

[image: image]





FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual articles in this ebook is the property of their respective authors or their respective institutions or funders. The copyright in graphics and images within each article may be subject to copyright of other parties. In both cases this is subject to a license granted to Frontiers. 

The compilation of articles constituting this ebook is the property of Frontiers. 

Each article within this ebook, and the ebook itself, are published under the most recent version of the Creative Commons CC-BY licence. The version current at the date of publication of this ebook is CC-BY 4.0. If the CC-BY licence is updated, the licence granted by Frontiers is automatically updated to the new version. 

When exercising any right under the CC-BY licence, Frontiers must be attributed as the original publisher of the article or ebook, as applicable. 

Authors have the responsibility of ensuring that any graphics or other materials which are the property of others may be included in the CC-BY licence, but this should be checked before relying on the CC-BY licence to reproduce those materials. Any copyright notices relating to those materials must be complied with. 

Copyright and source acknowledgement notices may not be removed and must be displayed in any copy, derivative work or partial copy which includes the elements in question. 

All copyright, and all rights therein, are protected by national and international copyright laws. The above represents a summary only. For further information please read Frontiers’ Conditions for Website Use and Copyright Statement, and the applicable CC-BY licence.



ISSN 1664-8714
ISBN 978-2-8325-6410-3
DOI 10.3389/978-2-8325-6410-3

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is a pioneering approach to the world of academia, radically improving the way scholarly research is managed. The grand vision of Frontiers is a world where all people have an equal opportunity to seek, share and generate knowledge. Frontiers provides immediate and permanent online open access to all its publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-access, online journals, promising a paradigm shift from the current review, selection and dissemination processes in academic publishing. All Frontiers journals are driven by researchers for researchers; therefore, they constitute a service to the scholarly community. At the same time, the Frontiers journal series operates on a revolutionary invention, the tiered publishing system, initially addressing specific communities of scholars, and gradually climbing up to broader public understanding, thus serving the interests of the lay society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely collaborative interactions between authors and review editors, who include some of the world’s best academicians. Research must be certified by peers before entering a stream of knowledge that may eventually reach the public - and shape society; therefore, Frontiers only applies the most rigorous and unbiased reviews. Frontiers revolutionizes research publishing by freely delivering the most outstanding research, evaluated with no bias from both the academic and social point of view. By applying the most advanced information technologies, Frontiers is catapulting scholarly publishing into a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers journals series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area.


Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers editorial office: frontiersin.org/about/contact





Tropical cyclone modeling and prediction: advances in model development and its applications

Topic editors

Xuejin Zhang – Atlantic Oceanographic and Meteorological Laboratory (NOAA), United States

Robert Rogers – Atlantic Oceanographic and Meteorological Laboratory (NOAA), United States

Krishna K. Osuri – National Institute of Technology Rourkela, India

Vijay Tallapragada – NCEP Environmental Modeling Center (EMC), United States

Zhan Zhang – NCEP Environmental Modeling Center (EMC), United States

Citation

Zhang, X., Rogers, R., Osuri, K. K., Tallapragada, V., Zhang, Z., eds. (2025). Tropical cyclone modeling and prediction: advances in model development and its applications. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-8325-6410-3





Table of Contents




Editorial: Tropical cyclone modeling and prediction: advances in model development and its applications

Xuejin Zhang, Vijay Tallapragada, Zhan Zhang and Avichal Mehra

2022 real-time Hurricane forecasts from an experimental version of the Hurricane analysis and forecast system (HAFSV0.3S)

Andrew Hazelton, Ghassan J. Alaka Jr., Lew Gramer, William Ramstrom, Sarah Ditchek, Xiaomin Chen, Bin Liu, Zhan Zhang, Lin Zhu, Weiguo Wang, Biju Thomas, JungHoon Shin, Chuan-Kai Wang, Hyun-Sook Kim, Xuejin Zhang, Avichal Mehra, Frank Marks and Sundararaman Gopalakrishnan

A modified vertical eddy diffusivity parameterization in the HWRF model based on large eddy simulations and its impact on the prediction of two landfalling hurricanes

Xin Li, Zhaoxia Pu, Jun A. Zhang and Zhan Zhang

The impact of WRF vertical resolution on the simulated thermal-dynamic structures and intensity of Typhoon Lekima

Qinlai Lian, Yu Zhang, Xiaoyu Liu and Jianjun Xu

Evaluation of the ocean component on different coupled hurricane forecasting models using upper-ocean metrics relevant to air-sea heat fluxes during Hurricane Dorian (2019)

Maria F. Aristizábal Vargas, Hyun-Sook Kim, Matthieu Le Hénaff, Travis Miles, Scott Glenn and Gustavo Goni

Physics schemes in the first version of NCEP operational hurricane analysis and forecast system (HAFS)

Weiguo Wang, Jongil Han, Junghoon Shin, Xiaomin Chen, Andrew Hazelton, Lin Zhu, Hyun-Sook Kim, Xu Li, Bin Liu, Qingfu Liu, John Steffen, Ruiyu Sun, Weizhong Zheng, Zhan Zhang and Fanglin Yang

A flexible tropical cyclone vortex initialization technique for GFDL SHiELD

Kun Gao, Lucas Harris, Mingjing Tong, Linjiong Zhou, Jan-Huey Chen and Kai-Yuan Cheng

Roles of synoptic characteristics and microphysics processes on the heavy rain event over Beijing region during 29 July to 2 August 2023

Xiang Li, Shuwen Zhao and Donghai Wang

Ocean component of the first operational version of Hurricane Analysis and Forecast System: Evaluation of HYbrid Coordinate Ocean Model and hurricane feedback forecasts

Hyun-Sook Kim, Bin Liu, Biju Thomas, Daniel Rosen, Weiguo Wang, Andrew Hazelton, Zhan Zhang, Xueijin Zhang and Avichal Mehra

The impact of coupling a dynamic ocean in the Hurricane Analysis and Forecast System

Lewis J. Gramer, John Steffen, Maria Aristizabal Vargas and Hyun-Sook Kim

Implementation of storm-following nest for the next-generation Hurricane Analysis and Forecast System (HAFS)

William Ramstrom, Xuejin Zhang, Kyle Ahern and Sundararaman Gopalakrishnan

HAFS ensemble forecast in AWS cloud

Jiayi Peng, Zhan Zhang, Weiguo Wang, Rajendra Panda, Bin Liu, Yonghui Weng, Avichal Mehra, Vijay Tallapragada, Xuejin Zhang, Sundararaman Gopalakrishnan, William Komaromi, Jason Anderson and Aaron Poyer

Influence of CyGNSS L2 wind data on tropical cyclone analysis and forecasts in the coupled HAFS/HYCOM system

Bachir Annane and Lewis J. Gramer

Multi-season evaluation of hurricane analysis and forecast system (HAFS) quantitative precipitation forecasts

Kathryn M. Newman, Brianne Nelson, Mrinal Biswas and Linlin Pan



		EDITORIAL
published: 20 May 2025
doi: 10.3389/feart.2025.1615811


[image: image2]
Editorial: Tropical cyclone modeling and prediction: advances in model development and its applications
Xuejin Zhang1*, Vijay Tallapragada2, Zhan Zhang2 and Avichal Mehra3
1National Oceanic and Atmospheric Administration (NOAA), Atlantic Oceanographic and Meteorological Laboratory (AOML), Hurricane Research Division (HRD), Miami, FL, United States
2NOAA National Centers for Environmental Prediction (NCEP), Environmental Modeling Center (EMC), College Park, MD, United States
3NOAA NCEP, Ocean Prediction Center (OPC), College Park, MD, United States
Edited and reviewed by:
Yuqing Wang, University of Hawaii at Manoa, United States
* Correspondence: Xuejin Zhang, xuejin.zhang@noaa.gov
Received: 21 April 2025
Accepted: 29 April 2025
Published: 20 May 2025
Citation: Zhang X, Tallapragada V, Zhang Z and Mehra A (2025) Editorial: Tropical cyclone modeling and prediction: advances in model development and its applications. Front. Earth Sci. 13:1615811. doi: 10.3389/feart.2025.1615811

Keywords: tropical cyclone, hurricane, forecast, hurricane analysis and forecast system (HAFS), ocean coupling, model physics
Editorial on the Research Topic 
Tropical cyclone modeling and prediction: advances in model development and its applications


