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1 Introduction

Global ocean forecasting emerged as a true operational service under the decade-long project called the Global Ocean Data Assimilation Experiment (GODAE, Smith, 2000). Since the beginning of GODAE, ocean observations were recognised as the foundation of operational oceanography. Under GODAE, several groups developed capabilities in ocean data assimilation (Bell et al., 2009) and built operational ocean and seasonal forecast systems (e.g., Dombrowsky et al., 2009). GODAE also played a role in the establishment of important programs in ocean observing – including Argo (Roemmich and Gilson, 2009; Roemmich et al., 2019), which began as a joint project of CLIVAR and GODAE (Freeland et al., 2010); and GHRSST (Group for High-Resolution Sea Surface Temperature HRSST program, Donlon et al., 2009; Martin et al., 2012), which began as a GODAE pilot project. Following the success of GODAE, the ocean forecasting community continued to work together to improve ocean forecasting systems under GODAE OceanView (Bell et al., 2015), and now under OceanPredict (Davidson et al., 2019).

Research on optimal ocean observation strategies has a long history (e.g., Munk and Wunsch, 1982), with numerical assessment of the impact of observations on ocean forecasts beginning long before GODAE began (e.g., Miller, 1990). In 2007, at a GODAE workshop in Paris, a new GODAE task team was established - called the Observing System Evaluation task team (OSEval-TT, Oke et al., 2009a). The OSEval-TT continued under GODAE OceanView and OceanPredict, publishing several community papers that demonstrate the value of ocean observations for ocean forecasting (e.g., Oke et al., 2015a, b; Fujii et al., 2019; Martin et al., 2022) and seasonal prediction (e.g., Fujii et al., 2015b). Aside from those community papers, OSEval-TT members and groups applied ocean analysis, reanalysis, and forecast systems to quantify the impacts of ocean observations for various ocean services (e.g., Le Traon et al., 2019). Those studies included demonstrations of the complementarity of observations from different platforms (e.g., Oke and Schiller, 2007; Lea et al., 2014; Gasparin et al., 2023); the value of ocean observations in coastal regions (e.g., Oke et al., 2009b; Kerry et al., 2018); the foundational importance of satellite altimeter data (e.g., Remy et al., 2013; Verrier et al., 2017; Hamon et al., 2019; Benkiran et al., 2021); the impact of Argo data on data-assimilating systems (e.g., Balmaseda et al., 2007; Zhang et al., 2017); the usefulness of data from mooring arrays (e.g., Fujii et al., 2015a); and the impact of ocean observations for coupled prediction (e.g., Halliwell et al., 2017; King et al., 2020). These studies have provided evidence of the importance of ocean observations for ocean services that have helped argue the case for sustaining the global ocean observing system.

Under OceanPredict, when the United Nations Decade of the Ocean for sustainable development began, the OSEval-TT established Synergistic Observing Network for Ocean Prediction (SynObs). SynObs seeks to “extract maximum benefit from combining various observation platform measurements, typically satellite and in situ observation data, or combinations of coastal and open ocean platforms for ocean/coastal predictions”. The flagship activity of SynObs is the coordinated multi-system OSEs/OSSEs. This Research Topic of Frontiers in Marine Science is also a ‘contribution’ to SynObs. This Research Topic invited research papers - summarized below - that demonstrate observation impacts for the ocean and coupled prediction. The Research Topic includes 17 research articles, mostly using Observing System Experiments (OSEs) or Observing System Simulation Experiments (OSSEs), with contributions from 86 authors.




2 Contributions



2.1 Observation selection and processing

Paul et al. present a method that identifies which assimilated observations yield a beneficial contribution to an analysis field produced using a ensemble data assimilation system. Using a regional system applied to the Bay of Bengal, the authors demonstrate improvement by assimilating only those observations that are identified as “beneficial”, with about 50% of available observations improving the analysis. Interestingly, they show that assimilating too many observations can degrade performance. A similar result is reported by Lorenc and Marriott (2014) for numerical weather predictions.

Sugiura et al. propose improving ocean data assimilation by using integral quantities like heat and freshwater content derived from temperature and salinity profiles. Unlike traditional methods that are prone to noise and biases, this approach seems to offer a more robust constraint. The authors demonstrate that these integral measures are particularly beneficial in data-sparse regions.




2.2 Demonstrating the value of shelf observations

Argo is the foundational ocean observing platform for subsurface properties in the deep-ocean (Johnson et al., 2022). But Argo doesn’t routinely observe the continental shelves. A new initiative, called the Fishing Vessel Ocean Observing Network (FVON, Van Vranken et al., 2023), offers a complimentary platform. In this Research Topic, Kerry et al. use a 4D-Var system in the Tasman Sea to show how fishing vessel-collected subsurface temperature data can improve shelf-sea forecasts. Similarly, Hirose et al. demonstrate how data from low-cost sensors on Japanese fishing vessels enhance coastal forecasts. Both studies highlight the value of integrating non-traditional platforms to fill observational gaps and improve coastal ocean forecasts.

Edwards et al. review how ocean observations improve circulation models in coastal and marginal seas, where data are sparse. They highlight challenges like representativeness errors in model-data comparisons and discuss tools such as OSSEs, array modes, and Artificial Intelligence algorithms. Examples from global coastal models show that integrating in-situ and subsurface observations reduces errors and enhances forecast accuracy.

Aydogdu et al. demonstrate that assimilation of glider observations consistently improves state estimates of the circulation in the Western Mediterranean Sea, particularly eddies. They also demonstrate improvements to upper-layer chlorophyll estimates in the biogeochemical system by improving physical mixing.




2.3 Demonstrating the value of open water observations

Several papers in this Research Topic demonstrate the impact of surface velocities on ocean forecasts. This includes a study by Mirouze et al. and Waters et al., using the United Kingdom (UK) and French ocean forecast system, that share the same ocean model, but uses a different approach to data assimilation. Both studies show improvements to forecast surface currents when assimilating total surface velocity particularly in the equatorial regions. Waters et al. also show good improvement in western boundary current regions and in the Antarctic Circumpolar Current, but with minimal impact on subsurface temperature and salinity. Mirouze et al. report some degradation in subsurface temperature and salinity outside of the tropics, due to over-fitting of surface velocity observations. In a separate paper, Waters et al. presents an inter-comparison of the two above-mentioned systems. They show that using equivalent OSSEs, errors in surface velocities are reduced more in the UK system, compared to the French, with improvements evident to greater depths.

In this Research Topic, Balmaseda et al. demonstrate that assimilation of sea-level, together with sub-surface temperature and salinity, significantly enhances the accuracy of seasonal predictions for key variables like sea surface temperature (SST), upper ocean heat content, and subsurface temperature distributions. The study also demonstrates that the inclusion of ocean observations leads to better initialization of coupled ocean-atmosphere models, yielding improved forecast accuracy in regions with strong climate variability, such as the tropical Pacific.

The impact of Argo observations on sub-seasonal predictions is demonstrated in this Research Topic by Balan-Salorjini et al. The authors also show how problems with coupled initialization degrade the potential value of Argo. Continued development of coupled data assimilation and coupled initialization is desperately needed.

Balmaseda et al. further demonstrate the significant and positive impact of observations from Argo floats, ship-based measurements, and moored buoys on the accuracy of seasonal forecasts. This study also shows how assimilation of sub-surface observations helps reduce initialization errors in the ocean state, thereby improving the predictability of key atmospheric and oceanic processes.

The paper by Smith et al., in this Research Topic, use a Canadian ocean/ice forecast system to show the positive impacts of assimilating Absolute Dynamic Topography (ADT). The greatest benefits appear to be under sea ice, with improved representation of Arctic surface circulation features like the Beaufort Gyre and Transpolar Drift.

Liu et al. assess the assimilation of synthetic and real SWOT data in a regional ocean-ice prediction system, showing it improves ocean prediction in regions with complex currents and bathymetry. SWOT assimilation enhances mesoscale features like eddies and boundary currents, with real observations improving sea surface height and aligning better with in situ and satellite data.

Rahman et al. evaluate SST estimates from various ocean reanalysis products in the North Indian Ocean. Products with better observational data and assimilation techniques offer more accurate SST, though discrepancies remain due to model resolution and sparse observations.

Ishikawa et al. examine how quality control (QC) of Argo data (Wong et al., 2022) affects global ocean data assimilation. Improved QC enhances data consistency, boosting reanalysis accuracy and model performance, which is vital for climate forecasting.




2.4 Flagship SynObs activity

Finally, Fujii et al. review the SynObs project, part of the UN Ocean Decade, which evaluates and improves global ocean observing systems through OSEs and OSSEs. OSEs assess the impact of existing observations, while OSSEs explore potential future systems. Early results show that combining satellite and in-situ data significantly improves forecasts. The study highlights the need for ongoing evaluation to enhance ocean monitoring and ensure coordinated global strategies.





3 Conclusions

The contributions in this Research Topic fall into three categories, including the impacts of observation selection and processing, observations over continental shelves, and observations over the deep ocean. Using many different data-assimilating systems and many different approaches to evaluate the impact of observations on ocean analysis and forecasts and coupled forecasts. These studies span time scales from days to decades and spatial scales from sub-mesoscale eddies and regional models to the global ocean. While individual system studies show the value of observations in specific cases, coordinated efforts like SynObs highlight their broader importance. The flagship SynObs activity, with multi-system OSEs and OSSEs, reduces uncertainties and clearly demonstrates the essential role of ocean observations in operational oceanography and seasonal prediction. Without sustained observations, the quality and reliability of ocean analyses, forecasts, and even seasonal climate predictions would deteriorate. A lack of accurate, well-calibrated ocean observations would weaken the constraints on these systems, reducing their value for decision-making and scientific understanding.
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Introduction

Assimilating all available observations in numerical models may lead to deterioration of the analysis. Ensemble Forecast Sensitivity to Observations (EFSO) is a method that helps to identify all such observations which benefit the analyses. EFSO has never been tested in an ocean data assimilation system because of a lack of robust formulation of a squared norm against which beneficiality of observations can be estimated.





Methods

Here, we explore the efficacy of EFSO in the ocean data assimilation system that comprises the ocean model, Regional Ocean Modeling System (ROMS), coupled to the assimilation system Local Ensemble Transform Kalman Filter (LETKF), collectively called LETKF- ROMS, in the Bay of Bengal by envisaging a novel squared norm. The Bay of Bengal is known for its higher stratification and shallow mixed layer depth. In view of baroclinicity representing the stratification of the ocean, we use the modulus of the baroclinic vector as the squared norm to evaluate forecast errors in EFSO.





Results

Using this approach, we identify beneficial observations. Assimilating only the beneficial observations greatly improves the ocean state. We also show that the improvements are more pronounced in the head of the Bay of Bengal where stratification is much higher compared to the rest of the basin.





Discussion

Though this approach doesn’t degrade the ocean state in other regions of the Indian Ocean, a universal squared norm is needed that can be extended beyond the Bay of Bengal basin.





Keywords: ensemble forecast sensitivity to observations, local ensemble transform Kalman filter, ocean general circulation models, Indian Ocean, Bay of Bengal




1 Introduction

In this modern era of observation networks wherein the ocean is observed through a multitude of observation lenses consisting of Argo floats, buoys, ship tracks, satellite measurements and so on, it is imperative to ascertain if these observations add value to a data assimilation system used to forecast ocean states or generate reanalysis products used by the scientific community in their quest to understand the workings of oceans better. Naively feeding the data assimilation system with all available quality controlled observations may lead to a degradation or a non-optimal improvement (Balmaseda et al., 2007; Hamrud et al., 2015; Schraff et al., 2016; Hotta et al., 2017; Sivareddy et al., 2017; Waters et al., 2017). One of the methods to ascertain the beneficiality of observations in the ocean has been to let each observation pass through the observing system experiments (OSEs). This method, even though robust, consumes large computational resources primarily because it is a data denial experiment. It comprises two systems - a control run where some observations, whose beneficiality is to be determined, are withheld from feeding it to the data assimilation system and a test run where all observations are assimilated. A short run of these two systems do not produce statistically significant results because the improvements or degradations in the test run are obscured by the presence of other observations. As a result, a long run is needed to produce statistically significant results, thereby consuming large computational resources. In contrast, ensemble forecast sensitivity to observations (EFSO) (Kalnay et al., 2012; Hotta et al., 2017; Lien et al., 2018) which is an ensemble version of forecast sensitivity to observations (FSO) (Langland and Baker, 2004; Lorenc and Marriott, 2014) - the resource consuming adjoint-based approaches - is an alternative robust method that has successfully identified beneficial observations and discarded the detrimental ones in the numerical weather prediction systems (Ota et al., 2013; Hotta et al., 2017; Chen and Kalnay, 2019). It measures the impact of observations on the forecast valid at a future time with a cost function which is the difference between the squares of forecast errors with and without assimilating the observations. The errors in forecast are calculated with a weight matrix resulting in the squared norm, taken as the dry total energy (Gelaro et al., 2010; Kalnay et al., 2012; Lorenc and Marriott, 2014) or moist total energy (Ehrendorfer et al., 1999; Ota et al., 2013; Hotta et al., 2017) in atmospheric systems, which decides the contribution of different variables in the errors. Fujii et al., 2019 have studied FSO for ocean model with a variational data assimilation system where observation sensitivity is evaluated from the adjoint of the model. Recently, Drake et al., 2023 have explored FSO in ROMS with 4DVar assimilation system to study the impact of different observation types using different norms in the California current system. But, the efficacy of FSO for ensemble data assimilation systems in oceanic models has not yet been explored adequately. The oceanic community still largely relies on resource consuming OSEs, at least for oceanic models with ensemble data assimilation systems. With the advent of high resolution models, the leeway with resources is limited and there is a pressing need for an alternative method to filter out beneficial observations in oceanic ensemble data assimilation systems.

We have employed the EFSO in our in-house developed ocean data assimilation system LETKF-ROMS (Local Ensemble Transform Kalman Filter coupled to Regional Ocean Modeling System) for the Indian Ocean (Balaji et al., 2018; Baduru et al., 2019). One of the challenges in implementing EFSO to ocean systems is the lack of any established squared norm unlike its atmospheric counterpart wherein the norm is defined as moist or dry total energy of the atmospheric state. The total error energy norm is straightforward for currents and temperature in the ocean, but salinity does not have an explicit energy form under hydrostatic approximation (Reid et al., 1981) which many state-of-the-art ocean models including ROMS assume. So, unlike meteorological systems, the total error energy of a parcel in the ocean may or may not be the best approximation for the squared norm.

The Indian Ocean (30°S-30°N; 30°E-120°E) consists of diverse water masses across the domain exhibiting very different characteristics. For example, the Bay of Bengal is a very stratified system owing to large river discharges from river Ganges and river Brahmaputra (see Figure 1). In contrast, the Arabian Sea and the equatorial Indian Ocean is comparatively mildly stratified. It is challenging to devise a squared norm that takes into account these diverse characteristics across the entire domain of the Indian Ocean. Instead, we focus our attention on the Bay of Bengal to begin with. It is a smaller domain compared to the Arabian Sea and the rest of the Indian Ocean and therefore easy to analyze. Its characteristics are unique and very different from other large basins. Also, it has been challenging to simulate the ocean states using ocean general circulation models in the Bay of Bengal. One of the reasons is the lack of daily river discharge data into the ocean. Most of the models either incorporate a monthly climatological river discharges (Ferrer et al., 2009) or simply relax the salinity to its climatological value (Reynolds et al., 1998; Haidvogel et al., 2000; Baduru et al., 2019; Francis et al., 2020, 2021). None of these approaches have been particularly successful in simulating the upper ocean stratification in the Bay of Bengal on a daily scale which is an essential requirement for operational centers. Another probable reason is that the parameterizations of oceanic processes like mixing, bottom stress, etc are formulated from observational expeditions done in mostly Pacific Ocean (Large and Gent, 1999; Li et al., 2001) or Atlantic Ocean (Halliwell, 2004) where the conditions are vastly different from that of the Bay of Bengal. This may result in inaccurate parameter estimates for the Bay of Bengal. Consequently, the estimation of currents and other salient features like the thermocline and the mixed layer depths in the Bay of Bengal are compromised leaving large scope of improvements even after assimilating all available tracer observations (Balaji et al., 2018; Baduru et al., 2019).




Figure 1 | Time-depth plot of climatological Brunt-Vaisala frequency (unit in 1/s) in (A) Arabian Sea and (B) Bay of Bengal estimated from World Ocean Atlas 2018.



One of the variables that mirror stratification to a good extent is the baroclinicity of the ocean state. A large stratification yields a large baroclinicity and vice versa. The state of the ocean is called baroclinic if the constant pressure surfaces and the constant density surfaces are not parallel. If these surfaces are parallel, the state is called barotropic. In real oceans, the state is baroclinic and the baroclinicity vector contributes significantly to the rate of change of relative vorticity of the ocean and the circulation (Pedlosky, 1987). The vertical structure of the ocean can be decomposed into normal modes. The zeroth mode is the depth-integrated mode and hence is an outcome of the barotropic processes whereas all the other modes result from fluctuations in density interfaces and is an outcome of baroclinic processes. The barotropic mode is reasonably well simulated by the OGCMs because of the simplicity involved (Pedlosky, 1987). The propagation speeds of barotropic processes are also very fast. The domain of the Bay of Bengal is adjusted due to barotropic signals within the typical assimilation window in oceans which range from a day to a week. In contrast, the baroclinic modes propagate slowly, are harder to estimate, and have led to increased endeavors of accounting complicated processes through parameterizations (Treguier et al., 1997; Hallberg, 2013) and therefore the estimation of these modes leads to potentially larger errors. With this context in mind, we define the modulus of the baroclinic vector as the squared norm against which the cost function is estimated in the EFSO. We show that this approach yields promising results in identifying observations that contribute positively to the estimation of analysis.

Section 2 describes the experimental design we have for this EFSO experiment for the Indian Ocean. Section 3 shows the results where we identify the beneficial observations and its impact on the ocean state. We show that the inclusion of only beneficial observations significantly improves the estimation of the currents and the thermocline. Section 4 is a summary of the results and discussion of the future aspect of use of EFSO for the ocean.




2 Methodology

The Regional Ocean Modeling System (ROMS) is a free surface and terrain-following ocean general circulation model (Song and Haidvogel, 1994; Shchepetkin and McWilliams, 2005). The set-up of ROMS for the Indian Ocean domain extends from 30°E to 120°E in the zonal direction and from 30°S to 30°N in the meridional direction. Though we are interested in testing the efficacy of the new norm in the Bay of Bengal which lies north of the equator, the southern boundary of our model domain is transgressed beyond the equator to 30°S. This is imperative because the dynamics in the north Indian Ocean is strongly influenced by the equatorial Indian Ocean dynamics (Chatterjee et al., 2017; Cheng et al., 2018). The remote influence of equatorial dynamics on the north Indian Ocean cannot be adequately captured through daily boundary conditions if the southern boundary of the model domain is kept north of the equator. Also, recent studies have shown that there are strong influences at intraseasonal scales of the dynamics in the Maritime Continent on the tropical Indian Ocean (Rohith et al., 2019; Afroosa et al., 2021). The horizontal grid resolution of the model is 1/12 degree (Francis et al., 2013). It has 40 vertical sigma levels. The boundaries in the east and south are open while the boundaries in the north and west are closed with no-slip boundary conditions. The model does not have a river runoff scheme; so model surface salinity is relaxed to its monthly climatology (Antonov et al., 2010) over a timescale of 30 days.

A Local Ensemble Transform Kalman Filter (LETKF) is a variant of Ensemble Kalman Filter where background error covariance is approximated by the sample covariance computed from ensemble members (Hunt et al., 2007). We use 20 ensemble members for the ocean initial state which are forced with 20 ensemble atmospheric fields from Global Forecast System (GFS) at National Centre for Medium Range Weather Forecasting (Prasad et al., 2016). The initial ensembles are drawn from 80-ensemble versions of LETKF-ROMS (Baduru et al., 2019) where initial ensembles are prepared by random sampling (Xu and Oey, 2014) from ROMS with a reasonable amount of initial spread. Further, we use two different schemes, viz., KPP (Large et al., 1994) and Mellor–Yamada (Mellor and Yamada, 1982) for parameterizing the vertical mixing to ensure that the ensemble spread is maintained during the model simulation. We also inflate the ensemble spread by 10% at each analysis cycle for the same reason. However, covariance inflation is not applied in calculating EFSO cost function. As the number of ensembles is much less than the length of model state vector, so, to minimize the long distance spurious correlation, this system uses a Gaussian profile for localization with a radius of 700 km (Anderson, 2007; Nurujjaman et al., 2013; Ying et al., 2018). Any particular observation influences all the prognostic variables at each grid location within its localization radius through the multivariate background error covariance matrix. No vertical localization has been applied, i.e., the observation at the surface influences the model ocean state even at the deepest layer beneath the observation. The observation errors have spatio-temporal variation and includes the representational errors which account for unresolved processes in the model (Sanikommu et al., 2019). In this experimental setup, LETKF-ROMS assimilates in-situ temperature (T) and salinity (S) profiles from Argo, buoy and ship track data, and satellite swaths of sea surface temperature (SST) from GHRSST only in the northern Indian Ocean (north of Equator), including the Arabian Sea and the Bay of Bengal, where we are interested in testing the new norm for measuring the forecast error. The errors in T, S, and SST observations consist of instrument errors of 0.2 °C, 0.1 PSU, and 0.1 °C respectively plus spatio-temporal varying representational errors estimated using the method prescribed in Sanikommu et al., 2019. The assimilation window for this system is 5 days where model initial conditions are updated with analysis generated by LETKF every 5th day with the observations available only on the 5th day. The observations from day 1 to day 4 during an assimilation cycle are ignored. More details about the assimilation system can be found in Baduru et al., 2019.

Kalnay et al., 2012 have developed EFSO whose efficacy was demonstrated in a toy atmospheric model. Later on, EFSO was applied with success in state-of-the-art numerical weather prediction systems (Ota et al., 2013; Hotta et al., 2017; Lien et al., 2018). EFSO for atmosphere generally uses dry or moist total energy as the squared norm matrix (see equation (9) of Kalnay et al., 2012). Squared norm assigns weights to each prognostic variable of the model for their contribution to the cost function. The cost function measures the impact of observations on the forecast at a future time. Such a predefined squared norm for the ocean which explicitly depends on each prognostic variable does not exist to the best of our knowledge. So, we choose the modulus of the baroclinicity vector as the squared norm. The norm of the baroclinicity vector is represented as  , where ρ represents the density and p represents the pressure on the fluid parcel.

The cost function (J) for EFSO (defined by Kalnay et al., 2012) at j-th model grid point for l-th observation is given as

	

where,

 = ensemble size;

  is the innovation with respect to the first guess at t = 0;

H = observation operator;

 = background state obtained from the analysis of 5 days ago;

 = localization function at j-th grid point;

R = observational error covariance matrix;

  where   = analysis perturbation matrix at t = 0;

 = forecast perturbation matrix;

  = modulus of the baroclinic vector  at the j-th model grid point;



Both the forecasts   (with assimilation at   days) and   (with assimilation at   days) were verified against a reference analysis   which is a product of 80 ensemble LETKF-ROMS (Baduru et al., 2019) used for operational ocean state forecast at Indian National Centre for Ocean Information Services (INCOIS). The evaluation forecast time is taken as 5 days.

We use 20 ensembles in this EFSO experiment with a 5 days assimilation window in the LETKF-ROMS starting from August 15, 2016 till December 31, 2017. This study examines two data assimilation systems. In the first system, we assimilate all the available 5th day’s observations which lie north of the equator using LETKF in ROMS. We call this assimilation system ‘ALL’. For each observation during an assimilation cycle, we estimate the sum of the cost function over all those model grid points that lie within the localization radius of the particular observation. If this sum turns out to be negative (positive), the observation contributes positively (negatively) to the model analysis by reducing (increasing) the forecast error and we call this data beneficial (harmful) during that assimilation cycle. Note that the data measured by any observing system at any depth can alternate between beneficial and harmful over assimilation cycles. We see that approximately half of the total observations which go into ALL are beneficial to the system and contribute to the improvement of the model state (Figure 2). We identify these observations as beneficial observations. The rest of the observations do not either improve the model state or degrade the state. We identify these as detrimental observations. In the other data assimilation system, we use only the beneficial observations estimated from the first system to rerun the system from the same initial condition. We call this system ‘BEN’. Whenever we compare ALL or BEN with available observations, we use a short term forecast (up to five days) throughout the study.




Figure 2 | Time series of ratio of the number of beneficial observations to all the observations.






3 Results

We assess the statistics of forecast error reductions and how well the estimated error reduction represents the true error reduction. Both the true and estimated forecast error reductions are calculated by comparing the ocean states from ALL with a forecast lead time of 5 days with the ocean states estimated from 80 ensemble LETKF-ROMS. At each assimilation cycle, the true error reduction is calculated as   whereas the estimated error reduction is simply the cost function at that assimilation cycle. The cost function is estimated at each model grid point for each observation during each assimilation cycle. This allows us to assess the impact of the observation type (temperature, salinity and SST) on the cost function. Also, the improvements or degradations can be aggregated spatially or temporally for each observation type.

We estimate the cost function at time t (J(t)) as follows:

	

That is, the cost function at each model grid point (j) is summed across the model domain (both horizontally and vertically) and all observations (l) across all observation types. The estimated error reduction is equivalent to the true error reduction under ideal circumstances. However, the linearity approximations incorporated while arriving at the estimated error reduction introduces deviations from the true error reduction. Figure 3A shows the time series of true and estimated error reduction during the period of our study. A negative (positive) error reduction signifies improvement (degradation). The true error reduction (black curve in Figure 3A) remains negative during the period of our study signifying that there is an overall improvement in ALL due to assimilation. The estimated error reduction (red curve in Figure 3A) remains negative during most of the assimilation cycles. The estimated error reduction however is positive during a few occasions. Nevertheless, the estimated error reduction manages to capture almost every peak of the true error reduction during our period of study. The two time series have a correlation of 0.86 which is at a 99% confidence level. This shows that the estimated error reduction manages to reasonably represent the true error reduction during the period of our study. The error reduction (both estimated and true) during the initial one and half months is small because of assimilating only temperature and salinity profiles. Satellite SST has been assimilated since October 10, 2016. The introduction of SST appears to have a pronounced effect on both true and estimated error reduction. The errors have reduced once the SST is introduced as SST has a larger impact than temperature and salinity profiles as we will see while assessing the impact of each type of observation.




Figure 3 | Time series of true (black) and estimated (red) forecast error reduction verified with 80 ensemble LETKF-ROMS for (A) Northern Indian Ocean and (B) Bay of Bengal.



We now focus our attention over the Bay of Bengal (the southern boundary of this analysis is up to 7°N). We plot the true (black curve) and estimated (red curve) error reduction only over the Bay of Bengal in Figure 3B. Both the true and the estimated error reduction remains negative during the entire period of our study signifying that there is an overall improvement in the Bay of Bengal due to assimilation. The correlation coefficient between the true and estimated error reduction has increased to 0.95 (> 99% significance). This implies that the estimated error reduction could represent the true error reduction over the Bay of Bengal significantly better than what it could for the whole northern Indian Ocean. Also, this indicates that the source of positive estimated error reduction during some occasions in Figure 3A could come from the Arabian Sea.

We now assess the average impact of each observation type in the two basins - Arabian Sea and Bay of Bengal. The southern boundary of the Arabian Sea (Bay of Bengal) is chosen at 5°N (7°N). The impact is estimated by summing the cost function of an observation type over the depth and the duration of the study followed by dividing it with the number of that observation type assimilated. It is then summed over the individual basin. We plot the average (total) impact per observation for the three observation types - temperature, salinity, and SST - in Figures 4A, B. We see that assimilating SST imparts the largest impact across the two basins both in terms of average impact and total impact. This is possibly because of the large number of available SST observations compared to temperature and salinity (see Figures 5A–F) and because of more homogeneous spatial coverage of SST observations (see Figure 5G). Also, the average impact of SST is pronounced in the Arabian Sea compared to that in the Bay of Bengal. That is because the number of SST observations in the Arabian Sea exceeds that of the Bay of Bengal by a considerable margin (see Figures 5A, B) coupled with a more homogeneous representation of SST in the Arabian Sea (Figure 5G). In addition, the SST variability in the Arabian Sea is more pronounced than in the Bay of Bengal (Murtugudde et al., 2007; Khan et al., 2021). Feeding the SST observations likely improves the mesoscale variability of SST near the western boundary of the Arabian Sea and the variability of SST in the south-central part of the basin during summer monsoon. In contrast, the numbers of temperature and salinity observations are comparable in the Bay of Bengal and Arabian Sea. But the impact of salinity observations is more pronounced in the Bay of Bengal than that of temperature.




Figure 4 | (A) The average impact of Temperature, Salinity, and Sea Surface Temperature observations in Arabian Sea (blue) and Bay of Bengal (orange). (B) The total impact of Temperature, Salinity, and Sea Surface Temperature observations in Arabian Sea (blue) and Bay of Bengal (orange). Note that two different axes and hence labels are used in (B) – the top axis for temp and salt, and the bottom axis for SST.






Figure 5 | Time series of number of beneficial (black) and non-beneficial (red) SST (A, B), temperature (C, D) and salinity (E, F) observations in Arabian Sea (top) and Bay of Bengal (bottom). (G) The spatial coverage of SST observations on the northern Indian Ocean coarse-grained over a length scale of ~100 km.



To further analyze the impact of observation types with depth, we assess the impact of temperature (Figure 6) and salinity observations (Figure 7) versus depth in the two basins. For each basin, this is estimated by summing the cost function across all grid points for temperature (or salinity) observations at each vertical layer and subsequently dividing it by the total number of temperature (or salinity) observations in that layer during the period of our study. The impact of salinity observation in the Bay of Bengal is larger than that of the Arabian Sea across the depth. The largest impact of salinity observation in the Bay of Bengal occurs at 20-75 m. The impact of temperature observations is comparable along the depth of top 200 m in the Bay of Bengal and Arabian Sea. Also, the impact of salinity observations outscores the impact of temperature observations in the Bay of Bengal – particularly in the top layers where the freshwater resides. The model does not ingest freshwater fluxes from major rivers like Ganga and Brahmaputra. Instead, the impact of freshwater fluxes is captured only through a weak relaxation to monthly salinity climatology with a timescale of 30 days. Consequently, the salinity representation in Bay of Bengal is not properly reproduced in the model thereby leaving large scope for improvements.




Figure 6 | Average impact of each Temperature observation in the Arabian Sea (blue) and Bay of Bengal (orange) at different depths.






Figure 7 | Average impact of each Salinity observation in the Arabian Sea (blue) and Bay of Bengal (orange) at different depths.



Which of the two regions - Arabian Sea and Bay of Bengal - have more beneficial observations? In Figure 8, we plot the percentage and number of beneficial temperature and salinity observations in the two basins - Arabian Sea and Bay of Bengal. We find that the Arabian Sea and Bay of Bengal have nearly comparable percentages of beneficial temperature and salinity observations even though the exact numbers vary across the period of our study. However, the Bay of Bengal has more beneficial temperature and salinity observations than the Arabian Sea, i.e., there are more observations in the Bay of Bengal that positively contribute to the improvement in the ocean state. Also, there are significantly more sub-surface beneficial observations in the Bay of Bengal. Does it render any positive impact on the estimation of thermocline in the Bay of Bengal?




Figure 8 | Time depth section of percentage (total number) of beneficial (A, E) temperature observations in Arabian Sea, (B, F) temperature observations in Bay of Bengal, (C, G) salinity observations in Arabian Sea, (D, H) salinity observations in Bay of Bengal.



In order to understand that, we look at the three buoys installed in the Bay of Bengal along 90°E at three latitudes - 0°N, 4°N and 12°N. We compare the thermocline depth estimated from ALL and BEN at these three locations (Figure 9). We would like to point out that all those three buoys are assimilated in ALL and BEN. Both BEN and ALL appear to be equally efficient in simulating the equatorial subsurface characteristics (thermocline depth). The RMSE in thermocline depth is less than 15 m and the correlation is higher than 0.75 across both the systems. However, as we approach northwards, the RMSE (correlation) progressively increases (decreases) in ALL. Near the head bay at 12°N, the model thermocline depth and the observed thermocline depth gets decorrelated. The RMSE rises to ~33 m at 12°N. This vindicates earlier results that the model fails to estimate the sub-surface oceanic structure close to the northern Bay where the ocean is largely stratified. In contrast, we see a much improved simulated thermocline depth in BEN even near the head bay. The correlation improves (>40%) and the RMSE decreases significantly (~26 m) with respect to ALL. The difference in RMSE between BEN and ALL progressively increases northwards. The stratification is more pronounced near the head Bay due to river discharges from Ganges and Brahmaputra. With baroclinicity as the squared norm, ALL tries to identify all those observations that improve the stratification of the system within the localization radius. And when only all those identified beneficial observations are fed into BEN and all observations that were detrimental are discarded, we see a marked improvement in the estimation of thermocline. It appears that the larger the stratification is, the larger the improvement is in the BEN.




Figure 9 | RMSE (blue) in meters and Correlation Coefficient (red) of thermocline depth from ALL (starred), BEN (solid circle) and DET (solid triangle) with respect to RAMA buoys at 0°N, 4°N and 12°N along 90°E.



This result is also vindicated when both these systems are compared against ARGO floats in the Bay of Bengal. We see a significant improvement in thermocline depth while comparing with an ARGO which drifts in and around the head of the Bay of Bengal (Figure 10). Are these improvements limited only in the estimation of the stratification or is it extended to ocean currents as well since an improved baroclinicity is expected to improve the circulation?




Figure 10 | Taylor diagrams depicting the RMSE (unit in m), Correlation and Standard Deviation of thermocline depth from ALL (red cross) and BEN (red filled circle) with respect to along-track measurements from an ARGO in the head Bay of Bengal. The solid red curve represents the standard deviation of the observation. The dotted green curves represent RMSE contours. (Inset) Argo track (black curve) during the period of study.



The East India Coastal Currents (EICC) is one of the major events that have a prominent seasonal signal along the east coast of India. EICC flows poleward from May to October (Shankar et al., 2002; Schott et al., 2009) along the east coast of India (western Bay of Bengal). The observations from high-frequency coastal radar (HF-R) installed at approximately 11.7°N and 80.8°E on the east coast of India is used for comparison. Ocean current data were not assimilated during any of the experiments. HF-R measures hourly surface currents up to 200 km offshore with a spatial resolution of 6 km (Jena et al., 2019; Paul et al., 2021). We use daily averaged data for estimating RMSE. We compare surface currents from the BEN and ALL experiments with HF-R surface currents during the monsoon period June-September, 2017 when the stratification is large. We plot the difference in RMSE between these two experiments with respect to HF-R surface currents in Figure 11. Negative (positive) values indicate that BEN improves (degrades) the surface currents compared to ALL. We see that the zonal and meridional surface currents estimated in BEN are closer to observed EICC compared to that of ALL - particularly within the bulk of the region observed by the HF-R. We, however, do see some degradation at the edges of the domain of observation. This may be because the quality of HF-R currents at the edges is questionable (Cosoli and Bolzon, 2015; Wyatt et al., 2017). There are regions where the meridional (zonal) current has improved by more than 0.38 m/s (0.25 m/s). During the rest of the season, we do not see any significant improvement. This comparison exhibits improvements in surface currents that are limited to a small region across the east coast of India. Is this improvement extended across the entire basin of the Bay of Bengal?




Figure 11 | Difference in RMSE between BEN and ALL with respect to HF-R currents at 11.7°N and 80.8°E in (A) zonal and (B) meridional directions (unit in m/s). The black line on the left side represents the coastline.



We therefore compare the ocean surface currents averaged over the Bay of Bengal and the top 30 m from ALL and BEN with Ocean Surface Current Analysis Real-time (OSCAR) data. The mixed layer depth in the head of the Bay of Bengal is very shallow due to higher stratification and OSCAR currents capture the currents almost upto mixed layer depth (Li et al., 2017). BEN shows an overall improvement of near-surface currents along both zonal and meridional directions in the Bay of Bengal (Figure 12). The improvements are however not overwhelming.




Figure 12 | RMSE of (A) zonal and (B) meridional surface currents of ALL (red) and BEN (black) with respect to OSCAR currents in Bay of Bengal (unit in m/s).



Is this improvement in surface current reflected in the subsurface currents as well? We plot the time-series of zonal and meridional currents near Puri, Odisha at 86°E, 19°N (Figure 13A) during August, 2016-February, 2017 - the duration when the stratification over the Bay of Bengal is large due to monsoon and large river discharges (see Figure 1) - from Acoustic Doppler Current Profiler (ADCP), BEN and ALL. The strengthening of zonal current during October-November seen in ADCP is not captured when all observations are assimilated (ALL). However, if only beneficial observations are assimilated, the pronounced currents are captured during the late phase, i.e., during November. ALL also estimates a spurious large zonal and meridional current during February which is not vindicated by observations. BEN however manages to reduce the magnitude of this spurious current to a large extent. The subsurface currents of BEN improve in terms of reduced RMSE by ~5–10% and ~5% (Figure 13B). During the rest of the period of our study when the stratification is weaker, there is not much improvement in using beneficial observations in improving the subsurface currents.




Figure 13 | ADCP mooring in Bay of Bengal at 86°E, 19°N: (A) Time-depth section of ADCP (top), BEN (middle) and ALL (bottom) for zonal (left) and meridional (right) currents (unit in m/s); (B) RMSE of ALL (red) and BEN (black) currents with respect to ADCP along depth for zonal (left) and meridional (right) currents (unit in m/s).



In order to understand why the improvements are overwhelming in the Bay of Bengal, we assess the average impact of each beneficial temperature (Figure 14A) and salinity (Figure 14B) observations in the two basins along the depth on the ocean state in BEN. The impact of observations in BEN is calculated in a similar way of what is followed in ALL. This is to note that this impact should not be compared with the impact estimated in ALL because removal of detrimental or neutral observations at each assimilation cycle has cumulative effects on the background state, and the reduced number of observations exhibits a larger average impact than assimilating all the available observations. The purpose of this exercise is to compare the impact of subsurface beneficial observations in the Arabian Sea and Bay of Bengal in BEN. The impact of beneficial temperature and salinity observation in the Bay of Bengal outscores the Arabian Sea across all the depths. The largest impact of temperature (salinity) observation in the Bay of Bengal occurs at 75-100 m (50-75 m). In contrast, the largest impact of temperature (salinity) observation in the Arabian Sea occurs at 175-200 m (100-125 m) - at a much deeper depth. Also the impact of temperature transcends to a much greater depth across both the basins compared to that of the salinity. This is probably because of the larger variability in temperature at subsurface (below 200 m) compared to that of salinity across the two basins. The typical thermocline depth in the Bay of Bengal and Arabian Sea varies from ~30 m to ~110 m across the seasons (You, 1997). The larger impact of temperature and salinity in the comparatively upper layers in the Bay of Bengal ensures that the stratification and thermocline is better captured in the Bay of Bengal compared to the Arabian Sea and consequently larger improvements are seen in the ocean state in the Bay of Bengal. In short, the dynamically active sub-surface layers (top layers) in the Bay of Bengal are positively affected due to the assimilation of beneficial observations leading to an improved stratification and consequently an improved circulation - particularly during the monsoons. In contrast, the largest improvements in the Arabian Sea occur at layers which lie below or at the bottom boundary of the dynamically active zone leading to minimal or insignificant improvements in the ocean state.




Figure 14 | Average impact of each beneficial (A) Temperature and (B) Salinity observation in the Arabian Sea (blue) and Bay of Bengal (orange) at different depths.






4 Summary and discussions

In this study, we have explored the feasibility of using ensemble forecast sensitivity to observations (EFSO) in ocean models which, until now, have not been studied adequately in the ocean to the best of our knowledge. Unlike using some conventional energy norm as the squared norm, we instead used the modulus of the baroclinic vector to identify the observations that are beneficial to the data assimilation system, i.e., observations that improve ocean analysis. Only ~50% of the observations improve the ocean analysis while the rest are neutral or degrade the ocean state.

We see that the number of beneficial observations in the Bay of Bengal exceeds that in the Arabian Sea if the modulus of the baroclinic vector is chosen to be the squared norm - particularly in sub-surface. Using only these beneficial observations improves the thermocline in the Bay of Bengal. This improvement is most prominent in regions of large stratification, i.e., the closer we get to the head Bay, the more pronounced the improvements are. These improvements are translated into the improvements of ocean circulation in both surface and sub-surface in the Bay of Bengal. This is expected because an improved estimation of baroclinicity improves the circulation of the ocean (see equation 2.2.7 or 2.4.6 in Pedlosky, 1987). These improvements are most pronounced during the monsoon when the stratification is large in the Bay of Bengal.

Recent literature shows that locally assimilating many more observations than ensemble size may degrade analysis, and the analysis can be improved just by reducing the number of observations to be assimilated (Hotta and Ota, 2021). So, it can be argued that the improvements in a small ensemble system (20 members) like BEN can be attributed to a mere reduction in the number of observations by ~50% compared to its parent system which comprises 80 ensemble members (Hamrud et al., 2015; Schraff et al., 2016) and therefore the improvements may not be attributable to the chosen squared norm. In order to explore this possibility, we have conducted an additional experiment called “DET” where only the detrimental or neutral observations are assimilated. Interestingly, almost the same number of observations goes in the assimilation system in both DET and BEN (see Figure 5). We see that even though DET improves upon ALL - most likely because of a reduction in the number of observations - it significantly falls behind BEN (Figure 9). This establishes that the improvement seen in BEN is not merely an artefact of the reduction in numbers of observations.

The absence of daily river discharges in the model (due to lack of data) used to conduct these EFSO experiments poses a serious challenge in estimating the ocean state. This challenge is compounded in the Bay of Bengal particularly owing to large freshwater fluxes that pours in from rivers like Ganges and Brahmaputra. A part of this challenge is mitigated by weakly relaxing the model surface salinity to monthly climatology over a relaxation time scale of 30 days. A major part of this challenge is expected to be overcome using in-situ salinity observations in data assimilation. How well do these salinity observations fare in improving the ocean state? The average impact of salinity observation in the Bay of Bengal and the Arabian Sea are shown in Figures 7 and 14B from ALL and BEN. We see that when all observations are assimilated in ALL, salinity observations degrade the ocean state in the Arabian Sea below 125 m. However, in the Bay of Bengal, there are improvements till ~100-125 m after which the improvements are negligible. Once “bad” observations are removed from the assimilation system, significant improvements are seen in the Bay of Bengal and Arabian Sea. The impact in the Bay of Bengal is more pronounced and is also subsequently reflected in the improvement in the ocean state of the Bay. There are positive impacts on the Arabian Sea but are not transcended to significant improvements in the ocean state of the Arabian Sea because of two probable reasons - 1) the impact in the Arabian Sea per beneficial salinity observation is about 5-6 fold less compared to that of the Bay of Bengal, and 2) the spatio-temporal sampling of salinity in the Arabian Sea (Figure 8G) is inferior to that in the Bay of Bengal (Figure 8H).

This is reflected in the lack of improvement in the circulation in the Arabian Sea. We observe that this strategy does not improve the surface or subsurface circulation in the Arabian Sea (Figure 15) either near the coast or in the open ocean. But this strategy does not degrade the circulation either. In short, this strategy helps in identifying the beneficial observations that improve the ocean state in the Bay of Bengal and has limited or no influence on the ocean state in the Arabian Sea. We believe that this is because of the choice of the squared norm since the criterion of identifying beneficial observation depends on the choice of the norm.




Figure 15 | (A) RMSE of zonal (left) and meridional (right) currents of ALL (red) and BEN (black) at 73.4°E, 14°N in Arabian Sea; (B) RMSE of zonal (left) and meridional (right) currents of ALL (red) and BEN (black) at 69.2°E, 20°N in Arabian Sea.



We have tested EFSO with other possible norms, e.g., 1) Total energy, 2) Kinetic energy, 3) Relative vorticity, and 4) Potential vorticity. But none of these norms have produced an adequate improvement in model state in any of the basins like what baroclinic vector as norm does. Assimilating the beneficial observations determined using total or kinetic energy as squared norm degrades the subsurface currents in the Bay of Bengal and does not improve temperature or salinity profiles. Also assimilating the beneficial observations determined using vorticity as squared norm has a mixed effects on simulating subsurface currents and thermocline structure. We are exploring other squared norms that will have positive impacts across the basins.

EFSO is a handy tool for assessing the impact of assimilated observations for all operational agencies like INCOIS which use ensemble assimilation systems for their ocean forecast. However, increased effort is needed to come up with a holistic strategy that improves the ocean state across the regions. This is reserved for future work.
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We know that extremes in ocean temperature often extend below the surface, and when these extremes occur in shelf seas they can significantly impact ecosystems and fisheries. However, a key knowledge gap exists around the accuracy of model estimates of the ocean’s subsurface structure, particularly in continental shelf regions with complex circulation dynamics. It is well known that subsurface observations are crucial for the correct representation of the ocean’s subsurface structure in reanalyses and forecasts. While Argo floats sample the deep waters, subsurface observations of shelf seas are typically very sparse in time and space. A recent initiative to instrument fishing vessels and their equipment with temperature sensors has resulted in a step-change in the availability of in situ data in New Zealand’s shelf seas. In this study we use Observing System Simulation Experiments to quantify the impact of the recently implemented novel observing platform on the representation of temperature and ocean heat content around New Zealand. Using a Regional Ocean Modelling System configuration of the region with 4-Dimensional Variational Data Assimilation, we perform a series of data assimilating experiments to demonstrate the influence of subsurface temperature observations at two different densities and of different data assimilation configurations. The experiment period covers the 3 months during the onset of the 2017-2018 Tasman Sea Marine Heatwave. We show that assimilation of subsurface temperature observations in concert with surface observations results in improvements of 44% and 38% for bottom temperature and heat content in shelf regions (water depths< 400m), compared to improvements of 20% and 28% for surface-only observations. The improvement in ocean heat content estimates is sensitive to the choices of prior observation and background error covariances, highlighting the importance of the careful development of the assimilation system to optimize the way in which the observations inform the numerical model estimates.
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1 Introduction

It is well understood that forecasting ocean processes requires information on the subsurface hydrographic structure. In ocean reanalyses and forecasts, the assimilation of subsurface observations is crucial for the correct representation of the ocean’s structure below the surface (Zavala-Garay et al., 2012; Kerry et al., 2018; Gwyther et al., 2022). However, the accuracy of subsurface model estimates in continental shelf regions is poorly quantified due to the sparsity of observations. Marine heatwaves (MHWs) and Marine coldspells (MCSs) can have devastating ecological and economic impacts, have already become more frequent, more intense and longer-lasting in the past few decades (Frölicher et al., 2018; Oliver et al., 2018a, Oliver et al., 2018b; Darmaraki et al., 2019), and it is known that their subsurface structure can be complex (Elzahaby et al., 2021, 2022). Consequently, there is a pressing need for accurate estimates of the subsurface structure of shelf seas, key to representing and predicting these temperature extremes in continental shelf regions where impacts are most significant (Schaeffer and Roughan, 2017; Oliver et al., 2018b; Elzahaby and Schaeffer, 2019; Jacox et al., 2019; Schaeffer et al., 2023).

The deployment of profiling Argo floats since the early 2000’s has drastically improved the representation of the subsurface ocean for offshore waters (e.g. Balmaseda et al., 2007; Haines, 2018; Storto et al., 2019), yet subsurface observations of shelf seas are typically sparse in time and space. Off the coast of south-east Australia, observations taken over the continental shelf and shelf slope are key to predicting the complex circulation inshore of the East Australian Current (Kerry et al., 2018, 2020; Siripatana et al., 2020). Subsurface observations from ocean gliders have been shown to constrain model estimates of current transport and eddy kinetic energy in both the Hawaiian Lee Countercurrent (Powell, 2017) and the East Australian Current (Kerry et al., 2018), and improve subsurface temperature and salinity forecasts in a high-resolution coastal and shelf sea models of the New York Bight (Zhang et al., 2010a) and along the Oregon and Washington coasts (Pasmans et al., 2019). However, coverage is still generally sparse and the cost associated with an extensive observation system can be prohibitive.

In this study we use the ocean conditions around Aotearoa New Zealand (NZ) to examine the value of coastal and shelf subsurface temperature observations on model estimates of temperature and heat content. The region provides an ideal test-bed as NZ experiences a complex system of boundary currents [Figure 1A; Chiswell et al. (2015); Stevens et al. (2019)] that modulate the surrounding oceanic environment on a variety of temporal and spatial scales. Both large-scale ocean currents and mesoscale eddies drive upper ocean heat content (UOHC) changes across the NZ region (Kerry et al., 2023a), driving MHWs with different characteristics depending on the local circulation region (Elzahaby et al., 2021; Kerry et al., 2022). Specifically, Kerry et al. (2022) show that regional temperature extremes in coastal waters around NZ are largely driven by local circulation and highlight the importance of correctly representing the ocean’s depth structure in predicting the onset of MHW events. As part of NZ’s Moana Project (https://www.moanaproject.org), the implementation of fishing-vessel mounted temperature sensors (a fishing vessel observation network, FVON) has drastically increased the availability of subsurface observations in shelf regions. This study aims to demonstrate the impact of these additional observations on the representation of subsurface temperature and ocean heat content across the variety of circulation regimes around NZ.




Figure 1 | (A) MKE over SW Pacific with schematic of major ocean currents and fronts, and showing model domain. Current, eddy and front names are defined in Kerry et al. (2023a) (B) Model bathymetry with 400,1000,2000 m contours (1000m contour in bold) and bathymetric features labelled. (C) Mean SST with mean surface current velocity vectors from daily-average output from the Moana Ocean Hindcast. (D) Time series of the domain-averaged SST for the Moana Ocean Hindcast and observations (ESA CCI) for the year 2017-2018 and the OSSE period (grey shading).



We use a series of Observing System Simulation Experiments (OSSEs) to quantify the impact of the FVON on ocean state estimates of NZ’s shelf seas. The experiments are based on the Moana Ocean Hindcast (Azevedo Correia de Souza et al., 2022) and use 4-Dimensional Variation Data Assimilation [4D-Var Moore et al. (2004); Di Lorenzo et al. (2007); Moore et al. (2011c)] to combine the model with available observations to generate an estimate of the ocean state that is better than either alone. 4D-Var uses the (linearized) model dynamics to solve for increments in the initial conditions, atmospheric forcing, and boundary conditions, such that the modelled ocean state better fits and is in balance with the observations. We perform a series of data assimilating experiments covering the 3-month period over the onset of the 2017-2018 Tasman Sea MHW [23 Sept 2017 to 28 Dec 2017, Figure 1D; Kajtar et al. (2022)]. The goal of this paper is twofold, 1) to demonstrate the influence of subsurface temperature observations by comparing different data densities and 2) to compare different data assimilation configurations in order to improve the influence of the subsurface observations in the model.

The OSSE methodology and data assimilation system configuration are described in Section 2. The results are then presented in Section 3; we begin by presenting a domain-wide overview of the OSSEs’ performance in Section 3.3, and then we focus on the Shelf Seas (water depths shallower than 1000 m) in Section 3.4. Section 4 discusses specifics of the regional processes. Results are discussed in Section 5 in the context of ocean observing strategies and assimilation system development for shelf seas.




2 Materials and methods



2.1 Observing system simulation experiment methodology

In a realistic prediction system, a background numerical model is combined with ocean observations to produce an ocean state estimate that better represents the observations (the Analysis). The background numerical model has uncertainties associated with the initial conditions, boundary and surface forcing, and model physics. The goal of data assimilation is to combine the model with ocean observations, such that the model represents the observations (taking into account their associated errors). The resultant ocean state estimate has reduced uncertainty and provides initial conditions for the subsequent forecast (Figure 2, top). Assessing the performance of a realistic prediction system is limited by the fact that the true ocean state is not known away from the observed locations. In some cases, observations are withheld from the assimilation process for verification (e.g. Kerry et al., 2016; Zuo et al., 2019).




Figure 2 | An outline of the steps taken in (top) a realistic prediction system and (bottom) an Observing System Simulation Experiment.



OSSEs are designed to replicate a realistic prediction system, and they have the advantage that the system can be evaluated based on a known ocean state (Figure 2, bottom). In an OSSE, a given model solution is defined as the Reference State (sometimes referred to as the Nature run). The goal is to assimilate synthetic observations extracted from the Reference State into a Baseline model (sometimes referred to as a Twin). The Baseline model is designed to represent the background numerical model from a realistic prediction system, by intentionally introducing errors in the initial conditions, boundary and surface forcing. Some OSSEs may also use a different (coarser) model resolution, and include different model physics (e.g. Halliwell et al., 2017). Because the complete ocean state is known, OSSEs allow us to rigorously compare different observing platforms and difference assimilation system configurations. OSSEs have been used widely across the atmospheric and ocean prediction communities as a relatively straight-forward and cost effective way to assess the impact of potential new observing systems (e.g. Masutani et al., 2010; Hoffman and Atlas, 2016; D’addezio et al., 2019), alternate deployments of existing systems such as observing different regions or at different sampling frequencies (e.g. Gwyther et al., 2022, 2023b), different data assimilation schemes or configurations (e.g. Moore et al., 2020; Storto et al., 2020) and resolving different physical processes (e.g. Kerry and Powell, 2022). The OSSE design used in this study is described in the following sections.



2.1.1 Reference state

The Reference State simulation used in this study is a realistic free-running model simulation that was performed from 1 July 2017 to 30 Jun 2018 with the same configuration as the Moana Ocean Hindcast (Azevedo Correia de Souza, 2022). The numerical model is configured using the Regional Ocean Modeling System (ROMS) version 3.9 to simulate the atmospherically-forced eddying ocean circulation in the NZ oceanic region. ROMS is a free-surface, hydrostatic, primitive equation ocean model solved on a curvilinear grid with a terrain-following vertical coordinate system (Shchepetkin and McWilliams, 2005). The Moana Ocean Hindcast configuration has a 5km horizontal resolution and 50 vertical s-layers. Initial and boundary conditions are from the GLORYS ocean reanalysis (Lellouche et al., 2021), developed by the Copernicus Marine Environment Monitoring Service (CMEMS). This reanalysis product was found to be the most suitable in the NZ region (Azevedo Correia de Souza et al., 2021). Atmospheric forcing fields from the Climate Forecast System Reanalysis (CFSR) provided by National Center for Atmospheric Research (NCAR) (https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr) are used to compute the surface wind stress and surface net heat and freshwater fluxes using the bulk flux parameterization of Fairall et al. (1996). A thorough description of the model configuration and validation is presented in Azevedo Correia de Souza et al. (2022). The model provides a realistic representation of the surface and subsurface variability around NZ, and represents NZ’s major boundary currents well (Kerry et al., 2023a).




2.1.2 Baseline

As mentioned above and outlined in Figure 2, synthetic observations extracted from the Reference State are assimilated into a Baseline model. In this case, our Baseline model uses the same model grid, model physics, boundary conditions and surface forcing as the Reference State simulation; however the Baseline model is initialized from a perturbed state about the Reference State. We shift the initial conditions of the Reference State simulation by eighteen days to generate the Baseline model initial conditions. This temporal shift is chosen based on the autocorrelation of UOHC, where it takes eighteen days to reach an autocorrelation of 0.5 for UOHC (defined in Equation 3 below) at chosen points in NZ’s shelf seas. The autocorrelation analysis is described in more detail in Kerry et al. (2022) (their Figure 2).

Time-series of the Root Mean Squared Difference (RMSD) between the Reference State and the Baseline (Figures 3A–C) confirm that the chosen perturbation of eighteen days is appropriate. The plots show no convergence over the 1-year simulation, indicating that the initial conditions continue to dominate, rather than the boundary or atmospheric forcings, and that data assimilation is required to correct the ocean state estimates. The differences between the Reference State and Baseline (Figures 3D–O) are representative of typical errors in a realistic forecast system, therefore the Baseline provides a useful model in which to assimilate the synthetic observations to assess the effectiveness of the observations in improving model estimates. By only perturbing the initial conditions, our OSSEs are assessing the ability of the assimilation system to improve model state estimates (assuming perfect boundary and surface forcing).




Figure 3 | Time-series of domain-averaged RMSD between Reference State and Baseline State for (A) SSH, (B) SST and (C) temperature at 150 m. Standard deviation of Reference State and RMSD between Reference State and Baseline State over the full year of 2017-2018, for (D, E) SSH, (H, I) SST, (L, M) temperature at 150 m, (F, G) temperature at 400 m, (J, K) bottom temperature, and (N, O) UOHC (as defined in Section 3.2).







2.2 Experiments

In order to assess the impact of the subsurface temperature observations from fishing vessels, we performed experiments that assimilate synthetic observations that are representative of the timing, locations and associated errors of the realistic observations that were available in the region. We perform five experiments, which we describe below and in Table 1:

	Surface only

	Surf + FVON2021 0.2

	Surf + FVON2022 0.2

	Surf + FVON2022 0.1

	Surf + FVON2022 0.2 reduced Lh




Table 1 | Overview of the OSSE experiments, showing the assimilated observations, the corresponding prior observation uncertainty estimates (R), and the horizontal decorrelation lengths scales used to estimate B.



The first experiment (Surface only) assimilates only along-track SSH and gridded SST observations. The second experiment (Surf + FVON2021 0.2) assimilates surface observations as well as synthetic subsurface observations that represent the data density from the FVON that were available from 23 Sept 2021 to 28 Dec 2021, during the beginning of the Fishing Vessel sensor program. For experiments 3-5 (Surf + FVON2022 0.2, Surf + FVON2022 0.1, and Surf + FVON2022 0.2 reduced Lh), we use synthetic subsurface observations that represent the data density from the FVON available from 23 Sept 2022 to 28 Dec 2022, twelve months later, where there was an approximately 6-fold increase in observation density compared to the same period in 2021 (refer to Figure 4).




Figure 4 | (A) Total number of SSH observations per 6-day window (including repeated tracks), (B) Total number of observations per 1 degree box over the OSSE period for SSH, (C) same as (A) but for SST, (D) same as (B) but for SST, (E) total number of FVON2021 observations, (F) histogram of FVON2021 observations with depth for all observations over OSSE period, (G) same as (E) but for FVON2022 observations, (H) same as (F) but for FVON2022 observations. Total number of subsurface observations per 1 degree box over the OSSE period for FVON2021 OSSE from 0-50m (I), 50-150m (J), 150-400m (K), 400-1000m (L). The same for the FVON2022 OSSE from 0-50m (M), 50-150m (N), 150-400m (O), 400-2000m (P).



In addition to testing the data densities we also compare different data assimilation configurations. In experiments 3-5, the 0.2 and 0.1 refer to the observation error estimates assigned to the subsurface temperature observations (in °C) that are specified prior to data assimilation. These prior observation errors, specified in R, are important scaling factors in the cost function (described in Equation 1 below) to avoid over-fitting to uncertain observations. Observational errors are assumed to be Gaussian with zero mean and variance given by the diagonal of the matrix R. In particular, the observational error variances for subsurface temperature observations in experiments Surf + FVON2021 0.2, Surf + FVON2022 0.2, Surf + FVON2022 0.2 reduced Lh, (Surf + FVON2022 0.1) are specified to be (0.2 °C)2 [(0.1 °C)2]. Additionally it is necessary to prescribe an estimate of the uncertainties associated with the background model state, referred to as the background error covariance matrix B (as described in Equation 1 below). The uncertainties specified in B permit larger adjustments where the model is uncertain and penalize adjustments where the model errors are expected to be low. Experiments 1-4 use the same background error covariances, while for Experiment 5 the horizontal length scales used to compute the background error covariances were modified (refer to Equation 2). Details of the experiments are given in Table 1. The observations, their preprocessing and the prior observation error covariance specification are outlined in Sections 2.3 and 2.4.2 below. The formulation of the prior background error covariances is described in Section 2.4.3 and Equation 2.

The OSSE experiments are performed for the period from 23 Sept 2017 to 28 Dec 2017. This captures a period where temperatures in the Tasman Sea are close to climatology, followed by the rapid onset of the extreme MHW of summer 2017-2018, which began mid-November 2017 (Kajtar et al., 2022). The onset of the MHW is represented well in the Reference State simulation, as seen by the comparison of the domain averaged SST from the model and the European Space Agency Climate Change Initiative (ESACCI) SST data (Figure 1D). The data assimilation is performed for 6-day cycles (refer to Section 2.4.1); 16 successive 6-day cycles are performed to cover the 3-month OSSE period.




2.3 Observations

Synthetic observations are extracted, by sampling the Reference State, to represent realistic observation platforms. The synthetic observations are representative of the timing, locations and associated errors of the realistic observations that were available in the region. To be representative of realistic ocean observations, the values sampled from the Reference State at the observation times and locations are perturbed with a random error such that the errors are normally distributed within the bounds of the observational error estimates of the actual observations.

We extract synthetic observations from the Reference State to represent satellite derived along track SSH data from the Radar Altimeter Database System (RADS, Naeije et al. (2000); Figures 4A, B) and satellite derived SST data from the Operational Sea Surface Temperature and Ice Analysis (OSTIA, Donlon et al. (2012); Figures 4C, D). SSH tracks are repeated 2 hours before and after their actual time to ensure the SSH information is projected into the baroclinic ocean, rather than the fast-moving barotropic. Repeating the tracks a few hours either side of their actual time is standard practice in 4D-Var DA (e.g. Powell et al., 2009); given that 4D-Var uses the model dynamics to compute the increment adjustments, if the altimeter tracks are not repeated they can be fit as a barotropic signal. We make the valid assumption that the slow moving mesoscale circulation varies little over the +/- 2 hours. The OSTIA SST product has a 0.05° x 0.05° horizontal grid resolution and is applied daily.

The synthetic subsurface observations were extracted to represent the timing and locations of the FVON observations that were available in 2021, from 23 Sept 2021 to 28 Dec 2021, (Surf + FVON2021 0.2) and in 2022 (when data density was six-fold higher) from 23 Sept 2022 to 28 Dec 2022 (Surf + FVON2022 0.2, Surf + FVON2022 0.1, and Surf + FVON2022 0.2 reduced Lh), both in position and depth extent. Figure 4 shows the number of observations per 6-day window (Figures 4E, G) and the observation density for various depth bins (Figures 4I–P), for the FVON for 2021 and 2022 respectively.




2.4 Data assimilation configuration



2.4.1 4D-Var configuration

4D-Var uses variational calculus to solve for increments in model initial conditions, boundary conditions, and forcing such that the differences between the observations and the new model trajectory is immunized – in a least-squares sense – over a specific assimilation window. The goal is for the model to represent all of the observations in time and space using the physics of the model, and accounting for the uncertainties in the observations and background model state, producing a description of the ocean-state that is dynamically balanced and a complete solution of the non-linear model equations.

This is achieved by minimizing an objective cost function, J, that measures normalized deviations of the modelled ocean state (given the increment adjustments to model initial conditions, boundary conditions, and forcing) from the observations as well as from the modelled background state (the model prior). The cost function is a function of the increment vector and can be written as

 

where G = HiM(ti,t0), M(ti,t0) represents the tangent linear version of the nonlinear model equations ℳ, integrated from t0 to ti. The difference between the modelled background state and the observations is represented by the innovation vector, given at each time ti by di = yi − Hi(Xf(ti)); where y are the observations and Hi is the operator that samples the background circulation to observation points in space and time. As such, the Gδz − di term represents the difference between the model and the observations given the increment adjustment integrated through the tangent linear model. R is the observation error covariance matrix and B is the background error covariance matrix. In practice, with 4D-Var, subsequent integrations of the adjoint and tangent linear models (in the inner loops) are performed to solve for an increment vector that minimizes (or acceptably reduces) J. The non-linear model trajectory is updated in the outer loops.

In our experiments we assimilate observations over 6-day cycles. We employ 10 inner loops and a single outer loop in order to achieve a reasonable computational cost with an acceptable reduction in J. Initial conditions for the subsequent 6-day forecast are taken from the end of the previous analysis.

For a thorough description of the 4D-Var formulation, the reader is referred to Moore et al. (2011c). The ROMS 4D-Var implementation is well described by Moore et al. (2011c, 2011a, 2011b), and it has been used successfully in many applications [e.g., Di Lorenzo et al. (2007); Powell and Moore (2008); Powell et al. (2008); Broquet et al. (2009); Matthews et al. (2012); Zavala-Garay et al. (2012); Janeković et al. (2013); Souza et al. (2014); Kerry et al. (2016); Gwyther et al. (2022); Wilkin et al. (2022)].




2.4.2 Prior observation uncertainty assumptions

The 4D-Var method aims to solve for the nonlinear ocean solution that better represents the observations and is free within the uncertainties in the system. As such, specification of the prior observation and model background uncertainties is important. These uncertainties are prescribed in the observation error covariance matrix R and the background error covariance matrix B, respectively, and are important scaling factors in the cost function, J (Equation 1).

The prior observation uncertainties are specified as a standard deviation associated with each observation, and must account for the instrument or product error associated with the observations and the errors of representativeness. Errors of representativeness describe uncertainties due to the spatial and temporal discretization in the model; for example, if several observations exist in the same grid cell taken within the same time-step, the error of representativeness is computed by the variance of these coinciding observations. Errors of representativeness must also account for any physical processes that may be sampled by the observations but that are not resolved in the model; remotely generated internal tides is an example of these (e.g. Kerry and Powell, 2022).

In these experiments we specify prior observation errors of 0.04 m for the alongtrack SSH data and 0.4 °C for SST observations. Modern altimeter missions maintain a typical accuracy of 0.03 m for sea level (Schrama et al., 2000); for the alongtrack SSH observations, we apply an uncertainty value of 0.04 m. The alongtrack resolution is of the same order as the model horizontal resolution so errors of representativeness are low. Errors associated with representation of the surface and internal tide expression and the inverse barometer effect are expected to be small and captured within the 0.04 m. For SST, the OSTIA product provides quantified error estimates of 0.4 °C (Donlon et al., 2012). As the errors of representativeness are expected to be small as the model horizontal resolution is of the same order as the OSTIA product resolution, we specify a prior observation error of 0.4 °C for SST data. As introduced in Section 2.2, the observation error estimates assigned to the subsurface temperature observations for Surf + FVON2021 0.2, Surf + FVON2022 0.2, Surf + FVON2022 0.2 reduced Lh, (Surf + FVON2022 0.1) are specified to be 0.2 °C (0.1°C). For consistency checks associated with these prior uncertainty choices, refer to Section 3.1 and Table 2 below.


Table 2 | Ratio of diagnostic and prior observation and background errors as per Desroziers’ equations (Desroziers et al., 2005).






2.4.3 Prior background uncertainty assumptions

The background error covariance matrix should represent the expected uncertainties in the model initial conditions, surface and boundary forcings. For the initial conditions and boundary forcing, the control variables are zeta (sea level), temperature, salinity and velocities (u and v). The control variables for surface forcing are surface heat flux, surface salinity flux and surface wind stress (u and v). In practice B is an NxN matrix, where N is the size of the state vector (which includes every model state variable at every grid cell, every boundary variable and every surface forcing variable). This B matrix is much too large to compute or store, and instead we estimate B by factorization, as described in Weaver and Courtier (2001), such that,

 

where Kb is the balance operator, Σ and Λ are the diagonal matrices of the background error standard deviations and normalization factors respectively, and Lv and Lh are the univariate correlations in the vertical and horizontal directions. We only prescribe univariate covariance in Kb. The dynamics are coupled through the use of the tangent linear and adjoint models in the assimilation, but not in the statistics of B. The correlation matrices, Lv and Lh, and the normalization factors, Λ, are computed as solutions to diffusion equations following Weaver and Courtier (2001). The background error standard deviations, Σ, are computed from a long free running model simulation; the natural standard deviations of the model fields are scaled to give an appropriate match between the prior specified and diagnostic background errors [as per Desroziers et al. (2005)].

The characteristic length scales chosen for Lv and Lh are assumed to be homogeneous and isotropic. The choice of horizontal length scales (detailed in Table 1) is 50 km for SSH, temperature, salinity and velocities for Experiments 1-4. For Experiment 5, the horizontal decorrelation length scales for temperature and salinity are reduced to 20 km and 10 km, respectively. The reduction in length scales for temperature and salinity was motivated by the coastal nature of the subsurface observations, where length scales of variability are typically small, compared to offshore regions dominated by mesoscale eddies (of scales of 100-200 km). Various approaches for estimating horizontal length scales are presented in Wilkin et al. (2002); Matthews et al. (2011); Kerry et al. (2016). It is noted that horizontal decorrelation length scales are likely to vary considerably across the domain given the varying circulation regions (Kerry et al., 2022). For example, for boundary currents the cross-shelf decorrelation lengths scales will be shorter than those in the alongshore direction (e.g. Oke and Sakov, 2012). Vertical isotropic decorrelation length scales are set to 30 m for all variables for all experiments. Analysis of mooring and glider observations across the south-east Australian continental shelf and into the deep ocean (detailed in Kerry et al. (2016)) find vertical decorrelation length scales range from 15-200 m for temperature, salinity and velocities, highlighting the drawbacks of specifying a single value in a DA configuration.






3 Results



3.1 Consistency of prior and posterior uncertainties

The analysis generated by the 4D-Var system is dependent on the prior assumptions of the background and observation uncertainties, and the validity of these assumptions is important in determining the optimality of the analysis. Our goal is to generate a new time-varying ocean state estimate that is a complete solution of the ocean model equations and better fits the observations, taking into account the uncertainties of both the model background state (the initial estimate, or the forecast) and the observations. A measure of the consistency of the assimilation system given the prior uncertainty assumptions can be made using a set of diagnostics based on the innovation statistics, presented in Desroziers et al. (2005). These diagnostics are based on the observation minus background, observation minus analysis, and analysis minus background differences and provide a check of the consistency of the prior choices of the background and observation error covariances. The level of agreement between the a priori specified error variances (B and R), and those diagnosed a posteriori following the methods introduced by Desroziers et al. (2005) (hereafter referred to as the diagnostic errors) provides a measure of the appropriateness of the estimates of B and R.

For all five experiments (Table 1) we present the ratio of the diagnostic observation errors and prior observation errors (and the diagnostic background errors and the prior background errors) in Table 2. The ratios are given in terms of the standard deviations (the square root of the variances) and are time-averaged over the OSSE period. A value of unity represents optimal consistency between the prior uncertainty choices and the diagnostic errors. For SSH the prior and diagnostic observation errors are typically consistent, while the prior specified background error variances for SSH are underestimated. For SST, the prior and diagnostic observation errors are consistent (values close to unity) for experiments Surface only, Surf + FVON2022 0.1, and Surf + FVON2022 0.2 reduced Lh. For experiments Surf + FVON2021 0.2 and Surf + FVON2022 0.2, diagnostic SST observation errors are elevated by 240% and 320%, respectively, compared to the prior error estimates indicating under-fitting to SST. For subsurface temperature, when prior observation errors are specified to be 0.2°C with horizontal decorrelation length scales of 50 km for temperature and salinity in B (experiments Surf + FVON2021 0.2 and Surf + FVON2022 0.2) the diagnostic errors exceed the prior specified observation errors by 380% for the 2021 density observations (Surf + FVON2021 0.2) and 920% for the 2022 density observations (Surf + FVON2022 0.2). Reducing the prior specified observation errors to 0.1°C resulted in improved consistency of the errors, but degradation of various circulation metrics (Sections 3.3 and 3.4). Experiment Surf + FVON2022 0.2 reduced Lh gave the best consistency of error estimates across the board and the best representation of surface and subsurface metrics (Sections 3.3 and 3.4).




3.2 Circulation metrics

To illustrate the impact of assimilating observations we present comparisons between the Reference State, the Baseline, and the data assimilation experiments 1-5 (Table 1). Spatial plots of the Root Mean Squared Difference (RMSD) between the Reference State and the comparison simulations are presented for the following metrics; SSH, SST, temperature at 50 m, temperature at 150 m, temperature at 400 m, temperature at 1000 m, bottom temperature, and upper ocean heat content (UOHC). The depth of 150 m represents the mean thermocline depth across the domain (Kerry et al., 2023a). The UOHC quantifies the heat carried in the upper ocean, and is given by:

 

where ζ is the height of the free-surface, −zT is the depth of the upper layer and Cp is the specific heat of sea water in J(kgK)−1. In this work we define the depth of the upper layer as the 90th percentile thermocline depth computed from a long-term hindcast simulation as in Kerry et al. (2023a).




3.3 Domain-wide overview

Because we are using OSSEs, we can compare the ocean state estimates from each data assimilating experiment with a known ocean state (the Reference State). To provide a domain-wide overview of the OSSE performance we compare the representation of eight different metrics that were introduced in Section 3.2. Figures 5 and 6 display the variability (standard deviations over the OSSE period) and the differences between the experiments spatially, averaged in time over the OSSE period. The metrics are (Figure 5 rows 1-4) SSH, SST, temperature at 50 m and temperature at 150 m, and (Figure 6 rows 1-4) temperature at 400 m, temperature at 1000 m, bottom temperature, and UOHC. The columns of the figures are explained by the points below:

	Column 1: The standard deviation of the metric in the Reference State. This displays the typical variability of the metric.

	Column 2: The RMSD between the Reference State and the Baseline. This describes the magnitude by which the Reference State deviates from the Baseline (as described in Section 2.1.2 and Figure 3).

	Column 3: Red indicates improvement (lower RMSD with the Reference State) for Surf + FVON2022 0.2 reduced Lh compared to the RMSD between the Baseline and the Reference State. Blue indicates degradation. That is, the red regions demonstrate the improvement achieved by assimilation for Surf + FVON2022 0.2 reduced Lh compared to no data assimilation.

	Column 4: Red (blue) indicates improvement (degradation) given assimilation of the subsurface temperature observations (Surf + FVON2022 0.2 reduced Lh) compared to Surface only.

	Column 5: Red (blue) indicates improvement (degradation) given an increase in observation density for 2021 to 2022 (with the observation and background errors kept constant).

	Column 6: Red (blue) indicates improvement (degradation) given an increase in prior observation errors for subsurface temperature from 0.1°C to 0.2°C (with the observation platform and background errors kept constant).

	Column 7: Red (blue) indicates improvement (degradation) given a reduction in the horizontal length scales applied to temperature and salinity in the background error covariance matrix (with the observation platform and prior observation errors kept constant).






Figure 5 | (Column 1) Standard deviation of Reference State, (Column 2) RMSD between Reference State and Baseline, (Column 3) difference between RMSD between Reference State and Baseline and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh, (Column 4) difference between RMSD between Reference State and Surface only and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh, (Column 5) difference between RMSD between Reference State and Surf + FVON2021 0.2 and RMSD between Reference State and Surf + FVON2022 0.2, (Column 6) difference between RMSD between Reference State and Surf + FVON2022 0.1 and RMSD between Reference State and Surf + FVON2022 0.2, and (Column 7) difference between RMSD between Reference State and Surf + FVON2022 0.2 and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh. For columns 3-7 red areas represent improvement (i.e. lower RMSD with the Reference State) for the second experiment. Rows are for SSH, SST, temperature at 50 m and temperature at 150 m. Experiments are numbered 1-5 as detailed in Table 1.






Figure 6 | (Column 1) standard deviation of Reference State, (Column 2) RMSD between Reference State and Baseline, (Column 3) difference between RMSD between Reference State and Baseline and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh, (Column 4) difference between RMSD between Reference State and Surface only and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh, (Column 5) difference between RMSD between Reference State and Surf + FVON2021 0.2 and RMSD between Reference State and Surf + FVON2022 0.2, (Column 6) difference between RMSD between Reference State and Surf + FVON2022 0.1 and RMSD between Reference State and Surf + FVON2022 0.2, and (Column 7) difference between RMSD between Reference State and Surf + FVON2022 0.2 and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh. For columns 3-7 red areas represent improvement (i.e. lower RMSD with the Reference State) for the second experiment. Rows are for temperature at 400 m, temperature at 1000 m, bottom temperature and UOHC. Experiments are numbered 1-5 as detailed in Table 1.



Overall we show that experiment Surf + FVON2022 0.2 reduced Lh improves on all metrics compared to the Baseline (Column 3 of Figures 5, 6). Surface only outperforms Surf + FVON2022 0.2 reduced Lh over much of the domain for surface properties (SSH and SST) and near surface temperature (Column 4 of Figure 5), while Surf + FVON2022 0.2 reduced Lh provides improvement to temperature at 400 m outside of the North Cape/northern East Auckland Current (EAUC) region and improvement of bottom temperature over the shelf seas (Column 4 of Figure 6). A less tight fit to surface and near surface properties occurs as the system is also fitting to temperature in the lower water column. Note that Surf + FVON2022 0.2 reduced Lh stills provides a considerable improvement to surface and near surface properties and UOHC compared to the Baseline (Column 3 of Figures 5, 6).

Increasing the density of the subsurface temperature observations from Surf + FVON2021 0.2 to Surf + FVON2022 0.2 (Figures 4E–P) results in a better fit to SST, but some larger differences with the Reference State for SSH, subsurface temperature and UOHC, particularly in the EAUC region (Column 5 of Figures 5, 6). Noticeable improvement below the surface is achieved for bottom temperature (Column 5, row 3 of Figure 6). Increasing the prior specified observation uncertainties for the subsurface temperature observations from 0.1°C in Surf + FVON2022 0.1 to 0.2 °C in Surf + FVON2022 0.2 results in improvements across all metrics over most of the domain (Column 6 of Figures 5, 6). Most notably, UOHC, which integrates upper ocean properties, is degraded by introducing subsurface observations and increasing their density (Figure 6, row 4, columns 4 and 5). This degradation is due to over-fitting of the coastal temperature observations and is most pronounced in the EAUC region where cross-shelf spatial scales of variability are short. Both increasing the prior observation uncertainty estimates for subsurface temperature observations and reducing their length scales of influence provided improvements to heat content estimates (Figure 6, row 4, columns 6 and 7).

Significant improvements across all metrics were achieved by keeping the prior subsurface temperature observation errors set to 0.2°C, and adjusting the horizontal length scales used in the specification of B (refer to Section 2.4.3) in Surf + FVON2022 0.2 reduced Lh. The improvements for Surf + FVON2022 0.2 reduced Lh compared to Surf + FVON2022 0.2 are shown (by the red regions) in Column 7 of Figures 5 and 6. Adjusting the length scales provided a more consistent match between the prior and diagnostic temperature errors (Table 2, compare Experiments 4 and 5, Section 3.1), consistent with a more optimal system resulting in improved representation of surface and subsurface temperature and heat content.




3.4 Shelf seas

For a clearer view of the impacts of data assimilation on the representation of shelf seas, we now focus on the shelf regions with water depths less than 1000 m. This is where most of the subsurface FVON observations are taken, and where ocean predictions are most sought after to support fisheries and coastal users.



3.4.1 Temporal evolution of spatially-averaged errors

The temporal evolution of the errors in the shelf regions shows how the errors are reduced with the introduction of data assimilation in the different experiments (Figure 7). As discussed in Section 2.2 and Figure 1D, the OSSE period is chosen to represent a warming event, with an associated sharp rise in SST, bottom temperature and ocean heat content in NZ’s shelf seas (as shown by the spatially-averaged values for depths less than 1000 m in the Reference State, Figure 7). For all OSSEs, errors in SSH and SST are reduced most rapidly over the first 2-3 assimilation cycles (12-18 days, Figures 7A, B). The lowest errors in SSH and SST are achieved with Surface only or the less dense subsurface observations (Surf + FVON2021 0.2), followed by the dense subsurface observations with adjusted decorrelation length scales (Surf + FVON2022 0.2 reduced Lh). For bottom temperature in the shallow regions (depths less than 400 m, Figure 7C), assimilating denser subsurface observations (Surf + FVON2022 0.2, Surf + FVON2022 0.1, and Surf + FVON2022 0.2 reduced Lh) results in greater error reduction over the first 48 days, after which the OSSE with less dense subsurface observations (Surf + FVON2021 0.2) reaches similar error reduction. As the warming event intensifies (after Nov 11), both Surface only and Surf + FVON2021 0.2 provide a comparable representation of heat content in water depths less than 400 m, compared to the experiments with denser subsurface temperature observations (Figure 7D). At the peak of the warm event (after Dec 11), heat content in shallow regions is best estimated by the experiments with dense subsurface observations (Surf + FVON2022 0.2 and Surf + FVON2022 0.2 reduced Lh). Surf + FVON2022 0.2 reduced Lh provides the lowest errors across all metrics over the entire experiment period.




Figure 7 | Time-series of RMSD between Reference State and Baseline (black), and the Reference State and the 5 OSSE experiments for the OSSE period. SSH (A) and SST (B) are for points with water depths<1000 m. Bottom temperature (C, E) and total heat content (D, F) are presented for all points with water depths<400 m and water depths from 400-1000 m. The right axes show the mean values in the Reference State simulation, illustrating the warming event.






3.4.2 Spatial maps of temporally-averaged errors

Spatial maps of the temporally-averaged errors reveal where improvements are made given the different experiments. Figure 8 shows the magnitude of the RMSD between the Baseline and the Reference State and the 5 OSSEs and the Reference State for SST, bottom temperature and heat content. Errors between the Baseline and the Reference State for SST are greatest along the shelf region influenced by the eddydominated EAUC, and along the Chatham Rise, while bottom temperature is most poorly represented along the west coast shelf in water depths less than 400 m. Heat content is most poorly represented over the plateaus and on the narrow shelf of the North Island. While the magnitudes shown in Figure 8 are useful to quantify the uncertainty associated with each model experiment, the key differences between the experiments are more clearly shown in Figures 9 and 10, where (as in Section 3.3) the differences in the temporally-averaged RMSD values are shown. Note that panel (a) represents the magnitude of the standard deviations, while for panels (b-h), red areas represent improvement (i.e. lower RMSD with the Reference State) for the second experiment, and blue represents degradation.




Figure 8 | RMSD between the Reference State and the Baseline and the Reference State and the 5 OSSEs for (A–F) SST, (G–L), bottom temperature, and (M–R) heat content, shown for coastal regions (water depths<1000 m). 100 m, 400 m and 1000 m bathymetry contours are shown. Experiments are numbered 1-5 as detailed in Table 1.






Figure 9 | Bottom temperature presented for coastal regions (water depths<1000 m). (A) Standard deviation of Reference State, (B) RMSD between Reference State and Baseline, (C) difference between RMSD between Reference State and Baseline and RMSD between Reference State and Surface only, (D) difference between RMSD between Reference State and Baseline and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh, (E) difference between RMSD between Reference State and Surface only and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh, (F) difference between RMSD between Reference State and Surf + FVON2021 0.2 and RMSD between Reference State and Surf + FVON2022 0.2, (G) difference between RMSD between Reference State and Surf + FVON2022 0.1 and RMSD between Reference State and Surf + FVON2022 0.2, and (H) difference between RMSD between Reference State and Surf + FVON2022 0.2 and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh. For (B–H), red areas represent improvement (i.e. lower RMSD with the Reference State) for the second experiment. 100 m, 400 m and 1000 m bathymetry contours are shown. Experiments are numbered 1-5 as detailed in Table 1.






Figure 10 | Total heat content presented for coastal regions (water depths<1000 m). (A) Standard deviation of Reference State, (B) RMSD between Reference State and Baseline, (C) difference between RMSD between Reference State and Baseline and RMSD between Reference State and Surface only, (D) difference between RMSD between Reference State and Baseline and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh, (E) difference between RMSD between Reference State and Surface only and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh, (F) difference between RMSD between Reference State and Surf + FVON2021 0.2 and RMSD between Reference State and Surf + FVON2022 0.2, (G) difference between RMSD between Reference State and Surf + FVON2022 0.1 and RMSD between Reference State and Surf + FVON2022 0.2, and (H) difference between RMSD between Reference State and Surf + FVON2022 0.2 and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh. For  (B–H), red areas represent improvement (i.e. lower RMSD with the Reference State) for the second experiment. 100 m, 400 m and 1000 m bathymetry contours are shown. Experiments are numbered 1-5 as detailed in Table 1.



Bottom temperature estimates are improved, compared to the Baseline, when Surface only observations are assimilated (Figure 9C). Further improvements of up to 0.4°C are achieved for bottom temperature for Surf + FVON2022 0.2 reduced Lh compared to Surface only (Figure 9E), most notably along the west coast shelf region. Increasing the subsurface temperature observation density (from Surf + FVON2021 0.2 to Surf + FVON2022 0.2) gave improvements across most of the shelf sea regions corresponding to a widespread increase in subsurface temperature observations across the shelf seas (Figure 4), with the greatest improvement of up to 0.3°C being off the west coast (Figure 9F). Changes to bottom temperature representation were relatively small with adjustments to prior observation uncertainties (Figure 9G) and changes to the length scales (Figure 9H).

Heat content represents an integration of density and temperature throughout the water column (Equation 3). While the assimilation of subsurface observations (Surf + FVON2022 0.2 reduced Lh compared to Surface only) shows the greatest improvement to bottom temperature inshore of the 400 m depth contour (Figure 9E), the improvements to heat content extend offshore of the 400 m isobath (Figure 10E). This is most noticeable on the central west coast region where the extent of the heat content improvement extends considerably further offshore than the coverage of the subsurface observations (Figures 4M–P). Increasing the observation density (Surf + FVON2021 0.2 to Surf + FVON2022 0.2, Figure 10F) gives a significant improvement in heat content representation, highlighting the importance of dense subsurface temperature observations on both bottom temperature and heat content estimates in shelf seas.

The experiments that adjust the assimilation system’s prior uncertainty estimates have a less pronounced impact on bottom temperature and heat content estimates in the shelf seas (Figures 9G, H, 10G, H), compared to the impact of increasing observation density (Figures 9E, F, 10E, F). However, the differences are seen in other surface and near-surface metrics. The prior observation and background uncertainty estimates control how the assimilated observations are projected onto the unobserved portion of the ocean state, and therefore their correct specification is key to the representation of the ocean away from observed locations. This is particularly important where off-shelf water masses impact on shelf circulation, as is discussed for the EAUC region in Section 4.




3.4.3 Summary

In Table 3 we quantify the improvements of the five experiments compared to the Baseline. The results show that Surf + FVON2022 0.2 reduced Lh provides the best overall improvement across all metrics.


Table 3 | Time-average of spatially-averaged RMSD between Baseline and Reference State, and percentage improvement of each OSSE relative to the Baseline.








