95% confidence intervals. Network diagrams labeled C and D illustrate connections between different nodes, showing complex interactions within biological systems.]
Figure 5 | Functional prediction and co-abundance networks. (A) STAMP analysis for the inferred metabolic pathway in level 2. (B) STAMP analysis for the inferred metabolic pathway in level 3. (C) The co-abundance networks of the N group. (D) The co-abundance networks of the M group. N: normal group (n=10). M: hyperlipidemia group (n=16).

At level 3, a total of 51 pathways exhibited significant differences between the two groups. Among the top 10 dominant KEGG pathways, the relative abundances of the glutamatergic synapse, GABAergic synapse, kanamycin and gentamicin biosynthesis, neomycin, the PI3K-Akt signaling pathway, and hepatocellular carcinoma were significantly lower in the M group than in the N group. Conversely, mineral absorption, platinum drug resistance, and the MAPK signaling pathway (plant) displayed significantly higher abundances in the M group than in the N group (Figure 5B).

Functional prediction with PICRUSt 2 revealed distinct variations in metabolic pathways associated with the gut microbiota and their impacts on the functionality of the nervous system between the two groups. Sequence-based characterization, which focuses on how individual taxa within the gut microbiome relate to the host, does not reveal the complex interactions that take place between taxa within microbial communities. Microbes cooperate in networks to provide critical nutrients for each other’s growth and survival. The identification of microbial communities is important for understanding their biological impact on the human body, but is hampered by our inability to culture most microbes. We hypothesized that generating OTU abundance modules from lists of differential OTUs between the two groups would allow us to identify associations with differential changes in function in elderly hyperlipidemia patients.

Figures 5C and D illustrate the more intricate network structure in group M compared to that in the N group, implying reduced stability of the intestinal microbiota in elderly patients with hyperlipidemia. Subsequent examination of the modules revealed that those containing Muribaculaceae and Lachnospiraceae as central microbial species hold significant ecological relevance in elderly patients with hyperlipidemia.




3.7 Correlation between altered gut microbiota and blood lipids in elderly patients with hyperlipidemia

The Spearman’s correlation coefficient was used to assess the relationship between the gut microbiota and blood lipid levels. In the correlation heat map shown in Figure 6, blue represents positive correlations between bacteria and serum parameters, while red represents negative correlations (Figure 6). Specifically, Agathobacter and Faecalibacterium in the intestine of elderly patients with hyperlipidemia were positively correlated with serum TG and LDL levels, while Bifidobacterium was negatively correlated with the serum LPa level (Table 2).

[image: Heatmap showing the correlation between various bacterial genera (e.g., Agathobacter, Faecalibacterium) and lipid profiles (LP a, HDL, TG, TC, LDL). Color gradient ranges from blue (negative correlation) to red (positive correlation). Stars indicate significant correlations. Dendrograms depict clustering patterns among bacterial genera and lipid profiles.]
Figure 6 | Analysis of the correlation between serum lipid parameters and gut microbiota in patients with hyperlipidemia. “0” means no correlation; “0-(0.5)” means positive correlation; “0-(-0.5)” means negative correlation. Data were analyzed by Spearman test. *P<0.05, **P<0.01. LPa, Lipoprotein a; TC, total cholesterol; TG, triglycerides; HDL, High-density lipoprotein; LDL, Low-density lipoprotein.

Table 2 | Correlation between serum lipid parameters and gut microbiota in patients with hyperlipidemia.


[image: Table showing correlations and p-values between various bacteria (Desulfovibrionaceae, Mucispirillum, Agathobacter, Faecalibacterium, Ruminococcus, Bifidobacterium) and serum parameters (TC, TG, HDL, LDL, LPa). Correlation values range from strong negative to weak positive, with p-values indicating statistical significance. Data analyzed by the Spearman test.]




4 Discussion

In recent years, increasingly more studies have shown that the normal gut microbiota is inextricably linked with the metabolism of the body, and may regulate blood lipids (Patterson et al., 2016; Hills et al., 2019; Silva et al., 2020). In this research, we focused on exploring hyperlipidemia-related changes in the gut microbiota of elderly men and women. We found that the relative abundances of Bacteroides, Parabacteroides, Blautia, Peptococcus, and Bifidobacterium in the gut microbiota were significantly reduced, while those of Lactobacillus, Helicobacter, and Desulfovibrio were significantly increased with hyperlipidemia. Similar results have been observed in previous studies of patients with dyslipidemia, reporting varying degrees of changes in gut microbes, including Lactobacillus, Bifidobacterium, Bacteroidetes, Enterococcus, Enterobacteriaceae species, Clostridium, in which the proportion of Lactobacillus was upregulated (Song et al., 2017; Gargari et al., 2018; Jia et al., 2021; Guo et al., 2022).

Under normal circumstances, certain common intestinal bacteria produce cholesterol oxidase to accelerate the degradation of cholesterol, thereby participating in maintaining the normal level of cholesterol in the body. In addition, beneficial bacteria in the intestines, such as Clostridium, Bifidobacterium, Bacteroides, and Enterococcus produce bound bile acid hydrolase, which converts bound bile acid into free bile acid (Cai et al., 2022; Pushpass et al., 2022). However, under conditions of hyperlipidemia, the living environment of the gut microbiota undergoes significant changes, with the low relative abundances of Bifidobacterium and Bacteroides leading to an increase in accumulated cholesterol.

Some studies reporting the effects of lactic acid bacteria and fermented dairy products on blood lipids found that lactic acid bacteria, including Bifidobacteria lower serum cholesterol levels (Schoeler and Caesar, 2019). Most of these bacteria act on TG, TC, HDL, and LDL in the serum, thereby reducing blood lipids. It has also been reported that the content of TG in the serum of patients with hyperlipidemia is significantly negatively correlated with Bifidobacterium and Lactobacillus, and positively correlated with Enterobacteriaceae and Enterococcus (Osman et al., 2005). Our study found that the abundances of Agathobacter and Faecalibacterium in the intestines of elderly patients with hyperlipidemia were positively correlated with serum TG and LDL levels, while Bifidobacterium abundance was negatively correlated with the serum LPa level.

Gut microbial diversity changes throughout the human life span and is known to be associated with the sex of the host. The latest research has shown that many characteristics, including sex, age, TG and uric acid levels, obesity, and lifestyle, have significant impacts on the gut microbiota (Portune et al., 2017; Just et al., 2018; Ma et al., 2020). One study found that the gut microbiota is obviously dependent on sex, with higher alpha-diversity in women than in men (de la Cuesta-Zuluaga et al., 2019). Consistently, our research showed significant sex-related impacts on the microbiota structure and diversity of patients with hyperlipidemia. Beta-diversity analyses performed on the Bray-Curtis distance matrix showed different hierarchical cluster trees at the OTU level between healthy elderly males and females and between elderly males and females with hyperlipidemia. PCA and PCoA also showed significant differences in the microbial structure between elderly male and female patients with hyperlipidemia.

Numerous studies have established correlations between abundances of Muribaculaceae and Lachnospiraceae and metabolic diseases. Muribaculaceae bacteria are involved in the synthesis of short-chain fatty acids and influence the host’s metabolic function (Song et al., 2022; Bai et al., 2023). Lachnospiraceae bacteria possess the capacity to reduce inflammation and have been associated with cancer and neurological diseases (Shen et al., 2021; Du et al., 2023).

This study has one main limitation. While our aim was to explore sex- and hyperlipidemia-related changes in the gut microbiota in elderly patients, the number of participants was limited. We are currently conducting animal and cell experiments to further validate and explore the underlying mechanisms of our results.

In summary, the structure and composition of the gut microbiota in elderly patients with hyperlipidemia appear to undergo significant changes that are closely related to serum lipid levels and metabolic pathway activity. We also discovered sex-related differences in the distribution of the gut microbiota. Interestingly, modules with Muribaculaceae and Lachnospiraceae as the core microbes played an important ecological role in the gut microbiota of elderly patients with hyperlipidemia. Consideration of the relationship between the gut microbiota and hyperlipidemia should include the impact of sex differences.
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Intestinal bacteria metabolize dietary substances to produce bioactive postbiotics, among which some are recognized for their role in promoting host health. We here explored the postbiotic potential of two omega-3 α-linolenic acid–derived metabolites: trans-10-cis-15-octadecadienoic acid (t10,c15-18:2) and cis-9-cis-15-octadecadienoic acid (c9,c15-18:2). Dietary intake of lipids rich in omega-3 α-linolenic acid elevated levels of t10,c15-18:2 and c9,c15-18:2 in the serum and feces of mice, an effect dependent on the presence of intestinal bacteria. Notably, t10,c15-18:2 mitigated skin inflammation in mice that became hypersensitive after exposure to 2,4-dinitrofluorobenzene, an experimental model for allergic contact dermatitis. In particular, t10,c15-18:2—but not c9,c15-18:2—attenuated ear swelling and edema, characteristic symptoms of contact hypersensitivity. The anti-inflammatory effects of t10,c15-18:2 were due to its ability to suppress the release of vascular endothelial growth factor A from keratinocytes, thereby mitigating the enhanced vascular permeability induced by hapten stimulation. Our study identified retinoid X receptor as a functional receptor that mediates the downregulation of skin inflammation upon treatment with t10,c15-18:2. Our results suggest that t10,c15-18:2 holds promise as an omega-3 fatty acid–derived postbiotic with potential therapeutic implications for alleviating the skin edema seen in allergic contact dermatitis–induced inflammation.




Keywords: omega-3 fatty acid, intestinal bacteria, postbiotics, contact hypersensitivity, vascular endothelial growth factor





Introduction

A growing body of evidence reveals the profound influence of intestinal bacteria on host health and diseases (Afzaal et al., 2022). Even though intestinal bacteria dwell primarily in the intestinal lumen and do not infiltrate systemically, they markedly influence host health beyond the intestine (Agus et al., 2021). Recent studies suggest that the bioactive metabolites of dietary materials converted by intestinal bacteria, termed ‘postbiotics,’ have systemic effects in the host (Aguilar-Toalá et al., 2018; Peluzio et al., 2021). We recently found that 10-oxo-cis-12-cis-15-octadecadienoic acid (αKetoA), an intermediate metabolite of α-linolenic acid via saturation metabolism by intestinal bacteria, exerts potent anti-inflammatory activities on macrophages and suppresses the pathogenesis of contact hypersensitivity and diabetes (Nagatake et al., 2022). αKetoA can be further metabolized by Lactobacillus plantarum to yield trans-10-cis-15-octadecadienoic acid (t10,c15-18:2) and cis-9-cis-15-octadecadienoic acid (c9,c15-18:2) as final products due to saturation metabolism of α-linolenic acid in multiple steps, as shown in Figure 1 (Kishino et al., 2013; Tsuji et al., 2022). However, the bioactivities of these metabolites have not been investigated.

[image: Diagram illustrating the metabolic pathways of alpha-linolenic acid. It shows its conversion to alphaHYA, leading to alphaKetoA, and other metabolites. Separate pathways show t10,c15-18:2 and c9,c15-18:2 conversion to alphaHYB, further leading to alphaKetoB. Chemical structures and specific double bond positions are highlighted.]
Figure 1 | Production pathway of t10,c15-18:2 and c9,c15-18:2 from α-linolenic acid in bacteria. The metabolic pathway and structures of the fatty acids central to this research, namely α-linolenic acid, t10,c15-18:2, and c9,c15-18:2.

Allergic contact dermatitis, a prevalent inflammatory skin disease with a lifetime prevalence of up to 20% (Weidinger et al., 2018; Chamani et al., 2023), is recognized as a significant occupational skin disease, necessitating the development of preventive and therapeutic strategies. In the context of allergic contact dermatitis, allergenic components known as haptens sensitize the skin immune system upon initial contact. Subsequent exposures provoke T cell–mediated immune reactions. Clinically, allergic contact dermatitis manifests as swelling, or ‘spongiosis,’ and irritation, with an increase in vascular permeability.

In this study, we sought to elucidate the beneficial effects of t10,c15-18:2 and c9,c15-18:2 as postbiotics with the potential to regulate host immune responses during inflammation. We investigated whether their production depends on the presence of intestinal microbiota after dietary intake of omega-3 α-linolenic acid. Using a mouse model of 2,4-dinitrofluorobenzene (DNFB)-induced contact hypersensitivity, we further explored the physiologic roles of these metabolites in the context of allergic contact dermatitis.





Materials and methods




Animals

For lipidomics analysis, we purchased male germ-free (GF) mice and control ICR mice (age, 6 weeks) from Japan SLC (Hamamatsu, Japan); these mice were maintained for 2 months on chemically defined diets containing 4% (wt/wt) dietary oil comprising soybean oil or linseed oil (Oriental Yeast, Tokyo, Japan). GF mice were housed under GF conditions at Oriental Bioservice (Kyoto, Japan), and control mice were housed under specific-pathogen-free (SPF) conditions at the NIBIOHN (Osaka, Japan).

For the contact hypersensitivity model, we obtained female wild-type C57BL/6 mice (age, 6–8 weeks) from SLC (Shizuoka, Japan) and housed them in an SPF animal facility at NIBIOHN for at least 1 week before their use in experiments. In this study, female mice were chosen for the contact hypersensitivity model due to their lower aggression levels compared to males (Schwarz et al., 2023). These mice had ad libitum access to distilled water and a commercially available standard diet (FR2, Funabashi Farm, Chiba, Japan) under conditions of 22–24°C, 50%–60% humidity, and a 16:8-h light:dark cycle. Mice were euthanized by cervical dislocation under anesthesia with isoflurane (AbbVie Inc., North Chicago, Illinois, USA). All experiments were performed in accordance with the guidelines of the Animal Care and Use Committee and the Committee on the Ethics of Animal Experiments at NIBIOHN.





Murine contact hypersensitivity model

The model was generated as described previously (Nagatake et al., 2018; Saika et al., 2021). Briefly, on day 0 the shaved abdominal skin of C57BL/6 mice was treated with 25 μL of 0.5% (vol/vol) DNFB (Nacalai Tesque, Kyoto, Japan) in 4:1 acetone:olive oil (Nacalai Tesque). On day 5, both sides of the ears were challenged with 10 μL of 0.2% (vol/vol) DNFB. On day 7, ear thickness was measured with a micrometer (MDC-25MJ 293-230, Mitsutoyo, Kawasaki, Japan). To evaluate fatty acid activity, the ear skin of mice was treated topically with t10,c15-18:2, or c9,c15-18:2 (both produced from α-linoleic acid by using microbial enzymes) (Kishino et al., 2003; Tsuji et al., 2022); these compounds were dissolved in 50% (vol/vol) ethanol in phosphate-buffered saline (PBS) and provided at a dose of 1 µg/animal at 30 min before sensitization with DNFB on day 0 and before elicitation with DNFB on day 5. To assess fatty acid activity after the challenge on day 5, t10,c15-18:2 was topically applied to the ear skin on day 6. Control mice received 50% (vol/vol) ethanol in PBS as a vehicle control. In another experiment, we topically administered the retinoid X receptor (RXR) pan-antagonist HX531 (Cayman Chemical) at a dose of 40 nmol to the ear skin of mice. The HX531 was prepared in a solution containing 50% (vol/vol) dimethyl sulfoxide and 25% (vol/vol) ethanol in PBS. This application occurred 60 min before the fatty acid treatment, with 15 μL of the solution applied to both sides of the ears. Ear swelling was calculated as: (ear thickness [mm] after DNFB application on day 7) – (ear thickness [mm] before DNFB application on day 0).





Cell isolation and flow cytometric analysis

Cells were isolated from ear tissue and their flow cytometric analysis was performed as described previously (Saika et al., 2021). Ears were split into dorsal and ventral skin, cut into small pieces by using scissors, and incubated in 2 mg/mL collagenase (Wako Pure Chemicals, Osaka, Japan) in RPMI 1640 medium containing 2% (vol/vol) newborn calf serum (Equitech Bio, Kerrville, Texas, USA) for 90 min at 37°C with stirring. The cell preparations were filtered through cell strainers (pore size, 100 µm; BD Biosciences, Franklin Lakes, New Jersey, USA) and then used for flow cytometric analysis.

For flow cytometric analysis, cells were suspended in 2% (vol/vol) newborn calf serum in PBS and treated with anti-CD16/32 antibody (Tru Stain fcX, BioLegend, San Diego, California, USA) to prevent nonspecific staining. The cells were washed and further stained with the following antibodies: phycoerythrin (PE)–anti-CD31 (BD Biosciences), PE–anti-c-kit (BD Biosciences), PE-Cy7–anti-F4/80 (BioLegend), fluorescein isothiocyanate (FITC)–anti-CD34 (BD Biosciences), FITC–anti-Ly6G (BioLegend), FITC–anti-CD63 (gift from Dr. Kurashima, The University of Tokyo) (Kurashima et al., 2012), allophycocyanin (APC)–anti-CD49f (BioLegend), APC–anti-Fc epsilon receptor 1 (FcϵRI, eBioscience, San Diego, California, USA), APC-Cy7–anti-CD11b (BioLegend), and brilliant violet (BV) 421–anti-CD45 (BioLegend). Dead cells were detected by using 7-aminoactinomycin D (7-AAD, BioLegend) and were excluded from analysis. Samples were analyzed MACSQuant (Miltenyi Biotec, Bergish Gladbach, Germany) or FACSAria (BD Biosciences). Cells were isolated using FACSAria through flow cytometry. Keratinocytes are gated as 7-AAD− CD45− CD31− CD34− CD49f+ (Saika et al., 2021), and macrophages are gated as 7-AAD− CD45+ Ly6G− F4/80+ CD11b+ cells (Nagatake et al., 2022). These cells are used for RNA extraction to assess gene expression levels. Data analysis was conducted using FlowJo 9.9 software (Tree Star, Ashland, Oregon, USA).





Vascular permeability assay

The assay was performed as described previously with modifications (Saika et al., 2021). Briefly, at 60 min before euthanasia on day 7 of contact hypersensitivity induction, mice were injected intravenously with 1% (wt/vol) Evans blue dye in PBS. Harvested ears were incubated in 1 M phosphoric acid (Nacalai Tesque) at 37°C overnight to extract the dye. Potassium hydroxide and acetone were added to the extract, and the resultant solution was left to phase-separate at room temperature for at least 30 min. The absorbance (OD620) of the aqueous phase was measured in a spectrophotometer (SmartSpec Plus, Bio-Rad Laboratories, Hercules, California, USA).





Histologic analysis

Analysis was performed as described previously (Saika et al., 2020). Briefly, ear samples were embedded in Tissue-Tek OCT compound (Sakura Finetek, Osaka, Japan), frozen in liquid nitrogen and cut into sections (7 µm) by using a cryostat (CM3050 S, Leica, Wetzlar, Germany). The sections were washed with running water for 10 min, stained with Mayer hematoxylin solution (Wako) for 10 min, and washed with running water for 30 min. The sections were then stained with 1% eosin Y solution (Wako) for 1 min, washed with running water for 10 s, and dehydrated through increasing concentrations of ethanol (1 min at each concentration, 70% to 100%, Nacalai Tesque) and finally in xylene (Nacalai Tesque) for 3 min. They were mounted (Permount, Falma, Tokyo, Japan) and examined under a microscope (BZ-9000, Keyence, Osaka, Japan).





Isolation and preparation of mast cells

Peritoneal mast cells (PMCs) were prepared as previously reported (Meurer et al., 2016; Sawane et al., 2019). In brief, 9 mL of PBS was injected intraperitoneally into a naïve mouse by using a 20-gauge needle, the abdomen was gently massaged for 1 min to detach peritoneal cells, and then the peritoneal fluid was collected and centrifuged at 400 × g and 4°C for 5 min. The pellet was washed with RMPI 1640 medium containing 20% (vol/vol) fetal bovine serum, 100 U/mL penicillin, and 100 µg/mL streptomycin and transferred to a 10-cm dish. Cells were cultured in RMPI 1640 supplemented with 10 ng/mL IL-3 (PeproTech, Cranbury, New Jersey, USA) and 30 ng/mL stem cell factor (PeproTech) in an incubator (37°C and 5% CO2) for 2 days, after which the supernatant and non-adherent cells were removed, and fresh culture medium was added. On day 9, the cells were collected by washing the plate three times with PBS (10 mL each time); the cell-containing washes were pooled in a 50-mL tube, which was centrifuged at 400 × g for 5 min. The pellet was recovered and moved to a fresh 10-cm dish containing RPMI 1640 supplemented with 20% fetal bovine serum, 100 U/mL penicillin, 100 µg/mL streptomycin, 10 ng/mL IL-3, and 30 ng/mL stem cell factor in an incubator (37°C and 5% CO2) for 4 to 5 days. The efficacy of cell recovery and percentage of differentiation to PMCs were assessed by flow cytometry as the FcϵRI+ c-Kit+ CD45+ population; PMC populations that were more than 90% pure were used for the degranulation assay.





Mast cell degranulation assays

The assays were performed as described previously (Sawane et al., 2019) with modifications. For the IgE-dependent degranulation assay, PMCs were seeded into 96-well plates at 2 × 105 cells/well, incubated for 24 h, and then sensitized with 0.2 mg/mL anti-dinitrophenyl (DNP)–IgE (Sigma-Aldrich, St. Louis, Missouri, USA) for 24 h. Cells were washed twice with Hanks’ Balanced Salt Solution (Nacalai Tesque) and stimulated with 100 ng/mL DNP–bovine serum albumin (BSA; LSL, Tokyo, Japan) for 30 min at 37°C. To assess the effect of lipid metabolites on degranulation, t10,c15-18:2 (final concentration, 300 nM) or 0.1% (vol/vol) ethanol in Hanks’ Balanced Salt Solution as a vehicle control was added to cells 30 min before stimulation with DNP–BSA. The sample size for the control group is n = 5, and for the DNP-BSA stimulated group, it is n = 7/group. For the IgE-independent degranulation assay, PMCs were seeded into 96-well plates at 2 × 105 cells/well and incubated for 24 h, after which adenosine-5’-triphosphate disodium salt hydrate (ATP; final concentration, 0.1 nM) or 2,4,6-trinitrobenzene sulfonic acid (TNBS; final concentration, 1 mM) was added for 1 h. To evaluate baseline and confirm PMCs degranulation levels, we established a control group labeled “naïve,” consisting of unstimulated PMCs that did not receive ATP or TNBS treatment. t10,c15-18:2 (final concentration, 300 nM) or 0.1% (vol/vol) ethanol in PBS as a vehicle control was added to cells 30 min before stimulation with ATP or TNBS. The sample size for the non-stimulation group is n = 5/group, and the stimulated group, it is n = 4 to 6/group. Following the stimulation period, PMCs were kept on ice for 30 min, washed with PBS, and stained on ice with anti-CD63 antibody as a marker for degranulation. The degranulation level of PMCs was measured by flow cytometry.





Reverse transcription and quantitative real-time PCR analysis

The procedures were performed as described previously (Nagatake et al., 2018). Briefly, total RNA was isolated using Sepazol (Nacalai Tesque) from HaCaT cells or cells sorted from day 7 ear tissue, specifically keratinocytes (7-AAD− CD45− CD31− CD34− CD49f+) and macrophages (7-AAD− CD45+ Ly6G− F4/80+ CD11b+). RNA samples were incubated with DNase I (Thermo Fisher Scientific, Waltham, Massachusetts, USA) and reverse transcribed into cDNA by using a Super Script VIRO cDNA Synthesis Kit (Thermo Fisher Scientific). Total RNA was extracted from ear tissues by using a Relia Prep RNA Tissue Miniprep System (Promega) and reverse transcribed. Quantitative real-time PCR analysis was performed by using a LightCycler 480 II (Roche, Basel, Switzerland) and FastStart Essential DNA Probes Master (Roche). Primer sequences were: Vegfa forward, 5′-caggctgctgtaacgatgaa-3′; Vegfa reverse, 5′-gctttggtgaggtttgatcc-3′; Actb forward, 5′-aaggccaaccgtgaaaagat-3′; Actb reverse, 5′-gtggtacgaccagaggcatac-3′; VEGFA forward, 5’-tgtgtgtgtgtgagtggttga-3’; VEGFA reverse, 5’-tctctgtgcctcgggaag-3’; ACTB forward, 5’-catgtacgttgctatccaggc-3’; and ACTB reverse, 5’-ctccttaatgtcacgcacgat-3’.





Enzyme-linked immunosorbent assay (ELISA) for vascular endothelial growth factor A

The amount of VEGF-A protein in ear homogenates was analyzed by using a Mouse VEGF Quantikine ELISA Kit (R&D Systems, Minneapolis, Minnesota, USA) according to the manufacturer’s protocol. In brief, ear skin samples were homogenized for 30 s with one 4.8-φ bead and three 3.2-φ beads in PBS containing protease-inhibitor cocktail (Sigma-Aldrich) and centrifuged (9100 × g, 20 min, 4°C) as followed previous study (Nagatake et al., 2022). The supernatant was collected and diluted to a protein concentration of 4 mg/mL with PBS containing a protease inhibitor cocktail for ELISA analysis. A microplate reader (Bio-Rad Laboratories) was used to measure absorbance at OD450.





Reporter assays

Fatty acids were tested for their ability to activate nuclear receptors by using human RXRα, RXRβ, and RXRγ luciferase reporter assay systems (Indigo Biosciences, State College, Pennsylvania, USA) according to the manufacturer’s procedure. In brief, reporter cells expressing a hybrid receptor composed of the Gal4 DNA-binding domain fused to the ligand-binding domain of the specific nuclear receptor, together with the firefly luciferase reporter gene, were provided with the reporter assay systems. Reporter cells were incubated with the test compounds (final concentration, 30 µM) for 24 h at 37°C in 5% CO2. Light emission was measured in a microplate luminometer (Arvo X2, Perkin Elmer, Waltham, Massachusetts, USA), and the activities of the nuclear receptors were quantified as relative light units.





HaCaT cell culture

HaCaT cell culture was performed as described previously with some modifications (Saika et al., 2021). HaCaT cells (Boukamp et al., 1988) were obtained from CLS Cell Lines Service (Eppelheim, Germany) and grown in Dulbecco’s modified Eagle’s medium with high glucose (DMEM; Sigma-Aldrich) supplemented with 10% (vol/vol) FBS (Gibco), and 100 U/mL penicillin and 100 µg/mL streptomycin at 37°C and 5% CO2. HaCaT cells were seeded in 96-well plates at 3 × 104 cells/well, and cultured for 24 h. Then, the medium was replaced with DMEM without FBS and the cells were treated first with 300 nM t10,c15-18:2 for 30 min and then with 100 ng/mL recombinant human IFN-γ (PeproTech) for 24 h. We used 0.2% (vol/vol) ethanol in DMEM as vehicle control.





Sample preparation for liquid chromatography–tandem mass spectrometry analysis

Lipids were extracted as previously reported (Nagatake et al., 2022). In brief, for murine serum samples (n = 6 mice/group), 50 µL of serum was added to 450 µL of methanol (Wako Pure Chemicals) and vortexed twice for 10 s each time. For fecal samples (n = 6 mice/group), fecal pellets were combined with five 5-mm zirconia beads (M&S Instruments, Osaka, Japan) in methanol and then homogenized at 6500 rpm by using the Precellys lysis and homogenization system (Bertin Instruments, Montigny-le-Bretonneux, France) twice for 15 s each time. Samples were stored overnight at –30°C for extraction. Samples were centrifuged at 1600 × g, 4°C for 10 min. The supernatant (200 µL) was mixed with a deuterium-labeled internal standard (15(S)-hydroxyeicosatetraenoic acid-d8, Cayman Chemical) and 200 µL water (Wako Pure Chemicals) and centrifuged at 10,000 × g, 4°C for 1 min. The supernatant underwent solid-phase extraction using Sep-Pak C18 cartridges (Waters, Milford, Massachusetts, USA).





LC-MS/MS analysis

LC-MS/MS was performed as reported previously (Nagatake et al., 2022). Briefly, lipids were obtained using a Monospin C18-AX centrifugal column with deuterium-labeled internal standard. Fatty acid metabolites were analyzed with a Shimadzu LCMS-8050 system with a triple-quadrupole mass spectrometer (Shimadzu, Kyoto, Japan). The chromatographic separation used a Chiralcel OJ-3R column (150 × 4.6 mm, 3.0 μm; Daicel, Osaka, Japan). Solvent A was 0.1% acetic acid, solvent B was methanol, the flow rate was 0.4 mL/min, and the oven temperature was 40 °C. The metabolites were eluted with the following gradient: 10%–75% solvent B from 0−5 min, 75% solvent B for 15 min, 75%–90% solvent B from 20−25 min, 90% solvent B for 10 min, 90%–100% solvent B from 35−50 min, and 100% solvent B for 8 min, with 100%–10% solvent B for 58–59.1 min and 10% solvent B for 0.9 min for column wash and equilibration, respectively. The injection volume was 1 μL. For MS, nitrogen was used as drying gas (flow rate 10 L/min), nebulizing gas (2.5 L/min), and heating gas (10 L/min). The temperatures were set at 400°C for the heat block, 270°C for the ESI interface, and 477°C for the desolvation line. For lipidomic analysis, LC-MS raw data were preprocessed by using LabSolutions (Shimadzu) for peak alignment, noise filtering, and data extraction. Fatty acid levels were normalized as the peak area ratios of each fatty acid to the respective internal standard. Deuterated internal standards were measured to check recoveries of fatty acid metabolites. For the quantification of fatty acid metabolites, calibration curves were drawn by using fatty acid standards.





Statistical analysis

Data were analyzed by using the non-parametric Kruskal–Wallis test followed by the Dunn multiple-comparison test or the Mann–Whitney U test (Prism 6, GraphPad Software, San Diego, California, USA). A P value of less than 0.05 was considered significant.






Results




t10,c15-18:2 and c9,c15-18:2 were produced from dietary omega-3 fatty acids through bacteria-dependent metabolism

The fatty acids t10,c15-18:2 and c9,c15-18:2 are end products of bacterial α-linolenic acid saturation metabolism (Figure 1). Because increased intake of α-linolenic acid from the diet enhances the production of its derived metabolites (Nagatake et al., 2022), we initially investigated whether dietary omega-3 fatty acid intake increases the levels of t10,c15-18:2 and c9,c15-18:2. We provided mice with diets based either on linseed oil, which is high in omega-3 α-linolenic acid, or on conventional soybean oil, which is rich in omega-6 linoleic acid, and found that the levels of α-linolenic acid, t10,c15-18:2, and c9,c15-18:2 were higher in both the feces and serum from mice on the linseed oil–based diet than from mice on the soybean oil–based diet (Figure 2A). To assess whether the presence of these metabolites in mice relied on intestinal bacteria, we administered a linseed oil–based diet to both SPF and GF mice for 2 months. The fecal levels of α-linolenic acid were similar between GF and SPF mice, but the levels of t10,c15-18:2 and c9,c15-18:2 were higher in SPF mice than in GF mice, thus suggesting that the production of these metabolites depends on intestinal bacteria (Figure 2B).
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Figure 2 | Production of t10,c15-18:2 and c9,c15-18:2 from dietary omega-3 fatty acids. (A, B) The concentrations of the fatty acids (A) in the feces and serum of SPF mice on a diet containing either soybean oil (Soy) or linseed oil (Lin) and (B) in the feces of GF and SPF mice on a Lin-containing diet. The concentrations of the fatty acids were determined by using LC-MS/MS. Each point represents data from an individual mouse (n = 6 mice/group). Statistical significance was evaluated by using the Mann–Whitney U test. NS, not significant.





Contact hypersensitivity was ameliorated by treatment with t10,c15-18:2 but not c9,c15-18:2

We then used the mouse model of DNFB-induced allergic contact hypersensitivity to explore the immunomodulatory roles of t10,c15-18:2 and c9,c15-18:2 in this process. Pre-treatment with t10,c15-18:2 reduced ear swelling, a marker of an inflammatory condition in this model, whereas c9,c15-18:2 did not exert a similar effect (Figure 3A). Enhancement of vascular permeability plays a pivotal role in the development of ear swelling (Zhang et al., 2006; Yuan et al., 2010; Huggenberger and Detmar, 2011; Ono et al., 2017). To assess vascular leakage at the inflammation site, we performed an experiment involving Evans blue dye. In the DNFB-induced inflamed ears of mice treated with the vehicle only, blue dye was distributed broadly due to vascular leakage after the injection of Evans blue (Figure 3B). However, dye distribution was curtailed in the ears of mice treated with t10,c15-18:2, suggesting reduced leakage, whereas it remained widespread despite treatment with c9,c15-18:2 (Figure 3B). Quantification of Evans blue extracted from the ear tissue indicated that dye accumulation was reduced after pre-treatment with t10,c15-18:2, but c9,c15-18:2 pre-treatment did not exert this effect (Figure 3C). Histologic analysis revealed that—unlike c9,c15-18:2—t10,c15-18:2 inhibited the formation of epidermal edema (spongiosis), a characteristic feature of contact hypersensitivity (Figure 3D). These findings indicate that t10,c15-18:2 mitigated skin inflammation in mice, particularly by attenuating vascular permeability.
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Figure 3 | Reduction of ear skin swelling caused by contact hypersensitivity through t10,c15-18:2 treatment. Mice were treated topically with either t10,c15-18:2 or c9,c15-18:2 (dose, 1 μg/mouse) in 50% (vol/vol) ethanol in PBS or the vehicle as a control. (A) DNFB-induced ear swelling was evaluated on day 7. The sample sizes for each group are as follows: non-elicitation group, n = 3 mice/group; vehicle-treated group, n = 9 mice/group; t10,c15-18:2-treated group and c9,c15-18:2-treated group, n = 7 mice/group. The data presented in this analysis are the result of combining data from three independent experiments. (B, C) Evans blue solution was administered intravenously 60 min before analysis on day 7. (B) Representative images of ears. (C) Evans blue dye was extracted from ear tissues and quantified via measurement of absorbance at OD620. These data are compiled from three independent experiments. The sample sizes for each group are as follows: non-elicitation group, n = 3 mice/group; vehicle-treated group, n = 9 mice/group; t10,c15-18:2-treated group and c9,c15-18:2-treated group, n = 7 mice/group. The data presented in this analysis are the result of combining data from three independent experiments. (D) Ear tissue samples procured on day 7 were stained with hematoxylin and eosin for histologic examination. Representative images from two independent experiments are shown. Scale bars represent 100 μm. Statistical significance was evaluated by using the Kruskal–Wallis test followed by Dunn’s multiple-comparison test. NS, not significant.





t10,c15-18:2 inhibited vascular permeability by reducing VEGF-A production

Vascular permeability during contact hypersensitivity is heightened via two primary mechanisms related to mast cell degranulation and VEGF-A production (Kunstfeld et al., 2004; Yamamoto et al., 2007; Hoppe et al., 2020). To evaluate whether t10,c15-18:2 inhibited mast cell degranulation, we measured mast cell expression of CD63, a known marker of mast cell degranulation (Kurashima et al., 2012; Sawane et al., 2019). Mast cells undergo degranulation in an IgE-independent fashion during contact hypersensitivity and release pro-inflammatory mediators, including histamine and proteases (Honda et al., 2013). Because this IgE-independent reaction is induced by ATP or haptens, we stimulated PMCs with ATP or TNBS, a water-soluble hapten, and evaluated subsequent degranulation (Manabe et al., 2017; Hoppe et al., 2020). Pre-treatment with t10,c15-18:2 did not diminish the expression of CD63, which increased after mast cell exposure to either ATP or TNBS (Figures 4A, B). We also confirmed that t10,c15-18:2 had scant effect on IgE-dependent degranulation (Supplementary Figure 1), which plays a minimal role in the DNFB-induced contact hypersensitivity model in C57BL6J mice (Nagai et al., 2000).

[image: Five bar graphs labeled A to E display various biological measurements. Graph A shows CD63 percentages with significant higher values in the Vehicle and r10,5:15,8:2 groups under ATP. Graph B also shows higher CD63 percentages in the Vehicle and r10,5:15,8:2 groups under TNBS. Graph C illustrates VEGF-A levels, higher in Vehicle, slightly less in r10,5:15,8:2, under elicitation. Graph D shows Actb relative expression in keratinocytes, notably higher in the Vehicle group. Graph E shows macrophage Actb levels, with no significant difference across groups.]
Figure 4 | t10,c15-18:2 reduces VEGF-A production and its gene expression in keratinocytes. (A, B) The mast cell degranulation assay. PMCs were stimulated by incubation with (A) 0.1 nM ATP or (B) 1 mM TNBS for 1 h; t10,c15-18:2 (final concentration, 300 nM) or the vehicle (0.1% [v/v] ethanol in PBS) as a control was added 30 min before stimulation. A naïve group consisting of unstimulated PMCs, which did not receive either ATP or TNBS treatment, was also prepared. The degranulation level was measured by flow cytometry using staining for the degranulation marker CD63. For the non-stimulation group, the sample size is n = 5/group, while for the stimulated group, the sample size is n = 4 to 6/group. The data presented here are the result of combining data from two independent experiments. (C–E) Mice were treated topically with either t10,c15-18:2 or c9,c15-18:2 (1 μg/mouse) in 50% (vol/vol) ethanol in PBS or the vehicle as a control. (C) Ear homogenates were prepared on day 7 and examined by ELISA to determine the amount of VEGF-A. For the non-elicitation group and the fatty acid-treated group, the sample size is n = 6 group, while for the vehicle-treated group, the sample size is n = 14 group. The data are combined from two independent experiments. (D) Keratinocytes (7-AAD− CD45− CD31− CD34− CD49f+) were sorted from ear tissue on day 7, and quantitative real-time PCR analysis was performed to measure the expression levels of Vegfa, which were normalized to those of Actb. For the non-elicitation group, n = 8/group; for the elicitated group, n = 15/group. (E) macrophages (7-AAD− CD45+ Ly6G− F4/80+ CD11b+) were sorted from ear tissue on day 7, and quantitative real-time PCR analysis was performed to measure the expression levels of Vegfa, which were normalized to those of Actb. For the non-elicitation group, n = 4/group; for the elicitated group, n = 8/group. The data are combined from four independent experiments for keratinocytes and from two independent experiments for macrophages. Statistical significance was evaluated by using the Kruskal–Wallis test followed by Dunn’s multiple-comparison test. NS, not significant.

We then focused on VEGF-A, a potent regulator of vascular endothelial cells known for its role in enhancing vascular permeability (Shibuya, 2011; Lee et al., 2021). Whereas the VEGF-A level was elevated in ear tissues treated with the vehicle only, its concentration was lower in ear skin treated with t10,c15-18:2 than in vehicle-treated samples (Figure 4C). Both keratinocytes and macrophages secrete VEGF-A during skin inflammation (Johnson and Wilgus, 2014); therefore, we assessed Vegfa gene expression in keratinocytes and macrophages isolated from the ear tissues. Topical application with t10,c15-18:2 decreased Vegfa expression in keratinocytes (Figure 4D) but not macrophages (Figure 4E). These results indicate that t10,c15-18:2 suppressed Vegfa expression in keratinocytes, subsequently reducing edema. In addition, we confirmed that t10,c15-18:2 inhibits VEGFA gene expression in keratinocytes using the human keratinocyte cell line, HaCaT cells (Supplementary Figure 2), indicating that t10,c15-18:2 directly affects to keratinocyte function.

Furthermore, it has been reported that mice overexpressing VEGF-A in the epidermis failed to down-regulate inflammation in delayed-type hypersensitivity (Kunstfeld et al., 2004), indicating that VEGF-A is a target for reducing skin inflammation. We confirmed that topically applied with t10,c15-18:2 in post-elicitation, specifically on day 6, also reduced ear swelling (Supplementary Figure 3). This supports the effect that t10,c15-18:2 is effective in reducing inflammation and swelling following its onset.





t10,c15-18:2 reduced skin inflammation via RXRs

RXRs are highly expressed in keratinocytes (Saika et al., 2021); therefore, we explored whether RXRs contribute to the anti-inflammatory action of t10,c15-18:2. We administered HX531, a pan-RXR antagonist, to mice and exposed them to t10,c15-18:2. HX531 administration abolished the inhibitory effect of t10,c15-18:2 on Vegfa expression in keratinocytes (Figure 5A). Additionally, in contrast to the effects of t10,c15-18:2 alone, co-treatment with t10,c15-18:2 and HX531 failed to reduce ear swelling (Figure 5B), a characteristic DNFB-induced symptom of contact hypersensitivity, and enhanced vascular permeability (Figure 5C). These results indicate that t10,c15-18:2 attenuated skin inflammation in the mouse model of DNFB-induced contact hypersensitivity through an RXR-dependent pathway, by downregulating vascular permeability via the suppression of Vegfa expression in keratinocytes.
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Figure 5 | t10,c15-18:2 inhibits skin inflammation in an RXRs-mediated manner. Mice were topically treated with the RXR pan-antagonist HX531 or a vehicle (comprising 50% [vol/vol] dimethyl sulfoxide and 25% [vol/vol] ethanol in PBS) on days 0 and 5 for 60 min and were given either t10,c15-18:2 (1 µg per administration) or a vehicle (50% [vol/vol] ethanol in PBS) for 30 min, followed by DNFB treatment. (A) Keratinocytes (7-AAD− CD45− CD31− CD34− CD49f+) were sorted from ear skin on day 7, and quantitative real-time PCR analysis was performed to measure the expression levels of Vegfa, which were normalized to those of Actb. For the non-elicitation group, n = 2 mice/group; for the elicited group, n = 5 to 6 mice/group. (B) Ear swelling was evaluated on day 7. For the non-elicitation group, n = 4 mice/group; and for the elicited group, n = 6 mice/group. (C) Evans blue dye was extracted from ears and was measured as absorbance at OD620. For the non-elicitation group, n = 4 mice/group; for the elicited group, n = 5 to 6 mice/group. The data are combined from two independent experiments. Statistical significance was evaluated by using the Kruskal–Wallis test followed by Dunn’s multiple comparison test. NS, not significant.

To assess the ligand activities of RXRα, RXRβ, and RXRγ in our mouse model, we used a luciferase reporter assay. Because c9,c15-18:2 failed to significantly decrease skin inflammation, we used it as a non-functional control for comparison with the ligand activity of t10,c15-18:2. Our findings showed that t10,c15-18:2 had unique RXRγ ligand activity, which was superior to that of c9,c15-18:2 (Figure 6). In contrast, neither t10,c15-18:2 nor c9,c15-18:2 had ligand activity for RXRα and RXRβ (Supplementary Figure 4). These results suggest the involvement of the RXRγ-mediated pathway during t10,c15-18:2-induced suppression of contact hypersensitivity.
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Figure 6 | Activation of RXRγ by t10,c15-18:2. The activation level of RXRγ after a 24-h exposure to a fatty acid with a final concentration of 30 μM (n = 6/group) or the vehicle (n = 2/group) was assessed by using a reporter assay system. The data (mean ± SD, n = 6) are combined from two independent experiments. Statistical significance was evaluated by using the Kruskal–Wallis test followed by Dunn’s multiple comparison test. NS, not significant.






Discussion

Recent advances in metagenomics, metabolomics analyses, and mechanistic studies using animal models have elucidated the beneficial roles of intestinal bacteria in relation to host diseases (Lin and Zhang, 2017; de Vos et al., 2022). Notably, postbiotics—metabolic byproducts derived from food components processed by the intestinal microbiota—are emerging as potential tools for promoting health. Contemporary research highlights the functions of dietary fatty acids as substrates for the production of postbiotics through bacterial metabolism.

In a previous study, we identified 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and αKetoA as specific intermediate metabolites of α-linolenic acid saturation metabolism by intestinal bacteria (Nagatake et al., 2022). Our current study revealed higher serum and fecal levels of t10,c15-18:2 and c9,c15-18:2 than of their precursor metabolites, αHYA and αKetoA. Both studies used the same linseed oil–based diet and feeding duration. Our results therefore imply that t10,c15-18:2 and c9,c15-18:2, as end-products of α-linolenic acid saturation metabolism, distribute more extensively in the murine body than do the intermediate metabolites αHYA and αKetoA. In addition, our data indicate greater quantities of t10,c15-18:2 in the feces and serum than of c9,c15-18:2. Given that both t10,c15-18:2 and c9,c15-18:2 originate from the same precursor fatty acid, αKetoB (Kishino et al., 2013), our findings suggest that t10,c15-18:2 may either be less susceptible to degradation than is c9,c15-18:2 or that t10,c15-18:2 is produced more efficiently from αKetoB. For instance, studies have indicated that trans-unsaturated fatty acids are less susceptible to oxidation than cis-unsaturated fatty acids (Sargis and Subbaiah, 2003).

The conversion of αKetoB into t10,c15-18:2 and c9,c15-18:2 is biased depending on environmental conditions (Kishino et al., 2003). The process of bacteria-facilitated fatty acid conversion is influenced by various enzyme-associated factors, including expression levels, activity, substrate specificity, and other characteristics, as well as by the composition of the microbiota. The transformation of α-linolenic acid into t10,c15-18:2 and c9,c15-18:2 involves a series of enzymatic processes. For instance, L. plantarum converts α-linolenic acid into t10,c15-18:2 and c9,c15-18:2 through various reactions catalyzed by hydratase/dehydratase, dehydrogenase, isomerase, and enone reductase (Kishino et al., 2013). The metabolism of polyunsaturated fatty acids is not confined to these enzymes and encompasses others originating from a variety of bacteria. Numerous bacterial species facilitate the transformation of unsaturated fatty acids into hydroxy fatty acids, including Bifidobacterium spp., Streptococcus spp., Clostridium spp., Lactobacillus spp., Lactiplantibacillus spp., Pseudomonas spp., and Corynebacterium spp (Rosberg-Cody et al., 2011; O'Connell et al., 2013; Ogawa et al., 2018). Some of these bacteria harbor proteins known as ‘myosin-cross-reactive antigens,’ which exhibit fatty acid hydratase activity. In addition, Escherichia coli and Pseudomonas aeruginosa have been identified as having dehydrase activity (Moynie et al., 2013; Chen et al., 2022). These bacterial enzymes also are considered to play a role in the production of t10,c15-18:2 from α-linolenic acid, suggesting that multiple metabolic pathways involving various intestinal bacteria might contribute to the production of t10,c15-18:2. Such a perspective indicates the intricate metabolic interactions within the microbiota. The vast network of pathways leading to the synthesis of specific beneficial postbiotic fatty acids, such as t10,c15-18:2, underscores the importance of gaining a comprehensive understanding of these processes for potential therapeutic applications.

We discovered that t10,c15-18:2 and c9,c15-18:2 have distinctly different effects on skin inflammation. The location and specific placement of double bonds within fatty acids significantly influence the structure, dynamics, and signaling functions of biological membranes as well as their ability to influence physiologic functions (Leger et al., 1990; Perillo et al., 2012). For example, conjugated linoleic acids (CLAs), including c9,t11-CLA and t10,c12-CLA, share several overlapping physiologic functions but exhibit different roles in various diseases (Basak and Duttaroy, 2020). Specifically, c9,t11-CLA has numerous neurobiologic effects, including enhancing the proliferation of neuronal progenitor cells and providing protection from glutamate-induced or neuronal cell death; these effects are less pronounced with t10,c12-CLA (Hunt et al., 2010; Fujita et al., 2021). In addition, c9,t11-CLA exhibits a stronger activity than t10,c12-CLA against various cancer cells (Beppu et al., 2006). In contrast, t10,c12-CLA is more effective than c9,t11-CLA in reducing obesity (Miller et al., 2008). These functional variations are considered to stem from differences in receptor-ligand activation potencies. For example, c9,t11-CLA displays higher ligand activity for PPARγ than t10,c12-CLA, serving as a potent agonist, whereas t10,c12-CLA acts as an antagonist for PPARγ, competing with the ligand (Miller et al., 2008). While it is important to consider the potential variations in uptake activity into the cytoplasm or tissue based on the fatty acid structure, these functional differences are considered to arise from variations in receptor-ligand activation potencies. The activation potencies of c9,t11-CLA and t10,c12-CLA differ in regard to PPARα and PPARβ activity (Moya-Camarena et al., 1999; Clement et al., 2002; Granlund et al., 2003). These observations indicate that receptor activation level is modulated by the specific positioning of double bonds within fatty acids, suggesting that the different activities of t10,c15-18:2 and c9,c15-18:2 in terms of their anti-inflammatory activity may be attributed to their respective ligand activities. Our results from the luciferase reporter assay demonstrated that t10,c15-18:2 acts as an RXRγ ligand, and further inhibitor studies indicate that it might be a functional receptor. However, it is important to note that the functions of RXRγ have not been studied as extensively as those of the more widely recognized RXRα and RXRβ (Nunez et al., 2010; Pekow and Bissonnette, 2014; Watanabe and Kakuta, 2018; Zeng et al., 2022).

VEGFA expression is upregulated not only in allergic contact dermatitis but also in other inflammatory skin conditions, including atopic dermatitis and psoriasis (Bhushan et al., 1999; Bae et al., 2010; Samochocki et al., 2016). Indeed, transgenic mice that overproduce VEGF-A exhibit exacerbated inflammation, with a self-amplifying loop of fluid leakage and inflammation in the skin, leading to increased fluid accumulation (Xia et al., 2003; Kunstfeld et al., 2004). In the context of inflammation, VEGF expression is modulated by a multitude of regulatory mechanisms, including transcription factors and various other stimuli such as growth factors, hormones, cytokines, and cellular stress, such that thoroughly comprehending the regulatory mechanisms of VEGF is a complex task (Arcondeguy et al., 2013). The transcription factor Sp1 has been identified as a pivotal modulator of VEGF expression, whereas Sp3 represses Sp1-mediated transcription (Pages and Pouyssegur, 2005). The balance between Sp1 and Sp3 shows the intricate dynamic within the transcriptional regulation of VEGF (Hagen et al., 1994). The interaction between Sp1 and Sp3 raises the intriguing possibility that t10,c15-18:2 could stimulate Sp3 via RXRγ, consequently downregulating VEGF expression at the transcriptional level. In another possibility, the murine VEGF promoter is regulated by the concerted action of hypoxia-induced transcription factors such as hypoxia-inducible factor (HIF) and nuclear factor-κ B (NF-κB), which are important for optimal VEGF expression (Lukiw et al., 2003; Schmidt et al., 2007). Notably, JunB deficiency leads to reduced HIF and NF-κB–induced VEGF expression (Schmidt et al., 2007). We wonder whether t10,c15-18:2 treatment might suppress JunB expression, subsequently diminishing VEGF expression. Our findings indicate the potential to develop innovative treatments to decrease inflammation in allergic contact dermatitis by modulating VEGFA expression through RXRγ-mediated signalling. Moreover, targeting the RXRγ–VEGF axis may offer several therapeutic advantages, particularly in alleviating vascular permeability. To harness these opportunities effectively, a deeper comprehension of RXRγ’s role in skin inflammation is imperative and a more comprehensive investigation into the RXRγ–VEGF axis is needed for the advancement of therapies for skin diseases. In this context, future research should delve into the specific molecular mechanisms responsible for the downregulation of VEGF expression.