Tropical cyclones (TCs) cause significant property damage and loss of life globally each year in coastal areas significantly affected by TCs in recent decades. Several recent TCs like Hurricanes Harvey (2017), Maria (2017), Ian (2022), Helene (2024) in the North Atlantic, Typhoons Haiyan (2013), Damrey (2017), Doksuri (2023), Yagi (2024) in the North Western Pacific, and Severe Cyclones Fani (2019) and Amphan (2020) in the North Indian Ocean have caused extensive deaths and multi-billion dollar damages, reminding us on the acute need for continuous advancement in the operational predictive capabilities. Accelerated efforts were made by several research and operational centers to advance the numerical modeling and data assimilation capabilities to improve the forecast skill and address socioeconomic impacts of TCs across the world.
The research theme in this special Research Topic is intended to systematically document the latest advancements in TC modeling and applications, with focus on improved physical parameterizations, better understanding of the physical processes, advanced data assimilation techniques, improved use of new and innovative observations, development of the holistic end-to-end forecast systems, enhanced TC related products, and improved social and behavioral sciences for interpreting the model forecasts.
Four different TC modeling systems developed in the USA were featured in this Research Topic, comprising of the Hurricane Analysis and Forecast System (HAFS), the new-generation operational model at National Oceanic and Atmospheric Administration (NOAA), the Hurricane Weather Research and Forecast model (HWRF), the legacy hurricane prediction system at NOAA and is still in operations, System for High-resolution prediction on Earth-to-Local Domains (SHiELD), an advanced research model developed by NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL), and the Weather Research and Forecasting (WRF) model developed by National Science Foundation (NSF)’s National Center for Atmospheric Research (NCAR). Common to many of these modeling systems is the need for higher resolution for explicit representation of convection, dynamic coupling of atmospheric and ocean models, better representation of initial TC location, structure and intensity through vortex initialization and data assimilation, and enhanced verification and validation metrics.
Authors of various manuscripts compiled in this Research Topic have documented features of the new generation hurricane prediction models developed at NOAA (Ramstrom et al. and Gao et al.), high-resolution physics for TC applications (Wang et al.; Li et al.; and Li et al.), data assimilation methodology and observation data impacts (Annane and Gramer), ensemble forecast experiments (Peng et al.), TC model forecast evaluations (Newman et al.; Kim et al.; Gramer et al.; Aristizábal Vargas et al.; and Lian et al.), and advanced model verification and validations (Hazelton et al.). Ramstrom et al. detailed the salient features of the moving nest, illustrating the intrinsic technical aspects in HAFS. Kim et al. and Aristizábal Vargas et al. evaluated the oceanic component of HAFS, and highlighted the impact of air-sea interactions especially on hurricane forecasts. Gramer et al. studied the role of physical processes associated with the boundary layer, convection and microphysics, radiation, land surface processes, air-sea-wave processes were documented in Wang et al., Li et al., and Kim et al. The model evaluations included quantitative precipitation forecasts (Newman et al.), resolution effects (Lian et al.), vortex initialization impacts (Gao et al.), and the relevant tools to produce the products for TC research and forecasts. The new breakthrough applying Cloud technology in the TC ensemble prediction was documented in Peng et al. (Figure 1). Annane and Gramer also applied the coupled HAFS to study the new data impact on analyzing tropical cyclones.
[image: Figure 1]FIGURE 1 | Hurricane precipitation probability forecast for storm “Idalia” initialized at 00Z of 28 August 2023. (A) Day 01; (B) Day 02; (C) Day 03; (D) Day 04; (E) Day 05 and (F) 5 days in total. The black lines: ensemble tracks. The shaded: the probability of the 24-h precipitation greater than 1 inch. Details see in Peng et al.
The objective of this Research Topic is to share research ideas, development advancements, and scientific insights made by TC research scientists with support from broader inter-disciplinary communities across the globe for improving our ability to understand and predict TCs and their impacts with higher accuracy and skill. We hope that this special edition will serve as a reflection of the state-of-the-art of current TC science, and a valuable reference for researchers in this field.
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During the 2022 hurricane season, real-time forecasts were conducted using an experimental version of the Hurricane Analysis and Forecast System (HAFS). The version of HAFS detailed in this paper (HAFSV0.3S, hereafter HAFS-S) featured the moving nest recently developed at NOAA AOML, and also model physics upgrades: TC-specific modifications to the planetary boundary layer (PBL) scheme and introduction of the Thompson microphysics scheme. The real-time forecasts covered a large dataset of cases across the North Atlantic and eastern North Pacific 2022 hurricane seasons, providing an opportunity to evaluate this version of HAFS ahead of planned operational implementation of a similar version in 2023. The track forecast results show that HAFS-S outperformed the 2022 version of the operational HWRF model in the Atlantic, and was the best of several regional hurricane models in the eastern North Pacific for track. The intensity results were more mixed, with a dropoff in skill at Days 4–5 in the Atlantic but increased skill in the eastern North Pacific. HAFS-S also showed some larger errors than the long-time operational Hurricane Weather Research and Forecasting (HWRF) model in the radius of 34-knot wind, but other radii metrics are improved. Detailed analysis of Hurricane Ian in the Atlantic highlights both the strengths of HAFS and opportunities for further development and improvement.
Keywords: HAFS, tropical cyclones, numerical modeling, verification, real-time prediction
1 INTRODUCTION
Over the last decade, notable improvements have been made to operational tropical cyclone (TC) forecasting, thanks in large part to coordinated efforts such as the Hurricane Forecast Improvement Project (HFIP; Gopalakrishnan et al., 2021). For example, track forecasts have continued a decades-long improvement trend, including lower errors for 4-day and 5-day forecasts (e.g., Landsea and Cangialosi, 2018). In addition, after a long period of little improvement in intensity forecasts, the efforts of HFIP and other research and development programs have recently resulted in notable intensity-forecast improvements (Cangialosi et al., 2020). Recently, more attention has been given to other metrics such as wind radii (e.g., Cangialosi and Landsea, 2016) to evaluate the structure, including the horizontal extent, of TC hazards. Yet, traditional TC forecast verification has long focused on track and intensity, leaving plenty of room for improvement in the evaluation of non-traditional forecast metrics, especially wind radii. There are still many challenges in operational hurricane forecasting, including getting the details of TC track right in certain high-impact cases, prediction of rapid intensification (RI, Kaplan et al., 2015), and prediction of TC structure and the associated hazards and impacts. NOAA’s hurricane model development efforts are focused on filling these gaps.
The Hurricane Analysis and Forecast System (HAFS) is part of NOAA’s Unified Forecast System (UFS), a collection of forecast models based on the finite-volume cubed sphere (FV3) dynamical core (Lin and Rood, 1996; Lin, 2004). HAFS specifically takes advantage of the 2-way nesting capabilities of FV3 (Harris and Lin, 2013). Over the last few years, several studies have examined various configurations of HAFS and evaluated them in real-time and/or experimental settings. For example, the global-nested version of HAFS (HAFS-globalnest) was run in real-time during the 2019, 2020, and 2021 hurricane seasons. It produced promising forecasts of TC track, intensity, and structure (Hazelton et al., 2021; Hazelton et al., 2022), with upgrades such as ocean coupling and modified planetary boundary layer (PBL) physics added over time. A similar nested-FV3 configuration known as the Tropical Atlantic version of GFDL’s System for High-resolution prediction on Earth-to-Local Domains (T-SHiELD, Harris et al., 2020) has also been tested in real-time over the last several seasons, building on earlier promising results of a prototype version (then known as hfvGFS) during the 2017 Atlantic hurricane season (Hazelton et al., 2018). Another version of HAFS that was run during the 2019–2021 was the stand-alone-regional (SAR) configuration (HAFS-SAR or HAFS-A; Dong et al., 2020; Chen et al., 2023). These various experimental configurations have provided an opportunity to test various model physics and dynamics upgrades, and other configuration changes, all with the goal of building a version of HAFS that can eventually be implemented in operations.