4 Regional processes

Given the variety of oceanic processes across the NZ region (e.g. Chiswell et al., 2015; Fernandez et al., 2018; Stevens et al., 2019) and the variability in FVON coverage (Figure 4), improvements in model state estimates for the different OSSEs vary across the regions. In this section we discuss the differing processes at play across the NZ region in relation to the impact of the FVON and the data assimilation system, with implications for MHW predictability. The discussion draws on two previous studies that characterize the temporal and spatial scales of heat content variability around NZ (Kerry et al., 2023a) and reveal the varying drivers of MHW events across the regions (Kerry et al., 2022).

The north east coast of the North Island is dominated by mesoscale eddies associated with the EAUC and the East Cape Current (ECC) (Fernandez et al., 2018; Stevens et al., 2019). The North Cape and East Cape regions are associated with eddy separation and the formation of the North Cape Eddy (NCE) and the East Cape Eddy (ECE, Figure 1). Errors in SSH between the Reference State and the Baseline are elevated along the path of these boundary currents, and SST errors are elevated off North Cape (Figure 5, Column 2), consistent with high SST variability in this region that is poorly resolved by satellite products (Kerry et al., 2023a). Along the EAUC’s path, and in the region where it separates from East Cape, subsurface temperature and UOHC errors are elevated in the Baseline model (Figures 5 and 6, Column 2). Assimilating subsurface temperature observations that are concentrated along the narrow shelf (compared to Surface only observations) results in degradation of surface and subsurface temperature in the depth range of the mesoscale circulation (above 1000 m) and UOHC off North Cape and East Cape (Figures 5, 6, Column 4). Increasing the subsurface temperature observation density results in further degradation to SSH, subsurface temperature and UOHC, particularly off North Cape (Figures 5, 6, Column 5). We show that improved representation of SSH, SST, subsurface temperature and UOHC along the path of the EAUC and in these separation regions is achieved by relaxing the errors associated with FVON observations (Figures 5, 6, Column 6) and reducing the length scales of variability associated with the prior specified background errors (Figures 5, 6, Column 7). This highlights the importance of correctly configuring the assimilation system to prevent overfitting to dense coastal observations for the representation of boundary currents and mesoscale eddies that dominate the off-shelf circulation. This is a challenge for boundary current regions with narrow shelfs where high variability in horizontal and vertical decorrelation length scales are likely. As UOHC along the narrow shelf is modulated by the mesoscale eddies (Kerry et al., 2023a), their correct representation (offshore of the shelf) is key to predicting temperature and UOHC on the shelf. UOHC in the Bay of Plenty is driven by onshore flow associated with an eddy-dipole, and MHW events in the region are driven by anomalously high onshore heat transport down to 1000 m depth (Kerry et al., 2022). MHW prediction in the region therefore requires correct representation of the heat associated with the mesoscale eddies that are responsible for advecting heat onto the shelf.

Another notable region of elevated errors between the Baseline and the Reference State is the south west of NZ (most clearly seen Figure 3E) where the Subtropical Front (STF) impinges on the Challenger Plateau (Figure 1). This entire region also afforded better representation of surface and subsurface properties with lower errors associated with FVON observations (Figures 5, 6, Column 6) and reduced length scales of variability associated with the prior background errors (Figures 5, 6, Column 7). The STF feeds the southward flowing Fiordland Current (FC) and the weaker, northward flowing Westland Current (WC, Figure 1A), although heat content over the plateau is not dominantly driven by advection (Kerry et al., 2022). On the Challenger Plateau, increased subsurface temperature observation density resulted in improved bottom temperature estimates on the shelf for depths less than 400 m (Figures 9E, F), and improved heat content estimates over the plateau for water depths from 400-1000 m (Figure 10). Kerry et al. (2022) show that heat content on the shelf off of the west coast of the South Island is sensitive to large scale adjustments in the ocean’s subsurface structure over the west coast, in contrast to other boundary current dominated regions where advection dominates. This is likely to be why the greatest improvements in subsurface temperature and UOHC representation upon assimilation of the FVON observations are seen on the shelf regions of the west coast.

The shallow region off of the southern tip of the South Island (the Stewart Plateau and Snares Shelf region) is influenced by the Fiordland Current (FC), with heat content over the shelf between positively correlated to heat content over the South Island’s west coast shelf region (Kerry et al., 2023a). Improved bottom temperature estimates in the region are seen with increased density of FVON observations (Figures 9E, F) and higher observation errors (Figure 9G).

Circulation to the east along the Chatham Rise results from the convolution of the Southland Current (SC) and the extension of the ECC as they turn eastward (Figure 1A). A westward flowing counter current returns water along the rise to form the Wairarapa Coastal Current (WCC) (Kerry et al., 2023a). Including FVON data (Figure 10E) and increasing the observation density (Figure 10F) resulted in improved UOHC representation along the Chatham Rise where this counter current exists. Anomalously high heat transport in this counter current drives MHW events in the central east coast region (Kerry et al., 2022). Improvements in representation of surface and subsurface temperature, and UOHC along the Chatham Rise are clearly seen in Figures 5 and 6, Column 3.




5 Discussion

Data assimilation is particularly challenging for coastal and shelf regions where observations are typically temporally and/or spatially sparse and where the circulation variability contains a broad range of time and space scales (e.g. Walstad and McGillicuddy, 2000; Kerry et al., 2020). Effective assimilation of subsurface observations into ocean circulation models is crucial to improving subsurface structure estimates (Gwyther et al., 2022). Here we have compared five Observing System Simulation Experiments (Table 1) to quantify the impact of assimilating fishing-vessel mounted temperature sensors that collect subsurface temperature observations in NZ’s shelf seas. We show that, not only is increased density of subsurface observations important in the representation of the subsurface ocean, their successful assimilation into an ocean model requires careful specification of the prior observation and background uncertainties to optimize the way in which the observations inform the numerical model estimates.

We show that including coastal and shelf subsurface temperature observations provides improvements in the representation of bottom temperature and heat content, most notably at water depths< 400m (Table 3). The Surface only experiment provided a 20% and 28% improvement compared to the Baseline for bottom temperature and heat content, respectively, while the experiments assimilating subsurface temperature observations provide improvements of between 34-44% and 33-38%. Increasing the density of the subsurface observations while keeping the prior specified observation and background uncertainties the same (Surf + FVON2021 0.2 to Surf + FVON2022 0.2) results in improvements in bottom temperature representation but a degradation in SSH and SST representation in the shelf seas (Table 3). This degradation is greater when a tighter fit to the subsurface observations is specified (that is, with prior observation uncertainties reduced from 0.2°C to 0.1°C, Surf + FVON2022 0.2 to Surf + FVON2022 0.1). The best fit across all metrics is Surf + FVON2022 0.2 reduced Lh, in which the prior observation uncertainties for the subsurface observations are set at 0.2°C and the decorrelation length scales for temperature and salinity specified in the background error covariance matrix are reduced from 50 km to 20 km and 10 km, respectively. Both the domain-wide view (Section 3.3) and the results focused on the shelf seas (Section 3.4), show that Surf + FVON2022 0.2 reduced Lh is the superior system in representing all of the chosen metrics. This is related to both the increased subsurface temperature observation density and the assimilation configuration. Specifically, the increase in prior observation uncertainties for the subsurface observations (from 0.1 to 0.2°C) prevents over-fitting to the dense coastal and shelf observations, and shorter horizontal decorrelation length scales associated with the background error covariance matrix allow improved projection of the observations onto the modelled state.

Previous experiments assimilating similar fishing-vessel-derived observations in the Adriatic Sea conducted by Aydoğdu et al. (2016) also highlight the value of such observations, although the observing system was simpler and only single-point vertical values were utilized instead of the profiles provided by the FVON sensors in this study. The authors emphasize the importance of domain coverage over the number of observations. From the distribution of the subsurface temperature observations presented in Figure 4 we see that, although not dramatic, there is an increase in the area covered by the FVON sensors in 2022 in relation to 2021. This factor can be important for the improved metrics discussed above. Similarly, the OSSE methodology could also be used to assess the optimum observational data density required to achieve a requisite model improvement. By starting with data in all grid cells a data thinning approach could be used in order to guide how many fishing vessels are required, or where FVON observations will have the greatest impact. In this experiment, bottom temperature in the shallow seas reaches similar error reduction for the lower density observations compared to the denser observations after two months (Figure 7C); however this corresponds to a rapid increase in bottom temperature and may be related to full water column mixing. In the EAC region, Kerry et al. (2018) show that observations taken in regions of higher variability have more impact on transport and EKE estimates throughout the current system. This is consistent with results of Gwyther et al. (2022) who show that synthetic temperature profile observations through the downstream eddy-dominated region of the EAC system are considerably more impactful in improving subsurface temperature and UOHC estimates throughout the region than the same observations taken upstream, across the mostly coherent EAC. In a similar study, weekly profiles (with profiles occurring in every assimilation cycle) are shown to provide considerably better results that fortnightly or monthly sampling (Gwyther et al., 2023b).

While our results highlight the value of subsurface temperature observations in representing bottom temperature in shelf seas, we note that correct representation of the SSH (associated with the geostrophic currents) and correct representation of temperature throughout the water column (not just at the bottom) is required to correctly estimate heat content. This requires careful design of the data assimilation system in order to achieve maximum benefit from the observing system. Specifically, the way by which information from the observations is projected onto the modelled ocean state is controlled by the background error covariance matrix, and the fit to the observations is controlled by the prior observation uncertainties. Overfitting to certain observations can result in degradation of the representation of other fields. Specifically, in this study we see that over-fitting to dense near-shore temperature profile observations is at the expense of temperature representation of offshore waters and surface and near-surface fields (as in Surf + FVON2022 0.1). This is most pronounced along the narrow shelf region, dominated by the EAUC and the ECC. Further, careful specification of the decorrelation length scales used to compute the background error covariance matrix is required (Section 2.4.3). Consistency of improvement across both surface and subsurface properties is important for correctly representing upper ocean heat content; a crucial metric for understanding and predicting MHWs (Kerry et al., 2022). Furthermore, in regions where the off-shelf circulation modulates the shelf circulation, such as the EAUC (as discussed in Section 4) and the EAC, where mesoscale eddies drive cross-shelf transport (Malan et al., 2022), correct representation of the subsurface structure offshore of the shelf is key to predicting shelf circulation. While our results focus on analysis skill, we note that preventing over-fitting is crucial to the quality of forecasts (e.g. Kerry et al., 2023b).

The assimilation of surface data alone can improve subsurface representation, yet the addition of subsurface observations has the potential to provide considerable further improvement given an effective assimilation system, as was shown in this study. The improvement of the subsurface temperature representation with assimilation of SST was shown by Zhang et al. (2010a), but they also highlight the value of subsurface glider measurements of temperature and salinity on salinity forecasts. Ezer and Mellor (1997) find assimilation of SSH data reduces errors more effectively in mid-depths (around 500 m), and SST data reduces errors in the upper layers (above 100 m), with a combination of SST and SSH data able to provide improved skill at all depths compared to assimilation of each set of data separately. Pasmans et al. (2019) find that surface observations are required in combination with the subsurface observations of temperature and salinity from gliders to prevent unphysical eddies from forming in the vicinity of the glider transects. Representer analysis by Zhang et al. (2010b) shows how the information from glider transects extends toward the dynamically upstream, yet in practice Pasmans et al. (2019) found that their assimilation of glider observations failed to produce large-scale subsurface corrections. A similar result was found in Siripatana et al. (2020), where observations from a deep water mooring array produced improvements to the representation of the EAC core depth in its vicinity, with degradation in the unobserved downstream region. Likewise, Gwyther et al. (2023a) found that eddy subsurface structure was often poorly represented in the absence of observations within the eddy. This issue was addressed in a post-processing feature mapping approach developed by Rykova (2023) in which individual ocean eddies are corrected if a profiling float exists within the feature. Each profiling float only affects the specific feature that it observes; however, this approach is yet to be implemented in an automated manner for sequential data assimilation and is limited by the fact that many features are unsampled. All of these results highlight the challenges associated with the projection of information from observed variables onto the unobserved ocean state in data assimilation systems, which is controlled by the observation-model covariances, and emphasize the importance of domain coverage.

Indeed the greatest challenges associated with assimilation of temporally and spatially sparse observations in dynamically active regions relate to the specification of the background error covariances (Moore et al., 2019). In advanced time-dependent data assimilation, the model physics constrain the state-estimates such that the prescribed covariances are propagated in time to identify observation-model covariance. In 4D-Var (and 3D-Var) the background error covariance matrix (B) is usually based on information about the dominant dynamical balances of the system, as well as information about the average statistics of errors in the forecast system (Lorenc, 2003). In classic 4D-Var, the covariances in B are assumed to be static with isotropic horizontal and vertical length scales and the tangent-linear and adjoint models introduce flow-dependence in the error covariance via the time evolution of the background. In our 4DVar configuration, we estimate B by factorization (Weaver and Courtier, 2001) and prescribe univariate covariance (the dynamics are coupled by the tangent-linear and adjoint models in the assimilation, but not in the statistics of B). On the other hand, an Ensemble Kalman Filter (EnKF) employs an ensemble of nonlinear model states to estimate B and so capture what are commonly referred to in Numerical Weather Prediction (NWP) as the “errors of the day”.

Within the scope of this study, we compare two different values of subsurface temperature prior observation uncertainties and two different decorrelation length scales associated with the background error covariance matrix. Considerable differences in the model state estimates highlight the sensitivity to these prior uncertainty estimates and the importance of their careful specification. Our NZ model covers various dynamically different circulation regimes so the length scales of variability are anisotropic. Furthermore, the subsurface observations are concentrated in coastal and shallow shelf regions. Zhang et al. (2010a) acknowledge similar limitations given the isotropic and univariate nature of B, and while multivariate background error covariance terms have been added to the ROMS 4D-Var system, they rely on the assumption of approximate geostrophic dynamics which may not be adequate for dynamic continental shelf regions. It is likely that a more optimal approach would be to estimate flow-dependent background error covariances that capture the “errors of the day”, and the spatially-varying decorrelation length scales. Ensemble-variational methods, that make use of the dynamical interpolation properties of the adjoint (4D-Var), and the explicit flow-dependent error covariances (used in ensemble methods) have been studied extensively for atmospheric DA (e.g. Lorenc et al., 2015) with improvements in forecast skill achieved particularly in dynamically active systems (Raynaud et al., 2011; Lorenc and Jardak, 2018). At the European Centre for Medium Range Weather Forecasting (Bonavita et al., 2016) and at Météo-France (Bouyssel et al., 2022), the use of flow-dependent, ensemble-based estimates to describe the background error covariance matrix at the start of the 4D-Var assimilation window has resulted in improved accuracy of the analysis and forecast fields. In the ocean, Pasmans et al. (2020) use Ensemble-4DVar in a realistic coastal ocean model and show that further research and development is required.

Accurate model estimates and forecasts of the coastal ocean provide useful information to decision-makers to effectively manage our coastal environment, mitigate risks and support industry. The importance of the subsurface structure of the circulation for ecological and economic impacts, particularly related to MHW events, has been revealed by several studies (Schaeffer and Roughan, 2017; Elzahaby and Schaeffer, 2019). Specifically, the sensitivity of MHW onset to the ocean’s subsurface structure was revealed in Kerry et al. (2022), highlighting the importance of correct subsurface representation for MHW predictability. Fishing vessels as providers of subsurface observations provide a new frontier of in situ data, particularly in coastal and shelf seas (Van Vranken et al., 2023), and we must develop the skills to effectively make use of the data to improve model estimates and predictions. Our future work aims to address the properties of the background error covariance matrix to optimize the influence of spatially and temporally inhomogeneous observations, with a focus on improving subsurface representation.
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Accurate prediction of ocean surface currents is important for marine safety, ship routing, tracking of pollutants and in coupled forecasting. Presently, velocity observations are not routinely assimilated in global ocean forecasting systems, largely due to the sparsity of the observation network. Several satellite missions are now being proposed with the capability to measure Total Surface Current Velocities (TSCV). If successful, these would substantially increase the coverage of ocean current observations and could improve accuracy of ocean current forecasts through data assimilation. In this paper, Observing System Simulation Experiments (OSSEs) are used to assess the impact of assimilating TSCV in the Met Office’s global ocean forecasting system. Synthetic observations are generated from a high-resolution model run for all standard observation types (sea surface temperature, profiles of temperature and salinity, sea level anomaly and sea ice concentration) as well as TSCV observations from a Sea surface KInematics Multiscale monitoring (SKIM) like satellite. The assimilation of SKIM like TSCV observations is tested over an 11 month period. Preliminary experiments assimilating idealised single TSCV observations demonstrate that ageostrophic velocity corrections are not well retained in the model. We propose a method for improving ageostrophic currents through TSCV assimilation by initialising Near Inertial Oscillations with a rotated incremental analysis update (IAU) scheme. The OSSEs show that TSCV assimilation has the potential to significantly improve the prediction of velocities, particularly in the Western Boundary Currents, Antarctic Circumpolar Current and in the near surface equatorial currents. For global surface velocity the analysis root-mean-square-errors (RMSEs) are reduced by 23% and there is a 4-day gain in forecast RMSE. There are some degradations to the subsurface in the tropics, generally in regions with complex vertical salinity structures. However, outside of the tropics, improvements are seen to velocities throughout the water column. Globally there are also improvements to temperature and sea surface height when TSCV are assimilated. The TSCV assimilation largely corrects the geostrophic ocean currents, but results using the rotated IAU method show that the energy at inertial frequencies can be improved with this method. Overall, the experiments demonstrate significant potential benefit of assimilating TSCV observations in a global ocean forecasting system.
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1 Introduction

The ocean Total Surface Current Velocity (TSCV) is defined as the horizontal vector quantity that advects surface sea water (Ardhuin et al., 2021), corresponding to an effective mass transport velocity at the surface (Marié et al., 2020). The longer time-scale processes affecting the TSCV are the geostophic currents, the mean wind-driven (Ekman) component and wave induced Stokes drift, while the short time-scale processes are tides and near-inertial oscillations driven largely by variable wind-stress (Kim and Kosro, 2013). The prediction of TSCVs is important for numerous applications and users.

Direct measurements of the TSCV are currently not available with global coverage. In coastal regions HF radars provide TSCV measurements out to hundreds of kilometres from the coast (Isern-Fontanet et al., 2017). Surface drifters can be used to infer near-surface currents: the Global Drifter Program (GDP) drifters are usually drogued so that they measure the currents at a specific depth, generally 15 m (Lumpkin et al., 2017). Some custom-built drifters have been deployed to specifically measure the TSCV including the wave-driven Stokes drift (Morey et al., 2018; van Sebille et al., 2021) but these are not widespread. Acoustic Doppler current profilers (ADCPs) are also used to measure the currents. They are an important source of information in certain regions (e.g. Tropical Pacific, see Johnson et al., 2002), but they have limited spatial coverage. Some previous studies have used observed velocities to assess the quality of near surface velocity predictions from the Met Office’s global Forecasting Ocean Assimilation Model (FOAM). Blockley et al. (2012) assessed velocities from the ¼° FOAM system against drifter derived velocities and moored buoy velocities for 2007 and 2008 and showed that FOAM was more skilful than climatology in all regions apart from the Southern Ocean. More recently, Aijaz et al. (2023) have compared FOAM velocities to drifter derived velocities for 2019 to 2021. Their study showed that the global analysis Root Mean Squared Error (RMSE) in the 15m velocities from ¼° FOAM varies between 0.138 and 0.161 m/s.

Due to the sparsity of the observation network, ocean surface current velocities are not routinely assimilated in global ocean forecasting systems. There have been some studies on drifter assimilation in regional systems and these largely focus on models of the Mediterranean (Nilsson et al., 2012) and the Gulf of Mexico (Fan et al., 2004, Jacobs et al., 2014, Carrier et al., 2014; Sun et al., 2022; Helber et al., 2023; Smith et al., 2023). There are also studies on the assimilation of HF radar data in regional and coastal models (e.g. Paduan and Shulman, 2004, Sperrevik et al., 2015 and Bendoni et al., 2023). However, the ability to assimilate surface current observations into global ocean models remains restricted by the limited observing network.

Various satellite missions have been proposed to measure TSCV globally such as SKIM (Ardhuin et al., 2019), SEASTAR (Gommenginger et al., 2019), WaCM (Rodríguez et al., 2019) and ODYSEY (Torres et al., 2023). These have the potential to substantially improve the coverage of observed ocean TSCVs.

The European Space Agency Assimilation of TSCV (ESA A-TSCV) project uses Observing System Simulation Experiments (OSSEs, Masutani et al., 2010) to assess the impact of assimilating TSCV data from a SKIM like satellite in two global ¼ degree ocean forecasting systems: the Met Office’s FOAM system and the Mercator Ocean International (MOI) system. OSSEs assimilate synthetic observations, usually generated from a high resolution free running model referred to as the Nature Run. They allow us to assess the implementation and potential impact of assimilating new observation types (e.g King et al., 2021) and observation networks (e.g Gasparin et al., 2019). The results from these experiments can be used to support future satellite missions and inform observation network design. The aims of this study are to develop the assimilation of TSCV data and assess the potential impact of assimilating TSCV observations. In this paper we focus on the implementation and results in the Met Office FOAM system. The results from the MOI experiments are presented in Mirouze et al. (2024) while Waters et al. (2024) compare the impacts of TSCV assimilation in the two systems and provide the overall outcomes from the ESA A-TSCV project.

In section 2 we describe the Nature Run and generation of the synthetic observations, the FOAM system and developments made to allow for the assimilation of TSCV data and the main experiments used in this study. In section 3 we present the results from our experiments and in section 4 we provide the conclusions.




2 Materials and methods



2.1 Nature Run and observation generation.



2.1.1 Nature Run

The Nature Run (NR) is a 1/12° global ocean simulation with the Mercator Ocean International real time system model configuration without assimilation. The model, NEMO at version 3.1 (Madec, 2008), was forced by 3 hourly atmospheric fields from the operational ECMWF Integrated Forecasting System with a 50% wind/current coupling coefficient (the wind stresses driving the ocean model are estimated based on 50% of the wind/current velocity differences). This is the same NR used in the AtlantOS project OSSEs (Gasparin et al., 2019) and it has been assessed for its realism by Gasparin et al. (2018). This project uses data from the NR for 2009. The NR is used to both generate the synthetic observations and provide a “truth” for the OSSEs assessment.

The NR used in this study does not include tides, wave induced Stokes drift or unresolved sub-mesoscale processes. Consequently, the synthetic observations do not include the full range of processes represented in true TSCVs. Given this study focuses on the impact of assimilation in a global system, the impact of the tides is likely to be small over most of the domain. However, a higher resolution ocean model coupled with a wave model would ideally have been used as the NR. The generation and storage of data from such a run is extremely costly and a suitable run was not already available. We instead use the 1/12° simulation described above. This run has been successfully used in previous OSSEs and the use of this NR in conjunction with the OSSE set-up described below produces realistic surface velocity errors (see section 2.3). Throughout the rest of this paper, the term TSCV is used to denote the surface velocities represented by the NR.




2.1.2 Observations

Observations are simulated from the NR for all standard observation types as well as new observations which might be obtained from a SKIM-like satellite mission (Ardhuin et al., 2019).



2.1.2.1 Standard observations

The standard observations for the OSSEs are in-situ temperature and salinity profiles, in-situ and level 2 satellite sea surface temperature (SST) observations, level 3 altimeter observations and level 3 satellite sea ice concentration (SIC) observations. The simulated in-situ profiles represent the coverage from Argo, tropical moorings, drifters and XBTs (eXpendable BathyThermographs). Realistic coverage of L2 satellite SST data, in situ SST observations and satellite SIC data were generated using the times and locations of those used in the operational FOAM system on each day of the year 2016. The simulated in-situ, SST and SIC observations were generated with realistic observation errors as part of the AtlantOS project (Gasparin et al., 2018; Mao et al., 2020).

The simulated altimeter data represents the coverage of Sentinel3-A, Sentinel3-B, CryoSat and AltiKa. Real altimeter observations are of sea level anomaly (SLA), and a Mean Dynamic Topography (MDT) is required to assimilate these observations. The simulated altimeter observations in this experiment are Sea Surface Height (SSH) and therefore an MDT is not required to assimilate them. However, we can expect differences in the mean SSH in the NR and our OSSEs. Along-track SSH data were simulated using the SWOT simulator tool which is capable of simulating both along-track and wide-swath observations (Gaultier et al., 2016) with realistic nadir observation error budgets included for each satellite. The altimeter observations were generated in coordination with an OSSE investigating the impact of assimilating nadir and wide-swath altimeters (King et al., 2024).




2.1.2.2 TSCV observations

The SKIM-like TSCV data are simulated using the open-source SKIMulator tool (Gaultier, 2019; Gaultier and Ubelmann, 2024). A plot showing an example of the daily coverage from SKIM is shown in Figure 1. The SKIM mission concept uses nadir and near-nadir radar beams with Doppler measurements to measure surface velocity vectors and ocean wave spectra over a 270km wide swath with a 6km footprint. The main instrument is a Ka-band conically scanning, multi-beam Doppler radar altimeter and wave scatterometre. The recovered surface drift velocities are representative of the top 1m of the ocean. The OSSEs in this study assimilate 2D TSCVs (provided in the zonal and meridional directions) along the SKIM swath (called L2c data). These currents are constructed from the along-swath radial currents using an Optimal Interpolation (OI) method with a 20km length scale. The resulting 2D currents have a 5km resolution both across and along the track. The OI method used to generate the 2D currents introduces a mapping error - this is relatively small, of the order of 3 cm/s. All the TSCV observations assimilated in this study include this mapping error. For some of the OSSEs we also include instrument error in the SKIM observations. Figure 1 shows the instrument errors in the zonal and meridional components of the velocity averaged along the track for one SKIM satellite cycle, as a function of across track position. Note that the zonal velocity instrument errors are largest close to the nadir while the meridional velocity instrument errors are largest close to the edge of the swath. A gap is also visible around the nadir where SKIM data are unavailable.




Figure 1 | Observation coverage for one day of SKIM data (top) and instrument error structure across the swath (bottom), with the blue line showing the error in the eastward velocity component and the orange line the error in the northward velocity component.



For high density observations, such as swath satellite data, it is important that some observation thinning is applied so that the assimilation does not overfit information from observations with spatially-correlated errors (Ochotta et al., 2005). In the experiments presented here a simple thinning of 20 km was used in both the across- and along-track directions. This thinning was chosen to be the same as the length-scale applied in the OI used in the observation processing. By thinning at this scale we hope to remove the majority of the spatial correlations in the mapping error. This practically means that only 1/16 of the observations were used in the assimilation. In addition, SKIM observations are not assimilated in regions where sea ice is present.






2.2 FOAM system and assimilation of TSCV data

The FOAM system (Aguiar et al., 2023) used here consists of the NEMO 3.6 ocean model on a global 1/4° tripolar grid with 75 vertical levels (the top model level is 1 m thick), coupled to the CICE sea-ice model (Hunke et al., 2015) and the 3D-VAR data assimilation scheme NEMOVAR (Waters et al., 2015). NEMOVAR is a multivariate, first-guess-at-appropriate-time (FGAT), incremental variational data assimilation scheme developed specifically for NEMO. The state vector consists of temperature, salinity, SSH, zonal and meridional velocity and sea ice concentration. The scheme uses multivariate balance relationships to allow correlations between different variables in the background error covariance (Weaver et al., 2005). With the exception of temperature, which is defined as the lead variable, variables are separated into balanced and unbalanced components, and the control vector consists of temperature and the unbalanced salinity, SSH and velocity components. Water mass conservation properties are used to define the salinity balance, hydrostatic balance is used for the SSH balance and geostrophy is used for the velocity balance. Note that sea ice concentration is treated separately (no updates are made to ocean variables based on changes to the SIC and vice versa). The spatial background error correlations in NEMOVAR are modelled using an implicit diffusion operator (Mirouze et al., 2016).

FOAM uses a 24-hour assimilation window and the daily increments produced by NEMOVAR are applied during a 24-hour model run using IAU (incremental analysis update; Bloom et al., 1996). As velocity observations are not assimilated in the standard FOAM configuration, the only adjustments to the velocities (when no velocity observations are available) are made through the geostrophic balance. The geostrophic balance is only applied outside of the equatorial region, so no corrections are made to velocities close to the equator unless velocity observations are assimilated.

Two altimeter bias correction terms are included in the assimilation system used operationally in FOAM. The first altimeter bias term is designed to correct for errors in the Mean Dynamic Topography (MDT) which is used to relate observed SLA to the model SSH (Lea et al., 2008). While we don’t use an MDT in the OSSEs here, the synthetic altimeter observations do include an error associated with the different mean SSH in the NR compared to the mean SSH of the lower resolution system used in the OSSEs, so we retain this bias correction term. The second altimeter bias term is designed to account for differences in the model and observed SLA due to the Dynamic Atmosphere Correction (DAC) which is generally applied to altimeter data and has a large impact at high latitudes. In our OSSE framework, the synthetic observations do not include DAC, however, we retain the bias correction term to account for biases associated with different resolved processes in the NR and OSSEs at higher latitudes.

We specify the background error covariances in NEMOVAR by defining a field of background error standard deviations and background error correlation length-scales for each assimilated variable. We specify spatially and seasonally varying background error standard deviations at the surface for temperature, unbalanced salinity, unbalanced SSH and sea ice concentration, and flow-dependent parameterisations for the sub-surface error standard deviations for the 3D variables. For temperature and unbalanced salinity, a combination of two length-scales is used for the horizontal background error correlations and the vertical background error correlations are based on the local mixed-layer depth in the background field. The unbalanced SSH error correlation length scales are specified as 400 km and the sea ice concentration error correlation length scales are specified as 25 km. The observation errors in NEMOVAR contain no spatial correlations and observation error standard deviations for the standard observation types are spatially and seasonally varying.

As the standard FOAM system does not assimilate velocity data, some developments were required to allow for the assimilation of TSCV data for this study. These were updates to include velocities in the observation operator, the specification of surface observation error standard deviations and the specification of velocity background error covariances. In the following subsections we provide a description of the estimation of the velocity observation and background error covariances.



2.2.1 TSCV observation error specification

We need to specify observation errors for the surface zonal and meridional velocities to be used in the assimilation of the TSCV data. The observation errors required by the data assimilation system include the measurement errors (including the mapping and, where appropriate, the instrument errors shown in Figure 1) as well as the representation errors which describe the mis-match in the resolution represented by the observations and the model, as well as processes missing from the model (Janjić et al., 2018). The mapping error in these experiments is approximately 2.5 cm/s, estimated from a subsample of the TSCV observation data. For the OSSEs presented here the observations are generated from outputs of a higher resolution model run so the representation error should be the differences in the 1/12° NR model’s representation of the ocean compared to the ¼° model used in the OSSEs. We calculated the representation error by comparing the variability in the FOAM ¼° and the 1/12° NR daily mean surface velocities. The day-to-day variability in the surface velocity was calculated for both ¼° and the 1/12° runs over one year at each grid-point and a global offset was determined. This offset of approximately 7 cm/s is assumed to be an approximation to the global average representation error. However, the representation errors are likely to be spatially varying with larger errors in more energetic and variable regions. To allow for spatial variability in our estimate, the annual 1/12° 2D surface velocity variability field was interpolated to the ¼° grid, smoothed using a Gaussian filter with 1.5° length-scale and then normalised by the 7 cm/s offset to produce a 2D field of the representation error. Smoothing of the representation errors is necessary to ensure that they don’t vary too quickly over the scales of the background error correlations. The representation errors are largest in the equatorial region, the western boundary currents and other regions of high variability (see Supplementary Figure 1).




2.2.2 Velocity background errors

For the assimilation of TSCV data, new background error standard deviations and length-scales are required for the unbalanced components of zonal and meridional velocities. The velocity balance in NEMOVAR is geostrophic so the unbalanced component represents the ageostrophic velocity component. The magnitude of the unbalanced velocity background errors will determine how much of the signal in the observations is used to correct the ageostrophic velocity and how much is used to correct the geostrophic velocity. We have used the NMC method (Parrish and Derber, 1992) to estimate the forecast error covariances. This method uses the difference between 48-hour and 24-hour forecast fields, valid at the same time, as a proxy for the forecast error. To produce an estimate of unbalanced velocity error covariances we applied the inverse of the NEMOVAR balance operator to the forecast difference fields to remove the balanced (geostrophic) component prior to the NMC calculation.

For calculating the surface background error standard deviations and horizontal correlation scales, the NMC method was applied to the (unbalanced) surface zonal and meridional velocities from a previous two-year run of the ¼° FOAM system. We applied a function fitting to the estimated NMC error covariances to determine two horizontal correlation length-scales at each grid point and the surface background error standard deviations associated with these (i.e. the respective weighting of these correlation length scales). A final step was to scale the total background error standard deviations to be consistent with the global observation-minus-background RMSE for surface zonal and meridional velocity estimated by comparing a control run (which did not assimilate TSCV data) to the simulated TSCV observation data. In the resulting covariance estimates (see Supplementary Figure 2) the short length scales vary between around 40km at high latitudes and 150km at the equator, the long length scales vary between 200km in high latitudes and 400km in mid-latitudes. In both the short and long length scales, the shortest scales are seen in the highly variable regions of the western boundary currents and the ACC (Antarctic Circumpolar Current). The surface background error standard deviations are highest in the region of the equatorial currents and in the western boundary currents and ACC.

The parameterization used to represent the temperature and salinity vertical background error correlations in FOAM sets the vertical length-scales at the surface equal to the mixed layer depth (based on the Kara et al., 2003 definition) in the background model field on each cycle (see Waters et al., 2015 for more details). We use a similar parameterization for zonal and meridional unbalanced velocity vertical length-scales but choose a different definition of mixed layer depth (MLD001, which is the shallowest depth where the density increases by 0.01 kgm-3 relative to the 10m density). The NMC error covariances for the full 3D unbalanced velocity fields were calculated for a single month, December, and the vertical background error correlations with the surface were compared to the monthly average Kara mixed layer depth and MLD001 (see Supplementary Figure 3). The Kara mixed layer depth was found to be deeper than the NMC scales would suggest, while MLD001 provided a good approximation to the vertical correlation length-scales at the surface.

The NMC background error standard deviations reduce with depth. We therefore use the tapering function shown in Equations 1, 2 to parameterize the subsurface unbalanced velocity standard deviations. This is similar to the function used to taper salinity background error standard deviations in NEMOVAR, but has been tuned to be consistent with the 3D NMC velocity error estimates. The parametrized background error standard deviations at each model grid point at each time are specified by:

 

 

where σ(z) is the background error standard deviation at each grid point and time, z is depth and σ(0) is the surface background error standard deviations estimated from the NMC estimates, as described earlier. L is the length scale for the tapering function and varies at each grid point and time. It is set equal to MLD001 away from the equator and is ramped up to 150 m at the equator to capture the larger background error standard deviations with depth in the tropics seen in the 3D NMC estimates. A comparison between the NMC estimates and parameterised background error standard deviations is provided in Supplementary Figure 4.




2.2.3 Initialising near-inertial oscillations

Single observation experiments were performed to determine how the model responds to balanced and unbalanced velocity increments. Figure 2 shows the results for a single idealised velocity innovation (0.5 m/s in the Eastward direction, 0.5 m/s in the Northward direction) in the middle of the South Atlantic. This innovation was fed into NEMOVAR and the resulting balanced/unbalanced increments are shown. The balanced increments have smaller magnitude and spread than the total increments, and the total increments are more isotropic in their structure. However, when the increment was included in the model during a 24-hour IAU step, the model response to the balanced and total increments in Figure 2 is very similar and looks largely like the structure and magnitude of the balanced increments. This suggests that the unbalanced component of the increments is not being retained by the model.




Figure 2 | The top plots show the total velocity increment in m/s (left) and balanced/geostrophic velocity increment in m/s (right) for an idealised single TSCV observation. The bottom plots show the model response in m/s to the total (left) and balanced (right) increments at the end of a 24 hour IAU step.



One reason for this is the way the increments are applied to the model during the IAU. Away from the equator and coasts, Near-Inertial Oscillations (NIO) are a large component of the ageostrophic (unbalanced) velocities. NIOs are rotations of the near surface velocity at the inertial period T=2π/f, normally caused by localised wind changes. In the Northern Hemisphere these rotations are clockwise and in the Southern Hemisphere they are anti-clockwise. During the IAU step, we nudge velocity increments into the model. In regions where NIOs dominate, the model responds to the unbalanced velocity perturbations in a similar way that it would respond to a perturbation in the winds, i.e. it rotates the perturbation at the inertial period. This effect is demonstrated in Figure 3 in the Mid-South Atlantic (the same location as the single observation shown earlier). In the top plot, an unbalanced velocity increment is applied with direct insertion. Direct insertion is where the full increment (green arrow) is applied at zero hours (the start of the day). The increment at zero hours is derived from the increment at 12 hours (cyan arrow) by rotating the increment by the inertial period. The blue arrows show how the model responds. We can clearly see that the model velocities begin to rotate anti-clockwise with a period of approximately 24 hours (the inertial period at this latitude). The middle plot shows how the model responds when the same unbalanced velocity increment is applied using IAU (this is how increments for other variables are applied in the FOAM system). In this case, the North Easterly increment is nudged in evenly throughout the first 24 hours. The model responds to the perturbation with a rotation (similar to the bottom plot), however, at each subsequent time step we force in a new North Easterly correction which partially cancels the model rotation. This results in a much smaller model response compared to the direct insertion case by the end of the IAU.




Figure 3 | The blue arrows show the model’s response to a North East unbalanced velocity increment valid at 12 hours (shown by the cyan arrow in the top plot). The green arrows show how the increment is applied to the model. In the top plot, the increment is rotated by the inertial period to 0 hours and applied using direct insertion. In the middle plot, the velocity increment is applied with the standard IAU over the first 24. In the bottom plot, the velocity increment is applied with a rotated IAU over the first 24 hours. The arrows are plotted using the same scaling.



We now assume that the unbalanced component of the velocity increment is largely due to errors in the NIOs. Rather than applying the unbalanced velocity increment in a standard IAU which dampens any NIO as just described, we propose a scheme which attempts to initialise the NIOs using a rotated IAU. The velocity increments are still nudged in throughout a 24-hour window, but the applied increment is rotated by the inertial period at each time step. The bottom plot in Figure 3 shows the model response to this rotated IAU. The model responds with a rotation which looks similar to the direct insertion plot; however, the magnitude of the model response is smaller in the IAU (first 24 hours) and slightly larger in the forecast (24-48 hours). Using an IAU is considered preferable to direct insertion as it reduces shocks to the model so this rotated IAU method will be tested for improving the initialisation of NIO in the experiments described later.

The above description describes the initialisation of NIOs using the unbalanced increments in an idealised single observation experiment. In the full assimilative system, we have numerous TSCV observations valid at different times in a single assimilation cycle. To initialise the NIOs using the method described in the previous paragraph, we need to know the time that the increments are valid for. Ideally, we would use a 4D-VAR approach to assimilate the velocity data at the correct time, but this is not currently practical within our system. Instead we create a field of increment times on the model grid by using the time from the nearest TSCV observation on each assimilation cycle. These increment times are then used to rotate the applied unbalanced increments in the IAU. To avoid ambiguity in the increment times, we remove any crossing satellite tracks within the assimilation window. We do this by only using the descending TSCV tracks (ascending tracks are discarded) and removing observations poleward of 60° N/S. Figure 4 shows an example of the observation times for a single day (top plot) and the corresponding increment-time field (bottom plot). Note that in our application of this method the balanced (geostrophic) increments are applied using a standard IAU (no rotation) and the full unbalanced increments are applied with the rotated IAU (i.e we assume that all the unbalanced corrections are due to errors in the NIOs).




Figure 4 | Time of day of the descending TSCV observations in the top plot and the resulting times of the increments (on the model grid) in the bottom plot.







2.3 Experiment description

The main OSSEs are summarised in Table 1. The Control experiment is the baseline experiment which only assimilates simulated observations for the standard observation types (SST, temperature and salinity profiles, SSH, SIC). The A-TSCV experiments use an identical set-up to the control, but in addition to assimilating the standard observation types, they assimilate the simulated TSCV observations described in section 2.1.2.2. Two A-TSCV experiments are run for the full control period: one where the TSCV observations only contain the mapping error (A-TSCV_No_Err in row 2) and one where the TSCV observations include both the mapping error and instrument error (A-TSCV_Instr_Err in row 3). In addition, two short experiments are run to assess the impact of initializing the NIOs, one using the standard IAU (A-TSCV_No_NIO_corr in row 4) and one using the rotated IAU (A-TSCV_NIO_corr in row 5).


Table 1 | Summary of OSSE experiments.



A spin-up run starting from the 1st of January 2009 and assimilating the control observations was performed. The run was started using ocean/ice restarts from the 1st of January 2009 from the AtlantOS control (Mao et al., 2020), the altimeter bias terms were initialised as zero. The main runs were then all started from the same spin-up run on the 21st of January 2009, in the A-TSCV experiments TSCV data were assimilated from this date. The main experiments were run until the end of 2009 with the main assessments carried out from the 25th February 2009 which allowed for a spin up with TSCV assimilation of more than a month. Seven-day forecasts were run every 7 days throughout the period.

The OSSEs are designed to differ from the NR by using different surface forcing, a different resolution model and different initial conditions to realistically represent the differences in our forecasting systems and the real ocean. While both systems use the NEMO ocean model, they are run at different NEMO versions and include some differences in the parameterisations, for example different lateral eddy diffusivity and horizontal bilaplacian eddy viscosity values (Mao et al., 2020) and the NR included a large scale correction for precipitation (Gasparin et al., 2019) which was not in the model used in the OSSEs. The OSSEs are run at ¼° resolution compared with the 1/12° resolution of the NR and the OSSEs are forced with ERA5 fluxes (Hersbach et al., 2020) with a 100% wind/current coupling coefficient. The fluxes differ from the near-real time operational ECMWF fluxes used to drive the NR (Shihora et al., 2022 give an example of the differences in surface pressure from ERA5 compared to operational ECMWF forcing). When comparing the daily mean 10m wind speed between the near-real time operational ECMWF and ERA5 fluxes, in many regions the percentage difference exceeds 25% (not shown). The surface velocity global RMSE of the control relative to the NR are 13/12 cm/s for zonal/meridional velocity. These global errors are broadly comparable with the assessment of near surface velocities from the global ¼° FOAM system using drifter-derived velocities in Aijaz et al. (2023), which found near surface RMSEs between 13 and 16 cm/s. This supports the realism of the OSSE design.





3 Results

In sections 3.1-3.3 we assess the results from A-TSCV_No_Err and A-TSCV_Instr_err while in section 3.4 we assess the impact of correcting the NIO with the TSCV assimilation.



3.1 Global results

Figure 5 shows the impact of assimilating TSCV data on global analysis RMSE as a function of depth/time. Statistics are calculated with respect to the NR on a common ¼ degree grid. The surface velocity RMSEs are reduced by approximately 23% in the A-TSCV_Instr_Err experiment and approximately 26% in the A-TSCV_No_Err experiment. The improvements to velocity with TSCV assimilation is largest at the surface, but there are improvements throughout the water column and these are larger in the A-TSCV_No_Err experiment. Temperature RMSEs are also improved below 300 m in A-TSCV_Instr_Err and throughout the water column in A-TSCV_No_Err, but there is little change to global salinity RMSEs. The SSH results show a significant improvement with TSCV assimilation of more than 0.5 cm (approximately 14%) to the global SSH RMSE.




Figure 5 | Global RMSE calculated over 25/02/2009 – 30/12/2009 for zonal velocity (top left), meridional velocity (top right), temperature (middle left), salinity (middle right) and SSH (bottom).



Figures 6 show the spatial difference in the RMSE between the A-TSCV_Instr_Err experiment and the control for July at the surface and 220m. Throughout this paper, blue indicates regions where the A-TSCV_Instr_Err experiment has a smaller RMSE than the control, while red indicates regions where the RMSE is larger than in the control. Significant reductions to surface velocity RMSE are seen in the equatorial region, the western boundary currents (WBC) and the Antarctic Circumpolar Current (ACC). The results show some small degradations to zonal surface velocities in the middle of the gyres. However, a similar degradation is not seen when assimilating the TSCV data without instrument error (see Supplementary Figure 5). This may suggest that the background and observation errors require further tuning to optimise the impact of the TSCV assimilation when realistic observation errors are present. At 220 m there are some small improvements to velocity RMSE along the equator and in the WBC and more significant improvements in the ACC. Regional results in the next section provide more detail on the improvement with depth in these regions. There are also some regions with degradations. These predominantly occur in the tropics, away from the equator but close to the coast. The dynamical balances prescribed in NEMOVAR to spread information between variables and in the vertical are not dynamically consistent in regions with complex vertical density structures. In general, the degraded areas appear to be tropical regions which have large freshwater input from rivers and are likely to have complex vertical salinity structures which distort the vertical propagation of the increments. For both SST and SSH, RMSEs are improved primarily in the WBCs and ACC. There are also some improvements to SSTs in the region of the tropical instability waves in the East Tropical Pacific and some degradations in the regions where the 220m velocities are degraded.




Figure 6 | Spatial plot of A-TSCV_Instr_Err RMSE minus control RMSE calculated between the 25t h of February and 30th of December for surface zonal velocity (top left), surface meridional velocity (top right), 220 m zonal velocity (middle left), 220m meridional velocity (middle right), SST (bottom left) and SSH (bottom right). Blue areas indicate regions where the A-TSCV exp has a lower RMSE than the control while red indicates regions where the RMSE is higher.



We produced 7-day forecasts every 7 days for the control and OSSEs. The forecasts are assessed against the Nature Run and in Figure 7 the global surface velocity RMSE is plotted as a function of forecast lead time. The improvement to the surface velocities is well retained throughout the 7-day forecast. In fact, the experiments which assimilate TSCV data with instrument error have a lower zonal velocity RMSE at forecast day 6, and a lower meridional velocity RMSE at forecast day 5 than the control has at forecast day 1. This implies that we get a 4-day gain in global velocity forecast RMSE accuracy when assimilating TSCV data without instrument error. When instrument error is not included in the TSCV data, there is a 5-day gain in global velocity forecast RMSE accuracy.




Figure 7 | Global forecast RMSE for surface zonal (top) and meridional (bottom) velocity, calculated over 25/02/2009 – 30/12/2009.






3.2 Regional results

In this section we will focus on results from a tropical region and Western Boundary Current (WBC) region. Figure 8 shows the mean surface speeds in July in the NR and the monthly mean errors in the control and A-TSCV_Instr_Err (calculated relative to the NR) for the Tropical Atlantic. There is a good reduction in the errors at the equator in A-TSCV_Instr_Err. In particular, the North Brazil current and northern branch of the South Equatorial Current, which is the Westward current between 0° and 5° North, are improved. This is a region where we would expect the TSCV assimilation to have a significant impact on the predictability of currents. There is no geostrophic balance near the equator, which means that velocities are not constrained in this region by data assimilation in the control experiment.




Figure 8 | Mean speed at surface in July for the NR (top) and monthly mean error in surface speed for the control (middle) and A-TSCV_Instr_Err (bottom).



The RMSE statistics as a function of depth for the Tropical Atlantic region in Figure 9 provide more of a mixed picture. While there are improvements to velocity RMSE with TSCV assimilation in the top 100 m, there are degradations below that. From Figure 6 we see that the main degradations to the zonal velocity RMSE in the Tropical Atlantic at 220m depth occur away from the equator and primarily in the Amazon outflow region. Similar results are seen in the SST results in Figure 6. These results suggest that degradations in the Amazon outflow region are largely responsible for the degradations to the statistics seen in the Tropical Atlantic results below the surface layers.




Figure 9 | Tropical Atlantic RMSE calculated over 25/02/2009 – 30/12/2009 for zonal velocity (top left), meridional velocity (top right), temperature (bottom left) and salinity (bottom right). The Tropical Atlantic statistics are calculated for region 8 in Figure 6 from Mao et al. (2020).



Figure 10 shows the monthly mean speeds and mean speed errors for the South Atlantic WBC region in July. From the mean error plots, the control significantly underpredicts the strength of the Malvinas/Falkland current. However, this is substantially improved in the A-TSCV_Instr_Err experiment. Altimeter assimilation is unable to correct the Malvinas/Falkland current in part due to the altimeter bias correction scheme. The error in the Malvinas/Falkland current is a persistent, stationary feature in the control experiment and the data assimilation bias correction scheme attributes biases with these temporal and spatial scales to an observation bias in the MDT. Because the data assimilation scheme sees this error as an observation bias, it does not attempt to correct this feature with SSH assimilation. A similar behaviour has been observed in the FOAM system when using real observations, where model biases are aliased in to the MDT altimeter bias term. The assimilation of TSCV data compliments the altimeter assimilation by significantly improving the correction to currents (and SSH) in regions where these features occur. In addition to improving the Malvinas/Falkland current, TSCV assimilation improves the region around the ACC, Drakes Passage and Zapiola rise (a subsurface plateau at 45° W, 44° S with a strong anticyclonic circulation around it, Saraceno et al, 2009).




Figure 10 | July monthly mean current speed at the surface for NR (top left) and monthly mean error in the control (bottom left) and A-TSCV_Instr_Err (bottom right).



The RMSE statistics for the South Atlantic WBC region are shown in Figure 11. There are improvements throughout the water column for velocity with a reduction to the RMSE of around 27% at the surface and 20% below 1500 m. The improvements at depth (below a few hundred metres) are due only to the correction of the geostrophic velocities. The baroclinic component of the geostrophic velocity correction is applied down to 1500 m – below this depth the improvements are due to the barotropic component of the geostrophic velocity correction. The results from these OSSEs suggest that the TSCV assimilation is able to make significant corrections to the barotropic geostrophic velocities in the WBC and ACC regions which lead to improved velocities down to the bottom of the ocean. A good improvement is also seen in the temperature RMSEs, particularly below 100 m depth. There are also improvements to salinity down to 1500 m. The salinity RMSE is reduced by approximately 5% near the surface and by approximately 20% at 1500 m. The SSH RMSEs (not shown) are reduced by more than 1 cm with TSCV assimilation.




Figure 11 | South Atlantic WBC RMSE calculated over 25/02/2009 – 30/12/2009 for zonal velocity (top left), meridional velocity (top right), temperature (bottom left) and salinity (bottom right). The South Atlantic WBC statistics are calculated for region 10 in Figure 6 from Mao et al. (2020).






3.3 Lagrangian assessment

The OceanParcels tool (Delandmeter and van Sebille, 2019) has been used to perform a Lagrangian assessment of the A-TSCV experiments. Particles were seeded globally at a ¼ degree resolution and were propagated for 6 days from the 9th September 2009 using the model daily analysis velocity fields. The separation of the particles from the NR particles were calculated on each day. Figure 12 shows the percentage of particles within 50 km of the NR particles for 1-6 advection days. The number of particles within 50 km separation after 6 days is increased by 9% in the A-TSCV_Instr_Err experiment relative to the control and there is a 1.5-day gain in prediction accuracy. A 2-day gain in prediction accuracy is seen in the A-TSCV_No_Err experiment. From spatial plots (not shown) the improvement is largely in the equatorial region, WBC and ACC, similar to the results in Figure 6.




Figure 12 | Percentage of particles within 50km of the NR particles for different advection times.






3.4 Near inertial oscillation correction results

In this section we assess the impact of TSCV assimilation on NIOs. In section 2.2.3 we showed that using a standard IAU can lead to a cancelling effect in regions where NIOs dominate. In order to assess the impact of TSCV assimilation on the NIOs in our experiments, we performed a spectral temporal analysis of the clockwise component of the surface velocities in the Northern Hemisphere and counter-clockwise component of the surface velocities in the Southern Hemisphere along latitudinal bands. At each latitudinal band we extracted the spectral power at the inertial period for that latitude. These are plotted as a function of latitude and are shown in Figure 12 (left plots). We see that the behaviour is quite different in the Northern and Southern Hemisphere. In the Southern hemisphere the NR has substantially more power at the inertial frequency than the FOAM experiments which suggests that the NIOs are unpredicted in the FOAM experiments in this region. In the Northern Hemisphere the NR results are more comparable with the FOAM experiments. The free run at ¼° resolution has more power at the inertial frequency than the control run at nearly all latitudes. This implies that data assimilation generally (not just assimilation of TSCV data) leads to a dampening of the NIOs in the model.

When TSCV data are assimilated using the standard IAU (A-TSCV_no_NIO_corr), the spectral power at the inertial frequencies generally increases and is closer to the free run. However, the spectral power at the inertial frequency is significantly larger in the A-TSCV_NIO_corr experiment. This implies that the rotated IAU is able to initialise NIOs through the TSCV assimilation. In the Southern Hemisphere this produces results closer to the NR. However, in the Northern Hemisphere the spectral power at the inertial frequencies over-shoots the NR at some latitudes. The different performance of the rotated IAU in the two hemispheres could be related to seasonal variations in the strength of the NIOs. Spatial assessment (not shown) of the spectral power of the clockwise/anti-clockwise velocity component at the inertial frequency calculate over 10 degree boxes demonstrates that in March 2009, the NR has larger magnitude NIOs in the Southern Hemisphere compared to the Northern Hemisphere. This is consistent with results in D’Asaro (1985). They showed that energy flux to the inertial motion is lower in the presence of a deeper mixed layer depth. In March, while we expect the wind forcing to be strong in the Northern Hemisphere, the mixed layer is deep and this reduces the energy flux to the inertial motion. Interestingly, Watanabe and Hibiya (2002) suggest that the dependence of the energy flux to the inertial motion on mixed layer depth is more important in the Northern Hemisphere, so we may expect to see less of a seasonal cycle in the Southern Hemisphere. These spatial and temporal variations in the strength of the NIOs may also impact the proportion of the ageostrophic velocity increments which can be attributed to NIOs. In future work, the amount of weight given to NIO corrections should be further investigated. The experiments should also be extended to cover a longer period to allow us to assess the impact of the seasonal cycle.

When we compare the RMSE statistics of zonal and meridional surface velocity for March from the A-TSCV_No_NIO_Corr and the A- TSCV_NIO_Corr experiments, we see a negligible impact on results. However, if we focus on the sub-daily variability in the velocity fields we see larger impacts. We calculated a residual surface velocity as hourly surface velocity minus the daily mean surface velocity and then calculated the RMSE of this residual relative to the equivalent values from the NR. Figure 13 (right plots) show the percentage improvement in the residual zonal surface velocity RMSE relative to the control run. In the Southern hemisphere, the A-TSCV_NIO_Corr produces a good improvement to the residual zonal surface velocity RMSE relative to the A-TSCV_no_NIO_Corr and control experiment. The results are more mixed in the Northern Hemisphere, with a small overall degradation. Given that the spectral results suggest a larger under-prediction of the NIOs in the Southern Hemisphere, it is consistent that this is a region where we see improvements in the residual zonal surface velocity RMSE.




Figure 13 | Left plots show the sum of spectral power along latitude bands of the clockwise/counter clockwise component of the surface velocities at the inertial frequency as a function of latitude for March 2009. Top left is the clockwise component in the Northern Hemisphere (20N to 60N), bottom left is the counter-clockwise component in the Southern Hemisphere (20S to 60S). Right plots show the percentage improvement relative to the control of the residual surface zonal velocity RMSE in the Northern Hemisphere (top) and Southern Hemisphere (bottom). The relative surface velocity is calculated from the hourly surface velocity minus the daily mean surface velocity.







4 Discussion and conclusion

In this study we have used OSSEs to assess the potential impact of assimilating satellite TSCV observations in a global ocean forecasting system. The assimilation of synthetic TSCV data in this framework was shown to significantly improve the prediction of surface currents with a reduction in the analysis RMSE of approximately 23%. This improvement was also shown to persist throughout a 7-day forecast with 4-day gain in global velocity forecast RMSE accuracy when assimilating TSCV data. Lagrangian assessment also demonstrated improvements in predictability with a 1.5-day gain in Lagrangian drift metrics. In addition, the TSCV assimilation improves the prediction of global subsurface currents. These improvements are all the way down to the bottom of the ocean in the Western Boundary current regions due to corrections to the barotropic geostrophic velocities. We also see improvements to global SSH and temperatures with the assimilation of TSCV, with global SSH RMSE reduced by ~14%.

Spatial assessments demonstrate that the largest improvements are in the western boundary currents, ACC and equatorial currents. There are some localised areas where subsurface results are degraded which appear to be coastal regions in the tropics with large freshwater input e.g the Amazon outflow. It is likely that the multivariate balances prescribed in NEMOVAR do not adequately describe the balances in these regions where there are complex vertical salinity structures. This impact could be mitigated in future work by increasing the observation error or improving the balance relationships in these regions. In addition, we see some small degradations to the zonal surface currents in the gyres when assimilating the TSCV data with instrument errors included and this could indicate that the background and observation errors require further tuning. Away from the equator, the majority of the TSCV assimilation impact comes from the correction of geostrophic velocities. Using a single observation experiment we demonstrated that the unbalanced (ageostrophic) velocity increments are not well retained in the model. We’ve proposed a new method to initialise NIO with the velocity increments to improve the retention of unbalanced velocity corrections. A short set of experiments were performed to test this method. The results show an increase in power at the inertial frequency which implies that NIO are being initialised by the assimilation. This has a positive impact on the residual surface current RMSE in the Southern Hemisphere but a more mixed impact on the Northern Hemisphere. This could be due to too much weight being given to the unbalanced velocities in the assimilation in some regions. Further tuning of the assimilation error covariances could improve the overall impact.

In the TSCV assimilation experiments we compared the impact of assimilating TSCV observations with and without instrument error. The benefits of the TSCV assimilation are slightly decreased with the inclusion of instrument error, but we still see some substantial improvements to global velocity, temperature and SSH prediction. Realistic satellite TSCV observations are likely to include additional correlated observation errors (Gaultier and Ubelmann, 2024). These errors are not investigated in this study but should be considered in future work. Improvements to retrieval techniques may be able to reduce some of these errors and recent developments to data assimilation techniques such as the implementation of correlated observation errors in variational schemes (e.g Goux et al., 2023) should help to reduce the impact of the remaining observation errors.

The OSSEs are performed at ¼° resolution, while many operational ocean forecasting systems run at higher resolutions (the global FOAM system for instance has a 1/12° resolution). Using a medium resolution model for OSSEs is a valid approach when assimilating novel observation types and allows for the development of the system without large computational costs. However subsequent TSCV OSSEs could be run at higher resolutions to better demonstrate the impact of TSCV assimilation on cutting edge and future ocean forecasting systems. Ideally this would require a higher resolution NR to maintain realistic differences between the two systems.

OSSEs assimilate synthetic observations generated from a model run, and this approach has some limitations. In this study, the model used to generate the TSCV observations did not include tides or Stokes drift and the model resolution restricts its ability to resolve sub-mesoscale processes. Real satellite TSCV observations would include these processes and any future OSSEs should aim to better represent these. This would give us a better understanding of the impact of assimilating corrections for these energetic ageostrophic processes. However, the synthetic TSCV observations assimilated in these OSSEs still represent a substantial proportion of the “real” TSCV and provide us with valuable insight into the feasibility and potential benefit of assimilating TSCV data.

Overall, this study has demonstrated that we have the capability to assimilate simulated satellite TSCV observations and that they have potential to significantly improve prediction of the ocean state in global ocean forecasting systems. The results from this study support the case for future satellite missions with TSCV observing capability.
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The ocean circulation is typically constrained in operational analysis and forecasting systems through the assimilation of sea level anomaly (SLA) retrievals from satellite altimetry. This approach has limited benefits in the Arctic Ocean and surrounding seas due to data gaps caused by sea ice coverage. Moreover, assimilation of SLA in seasonally ice-free regions may be negatively affected by the quality of the Mean Sea Surface (MSS) used to derive the SLA. Here, we use the Regional Ice Ocean Prediction System (RIOPS) to investigate the impact of assimilating Absolute Dynamic Topography (ADT) fields on the circulation in the Arctic Ocean. This approach avoids the use of a MSS and additionally provides information on sea level in ice covered regions using measurements across leads (openings) in the sea ice. RIOPS uses a coupled ice-ocean model on a 3-4 km grid-resolution pan-Arctic domain together with a multi-variate reduced-order Kalman Filter. The system assimilates satellite altimetry and sea surface temperature together with in situ profile observations. The background error is modified to match the spectral characteristics of the ADT fields, which contain less energy at small scales than traditional SLA due to filtering applied to reduce noise originating in the geoid product used. A series of four-year reanalyses demonstrate significant reductions in innovation statistics with important impacts across the Arctic Ocean. Results suggest that the assimilation of ADT can improve circulation and sea ice drift in the Arctic Ocean, and intensify volume transports through key Arctic gateways and resulting exchanges with the Atlantic Ocean. A reanalysis with a modified Mean Dynamic Topography (MDT) is able to reproduce many of the benefits of the ADT but does not capture the enhanced transports. Assimilation of SLA observations from leads in the sea ice appears to degrade several circulation features; however, these results may be sensitive to errors in MDT. This study highlights the large uncertainties that exist in present operational ocean forecasting systems for the Arctic Ocean due to the relative paucity and reduced quality of observations compared to ice-free areas of the Global Ocean. Moreover, this underscores the need for dedicated and focused efforts to address this critical gap in the Global Ocean Observing System.
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1 Introduction

Satellite altimeters have been providing near-global estimates of sea surface height (SSH) for the last 30 years (Abdalla et al., 2021). Satellite measurements of SSH are usually processed to account for instrumental errors and geophysical corrections. Additionally, they are referenced to a mean sea surface (MSS) to provide sea level anomalies (SLA) that are routinely assimilated in operational ocean analysis systems to constrain the mesoscale and basin-scale circulation (Le Traon et al., 2015; Tonani et al., 2015; Jacobs et al., 2021). Indeed, several studies show that it is possible to provide reliable predictions of the location and properties of ocean mesoscale eddies through this approach (e.g. Smith and Fortin, 2022).

The assimilation of satellite altimetry has limited benefits in the Arctic Ocean and surrounding seas due to data gaps caused by the presence of sea ice. However, recently developed methods (Prandi et al., 2021), now allow sea level to be estimated within leads (openings) in the ice to provide sporadic measurements of water level even in ice-infested waters. This could lead to fundamental changes in our ability to predict polar ocean circulation.

An additional challenge to assimilate satellite altimetry over the Arctic Ocean is related to the need for an MSS estimate as part of the observation processing (Pujol et al., 2018). The removal of the MSS is necessary to account for spatial variations in the geoid, which are not usually represented in numerical models that assume perfectly spherical geometry. The SLA retrievals are then assimilated in numerical models through the addition of a Mean Dynamic Topography (MDT) estimate (e.g. Rio et al., 2014) to provide an Absolute Dynamic Topography (ADT) field comparable to that produced from the model as

 

This approach will be referred to hereafter as the classical approach. However, due to the seasonal variability of sea ice coverage, the MSS may be biased towards summer conditions in the Arctic Ocean, or simply unavailable in areas that are ice covered throughout the year. In addition, recent years have seen an increase in areas of open water across the Arctic Ocean in summer. As a result, the accuracy of the existing MSS and MDT solutions may be decreased in these areas, thereby limiting the potential impact of satellite altimetry in constraining sea level variability.

In the Arctic, the classical approach of retrieving ADT by first calculating SLA and then adding an MDT is therefore challenged. Over recent years, estimates of the Earth’s gravity field have been improved thanks to the launch of gravity dedicated space missions (Pail et al., 2011), such as the Challenging Minisatellite Payload (CHAMP; in 2000), the Gravity Recovery and Climate Experiment (GRACE; in 2002) and the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE; in 2009). Today, thanks to the success of the GOCE mission, the marine geoid provided by the GOCE geoid models is accurate at the centimeter level at spatial scales between 100 and 125 km (Bruinsma et al., 2014). For the first time since the beginning of altimetry, it is therefore now possible to consider subtracting the geoid height from the altimeter SSH measurements directly along the altimeter tracks to provide ADT (referred to hereafter as the direct approach), as;

 

Some studies have used direct ADT to evaluate model differences from altimetry and have even demonstrated the possibility to assimilate direct ADT (e.g. Androsov et al., 2019; Xu et al., 2022). However, the seasonal presence of sea ice remains a significant limitation over the Arctic Ocean (Müller et al., 2019). Prandi et al. (2021) developed a new processing technique to use sea level observations from several satellite missions for both ice-covered and open ocean areas. Here, we build on the work of Prandi et al. (2021) and use the same input data (including three altimetry missions: SARAL/AltiKa, Sentinel-3A and Cryosat-2) but rather produce gridded fields of ADT directly using an estimate of the geoid. We then examine the impact of assimilating these direct ADT fields in a high-resolution operational ice-ocean prediction system covering the Arctic Ocean (domain shown in Figure 1). The system employed is the Regional Ice Ocean Prediction System (RIOPS; Smith et al., 2021) developed and operated by Environment and Climate Change Canada (ECCC).




Figure 1 | RIOPS model domain (shown on the model grid) extending from 26°N in the Atlantic Ocean, over the Arctic Ocean and down to 44°N in the Pacific Ocean. The central Arctic region used for power spectral density analyses is shown as a black rectangle (bounded by [75.29°N, 153.48°W], [77.94°N, 176.13°E], [80.24°N,126.77°W], [85.73°N, 166.24°W]). The Beaufort Sea region used for innovation statistics is shown as a red rectangle (bounded along latitude-longitude lines by [160°W, 123°W, 67.0°N, 80.2°N]).



The main objective of this study is to assess the impact of assimilating this ADT on surface currents and volume transports across the Arctic Ocean using a multi-year reanalysis. In particular, we aim to address the following questions:

	What is the impact of assimilating satellite altimetry data under sea ice?

	Do large-scale biases in the MDT affect the usefulness of assimilating satellite altimetry data in the Arctic Ocean?

	Does the assimilation of a direct ADT have an impact on Arctic Ocean circulation features?

	Which is more advantageous for the Arctic Ocean, assimilating a lower-resolution gridded direct ADT or a higher-resolution SLA that requires an MDT estimate?



The subsequent impact of changes in circulation on the drift of plastics throughout the Arctic Ocean is evaluated in a companion paper (Morales Maqueda et al., in prep.).

Section 2 provides a description of the methodology used to construct the direct ADT fields, including the choice of geoid, input data and Optimal Interpolation (OI) parameters, as well as a comparison with SLA fields produced by Prandi et al. (2021). An evaluation of the direct ADT fields is presented in Section 3. Section 4 provides a description of the RIOPS modelling and assimilation systems, including descriptions of several modifications to RIOPS required to make use of satellite altimetry in ice-infested areas and also to adapt the system to assimilate ADT in place of SLA. Several approaches were also examined with regards to the optimal use of the direct ADT fields. These include modifications to observation errors, “bogus” data and the filtering of background error covariance matrices. Section 5 presents an evaluation of the multi-year reanalysis produced using the assimilation of direct ADT fields, in terms of impacts on innovation statistics, circulation, sea ice drift and water level. A summary and conclusions are presented in Section 6.




2 Computation of direct ADT fields



2.1 Choice of geoid

A critical component of this study is the choice of a geoid product well-adapted for direct ADT computation. Geoids correspond to the equipotential gravity field surface. Depending on the construction, they can be separated into two categories. The “Satellite-only” geoids are calculated using only gravimetric satellite missions (such as GOCE and GRACE). GOCE provides finer-resolution measurements, with spatial resolutions of up to 100 km. “Combined” geoids are calculated by adding altimetry satellite missions to the gravimetric ones improving small scale geoid gradients.

In the polar regions, satellite observations have limited spatial coverage due to their orbits. GRACE samples up to 89°N while GOCE only provides measurements up to 83.5°N. We therefore expect a reduction in the spatial resolution of the geoid at latitudes over 83.5°N where observations from GOCE are not available.

There are various geoids available (http://icgem.gfz-potsdam.de/tom_longtime), five of which were chosen for this study: GOCO05c (Gravity Observation Combination; Fecher et al., 2017), GO_CONS_GCF_2_TIM_R6e (Zingerle et al., 2019), EGM2008 (Earth Gravitational Model; Pavlis et al., 2012), EIGEN-6C4 (European Improved Gravity Model of the Earth by New Techniques; Förste et al., 2014), and GOCO06s (Kvas et al., 2021). Table 1 summarizes the data ingested in each of these five geoids. Direct ADT fields produced using each of these geoids (methodology explained in the next section) are presented in Figure 2. The direct ADT fields are similar at basin scale showing the major ocean features of the Arctic Ocean (Beaufort Gyre and Transpolar Drift). However, at smaller scales, features in the ADT fields dependent on the geoid computation method can be seen. With the satellite-only geoids, we observe small non-physical patterns and large circular patterns for latitudes over 80°N. Fewer patterns are observed with geoids that use both satellite altimetry and in-situ data. For all the geoids, we observe non-physical patterns for latitudes over 83.5°N where there are no GOCE observations.


Table 1 | List of the five geoids that were used for the comparisons.






Figure 2 | Satellite ADT maps (in m) on 31 December 2016 using different geoid products (from left to right: GOCO05c, GO_CONS_GCF_2_TIM_R6e, EGM2008, EIGEN-6C4, GOCO06s). The mapping procedure is described in Section 2.2.



To compute direct ADT fields, a geoid that provides the smallest variance in space with respect to the altimetry data is required to reduce residual non-physical patterns on the ADT fields. Indeed, the smoothest ADT fields are obtained with the geoids EGM-2008 and GOCO05c. Small patterns are still visible with the geoid EGM-2008 in the Beaufort and Laptev seas. We therefore use the geoid GOCO05c with the smoothest direct ADT fields for this study.

Geoid GOCO05c is constructed by ingesting both satellite altimetry data (coming from DTU13 MSS) and ground data. Therefore, this geoid is not completely independent of the input altimetry data we use for the direct ADT fields. However, its use minimizes the erroneous patterns observed with the other geoids as it is more coherent with satellite altimetry, especially for latitudes poleward of 83°N.




2.2 Production of gridded direct ADT fields

Direct ADT fields (Equation 2) are computed by combining along-track ADT data from three satellite altimeters. The characteristics of the satellite data used as inputs are summarized in Table 2. The altimetry along-track processing performed is similar to the one described in more detail in Prandi et al. (2021). It consists of classifying satellite observations corresponding to leads and open ocean, as well as editing and cross calibrating the data. The other geophysical filtering steps (e.g. for tides, dynamic atmospheric correction, etc…) are also the same as used by Prandi et al. (2021). The main difference with Prandi et al. (2021) is the removal of the geoid from the SSH to provide ADT, as opposed to the classical approach using an MSS. By applying these steps, we obtain cross-calibrated along-track ADT data from three altimetry missions from 50°N to 88°N. These data are combined through optimal interpolation (OI; Bretherton et al., 1976) to create gridded direct ADT fields. The OI scheme considers a spatio-temporal correlation scale to select along-track data around the estimation point to smooth the data and reduce geoid errors. The spatial correlation scale must be increased compared to SLA computation to take into account the geoid errors included in the direct ADT fields. GOCE spatial scale resolution is on the order of 125 km. As a result, we use a 250-km spatial correlation scale to mitigate the geoid errors and provide improved homogeneity. The temporal correlation scale is not changed from that used by Prandi et al. (2021) and is around 10 days in the Arctic Ocean.


Table 2 | Satellite altimetry input data characteristics.



Combining the three satellite along-track data sources through OI we obtain direct ADT fields with a grid-resolution of 25 km every 3 days for the period 07/2016 to 07/2020 covering the region from 50°N to 88°N. The map of mean ADT (not shown) shows the major dynamic topographic features of the Arctic Ocean (e.g. Transpolar Drift, Beaufort Gyre). The temporal evolution of the spatial mean (not shown) is coherent with the roughly 10 cm amplitude seasonal cycle of mean sea level in the Arctic Ocean (Armitage et al., 2016).





3 Evaluation of ADT fields



3.1 Classical ADT fields based on SLA and MDT

We compare the direct ADT fields (Equation 2) with the classical ADT fields (Equation 1) corresponding to Prandi et al. (2021) processing. Power spectral density (PSD) is computed for direct ADT and classical ADT fields (Figure 3) over the Central Arctic region (shown as a black rectangle on Figure 1). The PSD for direct ADT decreases for spatial scales below 200 km compared to classical ADT fields due to the smoothing applied to consider geoid errors and provides an indication of the effective resolution.




Figure 3 | Power spectral density for direct ADT and classical ADT fields in the central Arctic region shown as a black rectangle in Figure 1.



Compared to classical ADT fields, direct ADT fields show increased variance north of 83°N where GOCE observations are not available and where geoid errors remain present (Figure 4). For these latitudes, the GOCO05C geoid uses information from satellite altimetry and ground data to reduce geoid errors. However, there are still residual errors (not shown) compared to the ones present in MSS and MDT fields (i.e. those assimilating satellite altimetry data up to 88°N). The variance of the direct ADT fields is also increased in a small area south of the new Siberian islands (near the strait between Laptev and East Siberian Seas). Differences between the MSS and the geoid are observed in this region (not shown) possibly indicating geoid errors. Differences between the GOCO05C geoid and other geoids don’t show any significant differences. Therefore, this indicates that the same increased variance should be expected with other geoids.




Figure 4 | Temporal variance of the ADT fields (left), the classical ADT maps (middle) and the difference (right).






3.2 Tide gauge data

In-situ observations are scarce in the seasonally ice-covered Arctic Ocean. Here, we selected one Gloss/Clivar tide gauge (TG) at Prudhoe Bay where there are hourly data covering the study period in a seasonally ice-covered region (Caldwell et al., 2015). To compare to sea level from satellite altimetry, the TG sea level is corrected for the ocean tide, the Dynamical Atmospheric Correction and for the glacial isostatic adjustment (accounting for the ongoing movement of land). The corrected tide gauge sea level is compared to the altimetry ADT fields averaged 50 km around the TG. The timeseries are plotted in Figure 5. Direct ADT is well correlated with the TG sea level at a monthly timescale, including when the region is ice-covered. Direct ADT and classical ADT timeseries show similar correlations with the TG timeseries. The correlation and standard deviation of the differences between the altimetry and the in-situ time series show a slightly better agreement for the classical ADT product compared to the direct ADT product, due likely to the higher spatial resolution of the classical ADT fields.




Figure 5 | Comparison of sea level from altimetry from direct ADT (red) and classical ADT fields (blue) with Prudhoe Bay tide gauge sea level. Time periods for which the sea ice concentration (SIC) was greater than 50% are shown with a green background. The correlation and standard deviation of differences for both direct ADT and classical ADT fields with respect to the tide gauge observations is provided in the legend.







4 Ocean analysis system description

The main objective of this study is to make better use of satellite altimetry to produce a more accurate estimate of currents in the Arctic Ocean. The approach used is to modify an existing state-of-the-art operational ice-ocean analysis system to assimilate the direct ADT product (described in Section 2). The system employed is the Regional Ice Ocean Prediction System (RIOPS) version 2.2 developed and operated by Environment and Climate Change Canada (ECCC; Smith et al., 2021; Surcel Colan et al., 2021). Several modifications to the system were required (presented in Section 4.2) to make use of satellite altimetry in ice-infested areas as well as to adapt the system to assimilate ADT fields in place of SLA (together with an MDT). Several approaches were examined in regards to the optimal use of the direct ADT fields (Section 4.3). These include modifications to observation errors, “bogus” data and filtering of background error covariance matrices. Using this modified approach a multi-year reanalysis is produced that assimilates the direct ADT fields.



4.1 Description of RIOPS

RIOPS produces operational analyses and forecasts on a domain stretching from 26°N in the Atlantic Ocean, over the Arctic Ocean and down to 44°N in the Pacific Ocean (Figure 1). RIOPS products are used to support a number of operational needs such as: ice services, search and rescue, environmental emergency response, maritime safety and national defense. RIOPS uses the NEMO primitive equation ocean model (Madec et al., 2019) on the CREG12 grid (Dupont et al., 2015; Roy et al., 2015; Chikhar et al., 2019), with a nominal resolution of 3-8 km. RIOPS uses 75 vertical levels on a z-coordinate with a vertically-varying level scheme. Astronomical tides are forced at the RIOPS boundaries with self-attraction and loading terms applied. The Los-Alamos Community Ice CodE (CICE; Hunke, 2001; Lipscomb et al., 2007; Hunke and Lipscomb, 2008) sea ice model is used with 10 ice thickness categories.

The System d’Assimilation Mercator version 2 (SAM2) analysis scheme is used to constrain the ocean fields. SAM2 is a multi-variate reduced-order Extended Kalman Filter, used here to assimilate SLA, sea surface temperature (SST) along with in situ temperature and salinity profile data (e.g. Wong et al., 2020). A detailed description of SAM2 is available in Lellouche et al. (2013); Lellouche et al. (2018), with particular modifications for RIOPS provided in Smith et al. (2016); Smith et al. (2021). A brief description of relevant details is provided below.

The model background error is specified using a set of static multi-variate fields obtained from sub-monthly anomalies of a 10-year hindcast. The RIOPS delayed-mode analyses used here employ a 7-day assimilation window with analysis increments applied evenly using an Incremental Analysis Updating (IAU) approach (Bloom et al., 1996; Benkiran and Greiner, 2008). A multi-scale approach is used for temperature and salinity profiles whereby large-scale corrections from a 3DVar analysis are applied using mean innovations from the previous 4 cycles. The MDT used in the observation operator for SLA is the hybrid product described by Lellouche et al. (2018). This product combines the CNES-CLS13 MDT (Rio et al., 2014) with mean innovations calculated from a multi-decadal ocean reanalysis. An online sliding-window harmonic analysis is used to remove tidal variations as part of the observation operator for SLA (Smith et al., 2021). This approach permits non-stationary tides due to the seasonal presence of sea ice. The inverse barometer is also removed as part of the observation operator for SLA to account for the local model response to atmospheric pressure forcing. SLA observations assimilated include those typically assimilated in the operational system, namely: Cryosat2, Jason3, Saral/Altika, and Sentinel 3a/3b.

For SST, gridded L4 analyses produced by ECCC are used (Brasnett and Colan, 2016). SAM2 is also blended with a 3DVar ice analysis produced by ECCC to constrain the sea ice cover (Buehner et al., 2013, Buehner et al., 2016) using the Rescaled Forecast Tendencies method of Smith et al. (2016) to adjust the 10 ice thickness categories based on a total ice concentration increment. The L4 SST analysis is modified prior to assimilation to be equal to the freezing point of seawater (using the sea surface salinity from the previous analysis) for all points for which the sea ice concentration analysis has a value greater than 0.25. This ensures a balance between the ocean analysis and sea ice cover and avoids spurious ice melt and formation.




4.2 Adaptation of RIOPS for assimilation of direct ADT fields

In order to directly assimilate gridded L4 ADT observations within SAM2, several modifications of the system were made and evaluated. First, the system had to be adapted to assimilate ADT instead of SLA (Section 4.2.1) and the impact in ice-free waters evaluated. Next, a number of changes were required to allow for assimilation of satellite altimetry in ice-covered waters (Section 4.2.2).



4.2.1 Assimilation of ADT in ice-free waters

Before addressing impacts in ice-covered waters, it is important to first assess the impact of assimilating direct ADT fields in ice-free waters where SLA is normally used. Some impact is expected for a few reasons. First, the direct ADT is gridded (L4) rather than the along-track (L3) product currently used for SLA assimilation in RIOPS. As the direct ADT is on a 25-km grid (i.e. close to the resolution of the ocean analysis grid) no decimation (“superobbing”) of the data is required. The use of an L4 product will impact the observational coverage and number of observations though, as well as include spatially-correlated observation errors. Second, the reduced variance for small spatial scales in direct ADT (as compared to SLA) may reduce the lower limit for constrained scales in the resulting ocean analysis (e.g. Jacobs et al., 2021). Finally, in order to assimilate ADT in ice-free waters the observation operator was also modified to remove the application of the MDT used when assimilating SLA data.




4.2.2 Assimilation of altimetry under ice

In the standard version of SAM2 several approaches are used to limit the potential impact of satellite altimetry observations under ice. First, the SLA observations are rejected under ice based on an SST criterion (linear increase of observation error from -1°C to -1.7°C and rejection for SST< -1.7°C). Second, “bogus” observations with innovation values equal to zero are applied under ice to ensure the analysis does not vary from its background. To permit the assimilation of altimetry under ice, both the SST rejection criteria and bogus observations are deactivated. Note that an additional observation error is also applied to account for MDT error, with values greater than 20 cm in many areas of the Arctic Ocean. This is not applied when assimilating the direct ADT, rather the ADT observation errors described in Section 4.3.2 are applied.

To further optimize the use of direct ADT fields by RIOPS, several approaches are investigated and presented in the next section.





4.3 Optimization of ADT assimilation

To make the best use of direct ADT fields, several modifications to the assimilation system are desirable. In particular, we have investigated the potential impact of additional filtering of background error (Section 4.3.1), spatially-varying observational error for ADT (Section 4.3.2) and modification of the observation operator (Section 4.3.3).



4.3.1 Spatial filtering of background error

In RIOPS, background error is specified in terms of roughly 300 multi-variate anomalies obtained from a 10-year model simulation following the method described in Lellouche et al. (2013). Anomalies are calculated as the difference between daily-mean model outputs and a 45-day running mean. As such, they can be considered to represent the sub-monthly variability in the system. These anomalies are subsequently filtered using 49-passes of a 2D-Shapiro filter to reduce spurious fine-scale increments. This number of passes was found to be appropriate for use with conventional SLA observations (e.g. Benkiran et al., 2021).

As the direct ADT fields contain less variance than classical ADT at wavelengths less than 200 km (Figure 3), it is important to ensure innovations representative of long wavelengths do not generate spurious small-scale noise in increments of SSH, temperature, salinity and currents. As such, it would be appropriate to project innovations from ADT onto larger spatial scales only. Figure 6A shows the PSD of the direct ADT fields, innovations (observation-model differences) and background error modes over a box covering the central Arctic Ocean (as shown in Figure 1). The PSD of error modes with an additional 100, 200, 300, 400 and 500 passes are shown as well. We can clearly see how the amplitude of small-scale variability is reduced as the number of passes in increased. Indeed, the 50% response point increases from about 150 km at 100 passes to over 300 km with 400 passes. Following several experiments to examine the impact of the filtering on increments produced using these different sets of error modes, it was decided to choose an additional 100 passes (i.e. 149 in total) as the best choice for ADT. This was based partly on the fact that 50% response function falls in the target zone between 100-200 km where the largest differences are found between classical ADT and direct ADT fields (Figure 3), together with a subjective analysis of the resulting increments (not shown). We can see from the PSD of dynamic height increments (Figure 6B) produced with 100 and 200 additional passes that the variance of the increments is significantly reduced for scales below 100 km. Using 200 passes also results in a loss of variance above 200 km. Thus, filtering with 100 passes provides a reasonable compromise allowing reduced variance below 200 km with minimal impact for long length scales.




Figure 6 | Power spectral density (PSD) over the central Arctic (see Figure 1) for direct ADT, misfits (innovations) with respect to direct ADT (observation-minus-model differences) and background error modes (A). Error modes are shown using operational filtering settings (49 passes), as well as with 100, 200, 300, 400 and 500 additional passes. The wavelength of the 50% and 10% response function for the various number of passes is indicated with a square and star respectively. A vertical line marks the 200 km wavelength to denote the scale at which differences between direct ADT and SLA are notable. Panel (B) shows an example of the impact of spatial filtering of error modes on the resulting PSD for an increment of dynamic height for the same region. Differences in PSD for an analysis produced with 100 and 200 additional passes (red and purple curves respectively) are shown with respect to the operational filtering of 49 passes.






4.3.2 Spatially-varying observational error for ADT

SAM2 applies spatially-varying MDT errors to altimetry observations. These are not justified for ADT and are thus set to zero. However, errors associated with the geoid (e.g. as shown in Figure 4) should be applied in place. To account for this, a spatially-varying ADT error is used that has zero error south of 80°N and an error of 20 cm north of 83°N with a linear ramp between these latitudes. The amplitude and spatial extent of this error was chosen based on differences in variance between direct ADT and classical ADT fields (Figure 4, right panel). An additional constant value of 5 cm is applied over the entire domain to account for instrument error and spatially-correlated errors from the OI procedure used to produce the gridded direct ADT. Dynamic height increments produced using these errors (not shown) result in a reduction in small-scale increments near the north pole. This reduction is desirable, as the increments are likely the result of errors in the geoid present in the direct ADT fields and not physical features.




4.3.3 Spatial filtering in the observation operator

The RIOPS ocean model has a grid resolution of 3-4 km over the Arctic Ocean and thus contains spatial variability of the SSH field at scales well below 200 km. As the model likely has more variance at these small scales than is represented in the ADT fields it should be filtered prior to calculating differences with the ADT as part of the observation operator. As a result, 49 passes of a Shapiro filter are applied to the model SSH prior to calculating differences from ADT observations. Ideally, the filtering applied in the observation operator should be equal to that applied to the background error. However, use of a consistent value (i.e. 149) was found to degrade the results somewhat. The value of 49 passes was chosen as it coincides with the number of passes usually used for the background error (Benkiran et al., 2021).






5 Evaluation of ocean reanalyses

Based on the modifications to the assimilation approach described above a multi-year reanalysis that assimilates direct ADT fields over the period Jan. 2016 to Jun. 2020 was produced (referred to hereafter as RA-ADT). This reanalysis will be evaluated as compared to a control simulation (RA-CTL) based on the operational version 2.2 of RIOPS (Surcel Colan et al., 2021). Two additional reanalyses were also produced: RA-MDT uses an identical configuration to RA-CTL but with a modified MDT; and RA-SLA uses the same configuration as RA-MDT but includes SLA under ice (updated version of Prandi et al., 2021). In RA-MDT, the MDT is adjusted based on the average SLA innovations from RA-CTL and smoothed using a Shapiro filter to roughly 5° resolution.

These four reanalyses are compared in terms of the impact on innovation statistics (i.e. observation-minus-model differences), circulation and volume transport across key Arctic gateways, sea ice drift, sea ice concentration increments, and tide gauge observations. Unless noted otherwise, all evaluation statistics are calculated over the full period of the reanalyses.



5.1 Innovation statistics

Here we present innovation statistics for assimilated observations (ADT/SLA, SST, temperature and salinity profiles) as an indication of how closely the reanalyses fit with observations. While the observation errors used are somewhat different (and this could therefore affect increments and subsequent innovations), this can nonetheless provide an indication of model skill and highlight any potential imbalances.

In order to assimilate direct ADT fields it was necessary to set the MDT to zero. As a result, for technical reasons it is not possible to cross-compare innovations between the RA-ADT and RA-CTL reanalyses. For example, it would have been useful to compare innovations of SLA in both RA-ADT and RA-CTL even if they were only assimilated in the latter (and vice-versa). As such, innovations presented here are with respect to the specific observational datasets assimilated. For RA-CTL and RA-MDT this includes global altimetry data (i.e. excluding ice covered areas) for Saral/Altika, Jason3, Sentinel3a, Sentinel3b and Cryosat2. Innovations for RA-SLA include both global and Arctic (leads) retrievals of SLA. Innovations for RA-ADT are with respect to the direct ADT fields that include both global and Arctic (leads) retrievals.