Our findings indicate the potential of t10,c15-18:2 in the development of an effective therapeutic to regulate vascular permeability in allergic contact dermatitis. Notably, with its structural simplicity and lack of conjugated double bonds, t10,c15-18:2 may be less prone to oxidation than CLAs (Zhang and Chen, 1997), supporting the potential of t10,c15-18:2 as a valuable health-promoting compound. In the context of postbiotics, the provision of essential substrates, such as omega-3 fatty acids, along with a selection of probiotics rich in metabolic enzymes for the conversion of these substrates to t10,c15-18:2, may enhance the production of these beneficial postbiotics, thereby bestowing additional health benefits. At the same time, it is important to recognize the limitations of our research. This study was conducted solely with female mice due to their lower aggression levels, which reduces physical skin irritations from behaviors like scratching and mounting (Schwarz et al., 2023). This decision, while beneficial for controlling experimental variables, limits the applicability of our findings across sexes. Therefore, future research should include both male and female mice to comprehensively evaluate sex as a biological variable in allergic contact dermatitis responses. Also, given the nature of t10,c15-18:2, its application to the skin rather than oral administration seems to be the best route to obtain anti-inflammatory effects. Treatment centering primarily on VEGF-centric approaches—anti-VEGF therapy—effectively diminishes inflammation in various conditions, including chronic inflammatory diseases, diabetic macular edema, psoriasis-related skin inflammation, and allergic contact dermatitis (Ardelean et al., 2014; Apte et al., 2019; Luengas-Martinez et al., 2020; Imazeki et al., 2021). At present, therapies targeting VEGF-A are used in treating, for example, age-related macular degeneration and cancer (Ferrara et al., 2007; Ferrara and Adamis, 2016). Given our insights into the activity of t10,c15-18:2 through topical application, the potential exists for its use in alleviating allergic contact hypersensitivity and other conditions marked by increased vascular permeability via VEGF modulation.
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Supplementary Figure 1 | Influence of t10,c15-18:2 on IgE-dependent mast cell degranulation. In the mast cell degranulation assay, peritoneal mast cells were sensitized through exposure to 0.2 mg/mL anti-dinitrophenyl (DNP)–IgE for 24 h at 37°C and stimulated with 100 ng/mL DNP–BSA for 30 min at 37°C. To assess the effect of fatty acid metabolites on degranulation, t10,c15-18:2 in 0.1% (vol/vol) ethanol in Hank’s Balanced Salt Solution (final concentration, 300 nM) or the vehicle only was added before the 30-min stimulation with DNP–BSA. For the control group, n = 5/group, and for the DNP-BSA stimulated group, n = 7/group. The degranulation level was measured by using flow cytometry after staining for the degranulation marker CD63. Statistical significance was evaluated by using the Kruskal–Wallis test followed by Dunn’s multiple-comparison test.

Supplementary Figure 2 | VEGFA gene expression levels in response to t10,c15-18:2 on HaCaT cells. HaCaT cells were obtained from CLS Cell Lines Service (Eppelheim) and cultured in Dulbecco’s modified Eagle’s medium (DMEM) with high glucose. The medium was supplemented with 10% fetal bovine serum, 100 U/mL penicillin, and 100 µg/mL streptomycin. The cells were maintained at 37°C with 5% CO2. For the experiments, HaCaT cells were seeded in 96-well plates at a density of 3 × 104 cells/well and cultured for 24 h. Subsequently, the culture medium was replaced with DMEM without fetal bovine serum. The cells were then treated with 300 nM t10,c15-18:2 for 30 min, followed by stimulation with 100 ng/mL recombinant human IFN-γ for 24 h. A vehicle control containing 0.2% (vol/vol) ethanol in DMEM was used for comparison. The data are combined from two independent experiments (n = 11/group).

Supplementary Figure 3 | Reduction of the ear skin swelling when t10,c15-18:2 is applied after the elicitation phase. Mice received 0.5% (vol/vol) DNFB on day 0 on the abdominal skin, followed by the challenge of both sides of the ears with 0.2% (vol/vol) DNFB on day 5. After elicitation, mice were topically treated with t10,c15-18:2 (dose, 1 μg/mouse) in 50% (vol/vol) ethanol in PBS, or the vehicle as a control on day 6. DNFB-induced ear swelling was evaluated on day 7. For the non-elicitation group and the vehicle-treated group, n = 4 mice/group; for the t10,c15-18:2-treated group, n = 6 mice/group. The data are combined from two independent experiments.

Supplementary Figure 4 | Activation levels of RXRα and RXRβ in response to t10,c15-18:2 and c9,c15-18:2. Activation levels of the nuclear receptors RXRα and RXRβ were assessed by using a reporter assay system after 24-h exposure to fatty acid (final concentration, 30 μM) or the vehicle only. One replicate for each condition.
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Background

The interplay between gut microbiota and metabolites in the early stages of sepsis-induced acute kidney injury (SA-AKI) is not yet clearly understood. This study explores the characteristics and interactions of gut microbiota, and blood and urinary metabolites in patients with SA-AKI.





Methods

Utilizing a prospective observational approach, we conducted comparative analyses of gut microbiota and metabolites via metabolomics and metagenomics in individuals diagnosed with SA-AKI compared to those without AKI (NCT06197828). Pearson correlations were used to identify associations between microbiota, metabolites, and clinical indicators. The Comprehensive Antibiotic Resistance Database was employed to detect antibiotic resistance genes (ARGs), while Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways informed on metabolic processes and microbial resistance patterns.





Results

Our study included analysis of four patients with SA-AKI and five without AKI. Significant disparities in bacterial composition were observed, illustrated by diversity indices (Shannon index: 2.0 ± 0.4 vs. 1.4 ± 0.6, P = 0.230; Simpson index: 0.8 ± 0.1 vs. 0.6 ± 0.2, P = 0.494) between the SA-AKI group and the non-AKI group. N6, N6, N6-Trimethyl-L-lysine was detected in both blood and urine metabolites, and also showed significant correlations with specific gut microbiota (Campylobacter hominis and Bacteroides caccae, R > 0, P < 0.05). Both blood and urine metabolites were enriched in the lysine degradation pathway. We also identified the citrate cycle (TCA cycle) as a KEGG pathway enriched in sets of differentially expressed ARGs in the gut microbiota, which exhibits an association with lysine degradation.





Conclusions

Significant differences in gut microbiota and metabolites were observed between the SA-AKI and non-AKI groups, uncovering potential biomarkers and metabolic changes linked to SA-AKI. The lysine degradation pathway may serve as a crucial link connecting gut microbiota and metabolites.





Keywords: pediatric, kidney injury, sepsis, gut microbiota, blood metabolome




1 Introduction

Sepsis is a life-threatening clinical syndrome characterized by organ dysfunction caused by an abnormal host response to infection (Hotchkiss et al., 2016). Acute kidney injury (AKI) is a common complication of sepsis, and sepsis-associated AKI (SA-AKI) increases the risk of patient mortality (Peng et al., 2014). Existing research suggests that the gut microbiota is involved in the occurrence and progression of SA-AKI (Zhang et al., 2018; Chávez-Iñiguez et al., 2022; Xu et al., 2022). Meijers et al. proposed the concept of the “gut–kidney axis” in 2011; subsequently, Pahl et al. refined the theory (Meijers and Evenepoel, 2011; Pahl and Vaziri, 2015). The core concept of this theory is that kidney injury can disrupt the gut microbiota and impede the functionality of the intestinal epithelial barrier. Dysbiosis in the gut microbiota can also lead to the production of metabolic toxins, thereby exacerbating kidney injury. Wang et al. identified a strong correlation between the composition of the gut microbiota and the serum metabolome in patients with end-stage renal disease (Wang et al., 2020). Moreover, Wu et al. employed dual-omics data to elucidate the intricate links between gut microbiota and perturbed metabolites in the context of chronic kidney disease (CKD) (Wu et al., 2020). Nevertheless, the changes in gut microbiota and metabolites, along with their potential relationship with kidney injury, remain ambiguous in the initial phases of SA-AKI (within the first 48h).

The initial changes in gut microbiota observed in SA-AKI are multifaceted, with the gut microbiota’s influence on the kidneys demonstrating complex and dualistic roles that can lead to both potentially beneficial and detrimental effects (Xu et al., 2022). Alterations in the richness and composition of gut microbiota during the early stages of sepsis have been documented, potentially triggering the onset and progression of AKI (Yu et al., 2018; Chen et al., 2019; Yuan et al., 2020; Xu et al., 2023). These alterations, on one hand, may instigate kidney damage through disruption of the intestinal barrier and amplification of inflammatory responses. Damage to the intestinal mucosal barrier may stimulate pro-inflammatory events, exacerbating the dislocation of gut microbiota and causing kidney damage (Capaldo et al., 2017). Conversely, such modifications may also augment kidney perfusion and oxygenation, thereby bolstering kidney functionality. In 2010, Udy et al. found that patients with severe disease frequently experience hyperfunction in the early stages of the disease (Udy et al., 2010). Gut microbiota’s role in effectively mediating inflammatory responses, which may reduce vascular resistance and increase cardiac output (CO) while affecting capillary permeability; these endogenous reactions combined with aggressive fluid and hemodynamic therapy can further lead to increased kidney blood flow and changes in glomerular filtration (Vaishnavi, 2013; Traykova et al., 2017; Paone and Cani, 2020; Huang et al., 2021). When sepsis occurs, how the gut microbiota affects the kidney and whether it is beneficial or harmful remain unclear.

To elucidate the interaction mechanism and impact of the gut–kidney axis in patients with SA-AKI, we conducted a comparative analysis of the gut microbiota as well as blood and urinary metabolites within 48h of diagnosis in individuals with SA-AKI and those without AKI. Metagenomics and metabolomics approaches were employed for this investigation (ClinicalTrial.gov NCT06197828). Our hypothesis posited that alterations in the gut microbiota during sepsis contribute to changes in the blood metabolome, ultimately exerting comprehensive effects on kidney function through mechanisms such as kidney blood perfusion, oxygen consumption, and inflammatory responses.




2 Methods



2.1 Participant recruitment and sample collection

This was a prospective observational study of children admitted to the pediatric intensive care unit (PICU) of Xinhua Hospital, affiliated with the Shanghai Jiao Tong University School of Medicine, from May 2021 to May 2022. The inclusion criteria were as follows: (i) age >28 days and <18 years, and (ii) sepsis diagnosis based on the sepsis-3 criteria (Singer et al., 2016). The exclusion criteria were as follows: (i) history of kidney disease; (ii) no follow-up due to death or discharge within 48h; (iii) refusal to participate in the study by the child’s guardian; and (iv) missing baseline data (Figure 1A). The patients were categorized into groups based on the presence or absence of AKI during hospitalization. AKI diagnosis was using Kidney Disease: Improving Global Outcomes (KDIGO) criteria including both plasma creatinine and urine output criteria (Kellum and Lameire, 2013).
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Figure 1 | (A) Study population. (B) Study design and sample collection scheme.

After patient enrollment, a 48h follow-up period was conducted. Stool, blood, and urine specimens were collected upon admission [day 0 (D0)], succeeding day 1 (D1) (within the subsequent 24h post admission), as well as on day 2 (D2) (approximately 24h–48h succeeding admission). Figure 1B illustrates the study design and the time points for sample collection. This study is reported in concordance with Strengthening the Reporting of Observational Studies in Epidemiology recommendations (von Elm et al., 2007).

The baseline data included age, sex, height, weight, and body mass index at admission. Clinical indicators were assessed during the first 24h in the PICU, including kidney injury markers [serum creatinine (SCr) and blood urea nitrogen (BUN)], hemodynamic parameters [mean arterial pressure (MAP), CO, fractional shortening (FS), ejection fraction (EF), and renal resistive index (RRI)], oxygen metabolism indices (pressure of oxygen in artery (PaO2), partial pressure of carbon dioxide in artery (PaCO2), saturation of arterial blood oxygen (SaO2), lactic acid, pressure of oxygen in urine (PuO2), and partial pressure of carbon dioxide in urine (PuCO2), and inflammatory indicators (white blood cell, the neutrophil to lymphocyte ratio, IL-8, IL-1β, IL-6, TNF-α, IL-2, IL-10, and procalcitonin). The severity of the disease is evaluated based on the PCI score, PRISM III score, and site of infection. Therapeutic strategies are assessed, which include the administration of antibiotics, vasoactive drugs, mechanical ventilation, and renal replacement therapy. Additionally, the duration of hospitalization and stay in the intensive care unit are also taken into consideration.

The primary objectives were changes in the gut microbiota and blood and urine metabolites between the SA-AKI and non-AKI groups. Secondary objectives included correlations between the gut microbiota or metabolites, clinical indicators, and associations between the gut microbiota and metabolites. Raw data can be accessed from the NCBI BioProject (PRJNA1025259).




2.2 Preparation of stool samples and stool metagenomics analysis

Stool microbiome samples were routinely collected on the day of admission using sterile anal swabs and stored at −80°C without preservatives before processing. The Dinfectome Company (Nanjing, China) performed metagenomics next-generation sequencing (NGS) of stool samples as follows: DNA was extracted using the TIANamp Magnetic DNA Kit (Tiangen, Beijing) per the manufacturer’s protocols. RNA was extracted from the bronchoalveolar lavage fluid, plasma, and other samples using the QIAamp Viral RNA Mini Kit (Qiagen, Germany), and a library was constructed after Qubit quantification. DNA libraries were prepared using the Hieff NGS C130P2 OnePot II DNA Library Prep Kit for MGI (Yeasen Biotechnology, Shanghai), per the manufacturer’s protocol. The rRNA was removed from the total RNA, and a library was constructed after purification. Agilent 2100 was used for quality control, and the DNA libraries were 50 bp single-end sequencing on an MGISEQ-200. An in-house bioinformatics pipeline was used for pathogen identification. Briefly, high-quality sequencing data were generated by removing low-quality reads, adapter contamination, and duplicate and short (<36 bp) reads. Human host sequences were identified by mapping to the human reference genome (hs37d5) using the bowtie2 software (version 2.2.6). Gut microbiota data were downloaded from the human gut microbiota database (GMrepo, https://gmrepo.humangut.=home), and all annotated results (Operational Taxonomic Units, OTUs) in our study were compared to public data. Alpha diversity was estimated using Shannon and Simpson indices based on the taxonomic profile of each sample. Differential relative abundance of taxonomic groups at the species level between groups was tested using the Kruskal–Wallis rank sum test (R package kruskal.test). Genera with mean relative abundances >1% and penetrance >40% were compared among all samples. Pearson Correlation coefficients between clinical indicators and the relative abundance of genera were calculated, and false discovery rate correction was used to adjust all P-values.




2.3 Metabolomics analysis of blood and urine

Venous blood samples were collected through venipuncture in sterile 2 ml of heparinized tubes, and urine samples were collected using sterile tubes (Sterisets Urine Collection Kit). These samples were stored at −20°C before being processed. Liquid chromatography–tandem mass spectrometry (MS) was performed to analyze blood and urine samples (Fujisaka et al., 2018). The profiling procedure included experimental design, quality assurance/control procedures, sampling, metabolite extraction, metabolite measurement, data processing, post-processing, and statistical analysis. Unsupervised principal component analysis (PCA) was used to examine the overall distribution of samples and the stability of the overall analysis process. We used partial least squares discriminant analysis (PLS-DA) and orthogonal PLS-DA (OPLS-DA) to evaluate the differences in metabolic profiles between the SA-AKI and non-AKI groups. Subsequently, differentially represented metabolites were determined based on the value of the variable importance in projection, OPLS-DA model first principal component (threshold >1), and P-value of the t-test (P < 0.05). Progenesis QI (version 2.3, Nonlinear Dynamics, Newcastle, UK) was used for MS analysis. PCA was performed using the R software, and the results were visualized using the ggplot2 package (3.3.6). Heatmaps for visualization were generated using the ComplexHeatmap R package (2.13.1). Pearson’s correlations were calculated to measure the correlation between metabolite levels and clinical indicators. Kyoto Encyclopedia of Genes and Genomes (KEGG) was used to annotate pathways and classify these pathways per the KEGG website (http://www.kegg.jp/) pathway hierarchy classification method.




2.4 Analysis of antibiotic resistance genes carriage by gut microbiota

The microbial antibiotic resistance profiles were analyzed utilizing the Comprehensive Antibiotic Resistance Database (CARD). The comparison of antibiotic resistance genes (ARGs) from gut microbiota between groups was performed using DEseq2. The statistical difference was considered significant if the adjusted P-value < 0.05 and|log2FC|> 1. Biological processes and KEGG signaling pathways were determined with Metascape.




2.5 Statistical analysis

Data were presented as mean ± SD. Comparisons between groups were performed using the nonparametric Kruskal–Wallis test. Statistical analyses were performed using IBM SPSS Statistics for Windows, version 23.0 (IBM Corp., Armonk, NY, USA) and R (version 4.2.1). Statistical significance was set at P < 0.05.





3 Results



3.1 Patient characteristics

Overall, nine patients diagnosed with sepsis, four of whom manifested SA-AKI. Baseline patient characteristics are in Table 1. The patients’ mean age was 6.1 years (range, 1–11); seven individuals (77.8%) were men. Among the enrolled participants, 66.7% of patients developed sepsis caused by respiratory tract infections. When comparing the PCI scores and PRISM III scores between the two groups, it was observed that the patients in the SA-AKI group had more severe conditions compared to the non-AKI group.

Table 1 | Comparisons of baseline characteristics between groups.
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Analysis of clinical indicators in two patient groups. In terms of kidney function indicators, patients with SA-AKI show significantly higher levels of creatinine (51.2 vs. 19.3 μmol/L), along with relatively elevated BUN levels (9.3 vs. 2.8 mmol/L). Hemodynamic analysis reveals that the non-AKI group has superior cardiac function, characterized by comparatively higher MAP, CO, and EF. However, there are no significant differences observed between the two groups in terms of RRI. In terms of oxygen metabolism analysis, the SA-AKI group exhibits higher levels of PaO2 (86.4 vs. 71.0) and PuO2 (162.5 vs. 117.4) compared to the non-AKI group. Analysis of inflammatory markers shows higher levels of procalcitonin in the SA-AKI group, while the non-AKI group exhibits a more pronounced immune response with higher levels of IL-8, IL-1β, IL-6, and TNF-α.

The usage of antibiotics differed between the SA-AKI and non-AKI groups. Specifically, in the SA-AKI group, 50% of the patients were treated with cephalosporins. Conversely, in the non-AKI group, a combination of third-generation cephalosporins and glycopeptide antibiotics was administered to 60% of the patients. Furthermore, the prevalence of probiotic usage (Clostridium butyricum) was higher in the non-AKI group compared to the SA-AKI group (40% vs. 25%). Patients with SA-AKI had a higher proportion of vasopressor use and mechanical ventilation compared to the non-AKI group. One patient in each group underwent CRRT. The PICU and hospital length of stay were increased in patients with SA-AKI.




3.2 Association between gut microbiota and clinical outcomes in patients with sepsis

We performed a comparative analysis of gut microbiota between the SA-AKI group and the non-AKI group. The Venn diagram illustrated that there were 43 OTUs shared at the species level, with a total richness of 152, between the two groups. Additionally, patients in the non-AKI group exhibited a lower number of unique OTUs compared to the SA-AKI group (Figure 2A). We conducted a further analysis on the disparities in gut microbiota composition between the SA-AKI group and the non-AKI group. The 20 most abundant gut microbiota at taxonomic levels were chosen to generate a histogram illustrating their relative abundance (Figure 2B). At the species level, Enterococcus avium showed the highest abundance in the SA-AKI group, followed by Bacteroides caccae and Campylobacter hominis. In the non-AKI group, the top three species in terms of abundance were Bacteroides fragilis, Veillonella parvula, and Prevotella corporis. The Shannon and Simpson indices displayed higher values in patients diagnosed with SA-AKI as compared to those categorized in the non-AKI group (Shannon index: 2.0 ± 0.4 vs. 1.4 ± 0.6, P = 0.230; Simpson index: 0.8 ± 0.1 vs. 0.6 ± 0.2, P = 0.494, Figure 2C).

[image: Venn diagram shows overlap between SA-AKI and Non-AKI groups with shared and unique elements. Bar charts display alpha diversity indices (Shannon and Simpson) across both groups. Stacked bar graph depicts relative abundance of various bacterial taxa, highlighting differences between groups. Heatmap correlates bacterial abundance with various health indicators, with color coding indicating correlation strength and significance.]
Figure 2 | (A) Venn representation of gut microbiota; (B) stacked bar chart representing the relative abundance at the species level; (C) Shannon and Simpson Indices; (D) left boxplot showing top 20 relative abundance of gut microbiota at the species level. The right heatmap displays a comparative analysis of gut microbiota between patients’ clinical indicators, and an asterisk indicates microbes significantly interacting in the presence or absence of the factors (Pearson correlation analysis, P < 0.05). If the coefficient in the interaction term is >0 (red), the microbe’s abundance increases in the presence of the factor. A value <0 (blue) means the microbe’s abundance decreases in the presence of the factor. AKI, acute kidney injury; SCr, serum creatinine; BUN, blood urea nitrogen; MAP, mean arterial pressure; CO, cardiac output; FS, fractional shortening; EF, ejection fraction; RRI, renal resistive index; PaO2, pressure of oxygen in artery; PaCO2, partial pressure of carbon dioxide in artery; SaO2, saturation of arterial blood oxygen; Lac, lactic acid; PuO2, pressure of oxygen in urine; PuCO2, partial pressure of carbon dioxide in urine; WBC, white blood cell; NLR, the neutrophil to lymphocyte ratio; PCT, procalcitonin; Corr, correlation.

Next, we selected the 20 most abundant taxonomic levels of gut microbiota to conduct a correlation analysis with clinical indicators. Regarding kidney function, SA-AKI patients exhibited higher levels of SCr and BUN compared to those without AKI. Additionally, we observed an increase in the expression of Campylobacter hominis in the SA-AKI group. Moreover, we discovered a positive correlation between elevated levels of Campylobacter hominis expression and markers of AKI (SCr, Corr = 0.7, P = 0.047; blood urea nitrogen, Corr = 0.8, P = 0.012, Figure 2D). In relation to cardiovascular function, we found a negative correlation between the levels of the Bacteroidetes (specifically Bacteroides stercoris and Bacteroides vulgatus) and cardiac systolic function (as measured by EF and FS, see Figure 2D). Notably, higher levels of the Bacteroidetes were observed in the SA-AKI group. As for the analysis pertaining to oxygen metabolism-related indicators, our study identified an increase in the expression of Rothia mucilaginosa in the SA-AKI group compared to the non-AKI group. This elevation was found to be correlated with higher levels of PaCO2 (Corr = 0.9, P < 0.001, Figure 2D). In relation to inflammatory markers, a notable association was found between the levels of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α, and the presence of Bifidobacterium longum, Bifidobacterium bifidum, and Clostridioides difficile. These three types of gut microorganisms exhibited a higher prevalence in the non-AKI group as compared to the SA-AKI group.

The gut microbiota analysis results indicate a significant difference in bacterial composition between the SA-AKI group and the non-AKI group, as evidenced by the distinct relative abundance of predominant taxa. Firmicutes and Bacteroidetes were the dominant phyla in both groups, while Proteobacteria emerged as the third most prevalent phylum in the SA-AKI group. Our clinical relevance analysis further confirms the association of Proteobacteria with AKI markers. Different bacterial species show certain correlations with clinical indicators.




3.3 Metabolomics analysis of blood in patients with sepsis

We continued the analysis to examine how blood metabolites changed over the first 48h after admission. On D0, 34 metabolites were identified to be downregulated, while 49 metabolites were found to be upregulated (Figure 3Ai). On D1, 48 differential metabolites were selected, with 22 downregulated and 26 upregulated metabolites observed (Figure 3Aii). On D2, 90 differential metabolites were identified, with 36 downregulated and 54 upregulated metabolites observed. (Figure 3Aiii).
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Figure 3 | (A) Volcano plot showing the differential blood metabolites between SA-AKI and non-AKI groups upon ICU admission (D0, i), at 24h (D1, ii), and at 48 hours (D2, iii). (B) Venn diagram illustrating the overlap of blood metabolites in ICU admissions at baseline (D0), 24h after admission (D1), and 48h after admission (D2). (C) The left-hand heatmap showing log2 fold change (FC) of expression levels for blood metabolites with coloration ranging from purple (high expression) to yellow (low expression). The closer the color is to bright purple, the higher the expression in the non-AKI group; the closer to bright yellow, the higher the expression in the SA-AKI group. The heatmap on the right displays a correlation using Pearson’s correlation coefficient between blood metabolites and clinical indicators. If the coefficient in the interaction term is >0 (red), the levels of blood metabolite expression increase in the presence of the factor. A value <0 (blue) means a decrease in the expression levels of blood metabolites in the presence of the factor. (D) Venn diagrams Illustrates the overlap of significant KEGG pathways identified from the blood metabolites screened in ICU admissions at baseline (D0), 24h post-admission (D1), and 48h post-admission (D2). (E) Enrichment analysis of KEGG pathways on D0. (F) Enrichment analysis of KEGG pathways on D1. (G) Enrichment analysis of KEGG pathways on D2. AKI, acute kidney injury; SCr, serum creatinine; BUN, blood urea nitrogen; MAP, mean arterial pressure; CO, cardiac output; FS, fractional shortening; EF, ejection fraction; RRI, renal resistive index; PaO2, pressure of oxygen in artery; PaCO2, partial pressure of carbon dioxide in artery; SaO2, saturation of arterial blood oxygen; Lac, lactic acid; PuO2, pressure of oxygen in urine; PuCO2, partial pressure of carbon dioxide in urine; WBC, white blood cell; NLR, the neutrophil to lymphocyte ratio; PCT, procalcitonin; Corr, correlation; ICU, intensive care unit; KEGG, Kyoto Encyclopedia of Genes and Genomes.

The Venn diagram presented in Figure 3B shows the unique and co-differentially expressed metabolites observed in response to AKI at three distinct time points. Specifically, three metabolites, 13Z-docosenamide, Capsiamide, and N6, N6, N6-Trimethyl-L-lysine, exhibited persistence for 48h following admission. Hierarchical clustering was applied to group these metabolites (Supplementary Figure S1). Consistently across all three time points, the expression levels of 13Z-docosenamide, Capsiamide, and N6, N6, N6-Trimethyl-L-lysine were found to be higher in the SA-AKI group as compared to the non-AKI group.

The relationship between expression levels of blood metabolite and clinical indicators was explored using Pearson’s correlation analysis. Heatmap analysis was performed to investigate correlations between blood metabolites and clinical indicators (Supplementary Figure S2). We identified significant correlations between blood metabolites and clinical indicators: six metabolites correlated with SCr and BUN primarily on D3, 29 with EF and FS mostly on D1, and 15 with PuO2 and PuCO2. Additionally, 44 metabolites, mainly on D2, were linked to inflammation markers.

Figure 3C shows the correlation between clinical indicators and the overlapping blood metabolites, 13Z-docosenamide, Capsiamide, and N6, N6, N6-Trimethyl-L-lysine, at three time points. The levels of these three blood metabolites were significantly higher in the SA-AKI group compared to the non-AKI group. In the first two days, 13Z-docosenamide and Capsiamide exhibited significant positive correlations with PuO2, while showing a negative correlation with PuCO2. In addition, N6, N6, N6-Trimethyl-L-lysine demonstrated a significant positive correlation with SCr.

The enriched pathways of blood metabolites were analyzed using KEGG enrichment analysis. The Venn diagram the presence of two metabolic pathways, Choline metabolism in cancer and lysine degradation, across all three-time points (Figure 3D). It is noteworthy that N6, N6, N6-Trimethyl-L-lysine is involved in the lysine degradation pathways.

On D0, KEGG pathway analysis identified significant enrichment of 68 pathways. Among them, the NF-kappa B signaling pathway and Th1 and Th2 cell differentiation were identified as the two most enriched pathways (Figure 3E). The enrichment analysis conducted on D1 revealed a significant enrichment of two KEGG pathways: Phenylalanine metabolism and Choline metabolism in cancer (Figure 3F). On D2, four KEGG pathways were found to be significantly enriched: Central carbon metabolism in cancer, Aminoacyl-tRNA biosynthesis, D-arginine, and D-ornithine metabolism, as well as Choline metabolism in cancer (Figure 3G).

The findings indicate significant alterations in blood metabolites within the initial 48h, closely linked to clinical indicators. Three metabolites maintained consistent levels during this period. Additionally, two pathways from the KEGG database were persistently active throughout the first two days.




3.4 Metabolomics analysis of urine in patients with sepsis

Metabolic profiling of urine showed that a total of 39 differential urinary metabolites were identified on D0 with 22 downregulated and 17 upregulated metabolites (Figure 4Ai). On D1, nine metabolites were found to be differential, comprising three downregulated and six upregulated metabolites (Figure 4Aii). On D2, a total of 19 differential metabolites were identified, including 11 downregulated and eight upregulated metabolites (Figure 4Aiii).
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Figure 4 | (A) Volcano plot showing the differential urinary metabolites between SA-AKI and non-AKI groups upon ICU admission (D0, i), at 24h (D1, ii), and at 48h (D2, iii). (B) Venn diagram showing the overlap of urinary metabolites in ICU admissions at baseline (D0), 24h after admission (D1), and 48h after admission (D2). (C) The heatmap represents the correlation coefficients between clinical indicators and urinary metabolites upon ICU admission (D0, i), at 24h (D1, ii), and at 48h (D2, iii). The left-hand heatmap showing log2 fold change (FC) of expression levels for urinary metabolites with coloration ranging from purple (high expression) to yellow (low expression). The closer the color is to bright purple, the higher the expression in the non-AKI group; the closer to bright yellow, the higher the expression in the SA-AKI group. The heatmap on the right displays a correlation using Pearson’s correlation coefficient between urinary metabolites and clinical indicators. If the coefficient in the interaction term is >0 (red), the expression levels of urinary metabolites increase in the presence of the factor. A value <0 (blue) means a decrease in the expression levels of urinary metabolites in the presence of the factor. (D) Venn diagrams illustrate the overlap of significant KEGG pathways identified from the urinary metabolites screened in ICU admissions at baseline (D0), 24h post-admission (D1), and 48h post-admission (D2). (E) KEGG pathways enrichment analysis was conducted on ICU admissions at baseline (D0, i), 24h post-admission (D1, ii), and 48h post-admission (D2, iii). AKI, acute kidney injury; SCr, serum creatinine; BUN, blood urea nitrogen; MAP, mean arterial pressure; CO, cardiac output; FS, fractional shortening; EF, ejection fraction; RRI, renal resistive index; PaO2, pressure of oxygen in artery; PaCO2, partial pressure of carbon dioxide in artery; SaO2, saturation of arterial blood oxygen; Lac, lactic acid; PuO2, pressure of oxygen in urine; PuCO2, partial pressure of carbon dioxide in urine; WBC, white blood cell; NLR, the neutrophil to lymphocyte ratio; PCT, procalcitonin; Corr, correlation; ICU, intensive care unit; KEGG, Kyoto Encyclopedia of Genes and Genomes.

The Venn diagram depicted in Figure 4B illustrates the unique and co-differentially expressed urinary metabolites at three distinct time points. The urinary metabolite, Hydroxypyruvaldehyde phosphate, was detected on both D0 and D1, whereas three urinary metabolites, Trichloroethanol glucuronide, 2-thiothiazolidine-4-carboxylic acid, and Gibberellin A86 remained present on D1 and D2. However, no urinary metabolites persisted across D0, D1, and D2.

Hierarchical clustering was performed to identify clusters (Supplementary Figure S3). We have constructed heatmaps to facilitate the visual representation of the correlation coefficients that subsist between clinical indicators and urinary metabolites (Figure 4C). In the aspect of kidney injury, 26 (13.7%) urinary metabolites were significantly correlated with SCr and BUN, which were mainly observed on D0 (17, 43.6%). In terms of hemodynamic, three (7.7%) urinary metabolites were observed on D1 and showed increased expression in the SA-AKI group. These metabolites were positively correlated with CO but negatively correlated with RRI. Three (15.8%) urinary metabolites on D2 were also significantly associated with CO and the RRI. Regarding oxygen metabolism, nine (3.1%) urinary metabolites were found to have a significant correlation with PuCO2 and PuO2 levels, primarily observed on D0 (6, 15.4%). It was observed that the urinary metabolites positively correlated with PuCO2 increased in patients with SA-AKI. In the aspect of inflammation, 10 (3.4%) urinary metabolites were significantly associated with indicators of inflammation. Among these, on D0 and D2, they increased in the SA-AKI group and were positively correlated with indicators of inflammation; however, the situation was reversed on D1. The urinary metabolite intersection of D0 and D1, Hydroxypyruvaldehyde phosphate, showed significant associations with SCr, CO, PuCO2, PuO2, IL-8, and IL-10 levels on D0. However, these correlations were less pronounced on D1. Gibberellin A86, the urinary metabolite intersection of D1 and D2, was found to be significantly associated with SCr and PCO2 on both D1 and D2.

The Venn diagram in Figure 4D illustrates the intersecting information of the enriched pathways of urinary metabolites at three time points, which were analyzed using KEGG enrichment analysis. There is no overlapping KEGG pathway between D0 and D1. Between D1 and D2, there are two intersecting KEGG pathways, namely the Chemical Carcinogenesis and the Metabolism of Xenobiotics by Cytochrome P450. A sole KEGG pathway, lysine degradation, intersects between D0 and D2. Figure 4E presents the enriched pathways of urinary metabolites at three different time points.

The metabolomic analysis of urine reveals significant changes in metabolic profiles at three distinct intervals, with no urinary metabolites demonstrating persistent expression over a 48-hour period. Additionally, no KEGG pathways maintain consistent presence throughout the same timeframe. Notably, while urinary metabolites correlate with clinical indicators, this relation does not remain stable over a prolonged period.




3.5 Investigating the potential relationships among gut microbiota, blood metabolites, and urinary metabolites

Existing research has established a close correlation between gut microbiota and metabolites, yet it remains unclear whether this interrelationship is subject to temporal effects (Liu et al., 2022). An UpSet graph was constructed to identify common metabolites between blood metabolites and urinary metabolites at three-time points (Figure 5A). Our findings revealed the presence of three metabolites—Porson, Eplerenone, and Capsiamide—in both the blood and urine on D0. In contrast, there were no detectable common metabolites in the blood and urine samples on D1. However, on D2, a congruous metabolite, N6, N6, N6-Trimethyl-L-lysine, was observed in both the blood and urine metabolites.

[image: Image contains three panels labeled A, B, and C. Panel A is a bar graph showing intersection sizes of metabolites from different days and types of samples, with urinary and blood metabolites indicated by shades of blue. Panel B is a similar plot using green bars, visualizing the KEGG pathway enrichment intersections for blood and urinary metabolites. Panel C is a heatmap displaying correlation between different metabolites and various bacterial genera, with color intensity representing correlation strength, red being positive, and blue being negative. Stars denote significant correlations at p less than 0.05.]
Figure 5 | (A) The UpSet diagram illustrates the shared metabolites between blood and urine at three-time points. (B) The UpSet diagram illustrates the common KEGG enrichment pathway shared by both the blood metabolite KEGG enrichment pathway and the urine metabolite KEGG enrichment pathway at three-time points. (C) The heatmap illustrates the Pearson’s correlation between metabolites and gut microbiota. When the coefficient in the interaction term is >0 (depicted in red), it indicates that the expression levels of metabolites increase in the presence of the factor. Conversely, a value <0 (depicted in blue) signifies that the expression levels of metabolites decrease in the presence of the factor.

An UpSet graph was utilized to pinpoint shared KEGG enrichment pathways between both blood and urine metabolite enrichment pathways at three different time points (Figure 5B). Our research identified the existence of a single KEGG enrichment pathway, specifically lysine degradation, in both blood and urine samples at D0. Contrarily, there were no observable KEGG enrichment pathways in blood and urine specimens at D1. Nonetheless, at D2, three distinct enrichment pathways, namely, lysine degradation, Histidine metabolism, and Arginine and proline metabolism, were identified in both blood and urine metabolite KEGG enrichment pathways.

We employed Pearson’s correlation analysis to explore the correlation between gut microbiota at D0 and blood metabolites at D0 (A), D1 (B), and D2 (C) (Supplementary Figure S4). Additionally, we investigated the relationship between gut microbiota at D0 and urinary metabolites at D0 (A), D1 (B), and D2 (C) using the same analytical approach (Supplementary Figure S5). The three blood metabolites, 13Z-Docosenamide, Capsiamide, and N6, N6, N6-Trimethyl-L-lysine, were consistently detected at three different time points. Upon comparing their relationship with the gut microbiota at D0, it was found that there was no significant correlation between the expression of 13Z-Docosanamide and Capsaicamide with the gut microbiota. However, the blood metabolite, N6, N6, N6-Trimethyl-L-lysine, exhibited a notable positive correlation with the gut microbiota, specifically Campylobacter hominis at D0 and Bacteroides caccae at D2 (Figure 5C). The urinary metabolite, Hydroxypyruvaldehyde phosphate, which intersects D0 and D1, demonstrated a significant positive association with the gut microbiota Bacteroides caccae on D0, and with Rothia mucilaginosa and Enterococcus avium on D1. Moreover, the intersection of urinary metabolites between D1 and D2, namely, Trichloroethanol glucuronide and 2-thiothiazolidine-4-carboxylic acid, exhibited a substantial positive correlation with Veillonella parvula on D1. Additionally, Gibberellin A86, another commonly detected urinary metabolite in both D1 and D2 samples, displayed a noteworthy positive correlation with Bacteroides caccae on D1 (Figure 5C). The fitting curves of the significant correlations between gut microbiota and blood metabolites, as well as urine metabolites, can be found in Supplementary Figure S6.

The results suggest an overlap between blood metabolites and urinary metabolites, primarily at D0 and D2. The N6, N6, N6-Trimethyl-L-lysin, which stably exists in the blood metabolites within 48h, is also expressed in D2 urine, and may correlate with specific gut microbiota. Similarly, the KEGG pathway lysine degradation, which is stably present in the blood within 48 hours, is also expressed in D2 urine.




3.6 Investigation into the presence of antibiotic resistance genes in the gut microbiota

We explored antimicrobial resistance genes in the gut microbiota utilizing the CARD. The Venn diagram in Figure 6A illustrates the detection of 157 ARGs in the gut microbiota of the SA-AKI group and 150 ARGs in the non-AKI group, with 117 genes common to both groups. We identified 65 significantly differentially expressed ARGs based on our screening criteria (adjusted P < 0.05 and |log2FC| > 1). Figure 6B illustrates the heatmap of the number of significantly differentially expressed ARGs. We conducted a comparative analysis of the expression of GO entries with a P < 0.05. The primary biological processes identified included Opsonization, Negative regulation of macrophage-derived foam cell differentiation, and Negative regulation by the host of viral processes (Figure 6C). In terms of molecular function, the most significant enrichment and meaningful terms are opsonin binding, suggesting a functional role at the molecular level (Figure 6D). However, no significant enrichment was observed in terms related to cellular components. We identified KEGG pathway enriched in sets of differentially expressed ARGs using Metascape. The top KEGG terms included “Valine, leucine and isoleucine degradation,” “Fatty acid metabolism,” “Human papillomavirus infection” and “Neuroactive ligand-receptor interaction” (Figure 6E). It merits a particular emphasis that the lysine degradation, a KEGG pathway common to both blood and urinary metabolites, exhibits an association with the citrate cycle (TCA cycle). Supplementary Figure S7 displays an UpSet diagram illustrating the shared KEGG enrichment pathways among blood metabolites, urine metabolites, and antibiotic-resistance genes in the gut microbiota. KEGG pathway analysis shows no overlap between urinary metabolites and gut microbiota ARGs. On D0, blood metabolites and ARGs overlap in Melanogenesis and Vibrio cholerae infection pathways. By days 1 and 2, overlaps include the AMPK and Glucagon signaling pathways, with day 2 adding Valine, leucine, and isoleucine degradation. The interaction among KEGG pathways suggests a potential correlation between blood and urinary metabolites and ARGs in the gut microbiota.
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Figure 6 | (A) The Venn diagram illustrates the presence of antibiotic resistance genes (ARGs) in the gut microbiota of the SA-AKI group and the non-AKI group. (B) Heatmap analysis of the number of significantly differentially expressed ARGs. (C) Biological process; (D) molecular process. (E) KEGG pathway enriched in sets of differentially expressed ARGs.





4 Discussion

To clarify the interaction mechanism and influence of the gut–kidney axis in patients with SA-AKI, we conducted a comparative analysis of gut microbiota as well as blood and urinary metabolites between individuals with SA-AKI and those without AKI using metagenomics and metabolomics approaches.

There is a decrease in the abundance and diversity of gut microbiota in patients with sepsis (Zhu et al., 2018; Chen et al., 2019). However, we observed an increase in the diversity of gut microbiota in patients with SA-AKI increased. Similar results were also reported in Yang et al.’s study, suggesting that kidney injury can profoundly alter the composition of gut microbiota, leading to distinct microbial community profiles (Yang et al., 2020). We observed the absence of beneficial anaerobes, such as Bifidobacterium, in patients with SA-AKI, while the expression of Enterobacter was found to be elevated. Dicu-Andreescu et al. and Nakade et al. have reported similar findings (Nakade et al., 2018; Dicu-Andreescu et al., 2024). The most notable characteristic of the alteration in the gut microbiota composition in sepsis patients is the reduction in protective symbiotic flora, specifically obligate anaerobic bacteria and Lactobacilli, alongside the elevation of pathogenic bacteria such as Enterococcus and Pseudomonas, which can become predominant (Dickson, 2016; Lankelma et al., 2017; Wan et al., 2018).

We have also discussed the correlation between alterations in gut microbiota and clinical indicators in SA-AKI patients. Multiple mechanisms, including macrovascular and microvascular dysfunction, inflammatory cascades, and kidney oxygen supply, mediate SA-AKI (Peerapornratana et al., 2019; Chang et al., 2022). Here, we found that both gut microbiota and metabolites were involved in these mechanisms. We have observed an interesting phenomenon: the inflammatory response of patients in the non-AKI group appears to be more pronounced compared to that of the AKI group. It is worth noting that the non-AKI group, despite the heightened inflammatory response, exhibits higher MAP, CO, and EF values when compared to the SA-AKI group. This finding seems to contradict the results of certain studies that indicate inflammatory responses may worsen kidney damage. This appears to contradict some studies’ findings, suggesting that inflammatory responses can exacerbate kidney damage (Bijuklic et al., 2007; Andres-Hernando et al., 2012). This phenomenon may be related to the presence of systemic inflammatory response syndrome, which leads to augmented renal clearance. Early stages of sepsis are accompanied by the release of pro-inflammatory mediators, which may reduce vascular resistance and increase CO while affecting capillary permeability (Langenberg et al., 2005; Trof et al., 2010). Here, we found that an elevation in the levels of Bifidobacterium longum, Bifidobacterium bifidum, and Clostridium difficile in the non-AKI group, and these changes were found to be closely associated with inflammatory factors. This observation is consistent with findings from other relevant studies (Bassotti et al., 2023). We have also identified a relationship between Enterococcus faecium and Bacteroides stercoris, as well as Bacteroides vulgatus. Studies have emphasized that it may be related to cardiac dysfunction and vascular permeability changes caused by systemic inflammation in patients with sepsis. The complex alterations in gut microbiota during SA-AKI could potentially exert a multitude of interactive impacts on kidney function (Rabkin, 2009).

The existing research has demonstrated a robust correlation between the gut microbiota and blood metabolites, a relationship that our study also confirmed (Zhang et al., 2020). Here, we found that three metabolites (13Z-docosenamide, capsiamide, and N6, N6, N6-Trimethyl-L-lysine) in patients with SA-AKI persisted at the three-time points and were closely related to the gut microbiota. Reportedly, the production of 13Z-docosenamide by Escherichia coli and similar or related molecules by other bacteria is crucial during growth (Tamilmani et al., 2018). Some studies have suggested that 13Z-docosenamide serves as the primary angiogenic lipid in bovine mesentery, as demonstrated through a chorioallantoic membrane assay (Wakamatsu et al., 1990; Mitchell et al., 1996). Zhou et al. found that Capsiamide is linked to Clostridium difficile and may act as an anti-inflammatory (Zhou et al., 2018). N6, N6, N6-trimethyl-L-lysine are positively associated with Phascola crobacterium, which is involved in regulating water uptake (Li et al., 2023). These studies suggest that the gut microbiota plays a vital role in nutrient digestion and absorption and influences blood metabolism (Turnbaugh and Gordon, 2008; Org et al., 2017). Visconti et al. observed approximately seven times more associations between metabolites and microbial metabolic pathways compared to species. The trend became even more pronounced r when analyzing the fecal–blood dialog, with approximately 13 times more co-associated metabolite pairs identified using the P-gain statistics for microbial metabolic pathways compared to species (Visconti et al., 2019). Therefore, this could be a key point in our research to make the gut–kidney axis possible. A joint study of the microbiome and metabolome has been suggested as the most promising approach for evaluating host–microbiome interactions.

Here, simultaneous changes in the blood and urinary metabolites of patients with SA-AKI were analyzed. The blood metabolome undergoes profound changes in response to kidney injury, whereas the urine metabolome is expected to be directly related to the kidney because of its convenience (Kalantari and Nafar, 2019). A study analyzed urine metabolites in patients with AKI after cardiac surgery with cardiopulmonary bypass and showed that the spectra of 24h postoperative urine specimens could predict AKI across all stages with an average accuracy of 76.0% and a corresponding AUC value of 0.83 (Zacharias et al., 2013). In our study, however, urinary metabolites were found to be unstable, with no consistently expressed urinary metabolites across three-time points or enriched KEGG pathways identified. It is important to highlight that N6, N6, N6-Trimethyl-L-lysine was detected in blood metabolites at three time points and in urine metabolites on D2. Additionally, both blood and urinary metabolites demonstrated an enhancement in the lysine degradation pathway. This pathway is fundamental to cellular growth, differentiation, and metabolic regulation, with N6, N6, N6-Trimethyl-L-lysine also featuring within the process (Feng et al., 2022; Yuan et al., 2023).

The gut serves as a crucial harborage for drug-resistant bacteria. A robust gut microbiota, characterized by stability and diversity, safeguards the host against encroachment by pathogenic bacteria. Antibiotic treatments can potentially destabilize the gut’s harmonious ecosystem, thereby creating a conducive environment for drug-resistant bacteria colonization. This situation escalates the load of resistance genes and exacerbates the dispersion of resistant bacteria to other areas, leading to infections (Anthony et al., 2021). Similarly, antibiotic usage can affect microbiota stability (Chávez-Íñiguez et al., 2023). In this study, all patients had undergone antibiotic treatment, with 33.3% having utilized probiotics. We have assessed whether the enriched KEGG pathways of these ARGs correspond to certain sections relating to blood and urinary metabolites. The lysine degradation pathway, a KEGG pathway concurrently observed in blood and urinary metabolites, demonstrates a significant correlation with the citrate cycle (TCA cycle). The existing research confirms that lysine acetylation/deacetylation plays a crucial role in regulating metabolic enzymes in the TCA cycle, primarily through the functions of sirtuins (Shakespear et al., 2018). Moreover, essential metabolic enzymes and energy metabolites have a direct influence on the pro-inflammatory and anti-inflammatory responses of macrophages. These findings may contribute to our clinically relevant markers, although additional research is needed to validate this hypothesis.

This study had some limitations. First, a small sample size and insufficient postoperative follow-up time. Although the sample size of this study met the requirements of a randomized controlled trial, the relatively small sample size may have led to a certain deviation in the results; therefore, follow-up studies with larger sample sizes are required to validate these findings. Second, due to constraints in sample availability and funding, we were unable to perform multivariate analysis on the gut microbiota at time points D1 and D2. This may affect the accuracy of our results. However, in practice, it is often impractical to analyze patients’ samples over an extended period due to substantial financial requirements, resulting in a predominant preference for data from D0. Hence, exploring the data from D0 and the persistent expression of metabolites in this study could prove beneficial for clinical settings. Third, in this study, our primary focus is on observation and demonstration. We explore the correlation between gut microbiota and blood and urinary metabolites, with the aim of identifying breakthrough points in the gut–kidney axis. As a result, we have not further corroborated the related metabolic products, genes, and KEGG pathways found in the research. However, we plan to validate these findings through animal and cellular experiments in subsequent studies.




5 Conclusion

In conclusion, significant differences were noted in gut microbiota and both blood and urinary metabolites between the SA-AKI and non-AKI groups. These differences showed varying correlations with clinical indicators over time. The blood metabolites, 13Z-docosenamide, capsiamide, and N6, N6, N6-trimethyl-L-lysine, were detected at all three time points, whereas no consistently expressed metabolites were found in the urinary samples at all three time points. N6, N6, N6-Trimethyl-L-lysine, present in both blood and urine, was enriched in the lysine degradation pathway, a common KEGG pathway. Additionally, the study identified ARGs in the population, with several correlating with blood metabolites, notably the citrate cycle (TCA cycle) linked to lysine degradation.
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Objective

This study aimed to explore the correlation between microbiota dysbiosis and hypothyroidism in early pregnancy by 16S rRNA amplicon sequencing combined with metagenomic sequencing.





Methods

Sixty pregnant women (30 with hypothyroidism and 30 normal controls) were recruited for 16S rRNA amplicon sequencing, and 6 patients from each group were randomly selected for metagenomic sequencing to assess the gut microbiome profile.





Results

The 16S rRNA results showed that beta-diversity in the hypothyroidism group was decreased. The relative abundances of the Prevotella and Paraprevotella genera increased in the hypothyroidism group, and Blautia predominated in the controls. The metagenomics results revealed that Prevotella_stercorea_CAG_629, Prevotella_hominis, Prevotella_sp_AM34_19LB, etc. were enriched in the hypothyroidism group at the species level. Functional analysis revealed that the pyridoxal 5’-phosphate synthase pdxT subunit module was decreased, and the short-chain fatty acid (SCFA) transporter and phospholipase/carboxylesterase modules were strongly enriched in the hypothyroidism group. Hypothyroidism patients had increased C-reactive protein (CRP), interleukin-2 (IL-2), IL-4, IL-10, and tumor necrosis factor (TNF)-α levels. The pyridoxal 5’-phosphate synthase pdxT subunit, the SCFA transporter, and the phospholipase/carboxylesterase module were associated with different Prevotella species.





Conclusion

In early pregnancy, women with hypothyroidism exhibit microbiota dysbiosis, and Prevotella may affect the metabolism of glutamate, SCFA, and phospholipases, which could be involved in the development of hypothyroidism during pregnancy.