The 2022 hurricane season provided an opportunity for a final real-time evaluation of HAFS ahead of a planned operational implementation in 2023. This real-time experiment was supported by the Hurricane Forecast Improvement Project (HFIP), which supports real-time experiments every hurricane season, often for model designs that are being explored for operational implementation. This set of experiments was the first one to use the moving nest capability (Ramstrom et al., 2023). In addition, this was the first time that a real-time experiment using HAFS focused on the eastern North Pacific basin in addition to the North Atlantic, allowing for a large sample to evaluate the model in both of the basins of responsibility for the National Hurricane Center (NHC). Although this version was a precursor to the version of HAFS that is being tested for operational implementation, the evaluation of these results will be critical for assessing the performance and ongoing development. Analysis of this configuration will provide further guidance on the performance of experimental model physics upgrades and will also motivate ongoing and future improvements to the model. Some of these improvements will be included in the initial operational version and others may be included in future operational versions.
2 MODEL CONFIGURATION AND CASES USED
2.1 Grid configuration
1. For the first time during the 2022 season, a real-time experiment was conducted using the storm-centric moving nest version of HAFS (Ramstrom et al., 2023; HAFSV0.3). The configuration is similar to that used in the operational Hurricane Weather Research and Forecasting (HWRF) model. Each HAFSV0.3 forecast is centered on one TC, with an outer domain of approximately 79° x 79° centered on the TC, with 6-km grid spacing. The inner moving nest follows the TC with a nested domain of approximately 12° x 12°, with 2-km grid spacing. The moving nest concept allows the tropical cyclone to be simulated at high resolution while still maintaining computational efficiency, without losing significant forecast accuracy (based on testing of hindcast cases). HAFSV0.3 is coupled to the Hybrid Coordinate Ocean Model (HYCOM, e.g., Bleck, 2002; Kim et al., 2014; Kim et al., 2022), which runs concurrently with the atmospheric model. Including ocean coupling helps eliminate a positive intensity bias that was found in earlier versions of HAFS (e.g., Hazelton et al., 2022) and produce more realistic TCs. The HYCOM domain is fixed (not storm-centric) and covers the Atlantic and eastern North Pacific oceans (NHC areas of responsibility) with 9-km grid spacing. Figure 1 illustrates the model grid configuration for an example case: a TC centered over the NW Caribbean Sea. Note that the atmosphere and ocean domains differ in size. To address this mismatch, ocean grid points that lie outside the atmosphere domain are forced by atmospheric fields from the Global Forecast System (GFS), and atmosphere grid points that lie outside the ocean domain are forced by a constant ocean. The GFS is also used as the initial and lateral boundary conditions for the atmospheric domain. HAFSV0.3 uses 81 vertical levels. For 2022, there were two versions of HAFSV0.3 tested in real-time: HAFS-A (also referred to as HAFSV0.3A or HF3A1) and HAFS-S (also referred to as HAFSV0.3S or HF3S). The main difference between them was model physics and some initialization options, and this paper will focus on HAFS-S.
[image: Figure 1]FIGURE 1 | Example of the HAFSV0.3 grid configuration used in real-time in 2022. The black box shows the outer domain (storm centric with 6-km grid spacing). The red box shows the storm-centered moving nest with 2-km grid spacing. The HYCOM ocean domain (with 9-km grid spacing) is shown in blue.
2.2 Model physics configuration
Some of the model physics options used in HAFS-S were similar to those used in prior years. For example, the model used the scale-aware SAS convective scheme (Han et al., 2017) on both the outer domain and moving nest. Similar to the 2020 version of HAFS-globalnest, 2022 versions of HAFS also used the turbulent-kinetic-energy (TKE)-based Eddy Diffusivity Mass Flux (EDMF-TKE) PBL scheme (Han and Bretherton, 2019). This scheme was recently improved to address the overestimation of TKE values in the lower TC boundary layer based on large-eddy simulation (LES) results (see details in Chen et al., 2022). These changes include upgrades to how the mass fluxes and mixing lengths are calculated in tropical cyclone environments. Evaluation of this improved EDMF-TKE scheme from HAFS forecasts during the 2021 North Atlantic hurricane season was presented in Chen et al. (2023), and demonstrated better prediction of TC structure and reduction of negative intensity bias. Another major physics change in 2022 HAFS-S was the use of the Thompson double-moment microphysics (Thompson et al., 2004) instead of the single-moment 6-class GFDL microphysics scheme (Zhou et al., 2022) that was used in previous real-time HAFS experiments (and HAFS-A in 2022). The Thompson microphysics is being used in other UFS applications, and we hope to increase diversity between the two versions of HAFS by using a different microphysics scheme in one of them. The relative impacts of the PBL and microphysics changes in HAFS are being evaluated in a separate study.
2.3 Model initialization configuration
While prior versions of HAFS were cold-started off of the GFS analysis, the 2022 versions, including HAFS-S analyzed here, included several vortex initialization and data assimilation options. Specifically, observations were assimilated on the inner nest including, when applicable, Tail Doppler Radar (TDR) and other airborne reconnaissance observations. Vortex initialization (e.g., Lin, 2004) options were applied, including vortex relocation (VR) for all cases. Vortex modification (VM) was only applied to cases where the initial intensity was at least 30 m/s. As mentioned above, the outer domain initial and lateral boundary conditions were supplied by operational GFS forecasts.
3 RESULTS
3.1 Overall verification
TCs were tracked using the latest version of the GFDL vortex tracker (Marchok, 2021). For the verification results, we employed NHC rules for verification: forecasts were verified if the system was classified as a tropical or subtropical cyclone at both the initialization time and the forecast verifying time (Cangialosi 2022), and results shown are for homogeneous samples of all analyzed models. We performed the verification on the “late” model forecasts (i.e., the raw model forecasts without NHC post-processing) and verified the data every 6 h. To provide additional information beyond just the commonly calculated mean absolute error (MAE) and bias statistics, for many of the forecast metrics we also include the consistency metric as described in Ditchek et al. (2023). For more quantitative information on the consistency metric, refer to their Figure 2. This metric, along with the standard forecast metrics, were calculated using the GRaphics for OS(s) Es and Other modeling applications on TCs (GROOT) verification package. The consistency metric applies thresholds to three separate metrics (MAE skill, median absolute error skill, and frequency of superior performance (FSP); Goldenberg et al., 2015) to objectively identify lead times with improvement or degradation that was either fully or marginally consistent. Thus, using this verification technique allows us to assess the robustness of differences in forecast skill. For the consistency metric and MAE skill for all metrics, the 2022 operational HWRF forecasts were used as the baseline, as HAFS is slated to eventually replace HWRF in operations (so these comparisons will help see how HAFS performs relative to the currently-operational state-of-the-art hurricane model). For comparison purposes, forecasts from HAFS-A and the Hurricanes in a Multi-scale Ocean-coupled Non-hydrostatic Model (HMON) are also included. Both also use HWRF forecasts as the baseline, as well.
[image: Figure 2]FIGURE 2 | Atlantic Basin (A) mean absolute error (MAE, km) for TC track for HAFS-S (red), HAFS-A (dark green), HMON (light green), and HWRF (purple), (B) track skill relative to HWRF with the consistency metric for the track forecast, ranging from dark green (fully-consistent improvement) to dark brown (fully-consistent degradation), (C) as in (A), but for across-track bias, and (D) as in (A), but for along-track bias.
3.1.1 Track verification
In the Atlantic Basin, the overall track-forecast results from HAFS-S were generally slightly positive to neutral compared to the HWRF baseline (Figure 2). HAFS-S had predominantly fully-consistent improvement over HWRF during the first 2–3 days of the forecast period, with skill improvement of up to 5%–10%. On the other hand, the track skill was generally neutral to slightly negative at Days 4–5. HAFS-S performed slightly worse for track than the other HAFSV0.3 configuration, HAFS-A. The along-track and across-track errors (Figures 2C, D) show that HAFS-S (as well as HAFS-A) had a tendency to be too far left and too slow. The left bias was unusual given the tendency for right bias seen in past HAFS real-time runs (e.g., Hazelton et al., 2021) due to biases in the subtropical ridge. Some of this left bias in 2022 may have been due to how HAFS-S handled the interaction of several recurving TCs with the mid-latitude troughs that dipped down to pick up the TC. An example of this left bias due to an incorrect depiction of the trough will be examined for Hurricane Ian in a later section.
For the eastern North Pacific Basin (Figure 3), both versions of HAFS performed quite well for track. HAFS-S was the best of the four regional hurricane models examined, particularly at Days 4–5. In the first 24 h of the forecast, HAFS-S had some fully-consistent degradation, indicating a need to continue developing and refining the initialization and data assimilation techniques for HAFS. However, from ∼36 h onward, HAFS-S had fully-consistent improvement and large MAE skill over HWRF. The MAE-skill improvement grew with lead time, as well—by 120 h the HAFS-S track skill was over 30% better than that of HWRF in the eastern North Pacific. Examination of the along-track and across-track errors (Figures 3C, D) shows that HAFS-S had relatively little track bias overall, which was an encouraging result for this configuration of HAFS. In particular, a notable left-of-track bias in HWRF and HMON was not present for HAFS-S, and the fast bias that was present in all of the regional hurricane models (including both HAFS versions) was notably reduced in HAFS-S.