Mean innovation statistics with respect to satellite altimetry are presented in Figure 7. Significantly smaller mean innovations are found for all experiments compared to RA-CTL. In particular, the large negative innovations present in RA-CTL throughout much of the Arctic Ocean, Baffin Bay and Hudson Bay are no longer present. As expected, RA-MDT shows the smallest mean innovations overall (Figure 7C), since the updated MDT was developed to minimize mean innovations based on the global altimetry datasets against which the innovations for RA-MDT are calculated. RA-SLA uses the updated MDT but includes the Arctic (leads) product as well, which results in larger (positive) mean innovations over the Arctic coastal areas. RA-ADT is produced without using an MDT and produces mean innovations that are somewhat larger than RA-MDT but smaller than RA-CTL.




Figure 7 | Mean innovations with respect to satellite altimetry for RA-CTL (A), RA-ADT (B), RA-MDT (C) and RA-SLA (D). Note that innovations represent differences with respect to the particular observations assimilated in each experiment. For RA-CTL and RA-MDT this includes global altimetry data (i.e. excluding ice covered areas) for Saral/Altika, Jason3, Sentinel3a, Sentinel3b and Cryosat2. Innovations for RA-SLA include both global and Arctic (leads) retrievals of SLA. Innovations for RA-ADT are with respect to the direct ADT fields that include both global and Arctic (leads) retrievals.



We can interpret these results as follows: In RA-CTL, an incoherence between the observation-based MDT product used and the effective model MDT results in excessively large mean innovations (i.e. greater than 10 cm) that inhibit the assimilation system from adequately correcting errors due to biased error statistics. By removing the mean difference in large-scale SLA in RA-MDT, it allows the data assimilation to properly assess (and correct) mesoscale features, but it prevents the system from correcting the basin-scale signals. In contrast, RA-ADT is allowed to adjust to the basin scale sea level present in the direct ADT product and to follow their variations on sub-seasonal, seasonal and longer timescales. As RA-SLA includes an additional dataset with respect to RA-MDT, it shows somewhat larger mean innovations, although still much smaller than RA-CTL. It would be possible in principle to iteratively correct these by removing the mean large-scale innovations from the MDT and producing an additional simulation. Note that since both RA-CTL and RA-MDT use the same observation errors (with larger values at higher latitudes), the larger mean innovations in RA-CTL (which are not present in RA-MDT) cannot be explained in terms of the observation error applied.

As SAM2 is a multi-variate assimilation system, it is important to assess how the change in one observational dataset affects other fields. As salinity has a more significant impact on density in colder waters, there should be a strong correlation between innovations of dynamic height (affected by satellite altimetry) and salinity. Mean innovations from salinity profiles (Figures 8, 9) show a clear reduction for all experiments in the overly saline bias (negative innovations) present in the North Sea and Norwegian coast as well as the overly fresh bias (positive innovations) in the Labrador Sea. These biases are significantly reduced in RA-MDT and RA-SLA suggesting a link to the representation of coastal features in the MDT. RA-ADT also shows some improvement in the North Sea and Norwegian Coast to a lesser degree, but shows some degradation in the Labrador Sea.




Figure 8 | Mean innovations for salinity profile observations (psu) over the upper 500 m for RA-CTL (A), RA-ADT (B), RA-MDT (C) and RA-SLA (D).






Figure 9 | Innovation statistics for salinity profile observations (psu) over the Beaufort Sea region (shown in Figure 1) over the upper 500m. Mean (dashed line) and RMS (solid line) differences for RA-CTL (green), RA-ADT (red), RA-MDT (orange) and RA-SLA (blue) are shown.



There are also notable differences in the mean salinity innovations in the Beaufort Gyre. These biases show a high degree of spatial and temporal heterogeneity and may be affected by inadequate sampling due to the low number of in situ profiles. Nonetheless, we can see a reduction in both mean and RMS innovations of salinity between 100-350 m for RA-ADT and RA-MDT as compared to RA-CTL implying a positive benefit from the assimilation of satellite altimetry. Conversely, RA-SLA shows a significant degradation as compared to RA-MDT. The opposing impact of direct ADT versus SLA from leads suggests that the assimilation of altimetry from leads in ice covered waters is strongly sensitive to differences in MDT. Note that there is a marked degradation of RA-ADT in the upper 50 m not found in the other experiments.

Temperature profiles also show a small impact in the Bering Strait, Beaufort Sea, CAA and Central Arctic regions (not shown). Innovations for SST are equivalent for the four reanalyses (not shown).




5.2 Circulation and volume transports

The mean sea level innovations shown in Figure 7 suggest a basin-scale impact on sea level and circulation. Indeed, there is a significant modification of the mean SSH in RA-ADT as compared to RA-CTL (Figure 10A). In particular, there is a higher SSH in and along the Canadian Arctic Archipelago (CAA), which implies stronger volume and freshwater transports through CAA straits. There is also an increased SSH in the eastern part of the Barents Sea Opening consistent with stronger northward inflow. An inflated Beaufort Gyre can also be inferred from Figure 10, with steeper east-west gradients. Finally, significant changes near the North Pole and in Fram Strait suggest changes to the Transpolar Drift.




Figure 10 | Difference in mean SSH (m) as compared to RA-CTL for RA-ADT (A), RA-MDT (B) and RA-SLA (C).



These differences are qualitatively similar to the pattern of differences found for RA-MDT and RA-SLA. That is, there is a general increase in SSH in Arctic shelf regions and a decrease in the central Arctic Ocean. This lower SSH is quite pronounced in RA-SLA creating sharp gradients along the shelf break. There is also a notable difference present in RA-ADT (but not in the other experiments) showing a lower SSH offshore in the Norwegian Sea. This implies a stronger onshore gradient of SSH and thus an impact on the Norwegian Current and transports into the Barents Sea (shown below).

The spatial pattern of mean currents is shown in Figure 11. Here we can clearly see an impact on the structure of the Beaufort Gyre in RA-ADT, with a reduction north of the CAA and intensification along the Alaskan coast. Conversely, RA-SLA shows an intensification north of the CAA. While all experiments show an impact on the Beaufort Gyre, the impact in RA-SLA is quite pronounced.




Figure 11 | Mean surface currents (m/s) in RA-CTL (A) and differences (with respect to RA-CTL) for RA-ADT (B), RA-MDT (C) and RA-SLA (D).



There are also important impacts near the North Pole and in the Transpolar Drift, with an important intensification found in RA-ADT and RA-SLA. Smaller-scale impacts are also present in Fram Strait, along the Laptev Sea shelf break and near the Barents Sea Opening in all experiments.

To quantify these changes in circulation, we now present the impact of changes in circulation on transports through key Arctic gateways: Bering Strait, Barrow and Jones Straits, Nares Strait, Fram Strait, Davis Strait and the Barents Sea Opening (Table 3). Overall, we can see an opposite response in the net volume exchanges with the Arctic Ocean in RA-ADT as compared to RA-MDT and RA-SLA. RA-ADT shows a significant increase in volume transport through the CAA, with a 20% increase through Barrow and Jones Straits (combined), 8.8% through Nares Strait and 13% through Davis Strait. This increased Arctic export is compensated for by an increased inflow through the Barents Sea Opening (+0.17 Sv) and Bering Strait (+0.02 Sv). While Fram Strait shows very little change in total volume transport, a significant intensification of northward and southward flows through the strait are found (+1.1 Sv). These increased exchanges between the Atlantic and Arctic Oceans may have repercussions for the drift of plastics and other contaminants (see companion paper by Morales Maqueda et al., in prep.).


Table 3 | Mean volume transports across key Arctic gateways.



Conversely, both RA-MDT and RA-SLA show a general decrease in net volume transport between the Arctic and North Atlantic. For Nares Strait, Fram Strait, the Barents Sea Opening and Bering Strait there is a reduced mean volume transport for RA-MDT, with an amplified response in RA-SLA. Barrow and Jones Straits show a somewhat different behavior with reduced transport for RA-MDT but an increased transport for RA-SLA. Davis Strait shows a slightly reduced transport for both RA-MDT and RA-SLA. These differences can be explained by the significant differences in mean SSH (Figure 10) with RA-MDT and RA-SLA showing higher SSH in Baffin Bay, whereas only RA-SLA shows an increase in SSH through the CAA and along the Alaskan coast.

Note that changes in total volume transport across a section are not necessarily reflected in mean surface currents (Figure 11) as important differences between surface and sub-surface currents exist in several locations (not shown). Additionally, important lateral differences are present across both Fram Strait and the Barents Sea Opening. For the latter, all experiments show an increase in the Norwegian Current. In RA-MDT and RA-SLA this is compensated for by a reduction in Atlantic inflow across the western half of the strait, whereas RA-ADT shows an increase (not shown).

Various monitoring efforts have been deployed across the key Arctic gateways and provide an estimate of heat, mass and freshwater transports. These estimates are often accompanied by significant error bars as total transports are estimated from a limited number of mooring observations. Moreover, these estimates are often only available for years outside the period of study. Nonetheless, the results here have been compared against observational estimates (e.g. Uotila et al. (2019) and references therein) and show that the RA-CTL and RA-ADT fall within reasonable estimates of volume transports. Given the large interannual variability and observational uncertainty it is difficult to discern if the intensification in Atlantic-Arctic exchange found in RA-ADT is closer to observed values. As a result, it is necessary to turn to indirect evidence to assess the impact of these changes in circulation.




5.3 Sea ice drift

As noted in the previous section, it is difficult to evaluate changes in ocean circulation due to a lack of available observations. However, circulation changes may affect the transfer of momentum to sea ice and thus be detectable in terms of sea ice drift and other features. Figure 12 shows maps of mean sea ice drift over the period Sep. 2018 to Mar. 2019 from the Ocean and Sea Ice Satellite Application Facility (OSI-SAF) product (Lavergne, 2016; Dybkjaer, 2018) together with fields from the different reanalyses evaluated here.




Figure 12 | Mean sea ice drift speed (m/s) over the period Sep. 2018 to Mar. 2019 for OSI-SAF (A) and RA-CTL (D). Differences with respect to RA-CTL are shown for OSISAF (B), RA-ADT (C), RA-MDT (E) and RA-SLA (F).



The general pattern of sea ice drift is well reproduced in RA-CTL (Figure 12D) with a clear Beaufort Gyre and Transpolar Drift. Note that the OSI-SAF product has a lower spatial resolution than RIOPS and thus a direct comparison is not possible. As a result, it is not surprising to see several narrow areas of strong drift in the reanalyses represented as broader flows in OSI-SAF (e.g. Baffin Bay, Laptev Sea shelf break). Additionally, a larger uncertainty is present in the OSI-SAF product near the ice edge and thus differences in these regions should be interpreted with caution (e.g. East Greenland Current and Barents Sea; Wang et al., 2022). Nonetheless, the large-scale differences between OSI-SAF and RA-CTL shown in Figure 12B can be used as a general guide to assess the response in ice drift from the different experiments.

Indeed, we can see many similarities in differences between OSI-SAF and RA-CTL (Figure 12B) with what is found for the different experiments (Figures 12C, E, F). For example, the intensification along the Alaskan Coast and the broad intensification of the Transpolar Drift are consistent. The intensification of the ice drift along the Laptev Sea shelf break in RA-ADT and RA-SLA are also both in agreement with OSI-SAF. There is also a reduced drift speed present to varying extents along the shelf break north of the Barents and Kara Seas. This area of reduced drift implies an offshore displacement of the Transpolar Drift. Interestingly, the offshore displacement of the transpolar drift in RA-ADT appears consistent with OSI-SAF estimates. This displacement is amplified further in RA-SLA. However, with respect to that found in OSI-SAF it appears to be somewhat exaggerated with reduced ice drift extending from Fram Strait to the Laptev Sea. These results suggest that the impact of assimilation of direct ADT on surface currents is positive in general, whereas impacts for assimilation of SLA under ice may induce some areas of significant degradation.




5.4 Sea ice concentration increments

As noted in Section 4.1, the ocean analyses produced with SAM2 are blended with a 3DVar total ice concentration increment (by “total” we mean here the sum of ice concentration for all 10 ice thickness categories). Background error is not considered in this blending algorithm and thus the total ice concentration increment is very similar to the total ice concentration innovation. This is true everywhere except when the 3DVar ice analysis error exceeds a particular threshold and for regions where the ice concentration in either the model or analysis exceeds 90% or is less than 10%.

This blending is done at the end of each 7-day analysis window. As such, the total ice concentration increments can be considered as being approximately equivalent to 7-day forecast errors. As such, mean increments provide an indication of how well the model can simulate the evolution of the ice fields. Errors in total concentration due to formation/melt, advection or deformation will result in larger increments.

Figure 13 shows the mean total ice concentration increments for the four reanalyses for the summer (July, August, and September) season. While the mean total increments are quite similar, RA-SLA has an enhanced positive feature just north of the Kara Sea (north of 80°N between 60°E-120°E). This is consistent with the analysis presented in the previous sections that showed exaggerated changes to SSH, surface currents and ice drift in this area. The increase of ice increments is an additional indication that these changes do in fact represent a degradation. Differences in mean total ice concentration increments for the other seasons are relatively minor (not shown).




Figure 13 | Mean total sea ice concentration increment (%) for RA-CTL (A), RA-ADT (B), RA-MDT (C) and RA-SLA (D).






5.5 Tide-gauge observations

To provide an additional independent comparison, the reanalyses are compared with tide-gauge observations from Prudhoe Bay station. Reanalysis values are first de-tided using values from the online harmonic analysis used in SAM2 (Smith et al., 2021). Inverse barometer effects from atmospheric pressure are also removed. Finally, the dynamic atmospheric correction used in the processing of satellite altimetry data is removed from both the observations and reanalyses. The resulting timeseries of sea level shows that the reanalyses provide an excellent reconstruction of the sea level variability, with correlations of about 0.9 (not shown). The differences in assimilation between the three experiments has a relatively minor impact on the sea level at Prudhoe Bay, with several periods of slightly improved (e.g. summer 2018) or degraded (e.g. fall 2017) sea level.





6 Summary and conclusions

Arctic ADT fields were successfully computed using the direct method (Equation 2) without using an MSS that may be of lower quality in the seasonally ice-covered region. The GOCO05c geoid was used as it was found to reduce the amplitude of small-scale spurious features due to inconsistencies with the altimetric measurements. However, some unphysical patterns remain in direct ADT fields for latitude over 83.5°N where GOCE satellite observations are not assimilated in the geoid. OI parameters for the mapping are tuned to consider geoid resolutions and the resulting direct ADT fields have reduced variance at spatial scales less than 200 km than classical ADT fields. Correlation with sea level tide gauge at Prudhoe Bay is similar between direct ADT and classical ADT fields.

The RIOPS operational ocean analysis system was modified to assimilate direct ADT (in place of SLA) and a four-year reanalysis was produced. Particular system modifications were required to adapt the system for assimilation of altimetry under ice as well as to accommodate the change in spatial scales present in the direct ADT product. The background error modes used in SAM2 to specify model error had an additional 100 passes of a Shapiro filter applied in order to reduce the variance below length scales of about 200 km, in accordance with spectral analyses of the direct ADT product. The resulting reanalysis (RA-ADT) was evaluated as compared to a control reanalysis equivalent to the operational version 2.2 of RIOPS (RA-CTL) in terms of mean innovations, circulation and volume transports across key Arctic gateways, sea ice drift and increments, and tide-gauge observations.

RA-ADT is found to provide reduced mean innovations suggesting a more balanced analysis. Significant changes in the sea surface height and surface currents are also found, indicating that the assimilation of direct ADT fields has a notable impact on the Arctic Ocean circulation and sea ice drift. Improvements in salinities are found along the Norwegian Coast with an intensification of the Norwegian Current. An intensification of Atlantic Water inflow and penetration is found, with stronger flow along the shelf break north of the Barents, Kara and Laptev Seas. This intensification appears to have a positive effect on surface ice drift. Investigation of volume transports through key Arctic gateways reveals that assimilation of direct ADT leads to an intensification of exchanges between the North Atlantic Ocean and the Arctic Ocean, with potential impacts on the simulated drift of contaminants in the Arctic.

While the assimilation of direct ADT fields appears to have positive impacts on circulation features in the Arctic, it is not clear the extent to which this is due to the assimilation of direct ADT itself (i.e. without use of an MDT as shown in Equation 2), as opposed to the addition of satellite altimetry from leads. This impact is assessed using two additional reanalyses: RA-MDT, with a modified MDT to reduce SLA innovations from global SLA data; and RA-SLA, that uses this new MDT together with SLA observations in leads (Prandi et al., 2021). Many of the impacts found for RA-ADT are also seen in RA-MDT. These include reduced mean innovations for sea level and salinity, and improvements in ice drift in the Beaufort Gyre and Transpolar Drift (and associated surface currents).

The addition of SLA from leads in the sea ice appears to produce a degradation in a number of features. Larger innovations of sea level are found together with a degradation of salinity innovations in the Beaufort Sea. These changes appear to lead to a reduction in volume transports across the key Arctic gateways. A strong intensification of the surface currents is found north of the Barents and Kara Sea that leads to reduced sea ice drift. This implies an effective offshore displacement of the Transpolar Drift inconsistent with observed estimates from OSI-SAF. Additionally, larger increments in sea ice concentration are found suggesting the change in ice drift when assimilating SLA from leads represents a degradation. These results suggest that the reduced exchange between the Arctic and Atlantic Oceans when assimilating SLA from leads may also represent a degradation.

Several conclusions can be drawn from these results. First, assimilation of satellite altimetry retrievals from leads can have a positive impact on water mass properties and circulation in the Arctic Ocean. It is tempting to also conclude from these results that assimilation of direct ADT is more beneficial than assimilating SLA from leads, as the latter was found to produce questionable changes in surface currents and volume transports. However, the results from RA-MDT highlight the strong sensitivity of SLA assimilation to the choice of MDT. Indeed, many of the improvements seen with the assimilation of direct ADT were also found with the modified MDT only. As such, if the MDT was further corrected using mean innovations from RA-SLA, it may be possible to obtain more consistent results assimilating SLA from leads.

This study highlights the large uncertainties that exist in present operational ocean forecasting systems for the Arctic Ocean due to the relative paucity and reduced quality of observations compared to ice-free areas of the world’s oceans. Extension of gravity data to cover the north pole is required to provide a truly pan-Arctic direct ADT that would allow an accurate assessment of Arctic transports. Moreover, this study underscores the need for dedicated and focused efforts to address this critical gap in the Global Ocean Observing System.
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There is growing demand for seasonal forecast products for marine applications. The availability of consistent and sufficiently long observational records of ocean variables permits the assessment of the spatial distribution of the skill of ocean variables from seasonal forecasts. Here we use state-of-the-art temporal records of sea surface temperature (SST), sea surface height (SSH) and upper 300m ocean heat content (OHC) to quantify the distribution of skill, up to 2 seasons ahead, of two operational seasonal forecasting systems contributing to the seasonal multi-model of the Copernicus Climate Change Services (C3S). This study presents the spatial distribution of the skill of the seasonal forecast ensemble mean in terms of anomaly correlation and root mean square error and compares it to the persistence and climatological benchmarks. The comparative assessment of the skill among variables sheds light on sources/limits of predictability at seasonal time scales, as well as the nature of model errors. Beyond these standard verification metrics, we also evaluate the ability of the models to represent the observed long-term trends. Results show that long-term trends contribute to the skill of seasonal forecasts. Although the forecasts capture the long-term trends in general, some regional aspects remain challenging. Part of these errors can be attributed to specific aspects of the ocean initialization, but others, such as the overestimation of the warming in the Eastern Pacific are also influenced by model error. Skill gains can be obtained by improving the trend representation in future forecasting systems. In the meantime, a forecast calibration procedure that corrects the linear trends can produce substantial skill gains. The results show that calibrated seasonal forecasts beat both the climatological and persistence benchmark almost at every location for all initial dates and lead times. Results demonstrate the value of the seasonal forecasts for marine applications and highlight the importance of representing the decadal variability and trends in ocean heat content and sea level.




Keywords: seasonal forecasts, skill, trend, essential climate/ocean variables, SST, sea level, ocean heat content





Introduction

Knowledge of forecast skill is a prerequisite for utilizing forecast information. Assessing the skill of ocean variables from seasonal forecasts other that sea surface temperature (SST) in a multi-model context has remained elusive due to the lack of verifying ocean datasets of sufficient quality and length. In recent years, the availability of longer observational records of surface ocean variables such as altimeter-derived sea level, and sea-ice concentration has allowed the verification of seasonal forecasts of these additional surface variables in a multi-model context. For instance, Long et al., 2021 and Widlansky et al., 2023 have used altimeter derived records of sea level anomalies to verify the ability of the multi-model seasonal forecasts to capture the variations of global and regional sea level. There have also been assessments of the skill of multi-model seasonal prediction of sea-ice (Guemas et al., 2016; Blanchard-Wrigglesworth et al., 2017). However, verification of sub-surface ocean variables in a multi-model context has remained challenging. Several studies have reported the potential predictability of upper ocean heat content (OHC) in the context of seasonal forecasts of El Nino-Southern Oscillation (ENSO) (e.g. Balmaseda et al., 1994; Sharmila et al., 2023, among others), but in these studies the forecast OHC was verified against own analysis. The recent availability of ensembles of ocean reanalyses has opened the possibility for independent verification of seasonal forecasts of the ocean subsurface. For instance, McAdam et al., 2022 have used the upper Ocean Heat Content from the Global Reanalyses Ensemble Product (GREP) for a comparative assessment of the forecast skill of seasonal forecasts between SST and upper Ocean heat content in a multi-model context.

Here we will compare the skill of seasonal forecast of SST, sea surface height (SSH) anomalies and OHC, with the expectation that the comparative assessment can shed some light on the sources of predictability and errors. One novel aspect of the current study is the assessment of the forecast models to represent the trends in the observational records, and it quantify how much the climate trend contributes to the skill and forecast errors. We also expect that the skill assessment of these ocean variables will encourage seasonal forecast providers to make the data publicly available, as it is currently done with the seasonal forecasts for the atmosphere.

In this study, we use these satellite observational records and ocean reanalyses to verify ocean variables from two seasonal forecast systems contributing to the C3S (Copernicus Climate Change Service) seasonal multi-model product. These systems are from ECMWF (European Centre for Medium-Range Weather Forecasts) and CMCC (Centro Euro-Mediterraneo sui Cambiamenti Climatici). The data and methods are described in section 2. The results are presented in Section 3, which provides a comparison of the spatial distribution of deterministic skill of SST, OHC and SSH, in terms of anomaly correlation and root mean square error, bench-marked against persistence and climatology. This section also investigates the ability of the seasonal forecasts to capture the recent linear trends present in observations, and it quantifies the contribution of the linear trend to the seasonal forecast skill. The lessons learned from the evaluation are summarized in section 4.





Data and methods




Data




Verification datasets

Three observation-based datasets have been identified as suitable for the verification of ocean variables from seasonal forecasts. Suitability criteria are based on the length of the available record (at least 1993–2016), and documentation on their uncertainty and temporal homogeneity. For the surface variable (SST and SSH) we use satellite-derived records from the ESA-CCI initiative: the global Sea Surface Temperature Reprocessed product (Merchant et al., 2019; Good, 2020), distributed by C3S; and the Sea Surface Height (SSH) product (Pujol et al., 2016 and Taburet et al., 2019), distributed by C3S and CMEMS (Copernicus Marine Environmental Monitoring Service). Since satellite information is insufficient to constrain the ocean subsurface, the ocean heat content (OHC) in the upper 300m is verified with the Global Ocean Reanalysis Ensemble Product (GREP, Storto et al., 2019), distributed by CMEMS, which is constrained by in-situ observations. A full description of the data is provided in section S1.1 of Supplementary Material. For the purpose of verification, we use seasonal means of these records for the period 1993–2016.





Seasonal forecasts ocean data

The two forecast systems used here are the Seasonal Prediction System Version 3 from the Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC-SPS3, Sanna et al. (2017)), and the fifth generation Seasonal Forecasting System from the European Centre for Medium-Range Weather Forecasts (ECMWF-SEAS5, Johnson et al. (2019)). Since 2018 both systems have been contributing to the Copernicus Climate Change Service (C3S), which makes seasonal forecasts of atmosphere and surface variables (precipitation, 2m-temperature) freely available online. These systems produce a forecast of ocean variables other than SST, although the ocean variables are not yet publicly available for the multi-model.

A full description of the models is included in Section S1.2 of Supplementary Material. Suffice to say that both systems base their ocean model component on the eddy-permitting version 3.4 of NEMO (Nucleus for European Modelling of the Ocean), which has a horizontal resolution of 25 km at the equator, and they are initialized from ocean reanalyses: CMCC-SPS3 is initialized from C-GLORS (Storto and Masina, 2016), while ECMWF-SEAS5 is initialized from ORAS5 (Zuo et al., 2019).

Seasonal means of SST, SSH and OHC have been gathered from a set of retrospective seasonal forecasts (re-forecasts) from the two models. The re-forecast dataset comprises 96 independent initial dates, spanning the 1993–2016 period, initialized 4 times per year, with starting dates on the 1st of February, May, August and November. This 1993–2016 period was chosen, so it is the same as that used for the C3S seasonal multi-model product. The forecast range is 6 months, and for the purpose of map verification, we split it into first and second season. Thus, forecasts initialized in February will be verified for the FMA (lead 1) and MJJ (lead 2) seasons. For an individual date, the forecast from each system comprises 40 ensemble members, which are averaged to estimate the ensemble mean. The forecast data are stratified by initial and verifying calendar date (or by initial calendar date and lead time). For instance, lead 1 (2) forecasts initialized in May will comprise the MJJ (ASO) season for the period 1993–2016, which can then be verified against the corresponding MJJ (ASO) values of the observational record. For the sake of brevity, in the following we discuss the skill statistics averaged over all starting months, unless explicitly stated.






Verification methods

The ability of a prediction system to forecast specific events at a given time is measured by a set of skill scores or metrics. Here we focus on the scores of the ensemble mean forecast anomalies. The forecast seasonal anomalies are computed with respect to the model seasonal climatology, which depends on the forecast lead time. By subtracting the model climate from the individual forecasts, we effectively remove the forecast bias, which is the first order correction in the calibration of seasonal forecasts (Stockdale, 1997). For the purpose of deterministic verification, only the anomalies of the ensemble mean will be used (see description of method in Supplementary Material 1.3.1). The verification statistics used in what follows are therefore bias blind. An assessment of bias and variability in SST and OHC have been reported in McAdam et al., 2022, and it will not be further discussed here.

Since the initial focus is to quantify the performance of the ensemble mean, we have chosen two different deterministic scores (Wilks, 2011): anomaly correlation coefficient (ACC) and Mean Square Skill Score (MSSS). The mathematical expression of these skill metrics is given in Supplementary Section 1.3.2. The MSSS compares the root mean square error (RMSE) of the forecast with that of the climatology, which is the simplest model for a seasonal forecast to be compared to. The climatological benchmark is therefore already built in the definitions of ACC and MSSS: positive values in these scores imply that the forecast is more skillful than climatology. We also benchmark against persistence (of the observed anomaly at the time of the initialization), which is the second simplest statistical forecast model after climatology.




Treatment of linear trends

In addition to the interannual variability, in a changing climate, it is also important to evaluate the ability of the forecast model to capture the linear trend present in observations. Since the trend contributes to the temporal variability, it can potentially impact the forecast skill: it can enhance it if models are successful in capturing the linear trend, or it can deteriorate it if the model errors prevent the correct representation of the observed trends. In addition to the standard ACC and MSSS statistics, we compute two additional sets of statistics:

	Trend-corrected (Tc) ACC and MSSS, where the linear trend of the forecast is corrected with that of observations. This is done by linearly detrending the forecasts first (see below), and then adding the observational linear trend. Comparison of these statistics with the standard ones gives an idea of the gains in skill by this additional calibration step, and it illustrates the potential gains that could be obtained if the models were able to represent the trends adequately.

	Detrended (D) ACC and MSSS, where the linear trend has been removed from the anomalies of both forecasts and observations before computing the ACC and MSSS. Differences between the Detrended with the Trend-corrected statistics quantify the amount of the skill due simply to the presence of trends in the observations.









Results




Skill without trend correction

The skill of the ECMWF and CMCC seasonal forecasting systems in predicting the first season is shown in Figure 1, for the three different ocean variables. For reference, the skill of the persistence forecast is also shown. All the forecasts, including persistence, have a high (significant) level of skill in the first season. Nonetheless, even in the first season, the dynamical models are more skillful than persistence in the wider tropics, where ocean dynamics are faster. A notable exception is the skill of SSH in the CMCC model, which in the tropical Atlantic is less than persistence. It has been found that the underrepresentation of the sea level trends stems from the ocean initial conditions; we will return to this point later.




Figure 1 | Anomaly Correlation Coefficient (ACC) of the seasonal forecast anomalies in the first season for all initialization times for SST (left column), OHC (middle) and SSH (right). Shown is the skill of the ECMWF (top) and CMCC (middle row) seasonal forecasting systems, as well as that of the persistence forecasts (bottom). Correlation values with p-values < 0.05 are shown as dotted areas. Positive values indicate that the forecast skill is better than the climatological forecast.



The advantage of the dynamical seasonal forecasts w.r.t persistence is more obvious in the predictions for the second season, as can be seen in Figure 2. As expected, the overall level of skill decreases as the forecast lead time increases, but this decline is faster for persistence than for the dynamical seasonal forecasts. The dynamical models retain significant skill levels: for SST, ACC values larger than 0.6 are seen over the wider tropics, along the coast of North-West America and some areas of the Southern Ocean and Northern Seas. The skill levels at longer forecast leads for OHC and SSH are also higher than for SST, as expected from the larger memory of the deeper water column.




Figure 2 | As Figure 1 but for the second season into the forecast.



Figure 3 shows that the skill gains of the dynamical models against the persistence benchmark, already visible in the first season, increases further in the second season. The pattern skill gains in SST (left panels) is indicative of the dynamical processes operating in the coupled model at these time scales, which persistence is not able to represent. For instance, the signature of the tropical wave dynamics is noticeable in the Tropical Pacific, with the ENSO signature in the cold tongue region clearly visible. The skill gains in the extratropics are likely related to the thermal memory of the mixed layer, but may also be a result of the predictable variations in the atmospheric circulation, which persistence will not be able to account for. The comparison of skill between OHC and SST provides additional criteria to attribute the predictability gains to the thermal memory or to predictable atmospheric circulation. For instance, during the boreal winter, the predictable atmospheric teleconnection patterns such as the PNA (Wallace and Gutzler, 1981) will have more impact on SST predictability than on OHC. The ACC over the North-Eastern Pacific is indeed stronger for SST than for OHC for forecasts of the first season verifying in boreal winter (see Supplementary Figure S1).




Figure 3 | Summary of ACC skill differences of the dynamical seasonal forecasts against persistence, for the different variables. Shown are the differences for the first and second seasons (top and bottom respectively). Positive values indicate that the dynamical seasonal forecasts are better than the persistence benchmark. The dotted areas indicate where the ACC skill is different at the 90% significant level.



An area of concern is the North Atlantic Subpolar Gyre in the ECMWF, where the model skill is lower than persistence. This has been attributed to a problem with the ocean initialization (Tietsche et al., 2020). In the second season, there are also regions of decreased skill grains along the boundaries of the atmospheric convergence zones, which is symptomatic of errors in the spatial patterns of anomalies produced by atmospheric models (e.g., meridional extension of the Hadley Circulation). This feature is more noticeable in forecasts initialized from May (Supplementary Figure S2 in Supplementary Material).

The patterns of ACC skill gains of models versus persistence are quite similar in OHC and SSH, indicative of the strong correlation between the two quantities, while they exhibit visible differences with the patterns of SST skill gains. The pattern of skill gains in OHC and SSH bears the signature of the equatorial wave dynamics, more confined to the Equatorial band than SST. Outside the Equatorial band is rather homogeneous, having less meridional span than that of SST, and for the second season the decrease of skill associated with atmospheric convergence zones is less apparent than in the SST skill gain pattern. Along the Western Boundary Currents, the OHC/SSH have less skill than persistence, a feature associated with the insufficient resolution of the ocean component, as discussed by Feng et al. (2024). The different skill gain patterns between SST and OHC/SSH can be attributed to different factors: i) the SST forecast in dynamical models benefit from the memory of the OHC in the initial conditions, which will be included in the persistence of OHC itself but not in the persistence of SST; ii) the impact of the atmospheric component, which is stronger in SST than in the subsurface. Thus, the predictable atmospheric component enhances the skill of SST in the tropics and mid-latitudes; conversely, errors (or unpredictable variability) in the atmospheric model can induce errors (or unpredictable variability) in the SST forecasts which are not so visible in the integrated ocean variables. This seems to be the case in localized areas of the Western Pacific, where the skill in SST is lower than in OHC and SSH (Figures 1, 2).

We also note that the model skill for OHC and SSH is lower than persistence at high latitudes, especially during the first season of the forecast. This is suggestive of potential problems with the ocean initial conditions, which should be the target of developments in future data assimilation systems. We see again the low skill of the CMCC model for SSH, which is related to the trend in the initial conditions and will be discussed later. But luckily, this is an error that does not affect the structure of the water column substantially and does not manifest in SST or OHC. Over some coastal areas of the eastern tropical Atlantic Equatorial Atlantic, the models prediction of OHC in the first season is lower than persistence. This is partially attributed to deficiencies in ocean initialization (McAdam et al., 2022), and it highlights the potential for further skill gains that could be realized by improving the forecasting systems.

Figure 4 shows the MSSS of forecasts at the first and second seasons, for ECMWF and CMCC, and the three ocean variables of interest. Values larger than zero indicate that the forecast beats climatology. This is the case for the two dynamical forecasts over most of the ocean. Notable exceptions include the North Atlantic subpolar gyre in the ECMWF system, and the Southern Ocean and the Subtropical Atlantic for the CMCC system.




Figure 4 | Summary of MSSS of the dynamical seasonal forecasts for the different variables. Shown are the differences for the first and second seasons (top and bottom respectively). Positive values indicate that the dynamical seasonal forecasts are better than the climatological benchmark. Dotted areas mark where the differences are statistically significant at the 90% level.







Fidelity of the trends in seasonal forecasts




Linear trends in observational datasets

The 1993–2016 linear trend in the observational records of SST, SSH and OHC for the different seasons is shown in Figure 5. Positive trend values are visible in all the fields, albeit with different patterns. The SST field shows positive trends in the Indian Ocean, and warm pools, in the Equatorial cold tongue and in the extratropics, especially summer hemisphere, e.g. North Eastern Pacific in boreal summer and South Western Pacific in austral summer. The former coincides with the location of recent long-lasting marine heat waves, induced by persistent atmospheric anticyclones and deeper mixed layer (de Boisséson et al., 2022; de Boisséson and Balmaseda, 2024). There are also warming SST trends in the north/south subtropical Atlantic, and in the European Northern Seas. SSH shows positive values everywhere, with enhanced amplitude in the Western Pacific north of the Equator, Tropical Indian and Atlantic Ocean and Western Boundary Currents. The OHC trends resemble those in SSH, but they show a stronger footprint of changes in ocean circulation (e.g., dipole in the tropical Pacific associated with strengthening of the trades). They also reflect the deepening of the mixed layer in the summer extratropics, consistent with trends in SST. Both SST and OHC exhibit a negative trend over the North Atlantic subpolar gyre, consistent with the findings of Li et al. (2022). Interestingly, this negative trend is not visible in SSH which suggests that other factors are at play (such as the deep ocean or variations in salinity). It is also interesting that the positive trends in the tropical South Atlantic in SSH and OHC do not have an obvious footprint in SST trend in that area.




Figure 5 | Linear trend in observational records for the period 1993–2016 for the different SST, OHC and SSH for all seasons (top) and for May-June-July (middle) and October-November-December. The dotted areas indicate that the linear trends are significant at the 90% level.



In general, the spatial pattern of the trends is similar in all seasons, but the amplitude of the trends shows some seasonal variations, with stronger extratropical SST warming in the respective boreal summer (middle panels of Figure 5), and enhanced SSH and OHC trends in the western Equatorial Pacific in boreal autumn (August-October-November, bottom panels), likely related to the strengthening of the trade winds over the Pacific (de Boisséson et al., 2014).





Linear trends in seasonal forecasts

We now evaluate the ability of the forecasts to capture observational trends. Any discrepancy between forecasts and observation could be attributed to model errors or errors in the initial conditions. For the purpose of illustrating the main messages, we focus on show only the fidelity of the trends for the forecasts initialized in May. The results for the forecast trends averaged over February, May, August and November initial dates are shown in Supplementary Figure S3.

Figure 6 (top 2 rows) shows the differences in linear trends for the first season between seasonal forecasts and observations. Differences are sizeable even at this short lead time. Most noticeable is the global difference in the SSH in the CMCC forecast. This has been traced back to the fact that the ocean initial conditions of SSH in the CMCC system did not include explicitly the global changes in steric height mean values, which current generation of models do not represent due to the Boussinesq approximation. In ORAS5 (used to initialize the ECMWF forecasts) this is diagnosed and added to the SSH (Balmaseda et al., 2013; Zuo et al., 2019). Aside from this global difference, both forecast systems exhibit also regional departures from the observational trends, which are amplified as the in the forecasts for the second season (bottom 2 rows), which are largely similar when considering all initial forecast days (Supplementary Figure S3).




Figure 6 | Differences in linear trends between seasonal forecasts and observations, for forecasts initialized in May and verifying in the first (top 2 rows) and second seasons (lower 2 rows). Shown are trend differences in SST (left), OHC (middle), and SSH (right) for the ECMWF (top) and CMCC (bottom) seasonal forecasting systems. The dotted areas indicate where the trend differences are significant at the 90% level.



The ECMWF forecasts overestimate the warming trend in the Eastern Equatorial Pacific, a signature that manifests in all three considered variables. Further investigations point towards a sensitivity of this trend to both ocean initial conditions and atmospheric model. Two additional experiments were conducted with the ECMWF system, replacing the atmospheric model and the ocean initial conditions with more up-to-date versions one at a time. The changes in the ocean version were only related with the data assimilation and forcing fields, maintaining the same version of the ocean model. The SST trends over the Equatorial Pacific trends were reduced in these new experiments. In region Nino3.4, for forecasts initialized in May and verifying in ASO, the SST trends went from.45 °C/decade in SEAS5, to 0.4 °C/decade with the new atmosphere model version, and to 0.3 °C/decade when both atmosphere and ocean initial conditions changed. The eastern equatorial Pacific SST warming is also present in the CMCC seasonal forecasts, but with weaker amplitude. We note that errors in seasonal forecasts of SST trends are common to other models (L’Heureux et al., 2022), and it is an emerging research topic in the scientific community. The errors in the trends are likely to have implications for the prediction of ENSO. For instance, seasonal forecast models over-predicted the warming of El Nino in 2014–15 (Mayer and Balmaseda, 2021) and struggled to predict the duration of the prolonged La Nina conditions during 2020–2022.

The CMCC and ECMWF seasonal forecasts tend to overestimate SST warming over the Western Indian Ocean and Bay of Bengal, and over the tropical Atlantic. We note that this overestimation of in the surface is not mirrored by the OHC. Both ECMWF and CMCC underestimate the surface warming trends at high latitudes during the summer. Both ECMWF and CMCC underestimate the surface warming trends at high latitudes during the summer hemisphere (Figure 6 bottom 2 panels). The ECMWF model produces a cooler than observed trend in the North Atlantic Subpolar Gyre, more visible in the OHC, but also SST. This is believed to be related to the overestimation of the decadal variability of the AMOC in the ECMWF ocean initial conditions reported by Tietsche et al. (2020), and it is present in all seasons (Supplementary Figure S3).






Impact of trends on errors and skill

The errors in the seasonal forecast linear trends could be easily removed by correcting the linear trend, an additional calibration step that is not currently carried out when using or assessing seasonal forecast skill. Equally, if the linear trend is sizeable, it will influence the interannual variability and its potential predictability. Here we quantify the impact on skill of correcting the linear trend, by comparing the skill of trend corrected versus standard calibration. We can also measure the contribution of the linear trend to the skill by comparing the skill of trend-corrected versus detrended forecasts.

The skill gains obtained by the additional calibration step of correcting the linear trends are shown in Figure 7, which shows the differences in ACC (top two panels) and MSSS (bottom two panels) between the trend-corrected versus the standard calibration for the second season. Overall, positive values are seen for the 3 variables. The equivalent results for the first season are shown in Supplementary Figure S4. In the first season, the impact of trend correction is clearly visible in the CMCC forecasts of SSH, and on forecasts of OHC and SST for both systems in MSSS. For ACC the differences in the first season are clearly visible in SSH, and for OHC and SST over some areas close to the sea-ice edge and mid-latitudes. The trend correction improves the SST skill in several areas, most noticeable over the Southern Indian Ocean, and the high latitudes. There are also small but significant SST skill gains over the Equatorial Central Pacific and Eastern Atlantic, which is more noticeable in MSSS. Significant gains in OHC skill are widespread across the different ocean basins. We also note that over the Arctic and North Atlantic subpolar gyre the linear trend correction slightly deteriorates the skill in the ECMWF forecasts of OHC, suggesting the presence of non-linear trends.




Figure 7 | Differences in skill as measured by the ACC (top two panels) and MSSS (bottom two panels) between trend-corrected forecasts and those with standard calibration in the second season. Dotted areas indicate that the ACC values are significantly different at the 90% level.



The impact of linear trend correction on SSH deserves special attention. While for the ECMWF the influence of trend correction is similar in SSH to the other variables, in the CMCC system the trend correction has a sizeable positive impact in the wider ocean from the early stages in the forecast (Supplementary Figure S4), consistent with the problem of the trends residing in the ocean initial conditions. The skill gains are especially high for the Atlantic basin, the South-Eastern Pacific, the Northern Indian Ocean, and the Western Boundary currents. The problem in the CMCC ocean initial conditions has been identified, as it is related to the fact that the global trends in the steric component of SSH are not applied to the model. It is however not obvious why a global increase in sea level should have such a clear spatial structure. We note over the regions where the trend correction has such a pronounce impact on the SSH seasonal forecasts, the trend correction also has a significant (although small) impact on the ECMWF seasonal forecasts of SSH, and in both systems the same regions the trend correction has impact on the skill of OHC.

It is of interest to evaluate the ACC skill of the trend-corrected forecasts against persistence. This can be seen in the top panels of Figure 8, which show similar diagnostics as Figure 3 but for the additional calibration step. A simple linear trend correction solves the problem with the skill of SSH in the CMCC system. In addition, some areas with poor skill originally, such as OHC in the tropical Atlantic and mid-latitudes, are improved. However, the trend correction does not solve the underperformance in the first season of OHC and SSH at high latitudes, indicating that more work is needed to improve the ocean initialization in these areas. The prediction of OHC over the Arctic in dynamical seasonal forecasts is still poorer than persistence. The trend correction does not improve the underperformance in SST along the edges of the tropical atmospheric trade winds either, which was visible for individual seasons and which may be attributed to errors in the atmosphere (not shown). To verify where the dynamical seasonal forecasts still have an advantage over persistence when predicting the interannual variability only, the lower panels of Figure 8 show the comparison of the detrended dynamical forecasts versus the detrended persistence. In this case the linear trend has been removed from forecasts, persistence and verifying observation. The detrended dynamical forecasts maintain their skill advantage in the wider tropics for the three variables considered. As for the trend corrected forecasts, the most striking difference of the detrended forecasts in comparison with Figure 3 is the skill for SSH of CMCC system over the Atlantic, which now is superior to the detrended persistence. These results confirm that the erroneous forecast trends can masked the skill in predicting the interannual variability.




Figure 8 | As Figure 3 but showing the difference in ACC in the second season between the Trend-Corrected forecasts and persistence (top panels) and the Detrended forecasts versus detrended persistence (bottom panels).



The contribution of the linear trends to the overall level of ACC skill in seasonal forecasts is displayed in the top panels of Figure 9, which show the ACC differences between trend-corrected and de-trended forecasts (the latter verified against de-trended observations). In SSH and OHC the linear trends contribute to the skill in the Tropical Indian Ocean and extratropical Pacific. The impact is also seen across the Atlantic basin. The impact of the trends is stronger in predictions of SSH, notably over the Atlantic basin and the Southern Ocean, as discussed previously. The trends also contribute to the predictability of SST over the extratropical oceans, and notably over the European-Arctic area. The impact of the trend in forecast skill is consistent in both forecasting systems. The bottom panes of Figure 9 show the ACC differences between the detrended forecasts and the standard calibration. Regions with negative values indicate where the linear trends contribute to the ACC skill. Conversely, positive values indicate where the erroneous trends in the forecasting systems are detrimental for the skill.




Figure 9 | Contribution of the linear trend to the skill as measured by the differences between the anomaly correlation of the Trend Corrected and Detrended seasonal forecasts (top panels) and by the differences between the Detrended and standard seasonal forecasts (bottom panels). Dotted area indicate that the correlation differences are significant at the 90% level.








Summary and conclusions

Selected ocean variables (SST, OHC and SSH) from the ensemble of ECMWF and CMCC seasonal forecasts contributing to C3S have been verified against independent observational records. The observational records chosen are the state-of-the-art datasets of Essential Ocean/Climate Variables (EOVs/ECVs). These are monthly SST and SLA from the Copernicus Climate Change Service (C3S) and OHC from Copernicus Marine Environmental Service (CMEMS) Global Ensemble of ocean Reanalyses Products (GREP).

The C3S seasonal forecasts dataset comprises probabilistic forecasts initialized four times per year during the period 1993–2016. Each individual forecast consists of 40 ensemble members, integrated for up to 6 months. The forecast and observational data have been stratified in seasonal means for which the anomaly correlation and mean square skill score metrics have been derived. The forecast performance has been benchmarked against two statistical forecasts, namely persistence and climatology. The fidelity of the linear trends in the forecasts has also been evaluated, as well as the contribution of the observed trend to the seasonal forecast skill. From the analysis of the results, we obtain the following conclusions:

	Skill of seasonal forecast for 3 variables outperforms that of persistence and climatology in most regions in the first and the second season over the tropics. There is still scope for further skill gains in the extratropical oceans, where the persistence forecast beats the dynamical models. This is more noticeable in forecasts of OHC and SSH, and therefore it is expected that the improvements of the ocean initial conditions can contribute to further skill gains.

	Differences among the variables in the spatial distribution of skill are indicative of processes contributing to predictability. For example, over the tropical Atlantic and North-Eastern Pacific, the higher skill in SST forecasts than in OHC or SSH, is likely the consequence of the additional predictability arising from the remote effect of ENSO. Conversely, the lower skill of SST over the Western Pacific Warm pool is probably related with unpredictable atmospheric processes interfering with the predictable signal in the ocean subsurface.

	The ability of the seasonal forecasts to capture the linear trends in observations has been evaluated. Results show that some aspects of the observed linear trends are not well captured by seasonal forecasts. This includes overestimation of the warming in the tropics (warm-pool regions, and Equatorial Pacific cold tongue) and under-estimation of mid-latitude warming. These deficiencies are visible early in the forecast and appear to be associated with the trends in the ocean initial conditions. This is certainly the case for the SSH trends in the CMCC system. However, deficiencies in the forecasts models cannot be ruled out.

	Additional linear trend correction calibration step corrects some of these deficiencies and improves the forecast skill further. The linear trend correction appears to contribute to the skill in several areas of the Atlantic basin. However, it does not improve the forecast skill over the Arctic, suggesting that in these regions the trends may not be linear.

	The contribution of the linear trend to the skill has been quantified, and it is shown that this contribution is sizeable for SSH in the Atlantic and Southern Ocean and is also visible in SST and OHC in the Indian Ocean, mid-latitudes, and areas of the Atlantic basin.



Results also highlight the importance of representing the decadal variability and trends in ocean heat content and sea level in the initial conditions. This is a non-negligible challenge for the ocean data assimilation systems used in the production of ocean initial conditions. The representation of decadal variability and trends is essential for decadal forecasts and climate projections. Therefore, the results from the seasonal forecasts are also very relevant for the efforts on decadal variability and climate projections.
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Representing and forecasting global ocean velocities is challenging. Velocity observations are scarce and sparse, and are rarely assimilated in a global ocean configuration. Recently, different satellite mission candidates have been proposed to provide surface velocity measurements. To assess the impact of assimilating such data, Observing System Simulation Experiments (OSSEs) have been run in the Mercator Ocean International analysis and forecasting global 1/4° system. Results show that assimilating simulated satellite surface velocities in addition to classical observations has a positive impact on the predicted currents at the surface and below to some extent. Compared to an experiment that assimilates only the classical observations, the surface velocity root-mean-squared error (RMSE) is reduced, especially in the Tropics. From a certain depth depending on the region (e.g. 200 m in the Tropics) however, slight degradations can be spotted. Temperature and salinity RMSEs are generally slightly degraded except in the Tropics where there is a small improvement at the surface and sub-surface. Sea surface height results are mixed, with some areas having reduced RMSE and some increased. The OSSEs reported here constitute a first study and aim to provide first insights on the features that improve by assimilating surface velocity data, and those which need to be worked on.
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1 Introduction

Mercator Ocean International (MOI) has been monitoring and forecasting ocean and sea ice variables operationally for about twenty years. Through the MyOcean and MyOcean2 projects, and then the Copernicus Marine Service (http://marine.copernicus.eu), the MOI system has been improved over the years to deliver more accurate data. This data is used in various applications including safety, resources management, coastal and marine environment, weather and climate forecasting. The system, a coupled ocean and sea ice model with data assimilation, is described in detail in Lellouche et al. (2013) and Lellouche et al. (2018).

The ocean variables are numerous and depend on the application they are monitored and forecast for. Forecasting accurate surface current velocities is essential for rescue operations, oil spill or harmful algae trajectory predictions. For example, Drevillon et al. (2013) studied the Rio-Paris Air France flight wreckage that occurred in June 2009. The wreckage was located in a highly variable and poorly observed part of the Tropical Atlantic. Using reverse drift computation, they tried to track down the position of the plane from the debris that appeared for the first time 5 days after the accident. They showed that the performance of the system at that time leads to a positioning error of between 80 and 100 km. Producing more accurate surface current velocities would help reducing search zones. It could also improve the routing of ships, saving oil and hence limiting costs and pollution. Rohrs et al. (2021) present several applications for surface current data, classifying them depending on their requirements in terms of depth range and time scale.

Despite their importance, representing accurately ocean velocities remains a challenge in global analysis and forecasting systems. The vertical resolution is often not refined enough to capture the details of the air-sea interface in the upper centimeters (Laxague et al., 2017). Depending on the horizontal resolution, baroclinic eddies can be represented but are not necessarily resolved (Chassignet and Xu, 2017; Sandery and Sakov, 2017). The ocean model needs to capture complex processes that often involve outputs of other models such as winds, waves or tides (Rohrs et al., 2021). Most of the ocean analysis and forecasting systems do not currently rely on atmosphere-ocean or wave-ocean coupled models. Atmosphere forcing is generally provided as ancillary data with a 3-hourly or hourly sampling. The wave motion is often not resolved, which implies that the Stokes drift is not represented. This is a serious drawback, since the Stokes drift can represent an important part of the total surface current in the upper meters (Ardhuin et al., 2009).

Moreover, current velocities are rarely constrained directly by data assimilation. Corrections are generally calculated by applying multivariate covariances to the temperature, salinity and sea surface height (SSH) increments. The main reason lies in the sparseness of velocity observations. Some Acoustic Doppler Current Profilers (ADCP) are deployed for eulerian measurements, but they have a limited spatial coverage and struggle to measure surface currents. Surface drifters perform Lagrangian measurements but are sensitive by nature to Stokes drift and direct wind forcing (Lumpkin et al., 2017). Therefore, they are usually drogued to measure the current at typically 15 m depth. High Frequency radar networks are quickly developing to measure surface currents (Rubio et al., 2017), but they are deployed in coastal regions only and are thus of limited interest to global configurations. Isern-Fontanet et al. (2017) discuss the advantages and drawbacks of computing surface current velocity data from satellite observations. This includes the geostrophic currents from altimeter observations or the Ekman component and Stokes drift from scatterometer measurements for example.

Direct measurements of surface current velocities from satellite are rare. However, recent years have seen an increasing interest for these observations, and different concepts have been proposed. Synthetic Aperture Radar (SAR) can be used by exploiting the Doppler shift due to the surface ocean motion (e.g. Krug et al., 2010, for the Agulhas Current). Ardhuin et al. (2019) provide a review of the different techniques using SAR instruments. The Harmony mission, selected for the European Space Agency’s (ESA) Earth Explorer 10 satellite, combines a SAR instrument with already deployed Sentinel altimeters to provide simultaneous measurements of surface currents, wind and waves (Lopez-Dekker et al., 2019). SeaSTAR mission candidate for Earth Explorer 11 aims to provide high-resolution total surface currents along with surface winds (Gommenginger et al., 2019) in coastal areas. Among the National Aeronautics and Space Administration (NASA) concepts for the Earth System Explorers missions, Ocean DYnamics and Surface Exchange with the Atmosphere (ODYSEA) mission proposes a Doppler scatterometer to measure surface winds and currents at high resolution (Torres et al., 2023). The same technique and ambitions are proposed by the National Space Science Center (NSSC) with the Ocean Surface Current Multiscale Observation Mission (OSCOM; Du et al., 2021).

The Sea Surface KInematics Multiscale (SKIM) mission was preselected for the ESA’s Earth Explorer 9. It proposed to measure total surface current velocities (TSCV) and ocean wave spectra with a global coverage, using Ka-Band radar with its geometry controlled by an onboard nadir altimeter (Marie et al., 2020). To support the mission, the A-TSCV project (https://oceanpredict.org/science/projects/a-tscv/#section-home) has been funded by ESA to refine the observation requirements and provide feedback to the research community on the assimilation of satellite surface currents. To do so, the capacity of assimilating TSCV data is implemented in the MOI analysis and forecasting global 1/4° system to assess the impact of such data through Observing System Simulation Experiments (OSSEs). This paper reports on this assessment. The same study is done by the Met Office Waters et al. (2024a) and the comparison of both systems is reported in Waters et al. (2024b). Even though the SKIM mission was not selected eventually, the OSSEs produced here still bring valuable information on how TSCV assimilation can improve ocean analysis and forecasts. It should be noted, however, that the impact of such data depends also on the orbit and space and time coverage of the mission.

The paper is organized as follows. Section 2 details the MOI analysis and forecasting system and describes its representation of surface velocities. Section 3 presents the design of the OSSEs and the different experiments that have been run. Results of the assessment are presented in Section 4, before the study is summarized and some conclusions are given in Section 5.




2 Velocities in the MOI global system

In this section, we provide details on the MOI analysis and forecasting global system and the way it represents the surface currents.



2.1 The MOI analysis and forecasting global system

The MOI analysis and forecasting global system is based on the Nucleus for European Modelling of the Ocean (NEMO; Madec, 2008; Madec et al., 2017) ocean general circulation model (OGCM), coupled to the Louvain-La-Neuve sea ice model (LIM; Fichefet and Morales Maqueda, 1997; Vancoppenolle et al., 2009).

The global 1/4°configuration presents an horizontal resolution of 27 km at the Equator, 21 km at mid-latitudes and 6 km at high latitudes. A global 1/12° high-resolution (eddy-rich) system is also available and is used operationally to monitor in real time the ocean and deliver forecasts for the Copernicus Marine Service. The vertical resolution uses Z-coordinates and is discretised in 50 levels for both configurations. Almost half of them (22 levels) describe the upper 100 m, with the first level representing the first 1 m. Then the mesh size increases gradually and reaches 450 m thickness for the last level.

The atmospheric forcing fields are provided by the European Center for Medium-range Weather Forecasts (ECMWF). Depending on the ocean model configuration, different samplings (three-hourly or hourly) allow the diurnal cycle of the sea surface temperature (SST) to be accounted for. CORE bulk formulae (Large and Yeager, 2009) are used to compute surface fluxes and freshwater budgets. In previous system versions the wind stress was computed using only 50% of the surface model currents (Lellouche et al., 2018). This coefficient had been defined from sensitivity tests and results from Bidlot (2012), to reflect that the atmosphere and the ocean models are not coupled. In more recent system versions the surface wind stress computation is based on the formulation proposed by Renault et al. (2017) taking into account both the relative velocity and re-energization of the atmosphere induced by interactions between wind and oceanic surface currents. The coupling coefficient is roughly expressed as a linear function of the mean surface wind.

The MOI analysis and forecasting system includes a data assimilation method named SAM (Système d’Assimilation Mercator). SAM relies on a reduced-order Kalman filter based on the singular evolutive extended Kalman filter formulation (SEEK; Pham et al., 1998; Brasseur and Verron, 2006). A subspace of small dimension is defined such that it contains only the dominant directions of the background error. The analysis is then performed weekly in this subspace, hence reducing the computational cost. This error subspace is built up from a collection of anomalies from a long simulation where only the large-scale temperature and salinity are corrected by data assimilation (Benkiran et al., 2021). These anomalies contain the univariate and multivariate spatial correlation structure of the background error. The variance is adjusted using the innovation diagnostics proposed by Desroziers et al. (2005). The resulting error covariances are consistent with the model dynamics. Since only a set of anomalies around the current window are used to compute the statistics, the error covariances are seasonally dependent. To prevent any spurious correlations, a Gaussian function is used to limit horizontally the application of the covariances. The analysis vector is then calculated as the forecast vector corrected by a combination of the dominant error directions whose weight is proportional to the innovation vector projection. Note that both the forecast and the analysis vectors are defined on a coarser grid than the model grid to ease the computational cost. After each analysis, the data assimilation produces seven daily increments of sea ice concentration, sea surface height, temperature, salinity and zonal and meridional velocity, using a 4D extension of the SEEK analysis (Benkiran et al., 2021). Finally, the increments are applied through the incremental analysis update (IAU; Bloom et al., 1996), modulated by an increment distribution function (see Figure 4 of Lellouche et al. (2013)).

Different real observations are assimilated by the method described above: in situ temperature and salinity vertical profiles, satellite sea surface temperature (SST) and sea ice concentration, and along-track sea level anomalies (SLA). Climatological vertical profiles of temperature and salinity below 2000 m are also assimilated in regions drifting away from the climatological values (Lellouche et al., 2018). Even if no velocity observations are assimilated, a velocity correction is nevertheless calculated through the multivariate aspect of the covariances.

A second data assimilation method based on a 3D-VAR scheme is also available in SAM. Accumulating the innovations over the last month, it estimates the large-scale temperature and salinity biases. Corrections are then computed using anisotropic Gaussian correlations modeled by a recursive filter (e.g., Purser et al., 2003). These corrections are applied as trends in the model prognostic equations. The bias correction is mostly effective below the thermocline.




2.2 Representing surface velocities

The surface velocities arise from various processes acting alone or combined with others (Rohrs et al., 2021). These processes include the frictional stress of the wind, the surface wave-induced inertia, the Coriolis force associated with the Earth rotation and pressure gradients due to variations in surface elevation or density. In this paper, we define the total surface current velocities (TSCV) as mainly the sum of the geostrophic currents (pressure-gradient current), the Ekman current (wind-driven current) and the Stokes drift (wave-induced current). Smaller or shorter scale contributions to the TSCV include tides and near-inertial oscillations.

The ocean model of the MOI analysis and forecasting system does not include any coupling with the atmosphere nor waves. Wind stress along with other atmosphere forcings are provided as ancillary data. No wave information is provided, however, meaning that the Stokes drift is not included in the modeled currents. Tides are also not included, but this is less problematic for a global configuration.

The global ocean configuration uses a tripolar grid (Madec and Imbard, 1996) to overcome the North Pole singularity. The Earth is covered with a global orthogonal curvilinear mesh in which the points of convergence of the mesh lines (the poles) are located on land. For the North Pole, the mesh parallels are constructed as embedded circles whose center moves along the y-axis. This structure leads to a model representation of the velocities that does not refer to eastward and northward directions. Therefore, the model velocities, particularly above 30N, must be rotated before being assessed or plotted to conform with reality.

Recently, the OceanPredict task team for Intercomparison and Validation extended the CLASS4 reference data to include near surface currents (15 m) from drogued drifters. CLASS4 diagnostics evaluate the model forecasts interpolated onto the observation locations. Using these diagnostics, Aijaz et al. (2023) compare the modeled currents of different systems, including the global real time MOI analysis and forecasting system, for the years 2019, 2020, and 2021. In this comparison, the MOI system uses version 3.1 of NEMO and version 2 of LIM, with a 1/12° horizontal resolution. The atmosphere forcing is provided by the operational forecast of ECMWF, with six-hourly turbulent variables (e.g. wind), and daily average radiative and freshwater fluxes. To allow for a fair comparison to the drifters, hourly Stokes drift from Météo France wave model is linearly added to the modeled velocities. Aijaz et al. (2023) show that globally, the stronger mean zonal currents are better represented than the smaller mean meridional currents. Nevertheless, the magnitude of the velocities are generally underestimated, apart from sporadic locations. The regions where the currents are strong and well defined (e.g. Tropics), show a better accuracy than the regions with eddies and high kinetic energy. Overall, a good correlation (0.75 and 0.65 for zonal and meridional velocities, respectively) is found between the modeled currents and the drifter observations.





3 OSSE design and sensitivity

This section describes the design of the OSSEs conducted during the A-TSCV project. Details of the experiments are given and preliminary checks ensuring the validity of the OSSEs are described.



3.1 A-TSCV project

The growing interest in ocean current velocity measurements has led to different proposals of satellite instruments these past years. To support such missions, the A-TSCV project assessed the impact of satellite surface velocity data in ocean analysis and forecasting systems. The idea was to implement the capability of assimilating such data, run OSSEs, and provide feedback to the community on the results.

OSSEs are a well-known approach with agreed community best practices to assess the impact of future observing systems (Hoffman and Atlas, 2016). Pseudo observations are extracted from a model simulation, called the Nature Run (NR), and are then assimilated. The analysis obtained after their assimilation can be subtracted from the full three-dimensional NR model fields and statistics can be made on these errors. Hence, the comparison between different experiments, assimilating different simulated observations, provides insights such as the impact of assimilating new observations, the sensitivity of the analysis to the noise level, the data coverage and the data assimilation set up. Classical observations are generally simulated and assimilated at the same time to mimic a realistic ocean observing network and to study their complementarity in improving the model forecasts. A control simulation which assimilates only these classical observations serves as a reference.

The NR is generated by a state-of-the-art numerical model to simulate as much as possible the real ocean dynamics or at least to realistically represent the processes that are expected to be observed. Observations are simulated with a realistic coverage and accurately calibrated observation errors. The fraternal approach, where the NR and the OSSEs have different configurations, is generally preferable to the twin approach, where the same configuration is used (Yu et al., 2019). This helps in particular at having realistic differences between the NR and the OSSEs.




3.2 Nature Run and observations

In this study, the NR is the twin simulation, without data assimilation, of the previous real-time global 1/12° simulation called PSY4 (Lellouche et al., 2018), produced at MOI for the Copernicus Marine Service. Having a higher resolution for the NR than for the OSSEs ensures a high-resolution content of the simulated observations. The NR simulation has been validated against observations and has already been used for OSSEs in the context of the AtlantOS H2020 project (Gasparin et al., 2018, Gasparin et al., 2019). It is based on version 3.1 of NEMO and version 2 of LIM. The atmosphere forcing is provided by the operational ECMWF Integrated Forecasting System (IFS), with a three-hourly sampling. The NR has been initialized on 11 October 2006 with temperature and salinity fields provided by EN4 gridded fields, with velocity fields at zero. A 1-year spin up allows the velocity fields to reach balance with the density fields. The simulation is then run until the end of 2015.

The in situ temperature and salinity vertical profiles and SST maps assimilated in the experiments are the same observations used in the AtlantOS H2020 project (Gasparin et al., 2019). They are extracted from the NR using daily mean outputs interpolated in time and space to match the observation times and locations. The times and locations of the profiles are extracted from the Coriolis Ocean database Re-Analysis (CORA4.1) for eXpendable BathyThermograph (XBTs, temperature only), tropical moorings, drifter and Argo floats. The SST observations are generated on a regular 1/4° horizontal resolution. The NR fields are randomly shifted by ±3 days before the observation values are extracted. This time-shifting technique (Huang and Wang, 2018) introduces weekly correlated errors standing for the representativity error. This error presents the same latitude dependency as the representativity error used in the operational 1/4 degree MOI system. An instrumental error is also added using a Gaussian distribution which standard deviation is consistent with the instrumental error of the true observations. The total error is dominated by the error generated by the time-shifting technique.

Along-track altimeter observations are generated to simulate Altika, CryoSat, Jason3, Sentinel-3A and Sentinel-3B, using the SWOT simulator version 4.0 (github.com/SWOTsimulator/swotsimulator) described in Gaultier et al. (2016). The two-hourly mean fields of the NR are interpolated in time and space along the satellite nadir tracks. The simulator generates as well an error corresponding to the sum of contributions such as the instrument noise, the phase and timing errors. Note that SSH rather than SLA data are assimilated to avoid any issue that could arise by using a different Mean Dynamic Topography between the NR and the experiments.

For the project, a specific simulator, namely the SKIMulator (github.com/oceandatalab/skimulator), has been created to generate L2 TSCV data from the two-hourly mean fields of the NR. Different processing is performed based on the SKIM instrument features as described in Gaultier and Ubelmann (2022). Although the SKIM mission is designed to measure as well the ocean wave spectra, this feature is not utilized here. Therefore, the Stokes drift is not present in the simulated observations. The TSCV data set is constituted of zonal and meridional velocity components in the eastward and northward directions, respectively, on a grid under the swaths. A weighted least square method is used to process the radial components provided by the SKIMulator into a field of velocity vectors. This processing introduces a mapping error in the observations. An instrument error is also calculated and made available. Both errors are discussed further in the next section.




3.3 Experiments

At the time the A-TSCV project described in this paper was launched, the analysis and forecasting system currently used in the framework of the Copernicus Marine Service was under development. Therefore, some of the latest changes are not included in the version we used for the OSSEs. Moreover, since these experiments represent a preliminary study, some features are not used to reduce the complexity. The large scale temperature and salinity bias correction is switched off. Since this correction is mostly effective under the thermocline, it should have a limited impact on the study. Sea ice concentration is not assimilated in the experiments. However, the regions of interest for this study are not located in high latitudes, and the lack of these observations should not be problematic.

A fraternal approach is chosen for the OSSEs, i.e. the observations simulated from the NR are assimilated in a model configuration that is different from the NR configuration. The system used in this study is based on NEMO version 3.6 and LIM version 3. The configuration is the global 1/4° and the atmosphere is forced by the ERA5 fields (Hersbach et al., 2020) with hourly sampling. The choice of a different forcing from the NR reflects the presumed differences between the real ocean and the operational forecasting systems. Unfortunately, a setting error reduces drastically the precipitation forcing. This has a significant impact on the salinity, in particular in the Intertropical convergence zone (ITCZ) and South Pacific convergence zone (SPCZ). However, the results presented hereafter are based on the comparison of different experiments that include the same error. Therefore, we argue that these results are valid enough to give useful insights.

The current velocity assimilation capability is implemented such that the zonal and meridional components are independent. This is clearly not ideal since it assumes that the components are not spatially correlated. Moreover, it could slightly mislead the calculation of the horizontal divergence during the ocean simulation. This choice however, eases the complexity of the implementation and facilitates the analysis. Depending on the results, this choice may be revisited later in a further step. The coast configuration might lead sometimes to have one of the component on land and the other one on ocean. Therefore, a check is performed to ensure that both components are valid and will be assimilated. The different directions of the observations (eastward/northward) and the modeled current (tripolar grid) is handled by rotating the observations onto the grid directions rather than the modeled current onto the eastward/northward directions. This is done to avoid a cumbersome and time-consuming rotation of the anomalies from which the covariances are calculated, but does not affect the results of the assimilation. The covariances are calculated and used as it is done operationally, without any additional tuning.

The prescribed observation error (R matrix) for the TSCV data is built up from different errors. The mapping error present in the observations is prescribed. This is a constant small error of about 2.5 cm/s. The instrument error calculated by the SKIMulator increases exponentially around the nadir for the zonal velocity component (Figure 1A). Therefore, the observations within 40 km around the nadir are removed. For the meridional velocity component, the instrument error increases significantly near the edges (Figure 1C) and the observations within the 10 km of the swath edge are also removed. A representativity error is calculated to account for the resolution difference between the observations, generated from a 1/12° model, and the assimilative system at 1/4° (Janjic et al., 2018). This error is based on the variability comparison between the 1/4° Forecast Ocean Assimilation Model (FOAM) of the Met Office and the NR daily mean surface velocities (Waters et al., 2024a). Note that the temporal component of this error is not taken into account in this study, although this aspect could be important. The example of Figure 1 shows an increase of the observation error between 35N and 45N due to a higher representativity error along the Gulf Stream. The experiments run in this study use for each observation a prescribed observation error associating (sum of variances) the constant mapping error and the representativity error interpolated at the observation location with or without the instrument error.




Figure 1 | Example in the North Atlantic of the zonal (top) and meridional (bottom) prescribed velocity observation error: mapping and representation error with (left) or without (right) instrument error.



Table 1 summarizes the various experiments and their differences. The year 2009 has been chosen for the study. A Free Run without any data assimilation allows the evaluation of the mismatch with the NR. The Free Run uses a restart file provided by the operational system and starts on the 7 January 2009. The Control experiment assimilates the classical observations of SST, temperature and salinity profiles, and SSH. It runs using 7-day cycles, where each cycle includes a forecast to compare the observations to, an analysis to compute the correction to the initial conditions, and a propagation step to account for these corrections. The ocean and ice states at the end of a cycle serve as initial conditions for the next one. The first cycle on the 7 January 2009 uses the same restart file as the Free Run. All the A-TSCV experiments assimilate furthermore the TSCV data using the same cycling procedure as the Control. Their restart file for the first cycle is provided by the Control and they start on the 21 January 2009. The A-TSCV No Err assimilates the TSCV observations without the instrument error, whereas the A-TSCV Instr Err and A-TSCV Thin assimilate observations including the instrument error. To limit the memory usage while keeping a high resolution network, only a selection of the available TSCV observations are assimilated. For the A-TSCV No Err and A-TSCV Instr Err, only one over two TSCV observations are selected across track. For the A-TSCV Thin only one over four observations across and along track are selected, hence one over sixteen. The observation selection and its consequences is further discussed in the sensitivity Section 3.5. All the experiments run until 29 December 2009, except for A-TSCV Thin that stops on 10 June 2009.


Table 1 | Summary of the experiment differences: starting date, assimilation of classical observations, assimilation of TSCV data, prescribed TSCV observation error.






3.4 Differences to NR

To ensure that the conclusions of the OSSEs assessment are valid, it is important to check that the experiments have enough significant differences compared to the NR. Those differences arise mainly from the evolution of the MOI analysis and forecasting system, the horizontal resolution and the atmosphere forcing (see Table 2).


Table 2 | Summary of the differences between the Free Run and the NR.



The field differences between the Free Run and the NR are assessed in terms of mean and Root Mean Square Error (RMSE). To check the behavior of the assimilation of classical observations, the differences between the Control and the NR are also assessed. The SSH RMSE (not shown) for the Free Run is about 11 cm and stable during the whole year. Note that this is not a consequence of a bias. The Control manages to decrease the RMSE to 7 cm (36% improvement), which is comparable to the misfit found in the real time 1/4° system assimilating real SLA observations.

The global profiles of mean and RMSE are shown on Figure 2 for temperature (Figure 2A), salinity (Figure 2B), zonal (Figure 2C) and meridional (Figure 2D) velocity. All the variables present a significant difference between the Free Run and the NR in terms of RMSE. Temperature has a RMSE of 0.9°C at surface, reaching 1.15°C at 150 m, and decreasing with depth thereafter. Salinity has a high RMSE of 0.9 psu at surface, decreasing rapidly to 0.3 psu at 50 m. The velocity RMSE is about 16 cm/s decreasing with depth. The Control manages to correct nicely the RMSE, with a 35% improvement for temperature RMSE, and 37% for velocity RMSE. For salinity, the RMSE is decreased by 20% at 50 m depth but only 5% at the surface. The temperature and salinity RMSEs are higher than the statistics of the real time 1/4° system assimilating real observations. This is probably due to the setting error in the precipitation flux mentioned earlier.




Figure 2 | Global mean (dashed lines) and RMSE (plain lines) of the difference Free Run - NR (red) and Control - NR (blue). Profiles of temperature (A), salinity (B), zonal (C) and meridional (D) velocity calculated from 25/02/2009 to 29/12/2009.



The setting error in the parameters of the atmosphere forcing caused the precipitation to be almost erased in all the experiments. The salinity is drastically affected by this error. Figure 3A shows the spatial map of salinity RMSE calculated over the year. As expected, the major differences are located in the Arctic Ocean, the ITCZ and SPCZ, and the river outflows. Figure 3B shows the mean and RMSE time series for surface salinity in the Tropical Pacific. The restart file being close to the NR, the Free Run RMSE in January is about 0.3 psu and the bias is almost null. Along the year, the bias increases, and the RMSE increases as well before stabilizing at 0.85 psu end of December. The Free Run has been launched for two extra months to confirm that the RMSE was stable after this increase. Interestingly, the Control manages to reduce the bias of 40%, ending up with a RMSE of 0.5 psu. Results regarding salinity in areas affected by the fresh water budget must be taken with caution, due to the constant mismatch between the precipitation forcing and the salinity observations. However, comparing experiments with the same error alleviates the issue. It is worth mentioning that temperature, salinity, and SSH to some extent, are affected by biases in the Tropics in the Free Run. These biases are nicely corrected in the Control by assimilating classical observations.




Figure 3 | Spatial map of surface salinity RMSE calculated from 25/02/2009 to 29/12/2009 (A). Tropical Pacific mean (dashed lines) and RMSE (plain lines) of the difference Free Run - NR (red) and Control-NR (blue) for surface salinity, calculated from 21/01/2009 to 29/12/2009 (B).






3.5 Sensitivity analysis

The SKIM concept is designed to use 270 km wide swaths, and provides TSCV observations at a high resolution of 5 km across and along track. Dense observation networks require to be thinned to avoid overfitting the observations (Ochotta et al., 2005). Furthermore, the simulation of the TSCV data uses a least square method with a 20 km length scale that introduces spatial correlations. Observation correlations are not accounted for in the MOI analysis and forecasting system. In this case, increasing the variance of the prescribed observation error could compensate for the spatial correlations to some extent.

The A-TSCV No Err experiment assimilates one over two observations across track, i.e. with a resolution of 10 km across track and 5 km along track. With such a resolution, possible correlations are still present although limited across track. In this experiment, the observations include the mapping error. The prescribed observation error is built up from the mapping and the representativity errors. For the A-TSCV Instr Err experiment, the observation thinning is the same as previously, but the observations include as well the instrument error provided by the SKIMulator. This error is also prescribed. A third experiment, A-TSCV Thin, has been run for six months with the same prescribed observation error as A-TSCV Instr Err, but a stronger thinning to grasp the observation density impact. In this experiment, one over four observations are retained along and across track, hence one over sixteen observations, i.e. a resolution of 20 km in both directions. Such a resolution should cancel out most of the observation error correlations.

Figure 4 shows the profiles calculated from March to May 2009 of the impact of the different prescribed observation errors and observation thinning with respect to the Control. From Figures 4C, D, it is clear that retaining one over two TSCV data leads to an overfitting of the observations. At the Equator for example (not shown), the lowest surface velocity RMSE is about 13 cm/s and increases to 14 cm/s with the lowest observation density. For comparison, Control has a RMSE about 20 cm/s and 15 cm/s, for zonal and meridional velocity, respectively. At depth, the highest observation density associated with the smaller prescribed observation error leads to a slight global degradation from 600 m (about 2 mm/s at 1000m). With a higher error, the RMSE improvement persists at depth although it is slightly smaller below 800 m than the experiment with the higher observation density.




Figure 4 | Global RMSE gain of the difference A-TSCV No Err - NR (green), A-TSCV Instr Err - NR (orange) and A-TSCV Thin - NR (pink) with respect to Control - NR. Profiles of temperature (A), salinity (B), zonal (C) and meridional (D) velocity calculated from 25/02/2009 to 09/06/2009.



Temperature RMSE (Figure 4A) is impacted through the multivariate covariances. The impact is generally positive in the first 200 m of the Tropics and negative elsewhere, resulting in a slight global degradation. This is especially true for the experiment with the lowest prescribed TSCV observation error, which RMSE increases to 0.62°C (6%) at the surface whereas it was 0.54°C for Control. For salinity (Figure 4B) the same impact can be seen, although it is worth keeping in mind that the differences between the experiments are very small (0.004 psu at 1000m between Control and A-TSCV No Err).

The three experiments show significant differences, due to the observation network density and how it is handled. These differences confirm that a preprocessing should be done on the TSCV data before assimilating them. The thinning performed here is very basic. More adapted methods could be thought of. For example, Liu et al. (2021) develop an approach to thin satellite greenhouse gas data, in which the observations are reduced the most in regions with little variability. Rather than defining regular boxes, Duan et al. (2018) use clusters in which performing a superobbing of wind data sets. Preprocessing the data is crucial and should be done carefully depending on the observation network properties.

In the following section, we limit the assessment to A-TSCV Instr Err, this experiment being more realistic, since it includes the instrument error. Note that further results for A-TSCV Thin are not available.





4 Experiment analysis

The OSSEs reported in this paper constitute a first study and aim to provide first insights on the impact of assimilating surface velocity data. Therefore, we focus on the simple diagnostics of mean and RMSE with respect to the NR. The idea is to spot the features that are improved and those which need to be worked on. More complex diagnostics, such as transport evaluation for example, will be done in a next study. To allow for a spin-up, the assessment of A-TSCV Instr Err is performed from 25/02/2009 to 29/12/2009, and the results are compared to Control.

We found that assimilating TSCV data leads to a significant improvement of the surface velocities in terms of mean and RMSE, especially at the Equator (see Figure 5). Moreover, this improvement is retained during a 7-day forecast. The velocities are also improved down to 400 m globally (200 m at the Equator, deeper in some other regions such as the Gulf Stream). The results for the other variables are mixed. Temperature RMSE is generally slightly degraded apart from the Tropical regions where a small improvement can be seen no further down than 200 m. For salinity, the differences are generally small. Global and Equatorial region results are presented in Waters et al. (2024b) together with the Met Office results for the A-TSCV project.




Figure 5 | Spatial map of surface speed mean error difference between |A-TSCV Instr Err - NR| and |Control - NR| calculated from 25/02/2009 to 29/12/2009. The blue and red areas indicate that A-TSCV Instr Err or Control, respectively, is closer to NR. The boxes represent the regions of interest: Tropical Atlantic (red), Gulf Stream (green), Aghulas (purple), and Southern Ocean (yellow).



In this section, we report on features seen during the assessment allowing us to suggest possible ways of improvement for the system. Therefore, the assessment focuses on regions (see Figure 5) presenting a specific interest in the dynamics of the surface currents: i) the Tropical Atlantic (red area) for its wind-driven currents; ii) the Gulf Stream (green area) and the Agulhas Current (purple area) as geostrophic Western Boundary Currents (WBCs); iii) and the Antarctic Circumpolar Current (ACC; yellow area) for its barotropic nature.



4.1 Velocity improvement

The velocity RMSE is nicely improved globally at the surface. Even if this is partly due to an overfitting to the TSCV observations, the improvement is still genuine.



4.1.1 Tropical Atlantic

Figure 6 shows the surface velocity mean modeled by the NR for July (Figure 6A). Driven by the trade winds, the South Equatorial Current flows westward in two strong branches in July. The southern branch reaches the Brazilian coast where it carries on along the Northern coast as the North Brazil Current, the Guiana Current, and feeds eventually the Caribbean system. Note that a strong Ekman transport yields a northward current around 60°W. The northern branch retroflects to feed the eastward North Equatorial Counter Current which reaches the African coast and sustains a strong Guinea Current. The surface speed difference with respect to the NR is shown on Figures 6C, E for Control and A-TSCV Instr Err, respectively. We can clearly see that assimilating TSCV data helps reducing the mismatch to the NR for all the currents. Some discrepancy can still be seen in the North Brazil Current around the Amazon outflow, and at 60°W possibly due to an inaccurate Ekman transport. In November (Figure 6B), the South Equatorial Current is weaker. The North Brazil Current feeds the North Equatorial Counter Current that decreases rapidly. It also generates some large rings traveling along the coast as well as eastwards. Again, assimilating TSCV data (Figure 6F) reduces the mean error for all currents compared to the Control (Figure 6D). Apart from the North Brazil Current, the remaining discrepancies are located along the North Equatorial Counter Current although features like the double ring between 30°W and 40°W North of the Equator are well represented. The Hovmöller plots of Figure 7 show the RMSE difference between A-TSCV Instr Err and Control, with respect to NR. Assimilating the TSCV data is clearly beneficial in the upper 100 m (blue area). Around this depth however, the core of the strong Equatorial Undercurrent flows eastward. During the boreal spring, the improvement brought by the TSCV data can be seen down to 350 m. This corresponds to a period when the transport of the Equatorial Undercurrent is minimum. According to Brandt et al. (2014), 2009 was an anomalous year with a particularly weak transport at that time. For the rest of the year, the velocity RMSE is higher than the Control from 100 m depth. This could be due to the vertical projection of the surface velocity correction conflicting with the position and direction of the Equatorial Undercurrent.




Figure 6 | Surface speed monthly mean in the Tropical Atlantic modelled by the NR in July (A) and November (B). Surface speed mean difference between Control and NR in July (C) and November (D). Surface speed mean difference between A-TSCV Instr Err and NR in July (E) and November (F).






Figure 7 | Hovmöller of the RMSE difference between |A-TSCV Instr Err - NR| and |Control - NR| for zonal (A) and meridional (B) velocity in the first 500 m of Tropical Atlantic. The blue and red areas indicate that A-TSCV Instr Err or Control, respectively, is closer to NR.






4.1.2 Western boundary currents

The Gulf Stream carries warm water from the Tropics toward the north at the western part of the North Atlantic basin on about the first 1000 m of the water column. Figure 8 shows the Hovmöller plots of the velocity RMSE difference between A-TSCV Instr Err and Control, with respect to NR. The corrections brought by the TSCV data assimilation extend to depth, which is consistent with the Gulf Stream depth. A seasonal pattern can be seen with a degradation during fall, more pronounced at depth. This corresponds to the minimum transport of the seasonal variation of the Gulf Stream at depth. Focusing at 500 m depth, zonal (Figure 9A) and meridional (Figure 9B) velocities RMSE are decreased along the jet of the Gulf Stream in May whereas the results are more mixed in September.




Figure 8 | Hovmöller of the RMSE difference between |A-TSCV Instr Err - NR| and |Control - NR| for zonal (A) and meridional (B) velocity in the first 1500 m of Gulf Stream. The blue and red areas indicate that A-TSCV Instr Err or Control, respectively, is closer to NR.






Figure 9 | Spatial plot of the RMSE difference between |A-TSCV Instr Err - NR| and |Control - NR| for zonal (A) and meridional (B) velocity at 500 m in the Gulf Stream in May (top) and September (bottom). The blue and red areas indicate that A-TSCV Instr Err or Control, respectively, is closer to NR.



Along the eastern coast of South Africa, the Agulhas current flows southward regularly, before retroflecting when it encounters the ACC. Just below, at about 800 m, the deep Agulhas Undercurrent flows equatorward. Figure 10 shows the RMSE profiles of the region. Assimilating TSCV data improves slightly the statistics in the first 300 m, but degrades them below. Other western boundary currents have been studied and show the same kind of results.




Figure 10 | RMSE profiles of the difference Control - NR (blue) and A-TSCV Instr Err - NR (orange) for zonal (A) and meridional (B) velocity in the Agulhas region, calculated from 25/02/2009 to 29/12/2009.



Compared to the Tropics, the improvement of the surface velocity RMSE is much smaller in the WBCs. This can be possibly explained by the numerous meanders and rings involving smallest scales. The forecast and analysis vectors are computed on a coarser horizontal grid of 1/2°. This resolution is barely able to capture meso-scale features.




4.1.3 Antarctic Circumpolar Current

In the Southern Ocean, the ACC flows continuously around Antarctica. The TSCV data are provided until 60°S, which covers partially the ACC. Figure 11 shows the profiles of zonal (Figure 11A) and meridional (Figure 11B) velocity for Control (blue) and A-TSCV Instr Err (orange) in the Southern Ocean. Assimilating TSCV data is beneficial along the whole water column, which is consistent with the barotropic nature of the flows. For both zonal and meridional velocities, the RMSE is reduced by 1 cm/s at surface (10% improvement) and is still reduced by a few mm/s at the bottom.




Figure 11 | RMSE profile of the difference Control - NR (blue) and A-TSCV Instr Err - NR (orange) for zonal (A) and meridional (B) velocity in the Southern Ocean, calculated from 25/02/2009 to 09/06/2009.






4.1.4 Forecasts

Seven-day forecasts are launched every week at the start of an assimilation window. These forecasts are compared to the NR to evaluate how much of the correction is retained by the model. Figure 12 shows the mean and RMSE surface zonal velocity in the different regions. The benefit of assimilating TSCV data is preserved during the entire forecast. In the Tropical Atlantic, the RMSE of the 7th forecast day for A-TSCV Instr Err is still smaller than the RMSE of the 1st forecast day for Control. In the ACC, the gain is of about 2 days. The RMSE gain in the WBC regions is less than 1 day due to a poor improvement in the analysis. Results are similar for the surface meridional velocity.




Figure 12 | 7-day forecasts mean (dashed lines) and RMSE (plain lines) for surface zonal velocity for Control (blue) and A-TSCV Instr Err (orange) with respect to NR, in Tropical Atlantic (A), Gulf Stream (B), Agulhas (C) and ACC (D).