Keywords: hypothyroidism, pregnancy, gut microbiome, 16S rRNA amplicon sequencing, shotgun metagenomic sequencing




1 Introduction

Hypothyroidism is a systemic hypometabolic syndrome caused by decreased synthesis and secretion of thyroid hormones or insufficient target tissue effect, with a 4% incidence (MacDonald and Monteleone, 2005; Dong and Stagnaro-Green, 2019). The demand for thyroid hormone by the mother and fetus increases during pregnancy, but the fetus cannot synthesize thyroid hormone until 20 weeks of gestation (Lee et al., 2020). Maternal hypothyroidism can increase the risk of miscarriage, premature birth, gestational hypertension, low birth weight infants, and neurodevelopmental delays in offspring (Alexander et al., 2017; Ge et al., 2020). However, the pathogenesis of hypothyroidism during pregnancy remains unclear.

The gut microbiome, as a current research hotspot, plays a crucial role in host immunity, endocrinology, metabolism, and other aspects. It may affect the intestinal barrier through “leaky gut” and “molecular mimicry” mechanisms and impact the host metabolism in inflammatory and autoimmune diseases (Benvenga and Guarneri, 2016; Thaiss et al., 2018). Wu et al. found that the abundance of Prevotella was increased in pregnant women with thyroid peroxidase antibody (TPOAb)-positive subclinical hypothyroidism in the second trimester (Wu et al., 2022). Therefore, microbiota dysbiosis is closely related to hypothyroidism during pregnancy. However, there are no comprehensive studies on the relationship between the characteristics of the gut microbiome and hypothyroidism in early pregnancy.

In this study, we applied 16S rRNA amplicon sequencing combined with shotgun metagenomic sequencing to investigate alterations of the gut microbiome in women with hypothyroidism in early pregnancy and explored the role of microbiota dysbiosis in the pathogenesis of hypothyroidism during pregnancy.




2 Materials and methods



2.1 Study subjects

Pregnant women who received perinatal care at the Third Affiliated Hospital of Zhengzhou University, China between November 2021 and May 2022 were recruited. Thirty pregnant women with hypothyroidism who satisfied the inclusion criteria were included in the hypothyroidism group, whereas thirty normal pregnant women were included in the control group during the same time period. From the hospital’s electronic medical records, we collected demographic details and relevant clinical data of the participants.

The inclusion criteria were as follows: (1) Thyroid function level complied with the diagnostic criteria of the Guideline on Diagnosis and Management of Thyroid Diseases during Pregnancy and Postpartum (2nd edition) (Ad Hoc Writing Committee for Guideline on Diagnosis and Management of Thyroid Diseases during Pregnancy and Postpartum et al., 2019) for hypothyroidism during pregnancy and the diagnostic criteria formulated by the Clinical Laboratory of the Third Affiliated Hospital of Zhengzhou University, China [serum thyroid stimulating hormone (TSH)>4.2 mIU/L] and (2) Gestational age less than 14 weeks.

The exclusion criteria were as follows: (1) age<18 years or ≥35 years; (2) multiple pregnancies; (3) artificial conception; (4) severe stress, anxiety, or depression; (5) endocrine or immune system diseases before and during pregnancy, such as diabetes, gestational hypertension and systemic lupus erythematosus; (6) severe gastrointestinal diseases or gastrointestinal surgery; and (7) received antibiotic, probiotic, or immunosuppressant treatment in the previous 2 months. and (8) applied anti-thyroid drugs or thyroid hormone replacement.

The study was approved by the Medical Ethics Committee of the Third Affiliated Hospital of Zhengzhou University, China (NO: 2021-105-01). All enrolled subjects participated voluntarily and signed an informed consent form.




2.2 Sample collection

All fecal samples were collected from all subjects within 24 hours of diagnosis of hypothyroidism during pregnancy. Before collecting the samples, the subjects were informed. After natural defecation, a sterile spoon was used to carefully collect the sample from the middle part of the stool, ensuring that the sample did not contact the bedpan to avoid mixing with urine. After collection, the sample was placed in a 2.0 mL sterile tube, transported to the laboratory within 2 hours, and stored at -80°C until further processing.




2.3 Laboratory testing

Laboratory testing was conducted in the laboratory department of the Third Affiliated Hospital of Zhengzhou University, China. All tests were performed by the manufacturer’s instructions.

The levels of serum thyroid-stimulating hormone (TSH), free thyroxine (FT4), TPOAb, and thyroglobulin antibody (TgAb) were measured using the Cobas e 801 electrochemiluminescence immunoassay analyzer (Roche, USA) and its supporting kit (Roche, Jiangxi, China). The normal reference values were established as follows: TSH (0.27-4.2 mIU/L), FT4 (12-22 pmol/L), TPOAb (0-34 IU/mL), and TgAb (0-114 IU/mL).

Serum fasting blood glucose (GLU), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels were measured by an AU5800 automatic biochemistry analyzer (Beckman Coulter, USA) and matching kit (Beckman Coulter, Suzhou, China). The normal reference values were established as follows: GLU (3.9-6.1 mmol/L), TC (0-6.2 mmol/L), TG (0.4-1.86 mmol/L), LDL-C (1.9-3.8 mmol/L), and HDL-C (1.29-1.55 mmol/L).

The levels of C-reactive protein (CRP) and hemoglobin (HGB) in peripheral blood were tested by the BC-5700 (Mindray, China) with a corresponding kit (Mindray, Shenzhen, China). The normal reference values were established as follows: CRP (0-3 mg/L) and HGB (115-150 g/L).

The levels of peripheral blood interleukin (IL)-2, 6, 8, 10 and tumor necrosis factor (TNF)-α were determined by a FACSCanto™ flow cytometer (BD, USA) and a human Th1/Th2 subset detection kit (Cellgene biotech, Jiangxi, China). The normal reference values were established as follows: IL-2 (≤ 11.4 pg/ml), IL-4 (≤ 12.9 pg/ml), IL-6 (≤ 20 pg/ml), IL-10 (≤ 5.9 pg/ml), and TNF-α (≤ 5.5 pg/ml).




2.4 16S rRNA amplicon sequencing and bioinformatics analysis

16S rRNA amplicon sequencing was used to analyze the fecal samples from all participants. A MagPure Stool DNA KF Kit B (cat. no.MD511, Magen, China) was used to extract total DNA from the microbial community in the stool specimens (0.20 g) (Fadrosh et al., 2014). Polymerase chain reaction (PCR) was used to amplify the highly variable V3-V4 region of the bacterial 16S rRNA gene. The PCR primer sequences were 338F (5’-ACTCCTACGGGAGGCAGCAG-3’) and 806R (5’-GGACTACHVGGGTWTCTAAT-3’). Magnetic beads were used for purification, and library construction was completed. Sequencing was performed using the Illumina MiSeq platform (BGI, Shenzhen, China) to generate 300 bp paired-end reads. After obtaining the Illumina raw data in fastq format, quality control and filtering were performed to obtain CleanData. The 60 samples generated 8,171,576 16S rRNA reads (mean reads per sample = 68,096). After sequence splicing, tags for the hypervariable region were obtained using the FLASH software (version 1.2.1, https://github.com/dstreett/FLASH2) (Magoc and Salzberg, 2011). The software USEARCH (version 7.0.1090, http://www.drive5.com/usearch/) (Edgar, 2013) was used to cluster tags according to 97% sequence similarity to generate operational taxonomic units (OTUs). The software RDP classifier (version 2.2, https://github.com/rdpstaff/classifier) (Wang and Cole, 2024) was used to compare representative OTUs sequences with the database for species annotation. The software Mothur (version 1.31.2, http://www.mothur.org) (Chappidi et al., 2019) was used for alpha diversity (Chao, ACE, Shannon and Simpson indices) analysis, and software QIIME(version 1.80, http://qiime.org/1.8.0/) (Hall and Beiko, 2018) was used for beta diversity analysis via principal coordinate analysis (PCoA) and nonmetric multidimensional scaling (NMDS). The Wilcoxon rank-sum test and linear discriminant analysis effect size (LEfSe) analysis were used to identify species with significant differences in microbiome abundance between the two groups.




2.5 Shotgun metagenomic sequencing and bioinformatics analysis

Fecal samples from six hypothyroid patients and six control group participants were chosen by simple random sampling and evaluated by metagenomics sequencing. A MagPure Stool DNA KF Kit B (cat. no.MD511, Magen, China) was used to extract total DNA from the microbial community in the stool specimens (0.20 g). The quality and quantity of the extracted DNA were determined using a microplate reader, and the DNA fragment size was assessed by agarose gel electrophoresis. One microgram of genomic DNA was used, and a Covaris instrument was used to ultrasonically interrupt it to obtain a 300 bp fragment. Fastp and the software MEGAHIT (version 1.1.2, https://github.com/voutcn/megahit) (Li et al., 2015) were used for quality control and assembly. The 12 samples generated 73,022,905,500 metagenomic reads, and the average assembly length was 123.16 M.

The software Prodigal (version 2.6.3, https://github.com/hyattpd/Prodigal) (Hyatt et al., 2010) was used for metagenomic gene prediction. The software Diamond (version 2.0.13, https://github.com/bbuchfink/diamond) (Gautam et al., 2022) was used to annotate the gene set in the Kyoto Encyclopedia of Genes and Genomes (KEGG) Database (https://www.genome.jp/kegg/) to obtain KEGG orthologous (KO) abundance tables. The software CD-HIT (version 4.8.1, https://github.com/weizhongli/cdhit) (Kondratenko et al., 2020) was used for clustering to obtain nonredundant gene sets, and the software BLAST (version 2.2.28, http://blast.ncbi.nlm.nih.gov/Blast.cgi) (Schmid et al., 2023) was subsequently used for comparison with the Non-Redundant Protein Sequence (NR) Database (https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/). The Wilcoxon rank-sum test was used to evaluate differences.




2.6 Statistical analysis

All statistical analyses of 16S rRNA amplicon sequencing and metagenomic sequencing data were performed in R (version 3.4.1). SPSS software (version 26.0, IBM, USA) was used for analysis. Normally distributed measurement data are described as the mean ± standard deviation (SD) according to the t test. Nonnormally distributed measurement data are expressed as medians and quartiles by Wilcoxon rank-sum tests. Categorical variables are reported as frequencies [n (%)] according to the Chi-square test. Correlations were examined by Spearman rank correlation analysis. All the statistical analyses were two-tailed tests, with p < 0.05 indicating statistical significance.





3 Results



3.1 General clinical data

Age differences, body mass index (BMI) at enrollment, gestational age, TPOAb, TgAb, TC, TG, LDL-C, HDL-C, GLU, and HGB were not significant between the hypothyroidism and control groups (P > 0.05).Higher serum CRP and lower FT4 levels were observed in the hypothyroidism group than in the control group (Table 1). The clinical characteristics of the 12 subjects who received shotgun metagenomics are displayed in Supplementary Table 1 of the Supplementary Materials.

Table 1 | Clinical characteristics of the participants.


[image: Comparison table of parameters between hypothyroidism and control groups, each with thirty subjects. Significant differences in TSH and FT4 levels, with p-values of less than 0.001 and 0.007 respectively. Other parameters show no significant differences. Data are expressed as means ± standard deviation or median (P25, P75) as noted. Significance indicated by boldface.]



3.2 Microbial taxa alteration determined by 16S rRNA amplicon sequencing

There was no significant difference in the alpha diversity between the hypothyroidism group and the control group (Figure 1A). Based on the unweighted UniFrac distance, beta diversity was significantly different between the two groups (Figure 1B). PCoA showed that the difference between the two groups was statistically significant (Figure 1C). A segregation trend between the two groups was observed by NMDS analysis (Figure 1D).

[image: Boxplots and scatterplots compare alpha and beta diversity between groups EH and EN. Panel A shows four alpha diversity metrics: ACE, Chao, Shannon, and Simpson. Panel B presents beta diversity using unweighted UniFrac distances. Panel C displays a PCoA plot, while Panel D shows an NMDS plot, with each group distinguished by colors and shapes.]
Figure 1 | Taxonomic diversity and composition analysis by 16S rRNA sequencing. (A) The alpha diversity analysis (ACE index, P = 0.060; Chao index, P = 0.060; Shannon index, P = 0.582; Simpson index, P = 0.374) of the two groups by the Wilcoxon rank-sum test. (B) The beta diversity analysis based on unweighted-UniFrac distance, P<0.001. (C) PCoA analysis in two groups. P = 0.014, PC1 explained 22.88% of the variation, and PC2 explained 6.61% of the variation. (D) NMDS analysis in two groups, stress = 0.200, and ANOSIM test, R = 0.067, P = 0.004. groupEH, the hypothyroidism group; groupEN, the control group.

At the genus level (Figure 2A), the top 5 dominant bacterial genera were Faecalibacterium, Gemmiger, Prevotella, Bacteroides and Bifidobacterium in the hypothyroidism group and Gemmiger, Faecalibacterium, Bifidobacterium, Bacteroides and Blautia in the control group. The relative abundances of the phyla Bacteroidetes and Firmicutes and the corresponding Firmicutes/Bacteroidetes ratios are illustrated in Figure 2B, indicating that the differences were not statistically significant.

[image: Four-panel chart comparing microbial compositions and abundances between groupEH and groupEN. Panel A shows stacked bar graphs of genus relative abundance, indicating diversity differences. Panel B includes bar plots comparing Firmicutes and Bacteroidetes abundances, with p-values for statistical significance displayed. Panel C features a bar chart of relative abundance percentages for specific genera across groups. Panel D displays an LDA score plot, differentiating taxa with significant abundances between the groups. GroupEH is represented in blue or green, and groupEN in orange or red.]
Figure 2 | Taxonomic composition analysis by 16S rRNA sequencing. (A) The gut microbiome composition diagrams at the genus level. The species whose abundance were less than 0.5% were classified into others. (B) Firmicutes/Bacteroidetes ratio in two groups. (C) The top 10 genera were selected for comparison. (D) LEfSe analysis in two groups, species with P<0.05 and linear discriminant analysis (LDA) scores > 2 were displayed. groupEH, the hypothyroidism group; groupEN, the control group. *P<0.05, **P<0.01.

The Wilcoxon rank-sum test was performed on the top 10 genera (Figure 2C). Faecalibacterium, Paraprevotella, and Prevotella were significantly enriched in the hypothyroidism group, and Blautia was enriched in the control group. LEfSe analysis revealed that at the genus level, the abundances of Faecalibacterium, Paraprevotella, and Prevotella were strikingly increased in the hypothyroidism group, whereas those of Anaerococcus, Blautia, Corynebacterium, Eggerthella, etc. were significantly increased in the control group(Figure 2D).




3.3 Microbial compositions at the species level determined by metagenomic sequencing

At the species level, Prevotella_copri, Faecalibacterium_prausnitzii, Phocaeicola_vulgatus and Eubacterium_sp. were the most abundant in the two groups (Figure 3A). The Wilcoxon rank-sum test showed that Paraprevotella_clara, Prevotella_hominis, Prevotella_sp_AM34_19LB, Prevotella_sp_TF12_30, and Prevotella_stercorea_CAG_629 were enriched in the hypothyroidism group, and Phascolarctobacterium_faecium was enriched in the control group (Figure 3B). LEfSe analysis revealed that the hypothyroidism group had greater relative abundances of Prevotella_hominis, Prevotella_sp_AM34_19LB, Prevotel-la_sp_TF12_30, Prevotella_stercorea_CAG_629, and Paraprevotella_clara (Figure 3C).
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Figure 3 | Taxonomic composition analysis by metagenomics sequencing. (A) The gut microbiome composition diagrams of the top 20 major species in all samples. (B) The top 15 species were selected for comparison. (C) LEfSe analysis in two groups, species with P < 0.05 and LDA scores > 2 were displayed. groupEH, the hypothyroidism group; groupEN, the control group. *P<0.05, **P<0.01.




3.4 Microbial functions determined by metagenomic sequencing

Microbial KOs were identified in gut metagenomes. As shown, the metabolism was active, and dominated by global and overview maps, carbohydrate metabolism, amino acid metabolism, and metabolism of cofactors and vitamins (Figures 4A, B). Differences in the number of KOs between the two groups were calculated by the rank-sum test. Different functions were initially screened according to “P < 0.05”, and then, through a literature review, relevant functions were selected and displayed visually in a box plot. The hypothyroidism group had higher K08681 (pyridoxal 5’-phosphate synthase pdxT subunit [EC: 4.3.3.6]) and lower K02106 (short-chain fatty acid transporter) and K06999 (phospholipase/carboxylesterase) (Figure 4C).

[image: Three-part image showing data visualizations. A: Bar chart titled "Histogram of KEGG" displaying categories like metabolism and cellular processes, with color-coded pathways. B: Stacked bar chart comparing community abundance percentages for FH and FN across different pathways. C: Box plots comparing proportions in FH and FN for three variables, with significant differences marked by asterisks.]
Figure 4 | Functional analysis by metagenomics sequencing. (A) Genes related to KEGG pathways. Each branch represents a KEGG pathway on level 2, and different colors represent different KEGG level 1 functions. (B) Functional composition at Level 2 in two groups. (C) Boxplot of different function modules in two groups. FH, the hypothyroid group; FN, the control group. *P<0.05, **P<0.01.




3.5 Comparison of serum inflammatory factors

Serum inflammation-related factors were compared between the two groups. The serum CRP, IL-2, IL-4, IL-10 and TNF-α levels in the hypothyroidism group were greater than those in the control group (P < 0.05). There was no statistically significant difference in IL-6 between the two groups (Table 2).

Table 2 | Comparison of serum inflammatory factors between the two groups.


[image: Table comparing levels of various parameters between hypothyroidism and control groups (n=30 each). Measurements include CRP, IL-2, IL-4, IL-6, IL-10, and TNF-α, expressed as medians with interquartile ranges. Significant differences (p<0.05) are noted in bold. CRP, IL-2, IL-4, IL-10, and TNF-α levels are significantly higher in hypothyroidism, while IL-6 shows no significant difference.]



3.6 Correlation analysis

At the genus level (Figure 5A), TSH was positively correlated with Faecalibacterium, Paraprevotella, Prevotella, etc., and negatively correlated with Blautia. Prevotella was positively correlated with IL-4 and IL-10, Paraprevotella was positively correlated with IL-2, IL-10 and TNF-α, and Blautia was negatively correlated with CRP, IL-2, IL-4 and TNF-α. At the species level (Figure 5C), Prevotella_stercorea_CAG_629 was positively correlated with IL-4, IL-10, and TNF-α. Paraprevotella_clara was positively correlated with IL-10. Correlation analysis between different microbial species and functions revealed that these three functions were associated with different species of the Prevotella genus (Figure 5B).

[image: Three correlation heatmaps labeled A, B, and C display relationships between various bacterial genera, species, and biochemical markers. Darker colors indicate stronger correlations, with blues showing negative correlations and reds showing positive ones. Clustered hierarchical dendrograms are visible above each heatmap, organizing data by similarity. The heatmaps measure correlation with factors like CRP, TSH, IL4, IL2, IL10, and TNF-α in A, enzymatic activities in B, and microbial genera in C.]
Figure 5 | Correlation analysis of gut microbiome, serologic clinical indicators and functional modules in two groups. (A) Correlation analysis between different genera detected by 16S rRNA sequencing and clinical indicators. (B) Correlation analysis between different species detected by metagenomics sequencing and functional modules. (C) Correlation analysis between differential species detected by metagenomics sequencing and clinical indicators. Positive correlations are indicated in red text and negative correlations are indicated in blue text. *P < 0.05, **P < 0.01.





4 Discussion

Hypothyroidism is a common metabolic disease of gestation. Normal thyroid hormone levels are critical for fetal cerebral neuronal migration, synaptogenesis, and myelination (Menezes et al., 2019). Disruption of the gut microbiome can trigger immune responses and metabolic disorders in the host by damaging the integrity of the intestinal barrier, which is vital for the development and progression of thyroid diseases (Jiang et al., 2022). There is a shortage of relevant research on the application of 16S rRNA amplicon sequencing combined with shotgun metagenomics to study changes in the gut microbiome in individuals with hypothyroidism during gestation.

According to our 16S rRNA amplicon sequencing results, there was no difference in the alpha diversity of the microbiota between the two groups, while lower beta diversity was observed in the hypothyroidism group. Our study revealed a decreased abundance of Blautia and increased abundances of Prevotella and Paraprevotella in hypothyroid patients. Su et al. reported that the alpha diversity of the microbiota was increased in patients with primary hypothyroidism (Su et al., 2020). These results are inconsistent with our findings, which could be attributed to the fact that our subjects were pregnant women (Edwards et al., 2017). Blautia, a potentially beneficial bacteria, contributes to intestinal homeostasis and inflammation prevention by upregulating intestinal regulatory T cells and producing short-chain fatty acids (SCFAs) (Liu et al., 2021). Prevotella, an opportunistic pathogen, has been linked to autoimmune disorders, ulcerative colitis and other diseases (Sharma et al., 2022). Its cell wall component, lipopolysaccharide (LPS), can induce macrophage polarization and transform T helper (Th)1 cells into Th2 cells (Orecchioni et al., 2019; Wu et al., 2023), disrupting intestinal immune homeostasis. Furthermore, the LPS component lipid A recognizes and attaches to LPS-binding protein (LBP) in the blood, forming the LPS-LBP complex, which activates Toll-like receptor 4 (TLR-4) and mediates nuclear factor kappa-B (Di Vincenzo et al., 2023), triggering apoptosis and harming thyroid cells. Our previous studies also revealed a decreased abundance of Blautia and an increased abundance of Prevotella in the hypothyroidism group (Cai et al., 2021; Wu et al., 2023). Therefore, we suspected that the decrease in beneficial bacteria and increase in opportunistic pathogenic microbes in hypothyroid patients during early pregnancy could lead to inflammation in the intestinal tract, accelerate the development of “leaky gut”, stimulate the thyroid inflammatory immune system response, and play a role in the occurrence of hypothyroidism.

The metagenomic results revealed that, at the species level, Paraprevotella_clara from the Paraprevotella genus, Prevotella stercorea CAG 629, Prevotella_hominis, Prevotella sp AM34_19LB, and Prevotella sp TF12_30 derived from the Prevotella genus were enriched in the hypothyroidism group, which was consistent with the 16S rRNA sequencing analysis. Paraprevotella currently contains only two species, and there is a lack of research on its potential role in human-health (Morotomi et al., 2009). Prevotella species are important sources of succinate (Hayashi et al., 2007). Succinate binds to intestinal epithelial succinate receptor 1 (SUCNR1), activating the hypoxia inducible factor 1α pathway, stimulating macrophage activation, amplifying proinflammatory effects (Fremder et al., 2021; Yan et al., 2022), and weakening the intestinal barrier. Additionally, the intracellular accumulation of succinate could reverse electron transfer and increase electron leakage in mitochondria, leading to the generation of mitochondrial reactive oxygen species (Erlich et al., 2022), and the induction of mitochondrial and endoplasmic reticulum stress (Morshed and Davies, 2020), which could contribute to thyroid cell apoptosis. We speculated that this effect might be involved in the pathogenesis of hypothyroidism during pregnancy.

According to our results, hypothyroid patients during pregnancy had increased levels of pyridoxal 5’-phosphate synthase pdxT subunit [EC: 4.3.3.6] modules and decreased levels of SCFA transporter modules and phospholipase/carboxylesterase modules. Species of Prevotella were significantly related to these three functional modules. We speculated that the following mechanisms could be linked to hypothyroidism: (1) Elevating pdxT could lead to increased glutamine hydrolysis and increased glutamate production (Itagaki et al., 2013). Glutamine promotes the production of intestinal secretory immunoglobulin A (SIgA) and inhibits bacterial translocation (Li et al., 2023). Its reduction could induce the upregulation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway, affect the amount of the tight junction protein claudin-1, and promote intestinal permeability (Li et al., 2021). Some studies have shown glutamate-glutamine cycle abnormalities in the hippocampus of hypothyroid rats, and glutamate accumulation excessively activates neuronal cells, leading to injury or even death (Cattani et al., 2013; Domingues et al., 2018). This could explain why the hypothyroid offspring of pregnant women have a greater risk of neurological disorders. (2) SCFAs are energy substances for intestinal cells. Decreases in its transport into cells may reduce the expression of the tight junction protein claudin-1 and weaken intestinal barrier function (Xu et al., 2023). In addition, a reduction in SCFAs impairs the inhibitory effect of LPS on Prevotella-induced cytokine production by dendritic cells and enhances intestinal inflammation (Nastasi et al., 2015). (3) A decrease in phospholipase activity could affect the TSH signaling pathway, inhibiting thyroid hormone synthesis. Kimura et al. reported that TSH promoted the generation of hydrogen peroxide and catalyzed the oxidation and transport of iodide in FRTL-5 thyroid cells through the phospholipase C/calcium ion cascade, which assisted in thyroid hormone synthesis (Kimura et al., 1995). As suggested by the aforementioned findings, alterations to the gut microbiome could influence metabolic functional modules, increase intestinal barrier permeability, and participate in the occurrence and development of hypothyroidism during pregnancy.

We found that the CRP, IL-2, IL-4, IL-10, and TNF-α levels were greater in the hypothyroidism group than in the control group. These results indicated that women with hypothyroidism during pregnancy suffer an inflammatory response. Several investigations have shown that the serum CRP level was elevated in hypothyroid patients according to a previous study (Zhou et al., 2020; Tang et al., 2021), which is consistent with our findings. CRP interacts with phosphatidylcholine in a calcium-dependent manner in bacterial LPS, activating the complement system and enhancing macrophage phagocytosis (Volanakis, 2001). This damage to the intestinal barrier leads to a “leaky gut” and promotes intestinal bacterial LPS to enter the body’s blood circulation (Itagaki et al., 2013). Then, LPS, a pathogen-associated molecular pattern, stimulates thyroid follicular cells to express TLR-4, induces the production of regulatory T cells (Tregs) (Park et al., 2015), promotes thyroid autoimmune inflammation, and disrupts normal of thyroid function.

Our study showed that the abundance of Prevotella correlated positively with TSH, IL-4, and IL-10; the abundance of Paraprevotella correlated positively with TSH, IL-2, IL-10, and TNF-α, and the abundance of Blautia correlated negatively with TSH, IL-2, IL-4, and TNF-α. This indicates that women with hypothyroidism in early pregnancy have a chronic inflammatory response and that the gut microbiome may affect the thyroid autoimmune response. (1) As a potentially beneficial bacterium, lower levels of Blautia might result in a reduction in SCFA butyrate, a decrease in the inhibitory effect on inflammation and oxidative stress, and a promotion of intestinal inflammation (Gasaly et al., 2021). (2) LPS, a component of Prevotella and Paraprevotella cell walls, can stimulate monocyte macrophages to secrete TNF-α via the mitogen-activated protein kinase p38 signaling pathway, leading to proinflammatory damage (Dai et al., 2020). Furthermore, LPS can trigger thyroid autoimmune inflammation by encouraging TSH-stimulated thyroglobulin and sodium/iodine symporter production, leading to thyroid cell damage and hypothyroidism (Tomasello et al., 2015).

In summary, our research revealed that women with hypothyroidism in early pregnancy exhibit microbiota dysbiosis, characterized by a significant enrichment of the Prevotella genus. This enrichment may contribute to the onset and progression of hypothyroidism by altering the expression of glutamate, SCFAs and phospholipase. By utilizing 16S rRNA amplicon sequencing in combination with shotgun metagenomics, our study expanded the exploration of the composition and function of the gut microbiome of women with hypothyroidism in early pregnancy. However, there are still some limitations in this study. First, the number of samples in this study was small, and the enrolled individuals had certain geographic characteristics that may be influenced by their dietary habits, leading to a deviation in the results. Second, our study subjects were all pregnant women in the first trimester, and we were not directed at the dynamic changes in the gut microbiome that occur during gestation. It is necessary to conduct a longitudinal study covering the entire gestation period. In addition, an enlarged group size and multiomics experimental methods will be needed to further reveal the mechanism of hypothyroidism during pregnancy.
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Background

Hepatic encephalopathy (HE) is a neurological disorder resulting from advanced liver injury. HE has a high mortality rate and poor prognosis. The pathogenesis of HE is still unclear, which has led to the lack of a satisfactory specific treatment method. There is increasing evidence that the intestinal flora affects the communication between the gut and the brain in the pathogenesis of HE. Adjusting the intestinal flora has had a beneficial effect on HE in recent studies, and the Qingchang Ligan formula (QCLG) has been shown in previous studies to regulate intestinal flora and metabolites. In this study, we established a thioacetamide-induced HE mouse model to evaluate the protective effect of QCLG on HE and explore its potential mechanism, which also demonstrated that intestinal flora dysbiosis is involved in the pathogenesis of HE.





Methods

Mice were intraperitoneally injected with thioacetamide (TAA, 150 mg/kg) to induce HE. Additionally, they were orally administered Qingchang Ligan Formula (QCLG) at a dose of 6.725 g/kg·d for seven days, while control mice received an equal volume of saline via gavage. Subsequently, samples were subjected to 16S ribosomal ribonucleic acid (rRNA) gene sequencing, high-performance liquid chromatography-mass spectrometry (LC-MS), and RNA-sequencing (RNA-seq) analysis.





Result

QCLG improved weight loss, cognitive impairment, neurological function scores, blood ammonia, and brain gene expression of interleukin-6 (TNF-α), Interleukin-1β (IL-1β), and interleukin-6 (IL-6) induced by HE. Moreover, QCLG increased the levels of liver function indicators, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and serum TNF-α, IL-1β, and IL-6. 16S RNA sequencing revealed increased Oscillibacter, Colidextribacter, and Helicobacter in TAA-induced mouse fecal samples. Also, the abundance of Bifidobacterium decreases TAA-induced mouse fecal samples. In contrast, QCLG treatment significantly restored the gut microbial community. Metabolomics indicated significant differences in some metabolites among the normal control, treatment, and model groups, including 5-methoxytryptophan, Daidzein, Stercobilin, and Plumieride (PLU).





Conclusion

QCLG can alleviate neuroinflammation and prevent HE caused by liver injury by regulating intestinal flora in mouse models.
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Introduction

Hepatic encephalopathy (HE), also known as hepatic coma, refers to a syndrome of central nervous system dysfunction resulting from metabolic disorders caused by severe liver disease. HE is a common and serious complication of chronic liver disease and acute liver failure (Bloom et al., 2022). Primary research directions for understanding HE pathogenesis involve theories such as ammonia poisoning, pseudo neurotransmitter hypothesis, intestinal flora, inflammatory response, and more (Baishuang et al., 2021; Feng and Weiqun, 2023).

Research on the microbiota-gut-brain (MGB) has advanced significantly in recent decades. A growing body of evidence indicates the involvement of microbial communities in the development of neurological diseases. Disruption of gut microbiota may trigger low-level inflammation, including neuroinflammation. Intestinal microflora is involved in the formation of nerves, the immune system, or other basic processes in the process of growth. During the development of HE, intestinal dysbiosis can not only induce a chronic inflammatory state in the intestinal epithelium but also increase neuroinflammation through the microbiota-gut-brain axis. Persistent inflammation in the gastrointestinal tract associated with dysbiosis can lead to the destruction of intestinal barrier integrity and increased permeability. Subsequently, pro-inflammatory microbial products such as lipopolysaccharide (LPS) and cytokines will cross the damaged barrier and enter the blood circulation, causing systemic inflammation. Subsequently, these pro-inflammatory molecules in systemic circulation may induce the destruction of the blood-brain barrier (BBB) (Zhao et al., 2021; Won et al., 2022). Studies have reported an increased number of pathogenic bacteria in the intestinal tract of HE patients compared to normal individuals, with an enhanced synergy among harmful bacteria (Elsaid and Rustgi, 2020). Studies have shown improvement in patients treated with Fecal Microbiota Transplantation (FMT) (Bloom et al., 2021; Li et al., 2022). Utilizing subjects with higher probiotic abundance, specifically Lachnospiraceae and Ruminococcaceae, as donors for FMT treatment in HE patients has demonstrated effective improvement in cognitive dysfunction associated with HE (Afecto et al., 2021).

Additionally, a study assessed 127 HE patients through cognitive testing. Notably, the FMT cohort showed improved cognitive performance and maintained this improvement over long-term follow-up (Tun et al., 2022). Overall, these reports suggest a pivotal role of alterations in intestinal microbiota in the pathogenesis of HE. However, the underlying mechanism requires further exploration.

Currently, primary clinical treatment options consist of lactulose and rifaximin, both of which exhibit obvious drawbacks (Jindal and Jagdish, 2019); given the limited treatment options for HE, discovering safe and effective drugs is highly beneficial. Qingchang Ligan Formula (QCLG) is an intrahospital prescription at Beijing You’an Hospital and has been clinically used there for many years. QCLG can reduce inflammation levels, ameliorate liver damage by regulating intestinal flora and reducing alanine and aspartate aminotransferase (ALT and AST) (Yin et al., 2022). Traditional Chinese medicine formulations are usually composed of various components, which thus highlights their feature of possessing multiple components and targets. Consequently, the impact of QCLG may extend beyond the diseases that have previously been identified. Against the background of the above information, our study aimed to investigate the effects of QCLG on HE mice and explore the correlation between changes in gut microbiota and metabolites and HE.





Materials and methods




Reagents

QCLG was obtained from Beijing Tongrentang Drugstore. The QCLG comprised 5 Chinese medicinal materials, including Rheum palmatum L. [Polygonaceous; Rhea Radix Et Rhizomes.] Rehmannia Radix [Scrophulariaceae; Rehmannia glutinosa Libosch.] Magnoliae Officinalis Cortex [Magnoliaceae; Magnolia officinalis Read. et Wils.] Aurantii Fructus [Rutaceae; Citrus aurantium L.] Taraxaci Herba [Asteraceae; Taraxacum mongolicum Hand-Mazz.] The five raw botanical drugs were combined in a ratio of 2:1:1: 1:1 and subjected to two rounds of boiling with 10-fold deionized water (ddH2O, 124 w/v) for 1 hour each. Then, it is filtered to obtain the filtrate and stored in aliquots at 10 mL 125 at 4 °C before use. Thioacetamide (TAA) was obtained from Sigma-Aldrich (St. Louis, USA). The same batch of QCLG was used throughout the experiment and was not mixed with other products.





Animals

Thirty male C57BL/6 mice (Beijing HFK Bioscience Co., Ltd.) weighing 20-25 g and specifically pathogen-free were used.





Experimental design

30 mice were divided into 5 groups of 6 mice each. These five groups included normal control (NC), thioacetamide (TAA), treatment, lactulose, and QCLG groups. NC group was gavage with normal saline and injected intraperitoneally. The TAA group was gavage with normal saline and injected intraperitoneally with TAA. The Lactulose group was gavage with lactulose and injected intraperitoneally with TAA. The treatment group was gavaged with QCLG and injected intraperitoneally with TAA. The QCLG group was gavaged with QCLG and injected intraperitoneally with normal saline. The QCLG group was used to evaluate the effects of QCLG on normal mice. The feeding conditions were as follows: temperature 20~25°C, humidity 40%~60%, 12 hours of light per day, free access to food and water, and standard feed. All rats were adaptively reared for 1 week before experiments were conducted. TAA is considered an alternative drug in the guidelines for modeling HE (DeMorrow et al., 2021). Given the absence of a specified dose in the guidelines, we injected 150 mg/kg intraperitoneally for two consecutive days in this experiment following multiple screenings. Following a week of acclimatization feeding, 5 groups were gavage and given the drug at the same time. The treatment and QCLG group were given QCLG (6.725g/kg) for 7 days, the lactulose group was gavage with lactulose (167 mg/kg) for 7 days, and the other two groups (TAA group and NC group) were gavage with an equal amount of normal saline for 7 days. 24 hours after the intragastric administration, mice in the TAA group, treatment group, and lactulose group were intraperitoneally injected with TAA (150 mg/kg). The NC group and QCLG group were intraperitoneally injected with an equal volume of normal saline. After the final TAA injection, mice were anesthetized with ether 24 hours later, and the ether concentration was maintained at 2%-4%. Blood samples were collected from the retro-orbital venous plexus and underwent a 10-minute centrifugation at 1,800 g at 4°C to obtain serum for measuring blood ammonia, ALT, AST, and inflammatory factors. The mice were euthanized by cervical dislocation. Partial liver tissues were fixed with 4% paraformaldehyde for morphological analysis, and brain tissues were fixed in a 3% glutaraldehyde solution. Additionally, some brain tissues were frozen rapidly in liquid nitrogen for qPCR and immunohistochemical analysis. Fecal samples were rapidly frozen in liquid nitrogen for 16S rRNA and metabolomics analysis. All tissues were adequately frozen during the experiment. Organ coefficients were calculated according to the following standard:

[image: Formula for relative organ weight is shown as: \[\text{Relative organ weight} = \left(\frac{\text{organ weight (g)}}{\text{body weight (g)}}\right) \times 100\%\].]	

All procedures were performed by the Guide for the Care and Use of Laboratory Animals established by the Beijing Municipal Ethics Committee. Animal experiments were approved by the Animal Welfare Committee of Capital Medical University (Approval Number: AEEI-2022-228).





Open field tests

An open-field experiment is a method to evaluate the autonomous behavior, inquiry behavior, and tension of experimental animals in a new environment. It’s often used to detect anxiety, exploratory behavior, and exercise ability in mice. In this study, the behavior ability of mice was evaluated by an open-field experiment. Open field tests were performed on four groups (NC, TAA, treatment, and lactulose group) 12 hours after the last TAA injection. The open field apparatus, measuring 50 cm x 50 cm x 45 cm, included an image capture system and operational analysis tools. It was placed in a well-lit, noise-free environment to test up to four mice simultaneously. Mice were introduced one hour before the experiment, ensuring appropriate lighting and a calm setting. The experiment began by placing mice in the center of the square arena for five minutes of unrestricted exploration, recorded by an automated video tracking system. After each experiment, the arena floor was cleaned to prevent potential chemical interference from urine or feces. The assessment included measuring both distances traveled and average speed.





Assessment of brain function

The assessment of brain function consists of 10 evaluation items, which can comprehensively evaluate the behavioral ability of mice. the higher the score, the worse the behavioral ability. Following the last TAA injection, brain function in four groups (NC, TAA, QCLG, treatment, and lactulose) was assessed 12 hours later. The evaluation utilized a 10-point system based on the method outlined by Chen et al (Avraham et al., 2011), covering criteria such as escaping from a circular ring, foraging behavior, corneal reflex, straight-line walking, startle reflex, grasping reflex, righting reflex, walking on a balance beam, placement reflex, and climbing behavior. Abnormal reflexes or behaviors scored 1 point, while normal behavior scored 0. Three individuals independently scored the assessments without communication to avoid bias. The equipment was cleaned after each experiment to prevent urine, feces, or odor interference.





Serum biochemical analyses

The guidelines for animal models of hepatic encephalopathy point out that the animal model of hepatic encephalopathy is based on the presence of liver injury or failure and abnormal blood ammonia. Serum was used to detect ALT, AST, and blood ammonia levels in mice, and to evaluate liver injury, and blood ammonia levels. Serum ALT and AST were quantified utilizing Chemray 800 and Rayto, along with a fully automated Chinese biochemical analyzer. Blood ammonia levels were determined using the G0436W blood ammonia assay kit of Grace Biotechnology. All protocols were executed as per the provided user manual.





Immunohistochemistry of glial fibrillary acid protein, Ib1 and γ-aminobutyric acid in brain tissues

Immunohistochemistry was used to detect the expression of microglia, astrocytes, and GABA in brain tissue. The above indicators were used to assess the degree of neuroinflammation in mice with hepatic encephalopathy. Tissue sections were deparaffinized and then incubated overnight at 4°C with anti-Ib1 mouse monoclonal antibody (Servicebio GB12105), anti-γ-aminobutyric acid (anti-GABA) A Receptor beta2/GABRB2 Rabbit polyclonal antibody (Servicebio GB114791), and anti-glial fibrillary acid protein (anti-GFAP) Rabbit polyclonal antibody (Servicebio GB11096) in a wet box. Subsequently, sections were washed and incubated for 50 minutes at room temperature with horseradish peroxidase (HRP)-labeled goat anti-mouse antibody (Servicebio GB23301) and HRP-labeled goat anti-rabbit immunoglobulin G (IgG, Servicebio GB23204). After additional washing, the tissue sections were developed with Diaminobenzidine (DAB), counterstained with hematoxylin, and examined under a bright-field microscope.





Histopathological examination of the liver

Liver histopathology to assess the extent of liver damage. Liver and brain tissue samples were obtained from each mouse group. Liver tissues were fixed in a 4% formaldehyde solution, while brain tissues were fixed in a 3% glutaraldehyde solution. The severity of liver damage was assessed using the histological activity index (HAI) score. The prefrontal cortex was isolated from brain tissues, and the extent of brain lesions was determined by examining neuronal cell bodies and synapses.





16S rRNA gene sequencing

In this study 16S rRNA gene sequencing was used to investigate the effect of QCLG on the Intestinal microflora of mice with HE. Genomic deoxyribonucleic acid (DNA) was extracted from fecal intestinal microbiota using the PF Mag-Bind Stool DNA Kit (Omega Bio-Tek, USA). DNA concentration, integrity, and quality were assessed using NanoDrop2000 and 1% agarose gel electrophoresis. The V3-V4 region of the 16S rRNA gene was amplified with 338F upstream and 806R downstream primers (ACTCCTACGGGAGGCAGCAG and GGACTACHVGGGTWTCTAAT). PCR products were purified using a PCR clean-up kit. Subsequently, libraries were constructed using the NEXTFLEX Rapid DNA-Seq Kit and sequenced with Illumina PE300 (Illumina, USA).





Metabolite analysis

Metabolite analysis was used to examine the effects of QCLG on metabolites in mice with hepatic encephalopathy. In a 2 mL centrifuge tube with a 50 mg fecal sample and a 6 mm diameter grinding bead, 400 μL of extraction solution (methanol to water ratio 4:1, v/v) with 0.02 mg/mL of internal standard (L-2-chlorophenylalanine) was used. LC-MS/MS analysis was performed on a Thermo Fisher Scientific UHPLC-Q Exactive HF-X system provided by Shanghai Meiji Biomedical Technology Co., Ltd., using a Thermo UHPLC-Q Exactive HF-X system with an ACQUITY HSS T3 column (100 mm × 2.1 mm i.d., 1.8 μm; Waters, USA) at Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China). Progenesis QI software preprocessed LC/MS raw data (Waters Corporation, Milford, USA), excluding internal standard peaks and known false positives. Metabolite identification uses databases like the Human Metabolome Database (HMDB, http://www.hmdb.ca/) and Metlin (https://metlin.scripps.edu/).





Enzyme-linked immunosorbent assay

Enzyme-linked immunosorbent assay was used to detect inflammatory factors in mouse serum and to evaluate the effect of QCLG on the inflammatory level in mice with HE. Enzyme-linked immunosorbent assay (ELISA) kits (Servicebio 88-7013-88 for Interleukin-1β (IL-1β), Servicebio GEM0001-96T for interleukin-6 (IL-6), and ServicebioGEM0004-96T for tumor necrosis factor-α (TNF-α) were utilized for detection. After that, 100 µL of coating buffer was added to each well of ™ Costar™ 9018 ELISA plates, which were sealed at 4°C overnight. After the washing buffer was used for washing, any remaining liquid was removed with absorbent paper, and the plates were sealed with 200 µL of 1X ELISA dilution buffer. After one hour of incubation at room temperature and washing, a standard curve was generated. Next, 100 µL of the sample was introduced into each well, and 100 µL of 1X ELISA dilution buffer was introduced into blank wells, which were sealed at 4°C overnight. By the same protocol, antibodies and Streptavidin-HRP were prepared. In addition, 100 µg per well was added to all wells, which were sealed for one hour at room temperature. Subsequently, each well was added with 100 µg of 1X Tetramethyl Benzidine (TMB) Solution at room temperature and underwent 15-minute incubation before the addition of the stop solution. The enzyme immunoassay was conducted at an absorbance of 450 nm, and the data were analyzed.





Real-time quantitative PCR

Real-Time Quantitative PCR was used to detect the levels of inflammatory factors in mouse brain tissue and evaluate the effect of QCLG on neuroinflammation. Total RNA was isolated from the liver using TRIzol reagent (Catalog No. 15596018; ThermoFisher) and then transcribed to cDNA using a Strand cDNA Synthesis Kit (Catalog No. 6210A; Takara). Real-time quantitative PCR (RT-qPCR) was performed with LightCycler 480 and technical triplicates using TB Green reagent (Catalog No. RR420A; Takara). The expression levels were calculated with the 2(-ΔΔCT) method, and the Cycle threshold (CT) values were normalized using GAPDH as a reference gene. The target genes were Thbs1 and Osgin1 (Table 1).

Table 1 | Sequences of primers used in real-time polymerase chain reactions.


[image: Table showing primers for GAPDH, IL-1β, IL-6, and TNF-α. Columns list gene names, primer sequences, and annealing temperature, which is 59.22 degrees Celsius for all primers.]




Statistical analysis

SPSS and GraphPad were used for statistical analysis and plotting, respectively. Data were presented as mean ± SEM. T-tests or Wilcoxon rank-sum tests were used for between-group comparisons and one-way ANOVA with Bonferroni correction for multiple groups. Statistical significance was set at p < 0.05. PLS-DA with VIP > 1 and P < 0.05 selected metabolites and pathway analysis utilized the KEGG website (http://www.genome.jp/kegg/).






Result




Qingchang Ligan formula can improve the effects of TAA-induced HE on mice’s body and organ weights

Mice in the TAA group exhibited a significant reduction in body weight compared to the NC group, while those in the treatment and lactulose groups showed a significant increase (Figure 1A). The liver and brain relative weights were notably higher in the TAA group than in the NC group. In contrast, the treatment and lactulose groups displayed a significant decrease in relative weight compared to the TAA group (Figures 1B, C).

[image: Graphical data displaying body weight and organ weight comparisons across different treatments. A line graph labeled "A" shows body weight changes over 48 hours for various groups: NC, TAA, Treatment, Lactulose, and QCLG. Bar graphs labeled "B" and "C" depict brain relative organ weight, brain weight, liver relative organ weight, and liver weight in grams, highlighting significant differences with asterisks. The data illustrates the impact of different treatments on weight metrics across these groups.]
Figure 1 | Qingchang Ligan Formula (QCLG) improves the effects of TAA-induced HE on body and organ weights. (A) Body weight was obtained 48 hours after an intraperitoneal injection of TAA. (B) Brain weight and Relative organ weight of the brain. (C) liver weight and Relative organ weight of the liver. NC, normal control group; TAA, thioacetamide model group; treatment, treatment group; lactulose, lactulose group; QCLG, Qingchang Ligan Formula group. Data were presented as mean ± SEM. (n = 5) *P < 0.05, **P < 0.01 and ***P < 0.001.





QCLG can improve the behavioral abnormalities in HE mice

Individual open-field tests and cognitive assessments were conducted on each mouse group to assess behavioral effects. The TAA group significantly reduced total distance traveled, zone-specific distance, and average speed compared to the NC group in open field tests (Figures 2A–C). Conversely, lactulose and treatment groups showed a significant increase in these parameters compared to the TAA group. In cognitive assessments, the TAA group exhibited a significant increase in scores compared to the NC group. In contrast, lactulose and treatment groups significantly decreased scores compared to the TAA group. There was no significant difference between QCLG and NC groups (Figure 2D).

[image: Bar graphs labeled A to D comparing different groups: NC, TAA, Treatment, Lactulose, and QCLG. Graph A shows total path in cm; NC and QCLG have higher values. Graph B shows zone path in cm; NC and QCLG are higher. Graph C depicts average speed in cm/s, with NC and QCLG leading. Graph D presents cognitive assessment scores; NC is the highest. Statistical significance marked by asterisks indicates varying levels of difference among groups.]
Figure 2 | Effects of QCLG on behavioral tests: Open field tests and cognitive assessments (A) Total path, (B) Zone path, (C) Average speed, (D) Cognitive assessments, NC, normal control group; TAA, thioacetamide model group; treatment, treatment group; lactulose, lactulose group; QCLG, Qingchang Ligan Formula group. Data were presented as mean ± SEM. (n = 5) *P < 0.05, **P < 0.01 and ***P < 0.001.





QCLG can protect against TAA-induced liver damage and peripheral inflammation

Peripheral inflammation can worsen liver damage, influencing the development of HE (DeMorrow et al., 2021). Serum levels of TNF-α, IL-1β, and IL-6 were assessed in mice. The TAA group showed significantly elevated TNF-α, IL-1β, and IL-6 levels compared to the NC group. In contrast, the treatment and lactulose groups exhibited notable reductions in these inflammatory factors compared to TAA. There was no significant difference between QCLG and NC groups (Figure 3A). Image analysis revealed increased liver tissue bleeding and irregular surfaces in the TAA group compared to the NC group, while the treatment and lactulose groups displayed smoother liver surfaces. There was no significant difference in the surface between the NC group and the QCLG group. (Figure 3B).

[image: A series of graphs and histological images display the effects of different treatments on liver inflammation and damage. Graphs in panels A, C, D, E, and F show data for TNF-alpha, IL-6, IL-1 beta levels, ammonia, AST, and ALT, with treatments annotated: NC, TAA, Treatment, Lactulose, and QCLG. Significant differences are marked with asterisks. Panel B illustrates liver histology and physical appearance under each treatment, showing varying levels of damage and inflammation.]
Figure 3 | QCLG alleviates TAA-induced liver injury and the levels of ammonia, TNF-α, IL-6 and IL-1β in the blood (A) The levels of TNF-α, IL-6 and IL-1β in the blood, (B) Representative liver sections from each group, Liver tissue hemorrhage and inflammatory infiltration (red border) (C) Plasma ammonia was confirmed 48 hours after an intraperitoneal injection of TAA, (D) Plasma AST levels were confirmed 48 hours after an intraperitoneal injection of TAA, (E) Plasma ALT levels were confirmed 48 hours after an intraperitoneal injection of TAA, (F) HAI score of the liver. NC, normal control group; TAA, thioacetamide model group; treatment, treatment group; lactulose, lactulose group; QCLG, Qingchang Ligan Formula group. Data were presented as mean ± SEM. (n = 5) *P < 0.05, **P < 0.01 and ***P < 0.001.

ALT, AST, and blood ammonia levels, crucial indicators for assessing HE severity and liver injury biomarkers, were assessed. The TAA group showed a significant increase in ALT, AST, and blood ammonia levels compared to the NC group. Conversely, the treatment and lactulose groups exhibited a considerable reduction in ALT, AST, and blood ammonia levels relative to TAA (Figures 3C–E). Histopathological analysis revealed heightened liver cell necrosis, cell swelling, inflammatory cell infiltration, and extensive bleeding in the TAA group compared to the NC group. Treatment and lactulose groups demonstrated a marked decrease in these pathological features relative to TAA. There was no significant difference between QCLG group and NC group in the above indexes. (Figures 3B, F).