[image: Figure 3]FIGURE 3 | As in Figure 2 but for the eastern North Pacific Basin.
The verification package used in this study calculates the percentage-point-contribution (PPC) of each TC at each lead time to the overall MAE skill (in this case, relative to HWRF). This result is shown for HAFS-S in the Atlantic and eastern North Pacific in Figure 4. For the Atlantic basin, most of the skill came from Hurricanes Earl, Fiona, and Ian, although Ian had some degradation at Day 5 (which will be discussed in more detail later). Hurricanes Danielle and Lisa also contributed to some degradation at Days 4–5. For the eastern North Pacific, much of the notable increase in track skill over HWRF came from early-season Tropical Storm Celia. There were not many long-track storms in either the eastern North Pacific or Atlantic this year, so the sample size at Day 5 was fairly limited (71 and 53, respectively). Nevertheless, the overall improvement relative to HWRF over many forecast lead times in both basins is encouraging for HAFS-S.
[image: Figure 4]FIGURE 4 | (A) Atlantic basin percentage-point-contribution (PPC) graphics for HAFS-S for track skill (relative to HWRF) for each forecast TC during the 2022 season. Green indicates improvement relative to the HWRF baseline, brown indicates degradation. (B) As in (A), but for the eastern North Pacific basin.
3.1.2 Intensity verification
As discussed in Cangialosi et al., 2020, intensity forecasts have shown improvement over the last decade, thanks to improved understanding of the processes driving intensity change and also significant upgrades to model forecast skill. As HAFS is implemented and developed going forward, the aim is to continue this improvement.
In the Atlantic Basin, HAFS-S was comparable to (or slightly worse than) HWRF for the first 2–3 days of the forecast, with marginally-consistent degradation at 24 h and marginally-consistent improvement at 60 h. At Days 4–5, there was notable, fully-consistent degradation of the HAFS-S intensity skill relative to HWRF. Both versions of HAFSV0.3, and HAFS-S in particular, suffered from a negative intensity bias at Days 3–5 (Figure 5C). However, the pressure bias (Figure 5D) was fairly small in HAFS-S, while HWRF had a larger negative pressure bias despite a wind bias closer to 0. This indicates that the pressure/wind relationship is not optimal in either model, and TC structure needs to be a focus of ongoing improvement in HAFS. The PPC graphics, which will be examined later, will provide some insight into the cases that were most responsible for this long-term skill decrease, although it should be noted that the sample size was fairly small by Day 5 (53 cases) since there were not a lot of long-track cases during the 2022 Atlantic Hurricane season.
[image: Figure 5]FIGURE 5 | Atlantic Basin (A) mean absolute error (MAE, ms-1) for TC intensity for HAFS-S (red), HAFS-A (dark green), HMON (light green), and HWRF (purple), (B) intensity skill relative to HWRF with the consistency metric for the intensity forecast, ranging from dark green (fully-consistent improvement) to dark brown (fully-consistent degradation), and (C) as in (A), but for intensity bias. (D) As in (C), but for pressure bias instead of Vmax bias.
For the eastern North Pacific basin, HAFS-S was generally worse than HWRF for intensity out to about 90 h (Figure 6). In particular, the lower skill at early lead times indicates the need for continued refinement of the DA and initialization in HAFS. However, at longer lead times (96–120 h), HAFS-S had notably better intensity skill than HWRF, with a skill increase of 30% at Day 5 and at least marginally-consistent improvement. These findings are consistent with Emanuel and Zhang (2016), which showed that intensity errors in the first few days of a forecast are dominated by initial condition errors, but intensity skill at longer lead times (beyond Day 3 or so) is more dependent on track skill. Given the notably superior track forecasts from HAFS-S, it is therefore not surprising that the long-term intensity skill is also superior.
[image: Figure 6]FIGURE 6 | As in Figure 5 but for the eastern North Pacific Basin.
The PPC graphics for intensity (Figure 7) are enlightening in regards to the intensity skill in both basins. In the Atlantic basin, most of the intensity degradation at longer lead times was caused by poor 4–5 day forecasts in Hurricane Fiona. This TC was difficult to predict accurately due to interactions with the terrain of Hispaniola and Puerto Rico as well as being embedded in a moderate shear environment. Ongoing work is exploring whether some of the intensity errors in this case were due to track forecasts that had too much interaction with the mountainous terrain. Hurricanes Danielle and Earl also contributed to intensity forecast degradation. Overall, HAFS-S had the best intensity forecasts for Hurricanes Ian, Lisa, and Nicole. In the eastern North Pacific basin, as with track, Celia (03E) again provided much of the Day 4–5 skill. TCs Blas, Bonnie, and Estelle also contributed positively to the Day 4–5 intensity skill in the eastern North Pacific. Interestingly, Hurricane Bonnie, which crossed over from the Caribbean into the eastern North Pacific, was also one of the few TCs that contributed negatively to the skill at earlier lead times. The TC that contributed most positively to the intensity skill at early lead times (where processes other than just track differences due to synoptic variability were important) was Hurricane Roslyn late in the season. HAFS-S also struggled with intensity forecasts for Frank and Georgette, an unsurprising result given these two TCs engaged in a binary interaction.
[image: Figure 7]FIGURE 7 | As in Figure 4 but for intensity.
3.1.2.1 Rapid intensification evaluation
One of the key goals of the Hurricane Forecast Improvement Project (HFIP, Gopalakrishnan et al., 2021) is to improve the forecasts of rapid intensification (RI). RI cases tend to be a key contributor to overall intensity error statistics for the basin (e.g., Trabing and Bell, 2020), and so continuing to refine forecasts of intensity skill during RI will be critical for reaching the overall intensity forecast goals outlined by HFIP.
The RI threshold used in this study is the threshold of 30 kt (15.4 ms-1)/24 h first defined in Kaplan and DeMaria, (2003). The RI forecast results for 2022 HAFS-S (Figure 8) are examined with two different methods. First, performance diagrams (Roebber, 2009) are created to highlight the probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI) for each model for RI cases in each basin (Figures 8A, B). POD is the number of successful RI forecasts divided by the total number of RI cases observed, while FAR is defined as the number of times when RI is forecast but does not occur divided by the total number of times RI is forecast (e.g., Kaplan et al., 2010). For these diagrams, all RI forecasts were included in the sample (to increase the sample size), regardless of at what forecast hour they occurred. For the Atlantic, the overall performance of HAFS-S was comparable to that of HWRF and HMON in 2022, although both the POD and FAR were slightly lower. Notably, HAFS-S had much higher overall RI skill in the North Atlantic in 2022 than HAFS-A, with both a higher POD and a lower FAR. For the eastern North Pacific basin, both HAFSV0.3 versions performed solidly for RI. HAFS-S had a similar POD to HAFS-A, although the overall skill was slightly lower due to more false alarms in HAFS-S. HAFS-S solidly outperformed both HWRF and HMON in the eastern North Pacific for RI detection, consistent with the better overall intensity skill there. In general, all models had a negative intensity bias on average for RI cases (not shown).
[image: Figure 8]FIGURE 8 | (A) Performance diagram for Atlantic Basin RI skill for HAFS-S (red), HAFS-A (dark green), HWRF (purple), and HMON (light green). The diagram shows 1-FAR on the x-axis, the POD on the y-axis, the bias in the diagonal lines, and the CSI in the curved lines. (B) As in (A), but for the eastern North Pacific Basin. (C) MAE (m/s) for intensity (top) and intensity skill relative to HWRF (bottom) for the 2022 Atlantic Basin for cases meeting the HFIP RI definition (DeMaria et al., 2021). The HFIP RI MAE baseline and goals are shown in the dashed lines. The consistency metric is shown in the colorbar. (D) As in (C), but for the eastern North Pacific Basin.
In addition to the skill diagrams, we examined RI skill by performing an intensity verification for all cases in the 2022 dataset that fit the HFIP definition of RI (DeMaria et al., 2021). For this definition, verification times are included if any one of the models included in the sample (in this case, HWRF, HMON, HAFS-S, and HAFS-A) were undergoing RI, or if the observed TC was undergoing RI at the verification time. This definition allows for a larger sample size for evaluation. Figures 8C, D show the intensity verifications for the Atlantic and eastern North Pacific for the HFIP-RI subsets, including the consistency metric. The results are somewhat noisy at longer lead times (Days 4–5) due to a small sample size. In general, however, the results are consistent with the overall intensity results. For the Atlantic, HAFS-S shows marginally-consistent improvement at early lead times (Days 1–2) and marginally-consistent degradation at longer lead times (Days 4–5). The errors for the first 3 days were below the HFIP goals, but above after. For the eastern North Pacific, the RI verification was mixed (some degradation and some improvement at different times) early, but Days 4–5 showed marginally-consistent improvement over HWRF. In general, however, the intensity errors for the eastern North Pacific were higher and further from the HFIP goals than in the North Atlantic (although the small sample size makes interpretation somewhat difficult). These results show promise but also indicate that ongoing improvement to HAFS is needed to continue to improve the skill of these critical RI cases.