4.2 Deteriorations and possible solutions

While the velocity RMSE is improved at the surface and at depth to some extent depending on the region, it is degraded further down. Apart from the Tropics and the Southern Ocean where a small improvement can be spotted at surface and sub-surface, the temperature and salinity RMSEs are slightly degraded (see Figure 13 for temperature). The differences in salinity however, are very small. Regarding SSH, the improvement in RMSE is very small in all regions. This is disappointing, especially in the WBCs, where the geostrophy should lead to a more intense relationship between SSH and velocities. As shown on the example of the Gulf Stream of Figure 14B, improvements and degradations alternate, leading to this regional poor improvement. Interestingly however, a small improvement of about 2 mm can be seen along the Equator (see Figure 14A for Tropical Atlantic), suggesting that covariances include an ageostrophic relationship between the surface currents and SSH.




Figure 13 | RMSE temperature profiles of the difference Control - NR (blue) and A-TSCV Instr Err - NR (orange) in the Tropical Atlantic (A) and the Gulf Stream (B) calculated from 25/02/2009 to 09/06/2009.






Figure 14 | RMSE SSH spatial map of the RMSE difference between |A-TSCV Instr Err - NR| and |Control - NR| in Tropical Atlantic (A) and Gulf Stream region (B). The blue and red areas indicate that A-TSCV Instr Err or Control, respectively, is closer to NR.



As seen in Section 3.5, the vertical RMSE degradations are more or less strong depending on the TSCV observation thinning that is used. This suggests that the vertical projection of the correction brought by the surface data could not be completely appropriate. The vertical background error covariances are not limited in space in contrast to the horizontal covariances. Small univariate and multivariate contributions can therefore act as spurious correlations deteriorating the statistics. A filtering could hence be performed on the background error correlations to set to zero any correlations below a defined threshold. But small contributions are not necessarily spurious and this method might cause a loss of improvement in some regions. A vertical limit could also be applied, depending on some dynamical features. For example, the mixed layer depth could be used to split the stratified waters from the rest of the water column (Waters et al., 2015).

The background error variances are adjusted by computing a coefficient according to the Desroziers innovation diagnostics. However, the observations used to establish the diagnostics are limited to SST and SSH observations. The current networks for these observations allow for a global coverage and their number is dominant in the background error covariance matrix trace when classical observations only are assimilated. When TSCV data are assimilated as well, this is no longer true, and a possible discrepancy can occur, yielding RMSE degradations. Innovations associated with the TSCV data should therefore be accounted for in the diagnostics. However, one should be careful to ensure that their number will not dominate the trace.

The background error structure is calculated from the statistics of anomalies extracted from a long run where only large scale temperature and salinity are corrected by data assimilation. This structure is hence climatological and can sometimes misplace features such as fronts, rings or eddies. It could therefore be beneficial to complement this static structure with a more dynamic structure representing the current situation. This is basically the idea behind ensemble data assimilation. In our case, a possibility could be to associate a structure of the week calculated from anomalies of the 7-day forecast used to calculate the innovations.

To save computing time, the forecast and analysis vectors are computed on a coarser grid at an horizontal resolution of 1/2°. In dynamical regions such as the WBCs, this resolution could be detrimental. To alleviate such issues, the coarser grid could be redefined by eliminating more points in calm regions such as the gyres, and keeping the higher resolution in high variability regions. Sequential analyses accounting for specific ranges of scales could also help resolving these issues.





5 Summary and discussion

The MOI assimilation system has been monitoring and forecasting ocean and sea ice variables for more than twenty years in global and regional configurations. Although the velocities are not constrained by current observations, they are predicted with a satisfying accuracy even if their magnitude is generally underestimated. To answer the challenge of predicting more accurate velocities, OSSEs have been run in the framework of the A-TSCV project to assess the impact of assimilating satellite TSCV data. The TSCV is the sum of different current contributions including the geostrophic and wind-driven currents, the Stokes drift, the tidal signal and the near-inertial oscillations.

For the OSSEs, temperature and salinity vertical profiles, SST maps, SSH and TSCV data are extracted from the NR, a global 1/12° simulation without any data assimilation. Because there is no coupling with wave and tide models in the NR, the TSCV data does not include any Stokes drift nor tidal signal. The OSSEs consist of a Control experiment that assimilates the simulated classical observations but not the TSCV data, and different A-TSCV experiments that assimilate both classical and TSCV observations. The configuration of these experiments is chosen such that it will introduce differences with the NR (model versions, horizontal resolution, atmospheric forcing) so that their statistics are comparable to those of the operational system. An experiment without any assimilation is also run and shows that these differences are significant enough.

A sensitivity analysis has been performed by comparing different TSCV observation density (one over two or one over sixteen observations) and different prescribed observation errors (with or without instrument error). The results of the experiments show that high observation density leads to an overfitting to the TSCV data at the surface. This overfitting is projected vertically by the background error covariances and yields velocity RMSE degradations at depth. Having a higher prescribed observation error (with instrument error) limits these degradations. The lower density observation network associated with the higher prescribed observation error leads to a smaller improvement in the velocity RMSE at the surface (no overfitting) but generally eliminates the degradations at depth.

The assessment is performed in terms of mean and RMSE of the differences between the experiments and the NR. The statistics of the Control and the A-TSCV Instr Err (one over two TSCV observations, prescribed observation error including instrument error) are compared in regions of interest: Tropical Atlantic, Gulf Stream, Agulhas Current and ACC. The global assessment is reported in Waters et al. (2024b). At the surface and down to some depth, assimilating TSCV data reduces the velocity RMSE. This is particularly true in the Tropics. A part of this improvement however, is due to an overfitting to the TSCV data. At depth, the RMSE degradation varies seasonally depending on the dynamics of the currents. Temperature and salinity RMSEs are generally slightly degraded except in the Tropics where they are improved at the surface and sub-surface. SSH results are mixed, often alternating spatial improvements and degradations.

The RMSE degradations have been analyzed and some possible solutions have been provided. They mainly consist at reworking the background error covariances to eliminate possible spurious vertical correlations, and adjust the variances by accounting for the TSCV observations. The current covariances being static, covariances calculated for each assimilation window could lead to improvements. Eventually, the analysis grid could be redefined to preserve the highest resolution in regions with high variability, or sequential analyses for specific ranges of scales could be performed.

In the experiments, the TSCV data is assimilated through its zonal and meridional components as independent variables. This is not ideal but eases the complexity of the observation operator and the covariances to apply. Other ways could be tried such as assimilating speed and angles, stream functions, or current divergence and rotational components.

The OSSEs reported in this paper constitute a first attempt at assimilating satellite surface velocities in the MOI analysis and forecasting system. Apart from a new observation operator, no specific tuning has been done, in order to be able to evaluate the current configuration and setup. This gave us insights on the impact of such data and about aspects of the system that could be improved to make a better use of this data. A next step could be to try and implement some of the suggestions listed above and analyze their effect.
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Operational forecasts rely on accurate and timely observations and it is important that the ocean forecasting community demonstrates the impact of those observations to the observing community and its funders while providing feedback on requirements for the design of the ocean observing system. One way in which impact of new observations can be assessed is through Observing System Simulation Experiments (OSSEs). Various satellite missions are being proposed to measure Total Surface Current Velocities (TSCV). This study uses OSSEs to assess the potential impact of assimilating TSCV observations. OSSEs have been performed using two global ocean forecasting systems; the Met Office’s (MetO) Forecasting Ocean Assimilation Model and the Mercator Ocean International (MOI) system. Developments to the individual systems, the design of the experiments and results have been described in two companion papers. This paper provides an intercomparison of the OSSEs results from the two systems. We show that global near surface velocity analysis root-mean-squared-errors (RMSE) are reduced by 20-30% and 10-15% in the MetO and MOI systems respectively, we also demonstrate that the percentage of particles forecast to be within 50 km of the true particle locations after drifting for 6 days has increased by 9%/7%. Furthermore, we show that the global subsurface velocities are improved down to 1500m in the MetO system and down to 400m in the MOI system. There are some regions where TSCV assimilation degrades the results, notably the middle of the gyres in the MetO system and at depth in the MOI system. Further tuning of the background and observation error covariances are required to improve performance in these regions. We also provide some recommendations on TSCV observation requirements for future satellite missions. We recommend that at least 80% of the ocean surface is observed in less than 4 to 5 days with a horizontal resolution of 20 to 50 km. Observations should be provided within one day of measurement time to allow real time assimilation and should have an accuracy of 10 cm/s in the along and across track direction and uncertainty estimates should be provided with each measurement.
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1 Introduction

Operational ocean forecasting systems such as those coordinated through the OceanPredict program (OceanPredict, 2024) rely on observations. These observations are routinely combined with model information using data assimilation techniques to produce realistic initial conditions from which to launch forecasts, and to produce historical reanalyses. Ocean forecasts and reanalyses are used by many downstream users, for instance to provide information for safe and efficient marine navigation, improved search and rescue operations, modelling of oil spills, renewable energy operations and defence applications. They are also used in the context of coupled weather forecasting at short and seasonal timescales.

Since operational forecasts are reliant on accurate and timely observations (Davidson et al., 2019), it is important that the OceanPredict community demonstrates the impact of those observations to the observing community and its funders. It is also important that the OceanPredict community feeds its requirements into the design of enhancements to the ocean observing system. For these reasons, the Observing System Evaluation Task Team (OSEval-TT) was set up as part of OceanPredict (and its predecessors). The OSEval-TT has produced regular summaries of the impact of observations, for example Oke et al. (2015a); Fujii et al. (2019) and Oke et al. (2015b). As well as these overview summaries of impacts of observations, the OSEval-TT has produced Observation Impact Statements (OISs) which aim to summarise the impact of a particular observing system on operational forecasting systems. It is important that these OISs be based on evidence from multiple (at least two) forecasting systems since the impact is usually dependent on the details of the model, data assimilation and other aspects of the forecasting systems. A recent example by Martin et al. (2020) described the impact of satellite sea surface salinity data, relying largely on results from Observing System Experiments (OSEs) using the Met Office (MetO) and Mercator Ocean International (MOI) operational ocean forecasting systems. The present paper aims to provide an OIS for Total Surface Current Velocity (TSCV) data.

Ocean currents are an area of particular interest for many users. Accurate ocean currents at global scales can benefit ship routing and offshore operations, marine safety, modelling advection of nutrients and pollutants and our understanding of large-scale ocean circulation. Despite their importance, there are currently no direct observations of ocean surface currents with global coverage and the present network is inadequate for constraining the global TSCVs. Several satellites with the capability to measure TSCVs have been proposed to plug this gap in the ocean observation network, these include SKIM (Ardhuin et al., 2019), SEASTAR (Gommenginger et al., 2019), WaCM (Rodríguez et al., 2019) and ODYSEA (Torres et al., 2023). The European Space Agency Assimilation of TSCV (ESA A-TSCV1) project has performed Observing System Simulation Experiments (OSSEs) using the MetO and MOI ocean forecasting systems to demonstrate the potential impact of assimilating satellite measurements of TSCV from a SKIM like satellite. A detailed description of those forecasting systems, the OSSEs carried out and the results showing the impact of assimilating TSCV data is provided in Waters et al. (2024) and Mirouze et al. (2024). The aim of this paper is to provide a comparison of those results and an overall summary of the likely impact satellite TSCV observations would have on operational ocean forecasts. We also provide a set of requirements for satellite TSCV observations from future missions for use within global ocean prediction systems.

The methodology and design of the experiments used in this study are described in section 2. In section 3 we will demonstrate the impact of TSCV assimilation on the surface and subsurface currents and on the temperature, salinity and sea surface height fields. We outline a set of requirements for satellite TSCV observations for global ocean prediction systems in section 4 and in section 5 we provide some overall conclusions.




2 Materials and methods

The OSSEs used in the A-TSCV project assimilate synthetic observations generated from a high-resolution model run, referred to as the Nature Run (NR). Synthetic observations were generated for the standard observing systems assimilated operationally: in situ profiles of temperature and salinity, satellite along-track altimeter sea surface height (SSH) data from various platforms, satellite sea-ice concentration (SIC) data and satellite sea surface temperature (SST) data. These were generated from a 1/12th degree NEMO 3.1 free model run with a temperature and salinity bias correction, forced using operational ECMWF atmospheric fields (Gasparin et al., 2018). The pseudo-observations have realistic sampling and error characteristics (Gasparin et al., 2019). In addition, synthetic observations of TSCV were generated from the NR using the SKIMulator tool (Gaultier and Ubelmann, 2024). The TSCV observations used in this study have a 270km wide swath and 5 km resolution in the along and across track directions. An example of the SKIM coverage for the Atlantic during a 24-hour period is shown in Figure 1. Two versions were assimilated here: one set with only the mapping error (~3 cm/s) associated with the conversion from radial velocities to currents in the north and east directions (A-TSCV_No_err in Table 1); and one set which also included some of the errors associated with the SKIM instrument design (A-TSCV_Instr_err in Table 1). Figure 1 shows an example of the SKIM instrument errors in the Eastward and Northward direction on one day. Note that the instrument error is largest close to the nadir in the Eastward component and at the edge of swath in the Northward component, and the instrument errors are overall larger in the Eastward direction. Both the A-TSCV_No_err and A-TSCV_Instr_err experiments assimilate the standard observing systems as well as the TSCV data. The experiments performed are summarised in Table 1 and include a control experiment which assimilated the standard observing systems but no velocity observations. These were carried out for the period January to December 2009 with the assessment carried out between the 25th of February and 30th of December to allow the impact of TSCV assimilation to spin-up. Full details of the spin ups and other details for the various experiments are provided in Waters et al. (2024) and Mirouze et al. (2024).




Figure 1 | The along swath instrument error (m/s) of the synthetic SKIM TSCVs in the Eastward (left) and Northward (right) direction for the 22nd of January 2009 shown for the Atlantic region. The grey box in the left plot indicates the South Atlantic Western Boundary region used to calculate the statistics in Figure 6.




Table 1 | Experiment names and the observations assimilated in each one.



A summary of the characteristics of the MetO and MOI forecasting systems used in the A-TSCV OSSEs is given in Table 2. Both the MetO and MOI ocean forecasting systems use the NEMO 3.6 model (Madec et al., 2022) and the OSSEs carried out here were at 1/4° horizontal resolution, with a top model level representative of the upper 1 m of the ocean and were forced with ERA5 atmospheric data. The data assimilation schemes are different. The MetO system uses a multivariate incremental 3DVar-FGAT (first-guess-at-appropriate-time) scheme based on the NEMOVAR code with a one-day time window (Waters et al., 2015). Waters et al. (2024) provide a detailed description of the velocity background error covariances used in the MetO system. The background error covariances are specified by defining a field of background error standard deviations and background error correlation length-scales, where the vertical correlation scales at the surface are dependent on the locally defined mixed layer depth for that day. The MOI system uses a SEEK filter with a fixed basis (the background error covariances are estimated from the mesoscale variability in a historical model run) and has a 7-day time window (Lellouche et al., 2018). A key difference in the two systems is the representation of the multivariate balance in the background error covariances. The multivariate balances are important because they control how information from the velocities is propagated to other model variables. The MetO system uses linearized physical balances to represent the multivariate balance in the background error covariance (Weaver et al., 2005). The balanced relationships are linearized around the daily background model state (meaning they are flow dependent). Water mass conservation is used for temperature-salinity balance, hydrostatic balance is used for SSH balance and geostrophy is used for velocity balance. Meanwhile the MOI system uses multivariate balances derived from the statistics of anomalies from a historical model run. The approach used in the MOI system has the potential benefit of being able to capture multivariate correlations which are not represented by the balanced relationships used in the MetO system, for example ageostrophic velocity balances. However, they have the disadvantage of being climatological estimates and they may include spurious noise if not localized carefully. Idealised experiments where single TSCV innovations are assimilated at locations in the Gulf Stream and Equatorial Atlantic show quite different behaviours in the MetO and MOI system (see Supplementary Figures 1, 2). The vertical propagation of the velocity increments tends to be deeper in the MOI system and in the Equatorial Atlantic the MOI velocity increment reverses sign below 50m depth. The horizontal spread is similar in the Gulf Stream for both systems but we see larger horizontal spread in the Equatorial Atlantic for the MetO system. The magnitude of the velocity increments is larger in the MOI system mainly due to the time window differences. The differences in the structure of the velocity increments reflects differences in the background error covariances used in the two systems. As described in Table 2, the MOI and MetO experiments used different observation thinning for the synthetic SKIM TSCV observations. The MetO system retained one in four of the observations in the along-track and across-track directions (resulting in a 20 km resolution for the thinned data), whereas the MOI system retained one in two in the across-track direction with no thinning in the along-track direction. The MOI system therefore assimilates more of the data (which are at a higher resolution than the model grid).


Table 2 | Properties of the MetO and MOI forecasting systems use in the A-TSCV OSSEs.



The OSSEs are designed to differ from the NR in order to realistically represent the differences between operational forecasting systems and the true ocean state. These differences are introduced through the different resolution, model version, forcings and initial conditions used in the OSSEs compared to the NR. Table 3 shows some summary global analysis root mean squared error (RMSE) statistics from the MetO and MOI control. These are calculated by taking the daily mean difference of the experiment to the Nature Run, calculating the spatial RMS of the differences, and averaging these throughout the assessment period. The surface and subsurface velocity errors are larger in the MetO control relative to the MOI control. This is partly related to the differences in the model set-up and in particular the wind-current coupling. Using relative winds (equivalent to a wind/current coupling coefficient of 100%) is known to dampen the mean circulation and mesoscale features, while using absolute winds (equivalent to a wind/current coupling coefficient of 0%) over-estimates the mean circulation and mesoscale features (Renault et al., 2020). The MetO system uses relative winds, while the NR uses a 50% wind/current coupling coefficient so it is likely that the MetO system will underestimate current intensity relative to the NR. The MOI system uses the parametrisation proposed by Renault et al. (2017) based on a linearization of the wind/current coupling coefficient which depends on the mean surface wind. This scheme was shown to improve the representation of the ocean - atmosphere energy transfer especially in eddy-rich regions. It is likely to simulate currents and eddies that are more similar to the NR than the MetO system. Differences in the assimilation systems, such as the assimilation time windows and treatment of multivariate balances, are also expected to produce different results in the two control experiments. This impact is seen in all variables, with the MetO control having a lower RMSE for SSH, SST and SSS relative to the MOI control, but larger RMSE for subsurface temperature. It is worth mentioning that the higher SSS RMSE in the MOI system is also partly due to a setting error that strongly decreases the precipitation flux (Mirouze et al., 2024). SST and SSH RMSE are consequently affected through their relationships with SSS. From Barbosa Aguiar et al. (2024) in the standard MetO system global SSH RMSE is 6-7 cm, SST RMSE is ~0.35°C, SSS RMSE is ~0.25 PSU. From Lellouche et al. (2023) the MOI systems global SSH RMSE is 5 cm, SST RMSE is 0.4°C and the salinity at 5 m depth is 0.36 PSU. The global 15m velocity RMSE varies between 13 cm/s and 16 cm/s for MetO and 13 cm/s and 14 cm/s for MOI (Aijaz et al., 2023). These RMSEs are all calculated relative to observations and therefore depend on the sampling of the observation network (unlike the results in Table 3). The impact of sampling is likely to have the largest impact on more sparsely observed quantities such as the currents and salinity, however, the RMSEs in the “real” systems are broadly consistent with the OSSE control errors. This supports the realism of the OSSE experiment design.


Table 3 | Global RMSE statistics for the MetO and MOI control experiments calculated between the 25th of February and 30th of December.






3 Results - impact of TSCV assimilation

In this section we assess the impact of the TSCV assimilation in the two systems. Assessment is performed against the NR which is assumed to be the truth in an OSSE framework. Daily mean fields from the OSSEs and NR are used to calculate the statistics presented in this section.



3.1 Impact on surface currents

The impact of assimilating TSCV data with instrument error on the surface velocity RMSE in the two systems is shown in Figure 2. Both systems demonstrate large reductions in RMSE relative to their controls in the equatorial region, with improvements of up to around 20 cm/s in places. The MetO system also has a large reduction in RMSE in the Antarctic Circumpolar Current (ACC) and in the western boundary current regions, e.g. Gulf Stream and Kuroshio. In the MOI system there is a smaller positive impact in those regions. There is not a significant seasonal dependency on these improvements. The MetO system shows some small degradations to zonal surface velocities in the middle of the gyres. A similar degradation is not seen when assimilating the TSCV data without instrument error (Waters et al., 2024). It is likely that the signal to noise ratio of the TSCV observations is low in the center of the gyres when TSCV instrument error is included, particularly in the zonal direction where instrument errors are generally larger. This suggests that the background and observation errors require further tuning in the MetO system to improve the impact of assimilating TSCV observations in the middle of the gyres. An improvement in the global RMSE is retained through 7-day forecasts in both systems, as shown in Figure 3. In the MetO system, the 5-day forecast with TSCV (with instrument error) data assimilated has a lower RMSE than the 1-day forecast from the control experiment without TSCV assimilation, highlighting the major improvement in accuracy of the surface velocities. The reduction in RMSE in the MOI system is not so large but is retained throughout the 7-day forecast. The lower impact in the MOI system is probably due to the fact that the RMS error in the MOI control experiment is already lower than for the MetO control, as discussed in section 2.




Figure 2 | Spatial plot of A-TSCV_Instr_Err RMSE minus control RMSE for surface zonal velocity (left plots) and meridional velocity (right plots), calculated over 25th February – 30th December 2009 for the MetO system (top) and MOI system (bottom). Blue areas indicate regions where the A-TSCV experiment has a lower RMSE than the control while red indicates regions where the RMSE is higher.






Figure 3 | Global forecast RMSE for surface zonal (left) and meridional (right) velocity in m/s for the MetO experiments (top) and MOI experiments (bottom) calculated over 25th February – 30th December 2009.



Lagrangian metrics were also used to assess the accuracy of the surface currents. Using the OceanParcels tool (Delandmeter and van Sebille, 2019), particles were seeded globally at ¼ degree resolution and propagated for 6 days from the 9th of September using the model analysis surface velocities. Figure 4 shows that after 6-days of drifting, the position of objects would be estimated within 50 km of the NR position 74/73% of the time for the MetO/MOI systems respectively, as opposed to 65/67% of the time without the TSCV assimilation. From Figure 4 there is a 1.5 day gain in prediction accuracy when TSCV data are assimilated in both the MetO and MOI systems. The results demonstrate that the drift of objects in the ocean would be forecast much more accurately when assimilating TSCV data than without it.




Figure 4 | Percentage of particles within 50km of the NR particles as a function of advection time. Black is the control and orange is the A-TSCV Inst Err experiment for MetO (solid line) and MOI (dashed line).



Waters et al. (2024) demonstrated that the unbalanced (ageostrophic) velocity corrections are not well retained in the MetO system. They suggest that away from the equator and coast, Near Inertial Oscillations (NIOs) dominate the ageostrophic velocities and therefore the ageostrophic increments are largely associated with errors in the NIOs. From Waters et al. (2024), when the ageostrophic increments are applied to the model the model tries to respond by rotating the velocities at the NIO frequency, but the 24 hour Incremental Analysis Update method (IAU; Bloom et al., 1996) used to nudge the increments in to the model causes a cancelling affect which dampens the model’s response. When the NIOs are spurious this dampening effect is useful (Raja et al., 2024), but it restricts our ability to correct NIOs when we have valuable information. Waters et al. (2024) proposed a modified version of the IAU, the rotated IAU, which initialises NIOs in the model with the phase and magnitude of the ageostrophic velocity increments. In some short experiments, this method was shown to improve the sub-daily surface velocity RMSE in the Southern-Hemisphere, although results in the Northern-Hemisphere were more mixed. This type of approach could help to further improve the surface currents when TSCV data are assimilated. All the results presented in this paper are using a standard 24 hour IAU in the MetO system and 7 day IAU in the MOI system which means that any corrections to the NIOs are likely to be dampened during the nudging of the increments. The interaction between IAU window and NIOs is also demonstrated in Raja et al. (2024) where they showed an IAU window of 24 hours (or longer) suppress spurious NIOs.




3.2 Impact on subsurface currents

The impact of TSCV assimilation on global sub-surface zonal velocity RMSEs in the MetO and MOI systems is demonstrated through the improvement relative to the MetO and MOI controls, and is shown in Figure 5. The meridional velocity RMSE improvements (not shown) are very similar to the zonal velocity RMSE results. In the MetO system the velocity RMSEs are reduced by 20-30% near the surface with a 10-15% reduction in the MOI system. Again, the lower impact on the MOI system is probably due to the lower RMSE in the MOI control compared to the MetO control. The RMSEs in the MetO system are also improved down to at least 1500 m depth with a reduction of between 7-12% at 1500 m. In the MOI system there are improvements down to about 400 – 500 m depth in the experiment which did not include the instrument errors in the TSCV data, and improvements down to about 800 – 1000 m depth in the experiment which did include the instrument errors. The relatively poor performance in the MOI experiment assimilating TSCV data without instrument errors is thought to be due to overfitting of the TSCV observations. The prescribed observation errors are increased in the experiment assimilating TSCV data with instrument error, which reduces the weight given to the TSCV observations in the assimilation. Mirouze et al. (2024) investigated a more vigorous thinning of the TSCV observations to reduce overfitting. They demonstrate that the additional thinning reduces the degradation to velocity RMSE at depth as well as reducing degradations to temperature and salinity. They show that while overfitting the TSCV observations is less of a problem for the near surface velocities (where the observations are valid) it does cause issues for velocities at depth and this in part is due to the deep propagation of velocity increments in the MOI system (described in section 2). Mirouze et al. (2024) note that, unlike the horizontal background error covariances, the vertical background error covariances in the MOI system are not localised which can lead to spurious vertical projection of the increments. The impact of this is exacerbated by the overfitting of TSCV observations at the surface. This result highlights the importance of both the background error covariance specification and appropriate and careful thinning of the TSCV observations.




Figure 5 | Percentage improvement in global zonal velocity profile RMSEs relative to the control for the MetO experiments (left) and MOI experiments (right) calculated over 25th February – 30th December 2009. The horizontal line at 220m indicates the depth of the statistics presented in Table 4.



The depth to which the TSCV data have large impacts varies depending on the region. Two examples are shown in Figure 6 for the equatorial and S. Atlantic western boundary current regions. The zonal velocity impacts are plotted but the meridional velocities show similar impacts. There is around a 40% reduction in RMSE near the surface in both the systems in the equatorial region with the impact reducing to around zero by about 200 – 300 m depth. There is a degradation in RMSE below that depth in the MOI system. In contrast, the two systems show very different impacts in the S.Atlantic western boundary current region. In that region there is a 20 – 30% reduction in RMSE in the MetO system throughout the water column down to 1500 m depth, while the MOI system shows little impact in RMSE near the surface and a degradation in RMSE in the deeper ocean, with worse results in the experiment which did not include the instrument error (attributed to a combination of over-fitting of TSCV observations and the unlimited vertical projection of the corrections by the covariances). The difference in performance in the two systems is due, at least in part, to lower velocity RMS error in the MOI control relative to the MetO control in this region (not show). This is probably related to the difference in the wind/current coupling coefficient, which likely leads to dampened mesoscale features in the MetO system relative to the MOI system and NR. In addition, geostrophy is used to define the velocity balance in the MetO data assimilation scheme so that the part of the TSCV signal due to errors in the geostrophic velocity are projected onto other variables. Waters et al. (2024) showed that TSCV assimilation is able to make significant improvements to the subsurface geostrophic velocities. This produces good improvements to currents in eddy rich regions such as the western boundary currents and ACC.




Figure 6 | Percentage improvement in regional zonal velocity profile RMSEs relative to the control for the MetO experiments (top) and MOI experiments (bottom) calculated over 25th February – 30th December 2009. Left is in the equatorial region (defined as between 3°S and 3°N) and right is in the South Atlantic western boundary current region (defined by the grey box in Figure 1).






3.3 Impact on SSH, temperature and salinity

The MetO and MOI systems show very different impact from the TSCV assimilation on the global SSH RMSEs as shown in Figure 7. In the MetO system there is a 10 – 20% reduction in RMSE from assimilating the TSCV data. The MOI system however shows only a 2 – 4% reduction in RMSE globally, with even smaller improvements when the instrument error is not included.




Figure 7 | Percentage improvement in Global SSH RMSEs relative to the control for the MetO experiments (top) and MOI experiments (bottom) calculated over 25th February – 30th December 2009.



The impact of TSCV assimilation on the temperature and salinity is even more different in the two systems as shown in Figure 8. The MetO system shows a 5 - 10% reduction in global temperature RMSE near the surface. In the experiment which includes the instrument errors, the large surface improvement tails off with depth before increasing again below about 300 m depth, while the experiment which does not include the instrument error maintains a large reduction in RMSE at all depths down to 1500 m. In contrast, the MOI system shows degraded temperature results at all depths with between about 5 and 15% degradation in RMSE at most depths.




Figure 8 | Percentage improvement in Global profile RMSEs relative to the control for the MetO experiments (top) and MOI experiments (bottom) calculated over 25th February – 30th December 2009. Left is the temperature RMSE and right is the salinity RMSE. The horizontal line at 220m indicates the depth of the statistics presented in Table 4.



The MetO system shows improvements in global salinity RMSE at all depths with about 5% improvement in the upper 500 m, and even larger reductions in RMSE below that, similar to the improvements seen in temperature. The MOI system has a small improvement in salinity RMSE at the surface, but below the top 50 m there is a degradation in salinity RMSE in the MOI system when assimilating TSCV data.

As mentioned above, an error setting in the MOI system damped down drastically the precipitation flux, yielding a high RMSE for SSS and consequently SST and SSH. The increments for temperature, salinity and SSH, emphasized by the velocity corrections are possibly in conflict with the atmosphere forcings, leading to a RMSE degradation. Differences in results for the two systems may also be related to the different representations of the multivariate balances in the two assimilation schemes. In the MetO system the TSCV assimilation produces significant improvements through geostrophic corrections. The construction of the MOI background error covariances means that the multivariate balance in this system could be less constrained by geostrophy. In fact, Figure 14 in Mirouze et al. (2024) shows that TSCV assimilation improves the prediction of SSH near the equator in the Tropical Atlantic which suggests the MOI background covariances allow TSCV assimilation to make some ageostrophic corrections. Additionally, Mirouze et al. (2024) discussed the impact of potential spurious vertical correlations in the MOI background error covariances as well as the impact of using error covariances estimated from a long historical run which are unable to represent any flow dependence in the system.




3.4 Summary of TSCV assimilation impact

The overall impact of the assimilation of TSCV data on the accuracy of the MetO and MOI operational ocean forecasting systems is significant. A summary of the overall impact of the TSCV assimilation on the model analysis is given in Table 4. This provides the percentage changes in RMSE from assimilating the TSCV data with and without the instrumental error on the MetO and MOI model fields compared to their control run. The analysis RMSE values are also given to provide context to the percentage improvements and to allow direct comparisons to the results in Table 3. Table 5 provides the summary percentage change for the 7-day forecasts and Lagrangian drift assessment.


Table 4 | Summary table of global analysis RMSE and percentage reduction in analysis RMSE for the A-TSCV_instr_Err (A-TSCV_No_Err) experiments.




Table 5 | First two rows show percentage reduction in Global surface 7 day forecast RMSE for A-TSCV_instr_Err (A-TSCV_No_Err) experiments relative to the control.



We focus on results from the experiment which included the instrumental error since this is the more realistic experiment. As might be expected, the largest impact is on the surface velocity analyses where RMSEs are reduced by up to 24%/13% in the MetO/MOI systems respectively averaged over the global ocean. These impacts carry into the forecasts with a 9%/7% reduction in RMSE at 7-day forecast lead time in the MetO/MOI systems. The percentage of particles forecast to be within 50 km of the true particle locations after drifting for 6 days has increased by 9%/7% in the two systems, a significant improvement for applications which aim to predict the location of particles in the water such as search and rescue, and oil spill modelling. There are also subsurface improvements with 220m analysis velocities improved by up to 15%/6% in the MetO/MOI systems respectively. Improvements to velocity at depth could be useful for improving safety in marine engineering operations and for providing accurate predictions of major ocean currents.

Most of the other variables are impacted much more in the MetO system than the MOI system. The impact on SSH in the MOI system is small with about 3% reduction in global RMSE while the temperature and salinities are overall degraded in the MOI system (although surface salinity is improved slightly). In the MetO system there is a large impact on SSH with 14% reduction in RMSE. Temperature and salinity RMSE are also reduced in the MetO system with 6%/1% reduction in RMSE for SST and sea surface salinity respectively, and substantial reduction in RMSE in the sub-surface too.





4 Requirements for satellite TSCV observations for global ocean prediction systems

In this section we provide a set of requirements for satellite TSCV observations for use with global ocean prediction systems. These are summarized in Table 6 and are based on recommendations and results from literature, input from the international community obtained at a workshop, the authors’ experiences of running operational ocean forecasting systems and the results provided from the ESA A-TSCV OSSEs.


Table 6 | Requirement for satellite TSCV observations for use in global ocean prediction systems.



A sampling strategy which provides observations for at least 80% of the global ocean in less than 4 to 5 days is recommended, this is equivalent to a temporal resolution of 4-5 days for most of the ocean. The MetO forced global ocean system uses a 1-day data assimilation window (see Table 2) while the Met Office’s coupled global ocean-atmosphere system uses an even shorter assimilation window of 6 hours (Lea et al., 2015). Systems with daily or sub-daily time windows are likely to benefit from observations with high temporal resolution. Wang et al. (2023) showed that the NIOs can be recovered from satellite TSCVs using a wide swath of at least 1800km which allows temporal sampling of less than 12 hours in the midlatitude. Improved data assimilation techniques would be required to make effective use of this high temporal information. Overall, the results from our OSSEs have demonstrated that the impact of TSCV assimilation is well retained in the forecasts. This means that longer observation revisiting time, of the order of days, can provide valuable improvements to our systems.

The recommended horizontal resolution of the satellite TSCV observations is 20 to 50 km to allow mesoscale processes to be resolved over much of the globe. The lower scale is consistent with the baseline horizontal resolution recommended for observing of the surface Ekman and geostrophic currents provided in the 2022 Global Climate Observing System essential climate variable recommendation document (GCOS, 2022).

A measurement accuracy of 10 cm/s in the along and across track direction is recommended for the TSCV observations. Villas Bôas et al. (2019) suggested that surface currents with 10 cm/s accuracy at 30 km spatial resolution and 10 day temporal resolution would significantly improve air-sea flux residuals and surface transport pathway prediction. Our recommendations are slightly more stringent, we recommend this accuracy at higher spatial/temporal resolutions. These are baseline requirements based on today’s accuracy of ocean prediction systems for the scales proposed. From our OSSE controls the accuracy of predicted surface currents varies between 10 and 13 cm/s (see Table 3) while Aijaz et al. (2023) showed that operational ocean forecasting systems produce global daily mean near surface (15 m) currents with an accuracy of 13 -16 cm/s when verified against drifter observation. The authors also showed that the veering angle between the model and observations is mainly within +/-15°. A 10 cm/s accuracy should ensure that TSCV observations provide valuable information when assimilated into global ocean prediction systems. The measurement accuracy is associated with a daily mean estimate, but it can also be refined regionally with larger errors associated with stronger current intensity, as found in western boundary currents and in the ACC. For comparison, the upcoming Harmony mission (Harmony, 2023) has a target accuracy of 25 cm/s at 10 km spatial resolution.

Any satellite TSCV observations should be provided within one day of measurement time in order for them to be used effectively in operational global ocean and coupled forecasting systems.

We recommend that satellite TSCV data is provided at L2b and L2c level (see Table 6 for definitions). The OSSEs performed in this study assimilated L2c TSCV data. This simplified the observation operators used in the MetO and MOI systems, but it also introduces the additional mapping error association with transforming radial velocity to North/East currents. This error is relatively small (~3 cm/s) but it does include some spatial correlations. It may be better to assimilate the lower-level L2b product, which is closer to the “raw” observations, and subsequently have less processing and less complex error characteristics compared to the L2c products. Finally, it is recommended that observation uncertainty estimates are provided with the TSCV data to allow us to accurately represent realistic observation errors within our data assimilation schemes.




5 Conclusion

The expected benefits to operational ocean forecasting of observing TSCV data from space are:

1. Improved accuracy of surface current forecasts through their assimilation, and associated improvements to the currents at depth and other model variables.

2. Improved representation of surface currents through ocean model improvements based on model-observation comparisons.

3. Improved coupled models through better representation of momentum exchanges between ocean, waves, sea-ice and atmosphere.

In the ESA A-TSCV project we have used OSSEs to assess the first of these benefits. In this paper we have summarised the results from the OSSEs performed using the MetO and MOI systems. We have shown that there is the potential to significantly improve global surface currents with TSCV assimilation. This should help to better meet the requirements of users of operational ocean forecasts, for example, search and rescue, oil spill modelling, ship navigation, offshore industry operations and better ocean, waves and sea-ice forecasts in coupled numerical weather prediction (NWP) and seasonal forecasting. In addition, we have seen improvements to the global subsurface currents down to at least 1500 m in the MetO system and 400 m in the MOI system. In the MetO system we also saw substantial improvements to global SSH, temperature and salinity prediction through TSCV assimilation.

It should be highlighted that the impacts summarised above are from idealised experiments. The 1/12th degree NR used to simulate the observations does not contain all the processes represented by real TSCVs. Tides, Stokes drift and sub-mesoscale processes are not represented in the NR. In addition, we have attempted to represent some of the main sources of error in the model, surface forcing and observations, but it is difficult to represent all of the sources of errors in the real operational systems. The observations of TSCV from real satellite missions would be expected to have larger errors with more complex error characteristics than those used in these experiments. We have not included errors here which have significant spatial correlations since the data assimilation systems cannot currently deal properly with these types of errors, though work is underway to implement methods to represent such errors (e.g. Guillet et al., 2019).

There are some areas where improvements to the assimilation of velocity data could lead to more significant and consistent improvements in the accuracy of the operational forecasting systems if TSCV data were available. Improvements to the velocities in the MetO system away from the equator are predominantly due to corrections to the geostrophic velocities. Some preliminary work on initialising inertial oscillations has taken place (Waters et al., 2024) and further work on this could lead to improved forecasts of these high frequency ageostrophic processes. Additionally, regions such as the middle of the gyres (where we see some degradations to zonal velocity in the MetO system) could be improved by further tuning of the background and observation error covariances. Improvements in the way information from velocity is propagated to other model variables could also lead to further reductions in errors, particularly in the MOI system which saw some degradations in sub-surface temperature, salinity and velocities, even though the surface velocities were improved. The use of different control variables in the assimilation system for velocities could also lead to better control of the divergence and rotational properties of the resulting analyses which could be beneficial in terms of the impact of TSCV assimilation on vertical motions.

Finally, we have outlined a set of requirements for satellite TSCV data for use in global ocean prediction systems which should be considered in the development of future satellite missions.
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We assess for the first time the impact of in-situ ocean observations on European Centre for Medium-Range Weather Forecasts (ECMWF) sub-seasonal forecasts of both ocean and atmospheric conditions. A series of coupled reforecasts have been conducted for the period 1993-2015, in which different sets of ocean observations were withdrawn in the production of the ocean initial conditions. Removal of all ocean in-situ observations in the initial conditions leads to significant degradation in the forecasts of ocean surface and subsurface mean state at lead times from week 1 to week 4. The negative impact is predominantly caused by the removal of the Argo observing system in recent decades. Changes in the mean state of atmospheric variables are comparatively small but significant in the forecasts of lower and upper atmospheric circulation over large regions. Our results highlight the value of continuous, real-time in-situ observations of the surface and subsurface ocean for coupled forecasts in the sub-seasonal range.
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1 Introduction

Behind every weather and climate forecast product, every extreme event and disaster managed, every forecast and predictability examined, satellite and in-situ observational data play a pivotal role. In recent decades, since the advent of global coupled forecasting, operational forecasting centers are in demand of continuous, near real-time, homogenous, ground truth observations, especially of the data-sparse ocean part, which covers more than 70% of the Earth’s system surface. Moreover, subsurface ocean, which is one of the sources of predictability in the sub-seasonal range (e.g. Vitart et al., 2015; Subramanian et al., 2019) cannot be observed remotely. Therefore, assimilation of ocean in-situ observations is key to constrain the 3-dimensional ocean state and provides better estimation of the ocean initial conditions (e.g. Balmaseda et al., 2015; Penny et al., 2019) for global coupled forecasting and climate services.

Ocean data assimilation products made in the behind-real time [Ocean-sea ice ReAnalyses (ORAs)] are also fundamental tools for global monitoring of our changing climate. Continuously changing observing systems are challenging for representing realistic long-term changes in reanalysis datasets (Balmaseda et al., 2015; Hegerl et al., 2015). Since the early 2000s, Argo profiling floats have started a new era of providing continuous, real-time global temperature, salinity profiles and ocean current observations of the upper ocean (Gould et al., 2004). Prior to the Argo period, ship-based XBT/CTD measurements and tropical mooring observations used to dominate in-situ ocean observational types.

Current ECMWF ocean-sea ice reanalysis [ORAS5 (Zuo et al., 2019)] assimilates both satellite and in-situ ocean observations and provides initial conditions for all ECMWF coupled forecasting systems in the medium-to-sub-seasonal-to-seasonal range. While the role of ocean observations has also been assessed in earlier generation of ECMWF seasonal forecasting systems (e.g. Balmaseda and Anderson, 2009), and decadal forecast experiments (Doblas-Reyes et al., 2011), it has not yet been assessed in the ECMWF extended-range forecasting system which provides the sub-seasonal forecasts up to day 46 (Vitart et al., 2019).

To fill this gap of information in the sub-seasonal time scale, we evaluate for the first time the overall impact of all in-situ ocean observations and Argo observations in the ECMWF extended-range forecasting system using ocean observing system experiments. The aim of the paper is to provide an overall assessment of the global observational impact with a focus on understanding the changes in the mean state of the sub-seasonal range coupled ensemble forecasts. The rest of the paper is organized as follows: Section 2 describes the methodology and independent observational datasets used for the forecast verification. In Section 3 we assess the observational impact on the changes in mean state and forecast skill of the ocean and atmospheric forecasts. Section 4 presents the summary and further remarks.




2 Methodology

One of the methods for assessing observational impact on global numerical weather prediction systems is Observing System Experiments (OSEs) (e.g. Fujii et al., 2019). It measures the impact on forecast biases and skill of removing an observational type from the data assimilation system which produces the initial conditions for the forecasts. Here we describe the Ocean OSEs conducted for this study and its specifications.



2.1 Ocean observing system experiments

Three ocean OSES are carried out (Table 1), using the Reanalysis and the sub-seasonal Reforecast (Retrospective forecast or Hindcast) experiments for the global domain: 1) Ref: a reference reforecast experiment which is initialized from a Reanalysis experiment where all in-situ ocean observations are assimilated in producing the initial conditions, 2) NoInsitu: a sensitivity reforecast experiment which is initialized from a Reanalysis experiment where all in-situ observations are not assimilated, and 3) NoArgo: a sensitivity Reforecast experiment which is initialized from a Reanalysis experiment where only Argo observations are not assimilated.


Table 1 | Specifications of the ocean observing system experiments - Reanalyses and Reforecasts.



The initial conditions are produced using a low-resolution version of ORAS5 (Zuo et al., 2019) with ORCA 1° ocean horizontal resolution and 42 vertical levels. The first model layer is 10 m thick, and the upper 25 levels represent approximately the top 880 m. Both the horizontal and vertical resolution in our setup is lower than that of ORAS5, which has a horizontal resolution of approximately 0.25° and 75 vertical levels. ORAS5 assimilates observations of temperature and salinity profiles, altimeter-derived sea level anomalies and sea ice concentration. In order to isolate and focus on the in-situ observational impact, sea level assimilation and bias correction (which indirectly holds the effect of in-situ observational information) are also removed in the initial condition production in our study. We keep the same atmospheric forcing fluxes and experimental set up in all the 3 Reanalysis experiments except for the differences in assimilated in-situ observations.

The 5 members of ocean-sea ice initial conditions are produced by perturbing the surface forcing fields and observations assimilated as described in Zuo et al., 2017. The forcing perturbation part addresses structural and analysis uncertainties while the observation perturbation part addresses the observational representativeness error. In this study, unlike that in ORAS5, only SST and Sea Ice Concentration (SIC) fields of the forcing perturbation part, and SIC, temperature and salinity profiles of the observation perturbation part are perturbed. That means that the temperature and salinity profiles from all in-situ sources are not perturbed in the NoInsitu experiment and those from Argo observations are not perturbed in the NoArgo experiment. All 3 experiments have SST relaxation (equivalent to a restoration surface heat flux term of -200 Wm-2K-1), which is the same as in ORAS5. So the observational impact assessed in our study is exclusively the contribution of subsurface ocean in-situ observations 1) on the surface and subsurface oceanic forecasts, and 2) on the sea surface temperature forecasts and thereby the atmospheric forecasts, in spite of the SST relaxation needed in the Reanalysis experiments.

The 5-member ensemble of coupled reforecasts are performed with a low-resolution version of ECMWF extended-range forecasting system. The coupled model consists of the same ocean and sea ice model (NEMO3.4/LIM2) used for our reanalysis experiments and is coupled to the ECMWF atmospheric model, Integrated Forecast System (IFS) version 47r1. It is run with a horizontal resolution of 36 km, corresponding to a cubic octahedral reduced Gaussian grid at truncation Tco319 and 137 vertical levels. All the three reforecasts are started on the first of each month of each year from 1993 to 2015, resulting in 276 forecast start dates in total. Note that week 1 in the extended-range forecasts starts from day 5 onwards and week 4 ends on day 32.

The observational impact on the coupled forecast skill is assessed by verifying against independent observations: ESA CCI SST and SIC products (Merchant et al., 2019), CMEMS GREP V2 ocean variables (Storto et al., 2018) and ERA5 atmospheric variables (Hersbach et al., 2020). Statistical significance is calculated using a bootstrap resampling method (Roberts et al., 2022, Supplementary Figure S1). The differences, and forecast skill scores are calculated 500 times using randomly selected samples of start dates with replacement in order to obtain a smooth approximation of the population distribution. Results are estimated as statistically significant at 10% level if the 5th and 95th percentiles of the bootstrap distribution of differences have the same sign, which is equivalent to a p-value of 0.1 for the two-tailed test.





3 Results: ocean observational impact on coupled sub-seasonal forecasts

To make a fair comparison, the observational impact is assessed as differences between the OSE reforecasts and Reference reforecasts, NoInsitu – Ref, NoArgo – Ref during the post-Argo period (2005-2015). Since NoInsitu experiment has the in-situ observations removed from the beginning of the experiment period, 1993, and the availability of Argo observations begin only after year 2000, NoArgo observational impact is absent in the NoArgo experiment during the pre-Argo period, 1993-2005. Due to this difference in memory of the observational impact, the NoInsitu impact is generally bigger than the NoArgo impact even in the post-Argo period. Spatial maps and forecast skill score cards of the changes in oceanic and atmospheric mean state are shown in Figures 1–5. Maximum impact is seen in the forecasts started in the month of November and the spatial maps are shown for November start dates to explain the coherent observational impact on both oceanic and atmospheric forecasts.




Figure 1 | Observational impact on the mean state of SST forecasts: Difference maps of week 4 SST forecasts started on the 1st of November during the post-Argo period, 2005-2015, NoInsitu – Ref (top), NoArgo – Ref (bottom).






Figure 2 | Observational impact on mean state of Mixed Layer Depth forecasts: Difference maps of week 4 Mixed layer Depth forecasts, started on the 1st of November during the post-Argo period, 2005-2015, NoInsitu – Ref (top), NoArgo – Ref (bottom).






Figure 3 | Observational impact on bias score of surface and subsurface forecasts: Bias score card of ocean variables for lead times of week 1 to week 4, started on the 1st of each calendar month during the post-Argo period, 2005-2015, for whole of the Northern Hemisphere and tropical regions. Variables shown are sea ice concentration (ci), surface salinity (sos), mixed layer depth (mld), sea surface height (zos), zonal current velocity (ocu), meridional current velocity (ocv), depth of 20°C isotherm (t20d), average salinity in the upper 300m (sav300), and average temperature in the upper 300m. Bias scores are measures of magnitude of biases integrated across all grid points and all start months (Equation 1, Roberts et al., 2021). Size of the triangles indicate the magnitude of the bias scores. Red triangles denote significant degradation in forecasts due to the removal of ocean in-situ observations in the initial conditions.






Figure 4 | Observational impact on mean state of atmospheric surface temperature forecasts: Difference maps of week 4 2-m temperature forecasts started on the 1st of November during the post-Argo period, 2005-2015, NoInsitu – Ref (top), NoArgo – Ref (bottom).






Figure 5 | Observational impact on bias score of surface and upper atmospheric forecasts: Bias score card of atmospheric variables for lead times of week 1 to week 4, started on the 1st of each calendar month during the post-Argo period, 2005-2015, for whole of the Northern Hemisphere and tropical regions. The variables shown are 2 m temperature (2t), surface temperature (stl1), mean sea level pressure (msl), zonal/meridional wind (u/v), temperature (t), geopotential height (z), barotropic streamfunction (strf), velocity potential (vp), rossby wave source (rws) and sea surface temperature (sst). Numbers in variable names correspond to a specific pressure level in hPa. Bias scores are measures of magnitude of biases integrated across all grid points and all start months (Equation 1, Roberts et al., 2021). Size of the triangles indicate the magnitude of the bias scores. Red triangles denote significant degradation in forecasts due to the removal of ocean in-situ observations in the initial conditions.





3.1 Changes in the forecasts of surface ocean mean state

Removal of in-situ observations in the initial conditions has significantly changed the mean state of the ocean forecasts in week 1 and the impact persists up to week 4. Overall cooling (Figure 1) and freshening (Supplementary Figure S1) is seen in the SST and sea surface salinity (SSS) forecasts. The magnitude of changes seen, albeit small, is comparable to that of the SST biases in the Reference experiment (Supplementary Figure S2) but the sign of the changes is not always in the direction of the degradation of the existing bias. It could be because 1) the errors in SST forecasts are not always due to the quality of the observational constraint in the initial conditions; SST and SSS biases could arise due to the physical response of errors elsewhere in the forward model, and 2) inadequate constraint of sub-surface temperature and salinity in NoInSitu and NoArgo leads to the development of surface impacts later in the forecast, despite the constraint of SSTs in the initial conditions. Note that the differences seen in the SST forecasts are in spite of the SST constraint that is used to generate all initial conditions. It suggests that sub-surface observations are important for SST forecasts even if SST is constrained during the data assimilation.




3.2 Changes in the forecasts of sub-surface ocean mean state

Since the subsurface ocean provides an important source of predictability in the sub-seasonal range, we look at the changes in the upper ocean mean state using the depth of 20 degree isotherm (t20d) and mixed layer depth. Consistent to the changes in the surface temperature and salinity pattern seen in Section 3.1 the subsurface density has also changed. There are significant changes seen in the upper 300m averaged temperature and salinity forecasts (not shown), mean mixed layer (Figure 2) and depth of 20 degree isotherm (Supplementary Figure S3) forecasts, altering the thermocline gradients. Large patterns of change in the mixed layer processes are seen over the north Atlantic deep water formation sites and subtropics in both the hemispheres (Figure 2).

Mostly positive biases are generally seen in the depths of thermocline over the Gulf Stream, Gulf of Mexico, and Kuroshio regions, tropics and subtropics (not shown). Removing observations has deepened the thermocline over these regions and shoaled it over the northern subtropical gyre and tropical Pacific regions. Since the verification of these forecasts are against the multi-model reanalysis dataset, GREP V2, where these variables are not very well-constrained, the quality of the verification could be subjective. Nevertheless, both the NoInsitu and NoArgo impact show similar patterns of change with a pronounced signal over the Gulf Stream region indicating tentatively the role of in-situ observations, predominantly Argo observations, in forecasting the path of Gulf Stream and tropical cyclones in different ocean basins.

The evolution of changes in the mean state for a collection of ocean surface and subsurface variables from week 1 (5-11 days) to week 4 (26-32 days), for all the 12 start months is depicted in the bias score card (Figure 3). Significant degradation in the depth of 20 degree isotherm (t20d), top 300m averaged temperature (tav300) and salinity (sav300), surface salinity (sos), mixed layer depth (mld), zonal and meridional ocean current velocity (ocu, ocv) are found over the Northern Hemisphere and tropics in both NoInsitu and NoArgo experiments (red triangles). A small improvement (blue triangles) in sea surface height (zos) forecasts is the only exception.




3.3 Changes in the forecasts of surface and upper atmospheric mean state

As explained in Sections 3.1 and 3.2, the significant changes seen in SST, MLD and t20d by removing in-situ observations do impact the atmospheric forecasts, but smaller in magnitude compared to that on the oceanic forecasts. The significant impact on near-surface temperature (T2m) forecasts is overall cooling and is similar to the changes in the SST over the oceans (Figure 4) except for the Arctic region. Though statistically insignificant, notable warming is present in NoInsitu and NoArgo over the Gulf of Mexico region in the ocean subsurface, SST, T2m and temperature at 850 hPa (T850) and at 500 hPa (T500) pressure levels (not shown).

Observational impact on forecasts of atmospheric mean state for all the 12 start months is summarized as bias scores in Figure 5. Results for the lower and upper atmosphere are not as clear as the ocean forecasts with the current sample size. However, small and significant changes in bias scores over tropics and Northern Hemisphere are seen on mean sea level pressure (mslp), geopotential height at 500 hPa (Z500) and barotropic streamfunction forecasts at 200 hPa (strf200). Both NoInsitu and NoArgo observational impacts are seen as significant changes in Z500 and strf200 over large tropical and mid-latitude regions (Supplementary Figure S4). Prominent changes in precipitation (tprate) forecasts over subtropical convergence zones are seen (not shown). There is some indication that in-situ ocean observations could have a role in changing the upper atmospheric circulation via changing the propagation of the Northern Hemisphere subtropical wave guide. The Rossby wave source forecasts at 200 hPa show noisy but consistent changes (not shown).

Our results on the ocean observational impact on the atmospheric forecasts are more robust for near-surface fields over the tropics and Northern Hemisphere. Robustness of both the lower and upper atmospheric impact needs to be confirmed by carrying out OSE experiments with increased sample size and operational ocean resolution in future studies.





4 Summary and further remarks

Results on the impact of ocean in-situ observations in the ECMWF coupled sub-seasonal forecasting system using ocean observing system experiments are discussed. One of the dominant types of ocean in-situ observations, Argo observations were removed in the production of the ocean-sea ice initial conditions. By comparing the difference in the reforecast sets, we have assessed the impact on the forecasts of ocean and atmospheric variables in the lead times of 1 to 4 weeks.

The ocean in-situ observations have significant impact on the mean state of forecast ocean and atmospheric variables. Overall cooling and freshening of the ocean surface and subsurface and changes in the structure of thermocline gradients are found. It is related to local air-sea interaction due to fast changes in ocean mixed layer in the ocean initial conditions. The magnitude of observational impact on SST forecasts is comparable to that of systematic forecast model bias. The impact is predominantly contributed by the Argo observing system in the recent decades. It does not always get translated into improvements, since the biases in the atmospheric model are not exclusively due to SST errors. Significant negative impact on the probabilistic forecast skill scores are found in the surface and subsurface ocean forecasts over the northern hemisphere and tropics (Supplementary Figure S5). The dominant impact of Argo observations on forecasts of ocean variables are consistent to earlier studies carried out using ocean OSEs of Mercator Ocean analyses and ocean-only forecasts for a single year (Turpin et al., 2016).

The impact on atmospheric mean state is relatively small, but significant in mean near-surface temperature, and lower and upper atmospheric circulation over large regions. Impact on the atmospheric forecast skill scores are not statistically significant in our results (Supplementary Figure S6).

Specific process-based aspects of the role of in-situ ocean observations and air-sea interaction on regional forecasts are discussed in Du et al., 2023 and Wei et al., 2023. Surface and subsurface tropical Pacific ocean forecasts benefit from in-situ observations. The cold tongue bias found over the Nino regions, central and eastern tropical Pacific is significantly reduced in the ECMWF forecast model when in-situ ocean observations are assimilated (Wei et al., 2023). In-situ observational role in the existing forecast errors in Madden-Julian Oscillation (MJO) propagation over the Maritime Continent is explored and it is found that biases in the forecasts of atmospheric meridional moisture advection due to intraseasonal meridional wind biases dominate the MJO forecast errors rather than the assimilation of in-situ observations and subsequent SST errors over the region (Du et al., 2023).

The impact of in-situ observations on the coupled forecasts in our study is also limited due to initialization shocks arising from inconsistencies between the coupled forecast model and the uncoupled reanalyses as discussed in Wei et al., 2023. Future studies where the ocean observations are assimilated in a coupled framework with coupled data assimilation is a way forward to disentangle observing system evaluation with coupled model initialization issues.

Novel methods for model error and observation error correction during the assimilation are expected to increase the information content of the ocean observations, especially on the poorly sampled areas such as the deep ocean. This in turn will benefit the synergies between the in-situ and remotely sensed observations such as SST and altimeter. Machine learning methods could also be used to learn the sensitivities of a forecasting system to observational network, that has the potential to provide feedback without the need of expensive OSE experiments. Additionally, diverse type of in-situ observations of both Lagrangian and Eulerian nature needs to be explored for better representation of observational errors in the subsurface ocean, which is particularly relevant for extreme weather prediction.

Our results indicate a) the value of consistent, global upper ocean observational coverage for both operational numerical weather prediction, coupled sub-seasonal-to-seasonal forecasting and climate monitoring services, b) the role of ocean observations on the forecasts of atmospheric mean state in the sub-seasonal to seasonal range, and c) the importance of initializing the upper ocean density structure in sub-seasonal forecasts. This work necessitates the need of robust, uptodate assessment of ocean observational impact in operational resolution and the intercomparison with other leading operational forecasting systems through international cooperation and investment.
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This study aims to evaluate the impact of the in-situ ocean observations on seasonal forecasts. A series of seasonal reforecasts have been conducted for the period 1993-2015, in which different sets of ocean observations were withdrawn in the production of the ocean initial conditions, while maintaining a strong constrain in sea surface temperature (SST). By comparing the different reforecast sets, it is possible to assess the impact on the forecast of ocean and atmospheric variables. Results show that the in-situ observations have profound and significant impacts on the mean state of forecast ocean and atmospheric variables, which can be classified into different categories: i) impact due to local air-sea interaction, as direct consequence of changes in the mixed layer in the ocean initial conditions, and visible in the early stages of the forecasts; ii) changes due to different ocean dynamical balances, most visible in the Equatorial Pacific in forecasts initialized in May, which amplify and evolve with forecast lead time; iii) changes to the atmospheric circulation resulting from changes in large scale SST gradients; these are non-local, mediated by the atmospheric bridge, and they are obvious from the visible impact of the removing in-situ observations on the Atlantic basin only in the global atmospheric circulation; iv) changes in the atmospheric tropical deep convection associated with the structure of the warm pools. The ocean observations have also a significant impact on the representation of the trends of the ocean initial conditions, which affect the trends in the seasonal forecasts of ocean and atmospheric variables. The impact of the ocean observing system in the Atlantic and extratropics appears dominated by Argo, but this is not the case in the Tropical Pacific, where the other ocean observing systems play a role in constraining the ocean state.
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1 Introduction

There is increasing demand for the evaluation of the global ocean observing system (GOOS, 2018), as the number of societal applications that rely on ocean observations multiply and the observational capabilities expand. The ocean observing system has undergone a dramatic transformation in the past 30 years and there are ambitious prospects for its expansion (Moltman and co-authors, 2019). Applications range from short-range marine forecasting at regional to global scale, climate reanalyzes, fresh-water and energy budget, and seamless weather and climate forecasts, and domain specific efforts for assessing the observing systems are ongoing (see Fujii and co-authors, 2019 for a review). The work presented here is concerned with the evaluation of the subsurface ocean observing system from a seasonal forecast perspective. This is a companion paper of Balan-Sarojini et al. (2024) (this issue), who report the impact of ocean observations on subseasonal time scales.

Seasonal forecasting is currently a routine activity in several operational centers, with a growing number of economic and societal applications in fields such as agriculture, health, and energy. Seasonal forecasts predict variations in the atmospheric circulation in response to anomalous boundary forcing, which significantly changes the probability of occurrence of weather patterns (Palmer and Anderson, 1994). Sea surface temperature (SST) variations are the most dominant source of boundary forcing. Of special importance are the variations of the tropical SST associated with El Niño Southern Oscillation (ENSO), which have the potential to alter the worldwide large-scale atmospheric circulation associated with variations in the tropical convective cells (Goddard and Dilley, 2005; Goddard and Graham, 1999). Variations in tropical SST other than those related to ENSO can also drive temperature and precipitation anomalies on seasonal timescales (Folland et al., 2001; Giannini et al., 2003; Rodwell and Folland, 2002; Saji et al., 1999, among others). Realizing the potential predictability at seasonal time scales depends critically on the adequacy of initial conditions for the ocean component of the coupled models used for prediction, which in turn depends on the adequacy of the ocean observing system (Balmaseda, 2017 and references therein).

One method often used to evaluate the impact of ocean observations on seasonal forecasts is what we called evaluation by temporal sub-sampling. This consists in comparing the performance for seasonal reforecasts among time periods chosen to represent different scenarios of observation coverage (Kumar et al., 2015; Huang et al., 2017). These way of assessing the observing system requires sufficiently long records of reforecasts -around 40 years or more- so different temporal samples of sufficient length (10 to 20 years) can be extracted. As such this is a method of opportunity, which takes the advantage of the existing long reforecasts records to gain insight into the value of observations. It assumes that the skill of the system is stationary, and that the only variations in the chosen impact metric comes from variations in the observing system. In the case of seasonal forecasts this is arguably too strong an assumption, since the interannual variability and seasonal forecast skill can be modulated by low frequency climate variations (e.g., Balmaseda et al., 1995; Torrence and Webster, 1998). An alternative method, used less frequently because of the computation cost, is to conduct Observing System Experiments (OSEs), in which different sets of seasonal reforecasts from a collection of dates -spanning the same period - are initialized by ocean initial conditions produced by withholding a selected subset of the observing system (Balmaseda and Anderson, 2009; Balmaseda et al., 2010; Fujii et al., 2011, 2015; Xue et al., 2017). This is the methodology followed in this work.

Here we use a series of Observing System Experiments to evaluate the impact of subsurface ocean observations on the ECMWF seasonal forecasting system SEAS5 (Johnson et al., 2019). A novel aspect of the work presented here is that the evaluation extends to the impact on the global domain on both ocean and atmospheric variables. The assessment includes the impact of all in-situ observations and the impact of only Argo (Roemmich and co-authors, 2019 and references therein). Because of the importance of the tropical SST for seasonal forecasts, and because the Tropical Pacific Observing System (TPOS) is undergoing a transformation (Kessler et al., 2021), we pay special attention to how the ocean initial conditions impact the forecasts of tropical SST. To quantify the impact on the seasonal forecasts of the global atmosphere of observations in basins outside the Pacific, we also conduct a regional experiment, removing all the in-situ observations in the Atlantic basin. The assessment in this paper focuses on changes in the mean state and linear trends. The mean state is important because often these initialized forecasts are used to evaluate coupled model errors, and these errors may depend on the ocean initialization. The analysis of trends is relevant for two reasons: i) the current calibration of seasonal forecasts assumes that the errors are stationary, and changes in the ocean observing system may affect this assumption if the ocean observing system impacts the trends; ii) in a changing climate it is important to quantify, forecast and understand how the climate changing is evolving in response to greenhouse gasses, and the ocean observing system plays a pivotal role. Assimilation of ocean observations also impacts forecast skill, but as discussed in Methods below that is not the focus of this study.

The paper is organized as follows: section 2 describes the experimental set up and describes the evaluation methodology; section 3 presents the resulting impact of withdrawing subsurface observations in the initial conditions, and how this affects the mean state and trends of seasonal forecasts of ocean and atmospheric variables. Section 4 summarizes the main outcomes.




2 Methods



2.1 Experiment description

The observing system experiments used to assess the impact of subsurface ocean observations information consists of two distinctive steps: 1) the production of sets of ocean initial conditions by conducting a series of ocean and sea-ice reanalyzes experiments (ORA-OSEs), which only differ on the amount of ocean observations assimilated; and 2) the production of a set of retrospective seasonal forecast (reforecast) experiments (FC-OSEs), initialized from the respective ORA-OSEs. Both the ORA and FC OSES are conducted respectively with a low-resolution variant of the currently operational ocean reanalysis ORAS5 (Zuo et al., 2019) and seasonal forecast system SEAS5 (Johnson et al., 2019). Table 1 provides a summary of the experiments conducted.


Table 1 | Details of the OSE conducted.



The ORA-OSE experiments are the same as those reported by Zuo et al. (2019), and Balan-Sarojini et al. (this issue). They are produced with the same ocean and sea-ice model versions (NEMO v3.4.1 and LIM2), forcing fields from Era-Interim (Dee and co-authors, 2011), 3D-variational assimilation procedure and ensemble generation method as ORAS5, but at lower horizontal and vertical resolution: the ORA-OSEs use the ORCA1_Z42 levels which is has an approximate horizontal grid spacing of 1 degree (with meridional refinement at the Equator, where the latitudinal grid refinement is about 1/3 degree), and 42 levels in the vertical, with upper ocean level thickness of 10 meters. Another important difference with ORAS5 is that in these experiments the bias correction and assimilation of altimeter sea level has been switched off. This allows cleaner interpretation of the impact on ocean observations, since both the bias correction and altimeter assimilation indirectly require information from the in-situ observations. For example, to assimilate sea-level anomalies ancillary information about the mean dynamic topography (MDT) is required. The MDT field in ORAS5 is obtained from by temporal averaging of the sea surface height field from a reanalysis experiment where in-situ observations have been assimilated. This implies that the information from in-situ observations is indirectly used when assimilating altimeter data. The same argument applies for the bias correction applied in ORAS5, which is obtained from the assimilation increments of a previous experiment that assimilates all in-situ observations.

As for ORAS5, the in-situ temperature and salinity (T/S) profiles come in the ORA-OSE from the quality-controlled data set EN4 (Good et al., 2013) with expendable bathythermograph (XBT) and mechanical bathythermograph (MBT) depth corrections from Gouretski and Reseghetti (2010) until May 2015. The reference experiment (REF) was carried out by assimilating all in situ observations from the quality-controlled EN4 data set with the multivariate 3D-variational method NEMOVAR, as described in Zuo et al. (2019). From the same initial conditions of ORA REF in 1993, three additional experiments were conducted: (1) ORA NoInsitu – removing all in situ observations; (2) ORA NoArgo – removing Argo floats; and (3) ORA NoInsAtl – removing all in situ observations in the Atlantic basin only. All the ORA OSE experiments maintain the SST constrain, which is effectively a strong relaxation (200 W/m2/K) to the SST field used to constrain ORAS5, and the variational assimilation of sea-ice concentration (SIC). The ORA-OSE consist on 5 ensemble members, created with the same perturbation methodology as in ORAS5 (see section 1 of Supplementary Material for more details).

The ORA OSEs are used to initialize respective sets of seasonal reforecasts spanning the period 1993-2015, starting in May and November. Forecasts for each individual month and year comprise 15 ensemble members, generated as in SEAS5 (Johnson et al., 2019, see also section 1 in Supplementary Material). We call these experiments FC-OSEs. The coupled model is based on the ECMWF’s Integrated Forecasting System (IFS) atmosphere model cycle 43r1 coupled to the NEMO v3.4.1 ocean model LIM2 sea-ice model. Atmosphere and land are initialized from the European Interim Re-Analysis (ERA-Interim; Dee and co-authors, 2011). The ocean resolution is the same as the ORA-OSEs. The atmospheric resolution of the FC-OSES is Tco199 (as opposed to Tco319 in the operational SEAS5). The vertical resolution is 91 levels, the same as SEAS5. The atmospheric resolution and the atmospheric model version are the main differences between the FC-OSEs used here for the seasonal evaluation and those in Balan-Sarojini et al. (2024) to evaluate the observation impact on subseasonal forecasts. Results from the latter OSEs on specific processes relevant for the subseasonal time scales have also been reported by Du et al. (2023) and Wei et al. (2023), but this is the first time that results are presented for the seasonal time scales.




2.2 Evaluation method

The evaluation methodology consists in measuring the differences in the mean climate and linear trends between a given OSE with respect to the REF experiment. The impact on the mean is done for the period 2005-2015, an 11-year period corresponding with the full maturity of the Argo observing system. The results for this period are qualitatively similar to those obtained for the longer 23-year period 1993-2015. In the period before 2004, REF and NoArgo assimilate the same observations, and therefore are equivalent. For the period after 2005, differences between NoInsitu and NoArgo during the longer period arise from two contributions: i) the impact of in-situ observations prior to the Argo period, and ii) the impact of other in situ observations different from Argo during the Argo period. Analysis of additional experiments where the moorings and the XBTs were removed suggest that after 2005 the impact of other in-situ observations is small. To evaluate the impact on the linear trends, we use the period 1993-2015, since this is close to the period used by other studies to evaluate the errors in the trends in seasonal forecasts (Balmaseda et al., 2024). The trend and its significance are estimated using a simple regression model. The significance of the differences in mean and trend is obtained via a paired t-test, from the samples of simultaneous pairs of differences between the OSE and REF experiments.

For the ORA-OSES we analyze the impact on variables with potential to impact the SST in the coupled forecasts via a variety of processes: depth of the 20 degree isotherm (D20I), as a proxy for thermocline depth in the tropics, which is relevant for equatorial wave propagation and ENSO prediction; depth of 28 degrees isotherm (D28I), as a proxy for the depth of the warm pools, which may affect deep tropical convection at short and long lead times; mixed layer depth (MLD, estimated as the ocean layer where the differences in density with respect the ocean surface exceeds the 0.001 kg/m3), since it affects the exchange of air-sea fluxes; ocean heat content in the upper 300m (OHC); barotropic stream function (BarStf), which illustrates changes in circulation likely to affect timescales longer than a few months; and sea surface height (SSH), which encompasses changes in upper ocean heat content, thermocline depth in the tropics and circulation changes. In keeping with our focus on low-frequency changes, statistics from the ocean reanalyzes are shown in terms of annual means. For the forecasts, the ensemble mean of FC-OSES is used to evaluate the statistics for each starting month (November or May starts) and for each lead season (one and two seasons ahead) separately. The ocean variables analyzed are SST, OHC, D28I and MLD. For the atmosphere we analyze temperature at 2m above the surface (T2m), total precipitation (TP), mean sea level pressure (MSL), geopotential height at 500hPa (Z500) and zonal winds at 850 hPa and 200 hPa (U850 and U200 respectively). The significance of the differences in mean and trend is obtained via a paired t-test, from the samples of simultaneous pairs of differences between the OSE and REF experiments.

We also conduct a linear multivariate perturbation analysis to explore how the ocean initial conditions perturbations translate into differences in the forecasts of SST over the tropical area. To increase the sample size and to include a range of temporal variations, we construct sets of initial δIni and forecast δFc perturbations by aggregating pairs of differences between pairs of experiments, each of them spanning the record 1993-2015 (i.e. 23 years). The ocean initial perturbations δIni for a given forecast start month (May or November) are constructed by aggregating contemporaneous differences between N pairs of ORA experiments, yielding a sample size of N x 23 for a given forecast start month. The forecast perturbations δFc are constructed in similar manner by collating pairs of differences from the ensemble mean of corresponding FC-OSES, and they depend on the forecast lead time. Local correlation analysis and multivariate singular value decomposition between δIni and δFc are conducted to explore how the initial uncertainty manifests on forecast uncertainty. For more details see the section 2 in Supplementary Material. We conduct three different perturbation analysis:

	The main analysis uses the pairs (NoInsitu-REF, NoArgo-REF, NoArgo-NoInsitu), yielding a sample size of 69 (3 pairs x 23). In the following, unless stated explicitly, the results mentioning perturbation analysis refer 3-pair set.

	A second analysis, with all 6 pairs (NoInsitu-REF, NoArgo-REF, NoArgo-NoInsitu, NoInsAtl-REF, NoInsAtl-NoInsitu, NoInsAtl-NoArgo), to explore the role of the ocean observing system in the Atlantic basin in the context of the observing system in other basins. This yields very similar values to the main one, in terms of patterns and explained variance, and it will not be discussed further.

	A third one, with only NoInsAtl-REF, in order to explore the role of the ocean observing system in the Atlantic in isolation.



Because none of the ORA-OSE experiments contain bias correction during the assimilation (unlike ORAS5), the initial conditions are clearly affected by the non-stationarity of the observing systems, which translates into non-stationary errors in the forecasts. This can degrade the skill in a way which complicates any analysis, and which is not relevant to our operational system. Because of that, this paper does not discuss the impact on forecast skill, and instead focuses on the less-studied impact on long-term trends. We note however that in SEAS5, which is initialized from ORAS5 (and therefore contains bias correction) the assimilation of ocean observations has a positive impact on the skill of ENSO (McPhaden et al., 2020). This is shown in Supplementary Figure S1, which also displays the impact of removing all in-situ and Argo observations on the seasonal forecast ENSO in the experiments from this paper: the NoInsitu experiment showed degradation of skill of ENSO indices with respect to REF, although there was not obvious signal in the NoArgo experiment. Because the time period is short and the errors are non-stationary, these results will not be discussed further here.





3 Results



3.1 Observation impact on ocean reanalyzes

Zuo et al. (2019) reported on the impact of observations from the ORA-OSEs above regarding fit to observations and impact in ocean heat content in the upper 700 meters. Removal of Argo floats (ORA-NoArgo) degraded the ocean state almost everywhere except for the tropical Pacific and Indian Oceans. The tropical Atlantic seemed to be generally more sensitive to the removal of in-situ observations than the other tropical ocean basins. They also reported on results from complementary ORA-OSEs in which Mooring array and the XBT/MDT and CTDs were removed. They concluded that the impact of removing all the in-situ observations was not simply the linear combination of the impact from individual observing systems.

The current assessment focuses on characterizing the impact in the ocean circulation and seasonal forecasts. We select variables with potential to impact the SST in the coupled forecasts at seasonal time scales, either via remote dynamical processes or via local air-sea interaction. The impact of ocean observations in the ocean mean state can be seen in Figure 1, showing the differences of ORA NoInsitu-REF averaged for the period 2005-2015 (the equivalent differences for the period 1993-2015 are shown in Supplementary Figure S2). Removing all in-situ observations from 1993 significantly affects the large scale zonal and meridional gradients of SSH, the barotropic circulation, the depth of the tropical thermocline and ocean heat content. It also leads to shallower mixed layers almost everywhere, with notable exceptions: i) at high latitudes, over the convective areas in the North Atlantic subpolar gyre and along the edges of the Antarctic Circumpolar current, and ii) along the Equator if all the basins, underneath the edges of the atmospheric tropical convergence zones. Removing all in-situ observations also produces a shallower warm pool in the Western Pacific, as the reduced values of the D28I indicate.




Figure 1 | Impact of removing all in-situ ocean observations on the 2005-2015 mean state of the ocean initial conditions, as measured by the differences between experiments NoInsitu – REF. Shown are differences in SSH, OHC, D20I, D28I, MLD and barotropic stream function (BARSTF). Dotted areas indicate where the differences are significant at the 90% level.



The impact of removing Argo on the ocean mean state (Supplementary Figure S3) is broadly similar to removing all in-situ, which suggests the profound impact of Argo on the large-scale ocean state and circulation. This is especially true for the mid latitudes and the whole Atlantic basin. There are visible changes in the Atlantic barotropic circulation, which seem to be mostly due to Argo: removing the observations induces an increase of the anticyclonic gyre in the North and south Atlantic poleward of 30°, as well as a weakening of the subtropical gyres. There are also circulation changes along the paths of the main boundary current systems as well as the Equatorial Pacific. The impact of Argo in Western tropical Pacific differs from that of all in-situ, with visible differences over the warm pool (removing Argo produces shallowing of D28I only on the northern part), and the OHC/D20I/SSH, which do not show as stronger cooling/shallowing/decrease as when removing all in-situ. The impact of removing all in-situ in the Atlantic is confined to the Atlantic basin, with patterns similar to those in NoInsitu over the Atlantic (not shown).

The overall reduction of MLD in ORA-NoInsitu and ORA-NoArgo is likely to arise from the strong relaxation to SST, which tries to warm the ocean surface at a faster rate than the vertical ocean mixing spreads it in the vertical, thus leading to strong stratification, shallower mixed layers and reduced ocean heat uptake. In the reference experiments, the SST relaxation is aided by the in-situ observations in the vertical distribution of heat. This is confirmed in Supplementary Figure S4, which shows timeseries of the globally averaged accumulated heat flux from the SST relaxation and the ocean heat content in the different experiments. This implies that the in-situ observations have a strong impact on the estimations of heat absorption from ocean reanalyzes. The ocean observations also have an impact on the estimation of the mean SSH, which points towards the complementary role of in-situ and altimeter observations, casting doubts on whether the assimilation of sea level information from altimeter would be possible without the in-situ observations constraining the vertical ocean structure.

The removal of ocean observations has also an impact on the estimation of linear trends in ocean reanalysis, as can be seen in Figure 2. Removing all in-situ observations results in stronger deepening the thermocline in the Western Tropical Pacific, Northern Indian Ocean and Tropical Atlantic, which results in heat accumulation in the upper ocean, and deepening of the tropical warm pools. As with the mean state, removing the observations (either all or only Argo, not shown) leads to strong trends on the North Atlantic barotropic stream function, with a tendency towards weaker subtropical gyres and enhanced anticyclonic trend between 30N-50N, which also has a signature on upper ocean heat content tendency. There is also a visible impact on the shallowing of the mixed layer. The combined contribution of changes in stratification and circulation trends result in changes in the trends of SSH.




Figure 2 | As Figure 1 but for the impact on linear trends, and for the period 1993-2015.






3.2 Observation impact on seasonal forecasts



3.2.1 Ocean variables

The analysis in this section aims at characterizing how ocean observations impact the seasonal forecasts of ocean variables. Figure 3 shows the impact in ocean mean state when forecasts are initialized in May (top plate) and November (bottom plate). The left column of each plate shows the differences in the initial conditions of SST, OHC and MLD, the middle and right columns show the impact in the forecast one and two seasons ahead respectively. (For the purposes of this plot, we take the monthly mean of the corresponding ORA one month prior to the forecast initialization to represent the initial condition). The most noticeable feature is the growth with lead time of an equatorial cold/warm SST bias over the Eastern Pacific/Atlantic. This growth is stronger in the forecast initialized in May. The cold SST pattern along the Equatorial Pacific is already visible in the first forecast month, as reported by Wei et al. (2023), which continues growing with lead time. The mid-latitudes exhibit a seasonal response: the wide-spread weak initial cold perturbation in SST amplifies in the winter hemisphere, but largely disappears over the summer hemisphere. Over the Atlantic basin, the observations also impact the mean SST over the gyres, which also grows with lead time. Contrary to the SST, the OHC forecast differences largely resemble the initial perturbation, as expected from the large thermal inertia of the ocean; but in the Equatorial Pacific there is an obvious eastward propagation of the initial perturbation anomaly. The MLD initial perturbation has different behavior: it seems to decrease with forecast lead time, and largely disappears over the summer hemisphere.




Figure 3 | Impact of in-situ ocean observations in the mean state of seasonal forecasts of SST, OHC and MLD as measured by the experiments NoInsitu – REF (top/middle/lower rows of each individual plate). Shown are the results for forecasts initialized in May (top plate) and November (bottom plate). The differences in the initial conditions are shown in the left column, and the forecasts for the first and second seasons are in the central and rightmost columns respectively. The dotted areas indicate where the differences are significant at the 90% significant level.



The impact of Argo and Atlantic in-situ in the forecasts of ocean variables is shown in Supplementary Figures S5, S6 respectively. The evolution of initial conditions differences in these experiments also shows rapid local and seasonal dependent growth/decay of SST/mixed layer perturbation, and slower growth of SST forecasts differences associated with differences in OHC at initial time, which in the Equatorial Pacific are non-local. Removing the in situ observations in the Atlantic basin has a significant and lasting impact on the forecast of ocean variables in the whole basin, which for SST forecasts manifest on a characteristic pattern of warm equator, colder subtropical gyres and warmer subpolar gyre forecasts initialized in November. The in-situ observations in the Atlantic also seem to have some remote impact on other basins, an aspect that we will be discussed further below.

To gain insight on how the SST forecast uncertainty/error grows in the tropics we conduct a multivariate correlation analysis (local and non-local) for forecasts initialized in May, when the perturbations seem to grow more. Figure 4 shows the averaged local correlation between the SST in δFc at different lead times with δIni in different variables over the Equator (5S-5N, top) and at dateline (bottom) for May starts (see Supplementary Figure S7 for November starts). In the first month, the forecast SST are correlated with the initial SST and MLD. This correlation largely disappears in the second month, except for the winter hemisphere, where it lasts for until the next spring. A weak local correlation also remains in the Eastern Equatorial Pacific. Contrary to this decaying behavior, in the Equatorial band, the correlation between δFc(SST) and δIni(OHC) grows with time, both in amplitude and spatial extension, being negligible in the first month and most intense in the second season.




Figure 4 | Local correlation between the SST in δFc at different lead times with δIni in different variables averaged over the Equator (top) and at the date line for forecasts initialized in May. The local correlation has been averaged over 5S-5N (top) and over all the longitudes (bottom).



The non-local relationship between initial and forecast perturbations is further explored via a simultaneous multivariate singular value decomposition (SVD) of the cross covariance matrix between δIni (SST,OHC,D28I,MLD) and δFc(SST) in the first month, first and second seasons. Here we present the results from forecast initialized in May, when the initial perturbations grow more over the tropical Pacific. This yields 2 dominant modes (Figure 5), with correlation of.98 and.89, explaining 45.1% and 11.3% of δFc(SST) (31.4% and 4.4% of δIni). The first mode (SVD1) is clearly associated with impacts in the low frequency variability arising from the changes in the observing system (Supplementary Figure S8), with very clear transitions corresponding to samples from the different pairs of OSES. The patterns are consistent with those of the impact on the mean state of the forecasts in Figure 3, where there is a growing cold/warm signal along the Equatorial Pacific/Atlantic Ocean, associated with an east-west dipole in OHC in the Pacific and positive OHC in the Atlantic. Interestingly, there seems to be a relation with shallower Pacific warm pool (-ve values of D28I) in the far western Pacific. The second mode (SVD2), with less explained variance, is associated with the interannual variability and trends of SST, with the final perturbation displaying a westward propagating SST anomaly which originates near the South American coast. This is associated with small initial uncertainty in SST confined in the Equatorial Eastern Pacific, and a hint of initial westward shift of the warm pool (increased D28I and MLD around the dateline).




Figure 5 | 1st (top plate) and 2nd (bottom plate) modes of the singular value decomposition between δIni (SST,OHC,D28I,MLD) and δFc(SST) in the first month, first and second seasons, for forecasts initialized in May. The perturbations are from the experiment pairs (NoInsitu-REF, NoArgo-REF, NoArgo-NoInsitu). Each plate shows the spatial structure of the initial/final perturbations (top/bottom rows) and the associated timeseries, for which the sample time (1-69) corresponds the different pairs of perturbations: NoInsitu-REF (1-23), NoArgo-REF (24-46) and NoArgo-NoInsitu (47-69).



The non-local relationship between the observing system in the Atlantic basin and the forecasts of SST in the tropical area, i.e. the analysis including the pair NoInsAtl-REF, yields only one pair with sizeable correlations (.73), explaining 15.7% and 11.9% of the variance in δFc and δIni respectively (Figure 6). Although the total variance is modest, the spatial patterns are meaningful, indicating a remote influence between the initial conditions if the Tropical Atlantic in the seasonal forecast of SST over the Eastern Indian Ocean, as well as a local impact on the forecast of SST in the Tropical Atlantic. In particular, negative perturbations of OHC and D28I in the Equatorial Atlantic manifest on negative local SST anomalies in the first season of the forecast. In the second season, these local anomalies grow, and remote anomalies in the Eastern Indian Ocean of opposite sign emerge, likely mediated via the atmospheric bridge. This direct response, which does not involve the tropical Pacific as mediator, is consistent with the direct Matsuno-Gill response described by Kucharski et al. (2009).




Figure 6 | 1st mode of the singular value decomposition for pair NoInsAtl-REF between δIni (SST,OHC,D28I,MLD) and δFc(SST) in the first month, first and second seasons, for forecasts initialized in May. Each plate shows the spatial structure of the initial/final perturbations (top/bottom rows) and the associated timeseries..



We now return to the main perturbation analysis using the 3-pairs of experiment and investigate the impact of the ocean observing system with the long term trends in the forecasts. It has been reported that errors in seasonal forecasts of SST trends are common to several forecast models (L’Heureux et al., 2022), and that the misrepresentation of trends in seasonal forecasts can degrade the ENSO prediction skill, especially for forecasts initialized in May (Balmaseda et al., 2024), when the forecasts overestimate the warming trends over the Equatorial Pacific (their Figure 6). Figure 7 shows the contribution of all in-situ and Argo Ocean observations to the representation of linear trends (1993-2015) in seasonal forecasts initialized in May. Removing the in-situ and Argo observations leads to cooler trends in the seasonal forecasts, which would reduce the errors. For instance, the SST Nino3.4 trends are (0.5, 0.2, 0.3) deg/decade in (REF, NoInsitu, NoArgo), while they are insignificant in the observations. We note that the spatial patterns of the trends in the initial conditions in Figure 2 resemble those of the SVD2 mode of the main perturbation analysis in Figure 5, suggesting that small changes in trends of the zonal gradient of OHC (warmer west-colder east) and deeper and westward shift of the warm pool in NoInsitu are associated with the colder SST forecast trends. To quantify the pattern similarity, we compute the correlation between the NoInsitu-REF initial conditions trend difference with the SVD. The pattern correlation with the SVD2 mode is (0.8,0.7,0.6,0.7) for (SST,OHC,D28I,MLD), while the corresponding correlations with SVD1 are much lower (0.3,0.3,0.3,0.3). The NoArgo-REF initial conditions trends are equally correlated with SVD1 and SVD2. These results support the idea that changes in the observing system can lead to spurious trends in the seasonal forecast. In The tropical Pacific, changes in the structure of the warm pool, zonal gradients in the upper ocean heat content and the Equatorial upper ocean east of the Galapagos Islands appear associated with the developments of trends in the forecasts.




Figure 7 | Impact of in-situ ocean (top) and Argo (bottom) observations in the linear trend of May starts seasonal forecasts of SST. The differences in the initial conditions are shown in the left column, and the forecasts for the first and second seasons are in the central and rightmost columns respectively. The dotted areas indicate where the differences are significant at the 90% significant level.