Treatment with QCLG can restore TAA-induced neuroinflammation

The severity of brain injury and neuroinflammation significantly influences the progression of HE. Neuronal soma and synapse changes serve as indicators for assessing brain lesions. Transmission electron microscopy (TEM) analyzed QCLG’s influence on neurons and examined brain tissue neuronal structure (Figure 4). In the TAA group, mice showed neuronal swelling and partial dendritic loss compared to the NC group. However, the treatment group demonstrated significant improvement. In the prefrontal cortex and striatal synaptic structures (Figure 4), NC group synaptic structures were intact, with several synaptic vesicles, clear synaptic cleft, average C width, and standard postsynaptic density thickness. In TAA group mice, synaptic structures were unclear; synapses showed varying degrees of swelling, reduced synaptic vesicles, inconsistent synaptic cleft width, and thinning postsynaptic density. The treatment group’s synaptic structures showed significant relief compared to the TAA group, with increased synaptic vesicles and some improvement in synaptic cleft width.

[image: Five electron microscopy images display liver tissue with varying conditions labeled as NC, QCLG, TAA, Treatment, and Lactulose. The TAA, Treatment, and Lactulose images highlight specific areas with red boxes, suggesting notable features or changes in the tissue under different treatments or conditions.]
Figure 4 | QCLG alleviates TAA-induced neuronal damage. NC, normal control group; TAA, thioacetamide model group; treatment, treatment group; lactulose, lactulose group; QCLG, Qingchang Ligan Formula group. Synaptic structure (red border).

In assessments related to neuroinflammation, the results revealed a significant increase in TNF-α, IL-1β, and IL-6 levels in the brain tissue of the TAA group compared to the NC group. Conversely, the lactulose and treatment groups substantially decreased these three inflammatory factors compared to the TAA groups (Figure 5A). Meanwhile, markers of astrocyte activation (GFAP), microglia (ionized calcium-binding adapter molecule 1, iba1), and GABA expression in brain tissue were assessed. Astrocyte staining in the TAA group appeared lighter and had a significantly lower H-Score than that in the NC group. About iba1, microglia staining in the TAA group was darker and had a significantly higher H-Score than in the normal group. Regarding γ-aminobutyric acid (GABA), GABA staining in the TAA group was darker and had a significantly higher H-Score than in the NC group. There was no significant difference between QCLG and NC groups (Figures 5B, C).

[image: Graphs and images compare different treatments on expression levels and scores. Panel A shows bar graphs of TNFα, IL1β, and IL6 relative expression with significant differences marked by asterisks. Panel B presents immunohistochemistry images for GABA, GFAP, and Iba 1 across five treatment groups. Panel C shows bar graphs for GFAP and Iba 1 H-Scores, indicating significant differences with asterisks.]
Figure 5 | QCLG reduces neuroinflammation. (A) QCLG alleviates TNF-α, IL-6 and IL-1β in the brain. (B) Immunohistochemical evaluation of GFAP, GABA and Iba1 (40x zoom level). (C) Image analysis of GABA, Iba1, and GABA protein expression. NC, normal control group; TAA, thioacetamide model group; treatment, treatment group; lactulose, lactulose group; QCLG, Qingchang Ligan Formula group. Data were expressed as mean ± SEM (n = 5). *P < 0.05, **P < 0.01.





QCLG can alter gut microbiota structure

A body of research has emphasized the two-way association of the brain with the gut, where changes in the gut microbiota are linked to inflammation (Bajaj et al., 2015). To elucidate the molecular mechanisms underlying QCLG treatment of HE, we conducted 16S rRNA analysis on mouse feces and performed β-diversity analysis to assess differences between groups. Principal coordinate analysis (PCoA) based on Unweighted-unifrac dissimilarity demonstrated separation between the control group and both model and QCLG-treated groups. Notably, the TAA group exhibited distinct differences in gut microbiota structure compared to the QCLG-treated one. To confirm whether these changes were induced by QCLG, the QCLG group was also compared with the control one, which revealed a divergence (explaining 42.47% of the variance), indicating significant alterations in the core microbiota after treatment (Figure 6A). The diversity of the microbial community was assessed using diversity indices (Shannon and Simpson indices) (Figure 6B). It was observed that the fecal samples of TAA-treated mice showed a remarkable increase in microbial diversity compared to those of NC mice. In contrast, QCLG intervention led to a marked reduction in gut microbial diversity. The QCLG group exhibited a substantial increase in gut microbial diversity. The analysis of the microbiota composition of mouse feces revealed notable differences. The TAA group demonstrated a significant increase in the abundance of Parabacteroides, norank-f–Eubacterium-coprostanoligenes-group (P = 0.013), Oscillibacter (P = 0.028), Blautia (P = 0.029), Colidextribacter (P = 0.021) and Helicobacter (P = 0.044) compared with the normal one. However, the abundance of Bifidobacterium (P = 0.039) notably decreased. Conversely, these microorganisms displayed a marked decrease in the QCLG-treated group compared with the TAA one, with a significant increase in Bifidobacterium (Figure 6C). Furthermore, the analysis revealed differences in the abundance of particular taxa, as shown in the heatmap and dendrogram. The analysis indicated that HE was associated with higher levels of Desulfovibrio (P = 0.007), Helicobacter (P = 0.044), Oscillibacter (P = 0.028), Colidextribacter (P = 0.021) and Rikenella (P = 0.025). However, these levels significantly reduced QCLG-treated mice (Figure 6D).

[image: Panel A presents two PCoA plots at the genus level, showing different treatments. Panel B includes two box plots for the Shannon and Simpson indices with Kruskal-Wallis H test results. Panel C displays a bar plot with Kruskal-Wallis H test results for various genera. Panel D features a cladogram and a community heatmap highlighting bacterial groups and their abundance across treatments.]
Figure 6 | Effects of QCLG on the composition and structure of the gut microbiota (n = 5-6). (A) β diversity was up to the principal based on unweighted-unifrac distance. (B) α diversity. (C) Alterations in the relative abundances of genus-level bacterial taxa in treatment, QCLG, NC and TAA groups (*P < 0.05, one-way ANOVA). (D) Graphical phylogenetic analysis of changes in the gut microbiota. Heatmap of the relationships between microbiota and other experimental results. NC, normal control group; TAA, thioacetamide model group; Treatment, treatment group; QCLG, Qingchang Ligan Formula group.





QCLG can alter relevant metabolites in the intestines

The complex interactions between the host and the intestinal microbiota are closely related to the host-microbe metabolic axis. To verify the impact of QCLG, we conducted untargeted metabolomic studies on stool samples using liquid chromatography-mass spectrometry (LC-MS). In negative and positive modes, 589 and 796 metabolites were identified in fecal samples. In negative and positive modes, 589 and 796 metabolites were identified in fecal samples. To determine the specific effects of QCLG on metabolites, we conducted PCA on the TAA, QCLG, and NC groups. PCA (26.60%) demonstrated clustering of metabolites in the NC group and QCLG group, with the TAA group showing significant differences compared with the other two groups (Figure 7A).

[image: Panel A shows two PCA score plots differentiating control, TAA, and treatment groups, with clusters represented as ellipses. Panel B presents KEGG topology analyses with scatter plots comparing TAA versus control and treatment versus TAA, indicating significant pathways and their impacts. Panel C is a bar plot from the Kruskal-Wallis H test measuring abundance of various compounds across groups, with significance levels indicated. Panel D provides a Spearman correlation heatmap, displaying correlations of variables with a color gradient from blue to red, representing correlation strength.]
Figure 7 | QCLG can alter relevant metabolites in the intestines (n = 5-6). (A) PCA (PC1 = 26.6%, PC1 = 28.40%) (B) Meaningful metabolic routes in comparing NC and TAA groups, TAA and treatment groups. (C) Based on VIP > 1 and P < 0.05, false discovery rate (FDR) < 0.05 served as a filter for differential metabolites between NC and TAA groups. QCLG treatment contributed to a significant improvement in metabolic disorders. (D) Heatmap of the association between the changed microbial community and greatly changed metabolites. NC, normal control group; TAA, thioacetamide model group; treatment, treatment group; lactulose, lactulose group; QCLG, Qingchang Ligan Formula groups. *P < 0.05, **P < 0.01.

In analyzing the metabolites across the three groups, we found 946 distinct metabolites. KEGG pathway enrichment analysis revealed that the Model group had significant pathways compared to the normal group, including Isoflavonoid biosynthesis, steroid hormone biosynthesis, flavonoid biosynthesis, sphingolipid metabolism, glycine, serine and threonine metabolism, Vitamin B6 metabolism, pyrimidine metabolism, aminobenzoate degradation, lysine degradation, and arginine biosynthesis. Notably, QCLG treatment differed from the TAA group in pathways such as sphingolipid metabolism, aminobenzoate degradation, caprolactam degradation, galactose metabolism, steroid degradation, and alanine aspartate glutamate metabolism. This suggests that QCLG may mitigate some effects of TAA through these metabolic pathways (Figure 7B).

Subsequently, to identify potential biomarkers of QCLG treatment efficacy, we employed Student’s t-test to compare the metabolic alterations in HE across the three groups. We identified 307 metabolites that significantly changed between the NC group and the TAA group (VIP>1, P<0.05, FDR<0.05). 179 metabolites gradually returned to normal levels following QCLG treatment (P<0.05). Within this group, the QCLG treatment upregulated 106 metabolites that were diminished by TAA and down-regulated 73 other metabolites, including 5-Methoxytryptophan, Daidzein, Stercobilin, and Plumieride (PLU), bringing their levels closer to those of the NC group (Figure 7C).

Additionally, our Spearman correlation analysis of the microbiota and metabolites revealed correlations between the top 50 most abundant intestinal microbial communities and 50 differentially altered fecal metabolites. Stercobilin, Leu-Thr-Ser-Lys-Tyr, and Amastatin exhibited positive correlations with Blautia, whereas 5-methoxy tryptophan and Plumieride showed negative correlations with Blautia. Furthermore, Stercobilin, Leu-Thr-Ser-Lys-Tyr, Dehydroepiandrosterone, Muramic-acid, Imperatorin, DL-dopa, Ritodrine, Lactose, and Danunosamine showed a negative correlation with Bifidobacterium. At the same time, Bifidobacterium exhibited a positive correlation with Indoleacrylic-acid, N-Eicosapentaenoyl-Asparagine, Daidzein, 5-methoxy tryptophan, and Plumieride. Additionally, Oscillibacter exhibited positive correlations with Daidzein, Stercobilin, Methionine-Sulfoxide, Santamaria, Lumichrome, Prolyl-Alanine, N-Eicosapentaenoyl-Asparagine, Imexon, 5-methoxy tryptophan, and Plumieride. In contrast, Oscillibacter was negatively correlated with Lumichrome, Prolyl-Alanine, N-Eicosapentaenoyl-Asparagine, Imexon, 5-methoxy tryptophan, and Plumieride (Figures 7D).






Discussion

We created a mouse model of HE through intraperitoneal injection of TAA to assess the therapeutic impact of QCLG and delve into its potential mechanism. TAA serves as a preclinical model for HE established following animal modeling guidelines, demonstrating effective replication of human acute liver disease. This method is widely accepted for inducing HE (DeMorrow et al., 2021). The experimental results unequivocally demonstrate the efficacy of this method in inducing characteristic HE symptoms. In our primary study, QCLG markedly enhanced behavioral and cognitive functions affected by HE, mitigated brain inflammation, rectified microbial imbalances, and improved metabolic status. We summarized the outcomes of 16SrRNA gene sequencing and metabolomic analysis, exploring the impact of QCLG on HE by scrutinizing the interplay between intestinal bacteria and metabolic biomarkers.

The neuropathology of HE involves astrocyte reduction, microglia activation, and neuroinflammation (Butterworth, 2019; Hsu et al., 2021). Immunohistochemistry analysis revealed significant differences between the NC and TAA groups in astrocyte, microglia, and GABA expression. The TAA group showed increased microglia and GABA expression and reduced astrocytes. Astrocyte dysfunction disrupts the brain neurotransmission system, which subsequently causes a cascade of neuronal injuries and ultimately results in neurocognitive deficits associated with HE (Butterworth, 2016). Microglia belong to the resident macrophage of the brain and play a pivotal role in innate immunity. Microglia activation results in chronic brain inflammation and an increase in proinflammatory cytokines such as TNF-α, IL-1β, and IL-6, which may be closely linked to the pathological features of HE (Hsu et al., 2021; Liu et al., 2021). Meanwhile, GABA is the brain’s primary inhibitory neurotransmitter, regulating emotions, memory, and appetite (Bäckström et al., 2021). Therefore, this suggests that QCLG can mitigate neuroinflammation in HE, thereby alleviating cognitive abnormalities.

The gut microbiota is a crucial neuroinflammation regulator in neurological diseases like HE. Recent advancements in metagenomics, Metatranscriptomics, and meta-proteomics have elucidated the functional interplay between the gut microbiota and central nervous system (CNS) function, known as the “gut-brain axis.” The gut microbiota is pivotal in numerous central nervous system diseases (Yu et al., 2021). Recent research indicates the involvement of the gut microbiota in modulating immune and inflammatory responses in acute and chronic neurological diseases (Li et al., 2021).

Our study shows that QCLG can alleviate this by regulating intestinal flora and metabolites. There were significant differences in the gut microbiota of HE mice compared with normal control mice. At HE, the relative abundance of Bifidobacterium decreased. Supplementation with Bifidobacterium alleviated cognitive deficits in mice and suppressed neuroinflammation and synaptic dysfunction (Zhu et al., 2023). At the same time, Bifidobacterium can also significantly regulate quinolinic acid (QUIN) levels in the brain, as well as glutamate (Glu) and GABA levels, thereby reducing the activity of microglia in the cerebellum (Kong et al., 2022). This means that QCLG can alleviate HE by regulating the abundance of beneficial bacteria. In the TAA group, the abundance of Oscillibacter, Colidextribacter, Blautia, and Helicobacter increased, and these significantly changed genera may be the signature bacteria of HE. Studies have shown that the abundance of Oscillibacter is relatively reduced after anti-inflammatory treatment in AD rats with neuroinflammation (Wang et al., 2022). At the same time, the reduction of Oscillibacter helps improve cognitive function and enhance learning and memory abilities after exercise (Zhou et al., 2021).

Colidextribacter is classified under the Clostridiales cluster IV and the Clostridium cluster Effect (Wang et al., 2022). Its involvement in raising cellular oxidative stress levels elevates serum inflammatory markers (Duan et al., 2021). The reduction in Colidextribacter abundance may contribute to mitigating the impact of peripheral inflammation on neuroinflammation. The genus Blautia is classified within the family Ruminococcaceae, order Clostridiales, phylum Firmicutes, and class Clostridia. GABA is part of the Blautia-dependent arginine metabolism, closely linked to HE and Alzheimer’s disease (AD). Alterations in GABA levels can impact the susceptibility to mental disorders. Research indicates a robust association with arginine metabolism, potentially contributing to the pathogenesis of AD by modulating metabolites like GABA (Zhuang et al., 2020).

QCLG treatment normalized metabolite levels that differed significantly between the normal control and model groups. Upregulated metabolites in the QCLG group included Daidzein, a dietary metabolite with known anti-inflammatory properties (Das et al., 2018).. Daidzein has been shown to protect neurons by reducing neuronal apoptosis, enhancing neurite outgrowth, and promoting astrocytes’ production of neurotrophic factors, thereby preventing neuroinflammatory damage (Subedi et al., 2017).

As an anti-inflammatory endothelial factor, 5-methoxy tryptophan (5-MTP) safeguards the endothelial barrier, promotes endothelial repair, and inhibits the migration and proliferation of vascular smooth muscle cells via suppressing p38 mitogen-activated protein kinase (MAPK) activation (Wu et al., 2020). It is crucial in anti-inflammation, anti-cancer, and myocardial protection. PLU is a cyclic terpenoid compound extracted from willow flowers and exhibits anti-inflammatory, antidepressant, anxiolytic, and other effects (Dalmagro et al., 2020). Studies have shown that PLU can lower serum levels of ALT, AST, and alkaline phosphatase (ALP), thereby reducing liver damage (Singh et al., 2014).

In the down-regulated metabolites of the QCLG treatment group, Stercobilin and fecal pigments are demonstrated to trigger proinflammatory responses in the macrophage RAW264 cells of mice. This stimulation releases TNF-α, IL-1β, and other inflammatory factors, intensifying inflammation (Sanada et al., 2020; Dai et al., 2022).

Therefore, metabolites may collaboratively ameliorate HE through various direct and indirect pathways, such as inhibiting the secretion of inflammatory factors, promoting astrocytes to release neurotrophic factors, and mitigating liver damage.

Collectively, we speculate that QCLG can reduce neuroinflammation by regulating intestinal microbiota metabolism, thereby preventing HE.

Our study has limitations, including the need to investigate if the decoction of Chinese medicine alone or in combination alters the efficacy and composition of QCLG, a complex herbal formula. At the same time, we did not test the intestinal tissue. Changes in intestinal permeability will help us to explore the mechanism of hepatic encephalopathy more deeply. We will make up for this deficiency in the next step. Future research will explore the impact of changes in bacterial flora on intestinal inflammation, the influence of intestinal inflammation on HE progression, and the potential of QCLG for fecal microbiota transplantation therapy.





Conclusion

Our study, for the first time, reveals the protective effect of QCLG treatment on a TAA-induced HE mouse model. Further mechanistic studies show that QCLG can ameliorate intestinal flora disorder and regulate metabolic abnormalities. Furthermore, we demonstrate the importance of microbiota dysbiosis in the pathogenesis of TAA-induced HE.
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Background

Ankylosing spondylitis (AS) is a connective tissue disease that primarily affects spinal joints, peripheral joints, and paravertebral soft tissues, leading to joint stiffness and spinal deformity. Growing evidence has implicated gut microbiota in the regulation of AS, though the underlying mechanisms remain poorly understood.





Methods

We conducted a comprehensive search of PubMed, Embase, Web of Science, the Cochrane Library, MEDLINE, Wanfang Data, China Science and Technology Journal Database (VIP), and China National Knowledge Internet (CNKI) databases from the time the databases were created until 30 July 2023. To evaluate changes in α-diversity and the abundance of certain microbiota families in AS, standardized mean difference (SMD) and 95% confidence interval (CI) calculations were made. Meta-analyses were performed using STATA 12.0 and the quality of the literature was assessed by following systematic review guidelines.





Results

This systematic review and meta-analysis included 47 studies, providing insights into the gut microbiota composition in patients with AS compared to healthy controls (HCs). Our findings indicate a significant reduction in gut microbial diversity in patients with AS, as evidenced by a decrease in both richness and evenness. Specifically, the Shannon index showed a moderate decrease (SMD = -0.27, 95% CI: -0.49, -0.04; P < 0.001), suggesting a less diverse microbial ecosystem in patients with AS. The Chao1 index further confirmed this trend, with a larger effect size (SMD = -0.44, 95% CI: -0.80, -0.07; P < 0.001), indicating a lower species richness. The Simpson index also reflected a significant reduction in evenness (SMD = -0.30, 95% CI: -0.53, -0.06; P < 0.001). Additionally, patients with AS who received anti-rheumatic combination treatment exhibited a more pronounced reduction in α-diversity compared to untreated patients, highlighting the potential impact of this treatment on gut microbiota balance. In terms of specific microbial families, we observed a significant decrease in the abundance of Bifidobacterium (SMD = -0.42, 95% CI: -2.37, 1.52; P < 0.001), which is known for its beneficial effects on gut health. Conversely, an increase in the abundance of Bacteroidetes was noted (SMD = 0.42, 95% CI: -0.93, 1.76; P < 0.001), suggesting a possible shift in the gut microbiota composition that may be associated with AS pathophysiology.





Conclusion

Our analysis revealed changes in α-diversity and the relative abundance of specific bacteria in AS. This suggests that targeting the gut microbiota could provide new therapeutic opportunities for treating AS.





Systematic review registration

https://www.crd.york.ac.uk./PROSPERO/, identifier CRD42023450028.





Keywords: ankylosing spondylitis, gut microbiota, dysbiosis, α-diversity, meta-analysis




1 Introduction

Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease characterized by its primary impact on the axial skeleton, including the spine and sacroiliac joints, often leading to significant morbidity through joint stiffness and spinal deformity. The etiology of AS is multifactorial, with genetic, environmental, and immunological factors playing a role. Recent research has implicated the gut microbiota as a potential contributor to the pathogenesis of AS, suggesting a complex interplay between the intestinal microbiome and the host’s immune system (Asquith et al., 2019).

While the exact mechanisms by which the gut microbiota influences AS are not fully understood, studies have reported alterations in the composition and diversity of the gut microbiota in patients with AS. For instance, Zena Chen et al (Chen et al., 2021) and Hong Ki Min et al (Min et al., 2023) have identified specific changes in the abundance of Bacteroides and Faecalibacterium in patients with AS. These findings have sparked interest in the role of gut microbiota in AS, but the current literature presents a landscape of conflicting reports regarding the specific changes in gut microbiota abundance in patients with AS. Further, the impact of treatment on the gut microbiota of patients with AS is another area of active research. Medications such as disease-modifying anti-rheumatic drugs (DMARDs), nonsteroidal anti-inflammatory drugs (NSAIDs), and tumor necrosis factor (TNF) inhibitors are known to ameliorate symptoms and reduce inflammatory cytokine levels in patients with AS. Some studies have suggested that these treatments may also influence the gut microbiota composition (Chen et al., 2021), although the evidence is not yet conclusive.

Given the limited research on the alterations in gut microbiota associated with AS and the unclear underlying causes, there is a pressing need for a comprehensive synthesis of the current evidence. This study aims to systematically review the literature on the relationship between gut microbiota and AS, with a focus on understanding the nature of the association and the potential for intervention. This will contribute to the growing understanding of the role of the gut microbiota in AS and identify areas where further investigation is warranted.




2 Materials and methods



2.1 Data sources and search strategy

The association between AS and gut microbiota was assessed by searching the PubMed, Embase, Web of Science, the Cochrane Library, MEDLINE, Wanfang Data, VIP, and CNKI databases from their establishment to 30 July 2023. Key search terms include gastrointestinal microbiome, microbiome, gastrointestinal tract, intestinal microbiome, bacteria, intestinal tract, microflora, gastrointestinal tract, ankylosing spondylitis, axial spondyloarthritis, and their synonyms. The preferred reporting items for the systematic review and meta-analysis (PRISMA) report are followed by this study, which has been preregistered with PROSPERO (CRD42023450028).




2.2 Study selection and data extraction

All included studies performed research at the population level; the relationship between gut microbiota and AS was studied, the changes in gut microbiota indexes in patients with AS and healthy controls (HCs) were compared, and data for analysis were available.

Inclusion criteria:

	1) Human research

	2) Studies on the changes of gut microbiota in patients with AS.



Exclusion criteria:

	1) Duplicate references in different databases.

	2) Review articles, guidelines, conference abstracts, or case reports.

	3) Incomplete data or unable to obtain full text.

	4) No healthy control groups.

	5) No available data were reported on intestinal flora α-diversity or intestinal microbial community composition.



We extracted the following data from the selected studies: essential information including first author, publication year, and country; clinical information including case numbers, genders, ages, α-diversity index in patients and healthy people, and the relative abundance of intestinal microorganisms; experimental data including fecal collection method, storage method, and DNA extraction technology.




2.3 Quality assessment

The quality assessment of included articles was evaluated using the Newcastle–Ottawa quality assessment scale (NOS). The NOS rates the risk of bias of case-control studies on the premises of appropriateness of sample frame, sampling method, ascertainment of exposure, a demonstration that the outcome of interest was not present at the start of the study, comparability of cohorts, methods for assessment of outcomes, duration of follow-up, and adequacy of follow-up.




2.4 Statistical analysis

The analysis was performed using Review Manager 5.4. Because the measured data of human intestinal flora are continuous variables, standardized mean difference (SMD) and its 95% confidence interval were used as the effect index to analyze the results. The results included in this analysis were tested for heterogeneity, and the heterogeneity among the results was judged according to the I² of the included results. When the results were homogenous (P > 0.1, I²≤50%), the fixed-effect model was used. In addition, we have analyzed using the random-effects model. When there was heterogeneity among study results (P ≤ 0.1, I² > 50%), the source of heterogeneity was analyzed, and subgroup analysis or sensitivity analysis was conducted for the studies. In this study, the outcome indexes with high heterogeneity were further analyzed by subgroup according to the specific type of IA, and sensitivity analysis was used to explore the sources of heterogeneity in the study.





3 Results



3.1 Study selection and characteristics

Electronic database searches yielded 1,838 articles. After the title and abstract review, 1,707 articles were excluded because they did not meet the inclusion criteria. A total of 131 full-text articles were retrieved. After further screening for eligibility, 84 articles were excluded because they did not meet the eligibility criteria, and a total of 47 articles were eligible (Figure 1; Table 1).

[image: Flowchart of a systematic review process. Identification begins with 1,838 records from database searches and zero from other sources. After removing duplicates, 1,707 records are screened. Based on title and abstract, 131 records are excluded. Eighty-four full-text articles are assessed for eligibility. Sixty studies are included in qualitative synthesis, and 47 in quantitative synthesis or meta-analysis.]
Figure 1 | Retrieval flow chart. A total of 47 studies examined 2,494 patients with AS and 1,885 HCs. They all used human feces as the experimental samples and were observational case-control studies. According to the NOS, each included study was high quality (NOS score: 6-8) (Table 1).

Table 1 | Basic information included in the study.


[image: A table lists various studies with details on concomitant treatments, quality scores, the technologies employed, and platforms used. Treatments include NSAIDs, biological agents, and more. Technologies are predominantly 16S rRNA gene sequencing with some using whole-metagenome or shotgun metagenome sequencing. Platforms mentioned include HiSeq2000, Illumina MiSeq, and 5500 SOLiD Wildfire. The quality score is based on the Newcastle-Ottawa scale. NA indicates missing data.]



3.2 α-diversity



3.2.1 α-diversity changes in the gut microbiota of patients with AS

The 47 studies that investigated α-diversity differences between patients with AS and HCs had a total of 2,494 patients and 1,885 controls. The indices evaluated were richness (Chao1) and combined measures of richness and evenness (Shannon and Simpson indices). The Shannon, Simpson, and Chao1 indices were the most frequently reported metrics in the literature.

The Chao1 index, indicative of species richness, was examined across seven studies and revealed a significant reduction in patients with AS compared to HCs (SMD = -0.44, 95% CI: -0.80 to -0.07; P < 0.001, heterogeneity I² = 80.3%) (Figure 2C). This suggests a lower microbial species count in the gut of AS patients.

[image: Three forest plots labeled A, B, and C. Plot A presents study names with standardized mean differences (SMD) and confidence intervals, emphasizing a summary effect size of -0.27. Plot B includes additional studies with a summary effect size of -0.44. Plot C shows fewer studies, focusing on a smaller summary effect size of -0.44. Each plot notes random effects analysis weights and heterogeneity statistics.]
Figure 2 | Forest plots of alterations in the α-diversity of patients with AS versus HCs: (A) Shannon index; (B) Simpson index; (C) Chao1.

The Shannon index, a measure of both richness and evenness, showed a significant decrease in 23 studies involving patients with AS (SMD = -0.27, 95% CI: -0.49 to -0.04; P < 0.001, I² = 85.6%) (Figure 2A). Similarly, the Simpson index, another metric of diversity, was significantly lower in 18 studies on patients with AS (SMD = -0.30, 95% CI: -0.53 to -0.06; P < 0.001, I² = 76.2%) (Figure 2B). These findings point toward an overall reduction in microbial diversity within the gut of patients with AS.




3.2.2 Impact of treatment on α-diversity

Further analysis stratified by treatment revealed distinct patterns in α-diversity indices. The Shannon index was notably lower in treatment-naive patients with AS compared to those receiving combined treatment with NSAIDs and DMARDs. The treatment-naive group showed a significant decrease in the Shannon index (SMD = -0.33, 95% CI: -0.64 to -0.02; P = 0.001), while the combined treatment group exhibited an increase in the Shannon index, suggesting a potential recovery of microbial diversity post-treatment (Figure 3).

[image: Forest plots showing meta-analysis results from three panels labeled A, B, and C. Each panel compares different treatments on study subjects using standard mean differences (SMD) with 95% confidence intervals. Panel A includes DMARDs plus NSAIDs, NSAIDs, and treatment-naive groups. Panel B presents DMARDs plus NSAIDs and treatment-naive groups. Panel C focuses on on-treatment and treatment-naive groups. Subtotals and overall effects are shown with I-squared statistics indicating heterogeneity. Arrows and diamonds denote effect sizes, with weights from random effects analysis.]
Figure 3 | Forest plots of whether patients with AS receive treatment or not: (A) Shannon index. (B) Simpson index. (C) Chao1.

The Simpson index also depicted a significant difference among untreated AS patients, with a lower index indicating reduced diversity. However, no significant difference was observed in the combined treatment group, which may imply a stabilization or improvement in microbial evenness with treatment (Figure 4).

[image: Two forest plots labeled A and B compare studies with standard mean differences (SMD), confidence intervals (CI), and weights. Plot A shows results from four studies with an overall SMD of 0.76 (CI -0.12 to 1.64) and high heterogeneity (I-squared = 94.5%). Plot B includes four studies with an overall SMD of 0.39 (CI 0.08 to 0.71) and lower heterogeneity (I-squared = 28.0%). Weights derive from random effects analysis. Horizontal lines represent individual study CIs, with diamonds indicating overall effect size.]
Figure 4 | Forest plots of patients with AS before treatment and after treatment: (A) Shannon index. (B) Simpson index.

Subgroup analysis based on treatment type revealed that while the treatment-naive group had a significantly lower Shannon index, the combined treatment group showed a non-significant increase, suggesting a possible positive effect of combined therapy on microbial diversity. For the Simpson index, a significant difference was observed only in the untreated group, with the combined treatment group showing no significant change, indicating a potential normalization of microbial evenness with treatment.

Additionally, we performed a subgroup analysis in 582 patients, stratified according to baseline disease activity. Patients were divided into two subgroups according to their disease activity as follows: inactive group and active group. There were significantly detected in AS patients in active group compared to AS patients in inactive group. (Figure 5: Shannon: SMD = -0.33; 95%CI: -0.69 to 0.03; P < Q19 0.001; Simpson: SMD = -0.36; 95%CI: -0.68 to -0.05; P < 0.001; ACE: SMD = -0.25; 95%CI: -0.42 to -0.08; P > 0.05; Chao1: SMD = -0.33, 95%CI: -0.74 to 0.08; P < 0.001).

[image: Four forest plots labeled A, B, C, and D present meta-analysis results. Each plot lists studies along the y-axis with standard mean difference (SMD) and confidence intervals on the x-axis. Weights of studies are included with subgroup analyses labeled as disease activity and remission. Overall results are displayed with diamond shapes further from zero indicating stronger effects. Heterogeneity statistics are noted for each subgroup and overall effect, highlighting differences between studies.]
Figure 5 | Forest plots of the disease activity of patients with AS: (A) Shannon index. (B) Simpson index. (C) ACE. (D) Chao1.




3.2.3 Changes in specific gut microbes in patients with AS

We specifically analyzed the composition of intestinal microbial communities in patients with AS. The results showed that the patients with AS had a decreased abundance of Bifidobacterium (SMD=-0.42, 95%CI-2.37, 1.52;P < 0.001) but an increased abundance of Bacteroidetes (SMD= 0.42, 95%CI -0.93, 1.76; P < 0.001) compared with those of HCs (Figure 6).

[image: Two forest plots labeled A and B display the standard mean difference (SMD) and confidence intervals for various studies. In plot A, studies by Gang Liu-2020, H. K. Min-2023, and Dejuan Wang-2022 are shown with overall effect size of 0.42. Plot B includes H. K. Min-2023, Xiutao Wang-2022, and Dejuan Wang-2022, with an overall effect size of -0.42. Both plots note weights from random effects analysis and list SMD, confidence intervals, and statistical values.]
Figure 6 | Forest plots of the alterations in the gut microbiota of patients with AS versus HCs: (A) Bacteroidetes, (B) Bifidobacterium.




3.2.4 Analysis of publication bias and sensitivity

We used Egger’s, Begg’s, and funnel plots to test and assess publication bias risk (see the appendix in the electronic Supplementary Material). The Shannon index (t=-1.14, p=0.266), Simpson index (t=-1.42, p=0.174), Abundance-based Coverage Estimators (ACE) (t=1.33, p=0.253), and InvSimpson (t=-3.42, p=0.181) results showed no evidence of publication bias in included studies of indicating that the conclusions of the meta-analysis were relatively reliable. However, Egger’s test showed evidence of publication bias in the included studies in the Chao1 index (t =-4.46, p = 0.003). A sensitivity analysis examined whether the Shannon index, Simpson index, ACE, Chao1, InvSimpson, Bacteroidetes, or Bifidobacterium results were influenced by individual studies. There was no significant influence on the pooled results when any individual study was removed.






4 Discussion

The role of gut microbiota in the pathogenesis of AS has been a subject of considerable debate, with previous studies reporting conflicting findings regarding its diversity. This systematic review and meta-analysis aimed to clarify these discrepancies and assess the impact of treatment on the α-diversity of gut microbiota in patients with AS. In our study, we observed significant differences in α-diversity between patients with AS and HCs.

Our findings align with the growing body of evidence suggesting that patients with AS exhibit reduced α-diversity compared to HCs, indicating a potential dysbiosis that may contribute to the disease’s inflammatory processes. The observed differences in gut microbiota composition, particularly the notable changes in Bacteroidetes and Bifidobacterium, underscore the need for a deeper understanding of their immunomodulatory roles and their potential as therapeutic targets (Fan, 2021). The heterogeneity in the study results may be attributed to various factors, including differences in dietary habits, genetic predispositions, and geographical variations, which could influence the gut microbiota composition (Sun et al., 2019). The predominance of Chinese populations in our reviewed studies might reflect these dietary and lifestyle factors, highlighting the importance of considering such variables in future research. While our analysis did not reveal significant differences in other gut microbiota between patients with AS and HCs, it is essential to recognize that the gut microbiota’s complex ecosystem involves not only bacteria but also fungi, such as Candida albicans. The interplay between the gut fungal community and the host’s immune system is critical for maintaining homeostasis (Gutierrez and Arrieta, 2021; Lau et al., 2021).

In addition, C-reactive protein (CRP) levels, a marker of inflammation, have been shown to differ significantly between patients with AS and healthy individuals (Cao et al., 2015). The binding of CRP to bacterial components, such as choline phosphate, triggers an inflammatory response, suggesting a potential regulatory role of CRP in the gut microbiota-immune system interaction (Tillett and Francis, 1930; Scher et al., 2013). This warrants further investigation into the microbial regulatory properties of CRP.

Our study also examined the relationship between pharmacological treatments, such as NSAIDs and DMARDs, and the gut microbiota. While the effects of these treatments on the microbiota are not well documented, there is evidence to suggest that TNF inhibitors may restore gut microbiota balance (Chen et al., 2021; Ditto et al., 2021). The Simpson index findings in our study, showing lower diversity in patients with AS, may be influenced by various factors including detection methods, race, and diet. In addition, our study found that some patients had gastrointestinal complications, which may be related to drug therapy.

It is well-established that gut microbiota α-diversity is associated with disease activity in patients with AS (Wang et al., 2022). Our subgroup analysis supports this association and further implicates the HLA-B27 gene in the dysregulation of gut microbiota. The increased expression of the HLA-B27 antigen in target tissues may trigger an inflammatory cascade, suggesting a genetic component in AS pathogenesis (Cauli et al., 2012). Furthermore, in genetically susceptible individuals, such as patients with AS who are carriers of the HLA-B27 gene, increased intake of starchy foods may contribute to the development and development of AS or spondylitis-associated Crohn’s disease (CD). The control of diet to reduce the risk of disease is expected to become a new research direction.

Our meta-analysis, while comprehensive, has several limitations. The modest sample size of included studies may limit the power of our findings, necessitating further studies with larger cohorts. Additionally, the inclusion of articles only published in English and Chinese may introduce publication bias. The use of different computational pipelines for microbiota analysis could also affect the comparability of results. Finally, the lack of documentation on the effects of many drugs on the gut microbiota limits our ability to analyze their impact fully.

In summary, the gut microbiota’s role in AS is multifaceted, involving both direct and indirect effects on the host’s immune system and inflammatory pathways. Further research is needed to fully understand the mechanisms by which the gut microbiota influences AS and to develop targeted interventions that leverage the microbiota for the benefit of patients with this debilitating disease.




5 Conclusion

In summary, the findings presented in this thesis add to our understanding of the relationship between gut microbiota and AS. The α-diversity of patients with AS was decreased compared to HCs, and patients with AS had a decreased abundance of Bifidobacterium but an increased abundance of Bacteroidetes. In addition, we found that NSAIDs exhibit significant efficacy in treating AS. We hope that further tests will prove our theory.
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Introduction

Changes in the human gut microbiome have been linked to various chronic diseases, including chronic obstructive pulmonary disease (COPD). While substantial knowledge is available on the genomic features of fecal communities, little is known about the microbiome’s transcriptional activity. Here, we analyzed the metatranscriptomic (MTR) abundance of MetaCyc pathways, SuperPathways, and protein domain families (PFAM) represented by the gut microbiome in a cohort of non-small cell lung cancer (NSCLC) patients with- or without COPD comorbidity.





Methods

Fecal samples of 40 NSCLC patients with- or without COPD comorbidity were collected at the time of diagnosis. Data was preprocessed using the Metaphlan3/Humann3 pipeline and BioCyc© to identify metabolic SuperPathways. LEfSe analysis was conducted on Pathway- and PFAM abundance data to determine COPD- and non-COPD-related clusters.





Results

Key genera Streptococcus, Escherichia, Gemella, and Lactobacillus were significantly more active transcriptionally compared to their metagenomic presence. LEfSe analysis identified 11 MetaCyc pathways that were significantly overrepresented in patients with- and without COPD comorbidity. According to Spearman’s rank correlation, Smoking PY showed a significant negative correlation with Glycolysis IV, Purine Ribonucleoside Degradation and Glycogen Biosynthesis I, and a significant positive correlation with Superpathway of Ac-CoA Biosynthesis and Glyoxylate cycle, whereas forced expiratory volume in the first second (FEV1) showed a significant negative correlation with Glycolysis IV and a significant positive correlation with Glycogen Biosynthesis I. Furthermore, COPD patients showed a significantly increased MTR abundance in ~60% of SuperPathways, indicating a universally increased MTR activity in this condition. FEV1 showed a significant correlation with SuperPathways Carbohydrate degradation, Glycan biosynthesis, and Glycolysis. Taxonomic analysis suggested a more prominent MTR activity from multiple Streptococcus species, Enterococcus (E.) faecalis, E. faecium and Escherichia (E.) coli than expected from their metagenomic abundance. Multiple protein domain families (PFAMs) were identified as more associated with COPD, E. faecium, E.coli, and Streptococcus salivarius, contributing the most to these PFAMs.





Conclusion

Metatranscriptome analysis identified COPD-related subsets of lung cancer with potential therapeutic relevance.
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Introduction

Changes in the human gut microbiome have been linked to a variety of chronic diseases, including obesity, diabetes, inflammatory bowel disease (IBD), cancer, and cardiovascular disease (Shreiner et al., 2015). Although there is a substantial body of knowledge on the metagenomic features of fecal communities (Human Microbiome Project Consortium, 2012; Le Chatelier et al., 2013), little is known about the microbiome’s transcriptional activity. The linkage between the genotype and phenotype of the commensal gut flora might be explained by understanding their metatranscriptome, which represents the functional ecology of the human gut microbiome (Franzosa et al., 2014; Abu-Ali et al., 2018). In a clinical setting, the unequivocal role of the gut metatranscriptome and its distinction from metagenomics was already shown in IBD (Schirmer et al., 2018), in metastatic melanoma (Peters et al., 2019,) and murine inflammation models (Jovel et al., 2022).

Chronic Obstructive Pulmonary Disease (COPD) represents an enormous public health burden with an age-standardized incidence of 1.46% in high-SDI- and 1.02% in middle-to-low-SDI countries. The estimated prevalence of COPD is almost 10% in the 30-79 year-old population, being responsible for 3.197 million deaths every year worldwide (Wang et al., 2022; Li et al., 2023). In lung cancer patients, COPD comorbidity poses an additional risk, with significantly decreased overall survival, particularly in the case of squamous cell carcinoma (Wang et al., 2018; Yi et al., 2018). COPD may have a role in lung cancer development by increasing oxidative stress and associated DNA damage, persistent exposure to pro-inflammatory cytokines, inhibition of DNA repair systems, and enhanced cellular proliferation (Papi et al., 2004; Barnes and Adcock, 2011; Durham and Adcock, 2015; Young et al., 2015).

Both COPD and lung cancer were recently associated with dysbiotic airway microbiota and commonly occur alongside gastrointestinal (GI) disorders, possibly through the gut-lung axis (Bingula et al., 2017; Dang and Marsland, 2019; Enaud et al., 2020; Bulanda and Wypych, 2022; Qu et al., 2022). Comprehensive metagenomic sequencing of the gut microbiome provided valuable insights into differentially expressing taxa and changes in the metabolome between healthy and COPD patients (Bowerman et al., 2020; Li N. et al., 2021), and correlation with respiratory function (Marfil-Sánchez et al., 2021). Recently, gut dysbiosis was also associated with the frequency of viral pulmonary infections and declining lung function in COPD patients (Sencio et al., 2021; Chiu et al., 2022). In addition, others showed that the lipopolysaccharide component of commensal bacterium Parabacteroides goldsteinii might have a pivotal role in COPD pathogenesis (Lai et al., 2022). Despite multiple lines of evidence of intricate gut-lung crosstalk possibly mediated by the microbiome, these studies are based on genomic sequencing and provide no insights into related metatranscriptomics.

In the present study, we compared the Metagenomic (MG) and Metatranscriptomic (MTR) abundance of bacterial species and genera using fecal samples of 40 non-small cell lung cancer (NSCLC) patients. Furthermore, we classified patients according to COPD comorbidity (COPD vs non-COPD) and revealed emerging metabolic pathways the gut microbiome represents. We also aimed to analyze the taxonomic representation of pathways and protein domain families (PFAMs) and correlate them with essential respiratory function parameters, such as Smoking, CAT score, or FEV1. This is the first study to compare gut metatranscriptomic signatures according to COPD status and respiratory function.





Materials and methods




Study population

A total of 40 patients diagnosed with NSCLC and receiving standard-of-care therapy approved by the Institutional Oncology Team were enrolled in our study cohort between 2019 and 2021 at the County Hospital of Pulmonology, Torokbalint, Hungary. Table 1 shows the clinical parameters of the study cohort, where patients were classified as non-COPD and COPD. Clinicopathological data included age, gender, smoking pack year (PY), body mass index (BMI, kg/m2), and COPD Global Initiative for Chronic Obstructive Lung Disease (GOLD) stadium at the time of lung cancer diagnosis. Patients underwent COPD Assessment Test (CAT) to determine their CAT score and measurement of Forced Expiratory Volume in 1 second (FEV1) within one week of obtaining fecal samples. All patients were assessed with Eastern Cooperative Oncology Group (ECOG) 0-1 performance status at the time of fecal sampling. Before sampling, all COPD patients received standard-of-care therapy according to the GOLD guidelines. Patients receiving systemic antibiotic therapy or having acute exacerbation within three months of fecal sampling were not included in the study cohort.

Table 1 | Clinicopathological characteristics of the patient cohort.


[image: Table comparing Non-COPD and COPD groups across various parameters with p-values. Mean age: Non-COPD 62.13, COPD 60.9, p-value 0.103. Gender distribution: similar percentages of males and females, p-value 0.746. Smoking pack-years: Non-COPD 30.2, COPD 56.6, p-value 0.012. BMI categories and distribution presented, p-value greater than 0.999. COPD Gold stages listed for COPD group. CAT score mean: Non-COPD 6.8, COPD 12.1, p-value 0.049. FEV1%: Non-COPD 91.9, COPD 61.2, p-value less than 0.001. Statistical significance indicated for relevant parameters.]




Sample processing

Patients were enrolled in the study after signing informed consent and providing baseline stool samples collected within seven days of diagnosis. All samples were stored in the -80°C freezer on the same collection day until sequencing. The fecal samples were processed as previously described (Dora et al., 2023b), in brief: 300 ml of cool 80% aqueous methanol was added to homogenizer tubes for every 100 mg of sample. The sample preparation procedures were carried out on dry ice with cooled instruments. The Bead Ruptor 24 Elite (OMNI International) with the Heart program (6 m/s, 30 s) was used to homogenize the samples. The samples were then vortexed for 10 seconds before being centrifuged for 10 minutes at 13,000 rpm and 4°C. The supernatant was collected in a 96-well filter plate and centrifuged for 5 minutes at 4°C at 700 g.





Shotgun metagenomic pipeline

We used 100 mg stool samples in ZR Bashing Bead Lysis Tubes with ZymoBIOMICS 96 MagBead DNA kit for whole DNA extraction. We used continuous bead beating for 40 minutes and centrifuged the lysate for 1 min at 10,000 x g. 200 μl supernatant was mixed with 25 μl ZymoBIOMICS™ MagBinding Beads, then shaked for 10 minutes. After placing the tubes on a magnetic rack and removing the supernatant, 500 μl ZymoBIOMICS™ MagBinding Buffer was added to each sample and mixed for 1 minute. The beads were pelleted and washed two times with 500 μl of ZymoBIOMICS™ MagWash 1 and 900 μl ZymoBIOMICS™ MagWash 2, respectively, for 1 min. The beads were dried at 55°C for 10 min. Then eluted in 50 μl RNAse/DNAse free water. The DNA concentration was measured with a Qubit fluorimeter.

From each sample, 65 ng was used as input for library preparation by KAPA HyperPlus kit as per the manufacturer instructions, with size selection for ~200bp peak fragment size (TapeStation 2200, High Sensitivity D1000 ScreenTape®). The samples were sequenced on the NextSeq500 platform, 2x150bp, with ~10M read pairs.





Shotgun metatranscriptomic pipeline

Quick RNA Fecal/Soil Microbe Microprep kit (Zymo Research) was used for RNA extraction, starting with 40 minutes of continuous bead beating of 100mg stool sample with 1mL of S/F RNA Lysis Buffer added. After centrifuging for 1 minute, 400 μl of supernatant was filtered through (3000 x g, 30 seconds) in Zymo-Spin™ IIICG Column2, mixed with 95% ethanol in a 1:1 ratio, and transferred to a new Zymo-Spin™ IIICG Column2 for RNA binding. The column was washed with 400 μl RNA Prep Buffer, then the RNA was eluted in 100 μl Nuclease-free water, and transferred to a prepared Zymo-Spin™ III-HRC Filter to be centrifuged at 8000 x g for 3 minutes. The filtered RNA was mixed with 200 μl RNA binding buffer and an equal volume of 95% ethanol. The mixture was loaded on Zymo-Spin™ IC Column2 and washed with RNA wash buffer for DNAse I treatment (5 μl DNAse I, 35 μl DNA digestion buffer, incubation for 15 minutes) after the supernatant was discarded. The treated RNA was washed in 400 μl prep buffer 1x and RNA wash buffer 2x, then eluted in 15 μl RNAse/DNAse free water. The isolated RNA’s concentration and integrity were verified with a Qubit fluorometer (Qubit HS RNA kit, Thermofisher) and Labchip GX Touch, RNA Pico Sensitivity Assay (Perkin Elmer). For ribosomal depletion of RNA samples, 250 ng input was used with NEBNext rRNA depletion kit v2 (human/mouse/rat) and NEBNext rRNA depletion kit (bacteria) hybridization probes (probes mixed with a ratio of 1:1) following the manufacturer’s instructions, followed by library preparation using Nextflex Rapid Directional RNA-Seq kit, following the manufacturer’s instruction, with 12 min of fragmentation for a target library size of 320-430bp.

KAPA Single indexes for Illumina were used for indexing with 10 PCR cycles in the library preparation procedure. The final library concentration and size were evaluated with a Qubit fluorometer, Labchip GX Touch, and DNA NGS 3k assay. The samples were sequenced on the NextSeq platform, 2x81bp, with ~20M read pairs.





Quality check

The adaptor-trimmed reads were quality-filtered to ensure a minimum mean Q-score of 30. Quality checks were performed using fast QC (Andrews, 2010), including removing adapter regions, low-quality reads, and human DNA contaminations. This process involved passing per sequence quality score, per base N content, and adapter content assessments as outlined in bwa (version 0.7.4-r385) (Andrews, 2010). The forward and reverse reads were concatenated as recommended by the authors for the analysis with Humann3 (version v3.0.0.alpha.4) (Beghini et al., 2021) using the CHOCOPhlAn_201901 database, and the EC-filtered uniref90_201901 database for translated search. SortMeRNA (Kopylova et al., 2012) was used to remove rRNA sequences in MTR data.





Pathway analysis of shotgun metagenomic and metatranscriptomic data

The results consisted of tables with raw read per kilobase (RPK) values for each record and the path abundance table, with the calculated raw pathway abundance (expressed as the function of the abundance of reactions constituting the Pathway, which is calculated as the sum of over the abundance of genes involved). Reads not mapped to either feature in the databases were counted under the label “UNMAPPED.” Similarly, mapped reads that could not be integrated into any pathways were assigned as “UNINTEGRATED.” Each Pathway is also stratified by taxonomy, labeled “unclassified” if no taxonomy can be inferred. For comparison of samples, the RPK values were normalized to copies per million (CPM) with the human_renorm_table script; then, reactions were regrouped with the humann_regroup_table script. Records not regrouped to the new features appeared as “UNGROUPED.” For each Pathway, diversity indexes (Shannon and Simpson) were calculated using the species data with the R package vegan (https://CRAN.R-project.org/package=vegan).

MetaCyc pathways were included in further analyses if their populational abundance (in the whole cohort) reached at least 0.1%. Plus, only pathways present in at least 25% of the whole cohort population were included, leaving 124 metabolic pathways from a total of 556. For ease of interpretation and comparison between samples, pathways were grouped into superclasses according to the Metacyc hierarchy (SuperPathways, BioCyc©) (Karp et al., 2019), where a total of 61 SuperPathways were identified. SuperPathways contributing to at least 1% of total abundance were included in further analysis (n=17). The normalization of abundance values was done with central log ratio (clr) transformation in R (https://rdrr.io/github/thomazbastiaanssen/Volatility/man/clr_lite.html). The values were transformed in several ways according to the possible methods of the clr_lite function.





Assessment of PFAMs

The high-quality metatranscriptomic reads were assembled into contigs using MetaSPAdes (Nurk et al., 2017). After assembly, gene prediction was conducted on the contigs using Prodigal (Hyatt et al., 2010), and the predicted gene sequences were translated into protein sequences for further analysis. The identification of protein domain families was carried out using the Pfam database, accessed at http://pfam.xfam.org/ (Mistry et al., 2021). This involves scanning the translated protein sequences against the Pfam-A database with HMMER, a tool available at http://hmmer.org/. The Pfam-A database comprises a comprehensive collection of protein domain families represented as profile hidden Markov models (HMMs). HMMER settings were adjusted to balance sensitivity and specificity, employing the default settings for initial scans. Pfams contributed to at least 0.1% of total abundance (n=201), with more-than-zero abundance present in at least 25% of patients included.