3.1.3 Radii verification
An additional metric that has started to be analyzed more in recent years is the wind radii. Cangialosi and Landsea, (2016) provided one of the first verifications of official forecasts of wind radii, and previous examinations of HAFS (e.g., Hazelton et al., 2022; Chen et al., 2023) have also examined this metric for previous experimental versions of HAFS. TC size is an important metric for understanding how a model is handling storm structure, and size is also critical for impacts, including storm surge (e.g., Irish et al., 2008). The wind radii that are specifically examined are the 4 thresholds that are reported operationally by the National Hurricane Center: 34-kt, 50-kt, 64-kt, and radius of maximum winds (RMW). The model is verified using the Best Track radii estimates from NHC, which represent the maximum radii at which a given wind threshold is observed in a given quadrant of the TC (and then averaged together to get a value for the whole TC).
Figure 9 shows the wind radii verification bias results for the North Atlantic basin during the 2022 Atlantic hurricane season. HAFS-S generally had too small of an outer wind radius (34-kt, Figure 9A), but the 50-kt and 64-kt wind radii were generally well-calibrated, and perform better than HWRF, with fairly small bias (Figures 9B, C). The RMW bias for HAFS-S was generally a bit large, similar overall to HMON in real-time (Figure 9D). It should be noted that some recent changes in how the wind radii are calculated in the GFDL vortex tracker may slightly muddle some interpretation of these results, and the tracker code is in the process of being optimized for real-time HAFS runs. However, work is also ongoing to optimize the model physics for structure prediction, which we believe will also lead to improvement of rapid intensification, as TC size has been shown to be closely linked to rapid intensification (Carrasco et al., 2014).
[image: Figure 9]FIGURE 9 | (A) Mean bias for 34-kt wind radii for the 2022 Atlantic Basin for HAFS-S (red), HAFS-A (dark green), HWRF (purple), and HMON (light green). (B) As in (A), but for 50-kt wind radii. (C) As in (A), but for 64-kt wind radii. (D) As in (A), but for RMW.
Figure 10 shows the radii results for the eastern North Pacific Basin from 2022. It should be noted that the eastern North Pacific results may be slightly less reliable due to fewer aircraft observations in that basin (Cangialosi and Landsea, 2016). The results are somewhat different than those in the North Atlantic. HAFS-S is generally well-calibrated with fairly small bias for 34-kt, 50-kt, and 64-kt wind radii. In particular, the 34-kt wind radii is notably better than HWRF, which has a positive size bias (too large) at all lead times in the eastern North Pacific basin. The RMW bias is positive at early leads in the eastern North Pacific (similar to that in the North Atlantic) but changes to a negative bias at Days 4–5. Continued work on PBL physics and other aspects of the model (including optimization of the tracker) should lead to reliable structure forecasts in all basins, and this metric will be an important one to continue to track in future versions of HAFS.
[image: Figure 10]FIGURE 10 | As in Figure 9, but for the eastern North Pacific Basin.
3.2 Case study of Hurricane Ian
The composite results discussed above illustrated how HAFS-S showed promising results in forecasts of TC track, intensity, and storm structure during the 2022 Atlantic and eastern North Pacific hurricane seasons. In this subsection, we will examine one of the most impactful hurricanes from 2022. Hurricane Ian formed over the Caribbean Sea in late September and rapidly intensified before moving into Cuba. It then further intensified into a Category 5 hurricane in the Gulf of Mexico before impacting southwest Florida as a Category 4 hurricane with strong winds, heavy rain, and devastating storm surge. Figure 11 shows the HAFS-S track and intensity forecasts for Ian that were produced in real-time.
[image: Figure 11]FIGURE 11 | (A) All 42 HAFS-S track forecasts for Hurricane Ian, colored by initial time. The “Best Track” is in black. (B) As in (A), but for intensity forecasts.
A few details stand out in this plot. For one, forecasts early in Ian’s lifetime were biased too far left. Left-of-track bias was a common problem for GFS-based guidance that presented some challenges for operational track forecasts, especially with a track paralleling the Florida Peninsula. Forecasts starting around the morning of September 25 were able to correctly lock on to the rightward turn across Southwest Florida. In addition, some of the early forecasts showed the system weakening a little bit more than occurred in reality, due to encountering higher shear over the northern Gulf of Mexico on the track that was further left than reality. However, once the track forecast was corrected southward where the environment was more favorable, many forecasts were able to capture the intensification into a strong major hurricane, including several that explicitly captured RI.
Just as the PPC graphics for the composite verification highlight which TCs contributed positively or negatively to the overall performance of the model, we can use PPC graphics for an individual case to examine which forecasts contributed positively or negatively to the overall skill of the model for a single TC. Figure 12 shows the PPC graphics for track and intensity skill (relative to HWRF) for HAFS-S for the Ian Case. For intensity (Figure 12B), there was no clear pattern, although many forecasts at Days 4–5 had positive skill. On the other hand, track forecasts showed a clear trend. Early forecasts contributed mostly negatively to track skill, while forecasts after 0000 UTC 25 September mostly contributed positively to track skill. This shift was notable, although it is not readily apparent why it occurred. One hypothesis is that it was due to “jumps” in the TC center in the model as the TC became vertically aligned during the early stages of its lifecycle (Alvey et al., 2022). Another key factor around this time was the introduction of airborne radar data for assimilation into HAFS-S and HWRF, which has been shown to increase forecast skill (Zhang et al., 2011). However, HWRF did not show the same increase in forecast skill around this time (not shown). Another possibility is that synoptic features became better represented in later HAFS-S forecasts, as illustrated in Figure 13, which shows the potential vorticity for several different initial times to highlight differences in the trough that was steering Ian. It is apparent that the earlier forecasts (1200 UTC 24 September and 0000 UTC 25 September) had a trough extension that was too far west over the Gulf of Mexico, allowing Ian to move further west before turning. In contrast, the 1200 UTC 25 September forecast (when the skill increased markedly) had a trough that was further east over the Gulf of Mexico and much closer to the observed trough, turning the storm northeast into southwest Florida. However, it is still unclear whether these large-scale differences were driven by upstream influences from the large-scale pattern, or storm-scale differences and how they may have affected the large-scale heating and diabatic PV erosion over the Gulf of Mexico (Figure 13). A separate study is ongoing to address these questions and explore the Hurricane Ian case in more detail.
[image: Figure 12]FIGURE 12 | (A) Percentage-point-contribution (PPC) graphics for HAFS-S for track skill (relative to HWRF) for each cycle of Hurricane Ian. (B) As in (A), but for intensity skill.
[image: Figure 13]FIGURE 13 | (A) Potential vorticity (shaded) and MSLP (contoured) from the HAFS-S forecast initialized at 1200 UTC 24 September 2022, valid at 0000 UTC 28 September 2022. (B) As in (A), but from the forecast initialized at 0000 UTC 25 September 2022. (C) As in (A), but from the forecast initialized at 1200 UTC 25 September 2022. (D) GFS analyzed potential vorticity (shaded) and MSLP (contoured). (E) 4-PVU contours (solid) and 1005-hPa contours (dashed) for each run and the GFS analysis, showing the locations of both the trough over the United States. (extending into the Gulf of Mexico) as well as the location of Hurricane Ian.
As shown above, many of the forecasts had positive intensity skill as Ian rapidly intensified in the Gulf of Mexico and approached the southwest coast of Florida. To examine the TC structure during this process with how it was represented in HAFS-S, we compared TDR composites from two different flights into Ian to a representative HAFS-S run (initialized on 1800 UTC 26 September). These comparisons are given in Figures 14, 15 and includes a comparison of 2-km wind and reflectivity as well as azimuthal mean tangential wind and reflectivity.