3.2.2 Atmospheric variables

We now look at the impact of the ocean observations in forecasts of atmospheric variables. Figure 8 shows the 2005-2015 mean difference NoInsitu-REF of seasonal forecasts initialized in May for the 1st and 2nd seasons into the forecasts. (See Supplementary Figure S9 and left column of Figure 9 for November starts). The impact on T2m largely resembles the pattern of SST, but we also see differences over land, with colder values visible especially over the northern winter in large parts of North America and Eurasia. There are also significant impacts in tropical precipitation which are physically consistent with the changes in SST in Figure 3: stronger Equatorial Pacific cold tongue and shallower warm pools lead to drier conditions over the Equator, Western Pacific and poleward migration of the Intertropical Convergence Zone (ITCZ). In contrast, there is increased precipitation over Atlantic, Amazone and Caribbean (consistent in warmer conditions there). There are significant changes on the large-scale atmospheric circulation. The zonal winds at lower levels (U850) show strengthening of the Equatorial easterlies, especially for forecasts initialized in May, a signature of the Bjerkness feedback, which would contribute to the strengthening of the equatorial cold bias. There is also a large-scale significant change on the distribution of MSL, with higher values over the Pacific and lower values over the Atlantic, consistent with the SST differences and more visible in the forecasts initialized in May. Outside of the tropics there are also visible changes in the atmospheric circulation, especially in the winter season, with shifts in the lower-level jets at mid latitudes and associated changes in MSL, as well as changes in the precipitation patterns along the Atlantic storm track.




Figure 8 | Impact of in-situ ocean observations in the 2005-2015 mean state of seasonal forecasts of atmospheric variables as measured by the differences between experiments NoInsitu and REF. shown are forecasts are initialized in May for the first and second seasons into the forecasts (left and right panels in the individual plates). The different rows correspond to different variables T2m, total precipitation (TP), U850 and mean sea level pressure (MSL). The dotted areas indicate that the differences in the mean are significant at the 90% level.






Figure 9 | Impact of ocean observations in the 2005-2015 mean state of seasonal forecasts of atmospheric variables as measured by the differences between experiments NoInsitu- REF, NoArgo-REF and NoInsAtl-REF (left, middle and right column of each plate). Shown are forecasts are initialized in November for the first season into the forecast. The different rows correspond to different variables T2m, mean sea level pressure (MSL) and zonal wind at 200hPa (U200). The dotted areas indicate that the differences in the mean are significant at the 90% level.



Figure 9 shows the comparison of the impact on the atmospheric mean state between the different FC-OSES, this time for the first season into the forecasts. Shown are the differences between NoInsitu-REF (left), NoArgo-REF (middle) and NoInsAtl-REF (right) for forecasts initialized in November. The impact in T2m over the oceans is mostly local: in NoArgo it resembles that of NoInsitu, but is overall weaker, and confined within the Atlantic basin in NoInsAtl. However, the impact on atmospheric circulation is nonlocal, consistent the atmosphere responding to large scale temperature gradients, and the tropical convection linked to the structure of the warm pools, affecting the global circulation. Removing the in-situ ocean observations in the Atlantic leads to changes in MSL in other basins and at polar latitudes, and, interestingly, during the boreal winter the Aleutian Low is intensified in all three experiments NoInsitu, NoArgo and NoInsAtl. The upper-level circulation (U200) shows significant changes in the position of the jets, both in winter and summer. These results highlight the importance of representing correctly the large-scale SST gradients, for which a uniform observational coverage is required.

The impact of observations on the forecast trends (1993-2015) of atmospheric variables is displayed in Figure 10 for May starts. Over the ocean, T2m trends are similar to those in SST in Figure 7, and in the second season, they affect significantly some land areas, with colder values over Australia, Eastern part of North America, Central Europe and warmer values over Eastern Siberia. They also affect the forecasts of tropical precipitation trends across the basins, and the forecasts of the large-scale tropical circulation, leading to patterns that resemble cold La Nina conditions.




Figure 10 | Differences (NoInsitu – REF) in linear trends (1993-2015) of atmospheric variables in seasonal forecasts initialized in May. Shown are the forecasts for the 1st and 2nd seasons (left and right columns). Dotted areas indicate that the differences are significant at the 90% level.








4 Summary and conclusions

A series of ocean reanalyzes and seasonal reforecast observing system experiments has been conducted to characterize the impact of in-situ ocean observations on estimation of the ocean state used to initialize seasonal forecasts, as well as their impact on the mean state and trends of the coupled forecasts of both ocean and atmospheric circulation.

The ocean observations have a profound impact on the mean state of the ocean circulation, its removal leading to i) changes in the heat content and gradients in the tropics (shallow thermocline and weaker zonal gradients in the Pacific, deeper thermocline in the Atlantic), ii) shallowing of the tropical warm pools, iii) widespread shallowing of the mixed layer (except for ocean deep convective regions), and iv) changes in the gyre circulation. In the Atlantic, this impact is dominated by the Argo observing system.

The impact of the observations is also visible in the mean state of seasonal forecasts. The shallower mixed layer impact is mostly local, leading to overall cooling of the SST. Although it decays with lead time, being short-lived in summer (about 1 month), at mid-latitudes persists during the whole winter season. The impact of the subsurface temperature gradients in the tropics is nonlocal and amplifies with lead time, being negligible in the first month and larger in the second season. This amplification seems associated with a positive coupled feedback, and there are suggestions that the structure of the warm pools may play a role, either independently or in connection with a coupled growing mode. Specifically, removing in-situ observations leads to colder Western Pacific in the initial conditions, which translates in colder SST along the Pacific in the forecasts. Changes are also visible in the forecasts of atmospheric circulation, affecting the structure of overall Walker circulation in the tropics, with visible changes in the trade winds, mean sea-level pressure and tropical precipitation, consistent with the existence of a coupled feedback. There are also changes at mid-latitudes, producing colder T2m in the boreal winter over large parts of North America and Eurasia, changes in the precipitation along the storm tracks and modifications of the jet structure and mean sea level pressure. Some of these changes are visible even when the observations are withdrawn only in the Atlantic basin, highlighting the non-local nature of the atmospheric response.

The removal of the ocean observations also affects the estimation of the long-term linear trends in ocean initial conditions in a non-trivial manner, affecting the absorption and redistribution of heat in the ocean. It also affects the trends in the seasonal forecasts of both ocean and atmospheric circulation, which seems to occur via two different mechanisms: i) one of them is associated with progressive changes in the mean state, since the removal of ocean observations progressively induces colder SST along the Central Equatorial Pacific; ii) the second one is related with changes in the trends in the initial conditions, and this seems to be associated with colder Eastern Pacific and westward displacement of the warm pool.

The results presented indicate the importance of observations for initializing the mixed layer, the warm pools, and the large-scale gradients in the ocean subsurface, which are aspects contributing to mean state and variability of the seasonal forecasts. The large impact that the ocean observations have in the mean state and trends implies that for forecasting systems to benefit from the improvements of the observing system, it is important to reduce mean errors either via better models or explicit treatment of model bias, at least in the assimilation stage. The specific mechanisms are likely to be dependent on the forecasting and assimilation system. For instance, the shallowing of the mixed layer when removing ocean observations will depend on the way of assimilating SST. In the experiment presented here, the SST were constrained via simple nudging, and the initialization was conducted separately in ocean and atmosphere. The impact of observation may be different if the initialization is conducted in coupled data assimilation mode. It is expected that more sophisticated data assimilation methods (either in coupled or uncoupled data assimilation) should be able to spread the SST information in the vertical more efficiently. Therefore, it is desirable conducting coordinated OSEs in a multi-system framework. This is the idea behind the project SynObs (Fujii and Co-authors, 2024, this issue)1, a recently launched initiative to evaluate observation impact in a coordinated manner. It is expected that these intercomparison efforts will come in time to provide feedback to the implementation of the Tropical Pacific Observing System (TPOS, Kessler et al., 2021), which is currently underway.
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An observation operator in data assimilation was formalized based on the signatures extracted from the integral quantities contained within observed vertical profiles in the ocean. A four-dimensional variational global ocean data assimilation system, founded on this observation operator, was developed and utilized to conduct preliminary data assimilation experiments over a ten-year assimilation window, comparing the proposed method, namely profile-by-profile matching, with the traditional method, namely point-by-point matching. The proposed method not only demonstrated a point-by-point skill comparable to the traditional method but also provided superior analysis fields in terms of profile shapes on the temperature-salinity plane. This is an indication of a well-balanced analysis field, in contrast to the traditional method, which can produce extremely poor relative errors for certain metrics. Additionally, signatures were shown to successfully represent properties of the water column, such as steric height, and serve as an effective new diagnostic tool. The top-down, or macro–micro, viewpoint in this method is fundamental to the extent that it can offer an alternative view of how we comprehend ocean observations, holding significant implications for the advancement of data assimilation.
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1 Introduction

When integrating an ocean general circulation model (OGCM) under an atmospheric forcing from atmospheric reanalysis product, the state of the model ocean can deviate from observed ocean due to inevitable biases in both the model and the forcing (e.g., Lee et al., 2005; Fu et al., 2023). Therefore, the accuracy of ocean state estimations and predictions critically depends on the effective assimilation of observational data into numerical models (e.g., Marotzke and Wunsch, 1993; Stammer et al., 2002; Chang et al., 2023).

In traditional ocean data assimilation systems, observed quantities such as temperature and salinity are compared with model outputs at specific spatial points (e.g., Derber and Rosati, 1989; Malanotte-Rizzoli, 1996). The fundamental concept of this approach is the point-by-point comparison of state variables with their observed counterparts, a principle that underlies many existing data assimilation frameworks (e.g., Kalnay, 2003; Law et al., 2015).

However, when data are obtained as vertical profiles, simply focusing on temperature and salinity at each depth separately may not fully capture the information conveyed by the profile shape. The comparability of water temperature and salinity at each level can be compromised by the heaving of isopycnal surfaces (e.g., Oke and Sakov, 2008). Moreover, even if the temperature and salinity at each level are slightly similar between observations and the model, the two-dimensional curves formed by these parameters are not necessarily close, as traditional settings do not consider salinity as a function of temperature or vice versa (e.g., Haines, 2003; Dorfschäfer et al., 2020).

The fundamental distinction between the traditional method and the proposed method lies in the shift from point-to-point comparisons to comparisons between paths. For point comparisons, the objects compared could be vectors of salinity and temperature or those subjected to a linear transformation, such as through Empirical Orthogonal Functions or the balance operator (e.g., Fujii and Kamachi, 2003; Weaver et al., 2005). On the other hand, in the context of comparing paths, it is essential to acknowledge that paths are mathematically conceptualized as functions. For instance, a single profile could be envisaged as a function mapping a real parameter, which varies from 0 to 1, to a vector that includes pressure, salinity, and temperature components. Once a path is delineated as a function, any attribute of the path becomes a functional of that path. Within this analytical framework, the degree of similarity between two paths is evaluated based on the proximity of their functional values, which reflects the extent to which the paths are alike. To investigate paths from this functional perspective, focusing on the foundational elements within the functional space becomes imperative. These foundational elements are precisely what constitute the signature (Lyons et al., 2007).

The concept of path signatures, as proposed in rough path theory (Lyons, 1998; Lyons et al., 2007), has been effective in accurately processing the information present in sequential data, including profiles. The signature method, which reinterprets paths through iterated integrals, provides a novel perspective that captures the essence of information in trajectories efficiently. This method has been identified as having numerous potential applications (e.g., Fermanian, 2021), particularly in the field of earth sciences where it has been combined with machine learning techniques for predictive analysis e.g., Sugiura and Hosoda, 2020; Derot et al., 2024; Fujita et al., 2024). One significant aspect of the signature is that it serves as a functional basis within the space of functionals defined over a given set of paths. Here, the signature is called a “functional” because it maps a path, which is a function, to a number. Consequently, any functional within these sets can be accurately approximated with a linear combination of iterated integrals (Levin et al., 2013; Fermanian, 2021; Derot et al., 2024).

Our research presents a method that fundamentally reconsiders the assimilation of vertical profile data. By conceptualizing the observed vertical profiles as three-dimensional trajectories—pressure, salinity, and temperature—and comparing their signatures with those derived from numerical models, we introduce a novel approach, the signature method, which is a key concept in the theory of rough path. This method represents a significant shift from conventional point-by-point comparisons, offering a richer and more comprehensive analysis of the ocean’s water column structure.

The remainder of this paper is organized as follows. First, we present the concept of the signature and the theoretical background for its application to profiles. Next, we detail the setup of our data assimilation experiments. This is followed by a description of the results of the data assimilation experiments and their interpretation. Finally, we discuss the conclusions drawn from these results, as well as the challenges currently faced.




2 Theoretical background

Our aim is to improve the properties of vertical profiles, for example heat content, salt content, density, or sea surface height. More generally, these quantities can be attributed as a function of a profile, which can be formulated as a linear combination of iterated integrals in the signature of a path.



2.1 Signature

Signature   for path   is defined as follows (e.g., Lyons et al., 2007; Friz and Victoir, 2010). Order-n signature is composed of a series of iterated integrals,

 

 

where  , and  . Note that superscripts   and   do not denote any derivatives but simply assign a dimensional index, or multi-index. We also denote   as   or   for brevity.

A full (infinite-order) signature uniquely determines a path up to tree-like equivalence (Hambly and Lyons, 2010), and even a truncated (order-n) signature represents a path more effectively than the conventional pointwise coordinate (e.g., Fermanian, 2021; Fujita et al., 2024).




2.2 Vertical profile as signature

Imagine a path in a three-dimensional space  , labeled from   to   in descending order of altitude using the parameter u. The signature method represents the shape of this path using various degrees of iterated integrals. The first-order iterated integrals are the differences between the starting and ending points, defined as 3 dimensional vector  . The second-order iterated integrals are defined as three pairs of areas observed from three viewpoints of this three-dimensional path ( ; see Figure 1). In addition to the nonlinear aspects of the first-order iterated integrals ( ), a total of   areas constitute the second-order iterated integrals. Although it is challenging to visualize the third-order iterated integrals, they are similarly defined by a total of   volumes.




Figure 1 | Grasping the shape of a profile   by the second-order iterated integrals,  , in signature.



In data assimilation, it is not practical to only bring specific variables closer to the observations. However, if the objective is to bring the state of the ocean closer to the state of observation, balancing the fidelity of each variable becomes important. For example, in traditional data assimilation, when assimilating observation profiles, as shown in Figure 1, a cost function is set to bring the temperature and salinity of the model at each vertical level closer to the observations. If we focus on the PS or PT planes, this policy is not likely to encounter any problems. However, considering the TS plane, the path drawn by the model profile on the plane does not necessarily approach the observation profile by assimilating only on the PS and PT planes. This is a significant drawback when the representation error of the model is significant. While incorporating spatial correlation between T and S profiles through background error covariance, as discussed by Fujii and Kamachi (2003), can help improve the adjustments on the TS plane at the level of the prior, the proposed approach emphasizes that the profile shape on the TS plane is crucial observational information, and thus is implemented as an observation operator through the signature.

As illustrated in Figure 2, the area enclosed by the temperature-salinity-profile (TS-profile)   coincides with the line integral of one-form:   along the profile, because of Stokes’ theorem (e.g., Spivak, 2018) (note  ). This is sometimes called the Lévi’s stochastic area in mathematics (Lévy, 1940). This one-form vanishes if the profile is a straight line, but has some value if it is curved. By contrast, in an oceanographic context, a profile is straighter if the water is vertically well mixed, but curved if the water is stratified with multiple water masses. In other words, the area quantifies the bending of the profile in response to changes in the water mass. Thus, the area (TS-area) is a key to grasping the composition of water masses in a water column, which may be the key to understanding the T-S diagram (e.g., Mamayev, 1975; Veronis, 2021). Note that this approach shares a common philosophy with existing approaches (e.g., Cooper and Haines, 1996; Rykova, 2023) that an observation should be treated not only as values at points but also as features constrained by some conservation properties. This type of optimization can be continued for three- or higher-order iterated integrals. Mathematically, the complete set of iterated integrals from the first to higher orders is termed the signature, and it is recognized for its appropriateness and efficiency in representing the shape of a profile (e.g., Hambly and Lyons, 2010).




Figure 2 | Example of area in temperature-salinity (T-S) diagram enclosed by profile  . Area is calculated as iterated integral  .






2.3 Maximum mean discrepancy

Below, we will explain the comparison of the model profiles, as a probability measure, with observational profiles in our data assimilation.

Suppose that we have an inversion problem

 

where G is an ocean general circulation model (OGCM), ψ is the control variables (initial and boundary conditions),   is the output variables (a set of profiles), y is the observation (a set of Argo profiles), and η is the observational error.

Let   be the restriction operator for the m-th spatiotemporal Mesh; we define the problem for mesh m as

 

where   denotes the OGCM that generates profiles in mesh m, ψ denotes the control variables (initial and boundary conditions),   is the set of profiles in mesh m, ym is the set of Argo profiles in mesh m, and ηm is the observational error for mesh m (assumed to be independent).

Now, we want to compare the model and observational (probability) measures for mesh m:

 

 

These measures,   and Qm, can be approximated using the empirical measures:

 

 

where   denotes the number of observational profiles in mesh m, and   denotes the Dirac measure.

The distance between the two measures can be evaluated using kernel averages, which constitute maximum mean discrepancy (MMD). This approach has recently been used in estimation problems (Chérief-Abdellatif and Alquier, 2020).

When paths   are embedded in the tensor space   of the signatures by  , we can define the kernel mean embedding of measure P as   (Chevyrev and Oberhauser, 2022). Subsequently, the MMD between the two measures is defined as

 

where   is a norm in the tensor space.

In terms of the empirical measures, Equation (9) is thus written as

 

This is merely a comparison of signature averages for sets of model profiles in the mesh and the observation profiles. We employed this type of observation operator in our cost function (see Methods).





3 Materials and methods

The 4D-var data assimilation system used in our experiments was constructed as follows:



3.1 Data assimilation system



3.1.1 Computation of signature

For each profile, the signature is calculated as follows: For a linear path v, represented by the vector  , the signature is computed as  , where   denotes the k-times tensor product. Then, for a piecewise linear path  , made by concatenating linear paths   one after the other, the signature is computed as  , because of Chen’s identity (Chen, 1958). Here, the tensor product is extended to the product in the truncated tensor algebra by  , where the subscript represents the order of the terms. We set the signature order to  .




3.1.2 Cost function

Our cost function is based on the comparison of mean signatures between the model and the observations made on each mesh.

We assume that vector   is composed of depth, salinity, and potential temperature  . We also use the notation  , where   (resp.  ) corresponds to sea surface (resp. deepest measurement level  ). Using the signature transform, we derive order-4 signature for each vertical profile.

In the proposed method (Sig-case), the observational cost (Sig-based cost) for each horizontal mesh m is defined as

 

where   indicates the set of months with observed profiles for which the homogenous norm   is computed,   is the model profile in the horizontal and temporal mesh  , which is dependent on control variable ψ, and   is an observational profile in mesh  . The homogenous norm assigns exponent   to the squared sum of the k-th iterated integrals:   considering nonlinear scaling with   of the iterated integral:   (Friz and Victoir, 2010). In the reference case without signature transform (TS-case), we set the temperature-salinity-based cost (TS-based cost) as

 

where   (resp.  ) denotes model (resp. observation) temperature and salinity at gridded vertical levels in the horizontal and temporal mesh  , and   is the quadratic norm.

To enhance the representation of climatological water masses, we also applied a loose cyclicity cost term (e.g., Yu and Malanotte-Rizzoli, 1998):



or the one without signature transform for the reference case.

In each case, the total cost is defined as

 

where   denotes the background error covariance with  , the composition of smoothing and scaling. In this decomposition,  , the smoothing operator S is implemented as a Laplacian smoothing (Weaver et al., 2021) with a horizontal correlation length-scale of 200km  for the initial condition and   for fluxes. Meanwhile, the scaling operator D is implemented as a diagonal matrix based on the standard deviation of interannual variability at each point.   is the firstguess vector, and   is a scaling factor that absorbs a possible imbalance between the background and observational terms.

By changing variable  , the original cost function is rewritten as that with respect to  :

 

The derivation of its gradient is explained in Supplementary Material Sec. 2.




3.1.3 Gradient method

The 4D-Var data assimilation problem was solved iteratively using Nesterov’s accelerated gradient method (Nesterov, 1983). See Supplementary Material Sec. 3 for details regarding the implementation.





3.2 Experimental settings

Our data assimilation experiment aimed to compare the proposed case (Sig-case) to the signature-based cost (Equation 11) and reference case (TS-case) to TS-based cost (Equation 12). The experimental setting was as follows:



3.2.1 Ocean general circulation model

The OGCM we used is a version of the Meteorological Research Institute Community (MRI.com) models (Tsujino et al., 2010, 2011). It is equipped with a mixed-layer model (Noh and Jin Kim, 1999) and coupled with a sea ice model (Hunke and Dukowicz, 2002). The global ocean was set as the simulation domain. for 10 years (  in Equation 11) from January 2004 to December 2013. This model was coupled with a sea ice model. It was divided into spatial meshes of resolution   degrees and temporal meshes with monthly resolution. For example, a spatiotemporal mesh was defined in the following range: of 10N to 10.5N, 140E to 141E, February 2012.




3.2.2 Firstguess

Before data assimilation (DA), the OGCM was spun up using climatological air-sea fluxes, with nudging toward the climatological temperature and salinity fields, and then integrated from 1959 to December 31, 2003, under interannual air-sea fluxes to obtain a firstguess snapshot, which was used as the initial condition at the start of DA iteration. The air-sea fluxes used were compiled as daily means from JRA-55 atmospheric reanalysis dataset. (Kobayashi et al., 2015) These values were then linearly interpolated from 10 elements of daily-mean field: surface air temperature, 10 m wind vector (2-dimensional), scalar wind, shortwave radiation flux, longwave radiation flux, precipitation, river runoff, dew point temperature, and sea level pressure. We refer to the model state at the start of DA iteration as firstguess.




3.2.3 Control variables

Our 4D-Var is a strong constraint (Talagrand and Courtier, 1987), which has a 10-year-long assimilation window without any temporal gaps in ocean states. The control variables ψ were the initial state (of the first year) and the increments in air-sea fluxes in a 10-day span, which were linearly interpolated. Among the initial states, we updated 5 ocean state variables— temperature, salinity, horizontal velocity (2-dimensional), and sea-surface height— but not for the sea-ice and mixed-layer states.




3.2.4 Adjoint model

The adjoint OGCM was derived through automatic differentiation of the Fortran code using TAF (Giering and Kaminski, 2003). For applicability to long assimilation windows, the forward variables required for the adjoint integration were stored in scratch files as temporal mean during forward integration and then restored for adjoint integration. For the sake of stability in the sensitivity calculation (Sugiura et al., 2014), we did not use the adjoint of the sea ice model or the mixed-layer model. Regarding the signature transform, we must compute the gradient (adjoint) of the signature transform, which is also derived by applying the automatic differentiation of the Fortran code. Our implementation of the signature module is available on GitHub.




3.2.5 Assimilated data

To determine the effect of the signature method on the profile data, we assimilated only the Argo profiles (Argo, 2020) that have three elements (pressure P, salinity S, and temperature T) and vertical lengths of nearly  . The area from the southern shore of Greenland to the far north Atlantic was excluded from the observational area because of the poor representation ability of the model around there. For the comparison with the model state, the in-situ temperature was converted into potential temperature, and the pressure was converted into depth. As a simple observational error variance,   are normalized by their typical variations,  , before the signature transform. Additionally, after several trials, we set   in Equation 14.






4 Results



4.1 Variation of cost function

Figure 3 shows the variation in the cost function during the iterations. The signature-based cost (Equation 11) decreased almost monotonically in Sig-case because it was the minimization object but fluctuated in TS-case, converging to a higher value. TS-based cost (Equation 12) showed the opposite behavior. Naturally, the two minimization problems have distinct stationary points, leading to different estimates. Note that Sig-case also reduced TS-based costs considerably, which guarantees a certain level of compatibility with traditional TS-based cost function settings.




Figure 3 | Variation in the cost functions in terms of signature-based cost (left) and TS-based cost (right). Sig-case is shown by red circles, TS-case by blue triangles.



To observe the breakdown of the reduction in the observational cost term, the relative error from firstguess was calculated for each iterated integral up to degree 3. The relative error   was defined as the root mean squared error of the estimated field against the observation across all the observed meshes, divided by that of firstguess:

 

where

 

Figure 4 compares the relative errors for each iterated integral for Sig-case and TS-case. Iterated integrals composed only of index P showed no change because we cannot change the depth span of a profile. Iterated integrals that include both T and S generally showed a decrease in Sig-case, but some terms increased in TS-case, which is likely owing to the lack of direct observational constraints on such metrics in TS-case. For iterated integrals that did not include both T and S, the two cases exhibit a similar behavior, but TS-case was slightly better than Sig-case in general. Overall, most of the terms showed a decrease from firstguess in both cases. Although TS-case generally showed a better performance than Sig-case, it sometimes showed a significant increase from firstguess (for example, in   or  ). In summary, Sig-case showed a balanced improvement, whereas, in TS-case, the improvement was skewed and some deterioration were observed in terms of the T-S diagram.




Figure 4 | Relative error to firstguess for each iterated integral. Sig-case is denoted by red circles and TS-case by triangles. Horizontal axis is the index of iterated integral, for example, TS represents  .






4.2 Point-by-point performance

As evident in the right panel of Figure 3, the total pointwise errors in temperature and salinity have no significant difference between Sig-case and TS-case. To uncover the difference, we will first examine the point-by-point performance of both cases by showing the horizontal distributions of the root mean square errors (RMSEs) against observations at several vertical levels. To emphasize the differences between the two cases, we show the RMSEs relative to that of the firstguess. Figures 5 and 6 indicate the RMSEs for temperature at   and  , respectively. Both cases have relatively small RMSEs, but the contrast is more significant in the TS-case, which means that some regions show notable improvements, while others show deteriorations. For example, the temperature at   in the Kuroshio recirculation region, and the temperature at   in the Indian Ocean, became worse than the firstguess. On the other hand, the deteriorations in the Sig-case are more suppressed than in the TS-case. Figures 7 and 8 indicate the RMSEs for salinity at   and  , respectively. Again, the contrast is more significant in the TS-case. For example, the sea surface salinity in the Kuroshio recirculation region, and the salinity at   in some regions along the Antarctic Circumpolar Current, became significantly worse than the firstguess. On the other hand, the deteriorations in the Sig-case are more suppressed than in the TS-case.




Figure 5 | Change in RMSEs against observations of 200m temperature for Sig-case (left) and TS-case (right). The change is shown as the RMSE of each case minus that of the firstguess. Unit is K.






Figure 6 | Change in RMSEs against observation of 1500m temperature for Sig-case (left), and TS-case (right). The change is shown as the RMSE of each case minus that of the firstguess. Unit is K.






Figure 7 | Change in RMSEs against observation of sea surface salinity for Sig-case (left), and TS-case (right). The change is shown as the RMSE of each case minus that of the firstguess. Unit is psu.






Figure 8 | Change in RMSEs against observation of 700m salinity for Sig-case (left), and TS-case (right). The change is shown as the RMSE of each case minus that of the firstguess. Unit is psu.



Figures 9 and 10 present the comparison of T-S-P (TS, PT, and PS) diagrams as illustrative examples. In Figure 9B, there is no significant problem in the temperature representation, but the difference is evident in the salinity representation. The TS-case (blue in Figure 9C) shows a poor representation of surface salinity by attempting to match the salinity at each level to the observation. On the other hand, the Sig-case (red in Figure 9C) shows an accurate representation of surface salinity by aligning the first iterated integral   with the observation. The structure of the salinity minimum remains unchanged from the firstguess in both cases. In Figure 10, we observe a mostly barotropic structure along the Antarctic Circumpolar Current. Improvements on the PS plane can be seen in the shallow salinity structure (Figure 10C). Both cases have surface salinity closer to the observation than the firstguess. However, the curve shape of on the TS plane looks better in Sig-case (Figure 10A).




Figure 9 | Comparison of T-S-P diagrams in the Kuroshio recirculation region. The temporal average values at 157 degrees east and 20 degrees north are shown for observation (green), firstguess (black), Sig-case (red), and TS-case (blue). The units are practical salinity unit (psu) for salinity, degree Celsius for temperature, and dbar for pressure. RMSEs for temperature are   (firstguess),   (Sig-case), and   (TS-case). RMSEs for salinity are   (firstguess),   (Sig-case), and   (TS-case). (A) TS diagram. (B) PT diagram. (C) PS diagram.






Figure 10 | Comparison of T-S-P diagrams in a region along the Antarctic Circumpolar current. The temporal average values at 130 degrees east and 60 degrees south are shown for observation (green), firstguess (black), Sig-case (red), and TS-case (blue). The units are practical salinity unit (psu) for salinity, degree Celsius for temperature, and dbar for pressure. RMSEs for temperature are   (firstguess),   (Sig-case), and   (TS-case). RMSEs for salinity are   (firstguess),   (Sig-case), and   (TS-case). (A) TS diagram. (B) PT diagram. (C) PS diagram.






4.3 TS-area

As shown in Figure 2 the area enclosed by TS-profile (TS-area) is important for characterizing water properties in a water column. To this end, we compared the proximity of TS-area to observations in the estimated fields. Figure 11 shows the temporal averages of TS-area  , in the observation, firstguess, Sig-case, and TS-case. While common shortcomings stand out in the model fields, some improvements can be observed from firstguess in Sig-case. Principally, this term indicates a salinity drop or surge in T-S diagram near the sea surface due to precipitation or evaporation (e.g., Sugiura, 2021). To observe this in detail, we derive the relative error in the model fields, which is defined as follows: Let   be a linear combination of iterated integrals  , where   is a coefficient, and Γ is a set of multi-indices. Using   in Equation 17, the relative error of   for each mesh,  , and overall relative error,  , are defined as respectively. Figure 12 shows the distribution of the relative error for TS-area ( ) in the model fields. The overall relative error was 0.967 in Sig-case and 1.027 in TS-case. Both showed a similar pattern, with a noticeable decrease in errors around the Antarctic circumpolar current but an increase in errors in the subtropical circulation. Moreover, this difference was more intense in TS-case, with a more pronounced deterioration in subtropical circulation (see also Supplementary Material Sec. 4). Noting that our data assimilation is not solely for the Lévy area, the correction tendency in these two regions can be explained by the consistency of corrections with respect to iterated integral   (surface salinity, or SSS) and   (Lévy area). Along the Antarctic circumpolar current, Figure 10A suggests that matching model SSS to observations is compatible with matching the Lévy area to observations. On the other hand, as suggested by Figure 9A, matching model SSS to observations conflicts with matching the Lévy area to observations in the subtropical regions. In TS-case, “the Lévy area” should be interpreted as salinity at the intermediate layer”.

 

 




Figure 11 | Temporal averages of TS-area  , in observation (top left), firstguess (top right), Sig-case (bottom left), and TS-case (bottom right). Unit is  .






Figure 12 | Relative observational error of TS-area,  , to firstguess. Overall relative error is 0.967 for Sig-case (left) and 1.027 for TS-case (right). Blue denotes the regions of greatest improvement.



Similarly, Figure 13 shows the temporal averages of TS-volume   (see Figure 14 for the meaning), in observation firstguess, Sig-case, and TS-case. In observation, this volume showed a high value around the warm water pool in the Indo-Pacific region but low value around the high evaporation areas. Such features were also observed in the model fields, but common shortcomings in terms of the shape of the high evaporation zones in the firstguess remained in both Sig-case and TS-case. Figure 15 shows the distribution of the relative error in the model fields by applying Equation 18 to  . The error pattern is similar to the relative error for TS-area   shown in Figure 12, with higher constant in TS-case. The overall value for TS-volume was 1.031 in Sig-case and 1.172 in TS-case. No overall improvement was observed in Sig-case, and deterioration was observed in TS-case.




Figure 13 | Temporal average of TS-volume  , in observation (top left), firstguess (top right), Sig-case (bottom left), and TS-case (bottom right). Unit is  .






Figure 14 | Example of volume in temperature-salinity (T-S) diagram enclosed by profile  . Volume is calculated as iterated integral   where area   as in Figure 2. Typically,   decreases monotonically.






Figure 15 | Relative observational error of TS-volume   to firstguess. Overall relative error is 1.031 for Sig-case (left) and 1.172 for TS-case (right). Blue denotes the regions of greatest improvement.






4.4 Steric height

Owing to the universal approximation theorem (Derot et al., 2024), a nonlinear function on a set of paths can be approximated by a linear combination of the iterated integrals with any accuracy. We leverage this fact for approximating the steric height assigned to each profile.

By considering up to the second-order nonlinearity in the state equation, the steric sea level was estimated using iterated integrals for each horizontal point m as

 

where   denotes an averaged iterated integral for all the profiles in mesh m, and C is a constant along time. See the Supplementary Material Sec. 1 for the derivation. The coefficient values are listed in Table 1. Figure 16 shows the temporal averages of the estimated steric height minus the global mean for observation, firstguess, Sig-case, and TS-case. The firstguess assumption seems to represent the pattern of the steric anomaly to a certain extent; however, improvement is not evident in Sig-case or TS-case.


Table 1 | Standard partial regression coefficients (SPRC) in the estimation of global mean steric sea level, displayed in descending order from dominant terms.






Figure 16 | The temporal average in cm of steric height minus global mean, in observation (top left), firstguess (top right), Sig-case (bottom left), and TS-case (bottom right).



To determine where the improvement could be observed, we derived the relative error by applying Equation 18 to  . Figure 17 shows the distribution of the relative observational error of steric height to firstguess. There was an obvious deterioration around the Antarctic circumpolar current and subarctic circulation in both cases, but there was a slight improvement in other areas. The contrast was stronger in TS-case, resulting in a large deterioration around the Antarctic circumpolar current. The overall relative error estimated using Equation 19 was 1.000 for Sig-case and 1.013 for TS-case, which means that no overall improvement by DA was observed in Sig-case, and TS-case was slightly worse. Given that DA did not necessarily improve the agreement of steric height with observations, we do not discuss about the estimate of the global average steric height.




Figure 17 | Relative observational error of steric height to firstguess. The overall relative error is 1.000 for Sig-case (left) and 1.013 for TS-case (right). Blue denotes the regions of greatest improvement.



The estimation Formula 20 is more informative than just for estimating steric height. For example, we can also obtain information regarding which iterated integral is dominant in the estimation of the global mean steric sea level (GMSSL). By integrating Equation 20 over the global ocean, we obtain a linear regression formula for GMSSL for each month:

 

where  , with   the summation over global ocean domain,   the area of each mesh, and  . Using this equation, we can compute the Standardized Partial Regression Coefficients (SPRCs) (McClendon, 2002) for a linear regression model that predicts the monthly mean GMSSLs. The SPRCs from the results of our experiment are shown in Table 1. The most dominant terms are thermosteric terms   and  . By contrast, the contribution of the TS-cross term   was sufficiently small compared with that of the dominant terms:  ,  , and   The dominant terms,   and  , clearly indicate that thermosteric changes are more dominant compared to halosteric changes or the cross effects. Furthermore, the most dominant term,  , demonstrates that regions characterized by high temperature layers significantly contribute to thermosteric effects. The slightly worse overall relative error for steric sea level (1.013) to firstguess in TS-case might be attributed to the deterioration of iterated integrals   and   in Figure 4, at least partially.





5 Discussion

	We developed a method to enhance ocean state estimates by comparing mean signatures of observed vertical profiles against those of model profiles within a framework of the four-dimensional variational DA. This novel approach was meticulously formulated and implemented, aiming to harness the comprehensive information embedded within vertical profile trajectories. We applied this implementation to ocean DA with a decadal assimilation window.

	Our DA experiment demonstrated that the signature method can achieve improvements in temperature and salinity estimations that are comparable to those attained by conventional methods. This finding ensures the sanity of our implementation as a DA method.

	Importantly, the utilization of signatures allowed for a certain level of enhancement in the representation of profile shapes on the TS plane, a critical aspect that traditional ocean DA approaches have largely overlooked. This advancement highlights the potential to properly capture the water mass and the dynamics of oceanic processes.

	This type of cost function provides a more safety-side assessment; in other words, it will no longer be the case that only some aspects improve and other aspects become significantly worse (Refer to Figure 4).

	Furthermore, the signature formulation can be used as an evaluation formula for various properties of the water column. For instance, steric heights could be directly assessed from iterated integrals derived during the DA experiment, showcasing the versatility of the signature method in representing various oceanographic properties.

	The comprehensive analysis revealed that the use of a signature-based observation operator not only achieves comparable improvements in temperature and salinity fields as conventional methods but also enhances previously neglected aspects, such as profile shapes on the TS plane. This dual capability marks a significant step forward in the field of DA involving shape matching.

	This method provides a versatile framework applicable to DA of observational profiles across various dimensions, not limited to ocean profiles. Given a multidimensional profile, it is capable of considering the shape of paths composed of any combinations of two or even more variables that have mostly been overlooked in traditional DA.

	Furthermore, our setting of observational cost is broadly applicable in DA practices incorporating profile observations, extending its utility beyond four-dimensional variational approaches to include ensemble methods. This flexibility suggests a wide range of potential applications for the signature method in improving the accuracy and efficiency of state estimations and predictions.



By embracing the essence of oceanic phenomena through the innovative use of signatures, this study offers a promising new direction for DA techniques, potentially enhancing our understanding of oceanography by estimating the ocean states more accurately.

Finally, the limitations of the experimental settings and methods must be mentioned.

	In the present experimental setup, the model was not well-tuned, and the representation errors were pronounced to the extent that the advantages of the proposed method could not be fully demonstrated. To clearly demonstrate the significance of using signatures, more experiments in an effective assimilation setting under appropriate tuning are needed, with comprehensive observations to be assimilated.

	While the transformation to signatures has been modularized in Fortran, to facilitate its integration as an extension to conventional methods, a comprehensive understanding of the signature concept is crucial. For example, the independence of observation variables should be crucial for the observation operator to perform better. In our case, the iterated integrals inherently have multicollinearity. To reduce this dependency, we can make use of log-signature (e.g., Lyons et al., 2007) or apply whitening by using the observational covariance between iterated integrals.

	Related to the covariance, implementing this approach involves using several ad hoc constants for scaling and weighting the observational data. This reliance on arbitrary parameters introduces an element of subjectivity and may affect the reproducibility and universality of the method. A more rigid formulation upon which the assimilation is set is desirable.

	Operational forecasting models assimilate not only vertical profiles but also observations taken on the surface (e.g., Sea Surface Temperature, Sea Surface Height). To systematically incorporate surface observations, we need to extend the notion of path (1-parameter) signature to surface (2-parameter) signature. The mathematical setting for how a 2-parameter signature can be consistently defined is still an active research topic (Diehl and Schmitz, 2023; Diehl et al., 2024, and references therein). Therefore, for now, traditional treatments with point-by-point matching on the surface remain a practical solution to be used in data assimilation.
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Ocean observing systems in coastal, shelf and marginal seas collect diverse oceanographic information supporting a wide range of socioeconomic needs, but observations are necessarily sparse in space and/or time due to practical limitations. Ocean analysis and forecast systems capitalize on such observations, producing data-constrained, four-dimensional oceanographic fields. Here we review efforts to quantify the impact of ocean observations, observing platforms, and networks of platforms on model products of the physical ocean state in coastal regions. Quantitative assessment must consider a variety of issues including observation operators that sample models, error of representativeness, and correlated uncertainty in observations. Observing System Experiments, Observing System Simulation Experiments, representer functions and array modes, observation impacts, and algorithms based on artificial intelligence all offer methods to evaluate data-based model performance improvements according to metrics that characterize oceanographic features of local interest. Applications from globally distributed coastal ocean modeling systems document broad adoption of quantitative methods, generally meaningful reductions in model-data discrepancies from observation assimilation, and support for assimilation of complementary data sets, including subsurface in situ observation platforms, across diverse coastal environments.




Keywords: coastal ocean circulation modeling, data assimilation, observation impact, observing system experiment, observing system simulation experiment, array modes




1 Introduction

At the interface between the land margin and open ocean, coastal waters support a wide variety of societal benefits, including economic, recreational, and ecological services. Local physical and biogeochemical dynamics result in their sizable contributions to the Earth System including climate relative to their spatial area. To support local societal benefits and broader scientific understanding, regional and coastal ocean observing systems have developed around the globe, generally consisting of a suite of continuously operating in situ and remotely sensed ocean observations. Dynamical and statistical models have been developed to capitalize on these data streams to provide historical, near real-time, and forecast information to local and national communities, resource managers, and scientists. Because specific coastal priorities and financial constraints vary with region, the type and density of observing platforms as well as details of ocean model and configuration are diverse.

Platforms collecting remotely sensed data for physical variables (temperature, salinity, velocity, and sea level) that are routinely assimilated in the coastal and regional ocean forecast systems include satellite observations of sea surface temperature (SST) and sea surface height (SSH), as well as high frequency radar (HFR) estimates of surface currents. In addition, satellite observations of sea surface salinity (SSS) have recently become available. In situ assets include coastal tide gauges, Argo floats and gliders equipped with temperature and salinity sensors, as well as moorings that also may include velocity observations. Unique observational challenges limit spatial coverage in coastal environments (for example, with land corruption of the radar reflection used for satellite sea level anomaly calculations and shallow bathymetry for autonomous in situ platforms), particularly close to the coast where spatial and temporal scales decrease.

The challenge of effectively observing coastal waters given the scales of oceanic variability combined with the large expense of in situ assets motivates analyses to assess the value of observations, instrument platforms, and the overall observation system. Routine monitoring offers direct benefit when particular observations provide actionable data to stakeholders (e.g., with wave information). Additional, broader benefits derive from models that yield full four-dimensional representations of the ocean state whose output can be analyzed for multiple stakeholder needs.

While ocean observations deliver sparse coverage of ocean conditions relative to spatial scales of natural variability, dynamical state-of-the-art, coastal models are generally constructed at O(1-10 km) grid spacing that resolves mesoscale and a portion of submesoscale motions. Despite limited coverage, ocean observations provide invaluable information, critical for initial tuning of the model configuration and ongoing evaluation. In addition, such observations formally constrain data assimilative (DA) models that adjust model control parameters (e.g., state variables and forcing fields) to produce more accurate estimates of the overall ocean state than occur with free running models (Edwards et al., 2015). Improved, DA-derived ocean state estimates supply initial conditions for skillful forecasts, often of greater interest to key stakeholders.

Methods to quantify the impact of observations on model solutions have been developed, and it is the subject of this paper to review these efforts with examples from coastal, shelf, and marginal sea systems. Following Robinson et al. (2004) and Kourafalou et al. (2015), we adopt a broad view of these environments, defined as domains influenced by nearshore, shelf, or shelf-break processes as well as, potentially, open ocean forcing. This contribution updates previous accounts (Oke et al., 2015; De Mey-Frémaux et al., 2019) as numerous investigations have emerged as well as novel methods. We emphasize projects that are linked to the Coastal and Shelf Seas Task Team, part of OceanPredict, an “international network and science programme that facilitates knowledge exchange between scientists and experts of operational oceanography from around the world to accelerate, strengthen and increase the impact of ocean prediction” 1. Although the ocean state broadly consists of physical and other information (e.g., related to biogeochemistry, water quality, fisheries), we focus here on efforts in ocean circulation physics as many benefits derive exclusively from these fields, and these systems are generally prerequisites for multi-disciplinary systems. We begin in Section 2 with a discussion of general issues that arise with quantitative observation impact studies, recognizing that they must be considered in practice, regardless of model domain (open ocean or smaller). Section 3 then offers specific examples of observation impact studies spanning a range of complementary methods, primarily from regional, coastal, and shelf sea modeling systems. Section 4 concludes with a brief discussion of commonalities, recommendations, and future opportunities.




2 The observation operator and general issues with quantitative assessment activities

In this section, we introduce notation and issues that naturally arise when quantitatively comparing ocean model output to observations. We note that these issues are general, applying equally well to open ocean and coastal environments.



2.1 The observation operator

Data assimilation involves comparing observations measured by a variety of diverse sensors with their model counterparts. In most modern data assimilation schemes, such comparison is performed in observation space, meaning that a function, potentially non-linear, must be formulated to project the model state variables onto the observation space. Such a function is commonly referred to as an “observation operator”, and it is indicated by H(x), where x represents the ocean state vector. Projecting the ocean state vector into observation space is typically much simpler than the reverse, allowing optimal inversion algorithms (e.g., Lorenc, 1986). Observation operators are formulated according to our knowledge of the relationship between the ocean state and the observable measurement.

The formulation of the operators H(x) for each observation type is a common requirement of both sequential (extended and ensemble Kalman filters and all its variants) and variational methods, the latter requiring, additionally, the derivation of the tangent-linear and adjoint versions of H(x), denoted usually by H and HT respectively (see e.g. Ide et al., 1997), which are required for efficient minimization in the quadratic cost-function framework (Talagrand and Courtier, 1987). These operators are derived from Taylor expansions truncated at the first order, where the derivative of H(x) is evaluated around the background (prior) ocean state (Errico, 1997), usually a forecast initialized from a previous assimilation cycle.

The observation operator can be as simple as a linear interpolation operator, for instance when the observed variable is also a model state variable. In other cases, it can be quite complex, for instance including a radiative transfer model in the case of satellite observations of sea-ice concentration from passive microwave sensors in brightness temperature space (Scott et al., 2012), which relates the oceanic and atmospheric states to the reflected radiance measured by the satellite. Another notable example concerns underwater acoustic measurements, which in turn require an underlying acoustic propagation model - with variable complexity - to provide a relationship between the ocean state and the observations through the effects that underwater sound speed (and currents) have on the acoustic propagation itself (Ngodock et al., 2017; Storto et al., 2020).

During the last few years, with the rise of deep learning algorithms in geoscientific applications, observation operators have benefited from these data-driven formulations. Radiative transfer models (Liang et al., 2023), acoustic observations (Storto et al., 2021), and, in general, observations that cannot be formulated analytically from the ocean state, are examples where deep learning algorithms can improve observation operators and, in turn, data assimilation.




2.2 Common approximations and difficulties in construction and representativeness issues

In the Bayesian approach to data assimilation, the process of model-data comparison and model update necessitates knowledge or assumptions about the error characteristics or uncertainty properties of the observed value and prior estimate. One challenge encountered is that the discrete geophysical model cannot capture all spatial and temporal scales of the observed geophysical state. Consequently, the prior estimate may differ significantly from the observed value, even in the absence of any measurement or instrument error, resulting in a perceived error that must be taken into account to update the prior estimate accurately. For instance, a perfect (error free measurement) observation of the temperature gradient across an oceanic front may be much higher than the forecast value from a numerical prediction model, resulting in a misfit that must be estimated somehow. The discrepancy between the modeled representation of a quantity and its actual observation has traditionally been addressed by incorporating what is commonly referred to as representation, representativity, or representativeness errors in scholarly works (Janjić et al., 2018). Consequently, the observation error generally comprises two distinct elements, the measurement error and the representation error.

In variational schemes that rely on the tangent-linear approximation, an additional component of the representation error derives from the tangent-linear assumption: the more non-linear the H(x) function, the larger the error associated with its tangent-linearization (Errico et al., 1993). While there are several possible remedies to reduce the impact of the tangent-linear assumption – for instance increasing the number of outer loops in variational schemes, and thus linearizing H(x) around an increasingly improved approximation of the analysis – the tangent-linear error cannot be eliminated, unless the observation operator is already linear (e.g., in the case of linear interpolation schemes).

Representation errors are in general dominant in the observation error budget (Oke and Sakov, 2008), and, beyond possible spatial representativeness issues discussed earlier, may be relevant when the numerical ocean model is inadequate in representing certain processes. For example, if data includes high frequency information such as tidal processes or inertial oscillations that are not represented in the model, low-pass filtering can be applied prior to model-data comparison. Oke et al. (2002) apply a 40-hour half-amplitude filter to observations and model output for quantitative comparison in a model off the Oregon coast without tides. Yu et al. (2012), Pasmans et al. (2020) and Hernandez-Lasheras et al. (2021) assimilated daily mean HFR surface current estimates into coastal ocean circulation models to focus improvements on subtidal circulation features.



2.2.1 An example

Given that high-resolution, in-situ measurements are expensive to deploy and maintain, the best use of remotely sensed data is crucial (Le Traon, 2011; Oke et al., 2015). Several methods aimed at enhancing how sea surface measurements from satellite-borne sensors correct and constrain the sub-surface ocean model solution have been developed. A significant example is the assimilation of daytime sea surface temperature (SST) retrievals at high temporal frequency, which has the potential to correct possible mixed layer depth biases (Miyazawa et al., 2017; Liu and Fu, 2018), with obvious benefits for several oceanographic applications (Liu and Fu, 2018). However, several SST observational products from infrared or microwave sensors have not been widely used in operational contexts because surface layer diurnal variability in OGCMs is difficult to model, with additional difficulties, in turn, defining H and the observational error. For instance, infrared sensors (the Advanced Very High Resolution Radiometer, AVHRR, or the Spinning Enhanced Visible and Infrared Imager, SEVIRI) measure the skin temperature valid at a depth of approximately 10 μm. On the other hand, microwave sensors (the Advanced Microwave Scanning Radiometer 2, AMSR-2) measure the sub-skin temperature at a depth of around 1 mm.

In contrast, SST analyses such as the Operational Sea Surface Temperature and Ice Analysis (OSTIA) (Donlon et al., 2012) or NOAA OIv2 (Optimum Interpolation, version 2, Reynolds et al., 2002) provide the foundation SST, which is nominally at a depth of 10 m. The 10 m depth is considered as a reference to ensure that the temperature is not influenced by the diurnal cycle signal, thus significantly simplifying the formulation of the observation operator. Between 0.2 m and 1 m depth, where the first level of most OGCMs is located, the diurnal cycle of SST is damped compared to that of the skin or sub-skin SST and this discrepancy has the potential to introduce systematic errors in the analyses. Common remedies to this discrepancy rely on i) bias-correcting the skin-SST through the use of a set of bias predictors (Petrenko et al., 2016; Storto and Oddo, 2019); ii) using statistical tools, such as canonical correlations, to infer the cool skin and warm layer amplitudes (e.g., Jansen et al., 2019); or iii) modeling analytically the skin SST variations through parameterizing their difference with respect to the foundation SST (While et al., 2017; Pimentel et al., 2019). Recently, de Toma et al. (2024) successfully reduced skin temperature biases in a regional model of the Mediterranean Sea by spatially and temporally varying the depth of the warm layer, deduced from chlorophyll concentration data.





2.3 Issues of correlated errors

For over twenty years, satellite altimetry has significantly advanced our understanding of ocean dynamics by consistently providing information on both mesoscale and fine-scale dynamics (Fu et al., 2010; Morrow et al., 2017) as well as the overall circulation at basin scales (Stammer, 1997). As a result, global (Verrier et al., 2017) and regional (Pujol et al., 2010) operational analysis and forecast systems are profoundly impacted by altimetry observations and serve as a vital complement to in situ observation profiles (Storto et al., 2013). However, assimilating altimetry observations presents several challenges mostly related to the multivariate balances used to project the altimetry innovations in the subsurface, the spatial scales and dynamical regime of the study region, and technical considerations such as the computational costs of the assimilation scheme. Furthermore, as discussed above, characterizing observation errors is generally difficult due to the need to assess not only instrumental errors but also representation errors and those associated with geophysical corrections (e.g., Storto et al., 2011).

To facilitate the formulation and minimization of the cost function, most variational data assimilation systems assume that there is no correlation between errors in pairs of observations. This assumption allows the observation-error covariance matrix to be defined as diagonal, simplifying the implementation of the variational algorithm and the preconditioning step, needed to improve the speed of convergence in the minimization process. However, the validity of this assumption may be questioned when considering high-resolution satellite observations. In fact, satellite altimetry data undergo various geophysical corrections, such as tropospheric, ionospheric, and tidal corrections (Chelton et al., 2001). These corrections, along with instrumental errors, can support relaxing the assumption of uncorrelated altimetry observational errors. High-resolution regional scale analysis systems may be more affected by this assumption compared to coarse-resolution systems, especially when their resolution exceeds that of the satellite data. To address this issue, common approaches include combining satellite data into so-called super observations (e.g., Oke et al., 2008), data thinning (Cummings, 2005), and adjusting or inflating observational errors (Liu and Rabier, 2003; Rainwater et al., 2015).

Previous attempts at incorporating altimetry error correlations have shown promise. Brankart et al. (2009, 2010) demonstrated that by applying a linear transformation to the observation vector and augmenting it with gradient observations, error correlations can be introduced, resulting in improved ocean circulation in regional prediction systems. Le Hénaff et al. (2008), Ruggiero et al. (2016) and Yaremchuk et al. (2018) explored different approaches to investigate the optimal assimilation of Surface Water and Ocean Topography (SWOT) simulated altimetry data including observational error correlation. Furthermore, Storto et al. (2019) used co-located glider trajectories and altimetry tracks to estimate the altimetry correlation length scale and used it in the definition of the off-diagonal elements of the altimetry error covariance matrix, resulting in significant improvements in forecast skill scores compared to the case when the matrix is diagonal. In addition to confirming the analysis improvement deriving from the introduction of spatially correlated observational errors, the latest study also strengthens the relevance of properly designed observational networks.





3 Applications assessing the impact of observations on coastal models

How observations impact ocean model estimates must be defined in terms of metrics that quantify one or several aspects of the ocean state. Any one specific measure is necessarily subjective, reflecting ocean qualities that practitioners or, perhaps, stakeholders deem critical. Sometimes, metrics represent model-data misfit against independent observations not included in the assimilation system. In these cases, misfit reduction resulting from inclusion of particular observations or observation platforms establishes the positive impact the observations have on model fidelity. In other cases, metrics represent unobserved features of value in a particular oceanographic context. In these circumstances, impact is represented by the magnitude of metric change resulting from included observations. Examples of metrics used include average eddy kinetic energy (EKE; Röhrs et al., 2018; Gwyther et al., 2023b), average sea surface temperature (Moore et al., 2017), measures of stratification such as the depth of an isopycnal surface (Moore et al., 2017; Röhrs et al., 2018) or thermocline, available potential energy, upper ocean heat content (Halliwell et al., 2015; Gwyther et al., 2023a), and volume transport (Kerry et al., 2018; Siripatana et al., 2020; Christensen et al., 2018; Levin et al., 2020). Additionally region specific metrics can be used to ensure important dynamics are well represented, for example the separation latitude of a western boundary current (Gwyther et al., 2022). When used by multiple, independent, analysis systems in a particular oceanographic context, any reduction in metric spread by ensemble members when assimilating particular observations suggests convergence in data-constrained state estimates and a positive impact of those observations on ocean analyses (Storto et al., 2013).

We note that observation impact can depend on user choices in the assimilation system. Liu and Hirose (2022) demonstrate using model twin experiments in a regional domain of southwest Japan that while adjustment of surface forcing through assimilation of satellite altimetry is effective in shallow regions, its impact does not extend to deep regions off the shelf. They find improvement in estimates of Kuroshio Current properties result instead by allowing assimilation-induced updates to the lateral boundary conditions.

A first demonstration of the impact of particular observations on an ocean state estimate focuses on the Norwegian shelf, set up by the Norwegian Meteorological Institute (MET Norway) (Röhrs et al., 2018). The model domain includes the Skagerrak in the southeast, the northern parts of the North Sea, the Shelf sea off western Norway including the shelf slope, and parts of the Barents Sea in the north. The NorShelf model is based on the Regional Ocean Modeling System (ROMS; Shchepetkin and McWilliams, 2005; Haidvogel et al., 2008) with a physical space 4D Variational (4D-Var) DA scheme. A horizontal model resolution of 2.4 km was chosen to suit the scale of the available observations, and to satisfy competing needs to resolve high resolution eddy dynamics while confining nonlinearities that limit the 4D-Var DA capabilities. The model is used as a forecasting tool for ocean circulation and hydrography beyond the coastal area, including the entire shelf sea and the dynamics of the North Atlantic current at the shelf slope. Some model cycles were found to benefit locally from dense observation campaigns (e.g., when CTD sections are taken from research vessels or during glider campaigns). These types of observation have significant impact on the model trajectory, with a stronger response in deeper layers compared to periods when only SST fields are assimilated. All model state variables (i.e., temperature, salinity, velocity, and the free surface) are adjusted, and typically an increase in eddy kinetic energy is seen in the mixed layer, along with modifications to vorticity that suggests a repositioning of mesoscale eddies.



3.1 Observing System Experiments (OSEs)

The impact of observations toward improved estimates of the ocean state may be evaluated through straightforward experiments that compare DA runs with specific observations removed/denied. Such Observing System Experiments (OSEs) can range in configuration from withholding all observations, and thus evaluating the impact of the overall observing system relative to a non-DA approach, to withholding only particular sets of observations or observation platforms, or for comparing DA schemes themselves. Here we present several examples to illustrate their application in coastal and shelf seas.

One example illustrates the application of OSEs toward parts of observational programs. The Korean National Institute of Fisheries Science (NIFS) operates a regular ocean observation system which has observed temperature and salinity profiles at standard depths down to 500 m in the marginal seas around Korea bimonthly since 1961 (Figure 1). Chang et al. (2023) assimilated these in-situ temperature profiles in the marginal seas around Korea, resulting in improved accuracy of subsurface temperature and salinity in the East/Japan Sea (EJS) as well as in the Kuroshio and Kuroshio Extension regions and illustrating how regional observation networks can improve ocean prediction accuracy nonlocally, for example in adjacent open oceans.




Figure 1 | (A) Distribution of in-situ temperature and salinity (T/S) profiles used in data assimilation in February 2019. Dots indicate T/S profiles provided by the Korean NIFS observation system (yellow) and other observation programs (red) including the Global Temperature and Salinity Profile Programme (GTSPP). Color shading indicates the bottom depth in meters. (B) Distribution of T/S profiles, in the eastern Yellow Sea (YS), northeastern East China Sea (ECS), Korea Strait (KS), and Ulleung Basin (UB) in the East/Japan Sea, provided by the Korean NIFS bimonthly since 1961. (C–F) RMSE for temperature and salinity profiles at the eastern Yellow Sea, and northeastern East China Sea. Freerun, CTRL, and NO NIFS represent numerical simulations without assimilation, with assimilation of all observed data, and with assimilation of observed data excluding NIFS data, respectively. ‘nobs’ represents the number of independent observation data used for evaluation.



An OSE can assess the impact of the Korean NIFS observation system specifically on predicted hydrography in local shelf seas. For this experiment, the ocean prediction system was based on ROMS with a horizontal grid spacing of 5 km and 30 vertical layers. SST data from the Operational Sea Surface Temperature and Ice Analysis (OSTIA), temperature and salinity profiles from the NIFS observation system and the Global Temperature and Salinity Profile Programme (GTSPP), and surface geostrophic currents estimated from gridded satellite altimeter data were assimilated daily in 2019 using the Ensemble Optimal Interpolation (EnOI) method with 30 ensemble members. Independent (i.e., unassimilated) T/S profiles were used for quantitative assessment. A simulation with no data assimilation (Freerun) was compared to analyses assimilating all observations (CTRL) and assimilating all data excluding NIFS observations (NO NIFS). Free run RMSEs from the upper 100 m are generally larger than those with data assimilation, and the CTRL run typically exhibits meaningfully lower RMSEs compared to the NO NIFS experiment. Though variations occurred between regions, with only slight changes particularly in the Ulleung Basin, NIFS data enhanced the accuracy of subsurface temperature and salinity overall by approximately 18% and 37%, respectively, in the coastal shelf seas (two examples given in Figure 1), making the NIFS observation system a valuable asset for the coastal operational ocean prediction system.

A second example highlights collections of observation types. In the East Australian Current (EAC) region, OSEs have been used to compare the impact of assimilating only relatively traditional near real time observations, such as satellite derived observations and vertical hydrographic profiles from Argo and eXpendable BathyThermographs (XBTs) (the TRAD experiment), versus also including newer observation types such as from HF radar (HFR, to be described in more detail below), glider and deep and shallow moorings (the FULL experiment) (Siripatana et al., 2020; Kerry et al., 2020, 2024). Results showed that while assimilating traditional data sets alone improved surface and subsurface properties, including velocities, relative to a free run, newer coastal mooring, radar and glider observations further improved estimates of the overall ocean state. Mooring observations along the continental shelf improved estimates of velocity and temperature inshore of the EAC, and gliders observations were key to constraining estimates of subsurface structure on the continental shelf and the offshore EAC eddies. HF radar observations covering the continental shelf and slope region at 30S were key to representing the cyclonic vorticity inshore of the EAC, resulting in increased cyclonic vorticity both up and downstream of the HF radar location and increased vorticity variance (Siripatana et al., 2020). However, after 5-day forecast windows the predictive skill for shelf velocities was equivalent to that of the TRAD experiment (Siripatana et al., 2020; Kerry et al., 2024a). For these same experiments, Kerry et al. (2020) showed that downscaling to a higher resolution (1km) coastal/shelf model was more effective at maintaining the vorticity gradient in the 5-day forecasts; however, correctly predicting the timing and location of fine-scale features (specifically cyclonic eddies that form inshore of the EAC) remains a challenge.

In cases, OSEs can help identify issues with insufficient data coverage and/or noise, possibly resulting in erroneous variability associated with over-fitting. An example here shows results from OSE tests of the West Coast Operational Forecast System (WCOFS; Xu et al., 2022), specifically related to single or multiple satellite platforms. Model dynamics are based on ROMS at 4-km horizontal resolution in a domain centered on the United States west coast stretching from Mexico to British Columbia, Canada. DA includes HFR surface current vectors, satellite along-track altimetry, and SST. Specifically, Level 3 Visible Infrared Imaging Radiometer Suite (VIIRS) SST from one or two satellites (NPP-Suomi and NOAA-20) were utilized. In these data, individual swaths are mapped to a regular 2-km grid, but gaps due to clouds are not filled. The surface current variability in the forecasts constrained by DA is more energetic in the broad range of geostrophic scales (20-200 km) than in the no-DA case (Figures 2A, B), and quantitatively evident in the 1-dimensional velocity wavenumber spectra (Figure 2C). In early stages of testing, Level 3 VIIRS SST from just one satellite, NPP, was utilized. The velocity amplitudes in the geostrophic range from this estimate (red line) are 2-3 times higher than the no-DA case (blue). Adding SST data from another satellite increases coverage and data redundancy leading to reduced posterior model error. The resulting estimate (green) reduces the spectral amplitude gain due to the DA by about half, indicating that some part of the surface eddy variability in the DA-NPP case is in error, and likely the result of fitting sparse noise. Newly available observational sets, such as SWOT altimetry, will provide new opportunities to assess the level of EKE in the coastal transition zone.




Figure 2 | (A, B) Surface daily averaged current amplitude (m/s) from the 4-km resolution WCOFS, 15 June 2020, (A) no DA, (B) DA, including SST from NPP and NOAA-20. (C) The amplitude wavenumber spectrum of the surface velocity component across the white line shown in (A, B) The spectra for each day, 1-30 June 2020, are obtained by applying the Hann window, then Fast Fourier Transform; the plot shows the RMS amplitudes, with averaging over these dates: (blue) no DA, (red) assimilation includes SST from just one satellite, NPP, (blue) adding the second satellite set (NOAA-20), which results in a smoother (lower eddy kinetic energy) estimate.



The impact of a single particular observation platform can also be investigated through OSEs. HFR are land-based coastal observing platforms providing accurate and high-resolution monitoring (around 1 km in space and hourly in time) of surface currents from the near-shore to several tens of km offshore. These measurements are generally accessible in near real-time, providing a unique dataset to constrain surface ocean currents in coastal forecasting systems. However, the assimilation of HFR measurements in numerical models also poses specific challenges. Several OSEs performed over the last two decades have been insightful, providing an assessment of the impact of these surface current observations when assimilated in coastal models by means of different approaches in different regions of the world.

HFR OSEs have used moored current meters and Acoustic Doppler Profilers (Oke et al., 2002; Paduan and Shulman, 2004; Shulman and Paduan, 2009; Ren et al., 2016; Wilkin and Hunter, 2013), surface drifter trajectories (Hernandez-Lasheras et al., 2021; Bendoni et al., 2023) or satellite observations (Yu et al., 2012; Couvelard et al., 2021) as independent validation datasets. Overall, the model velocity error reduction achieved by assimilating HFR observations was found to be between 10 and 50% (Barth et al., 2008; Gopalakrishnan and Blumberg, 2012; Hernandez-Lasheras et al., 2021; Couvelard et al., 2021; Bendoni et al., 2023), with an increase of the correlation with independent observations up to 85% (Oke et al., 2002).

In addition, more specific issues have been investigated. When assimilating HFR data, one must choose whether to assimilate raw radial velocities (i.e., velocity projections directed toward or away from individual antennae) or reconstructed “total” currents (i.e., velocity vectors representing both the meridional and zonal components in areas covered by two or more antennae). While total currents generally provide smoother data than radials and are somewhat easier to compare with model velocities, creating them discards information provided by radial velocities in areas covered by only one antenna. Shulman and Paduan (2009) and Hernandez-Lasheras et al. (2021) compared the assimilation of both radial and total velocities, reaching the conclusion that the relative performance was also dependent on other parameters like the direction of the flow with respect to the radials or the application of an initialization step after analysis which helps to preserve the model dynamical balance. In the EAC region, Kerry et al. (2020) showed that assimilation of radial velocities over the core of Australia’s western boundary current (the East Australian Current) at 30S produced increased cyclonic vorticity along the current’s inshore edge in the vicinity of the HF radar array as well as up and downstream.

A challenge with HFR relates to the highly variable and energetic characteristic of surface currents, which is generally associated with relatively large model error variances. Some OSEs have shown that assimilating these measurements might also have negative side effects on other model variables, on the correction of model fields at depth, or outside the HFR observation area (Zhang et al., 2010; Bendoni et al., 2023).

OSEs have been used also to evaluate the potential of HFR data assimilation to correct the surface and boundary forcing of the model rather than correcting the ocean state itself (Barth et al., 2010, 2011; Marmain et al., 2014; Ren et al., 2016). This approach is particularly useful to minimize short transients appearing during model re-initialization after analysis in sequential data assimilation schemes, which is especially critical when dealing with high-frequency measurements and short assimilation cycles. Assimilating HFR data in the East Australian Current region, Kerry et al. (2016, 2020) allow the DA system to adjust the initial conditions, boundaries and surface forcing. They find that, while the initial condition adjustments can introduce or enhance cyclonic features inshore of the current at the beginning of the analysis window, the features are maintained over the 5-day windows by adjustments to the wind stress forcing.

Finally, the good performance of HFR data assimilation highlighted by these OSEs have also allowed validation of temporal filtering applied on HFR surface currents, for example when the focus is on the sub-inertial ocean variability (Oke et al., 2002; Barth et al., 2008; Shulman and Paduan, 2009; Kerry et al., 2018; Hernandez-Lasheras et al., 2021). Alternatively, when representing high-frequency processes, specific OSEs have demonstrated the potential of HFR data to correct tides and inertial oscillations in the coastal zone (Barth et al., 2010; Gopalakrishnan and Blumberg, 2012; Vandenbulcke et al., 2017).

A second major platform providing critical observations in coastal waters is an underwater glider, and OSEs have been used to evaluate the impact of these observations on coastal modeling systems. Gliders are highly valuable autonomous observing platforms providing high-resolution, subsurface sampling of coastal environments and transition zones toward the open ocean with horizontal scales of the order of 1 km. Jones et al. (2012) showed that the assimilation of mooring and glider data significantly reduced sea surface temperature errors in a coastal model of south-west of Tasmania. In the New York Bight, Zhang et al. (2010) found the impact was more pronounced on salinity than temperature. OSEs have also highlighted the importance of having complementary surface observations when assimilating glider temperature and salinity profiles to avoid spurious velocities (Pasmans et al., 2019), and they have demonstrated the value of glider observations for assessing the representation of modeled ocean fronts (Pascual et al., 2017). Assimilating glider data from deep ocean eddies was shown to significantly improve the subsurface structure of the water column (Kerry et al., 2018). The impact of measurements from fleets of gliders in coastal zones was also assessed in several studies (Shulman et al., 2009; Pan et al., 2014; Gangopadhyay et al., 2013; Mourre and Chiggiato, 2014; Hernandez-Lasheras and Mourre, 2018) leading to valuable quantifications of the model field improvements both at the surface and in the pycnocline, and providing comparisons with more conventional observing strategies. Finally, Mourre and Alvarez (2012) also applied this approach to evaluate the benefits of piloting a glider through a real-time operational adaptive sampling procedure.

Lastly, OSEs have been used to compare the utility and benefit of different data assimilation schemes themselves. Kerry et al. (2024a) used OSEs to compare the time-dependent 4-Dimensional Variational (4D-Var) data assimilation system with the more computationally-efficient, time-independent Ensemble Optimal Interpolation (EnOI) system, across a common modeling and observational framework. They showed that although the 4D-Var system is more computationally expensive, it outperforms the EnOI system against both assimilated and independent observations at the surface and subsurface. The time-dependent DA method gave a more continuous ocean state, with smaller discontinuities between subsequent analyses, and improved forecast skill (after 5 days) for assimilated and independent observations. This was highlighted to be important for coastal and shelf regions with highly intermittent flows. In the Ligurian Sea, Mourre and Chiggiato (2014) compared the performance of the 3D super-ensemble multi-model fusion approach with that of a more conventional Ensemble Kalman Filter (EnKF), highlighting the better skills of the EnKF outside of the area spanned by the assimilated measurements.




3.2 Observing System Simulation Experiments (OSSEs)

An alternative to OSEs for evaluating the efficacy of an observing system is the Observing System Simulation Experiment (OSSE), in which synthetic observations are extracted from a numerical model simulation, referred to as a “nature run” (NR) or “truth” (Figure 3). OSSEs have been widely employed in meteorology (Arnold and Dey, 1986; Atlas, 1997) and more recently in oceanography. OSSEs provide a relatively straightforward methodology to assess the impact of new observation types (e.g., Kerry et al., 2024b), different observing scenarios (e.g., Gwyther et al., 2022, 2023a, 2023b, Barceló-Llull and Pascual, 2023; Alvarez and Mourre, 2014) and/or satellite constellations and future projects (e.g., Mourre et al., 2006), the inclusion of tides on mesoscale predictability (Kerry and Powell, 2022), or even different observation operators and processing chains of observations. OSSEs can also be used to inter-compare different data assimilation schemes (e.g., Storto et al., 2020; Moore et al., 2020). As such, OSSEs have been and continue to be a valuable method for guiding choices about extending the capabilities of the ocean observing network and/or improving existing assimilation strategies.




Figure 3 | An outline of the steps taken in (top) a realistic prediction system and (bottom) an Observing System Simulation Experiment. (A) In a realistic prediction system, a forecast simulation over an assimilation cycle of length l provides the prior estimate also called the model background state, with associated background error estimates (blue). Ocean observations, along with error estimates, are collected using instruments deployed in the natural system (black). The background and observations are combined using data assimilation to provide an improved posterior estimate, also called the analysis, along with associated model error (green). The analysis provides data constrained initial conditions for the subsequent assimilation cycle. The analysis and forecasts are evaluated against assimilated or withheld observations. (B) In an OSSE, a model simulation represents the Nature Run or model Reference State (red), from which synthetic observations, perturbed by characteristic observation errors, are drawn (black). A model simulation that is distinct or perturbed from the Reference State serves as the background or Baseline simulation. As in the realistic system, data assimilation combines observations and the background to yield an analysis whose final state provides an initial condition for the subsequent assimilation cycle background. The analysis and forecasts are evaluated against the Nature Run. This figure is adapted from Kerry et al., 2024b.



However, a well-known deficiency of OSSE exercises is that their outcomes depend, to some extent, on the specificities of the analysis and forecast system used within the assessment. Consequently, care must be taken in generalizing the results. The way the NR is chosen and, accordingly, the way synthetic observations are drawn are crucial elements of an OSSE and generally relies on the use of an alternative model (e.g., Errico et al., 2013) or the same numerical model but with different configurations (e.g., Halliwell et al., 2014). It is therefore desirable that OSSE exercises are performed using multiple analysis systems, in order to achieve consensus about the impact of a certain observation type and turn the assessment results onto probabilistic metrics (e.g., percent of systems benefiting by at least a certain threshold from the assimilation of a group of observations, and so on). This approach is, for instance, being followed within the SynObs project of the United Nations Decade of Ocean Science (more information available at https://oceanpredict.org/synobs/), after the encouraging experience in the AtlantOS project (Gasparin et al., 2019). Alternative methodologies may rely on quantifying the change in ensemble properties (e.g., ensemble variance) in forecasting systems when certain synthetic observation types are assimilated, namely, the decrease in ensemble dispersion quantifies the impact of the new observing scenario (Storto et al., 2013).

A prototype fraternal twin Observing System Simulation Experiment (OSSE) system was developed for the Gulf of Mexico based on the HYCOM ocean model (Halliwell et al., 2014). This regional application of the OSSE system was rigorously evaluated by first demonstrating the realism of the unconstrained NR. Second, it was determined that realistic differences (errors) existed between an unconstrained simulation by the data assimilative Forecast Model (FM) and the NR that closely resembled errors between the NR and the true ocean. The final evaluation step compared OSEs that evaluated impacts of existing observing system components to identical OSSEs that evaluated impacts of synthetic versions of the same observing system components. Similar impact assessments were obtained, demonstrating that the OSSE results are realistic. The OSSE system was then used in Halliwell et al. (2015) to evaluate the impact of airborne expendable profiler surveys, which have been used for improving ocean model initialization for coupled hurricane prediction (e.g., Shay and Uhlhorn, 2008) and for using ocean models to predict the dispersal of the Deepwater Horizon oil spill (e.g., Shay et al., 2011). An example impact assessment is presented in Figure 4 using a Taylor (2001) diagram to quantify error reduction. This assessment focuses on error reduction in Ocean Heat Content (OHC) above the 26°C isotherm, an index of the thermal energy available for hurricane intensification. An unconstrained experiment and an experiment assimilating existing ocean observing systems were compared to experiments that also assimilated synthetic Airborne Expendable Conductivity Temperature Depth Probe (AXCTD) profiles sampled at the locations shown in Figure 4 at 1.0- and 0.5-degree horizontal resolutions. Results clearly illustrate the significant error reduction achieved by assimilating existing observing systems, along with the additional error reduction achieved by also assimilating the airborne observations at progressively higher horizontal resolution.




Figure 4 | OSSE evaluation of the impact of airborne AXCTD surveys on initializing Ocean Heat Content (OHC) in ocean models. “Surveys” were conducted by deploying synthetic AXCTDs simulated from the NR into the FM at locations shown in the upper left at two horizontal resolutions: 0.5 and 1.0 degrees. Error analysis with respect to the NR (the “truth”) is presented in the Taylor diagram for four experiments. The largest errors occurred in the unconstrained experiment as expected. Large reductions in RMS differences and large increases in correlation coefficients were realized sequentially in the remaining three experiments: assimilating all observations except the airborne profiles, and then additionally assimilating the profiles at 1.0 and 0.5 degree resolution.



A different OSSE conducted in the EuroSea Project evaluated various configurations of in situ experiments aimed to reconstruct fine-scale (~20 km) ocean currents in the context of the Surface Water and Ocean Topography (SWOT) satellite validation (Barceló-Llull et al., 2023). In this work, the impact of different sampling strategies on the reconstruction of fine-scale ocean currents in Mediterranean and Atlantic study regions were identified, with recommendations for the design of in situ experiments (Barceló-Llull and Pascual, 2023). This analysis was carried out with an advanced version of a spatial optimal interpolation algorithm applied in field experiments. Two additional reconstruction methods in the Mediterranean were tested, and a pilot technique based on machine learning showed a slight improvement with respect to the spatial optimal interpolation. Another method based on model data assimilation showed that incorporating CTD simulated-observations in the experiments yielded better reconstructions of temperature and salinity compared to scenarios with no data assimilation or those assimilating only satellite simulated-observations. Lastly, the newly developed Multiscale Inversion for Ocean Surface Topography (MIOST) variational tool for mapping nadir altimetry using current observations obtained from drifters was tested. Maps generated through this method demonstrated improvements in energetic regions, such as the Algerian current, making it a valuable technique for SWOT validation.

In the East Australian Current System a series of OSSEs have been used to understand how assimilating different configurations of temperature data from the surface (satellite) and below the surface (e.g., vertical temperature profiles from XBTs) contribute to estimates of upper ocean heat content, mixed layer depth, and the sub-surface structure of mesoscale eddies (Gwyther et al., 2022, 2023a, 2023b). By exploring the ocean variability spectrum Gwyther et al. (2023b) showed the potential for aliasing in a region of high mesoscale variability if sub-surface observations are not of sufficient spatial or temporal resolution. Additionally, they identified that systematic errors can be introduced by the data assimilation system that hinder the ability of the model to produce more accurate subsurface representation with fortnightly or monthly subsurface XBT observations (compared to weekly). These errors can only be mitigated through improvements to the data assimilation system.

Kerry et al. (2024b) conducted a series of OSSEs for the New Zealand region to assess the impact of subsurface temperature observations collected from fishing vessels (Jakoboski et al., 2024), primarily in coastal and shelf regions. The experiments identified a challenge of assimilating dense coastal and shelf observations into a model that represented both coastal/shelf dynamics and the deep oceanic region around New Zealand. The experiments show that assimilation of the subsurface temperature observations in concert with surface observations results in significant improvements in bottom temperature and heat content estimates in coastal and shelf regions. However, careful specification of the prior observation and model background uncertainties, which influence the way in which the observations are projected onto the model estimates, was required to avoid overfitting to dense coastal observations. The improvement in ocean heat content estimates were particularly sensitive to these prior choices (compared to bottom temperature) as heat content represents an integration through the water column. Significantly, shorter horizontal decorrelation length scales specified for temperature in the 4D-Var background error covariance formulation resulted in improved ocean state estimates away from the dense coastal observations.

Finally, in the Philippine Sea, a region of strong internal tides and energetic mesoscale ocean circulation, a twin experiment revealed that including tides improves subtidal prediction (Kerry and Powell, 2022). The OSSE methodology allowed the authors to identify that the mechanisms were two-fold: firstly, tidal dynamics influence the subtidal circulation, and secondly, higher prior errors must be prescribed for the observations if the model does not resolve the internal tide signal. Over the shallow shelf region of the South China Sea, tidal dynamics were crucial to represent tidal mixing, which modulates the temperature of the SCS and Kuroshio waters, while in the Philippine Sea deep basin the role of tides in improving subtidal predictions related to reducing uncertainty resulting from the inertial tide signal.




3.3 Representers and array modes

The approaches in sections 3.1 and 3.2 provide global information on the actual or potential contribution of observational datasets to the estimation of the ocean state by data assimilation. As a complement, it is often useful to consider the potential contribution of individual key observations in isolation from the others. This contribution is not only local, and not only for the observed variable: as the model’s prior errors are non-local (correlated in space and in time) and span across variables, the actual influence of observations will also be non-local. This information can be accessed through representers, or influence functions: they can be calculated as the prior error covariances taken between observation points and model grid points, to within a multiplier coefficient.

Array modes provide similar information, but on the scale of a complete observational array, and in hierarchized form: among other uses, the theory can help determine which dominant prior error patterns (in space-time and multivariate) are detectable by an observational array within the limits of its observational errors and can therefore be corrected by assimilation.

Using the notation for the observation operator introduced in section 2.1, the best linear unbiased posterior state estimate  (aka the analysis) resulting from DA can expressed as   where xb is the prior estimate (aka the background), and y is the vector of observations. Uncertainties in xb and y are described by the background error covariance matrix B and the observation error covariance matrix R (see section 2), respectively. The model equivalent of the observations is H(xb) and H and HTrepresent a linearization of H and its transpose (aka the adjoint) respectively. Thus, the analysis represents the background corrected by the weighted sum of the departures of the model from the observations. The weight matrix   is referred to as the Kalman gain matrix. The covariance matrix  , the so-called stabilized representer matrix, plays a central role in assessing the efficacy and impact of the observing system. The columns of P are called representers and quantify the covariance of the total error between the space-time observation locations. The eigenvectors of P represent the EOFs of the total error variance, and when mapped back to state-space by BHT are called array modes (Bennett, 1985) which provide information about the field-of-view of the observing system. The corresponding eigenvalues provide information about the degrees of freedom of the signal (DFS). More specifically, the number of eigenvalues of the scaled representer matrix   that are greater than 2 provides an estimate of the number of DFS that can be distinguished from observation errors. Moore et al. (2018, 2021) have employed these ideas to estimate the effective DFS of the observing array for the California Current System (CCS) and Mid-Atlantic Bight (MAB) and retune the data assimilation system to prevent overfitting to scales that are not resolved by the observing system. Le Hénaff et al. (2009); Charria et al. (2016) and Lamouroux et al. (2016) have applied similar ideas to explore the information provided by the observing system in the Bay of Biscay.

Monte Carlo methods such as the Ensemble Kalman Filter (EnKF) and its variants can also be used to calculate representers, as first done for example by Evensen (1994) and many others since then. Following Echevin et al. (2000), the representer in covariance form for observation k is the line vector



where hk is the observation operator for that observation (a vector projecting the three-dimensional, multivariate state space onto the individual space of this observation), and an ensemble approach can be used to derive an estimate of BHT. Besides the covariance term (Equation 1), representers can also be presented in correlation form as illustrated above in the case of   and below, or in model correction form, the latter assuming an observation error estimate, an innovation value, and an analysis scheme, e.g. an EnKF analysis step as done in Echevin et al. (2000), also illustrated below.



3.3.1 Bay of Biscay representers

The Bay of Biscay (BoB) physical-biogeochemical model and the ensemble generation approach are described in Vervatis et al. (2021). The configuration is a high-resolution (1/36°) subset of the Iberia–Biscay–Ireland (IBI) domain (Sotillo et al., 2015), based on the NEMOv3.6-PISCESv2 platform (Madec and the NEMO team, 2016; Aumont et al., 2015), using a stochastic model of first-order autoregressive processes for the production of ensembles. Three simulation experiments of 40-member ensembles were designed to estimate ocean model errors: Ens-1 perturbing only the physics, Ens-2 perturbing only the biogeochemistry, and Ens-3 perturbing both simultaneously.

We showcase the use of model ensemble anomalies (departures from the Ensemble mean) in the BoB, as a proxy of model uncertainties, to calculate multivariate representers of single observations, with the objective of assessing the potential impact of observations onto unobserved variables, such as other data types, or subsurface variables (not shown here).

Figure 5 shows examples of multivariate, zero-lag representers of single SST (sea-surface temperature), SSH (sea-surface height) and Chl (Chlorophyll a at the surface) observations, onto (A,E,I) SST, (B,F,J) SSS (sea-surface salinity), (C,G,K) SSH and (D,H,L) Chl, at three different BoB locations on April 30 and May 7, 2012: the Abyssal plain, the Armorican Shelf (AS), and the English Channel (EC). The representers are in correlation form. Convolution with a localization function of 3° is applied to constrain spurious long-distance correlations resulting from the small size of the ensembles (40 members).




Figure 5 | (A–D) Correlations between OSTIA SST observations at 3 locations and surface variables on April 30, 2012. Ensemble covariances are calculated from Ens-1 40 members. Ens-1 contains physics-only perturbations. The single observation representers are calculated for three different locations (i.e. cor(SST,SST)~1) as shown. A localization function of 3° is applied to constrain distant spurious correlations. A line marks the 200 m isobath. (E–H) same for SSH. (I–L) same for Chl on May 07, 2012. Ensemble covariances are calculated from Ens-3 40 members. Ens-3 contains physics and biogeochemistry perturbations.



The structures of the representers reveal marked differences between the abyssal and coastal areas, as well as between variables:

	On the shelves (AS, EC), the filament-shaped structures for SST, SSS and Chl (resp. panels (A,E,I), (B,F,J), (D,H,L)) were likely linked to specific fine-scale uncertainty processes such as wind-influenced river discharges (Loire river plume; AS), mid-shelf thermal fronts (AS), and tidal fronts (EC). Due to the mixing conditions on the inner shelf at that time of year, the SSH response there (panels (C,G)) was found to be relatively large-scale as it is associated with barotropic processes at the scale of the external Rossby radius. This confirms the classic notion that coastal/shelf processes, and associated uncertainty processes, are multiscale.

	In the Abyssal plain, scales associated with mesoscale and submesoscale features could often be detected (e.g., panels (E,F,J,K)), while SST and SSH appeared as decorrelated (panel (C)) due to large-scale atmospheric forcings directly influencing SST in the spring season while SSH is largely influenced by low-frequency mesoscale variability. Observations of both variables therefore appear as very complementary in the abyssal plain.

	In the Abyssal plain and AS, the end of the spring bloom can be detected by the negative correlation (panels (D,I)) between SST (e.g., heating up) and Chl (plankton depletion following a bloom). In a similar way, the correlation between SSH and Chl appears mostly negative (panels (H,K)). This shows the need for regime-/time-dependent error covariances between variables on shelves.






3.3.2 Gulf of Tonkin representers

Full details of what follows are contained in the original article (Nguyen-Duy et al., 2023) and only a few elements will be given here. The primitive-equation numerical model SYMPHONIE (Marsaleix et al., 2006; 2008) has been set up in the Gulf of Tonkin (GoT), which is a shallow (shelf) sea. It has a fine horizontal resolution of 300 m near the Red River mouths and a coarser resolution of 4.5 km near the open boundary. The vertical discretization consists of 20 sigma levels, and tides are included. Two 50-member ensembles are generated by perturbing the ECMWF wind forcing using pseudorandom combinations of bivariate wind EOFs – here, we illustrate results obtained by the authors’ ENS_COAST ensemble2, which is tuned toward the representation of coastal processes. The perturbations of the wind fields are meant to represent uncertainties in the ECMWF wind analyses.

In order to explore the impact of HFR observations to constrain the model if they were assimilated, the authors calculate representers in correction form, as in Echevin et al. (2000) (Figure 6). They set an observed velocity innovation value of +15 cm/s (the direction depends on the case) – this value is based on comparisons between the simulation and the HFR data, as explained in the original article. The observational uncertainty standard deviation is assumed to be 10 cm/s (also explained in the original article). The HFR observation is located at 19°N, 106°E within the coastal current (when the current is present). July 10 corresponds to a period of large spread of the current (6-8 cm/s) and with a southward coastal current at that location, with an amplitude larger than 20 cm/s (not shown). The representers are not localized, in order to show the trends in long-distance covariances, but bearing in mind that these trends may be artifacts of statistical calculations.