Linear discriminant analysis effect size

Linear discriminant analysis effect size (LEfSe) (Segata et al., 2011) was conducted on CLR-normalized BioCyc© Pathway and protein family (Pfam) abundance data to determine Pathway- and Pfam clusters that exhibit significant differences in occurrence between patients with and without COPD. LEfSe analysis was performed using the Galaxy computational tool (http://huttenhower.sph.harvard.edu/galaxy/) (Galaxy Community, 2022) to estimate the effect size of each differentially abundant feature, with a threshold on LDA scores set at 2.0 and alpha values at 0.01.





Statistical analyses

First, the Shapiro-Wilks test was used to determine if data is normally distributed. Differential abundance testing of Metacyc Superpathways and diversity comparisons were done using the Wilcoxon rank-sum test. The associations between the relative abundances of taxa and clinical parameters were investigated with Spearman’s rank correlation, P-values less than 0.05 indicate the significance, and all p-values were two-sided.

Hierarchical cluster analysis was conducted on the dataset using Python. Key Python libraries, including Pandas (https://pandas.pydata.org/docs/whatsnew/index.html), Seaborn (https://seaborn.pydata.org/whatsnew/index.html), Matplotlib (https://matplotlib.org/stable/project/citing.html), and SciPy (Virtanen et al., 2020), were utilized for data handling and visualization. The dataset underwent preprocessing to ensure compatibility with clustering analysis, transforming abundances to Z-scores. SciPy’s linkage method was employed for hierarchical clustering with a complete linkage method. This was followed by dendrogram generation using SciPy, assisting in visualizing clustering hierarchy and cluster determination. A heatmap was then created with Seaborn, integrating the clustering results by reordering data according to the hierarchical structure.






Results

A total of 40 advanced stage (stage IIIB/IV) NSCLC patients who underwent fecal metagenomic (MG) and metatranscriptomic (MTR) sequencing were included in our study. 38 patients had their metatranscriptomic sequencing data pass the quality check. 2 patients were excluded due to low-quality RNA yields. 16 patients were categorized as non-COPD, and 21 patients were categorized as COPD. One patient had no relevant clinical data concerning COPD comorbidity. Patient clinicopathological data included age, gender, COPD GOLD stadium, CAT score, FEV1, smoking pack year (PY), and BMI (Table 1). The median age of the study cohort was 61.3 years [95% CI: 58.2 to 65.1]. The study design is shown in Figure 1A.

[image: Study design and analysis of NSCLC patient samples. Panel A shows the study design, including patient selection, sample storage, and pathways analysis. Panel B presents bar graphs of patient sample compositions in metatranscriptome and metagenome. Panel C displays a scatter plot of average metagenome and metatranscriptome values categorized by clade. Panel D shows a detailed scatter plot of various bacterial genera with significance indicated. Panel E is a scatter plot depicting clusters of bacterial genera based on average metagenome and metatranscriptome values.]
Figure 1 | MG vs MTR according to phyla and genera. Study design and research workflow is shown in panel (A) 100% stacked bar chart shows Metatranscriptomic (MTR) and Metagenomic (MG) signatures at phylum level evaluated in 40 patients (grey bar: did not pass QC), (B). Bacteroidetes showed significantly higher MG than MTR abundance (p<0.001), while Proteobacteria and Verrucomicrobia were more represented at the MTR level (p<0.001). Actinobacteria and Euryarcheota indicated increased MTR abundance, though not statistically significant (C). At the genus level, Ruminococcus, Blautia, Roseburia, Faecalibacterium, Bacteroides, Alistipes, Bifidobacterium, Eubacterium, Fusicatenibacter (p<0.001 for all) and Anaerostipes (p=0.003) had higher MG than MTR abundance, suggesting lower transcriptomic activity (D). Conversely, genera like Collinsella, Streptococcus, Enterococcus, Gemella, Methanobrevibacter, Escherichia, and Lactobacillus exhibited higher MTR than MG abundance, with Streptococcus (S), Escherichia, Gemella, and Lactobacillus being statistically significant (p<0.031 for S., p<0.001 for others) (D, orange dashed line). XY chart analysis (E) clustered genera based on their MG and MTR abundances into five distinct groups, varying from very high MG but low MTR (cluster 1, blue) to low MG but very high MTR (cluster 5, green). Statistical significance *P < 0.05; **P < 0.01, ***P<.001, all p-values were two-sided.




Metagenomic vs metatranscriptomic abundance in the context of taxonomy

First, we aimed to assess the MTR and corresponding MG signatures of major bacterial taxa at the species and genus level in the whole cohort, irrespective of COPD status, to reveal taxonomic units with coherent and contrasting MG and MTR abundances. Bacterial phylum distribution according to MG and MTR is shown in Figure 1B. Statistically, Bacteroidetes abundance is significantly higher at the MG level (compared to MTR, p<0.001), whereas Proteobacteria and Verrucomicrobia are significantly stronger represented at the MTR level (compared to MG, p<0.001). There was a trend towards increased MTR abundance in the case of Actinobacteria (p=0.057) and Euryarcheota (p=0.075), but statistically not significant due to high standard deviations (Figure 1C).

Among genera, a series of bacteria showed significantly higher MG representation than MTR, including Ruminococcus (p<0.001), Blautia (p<0.001), Roseburia (p<0.001), Faecalibacterium (p<0.001), Bacteroides (p<0.001), Alistipes (p<0.001), Bifidobacterium (p<0.001), Eubacterium (p<0.001), Fusicatenibacter (p<0.001) and Anaerostipes (p=0.003), indicating that these genera are not as transcriptionally active, as their DNA abundance suggests (Figure 1D). In contrast, Collinsella, Streptococcus, Escherichia, Enterococcus, Gemella, Methanobrevibacter, and Lactobacillus showed a higher MTR abundance than expected based on their MG abundance, with statistically significant differences in the case of Streptococcus (p=0.031), Escherichia (p<0.001), Gemella (p<0.001) and Lactobacillus (p<0.001) (Figure 1D, orange dashed line). Figure 1E shows the same analysis in a scatter chart, where clusters represent genera with very high MG, but low MTR (cluster 1, blue), high MG, but low MTR (cluster 2, orange), both low MG and MTR (cluster 3, red), low MG, but high MTR (cluster 4, light blue), and low MG, but very high MTR (cluster 5, green).





Metabolic pathways overrepresented in COPD and non-COPD patients

First, we performed Linear Discriminant Analysis Effect Size (LEfSe) to determine pathways having the most remarkable effect size discriminating COPD vs. Non-COPD patients regarding their metatranscriptomic abundance (key pathways). A total of 11 pathways showed statistically significant (FDR<0.05) and considerable (Log10LDAcoeff>2) discriminating power between the COPD and non-COPD populations. 7 of these pathways showed greater effect size towards the COPD-phenotype and 4 pathways towards the non-COPD phenotype (Figure 2A). Metabolic pathways (MetaCyc©) Glycolysis IV, Superpathway of Acetyl-CoA biosynthesis, Purine ribonucleosides biodegradation, GDP-mannose biosynthesis, L-valine biosynthesis, Purine nucleobases degradation and Glyoxylate cycle were overrepresented in patients with COPD comorbidity, whereas metabolic pathways Adenosine ribonucleotides de novo biosynthesis, Pyruvate fermentation to isobutanol, Glycolysis III (from glucose) and Glycogen biosynthesis I (from ADP-D-glucose) were overrepresented in patients without COPD comorbidity.
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Figure 2 | LEfSe analysis and contribution of key pathways to the metatranscriptome. Linear Discriminant Analysis Effect Size (LEfSe) identified 11 key metabolic pathways significantly discriminating between COPD and non-COPD patients based on MTR abundance (FDR<0.05, Log10LDAcoeff>2). Log10LDAcoeff values are displayed on horizontal bars showing pathways (A). Of these, 7 pathways, including Glycolysis IV (LDAcoeff=2.97), Superpathway of Acetyl-CoA biosynthesis (LDA=2.42), Purine ribonucleosides degradation (LDAcoeff=2.35), GDP-mannose biosynthesis (LDAcoeff=2.23), L-valine biosynthesis (LDAcoeff=2.12), Purine nucleobases degradation (LDAcoeff=2.11), and Glyoxylate cycle (LDAcoeff=2.03) were overrepresented in COPD patients, while 4 pathways, such as Adenosine ribonucleotides de novo biosynthesis [LDAcoeff=(2.07)], Pyruvate fermentation to isobutanol [LDAcoeff=(2.16)], Glycolysis II [LDAcoeff=(2.18)], and Glycogen biosynthesis I [LDAcoeff=(2.34)] were prevalent in non-COPD patients (A). Further analysis revealed that in the microbial metabolism of the gut, Glycolysis IV and III exhibited the highest (4.75% and 3.16%, respectively), while GDP-mannose biosynthesis (0.31%) and Glycogen biosynthesis I (0.15%) was the lowest MTR abundance among the key pathways (B, C).

To determine whether these key pathways represent a considerable abundance in the microbial metabolism of the gut, we assessed their contribution to the total metagenomic (MG) and metatranscriptomic (MTR) abundance in percentage and their position among the most abundant pathways (Figures 2B, C). Regarding their MTR abundance, Glycolysis IV and Glycolysis III showed the highest abundance from key pathways. At the same time, GDP-mannose biosynthesis, Purine nucleobases degradation, Glyoxylate cycle, and Glycogen biosynthesis I (from ADP-D-glucose) were the least abundant key pathways all with a contribution below 1%. Supplementary Figure 1 shows all key pathways in metabolic diagrams. Supplementary Figure 2 shows MTR vs MG abundance of critical pathways and their corresponding correlation coefficients according to Spearman’s.





Multiple bacterial taxa contribute to key pathways associated with COPD status

Next, we assessed the taxonomic contribution of key COPD pathways, where the MTR and MG abundances of relevant bacterial species are displayed. Only taxa with at least 0.1% of total MTR abundance and with at least 1% of total MG abundance are shown (Figures 3A, B). Contributing species not reaching the minimum threshold were omitted from the stacked charts. Regarding the taxonomical composition of MTR pathways, Escherichia coli dominates in most pathways. Exceptions include COPD-specific pathways Glycolysis IV and L-valine biosynthesis, where Streptococcus species, including S. salivarius and S. vestibularis dominate. Regarding non-COPD specific pathways Pyruvate fermentation to isobutanol and Glycogen biosynthesis I, Eubacterium_sp_An11 and Roseburia hominis were the strongest contributors, respectively (Figure 3A).
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Figure 3 | Taxonomic break-down of key pathways and pathway diversity. When assessing the taxonomic contribution of key pathways in COPD, taxa with ≥0.1% of total MTR and ≥1% of total MG abundance were analyzed (A, B). Escherichia coli was predominant in most MTR pathways, except for Glycolysis IV and L-valine biosynthesis, where Streptococcus species (S. salivarius, S. vestibularis) were dominant. For non-COPD pathways like Pyruvate fermentation to isobutanol and Glycogen biosynthesis I, Eubacterium_sp_An11 and Roseburia hominis were key contributors (A). MG abundance showed greater diversity with species including Klebsiella pneumoniae, Roseburia faecis, and Bifidobacterium adolescentis contributing significantly, despite their limited role in MTR pathways (B). Purine nucleobases degradation I pathway had no identified taxonomic contributors at MTR level. Shannon diversity indices reflecting alpha-diversity of species in each Pathway is shown on horizontal bar charts (C, D). A generally higher diversity is indicated in MG than in MTR pathways both in COPD [p<0.001, total (E) and key pathways (F)] and in non-COPD patients [p<0.001, total (E) and key pathways (F)]. However, there was no significant difference in the Shannon diversity index between COPD and non-COPD patients across all analyzed pathways (E, F). NS, not significant. Statistical significance ***P<.001, all p-values were two-sided.

Regarding their MG abundance, taxonomical contributions were more diverse for key pathways (compared to their MTR abundance). While E.coli remained a significant contributor in the majority of pathways, other species such as Klebsiella pneumoniae, Roseburia faecis, Ruminococcus bromii, Faecalibacterium prausnitzii, Streptococcus pasteurianus, Blautia wexlare, B. obeum, and Bifidobacterium adolescentis also occurred as contributing species, whereas they were not present as important MTR contributors (Figure 3B). There were no identifiable taxonomic contributors in the case of Purine nucleobases degradation I Pathway.

Shannon diversity index was calculated to assess pathway diversity in every patient, that refers to the alpha-diversity of bacterial species contributing to each Pathway. Diversity indices for key pathways and for all pathways were calculated in COPD and non-COPD patients. In the case of key pathways, generally, MG pathway diversity was significantly higher than corresponding MTR pathway diversity, which is also reflected in the taxonomic composition (Figures 3C, D). Altogether, there were no significant differences in Shannon diversity index between COPD- and non-COPD patients, neither when including only key pathways nor all the analyzed pathways (both MG and MTR, Figures 3E–F). Supplementary Figure 3 shows taxonomic break-down of key pathways with 0.01% (MTR, Supplementary Figure 3A) and 0.1% (MG, Supplementary Figure 3B) cut-offs regarding species contribution.





COPD-related clinical parameters show linear correlation with key pathway-abundance

We used the available clinical parameters of patients to correlate them with the abundance of key pathways, including FEV1%, CAT score, smoking PY and BMI. Spearman’s correlation coefficients were calculated between the MTR abundance of key pathways and value of clinical parameters (Figure 4). From COPD-specific pathways, Glycolysis IV showed a significant negative correlation with FEV1 (rs=-0.51) and smoking PY (rs=-0.54), and a significant positive correlation with CAT score (rs=0.53). In contrast, the Superpathway of acetyl-CoA biosynthesis showed a significant negative correlation with FEV1 (rs=-0.44) and a significant positive correlation with smoking PY (rs=0.51). Pathway Purine ribonucleosides degradation was negatively correlated with smoking PY (rs=-0.43) and pathway GDP-mannose biosynthesis was positively correlated with CAT score (rs=0.46). The Glyoxylate cycle pathway showed significant correlation with smoking PY (rs=0.47). Regarding non-COPD specific pathways, only Glycogen biosynthesis I showed significant correlations, including a significant positive correlation with FEV1 (rs=0.48), and significant negative correlations with CAT score (rs=-0.45) and smoking PY (rs=-0.5). No Pathway showed any kind of significant correlation with BMI (Figure 4).
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Figure 4 | Correlation of COPD-related clinical parameters with the abundances of key pathways. Clinical parameters of patients, including FEV1%, CAT score, smoking pack-years (PY), and BMI, were correlated with the MTR abundance of key pathways using Spearman’s coefficients. COPD-specific pathway Glycolysis IV had significant negative correlations with FEV1 (rs=-0.51, p=0.009) and smoking PY (rs=-0.54, p=0.003), and a positive correlation with CAT score (rs=0.53, p=0.007). Superpathway of acetyl-CoA biosynthesis showed a negative correlation with FEV1 (rs=-0.44, p=0.028) and positive with smoking PY (rs=0.51, p=0.006). Purine ribonucleosides degradation and GDP-mannose biosynthesis were negatively correlated with smoking PY (rs=-0.43, p=0.024) and positively with CAT score (rs=0.46, p=0.024), respectively. Glyoxylate cycle was positively correlated with smoking PY (rs=0.47, p=0.011). Among non-COPD pathways, only Glycogen biosynthesis I showed significant positive correlation with FEV1 (rs=0.48, p=0.015) and negative correlations with CAT score (rs=-0.45, p=0.026) and smoking PY (rs=-0.5, p=0.007). No pathway demonstrated significant correlation with BMI. Statistical significance *P < 0.05; **P < 0.01, all p-values were two-sided.





Metabolic SuperPathways

We classified metabolic pathways to SuperPathway categories according to the iteration of the BioCyc platform and evaluated SuperPathway composition clustered in all patients (Figure 5A). Hierarchical cluster analysis with complete linkage was used to assess the grouping of patients according to their SuperPathway composition, where two major clusters emerged: cluster A, with an A1 and A2 subcluster harbouring low abundance for most SuperPathways (cluster A1), or a range from low- to moderate abundances in distinct SuperPathway clusters (axis Y); and cluster B, with a generally high abundance for the majority of identified SuperPathways. While in cluster A1 only 16.6% of patients are with COPD-comorbidity, in cluster B, 83.3% of patients are diagnosed with COPD. Cluster A1 represents an intermediate group with more balanced distribution between the two patient groups (66.7% COPD, 33.3% non-COPD). One patient with COPD was an outlier regarding its SuperPathway composition and did not belong to any of the identified clusters.
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Figure 5 | MetaCyc SuperPathways and their taxonomic composition in COPD. Metabolic pathways in patients were classified into SuperPathways, analyzed via hierarchical cluster analysis, revealing two clusters: Cluster A (subclusters A1 with low and A2 with low-to-moderate SuperPathway abundances) and Cluster B (high abundance in most SuperPathways). 83.3% of cluster B’s patients were diagnosed with COPD, compared to 16.6% in Cluster A1. One COPD patient was an outlier (A). After removing SuperPathways below 1% of total contribution, 17 remained. Panel (B) shows their proportional distribution in all patients (B). MTR and MG abundances in these pathways showed Streptococcus salivarius significantly more abundant in COPD patients (40.3% vs 0.3%) and E. coli in non-COPD patients (91.1% vs 55%) for MTR; diverse MG distribution with species like Streptococcus pasteurianus and Klebsiella pneumoniae more abundant in COPD (C). 10 from the 17 major SuperPathways in COPD vs non-COPD patients had notably higher abundance in pathways such as Glycolysis (p=0.034), Amino Acid biosynthesis (p=0.035), Fatty Acid and Lipid biosynthesis (p=0.036), Carbohydrate biosynthesis (p=0.008), Cofactor Carrier and Vitamin Biosynthesis (p=0.048), Nucleoside and Nucleotide degradation (p=0.03), C1 Compound Utilization and Assimilation (p=0.016), Carboxylate degradation (p=0.04), Pentose Phosphate Pathway (p=0.04), and Acetyl-CoA biosynthesis (p=0.047) in COPD patients (D). Taxonomic analysis showed E coli dominating many pathways, while others like Carbohydrate biosynthesis were led by Roseburia hominis, when analyzing MTR E. Enterococcus (E.) faecium notably contributed to 7 of the 10 SuperPathways, whereas E faecalis dominated SuperPathway Carbohydrate degradation. MG abundances presented a balanced contribution from various species E. A comparison of MG and MTR abundances highlighted E coli’s higher transcriptomic activity, contrasting K. pneumoniae’s strong metagenomic presence with minimal transcriptomic activity. Only taxa contributing to at least 0.1% of total MTR abundance, and 1% of total MG abundance are displayed in panels (B, C, E). Statistical significance *P < 0.05; **P < 0.01, all p-values were two-sided.

After the removal of low-abundance SuperPathways (below 1% to total contribution), 17 major SuperPathways remained (Figure 5B), of whom we evaluated the taxonomic composition in COPD and non-COPD patients using MTR and MG abundances (Figure 5C). Regarding MTR, Streptococcus salivarius was more abundant by orders of magnitude in COPD patients compared to non-COPD patients (40.3% vs 0.3%). In contrast, the E.coli was more represented in patients without COPD comorbidity (91.1% vs 55%). Enterococcus (E) faecalis and E. faecium occurred only in COPD patients above the 1% threshold (1% and 1.9%). However, Roseburia hominis RNA was only relevant in non-COPD patients (7.6%). Regarding MG, the taxonomic distribution was more diverse in both patient groups. Major differences include Streptococcus pasteurianus (8.9% vs below threshold), E. coli (34.4% vs 8.6%) and Klebsiella pneumoniae (33.6% vs below threshold) being more abundant in COPD patients (compared to non-COPD); whereas Ruminococcus bromii (14% vs 3%), Roseburia faecis (30% vs 3.5%) and Bifidobacterium adolescentis (9.8% vs below threshold) being more abundant in patient without COPD.

Next, we explored the MTR abundance of the 17 major SuperPathways in COPD vs non-COPD patients (Figure 5D), where multiple SuperPathways including Glycolysis, Amino acid biosynthesis, Fatty acid and lipid biosynthesis, Carbohydrate biosynthesis, Nucleoside and nucleotide degradation, Cofactor carrier and vitamin biosynthesis, C1 compound utilization and assimilation, Carboxylate degradation, Pentose phosphate pathway and Acetyl-CoA biosynthesis showed significantly increased abundance in COPD patients (compared to non-COPD patients, Figure 5D).

Moreover, we evaluated the taxonomic composition of SuperPathways that showed differential abundance in COPD patients, based on the same methodology as in the case of key pathways. Regarding the taxonomical composition of MTR pathways, E. coli dominates multiple SuperPathways, such as Acetyl-CoA biosynthesis, C1 compound utilization and assimilation, Fatty acid and lipid biosynthesis, Nucleoside and nucleotide degradation and Pentose phosphate pathway. However Carbohydrate biosynthesis is dominated by Roseburia hominis, Carbohydrate degradation is dominated by Enterococcus faecalis and Glycolysis is dominated by Streptococcus salivarius. Among other species Enterococcus faecium and Streptococci, including S. vestibularis also contribute notably to major COPD-related SuperPathways (Figure 5E). In the case of MG abundances, Klebsiella pneumoniae and E. coli dominate approximately equally most of the SuperPatways, but Roseburia faecis, Streptococcus pasteurianus, Ruminococcus bromii, Faecalobacterium prausnitzii and Blautia obeum and wexlare are also important contributors (Figure 5E). Analysing separately the contribution of species to MG and MTR abundance revealed striking divergences. E. coli seems to represent a much stronger transcriptomic activity than its MG abundance indicates, whereas K. pneumoniae features strong metagenomic presence in most of the pathways, but with virtually no transcriptomic activity. Supplementary Figure 4 shows taxonomic break-down of top SuperPathways with 0.01% (MTR, Supplementary Figure 4A) and 0.1% (MG, Supplementary Figure 4B) cut-offs regarding species contribution.

Next, we performed Spearman’s correlation with the same clinical parameters as in the case of key pathways. The value of FEV1 showed significant correlation with SuperPatways Carbohydrate degradation (rs=-0.431), Glycan biosynthesis (rs=-0.49) and Glycolysis (rs=-0.33). Linear regression confirmed the significant interrelation in the case of Carbohydrate degradation (p=0.004) and Glycan biosynthesis (p=0.003) but not in the case of Glycolysis (p=0.0096). CAT score, Smoking PY and BMI showed no significant association with any of the SuperPathways.





Protein domain families

LEfSe analysis was performed to determine key protein domain families (PFAMs) exhibiting the greatest effect size discriminating COPD vs. Non-COPD patients regarding their metatranscriptomic abundance. A total of 21 PFAMs showed statistically significant discriminating power (FDR<0.05), setting the cutoff for Log10LDAcoeff ≥ 3. 15 of these PFAMs showed greater effect size towards the COPD-phenotype, including CtsR N-terminal HTH domain, Peptidase propeptide and YPEB domain, Conserved hypothetical protein 698, Winged helix DNA-binding domain, and SOR/SNZ family among the top 5; and 6 PFAMs towards the non-COPD phenotype, including Uroporphyrinogen decarboxylase, Reverse transcriptase, Citrate synthase, Fructose-6-phosphate aldolase and Urease gamma subunit among the top 5 (Figure 6A). Taxonomic breakdown reveals a strong contribution from Enterococcus faecium (10 PFAMs), E.coli (8 PFAMs), Streptococcus (S) salivarius and S. salivarius CAG79 (6 PFAMs in total), and Faecalobacterium prausnitzi (4 PFAMs) at the MTR level in COPD-related PFAMs. In contrast, in the 6 non-COPD-related PFAMs, species such as Blautia wexlerae (Reverse transcriptase) and Ruminococcus torques (PFAM Uroporphyrinogen decarboxylase) dominate apart from E. coli (3 PFAMs). Supplementary Figure 5 shows PFAM MTR taxonomic contributions with 1% cutoff and MG taxonomic contributions with 1% and 5% cut-offs.

[image: Two charts compare protein domain families and their prevalence in COPD conditions. Chart A is a bar graph showing enrichment scores for various protein domains in COPD 0 and COPD 1 with distinct colors. Chart B is a stacked bar chart displaying fraction representations of protein domain families across different organisms. Each organism is represented by a unique color in the legend.]
Figure 6 | Protein domain families associated with COPD according to the gut metatranscriptome. Linear Discriminant Analysis Effect Size (LEfSe) identified 21 key PFAMs significantly discriminating between COPD and non-COPD patients based on MTR abundance (FDR<0.05, Log10LDAcoeff>3). Log10LDAcoeff values are displayed on horizontal bars showing PFAMs. Of the analyzed PFAMs, 15 showed a more significant effect size toward the COPD phenotype, while 6 PFAMs were more associated with the non-COPD phenotype (A). Taxonomic analysis at the MTR level showed Enterococcus faecium dominating in 10 COPD-related PFAMs, E.coli in 8, and Streptococcus salivarius (including S. salivarius CAG79) in 6, while Faecalobacterium prausnitzi appeared in 4. For the non-COPD-related PFAMs, Blautia wexlerae and Ruminococcus torques were prominent, along with E. coli contributing to 3 PFAMs. Only taxa contributing to at least 5% of total MTR abundance are displayed in panel (B).






Discussion

Changes in the human gut microbiome have been linked to a variety of chronic diseases, including obesity, IBD, type 2 diabetes, cancer, cardiovascular disease, and COPD (Shreiner et al., 2015; Bowerman et al., 2020). A substantial amount of research has shown the metagenomic potential of fecal communities, including predicting anti-PD1 immunotherapy efficacy and toxicity (Human Microbiome Project Consortium, 2012; Le Chatelier et al., 2013; Limeta et al., 2020; Dora et al., 2023b; Dora et al., 2023a), but less is known about the microbiome’s transcriptional activity. The metatranscriptome represents a connection between the metagenome and community phenotype, and understanding its functional ecology requires the characterization of contributing metabolic pathways. Here, in our study, we revealed that specific bacterial phyla are present with a higher MTR abundance in the gut, than expected based on their MG abundance, including Actinobacteria, Proteobacteria, Verrucomicrobia and the Archaea Euryarchaeota. In contrast, Bacteroidetes seem to contribute lower to the gut’s MTR activity, than its Metagenomic abundance suggests. Among others, Collinsella, Streptococcus, Escherichia, Enterococcus are the most transcriptionally active genera, reflected in Pathways and Superpathways’ taxonomic representation.

When analysing data on COPD comorbidity, we find that patients with COPD exhibit a transcriptionally more active gut microbiome with increased abundance detected in most major metabolic pathways. Furthermore, the taxonomic diversity of metatranscriptomic pathways is considerably lower compared to metagenomic pathways with lesser species showing real-life transcriptomic activity despite the presence of their DNA in analysed samples. In contrast, species such as S. salivarius, S. vestibularis, E. faecalis and E. faecium were shown to be transcriptionally active, with low metagenomic abundance present in key COPD-related pathways. Finally we showed that certain pathways significantly correlate with physiological parameters frequently evaluated in COPD patients, including smoking pack year, CAT-score and FEV1.

Among key pathways, two different forms of Glycolysis show differential abundance according to COPD-comorbidity. Glycolysis IV, overabundant in COPD-patients and metatranscriptionally represented mainly by Streptococci, uses sucrose as a direct source, whereas non-COPD associated metabolic pathway Glycolysis III starts with glucose and represented by more bacterial taxa, including E. coli and E. faecalis, Megasphaera stantonii and S. salivarius. This might implicate a divergence in the anaerobic energy-homeostasis of commensal gut bacteria in the case of chronic lung inflammation (Bhayani et al., 2022). Interestingly, key pathway Glycolysis IV, apart from being positively- and negatively associated with CAT score and FEV1, respectively, it showed a moderate negative correlation with Smoking PY. This finding might seem controversial unbeknownst about 30% of COPD patients are non-smokers according to the multicenter canCOLD epidemiological study (Tan et al., 2015). Thus, Streptococci-driven glycolysis might indicate the existence of a smoking-independent pathophysiological link through the gut-lung axis. Of note, these results based on pure correlation are utmost hypothetical and need rigorous experimental validation. Superpathway of Ac-CoA Synthesis and Glyoxylate cycle, in contrast, showed significant positive correlation with pack year, implicating them in the pathogenesis of smoking-associated COPD. Unlike the citric acid cycle which is geared towards energy production, the glyoxylate cycle specializes in the biosynthesis of carbohydrates from fatty acids. This adaptation allows organisms to convert acetyl-CoA, derived from fatty acids’ breakdown into glucose. In the complex environment of the gut, where nutrients fluctuate, the glyoxylate cycle provides bacteria with a flexible metabolic pathway to utilize fats and oils, potentially derived from the diet, to synthesize glucose. This supports bacterial growth and survival and influences the gut’s overall health and function by impacting the microbial composition and metabolic outputs (Proffitt et al., 2022). Recent study demonstrated the glyoxylate cycle’s key role in maintaining metabolic balance and stress resistance using a viable, but nonculturable bacteria (VBNC) model (Qi et al., 2023). Glycogen Biosynthesis I (from ADP-D-glucose) was the only Pathway that showed consistently a positive correlation with lung function (CAT score and FEV1) and negative correlation with smoking. Intracellular glycogen accumulation in several gut commensals acts as a niche adaptation trait, aiding in the colonization and adaptation to the gastrointestinal tract, and enhancing survival in the competitive and dynamic gut ecosystem​ (Esteban-Torres et al., 2023).

Comprehensive gut microbiome analysis identified multiple Streptococcus species, including S.Salivarius and S. parasanguinis to be overrepresented in COPD patients and to correlate with reduced lung function (Bowerman et al., 2020). Furthermore, the latter taxa contribute to a COPD-associated metabolic network that is associated by pulmonary inflammation (Bowerman et al., 2020). Others reported Prevotellaceae as a significantly more abundant family in mild COPD patients (compared to healthy), and showed a trend for Ruminococcaceae and Enterococcaceae being overrepresented in GOLD III-IV COPD compared to healthy controls (Li N. et al., 2021). Altogether both studies recapitulated the fact that gut microbiome is not altered considerably at a taxonomic level, but rather changes in its functionality and metabolomics (Bowerman et al., 2020; Li N. et al., 2021). Regarding metatranscriptomics, our current study showed that multiple Streptococcus species dominate pathways overrepresented in COPD, especially Glycolysis IV. Interestingly, our data suggests that E. coli is a major contributor at a metatranscriptomic level to all relevant pathways regardless of COPD, but not at a metagenomic level. The Carbohydrate Biosynthesis superpathway was dominated by Roseburia hominis metatranscriptionally. Roseburia species are known for their butyrate-producing capability, a short-chain fatty acid essential for colonic health and possessing anti-inflammatory properties (Louis and Flint, 2009).

Enterococcus faecalis and faecium occur as an important contributor both in key metabolic pathways and major superpathways at a metatranscriptomic level, but its abundance is not noticeable if we observe the metagenom, the difference is even more dominant in COPD patients. This suggests a discrepancy between the abundance and the transcriptomic activity of these bacteria in the gut. Concerning metabolic pathways, metatranscriptomic diversity is significantly lower than metagenomic diversity, implicating a form of convergence, where only a fraction of species are active regarding their gene expression. When observing metabolism at a macro level, a general increase in transcriptomic activity occurs in COPD, with most of the SuperPathways being overexpressed. Also, in COPD patients, the taxonomic representation of major SuperPathways changes abruptly, where Streptococci (S.), including S. salivarius contributes to ~41% of total pathway abundance compared to ~1% in non-COPD patients. Previously, both Bowerman et al (Bowerman et al., 2020) and Li et al (Li N. et al., 2021), described a significant increase in Streptococci regarding their metagenomic- and metabolite abundance in COPD, but no data was presented at the transcriptomic level. Also, the metagenomic presence of E. coli is more dominant in COPD patients, that is in line with Bowerman et al (Bowerman et al., 2020), but not transcriptionally, where E.coli represents a relatively smaller fraction of abundance due to the dominance of Streptococci. In contrast, Roseburia faecis and Ruminococcus bromii showed an increased presence in patients without COPD comorbidity, corresponding to earlier findings in the field (Bowerman et al., 2020; Li N. et al., 2021). Interestingly, Klebsiella pneumoniae was overrepresented in COPD patients at the metagenomic level. However, Klebsiella species appear to be transcriptionally silent, not contributing significantly to any superpathway or patient group. Plus, Bifidobacterium adolescentis genome showed increased abundance in non-COPD patients, but showed no significant presence in the metatranscriptome. Neither Klebsiella pneumoniae nor Bifidobacterium adolescentis in the gut was described earlier in connection with COPD.

Protein domain families (PFAMs) are families of protein domains or conserved protein sequences. Identifying Pfams in the metagenomic or metatranscriptomic data is done by employing Hidden Markov Models (HMMs) to search for known protein domains within the sequence data. Here, we showed that multiple PFAMs were associated with COPD, including CtsR N-terminal HTH domain, Peptidase propeptide and YPEB domain, or Winged helix DNA-binding domain; and multiple PFAMs are overrepresented in patients without COPD comorbidity such as Uroporphyrinogen decarboxylase, Reverse transcriptase, or Citrate synthase. The CtsR regulon includes the clpC, clpP, and clpE genes, which are negatively regulated by the CtsR of L. monocytogenes, a member of the family comprising several Firmicute transcriptional repressors of class III stress genes (CtsR) implicating a role in heat-shock protein-mediated anti-stress response (Nair et al., 2000). Peptidase propeptide and YPEB domain likely has a protease inhibitory function (Yeats et al., 2004), whereas non-COPD-associated Uroporphyrinogen decarboxylase (UROD), a branch point enzyme in the biosynthesis of tetrapyrroles, catalyzes the decarboxylation of four acetate groups of uroporphyrinogen III, resulting in coproporphyrinogen III playing an essential role in the biosynthesis of heme and chlorophyll, a protein family already characterized in yeasts and Bacillus subtilis (Garey et al., 1992; Hansson and Hederstedt, 1992). Regarding Citrate synthase in bacteria, its role was identified in metabolism and bacterial cell cycle control, independent of its metabolic activity (Bergé et al., 2020). The taxonomic composition of key PFAMs garnered from MTR data corresponds with our findings from the metabolic pathway analysis, where Streptococci, E. coli, and Enterococcus faecium were the strongest contributors in COPD, and Ruminococcus torques and Blautia welfare in non-COPD. It is important to acknowledge microbial communities’ inherent dynamism and context-specific nature, highlighting that specific PFAMs may not consistently correspond to particular functions or taxa across varied environments. Consequently, the interpretations presented here primarily serve as a foundation for hypothesis generation, necessitating rigorous validation through experimentation in diverse settings.

An important confounder in microbiome research, cigarette smoking is known to reduce microbiome diversity across the body, particularly in the respiratory and GI tracts, as evidenced by studies such as Gui et al (Gui et al., 2021). and Shapiro et al (Shapiro et al., 2022). In COPD and lung cancer patients, studies show that smoking alters gut bacterial abundance, decreasing Firmicutes and Proteobacteria, while increasing Prevotella, Bacteroides, and Bacteroidetes (Ding et al., 2021; Chen et al., 2024). Shanahan et al. found higher Streptococcus and Veillonella spp. in smokers (Shanahan et al., 2018). However, few studies have compared the gut microbiotas of smoking vs. non-smoking COPD patients, and functional metagenomic studies are scarce. Bowerman et al (Bowerman et al., 2020). found no difference between these groups and due to the low number of non-smoking COPD patients in our cohort, we cannot draw solid consequences of the functional microbiome in non-smoker COPD.

Case-control studies with the recruitment of healthy, usually young participants have the setback of non-uniformity regarding age and performance status that can significantly influence the baseline microbiome (Badal et al., 2020; Ghosh et al., 2022). Our cohort includes a group of patients from the same geographic region, with similar health status and age distribution and with a comparable burden of chronic conditions that can act as confounders. Our study has limitations. The size of the population cohort is modest, and we cannot tell whether the alteration of bacterial transcriptomic activity in the gut is the cause or a consequence of chronic inflammation in the lung. Our study did not classify patients according to COPD treatment, so we cannot assess inhaled or systemic steroid therapy’s influence on the gut metatranscriptome. Metatranscriptomic analyses have the downside of increased degradability of RNA compared to DNA, which can be managed by precise quality control. Furthermore, it is important to acknowledge that transcriptome data alone may not fully capture the metabolic changes occurring in the host and often shows poor correlation with both proteomic and metabolomic profiles (Taniguchi et al., 2010; Ma et al., 2019; Li L. et al., 2021). Future research should integrate metagenomic, metatranscriptomic, and metabolomic data to provide a more comprehensive understanding of microbial community physiology and its impact on lung cancer pathology (Cavill et al., 2016). Also, a potential bias exists in public databases favoring E. coli over other Gram-negative bacteria, which may have influenced our pathway analyses. However, E. coli’s metabolic versatility and the inclusion of well-described taxa such as Bacteroides, Prevotella, and Ruminococcus in current databases suggest that our findings may still accurately reflect biological reality. Future research should validate these findings with a more diverse range of bacterial species to mitigate this bias. The administration of probiotics and prebiotics, like Bifidobacterium strains, has shown efficacy in restoring gut and lung microbiomes in diseases linked to the gut-lung axis, such as COVID-19, asthma, and COPD (Budden et al., 2017; Li et al., 2024). Dietary interventions, including foods rich in fiber, are also useful therapeutic strategies for diseases similar to COPD, due to the short-chain fatty acids produced by beneficial bacteria (Vaughan et al., 2019; Ding et al., 2021). Targeting overrepresented Streptococcus species and boosting beneficial taxa like Roseburia hominis may reduce COPD-related inflammation. Existing microbiome-targeted therapeutics for dysbiosis in IBD and metabolic diseases might offer a basis for developing microbiome-based COPD interventions.





Conclusion

Our metatranscriptomic analysis elucidates distinct transcriptional activity within the gut microbiome of NSCLC patients, shedding light on its potential therapeutic implications in COPD comorbidity. Altogether, our findings confirmed the previously reported increased metagenomic abundance of intestinal Streptococci and E. coli in COPD at the transcriptomic level. Furthermore, we demonstrated the association of multiple metabolic pathways and protein domain families with COPD presence, suggesting a multifaceted microbiome involvement in the disease’s pathology. These findings underscore the importance of incorporating metatranscriptomic perspectives to unravel the intricate microbial interactions and their influence on chronic diseases, paving the way for novel microbiome-targeted therapeutic strategies in COPD.
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Introduction

Xingnao Jiutan tablets (XNJT), a compound Chinese medicine, have been applied to the treatment of the sequelae of cerebral thrombosis or cerebral hemorrhage, transient cerebral ischemia, and central retinal vein obstruction, etc., but the underlying mechanisms are not yet clear. This research focused on examining the impact of XNJT for cerebral ischemia/reperfusion (MCAO/R) injury, utilizing gut microbiota and metabolomic studies.





Methods

The primary components of XNJT were identified through the application of the HPLC technique. We established a MCAO/ R model in mice and conducted behavioral evaluations, cerebral blood flow measurements, and TTC staining. We used ELISA, high-throughput 16S rDNA gene sequencing, and metabolomics techniques to detect inflammatory factors, microbial populations, and metabolites, respectively. Finally, we performed Spearman correlation analysis to investigate the relationships among gut microbiota and metabolites, comprehensively exploring the mechanisms of XNJT to alleviate cerebral ischemia-reperfusion injury.





Results

We discovered that XNJT effectively enhanced neurological performance, alleviated cerebral infarction, diminished neuronal cell death, and increased cerebral blood flow. Moreover, XNJT downregulated the secretion of pro-inflammatory cytokines like TNF, IL-6, and IL-1b. Additionally, XNJT improved gut microbiota levels in MCAO/R mice, particularly Bacteroides, Firmicutes, Escherichia-Shigella, and Ligilactobacillus. Furthermore, XNJT primarily modulated differential metabolites in the gut through Glycerophospholipid, Linoleic acid, and Sphingolipid metabolism pathways. Spearman correlation analysis revealed significant associations among intestinal microbiota and various metabolites.





Discussion

In summary, our findings suggest that XNJT can improve cerebral ischemia/reperfusion injury outcomes, reduce inflammatory responses, and regulate gut microbiota and differential metabolites. It’s possible that the potential mechanisms are connected to controlling gut microbiota and metabolism.





Keywords: Xingnao Jiutan tablets, cerebral ischemia/reperfusion, gut microbiota, metabolism, brain-gut axis




1 Introduction

Stroke, a disorder of the central nervous system, is marked by high morbidity, mortality, disability, and economic burden due to brain tissue damage from blocked or burst blood vessels in the brain (Grysiewicz et al., 2008). Research indicates that worldwide, stroke ranks as the second most common cause of mortality, representing 11.6% of total deaths, and is the third leading reason for disability (Demsie and Lorkowski, 2020; Feigin et al., 2022). Additionally, China has the highest stroke prevalence worldwide, with a trend toward younger patients (Zhou et al., 2019; Xian et al., 2022). Stroke types include ischemic stroke and cerebral hemorrhagic stroke, where ischemic stroke occurs more frequently, constituting 60% to 80% of all stroke cases (Herpich and Rincon, 2020; Liu et al., 2020). The primary cause of ischemic stroke is the blockage of the intracranial artery, leading to intricate brain neuropathological alterations such as excitotoxicity, oxidative stress, neuroinflammation, and breakdown of the blood-brain barrier, culminating in brain tissue death and neurological impairments (Maida et al., 2020; Candelario-Jalil et al., 2022; Huang et al., 2022; Rajeev et al., 2022; Zong et al., 2022). Clinical manifestations of neurological deficits include hemiparesis, speech difficulties, facial asymmetry, and impaired consciousness. Presently, thrombolysis and interventional treatment stand as the most efficacious therapies, yet they come with high costs and constraints like a limited time frame and related risks. Therefore, it’s critically important to develop efficient and economical treatment methods to reduce the burden of strokes on both society and families. In conclusion, studying the pathophysiologic process of ischemic stroke and establishing a comprehensive system for its prevention, diagnosis, treatment, and prognosis is of great significance.

A growing collection of studies suggests that ischemic stroke affects gut microbiota and that regulating gut flora could be an innovative approach to preventing and treating strokes (Pluta et al., 2021; Yamashiro et al., 2021; Zhang et al., 2021). Dysbiosis of the gut microbiota can disrupt brain function and result in neurological disorders (Durgan et al., 2019). Furthermore, gut microbiota-related metabolites, including short-chain fatty acids and lipopolysaccharides, show a significant correlation with the development and outcomes of stroke (Chen et al., 2019b; Cheng et al., 2022). This suggests a role for the brain-microbe-gut axis in the pathology of strokes. Gut microbiota serves as a “two-way” communication system between the gastrointestinal system and the brain.

Recently, the healing impact of Chinese medicine on a range of illnesses has gained broad acknowledgment, along with its recognized promise in medical care (Zhai et al., 2023). Chinese medications, characterized by their diverse components, extensive coverage, and multiple targets, are vital in stroke treatment (Chang et al., 2016). Research indicates that traditional Chinese medicinal practices have the potential to alter gut microbiota and its by-products (Feng et al., 2018; Gong et al., 2020). XNJT, a hospital preparation from Tianjin Medical University General Hospital, can activate blood circulation, remove blood stasis, and promote overall circulation It is used to treat the sequelae of cerebral thrombosis or cerebral hemorrhage, transient cerebral ischemia, and central retinal vein obstruction. XNJT is mainly made of 4 kinds of Chinese herbs, Ligusticum striatum DC. (Chuan Xiong), Leonurus japonicus Houtt. (Chao Chong Wei Zi), Santalum album L. (Tan Xiang), and Dryobalanops aromatica C.F.Gaertn. (Bing Pian). In the clinic, XNJT has the potential to markedly enhance the clinical manifestations in patients with sequelae of cerebral infarction, patients with the drug after the cerebral vascular resistance is reduced, the blood flow changes, proving that the drug helps to improve the cerebral blood supply insufficiency (Xie and Tang, 2005). The study by Xie and Tang assessed 100 patients with cerebral infarction, encompassing measurements of carotid blood flow velocity, blood flow volume, cerebrovascular resistance, and changes in blood rheology, with an overall efficacy rate of 72%. In Chinese medicine, Ligusticum striatum DC., is extensively employed in the treatment of cardiovascular and neurovascular diseases. Ferulic acid, a key component of Ligusticum striatum DC., is known to reduce memory impairments and offer defense against oxidative stress and apoptosis caused by brain ischemia/reperfusion injury (Ren et al., 2017; Liu et al., 2022). Numerous studies on animals have demonstrated that tetramethylpyrazine reduces infarct size, neurological scores, and cerebral edema in models of permanent and transient cerebral ischemic injury (Kao et al., 2013; Xiao et al., 2013; Tan et al., 2015). Leonurus japonicus Houtt., made from Motherwort Fruit, is known for its ability to invigorate blood circulation, remove blood stasis, purify the liver, and brighten the eyes. Leonurine, a major component of Leonurus japonicus Houtt., reduced the reactive oxygen species concentrations in mitochondria extracted from the ischemic cortex (Qi et al., 2010). Santalum album L. enhances the activity of antioxidant enzymes and scavenges oxygen free radicals (Xu et al., 2022). Dryobalanops aromatica C.F.Gaertn. inhibits inflammatory factors, reduces oxidative stress, and maintains brain function (Ma et al., 2023). Importantly, some botanical drugs in XNJT, such as Santalum album L., have been shown to modulate the intestinal microbiota. Investigating if XNJT’s anti-stroke properties are partially due to its influence on gut microbiota and metabolites is valuable. Therefore, our research focused on examining how XNJT influences gut microbiota and its metabolites in mice suffering from middle cerebral artery occlusion/reperfusion (MCAO/R), employing 16S rDNA gene sequencing combined with untargeted metabolomics analysis (Figure 1).
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Figure 1 | Graphical abstract of this study. **p <0.01,  ****p <0.0001.




2 Materials and methods



2.1 Reagents and chemicals

XNJT was provided by Tianjin Medical University General Hospital. The approval number was Z2007590. The details of the XNJT employed in this research are described in Table 1. The chemical profile follows the standards set forth in the ConPhyMP statement (Heinrich et al., 2022). Sodium carboxymethyl cellulose (CMC-Na, C8621), 4% paraformaldehyde (P1110), hematoxylin-eosin stain kit (G1120), and TTC Solution (2%, G3005) were purchased from Solarbio (Beijing, China). The mouse TNF (YJ002095), IL-6 (YJ063159), and IL-1β (YJ098416) ELISA kit were provided by Enzyme-linked Biotechnology (Shanghai, China). Monofilament (0621) for MCAO/R was purchased by Yushun Biotech (Henan, China). Botanical names are referenced from “World Flora Online”, http://www.worldfloraonline.org.

Table 1 | XNJT composition.
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2.2 XNJT preparation method and fingerprint analysis

The primary procedural stages of XNJT included: grind the half amount of Ligusticum striatum DC. and Santalum album L. into fine powder. Take the other half amount of Ligusticum striatum DC., Santalum album L., and Leonurus japonicus Houtt., and boil them in water twice. The first boiling should last for 2 hours, and the second boiling for 1.5 hours. Combine the decoctions, filter them, and evaporate the filtrate under reduced pressure until the relative density reaches 1.36-1.38 (at 60°C), forming a clear paste. Mix the paste with the aforementioned fine powder, dry it, and crush it into fine particles. Add an appropriate amount of powdered sugar, granulate it, dry it, and spray it onto Dryobalanops aromatica C.F.Gaertn. dissolved in a suitable amount of ethanol. Mix well, press it into 1000 tablets, and coat them with sugar shell.The daily dose for an adult in this study was 4.86g/70 kg/d.

The analysis of LC-MS/MS utilized a Vanquish (Thermo Fisher Scientific, USA) high performance liquid chromatography (HPLC) system, equipped with a Phenomenex Kinetex C18 (2.1 mm × 100 mm, 2.6 μm) linked to the Orbitrap Exp loris 120 mass spectrometer (Orbitrap MS, Thermo). Solvent A (0.01% acetic acid in water, v/v) and solvent B (isopropanol and acetonitrile, 1:1, v/v) were used for gradient elution, and the injection volume was 2 μL. The MS/MS spectral analysis was conducted utilizing an Orbitrap Exploris 120 mass spectrometer. Settings for mass spectrometry included: a sheath gas flow rate of 50 Arb, an Aux gas flow rate of 15 Arb, a capillary temperature of 320°C, a complete MS resolution of 60000, a MS/MS resolution of 15000, collision energy of SNCE 20/30/40, and spray voltages of 3.8 kV (positive) and -3.4 kV (negative) respectively. ProteoWizard was employed to transform the unprocessed data into the mzXML format. Additionally, identifying metabolites through R software and XCMS-based methods for detecting peaks, extracting, aligning, and integrating. For identifying metabolites, the R software along with BiotreeDB (V3.0) were utilized. The database used to identify metabolites was BiotreeDB (V3.0).




2.3 Animals

Male C57BL/6J mice, aged 8 weeks and weighing 19-21g, were acquired from Beijing Vital River Laboratory Animal Technology Co., Ltd (SCXK (Jing) 2021-0006). Before the experiment, the animals resided in a designated specified pathogen-free (SPF) animal room at the Institute of Neurology, General Hospital of Tianjin Medical University, and acclimated for 1 week. The mice were kept under regulated environment of 22-25°C and 60 ± 5% humidity, with unrestricted access to both food and water. The procedure for the experiment adhered to the guidelines governing the treatment of experimental animals. (approval number IRB2023-DWFL-007).




2.4 Animals experimental design

The mice were arbitrarily segmented into five distinct groups: sham group (Sham, n = 6), MCAO/R group (Model, n = 6), low dose group (XNJT-Low, n = 6), middle dose group (XNJT-Middle, n = 6), and high dose group (XNJT-High, n = 6). The low, medium, and high doses for mice were 0.6318, 1.2636, and 2.5272 g/kg/d, respectively, which were 1, 2, and 4 times the daily dose for an adult. XNJT were ground into powder and dissolved in 0.5% CMC-Na (C8621, Solarbio,Beijing, China) before gavage. In the XNJT-Low, XNJT-Middle, and XNJT-High groups, mice received daily gavage with XNJT solution (0.6318g/kg/d), XNJT solution (1.2636g/kg/d), or XNJT solution (2.5272 g/kg/d) for seven days pre-surgery, respectively. Equal volumes of 0.5%CMC-Na were provided through gavage in both Sham and Model groups.