[image: Figure 14]FIGURE 14 | (A) 2-km reflectivity (dBZ) and wind barbs (kt, 1 kt = 0.51 ms-1) for the HAFS-S forecast initialized at 1800 UTC 26 September 2022, valid 27 h later. (B) 2-km wind speed (kt, 1 kt = 0.51 ms-1, shaded) and 2-km (black) and 5-km (gray) streamlines for the same HAFS-S forecast. In both (A) and (B) the blue arrow is the 850–200 hPa shear vector calculated in the 200–600 km annulus from the TC center. (C) Azimuthal mean tangential wind (ms-1) from the same HAFS-S forecast. (D) Azimuthal mean reflectivity (dBZ) from the same HAFS-S forecast. (E) 2-km reflectivity (dBZ) and wind barbs (kt, 1 kt = 0.51 ms-1) from the Hurricane Ian flight on the evening of 27 September 2022. (F) 2-km wind speed (kt, 1 kt = 0.51 ms-1, shaded) and 2-km (black) and 5-km (gray) streamlines from the same flight. (G) Azimuthal mean tangential wind (ms-1) from the same flight. (H) Azimuthal mean reflectivity (dBZ) from the same flight.
[image: Figure 15]FIGURE 15 | As in Figure 14 but for the HAFS-S forecast initialized at 1800 UTC 26 September 2022, valid 42 h later.
The first flight (Figure 14) was on the evening of 27 September, and took place as Ian was undergoing an eyewall replacement cycle (ERC) after moving off of Cuba. The multiple-peak structure associated with ERCs was apparent in the HAFS-S simulated reflectivity, with hints of multiple peaks in the low-level wind field as well. It should be noted that this flight only performed one pass across the TC, so data was somewhat limited.
The second flight (Figure 15) took place on the morning of 28 September as Ian was rapidly intensifying and approaching landfall in Florida. By this flight, Ian had completed the ERC and entered another period of RI. Note that the 42 h forecast from HAFS-S was successful in predicting the strong and robust inner core wind field. The RMW was also well predicted at around 30 km at low levels. It is difficult to directly, quantitatively compare the model and radar reflectivity values, due to attenuation and other possible biases in the observational data, as well as differences in how reflectivity is calculated in the model data. Nevertheless, the observations do suggest a bias in the vertical distribution of reflectivity in HAFS-S. In particular, the echo tops in HAFS-S only extended to ∼10 km altitude, compared to the ∼15 km echo tops in the radar data. This may be due to a known bias in the Thompson microphysics scheme to have too much snow in the 8–12 km layer, and not enough small ice particles (Wu et al., 2021).
4 SUMMARY, DISCUSSION, AND FUTURE WORK
The 2022 real-time results from HAFS-S, a candidate for operational implementation at NOAA in 2023, provided an encouraging demonstration of the progress made in HAFS development over the last several years and also helped provide a course for ongoing and future development to optimize later versions of HAFS for research and operational TC forecasting. The 2022 real-time forecasts represented the first time that the moving nest configuration of HAFS was run in real-time. This marks a notably different configuration from the large static nests used in real-time runs in 2019–2021 (e.g., Dong et al., 2020; Hazelton et al., 2021; Hazelton et al., 2022; Chen et al., 2023) and provides a demonstration of a key capability needed for successful operational forecasts within current computer resource constraints.
The track forecasts showed generally positive results in both the North Atlantic and eastern North Pacific basins, with forecasts showing skill relative to the operational HWRF (used as the “baseline” for skill) at most forecast hours in the North Atlantic and large skill (as much as 30%–40% at Days 4–5) in the eastern North Pacific. In the North Atlantic, Ian contributed notably to the track skill in the Days 2–4 window, while Celia (03E) and Darby (05E) were key positive contributors in the eastern North Pacific. Examination of Celia (not shown) illustrated that HAFS-S (and HAFS-A) had a more accurate depiction of the subtropical ridge than HWRF, leading to the better track forecast. The PPC graphics illustrated how, in some cases, a few key storms can make a big impact on the overall performance of a model in a given season, which is consistent with the finding in Chen et al. (2023). The differences in track skill between the two basins was notable, and may have been due to the fact that the Atlantic featured multiple recurving storms, while the East Pacific systems mainly moved westward. A more detailed examination of the track skill in both basins will be shown in a separate study examining the HAFS retrospective forecasts.
The intensity results were a bit mixed. At short lead times in the North Atlantic basin, HAFS-S had results that were generally comparable to that of HWRF. However, the forecasts in 2022 were less skillful at longer ranges, and reasons for this (including terrain issues, ocean coupling, and others) were examined and improved before the testing of the final pre-operational version of HAFS, in order to improve the Day 4–5 intensity forecasts for the operational version. In the eastern North Pacific, HAFS-S showed significant skill, with consistent improvement over HWRF at longer lead times (Days 4–5) and skill improvement of 30%–40%. This is likely due, at least in part, to the connection between track and intensity errors in this basin. For rapid intensification (RI) skill, HAFS-S outperformed HAFS-A in the Atlantic, and both versions of HAFS were comparable to or better than HWRF and HMON in the eastern North Pacific. PPC graphics showed that Celia (03E) was a case with a large contribution to the intensity skill in the eastern North Pacific.
The radii results were also somewhat mixed: HAFS-S had a negative (too small) bias for 34-kt winds in the Atlantic, but relatively little bias for the other wind radii metrics. In addition, HAFS-S (and HAFS-A) performed better than HWRF and HMON in wind radii prediction in the eastern North Pacific. Work is ongoing to configure the GFDL vortex tracker to accurately capture outer wind radii by removing spurious points while retaining wind from key vortex-scale structures like rain bands (Marchok, personal communication). Once this is completed, it will allow for better evaluation and optimization of wind radii forecasts (especially 34-kt radii) in HAFS. In addition, work is ongoing to better configure the TC-specific PBL physics changes (which were one of the key differences between HAFS-A and HAFS-S) for better prediction of 34-kt wind radii, as HAFS-S had a notable low bias compared to HAFS-A and HWRF.
The case study of Hurricane Ian highlighted some of the details of HAFS-S performance during the 2022 season. HAFS-S demonstrated skillful RI forecasts, correctly predicting the intensification in the southern Gulf of Mexico and, in some forecasts, even hinting at the eyewall replacement cycle that would occur prior to this RI episode. However, some of the earlier forecasts for Ian were biased too far left (a problem for all GFS-based guidance), seemingly due to an incorrect depiction of the trough moving down across the United States. Whether this difference was synoptically-driven or forced by the location of the TC earlier (in the Caribbean) is a subject of ongoing study.
The overall results from HAFS-S were promising as a baseline for one of the two versions that will operationally implemented in 2023. However, there are some ongoing avenues of research that should prove fruitful for continuing to refine and improve the model for future implementations. For example, we are conducting sensitivity tests to examine how the PBL and microphysics changes individually impact track, intensity, and structure forecast skill, which will help us understand areas where the model is more skillful relative to HWRF and areas where it needs further improvement. The data assimilation and initialization techniques are being continuously refined, and optimizing the covariances and other aspects of the DA system will be critical for improving the short-term intensity skill. In the model physics realm, work is underway to evaluate the details of the Thompson microphysics scheme, which has not been extensively used in previous TC modeling. The results from this season (and hindcasts of prior seasons) are generally encouraging, but the tendency to produce too much snowfall (noted in prior work) is something that may produce large-scale or vortex-scale biases, and this is being evaluated. As discussed above, notable work has been done to optimize the EDMF-TKE PBL scheme based on both observations and LES data (Chen et al., 2022). However, there are still gaps in our understanding of TC PBL and surface layer structure, especially in the lowest levels where observations are scarce (Chen et al., 2021). As state-of-the-art observations and LES techniques are developed, we will seek to further implement this information into the PBL and surface schemes. For ocean coupling, a fix for a possible bug in calculation of surface wind stress is being tested, which may reduce positive intensity bias in some cases. Finally, work is ongoing to develop new and cutting-edge nesting techniques for HAFS, including a Basin-Scale version of HAFS configured with high-resolution moving nests for several TCs. This approach will build upon the Basin-Scale HWRF that was run experimentally at AOML for multiple seasons and showed great promise for improving TC track and intensity predictions (Alaka et al., 2020; 2022). This will allow HAFS to have state-of-the-art capabilities for forecast multi-storm interactions and help build towards a goal of eventually including moving nests within the global forecast model. Portions of these upgrades (such as some of the ocean coupling fixes) have been included in upgrades to HAFS that occurred after the real-time experiment in time for the planned operational implementation in 2023. This final version of HAFS will be tested in full 3-year retrospective experiments for the Atlantic and East Pacific.