Figure 6 | (A) Correction (in cm/s) on the meridional velocity v in response to a 15cm/s innovation in zonal velocity u at 19°N, 106°E (blue point). (B) Correction on v in response to an innovation in v (15cm/s) at the same point. (C, D) Corrections on τx, τy, respectively, in response to an innovation in v (15cm/s) at the same point. Adapted from Nguyen-Duy et al. (2023).



The impact of a meridional (alongshore) velocity observation on the meridional velocity (Figure 6B) is clear in the coastal current, showing a broad meridional extension and a narrow zonal extension. In contrast, the meridional impact of a zonal (cross-shore) velocity observation (Figure 6A) is weaker but still apparent. Both results are interesting for the deployment of a HFR site, since the azimuth of the radar beams will have to be optimized for alongshore velocity observation.

As noted by the authors, previous results (e.g. Lamouroux, 2006; Barth et al., 2011) have suggested that while high-frequency dynamics dominate on the shelf, a correction of the ocean state only may not last beyond the inertial time scale, and a correction of the surface atmospheric forcings could be needed as a complement. Figures 6C, D show the corrections to the zonal and meridional components of wind stress that would result from assimilating a northward surface current observation in a data assimilation system capable of correcting for wind errors. The authors observe an increase in the northerly component of the wind stress across the basin (Figure 6D), in agreement with the ensemble variance of the wind stress (shown in the original paper). The zonal wind stress correction is weaker (Figure 6C). Of course, one should keep in mind that the representers are not localized, and some long-distance covariances might be untrustworthy, but in general it is found that on the open sea the spatial correlation scales of atmospheric errors are larger than the scales of oceanic error processes.

The authors conclude that the impact of HFR measurements is clear on the surface coastal current and possibly the wind stress within their experimental protocol.




3.3.3 Bay of Biscay array modes

Array modes can also be calculated using ensemble methods. In the ensemble-based category, a full stochastic implementation of array mode analysis, as in Section 3.2 of Lamouroux et al. (2016), adopting the nondimensional array-mode definition of Le Hénaff et al. (2009), seems the most practical. In order to project information from such array modes onto model variables (state space), one can use modal representers, as e.g. in Charria et al. (2016). Also, several techniques can be used to enrich the number of DFS explained by an ensemble in order to calculate array modes, such as the so-called chaos polynomials in Oke et al. (2015). Also, it should be noted that array mode analysis can be conducted with full covariance matrices, both for the ensemble covariances and the observational error covariances.

We show an example of array mode analysis in the most southeasterly area in the Bay of Biscay, on either side of the French-Spanish border. There, the JERICO-Next European project (2015-2019) studied the deployment of a third HFR radar site on the French Landes coast, in addition to two existing sites on the Spanish Basque coast (Figure 7A), as part of a wide-reaching endeavor of expanding a European capacity of coastal observatories (JERICO = Joint European Research Infrastructure Network for Coastal Observatories). Several model ensembles were available to investigators. The – as yet unpublished – results shown here used a 500m-resolution 50-member ensemble with the SYMPHONIE model, itself downscaled from a larger-scale NEMO ensemble (details in Ghantous et al., 2020). All analyses were carried out over the period from 15 Jan – 15 Feb, considering radial velocities at antenna sites. The observational error on radial velocities was set to a constant 0.03m/s; correlated observation errors were also considered, and their impact studied, as shown below.




Figure 7 | (A) Radial velocity measurement points for 3 HFR sites in the most southeasterly area in the Bay of Biscay including two existing systems (Matxitxako – blue and Higer – red) and a future system to be deployed (Land1 – green). (B) Array mode spectra for radial velocities from the HFR sites, and combinations thereof on 15 January 2012, using a downscaled ensemble from Ghantous et al. (2020). Colors as on left panel, with in addition: combination of both existing sites – pink, and combination of all sites – black. Solid lines: uncorrelated radial velocity error. Dotted lines: correlated radial velocity error (correlation distance=100km). 49 modes could be calculated from the 50 members of the ensemble. All 49 modes are detectable above the observational error, set at 0.03m/s, which translates as 1 = 100 in our nondimensional array-space representation.



The array mode analysis allows characterizing and visualizing the model error structures which are detectable by the observations and which are potentially controllable through data assimilation. This can be done by means of array mode spectra (Figure 7B, solid lines) and modal representers in state space (not shown). As can be seen, every single radar is able to detect the 49 degrees of freedom spanned by the ensemble above observational noise (represented as 1 since with our definition of array modes here spectra are nondimensional). The spectra almost follow the same slope. However, more uncertainty variance is explained when we consider more radars, and some radars catch DFS better than some others. Indeed, adding radars improves the detection of model errors by increasing the quantity and location of observations that lead to efficient sampling of model error structures. In particular, the third projected radar site would bring additional detail at sampling surface velocity errors in the model, particularly for the zonal component because of its location (detailed result not shown, but the figure shows this in synthetic form).

Additionally (Figure 7B, dashed lines), we studied the impact of correlated measurement errors on the array mode analysis. To that end, we introduced a correlation radius of 100 km on the ensemble-based uncertainties in data space (radial components of the radars). As can be seen, correlated observation errors tend to lower most of the array mode spectrum except for the leading eigenvalues. If/when observation error is even higher (not the case for this example), this could have the effect of reducing the dimension of the detectable subspace (in array mode jargon: bringing eigenvalues below threshold). However, under our hypotheses here, our previous conclusions regarding the existing array performance and the positive impact of a third site were not significantly jeopardized by such correlated noise contamination.





3.4 Observation Impact studies

Complementing the discussion of Section 3.3, observation impact studies represent an additional method to quantify the influence of each assimilated datum on the estimated ocean state. In this context, observation impact refers to the difference in a chosen circulation metric that is calculated using the analysis (posterior) versus that using the background (prior). Because the assimilation increment (difference between the analysis and background) equals the product of the Kalman gain matrix (introduced in Section 3.3) and the so-called innovation vector (the vector of differences between observations and the observation operator’s estimate from the background),



K provides direct quantitative information about the influence of the observations on the analysis and ensuing forecast. Specifically, KT yields the impact of each observation on a given analysis metric or metric of forecast error (Langland and Baker, 2004), while  quantifies the sensitivity of such metrics to a change in the observations or observing array (Trémolet, 2008). Stated differently, changes in a metric resulting from assimilation can be expressed as a sum of terms, each dependent on a single observation, and therefore, the impact of each individual observation on changes to a chosen metric can be calculated directly. Impacts from subsets of observations can be summed usefully in various ways (e.g., by observation platform to ascertain its overall utility or by geographical region to assess complementary, co-located influences).

Moore et al. (2011, 2017) have used these methods to quantify the impact of individual components of the observing system on ROMS ocean state estimates of the CCS. Satellite remote sensing data make up the lion’s share of available observations and in aggregate have the largest influence on ocean analyses. However, when considering a single observation from any particular platform, the impact of in situ hydrographic observations can be an order of magnitude greater than a single satellite measurement. The substantial impact of assimilating in situ hydrographic information has also been recognized in global ocean data assimilation systems (e.g., Turpin et al., 2016). The transfer of information from the observations to various space-time locations of the state estimate is controlled, in part, by the underlying ocean dynamics. Within the CCS, the influence of advection by the circulation and eddies as well as the alongshore propagation of coastally-trapped waves is very evident in the spatial distribution of the observation impacts. Fiechter et al. (2011) have used a similar approach to quantify the impact of different elements of the observing system on eddy kinetic energy and primary production in ROMS configured for the coastal Gulf of Alaska.

In a multiple nested configuration reaching approximately 700 m resolution on the New England shelf observed intensively by the U.S. National Science Foundation’s Ocean Observatories Initiative Pioneer array, Levin et al. (2020, 2021a, b) performed observation impact calculations to DA analyses of the MAB. Circulation metrics quantifying cross-isobath mass, heat and salt fluxes, revealed that in situ temperature and salinity observations offered 2-3 times the impact of remotely sensed SSH and SST observations, and in situ velocity observations had greater impact on higher than lower resolution grids as representation of transient, vigorous, geostrophically unbalanced submesoscale features increased. These results are in agreement with Kerry et al. (2018) who used a similar approach to show that hydrographic profiles from autonomous ocean gliders, while sparse in space and time, have a disproportionately large impact, as they provide information on subsurface structure. Powell (2017) showed that glider observations have a large impact on the representation of the Hawaiian Lee Counter Current transport as they constrain the isopycnal tilt across the transport section. Finally, Christensen et al. (2018) calculated that, though relatively few in number, in situ temperature and salinity observations deriving from multiple sources dominated satellite and HFR in terms of impact on the estimated transport of the Norwegian Coastal Current when calculated on a per datum basis

Both sequential and variational schemes have been successfully used for HFR impact assessment. In particular, the capability of the 4D-Var approach to evaluate the contribution of individual observations to specific index increments, where the index is a specific measure of interest of the ocean circulation has been exploited in several studies (Kerry et al., 2018; Levin et al., 2020; Bendoni et al., 2023).

In the meteorological community, the impact of observations on forecast skill based on KT is referred to as Forecast Sensitivity to Observation Impacts (FSOI). FSOI was applied by Moore et al. (2011) and Drake et al. (2023) to quantify the impact of different observing platforms on forecast skill in the CCS. Drake et al. (2023) found that in general only ~50% of all observations lead to an improvement in forecast skill. The remaining observations degrade the forecast or have little or no impact on forecast skill. This finding is in line with experience in operational numerical weather prediction. In this case also, a single in situ observation of temperature or salinity is generally an order of magnitude more impactful than a single measurement from a remote sensing platform.





4 Discussion

Though small in geographical area, coastal, shelf, and marginal sea environments reside adjacent to population centers and experience heightened relevance due to regional societal, industrial, and other management interests. In response, many coastal ocean observing systems have developed across the globe, including the U.S. Integrated Ocean Observing System, Australia’s Integrated Marine Observing System, the Mediterranean Ocean Observing System for the Environment, and the Korea Ocean Observing Network, to name a few. Coastal, shelf, and marginal seas are challenging to comprehensively observe and accurately model due to their broad range of time and space scales from submesoscale and super-inertial motions of plumes and filaments to more slowly evolving mesoscale eddies and, in places, basin-scale features like western boundary currents. Data assimilation offers a valuable approach to interpolate and extrapolate sparse observations using ocean dynamics to produce four-dimensional estimates of the physical ocean state with improved fidelity.

This review highlights an extensive and expanding collection of studies rigorously assessing the impact of ocean observations on improving coastal ocean state estimates through data assimilation. Multiple approaches (OSE, array modes, and observation impacts) have repeatedly demonstrated positive impacts on important physical properties (e.g., transport, heat content, bottom temperature, and eddy kinetic energy) in analysis or forecast fields constrained by satellite, HFR, glider, Argo, drifter, and shipboard data platforms in terms of reduced model error against assimilated or independent data. Such outcomes support a recommendation to maintain existing, diverse observation systems. Results have also shown that limited data sets can yield erroneous circulation features, and thus we encourage analysis and forecast systems to assimilate varied, complementary data sets. Several studies emphasized the outsized contribution of subsurface hydrographic observations on data assimilative systems, supporting routine deployments of gliders and floats offshore of coastal environments and newer observation types such as widespread fishing vessel based observations of temperature in shelf seas (e.g., Jakoboski et al., 2024). The assimilation of localized subsurface observations, such as those collected from fishing vessels that can be concentrated on coastal regions, requires careful specification of prior observation and background error covariances to optimize the way in which the observations inform the numerical model (e.g., Kerry et al., 2024b). OSSEs provide cost-effective guidance toward efficient sampling strategies and data assimilation configurations to constrain desired features in model analyses, offering roadmaps toward observing system design expansion.

Accompanying these real advances, opportunities exist for continued improvement at both technical and scientific levels. Proper specification of prior and observational errors and covariances, including error of representativeness, are critical and challenging elements of effective data assimilation systems (e.g., Kerry et al., 2024b). Checks of posterior errors can ensure consistency with prior error assumptions (e.g., Desroziers et al., 2005). Computational costs of current operational 4D-Var systems remain high; future efficiency gains may occur through application of multi-precision, multi-resolution, and saddle-point algorithms (Moore et al., 2023) or using high-accuracy emulators of full-physics models. While local observations improve regional ocean state estimates, these data are not necessarily assimilated by global systems, leaving room to improve representation of coastal circulations in global analyses. The impact of directly assimilating these observations in global models or upscaling by providing more accurate fluxes from high resolution regional analysis systems to global systems could be investigated. Finally, new observational platforms, such as the Surface Water and Ocean Topography (SWOT) mission that resolves instantaneous sea level at 20 km (Fu et al., 2024), offer promising resources to further constrain coastal models in the future, though issues described above such as error correlations must be considered carefully.

In addition, the rise in popularity of data-driven techniques for regression and classification problems in complex dynamical systems, such as machine and deep learning, has led to an increasing diversity of algorithms that can be tailored to address specific challenges in DA. For instance, notable initial attempts involve the utilization of neural networks to rectify biases in dust observations within an analysis system (Jin et al., 2019), as well as the application of relevance vector machines to correct biases in sea surface temperature data (Storto and Oddo, 2019). Furthermore, machine learning algorithms have been employed to explore the subsampling and quality control of Earth observations (Lary et al., 2016, 2018). Lastly, in certain applications, the intricate coding of observation operators can be replaced by data-driven algorithms (e.g., Xue and Forman, 2017; Fang and Li, 2019; Kwon et al., 2019). Artificial intelligence algorithms can be used also to build observational operators in cases where the exact physics relating observables and model state variables is still unknown and/or its strong nonlinearity limits its applicability. Storto et al. (2021) used a neural network (NN) built observation operator to project and assimilate acoustic transmission loss data into temperature profiles. Results from the authors highlight two crucial aspects of the data-driven operator: i) expand the network of observables that can be used in data assimilation exercises; ii) improve the accuracy of the linear physics/statistics-based observation operator. These advancements have the potential to optimize the assimilation of high-resolution observing networks and significantly facilitate the integration of novel observation types into regional assimilation systems.

This review has focused on observations of physical properties and their impact improving ocean circulation models because accurate estimates of the physical ocean state are generally a valuable precursor for coupled model systems and because physical data assimilation approaches and observation platforms are quite mature. Yet many needs in coastal, shelf, and marginal seas stretch beyond ocean physics, including for example estimates of primary production, phytoplankton community structure, ocean pH, probability of harmful algal blooms or hypoxia, and air-sea carbon fluxes, as well as estimates to help manage fished marine species or reducing bycatch. Some approaches involve data assimilation into coupled physical/biogeochemical dynamical models that is analogous to the systems discussed above (e.g., Song et al., 2016; Ciavatta et al., 2018), whereas others apply statistical models given physical ocean properties (Carter et al., 2021; Brodie et al., 2018). Though not usually calculated explicitly, and exceptions occur (e.g., Raghukumar et al., 2015), improvements to physical properties through data assimilation generally extend benefits to subsequent, non-physical predictions. Thus, the extensive, positive impact of ocean observations on model solutions described above reaches well beyond the physical metrics alone. We encourage efforts to quantify these impacts in multidisciplinary modeling systems.
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Footnotes

1https://oceanpredict.org.

2In Nguyen-Duy et al (2023), ENS_COAST is an ensemble where the contribution of wind EOFs with a significant coastal signature has been enhanced relative to their reference ensemble.
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“Synergistic Observing Network for Ocean Prediction (SynObs)” was launched in 2022 as a project of the United Nations Decade of Ocean Science for Sustainable Development to evaluate the importance of ocean observation systems and co-design the future evolution of the ocean observing network. SynObs is currently leading the flagship OSEs/OSSEs, an internationally coordinated activity in which observing system experiments (OSEs) and observing system simulation experiments (OSSEs) are conducted using a variety of ocean and coupled atmosphere–ocean prediction systems to evaluate ocean observation impacts consistent across most prediction systems. The flagship OSEs/OSSEs comprises the ocean prediction (OP) OSEs for high-resolution ocean predictions, the subseasonal-to-seasonal (S2S) OSEs for long-term lead-time coupled ocean–atmosphere predictions, and the OP OSSEs for evaluating new and future observing systems. SynObs plans to use the results of the flagship OSEs to contribute to the reports on the ocean observing network design made by international organizations and projects. Here, we introduce this initiative, and we report on some initial results. Some observation impacts consistent across four ocean prediction systems are found by a preliminary analysis of the analysis runs for the OP OSEs. For example, impacts of the altimetry data on the assimilated sea surface height (SSH) field are generally large in the westerly boundary current regions and around Antarctic Circumpolar Currents where SSH has large variability but are small in the tropical regions, despite the relatively large SSH variability there. The analysis also indicates the possibility that there are some characteristic differences in the observation impacts between low-resolution and eddy-resolving ocean prediction systems. Although OSE outputs of only four ocean prediction systems are available now, we will make further investigation, adding OSE outputs of other prediction systems that will be submitted in the near future.
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1 Introduction

Ocean observation data are essential for ocean predictions (e.g., Davidson et al., 2019) and also contribute to weather and climate predictions based on coupled atmosphere–ocean models, especially at subseasonal and longer time scales (e.g., Subramanian et al., 2019). However, developing and sustaining the ocean observation network requires a huge amount of human and financial resources. Therefore, the ocean observation network should be designed to efficiently acquire effective observation data, and their adequacy should be continually evaluated (e.g., Fujii et al., 2019). Especially nowadays, many ocean observing systems (e.g., the global Argo array, mooring arrays, ocean observing satellites, ocean gliders, and autonomous underwater vehicles) require scientific support for their usefulness in order to sustain them.

There are several strategies to demonstrate the importance of observation data and to scientifically support the maintenance and expansion of the ocean observation network. Among them, observing system experiments (OSEs) are widely used in order to evaluate the importance of the ocean observation data and the effectiveness of ocean observing systems for ocean predictions (e.g., Vidard et al., 2007; Balmaseda et al., 2009; Oke and Schiller, 2007; Lea et al., 2014; Fujii et al., 2015a; Turpin et al., 2016; Xue et al., 2017). OSEs are data assimilation and prediction experiments in which specific observation types are excluded from or added to the data being assimilated, and the impact of the observation types is assessed by comparing it with regular data assimilation and prediction. Observing system simulation experiments (OSSEs), which are the same as OSEs but use synthetic observation data generated from a reference simulation instead of real observation data, are also performed for evaluating the future observing system or proposing a new design of an observation network (e.g., Halliwell et al., 2017; Bonaduce et al., 2018; Gasparin et al., 2020; Gasparin et al., 2023; Waters et al., 2024). However, the results of OSEs and OSSEs severely depend on the property of the system, including systematic errors of the system (i.e., model biases), physical parameterizations, and data assimilation schemes applied in the system, as demonstrated in previous studies (e.g., Fujii et al., 2015b, 2019; Gasparin et al., 2019). Therefore, it is preferable to conduct the OSEs/OSSEs using multiple prediction systems in order to mitigate the differences in evaluations caused by the system dependency and to draw robust and reliable conclusions.

The United Nations (UN) Decade of Ocean Science for Sustainable Development, that is, the UN Ocean Decade (UNESCO-IOC, 2021; see also https://oceandecade.org/), provides a good opportunity to make a close collaboration between ocean observing and ocean and coupled prediction communities, as well as among various groups in the ocean prediction community, for evaluating the importance of ocean observation systems and co-designing the future evolution of the ocean observing network. “Synergistic Observing Network for Ocean Prediction (SynObs)” was launched as a UN Ocean Decade Project in 2022 to take advantage of this collaborative opportunity (see https://oceanpredict.org/un-decade-of-ocean-science/synobs-2/). SynObs is currently coordinating the flagship OSEs/OSSEs, a collaborative OSEs/OSSEs using multiple ocean and subseasonal-to-seasonal (S2S) prediction systems to make robust and reliable evaluations that are seen across a variety of substantially varying ocean data assimilation and prediction systems. The flagship OSEs/OSSEs has the following five goals. The first is to demonstrate the importance of major ocean observing systems [Argo array, tropical mooring arrays, satellite altimetry, Surface Water and Ocean Topography (SWOT) mission, etc.] for ocean and coupled predictions. The second is to evaluate the synergy among different observing systems, typically between satellite and in situ observing systems, in ocean predictions. The third is to contribute to the future design of the ocean observing network to improve its effectiveness and efficiency. The fourth is to build a coordinated framework to co-design the future ocean observing network among ocean observing and prediction communities. The fifth is, then, to establish the best practice to evaluate the current ocean observing network and to design its future evolution.

The SynObs flagship OSEs/OSSEs comprises ocean prediction (OP) OSEs, OP OSSEs, and S2S OSEs. The OP OSEs are designed to evaluate the impacts of existing observing systems on ocean predictions, particularly those made by relatively high-resolution ocean data assimilation and prediction systems. The period of data assimilation (analysis) runs for the OP OSEs is at least 1 year during 2020 and preferably extended to 3 years until 2022 (with the possibility of further extension in the future). It is also encouraged to perform 10-day forecast runs for the same period, with particular priority given to the period from June 2021 to May 2022. The OP OSSEs are designed to evaluate new or future observing systems and the observing network design on ocean predictions. For example, we aim to evaluate SWOT data and the new Tropical Pacific Observing System (TPOS) design (Kessler et al., 2019; Kessler and Cravatte, 2021) here. It is planned to perform assimilation runs for approximately 1 year and 10-day forecast runs from the assimilation results. For the OP OSSEs, the use of relatively high-resolution ocean data assimilation and prediction systems is also expected, and the GEOS/NASA high-resolution coupled atmosphere–ocean simulation of approximately 1 year (Menemenlis, 2023) will be used as the Nature Run from which virtual observation data will be synthesized. The S2S OSEs are designed to evaluate observation impacts on atmosphere and ocean predictions at S2S timescales. They cover a long analysis period (2003–2022, with possible extension to 2023), and execution of 1-month or 4-month forecasts with coupled ocean–atmosphere models is also encouraged. Output data from the analysis and forecast runs performed for the flagship OSEs/OSSEs will be collected and shared as the SynObs common database with volunteer groups responsible for the diagnostics and will be eventually publicly available to the broader scientific community.

This paper presents the outline of the OP OSE and the early results from analyzing the OSE output of analysis runs made by multiple systems. We then discuss future perspectives on SynObs and the flagship OSEs/OSSEs activities.




2 Outline of the OP OSEs included in the SynObs flagship OSEs/OSSEs

SynObs is currently coordinating the OP OSEs as part of the flagship OSEs/OSSEs in order to evaluate the impacts of the ocean observing network on ocean prediction systems using relatively high-resolution (typically finer than 0.1°) ocean models that resolve mesoscale eddies. For this purpose, prediction centers are requested to perform ocean data assimilation runs with control and observation denial settings listed in Table 1. It is also encouraged to perform ocean forecast runs from the oceanic initial condition reproduced by the assimilation runs using their ocean prediction systems.


Table 1 | Summary of observation data and other settings for the OP OSEs.



As for the data assimilation runs, prediction centers are requested to provide outputs of ocean variables and diagnostics for at least 1 year from Jan. 1 to Dec. 31, 2020, and preferably for 3 years until Dec. 20, 2022. The assimilation runs are recommended to be started at least 3 months before the beginning of the output period mentioned above from the ocean state generated by regular data assimilation or free simulation in order to allow sufficient spin-up time.

Prediction centers are, then, requested to perform forecast runs from the end of every pentad in 2020–2022 from the oceanic initial condition generated by the above assimilation runs with each OSE setting. The requested forecast length is 10 days. It is recommended that the forecast runs in the period from Jun. 5, 2021, to May 31, 2022, be prioritized over the forecast runs in other periods, as mentioned in the previous section. Ideally, the ocean model should be forced by the results of atmospheric forecasts in the ocean forecast run if the model is not coupled to any atmospheric models. However, atmospheric forcing calculated from atmospheric reanalysis data can be used in the forecast run if the atmospheric forecast data are not available.

Outputs of the data assimilation runs and forecasts run with the OSE settings conducted in prediction centers are converted to data in a common regular latitude–longitude coordinate grid. Some variables at the times and locations of observations by Argo floats and mooring buoys are also output. The variables and diagnostics to be output, their resolution, and time intervals have been discussed and agreed upon. The output data are, then, collected and compiled in the SynObs database, as well as S2S OSE and OP OSSE outputs, and will be eventually open to the public. SynObs plans to ask several volunteer diagnostic groups of experts in specific observing systems, target regions, phenomena, applications, etc., to examine the impacts of observation data on several targeted variables or diagnostics (typically, the difference in the variables/diagnostics among OSEs). The diagnostic groups will mainly use the database and conduct the diagnostics focusing on their own expertise.

Details of the OSE settings listed in Table 1 are given below. CNTL is the reference run in the set of OSEs. In CNTL, Sea Surface Temperature (SST) data, 80% of Argo data, mooring data, other in situ temperature and salinity profile data, and data from satellite nadir altimeters are assimilated. Other types of observation data (e.g., sea ice concentration ratio) can also be assimilated in some systems if they are used in the operation. Other settings of the model and assimilation system can be different from their operational settings. It is noted that 20% of the Argo data are withheld from assimilation in order to use as independent reference Argo data for validation. Which data are withheld is determined by the World Meteorological Organization (WMO) number of the floats, that is, the data for the floats whose last digit of the WMO number is 8 or 9 are withheld. With this method, the common reference Argo data are easily identified among prediction centers, and they are expected to distribute homogeneously in the global ocean as shown in Figure 1 (also see Fujii et al., 2015a). It is recommended that the World Ocean Database (WOD; Boyer et al., 2016; Locarnini et al., 2013; Zweng et al., 2013) be used to collect the in situ temperature and salinity (TS) profiles, which will be assimilated because Argo, mooring, and other profiles are already sorted in different files, and thus, it is easy to identify Argo and mooring profiles. However, it is approved to use other datasets if necessary.




Figure 1 | Distributions of the Argo floats whose last digits of WMO number are 8 or 9 (red) and 20% random profiles (blue). Example for January 2020. TS profiles observed by the Argo floats whose last digits of WMO number are 8 or 9 will be withheld in all OSEs and used for the validation as the reference data. WMO, World Meteorological Organization; TS, temperature and salinity; OSEs, observing system experiments.



In the following five OSEs, specific types of observations are excluded from the data to be assimilated. The impact of that observation type will be assessed by comparing the specific OSE with CNTL, where all observation types are assimilated. The impact of the satellite nadir altimeter data is assessed using NoAlt, in which the altimeter data are excluded. The impact of Argo floats is assessed using NoArgo, in which all TS profiles observed by Argo floats are excluded. The impact of moorings, which are mainly in the tropical ocean, is assessed using NoMoor, in which all TS profiles observed by moorings are excluded. The impact of SST data, which are mainly observed by satellites, is assessed using NoSST, in which SST data are excluded. Then, the impact of all in situ data is assessed using NoInsitu, in which all kinds of in situ TS profiles are excluded.

SSTonly is implemented for checking the performance of the system when only SST data are ingested. SSTonly is performed with the same setting as CNTL, but only SST data are assimilated. Free is implemented for checking the model performance without data assimilation and is performed with the same setting of the ocean model as CNTL and without any procedures related to data assimilation (including climatological nudging and bias correction). In Free, information related to the actual ocean condition only comes from atmospheric forcing. HalfArgo is implemented for evaluating the impact of changing the density of Argo floats and is performed with the same setting as CNTL, but the number of Argo data being assimilated is reduced from 80% to 40%. The data for floats whose last digit of the WMO number is 4, 5, 6, 7, 8, or 9 are withheld. Oper is the result of data assimilation runs with identical settings as used in the operational system and provided for checking the performance of the actual operational systems.

Table 1 lists OSEs following their general priority order. However, it is left up to each prediction center to decide the order of implementing the OSEs on their own according to their own priority. It should also be mentioned that the OSE settings listed in Table 1 are common with those for S2S OSEs. Therefore, some prediction centers are currently conducting ocean reanalyses with the OSE settings for 2003–2022.




3 Early results of the OP OSEs

In this section, we present early evaluation results of OP OSEs using the output of the data assimilation runs of the four systems (FOAM, GIOPS, MOVE-G3, and JCOPE-FGO) with the CNTL, NoAlt, and NoArgo settings. A brief summary of the configuration of the four prediction systems is presented in Table 2, and further descriptions of those systems are given in the Supplementary Material. Detailed descriptions of the diagnostics used for evaluating observation impacts in this section are also provided in the Supplementary Material.


Table 2 | Brief summary of the configurations of the prediction systems used in the observation impact evaluations in Section 3.





3.1 Evaluation using SSH outputs

First, we compare how sea surface height (SSH) changes when the altimetry or the Argo data are withheld in the four systems. Figure 2B shows that the root mean square difference (RMSD) of SSH between NoAlt and CNTL is relatively large in the western boundary current regions, including areas around the Kuroshio, its extension, the Gulf Stream, the Agulhas Current, the seas east of Australia and Argentina, and the area around the Antarctic Circumpolar Current (ACC). In these areas, SSH has large variability as shown in Figure 2A, and the variability often causes large deviations of simulated SSH from the altimetry data. Therefore, assimilating the altimetry data tends to make relatively large SSH changes in these areas. In contrast, the band along 15°N in the eastern subtropical North Pacific and the band near the equator in the Indian Ocean show relatively large SSH variability but are not significantly affected by the altimetry data in all systems. One possible reason for this is that the large variability in these bands is generated primarily by wind forcing and can be mostly reproduced by the model without assimilating the altimetry data, although the SSH variations are still likely subject to uncertainties in the atmospheric forcing. Another explanation is that this large variability is relatively well constrained by the in situ observing system, which will be discussed further later.




Figure 2 | (A) Global maps of RMSD of daily mean SSH from the annual mean for 2020 in CNTL, (B) RMSD in daily mean SSH between NoAlt and CNTL (showing the impact of the altimetry data on the SSH fields), and (C) RMSD in SSH between NoArgo and CNTL (showing the impact of the Argo data on the SSH fields) for FOAM, GIOPS, MOVE-G3, and JCOPE-FGO (from left to right). Units in m. RMSD, root mean square difference; SSH, sea surface height.



Figure 2B also demonstrates the diversity of the altimetry data impact on the SSH field among four systems. In particular, the impact is generally small in MOVE-G3 compared with the impact in the other systems. This may be affected by the fact that, inadvertently, the sea level anomaly (SLA) data of only two satellites are assimilated in the MOVE-G3 OSEs, even though the data from six satellites are available. However, it may rather be due to the low resolution of the system. In MOVE-G3, information on small-scale features is filtered out by the 4DVAR scheme with the low resolution (0.3°–0.5° × 1°) model especially in areas of high-eddy activities due to the inability of the model to fit the information, and analysis increments are reduced consequently. The OSEs for MOVE-G3 will be rerun by assimilating more altimetry data, and the reason will be investigated again.

In contrast, the impact in GIOPS (resolution, 1/4°) is much larger than that in MOVE-G3 and similar, but still generally smaller in amplitude, to that in FOAM (resolution, 1/12°). JCOPE-FGO (1/10°) has a similar distribution of the altimetry data impact to FOAM in the northern hemisphere, but the area with large SSH variability and consequently larger altimetry data impact is more extended around the ACC. It has also a broader area with large altimetry data impact in the South Indian subtropics in comparison with the other systems.

Figure 2C indicates that, in all systems, Argo data assimilation changes the SSH field, particularly in the western boundary current regions and the area around the ACC, even if the SSH field is constrained by the altimetry data. The impact is the smallest in MOVE-G3, as is the impact of the altimetry data. The impact of the Argo data in GIOPS is also significantly smaller compared with the two eddy-resolving systems. Among the two eddy-resolving systems, the impact in JCOPE-FGO is generally larger than that in FOAM. In JCOPE-FGO, Argo data have a large impact as well as the altimetry data around the ACC, while in FOAM, the Argo impact is considerably smaller except in the western boundary current regions and around the ACC.

Although the SSH RMSD between CNTL and NoArgo is generally small in the tropical band between 15S and 15N in all systems, it does not necessarily mean that Argo data have only a small impact in this region. We suggested above that the small SSH RMSD between CNTL and NoAlt in this region (Figure 2B) may be due to the SSH field being sufficiently constrained by TS observations. Similarly, the altimetry data are likely sufficient to constrain the SSH field. In other words, although both the altimetry and Argo data may be effective in constraining the SSH field, the information they contained may be redundant, and complementary effects may barely appear in the tropical region. This possibility will be investigated later when outputs of NoSST and/or Free experiments become available.

We next show the root mean square error (RMSE) of SSH in CNTL evaluated against the Copernicus Marine Environment Monitoring Service (CMEMS) gridded altimetry maps from objective analysis (CMEMS, 2023), and its reduction compared to the RMSE in NoAlt and NoArgo in Figure 3. Here, the mean difference of SSH output from the CMEMS analysis, that is, the bias, is not removed before calculating the RMSE. Altimetry data assimilation generally reduces the RMSE in all four systems, as shown in Figure 3B. Here, it should be noted that a smaller value of the RMSE does not necessarily mean that the OSE run is more accurate, as the objective analysis also has errors, which include horizontal sampling errors and errors in the mean dynamic topography (MDT). However, we refer to the value as the RMSE in order to distinguish the value with the RMSD between different OSEs and because smaller values of the RMSE are generally more likely to be accurate. It is also important to point out that the finer-resolution models will have a much higher value of unconstrained error, whereby the model will resolve variability that the observations cannot constrain (Jacobs et al., 2021).




Figure 3 | (A) Global maps of SSH RMSE in CNTL, (B) SSH RMSE difference between NoAlt and CNTL, and (C) SSH RMSE difference between NoArgo and CNTL for FOAM, GIOPS, MOVE-G3, and JCOPE-FGO (from left to right). A positive difference (red) means that the RMSE is smaller for CNTL; i.e., the altimeter or Argo data have a positive impact. RMSEs are evaluated against the CMEMS altimetry objective analysis. Units in m. SSH, sea surface height; RMSE, root mean square error.



The reduction of the RMSE by assimilating altimetry data is relatively large in the western boundary current regions and the areas around the ACC, in which the RMSE is relatively large in CNTL (Figure 3A). However, the areas of large reduction appear to be generally wider than the areas where the RMSE is large in CNTL. Particularly for the two eddy-resolving systems (FOAM and JCOPE-FGO), a significant impact can be seen even in the low-latitude regions where the RMSE is relatively small. In these areas, the representativeness error included in the prescribed observation error of the altimetry data is presumably set to a relatively small ratio relative to the background error (BGE), and the analysis increment of SSH effectively cancels the actual difference between the SSH first-guess and the observation in those systems. Eddy-resolving systems tend to set a smaller ratio of representativeness error relative to BGE than lower-resolution systems, given their higher capacity of representing small-scale phenomena, although common statistics are used in the 1/4°- and 1/12°-resolution versions of FOAM. Relatively frequent analysis (daily assimilation cycles) may also be a factor for FOAM. In contrast, in the two lower-resolution systems (GIOPS and MOVE-G3), areas with a large reduction of RMSE by the altimetry data assimilation appear to be closer to the areas where the RMSE in CNTL is relatively large. The representativeness error is likely set relative to the expected error or the extent of the variability in those systems.

It should be also noted there are a few areas with a slight increase of RMSE in the tropical band (15S–15N) in GIOPS, MOVE-G3, and JCOPE-FGO, which suggests difficulty in assimilating the altimetry data in the tropical regions. In the two eddy-resolving systems (FOAM and JCOPE-FGO), the RMSE is increased by the altimetry data assimilation in some places around the southern boundary of the ACC. One possible reason for this is that enhanced activities of the ACC and eddies around it stimulated by assimilating the altimetry data cause larger model errors there. Another reason may be the Dynamic Atmosphere Correction (DAC), which is often applied to altimetry data. In addition to the inverse barometer correction, DAC removes high-frequency barotropic processes associated with wind and pressure forcings from the altimetry observations and has the largest impact at high latitudes. The model SSH does represent some of the high-frequency processes associated with the wind forcing, and this leads to a discrepancy in resolved processes between the model and altimetry SSH and makes altimetry assimilation at high latitudes more difficult (Barbosa Aguiar et al., 2024). Furthermore, negative impacts may also be caused by the discrepancy between MDTs used in ocean prediction systems and the CMEMS analysis. The broader correction of SSH around the ACC by assimilating the altimetry data in JCOPE-FGO (Figure 2B) does not reduce the RMSE in the region effectively, suggesting a problem that can be improved in the future. The reduction of RMSE is generally the smallest in MOVE-G3, which is not surprising considering that the SSH change by the assimilation in MOVE-G3 is the smallest among the four systems.

Figure 3C demonstrates that the SSH RMSE is generally further reduced when the Argo data are assimilated in addition to the altimetry data. As for FOAM, the RMSE is effectively reduced in the western boundary current regions and around the ACC but slightly increased in the other areas. The system strongly constrains the SSH field to the altimetry data, but the difference is increased when the system tries to fit TS fields to the Argo data. As for the other three systems, the RMSE is generally reduced in the global ocean, but the reduction is smaller than that in FOAM. An increase of RMSE is found near the Antarctic coast in GIOPS and MOVE-G3, suggesting the difficulty of assimilation near the sea ice. The RMSE is increased by assimilating the Argo data in the Alaskan Gyre in FOAM and GIOPS. The RMSE reduction by the Argo data assimilation is also the smallest in the MOVE-G3.

The multi-system ensemble spread can be considered as a fair metric of uncertainty that does not depend on any particular system. The global map of time-averaged multi-system ensemble spread of SSH for CNTL, NoAlt, and NoArgo (Figures 4A–C) shows a good correspondence in the spatial patterns with the SSH RMSE in the four systems (Figure 3A). Figure 4D demonstrates that the ensemble spread of SSH is effectively reduced in most areas of the global ocean by assimilating the altimetry data in addition to the Argo data and other regular observation data, which implies a reduction of the SSH uncertainty by the altimetry data assimilation. The reduction is relatively large in the western boundary current regions and around the ACC but less noticeable than the reduction of the SSH RMSEs by the altimetry data assimilation. Areas of the spread increase can be seen in the southern boundary of the ACC, where the negative impact of assimilating the altimetry data on the RMSE is observed in Figure 3B. It should also be noted that assimilating the Argo data in addition to the altimetry data and other regular data reduces the SSH uncertainty in the western boundary regions and around the ACC (Figure 4E). In particular, Argo data decrease spread (red) in the southern portions of the ACC where assimilation of the altimetry data is increasing spread (blue)—this also seems to apply in the Greenland and Barents Seas. This fact suggests that Argo data have information of SSH complementary to the altimetry data and that the information is effectively used in the ocean prediction systems, particularly in regions like the areas near the sea ice, where errors in the assimilation of the altimetry data could be larger. These reductions of the multi-system ensemble spreads can be considered as a fair metric of the impact of assimilating the altimetry and Argo data, which are not affected by systematic errors of any particular system.




Figure 4 | Left panels: global maps of the ensemble spreads of SSH among the four systems for (A) CNTL, (B) NoAlt, and (C) NoArgo, averaged over the whole period of 2020. Right panels: differences of the ensemble spreads (D) between NoAlt and CNTL and (E) between NoArgo and CNTL. A positive difference (red) means that the spread is smaller for CNTL; i.e., the altimeter or Argo data reduce the ensemble spread. Units in m. SSH, sea surface height.



Figure 5 shows the time variation of the SSH multi-system ensemble spread averaged over the global ocean and the tropical Pacific (120E–80W, 20S–20N) for the three data denial settings. As for the global averages (Figure 5A), the multi-system ensemble spread for CNTL is consistently smaller than that for NoAlt, indicating the substantial impact of the altimetry data assimilation. However, the difference tends to narrow toward the end of 2020 as the spread for NoAlt becomes smaller. The relatively large spread for NoAlt in the early part of the year may be related to the shock of halting the altimetry data assimilation at the beginning of the year for JCOPE-FGO and more than 3 months earlier for other systems. In contrast, the ensemble spread for NoArgo is just slightly larger than that for CNTL until the end of May but becomes distinctly larger than that for CNTL and almost comparable to that for NoAlt later. It is even larger than that for NoAlt after November. The Argo data impact on the global SSH field, thus, becomes increasingly evident, which may be due to the slow deterioration of the oceanic density structure without sufficient constraint of temperature and salinity observations in NoArgo OSEs. This possibility will be explored when OSE outputs of more systems become available.




Figure 5 | Time series of the ensemble spread of SSH among the four systems averaged over (A) the global ocean and (B) the tropical Pacific (20S–20N, 120E–80W) for CNTL (black), NoAlt (blue), and NoArgo (red). Units in m. SSH, sea surface height.



In the tropical Pacific (Figure 5B), the ensemble spread for NoAlt is distinctively larger than that for CNTL at the start of the analysis period but decreases until May. The spread is then comparable to that for CNTL from June to October and slightly smaller than CNTL in December. The transition in the first 4 months is caused by the experimental setting of the NoAlt run using JCOPE-FGO, which started from the same initial state as CNTL on Jan. 1, 2020. The tropical Pacific SSH fields in the NoAlt run of JCOPE-FGO increasingly deviate from that in CNTL and the CMEMS objective analysis; however, it gets closer to the NoAlt run in the other three systems, which means that those systems have similar SSH errors in the tropical Pacific when the altimetry data are not assimilated. The ensemble spread for NoArgo is generally comparable to that for CNTL but slightly larger than CNTL on average, indicating a weak impact of the Argo data on the SSH field in the tropical Pacific.




3.2 Evaluation using reference Argo data

We also evaluate the impact of the altimetry and Argo data on the global TS fields using RMSEs evaluated against the reference Argo data, which were collected from the snapshot of the Argo Global Data Assembly Center (GDAC) in Mar. 2023. Here, it should be noted again that a smaller value of the RMSE does not necessarily mean that the OSE run is more accurate because of observation errors. Figure 6A shows that FOAM effectively reduces the TS RMSEs at almost all levels by assimilating the Argo data and also by assimilating the altimetry data. It should particularly be noted that the impact of the altimetry data is greater than that of the Argo data between 100- and 700-m depths. This system seems to use the altimetry data efficiently to improve not only SSH but also TS fields.




Figure 6 | Vertical profiles of global mean RMSEs of temperature (leftmost, units in degree C) and salinity (2nd from left, units in PSU) for CNTL (black), NoAlt (red), and NoArgo (blue), and the global mean RMSEs of temperature (3rd from left) and salinity (rightmost) for NoAlt (red) and NoArgo (blue) normalized by the global mean RMSE for CNTL. Plots are depicted for depths of 0–1,000 m and (A) FOAM, (B) MOVE-G3, and (C) JCOPE-FGO. The RMSEs are evaluated against the independent Argo data, which are not assimilated in all OSEs. Note that only delayed-mode Argo profiles where the maximum depth with valid temperature values exceeds 100 m are used for calculation of RMSEs. RMSEs, root mean square errors; OSEs, observing system experiments. .



Both the Argo and altimetry data also have positive impacts on the global TS fields at all levels for MOVE-G3 (Figure 6B). However, when these impacts are compared to the impacts for FOAM, the Argo data impacts in MOVE-G3 are significantly smaller, and the altimetry data impacts are even smaller. As can be seen in the normalized RMSE plots, the Argo data have a larger impact on salinity than on temperature in MOVE-G3. In contrast, the altimetry data have a larger impact on temperature, while the impact on salinity is considerably small.

The impact of the Argo data on TS for JCOPE-FGO is comparable to that for MOVE-G3 at most levels (Figure 6C). However, the impact on salinity at approximately 200-m depth is negative. As for the altimetry data, the impact is negative for the temperature at near-surface levels, the levels below 800 m, and salinity for all depths. The negative impact may be due to not considering the changes in the global water mass and the global mean steric height when assimilating the altimetry data, or inaccurate error statistics used in the data assimilation scheme, and there is still room for improvement.

In summary, assimilating the Argo data in addition to other regular data generally reduces the TS RMSE. The impact is significantly larger in FOAM than the impact in MOVE-G3 and JCOPE-FGO. The Argo data have a larger impact on salinity than on temperature in MOVE-G3. The extent of the altimetry data impact on TS depends on the system. The impact is comparable to the Argo data on TS in FOAM, but in MOVE-G, the impact is significantly smaller than that in FOAM. The altimetry data do not effectively reduce TS RMSEs in JCOPE-FGO.





4 Summary and future perspectives of SynObs

The UN Ocean Decade Project SynObs has been promoting various activities associated with the evaluation of the ocean observation network since its launch in 2022. In particular, SynObs has started the internationally coordinated multi-system OSEs/OSSEs, or the flagship OSEs/OSSEs, to make a fair evaluation of the ocean observing network, which does not depend on any particular ocean prediction system, and provide a scientifically justified rationale for its maintenance and evolution. The flagship OSEs/OSSEs consists of three components: the OP OSEs for high-resolution ocean predictions, the S2S OSEs for long lead-time coupled ocean–atmosphere predictions, and the OP OSSEs for evaluating new and future observing systems.

We have begun to collect the outputs of the OP OSEs, and, as shown in the previous section, early analysis of those outputs indicates that there are observation impacts consistent across the four ocean prediction systems. For example, the impacts of the altimetry data on the assimilated SSH field are generally large in the western boundary current regions and around the ACC where SSH has large variability but are small in the tropical regions despite the relatively large SSH variability there. We also found characteristics of observation impacts that are specific to some ocean prediction systems. Our analysis indicates the possibility that there are some characteristic differences in the observation impacts between low-resolution and eddy-resolving ocean prediction systems. In addition, the OSEs have shown synergies between the observing systems, with profile observations improving fits to SSH observations in regions where the altimeter observations alone cannot improve the simulation. Similarly, altimeter observations universally demonstrate improvements in fits to non-assimilated Argo profiles, to the same extent the remaining assimilated Argo profiles do. These results generally demonstrate the importance of satellite altimetry data and the global Argo array and provide scientific support for maintaining and further developing these observation systems.

However, the results here are just an illustration of the potential of the SynObs project. Since outputs of the OP OSEs for only four ocean prediction systems are currently available, it is not sufficient to conclude what the observation impacts are consistent across most ocean prediction systems and what are impacts specific to particular prediction systems. It is also difficult to analyze what characteristics cause observation impacts specific to some prediction systems, for example, how observation impacts are affected by the resolution of the prediction system. In addition, it should be noted that we have analyzed only outputs of data assimilation runs so far, and the observation impacts on forecast runs have not been assessed yet. The impacts depend on the limits of the model’s forecast ability and are likely to be reduced compared to the impacts on data assimilation runs because the forecast errors deteriorate information from observations.

Currently, some other ocean prediction centers will conduct or are conducting the analysis runs for the OP OSEs and plan to provide outputs. Some of the submitted OSE outputs are planned to be replaced by a new version that fixes inadvertent defects. We will conduct further investigation on the consistency of observation impacts, the characteristics of observation impacts specific to some ocean prediction systems, and their contributing factors using the original and newly submitted OSE outputs in the near future. In addition, forecast runs from the analysis fields of the assimilation runs for each OSE are planned to be performed, and observation impacts on the forecast accuracy will be also investigated.

Meanwhile, some ocean/climate prediction centers are currently running ocean reanalysis runs for S2S OSEs and plan to perform the coupled atmosphere–ocean model forecasts using those reanalysis fields as oceanic initial conditions. The results of these coordinated OSEs are expected to provide a clear indication of ocean observation impacts on the atmospheric fields in the coupled forecasts, which have only been identified for a few forecasting systems following different experimental protocols (Balan-Sarojini et al., 2024; Balmaseda et al., 2024). We are currently preparing virtual ocean observations for OP OSSEs and discussing the setting of the OSSE runs. The evaluation of the OSSE integrations will target the suitability of the new TPOS design and demonstrate the effectiveness of SWOT SSH data and some other new ocean observations. All outputs of the flagship OSEs/OSSEs will be compiled as a database and shared with several expert groups in order to carry out SynObs multi-system evaluation according to the area of expertise: specific observing systems, target regions, phenomena, applications, and so forth. Finally, the database will eventually be made available to the public. We expect that sharing the flagship OSE/OSSE outputs with various expert groups will boost the impact of SynObs by providing a broader and more rounded evaluation of the observing system evaluation and design, enhancing the communication between the producers and users of data, and increasing the understanding and awareness of the impact of the ocean observations on predictions of the ocean and atmosphere at a range of time scales.

SynObs will promote the sharing of the achievements of research activities and community efforts on the ocean observing system design and evaluation, including the results of the flagship OSEs/OSSEs, with the broader oceanic and earth system research communities through academic papers, scientific meetings, web pages, etc. SynObs also aims to provide significant inputs to the reports on the ocean observation impacts and the design of the ocean observing network made by international organizations, such as the WMO and Global Ocean Observing System (GOOS), and internationally coordinated projects, such as the UN Ocean Decade Programme “Ocean Observing Co-Design” (https://goosocean.org/what-we-do/goos-at-the-heart-of-the-ocean-decade/ocean-observing-co-design), and to contribute to the international designing of the ocean observing network from the perspectives of ocean and coupled predictions. We believe that these SynObs activities will enhance the communications between ocean observing and ocean and coupled prediction communities and lead to a transformative change in the ocean observing network that will generate substantial societal benefits.
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The Surface Water Ocean Topography (SWOT) mission significantly improves on the capabilities of current nadir altimeters by enabling two-dimensional mapping. Assimilating this advanced data into high-resolution models poses challenges. To address this, Observing System Simulation Experiments (OSSEs) were conducted to evaluate the effects of both simulated and actual SWOT data on the Regional Ice Ocean Prediction System (RIOPS). This study examines the OSSEs’ design, focusing on the simulated observations and assimilation systems used. The validity of the OSSE designs is confirmed by ensuring the deviations between the assimilation system and the Nature Run (NR) align with discrepancies observed between actual oceanic data and OSSE simulations. The study measures the impact of assimilating SWOT and two nadir altimeters by calculating root mean square forecast error for sea surface height (SSH), temperature, and velocities, along with performing wave-number spectra and coherence analyses of SSH errors. The inclusion of SWOT data is found to reduce RMS SSH errors by 16% and RMS velocity errors by 6% in OSSEs. The SSH error spectrum shows that the most notable improvements are for scales associated with the largest errors in the range of 200-400 km, with a 33% reduction compared to traditional data assimilation. Additionally, spectral coherence analysis shows that the limit of constrained scales is reduced from 280 km for conventional observations to 195 km when SWOT is assimilated as well. This study also represents our first attempt at assimilating early-release SWOT data. A set of Observing System (data denial) experiments using early-release SWOT measurements shows similar (but smaller) responses to OSSE experiments in a two nadir-altimeter context. In a six-altimeter constellation setup, a positive impact of SWOT is also noted, but of significantly diminished amplitude. These findings robustly advocate for the integration of SWOT observations into RIOPS and similar ocean analysis and forecasting frameworks.
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1 Introduction

Nadir altimeter Sea Level Anomaly (SLA) measurements have significantly enriched our understanding of ocean circulation dynamics. While along-track SLA data can discern wavelengths as small as 50–70 km (Dufau et al., 2016), the global mesoscale resolution remains limited by the spacing (distance between adjacent tracks) and temporal samplings (repeat period) of individual altimeter missions. Multiple altimeters are indispensable for achieving global maps of mesoscale variability. Numerous studies have evaluated the efficacy of altimeter constellations (e.g., Pascual et al., 2006; Dibarboure et al., 2011), affirming that a minimum of three to four altimeters is requisite for reconstructing the global ocean surface topography at a mesoscale resolution. Nevertheless, amalgamating data from multiple altimeter missions falls short of resolving wavelengths smaller than 150–200 km (e.g., Ducet et al., 2000; Le Traon, 2013).

The Surface Water Ocean Topography (SWOT) mission, launched on 16 December 2022 through collaboration among NASA, CNES, the Canadian Space Agency, and the UK Space Agency, promises to expand on the capabilities of existing nadir altimeters. It will facilitate two-dimensional mapping at a significantly enhanced effective resolution, down to wavelengths as small as 20 km (e.g., Fu and Ferrari, 2008; Fu et al., 2009). This advancement will be realized through both a nadir altimeter and a Ka-band Radar Interferometer (KaRIn). With a swath width of 120 km, the spatial coverage will span nearly the entire globe every 21 days. Although SWOT will furnish highly detailed observations along its swaths, it will overlook the evolution of high-frequency signals (with periods less than 21 days). Integrating SWOT data with that from conventional along-track altimeters (e.g., Pujol et al., 2012) and very high-resolution models (with resolutions of a few kilometers) present a significant challenge, necessitating dynamic interpolation.

Observing System Simulation Experiments (OSSEs; Halliwell et al., 2014) is a prevalent approach for assessing the impact of new observations on analysis and forecasting systems. It entails simulating the “true” ocean using a numerical model and subsequently determining instrument sampling and errors using predefined parameters. This method facilitates the evaluation of how future measurements could augment existing analyses and forecasts based on assimilation systems, and guides the design of observation networks to enhance ocean state sampling at specific spatial and temporal scales. Given the potential importance of the SWOT mission, studies of various complexity have begun to assess how to best make use of this new type of observation. Simplified models such as Quasi-Geostrophic and Surface Quasi-Geostrophic models have been employed to assess SWOT observability and estimate critical ocean state features such as vertical velocity fields (e.g., Klein et al., 2009; Qiu et al., 2016). While advantageous due to their conceptual simplicity compared to Primitive Equation (PE) models, these simplified models do not encapsulate the full spectrum of oceanic regimes. Thus, preparing to employ SWOT observations with more complex ocean models is imperative. Recently, Carrier et al. (2016) conducted an OSSE utilizing SWOT observations and a PE model of the Gulf of Mexico, showcasing improved forecast scores and representation of mesoscale features compared to assimilation of data from conventional altimeters. Benkiran et al. (2021) and Tchonang et al. (2021) investigated and analyzed the impact of SWOT observations over the global oceans using a different version of their 1/12th resolution model as “truth” and found significant improvements in SSH and surface current errors. Souopgui et al. (2020) quantified improvements in ocean state estimation through the assimilation of simulated SWOT observations by using a multi-scale 3DVAR approach with an OSSE. This approach effectively enhances skill metrics across spatial scales by initially creating large-scale analyses and incrementally incorporating smaller-scale corrections, with significant improvements in mixed layer depth estimates. Zhou et al. (2024) introduced a novel multi-scale Four-Dimensional Variational Data Assimilation (4DVAR) system to enhance the assimilation of high-resolution SWOT SSH within the Regional Ocean Modeling System (ROMS), demonstrating significant improvements in model accuracy and fine-scale feature representation.

This paper uses an approach similar to that of Benkiran et al. (2021) and extends previous studies in three ways. First, the Nature Run (from which the synthetic observations are taken) is a higher-resolution (1-km horizontal grid) configuration that includes greater energy at small spatial scales than the assimilation model. This additional variability simulates the unresolved scales present in real world. Second, the ocean model used in the OSSE contains external tidal forcing, which also increases the complexity of online filtering required in the assimilation of sea surface height data. Finally, we also confirm the impact of SWOT using Observing System Experiments with early-release measurements over a roughly 2-month period.

The paper’s structure is as follows: Section 2 focuses on the Nature Run description and provides details concerning the production of synthetic observations. Section 3 presents the assimilation system, highlighting changes made to the data assimilation scheme for the OSSEs, followed by the OSSE design. In Section 4, the impacts of the assimilation for the Sea Surface Height (SSH) and Velocity field are evaluated. In Section 5, we focus on the wavenumber analysis of the impacts of the data assimilation by showing the SSH error spectrum and coherence, while Section 6 concentrates on data withholding experiments using early-release SWOT data over the North Atlantic and Arctic Oceans for two months. Section 7 draws conclusions regarding the impacts of the data assimilation experiments and presents future perspectives.




2 Data



2.1 NATL60 nature run simulation

The NATL60 simulation (referred to hereafter as the Nature Run (NR) simulation), based on the NEMO framework (Madec et al., 2019), features a horizontal grid with variable spacing from 1.6 km at 26°N to 0.9 km at 65°N. The grid is tailored to capture the scales of motion targeted by the SWOT altimetric mission. For initial and boundary conditions, the model employs the GLORYS2v3 ocean reanalysis (Masina et al., 2017), incorporating a relaxation zone at the northern boundary to manage sea ice concentration and thickness. Vertically, the model includes 300 levels, with the finest resolution of 1 m in the uppermost layers. Atmospheric conditions are determined using the DFS5.2 dataset (Dussin et al., 2018). Grid structure and bathymetry are aligned with the specifications outlined by Ducousso et al. (2017). To dynamically adjust lateral viscosity and diffusivity according to flow characteristics, a third-order upwind advection scheme is employed for both momentum and tracers. The model undergoes a 6-month spin-up phase followed by a detailed 1-year simulation the period covering from October 1, 2012, to September 30, 2013, the results of which have been referenced in recent publications (Amores et al., 2018; Buckingham et al., 2019; Ajayi et al., 2020). Unlike OSSE simulations (described in Section 3), NATL60 does not include tidal forcing. A more recent simulation by this model (referred to as eNATL60) does include tides but is only available for a shorter period. As a result, we prefer to use NATL60. Figure 1 shows the NATL60 domain and the SSH snapshot on August 1, 2013. The spectral and coherence analyses are conducted in the nested black rectangular region (Gulf Stream) in Section 5.




Figure 1 | NATL60 domain and the daily-mean SSH (m) snapshot for August 1, 2013. The black nested rectangle delineates the dynamic Gulf Stream region, with a side length of 1000 kilometers and centered at coordinates (-57.5, 38.5).






2.2 Generation of synthetic observations

To accurately assess the impact of assimilating SWOT data, we need to generate synthetic observations for both the conventional observing network and the estimated measurements from SWOT. Since the Nature Run (NR) is a model simulation that doesn’t exactly match the real ocean state, producing these synthetic observations ensures consistency between the observations and the NR. This approach allows us to evaluate the impact of assimilating SWOT data without the confounding effects arising from discrepancies between the NR and real-world observations. It is also important to add Gaussian noise to the synthetic observations to simulate observational error. Details concerning both these datasets and noise characteristics are provided below.



2.2.1 Conventional observations

Synthetic observations are produced for conventional observations currently assimilated in RIOPS (as described in Section 3). These observations include nadir altimetry, gridded Sea Surface Temperature (SST), and vertical profiles of temperature and salinity. Synthetic observations were extracted from the NATL60 simulation, and these observations were collected over a period of 12 months (from October 1, 2012 to September 30, 2013) which includes the period covered by the OSSEs. The daily-mean SST was directly extracted from the NR over the full grid to simulate the Level-4 SST product usually assimilated in RIOPS. A random error of 0.5°C was applied to the SST. This value corresponds roughly to the nominal error of Level-4 SST analyses (as used in the operational version of RIOPS). Errors applied to the nadir altimeters are described in Section 2.2.2 below.

The temperature and salinity (T/S) profiles were extracted at the same points and dates as the real in situ profiles observed as found in the CORA4.1 database provided by the Coriolis and CMEMS in situ data center (Cabanes et al., 2013). Observations include profiles from the Argo Array, field campaigns, gliders and moorings. 3D daily mean temperature and salinity fields from the NR were used to simulate this in situ data as instantaneous outputs were not available. This is expected to lead to a somewhat reduced variance of synthetic profile observations as compared to the real world for coastal observations (e.g. gliders), although this is not expected to impact the sensitivity of the system to the assimilation of wide-swath altimetry. To simulate instrument error, we applied a random error with a standard deviation of 0.05°C for temperature and 0.01 psu for salinity. We did not explicitly include representativeness error because it is implicitly accounted for by using a high-resolution Nature Run (NR) to generate the synthetic observations.




2.2.2 Simulated nadir data

The along-track nadir pseudo-observations datasets contain noise-free SSH data, which is the direct interpolation of the hourly model SSH onto the nadir track. And the SSH data with simulated noise is obtained using the “SWOT simulator” (Esteban-Fernandez et al., 2017). As explained in the SWOT simulator reference manual, the simulated noise for the nadir altimeter follows a spectrum of error consistent with global estimates from the Jason-2 altimeter. The along-track point spacing is 7 km for Jason-2 and Cryosat-2, 7 km for the SWOT nadir observations.




2.2.3 Simulated SWOT data

Surface Water Ocean Topography provides global SLA observations under a 120 km wide-swath with a middle gap of 20 km. In this study, we considered the SWOT data as two-dimensional fields under the swath with a regular along-track and across-track resolution of 7 km. The pseudo-SWOT observations were simulated from hourly outputs of the NR using the “SWOT Simulator” developed at the Jet Propulsion Laboratory (Gaultier et al., 2016), which is used to generate observations with the expected SWOT sampling and error budget. The along-track and cross-track point spacing is 7 km for the SWOT KaRIn observations. The SWOT simulator models the most significant errors that are expected to affect the SWOT data, i.e., the KaRIn noise, roll errors, phase errors, baseline dilation errors, and timing errors. It produces random realizations of uncorrelated noise and correlated errors following the spectral descriptions of the SWOT error budget document (Esteban-Fernandez et al., 2017).

In our experiments, we only used the KaRin noise for two reasons: (i) the simulator models the worst expected case and (ii) the observation distribution centers are planning to filter the data from most of these errors. Consequently, as the final error budget is still uncertain and as this was our first effort to assimilate such data in a North Atlantic model, we preferred to use a more optimistic error budget. The same simulator was used to simulate the nadir data of SWOT.




2.2.4 Real SWOT data

Section 6 presents data withholding experiments performed using early-release SWOT observations. The observations used were the AVISO v0.3 Level 3 product made available in December 2023. The observations used cover the period 2023-09-06 to 2023-11-22. KaRIn measurements are provided with 2-km spacing both along and cross track. As this is higher resolution than the RIOPS model grid it is necessary to decimate the observations. As a result the observations are averaged using a 9-pt stencil to provide one point every 6 km (AVISO/DUACS, 2024). This approach provides a straightforward means to decimate the data without any a priori knowledge about relative errors of different pixels.






3 Ocean assimilation system and OSSE setup



3.1 Ocean assimilation system

The System d’Assimilation Mercator version 2 (SAM2), a multivariate, reduced-order Extended Kalman Filter, plays a crucial role in constraining oceanic fields toward observations and reducing forecast error. This scheme is specifically deployed for the assimilation of sea level anomaly (SLA), sea surface temperature (SST), and in situ data related to temperature and salinity profiles, as detailed by Wong et al. (2020). For a thorough understanding of SAM2, one can refer to the extensive descriptions by Lellouche et al. (2013) and Lellouche et al. (2018), including its specialized adaptations for RIOPS outlined in Smith et al. (2016, 2021, 2024). Below is a concise overview of the pertinent aspects.

The background error of the model is specified through static multivariate fields derived from sub-monthly anomalies recorded over a decade of hindcasts. RIOPS analyses are produced using a 7-day assimilation period, distributing analysis increments uniformly via an Incremental Analysis Updating method (IAU) as described by Bloom et al. (1996) and Benkiran and Greiner (2008). A multi-scale technique adjusts temperature and salinity fields by implementing large-scale increments from a 3DVar analysis based on average innovations over the last four cycles. The Mean Dynamic Topography (MDT) used in the observation operator for SLA is a hybrid variant discussed in Lellouche et al. (2018), merging the CNES-CLS13 MDT (Rio et al., 2014) with average innovations from ocean reanalysis (Smith et al., 2024).

Furthermore, an online sliding-window harmonic analysis excludes tidal effects within the SLA observation operator, accommodating non-stationary tides influenced by seasonal sea ice, a method detailed in Smith et al. (2021). Additionally, the inverse barometer effect is removed to account for the local model’s atmospheric pressure responses. SLA observations include those typically assimilated within operational frameworks, specifically from satellites like Cryosat2, Jason3, Saral/Altika, and Sentinel 3a/3b.

Regarding SST, ECCC’s gridded Level-4 analyses are utilized (Brasnett and Colan, 2016). A 3DVar ice analysis produced on a 5-km grid is used to constrain sea ice concentration (Buehner et al., 2013, 2016). The ice analysis is blended with the ocean analysis using the Rescaled Forecast Tendencies method from Smith et al. (2016) to modify the ten ice thickness categories based on total ice concentration increments.




3.2 OSSE setup

In an operational context an MDT field is removed from model SSH to provide the model equivalent of SLA observations. As noted above, the MDT field is based on a combination of observations together with mean model innovations. As a result, its use introduces additional errors to the assimilation of SLA which are accounted for through use of an MDT error field with values of up to 20 cm (Lellouche et al., 2018; Smith et al., 2024). Since synthetic observations for the OSSEs are taken from a model, there is no need for an MDT and SSH can be assimilated directly. We have nonetheless kept the MDT error field unchanged to maintain consistency with operational settings and because it also accounts for representative error due to unresolved features. This approach may underrepresent somewhat the errors associated with assimilating SWOT. An instrumental error of 3 cm is used for SWOT data. While this is somewhat higher than estimates of KaRIn error for SWOT, it provides a conservative value that allows for incomplete filtering of other observations errors (e.g. roll, phase). This is also similar to the error value used for most nadir altimeters. We feel that this improves the ‘fairness’ of the comparison with the impacts found for OSSEs using nadir altimeters (i.e. we avoid over-fitting to SWOT due to an overly small and possibly unrealistic error).

As a daily-mean SST is assimilated, the SST observation operator is changed to use a daily mean as well, instead of the nocturnal SST normally used. Note also that since the domain of RIOPS is larger than that for NATL60, for regions outside the NATL60 domain no observations are assimilated. As a result, the blending with the 3DVar ice analysis is not used. Additionally, the 3DVar bias correction for temperature and salinity profile observations is not used as it has a long spin-up time (on the order of a year) and thus would not have time to adjust over the limited OSSE period. Finally, RIOPS usually uses fields from the Global Ice Ocean Prediction to specify open boundary conditions. However, these were not available for this period. As a result, open boundary conditions were produced using fields from the GLORYS12 reanalysis (Lellouche et al., 2018). Initial conditions were also obtained from GLORYS12 fields using a bi-linear interpolation of temperature, salinity and velocities from the 0.08° resolution grid upon which the GLORYS12 fields are disseminated.

Starting from the simulated data obtained from the NR, three OSSEs were carried out using a different NEMO configuration but the same spatial resolution of 1/12° (~7 km). An additional experiment was performed, called the Free Run (FR), in which no observations are assimilated. This simulation is used to assess the relative performance of the assimilative experiments. To assess the impact of SWOT data, it was compared with assimilation of conventional altimeter data from two nadir altimeters Jason-2 and Cryosat-2. The data assimilated in the different OSSEs are detailed in Table 1. The OSSE0 (FREE) is a free run with no data assimilation. OSSE1(STD) is the standard data assimilation of conventional observations including Cryosat-2, Jason-2, T&S profiles and SST. OSSE2 (SWOT) includes the assimilation of data from SWOT, together with T&S profiles and SST. Finally, OSSE3 (SWOT+NADIR) assimilates data from SWOT in addition to conventional data (Cryosat-2, Jason-2, T&S profiles and SST).


Table 1 | OSSE Setup.



The simulations start from a free model state on October 3, 2012. A 12-month simulation (until 25 September 2013) was carried out with assimilation of SSH, temperature and salinity as presented in Table 1. This period was determined by the availability of the NATL60 data.




3.3 Validation of OSSE method

When setting up an OSSE framework it is important to verify that the impact of assimilating the synthetic observations is similar to that obtained from real observations. Therefore, as an initial step a three-month experiment is performed whereby the standard set of real conventional observations are assimilated (i.e. equivalent to OSSE1 but using real observations). The reduction in innovations statistics for this run as compared to the free run (OSSE0) is then assessed together with differences in innovations statistics between OSSE1 and OSSE0. A similar sensitivity is found for innovations of SLA, SST and temperature and salinity profiles. For example, root-mean-squared (RMS) SLA innovations for Jason 2 were found to decrease from 13.2 cm to 9.4 cm (29% reduction) using real observations and from 13.4 cm to 8.8 cm (34%) using synthetic observations.





4 Impact of assimilating synthetic observations on model fields



4.1 SSH impacts

The objective of this section is to investigate the impacts of assimilating SSH data from SWOT versus two nadir altimeters. Over a one-year period, the RMS difference of SSH between the Nature Run (NR) and the Observing System Simulation Experiments (OSSEs) is calculated and displayed in Figure 2. This figure highlights significant variability in highly dynamic areas such as the Gulf Stream (GS). The impact of assimilating conventional observations (as compared to a free run) can be clearly seen when comparing OSSE1 to OSSE0, with a nearly 40% improvement in domain averaged RMSE (values of 11.38cm and 7.95 cm respectively for OSSE0 and OSSE1). When SWOT is assimilated in place of conventional nadir altimetry (OSSE2) a notable improvement in the Gulf Stream can be seen with a domain-averaged decrease in RMS differences down to a value of 7.08 cm (11% improvement). Among the OSSEs, OSSE3 (assimilating all observations) exhibits the most accurate performance, with the lowest domain-averaged RMSE value of 6.81 cm (14% improvement). Generally, the RMS errors indicate that discrepancies predominantly occur over the GS across all OSSE scenarios. As a reference, the domain-averaged RMS of the Mean Dynamic Topography (MDT) and the RMS of the Sea Level Anomaly (SLA) for OSSE0 are 22 cm and 9.2 cm, respectively, both of which are greater than the RMSE values for OSSE1-3.




Figure 2 | RMS of SSH error comparing the NR and OSSEs: (A) OSSE0 (FREE), (B) OSSE1 (STD), (C) OSSE2 (SWOT), (D) OSSE3(SWOT+NADIR). (E) RMS of the SLA for NR (Unit:m) and (F) the Ratio between RMS of SLA for NR and RMS of SSH error for OSSE3.



To provide context in terms of the amplitude of the errors, it is useful to compare these errors to the amplitude of the variability in the NR itself. Figure 2E presents the RMS of the SLA for NR. We can clearly see that while the error in OSSE0 is much larger than the RMS of the SLA in the NR, for the OSSEs with data assimilation (OSSE1-3) the errors appear similar to, or smaller than that for the RMS SLA of the NR. Figure 2F displays the ratio between the RMS of the SLA for NR and the RMS of the SSH error for OSSE3 (domain-averaged value of 1.1). For most of the Gulf Stream and downstream regions, the ratio is bigger than 1, indicating that the errors are smaller than the variability of the NR.

Figures 3A, B visually demonstrate the effects of data assimilation from SWOT and nadir altimeters on the RMS of SSH errors. Specifically, Figure 3A is dominated by blue hues, particularly over the Gulf Stream and its northern extensions, illustrating significant reductions in RMS errors for OSSE3 compared to OSSE1 (with a domain-averaged difference of 1.14 cm). This indicates that incorporating SWOT data markedly improves accuracy in these dynamically complex regions. There are also some small isolated red areas spread throughout the domain indicating slightly higher errors in OSSE3 relative to OSSE1. But these are likely just noise. Additionally, Figure 3B compares the RMS of SSH errors between OSSE3 and OSSE2, revealing that nadir altimetry has a less significant impact when SWOT data is assimilated (domain-averaged difference of 0.27 cm). Together, these figures underscore the benefits of assimilating SWOT data in improving the precision of SSH predictions, especially in highly dynamic oceanic environments.




Figure 3 | (A) shows the difference of the RMS of SSH error between OSSE3 and OSSE1, (B) difference of the RMS of SSH error between OSSE3 and OSSE2 (Unit:m).



In an operational context it is not possible to compare errors over a full field, rather errors are often assessed in terms of differences with observations. As a result, the “domain-averaged” errors reflect the particular sampling of the observations used. For reference in Section 6 when early-release SWOT data are assimilated in an operational context, it is useful to compare full field statistics provided here with those obtained using observational sampling. As compared to synthetic observations for Cryosat2 only, we obtain RMS differences of 14.33 cm, 8.66 cm, 7.56 cm and 7.34 cm for OSSE0-3 respectively. These values imply an improvement of RMS error for OSSE2 and OSSE3 (as compared to OSSE1) of 13% and 15% respectively. These values are similar to those obtained using the full SSH field noted above (i.e. 11% and 14% respectively). In consequence, we conclude that Cryosat2 sampling provides a similar assessment of the domain-averaged error, allowing a comparison of results between OSSEs and OSEs.




4.2 Impacts on velocity

This section analyzes the impact of SWOT data on representing the upper ocean currents (at 15 meters depth). Considering the significance of ocean currents, it is intriguing to examine how their accuracy improves with the assimilation of SWOT data. The RMSE over 1 year for the amplitude of velocity at 15 m depth (referred to hereafter simply as velocity) between the NR and the OSSE3 is calculated and displayed in Figure 4A. In all the simulations, the highest errors are concentrated around the Gulf Stream and its extension into the North Atlantic, where the dynamical complexity is most pronounced. The domain-averaged RMS velocity errors show that OSSE3 achieves the best accuracy, with an error of 11.1 cm/s. When compared to OSSE1, which has an error of 11.8 cm/s, OSSE3 demonstrates a 6.2% improvement. Finally, compared to OSSE2, which has an error of 11.7 cm/s, OSSE3 shows a 4.9% improvement. These results highlight how OSSE3, with more comprehensive assimilation of SWOT data, enhances the accuracy of upper ocean current representations compared to the other OSSE simulations. Figure 4B shows the difference of the RMS of velocity error between OSSE3 and OSSE0 with a domain-average number of -0.91 cm/s. Additionally, for reference, the RMS of velocity for the Nature Run is shown in Figure 4C with a domain-average number of 17.68 cm/s.




Figure 4 | (A) RMS error in the velocity magnitude (15-m depth) comparing the NR and OSSE3. (B) Difference in RMS velocity error between OSSE3 and OSSE0. (C) RMS velocity for the NR (unit: m/s). (D) Ratio of RMS velocity for NR to RMS velocity error for OSSE3.



Figure 4D shows the ratio between the RMS of velocity for NR and the RMS of velocity error for OSSE3. We can see that the RMS of velocity error is less than the RMS of velocity for NR generally with a domain-average number of 1.97. This demonstrates that there is a relatively good accuracy of the velocity field in OSSE3, as the errors are significantly smaller than the actual RMS of velocity for NR, enhancing our confidence in the overall model performance.

As shown, the differences among the OSSEs are shown in Figure 5. OSSE3 exhibits the most accurate performance, with OSSE2 performing marginally better than OSSE1, which can be clearly detected in Figure 5. Here, Figure 5A illustrates the reduction in RMS of velocity error between OSSE3 and OSSE1, indicating that assimilating SWOT data decreases the error compared to scenarios without SWOT data assimilation. Moreover, Figure 5B compares the RMS of SSH error between OSSE3 and OSSE2. This reveals that incorporating data from both altimeters modestly enhances the predictive accuracy. The domain-average of Figure 5A is -0.73 cm/s and -0.56 cm/s for Figure 5B.




Figure 5 | (A) shows the difference of the RMS of velocity error between OSSE3 and OSSE1, (B) difference of the RMS of velocity error between OSSE3 and OSSE2(unit: m/s).



Figure 6 shows the temporal evolution of velocity error variance at a 15-meter depth over the whole year. OSSE0 (dashed black line), which is the free run, shows the highest RMS of SSH error, starting above 200 cm²/s² and gradually decreasing but remaining above 160 cm²/s². All the OSSE1–OSSE3 simulations exhibit similar seasonal variations. OSSE1 (dashed red line) starts with an RMS of SSH error around 180 cm²/s², dropping sharply in the first few weeks, then fluctuating between 120 and 150 cm²/s². OSSE2 (dashed blue line) follows a similar trend to OSSE1 but generally has a lower RMS of SSH error, ranging between approximately 110 and 140 cm²/s². OSSE3 (dashed green line) shows the lowest RMS of SSH error overall, starting around 160 cm²/s² and steadily decreasing, often falling below 100 cm²/s² towards the end of the observation period. The temporal evolution of velocity error variance clearly demonstrates that OSSE3 consistently maintains the lowest error variance, as expected, because it assimilates all available data, including both SWOT and nadir altimeters. While OSSE2 (SWOT-only) shows lower error than OSSE1 (using two nadir altimeters), indicating that if we had to choose between two nadir altimeters and one SWOT, we should choose SWOT. Thus, OSSE3 remains the best scenario overall because it assimilates all data sources.




Figure 6 | Temporal evolution of velocity error variance (at 15-meter depth) over the Gulf Region. Dashed black is RMS of SSH error for OSSE0 (free run), dashed red is RMS of SSH error for OSSE1, dashed blue is RMS of SSH error for OSSE2, and dashed green is RMS of SSH error for OSSE3.



It is also interesting to note that when the data assimilation is first activated the increments are quite large and despite the IAU a shock occurs in all experiments that results in a net degradation in velocity statistics for the first cycle. Following this initial shock the velocity improves quite quickly over the first few cycles. This improvement is mostly related to the path of the Gulf Stream, and to second order, to the constraint of the data assimilation system on mesoscale features. This analysis is only possible due to the OSSE framework that allows a comparison of full-field velocities. Further analysis regarding this initial shock is underway.





5 Spectral analysis and coherence

In this section, we compute and analyze the wavenumber Power Spectral Density (PSD) and the spatial and temporal coherence for each OSSE simulations in comparison with the Nature Run (NR), specifically over the Gulf Stream, where significant discrepancies are observed. We utilize the wavenumber PSD and spectral coherence to assess the spatial structure of SSH forecast errors in this region. The wavenumber spectra, as detailed by Dufau et al. (2016), are derived from daily zonal SSH error fields spanning the period from October 1, 2012, to September 30, 2013, using a Fast Fourier Transform (FFT). To minimize spectral leakage, a Hanning window was applied to the data. Subsequently, the spectra were averaged both meridionally and temporally. Additionally, to evaluate how the spatial scales of SSH signals are resolved in the different OSSEs, the spectral coherence is calculated, following the methodology of Thomson and Emery (2014). This spectral coherence quantifies the correlation between two signals as a function of wavelength, as described by Ubelmann et al. (2015). Within this study, the spectral coherence between the SSH signals of the OSSEs and the NR is represented as ‘Coh’ and is defined as follows:



where CSD represents the cross-spectral density, SD represents the spectral density and j refers to the j-th OSSE experiment (Equation 1). Both SSH error spectrum and coherence are calculated in the box as shown in Figure 1.

Figure 7 illustrates the SSH error spectrum over the Gulf Stream for the OSSE simulations. All OSSEs exhibit a peak in the error spectrum around the 300 km wavelength. Note that while the specific wavelength at which this peak occurs is sensitive to details of the PSD calculation (e.g. resolution in wavenumber space), a peak value in the range of 200-400 km is consistent with the errors being dominated by mesoscale variability which dominates the SSH variance in the Gulf Stream. As compared to the free run (OSSE0), the assimilation of conventional observations provides an improvement for all scales greater than about 200 km, with a 45% of the peak value. As compared to conventional altimetry (OSSE1), assimilation of SWOT observations provides an additional benefit across these same scales. Furthermore, when SWOT is assimilated together with conventional altimetry (as would be the case if SWOT were to be added to the operational system), the errors are further reduced, with peak values reduced by 33% (OSSE3 compared to OSSE1). However, for wavelengths less than 200 km, it is difficult to discern the impact of the OSSEs on the error spectrum as the errors are dominated by large mesoscale variability. To shed more light on the impact on smaller scales we now assess the spectral coherence.




Figure 7 | SSH error spectrum over the Gulf Stream for the OSSE simulations.



Figure 8 shows the spectral coherence between the NR and OSSE simulations. Here we consider a value of 0.5 as the threshold for acceptable performance that determines the limit of constrained variability (Ubelmann et al., 2015). First, we can see clearly that the free run (OSSE0) with no data assimilation contains uncorrelated variability with respect to the NR (i.e. coherence values well below 0.5 at all scales). The assimilation of conventional observations (OSSE1) shows high values of coherence demonstrating that the data assimilation system is able to constrain variability, but only for scales above 280 km. When conventional nadir altimetry is replaced by SWOT (OSSE2), the limit of constrained scales is extended to a scale of about 230 km. The synergy of SWOT and nadir together is highlighted by the further benefit seen in OSSE3, with the limit of constrained scales extended to 195 km. While the precise values obtained for the limit of constrained scales is somewhat sensitive to the threshold used, the sensitivity found in the different OSSEs is quite robust down to a threshold of about 0.4. Below this value all OSSEs start to be affected by a strong drop in coherence for scales below about 180 km. This sharp transition is likely due the combined impact of limitations in the data assimilation system and the long (21 day) repeat time of SWOT overpasses.




Figure 8 | The spectral coherence between the NR and OSSE simulations.



While these results suggest that assimilation of SWOT observations should help to constrain smaller scales than through assimilation of conventional observations alone, it is not clear if it is due to the inclusion of a wide-swath altimeter (i.e. SWOT), or simply due to an increase in the number of observations assimilated. This question is investigated further in Section 6 using early-release SWOT observations in both a 2 nadir altimeter and 6-nadir altimeter framework.




6 Assimilation of the early-release SWOT data

Following the successful launch of the SWOT satellite mission on 16 December 2022 and a calibration and validation phase, the satellite was put in its nominal science orbit starting on 21 July 2023. An early-release SWOT Level-3 dataset (AVISO/DUACS, 2024) covering the period from 6 September 2023 to 21 November 2023 was made available in December 2023. This version is based on beta pre-validated Level-2 data from NASA/CNES with some known issues from the ground segment. It also has limitations due to the use of the first generation of Level-3 algorithms (See Dibarboure et al., 2024 for a detailed discussion). It nonetheless provides an opportunity to assess whether the impacts found in the OSSEs are robust and can also be detected in this short sample of real-world SWOT data. A Level-3 dataset is required for evaluation in RIOPS as this is what is done for other nadir altimetry data.

In this section we present a series of Observing System Experiments (OSEs) to assess the impact of assimilating early-release SWOT observations with different configurations of altimeters. As shown in Table 2, OSE1 uses the standard operational configuration with six nadir altimeters. OSE2 is designed to be comparable to OSSE1 whereby only two nadir altimeters were available. OSE3 assimilates SWOT together with two altimeters (i.e. equivalent to OSSE3). Finally, OSE4 adds SWOT to the current constellation of 6 altimeters used in operations. Comparison of OSE3 to OSE2 demonstrates the impact of SWOT in the context of a two nadir altimeter constellation, as used for the OSSEs, whereas comparison of OSE4 to OSE1 provides the expected impact of adding SWOT to the current operational RIOPS system. All OSE experiments are initialized from a RIOPS operational analysis on 6 September, 2023 and run until 22 November, 2023 (11 7-day analysis cycles) using the standard operational configuration. An important difference in the OSEs as compared to OSSEs, is that the early-release SWOT observations cover the entire RIOPS domain, whereas the NATL60 simulation used for the NR only covered the North Atlantic Ocean. As a result, the impact of assimilating SWOT can now be assessed over a broader region including the North Atlantic, Arctic and North Pacific Oceans.


Table 2 | Observing System Experiments (OSEs) using early-release SWOT observations.



In Section 4, it was shown that the assimilation of SWOT in addition to conventional altimetry with two nadir altimeters (OSSE3 compared to OSSE1) provided an improvement of 14% in the RMS errors of SSH as compared to the experiment assimilating conventional observations only. First, we would like to assess whether this improvement is found using the early-release SWOT observations. The differences in RMS innovation statistics for SLA for the different OSEs are presented in Figure 9. Comparison of OSE3 to OSE2 (equivalent to comparison of OSSE3 to OSSE1) shows a significant reduction in innovations throughout the model domain, consistent with the OSSE results presented in Section 4. While a domain-averaged reduction in RMS of 6.2% is found, this is somewhat smaller than found for OSSEs. This may be due to a combination of larger errors in early-release SWOT data and the assessment of impacts over the full domain. Nonetheless, this notable reduction in error suggests that approximations made as part of the OSSE setup were appropriate and that results from the OSSEs may be transferable to real-world applications. Additionally, reductions outside the domain of NATL60 can now be seen as well, with smaller innovations in the Greenland-Iceland-Norwegian Seas, the Beaufort Sea and in the Pacific Ocean sector. Note that there are several small isolated areas of degradation in the highly-energetic Gulf Stream region. These are not statistically significant and may simply be spurious errors due to the short period of the assessment.




Figure 9 | Difference in RMS innovations statistics for experiments assimilating early-release SWOT observations. (A) Shows the difference of the RMS innovation statistics between OSE3 and OSE2. (B) Shows the differences of the RMS innovation statistics between OSE4 and OSE1.



Next, we would like to assess the impact of assimilating SWOT observations in the present operational context using the full constellation of six nadir altimeters. Comparison of RMS SSH innovations for OSE3 to those for OSE2 shows that a less prominent impact of SWOT is found (Figure 9B). Reductions in RMS innovations are still present over many of the same areas but with a reduced amplitude, providing a domain-averaged reduction of RMS SSH innovations of only 2.0%. Moreover, some areas of degradation can be seen in the Gulf Stream extension. As noted above, these may simply be noise due to the short period of assessment or due to use of the early-release SWOT data. Longer experiments using updated processing would be beneficial to investigate this further. Nonetheless, assimilation of the early-release SWOT data provides generally consistent results in the presence of a 2 nadir altimeter constellation and suggests that a small positive improvement may also be found even with 6 nadir altimeters.




7 Conclusions and summary

In this study, we investigate the potential benefits of assimilating wide-swath satellite altimetry from SWOT into an operational ice-ocean prediction system for the North Atlantic Ocean using both synthetic and early-release SWOT data. In particular, we extend previous SWOT OSSEs by incorporating tides into a model configuration, and by using a higher-resolution 1-km resolution Nature Run, NATL60, to capture smaller-scale features and increase overall variance in SSH and velocities. Early-release SWOT observations are also assessed in a set of relatively short 3-month long data withholding experiments.

Our OSSE results confirm earlier findings (e.g. Tchonang et al., 2021), showing improvements in RMS errors in SSH and velocity with the assimilation of SWOT data by 14% and 6% respectively. The SSH error spectra indicate that improvements are most notable around peak errors in the range of 200-400 km, with error reductions of roughly 33% over these scales, compared to the simulations with data assimilation of the traditional data. Additionally, spectral coherence analysis reveals an increase in the limit of constrained scales. In particular, the limit of constrained scale using conventional data only is found to be 280 km. When SWOT is assimilated in place of 2 nadir altimeters this limit is extended by 50km down to a scale of 230 km. Finally, when SWOT is assimilated together with conventional observations (including 2 nadir altimeters) a limit of constrained scales of 195 km is obtained (an improvement of 85 km over conventional data only).

The SWOT mission was anticipated to significantly enhance the resolution of features with wavelengths below 200 km, which nadir altimeters struggle to represent accurately (e.g., Le Traon et al., 2017). Here, the impact of SWOT is found to reduce errors at the predominant wavelength around 300 km and increase the limit of constrained scales. However, a significant impact at smaller wavelengths is not found. This may be due to the manner in which the data assimilation system is configured (e.g. the spectral properties of background error), the relatively long (21 day) repeat coverage of SWOT swaths and the fact that the spectral properties of the region of study are dominated by (larger) mesoscale features. Moreover, it is not clear if the improvements seen when SWOT data are assimilated are due to the nature of wide-swath altimetry itself or simply due to an increase in the overall number of observations.