Conducted an hour subsequent to the final administration, the MCAO procedure adhered to a protocol already in place (Xu et al., 2021). According to the Zea-Longa method, mice underwent a 12-hour fast prior to surgery, with free access to water only (Longa EZ et al., 1989; Ying Huang et al., 2022). In summary, the animals were anesthetized using isoflurane and kept in a supine position. A cut was made along the neck’s central line to expose the common carotid artery (CCA), external carotid artery (ECA), and internal carotid artery (ICA). To avert bleeding, the CCA and ECA were secured near the end using 5-0 nylon stitches, the CCA was loosely fastened at the end, and the ICA was tied using a microarterial clip. A minor cut was created in the CCA, followed by the insertion of a monofilament into the ICA until resistance was detected, after which it was halted. A 3-0 suture was used to fasten the monofilament and seal the cut. Following an hour of ischemia, the monofilament was methodically extracted to facilitate reperfusion. The Sham group experienced an identical process, with the exception of inserting monofilaments. After surgery, the mice were moved to an electric blanket maintained at 37 ± 0.5°C until they regained consciousness.




2.5 Evaluation of neurological score

Neurological function scoring was performed using the Zea-Longa method (Longa EZ et al., 1989). Each group’s neurological capabilities were evaluated 24 hours after ischemia/reperfusion, with a total score of 4 points (Yang et al., 2022a; Zhang et al., 2022). No neurological deficit scored 0 points; the inability to fully extend the front paw on the paralyzed side scored 1 point; turning to the paralyzed side when walking scored 2 points; tilting to the paralyzed side when walking scored 3 points; and the inability to walk automatically and loss of consciousness scored 4 points.




2.6 Cerebral blood flow detection

Mice were anesthetized and their skin prepared. The head was fixed with a stereotaxic apparatus and the skull exposed. The flow of blood in the brain was tracked within a minute through the application of laser speckle contrast analysis technology. The detection values of the relatively stable period (30s) in the surgical area were selected by PIMSoft for statistical analysis.




2.7 Sample collection and preparation

Mice were anesthetized after neurological behavioral scoring, and blood samples were collected. Samples of blood were left undisturbed for an hour, followed by centrifugation at 3000 rpm for a duration of 10 minutes, and the clear liquid above the sediment was preserved at -80°C. The brains were removed, with those used for TTC staining refrigerated at a temperature of -20°C and those for HE staining fixed in 4% paraformaldehyde. The cecum’s contents were extracted, swiftly frozen using liquid nitrogen and maintained at a temperature of -80°C.




2.8 Triphenyltetrazolium chloride staining

The brains of the mice were preserved in a fridge at -20°C for a duration of 20 minutes, then cut into 5 slices, each 2 mm thick. The slices were placed in 2% TTC solution for a duration of 30 minutes at a temperature of 37°C, ensuring even staining by turning them periodically (Benedek et al., 2006). Subsequently, they underwent fixation in 4% paraformaldehyde for a duration of 2 hours and were photographed. Infarcted tissue volume was measured using Image J software for determining the volume of the infarct. The infarct rate (%) was determined by the formula: infarct area/whole brain area × 100%.




2.9 Hematoxylin - eosin staining

The brain and intestinal tissues underwent fixation in 4% paraformaldehyde for a duration of 24-48 hours, followed by dehydration using 75% ethanol, 85% ethanol, 90% ethanol, 95% ethanol, 100% ethanol I, 100% ethanol II sequentially, clarification in xylene, encasement in paraffin, and slicing. The samples underwent deparaffinization using xylene followed by rehydration in progressively lower ethanol levels. The samples underwent a 3-minute hematoxylin staining, were treated with hydrochloric acid to revert to blue, and followed by a 2 seconds eosin staining process. The sections were cleared in xylene and sealed to observe morphological changes in brain and intestinal tissue.




2.10 Enzyme linked immunosorbent assay

The concentrations of tumor necrosis factor (TNF) (Grimstad, 2016), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the serum were quantified utilizing ELISA kits. First, allow the ELISA kits to equilibrate at room temperature for 20 minutes. Subsequently, add 50 μL of standards at varying concentrations to the designated wells. For the sample wells, introduce 10 μL of the sample to be tested followed by 40 μL of sample diluent. Except for the blank wells, to both the standard and sample wells, add 100 μL of horseradish peroxidase (HRP)-conjugated detection antibody, seal with an adhesive cover, and incubate at 37°C for 60 minutes in a temperature-controlled chamber. After discarding the liquid, pat dry on absorbent paper, fill each well with wash buffer, let it stand for 1 minute, decant the wash buffer, and pat dry again. Repeat this washing process five times. Next, add 50 μL each of substrates A and B to each well and incubate at 37°C in the dark for 15 minutes. Finally, add 50 μL of stop solution to each well, and within 15 minutes, measure the absorbance of each well at a wavelength of 450 nm using an enzyme labeling instrument.




2.11 16S rDNA gene sequencing

16S rDNA gene sequencing of cecum contents was executed by LC-Bio (Zhejiang, China). Total microbial DNA was isolated from each specimen using the CTAB technique, with the quality of the DNA verified through agarose gel electrophoresis. Amplification of the 16S rDNA sequences was achieved through PCR, utilizing primers specific to V3-V4 (341F, 5’-CCTACGGGNGGCWGCAG-3’; 805R, 5’-GACTACHVGGGTATCTAATCC-3’), and the PCR products were confirmed by 2% agarose gel electrophoresis. PCR outputs underwent purification using AMPure XT beads (Beckman Coulter Genomics, Danvers, MA, USA) and were measured using Qubit (Invitrogen, USA). The assessment of purified PCR products was conducted with the aid of an Agilent 2100 Bioanalyzer (Agilent, USA) and Illumina (Kapa Biosciences, Woburn, MA, USA) for library quantification kits, and the concentration of the qualified libraries should be above 2 nM. Qualified sequencing libraries were pooled after gradient dilution. Subsequently, the mixtures were subjected to sodium hydroxide-induced denaturation to achieve single-stranded DNA for subsequent sequencing procedures. Samples passing the evaluation were sequenced using the NovaSeq 6000 sequencer with 2 × 250 bp paired-end reads. Following sequencing, the paired-end data were processed through demultiplexing, assembly, filtering, and noise reduction to obtain amplicon sequence variants. Alpha diversity analysis, beta diversity analysis, and species annotation were subsequently conducted based on these amplicon sequence variants. Alpha and beta diversity analyses done at the amplicon sequence variants (ASV) level. The reference databases used for taxonomic identification are the SILVA (Release 138, https://www.arb-silva.de/documentation/release138, min confidence:0.7) and NT-16S databases (Release 20230718, min ident:90; min cov:80; max e1e:5).




2.12 Untargeted metabolomics analysis

The gathered contents of the cecum were defrosted on ice, followed by the extraction of metabolites using a 50% methanol solution. In summary, 100 mg of the sample underwent extraction using 1 ml of chilled 50% methanol, followed by overnight storage at -20°C. Samples underwent centrifugation at 4000 g for a duration of 20 minutes and were preserved at -80°C for subsequent application. Furthermore, a mixture of QC samples was created using 10 μL of each extract.

First, every chromatographic division was executed utilizing the UltiMate 3000 UPLC system. The process of reversed-phase separation was executed using an ACQUITY UPLC T3 column. The composition of the mobile phase included 5 mM ammonium acetate, 5 mM acetic acid, and solvent B (acetonitrile), keeping the column chamber stable at 40°C. The rate of flow was established at 0.3 milliliters per minute. The conditions for gradient elution included: 0-0.8 minutes, 2% B; 0.8-2.8 minutes, 2% to 70% B; 2.8-5.6 minutes, 70% to 90% B; 5.6-6.4 minutes, 90% to 100% B; 6.4-8.0 minutes, 100% B; 8.0-8.1 minutes, 100% to 2% B; 8.1-10 minutes, 2% B.

The metabolites emerging from the column were identified through a high-resolution tandem mass spectrometer (Q-Exactive), functioning in both positive and negative ion modes. Spectra of metabolite ion precursors (70-1050 m/z) were gathered at a 70000 resolution to attain an AGC of 3e6 and a peak injection duration of 100 ms. The leading three settings for gathering data were configured in DDA mode. The collection of fragment spectra occurred at a 17500 resolution, attaining an AGC between 1e5 and a peak injection duration of 80 ms.To assess the stability of the LC-MS throughout the acquisition, a single quality control sample (mixed sample) was gathered following every 10 samples.




2.13 Statistical analysis

Results from the experiments were graphically represented and subjected to statistical examination via ImageJ and GraphPad Prism (version 9.5). Normality was tested using SPSS and if it was normally distributed, the study was tested using one-way ANOVA. If it was non-normally distributed, non-parametric tests were used. A significant difference between groups was considered statistically significant if P ≤ 0.05.

16S rDNA samples were performed on the Illumina NovaSeq platform. The FLASH tool was employed to amalgamate paired-end reads. The raw data underwent quality filtration to identify superior clean tags, adhering to certain filtering parameters as per fqtrim (v0.94). The Vsearch software (v2.3.4) was used to sift through chimeric sequences. The prevalence of features was standardized based on the comparative prevalence of each specimen as per the SILVA (release 138) classification system. Additional graphical representations were created utilizing the R package (v3.5.2). Comparisons between multiple groups with biologically replicated samples were conducted employing the Kruskal-Wallis test, setting a significance level at p<0.05.

Acquired mass spectrometry data were preprocessed using XCMS software. Raw data files from LC-MS were transformed into mzXML format and analyzed using the XCMS, CAMERA, and metaX tools available in R software. Annotation of the metabolites was conducted through the online KEGG and HMDB databases, aligning the precise molecular mass data (m/z) of the samples with the information in these databases. The primary statistical evaluation was conducted using R software (version 4.0), normalizing the proteins’ raw intensity levels by the median. The final significantly different metabolites were identified by meeting three conditions: P<0.05, FC≥1.2, and VIP≥1. The hypergeometric test was utilized to conduct a differential enrichment analysis on KEGG Pathways, identifying functional entries with a notable enrichment of differential proteins at P<0.05.





3 Results



3.1 XNJT fingerprints

Figure 2 shows the HPLC fingerprints of the XNJT. The comprehensive positive and negative ion chromatograms for XNJT revealed the chemical makeup of every compound. The comprehensive analysis of peak areas and retention times identified 10 constituents in XNJT, specifically ligustilide, trans-ferulic acid, ethyl ferulate, (3Z)-3-butylidene-5-hydroxy-isobenzofuran-1-one (Senkyunolide C), leonurine, salicylic acid, oleic acid, gamma-linolenic acid, chlorogenic acid, and (-)-camphoric acid.

[image: Two chromatograms labeled ESI+ and ESI- show intensity over time for samples XNJT1, XNJT2, and XNJT3. Peaks are numbered 1 to 4 in ESI+ and 5 to 10 in ESI-. Below, chemical structures are shown for compounds: Chlorogenic Acid, Leonurine, Ethyl Ferulate, Ligustilide, Salicylic Acid, (3Z)-3-butylidene-5-hydroxyisobenzofuran-1-one, Ferulic Acid, (-)-Camphoric Acid, Gamma-Linolenic Acid, and Oleic Acid.]
Figure 2 | The HPLC chromatogram of XNJT.




3.2 XNJT improves neurological function and attenuates cerebral infarction

To validate the effect of XNJT on cerebral ischemia/reperfusion, we assessed the neurological deficit score in mice, measured cerebral blood flow, and calculated the cerebral infarct area 24 hours after MCAO/R modeling. The neurologic scores of mice in the Model group were notably higher than those in the Sham group (P<0.0001). Additionally, the neurological scores of mice in the XNJT-Low, XNJT-Middle (P<0.05), and XNJT-High groups (P<0.0001) were lower than those in the Model group, indicating that XNJT reduced brain injury in stroke mice (Figure 3A). TTC staining of brain tissue sections revealed no cerebral infarcts in the Sham group and significant cerebral infarcts in the Model group. There was a dose-dependent reduction in infarction area after XNJT administration, with a difference of statistically significant in the XNJT-High group (P<0.0001). This suggests a significant protective effect of XNJT on the brain (Figures 3B, C). Laser scattering results showed abundant cerebral blood flow in the Sham group and severely diminished blood flow in the left side of the Model group compared to the Sham group (P<0.0001). The treatment groups experienced a rise in brain blood circulation, notably distinct in the XNJT-High group. (P<0.0001) (Figure 3D, E).

[image: Graphs and images illustrate the effects of XNJT treatment on neurological score, infarction area, and cerebral blood flow. Bar charts A and B show differences in neurological scores and infarction areas across groups, with significant variations marked. Image C displays brain slices from each treatment group. Graph D shows cerebral blood flow, with significant differences among groups. Image E contains cerebral blood flow visualizations for each condition.]
Figure 3 | XNJT reduced the neurological deficit score, the infarction area ratio and cerebral blood flow. (A) The neurological score (n=12). (B) The infarction area(%) (n=6). (C) The representative images of TTC staining (n=6). (D) Line graph of cerebral blood flow in the surgical area (n=6). (E) Representative maps of laser speckle contrast analysis of cerebral blood flow. Statistical differences were examined by one-way ANOVA. *p < 0.05, **p <0.01, ****p <0.0001.




3.3 XNJT attenuates histopathological damage

HE staining showed that the brain tissue of the Sham group was intact, with abundant cells, normal morphology, neat arrangement, intact intercellular structure, tight connections, and normal neurons in the cortex, hippocampus, and striatum. In contrast, the Model group’s mice exhibited numerous deceased neurons, nuclear shrinkage, and vacuoles in the adjacent ischemic cortex, hippocampus, and striatum. Compared to the Model group, improvement levels varied among the treatment groups in the histopathologic features and morphology of the cortex, hippocampus, and striatum, featuring diminished localized necrosis and infiltration of inflammatory cells, along with a more structured cellular configuration (Figure 4A).

[image: Histological analysis and bar charts are shown. Panel A displays micrographs of brain tissue in three regions: cortex, hippocampus, and striatum, across five groups: Sham, Model, XNJT-Low, XNJT-Middle, and XNJT-High. Panels B, C, and D present bar graphs of TNF, IL-6, and IL-1β content, respectively, comparing the same groups. Statistical significance is indicated with asterisks above the bars.]
Figure 4 | XNJT attenuates histopathological damage and reduces serum levels of inflammatory mediators in mice (n=6). (A) The representative images of HE staining. (B) TNF serum level. (C) IL-6 serum level. (D) IL-1b serum level. Statistical differences were examined by one-way ANOVA. **p <0.01, ****p <0.0001.




3.4 XNJT reduces serum levels of inflammatory mediators in mice

Compared to the Sham group, the Model group showed elevated levels of TNF, IL-6, and IL-1β (Figures 4B–D). In contrast to the Model group, every group undergoing treatment showed reduced levels of TNF, IL-6, and IL-1β. Particularly, the XNJT-High group demonstrated significant differences in TNF (P<0.01) and IL-6 (P<0.0001).




3.5 XNJT ameliorates intestinal microbial population dysbiosis

In order to confirm our theory that XNJT’s anti-stroke properties are due to altering gut microbiota composition, we conducted 16S rDNA sequencing on the cecum of mice in the Sham, Model, and XNJT-High groups to assess XNJT’s effect on gut microbiota dysbiosis in MCAO/R mice. Alpha diversity analysis reflects species richness, evenness, and sequencing depth. The dilution curve indicates sufficient sequencing depth and sample size (Figure 5A). In contrast to the Sham group, the Model group exhibited a notable reduction in both Simpson and Shannon indices (P<0.01). Conversely, the XNJT-High group showed significant rises in Chao1, Shannon, and Simpson indices relative to the Model group (P<0.01) (Figures 5B-D). The results indicate that XNJT can influence the diversity of the gut microbiota.

[image: Graphs showing statistical comparisons between three groups: Sham, Model, and XNJT-High. (A) Line graph of Shannon index vs. number of sequences. (B-D) Violin plots showing Chao1, Shannon, and Simpson indices, with significance marked. (E) PCoA plot depicting group clustering with percentages explained. (F) NMDS analysis displaying stress level and group separations.]
Figure 5 | Effect of XNJT on the alpha diversity and beta diversity analysis of the intestinal flora (n=6). (A) Rarefaction curve analysis based on the Shannon index. (B) Alpha diversity analysis based on the Chao1 index. (C) Alpha diversity analysis based on the Shannon index. (D) Alpha diversity analysis based on the Simpson index. (E) Beta diversity analysis based on the PCoA. (F) Beta diversity analysis based on the NMDS. Statistical differences were examined by Kruskal-Wallis test statistic. *p < 0.05, **p <0.01.

Beta diversity refers to species dissimilarity among different environmental communities. Principal coordinates analysis (PCoA) and Nonmetric Multidimensional Scaling (NMDS) results show that, compared to the Sham group, the Model group exhibited the greatest displacement, while the XNJT-High group was positioned between the Sham and Model groups. This finding suggests that XNJT can regulate intestinal flora dysbiosis in MCAO/R mice (Figures 5E, F).

Differential analysis of microbial abundance at the Phylum and Genus levels revealed significant differences in gut microbiota composition. Although the overall gut microbial community structure among different groups was similar, there were notable variations in the abundance of specific bacteria. At the Phylum level, the Model group showed a decreasing trend in the abundance of Bacteroidota and Firmicutes compared to the Sham group, while their abundance increased in the XNJT-High group (Figures 6A, C). The abundance of Verrucomicrobiota and Cyanobacteria rose in the Model group but decreased in the XNJT-High group. At the Genus level (Figures 6B, D), compared to the Sham group, the Model group exhibited a notable rise in the populations of Akkermansia, Escherichia-Shigella, and Alistipes, alongside a marked reduction in the numbers of Dubosiella, Parabacteroides, Muribaculaceae, Ligilactobacillus, and Firmicutes. Importantly, the XNJT-High group ameliorated the microbial changes observed at both the Phylum and Genus levels in the Model group, suggesting a significant restorative effect of XNJT on the dysregulated gut microbiota in the stroke model.

[image: Bar charts and stacked bar graphs showing the relative abundance of microbial communities in different groups labeled Sham, Model, and XNJT-High. Panels A and B display stacked bar graphs indicating microbial compositions at the phylum and genus levels. Panels C and D present bar charts detailing relative abundances of specific microbes like Bacteroidota, Firmicutes, and others, with significant differences marked by asterisks.]
Figure 6 | XNJT regulated the gut microbiota at the Phylum and Genus level. (A) The gut microbiota composition at the Phylum level. (B) The gut microbiota composition at the Genus level. (C) The statistical analysis at the Phylum level. (D) The statistical analysis at the Genus level. Statistical differences were examined by Kruskal-Wallis test statistic. *p <0.05, **p <0.01.

To identify bacteria linked to MCAO/R, we employed Linear discriminant analysis Effect Size (LefSe) analysis to determine specific bacterial differences among the Sham, Model, and XNJT-High groups (Figures 7A, B). Our findings demonstrated that the Sham group was enriched with beneficial bacteria such as Muribaculaceae and Dubosiella. The XNJT-High group exhibited enrichment of beneficial endogenous bacteria such as Lachnospiraceae and Parabacteroides. In contrast, the Model group mainly enriched Escherichia-Shigella. Therefore, the primary bacteria in the Model group could be the ones targeted for the therapeutic effect of XNJT.

[image: Panel A shows a circular phylogenetic tree highlighting bacterial taxa differences in Sham, Model, and XNJT-High groups using color coding. Panel B is a bar chart comparing the LDA scores of various bacterial taxa among the same groups, with Sham in red, Model in green, and XNJT-High in blue. Panel C presents microscopic views of intestinal tissue from Sham, Model, and XNJT-High groups.]
Figure 7 | LEfSe analysis of changes in gut microbiota among groups. And HE staining of the intestine. (A) Evolutionary branching diagram.The different circle levels in the evolutionary branching diagram radiate from the inside to the outside to represent the seven taxonomic levels of Phylum, Order, Family, Genus, and Species. Each node represents a species classification at that level, and the higher the abundance of the species, the larger the node. The red color of a node indicates that the species is significantly different in the comparison group, and the abundance of the species is higher in the red group. (B) LEfSe analysis (LDA>4). The vertical coordinates are the categorical units with significant differences between groups, and the horizontal coordinates visualize the logarithmic score values of the LDA difference analysis for the corresponding categorical units in a bar chart. And the scores are sorted according to the score values to depict the size of their differences in different group samples. The longer the length, the more significant the difference. (C) HE staining of the intestine(n=6).

The HE staining results showed that the intestinal epithelial cell morphology of mice in the Sham group was as expected, with tightly arranged intestinal glands and a high number of goblet cells. Compared with the Sham group, the intestinal villi in the Model group were loose, the structure of the glands was disorganized and sparsely arranged; the number of goblet cells was reduced; and the muscle layer was damaged and locally necrotic. After treatment with XNJT, a significant improvement could be observed with a positive repair effect (Figure 7C).




3.6 XNJT influences metabolites in MCAO/R mice cecum contents

In the study, a total of 90 upregulated and 110 downregulated metabolites were identified between the Sham and Model groups. Similarly, between the Model and XNJT-High groups, 174 upregulated and 104 downregulated metabolites were found (Figure 8A). PLS-DA analysis was used for the exploration of the impacts of XNJT on the metabolites in the cecum contents of mice subjected to MCAO/R (Figure 8B). The Sham and Model groups were clearly separated, indicating a significant impact of MCAO/R treatment on metabolite composition. Additionally, a clear distinction was noted between the XNJT-High and Model groups, indicating notable variances in the metabolite profiles of these groups. Statistical analysis showed that 89 metabolites changed significantly during the MCAO/R modeling process. To better understand the efficacy of XNJT, we performed KEGG pathway enrichment analysis (Figure 8C). The metabolites were mainly enriched in the following 10 pathways: Glycosylphosphatidylinositol (GPI)-anchor biosynthesis, Glycerophospholipid metabolism, Teichoic acid biosynthesis, Ether lipid metabolism, Biosynthesis of phenylpropanoids, Glycerolipid metabolism, Inositol phosphate metabolism, Linoleic acid metabolism, Sphingolipid metabolism, and alpha-Linolenic acid metabolism. Among them, 19 metabolites showed varying degrees of reverse regulation after drug administration (Table 2). Figure 9A displayed the comparative signal strengths prevalent across various groups. These metabolites significantly participate in glycerophospholipid metabolism, linoleic acid metabolism, and sphingolipid metabolism pathways.

[image: Panel A shows volcano plots comparing gene expression changes between Model vs Sham and XNJT-High vs Model groups. Significant genes are highlighted. Panel B is a PCA plot showing separation between Sham, Model, and XNJT-High groups. Panel C is a KEGG enrichment scatter plot with metabolic pathways labeled, indicating gene numbers and p-values with varying dot sizes and colors.]
Figure 8 | Differences in metabolites between Sham, Model and XNJT-High groups (n=6). (A) Volcano graphs. (B) PLS-DA scores graph. (C) KEGG Enrichment ScatterPlot of differential metabolites.

Table 2 | Key metabolites enriched in untargeted metabolomics.


[image: A table displaying data related to various compounds involved in metabolic pathways. Columns include Name, Formula, M/Z (mass-to-charge ratio), RT (retention time), P-value, VIP (Variable Importance in Projection), Model vs Sham comparison, XNJT-High vs Model comparison, and Pathway. Compounds are primarily involved in glycerophospholipid and sphingolipid metabolism, with some in linoleic acid metabolism. Trends such as "up" or "down" in comparisons are noted for each entry.]
[image: A) Seven bar graphs showing the intensity measurements of different lipid species across three groups: Sham, Model, and XNAT-High. Significant differences are indicated with asterisks, demonstrating varying levels of intensity among the groups. B) Correlation heatmap displaying relationships among various lipid species and gut microbiota genera, with a gradient from red (positive correlation) to blue (negative correlation), showing clustering patterns.]
Figure 9 | (A) Metabolites in the glycerophospholipid metabolism, linoleic acid metabolism, and sphingolipid metabolism pathways. (B) The association heatmap of correlation for intestinal flora and metabolites. *p < 0.05, **p <0.01, ***p <0.001, ****p <0.0001.




3.7 Spearman correlation analysis

To reveal the interactions among gut microbiota and metabolites, Spearman correlation analysis was performed by us on the 8 Genus levels bacteria and 19 metabolites identified in the study (Figure 9B). The results demonstrated significant correlations between gut microbiota and metabolites. Our discovery was that PI 38:4; PI(18:0/20:4), PI 36:2; PI(18:0/18:2), PG 29:0; PG(14:0/15:0), PC 32:0; PC(16:0/16:0), and PC 32:1; PC(16:0/16:1) were positively associated with Akkermansia and Alistipes. Predict the involvement of Akkermansia and Alistipes in the synthesis and catabolism of these metabolites. In particular, Akkermansia has been associated with a variety of metabolic diseases. These positive correlations suggest that these lipid metabolites may play a role in regulating the growth and activity of these bacteria. However, PI 38:4; PI(18:0/20:4), PI 36:2; PI(18:0/18:2), PG 29:0; PG(14:0/15:0), PC 32:0; PC(16:0/16:0), and PC 32:1; PC(16:0/16:1) were negatively associated with Firmicutes, Ligilactobacillus, Muribaculaceae, Parabacteroides, and Dubosiella. Muribaculaceae play an important role in the production of short-chain fatty acids and have been associated with the development of chronic diseases. This suggests that XNJT treatment of cerebral ischaemia/reperfusion may have a positive impact by modulating the abundance of these bacteria to influence metabolite levels. Additionally, PG(14:0/15:0), PC 32:0; PC(16:0/16:0), and PC 32:1; PC(16:0/16:1) were positively associated with Escherichia-Shigella. Escherichia-Shigella is associated with intestinal disorders, and this negative correlation suggests that PG(14:0/15:0), PC 32:0; PC(16:0/16:0), and PC 32:1; PC(16:0/16:1) may be key metabolites for XNJT treatment of cerebral ischaemia/reperfusion, and that an increase in these metabolites may have an indirect therapeutic effect on cerebral ischaemia/reperfusion. The involvement of these bacteria in lipid synthesis and catabolism is forecasted.





4 Discussion

XNJT’s ability to protect the brain from cerebral infarction could be linked to its influence on inflammation, gut microbiota, and their metabolites. Numerous studies have shown the vital involvement of gut microbiota in the onset of cerebral infarction (Durgan et al., 2019). Through 16S rDNA sequencing, we analyzed the gut microbiota in the Sham, Model, and XNJT-High groups. The results revealed dysregulation in the intestinal microbiota of cerebral infarction mice, with some improvement following XNJT therapy. There was a decrease in gut microbiota alpha diversity in cerebral infarction mice, indicating significant changes in gut microbial composition following cerebral ischemia/reperfusion, consistent with previous studies (Gao et al., 2021). In this study, the enriched phylum in the Model group was mainly Bacteroidota. Clinical studies have confirmed a decrease in Bacteroidota abundance after ischemic stroke (Yin et al., 2015). Additionally, Firmicutes are major phyla of bacteria in mammalian intestines. Studies have shown a negative correlation between Firmicutes and the volume of lesion, midline shift, and hemorrhage in ischemic stroke, with a decrease in Firmicutes abundance post-stroke (Jeon et al., 2020; Gao et al., 2021; Xian et al., 2022). The research noted a comparable occurrence in the intestinal flora of Model mice, with notable rises in Bacteroidota and Firmicutes levels post-XNJT therapy, hinting at their potential role in XNJT’s effects against ischemic strokes. At the genus level, our study found a reduction in Ligilactobacillus and a rise in Escherichia-Shigella in the gut of Model mice, which XNJT could reverse. Escherichia-Shigella is a pathogenic bacterium that promotes gut inflammation (Guo et al., 2021). Ligilactobacillus, a type of probiotic, plays a role in regulating the immune and barrier functions of the intestines, enhancing permeability, reducing inflammation, and lowering serum levels of IL-6, IL-1β, and TNF (Waitayangkoon et al., 2020). Taking Ligilactobacillus supplements has been demonstrated to boost cognitive abilities, elevate mood, and reduce inflammation related to aging (Chen et al., 2019c). This suggests that Escherichia-Shigella and Ligilactobacillus may be crucial microbial species in the XNJT-mediated anti-ischemic stroke inflammatory response.

The severity of ischemic stroke is not only linked to dysbiosis of intestinal microbiota but may also be closely related to metabolites. A comprehensive study suggests that stroke may increase the permeability of the intestines, stimulate the immune response, and exacerbate ischemia/reperfusion injury via the gut-brain pathway (Hu et al., 2022). Importantly, some metabolites produced by gut microbiota through the gut-brain axis inhibit post-stroke inflammation and promote neural function repair, thereby alleviating ischemia/reperfusion injury (Zhao et al., 2024). Research has shown that cerebral ischemic stroke leads to neurological damage and alters histomorphological structures, while also inducing systemic issues such as an imbalanced gut microbiota and increased intestinal permeability (Chen et al., 2019a). When the intestinal barrier’s function is compromised, intestinal bacteria can trigger a systemic inflammatory response, potentially becoming life-threatening (Feng Zhang and Wu, 2020). Our study found loose intestinal villi, disorganised glandular structure, damaged muscularis propria and localised necrosis in mice with cerebral ischaemia/reperfusion model. There was an improvement after using XNJT. Ligilactobacillus modulates tight junction proteins, exerting a protective influence on the epithelial barrier (Karczewski et al., 2010). Based on both their research findings and our experimental data, Ligilactobacillus dysregulation within the intestine following a stroke may be a contributing factor to intestinal barrier disruption. Therefore, addressing intestinal damage can positively influence blood-brain barrier function and facilitate neurological recovery following a stroke. Previous studies have reported that cerebral ischemia-hypoxia causes physical harm to brain tissue, affecting its biochemical and metabolic functions, and leading to abnormal fluctuations in metabolite levels such as lipids, fatty acids, and amino acids, consistent with our findings (Yang et al., 2022b). Through this research, we obtained the metabolic profiles of gut contents from Sham, Model, and XNJT-High groups through untargeted metabolomics and found metabolic dysregulation in cerebral infarction mice. KEGG enrichment analysis revealed that Glycerophospholipid, Linoleic acid, and Sphingolipid metabolism were predominantly concentrated within these groups. From a metabolomics perspective, these changes constitute the metabolic characteristics of a stroke.

In vivo studies have shown that a strong correlation between irregular lipid metabolism and the prediction and prognosis of brain infarction (Liu et al., 2021; Qian et al., 2023). Various research findings suggest that lipids are vital in the occurrence and advancement of illnesses. Compared to proteins, lipids traverse the blood-brain barrier with greater ease, and the brain’s rich presence of polyunsaturated fatty acids renders it more vulnerable to oxidative stress than many other tissues and organs (Hamilton et al., 2007). Lipids include phospholipids, sphingolipids, and glycerides. The primary constituents of biological membranes, phospholipids, are glycerophospholipids and sphingophospholipids, playing a role in signal transduction (Farooqui et al., 2007). Glycerophospholipids undergo metabolic processes in various life stages, categorized into phosphatidyl cholines (PC), phosphatidyl ethanolamines (PE), phosphatidyl inositols (PI), phosphatidyl glycerol (PG), etc., based on their biological functions. Alterations in their composition may impact the stability, permeability, and fluidity of neuronal cell membranes, potentially resulting in neurological disorders (Liu et al., 2024). Interfering with the metabolism of glycerophospholipids usually leads to the swift production and build-up of free fatty acids and lyso-phospholipids (Yang et al., 2022a). In this study, metabolites such as PI 36:2; PI(18:0/18:2), PG 29:0; PG(14:0/15:0), PC 32:0; PC(16:0/16:0), and PC 32:1; PC(16:0/16:1) were notable rise in all of these in the Model group when contrasted with the Sham mice. Notably, the alterations in the previously mentioned metabolites in MCAO/R mice showed substantial improvement following treatment with XNJT. The findings highlighted the critical roles of Glycerophospholipid, Linoleic acid, and Sphingolipid metabolism in cerebral ischemia/reperfusion damage, and also suggested XNJT’s positive impact on MCAO/R mice.

Additionally, our research focused on exploring the link between intestinal microbiota and metabolites found in feces. The examination revealed that Firmicutes and Ligilactobacillus were negatively correlated with PC and PE levels in the MCAO/R mice. Given the substantial rise in these metabolite levels within the Model group, a trend that was reversed after administration of XNJT, they may be risk factors for cerebral ischemia/reperfusion. Additionally, Akkermansia and Escherichia-Shigella were positively correlated with PG and PC. In summary, These findings indicate that XNJT could potentially alter gut microbiota composition, thereby affecting fecal metabolite levels. These metabolite alterations are expected to affect specific metabolic pathways that ultimately contribute to the therapeutic effects of XNJT.

Our current study has the following limitations: we exclusively utilized male mice to investigate the effects of XNJT on neurological performance and cerebral stroke. This does not take into account potential gender differences in treatment response. This may also restrict the generalizability of our findings. Therefore, future studies should incorporate research on female mice to ascertain whether there are sex-specific responses to XNJT and to better understand the underlying mechanisms of these potential differences. By doing so, we can enhance the applicability of our research outcomes and contribute to a more comprehensive understanding of the effects of XNJT within a broader context. In addition, our study focused on neurobehavioural scores at 24 hours of MCAO/R and did not perform long-term behavioural monitoring. Since neurobehavioural changes in ischemic stroke can last for several days, we consider performing long-term neurobehavioural scoring in future studies to observe changes in mice during different periods of time.




5 Conclusion

In this study, we employed a combination of 16S rDNA sequencing and untargeted metabolomics to investigate the therapeutic effects of XNJT on MCAO/R model mice. Our central finding is that XNJT significantly ameliorates cerebral ischemia/reperfusion injury in MCAO/R mice, reduces levels of inflammatory factors, and modulates gut microbiota dysbiosis and metabolic differences. Notably, the regulatory effects of XNJT on specific bacteria such as Bacteroides, Firmicutes, Escherichia-Shigella, and Ligilactobacillus, as well as its impact on metabolic pathways of glycerophospholipids, linoleic acid metabolism, and sphingolipid metabolism, provide a scientific basis for the efficacy of XNJT. In summary, the imbalance of gut microbial ecology in MCAO/R model mice is closely related to the prognosis of stroke, and XNJT effectively enhances the prospects of stroke treatment by improving intestinal barrier function and modulating gut microbiota and their metabolites.This discovery offers a new perspective for clinical drug intervention in the treatment of cerebral ischemia/reperfusion injury, especially in utilizing the gut microbiota as a therapeutic target, and XNJT may become an innovative approach for traditional Chinese medicine in treating cardiovascular and cerebrovascular diseases.

Moving forward, we need to further investigate the specific regulatory mechanisms of XNJT on the gut microbiota. This includes its direct and indirect effects on specific bacterial communities and how these changes affect the host’s immune response and metabolic status. Additional studies using fecal microbiota transplantation as an auxiliary method are anticipated to uncover the microbial mechanisms by which XNJT improves stroke, providing new insights for the clinical treatment of ischemic stroke.
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Trimethylamine N-oxide (TMAO), a metabolite, is a co-metabolite produced by both gut microbiota and livers, originating from foods rich in choline or carnitine. Emerging evidence suggests that TMAO may play a role in the pathogenesis of various kidney diseases, including acute kidney injury and chronic kidney disease. Research has demonstrated that heightened levels of TMAO are correlated with a heightened likelihood of kidney disease advancement and cardiovascular incidents among individuals with chronic kidney disease. Furthermore, TMAO has been observed to stimulate inflammation, oxidative stress, and fibrosis in animal models of kidney disease. Mechanistically, TMAO may contribute to kidney disease pathogenesis by inhibiting autophagy, activating the NLRP3 inflammasome, and inducing mitochondrial dysfunction. Therefore, targeting TMAO may represent a promising therapeutic strategy for the treatment of kidney diseases. Future studies are needed to further investigate the role of TMAO in kidney disease pathogenesis and to develop TMAO-targeted therapies for the prevention and treatment of kidney diseases.
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1 Introduction

Kidney disease poses a substantial public health concern, as approximately 10% of the worldwide population is afflicted by chronic kidney disease (CKD) (Rosner et al., 2021). The pathogenesis of kidney diseases is complex, involving interactions between genetic, environmental, and lifestyle factors. Gut microbiota is an important regulator of the human immune system, consequently, the concept of the kidney-gut axis has been proposed and is gradually gaining attention (Figure 1) (Anand and Mande, 2022). During the course of patients with kidney disease, due to the microinflammatory state caused by their immune mechanisms, they are more likely to have abnormal distribution of intestinal bacteria and intestinal microecological disorders, which are called gut microbiota dysbiosis (Belvoncikova et al., 2022). This state can exacerbate the microinflammatory state of the patient’s body, thus increasing the production of renal toxins, which affects the patient’s prognosis avid continually recurring (Huang et al., 2022).

[image: Illustration depicting the relationship between the gut and kidneys. It shows kidneys, the intestinal tract, and a section of the gut lining with bacterial leaks. Arrows indicate that gut microbiota dysbiosis causes barrier disruption, leading to microinflammation in kidneys and kidney function destruction. Uremic toxins and inflammatory factors circulate in a blood vessel.]
Figure 1 | Interaction of intestinal structures with the renal system: The intestinal mucosa is where the gut microbiota is most active, and is often affected by diet, toxins, medications, and other factors. Gut hormones and metabolites affect the kidneys through the bloodstream. The disruption of kidney function will in turn exacerbate the microinflammatory state of the gut as well as disturbances in the gut microflora.

Recent research indicates that the gut microbiota and their metabolites may significantly influence the onset and advancement of kidney diseases. Of particular interest is trimethylamine N-oxide (TMAO), a metabolite that has attracted growing attention for its potential role in the progression of kidney diseases. TMAO is a microbial metabolite originating from dietary sources rich in choline and carnitine. Within the gastrointestinal tract, gut bacteria facilitate the conversion of choline and carnitine into trimethylamine (TMA), which is further metabolized in the liver to produce TMAO (Wang et al., 2011). After its formation, TMAO is distributed in the blood and accumulates in diverse tissues, notably the kidney. Extensive research has substantiated a correlation between elevated levels of circulating TMAO and the onset and advancement of kidney ailments such as acute kidney injury (AKI), CKD, and end-stage renal disease (ESRD). Furthermore, clinical investigations have revealed that the high level of TMAO is linked to an augmented likelihood of unfavorable renal outcomes, including deterioration in renal function and mortality in individuals with kidney disorders (Kalantar-Zadeh et al., 2021).

While significant evidence connects TMAO to kidney disease, the exact mechanisms of how it causes kidney injury remain unclear. Experimental studies utilizing animal models have elucidated that TMAO has the potential to induce oxidative stress, inflammation, endothelial dysfunction, and fibrosis in the kidneys, ultimately resulting in compromised renal function (Lau et al., 2018). Furthermore, recent investigations have shown that TMAO may influence intracellular signaling pathways and cellular mechanisms within the kidney, such as autophagy, inflammasome activation, and mitochondrial function, all of which play a role in the development of kidney diseases (Wang et al., 2021). Therefore, understanding the molecular pathways through which TMAO affects renal homeostasis is essential for the development of precise therapeutic strategies.

In conclusion, the gut microbial metabolite TMAO has emerged as a potential contributor to the progression of kidney diseases. Understanding the role of TMAO in kidney diseases may lead to the development of novel therapeutic approaches that target TMAO metabolism and signaling pathways for the prevention and treatment of kidney diseases. Therefore, further investigation into the interactions between TMAO and kidney function may advance our understanding of the role of TMAO in kidney diseases and to develop potential interventions to improve renal function.




2 The sources, metabolism, and primary detection methods of TMAO



2.1 The source of TMAO

The human body has the capacity to acquire TMAO from diverse origins, with dietary intake being a prominent source of TMAO in the peripheral blood. Foods rich in choline, lecithin, and L-carnitine, such as red meat, eggs, dairy products, and saltwater fish, are metabolized by gut microbes during digestion to produce TMAO in liver (Wang et al., 2011). The breakdown and metabolism of nutrients by gut bacteria via microbial TMAO generation is influenced significantly by an individual’s dietary choices, ultimately impacting the levels of TMAO present in their peripheral blood.

In addition to dietary sources, pharmaceutical products rich in choline may also play a role in the synthesis of TMAO within the body (Hampel et al., 2018). Certain medications or supplements containing high concentrations of choline have the potential to increase TMAO levels. Initially considered an insignificant byproduct of choline metabolism, TMAO has since been linked to hypertension, atherosclerosis, coronary artery disease, diabetes, and renal failure. This highlights the need to study TMAO’s origins and its health impacts (Nowiński and Ufnal, 2018).




2.2 Metabolism of TMAO

The metabolic pathway of TMAO is an intricate process involving the enzymatic conversion of dietary choline to TMA by specific gut microorganisms (Figure 2). These microorganisms harbor enzymes, such as CutC and betaine reductase, which facilitate the breakdown of choline and subsequent release of TMA. Following its formation, TMA is absorbed into the bloodstream through the intestinal epithelium and transported to the liver. Within the hepatic environment, TMA is subjected to oxidation by flavin-containing monooxygenases (FMO), resulting in the conversion of TMA to TMAO, the fully oxidized derivative of the compound (Gatarek and Kaluzna-Czaplinska, 2021; Benson et al., 2023).

[image: TMAO metabolic map illustrating the conversion of dietary choline, carnitine, and betaine by gut microbiota into trimethylamine (TMA). TMA is oxidized in the liver to produce trimethylamine oxide (TMAO) via flavin monooxygenase. TMAO undergoes tissue uptake and is primarily excreted by the kidneys. The process involves dietary sources, the liver, blood circulation, the brain, heart, and joints.]
Figure 2 | TMAO metabolic pathway: Trimethylamine-containing nutrients are converted to trimethylamine N-oxide by a gut microbiota-dependent initial step, followed by conversion to trimethylamine N-oxide by host liver flavin monooxygenase, which then enters the bloodstream to exert its effects on various systems.

One mechanism by which the body maintains TMAO homeostasis is through excretion, the kidney is the prominent organ to eliminate TMAO. While the majority of TMAO is excreted through kidney in the metabolic cycles, a small portion is also eliminated through alternative routes such as sweat, feces, and respiratory metabolism. These additional excretion pathways collectively contribute to maintain TMAO balance in the body (Gessner et al., 2020).

In summary, TMAO metabolism involves converting dietary choline to TMA by gut microbes, oxidizing TMA to TMAO in the liver, and primarily excreting TMAO via the kidney, with minor elimination through sweat, feces, and breath. Understanding this process is essential for researching TMAO’s physiological roles and regulating its levels.




2.3 Primary detection methods of TMAO

The detection of TMAO can be achieved through various methods, including enzyme-linked immunosorbent assay (ELISA), Liquid chromatography-mass spectrometry (LC-MS/MS), Nuclear magnetic resonance spectroscopy (NMR), gas chromatography, and electrochemical sensors.

The ELISA is a frequently utilized method in the field of TMAO investigation. This technique relies on the utilization of specialized antibodies that have an affinity for TMAO, enabling its identification and measurement. LC-MS/MS is commonly employed in research investigations owing to its exceptional sensitivity and specificity. NMR serves as a non-invasive analytical tool for detecting TMAO, relying on the detection of distinctive signals emitted by TMAO under the influence of a powerful magnetic field. NMR offers valuable insights into the structural and dynamic properties of TMAO, thereby contributing to a comprehensive understanding of this compound (Du et al., 2017; Rox et al., 2021; Yang et al., 2021; Aksoyalp et al., 2023). Additionally, less common methods for detecting TMAO are gas chromatography, which separates sample components via gas phase partitioning, and electrochemical sensors, which identify changes in electrical properties when TMAO reacts with specific electrodes (Fiori et al., 2018; Çorman et al., 2022).

In conclusion, a variety of techniques can be utilized for the detection of TMAO (Fabresse et al., 2020; Tang et al., 2022). Ongoing enhancements and innovations in these methodologies are anticipated to propel progress in TMAO investigation and its prospective utility in the healthcare sector.





3 TMAO and kidney diseases



3.1 TMAO and AKI

Acute kidney injury (AKI) is characterized by a rapid decline in renal function, frequently triggered by ischemia, nephrotoxic medications, sepsis, or other insults to the kidneys. Numerous mechanisms cause AKI, including prolonged organ underperfusion, systemic wasting disorders, toxins, infections, and severe forms of primary glomerular disease (Devarajan, 2023). Recent studies have suggested a potential link between TMAO and AKI (Missailidis et al., 2016). Research conducted in animal models has shown an increase in TMAO levels in the blood of AKI animals. Furthermore, elevated TMAO levels have been detected in AKI patients (Liu et al., 2024). The precise mechanism by which TMAO contributes to AKI remains incompletely elucidated, potentially involving multiple pathways (Figure 3).

[image: Diagram illustrating the effects of TMAO on acute kidney injury (AKI). It shows TMAO leading to decreased autophagy via PI3K, Akt, NF-kappa B, and ROS pathways. TMAO also causes toxin accumulation through OAT inhibition, resulting in renal tubule cell death. Additionally, TMAO stimulates T cell differentiation and macrophage activity, promoting cytokine release and increased kidney inflammation.]
Figure 3 | Model of TMAO effect on AKI: The figure mainly shows that TMAO can stimulate NLRP3 in macrophages and stimulate T cell differentiation, produce a variety of inflammatory factors, and aggravate the inflammatory response. At the same time, by inducing the generation of reactive oxygen species (ROS) and activating PI3K/Akt/NF-κB signaling pathway, the imbalance of autophagy process can lead to increased death of renal tubular epithelial cells and damage kidney function. Secondly, it can affect the function of some transporters, such as organic anion transporters (OATs) and organic cationic transporters (OCTs), leading to the accumulation of waste in the cell, further aggravating cell damage and inflammatory reaction.

One potential mechanism is through the activation of inflammatory responses. TMAO promotes the production of pro-inflammatory cytokines like IL-6 and TNF-α, leading to kidney inflammation and damage. It also induces apoptosis in renal cells, disrupts autophagy, and increases oxidative stress, contributing to AKI progression (Shi et al., 2022; Lee et al., 2024). An additional potential mechanism involves the interference with the regulation of renal blood flow. Studies have demonstrated that TMAO can hinder endothelial function and decrease the availability of nitric oxide (NO) (Querio et al., 2022). The decreased bioavailability of NO caused by TMAO may induce renal vasoconstriction and ischemia, ultimately resulting inAKI. Moreover, TMAO disrupts the renal tubular transport system by inhibiting organic cation and anion transporters (OCTs and OATs), essential for reabsorbing and secreting various compounds in the kidneys (Samodelov et al., 2020). TMAO up-regulates NOX2, increasing fibronectin, p65, and Snail, which blocks the G2/M cell cycle and heightens kidney inflammation via the NOX/ROS pathway. Additionally, TMAO damages renal cells through the PI3K/Akt/NF-kappa B pathway. Elevated TMAO in mice also shows continuous CCR2 expression from monocytes, indicating CCR2 as a potential target for TMAO (Ren et al., 2024).

In summary, recent studies indicate a possible connection between TMAO and AKI, with elevated TMAO levels observed in AKI patients. TMAO appears to induce renal inflammation, apoptosis, oxidative stress, and disrupt kidney function. However, more research is needed to confirm these findings and understand the mechanisms involved. Future research should explore TMAO-targeted interventions and its potential as an early biomarker for AKI.




3.2 TMAO and CKD

Given the established link between TMAO and AKI, it is crucial to explore the mechanisms by which TMAO may exacerbate CKD progression. CKD is a chronic progressive disease. It is defined by KDIGO as a persistent elevation of urinary albumin excretion (UAE) (30 mg/g, or 3 mg/mmol) or a persistent decrease in glomerular filtration rate (GFR) (less than 60 ml/min, or both) that lasts for more than three months (KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease, 2022). In addition, in global health statistics, CKD has gradually become an important cause of death worldwide, affecting 15-20% of adults worldwide, and is often associated with diabetes, hypertension, cardiovascular disease and other chronic diseases (Jankowski et al., 2021; Matsushita et al., 2022). The bidirectional relationship between TMAO and CKD is evidenced by the influence of CKD on TMAO levels, as well as the potential for elevated TMAO levels to contribute to the progression of CKD (Xu et al., 2017; Jia et al., 2019; Pelletier et al., 2019; Lim et al., 2021). Studies show that CKD patients have significantly higher TMAO levels than healthy individuals, which are linked to increased risk of cardiovascular events and mortality (Zeng et al., 2021; Andrikopoulos et al., 2023; Wang et al., 2024). Interestingly, this elevated risk also varies by ethnicity, with a cohort study that CKD patients with high plasma levels of TMAO had a higher mortality risk, and that risk was higher among white people than blacks people (Tang et al., 2015; Dai et al., 2022; Kalagi et al., 2023; Li et al., 2023).

TMAO may impact CKD development and progression through various mechanisms (Figure 4). First, TMAO has been demonstrated to stimulate inflammation and oxidative stress, both of which are significant factors in the progression of CKD (Lau et al., 2018). High TMAO levels can elevate inflammatory factors like TNF-α, MCP-1, IL-1β, IL-6, and IL-18 by activating p38 phosphorylation and upregulating human antigen R (HuR). It is well known that p38 is a core component of the MAPK pathway, and phosphorylated p38 can turn on the transcription of many target genes, such as TNF-α, MCP1, and NLRP3 inflammasome. Cytoplasmic localization of HuR is also controlled by the p38/MAPK pathway. HuR is an RNA-binding protein that binds to the AU-rich element (ARE) of the 3’ untranslated region of mRNA. It can maintain the stability of TNF-α, IL-6, IL-18 and other inflammatory cytokines mRNA. TTP is another RNA binding protein. However, TTP can promote the degradation of these cytokines, while HuR can competitively inhibit TTP (Lai et al., 2022). Second, it was shown that TMAO induces endothelial dysfunction by inhibiting nitric oxide production, increasing reactive oxygen species, and promoting smooth muscle cell proliferation (Li et al., 2022). And TMAO could exacerbate oxidative stress through upregulation of NOX4 and downregulation of SOD. According to studies, TMAO may be elevated HuR to bind to the NOX4 promoter (Shi et al., 2020). Third, TMAO may potentially disrupt the equilibrium of renal electrolytes and water transport by inhibiting sodium and water reabsorption in the kidneys, resulting in sodium retention and volume expansion, characteristic features of chronic kidney disease (Fang et al., 2023).

[image: Diagram illustrating the relationship between TMAO and CKD. It shows pathways involving decreased OATs, Smad3, PERK, and NLRP3, leading to toxin and extracellular matrix accumulation, increased inflammation, and chronic kidney disease. Upregulated factors include TNF-α, IL-1β, IL-6, IFN-γ, CRP, affecting T cell differentiation and kidney inflammation.]
Figure 4 | Model of TMAO effect on CKD: Three main pathways are depicted: TMAO activates macrophages by stimulating NLRP3 (NOD-like receptor protein 3) and stimulates T cell differentiation to produce multiple inflammatory factors, such as TNF-α, IL-6, etc., which exacerbate the inflammatory response; At the same time, it not only promotes the formation of NLRP3 inflammasome, but also activates the expression of NF-κB signaling pathway, Caspase-1 activation, PERK/Akt/mTOR pathway, IL-1β and other inflammatory and fibrosis-related factors, thus significantly enhancing the process of renal fibrosis. Finally, the function of the intrarenal transporters is affected, resulting in the accumulation of waste products in the kidney, which may further exacerbate kidney injury and fibrosis.