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FOOTNOTES
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REFERENCES
 Alaka, G. J., Sheinin, D., Thomas, B., Gramer, L., Zhang, Z., Liu, B., et al. (2020). A hydrodynamical atmosphere/ocean coupled modeling system for multiple tropical cyclones. Atmosphere 11, 869. doi:10.3390/atmos11080869
 Alaka, G. J., Zhang, X., and Gopalakrishnan, S. G. (2022). High-definition hurricanes: improving forecasts with storm-following nests. Bull. Am. Meteorol. Soc. 103, E680–E703. doi:10.1175/BAMS-D-20-0134.1
 Alvey, G. R., Fischer, M., Reasor, P., Zawislak, J., and Rogers, R. (2022). Observed processes underlying the favorable vortex repositioning early in the development of hurricane dorian (2019). Mon. Weather Rev. 150, 193–213. doi:10.1175/MWR-D-21-0069.1
 Bleck, R. (2002). An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean. Model 4, 55–88. doi:10.1016/S1463-5003(01)00012-9
 Cangialosi, J. P., Blake, E., DeMaria, M., Penny, A., Latto, A., Rappaport, E., et al. (2020). Recent progress in tropical cyclone intensity forecasting at the national hurricane center. Weather Forecast 35, 1913–1922. doi:10.1175/WAF-D-20-0059.1
 Cangialosi, J. P., and Landsea, C. W. (2016). An examination of model and official national hurricane center tropical cyclone size forecasts. Weather Forecast 31, 1293–1300. doi:10.1175/WAF-D-15-0158.1
 Carrasco, C. A., Landsea, C. W., and Lin, Y.-L. (2014). The influence of tropical cyclone size on its intensification. Weather Forecast 29, 582–590. doi:10.1175/WAF-D-13-00092.1
 Chen, X., Bryan, G. H., Hazelton, A., Marks, F. D., and Fitzpatrick, P. (2022). Evaluation and improvement of a TKE-based eddy-diffusivity mass-flux (EDMF) planetary boundary layer scheme in hurricane conditions. Weather Forecast 37, 935–951. doi:10.1175/WAF-D-21-0168.1
 Chen, X., Bryan, G. H., Zhang, J. A., Cione, J. J., and Marks, F. D. (2021). A framework for simulating the tropical-cyclone boundary layer using large-eddy simulation and its use in evaluating PBL parameterizations. J. Atmos. Sci. 78, 3593–3611. doi:10.1175/jas-d-20-0227.1
 Chen, X., Hazelton, A., Marks, F. D., Alaka, G. J., and Zhang, C. (2023). Performance of an improved TKE-based eddy-diffusivity mass-flux (EDMF) PBL scheme in 2021 hurricane forecasts from the Hurricane Analysis and Forecast System. Wea. Forecast. 38, 321–336. doi:10.1175/waf-d-22-0140.1
 DeMaria, M., Franklin, J. L., Onderlinde, M. J., and Kaplan, J. (2021). Operational forecasting of tropical cyclone rapid intensification at the national hurricane center. Atmosphere 12, 683. doi:10.3390/atmos12060683
 Ditchek, S. D., Sippel, J., Marinescu, P., and Alaka, G. (2023). Improving best-track verification of tropical cyclones: A new metric to identify forecast consistency. Weather Forecast 38 (6), 817–831. doi:10.1175/WAF-D-22-0168.1
 Dong, J., Liu, B., Zhang, Z., Wang, W., Mehra, A., Hazelton, A. T., et al. (2020). The evaluation of real-time hurricane analysis and forecast system (HAFS) stand-alone regional (SAR) model performance for the 2019 atlantic hurricane season. Atmosphere 11, 617. doi:10.3390/atmos11060617
 Emanuel, K., and Zhang, F. (2016). On the predictability and error sources of tropical cyclone intensity forecasts. J. Atmos. Sci. 73, 3739–3747. doi:10.1175/JAS-D-16-0100.1
 Goldenberg, S. B., Gopalakrishnan, S. G., Tallapragada, V., Quirino, T., Marks, F., Trahan, S., et al. (2015). The 2012 triply nested, high-resolution operational version of the hurricane weather research and forecasting model (HWRF): track and intensity forecast verifications. Weather Forecast 30, 710–729. doi:10.1175/WAF-D-14-00098.1
 Gopalakrishnan, S. G., Upadhayay, S., Jung, Y., Marks, F., and Tallapragada, V. (2021). 2020 HFIP R&D activities summary: recent results and operational implementation. Available at: https://repository.library.noaa.gov/view/noaa/31443/noaa_31443_DS1.pdf.
 Han, J., and Bretherton, C. S. (2019). TKE-based moist eddy-diffusivity mass-flux (EDMF) parameterization for vertical turbulent mixing. Weather Forecast 34, 869–886. doi:10.1175/WAF-D-18-0146.1
 Han, J., Wang, W., Kwon, Y. C., Hong, S.-Y., Tallapragada, V., and Yang, F. (2017). Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Weather Forecast 32, 2005–2017. doi:10.1175/WAF-D-17-0046.1
 Harris, L. M., and Lin, S.-J. (2013). A two-way nested global-regional dynamical core on the cubed-sphere grid. Mon. Weather Rev. 141, 283–306. doi:10.1175/MWR-D-11-00201.1
 Harris, L., Zhou, L., Lin, S.-J., Chen, J.-H., Chen, X., Gao, K., et al. (2020). Gfdl SHiELD: A unified system for weather-to-seasonal prediction. J. Adv. Model. Earth Syst. 12, e2020MS002223. doi:10.1029/2020MS002223
 Hazelton, A., Gao, K., Bender, M., Cowan, L., Alaka, G. J., Kaltenbaugh, A., et al. (2022). Performance of 2020 real-time atlantic hurricane forecasts from high-resolution global-nested hurricane models: HAFS-globalnest and GFDL T-SHiELD. Weather Forecast 37, 143–161. doi:10.1175/WAF-D-21-0102.1
 Hazelton, A. T., Bender, M., Morin, M., Harris, L., and Lin, S.-J. (2018). 2017 Atlantic hurricane forecasts from a high-resolution version of the GFDL fvGFS model: evaluation of track, intensity, and structure. Weather Forecast 33, 1317–1337. doi:10.1175/WAF-D-18-0056.1
 Hazelton, A., Zhang, Z., Liu, B., Dong, J., Alaka, G., Wang, W., et al. (2021). 2019 atlantic hurricane forecasts from the global-nested hurricane analysis and forecast system: composite statistics and key events. Weather Forecast 1, 519–538. doi:10.1175/WAF-D-20-0044.1
 Irish, J. L., Resio, D. T., and Ratcliff, J. J. (2008). The influence of storm size on hurricane surge. J. Phys. Oceanogr. 38, 2003–2013. doi:10.1175/2008JPO3727.1
 Kaplan, J., DeMaria, M., and Knaff, J. A. (2010). A revised tropical cyclone rapid intensification index for the atlantic and eastern North Pacific basins. Weather Forecast 25, 220–241. doi:10.1175/2009WAF2222280.1
 Kaplan, J., and DeMaria, M. (2003). Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Weather Forecast 18, 1093–1108. doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
 Kaplan, J., Rozoff, C. M., DeMaria, M., Sampson, C. R., Kossin, J. P., Velden, C. S., et al. (2015). Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Weather Forecast 30, 1374–1396. doi:10.1175/WAF-D-15-0032.1
 Kim, H. S., Lozano, C., Tallapragada, V., Iredell, D., Sheinin, D., Tolman, H. L., et al. (2014). Performance of ocean simulations in the coupled HWRF–HYCOM model. J. Atmos. Ocean. Technol. 31 (2), 545–559. doi:10.1175/jtech-d-13-00013.1
 Kim, H. S., Meixner, J., Thomas, B., Reichl, G., Liu, B., Mehra, A., et al. (2022). Skill assessment of NCEP three-way coupled HWRF–HYCOM–WW3 modeling system: hurricane laura case study. Weather Forecast. 37 (8), 1309–1331. doi:10.1175/waf-d-21-0191.1
 Landsea, C. W., and Cangialosi, J. P. (2018). Have we reached the limits of predictability for tropical cyclone track forecasting?Bull. Am. Meteorol. Soc. 99, 2237–2243. doi:10.1175/BAMS-D-17-0136.1
 Lin, S.-J. (2004). A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Weather Rev. 132, 2293–2307. doi:10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2
 Lin, S.-J., and Rood, R. B. (1996). Multidimensional flux-form semi-Lagrangian transport schemes. Mon. Weather Rev. 124, 2046–2070. doi:10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2
 Marchok, T. (2021). Important factors in the tracking of tropical cyclones in operational models. J. Appl. Meteorol. Climatol. 60, 1265–1284. doi:10.1175/JAMC-D-20-0175.1
 Ramstrom, W., Ahern, K., Zhang, X., and Gopalakrishnan, S. (2023). Implementation of storm-following moving nest for the hurricane analysis and forecast system. Front. Earth Sci. 2023. in review. 
 Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and Schlax, M. G. (2007). Daily high-resolution-blended analyses for Sea surface temperature. J. Clim. 20, 5473–5496. doi:10.1175/2007JCLI1824.1
 Roebber, P. J. (2009). Visualizing multiple measures of forecast quality. Weather Forecast 24, 601–608. doi:10.1175/2008WAF2222159.1
 Thompson, G., Rasmussen, R. M., and Manning, K. (2004). Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: description and sensitivity analysis. Mon. Weather Rev. 132, 519–542. doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2
 Trabing, B. C., and Bell, M. M. (2020). Understanding error distributions of hurricane intensity forecasts during rapid intensity changes. Weather Forecast 35, 2219–2234. doi:10.1175/WAF-D-19-0253.1
 Wu, D., Zhang, F., Chen, X., Ryzhkov, A., Zhao, K., Kumjian, M. R., et al. (2021). Evaluation of microphysics schemes in tropical cyclones using polarimetric radar observations: convective precipitation in an outer rainband. Mon. Weather Rev. 149, 1055–1068. doi:10.1175/MWR-D-19-0378.1
 Zhang, F., Weng, Y., Gamache, J. F., and Marks, F. D. (2011). Performance of convection-permitting hurricane initialization and prediction during 2008–2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett. 38. doi:10.1029/2011GL048469
 Zhou, L., Harris, L., Chen, J.-H., Gao, K., Guo, H., Xiang, B., et al. (2022). Improving global weather prediction in GFDL SHiELD through an upgraded GFDL cloud microphysics scheme. J. Adv. Model. Earth Syst. 14, e2021MS002971. doi:10.1029/2021MS002971
Conflict of interest: Authors BL, BT, and JS were employed by Lynker. Authors LZ and WW were employed by SAIC. C-KW was employed by Redline Performance Solutions LLC.
The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2023 Hazelton, Alaka, Gramer, Ramstrom, Ditchek, Chen, Liu, Zhang, Zhu, Wang, Thomas, Shin, Wang, Kim, Zhang, Mehra, Marks and Gopalakrishnan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 30 November 2023
doi: 10.3389/feart.2023.1320192