Early-release SWOT data assimilation also shows positive impacts in OSE experiments, yielding RMS improvements in SSH innovations of 6% across the domain when combined with two nadir altimeters. However, when evaluated alongside six nadir altimeters, the impact of SWOT is significantly reduced (only 2% improvement) but remains mostly positive. This suggests that the improvements found for the OSSEs are due in part to the number of observations rather than the specific use of wide-swath altimetry. Moreover, the smaller impact of SWOT together even in the 2 nadir altimeters context, compared to the impact found in OSSEs in a similar framework may be related to the presence of larger errors in the early-release SWOT data (e.g. the geophysical errors, like wet tropospheric delay correction error or sea state bias). As the OSSE framework was validated with a companion OSE we do not believe the differences are due to assumptions made in the OSSE framework.

Nonetheless, the OSE results presented here confirm that the assimilation of wide-swath altimetry is possible with existing data assimilation systems and can provide tangible improvements. While the short evaluation period makes it challenging to ascertain the statistical significance of these results, they nonetheless affirm the beneficial outcomes observed during OSSEs. This suggests that the positive impacts on near-surface velocity observed in OSSEs may also be present (albeit of a reduced amplitude) when assimilating real observations, holding significant potential for various users. These results highlight the potential benefits of assimilating SWOT observations in RIOPS and similar ocean analysis and forecasting systems. It is noteworthy that early-release data from an experimental mission employing a radically new observing principle can demonstrate improvements at all. This is achieved using an assimilation system not specifically tuned to detect the positive impacts of SWOT, which provides infrequent 2D snapshots of sea level and reveals details not captured by other altimeters except on rare occasions when orbits coincide. Therefore, a deeper analysis of the impact of real SWOT data, using longer time series in future studies, is necessary to further validate these findings. The operational version of RIOPS currently applies errors to SLA observations to account for uncertainty in the MDT as well as representativeness error on the shelf. Future studies aimed at reducing these errors, based on error characterization using real SWOT data, could enhance the impact of SWOT assimilation in coastal areas even further.
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Ocean and sea ice reanalyses (ORAs or ocean syntheses) are reconstructions of the ocean and sea ice states using an ocean model integration constrained by atmospheric surface forcing and ocean observations via a data assimilation method. Ocean reanalyses are a valuable tool for monitoring and understanding long-term ocean variability at depth, mainly because this part of the ocean is still largely unobserved. Sea surface temperature (SST) is the key variable that drives the air–sea interaction process on different time scales. Despite improvements in model and reanalysis schemes, ocean reanalyses show errors when evaluated with independent observations. The independent evaluation studies of SST from ocean reanalysis over the Indian Ocean are limited. In this study, we evaluated the SST from 10 reanalysis products (ECCO, BRAN, SODA, NCEP-GODAS, GODAS-MOM4p1, ORAS5, CGLORS, GLORYS2V4, GLOSEA, and GREP) and five synthetic observation products (COBE, ERSST, OISST, OSTIA, and HadISST) and from the pure observation-based product AMSR2 for 2012–2017 with 12 in-situ buoy observations (OMNI) over the Arabian Sea and Bay of Bengal. Even though the reanalysis and observational products perform very well in the open ocean, the performance is poorer near the coast and islands. The reanalysis products perform comparatively better than most of the observational products. COBE and OISST perform better among the synthetic observational products in the northern Indian Ocean. GODAS-MOM4p1 and GREP performs best among the reanalysis products, often surpassing the observational products. ECCO shows poorer performance and higher bias in the Bay of Bengal. Comparing the BRAN daily and monthly SST, the monthly SST performance of reanalysis is better than the daily time scale.
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1 Introduction

Sea surface temperature (SST) is classified as an essential climate variable (ECV) (Bojinski et al., 2014; GCOS (Global Climate Observing System), 2010). The air–sea interaction process is influenced by SST, which is in turn shaped by atmospheric and oceanic processes (Kawai and Wada, 2007; Small et al., 2008; Deser et al., 2010; Tang et al., 2022). Accurate knowledge of SST variability is crucial for climate monitoring, forecasting, defense, model validation, and maritime activities (Donlon et al., 2007).

SST plays a crucial role in regulating atmospheric convection on various scales by exchanging energy, momentum, and moisture between the ocean and the atmosphere (Joseph, 2014; Khaldun et al., 2018). It plays a significant role in regulating the atmosphere from synoptic to a larger scale, especially in tropical regions. Atmospheric convection (Bjerknes, 1969; Graham and Barnett, 1987), cloudiness (Gadgil et al., 1984), tropical cyclone (Demaria and Kalpan, 1994; Emanuel, 1999; Knutson et al., 2010), monsoon (Gadgil, 2003), and El Niño (Cane, 1983), among other phenomena, are affected by tropical SST. It also affects the primary productivity through temperature–plant nutrient relation (Kamykowski, 1987).

SST was one of the early ocean properties to be documented (Franklin, 1786). In the earlier days, the SST was measured using mercury thermometers from the sample of seawater collected using a bucket (Ashford, 1948). The measurement techniques evolved over two centuries (Kent et al., 2017). The measurement of SST experienced a significant advancement with the introduction of satellite infrared measurement, leading to substantial developments in the fields of oceanography and meteorology (Legeckis, 1986; Monaldo et al., 1997) in the early 1980s. Satellite retrieval gave more spatiotemporal coverage of observing SST. However, infrared satellite retrieval is significantly affected by clouds and atmospheric aerosols (Reynolds et al., 1989; Reynolds and Smith, 1994). Even though microwave radiometry was a solution, the SST retrieved still suffers from errors when compared with in-situ observation (Wentz et al., 2000; O’Carroll et al., 2008; Donlon et al., 2009; Udaya Bhaskar et al., 2013). Reynolds et al. (1989) reported that the average bias in satellite SST is approximately 0.3°C, and the error in microwave SST retrieval is reported to be approximately 0.6°C by Wentz et al. (2000). Satellite observations enhance global SST monitoring but face cloud and aerosol interference, whereas moored buoys provide continuous, accurate, and interference-free measurements (Kennedy, 2014) at particular locations. Considering its importance, several moored buoy networks have been established in different parts of the global ocean. The Ocean Moored Buoy Network for Northern India (OMNI) (Acharya and Chattopadhyay, 2019) and the Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) (McPhaden et al., 2009) are examples of such buoy networks in the Indian Ocean (IO).

Among the world’s oceans, the tropical north IO is particularly noteworthy due to its unique thermal characteristics and seasonal reversal of winds. This region exhibits some of the highest SSTs globally, especially before the onset of the summer monsoon, specifically in April and May (Joseph, 1990; Shenoi et al., 2002). Accurate SST measurements are essential for effective weather forecasting and climate modeling in this region, considering the impact of SST on weather and climate. The Indian Summer Monsoon Rainfall (ISMR) is notably affected by the SST conditions in the IO (Shukla, 1975; Chakravorty et al., 2016). Moreover, it influences weather and climate in adjacent land areas (Suppiah, 1988; Kripalani and Kumar, 2004).

Ocean reanalysis products are historical reconstructions of the three-dimensional state of the ocean. They are a combination of numerical ocean models and observations. These products integrate various observational data into numerical models, hence becoming a valuable resource for climate and weather studies (Carton et al., 2005). By assimilating various observational data from satellites, in-situ devices, and other sources, reanalysis products provide a detailed and continuous state of the ocean. It has broader coverage than observations and is more accurate than stand-alone ocean models (Carton and Giese, 2008). Understanding the importance of ocean reanalysis, several oceanographic centers have developed their own reanalysis products (e.g., Behringer, 2007; Zuo et al., 2017; Chamberlain et al., 2021).

Ocean reanalyses are crucial for monitoring and understanding long-term ocean variability at depth (Cipollone et al., 2017), which is still largely unobserved. Coupled general circulation models used for the ISMR forecast (Pokhrel et al., 2013; Saha et al., 2014) heavily rely on the initialization strategies (Saha et al., 2016, 2019). The prediction skill of ISMR by NCEP Climate Forecast System version 2 (CFSv2) is linked to the Eurasian snow cover area and SST over the tropical oceans (Saha et al., 2016). Recent studies show that improved ocean initialization, particularly in terms of SST, enhances the ISMR prediction skill (Pokhrel et al., 2024; Venugopal et al., 2018). These forecasting models use ocean reanalysis products for their initialization (Balmaseda, 2017; Rao et al., 2019), as the skill of prediction depends on it (Chattopadhyay et al., 2016; Ryan et al., 2015; Palmer et al., 2017). Numerical weather prediction models are highly sensitive to soil moisture, land surface temperature, SST, etc. Poor representation of these boundary conditions leads to uncertainties (Schepanski et al., 2015). Accurate representation of the spatiotemporal pattern of SST is important for operational forecasts, especially in coastal areas (Senatore et al., 2020). Hence, the robustness of the reanalysis SST will significantly impact short-range weather and ISMR prediction. The accurate lateral boundary condition for regional models is also needed, which can be prescribed from the ocean reanalysis products. Recently, Rahaman et al. (2023) showed that accurate initial conditions are necessary for the realistic simulation of Indian Ocean circulation.

The reanalysis products show differences based on the model, forcing, assimilation technique, and observation system used during the development (Balmaseda et al., 2015). Ocean reanalysis products can exhibit biases when compared with independent observational datasets. Thus, it needs to be continuously evaluated, and improvements should be made (Carton et al., 2019). Understanding and correcting these biases is necessary for enhancing the accuracy and reliability of these products. Karmakar et al. (2018) reported the presence of biases in the SST of reanalysis products in the tropical IO. To increase the accuracy of reanalysis products, the oceanographic community has made efforts to reduce the bias in observational datasets (Levitus et al., 2009; Boyer et al., 2016) and upgrade models (Balmaseda et al., 2015) to reduce the errors. Apart from the improvements in the ocean models and observation datasets, improvements were also made in the data assimilation schemes (Barker et al., 2004).

Even though Balmaseda et al. (2015) have documented the intercomparisons of reanalysis products, the SST results were not shown; it is mostly focused on subsurface properties. However, very recent intercomparison evaluation studies with six reanalysis products by Fu et al. (2023) have shown the SST results as well. They showed with respect to Operational SST and Sea Ice Analysis (OSTIA) SST analysis that the root mean square error (RMSE) of Global Reanalysis Ensemble Product (GREP) is the smallest and that of Estimating the Circulation and Climate of the Ocean (ECCO) version 4 is the largest. However, the spatial patterns of SST RMSE of the six products are similar, with much lower values occurring in the open seas and higher in coastal waters, western boundary currents, and ACC areas. Due to differences in numerical models, assimilation methods, observation data, and atmospheric forcing, there is diversity in the estimate of the three-dimensional ocean state. This could lead to errors in SST. Given the importance of SST in climate and weather forecasting, to understand the accuracy of the reanalysis products, and to identify the consistencies and discrepancies among different ocean reanalysis SST products, we evaluated 10 reanalysis products with in-situ buoy observations over the north Indian Ocean. This assessment is particularly important in regions like the north IO, where SST plays a vital role in driving the ISMR and other extreme events such as cyclones. In this study, we evaluated the performance of SST from 10 ocean reanalysis products over the north IO, using 12 independent moored buoy observations from the OMNI buoy network as a benchmark. This analysis will help the user community to identify which products provide the most accurate SST representation in this region. We have also evaluated the spatial patterns of SST in the north IO using the best-performing product among six observation-analysis gridded SST products in this study. Section 2 details the data and methodology, followed by the analysis and findings in Section 3. Conclusions are drawn in Section 4.




2 Data and methodology

This study evaluates the performance of SST for 10 global ocean reanalysis products, namely, ECCO, Bluelink ocean reanalysis (BRAN), Simple Ocean Data Assimilation (SODA), Global Ocean Data Assimilation System (NCEP-GODAS), GODAS-MOM4p1, Ocean and sea ice ReAnalyses System (ORAS5), Global Ocean Reanalysis System (GLORYS), Global Seasonal forecast System (GLOSEA), CMCC Global Ocean Reanalysis System (CGLORS), and GREP for the northern IO. The details of the reanalysis products used in this study are summarized in Table 1. A detailed description of the reanalysis products can be seen in the supplementary section. The reanalysis SST is validated using SST data from 12 moored buoys from the OMNI network (Acharya and Chattopadhyay, 2019), deployed by the National Institute of Ocean Technology (NIOT, Chennai, India) under the National Data Buoy Program (NDBP). These moorings are located in the Arabian Sea (AS) and Bay of Bengal (BoB) basin (Figure 1). The evaluation was done using 5 m temperature data from the buoy and the reanalysis products. Since the 5-m depth data are not available for BRAN, the average of 2.5 m and 7.5 m was taken as a substitute. It is worth mentioning that the 5-m buoy observed SST was used to evaluate the analysis and reanalysis products since all these products provide the bulk SST. The subsurface SST (SSTdepth, traditionally referred to as a “bulk” SST) considers any temperature within the water column beneath the SSTsubskin, where turbulent heat transfer processes dominate (Donlon et al., 2002). The evaluation time period of the study was restricted to 5 years (from October 2012 to December 2017) due to the availability of OMNI buoy data starting in October 2012 and the ECCO dataset limited till 2017. The analysis and evaluation of the reanalysis SST based on in-situ observational data were performed after regridding all the reanalysis products to 1-degree resolution for a monthly time scale. A search radius of 1 degree was considered at the buoy location, and the values of grid points inside the circle were averaged. This circle was considered by taking into account the watch circle of the buoy. We have also evaluated how the observation-based (or observation analyses) gridded products such as ERSST, Centennial In Situ Observation-Based Estimates of SST (COBE), HadISST, Advanced Microwave Scanning Radiometer-2 (AMSR2), OSTIA, and Optimum Interpolation Sea Surface Temperature (OISST) performed at these buoy locations. Since ERSST has a coarser resolution of 2°, the search radius for this product was chosen as 2°. Later, the best synthetic observation product was used for the spatial analysis of reanalysis SST. Since the SST user community relies more on the high-resolution SST data (e.g., tropical cyclone monitoring, short-term weather forecasting, fishery management), we have also analyzed the high-resolution daily SST from BRAN with the OMNI data.


Table 1 | Details of reanalysis products used in this study.






Figure 1 | Location of OMNI moored buoys in the Indian Ocean. The blue color stars represent AD buoys in the Arabian Sea and the red star shows BD buoys in the Bay of Bengal.





2.1 Reanalysis products



2.1.1 ECCO

The ECCO reanalysis (Forget et al., 2015; Fukumori et al., 2019) covers the period from 1992 to 2017. It uses the MIT general circulation model (MITgcm), integrating a wide range of satellite and in-situ data, including sea surface height (SSH), SST, sea surface salinity (SSS), and ocean bottom pressure (OBP). The 4D-Var data assimilation method of ECCO ensures that the estimates are physically consistent, satisfying the laws of physics and thermodynamics, which conserves heat, salt, volume, and momentum.




2.1.2 BRAN

The BRAN uses the Ocean Forecasting Australia Model (OFAM) with a 0.1° horizontal resolution (Chamberlain et al., 2021), forced by JRA-55 (Kobayashi et al., 2015; Tsujino et al., 2018) and employs the multiscale data assimilation (DA) approach, primarily using the Ensemble Optimal Interpolation (EnOI) method (Fu et al., 2009; Moore et al., 2019). Observational data such as SST, sea level anomaly (SLA), and subsurface temperature and salinity from Argo profiles are assimilated, with updates to temperature, salinity, and velocities (u, v).




2.1.3 SODA

The SODA3 (Carton et al., 2018) ocean uses the 0.25° horizontal resolution Modular Ocean Model (MOM5), incorporating active sea ice and enhanced topography representation (Carton et al., 2018). This model is forced with ERA-Interim reanalysis (Dee et al., 2011). SODA3 assimilates hydrographic data, including the World Ocean Database and SST data from both in-situ and satellite sources, such as ICOADS version 5 (Woodruff et al., 2011).




2.1.4 GODAS

The reanalysis product by NCEP uses GODAS. It is based on the GFDL Modular Ocean Model version 3 (MOM.v3) and covers a quasi-global domain from 75°S to 65°N, with a resolution of 1° increased to 1/3° in the north–south direction near the equator (Behringer, 2007), and uses 3D-Var assimilation schemes. GODAS is forced by momentum, heat, and freshwater fluxes from the NCEP Reanalysis 2 (R2). The system employs a 3D-Var assimilation method, modified to incorporate synthetic salinity profiles alongside temperature profiles from XBTs, TAO, TRITON, PIRATA moorings, and Argo floats. GODAS provides near-real-time reanalysis data (with a 1-day delay) from 1979 to the present.




2.1.5 GODAS-MOM4p1

The updated Global Ocean Data Assimilation System (GODAS) by Rahaman et al. (2016, 2018) employs the MOM4p1 ocean model (hence GODAS-MOM4p1) with a tripolar grid and 1/4° horizontal resolution forced with NCEP-R2 and NCMRWF winds. This version incorporates submesoscale eddy parameterization to prevent excessive mixed layer depths. GODAS assimilates temperature and salinity profiles from FNMOC USGODAE. Surface temperature is corrected by restoring the model’s first layer temperature to the OISST.




2.1.6 ORAS5

The ORAS5 (Zuo et al., 2019) reanalysis, part of ECMWF’s OCEAN5 system, employs the NEMO v3.4 (Nucleus for European Models of the Ocean) ocean model with a horizontal resolution of 0.25°. The assimilation method uses NEMOVAR to assimilate temperature and salinity profiles, sea ice concentration, and altimeter-derived sea-level anomalies. Key observational datasets include HadISST2 and OSTIA for SST, EN4 for in-situ data, and AVISO DT2014 for sea-level anomalies.




2.1.7 GLORYS2

The GLORYS2 Version4 (Lellouche et al., 2013; Garric and Parent, 2013) reanalysis system is based on the NEMO 3.1 ocean model with a horizontal resolution of 0.25°. The ERA-Interim reanalysis product is used for surface forcing after bias correction in precipitation and radiative fluxes. The data assimilation employs a reduced-order Kalman filter based on the SEEK formulation and a 3D-Var bias correction for temperature and salinity. The system assimilates satellite-derived SST and SLA, in-situ temperature and salinity from CORA, and sea ice concentration. There is no global restoration for sea surface salinity or SST, but 3D-restoring toward EN4 products is applied below 2000 meters.




2.1.8 C-GLORSv7

The C-GLORSv7 reanalysis (Storto and Masina, 2016) is based on NEMO 3.4 having a resolution of 0.25° and is forced with ECMWF ERA-Interim atmospheric reanalysis. The C-GLORS employs the OceanVar data assimilation scheme, which assimilates hydrographic profiles from EN3 and EN4 datasets, as well as altimetric observations. The large-scale bias correction of CGLORS helps mitigate errors due to model parametrization and atmospheric forcing while preserving inter-annual variability.




2.1.9 GloSea5

The GloSea5 reanalysis system (MacLachlan et al., 2015; Blockley et al., 2013) uses a 0.25° NEMO ocean model forced with ERA-Interim reanalysis and employs the NEMOVAR assimilation scheme, incorporating satellite and in situ observations of sea-surface temperature (SST), sea-level anomaly, subsurface temperature and salinity profiles, and sea ice concentration. A 360-day, 3D Newtonian damping is used to correct the long time evolution of subsurface temperature and salinity.




2.1.10 GREP

The GREP (version 1) utilizes four ocean reanalyses developed with the NEMO model on the ORCA025 grid at 1/4° resolution, providing a multi-model ensemble product (Desportes et al., 2017). The contributing systems are GLORYS2V4 (Mercator Ocean, France), ORAS5 (ECMWF), FOAM/GloSea (UK Met Office), and C-GLORS (CMCC, Italy). All reanalyses assimilate SST, sea-level anomaly (SLA), temperature and salinity profiles (T/S), and sea ice concentration (SIC). Key differences include the assimilation methods and windows.





2.2 Observation



2.2.1 Analysis/synthetic observations



2.2.1.1 COBE

COBE version 1, produced by the Japan Meteorological Agency (JMA), provides historical SST datasets essential for monitoring global warming (Ishii et al., 2005). The SST analysis is conducted on a 1° latitude by 1° longitude grid using an optimum interpolation method. COBE analyses utilize data from the Global Telecommunications System (GTS) and drifting buoy data from the Canadian Marine Environmental Data Service and ICOADS data.




2.2.1.2 OSTIA

The UK Met Office OSTIA system (Donlon et al., 2012) is developed to provide surface boundary conditions for high-resolution Numerical Weather Prediction (NWP) models, and it offers daily global coverage of foundation SST. This system integrates data from both infrared and microwave satellites, as well as in-situ measurements from GTS for SST.




2.2.1.3 ERSST

The ERSSTv5 dataset (Huang et al., 2017), a monthly global 2° × 2° SST product, integrates data sources, including ICOADS version 3.0, a decade of near-surface data (above 5 m) from Argo floats, and sea ice from HadISST2. Cross-validations and verifications with modern independent observations indicate that ERSSTv5 offers a better representation of spatial variability across global oceans. ERSST v5 also uses in-situ ship and buoy observations.




2.2.1.4 HadISST

The HadISST dataset offers monthly globally complete fields of SST and sea ice concentration on a 1° latitude–longitude grid from 1871 to the present (Rayner et al., 2003). SST data are sourced from the Met Office Marine Data Bank and GTS from 1982 onward, supplemented by monthly median SSTs from the Comprehensive Ocean-Atmosphere Data Set (COADS) for 1871–1995. The HadISST includes ship and buoy observations as well as satellite advanced very high-resolution radiometer (AVHRR) observations.




2.2.1.5 OISST

The NOAA OISST (Reynolds et al., 2007) blended product, Version 2.1, provides monthly average foundation SST data derived from satellite observations, including data from AVHRR and advanced microwave scanning radiometer. It also incorporates ships, buoys, and Argo float data. This dataset, available from 1981 onward, offers a spatial resolution of 0.25° × 0.25° with a daily temporal interval.





2.2.2 AMSR2 observed SST

The AMSR2 (Wentz et al., 2014) mounted on JAXAs GCOM-W1 satellite offers monthly data on SST (~1 mm), surface wind speed, vertical column vapor, cloud water, and rain rate. Operating from a polar orbit aboard the Aqua satellite, AMSR2 provides comprehensive coverage over global oceans, with its microwave capabilities enabling observation through clouds, except during heavy precipitation.






3 Results and discussion

This study evaluates the performance of SST in various state-of-the-art global ocean reanalysis products. We analyze 10 ocean reanalysis products using 12 independent moored buoy observation data over a 5-year period on a monthly scale. Additionally, to identify the best-performing synthetic observation SST products for spatial analysis in the IO, we conducted a similar evaluation using the same moored buoy data. For the convenience of readers, we present the results for both reanalysis and observation-based products together.



3.1 Evaluation of reanalysis and observed SST with the OMNI buoy

SST drives the deep atmospheric convection in the tropical ocean (Bjerknes, 1969; Gadgil et al., 1984; Graham and Barnett, 1987; Bony et al., 1997a, b), which is determined by heat flux, advection, and mixing in the upper ocean (Vinayachandran et al., 2002). The tropical north IO is notably the warmest part of the world’s oceans just before the summer monsoon onset in April and May (Joseph, 1990; Shenoi et al., 2002). These warm conditions are conducive to active convection (Gadgil et al., 1984; Graham and Barnett, 1987; Sanilkumar et al., 1994). Simulating the absolute value of SST is important for convective activity (Bhat et al., 2004). Hence, any error in the SST products utilized for the evaluation of the atmospheric model or initialization of a general circulation model will have significant implications. Thus, this study aims to see how good the reanalysis and observation-based synthetic SST products are in the north IO.

The monthly averaged SST of each reanalysis product is compared with OMNI buoy data from all the buoy locations. Figure 2 (and Supplementary Figure, Figure S1) shows the SST time series comparison at AD06, AD09, BD09, and BD11 from all 10 reanalysis products along with in-situ buoy observations. All the reanalysis products are able to capture the bimodal seasonal cycle as well as interannual variations. Over the northern Arabian Sea (AS) buoy location, GODAS-MOM4p1 remarkably reproduces the maximum observed SST during May (Figure 2A). The intermodel spread at the AD06 location is less compared to the South Eastern Arabian Sea (SEAS; Figure 2B) buoy location. Almost all models show excess cooling during the peak summer monsoon month of August. The frequency distribution plot (Supplementary Figure S2A) shows lower SST values (25°C–25.5°C) by the reanalysis product, which is absent in the buoy observations over the north AS. On the other hand, the buoy-observed high SST values (30°C–30.5°C) were failed to be captured by half of the reanalysis products. The time series comparison for SEAS at the AD09 location is shown in Figure 2B. This region lies over the mini-warm pool region, which shows the highest SST during May over the global ocean (Vinayachandran et al., 2007). Although all the reanalysis products were able to capture the observed SST variation, the intermodel spread was much higher over this region than in other parts of AS and BoB. ECCO (GLOSEA) over (under)estimated the observed buoy SST throughout the study period at this location. The temporal change of SST at these buoy locations indicated that reanalysis products performed better in the open-ocean regions than near the coast. The interproduct spread in the open ocean was less (Figures 2A, D) compared to the SEAS (Figure 2B) region. The interproduct spread in the open ocean was approximately 0.5°C during winter, whereas it doubled near the coast to approximately 1°C during winter. A consistent spread of 0.5°C was observed between the products throughout the time period of analysis at SEAS (Figure 2B).




Figure 2 | Time series of all the reanalysis products at different buoy locations. (A) AD06 at the northern Arabian Sea, (B) AD09 at the southeastern Arabian Sea, (C) BD09 at the northern Bay of Bengal, and (D) BD11 at the central Bay of Bengal. The colored lines are for ECCO (blue), GLOSEA (orange), GODAS-MOM4p1 (green), and buoy (black), and the rest of the products are given in gray-colored lines (detailed figure for all the reanalysis is given as Supplementary Figure S1).



The analysis of the AS buoys revealed a consistent cold bias in the reanalysis products, particularly during the winter and spring months (Figures 2A, B). In contrast, the northern BoB exhibited a slight warm bias during the winter cooling period (Figures 2C, D). The ECCO reanalysis showed a cooler bias at the AD06 location (Figure 2A), which transitioned to a warm bias toward the SEAS (Figure 2B). Concurrently, GLOSEA displayed a cold bias in the AS. The warm bias in ECCO at SEAS continued into the northern BoB (BD08, BD09) (Figure 2C). The large systematic warm bias in ECCO was slightly reduced over the southwestern BoB buoy location (BD11, Figure 2D). The warming of ECCO in the regions of low salinity due to freshwater inflow may be arising due to the buoyancy, as it tries to maintain a dynamically consistent ocean state estimate (Forget et al., 2015). The thermodynamic structure of the upper ocean is influenced by surface buoyancy, which is mainly contributed by salinity (Vialard and Delecluse, 1998; Durand et al., 2004). Fu et al. (2023) also noted a deviation in ECCO SST, attributing it to the assimilation scheme that prioritizes ocean mass and energy conservation over strict SST constraints. In this study, a time series analysis found that GODAS-MOM4p1 closely aligned with the observed SST at most of the locations. While GODAS-MOM4p1 generally performed better in terms of mean, correlation, RMSE, bias, and standard deviation compared to the other products, there were some locations where other products also outperformed it, as indicated in Tables 2, 3. The colder bias in GLOSEA at SEAS (Figure 2B) may be due to increased mixing arising due to enhanced vertical diffusion caused by the convection parametrization used (Blockley et al., 2013). It is worth noting that all the reanalysis products are very close to observed variations during March–April–May (spring) at all the locations.


Table 2 | The mean, bias, correlation coefficient (CC), root mean square error (RMSE), and standard deviation (STD) for Arabian Sea buoys (AD buoys) calculated for the monthly analysis at each buoy location.




Table 3 | The same as Table 2 but for the Bay of Bengal buoys (BD buoys).



The combined mean time series (figure not shown) of all the locations shows that all reanalysis products exhibited a cold bias in the AS throughout the analysis period. The combined effect of the colder bias in the open ocean and the warmer bias in the SEAS resulted in a more accurate performance for ECCO in the AS. However, in the BoB, ECCO consistently showed a warmer bias.

Figure 3 (Supplementary Figure S3) shows the heat map (a visual representation of 2D data using colors to represent values) of the mean and standard deviation (STD) of SST from the buoy and all reanalysis (synthetic observation) products at all buoy locations, as well as the bias and RMSE of the reanalysis product (synthetic observation) with respect to buoy observations. Mean SST from buoy observations is much cooler at the northern AS buoy (AD06) as compared to all other locations. All reanalysis products show mean values closer to observation except ECCO, which is cooler over AD06 and warmer over SEAS (AD09 and AD10). Overall, the mean SST values of GODAS-MOM4p1 were closest to the observation at all buoy locations. The mean observed SST value was the highest at the AD09 and AD10 buoys (SEAS region). Warmer mean SST was also seen in the Andaman Sea (BD12), which is ~29°C. At both these locations, ECCO overestimated the observed values by ~0.5°C. The monthly SST variability was higher over the AD06, BD08, and BD09 buoy locations with buoy observed STD value ~1.2°C (Figure 3B). ECCO overestimated the observed STD values at the AD06 location, whereas the rest of the reanalysis products showed STD closer to the buoy observation. The average bias over the analysis period indicated that GODAS-MOM4p1 had the lowest bias at most buoy locations (Figure 3C). RMSE was the highest for ECCO in the northern BoB region (Figure 3D). It can be noticed that STD values were much higher ~1°C in the northern AS (AD06) and BoB (BD08, BD09) as compared to lower latitude buoys (Figure 3B).




Figure 3 | Heatmaps illustrating SST analysis: (A) Mean SST at each buoy location based on reanalysis products and buoy measurements. (B) Standard deviation of SST for both reanalysis data and buoy observations at each buoy site. (C) Average SST bias between reanalysis data and OMNI buoy observations. (D) RMSE of reanalysis SST relative to OMNI buoy data.



Figure 4 (and Supplementary Figure S4) shows the time series comparisons of SST from all widely used synthetic observation products. We showed two buoys over AS and two over BoB for the comparisons. Over the north AS, all observation-based products were able to capture the buoy-observed SST variations (Figure 4A). However, AMSR2 showed systematic warm bias over the SEAS warm-pool region (Figure 4B). The overestimation of SST in AMSR2 could be due to its measurement depth. AMSR2 gave subskin SST, whereas the buoy gave bulk or depth SST (see Section 2). The diurnal SST effect was accounted for in AMSR2 and hence gave higher values than buoy observation. The expected error in the retrievals of SST using a satellite-based infrared sensor was 0.4°C (Shenoi, 1999), and that using the microwave sensor was 0.6°C (Bhat et al., 2004) in the north Indian Ocean. However, the large magnitude of diurnal warming introduced larger errors in the retrieved SSTs, especially in spring (Shenoi et al., 2009). Similar to the reanalysis products, the interproducts spread was more at the AD09 buoy location compared to AD06 over the AS (Figure 4B) for the synthetic observation products as well. Figure 4C shows the SST comparison over BD09, which is located in the northern BoB. This region is very important with respect to the ISMR since the majority of the ISMR rain over central India comes from this region due to the formation of low-pressure systems such as depression and deep depression (Goswami et al., 1999). Similar to the reanalysis products, the observational products also showed a large interobservational spread during summer monsoon and winter. All the observations almost matched the buoy observations during spring (March–May) and early winter (November–December). Similar features are seen over the southern BoB buoy location (BD11), but with interobservational spread reduced during winter (January–February) (Figure 4D).




Figure 4 | Time series of all the observational products at different buoy locations. (A) AD06 at the northern Arabian Sea, (B) AD09 at the southeastern Arabian Sea, (C) BD09 at the northern Bay of Bengal, and (D) BD11 at the central Bay of Bengal. The colored lines are for AMSR2 (red) and buoy (black), and the rest of the products are given in gray-colored lines (detailed figure for all the observational products is given as Supplementary Figure S4).



The distribution of the reanalysis (synthetic observation) SST (histogram) corresponding to the locations in Figure 2 (Figure 4) is shown in Supplementary Figure S2 (Figure S5). It was seen that the median temperature of GLOSEA was less than the observed in most of the locations. The higher distribution of ECCO SST was warmer than the median observation in most of the locations (e.g., Supplementary Figure S2B). The distribution of OSTIA SST was closer to the observation at the BD11 location (Supplementary Figure S5).

The overall performance of the reanalysis and synthetic observation products was assessed using statistical parameters, including mean SST, mean of bias, correlation coefficient (CC), RMSE, and STD at each buoy location. Tables 2, 3 summarize these parameters for buoys in the AS and BoB, respectively. The best-compared statistics are highlighted in bold in the tables. It can be seen that GODAS-MOM4p1 and SODA performed best with respect to bias and RMSE among the reanalysis products and COBE, as well as OISST from the synthetic observations. All products exhibited a CC above 0.9 for the analysis period. Higher correlations were generally observed in the open-ocean regions (CC above 0.96) and comparatively lower CC near the coast (Supplementary Figure S6), which is less than 0.95. Reanalyses showed poorer performance in regions where the average temperature exceeded 29°C, such as SEAS at the AD09 buoy location and near the Andaman Island coast at the BD12 location. The large spread in CC values can be seen at the AD06 location (Supplementary Figure S6A). From the location-wise variations of CC from all the SST observations and their spread, it can be seen that synthetic observations also showed a similar pattern to that of the reanalysis products (Supplementary Figure S6B).

Figure 5 summarizes the performance of each reanalysis as well as the synthetic observation product when compared with OMNI SST. The product-wise CC and RMSE spread from all collocated reanalysis and observation products from all buoy locations are shown. The box represents the data from the first quartile to the third quartile, and the whiskers extend to show the full range of the data. The horizontal line inside the box shows the corresponding median value. From the figure, we can see that most of the reanalysis products exhibit a higher correlation with a median value above 0.98. In contrast, the median value of SST is generally above 0.97 in the synthetic observation products, with a higher spread, indicating variations in their performance. The GREP ensemble product demonstrated higher correlations at most locations compared to other products, followed by GODAS-MOM4p1, then BRAN (Figure 5A). The better performance of GREP was due to the fact that it is an ensemble product. Previous studies have reported the better performance of ensemble reanalysis products surpassing the observation analyses by partially canceling out the biases of individual reanalysis products (Storto et al., 2017; Toyoda et al., 2017; Ryan et al., 2015). The better performance of BRAN can be attributed to its higher resolution. Earlier studies have found that the reanalysis product with higher resolution tended to simulate the ocean properties accurately (Amaya et al., 2023). It can be seen that the lowest mean CC from reanalysis products was from ECCO (0.98). Figure 5B shows the same from the observations. Except for OISST and COBE SST, all other observations showed CC values lower than that of ECCO. CC values of OISST and COBE SST were even lower than those of GODAS-MOM4p1, GREP, and GLOSEA. The reanalysis products generally performed better, particularly in terms of correlation, than synthetic observation. Analysis of the correlation spread (Figures 5A, B) showed that reanalysis products had higher correlations with less spread than synthetic observation products, indicating superior SST performance when compared with independent buoy data.




Figure 5 | Box and whisker plots for correlation coefficient (CC; A, B) and RMSE (C, D) spread for the SST in reanalysis (A, C) and synthetic observation products (B, D). The box shows the quartiles (25–75 percentile) of the dataset, while the whiskers extend to show the rest of the distribution.



Similar RMSE spreads for all the products from all the buoy locations are shown in Figures 5C, D from reanalysis and synthetic observations, respectively. ECCO exhibited the highest RMSE spread. This was mainly due to simulating warmer SSTs in the SEAS and northern BoB (see Figure 2). For synthetic observation products, AMSR2 showed a higher RMSE spread, primarily due to capturing warmer SSTs near the equator. It is interesting to note that the RMSE of GODAS-MOM4p1 SST was the lowest among all reanalysis as well as all observation products. The higher CC values in OISST and COBE SST also coincided with low RMSE values as compared to other synthetic observation products (Figure 5D).

SODA performed better in the SEAS region with the least average bias and RMSE, although its correlation with SEAS buoys was the second highest. GODAS-MOM4p1 had the lowest RMSE at most locations and showed an STD closer to buoy observations. ORAS5 accurately captured the average temperature in most BoB locations. From Figure 5, the best-performing model in terms of correlation and RMSE spread was GODAS-MOM4p1, which had higher CC and lower RMSE with the least spread for both. This superior performance of GODAS-MOM4p1 as compared to NCEP-GODAS can be attributed to the assimilation of observed salinity profiles as well as restoration with OISST (Rahaman et al., 2016, 2018). It is worth mentioning that NCEP-GODAS and GODAS-MOM4p1 used the same atmospheric forcing, i.e., NCEP reanalysis 2, and the same temperature profiles were being assimilated. The observed variability in terms of STD decreased toward the equator in both basins (Figure 6), which was captured by all the products. Figure 6 is similar to Figure 5, but for the STD, and instead of individual reanalysis, here, we show individual buoy locations, averaged for all reanalysis and synthetic observations. This figure also indicates that STD values over the north AS and BoB were higher (~1.2°C), and its value gradually reduced toward the equator and became half (~0.6°C). Similar variations can also be seen for the BoB buoys (Figure 6A). Synthetic observations also showed similar variations, but the first quartile to the third quartile spreads were large as compared to the reanalysis products, particularly over the BoB (Figure 6B). The better performance of the reanalysis products compared to observation analyses might be due to the physical consistency of the models used for developing the reanalyses. The reanalysis products could capture the underlying physical process that might control the SST, whereas the observation analyses only corrected the satellite SST with in-situ data. The reanalysis products used advanced assimilation techniques as well as bias correction methods. This allows the reanalysis dataset to offer a more reliable and accurate representation of SST.




Figure 6 | The box and whisker plot showing the spread of standard deviation (STD) of (A) all the reanalysis products at each buoy location and (B) from synthetic observation products at each buoy location.






3.2 Spatial analysis of reanalysis SST

Even though the reanalysis products performed better when compared to synthetic observation products at particular buoy locations, it is essential to understand the spatiotemporal evolution of the SST of the reanalysis products. Since most of the synthetic observation products used satellite as well as in-situ observations, the overall spatial SST pattern was better represented by it. However, there could be errors in the spatial SST pattern of reanalyses because of underlying physics, errors in forcing fields, etc. For the spatial evaluation of reanalysis SST, it is crucial to identify the best-performing synthetic observation product over the IO. Different synthetic observation products differed from each other and were susceptible to errors (Trujillo et al., 2023; Reynolds et al., 2007). Figures 5B, D indicate that COBE SST showed better performance in terms of correlation and RMSE, followed by OISST. The COBE solely relied on in-situ data, and hence, its reliability in the northern BoB is questionable, where a very small number of in-situ observations are available and were incorporated into the COBE analysis. The superior performance of COBE SST over the AD09 buoy location may be due to a lot of XBT section data from the SEAS that went into COBE during its production. So, we mainly used OISST and COBE SST for the spatial analysis.

The coastlines of the north IO are among the most densely populated in the world. Any changes in ocean–atmosphere interactions can significantly impact the millions of people living in these coastal regions (Shenoi et al., 2002) since their livelihood is mainly dependent on the Indian summer monsoon. Understanding and predicting these changes is crucial, especially considering the IO’s strong influence on the monsoon, which is vital for life and agriculture. Given the importance of the IO and its role in the monsoon (Gadgil, 2003; Shenoi et al., 2002), it is essential to accurately understand and forecast ocean–atmospheric conditions (Venugopal et al., 2018) across the entire region. We have included the spatial analysis figures (Figures 7–11) for the summer season (June, July, and August) due to the significance of these months for ISMR. The figures for other seasons were omitted to maintain conciseness. However, the results are included in the text.




Figure 7 | Spatial pattern of mean SST during summer (JJA) from COBE (A), OISST (B), and reanalysis products (C–L).






Figure 8 | The average bias on a monthly scale for all the reanalysis products (A–J) with respect to OISST observation for the entire period of analysis (October 2012–December 2017).






Figure 9 | (A–J) Spatial correlation pattern of reanalysis products with the OISST observation during summer (June–August).






Figure 10 | The RMSE of reanalysis products (A–J) with respect to OISST for the summer months (June-August).






Figure 11 | The STD for (A) COBE, (B) OISST, and (C–L) reanalysis products on a monthly scale for the period of analysis (October 2012–December 2017).



The IO gradually warms during the northern hemisphere summer, reaching peak temperatures in May (Joseph, 1990; Shenoi et al., 2002). The warmest temperatures are typically observed approximately within ±5° latitude and 65–75°E, reaching up to 30°C. The tongue-shaped high SST pattern with a dipole SST patch of higher SST (~30°C), one centered at 70°E at the equatorial IO and another at 95°E off Sumatra, was seen in both OISST and COBE SST (Figure 7). This observed tongue-shaped SST pattern embedded with a higher SST patch was simulated by all reanalysis products with slightly varying magnitude. Although ECCO SST was able to capture this equatorial observed SST pattern, it exhibited significantly higher temperatures in the BoB during this period. Another striking difference in the ECCO SST was that the gradient is north–south over the northern BoB instead of east–west, as seen in both the observation products and all the other reanalysis products. ECCO also showed much cooler SST off the Somali coast due to intense upwelling in the model as compared to observations and other reanalysis products. This feature can be seen more clearly in the bias plot shown in Figure 8. This pattern was also seen in the annual mean plot (see Supplementary Figure S7). The annual mean bias in the IO (Figure 8) showed that ECCO has the maximum bias (>1°C) near the coast as compared to other reanalysis products. The reason ECCO showed higher RMSE might be due to the bathymetry used in ECCO along with no SST constraints. Most of the reanalysis products showed a cooler bias in the AS. The cooler bias in the AS in BRAN might be because of the absence of tidal parametrization. SODA had a warm bias reaching up to 0.3°C in the BoB and along the equator and extending to the SEAS. GLORYS showed the least spatial bias, followed by CGLORS. GLOSEA had a basin-wide cooler bias that may arise because of the enhanced mixing resulting from the convection parametrization used.

SODA overestimated the equatorial tongue-shaped warm temperature by more than 0.3°C, while ECCO overestimated the average temperature in the SEAS (close to the western coast of India) of 28.6°C to approximately 29.5°C. Observations also indicated a 1°C warming in the northern BoB in ECCO compared to synthetic observation products. The warmer temperature in the SEAS is because of the inability of ECCO to capture the upwelling on the southwestern coast of India.

During winter (DJF), ECCO also showed higher SEAS temperatures, while GLOSEA depicted lower temperatures (figure not shown). This cooler trend in GLOSEA persisted into spring (MAM), where it, along with NCEP-GODAS, showed cooler temperatures in the equatorial region. Accurate SST representation during this period is crucial for the formation of moisture-laden clouds, which are essential for monsoon onset and ISMR. During summer (JJA), ECCO failed to capture the cooler temperatures at the southern tip of India, while NCEP-GODAS overestimated them (Figures 7C, F). The overestimation of the cooling in the NCEP-GODAS was aided by the unrealistic representation of the coastal Kelvin wave (Rahaman et al., 2014, 2020) and coastal currents, which might have resulted due to the unrealistic representation of bathymetry (Rahman and Rahaman, 2024) and assimilations of synthetic salinity profiles. In fall (SON), the equatorial warm tongue extending from the Sumatra region to 65°E was absent in ECCO. Instead, ECCO displayed a warm tongue structure extending from the equator to the western coast of India, with warmer near-coast temperatures. Although GLOSEA and NCEP-GODAS showed less warming compared to observations, their patterns were similar to the observed.

Monthly bias with respect to OISST and COBE revealed that none of the reanalysis products were able to reproduce the mean SST near the coast. This could be due to the unrealistic representation of bathymetry and mixing schemes, which resulted in the unrealistic coastal Kelvin wave propagation, an issue previously reported by Rahaman et al. (2014, 2020) and Rahman and Rahaman (2024). It is also worth mentioning that even the synthetic observations also suffered large errors in the SST retrieval near the coast (Lee and Park, 2020). Hence, extensive research is needed to generate accurate SST data products near the coast. ECCO exhibited a warm bias in the BoB and a cold bias in the AS, reaching up to 1°C during all months. The CC in the IO region was above 0.9 for most regions across all reanalysis products with OISST and COBE SST (Figure 9). Lower correlations were observed near the Sumatra coast except in GODAS-MOM4p1, GLORYS, CGLORS, and GREP. During winter, correlations decreased near the Indian coast in SODA and GODAS-MOM4p1 and also in the open ocean along 10°S and 7–8°N for ECCO and NCEP-GODAS. Even though the correlation was the highest in most regions during spring, the equatorial eastern IO and the southwestern coast of India showed reduced correlations. The correlation was inappreciable near the equator in NCEP-GODAS and GLOSEA, with correlations below 0.75. Figure 9 shows the correlation of reanalysis products with OISST during summer (JJA). The correlation was lower in the eastern equatorial IO, especially near Sumatra, in all the reanalyses. The correlation with COBE in the northern BoB was also lowest during this time, probably due to the absence of in-situ data in this region (Supplementary Figure S8). The NCEP-GODAS showed a low correlation over the western equatorial IO. This pattern was not observed in any other reanalysis products. The Andaman Sea also showed low CC values in all reanalysis products with varying magnitude, with NCEP-GODAS showing the least among all. This reduction in the correlation over the Andaman Sea may be due to the model configuration as well as a lack of temperature and salinity profiles over this region, which was used for the assimilation.

Figure 10 shows the spatial distribution of average RMSE for the summer months (JJA) of all reanalysis products with respect to OISST. All products showed low RMSE values over equatorial IO, BoB, and southern AS. ECCO and MOM-based reanalysis products showed higher RMSE over the western equatorial IO, Somalia Coast. These reanalysis SSTs near the coast showed higher RMSE compared to the open ocean, with NCEP-GODAS reaching up to 0.6°C near the southern tip of India. Higher RMSE (>0.6) was seen near the Indian coast as well as western AS in ECCO. These results also corroborated the finding of Fu et al. (2023), who showed large errors in the coastal waters, western boundary currents, and Antarctic Circumpolar Current area associated with the poor representation of strong non-linear dynamic processes and the displacement of SST fronts over these regions from six widely used reanalysis SST products. They also found that the basin-wide RMSE was the least in GREP. Seasonal analysis showed that the highest RMSE values were in the northern BoB and near the western coast of India in ECCO, reaching more than 1.2°C during summer (Figure 10) and spring (figure not shown). Amaya et al. (2023) and Trujillo et al. (2023) showed that temperature and salinity in the reanalysis were affected by coastal bathymetry. Recently, Rahman and Rahaman (2024) have shown similar results over the coasts of India. This study also showed that bathymetry changes significantly affect coastal currents and accurate bathymetry is needed for the realistic simulations of temperature, salinity, and currents near the coast. The larger RMSE values near the coasts for most of the reanalysis products advocated the need to represent realistic bathymetry in the global ocean models. During spring, BRAN exhibited a higher RMSE of over 0.5°C in the northern AS. Despite being a high-resolution model, the larger RMSE in the AS SST during this time might be due to the lack of tidal mixing in this region as this region has the highest tidal amplitude in the IO (Figure 4 of Shebalin and Baranov, 2020). In summer (Figure 10), all MOM-based reanalysis products and ECCO showed higher RMSEs near Sumatra and Oman, whereas the NEMO-based products had lower RMSE. The fall RMSE patterns were similar to the annual average conditions, with ECCO showing an RMSE of approximately 1°C near the Oman and BoB coasts and GLOSEA showing an RMSE of 0.6°C to 0.7°C near Sumatra.

Figure 11 shows the monthly mean STD from all reanalysis products and two observational-based synthetic products, OISST and COBE SST. The STD showed that, on average, the variability was the least in the equatorial eastern IO, and the highest was in the northern AS and BoB. Large STD values were also seen near the Somalia coast. This was mainly due to the upwelling that occurred during the summer monsoon season. These large STD values over the Somalia coast is mostly contributed from the JJA STD values (Supplementary Figure S9). All the reanalysis products were able to capture the synthetic observation spatial distribution of STDs over the north Indian Ocean. The maximum observed variability was seen near the Oman coast, with a magnitude reaching 2°C during summer (Figure 11).




3.3 Evaluation of daily reanalysis SST

In the previous sections, we showed the monthly SST comparison of all the reanalysis products. The NWP user community mainly relies on high temporal resolution SST for the boundary conditions. So, it is essential to understand the performance of reanalysis on a daily scale. However, most of the reanalysis products provide monthly products. In this section, we compare the daily SST data from the BRAN reanalysis product as it has high temporal and spatial resolution data among the 10 reanalysis products used in this study. The analysis period was chosen from 2015 to 2017 due to the continuous availability of OMNI buoy data in most of the locations. The daily SST was analyzed using the same methodology adopted in Section 3.1. Table 4 summarizes the statistical analysis for the daily and monthly BRAN SST with OMNI buoy from 2015 to 2017. It was seen that the monthly SST performance is better in terms of CC and RMSE. The daily SST correlation was less than the monthly SST, and the daily RMSE values increased as compared to monthly values (Table 4). However, the average bias for the daily product was less compared to the monthly SST product.


Table 4 | Statistical analysis of daily and monthly BRAN data with OMNI buoy during the time period 1 January 2015 to 31 December 2017.



From the time series analysis, it can be seen that the BRAN SST was able to capture the daily variations in SST very close to the buoy SST variability (Figure 12). As seen in the monthly analysis, in the AS, there was a slight cool bias of reanalysis SST, especially during winter (Figures 12A, B). Even though BRAN could capture the sudden cooling events, it was slightly underestimated. The highest bias was seen with respect to moored buoy observation during these sudden cooling events. One such cooling event that happened in the AS was because of the passing of cyclone Ockhi by the end of November 2017. The BRAN SST captured the cooling at all four buoy locations, as in the observation data, with a warm bias (Figure 12B). The highest bias was seen at the SEAS (AD10) with 1.5°C. The average bias in all the buoy locations was negative (Table 4). The CC of the daily BRAN SST in all the buoy locations was higher than 0.96, with the least in the SEAS (0.96 at AD10) and the highest in the open-ocean region (AD07 and BD08 with 0.98). The variability of SST was captured quite well in the reanalysis.




Figure 12 | Time series for daily data at locations (A) AD06, (B) AD09, (C) BD09, and (D) BD11 for BRAN SST and OMNI buoy SST.



The seasonal analysis was done for the daily BRAN SST to understand the performance of the reanalysis product in each season. It was seen that the least correlation in most of the region was observed during winter. During this time, CC was less than 0.9 in the BoB and SEAS. During spring, the CC in all the 12 regions was above 0.9, with the least in SEAS with CC 0.91 and 0.93 for AD09 and AD10, respectively. During summer, the correlation in the AS improved, but in most of the BoB locations, CC was less than 0.9. During the fall, the correlation was mostly above 0.9, but in the BD12, CC had the lowest value of 0.84. The average seasonal bias in all the locations showed that it is primarily negative, especially in the AS (more cooling/cold bias). Meanwhile, in the BoB, the averaged bias was mostly positive (warm bias) during DJF. During SON (fall), cold bias persisted in all the locations except BD12. The RMSE was the highest during spring when the RMSE in most of the regions was greater than 0.3°C and the least during autumn. The variability in the spring was underestimated in most of the locations, and the variability in the BD14 location was slightly underestimated in all seasons. The overall statistics in Table 4 show better accuracy on monthly mean SST as compared to daily SST. Temporal averaging over a month smoothed out short-term fluctuations and random noise in daily measurements and made monthly SST data valuable for studies focused on seasonal, interannual, and decadal variability studies. While daily SST data are crucial for short-term weather forecasting and applications that require high temporal resolution, the increased accuracy of monthly data might be more useful for initializing long-term climate models and for model assessment studies where daily variability is less critical. The result also indicated that monthly data are preferable in applications prioritizing accuracy over resolution.





4 Summary and conclusion

The ocean reanalysis products are historical reconstructions of time-varying three-dimensional ocean states based on observations and numerical models. They are more accurate than stand-alone model simulations and have greater coverage than in-situ observations. These products are widely used to study ocean variability, circulation, air–sea interaction, etc. and also to provide the initial conditions for weather forecasting models. Ocean reanalyses are used to initialize the coupled models for the subseasonal to decadal predictions (Pokhrel et al., 2024; Storto et al., 2019) and support observational network monitoring, climate index tracking (e.g., ENSO, IOD), and model evaluation. NWP models rely on SST as a boundary condition, and a poor representation of these can cause forecast uncertainties (Schepanski et al., 2015). Senatore et al. (2020) emphasized that accurate SST representation in the Mediterranean is crucial for improving precipitation forecasts, particularly in regions with complex air–sea interactions and coastal orography. Therefore, a high-accuracy SST dataset, both near the coast and in the open ocean, is crucial for the effective initialization of NWP models.

Despite the importance of reanalysis products, studies on an independent evaluation of these reanalysis products are scarce, particularly the SST products. The reanalysis products inherit errors due to model physics, forcing fields, errors in the observation system, assimilation schemes, etc. Balmaseda et al. (2015) compared different global reanalysis products for ocean heat content, steric height, sea level surface heat fluxes, mixed layer depth, salinity, depth of 20-degree isotherm, and ocean sea ice near Canada. To the best of our knowledge, the evaluation of SST from these reanalysis products over the north Indian Ocean has not been carried out. Hence, in this study, we focused on the assessment of the performance of north Indian Ocean SST from 10 different widely used state-of-the-art reanalysis products. The SST from the reanalysis products is compared with the observational data from 12 OMNI moored buoys in the northern IO on a monthly scale for 5 years from October 2012 to December 2017. Additionally, the performance of six observation-based synthetic SST analysis products was also evaluated.

The reanalysis SSTs we evaluated were from ECCO, BRAN, SODA, NCEP-GODAS, GODAS-MOM4p1, ORAS5, GLORYS, GLOSEA, CGLORS, and GREP. During the same period, analysis was also carried out from five observation-based synthetic products, namely, ERSST, COBE, OISST, OSTIA, and HadISST, and one observed SST from AMSR2 to understand the best-performing observation product in the IO region. The analysis shows that the reanalysis products captured the buoy-observed SST variability with good accuracy. The CC of reanalysis SST is higher than 0.9 for all the products at every location, with a higher correlation in the open ocean and a comparatively lower correlation near the coast. The AS winter cooling is overestimated (cold bias) in all the reanalysis products, but in the BoB, during winter, the reanalysis products mostly exhibit a warmer bias. The interproduct spread is less in the open ocean, whereas it is more near the coast and in the southeastern AS. The interproduct spread is the highest at the AD09 buoy location, which is located in the mini-warm pool region over the southeastern AS. ECCO SST is an outlier among all the reanalysis products with consistently systematic warm bias in all buoy locations. The overall statistics show that GODAS-MOM4p1 and GREP perform best among all the products. The reanalysis products perform better than the observations in terms of spread in correlation and RMSE. The synthetic observation shows a similar comparison to that of reanalysis SST. However, overall statistics show that reanalysis performs slightly better than observation-based products. The AMSR2 SST shows systematic warm bias over most of the buoy locations. This could be due to the fact that AMSR2 measures subskin SST, whereas all reanalysis and synthetic observations are SST depth (or bulk SST), similar to the reference buoy observations used for the evaluation. COBE and OISST perform best among the synthetic observation products. The variability (in terms of STD values) of the SST products from reanalysis and synthetic observations shows higher values over the north AS and BoB, and they gradually decrease toward the equator.

The performance of reanalysis SST with OMNI buoy SST has been observed to be seasonally dependent, with reanalysis products more accurately capturing the springtime SST (MAM) compared to the monsoon and winter seasons. This variation in performance is likely linked to differences in wind speed. Xie and Philander (1994) explain that wind influences SST through mechanisms such as momentum transfer to the ocean, wind stirring, and surface latent heat flux. Recent observations from eddy covariance data in the Bay of Bengal have provided new insights into these fluxes. It was found that for moderate wind speeds (6–8 m/s), the latent heat transfer coefficient calculated using the COARE algorithm aligns well with observed values. However, discrepancies arise at lower and higher wind speeds (unpublished data). Most models currently employ constant parametrization of exchange coefficients, which tends to align more closely with observed values during spring. To address these seasonal discrepancies, a flux calculation algorithm that accounts for seasonal variations is necessary. Storto et al. (2019), in their review study on the challenges of ocean reanalysis, pointed out that air–sea flux errors, inadequate model resolution, and parameterizations are other non-trivial problems to mitigate the drift and bias. This study revealed that as far as SST reanalysis is concerned, probably rather than model resolution, it is the atmospheric forcing and the bulk algorithm errors that play a crucial role.

All the products show a very good match with the buoy observations during April for all the years. However, the intermodel spread is much higher during the summer monsoon and is the highest during winter. Since all the product’s SST is assimilated and also relaxed to the observed SST in the top model layer, we would expect bias and errors to be independent seasonally. However, we saw that the intermodel spreads are not uniform in all seasons. This implies the deficiency in the forcing fields as well as the possible errors in the turbulent heat flux computation using bulk algorithms. The other aspects that could be affecting the mixed layer depths are, in turn, dependent on the mixing schemes used in the individual models. This aspect opens up the possibility of improving the bulk algorithm and seasonal-dependent turbulent closure schemes. A recent study by Jampana et al. (2018) shows that during the post-monsoon period, the buoyancy frequency perturbations are more critical than shear perturbations in driving unstable events. In winter, the unstable events are influenced by both the buoyancy frequency and shear perturbations. Hence, we found that regional and seasonal dependent mixing schemes need to be incorporated into the model physics.

The spatial evaluation of reanalysis products with OISST shows that reanalysis products perform better in the open ocean than near the coast. ECCO overestimates the SST in the SEAS and northern BoB, whereas SODA, on the other hand, overestimates the equatorial warm tongue. The cooler temperature at the southern tip of India during summer is overestimated by NCEP-GODAS, in contrast to ECCO, which shows a warmer bias there at the same time. ECCO shows cooler SST near the Somali coast and off the Oman coast. Similar cold bias was also observed for the MOM-based model BRAN, NCEP-GODAS, SODA, and ORAS5, which is based on the NEMO model. The basin-wide RMSE value is the least in GREP among all the products. Similar to bias, the RMSE values are much higher near the Somali coast for the ECCO and MOM-based reanalysis products. The resolution effect can be seen with reduced RMSEs in BRAN and MOM4p1-GODAS as compared to NCEP-GODAS. The poorer performance of reanalysis products near the coast can be attributed to the unrealistic representation of bathymetry, which leads to the inability to capture the realistic coastal Kelvin waves. The basin-wide spatial distribution of CC values is higher in all the products (>0.9). However, it shows much comparatively lower values in MOM-based products, with NCEP-GODAS showing much lower values of ~0.7.

For climate and seasonal scale applications, monthly SST is used. However, for the intraseasonal and synoptic scale application, daily SST is required. Hence, daily SST from BRAN is analyzed to understand the performance of high-resolution daily SST. It was observed that the reanalysis could very well capture the observed SST, but the sudden changes in the observed SST are not accurately captured. Similar to the monthly analysis, the daily SST also shows a cooler bias in the AS. In comparison with the monthly analysis, it was seen that the RMSE increases in the daily reanalysis SST, and the correlation coefficient and the averaged bias reduce slightly for the same period of analysis.

This study analyzes different ocean reanalysis products in capturing SST patterns in the northern IO. While reanalysis products generally show a high correlation with in-situ observations and perform better in the open ocean, biases are more near coastal regions and specific areas like the SEAS and northern BoB. ECCO and GODAS-MOM4p1 are notable in their performance, with the former showing a consistent warm bias and the latter excelling statistically. Being an ensemble product, GREP performs better than individual reanalysis products by mitigating biases from individual reanalyses.

In all the reanalysis products, the observed SSTs are either assimilated or have been relaxed to the observed SST. Despite that, all the products show different accuracies when compared with bulk SST from in-situ buoy observations. Sea surface temperature increased during the 20th century and continues to rise. Since the advent of the industrial revolution, greenhouse gas emissions have witnessed an exponential surge, leading to a cumulative increase in atmospheric temperatures at an average rate of 0.08°C (0.14°F) per decade since 1880. Between 1950 and 2020, the global SST increased by 0.11°C (0.19°F) (Venegas et al., 2023). The year 2023 was the warmest ever recorded. The absolute increase of such magnitude may be even higher than this value due to instrumental errors. Hence, highly accurate SST from a source that includes the subsurface ocean influence, such as ocean reanalysis products, is of immense importance. The bulk SST accuracy of reanalysis products as compared to observation analysis products will be a very critical input for the seasonal forecast since the seasonal forecast from the coupled models is mostly initialized with ocean analysis and reanalysis products. The evaluation of all the analysis and reanalysis of SST suggests that GODAS-MOM4p1 SST and GREP SST may be the most valued products that can be relied on for long-term SST variability studies as well as for the initialization of coupled models for the seasonal to decadal prediction.
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A series of observing system experiments (OSEs) were conducted in order to evaluate the effects of Argo data quality control (QC), by using the three global ocean data assimilation systems. During the experimental period between 2015 and 2020, some Argo floats are affected by the abrupt salinity drifts, which caused spurious increasing trend of the global mean salinity in the reanalyses using the observations with only real-time QC applied. The spurious trend is mitigated by applying the gray list provided by the Argo Global Data Assembly Centres (GDAC), and further reduced by assimilating the delayed-mode Argo data of the Argo GDAC instead of the real-time Argo data. These impacts of the Argo QC are generally consistent among the three ocean data assimilation systems. Further investigations in the JMA’s system show that errors in the analyzed salinity with respect to the delayed-mode Argo data are smaller in the OSE with more rigorous QC, and the spatiotemporal variations in the sea-surface dynamic height are reproduced better. Additionally, QC impacts on the analyzed temperatures are shown not to directly reflect the difference in temperature observations among OSEs, and may be affected by difference in the salinity observations among OSEs through the cross-covariance relationship in the data-assimilation systems.
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1 Introduction

An Argo float drifts with the ocean currents and autonomously observes the vertical profile of water temperature, salinity, and pressure from a depth of 2,000 meters to the sea surface once every 10 days, transmitting the results via satellite. Currently, approximately 4,000 Argo floats are deployed in the global oceans, and they constitute the largest part of the in-situ ocean observing system. They have provided over two-million vertical profiles of temperature and salinity in the last 20 years since the global Argo program started (Argo, 2022). This large dataset is used for ocean and climate monitoring and initializations of ocean and coupled atmosphere-ocean predictions, including subseasonal-to-seasonal (S2S) forecasts, through ocean data assimilation. However, it is known that about 15 percent of Argo floats deployed after 2015 have experienced abrupt large salinity drifts, which are believed to be due to a conductivity sensor failure (Wong et al., 2020). Use of the data without adjustment in ocean data assimilation generally leads to spurious increasing salinity trends, which will be demonstrated in this study. The manufacturer of the sensor has changed its production line in 2018 to solve this problem (Wong et al., 2023).

Argo profiles are first reported to the Argo Data Assembly Centers (DACs). Once the DACs receive the profiles, they perform a simplified quality control (QC) called real-time QC, and then release them through the Argo Global Data Assembly Centres (GDAC) and the Global Telecommunication System (GTS) for operational use a few hours to a few days after the observation time. Subsequently, the DACs apply more rigorous QC, or delayed-mode QC, to the profiles, and release them through the GDAC for research purposes months to years later. In addition, the GDAC provides a gray list of floats reporting observation data of doubtful accuracy. The floats suffering from the abrupt salinity drifts (ASDs) are listed on the gray list and flagged as bad data by the delayed-mode QC. After ASDs were detected, the real-time QC also excludes the floats with ASDs. In the delayed-mode QC, data affected by smaller salinity drifts or reduced accuracy due to other reasons are also identified and either adjusted or flagged as unadjustable (bad) data (Wong et al., 2023).

Ocean data assimilation systems generally have their own QC procedure, by which most profiles that have suffered ASD are expected to be withheld from assimilation. However, it remains possible that the QC procedure misses to identify a small number of profiles affected by ASD and more profiles with smaller salinity drift. In this study, we, therefore, investigate the impact of those erroneous profiles on the outcome of ocean data assimilation experiments. Both the real-time and delayed-mode QCs by the Argo DACs, along with the application of the gray list, can exclude or modify the erroneous profiles and are expected to mitigate the loss of accuracy caused by those profiles. The impact of these corrections is also evaluated in this study.

A series of observing system experiments (OSEs) are conducted with Argo data from different QC stages: data without QC, data with real-time QC, data with the gray list applied, and data after the delayed-mode QC. Here, we use the global ocean data assimilation system for seasonal forecasting operations in the Japan Meteorological Agency (JMA) for the OSEs, and the results are compared with results of similar OSEs conducted by the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Bjerknes Centre for Climate Research (BCCR).

The remainder of this paper is organized as follows, Section 2 describes the configuration of the OSEs, the results are presented in Section 3, followed by the summary and discussions in Section 4.




2 Models and the OSEs



2.1 OSE setting conducted in JMA

This study mainly analyzes the results from the OSEs using JMA’s operational global ocean data assimilation system MOVE/MRI.COM-G3 (Fujii et al., 2023), which is currently used to initialize the ocean component of the JMA’s coupled atmosphere-ocean prediction system Version 3 (CPS3; Hirahara et al., 2023). CPS3 is used for the seasonal forecasting operations, and provides sea surface temperature (SST) fields for monthly atmospheric forecasting operations. The ocean data assimilation system MOVE/MRI.COM-G3 consists of a low-resolution analysis model MOVE-G3A and a high-resolution forecast model MOVE-G3F; MOVE-G3A is used exclusively here. The physical model of MOVE-G3A consists of Meteorological Research Institute Community Ocean Model Version 4 (MRI.COM Ver. 4; Tsujino et al., 2017). It adopts a tripolar grid (Murray, 1996) over the global domain with a zonal resolution of 1° and the meridional resolution of 0.3-0.5° with refinement near the equator. It adopts the rescaled height coordinate system (so-called z*-coordinate; Adcroft and Campin, 2004), and has 60 vertical levels and a bottom boundary layer (Nakano and Suginohara, 2002). A five-category sea-ice model, based on the thermodynamic formulation of Mellor and Kantha (1989) and the elastic-viscous-plastic dynamic formulation of Hunke and Lipscomb (2006) with a ridging and rheology scheme, is also incorporated. Ocean observation data including in-situ temperature and salinity profiles, SSTs, and sea surface heights (SSHs) are assimilated into the model through a four-dimensional variational (4DVAR) scheme (Usui et al., 2015) with a five-day observation window. Sea ice concentration data are also assimilated with a separated three-dimensional variational (3DVAR) scheme (Toyoda et al., 2016).

In this study, we conduct the following four OSEs in which Argo data from different QC stages are assimilated. The first OSE is the control experiment (CNTL) which assimilates temperature and salinity observation data distributed through GTS. The observation data include the Argo data to which the real-time QC is applied and in situ observation data from other observational platforms. Here, data with flags other than 0 (no QC performed), 1 (good data), and 5 (value changed) are excluded, as well as data reported more than five days after being observed. This OSE is thus expected to produce results similar to the operational analysis. The second OSE named ‘GLST’ uses the same temperature and salinity observation data as CNTL except that the Argo profiles in the gray list are excluded. The third OSE named ‘DELAY’ uses the same temperature and salinity data as GLST except that the Argo data with the real-time QC applied are replaced by the delayed-mode data when the delayed-mode data are available from the snapshot of the Argo GDAC in Oct. 2021. The fourth OSE named ‘NOQC’ uses the same temperature and salinity data as CNTL except that the Argo data with the real-time QC applied are replaced by raw observed values of Argo data in the Argo GDAC snapshot in Oct. 2021 and the flags for the Argo data are ignored. In addition, the following two OSEs, in which the 3DVAR option of MOVE-G3A is used instead of the 4DVAR to save computational resources, are conducted to examine the effect of the reduction in the amount of delayed-mode data after 2019 contained in the Oct. 2021 snapshot. One is ‘DELAY3DV’ which assimilate the same temperature and salinity observation data as DELAY. The other is ‘DELAY3DVN’ which is the same as ‘DELAY3DV’ but the delayed-mode Argo data are collected from the Argo GDAC snapshot in Mar. 2023 instead of the snapshot in Oct. 2021. In addition, the ocean model free run (‘FREE’) is also used for comparison with the assimilation experiments.

The numbers of Argo profiles used in the JMA’s OSEs are shown in Figure 1. While the total number of profiles has remained largely unchanged, the number of profiles being gray-listed has gradually increased. In contrast, the number of profiles corrected by the delayed-mode QC (202110) has been decreasing after 2019, but a significant number of profiles have been added in the newer version (202303), which was acquired after all the OSEs but DELAY3DVN were completed. This may reflect the fact that delayed-mode QC requires a certain time to be complete.




Figure 1 | Monthly number of the all GDAC Argo profiles (blue), profiles listed as gray (orange), profiles subjected to delayed-mode QC (gray), a newer version of the delayed-mode profiles (yellow).



All OSEs except FREE also assimilate the reprocessed along-track sea level anomaly data from Copernicus Marine and Environment Monitoring Service (CMEMS, 2023a) and SST and sea ice concentration data from Merged satellite and in situ Global Daily Sea Surface Temperature (MGDSST), produced by JMA (Kurihara et al., 2006). All OSEs are conducted for the years from 2015 to 2020. The initial conditions at the beginning of 2015 for all OSEs and FREE run are the same, and come from the ocean reanalysis (‘4DVAR’ run) conducted by Fujii et al. (2023). Atmospheric forcing at the ocean surface comes from the JRA-3Q (Kosaka et al., 2024) atmospheric reanalysis.

In all OSEs, the following QC procedures are applied to temperature and salinity profiles to be assimilated into G3A. First, the profiles are interpolated to the model standard levels, and observations of temperature below -1.8°C or above 50°C and salinity below 0 psu or above 50 psu are discarded. Next, the temperature profiles are approximately converted to the potential temperature profiles using temperature and depth values. Then, the potential temperatures and salinities that deviate from the background values by more than four times the standard difference between background and the observed values are discarded as bad data. Each set of temperature and salinity profiles with more than five bad data is also discarded. Furthermore, the variational QC scheme proposed by Fujii et al. (2005) has also been incorporated in G3A, in which the weight is reduced (nullified) for the temperature and salinity observations that deviate from the analysis by more than 1.5 (3) times the prescribed standard difference between background and observed values.




2.2 OSE setting conducted in ECMWF

Only the equivalent to the CNTL and DELAY OSEs have been conducted using the ECMWF OCEAN5 system (Zuo et al., 2019). OCEAN5 is based on the NEMO3.4 framework (Madec, 2008) at a 1/4° horizontal resolution and 75 vertical levels with level spacing increasing from 1 m at the surface to 200 m in the deep ocean. The data assimilation is conducted using the NEMOVAR system (Weaver et al., 2005; Mogensen et al., 2012) in its 3D-Var FGAT configuration and 5-day assimilation window. Observation used in data assimilation includes temperature and salinity profiles, sea-ice concentration from near-real-time OSTIA dataset (Donlon et al., 2012) and altimeter derived along-track sea-level anomalies (SLA) data (Pujol et al., 2016). The sea surface temperature (SST) from OSTIA is also used to constrain ocean upper temperature through a simple nudging scheme. The atmospheric forcing comes from the ECMWF NWP operations. In CNTL, the assimilated in-situ temperature and salinity profiles come from the GTS with real-time QC. In DELAY, the assimilated profiles come from the reprocessed EN4 dataset (Good et al., 2013).




2.3 OSE setting conducted in BCCR

NorCPM1 (Bethke et al., 2021) is used to conduct OSEs in this study. NorCPM1 is developed with BCCR and combines the Norwegian Earth System Model (Bentsen et al., 2013) with an ensemble Kalman filter (Evensen, 2003). It has been developed for climate reanalysis and has been employed for the Decadal Climate Prediction Project (DCPP) as part of the sixth Coupled Model Intercomparison Project (CMIP6) (Bethke et al., 2021). The atmosphere and land components have a horizontal resolution of 1.9° of latitude and 2.5° of longitude. The ocean and sea ice components have a horizontal resolution of approximately 1°. The ocean component comprises a stack of 51 isopycnic layers, with a bulk mixed layer representation on top consisting of two layers with time-evolving thicknesses and densities. NorCPM1 comprises 30 ensemble members.

The data assimilation implementation of NorCPM1 has been documented in Bethke et al. (2021). In this study, NorCPM1 conducts four OSEs as follows:

	CNTL: NorCPM1 assimilates temperature and salinity observation data with real-time QC from the Argo GDAC (Oct. 2021). Data with flags other than 0 (no QC performed), 1 (good data), and 5 (value changed) are excluded.

	GLST: similar to CNTL, but the Argo profiles in the gray list are excluded.

	DELAY: similar to GLST, but the Argo data with the real-time QC are replaced by the delayed-mode data when the delayed-mode data are available.

	NOQC: similar to CNTL, but the QC flags are ignored.



In all experiments, NorCPM1 assimilates SST data from the OISSTV2 dataset in addition to profile data assimilation. The observations of temperature below -2.5°C or above 35°C and salinity below 1 psu or above 50 psu are discarded, which is applied to all experiments.





3 Results



3.1 Impacts of the QCs on the salinity field

First, we examine the time series of the global mean salinity from the sea surface to 2000 m depth (the depth sampled by the Argo floats) over the 2015-2020 period for each OSE (Figure 2). In the MOVE-G3A results, CNTL indicates an overall increasing trend, especially in the first half of the six-year period. GLST shows a slightly smaller tendency to increase than CNTL, and in DELAY, the increasing salinity trend is even smaller. On the other hand, NOQC shows a larger increasing salinity trend than CNTL, especially in the latter half of the experimental period. The OCEAN5 results are consistent with those of MOVE-G3A in that both OSEs also show an increasing salinity trend and the trend in DELAY is smaller than in CNTL.




Figure 2 | Time-series of the global mean salinity in the upper 2000m. Upper left panel: OCEAN5; upper right panel: NERSC; lower panel: MOVE-G3A. Black line indicates CNTL; red line GLST; green line DELAY; blue line NOQC. For MOVE-G3A, DELAY3DV (green dashed line) and DELAY3DVN (green dotted line), FREE (gray line) are also shown.



The NorCPM system is originally an anomaly-field assimilation system, which assimilates observation anomalies. The OSEs, however, switched to the full-field assimilation, resulting in an overall increasing salinity drift much larger than the salinity trends seen in the OSEs with the other systems (note that the values on the vertical axis are out of alignment with the other panels, and there are lower salinity values in the NorCPM’s OSEs than the other systems; the scales of the vertical axes are adjusted so that the magnitude of change can be compared among the systems). While most of this drift is unrelated to the observation data, the impacts of assimilating different data, which can be seen through comparison between OSEs, are consistent with other systems, as they are NOQC, CNTL, GLST, and DELAY, in order of magnitudes of the increasing salinity trend.

It should be noted that the global mean salinity in FREE of MOVE-G3A (OGCM free run without data assimilation) remains almost constant over the experimental period, which is because, in the ocean model formulation, there is no salinity input and the freshwater inflow in the global ocean (here, sea ice is regarded as part of the global ocean) is adjusted to zero. Salt exchange between the layers above and below 2000 m depth can change the global mean salinity, but the exchange is too small to cause no-negligible change in the model. The stable global mean salinity in FREE indicates that the increase in salinity in the OSEs is due to data assimilation.

It is valuable to examine the effect of the data assimilation system as well as the reduction in the amount of delayed-mode data toward the end of the experimental period. In order to examine that effect, we compare the time-series of the global mean salinity between DELAY and the two 3DVAR OSEs that use MOVE-G3A (DELAY3DV and DELAY3DVN). There are only small differences between DELAY and DELAY3DV, meaning that the difference in the data assimilation schemes do not have a significant impact on the global mean salinity. Then, the small difference between DELAY3DV and DELAY3DVN indicates that the reduction of the delayed-mode data toward the end of the experimental period has only a small impact. It can, thus, be assumed that the decrease in the difference between CNTL and DELAY at the end of the experimental period is not due to the reduction in the amount of delayed-mode data.

To illustrate the spatial pattern of the salinity trend, we show the maps of vertical mean salinity differences between the years 2015-16 and 2019-2020 for the DELAY with the three assimilation systems (Figure 3). There are only small differences in the salinity trend patterns among OSEs using MOVE-G3A that are not visually apparent, as shown by comparing results from NOQC and DELAY from MOVE-G3A in Figure 3. The patterns are also consistent between OCEAN5 and MOVE-G3A, in that the relatively large increasing trends are found in the northwestern part of the North Pacific and the North Atlantic and the western part of the tropical Pacific, near the Californian coast and in the subtropical Indian Ocean. The significant large increasing trend is also found in those regions for the DELAY of NorCPM although it has much larger increasing trends in many regions than the other two systems, which is considered due to the experimental setting mentioned above. The DELAY OSEs of MOVE-G3A and OCEAN5 also have common significant decreasing trends in the northeastern part of the North Pacific and the western and central part of the North Pacific subtropical band, and smaller decreasing trends are found in these regions in the OSEs of NorCPM. The horizontal patterns of the increasing and decreasing trends are consistently represented by the three systems.




Figure 3 | Horizontal distribution of difference in salinity averaged for upper 2000m between 2019-20 and 2015-16 in the DELAY OSE: upper left: OCEAN5, upper right: NERSC, lower left: MOVE-G3A. The result from NOQC OSE with MOVE-G3A is shown for comparison in the lower right panel.



QC impacts on mean salinities in 2019-2020 represented by differences between the CNTL and DELAY are compared among the three systems in Figure 4. Positive values in many areas of the ocean are common across the systems, reflecting that the delayed mode QC corrects for smaller salinity drift across the global ocean in all of the systems. It should be noted that, however, the horizontal patterns are not as consistent among the three systems as those of salinity trends shown above (Figure 3). This may be because the observation data input to each OSE are not necessarily the same among the systems (e.g. satellite altimetry data are not assimilated in NorCPM), and/or because of differences in data assimilation schemes (e.g. de-correlation length-scales used in OCEAN5 covariance formulation is clearly shorter than those used by the NorCPM system) In addition, different settings about the relative importance of various observing systems are also considered to potentially affect the Argo observation impacts on assimilation results.




Figure 4 | QC impacts (CNTL-DELAY) on mean salinity for 0-2000m in 2019-2020 for OCEAN5 (top-left), NorCPM (top-right), and MOVE-G3A (bottom-left).



In the following, the impact of QC is shown as the difference between the NOQC and the other OSEs, to examine how the higher QC stages affect the analysis. QC impacts on the salinity in the MOVE-G3A’s OSEs in 2019-20 are shown in Figure 5. The reduction of the analyzed salinity resulting from the QC are stronger in the low latitudes, except in the equatorial Pacific. The QC is however shown to increase the analyzed salinity in places in the Arctic Ocean and marginal seas. As the QC level is getting higher, the lowering of the analyzed salinity is getting stronger, and spreading to higher latitudes. Thus, it is considered that QC reduces the spurious positive salinity trend by lowering the analyzed salinity values in the latter period over wide regions, especially at low latitudes. These characteristics of QC impacts are roughly consistent with NorCPM1 (not shown), although the horizontal patterns are different as mentioned above.




Figure 5 | Horizontal distribution of differences in 0-2000m mean salinity in 2019-2020 of CNTL (top-left), GLST (bottom), and NOQC (top-right) compared to DELAY from MOVE-G3A.



In order to examine the QC impacts on the analysis quality, the root-mean-square difference (RMSD) of the analyzed salinity values relative to the Argo observations used in DELAY is calculated at each level in 10°×5° (zonal×meridional) boxes for each MOVE-G3A’s OSEs. Differences of the RMSD among the OSEs are shown in Figure 6. The figure indicates that the RMSD decrease of the DELAY from NOQC is generally larger than the decrease from CNTL and GLST, which suggests that the delayed-mode QC, including the corrections of spurious drifts of Argo salinity observations, has led to an improved analysis for 2019-2020.




Figure 6 | Difference of RMSDs of the MOVE-G3A salinity relative to the delayed-mode Argo float data (assimilated in DELAY OSE) between NOQC and each of the other OSEs at the 100m depth in the years from 2019 to 2020; upper-left: RMSD(CNTL)-RMSD(NOQC), upper-right: RMSD(GLST)-RMSD(NOQC), lower-left: RMSD(DELAY)-RMSD(NOAC). For this figure, the values of the ‘preparation run’ of MOVE-G3A, in which simultaneous observations have not yet been assimilated are used as the analysis. Blue colors mean that the RMSD is smaller than NOQC. Units in PSU.



We also calculate averages of analyzed salinity values at the locations of Argo observations at each level in the same 10°×5° boxes for each OSE, along with averages of observed salinity values used in each OSE for each box. Time-depth plots of changes from the first year (2015) of the global means of the box averages for salinity analyses and observations are shown in Figure 7. The figure indicates that the observed spurious increasing salinity trends seen below 150 m depth are reduced by QC, and it is indicated that the higher the QC level, the larger the correction to reduce the false salinity trends. Comparison among the OSEs of the global mean of the analyzed salinity at the sites corresponding to the observations indicates that the impact of the QC on the analysis generally reflects the differences in the input observations.




Figure 7 | Analyzed and observed annual global mean salinity differences from the year 2015 plotted on the depth-time cross section for NOQC (upper-left), CNTL (upper-right), GLST (lower-left), and DELAY (lower-right). In each panel, left part shows analyzed values, and right part shows observed values. Note that the shallower levels than 500m are expanded vertically, and color scales are different from those at the deeper levels. Units in PSU.






3.2 Impacts of the QCs on the temperature field

This subsection investigates how the changes in the salinity field due to the Argo QCs affect the temperature field. As shown in Figure 8, the global mean ocean temperature has an increasing trend for all OSEs of all three systems. This trend is not considered spurious as for salinity because it is assumed that there is a real warming trend due partly to anthropogenic global warming. The trend represented by the OSEs seems plausible since the temperature increases over the six-year period by roughly 0.02-0.03°C in all the OSEs from the different systems. They are, however, significantly larger than the trend represented by the MOVE-G3A FREE. This discrepancy can be attributed to errors in the atmospheric forcing; for example, cloud processes, which play important roles in the Earth’s energy budget and have significant predictive uncertainty (Wong and Minnett, 2018; Liu et al., 2023), in the atmospheric reanalysis could lead to a bias in long-wave radiation at the sea surface. The possibility that the trend in the OSEs is excessive cannot be ruled out.




Figure 8 | Same as Figure 2 but for the global mean temperature.



The differences of the global mean temperature among the different OSEs of a given system are much smaller than the difference between the OSEs and the FREE run from MOVE-G3A. Using Argo data with a more rigorous QC has only a minor impact on the warming trend. The OSEs with MOVE-G3A indicate that using the data with a rigorous QC generally reduces the warming trend slightly (Figure 8). NOQC indeed shows the highest temperature for almost the entire period, and differences among the other OSEs are relatively small. It is also true for OCEAN5, where the OSE (DELAY) with the more rigorous QC suppresses some of the warming trend compared with the other one (CNTL) with moderate QC. As for NorCPM, the order is opposite, that is, the DELAY OSE has the fastest warming trend and the NOQC has the slowest. The range of the warming trend for the NorCPM’s OSEs is greater than the range for the other two systems, which may have been influenced by the switch from anomaly assimilation to full-field assimilation, similar to what was noted for salinity.

The impacts on temperatures among the OSEs shown above may directly reflect the temperature observations, or may be affected by the salinity observations through the cross-covariance relationship in the data-assimilation systems. To investigate this point, Figure 9 compares the global mean temperature trends between the assimilation results and the observations in MOVE-G3A. The warming trends of analyzed temperatures in the OSE (DELAY) with the more rigorous QC are generally smaller than the other OSEs especially at the deeper levels, while the corresponding differences among the other OSEs is unclear. It should be noted that the observed temperature trends have no clear differences among the OSEs, but are generally smaller than those analyzed. It is thus suggested that the QC impacts on temperatures, which have been shown also in Figure 8, do not reflect changes in temperature observations directly. Since the data-assimilation procedure of MOVE-G3A uses amplitudes of the vertical coupled temperature-salinity EOF modes as control variables (Fujii and Kamachi, 2003; Usui et al., 2015), the impacts on assimilated temperatures can be affected by changes in salinity observations through the statistical TS relationship.




Figure 9 | Same as Figure 7, except for temperature.






3.3 Impacts of the QCs on the steric height

Spurious salinity trends are expected to lead to errors in the estimated steric height variations. Sea-surface dynamic height (SDH) is a proxy for the steric height and can be estimated from the analyzed temperature and salinity fields (Fujii and Kamachi, 2003) in the ocean data assimilation system. Time-series of the global mean SDH relative to 2000 m depth in the OSEs with the MOVE-G3A are shown in Figure 10, along with the time series of the global means of the SSH and the steric height from satellite observations. Here, the global mean SSH is calculated from the CMEMS L4 sea level anomaly data (CMEMS, 2023b) and the global mean steric height is calculated by removing from the global mean SSH the global mean SSH change due to the change in the global water mass estimated from the gravity satellites (Landerer, 2022). It should be noted that the global mean SDH change is mostly equivalent to the global mean steric height change but the effects of the density change below 2000 m depth, which is included in the steric height change, is ignored.




Figure 10 | Time series of the global mean sea-surface dynamic height anomaly in CNTL (black), GLST (red), DELAY (blue), and NOQC (green); dynamic height is referenced to 2000m, and anomalies are differences from 2015-2020 average, seasonal variation not removed. Sea level anomaly (SLA) from the satellite altimetry (light blue), and estimated steric height anomaly (purple; SLA - fresh water input) are also plotted. SLA and estimated steric height anomaly are aligned to match the value of DELAY at the beginning of 2015.



While NOQC shows a decreasing trend in SDH, QC corrects it to an increasing trend, and DELAY especially shows an increasing trend, which is the nearest among the OSEs to the estimated steric height trend from satellite observations. While there is still a gap between assimilation results and satellite estimation regarding the magnitude of seasonal variation and interannual variability, it should be noted that the estimation is difficult because the SDH changes are out of phase between the southern and the northern hemispheres and are offset when global averages are taken. Lack of satellite SSH observations in the Arctic Ocean and the errors in the global water mass estimate are other factors causing this discrepancy.