Besides, TMAO may directly harms kidney structure, causing glomerular hypertrophy, tubulointerstitial fibrosis, and renal inflammation in animals, which promoting the progression of CKD. For instance, TMAO triggers NLRP3 inflammasome formation and activates NF-κB signaling, Caspase-1, the PERK/Akt/mTOR pathway, and IL-1β, leading to increased renal fibrosis (El-Deeb et al., 2019; Zhang et al., 2020; Kapetanaki et al., 2021; Xie et al., 2022). PERK knockdown consistently mitigated TMAO-induced autophagy, apoptosis, and oxidative stress in renal cells. Another study found that high TMAO levels significantly elevated Smad3 in mice, leading to renal fibrosis (Zhang et al., 2021). Further investigation showed that TMAO also increased Smad4, which promotes fibrosis by inducing Smad3-regulated microRNAs and Smad ubiquitination regulatory factor (Chen et al., 2018). TMAO also influences renal cell autophagy and cell cycle regulation. For instance, an in vitro study found that TMAO down-regulates Gadd45a expression by mediating the nuclear translocation of Y-box binding protein-1, thus inhibiting cell cycle progression (Wang et al., 2021). In animal studies on hyperuricemic nephropathy, TMAO accelerates renal fibrosis by activating PI3K/AKT/mTOR pathway. Chlorogenic acid can counteract this effect (Dong et al., 2022; Zhou et al., 2022). Current studies have shown that mTOR is comprised of mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 accomplishes metabolic reprogramming by enhancing the biosynthesis of glycolysis, proteins, lipids, and nucleic acids through the activation of S6 kinase. mTORC2 is located upstream of AKT kinase and regulates cell growth and migration by phosphorylating the S473 site of AKT and modulating cytoskeletal proteins. However, the specific mTOR complex that TMAO affects is still under investigation.

In summary, TMAO contributes to CKD progression, indicating that targeting TMAO could be a promising treatment strategy. Reducing TMAO levels may mitigate inflammation, oxidative stress, endothelial dysfunction, and renal abnormalities, and improving patient outcomes. However, more research is necessary to understand the mechanisms and develop effective interventions for regulating TMAO in the blood of CKD patients.




3.3 TMAO and ESRD

Building on the understanding of TMAO’s role in CKD, we now delve deeper into its implications for ESRD, highlighting the potential pathways through which TMAO contributes to the complex health challenges faced by ESRD patients. ESRD refers to the end stage of chronic kidney disease caused by various causes. It usually presents with pathological changes of glomerular filtration rate below 15 ml/(min·1.73m^2), accompanied by retention of metabolites and toxins, and disturbance of water, electrolyte and acid-base balance as the main clinical features (Wouk, 2021). ESRD often coexists with comorbidities like cardiovascular disease, anemia, and bone disorders, significantly affecting patient quality of life and survival. TMAO, a biomarker of ESRD, is a co-metabolite produced by both microbiota and livers, originating from choline- or carnitine-rich foods and entering the bloodstream. While healthy kidney can remove TMAO efficiently, the loss of kidney function in ESRD patients leads to its accumulation in blood (Zhang et al., 2020; Zheng et al., 2020; Li et al., 2023).

The elevated levels of TMAO in the blood of patients with ESRD have profound implications for their health status and comorbidities. Specifically, heightened TMAO levels have been linked to a heightened risk of cardiovascular events, including myocardial infarctions and cerebrovascular accidents (Stubbs et al., 2016; Rodrigues et al., 2021). At high concentrations of TMAO, microvascular tight junction proteins in subcutaneous adipose tissue are significantly reduced in ESRD patients, disrupting the intestinal barrier and blood-brain barrier, ultimately leading to clinical manifestations such as depression and cognitive decline. In addition, TMAO may accelerate the process of atherosclerosis and increase the risk of cardiovascular diseases through mechanisms such as promoting inflammation, increasing the expression of scavenger receptors, inhibiting reverse cholesterol transport, and enhancing vascular calcification (Chen et al., 2017; Dicks, 2024; Luo et al., 2024). For instance, Hemodialysis (HD) patients had significantly higher serum TMAO levels than healthy individuals, and HD patients with high abdominal aortic calcification (AAC) scores had notably higher TMAO levels than those with low AAC scores (He et al., 2022). In a subsequent study, PY et al. discovered that elevated serum TMAO levels in HD patients raise carotid-femoral pulse wave conduction velocity (cfPWV), thereby increasing aortic stiffness and the risk of cardiovascular disease (Shafi et al., 2017; Tomlinson and Wheeler, 2017; Huang et al., 2023). Vascular calcification also leads to HD failure and poor prognosis in ESRD patients.

Moreover, studies have demonstrated that TMAO plays a role in promoting inflammatory responses and oxidative stress in the body, which are critical factors in the advancement of kidney disease. TMAO may accelerate renal function decline and increase the risk of complications like anemia, bone disorders, and mortality in ESRD patients. Such as, the elevation of TMAO appears to be associated with the occurrence of PD-associated peritonitis in patients treated with peritoneal dialysis (PD) (Chang et al., 2022). The pathogenesis of increased TMAO concentration on peritonitis may be that TMAO increases PD-induced inflammatory cell infiltration and the production of peritoneal inflammatory cytokines. In addition, studies have shown that TMAO not only causes primary peritoneal mesothelial cell necrosis, but also increases the synthesis of pro-inflammatory cytokines such as CCL2-α, TNF-α, IL-6, and IL-1β (Zhang et al., 2022). However, the specific mechanisms that cause elevated inflammatory markers are still unclear.

The implications of TMAO for patients with ESRD are not limited to its direct influence on renal function. Elevated levels of TMAO have been associated with potential disruptions in the efficacy of dialysis treatments, impacting the elimination of various harmful substances (Hai et al., 2015; Kalim et al., 2018; Mair et al., 2018). Furthermore, TMAO has been correlated with changes in the composition of gut microbiota, adding another layer of complexity to the multifaceted health challenges faced by individuals with ESRD (Bao et al., 2022). Moreover, studies indicate that over 50% of maintenance HD patients with ESRD experience protein energy wasting (PEW), which is linked to poor clinical outcomes (Chan et al., 2012; Ikizler et al., 2013). MHD patients with higher serum TMAO levels had lower BMI, triglyceride levels, DPI, and PEW, while 34% of those with low TMAO levels did not (Hu et al., 2022). Future studies must identify effective methods to demonstrate the specific mechanisms of action of PEW and TMAO.

In conclusion, TMAO plays a crucial role in the management and prognosis of ESRD. Elevated TMAO levels in ESRD patients not only signify a more advanced disease status but also play a role in the emergence and advancement of potentially fatal complications. Ongoing research on TMAO and its impact on ESRD has the potential to guide the development of more precise and efficient treatment approaches for this susceptible patient group.





4 Diverse strategies for modulating plasma TMAO levels

TMAO, derived from dietary choline, lecithin, and carnitine, is linked to cardiovascular, kidney diseases, and metabolic disorders. High blood TMAO levels increase the risk of these conditions, prompting research into interventions. Here, we explores strategies to control plasma TMAO levels and their public health implications (Table 1).

Table 1 | Methods and drugs for inhibiting TMAO production.


[image: A table with three columns: "Categorization," "Methods/drugs," and "Rationalization." Under "Dietary patterns," it lists high-fat ketogenic diet, methionine-restricted diet, Mediterranean diet, and more. "Microbiotherapy" includes bifidobacterium, resveratrol, geraniol, among others, with rationalizations like "intestinal microorganisms." "Intermediate blocking substance" features compounds like 3,3-dimethyl-1-butanol and phenylcholine targeting "CutC enzyme," while others like polymethoxyflavones target "FMO3 enzyme." "Drug" lists substances like naringenin and DXR IV, with various rationalizations, mainly involving enzymes and microorganisms.]


4.1 Dietary interventions

Dietary modifications play a significant role in influencing TMAO levels, with consumption of foods high in choline and carnitine. Reducing the intake of red and white meat (Wang et al., 2019), introducing new dietary modalities such as a high-fat ketogenic diet (LCHF) (Ang et al., 2020), dietary methionine restriction (Lu et al., 2023) and the mediterranean diet (Estruch et al., 2018) have all been found to be effective in reducing TMAO level in recent studies. It suggesting that dietary shifts towards plant-centric eating patterns could be beneficial. Additionally, certain food components can influence TMAO levels.




4.2 Gut microbiota manipulation

The gut microbiota plays a pivotal role in converting dietary components into TMAO, suggesting that modulation of the gut microbiota could serve as a viable approach to regulating TMAO levels. Probiotics like Lactobacillus plantarum ZDY01 and ZDY04 have demonstrated TMAO-lowering effects (Qiu et al., 2018; Tang et al., 2021). Similarly, bifidobacterium could regulate mouse gut microbiota (Wang et al., 2022). In addition, the intake of small molecules such as resveratrol (Hsu et al., 2020), geraniol (Lin et al., 2022), ligustrum robustum (Rxob) (Liu et al., 2021), allicin (Panyod et al., 2022), and curcumin (Zhang et al., 2022), rhubarb enema (Ji et al., 2021), implantation of human umbilical cord mesenchymal stem cells (Li et al., 2021), and even the fecal microbiota transplantation (FMT) (Smits et al., 2018) maintains a strikingly similar efficacy. However, further rigorous research is necessary to confirm safety, efficacy, and applicability of these interventions.




4.3 Related intermediate inhibitors

In TMAO metabolism, CutC/D & FMO3 are crucial. CutC/D regulates choline anaerobiosis, while FMO3 converts TMA to TMAO. Inhibiting these enzymes could inhibit the production of TMAO. Choline analog DMB mitigates TMAO, reducing its plasma levels and plaque formation (Wang et al., 2015; Brunt et al., 2022). In addition, novel cholinergic inhibitors of TMA lyase include iodomethylcholine (IMC) and fluoromethylcholine (FMC) could inhibit the production of TMAO (Pathak et al., 2020; Benson et al., 2023; Tain et al., 2023). In addition, choline analogs such as phenylcholine can also reduce TMA production (Schugar et al., 2022). Other choline analogs and compounds like DIM, I3C, fenugreekine, PMFs, and chlorogenic acid can also inhibit FMO3, decreasing TMAO levels (Anwar et al., 2018; Chen et al., 2019; Iglesias-Carres et al., 2023; Lee et al., 2023).




4.4 Pharmacological approaches

Although many drugs have been reported to target TMAO production, but further studies and clinical trials are needed to confirm their safety and efficacy. Fecal tests from metformin-treated donor mice showed that recipient mice had increased Bifidobacterium bifidum and Akkermansia, and decreased CutC/D in their gut microbiota (Su et al., 2021). Finasteride treatment may alleviate symptoms by inhibiting liver Fmo3 (Wang et al., 2022). Rosuvastatin may be associated with inhibition of HDL-cholesterol versus LDL-cholesterol production (Xiong et al., 2022). Linacloroptide can reduce TMAO levels, and improve kidney inflammation and fibrosis, as well as cardiac fibrosis, and contribute to the amelioration of CKD (Nanto-Hara et al., 2020). Besides, Suyin Detoxification Granule (SDG) have been found to prevent the progression of CKD by regulating intestinal microbiota, reducing circulating TMAO levels, inhibiting increased renal tubular iron concentration, suppressing pro-fibrotic factor secretion, and mitigating TMAO-induced renal fibrosis (Ge et al., 2024). Moreover, an increasing body of research has demonstrated that some herbal medicines such as berberine (Li et al., 2021), naringenin, paeoniflorin, beta-ecdysterone, 18beta-glycyrrhetinic acid, bitter amygdalin, leucovorin, shiba hu saponin A (Yu et al., 2021), Perilla frutescens L (Yong et al., 2023), and a number of herbal formulas (Ji et al., 2020; Zhang et al., 2021) that ameliorate metabolic abnormalities can also reduce the production of TMAO.

Regulating plasma TMAO levels requires a holistic approach, including diet changes, gut microbiota adjustments and medications. As research progresses, more effective interventions will emerge. Healthcare providers should monitor TMAO levels to better assess kidney, cardiovascular, and metabolic health, potentially reducing risks and enhancing outcomes.





5 Conclusion

TMAO has garnered more and more attention in the field of nephrology due to its essential role in many kidney diseases. The processes of its production, metabolism, and detection indicate that TMAO may be a valuable indicator of kidney health. TMAO has been implicated in the pathogenesis of many kidney diseases through mechanisms involving oxidative stress, inflammation, and endothelial dysfunction. Consequently, strategies aimed at modulating TMAO production or metabolism may be the novel therapeutic avenues for the prevent and treatment of kidney diseases. In conclusion, TMAO plays an essential role in the progression of many kidney diseases, and targeting the production or metabolism of TMAO may be an effective means to treat various kidney diseases.
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Endometriosis is widely recognized as a chronic, inflammatory, and heterogeneous condition that can manifest in various anatomical locations within females. It is marked by estrogen-driven cycles of bleeding, cell proliferation, and fibrosis involving ectopic endometrial glands and stroma cells located outside the uterus. The limited understanding of its etiology and complex pathogenesis has created obstacles in achieving early diagnosis and developing effective treatments with minimal side effects. Consequently, endometriosis requires more in-depth research to unravel its pathogenesis. The gut microbiota, a key player in chronic diseases, significantly influences bodily metabolism and immune regulation. Emerging evidence links the gut microbiota to inflammation, estrogen metabolism, and immune responses—key factors in the onset and progression of endometriosis. This review examines the various mechanisms through which endometriosis and the gut microbiota interact, aiming to inspire new strategies for preventing and early treating endometriosis.
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1 Introduction

Endometriosis is a chronic systematic disorder characterized by dysmenorrhea, persistent pelvic pain, infertility, and pelvic masses, predominantly affecting women of reproductive age (Saunders and Horne, 2021). Estimated to impact 5–10% of women who desire children, this condition currently has no known cure (Taylor et al., 2021; Saunders et al., 2024). Diagnosis typically requires surgical confirmation of endometrial-like tissue (“lesions”) located outside the uterus, a process that can take an average of seven years from the onset of symptoms (Horne and Missmer, 2022). Women with endometriosis frequently experience fatigue, depression, and other mental health issues before and after diagnosis (Cuffaro et al., 2024; Sinai et al., 2024). Overall, endometriosis significantly affects both physical health and mental well-being. The complex and multi-faceted nature of endometriosis, emphasizes not only the physical but also the psychological burden of the disorder. The prolonged diagnostic delay, averaging seven years, underscores the challenges in early identification, likely due to the disease’s complex pathology and overlapping symptoms with other conditions. The mental health toll on affected women—manifesting in fatigue, depression, and other psychological issues—indicates that endometriosis is not solely a gynecological condition but a systemic issue impacting the quality of life.

The gut microbiota, a relatively new area of scientific research, is estimated to contain around 10¹³ bacteria, a number comparable to the total count of human cells. In contrast, the bacterial gut microbiome, which refers to the collective gene pool encoded by these gut bacteria, contains roughly 100 times more unique genes than the human genome. This intricate ecosystem, shaped by a long history of co-evolution between microbes and their hosts, and its close relationship with human health, has increasingly captured the interest of researchers over the past few decades (Round and Mazmanian, 2009; Visconti et al., 2019; Van Hul et al., 2024). The fact that the gut microbiome contains far more unique genes than the human genome suggests that our microbial partners may contribute to functions beyond human genetic capabilities. This rich genetic reservoir likely supports essential roles in metabolism, immune function, and even mental health. The intricate co-evolutionary relationship hints at a deep biological interdependence and its link to health underlines the need for further exploration. Continued research into the gut microbiota may unlock new insights into disease prevention, personalized medicine, and overall well-being.

There is substantial evidence linking gut microbiota to the pathogenesis of endometriosis, spanning from physical injury to mental health effects like depression. In this process, the gut microbiota influences the immune system (Fan et al., 2023), estrobolome (Alghetaa et al., 2023), and brain-gut axis (Salliss et al., 2022). The connection between gut health and endometriosis symptoms—including both physical and mental health effects—suggests a need for a broader, systemic approach to the disease, extending beyond traditional gynecological perspectives. However, the specifics of these linkages remain underexplored. This review aims to synthesize recent advancements in our understanding of endometriosis pathobiology, with a focus on the inflammatory, metabolic, and pain pathways influenced by the gut microbiota. By examining its relationship to endometriosis, physical injury, and mental health, we provide a comprehensive overview of this emerging field. In the concluding sections, we discuss ongoing clinical trials and consider how recent insights may lead to effective non-surgical treatment options.




2 Endometriosis: pathophysiology and symptoms



2.1 Current conceptions in pathogenesis of endometriosis

The etiology of endometriosis is complex, with multiple factors contributing to the development of this disorder (Ochoa Bernal and Fazleabas, 2024). Several theories have been proposed to explain its origin, with Sampson’s retrograde menstruation theory currently the most widely accepted. In 1927, Sampson suggested that endometriosis results from the reflux of endometrial fragments through the fallopian tubes during menstruation, which then attach and implant, forming peritoneal and ovarian lesions (Sampson, 1927). However, a limitation of this theory is that it cannot account for the fact that while retrograde menstruation occurs in up to 90% of reproductive-aged women, only 6–10% go on to develop endometriosis (Ochoa Bernal and Fazleabas, 2024). Another prominent theory, Coelomic Metaplasia, explains the occurrence of endometriosis in females who do not menstruate, such as premenstrual adolescent girls, postmenopausal women, or those with total hysterectomies, as well as patients with Mayer–Rokitansky–Küster–Hauser (MRKH) syndrome, a condition associated with the absence of a uterus (Troncon et al., 2014). Another influential theory, the Embryonic Rest Theory, was introduced by Von Recklinghausen and Russell in the 1890s. It proposes that embryonic cell remnants of Müllerian origin within the peritoneal cavity may differentiate into functional endometrial tissue under certain conditions. This could explain rare cases of endometriosis in men, as Müllerian cell rests exist in males and may reside anywhere along the migration pathway of the Müllerian system.

Another proposed mechanism, the lymphatic dissemination theory, suggests that endometrial tissue spreads through the vascular and lymphatic systems, which accounts for its presence in lymph nodes and distant locations. The Tissue Injury and Repair (TIAR) Theory posits that endometriosis results from trauma, involving an estrogen-driven mechanism that is abnormally amplified in reproductive organs16. Meanwhile, Quinn’s “Denervation–Reinnervation” Theory proposes that endometriotic cells may migrate outside the uterine cavity following nerve injuries in the uterus and uterosacral ligaments, often after challenging deliveries or persistent strain during defecation (Quinn, 2011). The Stem Cell Theory also presents an intriguing perspective, proposing that stem cells from the basalis layer of the endometrium can migrate through the fallopian tubes or spread via lymphatic and vascular routes during menstruation, establishing endometriotic lesions beyond the peritoneal cavity (Cordeiro et al., 2022). Lastly, the genetic/epigenetic theory—one of the most recent explanations—suggests that genetic and epigenetic alterations, alongside overlapping cellular processes, create the conditions that contribute to endometriosis development (Koninckx et al., 2019).




2.2 Pathophysiology of endometriosis

Cell proliferation, invasion, and angiogenesis—characteristics common to both endometriosis and malignant tumors—are driven by chronic inflammation that promotes malignancy (Tulandi and Vercellini, 2024). Factors such as hormones, the immune microenvironment, and inflammation are crucial in the progression of endometriosis. The growth of endometriotic implants is particularly driven by estradiol, a key estrogen steroid hormone (Bulun et al., 2019; Smolarz et al., 2021). Ectopic endometrial tissues exhibit an overexpression of estrogen receptor beta (ER-beta), which in turn suppresses the activity of estrogen receptor alpha (ER-alpha). This suppression diminishes the ability of ER-alpha to induce the progesterone receptor, ultimately leading to enhanced cell survival and inflammation via ER-beta activation (Patel et al., 2017; Taylor et al., 2021). Progesterone typically inhibits estrogen-driven endometrial proliferation, induces decidualization of the endometrium, and acts as an anti-inflammatory agent. However, in endometriosis, progesterone resistance was first observed in in-vitro studies, where progesterone fails to stimulate the production of retinoic acid, the resulting deficiency in retinoic acid contributes to elevated estradiol levels in endometriotic lesions, thereby promoting their growth. Additionally, endometriosis is marked by a low ratio of progesterone receptor isoform B (PR-B) to progesterone receptor isoform A (PR-A) (Patel et al., 2017).

Endometriosis is a chronic inflammatory disease that is dependent on estrogen, with endocrine and immunological interactions playing a vital role in its pathogenesis. The overproduction of estrogen and resistance to progesterone lead to dysfunction in the peritoneal immune microenvironment. The increased expression of estrogen receptor alpha (ER-alpha) and estrogen receptor beta (ER-beta) enhances macrophage recruitment and M2 polarization while diminishing phagocytic activity and the production of pro-inflammatory cytokines, thereby inhibiting the inflammatory response. Estrogen also reduces the cytotoxic activity of natural killer (NK) cells due to decreased autophagy in endometrial stromal cells (ESCs), promoting immune evasion by ESCs and contributing to the development of endometrial lesions. Additionally, hormones have a significant impact on the activity of neutrophils, T cells, and B cells, as well as on the expression of pro-inflammatory cytokines. Additionally, endometriosis is considered a chronic systemic disease involving various pro-inflammatory and inflammatory components, such as microRNAs, cytokines, and stem cells (Taylor et al., 2021; Lamceva et al., 2023). Numerous links between inflammation and endometriosis have been identified (Oală et al., 2024). Despite these insights, no single theory has fully explained the pathogenesis of endometriosis. However, advancements in technology are unraveling an increasing number of complexities through multi-omics approaches, including single-cell sequencing and transcriptome analysis (Fonseca et al., 2023; Liu et al., 2023; Sarsenova et al., 2024).




2.3 Symptoms and complications

Endometriosis does not exhibit pathognomonic signs or symptoms that are unique to a disease localized in the pelvis; rather, it manifests symptoms that are often associated with a variety of both gynecological and non-gynecological conditions. This condition is associated with a wide range of symptoms, with the most prevalent being pain, bowel and bladder issues, as well as symptoms related to other chronic pain conditions, such as fatigue and depression (Bulun et al., 2019). Notably, studies indicate no direct correlation between the type or location of endometriosis and the symptoms experienced (Pant et al., 2023). The variability of symptoms—some of which may not occur in all patients—contributes to the well-documented delays in diagnosis, as they often overlap with other conditions. Many individuals with endometriosis report experiencing dysmenorrhea and chronic pelvic pain during adolescence or early adulthood (Sasamoto et al., 2022). However, these painful symptoms are frequently underestimated and dismissed as normal or transient experiences for young women (Martire et al., 2023). The impact of endometriosis extends to multiple aspects of life (Zondervan et al., 2018; Nassiri Kigloo et al., 2024; Thiel et al., 2024), including obstetrical complications, unnoticed organ dysfunction, an increased risk of ovarian cancer, strained relationships, elevated levels of depression and anxiety, financial burdens from expensive fertility treatments, and absenteeism from work. For those facing “unexplained infertility,” the absence of a diagnosis can lead to an emotionally challenging journey and a significant decline in health-related quality of life (Nezhat et al., 2024). As shown in Figure 1, we provide an overview of the symptoms of endometriosis, including both clinical somatic and mental symptoms.
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Figure 1 | The common symptoms associated with endometriosis.




2.4 Gut microbiota: composition and functions

The gut microbiota, also known as the gut microbiome (GM), refers to the diverse array of microorganisms that reside in the human gastrointestinal (GI) tract. Although it is commonly referred to as the gut microbiome, this community includes not only bacteria but also fungi, viruses, and helminths. Bacteria make up a substantial part of the gut microbiome and are more thoroughly characterized compared to the other less understood components. From the earliest stages of human life, the gut microbiome plays a vital role in various physiological processes, such as nutrient absorption, maintaining the integrity of the GI lining, regulating immune and endocrine functions, and safeguarding against pathogenic threats (Salliss et al., 2022; Fasano et al., 2024).

There is growing evidence linking alterations in the microbiome to a diverse array of diseases, including inflammatory bowel disease (IBD), liver disorders, obesity, diabetes, and even some neurological conditions (Round and Mazmanian, 2009). The idea of microbiome imbalance has been linked to various disease states (Round and Mazmanian, 2009; Wang M-Y. et al., 2024). However, while correlations can be identified, establishing causation and predicting disease progression based on microbiome composition remains a complex challenge.

Research has revealed the existence of unique bacterial communities throughout the female reproductive tract, establishing a continuum of microbiotas that extends from the vagina to the ovaries. Furthermore, a growing body of evidence underscores the significance of gut microbiota in the progression of endometriosis (Chen et al., 2017; Huang et al., 2021; Jiang et al., 2021; Li et al., 2021; Talwar et al., 2022; Alghetaa et al., 2023; Cuffaro et al., 2024; Liu et al., 2024; Wang M. et al., 2024). A more thorough understanding of the relationship between microbiota and endometriosis has unveiled their potential role in the development of this condition (van Barneveld et al., 2022; Chadchan et al., 2023; Lamceva et al., 2023). All of these factors may significantly contribute to the pathogenesis of endometriosis, particularly in light of recent advances in understanding the pathological mechanisms involved, such as adhesion, invasion, and angiogenesis.





3 Gut microbiota and endometriosis: mechanistic links



3.1 Immune and inflammatory responses

Imbalances in the gut and female reproductive tract microbiomes disrupt normal immune function, prompting inflammatory responses that elevate pro-inflammatory cytokines, impair immune surveillance, and alter immune cell profiles (Visconti et al., 2019). This immune imbalance can lead to chronic inflammation, fostering conditions that support increased adhesion and angiogenesis, potentially driving the cycle of endometriosis onset and progression. As shown in Figure 2, studies have indicated that the inflammatory response in the peritoneal fluid of EMs patients is active, with an enhanced aggregation of inflammatory cells and a significant difference in the expression of various inflammatory factors compared to healthy women (Samimi et al., 2019). In healthy women without endometriosis, immune cells, including macrophages and natural killer (NK) cells, are recruited and activated to remove endometrial debris that has refluxed into the peritoneal cavity (Reis et al., 2024). Furthermore, chemokines released by immune cells create a pro-inflammatory environment that prevents the implantation of ectopic endometrial tissue. In contrast, patients with endometriosis (EMs) have a unique immune-inflammatory microenvironment, where ectopic endometrial cells in menstrual blood can evade immune surveillance and develop into endometriosis lesions (Suryawanshi et al., 2014).The occurrence and development of endometriosis involve a variety of immune cells, including lymphocytes, dendritic cells, and macrophages. These immune components play a crucial role in driving the implantation and growth of endometriosis (Vallvé-Juanico et al., 2019; Chen et al., 2023). Studies have shown that ectopic endometrial cells exhibit distinct immunophenotypes and biological activities, which can activate neutrophils, macrophages, natural killer cells, and dendritic cells in the abdominal cavity, thereby contributing to immune-related inflammatory responses (Vetvicka et al., 2016).
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Figure 2 | Effects of gut dysbiosis and its metabolite pathophysiology of endometriosis. combined effects of gut dysbiosis and altered microbial metabolites contribute to the systemic inflammatory environment and hormonal disturbances, exacerbating endometriosis symptoms and promoting lesion growth.

Lymphocytes are the smallest white blood cells, produced by lymphoid organs, and play essential roles in immune functions. They are classified into T lymphocytes (T cells), B lymphocytes (B cells), and natural killer (NK) cells. Retrospective studies have confirmed that endometriosis (EMS) is associated with alterations in T cell activity (de Barros et al., 2017). Regulatory T cells participate in the angiogenesis of EMS (Wang et al., 2017). The development and growth of eEMS lesions are linked to the activation of both systemic and local humoral responses, which are driven by an increase in Th2 lymphocyte numbers (Antsiferova et al., 2005). Gogacz et al. (2016)found that the percentage ratio of Th17 cells in ascites was positively correlated with the severity of EMS, suggesting that a decrease in the ratio of Th17 to total CD4+ T lymphocyte subsets may contribute to excessive proliferation of ectopic endometrial tissue, thereby driving disease progression. In the pathogenesis of EMS, B lymphocytes may also play a role by secreting autoantibodies (Osuga et al., 2011). Riccio et al. (2018) observed that reduced cytotoxicity of NK cells can promote ectopic endometrial adhesion and proliferation, leading to the formation of lesions, which helps to explain the immune escape mechanism of endometrial cells. Furthermore, the proportion of uterine natural killer (uNK) cells was found to be significantly lower in ectopic lesions. Drury et al. (2018) suggest that the reduction in uNK cells associated with ectopic endometrial cells may play a role in the early formation of these lesions.

A dendritic cell (DC) is an antigen-presenting cell that can recognize and capture antigens, promoting the differentiation of naive T cells and thereby inducing an antigen-specific immune response. In the lesion, activated DCs stimulate T cells, contributing to the damage of early EMs lesions (Stanic et al., 2014). The expansion of myeloid-derived suppressor cells (Mo-MDSCs) and regulatory T cells (Tregs) derived from monocytes in EMs contributes to the creation of an intraperitoneal immunosuppressive microenvironment in EMs patients, thereby promoting disease progression. Compared to healthy women, patients with EMs exhibit higher concentrations of Tregs, which suppress the body’s immune response to ectopic lesions. This inhibition fosters an anti-inflammatory environment, facilitating the ectopic implantation and growth of endometrial cells.

The reduced phagocytic activity of macrophages may contribute to the pathogenesis of EMS, although the exact mechanism remains unclear (Liu et al., 2019). Since EMs lesions involve recurrent tissue damage and repair, M1 macrophages may play a role in mediating tissue damage and triggering an inflammatory response during the early stages of endometriosis. Subsequently, M2 macrophages contribute to tissue repair and support the growth of endometriosis lesions (Duan et al., 2018). The expansion of myeloid-derived suppressor cells (Mo-MDSCs) and regulatory T cells (Tregs) derived from monocytes in EMs contributes to the development of an intraperitoneal immunosuppressive microenvironment, thereby promoting the progression of the disease (Chen et al., 2018). Thus, it seems that the mononuclear phagocyte system plays a role in promoting the growth of aberrant blood vessels in EMs, with its production of proinflammatory cytokines contributing to the establishment of an inflammatory environment that accelerates disease progression.

In cases of endometriosis, however, elevated levels of cytokines in the peritoneal fluid, such as interleukin (IL)-6, IL-1β, IL-8, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β, contribute to the development of a chronically inflamed peritoneal environment (Chen et al., 2023; Nati et al., 2024). Both the innate and adaptive immune systems contribute to the development of ectopic lesions in endometriosis. Dendritic cells promote angiogenesis and lesion formation, while neutrophils are recruited early to release vascular endothelial growth factor (VEGF) and neutrophil extracellular traps (NETs). This shift in the immune cell profile creates a chronic inflammatory environment that fosters neuro-angiogenesis and immune evasion, thereby exacerbating lesion progression (Fan et al., 2023). Both pro-inflammatory and anti-inflammatory molecules appear to play a role in the development of endometriosis. Emerging evidence suggests that platelets and regulatory T cells (Tregs) may promote type 2 immunity within the lesional microenvironment, facilitating lesion growth and fibrogenesis. This is achieved through increased recruitment of macrophages, M2 macrophages, Tregs, Th2, and Th17 cells, along with reduced Th1 cell activity. Additionally, the release of cytokines such as IL-37, IL-23, IL-17, and others further drives lesion progression (Podgaec et al., 2007; Sisnett et al., 2024; Gogacz et al., 2016; Xiao et al., 2020; Shi et al., 2022; Li et al., 2024). Neutrophils produce pro-inflammatory cytokines, including vascular endothelial growth factor (VEGF), IL-8, IL-12, CXCL10, and CXCL12, all of which can contribute to the progression of the disease (Munrós et al., 2019). Neutrophils can activate key mediators by secreting proteases, such as neutrophil elastase, which play a role in promoting the initial development of EMs (Takamura et al., 2016). In summary, neutrophils secrete biochemical factors that facilitate the growth, invasion, and angiogenesis of endometriotic cells. Research has shown that Th17 cells, which co-secrete interleukin (IL)-10 and IL-17A, promote the growth, adhesion, invasion, and deep infiltration of endometrioid cells (ESCs), thereby accelerating the progression of EMs (Chang et al., 2017). IL-8 is implicated in all stages of EMs development. It can induce the adhesion, invasion, implantation, and proliferation of ectopic endometrial cells, while also potentially protecting these cells from apoptosis, thereby aiding their survival and persistence (Sikora et al., 2017). IL-33 can initiate both local and systemic signaling, stimulating the proliferation of EMs lesions and inducing angiogenesis. In vitro stimulation of endometrial epithelial cells, endothelial cells, and EMS epithelial cells with IL-33 promotes the production of pro-inflammatory and angiogenic molecules. Biomolecules involved in or related to immune responses are collectively referred to as immune molecules. Their primary biological function is to bind to specific factors, facilitating immune cell recognition, intercellular signaling, and interactions between cells and tissues.

The complement system constitutes a crucial component of the human body’s first line of defense against microbial pathogens, while also playing essential roles in immune surveillance, infection control, and the regulation of inflammation. In the context of endometriosis, increasing attention has been directed toward understanding the involvement of the complement system. Notably, as early as 1988, a study reported decreased levels of complement components C3 and C4 during the follicular phase of the menstrual cycle in patients with endometriosis, highlighting a potential link between complement activity and disease pathogenesis (Meek et al., 1988). Subsequently, in 2007, another study reported elevated levels of complement components C3c, C4, and SC5b-9 in the serum compared to the peritoneal fluid of women with endometriosis. Interestingly, the levels of iC3b were found to be higher in the peritoneal fluid relative to the serum. Furthermore, the study demonstrated that the concentrations of C3c, C4, and SC5b-9 in both the peritoneal fluid and serum were significantly higher in women with endometriosis compared to healthy controls. In contrast, the levels of iC3b in both compartments — peritoneal fluid and serum — were significantly lower in patients with endometriosis than in the control group (Kabut et al., 2007). In patients with adenomyosis, treatment with danazol for eight weeks was associated with an increase in C4 levels, while C3 levels showed a decrease (Ota et al., 1992). Additionally, researchers observed significantly elevated levels of C1q, mannose-binding lectin (MBL), and C1 inhibitor (C1INH) in the peritoneal fluid (PF) of women with endometriosis compared to healthy controls (p < 0.0001), with these differences being particularly pronounced during the early stages of the disease (Sikora et al., 2018). Through co-expression analysis and experimental validation, researchers demonstrated that the upregulation of complement components (C1S, C1QA, C1R, and C3) was positively correlated with the expression of tissue factor (TF) in endometriotic (EM) tissues (Yu et al., 2021). The C5a serum levels were higher in patients with EM than in controls but not associated with the severity or clinical findings (Rahal et al., 2023). Using immunohistochemistry (IHC), researchers confirmed that complement factor 7 (C7) was highly expressed in both endometriosis and ovarian cancer tissues, whereas normal endometrial tissues exhibited little to no mRNA expression. Moreover, the protein expression levels of C7 were consistent with the corresponding gene expression data (Suryawanshi et al., 2014). The serum levels of adipsin and complement factor- H(CFH) were found to be significantly increased in women with endometriosis. What is more, a strong and positive correlation was also observed between peritoneal fluid levels of adipsin and CFH (Eşkin Tanrıverdi et al., 2025). High Mannose-binding lectin (MBL) level, a carbohydrate pattern recognition molecule—the first described recognition subcomponent of the complement lectin pathway was also found to be related to the disease severity (Toffoli et al., 2025). Currently, research on the role of the complement system in endometriosis remains fragmented and incomplete, with limited studies exploring its detailed molecular mechanisms. Among the various components of the complement system, complement component 3 (C3) has been the most extensively studied in the context of endometriosis (Kabut et al., 2007; Karadadas et al., 2020; Agostinis et al., 2021). Various studies have demonstrated that the complement system represents one of the most critical immune mechanisms involved in the clearance of endometrial debris and the regulation of the inflammatory response of ectopic endometrial tissue within the peritoneal cavity. It plays a pivotal role in the initiation and progression of endometriosis. Therefore, further in-depth investigations focusing on the complement system may offer valuable insights and provide a theoretical basis for exploring it as a potential therapeutic target for the treatment of endometriosis.

In summary, dysbiosis in the gut and female reproductive tract disrupts immune function, triggering inflammatory responses that elevate pro-inflammatory cytokines, compromise immunosurveillance, and alter immune cell profiles (Gogacz et al., 2016; Riccio et al., 2019; Suen et al., 2019; Xiao et al., 2020; Shi et al., 2022). This imbalance can cause structural and functional damage across multiple organs, potentially affecting entire bodily systems. The resulting immune dysregulation often leads to chronic inflammation, fostering conditions conducive to increased adhesion and angiogenesis, which in turn perpetuate the cycle of endometriosis onset and progression (Vallvé-Juanico et al., 2019).




3.2 Gut microbiota in endometriosis

Comprising trillions of microorganisms in the intestines, the gut microbiota is essential for regulating immune responses, managing inflammation, and preserving overall health (Visconti et al., 2019; Van Hul et al., 2024). Increasing evidence indicates that dysbiosis—an imbalance in gut microbiota—can contribute to various conditions beyond the gastrointestinal tract, including reproductive disorders like endometriosis.

Most of the literature on microbiota and endometriosis available so far focuses on the flora of the reproductive tract. For example, a research team from Nagoya University in Japan published a paper in Science Translational Medicine titled “Fusobacterium infection promotes the development of endometriosis through the phenotypic transition of endometrial fibroblasts” (Muraoka et al., 2023). This study identifies Fusobacterium infection as a potential causative agent of endometriosis. The researchers found elevated levels of Fusobacterium in the endometrium of women with endometriosis, particularly Fusobacterium nucleatum, which was significantly more abundant in the tissues of endometriosis (EMs) patients compared to the control group. F. nucleatum induces an innate immune response via its membrane lipopolysaccharide and increases the number of CD163-positive M2 macrophages, the predominant immune cells in endometriotic lesions. These M2 macrophages produce TGF-β1, and there was a marked increase in macrophages and TGF-β1 infiltrating the endometrial tissue compared to the control group. In vitro, assays demonstrated that even heat-inactivated F. nucleatum promoted M2 macrophage formation and stimulated TGF-β1 production. These findings suggest that F. nucleatum in the endometrium may influence the abundance of TAGLN in fibroblasts by upregulating TGF-β1 signaling. An increasing number of studies have shown that the gut microbiota also plays a critical role in endometriosis. The interaction between the immune system and gut microbiota is fundamental to maintaining immune homeostasis, influencing both local and systemic immune responses that can impact the development and progression of endometriosis. As a result, many researchers have conducted in-depth studies to explore the relationship between endometriosis and the intestinal microbiota, aiming to understand how microbial imbalances in the gut may contribute to the onset and progression of the disease. Yuan et al. (2018) used a mouse model of endometriosis to observe changes in the intestinal microbiota over time. While clear adhesion formation and typical ectopic foci were observed in the abdominal cavity 14 and 28 days after modeling, there were no significant differences in the diversity and abundance of the intestinal microbiota during these early stages. It was not until 42 days after modeling that a significant difference in β-diversity was observed between the endometriosis model group and the control group. Specifically, the intestinal microbiota in the endometriosis model group was enriched in Firmicutes, whereas the control group was enriched in Bacteroidetes. This finding suggests that the disease has a cumulative effect on the intestinal microbiota over time and that effective intervention during this process may help prevent the further progression of pathological changes. Cao et al. (2020) also found that the Firmicutes/Bacteroidetes ratio increased in rats after the successful establishment of the endometriosis model, indicating that endometriosis causes an imbalance in the intestinal microbiota. This result was further confirmed in a study of rhesus monkeys (Bailey and Coe, 2002). Moreover, in the monkeys with endometriosis, the number of Lactobacillus decreased in older individuals, while the numbers of Gram-negative aerobic bacteria and facultative anaerobic bacteria increased (Bailey and Coe, 2002).

However, animals and humans are not directly comparable. Ata et al. (2019) showed that, although the overall composition of the intestinal microbiota in women with stage 3/4 endometriosis was similar to that of healthy women, there were differences at the genus level. Women with endometriosis were more likely to have Shigella/Escherichia coli as the dominant bacteria in their fecal microbiota. This suggests that endometriosis-induced changes in gut microbiota have been observed in both animal and human studies, providing valuable data for understanding the pathological changes in the later stages of the disease. Furthermore, studies have confirmed that an imbalance in intestinal flora promotes the development of endometriosis. Chadchan et al. (2019) found that the content of Bacteroides in the feces of endometriosis mice was higher compared to non-endometriosis mice. After treatment with metronidazole, Bacteroides was no longer detectable in the feces of endometriosis mice. Bacteroides is known to be a gram-negative, non-sporulating anaerobe that is part of the endogenous microbiota in humans and other mammals. When treated with metronidazole, the mice exhibited smaller endometriosis lesions. It is speculated that metronidazole targets Bacteroides species, leading to a reduction in macrophages in the lesion, a decrease in the number of epithelial cells positive for Ki-67 (a proliferation marker), and lower concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and transforming growth factor (TGF)-β1 in the peritoneal fluid. This suggests that metronidazole plays a role in inhibiting the proliferation of endometriosis lesions. A key finding of this study was that when mice were treated with metronidazole and the volume of endometriosis lesions significantly reduced, the volume of lesions in recipient mice significantly increased after receiving fecal microbiota from endometriosis mice. This indicates that the microbiota plays a crucial role in the progression of endometriosis. Due to ethical limitations, no studies have directly investigated whether human microbiota can cause disease. While the advent of 16S rRNA gene sequencing technology has enabled researchers to analyze the fecal microbiota of patients with endometriosis and identify more precise differences between patients and non-patients, it has not yet been possible to establish causality between the gut microbiota and the disease. The exact mechanism of action remains unclear. However, many researchers favor the hypothesis of bidirectional regulation between endometriosis and the gut microbiota, suggesting a complex interplay between the two.

Gut health influences the endometrium primarily through the modulation of systemic and local inflammation. The gut acts as a vital site for immune system interaction, and disturbances in gut microbiota can result in chronic low-grade inflammation. This inflammatory state can extend beyond the gut and impact distant tissues, including the endometrium. In cases of endometriosis, gut dysbiosis may worsen the inflammatory environment in the pelvic region, promoting the growth of endometrial-like tissue outside the uterus. This inflammation disrupts the normal functioning of the endometrium, impairing its roles in the menstrual cycle and fertility.

Another important way gut microbiota may affect endometrial health is through hormone regulation (Baker et al., 2017). The gut is involved in the metabolism of estrogen via the estrobolome, which consists of gut bacteria that modulate circulating estrogen levels. An imbalance in these bacteria can lead to elevated or altered estrogen levels, a key hormone in the development and progression of endometriosis. Estrogen promotes the proliferation of endometrial tissue, and disruptions in gut microbial activity can contribute to hormonal dysregulation, exacerbating endometriosis symptoms and negatively affecting reproductive health.

Moreover, gut health is essential for maintaining the integrity of the gut barrier and, by extension, the pelvic barrier, which helps prevent harmful bacterial by-products such as lipopolysaccharides (LPS) from entering the bloodstream (Su et al., 2024). When these endotoxins penetrate the barrier, they can exacerbate the inflammatory processes associated with the pathogenesis of endometriosis, negatively impacting both the endometrium and reproductive health. This underscores the vital importance of maintaining a healthy gut microbiota to support not only proper gastrointestinal function but also overall reproductive health.

As shown in Figure 3, intestinal flora is closely linked to endometriosis. Current studies suggest a strong relationship between immunity and hormone metabolism, with the gut microbiota potentially playing a significant role in the onset and progression of endometriosis. This influence may occur through various mechanisms, including mediating inflammatory responses, regulating immune function, and interfering with estrogen metabolism. Additionally, the gut microbiota may impact patients with endometriosis via the brain-gut axis, contributing to mental health challenges such as pain and depression.
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Figure 3 | The proposed pathophysiological mechanisms underlying endometriosis development and progression.

In summary, existing studies on the correlation between gut microbiota and endometriosis highlight the involvement of abnormal bacteria, including Fusobacterium and others, as shown in Table 1. The abnormal increase in Gram-negative bacteria may influence the immune microenvironment of ectopic lesions through lipopolysaccharides (LPS), thereby contributing to disease progression and the manifestation of related symptoms. Research has shown that the LPS content in the peritoneal fluid of endometriosis patients is significantly higher compared to the control group (Kulkoyluoglu-Cotul et al., 2019). In addition, LPS can promote lesion development in endometriosis model mice (Ni et al., 2020). TLR4, a class I transmembrane protein, plays a pivotal role in the innate immune response. As an innate immune receptor, TLR4 can be recognized by the lipopolysaccharide (LPS) receptor on the surface of gram-negative bacteria. When LPS interacts with TLR4, it initiates an inflammatory cascade, releasing a large number of inflammatory mediators and causing digestive tract damage. Studies have identified the LPS-TLR4 signaling pathway in intestinal flora as a key pathogenic factor in pathogenic bacteria (or mutants), with intestinal microecological imbalance leading to increased TLR4 expression in peripheral blood monocytes and higher levels of peripheral inflammatory factors. This imbalance also causes a reduction in tight junctions between intestinal epithelial cells, increasing intestinal mucosal permeability. Additionally, intestinal microorganisms transport LPS into the bloodstream, where it binds to lipopolysaccharide-binding protein (LBP) and activates its receptor, CD14. CD14 helps LPS recognize and activate TLR4, triggering the MyD88/NF-κB pathway, which promotes the release of IL-1, IL-6, and TNF-α, thus initiating systemic inflammatory cascades that contribute to the occurrence and progression of endometriosis. In conclusion, the gut microbiota plays a significant role in the progression of endometriosis by modulating immune-related inflammatory responses. However, due to the complexity and diversity of the intestinal flora, and the intricate effects of its metabolites, the precise mechanisms underlying the role of gut microbiota in the development of endometriosis remain unclear and warrant further investigation.


Table 1 | Gut microbiota in endometriosis including humans and animals.
	Study
	Location
	Sample resources
	Sample sizes
	Diagnosis methods
	Results


	Trail
	Control
	culturing
	Sequencing



	Bailey and Coe, 2002
	USA
	rhesus monkeys
	8
	10
	incubating the agar plates
	 
	Endometriosis was associated with lower Lactobacilli concentrations and higher Gram-negative bacteria concentrations. Moreover, there was a higher prevalence of intestinal inflammation in monkeys with endometriosis in comparison to healthy controls.


	Yuan et al., 2018
	China
	Mice
	22
	20
	 
	16S rRNA
	The Firmicutes/Bacteroidetes ratio was elevated in mice with endometriosis, Bifidobacterium was also increased in mice with endometriosis.


	Chadchan et al., 2019
	USA
	Mice
	15
	14
	 
	16S rRNA
	Mice with endometriosis had a higher abundance of Bacteroidetes and lower abundance of Firmicutes in their guts than mice without endometriosis.


	Hantschel et al., 2019
	Germany
	Mice
	8
	8
	 
	16S rRNA
	No significant effect of endometriosis induction on the composition of the bacterial microbiota was detected with experimental setup.


	Ata et al., 2019
	Turkey
	human
	14
	14
	 
	16S rRNA
	stool microbiome predominantly composed of Shigella/Escherichia in 2 women in the stage 3/4 endometriosis group.


	Cao et al., 2020
	China
	Mice
	8
	8
	 
	16S rRNA
	In endometriotic rats, the Firmicutes/Bacteroidetes ratio increased, and the abundance of Ruminococcaceae was reduced.


	Ni et al., 2020
	China
	Mice
	6
	6
	 
	16S rRNA
	At the phylum level, the decreased abundance of Bacteroides and Firmicutes and ratio of Firmicutes/Bacteroides (2.25 vs. 2.01) and the increased abundance of Proteobacteria and Verrucomicrobia (p < 0.05) are observed in the EM group. Among the top 20 abundant species at the genus level, the abundance of Allobaculum, Akkermansia, Parasutterella, and Rikenella in the EM group has increased significantly (p < 0.05), whereas the abundance of eight species of bacteria, such as Lachnospiraceae_NK4A136_group, Lactobacillus, Bacteroides, has decreased significantly (p < 0.05).


	Shan et al., 2021
	China
	human
	12
	12
	 
	16S rRNA
	The EM group exhibited reduced α diversity in their gut microbiota along with an elevated Firmicutes/Bacteroidetes ratio. Significant differences were observed in the abundances of various taxonomic groups, including Actinobacteria, Tenericutes, Blautia, Bifidobacterium, Dorea, and Streptococcus, between the two groups.


	Svensson et al., 2021
	Sweden
	human
	66
	198
	 
	16S rRNA
	Controls exhibited higher levels of both alpha and beta diversities compared to patients. At a false discovery rate of q<0.05, the abundances of 12 bacterial species, belonging to the classes Bacilli, Bacteroidia, Clostridia, Coriobacteriia, and Gamma proteobacteria, were found to differ significantly between the patient and control groups.


	Le et al., 2021
	USA
	human
	20
	9
	 
	16S rRNA
	GI bacterial communities were comparable between P-EOSIS and CON subjects who were not taking OCPs, but they differed significantly when OCPs were used.


	Huang et al., 2021
	China
	human
	21
	20
	 
	16S rRNA
	The fecal microbiota differs significantly between the control group and the EM group. Additionally, the composition of the fecal microbiota varies between patients with early and advanced stages of EM. Furthermore, the depletion of L. Ruminococcus in the gut may serve as a potential biomarker for endometriosis.


	Le et al (Le et al., 2022). (2021)
	USA
	Female olive baboons
	8
	8
	 
	16S rRNA
	Disease induction resulted in decreased levels of Succinivibrio, Prevotella, Megasphaera, Lactobaccillus and CF231 at 3 months post-inoculation, but the levels of Succinivibrio, Prevotella, and CF231 increased throughout disease progression from 6 to 9 months post inoculation.


	Pai et al., 2023
	Taiwan
	human
	37
	35
	 
	16S rRNA
	There were no significant differences in diversity and composition between individuals with and without Endometriosis in the gut microbiota.


	Hicks et al., 2024
	Australia
	human
	21
	43
	 
	16S rRNA
	Patients with moderate/severe endometriosis had higher levels of Fusobacterium.


	Jimenez et al., 2024
	USA
	human
	35
	38
	 
	16S rRNA
	CPP−Endo exhibited an increased abundance of rectal Ruminococcus.


	Pérez-Prieto et al., 2024
	Spain
	human
	136
	864
	 
	shotgun metagenomic
	No significant differences in diversity were found between women with endometriosis and those without.


	Valdés-Bango et al., 2024
	Spain
	human
	38
	46
	 
	16S rRNA
	Compared with controls, specific bacterial taxa were identified as either enriched (Rhodospirillales, Ruminococcus gauvreauii group, Ruminococcaceae, and Actinomyces) or depleted in both the gut and endometrial microbiota of adenomyosis patients.


	Do et al., 2024
	USA
	human
	33
	15
	 
	16S rRNA
	P-EOSIS exhibited microbial imbalance, marked by the presence of distinct GI/UG bacteria as well as changes in microbial richness and diversity.


	Li et al., 2024
	China
	human
	22
	18
	 
	16S rRNA
	Proteobacteria in the EMT group were significantly higher than those in the control group. The relative abundances of Burkholderiales_592524 and Sphingomonadales in the EMT group were significantly higher than those in the CTL group.










3.3 Brain-gut axis and endometriosis-associated chronic pain

As shown in Figure 4, psychiatric symptoms commonly observed in women with endometriosis include fatigue, burnout, anxiety, and depression. Most of these conditions arise due to persistent pain, such as dysmenorrhea, chronic pelvic pain, and lower abdominal pain during menstruation. Pain perception occurs when biochemical signals generated by peripheral or internal nociceptive stimuli are transformed into neural signals. At the spinal cord level, these signals are either weakened or amplified before being transmitted to the cerebral cortex, where they are processed as pain (Allaire et al., 2023). Existing evidence suggests that endometriosis lesions are associated with abnormal formation of peripheral nerves and blood vessels, peripheral nerve sensitization, and morphological and functional changes in the central nervous system, all of which contribute to endometriosis-related pain. Ectopic lesions undergo repeated proliferation, swelling, and bleeding under periodic hormonal stimulation, which can activate nerve fibers in the peritoneum at the lesion site. Additionally, nerve fibers within ectopic lesions proliferate due to the elevated expression of nerve growth factor, further contributing to pain sensitivity (Maddern et al., 2020). DE pain is associated with direct pressure or irritation of the pelvic nerves. The growth and expansion of endometriotic lesions can apply pressure to surrounding tissues, including nerve fibers, leading to increased pain sensitivity and discomfort. This mechanical stimulation of the pelvic nerves is a key factor contributing to the chronic pain often experienced by women with endometriosis (Tal et al., 2019). The PF of endometriosis patients contains elevated levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and other neurotrophins such as NT-4 and NT-5. These neurotrophic factors play a significant role in neurodevelopment and are involved in the modulation of endometriosis-associated innervation, contributing to the pain experienced by patients. By promoting the growth and sensitization of nerve fibers within ectopic lesions, these factors can exacerbate the pain response in women with endometriosis (As-Sanie et al., 2016; Raffaelli et al., 2021). Nervous system sensitization can be categorized into peripheral sensitization and central sensitization. Peripheral sensitization occurs when nociceptors are activated, their threshold for stimulation is reduced, and they become more responsive to suprathreshold stimuli. This process is typically driven by inflammatory changes in the environment surrounding nerve fibers, which trigger a neuroinflammatory cascade. As a result, peripheral nerve excitability and sensitivity increase, heightening the perception of pain and leading to peripheral sensitization (Maddern et al., 2020; Raffaelli et al., 2021; Ramírez-Pavez et al., 2021). The International Association for the Study of Pain (IASP) defines central sensitization as an increased responsiveness of nociceptive neurons in the central nervous system to normal or subthreshold stimuli. Persistent inflammatory nociceptive stimuli around ectopic lesions transmit harmful signals to spinal dorsal root neurons, activating spinal microglia, which sustain pain signals. Over time, this prolonged activation leads to central sensitization, contributing to the amplification of pain perception (As-Sanie et al., 2016). The mechanism of central sensitization may help explain why chronic pelvic pain (CPP) affects approximately 30% of endometriosis patients, and why it often remains resistant to traditional surgical treatments. This sensitization process amplifies pain signals within the central nervous system, making it difficult to manage pain solely through surgical interventions.

[image: Illustration showing a connection between the brain, gut microbiota, and reproductive system. Labels indicate neurotransmitters and hormones: serotonin (5-HT), gamma-aminobutyric acid (GABA), and cortisol release through the hypothalamic-pituitary-adrenal (HPA) axis. Arrows point from the brain and microbiota to the reproductive system, suggesting interactions. Gut microbiota dysbiosis is linked to lipopolysaccharides (LPS) and short-chain fatty acids (SCFAs). Notations include increased neuroangiogenesis and sensitivity. The image implies complex interactions between these systems.]
Figure 4 | The interconnected relationship between gut microbiota imbalance, depression, and endometriosis, emphasizing how gut health impacts mental and reproductive health.

The prolonged presence of peripheral stimuli often leads to sensitization of the central nervous system, making patients more sensitive to even mild stimuli (Nijs et al., 2014; Jensen et al., 2016; Ji et al., 2018). Endometriosis is commonly associated with dysmenorrhea, and studies show that women with dysmenorrhea exhibit different brain metabolism patterns compared to women without dysmenorrhea (Tu et al., 2013). Even when women with dysmenorrhea are not experiencing pain, their brain response to harmful stimuli is heightened (Vincent et al., 2011). Chronic pain from conditions like endometriosis can lead to structural changes in the central nervous system. For instance, in a 2012 study by Sanie et al. (As-Sanie et al., 2012), women with chronic pelvic pain (CPP) due to endometriosis showed reduced volumes in the cingulate, insula, and putamen regions, while the volume of the midbrain’s periaqueductal gray, a key area in descending pain regulation, was increased. Moreover, another study by Sanie et al. found that patients with endometriosis-related CPP had higher concentrations of excitatory neurotransmitters in the anterior insula and stronger connectivity between the anterior insula and the medial prefrontal cortex, with this increased connectivity correlating positively with the degree of pain (As-Sanie et al., 2016). Chronic pain also alters central nervous system function, affecting endocrine pathways such as the hypothalamic-pituitary-adrenal (HPA) axis. HPA axis dysfunction is often observed in chronic pain, manifesting as lower cortisol levels or a diminished stress response (Frodl and O’Keane, 2013). Over time, chronic stress may lead to elevated cortisol levels, and these levels are negatively correlated with the duration of burnout symptoms (Vincent et al., 2011).

Approximately 65% of women with endometriosis report experiencing pain symptoms (Ding et al., 2024). The gut microbiota is instrumental in regulating neurophysiological behaviors by impacting neural, endocrine, and immune pathways (Salliss et al., 2022). The relationship between the gut microbiome and the central nervous system (CNS) is bidirectional, commonly referred to as the gut microbiome-brain axis (Ustianowska et al., 2022). This axis involves immune, neural, endocrine, and metabolic pathways, enabling effective communication and interaction between various organ systems. Key players in this communication include the enteric nervous system and the sympathetic and parasympathetic divisions of the autonomic nervous system.

Growing evidence suggests that neurogenic processes contribute significantly to the development and maintenance of endometriotic lesions. Sensory, sympathetic, and parasympathetic nerves have been identified in peritoneal lesions, with a markedly higher expression compared to normal peritoneum. Furthermore, endometriotic lesions can attract their nerve supply as they invade surrounding tissues by secreting neurotrophic factors (NTFs) that promote neural sprouting within the lesions (Velho et al., 2021). This enhanced innervation may play a crucial role in hypersensitivity to touch and other stimuli, as well as persistent pain, by lowering the sensory thresholds of nociceptors. Clinical studies have indicated that patients with a higher density of nerve fibers in their endometriotic lesions report more severe pain (McKinnon et al., 2012). It is believed that these nerve fibers contribute to the development of chronic pelvic pain, with potential mechanisms linked to the gut-brain axis (Lee et al., 2023). For instance, postoperative pain relief has been associated with the influence of gut microbiota on microglial activation (Yang et al., 2022). Additionally, cytokines such as IGF and metabolites including serotonin (5-HT) and gamma-aminobutyric acid (GABA) are also involved in the gut-brain axis, further influenced by the gut microbiota (Ni et al., 2021; Kim, 2024).




3.4 Physical burdens following endometriosis, especially depression and anxiety

Beyond its physical effects, endometriosis (EM) profoundly impacts the emotional well-being and mental health of women, frequently leading to psychiatric symptoms, particularly anxiety and depression (Laganà et al., 2017). A study involving 7,606 women revealed that those with endometriosis were significantly more likely to report mental health challenges (P <.0001), including depression and anxiety (Gete et al., 2023). Additionally, a recent report indicated a slight increase in the risk of mental health disorders associated with endometriosis, especially in the years following diagnosis. This heightened risk emphasizes the necessity for proactive mental health screenings for individuals who are newly diagnosed with the condition (Thiel et al., 2024).

The pain related to endometriosis can trigger or worsen psychological distress, adversely affecting various dimensions of quality of life, such as physical, sexual, and social aspects (Spinoni et al., 2024). Research has shown a correlation between endometriosis and elevated levels of pro-inflammatory cytokines in the bloodstream. Furthermore, chronic stress and chronic pelvic pain (CPP) can disrupt the hypothalamic-pituitary-adrenal (HPA) axis, resulting in reduced production of inflammatory mediators within both the circulatory system and the brain, while also impacting gut microbiota composition.

Simultaneously, Shicai Xie demonstrated that the administration of LR.KY16 significantly alleviated stress-induced abnormal behaviors and physiological dysfunction (Xie et al., 2024). Additionally, gut microbiota may influence the host’s inflammation levels in the brain by regulating neurotransmitters, potentially contributing to the onset of depression. The interaction between Limosilactobacillus-3-OMDP and inflammatory markers such as IL-1β and IL-6 could represent a key pathway in the communication between the gut and the brain, with 3-OMDP emerging as a promising therapeutic target for depression (Zhong et al., 2024).

Further studies have revealed that after an imbalance in the intestinal flora, the metabolism of intestinal bacteria—such as LPS and SCFAs—can influence the central nervous system through the brain-gut axis, leading to increased production of neurotransmitters like s5HT and GABA. These changes can, in turn, affect the HPA axis. Additionally, metabolites produced by the gut microbiota, including IGF and NGF, play a role in the pain and innervation associated with endometriosis. Through these various mechanisms, the gut microbiota can contribute to psychiatric symptoms in patients with endometriosis, influencing both pain perception and emotional well-being.




3.5 Infertility related to endometriosis

Infertility is a significant and distressing issue for women with endometriosis, affecting both their physical and mental well-being. Studies have shown that up to 40% of women with endometriosis experience infertility, and the underlying causes are multifactorial. The role of the gut microbiota in this process is an emerging area of research, suggesting that imbalances in gut bacteria may influence the development and progression of infertility in these patients. So, what role does the gut microbiota play in this process?

Pelvic adhesion formation in endometriosis is closely associated with the activity of transforming growth factor-beta (TGF-β), a key cytokine in the inflammatory process. Research has demonstrated that endometriosis-induced dysregulation of the intestinalmicrobiota significantly contributes to this pathological process. In various animal models, an imbalance in the gut microbiota triggers an inflammatory response, resulting in the increased presence of peritoneal macrophages and the subsequent secretion of large amounts of TGF-β (Bailey and Coe, 2002; Yuan et al., 2018; Ata et al., 2019; Cao et al., 2020). TGF-β plays a critical role in the development of pelvic adhesions by promoting the growth of fibroblasts and influencing the production of pro-inflammatory cytokines. For instance, TGF-β1 regulates the transcription of the IL-6 gene, leading to elevated levels of IL-6 in human fibroblasts. IL-6, in turn, activates macrophages, which further stimulate the proliferation of endometrial cells. During the inflammatory process, TGF-β1 fosters adhesion between ectopic endometrial cells and stromal cells, contributing to the development of adhesions. Additionally, TGF-β1 has chemotactic effects, attracting macrophages, fibroblasts, and neutrophils to the site of injury, and promoting the secretion of extracellular matrix components such as fibronectin and collagen. These actions collectively facilitate the formation of pelvic adhesions, which are a hallmark of endometriosis (Young et al., 2017). The evidence suggests that the intestinal microbiota influences the development of pelvic adhesions via the TGF-β1 pathway. As pelvic adhesions become more severe, they interfere with the normal function of the reproductive system, leading to sperm-egg binding disorders and, ultimately, infertility in women with endometriosis. Thus, the intestinal microbiota not only contributes to the inflammatory environment that drives endometriosis but also plays a significant role in the formation of adhesions and the fertility issues associated with the condition.

Secondly, TNF-α plays a pivotal role in infertility. As an immunomodulatory cytokine with diverse biological effects, TNF-α is primarily secreted by macrophages and T cells. In women with endometriosis and infertility, an imbalance in the intestinal microbiota leads to a substantial increase in TNF-α levels in the peritoneal fluid, exacerbating the inflammatory environment and contributing to reproductive dysfunction (Wang XM and Song, 2018). Under normal conditions, TNF-α plays a crucial role in various biological processes, including the regulation of reproductive endocrinology, hormone synthesis, pregnancy maintenance, male spermatogenesis, and sperm function. However, elevated concentrations of TNF-α have toxic effects that impair fertility. Specifically, high levels of TNF-α can directly damage the normal morphology of sperm, reduce sperm motility, and interfere with key stages of fertilization and implantation, ultimately compromising reproductive success (Li et al., 2006; Wang XM and Song, 2018). During conception, sperm and egg meet at the ampulla of the oviduct. Elevated levels of TNF-α in the abdominal fluid of women with endometriosis can negatively affect the gametes and fertilized eggs within the fallopian tubes, thereby compromising fertility. High TNF-α levels can also: (1) promote the production of maternal prohormone E2, interfere with the coagulation system, and facilitate the formation of blood clots in the fetal disc; (2) damage decidual blood vessels, causing vessel retraction and impeding the normal blood supply to embryonic and fetal tissues, potentially leading to tissue necrosis, abortion, and infertility; (3) High TNF-α levels also impair decidual blood vessels, causing blood vessel retraction, which disrupts the normal blood flow to embryonic and fetal tissues. This reduction in blood supply can lead to tissue necrosis, increasing the risk of miscarriage and infertility.

Last but not least, dysbiosis of the gut microbiota can lead to elevated circulating estrogen levels. The gut microbiota includes specific bacteria that influence estrogen metabolism by secreting β-glucuronidase, which uncouples estrogen from its conjugated form into active, free estrogen. This free estrogen is then reabsorbed into the body through the enterohepatic circulation, thereby participating in the regulation of circulating estrogen levels (Dabek et al., 2008; Baker et al., 2017). The activity of β-glucuronidase is influenced by both the density of the bacterial population and dietary factors. When the gut microbiota is dysregulated or the diet is high in fat, the activity of β-glucuronidase in the intestine increases. This leads to a higher conversion of conjugated estrogen into free estrogen, thereby raising the levels of free estrogen in the body (Kwa et al., 2016). Additionally, gut microbiota can synthesize estrogen-like compounds from dietary sources, further enhancing estrogenic effects in the body. These compounds can interact with estrogen receptors and mimic the actions of endogenous estrogens, potentially influencing various physiological processes related to estrogen regulation. Flores et al. (2012) studied men and postmenopausal women, both of whom do not have ovarian-origin estrogen, and found that urinary estrogen levels and most estrogen metabolites were closely linked to the richness and α-diversity of fecal microbiota (R ≥ 0.5, P ≤ 0.003). This suggests a strong connection between gut microbiota and estrogen metabolism. When the intestinal microbiota is disrupted, it can directly impact the body’s estrogen levels. Additionally, many aspects of female reproductive health, such as follicular growth, endometrial hyperplasia, endometrial receptivity, corpus luteum function, and early placental perfusion, are tightly regulated by estrogen. The pathological changes associated with endometriosis, which lead to gut microbiota imbalance, may, therefore, affect the normal metabolism of estrogen, ultimately impairing fertility in women.

However, there is a lack of direct studies linking endometriosis-induced gut microbiota imbalance to infertility. Several reasons contribute to this gap in research. First, it remains unclear which specific changes in the gut microbiota and to what extent these changes occur due to endometriosis, making it difficult to design complementary diagnostic tests. Furthermore, fertility is a complex and multifactorial process, and it is challenging to pinpoint a single pathway as the definitive cause of infertility.




3.6 Therapeutic approaches targeting gut microbiota

Probiotics, beneficial bacteria that promote gut health, have been shown to positively influence gut microbiota and modulate immune responses. In the context of endometriosis, specific strains of Lactobacillus and Bifidobacterium have emerged as promising candidates for reducing inflammation (Itoh et al., 2010). By strengthening the intestinal barrier, probiotics can help prevent endotoxins from entering the bloodstream, which in turn reduces systemic inflammation associated with endometriosis. They also assist in the metabolism of estrogen through the gut-liver axis, helping to lower excess estrogen that drives disease progression. In addition, specific probiotic strains can boost the activity of regulatory T cells, which are essential for tempering the overactive immune response commonly observed in endometriosis. By enhancing regulatory T cell function, these probiotics may help to moderate inflammation and immune dysregulation, offering a potential pathway for managing endometriosis-related symptoms. While clinical trials on the use of probiotics for endometriosis are still limited, preliminary studies in animals and small-scale human trials indicate potential benefits in alleviating both pain and inflammation.

Prebiotics, non-digestible fibers that support the growth of beneficial gut bacteria, have shown promise in positively affecting both the gut microbiome and immune responses. Compounds such as inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) can benefit individuals with endometriosis by encouraging the proliferation of Lactobacillus and Bifidobacterium species. This growth helps rebalance the gut microbiota, potentially reducing systemic inflammation and lowering estrogen levels. Additionally, prebiotics stimulate the production of short-chain fatty acids (SCFAs), such as butyrate, which possess anti-inflammatory properties and may aid in modulating immune responses associated with endometriosis (Chadchan et al., 2021). Synbiotics, a combination of probiotics and prebiotics, work together to enhance the survival and efficacy of beneficial microorganisms. This synergistic effect may be especially useful in managing endometriosis. By promoting a healthy gut microbiota, synbiotics help maintain microbial balance, reducing harmful bacteria while increasing beneficial strains, which can subsequently lower inflammation. Additionally, by regulating gut bacteria involved in estrogen metabolism, synbiotics may decrease estrogen reabsorption, potentially helping to curb estrogen-driven endometrial growth.

Fecal Microbiota Transplantation (FMT) is a procedure that involves transferring fecal microbiota from a healthy donor to a recipient to restore the balance of the gut microbiome. Although FMT is commonly used to treat Clostridioides difficile infections, its application in endometriosis is still experimental. This procedure has the potential to rebalance the gut microbiome, which may help reduce inflammation, correct dysbiosis, and enhance immune regulation (Que et al., 2024). By altering gut microbial populations, FMT could contribute to decreased systemic inflammation, a critical factor in the onset and progression of endometriosis. Diet significantly influences the composition of the gut microbiota, and dietary modifications that support gut health may provide therapeutic benefits (Brouns et al., 2023; Cirillo et al., 2023). Diets rich in omega-3 fatty acids, fiber, and polyphenols, —such as the Mediterranean diet—can positively impact gut microbiota and help mitigate inflammation (Brouns et al., 2023). These diets also enhance the production of short-chain fatty acids (SCFAs), which are important for regulating immune function and hormone metabolism (Cirillo et al., 2023). Conversely, reducing the intake of refined sugars, saturated fats, and processed foods may help prevent gut dysbiosis and potentially decrease inflammation linked to endometriosis. While antibiotics are frequently prescribed to treat bacterial infections, they can disrupt gut microbiota and may exacerbate dysbiosis when used indiscriminately. Therefore, microbiota-targeted therapies, which focus on eliminating harmful bacteria or enhancing beneficial strains, could offer a more precise strategy for managing endometriosis. Therapeutic approaches centered on the gut microbiota present promising new options for treating endometriosis. Although research in this area is still in its early stages, interventions such as probiotics, prebiotics, synbiotics, FMT, and dietary modifications show potential for reducing inflammation, modulating immune responses, and regulating estrogen metabolism—all crucial factors in the development of endometriosis. Future clinical trials will be essential to thoroughly evaluate the efficacy and safety of these microbiota-focused therapies in managing this condition.

Future research should emphasize the importance of conducting longitudinal studies to assess how changes in gut microbiota impact the onset and progression of endometriosis over time, thereby clarifying the causal links between gut dysbiosis and related symptoms. There is a pressing need for well-designed clinical trials to determine the safety and effectiveness of microbiota-based interventions—such as probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT)—in women suffering from endometriosis, with a focus on alleviating symptoms and enhancing overall quality of life and reproductive health. Furthermore, investigations should delve into the specific biological pathways through which gut microbiota affect endometrial health, including the roles of neuroinflammation, immune modulation, and estrogen metabolism. Given the psychological aspects associated with endometriosis, future studies should also explore the gut-brain axis in detail to understand how gut health influences mental well-being in affected women. In addition, personalized dietary interventions tailored to individual microbiome profiles should be explored to optimize gut health and mitigate endometriosis symptoms. Research should also consider how ethnic, genetic, and environmental differences influence gut microbiota composition and the associated risk of developing endometriosis. Lifestyle factors, including stress management, physical activity, and sleep patterns, should be investigated for their effects on gut microbiota and their potential contributions to the pathophysiology of endometriosis. Employing a multi-omics approach—incorporating genomics, transcriptomics, proteomics, and metabolomics—could provide valuable insights into the complex relationship between gut microbiota and endometriosis, possibly leading to new biomarkers for diagnosis and treatment. Finally, educational initiatives aimed at raising awareness of the impact of gut health on endometriosis are essential, empowering patients to make informed decisions regarding their dietary and lifestyle choices. Promoting interdisciplinary collaboration among researchers, healthcare providers, nutritionists, and mental health specialists will be crucial in developing comprehensive strategies that address both the physical and psychological dimensions of endometriosis.





4 Conclusion

The increasing number of endometriosis diagnoses is contributing to a significant public health burden, leading to challenges such as abdominal masses, pelvic pain, infertility, and associated psychological distress. Endometriosis disrupts metabolism, resulting in systemic inflammation and alterations in brain function that heighten pain perception and contribute to mood and anxiety disorders. This underscores the urgent need for a paradigm shift in the management of endometriosis—moving beyond conventional biomedical strategies to adopt a holistic approach that combines traditional medical treatments with psychological and nutritional interventions.

By fostering interdisciplinary collaboration and prioritizing patient-centered care, we can significantly enhance the quality of life and overall well-being of individuals affected by endometriosis. Modulating the gut microbiome to restore metabolic balance also presents an exciting therapeutic opportunity. However, it is essential to recognize the limitations of existing research and advocate for ongoing exploration into the long-term effectiveness and safety of emerging treatments. Understanding the socio-cultural factors that influence the experiences of those living with endometriosis. While recent advances in endometriosis research are promising, we must remain mindful of these limitations and emphasize the need for continued investigation.
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Parameter Hypothyroidism Control

(n=30) (QEX{0)]
Maternal age, yr*  29.63 + 3.65 30.80 * 2.55 0.135
BMI, kg/m** 23.09 + 2.88 22.92 + 3.70 0.846
Gestational 9.57 +2.79 10.41 + 2.74 0.240
age, weeks*
TSH, mIU/L* 523 + 149 1.67 + 0.81 <0.001
FT4, mIU/L* 1517 + 2.58 16.9 +2.28 0.007
TgAb, n (%) 2 (6.7%) 0(0) 0472
TPOAD, n (%) 2 (6.7%) 1(3.3%) 1.000
TG, mmol/L# 1.45 (1.06, 1.93) 1.28 (0.95, 1.69) 0.098
TC, mmol/L# 4.62 (1.02, 5.19) 4.28 (3.94, 5.27) 0.549
LDL-C, mmol/L# | 2.90 (1.55, 2.05) 2.56 (2.43, 3.14) 0318
HDL-C, mmol/L#  1.84 (2.50, 3.23) 1.89 (1.64, 2.02) 0.631
GLU, g/L* 4.82 +043 472+ 051 0415
HGB, g/L* 123.53 +9.97 126.33 +9.08 0.260

P<0.05 was significant. *Data are expressed as means + standard deviation. #Data are
expressed as median (P25, P75). BMI, body mass index; TSH, thyroid stimulating
hormone; FT4, free T4; TgADb, anti-thyroglobulin antibodies; TPOAb, thyroid peroxidase
antibody; TC, total cholesterol; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol;
HDL-C, high-density lipoprotein cholesterol; GLU, fasting blood glucose; and HGB,
hemoglobin.

Boldface indicates statistical significance.
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Parameter Hypothyroidism Control P

(n=30) (n=30) value
CRP, mg/L# 3.86 (1.72, 6.12) 1.48 (0.67, 2.15) <0.001
IL-2, pg/Ml# 0.50 (0.08, 3.08) 0.00 (0.00, 0.76) 0.005
IL-4, pg/mL# 2.16 (0.45, 8.32) 0.23 (0.00, 1.96) 0.001
IL-6, pg/mL# 2.17 (1.05, 6.67) 2.19 (1.20, 4.29) 0.953
IL-10, pg/mL# 1.30 (0.85, 5.32) 0.79 (0.28, 1.63) 0.018
TNF-0, pg/mL# v 1.03 (0.44, 4.70) 7 0.53 (0.00, 1.19) 0.017

P<0.05 was significant. #Data are expressed as median (P25, P75). CRP, C-reaction protein;
1L-2, 4, 6, 10, Interleukin-2, 4, 6, 10; and TNF-0, tumor necrosis factor o.
Boldface indicates statistical significance.
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Non-COPD COPD

N=16 N=21
Age [years (mean)] 62.13 (+ 11.6) 60.9 (+8.1) 0.103
Gender 0.746
male 8 (50%) 9 (43%)
female 8 (50%) 12 (57%)
Smokin PY (mean) 30.2 (£ 12.3) 56.6 (+ 27.4) 0.012*
Body mass index (BMI) >0.999
>30 kg/m? 5 (31%) 5 (24%)
<30 kg/m” 10 (63%) 13 (62%)
N/A 1 (6%) 3 (14%)

COPD Gold stadium

GOLD 1 N/A 2 (10%)

GOLD 2 4 (20%)

GOLD 3 12 (57%)

GOLD 4 3 (13%)

CAT score (mean) 6.8 (£ 5.5) 12.1 (£ 6.7) 0.049%

FEV1% 91.9 (+ 11.5) 612 (+15.3) <0.001++*

Statistical significance *P < 0.05; **P<.001, all p-values were two-sided.
N/A means data not available.
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PRSOPWPP PRSOPWNP

Features =G (n=17)

Gender Male:6,Female:0 Male:15,Female:2 1

Age 65.83 + 5.67 64.94 + 545 0.736
Smoking Yes:5,No:1 Yes:13,No:4 1
Drinking Yes:6,No:0 Yes:14,No:3 0.539
TC 4.12 £ 1.57 4.10 £0.79 0.988
TG 1.06 + 0.30 0.87 +0.35 0.259
HDL-C 1.15(0.93,1.27) 1.15(0.92,1.31) 0.806
LDL-C 250+ 1.35 2.37 £0.58 0.135
VLDL-C 0.22(0.17,0.25) 0.24(0.15,0.32) 0.599
Lp (a) 394.17 + 227.95 301.53 £ 225.26 0.398
ApoA-T 1.03 +£0.17 1.09 + 0.14 0.398
ApoE 56.77 + 11.17 33.84 + 8.85 <0.001*
ApoB 0.87 £ 0.43 0.82 +0.19 0.829
FFA 0.57 + 0.09 0.46 + 0.15 0.112
WBC 9.76(8.57,11.22) 5.97(5.57,8.68) 0.013*
FBG 8.38(6.36,9.66) 5.56(5.04,6.89) | 0.027*%
TyG 6.93(6.21,11.9) 4.88(3.38,7.45) 0.052
N 7.49(6.13,9.02) 3.88(3.35,5.69) 0.008*
L 1.39 + 0.56 1.65 + 0.54 0.325
NLR 4.89(3.91,10.35) 2.64(2.08,3.67) 0.014*
SUA 255(225.25,330.00) 281(252.50,362.50) 0.362

TC, Total Cholesterol; TG, Triglycerides; HDL-C, High-Density Lipoprotein Cholesterol;
LDL-C, Low-Density Lipoprotein Cholesterol; VLDL-C, Very Low-Density Lipoprotein
Cholesterol; Lp (a), Lipoprotein (a); ApoA-I, Apolipoprotein Al; ApoE, Apolipoprotein E;
ApoB, Apolipoprotein B; FFA, Free Fatty Acids; WBC, White Blood Cells; FBG, Fasting Blood
Glucose; TyG, Triglycer-ide-Glucose Index; N, Neutrophils; L, Lymphocytes; NLR,
Neutrophil-Lymphocyte Ratio; SUA, Serum Uric Acid. Values are presented as mean + SD
or median (interquartile range). * denotes statistically significant differences as determined by
Student’s T-test or Wilcoxon rank-sum test.
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Features PFBS ( NHF (n P value
Gender Male:21, Female:2 Male:15, Female:12 0.013*
Age 65.17 + 5.39 62.22 +7.41 0.119
Smoking Yes:18, No:5 Yes:11, No:16 0.007*
Drinking Yes:20, No:3 Yes:10, No:17 0.001*
TC 4.11 + 1.01 441 +0.71 0.224
TG 0.92 £ 0.34 0.81 +0.48 0.336
HDL-C 1.15(0.94,1.30) ‘ 1.27(1.14,1.43) 0.018*
LDL-C 2.40 £ 0.81 2.74 £0.79 0.143
VLDL-C 0.22(0.16,0.29) 0.21(0.16,0.27) 0.579
Lp (a) 325.70 + 224.59 145.74 + 90.10 0.001*
ApoA-T 1.07 £ 0.15 | 151 £0.30 <0.001*
ApoE 39.82 +13.83 39.99 +£5.92 0.956
ApoB 0.83 £ 0.27 ‘ 0.92 +£0.20 0.189
FFA 0.50(0.44,0.60) 0.54(0.36,0.72) 0.392
WBC 7.83 £243 ‘ 6.47 * 1.66 ‘ 0.03*
FBG 6.31(5.44,7.99) 4.96(4.38,5.49) <0.001*
V TyG 5.93(4.03,7.81) ‘ 4.03(1.71,6.14) ‘ 0.01*
N 4.78(3.41,7.70) 3.99(2.66,5.07) 0.019*
L 1.58 £ 0.54 ‘ 2.04 £0.59 ‘ 0.006*
NLR 3.12(2.44,5.57) 2.04(1.24,2.38) 0.001*
SUA 273.00(250.00,356.00) 213.00(143.00,297.00) ‘ 0.05%

* denotes statistically significant differences as determined by Student’s T-test or Wilcoxon
rank-sum test.
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Genes equences of primer nealing Tm (°C)

GAPDH Forward primer GAPDH 5-CAGTGGCAAAGTGGAGATTGTTG-3' 59.22
Reverse primer 3-CTCGCTCCTGGAAGATGGTGAT-5' 59.22

IL-1B Forward primer 5-TTCAGGCAGGCAGTATCACTC-3' 59.22
IL-1B Reverse primer 3-GAAGGTCCACGGGAAAGACAC-5' 59.22

IL-6 Forward primer 5-CTGCAAGAGACTTCCATCCAG-3' 59.22

IL-6 Reverse primer 3AGTGGTATAGACAGGTCTGTTGG-5' 59.22
TNF-o. Forward primer 5-CAGGCGGTGCCTATGTCTC-3' 59.22

TNF-0. Reverse primer 3-CGATCACCCCGAAGTTCAGTAG-5' 59.22
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P values were calculated using covariance analysis (ANCOVA or Quade’s nonparametric ANCOVA). ANCOV A, analysis of covariance; BMI, body mass index; CCP, cyclic citrullinated peptide;
IgG4, Immunoglobulin G4; 1gG, Immunoglobulin G; Igk, Immunoglobulin E; CH50, 50% hemolytic unit of complement; ANA, antinuclear antibody; RE, rheumatoid factor.
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Hyperlipidemia

Parameters Group
(n=16)

Gender 1

Male 5 8

Female 5 8
Age years 6240 £ 7.34 66.31 + 4.96 0.117
Body mass index (BMI) kg/m* 2452 %227 2493 +2.24 0.658
Uric acid (UA) wmol/L 31151 £ 63.7 359.06 + 98.43 0.188
Homocysteine (HCY) wmol/L 10.74 £ 2.50 12.09 + 4.16 0.367
Fasting blood glucose (FBG) mmol/L 5.00 £ 0.51 5.15+0.53 0.488
Alanine aminotransferase (ALT) u/L 21.00 + 7.97 19.61 + 12.41 0.762
Aspartate aminotransferase (AST) u/L 19.00 + 5.75 2254 + 6.94 0.207
creatinine (Cre) umol/L 65.10 +9.10 66.83 + 14.85 | 0.751
Prealbumin (PAB) mg/L 247.78 £ 63.10 ‘ 268.81 + 38.41 0.371
Albumin (ALB) g/L 4131 £2.13 40.70 £ 4.90 0.717
Globulin (GLB) g/l 23.80 + 3.28 26.02 + 2.95 0.103
Total Protein (TP) g/L 65.11 + 4.92 66.72 + 6.75 0.532
Alkaline phosphatase (ALP) U/L 68.00 + 13.84 73.00 + 17.41 0.465
Y-glutamyl transpeptidase (-GT) UL 21.00 + 9.74 26.62 £ 19.38 0413
Total bilirubin (T-BIL) umol/L 13.52 £ 549 11.12 + 3.53 0.217
Total cholesterol (TC) mmol/L 378 +£ 091 6.21 + 0.50 < 0.001
Triglyceride (TG) mmol/L 0.99 + 0.32 1.72 + 0.54 0.001
High-density lipoproteins (HDL) mmol/L 1.05 £ 0.20 125 +0.25 0.046
Low-density lipoproteins (LDL) mmol/L 2,07 £ 0.64 3.83 £ 045 < 0.001

Lipoprotein a (LPa) mg/L 127.89 + 93.93 34831 £ 149.79 0.001
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Parameters  Desulfovibrionaceae Mucispirillum Agathobacter Faecalibacterium Ruminococcus Bifidobacterium

Correlation ~ P-value Correlation Correlation Correlation ~ P-value = Correlation P-value = Correlation P-value
TC 0517 0474 0.064 0.461 0073 0302 0256 0090 0741 0115 0671
G 0643 0007 -0.500 0048 0.69 0003 0711 0002 0252 0347 0423 0102
HDL 0356 0175 -0.104 0700 0113 0676 0393 0132 0.009 0974 -0.188 0486
LDL 0193 0299 0261 0511 0043 0522 0038 0291 0274 0329 0214
LPa 0.076 0778 -0.068 0.803 0641 0007 0494 0052 0556 0025 0595 0015

Correlation coefficient greater than 0, positive correlation between bacteria and serum factor; less than 0, negative correlation between bacteria and serum factor. Data (n=16) were analyzed by the Spearman test.
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Non-AKI

(n=15)

Baseline data

Age [year, mean (SD)] 8.5 (4.4) 42 (3.3)
Gender (male, %) 3 (75.0) 4(80.0)
Height [m, mean (SD)] 12 (0.3) 1.0 (0.3)
Weight [kg, mean (SD)] 25.0 (11.1) 17.7 (10.4)
BMI [kg/m?, mean (SD)] 16.4 (2.3) 18.5 (3.0)
Kidney function parameters
SCr [umol/L, mean (SD)] 51.2 (17.9) 19.3 (6.6)
BUN [mmol/L, mean (SD)] 9.3 (11.0) 2.8 (1.4)
Hemodynamic parameters
MAP [mmHg, mean (SD)] 66.3 (3.8) 70.6 (12.1)
CO [L/min, mean (SD)] 3.8 (0.8) 4.1 (2.8)
ES [%, mean (SD)] 28.8 (9.3) 37.8 (2.6)
EF [%, mean (SD)] | 55.7 (14.9) 69.3 (3.4)
RRI [mean (SD)] 0.6 (0.1) 0.6 (0.1)
Oxygen metabolism indices
PaO, [mmHg, mean (SD)] 86.4 (54.9) 71.0 (53.0)
PaCO, [mmHg, mean (SD)] 41.6 (13.6) 37.6 (4.4)
Sa0, [%, mean (SD)] 77.6 (25.1) 81.3 (15.6)
Lac [mmol/L, mean (SD)] 1.6 (0.7) 1.5 (0.4)
PuO, [mmHg, mean (SD)] 162.5 (9.6) 117.4 (33.2)
PuCO, [mmHg, mean (SD)] 20.8 (10.4) 39.4 (28.5)
Inflammatory indicators
WBC [x10%/L, mean (SD)] 92 (2.5) 13.8 (6.8)
NLR [mean (SD)] 7.9 (3.9) 7.2 (7.3)
L-8 [pg/ml, mean (SD)] 139.1 (91.5) 1584.3 (3309.7)
L-1B [pg/ml, mean (SD)] 7.8 (3.5) 84.4 (171.5)
L-6 [pg/ml, mean (SD)] 41.4 (41.5) 252.0 (430.3)
TNE-0 [pg/ml, mean (SD)] 19.3 (6.2) 33.1 (38.6)

L-2 [U/ml, mean (SD)]

2411.3 (1981.5)

1746.4 (918.1)

L-10 [pg/ml, mean (SD)] 55.8 (43.8) 13,1.(5.7)
PCT [ng/ml, mean (SD)] 30.0 (46.7) 6.3 (6.3)
Assessment of disease severity
PCI score [mean (SD)] 87.0 (7.0) 98.4 (2.0)

‘ PRISM III score [mean (SD)] 6.8 (3.3) 0.6 (1.2)
Infection site (n, %)
- Respiratory 3 (75.0) 3 (60.0)
’ - Blood 1 (25.0) 0
‘ - Central nervous system 0 1 (20.0)

- Multi-site infection 0 1 (20.0)
Treatment
Antibiotic use (n, %)

- Cephalosporin antibiotics 2 (50.0) 1 (20.0)

- Glycopeptide antibiotics 1 (25.0) 0

- Carbapenem antibiotics 1(25.0) 0

- Cephamycins antibiotics 0 1 (20.0)

- Combined antibiotics 0 3 (60.0)
Probiotic therapy (1, %) 1 (25.0) 2 (40.0)
Vasoactive drugs (n, %) 3 (75.0) 1 (20.0)
Mechanical Ventilation (1, %) 2 (50.0) 0
RRT (1, %) 1(25.0) 1 (20.0)
:;gn&zs(g;]mp ital stay [day, 248 (10.6) 18.0 (11.7)
Length of ICU stay [day, mean (SD)] 11.5 (5.5) 7.4 (2.1)

SA-AK], sepsis-induced acute kidney injury; BMI, body mass index; SCr, serum creatinine;
BUN, blood urea nitrogen; RRT, renal replacement therapy; ICU, intensive care unit; MAP,

mean arterial pressure; CO, cardiac output; FS, fractional shortening; EF, ejection fraction;
RRI, renal resistive index; PaO,, pressure of oxygen in the artery; PaCO,, partial pressure of
carbon dioxide in the artery; SaO,, saturation of arterial blood oxygen saturation; Lac, lactic

acid; PuO,, pressure of oxygen in urine; PuCO,, partial pressure of carbon dioxide in urine;
WBC, white blood cell; NLR, neutrophil-to-lymphocyte ratio; PCT, procalcitonin; PCIS,
pediatric critical illness score; PRISM 111, pediatric risk of mortality III.
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n 20 20 20 20 20 20
Mean(ng/mL) 1:33 522 ‘ 10.88 1.54 573 10.02
Standard deviation 0.11 0.35 0.14 0.35 0.68

CV(%) 8.13 6.72 9.23 6.18 6.75
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NO Compounds Abbreviate H/ppm p_value |logzFC|

1 CiH,0,° Butyrate Bu 0.90(t),1.56(m),2.15(t) 0.00125 2.1934

2 CeHisNO, Isoleucine lle 1.01(d),0.99(d) 0002175 25217 upP
3 CsH,NO, Valine Val 1.04(d) 0000428 28211 up
4 C3H50,” Propionate Prop 1.06(t) 0.001121 2.4208 UP
5 C3H:05" Lactate Lac 1.33(d) 0017565 1.3096 upP
6 CoH1N,0, Lysine Lys 1.73(m),3.76(t) 0009568 20104 up
7 CoHsNO, Leucine Leu 1.72(m) 0007206 20666 up
8 CH;0,° Acetate Ace 1.92(s) 0000206 23516 upP
9 C5H,NO,S Methionine Met 2.14(s) 000331 1.6129 up
10 C,H,NO$ Taurine Tau I 3.43(1) 0.00027 2.7857 upP
11 C,HNO, Glycine Gly 3.57(s) 0002631 2516 upP
12 C,HyNO, Threonine Thr 3.58(d),1.31(d) 0002215 2.6053 upP
13 CoH N304 Citrulline Cir 3.75(t) 000295 1.0506 up

14 C3H,NO, Alanine Al 3.78(q),1.49(d) 0.00692 1161 up
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NO. Formula Compounds Abbreviate 5'H/ppm value |logFC|

1 C,H,0, Butyrate Bu 0.90(t) 0.0034632 11148

2 C;H,,NO, Valine Val 1.04(d) 0.00099133 2.0679 uP
3 C;H;0, Propionate Prop 1.06(t) 0.0046933 1.0202 UP
4 C3Hs05 Lactate Lac 1.33(d) 0.015755 0.93906 uP
5 CeHy3NO, Isoleucine Iso 1.48(m) 0.0046054 0.90883 UP
6 CeH,3NO, Leucine Leu 1.72(m) 0.0055266 1.2315 UP
7 CeH14N,0, Lysine Lys 1.73(m) 0.0074863 1.1859 UP
8 CH;0, Acetate Ace 1.92(s) 0.00046555 1.8232 UP
9 C,H;NO, Glycine Gly 3.57(s) 0.0067228 1.6334 UP

10 C4HoNO; Threonine Thr 3.58(d) 0.00090854 2.1984 up
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Characteristics UC (nh = 53) CTRL (n = 37)
Gender, N (%)

Male 25 (47.2%) 17 (46%)

Female 28 (52.8%) 20 (54%)

Age (years)

Mean + SD 4047 + 14.14 50.70 + 14.80

Disease duration (years)

Mean + SD 8.83 £7.19 -

Clinical features

Corticosteroid therapy, N (%) 41 (77.3%) -

Previous therapy, N (%) 21 (39.6%) -
Failure to previous therapies, 18 (33.9%) -
N (%)

SD, standard deviation.
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Concomitant treatment Technology Platform

employed
Chen Zhou-2018 (Zhou, 2018) NA 7 16S rRNA HiSeq2000
gene sequencing
Xiutao Wang-2022 (Wang and NA 7 16S rRNA Tllumina Miseq
Wang, 2022) gene sequencing sequencing platform
Min, Hong Ki-2023 (Min NA 8 16S rRNA Tapestation 4200
et al, 2023) gene sequencing
Sternes, P. R.-2022 (Sternes NA 9 16S rRNA NA
et al,, 2022) gene sequencing
Anca Cardoneanu -2021 TNF-0:67.85(19/28); SSZ:17.85(5/28); NSAIDs:14.28(4/28) 7 NA NA

(Cardoneanu et al., 2021)

Chen Zhou-2020 (Zhou NA % 16S rRNA Tllumina Miseq
et al., 2020) gene sequencing sequencing platform
Li Zhang -2019 (Zhang NSAIDs:68.9(71/103); biological agents:44.7(46/103); DMARDs:34.0 7 16S rRNA Tllumina Miseq
etal, 2019) (35/103) gene sequencing sequencing platform
Maxime Breban -2017 (Breban NSAIDs:51(25/49); Corticosteroids:12.2(6/49); DMARDs:4(2/49); 6 16S rRNA Tllumina Miseq
et al, 2017) Biotherapy:30.6(15/49); Antiacid:30.6(15/49) gene sequencing sequencing platform
Mary-Ellen Costello -2015 NSAIDs:11.1(1/9) 5 16S rRNA NA
(Costello et al., 2015) gene sequencing
Xin Wang-2022 (Song NA 8 16S rRNA NA
et al,, 2023) gene sequencing
Sun, G.-2021 (Sun et al., 2021) NA 5 16S rRNA NA

gene sequencing

Zhang, F.-2020 (Zhang AbbVie:100(20/20) 6 16S rRNA Tllumina Miseq
et al., 2020a) gene sequencing sequencing platform
Chen, Zena-2019 (Chen NA 9 16S rRNA Tllumina Miseq
etal, 2019) gene sequencing sequencing platform
Costello, M. E.-2015 (Costello NA 4 16S rRNA NA
et al,, 2015) gene sequencing
Li, M.-2019 (Li et al,, 2019) NSAIDs:40.91(9/22); BLs:36.36(8/22) 7 16S rRNA Tllumina Miseq
gene Sequencing sequencing platform
Qinghong Dai-2022 (Dai NA 5 16S rRNA Tllumina Miseq
et al, 2022) gene sequencing sequencing platform
Bin Dou-2022 (Dou, 2022) Antibody:29.2;Recombinant fusion protein:70.8; 4 16S rRNA Tllumina Miseq
gene sequencing sequencing platform
‘Wen, C.-2017 (Wen et al., 2017) NA 7 16S rRNA Tllumina Miseq
gene sequencing sequencing platform
Ziyi Song-2022 (Song NSAIDs:38.7(24/62); steroid hormone:3.2(2/62); 8 16S rRNA Tllumina Miseq
et al, 2023) immunosuppressant:14.5(9/62):biological agents:16.1(10/62) gene sequencing sequencing platform
Zena Chen-2021 (Chen NSAIDs:38.7(24/62) 7 16S rRNA Tllumina Miseq
et al,, 2021) gene sequencing sequencing platform
Magali Berland-2023 (Berland NSAIDs:100(30/30) 6 whole-metagenome 5500 SOLIiD Wildfire
etal, 2023) shotgun sequencing
Qinghong Dai-2022 (Dai NSAIDs:53.5 4 16S rRNA Tllumina Miseq
etal, 2022) gene sequencing sequencing platform
Jian Yin-2020 (Yin et al., 2020) Sulfasalazine:26.67(26/97); TNFi:33.33(32/97) 6 Shotgun Tllumina Miseq
metagenome sequencing sequencing platform
Gang Liu-2020 (Liu et al,, 2020) TNFi:52.8(67/127) 4 16S rRNA Tllumina Miseq
gene sequencing sequencing platform
H. K. Min-2023 (Min TNFi:51.5(17/33); NSAIDs:78.8(26/33) 6 16S rRNA Tllumina Miseq
et al, 2023) gene sequencing sequencing platform
Fangze Zhang-2020 (Zhang NA 7 165 IRNA Illumina Miseq
et al., 2020b) gene sequencing sequencing platform
Guangming Jiang-2022 NSAIDs:78(71/91); DMARDs:37.6(35/93) 9 16S rRNA Tllumina Miseq
(Jiang, 2022) gene sequencing sequencing platform
Xin Wang-2022 (Xin NA 7 16S rRNA Tllumina Miseq
et al, 2022) gene sequencing sequencing platform
Chen, Z-2019 (Chen NA 5 16S rRNA Tllumina Miseq
etal, 2019) gene sequencing sequencing platform

*Quality (Q) of each study was based on the Newcastle-Ottawa quality scale.
NA refers to missing data collection.
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Bacterial abundance

‘The microbial richness of gut microbiota in
HT patients was significantly lower than in the
control group. HT patients with
hypothyroidism exhibited the least gut
‘microbial abundance.

Similar levels of bacterial richness and diversity
were found in the gut microbiota of HT
patients and healthy controls.

‘The gut microbiota abundance and diversity in
the GD and HT groups were similar to those
in the healthy groups, but the overall structure
was different.

‘The richness and diversity of bacterial
community were calculated at the 97%
similarity level.The diversity elevation indicates
a clear gut microbial overgrowth in patients
group in contrast to healthy control.

Specific differences in
the microbiota

HT patients with euthyroidism have more
Lachnospiraceae_incertae_sedis, Lactonifactor,
Alistipes, and Subdoligranulum, while HT with
hypothyroidism have more
Phascolarctobacterium. Phascolarctobacterium
‘may be involved in the progression of HT

in humans.

‘The abundance levels of Blautia, Roseburia,
Ruminococeus_torques_group, Romboutsia,
Dorea, Fusicatenibacter, and
Eubacterium_halli_group genera were increased
in HT patients, whereas the abundance levels of
Fecalibacterium, Bacteroides, Prevotella_9, and
Lachnoclostridium genera were decreased.

Compared to Graves' disease patients, HT
patients are more abundant in Firmicutes, and
have less Bacteroides, more Proteobacteria and
Actinobacteria than the normal control
‘group.Bacillus, Blautia, and Ornithinimicrobium
can be used as potential markers to distinguish
GD and HT patients from the healthy people.

‘The abundance of Prevotella_9 and Dialister
declines in HT group,while Escherichia-Shigella
and Parasutterella elevate. At the species leveit
also showed an increased abundance of E. coli
in HT.
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Result

The most important taxa among women with excess gestational weight gain
(GWG) included Methanobrevibacter, Bifidobacterium, and Bacteroides, as well
as seven OTUs of the order Clostridiales. There were three OTUs,include
Blautia, SMB53, Methanobrevibacter, that were significantly higher among
women with excess GWG.
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Huang
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49

18

16

49

74

42

39

36

34

Pregnant women with preeclampsia had significantly lower abundance of
Prevotella, Porphyromonas, Varibaculum, and Lactobacillus compared to those
without this complication. The abundance of Prevotella, Porphyromonas,
Lactobacillus, Mobiluncus, Campylobacter and Peptostreptococcus were
decreased significantly in the pregnant women with abnormal

placental growth

In preeclampsia patients, there was an overall increase in pathogenic bacteria,
Clostridium perfringens and Bulleidia moorei,but a reduction in probiotic
bacteria Coprococcus catus

At phylum level, Firmicutes was more abundant in the Fetal growth restriction
(FGR) group than in the control group. At genus level, Bacteroides,
Faecalibacterium, Lachnospira (all belong to Lachnospiraceae family) were
highly abundant in the FGR group as compared to the control group.

The GDM patients presented a significantly higher abundance of the genera
Bacteroides, Veillonella, Klebsiella, Escherichia-Shigella, Enterococcus, and
Enterobacter.There is an increase in Firmicutes and a decrease in Bacteroides
in GDM patients, as well as an increase in Firmicutes/Bacteroides (F/B ratio)
in late pregnancy.

There is a reduction in Lactobacillales from the time of GDM diagnosis to the
time before delivery (237 weeks gestation). F/B ratio was found higher in
GDM mother, when compared to their non-GDM counterparts, at the time
before delivery. However, these alterations were not observed in meconium
and the first feces of their newborn.

Bacteroides and Staphylococcus were significantly higher in the overweight
state than in normal-weight women. Mother’s weight and BMI before
pregnancy correlated with higher concentrations of Bacteroides, Clostridium,
and Staphylococcus. Microbial counts increased from the first to third
trimester of pregnancy. High Bacteroides concentrations were associated with
excessive weight gain over pregnancy.

Reduced numbers of Bifidobacterium and Bacteroides and increased numbers
of Staphylococcus, Enterobacteriaceae and Escherichia coli were detected in
overweight compared with normal-weight pregnant women. E. coli numbers
were higher in women with excessive weight gain than in women with normal
weight gain during pregnancy, while Bifidobacterium and Akkermansia
muciniphila showed an opposite trend.
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