QC impacts on SDH in MOVE-G3A OSEs are shown in Figure 11. Difference of SDH between CNTL and NOQC indicates that the real-time QC results in higher SDH over a wide area of the global ocean, especially in the South Indian Ocean due to the removal of high salinity bias by the QC. When Argo data with real-time QC are replaced by those with the delayed-mode QC, the increase in SDH is further spread globally, while impacts in the equatorial Pacific regions are relatively small. These features are consistent with impacts on salinity mentioned in Subsection 3.1 (Figure 5).




Figure 11 | Differences of mean sea surface dynamic height during 2019-2020 between CNTL and NOQC (upper panel), and between DELAY and NOQC (lower panel). Units in cm.



QC impacts on the reproducibility of temporal variation of the steric height in the data assimilation are shown by the differences between the OSEs of the time correlations between the SDH and satellite steric height in each location in Figure 12. It should be noted that the pressure anomaly at 2000 m depth owing to the temperature and salinity variations in the deeper layer and the barotropic modes is counted in the satellite steric height but ignored in the SDH calculated from the OSE outputs. Real-time QC increases the correlations in large parts of the global ocean, and they are further increased by using the Argo data with the delayed-mode QC, especially in the Atlantic and South Pacific, although impacts in the equatorial Pacific are shown again to be relatively small. These results suggest that as a more rigorous QC is applied, the reproducibility of the steric height variations also improves through correction of both spurious positive salinity trend and other spurious salinity signals.




Figure 12 | Differences between OSEs (upper: CNTL-NOQC; lower: DELAY-NOQC) of time correlations during 2015-2020 between SDHAs in ocean data assimilation and the steric height anomaly estimated from satellite altimetry.







4 Summary and discussion

Impacts of Argo data QC on the ocean data assimilation results are evaluated through OSEs with the multiple ocean assimilation systems, including the operational systems in JMA and ECMWF for seasonal forecast and ocean climate monitoring, and the BCCR system for climate predictions. Results show consistent QC impacts among the different systems on salinity analyses. The use of the raw data or the real-time data in the data assimilation systems results in an increasing trend of the global mean salinity, and the correction of the Argo data in the delayed mode QC acts to make the trend in the analysis smaller. Direct reflections on temperature analyses by correction to temperature observations are less clear in QC impacts, and analyzed temperatures can be affected by the correction to salinity observations through the statistical assumptions in the systems. In fact, MOVE-G3A results show that the higher the QC level, the lower the global mean temperature and salinity. As shown by the evaluation of analyzed sea-surface dynamic height compared with estimation from satellite altimetry, it is likely that the delayed mode QC of Argo data results in the improved temperature/salinity analyses, as a whole. The similarity of the QC impacts among three systems suggests little sensitivity to the characteristics of the ocean prediction system or the data assimilation scheme.

This study demonstrated the significant benefit of the QC conducted by the Argo DACs. However, it indicates that the real-time QC and application of the gray list are definitely not sufficient for a reliable estimate of the change in global mean ocean salinity. The increasing trend of the global mean salinity which remains in the OSE assimilating the data with the delayed-mode QC may suggest that even the delayed-mode QC does not completely eliminate systematic salinity observation errors because the global salt content is assumed to be more strictly conserved, as discussed later. On the other hand, this study clarifies that the QC incorporated in each ocean prediction system cannot avoid degradation by systematic errors sufficiently, and the support of the QC by the DACs was indispensable. However, it should be noted that QCs incorporated in ocean prediction systems can use information from ocean prediction results, which may have a potential to remove systematic errors more effectively. It is also desirable to provide ocean prediction outputs to the Argo DACs for more effective detection of systematic errors.

Since determination of the global ocean salinity trend remains a challenge, it is unclear how close to reality the result of the DELAY OSE has come. We can reasonably assume that changes in the global salt content are negligibly small, and a long-term increase in freshwater volume due to global warming should result in a decreasing trend in salinity. This is approximately the case for the global ocean shallower than 2000 m, assuming that the salinity exchange with the ocean deeper than 2000 m is small; the FREE experiment shows the small changes in global mean salinity for upper 2000m (Figure 2), meaning that the exchange is actually small in the model (the ocean model does not show a decreasing salinity trend, because the volume of the model ocean is essentially invariant). However, for a shorter period (e.g. 2015-2020), we cannot rule out the possibility that the global mean salinity actually increased.

Ponte et al. (2021) compared estimates of the global mean salinity based on the five different gridded salinity products derived from in situ measurements, and found that they showed little consistency in variability over various time scales. Ponte et al. (2021) also found an unrealistic increase in the global mean salinity after 2015 in all these products, except the Roemmich and Gilson (2009) reconstruction, in which stricter QCs are applied. The gravimetry (GRACE and GRACE-FO) based estimate in Ponte et al. (2021) showed a clear decreasing trend in global mean salinity, and much smaller seasonal and interannual variabilities than the estimates based on in-situ data. Bagnell and DeVries (2023) estimated salinity changes in the global ocean based on interpolated subsurface salinity data using an autoregressive artificial neural network, and they showed the similar trend and variability to the gravimetry based estimate. As Ponte et al. (2021) pointed out, better coverage of deep ocean, high latitudes, and ice-prone regions is expected to provide better consensus among various estimates of global ocean salinity, and gravimetry-based estimates may provide a way to calibrate the in situ estimates. In the future, it is important to expand the global ocean in-situ observation network below 2000 m, and to utilize satellite gravimetry data in order to reduce uncertainty in global ocean salinity estimation.

It should be also emphasized that careful monitoring of the ocean prediction outputs may help detect incidents occurring in the ocean observing system at an early stage. Indeed, one of the United Nations Ocean Decade Project, SynObs (Synergistic Observing Network for Ocean Prediction) promotes sharing information of ocean predictions among the ocean prediction and observation communities in the near-real-time, which is useful for monitoring the status of ocean observing networks. These communities are encouraged to be more co-operative in monitoring the status of ocean observing networks and responding immediately to incidents in ocean observing networks.
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Subsurface observations in coastal and shelf seas remain insufficient compared to profiling measurements in open oceans. To address this gap, we have developed a system that involves coastal fishermen in conducting in-situ measurements. By assimilating this observation data in real-time, we can provide valuable feedback on ocean predictions to support their fishing activities. We adapted the traditional full-scale conductivity-temperature-depth (CTD) instrument into a more conventional model dedicated to small-scale fisheries. This simple and smart CTD device allows Bluetooth communication with Android devices. Although its accuracy and pressure resistance were reduced to make it affordable, it remains effective for our data assimilation purpose. Along with acoustic current data, the accuracy of coastal ocean prediction models, particularly for velocity components, can be significantly increased. Using the intuitive and user-friendly forecasting app, cooperating fishermen have been able to reduce fuel usage, working hours, and gear damages, thereby improving profitability and working conditions. This app has become an indispensable operational tool for fishermen in the Kyushu region, motivating them to actively participate in coastal ocean observations.




Keywords: fishing vessel observation, smart CTD device, coastal ocean prediction model, data assimilation, forecasting app, fisher profitability




1 Introduction

Observational data is the cornerstone of oceanography. While sea surface data have become quite comprehensive thanks to a variety of satellite observations, the amount of observation data in the ocean interior is still short of the demands from ocean science.

In the 21st century, in offshore areas where Argo floats have been actively deployed, the amount of in-situ observation data has increased (e.g., Jayne et al., 2017). However, since the Argo program was designed primarily for deep water, the typical parking depth of 1000 meters does not facilitate routine measurement in coastal and shelf seas. As a result, observations in shallow waters still rely heavily on oceanographic research vessels.

Van Vranken et al. (2020) suggested that requesting ocean observations from fishing vessels could dramatically increase the number of in-situ observations in shallow areas less than 1000 meters. As pioneers in this field, the Fishery Observing System (FOS) and RECOPESCA projects were launched in Italy and France, respectively, in the early 2000s (Falco et al., 2007; Leblond et al., 2010). These groundbreaking initiatives collected water environmental data (such as temperature and salinity) and fishing data from numerous fishing vessels. One project further expanded as Fishery and Oceanography Observing System (Patti et al., 2016), while the other recently came to an end (Duchene et al., 2023). Various challenges have been pointed out, such as instrument deterioration and changes in communication environments, but the presence of users especially ocean scientists is particularly important.

In Japan, although the number of fishing vessels has been decreasing over the decades, it is estimated that around 100,000 fishing boats (less than 10 tons) are still in operation in coastal waters (Japan Fisheries Agency, 2023). Compared to other developed countries, there are many small-scale coastal fisheries that catch a diverse range of fish species using various fishing methods (Yagi et al., 2018). These small vessels hold great potential as platforms for coastal ocean observation as demonstrated by Nakada et al. (2014). If the accuracy of environment predictions improves through marine data collected from such vessels, it could not only enhance the estimation of fish abundance but also increase the efficiency of fishing activities. In contrast to the highly information-driven offshore large-scale fishing and coastal aquaculture (Saitoh et al., 2011; Igarashi et al., 2017), there is significant potential for innovation in coastal small-scale vessel fisheries (Saitoh, 2016).

The Kyushu Smart Fisheries (QSF) team was formed in 2016 through the cooperation of government, academia, and industry. From the outset, our goal was set to provide an accurate forecast of ocean conditions based on in-situ measurements taken with fishing vessels. We consider coastal fishermen to be prospective heavy users who would benefit from these ocean forecasts. In the next section, we explain the development of a simplified CTD instrument and the acquisition of data from acoustic current meters. Sections 3 and 4 introduce a coastal ocean prediction model and data assimilation, respectively. Section 5 is devoted to forecast app for fishermen. Evaluations of fishermen and public organizations are presented in Section 6, followed by the summary section.




2 Fishing vessel measurement

To achieve accurate ocean forecasts, dense measurements of ocean state variables (such as temperature, salinity, and velocity components) by numerous fishermen are essential. However, professional CTDs are too large for fishermen to handle. Therefore, a small-scale CTD device (hereafter referred to as S-CTD) has been developed in the earliest years of the QSF project (JFE Advantech Co., Ltd, 2022).

The main part of the S-CTD is protected by a titanium body against noise, corrosion, and pressure. The head and bottom sections house the CTD sensors, a non-contact charging unit and a Bluetooth module in robust resins. The power switch for the S-CTD is designed to make no protrusions and features a magnet-responsive mechanism, ensuring it will not malfunction at sea. Two titanium rings are welded onto the main body, allowing it to be securely attached to ropes or fishing gear. Weighting only 870 grams, fishermen can easily and safely throw this CTD device into the seawater from their boats (Figure 1). For measurements, it is often allowed to free-fall when lowered and is usually retrieved using an electric winch.




Figure 1 | One fisherman just dropped S-CTD from his fishing vessel into seawater. The Bluetooth technology allows automatic transmission of measurement data to his Android device as soon as it returns above the sea surface.



The nominal accuracy is within ±0.2°C for water temperature and within ±0.2mS/cm for conductivity. However, if we compare actual measurements with those of a high-precision CTD sensor, the differences tend to be smaller. Practically, the accuracy is estimated to be ±0.09°C for temperature and ±0.08mS/cm for conductivity (Ito et al., 2021).

The vertical structure of ocean currents has been already measured by many fishing vessels. Most acoustic Doppler current profilers (ADCP) on small fishing boats are products of Furuno Electric Co., Ltd. or Japan Radio Co., Ltd. Typically, these instruments observe the velocity vectors in three or five vertical layers. In shallow coastal areas (approximately less than 300 meters deep), the velocity measurements can be more accurate using bottom track mode.

However, the current data are mostly only viewed in real time on monitors aboard the vessels and are rarely recorded, necessitating the installation of data loggers on the fishing vessels as shown in Figure 2, Nakada et al. (2014) or Fukudome et al. (2016). The length, width, and height of this logger box made by Yoron Denshi, Inc. are 155, 135 and, 86 mm, respectively. The CUR (Water Current Layer) sentence, output by the current meter and part of the NMEA0183 standard communication protocol for marine electronics, is received by the data logger serially connected to the current meter.




Figure 2 | NMEA data logger (Yoron Denshi, Inc.) installed to a fishing vessel. This box records NMEA-0183 sentence including ADCP data from vessel electronic equipment(s) via wired serial connection. The data are then transferred wirelessly to an Android phone/tablet.



We have also developed an Android app “isow” for collecting observation data from marine observation equipments, displaying graphs, and automatically transferring data to cloud servers. The app automatically connects via Bluetooth to a NMEA logger and a S-CTD, retrieving the observation data directly into the app. The position information of the S-CTD utilizes the GPS of the Android device, while for ADCP data, the app acquires fishing vessel GPS information via the logger. Once the observation data is imported into the app, it is instantly visualized through graphs and other means. One fisherman said that after observing the depth graph of the S-CTD attached to his fishing gear, which differed from his expectations, he adjusted his operating methods and consequently improved his fishing efficiency.

The observation data imported into the “isow” app is backed up to a cloud server. Even data observed in areas without mobile network coverage, such as at open sea, will be automatically transferred to the cloud server once back within communication range. Fishermen can review in-situ observation data not only on Android devices but also on their home PCs. For example, one fisherman analyzed the bottom temperature and salinity that he observed himself, identifying the optimal environmental conditions for good fishing. Furthermore, they can share the data with others, such as ocean modelers in Kyushu University, facilitating collaboration and data sharing.

The number of cooperating fishermen/vessels and the frequency of marine observations have been increasing continuously (Tables 1, 2). In particular, the number of CTD observations exceeded 13,000 castings last fiscal year, which is equivalent to approximately last 20 years of CTD profiles in the northern Kyushu area derived from the Japan Oceanographic Data Center (JODC). With the high-frequency and high-density observation network, it is expected to capture small-scale temporal and spatial phenomena (Takikawa et al., 2019).


Table 1 | Number of fishing vessels collaborated to the QSF project in the fiscal year of 2018.




Table 2 | Same as Table 1 but for 2023.






3 Ocean modeling

A high-resolution coastal ocean prediction model (DR_D) was developed for the area in and around the Tsushima Strait (Hirose et al., 2021). The horizontal resolution is approximately 1.5km in spherical coordinates and the vertical grid size is increased from 2m at the surface, 4m at 200m depth, and much larger at deeper levels. The open boundary conditions are provided by downscaling the hourly output from the parent model with approximately 7.5km horizontal mesh (Hirose et al., 2013). However, in the early version, the tidal currents were not simulated very accurately, as indicated by feedback from cooperating fishermen.

Therefore, we decided to add correction terms of the four major tidal constituents (M2, S2, K1, and O1) to the open boundary conditions using fishing vessel ADCP observation data as constraints. Since barotropic tidal motions were expected to be dominant during non-stratified periods, we used the vessel data from seven vessels received in March 2019. The first guess of the tidal constituents was given by Matsumoto et al. (2000), and the eight parameters consisting of the sine and cosine functions of the four constituents were inversely estimated by using model Green’s functions (Menemenlis et al., 2005).

As a result, as shown in Table 3, the adjustments for the semi-diurnal tides (M2, S2) were small, while the diurnal tides (K1, O1) required larger adjustments. The calibrated experiment for March 2019 with these adjustments indicates that the correlation coefficient increased from 0.922 to 0.944, the coefficient of determination improved from 0.841 to 0.891, and the RMS difference decreased from 8.6 cm/s to 7.1 cm/s. The revision of the tidal components was effective to a certain extent.


Table 3 | Correction of amplitude and phase of the four major tidal constituents.



Figure 3 shows the temporal changes in alongshore velocity component at several representative points. The correction effect is small if the tidal current changes regularly, oscillating twice a day. However, during neap tides, when diurnal inequality occurs, the difference becomes more pronounced.




Figure 3 | Time series of along-shore component of modeled velocity at 10m depth in (A) 32.207°N, 128.675°E, (B) 33.633°N, 129.854°E, and (C) 34.250°N, 130,333°E before and after the calibration.



In July 2019, we implemented these tidal conditions into the operational forecast calculations without any announcements, and shortly thereafter, one of the cooperating fishermen noticed the update. The feedback from attentive fishermen has indeed helped to identify problems of our forecasts, leading to improvements. The interaction with fishing industry reinforces our responsibility towards the accuracy of the prediction model.




4 Kalman filtering

The S-CTD data and ADCP data from the fishing vessels are assimilated into the DR_D model using a sparse and efficient Kalman filter (Fukumori, 2002; Hirose et al., 2013). The state vector consists of the prognostic variables of temperature, salinity, horizontal velocity components, and sea surface height, though with a coarse horizontal grid resolution of 19.2 km. The number of vertical levels is also reduced to 8 (at depths of 1, 11, 21, 31, 43, 58, 76, and 100 m). Therefore, this data assimilation method can be considered suboptimal, prioritizing fast operation.

The estimation of data and model error using covariance matching equations (Fu et al., 1993) indicated that both were of similar magnitude. The errors for temperature and salinity were estimated to exceed 0.5°C2 and 0.1 psu2, respectively, while the velocity error exceeded 100 cm2s-2. As shown in the previous section, the measurement accuracy of the S-CTD is approximately 0.01°C2 and 0.01 psu2, indicating that the representation error is significantly larger than the instrument error. Consequently, since the data-constraint error (R matrix) should be much larger than the instrument error, the measurement accuracy of the S-CTD—though inferior to that of a full-spec CTD sensor—does not pose a limiting factor for this data assimilation. Even with the increased resolution of 1.5 km mesh, the missing physics in the model, such as internal waves, likely remain significant.

In the absence of observational data, an asymptotic solution was obtained using the doubling algorithm for accelerated convergence (Anderson and Moore, 1979). The error variance of temperature was similar to that obtained through covariance matching, but the salinity and velocity components remained smaller as shown in Table 4. Using this asymptotic limit as the initial condition, we compared the assimilation effects of monthly regular full-spec CTD data from regular governmental observations (RG) with those of S-CTD observations from irregular coastal fishing vessels (FV). The data-constrained error variances (or diagonal components of the R matrix) were set uniformly across space (1.0°C2, 0.16 psu2, and 100 cm2s-2). In the case of RG assimilation, observations usually conducted at the beginning of each month reduced the estimated errors. But by the end of each month, when no observation data were available, the error levels asymptotically returned to those of the simulation (Figure 4). In the case of FV assimilation, the short-term fluctuations in model error were significantly more intense; however, except for the first few days, the errors consistently remained lower than those of the simulation. This tendency was also similar for salinity and velocity components (Table 4). Furthermore, the accuracy of FV assimilation was found to improve more during the warm season than in the cold season. This can be attributed to the increased frequency of observations due to the higher number of fishing operations during the warm season, which is typically favored by good weather conditions.


Table 4 | Time-mean and standard deviation of diagonal averages of error covariance matrices for 2021.






Figure 4 | Time series of diagonal average of temperature part of error covariance matrices for the three cases of no-data assimilation (Sim, black dots), data assimilation with regular governmental measurement (RG, blue curve) and irregular fishing vessel measurement (FV, green curve).



Finally, by correcting the tidal and empirical parameters in the DR_D model using the numerical Green’s function as in previous section and Hirose et al. (2021), and assimilating fishing vessel data (ADCP, S-CTD) into this model with the approximate Kalman filter, significant improvements were found particularly in the velocity changes (Figure 5).




Figure 5 | Scatter diagram comparing model prediction and measurement data for temperature, salinity, and northeastward velocity components in August 2019. All data located north of Kyushu Island (roughly 130-131°E, 33.5-34.5°N). The blue and red dots indicate the earliest and assimilation version of DR_D model (Hirose et al., 2021), respectively.



For the predominant northeast-southwest velocity component in the Tsushima Strait, the correlation coefficient with ADCP data improved from 0.828 to 0.881, and the residual variance decreased from 279 cm²/s² to 143 cm²/s² (−49%). The modeled temperature and salinity are also improved, with residual variances reduced by 31% (from 1.29 to 0.89°C2) and 38% (from 0.132 to 0.081 psu2), respectively, though the magnitude of improvement in velocity changes is more significant. One of the main reasons of this improvement can be attributed to the enhancement of the vertical viscosity coefficient as shown by Hirose et al. (2021).

Ito et al. (2023) coupled a lower trophic ecosystem model with this dynamical model to create statistical models for predicting fishing grounds of the swordtip squid. While these results have not yet been provided to the local fishermen (as of 2022), the data assimilation improves the initial conditions and predictability of ocean condition forecasts, thus contributing to better predictions of fishing conditions for various fish species in the future.




5 Viewer app

We developed an Android app as a display tool to easily utilize forecast data from the coastal ocean prediction models without requiring specialized knowledge (IDEA Consultants, Inc, 2024). The app named Yochou visualizes predicted values for water temperature, salinity, and ocean currents up to three days ahead (and extended to one week in 2022), presenting them as horizontal distributions at different depths and vertical profiles for the areas specified. Users can also observe their temporal changes. The app is designed for use at sea, where mobile communication is often unavailable. Basically, the users download the forecast data in advance while on land and access it offline at sea.

The Yochou follows a mapping approach commonly used in various weather viewer apps. To provide similar usability to map apps, our app uses the open-source map library Leaflet and its plugins as the foundation for the visualization components.

On smartphones and tablets, touch operation is fundamental. This app is designed to be intuitive, allowing users to operate it almost entirely through finger touch. It can also display depth-time graphs to observe temporal changes by fixing latitude and longitude. By aligning the cursor (+ mark) displayed in the center of the screen with the point of interest and pressing the ZT mark in the bottom right corner, a depth-time diagram pops up (Figure 6).




Figure 6 | Screen shots of prediction app “Yochou” for (left) horizontal map and (right) depth-time diagram. Translations are shown in italics.



During the development of Yochou app, we repeatedly sought feedback from fishers and made numerous improvements. As a result, the app is optimized for coastal fishing vessels. This app has been provided free of charge to the cooperating fishers who have achieved a certain level of measurement frequency.




6 Fishermen comments

In this section, we introduce the voices of cooperative fishermen who used the Yochou app during the QSF project period, which lasted until March 2022.

	I have never seen a forecast of the ocean conditions before. The predictions from this app seem quite accurate and trustworthy.

	My lightweight fishing gear is easily out of control at strong or sheared current, and thus we need to select fishing grounds with moderate water motion. The accurate current prediction is essential to deploy the gear at target depth.

	I can avoid my fishing gear caught on rocky bed, and thus spend less time on repairs of the gear on the boat or at the port.

	Using this app feels like listening to my grandfather when I was learning how to fish. The predictions became inaccurate on a biweekly basis, but since the summer of 2019, the accuracy of tidal forecasts has significantly improved.

	We had only been looking at the remotely sensed sea surface temperature the day before fishing. The real-time information is groundbreaking and highly valuable. It seems that the predicted sea surface salinity correlates to my fish catch.

	Since there is almost no need to search for fishing grounds anymore, our fleet can go straight from the port to the fishing grounds, resulting in a reduction of over 10% in fuel costs and operating (labor) hours. With increased break time, I feel physically much better.

	This app is also effective for training newcomers. By using this visual information, experienced fishermen can more easily convey their expertise and know-how to the freshmen. We are pleased that the fishing techniques can be more easily passed down, supporting new workers entering the traditional industry.



We considered “fishing duration times fuel usage per unit catch” as the primary cost of fishing. The reduction rate of this fishing cost is defined as a unique indicator of the smart effect in the QSF team. As shown in Table 5, 13 fishermen (13 vessels) achieved the numerical target of 15% or more reduction of the fishing cost by closing the 5-year JFA project (March 2022). The total number of fishermen utilized the two apps (“isow” and “Yochou”) was 45, resulting in an achievement rate of about 29%. Among those other than the 13, cost reduction effects of around 5-10% were also recognized, and many participants expressed positive evaluations as shown above. These effects were observed across various fishing methods/species, indicating that the smart initiative of this project is a highly versatile approach.


Table 5 | List of fishermen (vessels) who achieved the 15% efficiency goal through the smartization.



On the other hand, we cannot neglect the following negative comments.

	The forecasted flow direction and speed often did not match the actual conditions on site, so I have not been using the app much since then.

	During the spring and rainy season, there is a phenomenon where thin surface water accelerates suddenly (we call it Mizushio), but this forecast often turns out to be wrong.

	Although I want to use this app at sea, slow response of the app makes it unsuitable for the fast-paced fishing environment.

	The three-day forecast is too short because we go fishing in areas where ground radio signals do not reach for about a week.



Critical comments can lead to improvements of our prediction system in the future. In fact, we extended the forecast period from three days to one week since June 2022.




7 Concluding remarks

The main axis of this work has been a data exchange that fishermen provide observation data and, in return, receive improved ocean predictions from academics. As the accuracy of these forecasts increases, it has enhanced fishermen’s motivation to make observations, creating a positive cycle of coastal ocean data circulation. The coastal ocean modeling has also advanced significantly due to the vast amount of in-situ observation data.

One major group of collaborative fishermen has received Prime Minister Award recently (Fukuoka Prefectual Office, 2023). The three reasons for this award can be used directly as a summary for this article. (1) Fishermen, local government, academia, and industry have collaborated to develop an information communication technology (ICT) system to provide predictive information on water temperature, currents, and other environmental factors. (2) The fleet contributes to improving prediction accuracy by using small measurement devices installed on their fishing vessels to observe water temperature, currents, and other parameters during operations, and sending the in-situ data to a supercomputer of Kyushu University. (3) By utilizing this system, the fishermen can select fishing grounds in advance, leading to efficiency improvements in fishing such as reduced fuel consumptions and shortened working hours. Sasaki (2024) reported their efforts in more detail.

Finally, we have established a win-win relationship between coastal fisheries, local governments, ocean science and industry by exchanging model and observational data (Figure 7). The Yochou app has become an indispensable operational tool for many fishermen, motivating them to actively participate in coastal ocean observations. In April 2022, we renamed our group from the Kyushu Smart Fisheries (QSF) team to Smart Fisheries Network (SFiN). The new network promotes the integrated approach that not only acquires observational data but also utilizes ocean predictions widely across Japan. Indeed, the modeling areas are steadily expanding (Ocean Modeling G, 2024). We would like to apply this data circulation strategy eventually to global coastal oceans.




Figure 7 | Establishment of local circulation of ocean data from in-situ measurement and numerical modeling.
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We present an impact assessment of temperature and salinity glider observations on physical analysis and forecasting systems operating in the Western Mediterranean Sea through one-year-long coordinated experiments. A unique set of glider observations including data from several endurance lines provided by different institutions is assimilated in the three systems. Results are compared against an assimilation-free run and an assimilative-run that with each systems’ default configuration. Moreover, an additional biogeochemical analysis system is forced by two physical runs with and without the assimilation of glider observations. First of all, we demonstrate that glider data assimilation has an overall positive impact on the state estimation of the Western Mediterranean Sea, independently of the system employed and the pre-processing approach used to ingest the glider measurements. Secondly, we show that it helps improve the representation of mesoscale structures, in particular the location and size of an intense anticyclonic eddy observed in the Balearic Sea. Thirdly, the geostrophic currents and transport of Winter Intermediate Water in the Ibiza Channel are also improved. Finally, the adjustment of the mixing after glider data assimilation in the physical system translated to a better estimate of chlorophyll distribution in the upper layer of the biogeochemical system. Leading to the same order of magnitude of improvement in the different forecasting systems, this intercomparison exercise provides robustness of the obtained impact assessment estimates. It also allows us to identify relative strengths and weaknesses of these systems, which are useful to identify future ways of improvement. Overall, this study demonstrates the value of repeated glider observations collected along endurance lines for regional ocean prediction.
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1 Introduction

Ocean underwater gliders (hereafter gliders) have been observing the world ocean since the beginning of the 2000s (Lee and Rudnick, 2018) and take part as an important part of the Global Ocean Observing System (GOOS; Moltmann et al., 2019; Liblik et al., 2016). The growing network of gliders, which has been operated by many teams around the world, plays an important role for the understanding of the ocean state, variability and changes, especially in areas that connect the open basin with the coastal environment (Davis et al., 2002; Testor et al., 2010; Rudnick, 2016). Gliders have the ability to operate under all-weather conditions and sample the ocean where it is impractical for human access, such as in the middle of a hurricane or under sea ice (Testor et al., 2019; Duguid and Camilli, 2021; Zarokanellos et al., 2022; Patmore et al., 2024). They help to investigate physical and biogeochemical processes, covering extreme events and climate signals (Glenn et al., 2016; Todd et al., 2011; Zaba and Rudnick, 2016; Rudnick et al., 2017). They are especially crucial for observing the boundary currents (e.g., Todd and Locke-Wynn, 2017), tracking the storms (Glenn et al., 2016), identifying water masses formation and transformation (Våge et al., 2018), resolving mesoscale and submesoscale phenomena (Hristova et al., 2014) and coastal processes (Benveniste et al., 2019). An exhaustive list of the applications of the underwater gliders can be found in Rudnick (2016) and Testor et al. (2019).

The Mediterranean Sea has been characterised by high mesoscale activity (Bosse et al., 2015; Escudier et al., 2016; Bonaduce et al., 2021), different water masses (Özsoy et al., 2014; Pinardi et al., 2015), deep convection (Testor et al., 2018) and frontal processes (Hernández-Carrasco and Orfila, 2018), sea strait dynamics (Aydoğdu et al., 2018; Sanchez-Roman et al., 2018) and tidal dynamics (Sannino et al., 2004), making the basin an ideal testbed to assess the impact of different observing systems. The Western Mediterranean basin is one of the regions in the world that is most intensively observed by gliders. Several endurance and quasi-endurance glider lines have been established in the last decade to provide repeated monitoring in key observing areas with high biodiversity importance (Tintoré et al., 2019; Mourre et al., 2022). These are Nice-Calvi, Marseille-Menorca, Menorca-Sardinia, Mallorca and Ibiza channels and Mallorca to the Algerian coast. The extensive glider network in the basin allows to study these different oceanic phenomena (Zarokanellos et al., 2022; Heslop et al., 2012; Margirier et al., 2020) from an observational point of view or in combination with numerical simulations (Garcia-Jove et al., 2022). Gliders also allow to validate and improve ocean circulation models through data assimilation, being a good company or alternative to traditional research vessel campaigns (Dobricic et al., 2010; Hernandez-Lasheras and Mourre, 2018).

The vertical physical and biogeochemical profiles provided by gliders are incorporated into the ocean analysis and reanalysis systems from coastal to regional and global scales to improve the ocean state estimation, forecast initialization1 and reconstruction of the past state (Storto et al., 2019). Dobricic et al. (2010) assimilated observations of temperature, salinity, and vertically averaged velocity from a single glider in the northern Ionian Sea where the highly dynamic Atlantic Ionian Stream enters. They found local improvements in temperature, salinity, velocity, and surface elevation fields. Furthermore, the assimilation of glider observations rapidly generates remote impacts that last several months. Similarly, Hayes et al. (2019) assimilated a single glider in the south of Cyprus and found that a spatial scale of 40-50 km around the glider in which the forecast skill is improved by 15%. The controllability of glider platforms at sea can also be exploited to adapt their path to sample areas of increased interest (Lermusiaux, 2007). In this line, Mourre and Alvarez (2012) demonstrated the benefit of piloting a glider through a real-time adaptive sampling scheme to reduce predicted ocean temperature uncertainties in the Ligurian Sea. The error was reduced by 18% compared to a control run assimilating glider observations collected along a predetermined path. In the U.S. West Coast, offshore of Oregon and Washington, Pasmans et al. (2019) showed that the assimilation of glider observations alone creates unphysical eddies in the vicinity of the glider transect which can be prevented by the combined assimilation of surface and subsurface observations. Kerry et al. (2018) assimilated gliders along with the other observations in the East Australian Current (EAC) system. They showed that the information from the gliders not only imposes strong constraints on the depth of an eddy but also strongly alters its meridional extension.

Synchronous measurements from fleets of several gliders, up to 15 vehicles, were also proven to be successfully assimilated in numerical models (Shulman et al., 2009; Pan et al., 2011; Gangopadhyay et al., 2013; Mourre and Chiggiato, 2014; Hernandez-Lasheras and Mourre, 2018). Vargas et al. (2019) conclude that the assimilation of glider data in the global ocean forecasting system was crucial to improve the pre-storm vertical stratification during hurricane Michael in 2020. However, the assimilation frequency in the current setup, once a day, was insufficient to capture the rapid cooling of the surface layer. Liu et al. (2023) performed numerical experiments assimilating satellite and glider observations to study Hurricane Isaias in 2020. They showed that assimilating glider observations with broad spatial and temporal coverage along Isaias’ track in addition to satellite observations further increased Isaias’ intensity forecast. Observations from gliders are used also to develop new algorithms for data assimilation. For example, Pan et al. (2011) used glider observations to test a 3DVar scheme in its hybrid and ensemble formulation. Halliwell et al. (2020) performed an observing system simulation experiment to assess different glider array setups to predict tropical cyclones.

The assimilation of biogeochemical observations from gliders is still in its early stages and very few examples have been published. Kaufman et al. (2018) assimilated chlorophyll and particulate organic carbon in the 1D model of the Ross Sea showing improvements in phytoplankton dynamics and ecosystem processes such as depth-integrated primary production and carbon export. Chlorophyll and oxygen from BGC-glider are assimilated in the preoperational model of the North-Western European shelf to constrain the phytoplankton spring bloom with positive impacts on biogeochemical processes such as remineralization and nitrification rates (Skákala et al., 2021). Ford et al. (2022) performed an observing system experiment for coastal ocean ecosystems in the western English Channel integrating real-time glider data with model forecasts to predict the spring phytoplankton bloom. Biogeochemical observations from gliders are used also to validate models in coastal areas and open seas (Jones et al., 2016; Thomalla et al., 2017; Many et al., 2021) where chlorophyll is typically the most used variable.

There has been a dedicated effort in the last two decades for ocean model intercomparison under World Climate Research Programme (WCRP; Griffies et al., 2016) and data assimilation system intercomparison under Global Ocean Data Assimilation Experiment (GODAE, now OceanPredict; Hernandez et al., 2009). Balmaseda et al. (2015) reports the intercomparison of several global ocean reanalysis to estimate uncertainty in different oceanic variables and regions. Intercomparison experiments to assess the impact of a specific observing network are also emerging. For example, Martin et al. (2020) examined the impact of satellite sea surface salinity in two global operational forecasting systems.

In this study, our goal is to evaluate the impact of the Western Mediterranean Sea extended glider network on four European analysis and forecasting systems. The basin is one of the dynamically very active regions in the Mediterranean Sea. The Gulf of Lion is a convection area where deep water is ventilated, and the surface layer gets nutrient rich waters. Mesoscale eddy activity also modifies the local water mass properties, which may have various consequences for the sea state and ecosystem. The circulation in the region is a part of the exchange mechanism with the Atlantic Ocean through the Gibraltar Strait that regulates the water budget in the entire Mediterranean Sea. For the assessment, a coordinated experiment is performed using a unique glider dataset assimilated in all systems during a one-year-long simulation. We have applied a detailed validation, focusing, besides the widely used statistical metrics, on the capacity of the different systems to represent physical processes and dynamical features. More specifically we concentrate on the transport processes in the Ibiza Channel and impact of assimilation on the evolution of an intense and long-lived anticyclonic eddy. Moreover, we show the impact of temperature and salinity assimilation on biogeochemistry (BGC) via uncoupled forcing of the BGC system with the estimates of the physical system and discuss its implications.

In Section 2, we will introduce the analysis systems that were used in this study. We also introduce the observations that were used for validation along with their preparation procedures. In Section 3, we will present the findings using different metrics that are defined in Section 2. The discussion is carried out separately in Section 4 where the final conclusions are also drawn.




2 Materials and methods

The Western Mediterranean Sea is covered and monitored by different analysis and forecasting systems from the Copernicus Marine Service namely, Mediterranean physical component (MedFS; https://medfs.cmcc.it) and biogeochemical component (MedBFM; https://medeaf.ogs.it), and Iberia Biscay Irish (IBI; https://doi.org/10.48670/moi-00027) physical component, as well as the Western Mediterranean Operational forecasting system (WMOP; https://www.socib.es/?seccion=modelling&facility=forecast) from SOCIB (Figure 1A). We use a unique set of glider observations for all the different physical systems to investigate their impact on the quality of the ocean analysis estimates. Moreover, the impact on the biogeochemical estimates forced by the physical analysis is assessed. Here we consider numerical experiments spanning an entire year (2017), which is a distinguishing characteristic of this study from most of the previous glider data assimilation studies that focus on specific campaigns for short periods. In this section, we describe the datasets and systems as well as methodologies applied for pre-processing, quality check and validation.




Figure 1 | The model domain of analysis and forecasting systems employed in the study is shown in the (A) IBI in red, MedFS in blue and WMOP in green. The glider transects available in the Mediterranean Sea in the Copernicus Marine data store in the entire 2017 are also shown. (B) A zoom in the Western Mediterranean region, where the intercomparison is performed, is depicted in a) to highlight different transects. (C) the timeline of the availability daily glider profiles (7-day running mean) in each transects highlighted in the zoomed panel.





2.1 Gliders in the Mediterranean sea in 2017

Various institutions provided glider observations in the entire Mediterranean Sea in 2017. Figure 1 shows the spatial distribution of the data for each transect with a focus on the western basin in which the largest volume of glider observations is available. There are also gliders operated in the Adriatic Sea by OGS, in the Sicily Strait by INSU and in Southern Levantine by OC-UCY. The temporal distribution of the number of profiles in the different transects in the Western Mediterranean is shown in Figure 1C. We note that a 7-day running mean is shown here and that high number of profiles are due to the fact that gliders dive to lower depths, making more up and down casts. In 2017, SOCIB performed various missions in the Western Mediterranean Sea. The SOCIB Canales endurance line provided observations in the Balearic Channels (>300 glider days; Heslop et al., 2012; Zarokanellos et al., 2023) and the Alnitak 2017 mission collected data south of Mallorca. Furthermore, SOCIB, in collaboration with CNR, University of Parthenope and IMEDEA in Italy and Spain, performed several missions between Menorca and Sardinia (SMART quasi endurance line; Pessini et al., 2018; Mourre et al., 2022), between Mallorca and the Algerian basin (ABACUS quasi endurance line; Cotroneo et al., 2016, 2019; Zarokanellos et al., 2023) and in the eastern Alboran Sea (IRENE-CALYPSO mission). The regular glider lines between Menorca and Toulon, and between Corsica and Nice, are maintained by the French institutions Ifremer, CNRS, ENSTA and INSU through the MOOSE observing network (Margirier et al., 2017; Coppola et al., 2019). Finally, CMRE (NATO-STE) also deployed gliders in the Ligurian Sea. The glider temperature and salinity data used in this study is made available by In-Situ thematic assembly centre (TAC) through the Copernicus Marine data store.

This research is carried out as part of the Horizon 2020 EuroSea project. Within Eurosea, two distinct tasks were undertaken to evaluate the impact of glider and float observations that are available in the In-Situ TAC in the Mediterranean Sea and Iberia Biscay Irish regions. A workshop2 has been organised to discuss the best practices for using the glider observations for validation and assimilation to improve the analysis and forecasting systems. Experts from OceanGliders, Euro-Argo, OceanObs and OceanPredict programmes participated to initiate a collaboration between marine observation specialists and data assimilation practitioners. The main issues addressed were:

	the best practices in use of glider and floats in-situ observations by operational forecasting systems

	the accessibility to the glider/Argo floats observations in near-real time (NRT) and delayed time (DT) mode

	the quality control (QC) in the assimilation systems



The focus of the workshop was to open a debate on how to improve data flow through the TACs and reinforce MFCs to achieve the best estimate of the ocean state using the best quality observations. This workshop, along with the subsequent interactions in the community, has been instrumental in shaping the future of the glider data assimilation under OceanGliders programme which will hopefully facilitate further improvements in the use of glider observations in the analysis/reanalysis systems.




2.2 Analysis and forecasting system configurations

We employed three ocean and one biogeochemical analysis and forecasting systems that overlap in the Western Mediterranean Sea. Major characteristics of all the physical systems used in this study, MedFS, IBI and WMOP, are significantly different and listed in Table 1. In the following subsections, we will outline their key features that are important for this investigation. Main characteristics of MedBFM are also summarized.


Table 1 | The main characteristics of the analysis and forecasting system configurations involved in the intercomparison developed and maintained by MOi, CMCC and WMOP.



In brief, IBI and MedFS are designed for regional applications and adopt NEMO as their ocean model while a high resolution ROMS implementation in WMOP aims to resolve subregional dynamics. Atmospheric surface and ocean lateral boundary conditions of both the IBI and MedFS are provided by ECMWF and Copernicus Marine Global analysis and forecasting system, respectively. In WMOP, a higher resolution regional product from AEMET (Spanish Meteorological Agency) is used as the atmospheric boundary condition while ocean lateral boundary conditions are provided by MedFS. All three systems have different data assimilation approaches and schemes. Finally, MedBFM is an OGSTM-BFM implementation in the Mediterranean Sea, forced by MedFS maintaining the same resolution. Further information is available in references provided in each system’s dedicated section.



2.2.1 Mediterranean sea analysis and forecasting systems

The Mediterranean Sea analysis and forecasting systems are developed and maintained by the production units of the Copernicus Marine Service. In this study, the physical (MedFS) and biogeochemical (MedBFM) components are employed. An earlier version of them is extensively described in Coppini et al. (2023) along with the wave component.

The physical component, MedFS (Clementi et al., 2021), is a NEMO-based system with a 1/24° model horizontal resolution and 141 unevenly distributed vertical z* levels with denser layers close to the surface ocean. NEMO v3.6 is interfaced to a 3D variational data assimilation algorithm, OceanVar, developed at CMCC initially by Dobricic and Pinardi (2008) and further improved for a wide range of ocean data assimilation applications (Storto et al., 2015). The interface can compute the model equivalent of the observations during the model integration at observation time, an approach known as First Guess at Appropriate Time (FGAT). OceanVar assimilates temperature and salinity vertical profiles from Argo, CTD and XBT. The along-track sea level anomaly observations are assimilated from various altimeter satellites. The observation operator for gliders in MedFS was first implemented by Dobricic et al. (2010) and has been later updated following the model upgrades. A heat flux correction is applied at the surface through an SST relaxation scheme in NEMO. The major difference of the configuration used in this study from the one described in Coppini et al. (2023) is the inclusion of tides in the hydrodynamical core. On the other hand, the coupling with waves is not activated to reduce the computational demand required for the model integrations.

To test the impact of the improved ocean dynamics after glider data assimilation on BGC, the daily output of the MedFS system with and without glider assimilation are used to force the transport-BGC MedBFM model. MedBFM is the official biogeochemical model of the Copernicus Marine Service Mediterranean MFC (Coppini et al., 2023; Cossarini et al., 2021; Salon et al., 2019). The setup of the present simulations, which is fully aligned in terms of domain, boundary, and rivers with the physical configuration, is described in Cossarini et al. (2021), with the only difference that the BGC model is run in hindcast mode.




2.2.2 Iberian-Biscay-Irish seas analysis and forecasting system

The IBI system is an operational system that produces ocean forecast and reanalysis within the Copernicus Marine Service. The physical component that is used in this study combines the NEMO physical model with the SAM (Système d’assimilation de Mercator) assimilation code. NEMO is run on a horizontal curvilinear grid of 1/36° resolution, a refined subset of the ORCA 1/12° used for global simulations, over the Western European Seas (see Figure 1). The grid has 50 z levels in the vertical, with a resolution decreasing from ∼1 m in the upper 10 metres to more than 400 metres in the deep ocean. A partial step representation of the very last bottom wet cell is used with some constraints on the resulting minimum bottom cell thickness to guarantee model stability. The equations assume hydrostatic stability and Boussinesq approximation with a non-linear explicit free surface (Shchepetkin and McWilliams, 2004) to represent fast moving waves such as tides. Vertical mixing is parameterized using a k-ϵ model implemented in the generic form proposed by Umlauf and Burchard (2003) including surface wave breaking induced mixing.

The IBI numerical model is forced with hourly atmospheric fields (10-m wind, surface pressure, 2-m temperature, 2-m specific humidity, precipitation rate, short- and long-wave radiative fluxes) provided by ECMWF. IFS empirical bulk formulae (Brodeau et al., 2017) are used to compute sensible heat flux, latent heat flux and evaporation, and surface stresses. Solar penetration is parameterized according to a five-band (considering UV) exponential scheme that is a function of surface chlorophyll concentration, using the Copernicus Marine ESA-CCI product covering the Northeast Atlantic area (including the IBI domain) at a monthly frequency.

The assimilation scheme consists of a 3DVar bias correction for the slowly evolving large-scale biases in temperature and salinity, and a local version of a reduced-order Kalman filter based on the Singular Evolutive Extended Kalman Filter (SEEK) formulation introduced by Pham et al. (1998). The background error covariance is based on the statistics of a collection of three-dimensional ocean state anomalies. These anomalies are computed from a free-run simulation (2013–2019) with respect to a running mean to estimate the 7-day scale error on the ocean state at a given period of the year. A Hanning low-pass filter is used to create the running mean with a cut-off frequency equal to 1/48 days. More information about the system can be found in Lellouche et al. (2013, 2018) for the global configuration. The assimilated observations are temperature and salinity in-situ profiles, satellite along-track altimetry and SST.




2.2.3 Western Mediterranean OPerational analysis and forecasting system

The Western Mediterranean OPerational forecasting system (WMOP; Juza et al., 2016; Mourre et al., 2018) is a 2 km-spatial-resolution regional configuration of the ROMS model over the Western Mediterranean basin, excluding the Tyrrhenian Sea. It uses 32 sigma levels which are stretched to provide an enhanced resolution in the surface layers. The model is run in forecast mode on a daily basis, using surface atmospheric forcing from the high-resolution (2.5km, 1h) Harmonie-Arome model of the Spanish Meteorological Agency. Lateral boundary conditions are provided by MedFS. Model outputs and associated figures, evaluation and indicators can be accessed on SOCIB website linked before in this section. The system assimilates Argo temperature and salinity profiles, Sea Surface Temperature (SST) and along-track sea level satellite observations through an ensemble-based sequential method (Multimodel Local Ensemble Optimal Interpolation; Hernandez-Lasheras and Mourre, 2018; Hernandez-Lasheras et al., 2021). In this scheme, an ensemble of eighty model states from three WMOP model reanalysis with different model initialization and parameters is used to estimate the multivariate background error covariances. A localization radius of 200 km is also applied to limit the impact of spurious long-distance covariances during the analysis step. The model fields are updated every three days using this data assimilation procedure.





2.3 Experiment setup

Three coordinated experiments are performed in parallel over the year 2017 to assess the impact of glider observations on the three analysis and forecasting systems described in Table 1. In each system, a free run (FREERUN) is first performed as a control run without any assimilation. A second run (NOGLIDS) assimilates or relaxes to only the generic observations (SLA, SST, Argo profiles). Finally, a third run (GLIDERS) assimilates glider observations in addition to the ones in NOGLIDS. Table 2 summarises these experiments. The results of these experiments are presented and discussed in Section 3. Moreover, the physical ocean estimates in NOGLIDS and GLIDERS obtained in the MedFS system are used to force the MedBFM BGC system to study the impact of temperature and salinity assimilation on the biogeochemistry in the region. The results will be shown in Section 3.4. The following sections describe the pre-processing of the glider observations, the validation datasets and the metrics employed.


Table 2 | Summary of the experiments and assimilated observations using the systems in Table 1.





2.3.1 Quality control and pre-processing before assimilation

Gliders go underwater along slightly inclined paths by changing their density (Davis et al., 2002). They provide very high-resolution observations in both space and time along their transect. The assimilation systems used at MedFS (OceanVar) and MedBFM (3DVarBIO) assumes a horizontal correlation length scale about 10-20 km, while the WMOP data assimilation system uses an EnOI scheme in which correlations are calculated from an ensemble of model realisations, with an additional localization radius of 200 km. Given the high-spatiotemporal resolution of gliders observations, their errors cannot be considered as independent from each other. Moreover, large differences in the resolution introduces a representation error in the observation error covariance matrix, R, in addition to the measurement error which is the instrumental accuracy. However, assimilation systems in use assume uncorrelated errors in observations, i.e., diagonal R, for the technical difficulties both in estimating off-diagonal terms of R and inverting it in the assimilation algorithms. The challenge of high-resolution observations is tackled in the atmospheric community (Janjić et al., 2017), later adopted also by the oceanic community, through the covariance inflation and observation pre-processing.

Specifically for the glider observations, past experiences suggest the following approaches, alone or combined, before the assimilation step:

Pre-processing to handle horizontal correlations in glider observations:

	Sub-sampling: Removing profiles in the inference radius of the observation position.

	Superobing: Averaging profiles falling into the same area to reduce the density of assimilated measurements.



Pre-processing to handle vertical correlations in glider observations:

	Binning in vertical grid levels.

	Discarding observations with large variance in vertical levels.

	Estimating representativity error from observation variance in vertical levels.



Other treatments of profiles may include:

	Discarding profiles with vertical gaps larger than a certain threshold between two measurements.

	Discarding profiles with a low number of measurements.



The optimal pre-processing of glider observations strongly depends on the model used, the type of assimilation scheme, the temporal window or the kind of observational errors considered. Here, we will consider the observation errors uncorrelated for the technical and computational reasons discussed above. Given the differences between the analysis and forecasting systems, and the fact that this optimal pre-processing approach is not unique, we decided not to follow the same strategy. Instead, each system employs its own pre-processing that minimises the errors in the analysis the most. Nevertheless, there is a need for a dedicated study for assessing the impact of different subsampling strategies which is out of the scope of this work.

For the IBI system, all ascending glider observations are used but they are interpolated vertically onto the model levels as it is also done for the other in-situ observations assimilated in the system. This approach allows to adapt the number of points in the vertical to the model resolution and avoid the assimilation of correlated observations.

In MedFS, several strategies are tested to assimilate glider observations. These include choosing all ascending and descending profiles if they sample the first 10 m of the water column to avoid constraining the surface with the deep observations. Another approach was to vertically subsample all ascending profiles on the model layers to avoid the correlations in the assimilated observations. Finally, the approach we use in this study is to select one profile from each dive, with the preference of the ascending profile when it exists, and without applying any vertical subsampling (Aydoğdu et al., 2023). This choice is done partially considering an increased observation error to the gliders to compensate for the dense observations. Moreover, we do not see a major increase in the computational cost in the minimisation of the cost function.

WMOP was already successfully used to assimilate glider measurements, as illustrated in Hernandez-Lasheras and Mourre (2018) where observations from up to eight glider vehicles were assimilated simultaneously. Glider profiles are considered as vertical in the present system (Copernicus Marine Service Level 2 product). Superobbing is applied along the vertical. For each profile, observations are binned in each vertical model grid cell. While the average over the cell provides the value to be assimilated, the variance is used to determine the vertical representation error. The horizontal representation error variance is assumed to be (0.25)2°C2 and (0.05)2 for temperature and salinity measurements, respectively. The total representation error variance is the addition of horizontal and vertical components. The instrumentation error is (0.1)2°C2 and (0.01)2 for glider temperature and salinity measurements, respectively. The model updates after analysis is performed every 3 days. At each analysis, a 5-day centred time window around the analysis time is used to select the glider, Argo and satellite along-track altimeter observations to be assimilated. These are added to the satellite SST Level 4 observations of the day of analysis.




2.3.2 Validation datasets and metrics

We performed a validation and intercomparison of three systems, putting a special emphasis in their capacity to reproduce physical processes and features. We focus on the transport processes in the Ibiza channel and on the formation and development of an anticyclonic warm core eddy in the Balearic Sea. This eddy has been previously studied in Aguiar et al. (2022), where the authors demonstrated that while the main driver of this eddy were the strong mistral winds in the region, the northward freshwater inflows linked to the dynamics across the Ibiza Channel also had an impact on the intensity of the eddy. In this work we have analysed the differences and capacities of the three systems to reproduce both processes in the different data assimilation experiments. The eddy structure is assessed by comparison with satellite observations, while the transport in the Ibiza Channel from the model is compared to that computed from the endurance line glider profiles available during most part of the year (Figure 1).

Since the eddy is present both in Sea Surface Temperature (SST) and in Sea Level Anomaly (SLA) observations, we have quantified, between the months of August to December 2017, the mean error (BIAS), root mean square difference (RMSD) and correlation between the different model estimates and the L4 satellite products in the Balearic sea region, in an area spanning from 1.8°E to 4.2°E in longitudinal, and 40.0°N and 41.8°N in latitudinal directions. To this aim, we extracted daily mean surface fields of the three systems and interpolated them onto the same 1/50° regular grid. Satellite observations were interpolated to that same grid before computing comparison metrics. For altimetry, we used the Copernicus Marine Service SEALEVEL_EUR_PHY_L4_MY_008_068 product and compared the absolute dynamic topography with the modelled sea surface height. For SST, we used the Copernicus Marine Service SST_MED_SST_L4_NRT_OBSERVATIONS_010_004 product and compute the metrics between the satellite L4 foundation and the model’s temperature in the first model layer.

In the results section below, we only show the SST maps for December, when the eddy is more intensified. The monthly means of the correlation and centred root mean square difference (cRMSD) are shown for this month, that we consider to be the most significant and explanatory for the performance of the systems. For SST, we consider the cRMSD to be more representative of the model capacity to reproduce a certain feature, since it does not include bias and thus is more related to the shape of the structure.

Besides, we used an eddy tracker algorithm (Mason et al., 2014) to perform a further qualitative validation. Given a sea surface height (SSH) field, the algorithm computes the geostrophic velocities, and identifies the eddies present in the simulations based on the contour shapes and the SSH gradients, categorising them in cyclonic or anticyclonic. Afterwards, given these daily identified eddies, the algorithm makes the tracking of the eddy trajectories, given a set of parameters. In our case we consider eddies that persist a minimum of 15 days, allowing 3 consecutive days of missing detection. Additionally, the sea surface height fields are filtered using a high-pass Bessel filter with a wavelength of 400 km to eliminate the large scale and focus on the mesoscale structures.

In the Ibiza Channel, following the work of Heslop et al. (2012), for each of the 44 available transects of the gliders in the year 2017, the observed temperature and salinity profiles are interpolated on a regular grid of the channel. From these T and S profiles, the dynamic height and the resulting cross-channel geostrophic currents are computed. Geostrophic transports are then evaluated by multiplying the positive and negative currents by the corresponding section. This method was also applied by Barceló-Llull et al. (2019) in the Mallorca channel and used to validate the operational model in Juza et al. (2016). To evaluate the transport of different water masses, a criterion to detect Winter Intermediate Water (WIW) was applied using the code from Juza et al. (2019). Atlantic Waters and Levantine Intermediate Waters are deduced from this criterion. We applied the exact same method to the model data co-located on the observation location and time in order to make a fair comparison to observations transports.






3 Results

In this section, we present the results of the experiments described in section 2.3. Various metrics described in section 2.4.2 are employed to assess different experiments. Comparisons are limited to the overlapping region in the western Mediterranean Sea.



3.1 Skill assessment against glider observations

In Figure 2, we show the comparison of experiments, i.e., FREERUN, NOGLIDS and GLIDERS, in each system in terms of RMSD against temperature and salinity glider profiles. Note that this specific validation, for GLIDERS, cannot be seen as fully independent as it uses glider data. However, the validation is performed on the entire dataset for all systems, while only a part of these observations was assimilated due to the preprocessing applied in each system (see Section 2.1.3).




Figure 2 | RMSD of temperature (A-C) and salinity (D-F) for IBI (A, D), MedFS (B, E) and WMOP (C, F) from FREERUN (blue), NOGLIDS (orange) and GLIDERS (green). The shaded area represents the distribution of observations through the water column.



The experiments in which glider observations (GLIDERS, in green) are ingested outperform experiments without gliders (NOGLIDS, in orange) and without assimilation (FREERUN, in blue) in each system for temperature (Figures 2A–C). The profiles of temperature RMSD in IBI (Figure 2A) shows an overall improvement up to 24% at surface layers with a slight degradation at depth maximum of -7% compared to NOGLIDS around 900 m. In MedFS, we note a small degradation of about 8% at the upper 0-50 m in the temperature, identified during the season with increased stratification (not shown). This may be due to improper observational errors that do not adequately represent the warming at the surface layers. Besides, glider assimilation improves the skill of the system (Figure 2B) up to 28% around 150 m against NOGLIDS. In WMOP, GLIDERS shows a significantly better skill with a 30% improvement close to the surface against NOGLIDS, which have slightly higher temperature mismatch with respect to the observations compared to the FREERUN (Figure 2C). Overall, glider data assimilation significantly improves the temperature estimates in all the systems.

For salinity, all systems (Figures 3D–F) benefit from glider assimilation demonstrating a better skill in all depths reaching up to 25%, 20% and 30% in the IBI, MedFS and WMOP, respectively. The errors are significantly reduced in GLIDERS compared to NOGLIDS and FREERUN till about 400 m. Below 800 m, in all systems, we note a slight error increase in GLIDERS. The degradation can reach 15% in IBI and 13% in WMOP while remaining 7% in the MedFS.




Figure 3 | Monthly mean SST for IBI (A-C), MedFS (D-F) and WMOP (G-I) for FREERUN, NOGLIDS and GLIDERS. We also depict in (J) the mean SST from satellite L4 products of Copernicus Marine Service for comparison in red box. The blue box represents the area used to compute the error metrics shown in Figure 4.






3.2 Skill assessment against satellite observations

In this section, the focus is on the validation against sea surface temperature and height satellite observations. We do not assess the skill only statistically in this case but investigate the long-lived anti-cyclonic eddy developed between Barcelona and the Balearic Islands and studied in detail by Aguiar et al. (2022; see their ). The eddy formation started in August 2017 and lasted until the end of December as identified by satellite SST observations (Figure 3 last column). In December, all FREERUN experiments represented the eddy but were misplaced in IBI and WMOP and too large in MedFS. The intensity of the eddy seems to decrease with the assimilation in NOGLIDS in all the systems while the location becomes adjusted and better correlated with satellite SST. Eventually, with the integration of glider observations in GLIDERS, the shape and position compare better with the observations. All systems present a correlation over 0.9 for GLIDERS, significantly improving their results with respect to NOGLIDS (Figure 4). Besides, the ingestion of glider observations leads to a reduction of the cRMSD in the MedFS and WMOP systems, around 25% and 36% respectively, while IBI does not show a significant impact. The IBI system is the only one in which the assimilation of glider observations doesn’t have a marked impact, possible due to the good performance already obtained with the FREERUN, with a correlation above 0.88 and the lowest cRMSD among all simulations. While the SST correlation is still slightly improved, the RMSD in the area is identical between GLIDERS compared to NOGLIDERS. A similar conclusion can be drawn by tracking the location of the eddies in the region compared to the altimeter-based observations. In Figure 5, we show the trajectory of the eddy estimated from the altimeter in the red box on the rightmost panel and different experiments from each system between August and December. In the FREERUN, none of the systems correctly captures the eddy position during its entire evolution. MedFS captures the trajectory well but with a displacement of the centre of eddy tens of km’s, while IBI represents the eddy during the last part of November and December but slightly displaced southwards, with respect to the altimetry. The assimilation in NOGLIDS helps all systems to better locate the eddy. However, it presents difficulties to track it during the entire period. The algorithm used shows different tracks, as the eddy in these data assimilative runs may be abruptly changing position and shape or being replaced by another eddy, and thus the algorithm does not follow a continuous trajectory. MedFS is now accurate also for the location but with a shape that is a bit degraded. IBI and WMOP get closer to the observed trajectory compared to the FREERUN. In GLIDERS, WMOP has a better adjustment of the trajectory compared to NOGLIDS. In MedFS, the initial and final position of the eddy are also represented more accurately.




Figure 4 | (A) Correlation and (B) cRMSD of SST for FREERUN (blue), NOGLIDS (orange) and GLIDERS (green) for each system computed over the blue box illustrated in Figure 3.






Figure 5 | Trajectories of anticyclonic eddies tracked in the Balearic Sea from August to December 2017, with 15 or more days of life cycle estimated for IBI (A-C), MedFS (D-F) and WMOP (G-I) for FREERUN (left), NOGLIDS (center) and GLIDERS (right) columns of the 3x3 panels. (J) The trajectory estimated from the altimeter is depicted.



Overall, considering the different metrics, the assimilation of gliders is found to help improve the representation of this long-living mesoscale structure.




3.3 Transport through the Ibiza channel

We now turn our attention to the dynamical impacts in the Ibiza channel. In Figure 6, we show the geostrophic velocities in the channel calculated for different seasons. In winter, observations show that southward velocities dominate the flow in the channel above 200 m with a northward flow confined around 1°E. In all the systems, this northward flow occupies a larger section through the channel in NOGLIDS which is constrained better and localised in GLIDERS. The southward velocities in the western section are overestimated in all the systems in NOGLIDS and readjusted and improved in GLIDERS compared to observed velocities. The flow observed below 400 m, mostly northward, is correctly represented in each system. The southward flow which appears in NOGLIDS in WMOP between 400-600m around 0.7°E is accurately adjusted in GLIDERS. The RMSD decreases in all systems with the assimilation of glider observations, up to 2.5 cm/s. In April-June, northward velocities strengthen and spread westwards, which is well represented in IBI in both runs and overestimated in the other two systems in GLIDERS. MedFS improves in GLIDERS while missing the subsurface southward flow in the western section around 0.4°E which is well captured by WMOP and IBI. In July and September, surface flow is divided in two southward and two northward branches in a dipolar structure. The western and eastern sections are dominated by strong southward and northward velocities respectively, neighboured by an opposite flow. This structure is well captured only in the IBI system after the assimilation of gliders with an RMSD of 2.04 cm/s. There is a degradation in the MedFS in this period with an increase of RMSD about 1 cm/s while WMOP improves by about 1.2 cm/s. Finally, between October and December geostrophic velocities are mostly northwards. They are well-captured by IBI in NOGLIDS and GLIDERS and improved in WMOP in GLIDERS. In MedFS, assimilation of glider observations strengthens the southward velocities and degrades the estimates.




Figure 6 | Section of geostrophic velocities through the Ibiza channel (see Figure 1). In the first row, the estimates from the glider observations are shown for Jan-Mar, Apr-Jun, Jul-Sep and Oct-Dec periods from left to right, respectively. The second and third rows show the same periods for the IBI NOGLIDS and GLIDERS experiments, respectively. The fourth and fifth rows show the same periods for the MedFS NOGLIDS and GLIDERS experiments, respectively. The last two rows depict the same periods for the WMOP NOGLIDS and GLIDERS experiments. The RMSD of each experiment for each system is shown in each panel.



In the Western Mediterranean Sea, several water masses can be identified: the surface Atlantic Waters (AW) coming from the Gibraltar Strait and getting saltier as it propagates around the basin, below them is the Levantine Intermediate Waters formed in the salty Eastern Mediterranean Sea that represent a maximum of salinity and the Western Mediterranean Deep Water (WMDW) at the bottom, created by the deep convection in the Gulf of Lion. The last typical water mass in the region is the WIW that are also formed in winter in the Northern part of the Western Mediterranean Sea under less strong conditions, characterised by a minimum of temperature and situated above the LIW.

The focus of the previous figure was on the Atlantic Waters in the upper part of the water column as this is the strongest transport in the channel and instead Figure 7 depicts the monthly time series of northward and southward transport of the intermediate water mass WIW through the Ibiza Channel. In the observations (in black line on all three panels), we measure strong transport northward and even stronger southward that gradually decreases until reaching zero at the end of the year. In IBI and MedFS, FREERUN does not have a transport of WIW as none were detected in the sections corresponding to the glider missions. WMOP has some WIW being advected southward in spring but with an underestimated total transport. In IBI, NOGLIDS represents the transport of WIW in both directions at the beginning of the year and this gets better when glider observations are included with a reduction of the RMSD (0.01 Sv improvement in northward transport) but the transport is still lower than observed. The MedFS run with assimilation of datasets other than gliders does not improve the transport of WIW but the inclusion of gliders shows a clear improvement of the transport in both directions with values below but still comparable to the observed transport and a reduced RMSD (0.02 Sv and 0.07 Sv improvement in northward and southward transports). In WMOP, NOGLIDS degrades the transport of WIW with an increased transport in the second part of the year. The assimilation of glider observations corrects this behaviour and the evolution of WIW transports gets closer to the observed data, although with some underestimation in both directions (0.01 Sv and 0.05 Sv improvement in RMSD of northward and southward transport, respectively).




Figure 7 | Northward and southward monthly transport through the Ibiza channel for (A) IBI, (B) MedFS and (C) WMOP from observations (black), FREERUN (blue), NOGLIDS (orange) and GLIDERS (green).



In summary, the representation of WIW transport through the Ibiza channel and its evolution throughout the year is found to be positively affected by glider data assimilation in all three systems.




3.4 Impact on MedBFM analysis estimates

We now consider the impact of using these data-assimilative simulations to force a biogeochemical model. These results exemplify how the assimilation of temperature and salinity from gliders can have a positive cascading effect also on biogeochemical variable patterns. Indeed, while the surface chlorophyll is generally overestimated by the biogeochemical model with respect to satellite data during the transition from low-surface value (November) to the autumn bloom (December, Figure 8), it is interesting to note how glider-corrected ocean dynamics produced a positive impact on specific biogeochemical dynamics and improved the quality of surface chlorophyll spatial patterns in the area north of the Balearic Islands. In particular, the anticyclonic eddy (dashed boxin Figure 8) is weakly simulated by NOGLIDS (Figure 3) and surface chlorophyll maps (Figures 8B, E) only partly show the round-shape low values visible in the satellite map of December. When gliders are assimilated, ocean dynamics simulated a more intense activity of the eddy with enhanced vertical mixing in its core (not shown). Consequently, while the rest of the basin underwent an increase of surface chlorophyll values due to the autumn bloom, specific dynamics (i.e., an excess of dilution due to enhanced vertical mixing) occurred in the core of the eddy increasing the fidelity of the simulated pattern (Figure 8F) with the satellite one (Figure 8D). Spatial correlation computed within the inner box improves from 0.47 to 0.57 in the NOGLIDS and GLIDERS simulations and modelled values of GLIDERS become closer to satellite observations with a 25% decrease of RMSD (Table 3).




Figure 8 | Monthly maps of surface chlorophyll (mg chla/m3) in the north Balearic Sea for the satellite (A, B) and the simulation without (B, E) and with (C, F) glider assimilation. Inner black dashed boxes in the December maps indicate the area over which the statistics is computed.




Table 3 | Statistics of chlorophyll computed for December in the areas delimited by the dashed box in Figure 8.



Figure 9 clarifies the changes on the vertical dynamics produced by the assimilation of gliders. Following the summer stratified conditions (November), enhanced vertical mixing initiated a surface chlorophyll bloom over the whole area (December). However, the glider assimilation produced an extra mixing in the core of the eddy that made the dilution due to vertical mixing exceeding the phytoplankton growth capability and generating the pattern with minimum values at the centre of the eddy (Figure 9D).




Figure 9 | Vertical section of chlorophyll monthly averages at Lon=3° in the northern Balearic Sea for the runs without (A, C) and with (B, D) glider assimilation.







4 Discussion and conclusions

In this study, we presented a set of coordinated experiments to assess the impact of glider observations on three distinct ocean analysis and forecasting systems overlapping in the Western Mediterranean Sea - IBI, MedFS and WMOP - using various metrics and diagnostics. Moreover, a BGC analysis system, MedBFM, is employed to understand how the corrections through temperature and salinity glider measurements can impact the biogeochemical state of the Mediterranean Sea in a forced/offline coupled configuration.

The aim of this study is to assess the impact of glider observations and investigate the methodologies to ingest them while developing metrics and diagnostics to intercompare completely different systems. The same set of experiments are performed using each system i) without assimilation, ii) with assimilation but without gliders and finally iii) with gliders. A set of year-long experiments for the impact assessment of gliders with three different analysis systems makes this study unique to our knowledge.

As it is shown, glider assimilation has an overall positive impact on the state estimation of the Western Mediterranean no matter what system is employed or how the preprocessing of the observations are performed. The experiments with glider assimilation usually show a better skill compared to the other two experiments in terms of SST and temperature and salinity profiles RMSD. A few cases were identified in which the model performance could be improved with a better tuning of the observation errors. However, the overall statistical skill is better in the experiments with glider assimilation. This is also true when considering the representation of the specific long-lived eddy event in the Balearic Sea and the transport of water masses in the Ibiza Channel. Finally, glider data assimilation is also found to have positive impacts on the biogeochemical variables represented by a model forced by the different physical simulations.

In the case of the Balearic eddy, both the SST and altimeter observations confirm that gliders help improve the location and intensity of the eddy. We highlight here that in the experiment period there is no glider deployed in the eddy area. The impact probably comes from the closest glider data in the Ibiza Channel to the south, and from the Gulf of Lion to Menorca Island to the east. This shows the importance of monitoring the ocean with a glider network to better estimate mesoscale features and suggests the importance of correcting the circulation patterns in regions even far away from the target areas. Aguiar et al. (2022) found evidence that the important factors for the generation and intensification of the eddy were the intense north-westerly wind events and the strong thermal front formed between the Gulf of Lion and the Balearic Sea at the end of the summer. Northward inflows of relatively fresh water through the Ibiza Channel were also demonstrated to have some impact. The better representation of the thermohaline properties over the basin is probably responsible for the better representation of the eddy location and intensity in the simulations with glider data assimilation in this study.

The geostrophic velocities and associated transports of WIW through the Ibiza Channel have been investigated in the different systems, showing the benefit of the observations collected along the corresponding endurance line to improve the flow characteristics especially close to the surface. The transport of WIW is improved in all three systems when the glider observations are assimilated.

Finally, we showed that glider assimilation helps to improve the biogeochemical estimates by modifying water masses and improving mesoscale structures through their role on the mixing dynamics. The results are encouraging to go a step further and assimilate BGC glider observations in the coupled configurations.

We conclude that all of the systems used in this study benefit from glider observations when assimilated in their standard configuration. The improvements are of the same order of magnitude in all three systems, yet with slightly different behaviours according to the evaluation metric under consideration. This provides both robustness and uncertainty estimates to the glider data impact assessment presented in this study. Besides the demonstration of the value of glider observations for Western Mediterranean forecasting systems, this intercomparison exercise also allowed us to highlight relative strengths and possible deficiencies of the different systems, which is useful to identify future ways of improvement. Overall, considering the positive impact on forecasting systems, we recommend maintaining the current glider endurance lines and possibly enhancing the glider network by further deployments in the Mediterranean and European Seas.
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Footnotes

1For an overview of operational ocean forecasting systems represented under OceanPredict programme see https://oceanpredict.org/science/operational-ocean-forecasting-systems/ocean-products-services/.

2The workshop report can be accessed here. Last accessed 6 May 2024.
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Experiment Observations Prior Horz.

name errors length
scales
1. Surface only SSH and SST 0.04m, 50 km
(Figures 4A-D) 0.4°C
SSH, SST and 0.04m,
2. Surf + 3 o
FVON2021 0.2 FYON 2021 density 0.4°C, 50 km
(Figures 4E, F, I-L) 0.2°C
SSH, SST and 0.04m,
3. Surf +
FVON 2022 density 0.4°C, 50 km
FYONz(2e 02 (Figures 4G, H, M-P) 0.2°C
SSH, SST and 0.04m,
4. Surf + : 5
FVON2022 0.1 FYON 2022 density 0.4°C, 50 km
(Figures 4G, H, M-P) 0.1°C
SSH, SST and 50 km for zeta,
5. Surf + FVON 2022 density 0.04m, uand v
FVON2022 0.2 (Figures 4G, H, M-P) 0.4°C, 20 km for
reduced Ly, 0.2°C temperature
10 km for salt
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Experiment subsurface

T
1. Surface only 1.1 (0.25) 0.94 (0.64) NA

2. Surf + 1.6 (0.18) 2.4 (0.58) 3.8 (1.0)
FVON2021 0.2

3. Surf + 1.9 (0.15) 3.2 (0.53) 92 (0.71)
FVON2022 0.2

4. Surf + 1.2 (0.17) 0.96 (0.55) 1.76 (0.94)
FVON2022 0.1

5. Surf + 1.1 (021) 0.93 (0.65) 0.93 (0.88)
FVON2022 0.2

reduced Ly,

Values are given for the entire NZ region and averaged over the OSSE period. Observation
error ratio is outside of brackets and background error ratio is in brackets.
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SSH SST BT BT HC HC

Experiment (<1000m) (<1000m) (<400m)  (400-1000m)  (<400m)  (400-1000m)
Baseline
(cm/® 222 0.29 047 0.20 243 746

C/im~*x10%)

1. Surface only 42 37 20 9.9 28 23

i 4 35 34 10 34 25
FVON2021 0.2
g 38 30 43 11 37 24
FVON2022 0.2
4. Surf +

4 2 41 . 2
FVON2022 0.1 ? 9.0 33 3
5. Surf +
FVON2022 0.2 40 30 44 12 38 27
reduced Ly,

All values are given as percentage improvement relative to the magnitudes given in the first row. Metrics are given for water depth ranges shown in brackets below the metric. BT, Bottom
temperature; HC, Total depth integrated heat content.
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Prefecture ADCP (days) CTD (casts)

Nagasaki 2 - 6
Saga 12 129 84
Fukuoka 15 391 94
Total 29 520 184
The numbers of their ADCP measurement days and CTD castings are also shown in the

columns on the right.
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SATELLITE 0.11-0.15-0.34

NOGLIDS ‘ 0.21-0.25-0.32 0.11 0.47

GLIDERS ‘ 0.14-0.23-0.29 0.08 0.57
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HR product) 14 product
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Resolution

Numerical model

Time step

Parameterizations

External forcing

Lateral open
boundary condition

Data Assimilation

IBI (MOi)

Iberia Biscay Irish + Western
Mediterranean Sea

1/36° degree
50 z* vertical levels

NEMO v3.6

150 sec (Barotropic step 5sec)

Tides, atmospheric pressure

33 rivers climatology

GLS k-epsilon - Internal
waves parametrization

Flather for barotropic
Prescribed + relaxation area
for baroclinic

ECMWE IES (0.1° 3h)

Copernicus Marine GLO-MFC

SAM?2 (SEEK Filter): can
assimilate SLA along-track, SST
L3s, ARGO profiles.

MedFS (CMCC)

Mediterranean Sea (+
Atlantic box)

1/24° degree (~4.5km)
141 z* vertical levels

NEMO v3.6
120 sec (Barotropic step 2.4sec)

Tides, atmospheric pressure

climatological inputs from
39 rivers.

Richardson number-dependent
vertical diffusion

Flather for barotropic currents
and SSH. Orlanski for

baroclinic currents

ECMWF HR 10km, 6h

Copernicus Marine GLO-MFC

OceanVar: can assimilate SLA
along-track, ARGO vertical T/S
profiles. SST relaxation to
gridded product in NEMO

WMOP (SOCIB)

Western Mediterranean Sea.
Gibraltar to Corsica-Sardinia

~1/50° degree (2km)
32 vertical sigma-levels

ROMS v3.4
120 sec (Barotropic step 6sec)

No tides, No atm. pressure

climatological inputs from 6
major rivers.

Generic model of two-equations
GLS turbulent closure.

Flather for 2-D momentum.
Chapman for surface elevation.
Mixed radiation-nudging for 3-
D equations.

AEMET (Spanish meteorological
agency) HIRLAM 5km, 1hr

Copernicus Marine MED-MFC

Multimodel Local EnOI: can
assimilate SLA along-track,
ARGO vertical T/S profiles, SST
L3 or L4 satellite product, HF-
Radar surface velocities

(Ibiza Channel)

MedBFM (OGS)

Mediterranean Sea
(+ Atlantic box)

1/24° degree (~4.5km)
125 vertical levels

MedBFM (OGSTM-BFM)

plankton functional types: 4
phytoplankton groups, 4
zooplankton groups, 1
bacteria group

Describes the biogeochemical
cycle of N, P, C, Siand O. It
includes the carbonate

system dynamics

climatological inputs from
39 rivers.

MED-MFC PHY

3DVarBio: surface chlorophyll
concentration from
satellite observations
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fisher # prefecture operation type in target species mart effect
1 Fukuoka longline tilefish, silver seabream 19.8
2 Fukuoka semi-surrounding seine silver seabream, thread-sail filefish, threeline grunt 345
3 Fukuoka line fishing amberjack, longtooth grouper 18.2
4 Fukuoka trolling Japanese Spanish mackerel 16.8
5 I Fukuoka trolling Japanese amberjack 265
6 Saga pole and line swordtip squid 268
7 Saga longline longtooth grouper 231
8 Saga semi-surrounding seine silver seabream, threeline grunt 28.1
9 Nagasaki longline, trolling Japanese bluefish, largehead hairtail 215
10 Nagasaki longline blackthroat seaperch, longtooth grouper 314
1 Nagasaki trolling, octopus pot northern bluefin tuna, common octopus 20.0
12 Nagasaki longline tilefish 182

13 Nagasaki squid jigging swordtip squid, Japanese common squid 200
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cm?s V (cm?s Z (cm?
Simulation 0.871 0.055 253 193 1.474
RG DA 0.849+0.033 0.053+0.002 25.0+£0.8 19.1£0.6 1.446+0.049
FV DA 0.77740.045 0.048+0.003 244209 185407 137440058

RG and FV indicate regular governmental measurement and irregular fishing vessel measurement, respectively. The initials T, S, U, V, and Z indicate temperature, salinity, horizontal velocity
components, and sea surface height, respectively.
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constituent

amplitude

M2 0.099 —-10.69°

V S2 0.093 +71.38°
K1 0.297 +90.00°
01 0.466 -130.17°
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Prefecture Vessel ADCP (days) CTD (casts)
Kagoshima 29 186 1292
Kumamoto 12 84 677
Nagasaki 35 500 1146
Saga 43 1577 3210
Fukuoka 41 516 3164
Yamaguchi 10 - 569
Shimane 17 144 779
Tottori 41 2369 440
Hyogo 1 - 78
Ishikawa 25 344 35
Toyama 2 = 385
Akita 3 - 417
Hokkaido 11 89 356
Chiba 13 = 473
Tokushima 9 979 -
Total 292 6788 13021
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Variable MetO MOl

Surface zonal velocity % RMSE reduction — 9.0 (12.0) 4.3 (3.6)
7-day forecast

Surface meridional velocity % RMSE reduction — 8.8 (11.2) 3.5(2.7)
7-day forecast

Increase in % of particles forecast to be within 50 8.9 (12.1) 6.6 (6.5)
km of the true particle locations after 6-day drift.

Bottom row summarises the results in Figure 3, the increase in particles within 50 km of the
true location of the particles in the A-TSCV_instr_Err (A-TSCV_No_Err) experiment
compared to the errors in the control.
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% reduction in Analysis RMSE
analysis RMSE

MOl
Surface 23.4 (27.5) 12.9 (13.9) 10.0 (9.4) cm/s 8.8 (8.7) cm/s
zonal
velocity
Surface 23.9 (26.4) 12.1 (11.1) 8.8 (8.5) cm/s 8.7 (8.8) cm/s
meridional
velocity
Global U 10.7 (15.6) 49 (3.7) 9.5 (8.9) cm/s 7.7 (7.8) cm/s
at 220m
Global V 14.9 (18.0) 6.3 (3.8) 7.8 (7.5) cm/s 7.4 (7.6) cm/s
at 220m
Global SSH 14.1 (15.6) 3.0 (3.0) 52 (5.1) cm 6.5 (6.5) cm
Global SST 5.8 (7.6) -3.6 (-6.8) 0.321 (0.315) °C 0.612 (0.631) °C
Global T 0.8 (6.0) -4.2 (-10.3) 0.679 (0.643) °C 0.625 (0.662) °C
at 220m
Global SSS 1.0 (1.6) 3.6 (2.9) 0.483 (0.479) 0.827 (0.833)
Global S 3.2(62) -3.6 (-10.0) 0.111 (0.108) 0.114 (0.121)
at 220m

The percentage reduction in RMSE is calculated relative to the errors in the control (see
Table 3). Positive/negative numbers are reduction/increase in RMSE respectively.
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S profiles

Altimetry S3-A, S3-B, CryoSat, AltiKa, J3

SIC L3 SSMI/S None

TSCV L2-C along swath currents in North/East direction

SST 12 L4 (OSTIA like maps,
Good et al., 2020)

Model and assimilation system

Ocean/sea- NEMO v3.6/CICE NEMO v3.6/LIM3

ice model

Model 1/4° 1/4°

resolution

Number of 75 50

vertical levels

Wind/ 100% roughly linearly depending on

current the mean surface wind

coupling (Renault et al,, 2017)

coefficient

Data NEMOVAR 3DVar- SEEK filter with a fixed basis.

Assimilation FGAT scheme.
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A-TSCV_Instr_Err v v Mapping +
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2Standard observations are T/S profiles, altimeter SSH, SST and SIC data (the latter are
assimilated in MetO system only).
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Experiment Ice model Resolution Atmosphere T&S

forcing bias correction

Nature Run NEMO 3.1 LIM 1/12° 3h ECMWE-TES On

Free Run NEMO 3.6 LIM3 1/4° 1h ERAS Off
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System name (prediction centers)

FOAM (UKMO)

Modeling system

NEMO 4.0.4 and SI3

GIOPS (ECCC)

NEMO 3.6 and CICE6

Model domains (horizontal resolution)

Global ocean (1/12° x 1/12°)

Vertical coordinate system

75 z coordinate levels with partial
bottom steps

Atmospheric forcing

Met Office NWP

Global ocean (1/4° x 1/4°)

50 z coordinate levels with partial

bottom steps

ECCC GDPS

Data assimilation method (analysis frequency)

NEMOVAR—3DVAR (1/4° x 1/4°) with
FGAT (1 day)

Assimilated observation source

TS profiles from EN4
CMEMS along-track SLA (4 satellites)

L2/L3 SST (satellite, in situ)
SIC (SSMI/S)

SSH innovation

Observation—simulated SSH

Special remarks

BGE statistics from linearized
balance equations

References

Barbosa Aguiar et al. (2024); Carneiro
et al. (2024)

Reduced order extended Kalman
filter (7 days)

TS profiles from CMEMS
CMEMS along-track SLA (5
satellites)

L4 SST analysis (satellite, in situ)
3DVAR SIC analysis

Observation—simulated SSH

TS bias correction

Smith et al. (2016; 2024)

MOVE-G3 (JMA) JCOPE-FGO (JAMSTEC)

MRI.COM Ver 4 JCOPE-T
Global ocean (1/4° x 1/4°)

75° to 75° (1/10° x 1/10°)

Rescaled height coordinate system,
60 levels

44 sigma layers

JRA-3Q NCEP CFS

4DVAR (0.3°-0.5° x 1°) and TAU
downscaling (5 days)

3DVAR and IAU (7 days)

TS profiles from WOD
CMEMS along-track SLA (2 satellites)

TS profiles from WOD

CMEMS along-track SLA (4
satellites)

L4 SST analysis (Satellite, in situ)
(No sea ice component)

L4 SST analysis (satellite, in situ)
SIC analysis (SSMI/S, AMSR2)

Observation—simulated SDH relative
to 1,500 m

Observation—simulated SDH relative to
2,000 m

Coupled TS EOF for BGE statistics, TS
bias correction

Coupled TS EOF for BGE statistics

Fujii et al. (2023)

Kido et al. (2022; 2f

Abbreviations used only in this table are as follows: 3DVAR, three-dimensional variational method; FGAT, First-Guess at Appropriate Time; IAU, Incremental Analysis Updates; SIC, sea ice
concentration; SDH, sca surface dynamic height; EOF, empirical orthogonal function; TS, temperature and salinity; SST, Sea Surface Temperature; SSH, sea surface height; BGE,

background error.
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Configuration of OSEs

CNTL Ocean model Argo 80% Mooring
2 NoAlt Ocean model Argo 80% Mooring
3 NoArgo cean model Mooring
4 NoMoor Ocean model Argo 80%

5 NoSST Ocean model Argo 80% Mooring
6 Nolnsitu Ocean model

7 SSTonly Ocean model

8 Free Ocean model

9 HalfArgo Ocean model Argo 40% Mooring

10 Oper Ocean model Argo 80% Mooring
setting
‘The number of the leftmost column indicates the order of priority for the OP-OSE protocol, while the right column lists the guidance for the $25-OSE protocol. Settings or observations in color-
filled cells are adopted or used.
OP, ocean prediction; OS

, observing system experiments; $25, subseasonal-to-seasonal; ST, Sea Surface Temperature; TS, temperature and salinity.
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Exp name

Ocean-sea ice Initial Conditions

ORA-OSEs

Coupled Reforecasts
FC-OSEs

REF Observations: Model: 43r1 IFS/NEMO,Tco199/L91
SST relaxation Ocean Initial conditions: REF ORA
Variational Assimilation of in-situ T/S Atmospheric initial conditions: ERA-T
Variational Assimilation of SIC Start dates: May and Nov
No bias correction. No altimeter Period: 1993-2015
Ocean Model: NEMO3.4/LIM2 Ensemble members: 15
Resolution: ORCA1_Z42 Perturbation method (as in SEAS5):
Period: 1993- 2015. -Ocean + Atmospheric initial conditions
Forcing: Era-Interim -Stochastic Physics in atmosphere.
Ensemble: 5 members using forcing and observation perturbations, as
in ORAS5
Nolnsitu As REF but without in-situ observations As REF, initialized with Nolnsitu ORA
NoArgo As REF but without Argo observations As REF, initialized with NoArgo ORA

NolnsAtl

As REF, but without in-situ observations over the Atlantic basin

As REF, initialized with NoInsAtl
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The units of mean, bias, RMSE and STD are in °C. The least bias and RMSE, mean and STD closest to the buoy, and the highest CC are highlighted in bold for reanalysis products and observation-based products for each location.
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Temporal At least 80% of the ocean in less than 4 to 5 days
resolution

Horizontal 20 to 50 km
resolution

Measurement 10 cm/s in the along and across track direction.

Accuracy
Timeliness Within one day of measurement time for real

time assimilation
Level L2b - radial velocity along the swath in the sensor geometry
of product L2c - currents in the North/East direction along the swath
Uncertainty Provide uncertainty estimates with each measurement in the
estimates same data files including estimates of the correlated and

uncorrelated components
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OSSE SWOT S3a, S3b, C2,J3 T&S profiles,

Setup S6, Al SST
OSE1 X X X
OSE2/ X X
OSSE1
OSE3/ X X X
OSSE3
OSE4 X X X X

Columns indicate which observations are assimilated in each OSE, including SWOT, Sentinel
3a (S3a), Sentinel 3b (S3b), Sentinel 6 (S6), Altika (Al), Cryosat2 (C2), Jason 3 (J3), as well as
temperature (T) and salinity (S) profiles, SST and sea ice concentration (IC). OSE2 is designed
to be comparable to OSSEland OSE3 is equivalent to OSSE3.
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