[image: image2]
A modified vertical eddy diffusivity parameterization in the HWRF model based on large eddy simulations and its impact on the prediction of two landfalling hurricanes
Xin Li1, Zhaoxia Pu1*, Jun A. Zhang2,3 and Zhan Zhang4
1Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT, United States
2Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, United States
3Hurricane Research Division, NOAA/AOML, Miami, FL, United States
4Environmental Modeling Center, NCEP/NOAA, College Park, MD, United States
Edited by:
Liguang Wu, Fudan University, China
Reviewed by:
Qingqing Li, Nanjing University of Information Science and Technology, China
Qingyuan Liu, Chinese Academy of Meteorological Sciences, China
* Correspondence: Zhaoxia Pu, Zhaoxia.Pu@utah.edu
Received: 11 October 2023
Accepted: 15 November 2023
Published: 30 November 2023
Citation: Li X, Pu Z, Zhang JA and Zhang Z (2023) A modified vertical eddy diffusivity parameterization in the HWRF model based on large eddy simulations and its impact on the prediction of two landfalling hurricanes. Front. Earth Sci. 11:1320192. doi: 10.3389/feart.2023.1320192

Vertical eddy diffusivity (VED) in the planetary boundary layer (PBL) has a significant impact on forecasts of tropical cyclone (TC) structure and intensity. VED uncertainties in PBL parameterizations can be partly attributed to the model’s inability to represent roll vortices (RV). In this study, RV effects on turbulent fluxes derived from a large eddy simulation (LES) by Li et al. (Geophys. Res. Lett., 2021, 48, e2020GL090703) are added to the VED parameterization of the PBL scheme within the operational Hurricane Weather Research and Forecasting (HWRF) model. RV contribution to VED is parameterized through a coefficient and varies with the RV intensity and velocity scale. A modification over land has also been implemented. This modified VED parameterization is compared with the original wind-speed-dependent VED scheme in HWRF. Retrospective HWRF forecasts of Hurricanes Florence (2018) and Laura (2020) are analyzed to evaluate the impacts of the modified VED scheme on landfalling hurricane forecasts. Results show that the modified PBL scheme with the RV effect leads to an improvement in 10-m maximum wind speed forecasts of 14%–31%, with a neutral to positive improvement for track forecasts. Improved wind structure and precipitation forecasts against observations are also noted with the modified PBL scheme. Further diagnoses indicate that the revised PBL scheme enhances moist entropy in the boundary layer over land, leading to improved TC intensity prediction compared to the original scheme.
Keywords: planetary boundary layer, hurricanes, landfall, parameterization, roll vortices, numerical prediction
1 INTRODUCTION
Accurate prediction of the track and intensity of tropical cyclones (TCs), especially landfalling TCs, can significantly reduce the casualties and economic loss induced by these severe meteorological disasters. Vertical eddy diffusivity (VED) in the planetary boundary layer (PBL) scheme is a key parameter for simulating and forecasting TC intensity (e.g., Smith, 1968; Ooyama, 1969; Emanuel, 1986, 1995; Braun and Tao, 2000; Chen et al., 2007; Van Sang et al., 2008; Smith and Thomsen, 2010; Zhang et al., 2011; Zhang and Pu, 2017). Modification of VED based on aircraft observations over the ocean significantly improved hurricane track and intensity forecasts (Zhang et al., 2011; Zhang and Drennan, 2012; Tallapragada et al., 2014; Zhang et al., 2015, 2017). Improved VED parameterization can also potentially lead to improved TC track, intensity, and structure forecasts during landfalls (Zhang and Pu, 2017).
Near-surface vertical mixing impacts flux and entropy distributions that affect TC intensity through the energy balance argument (e.g., Zhu and Furst, 2013; Doyle et al., 2014; Wing et al., 2019). Above the surface layer, both the maximum value and vertical distribution of VED could affect the simulated track, intensity, and structure of TCs (Gopalakrishnan et al., 2013; Zhu et al., 2014; Bu et al., 2017; Gopalakrishnan et al., 2021; Kalina et al., 2021). Zhang and Rogers (2019) found that relatively low but realistic values of VED in the Hurricane Weather Research and Forecasting (HWRF) model led to a strong and deep forecasted hurricane vortex, which are more resilient to shear before and during rapid intensification than large VED. Small VED also led to a more symmetric distribution of deep convection and enhanced PBL inflow over the ocean before TC intensification. On the other hand, in landfalling TCs, the underlying surface roughness increases from ocean to land, which affects the VED in the PBL (Yu et al., 2008; Zhang et al., 2011; Zhang et al., 2017; Zhang and Pu, 2017). Based on fast-response wind data collected during typhoons in 2010, Tang et al. (2018) found that VED is larger near the coast when winds blow from land than from the ocean. Zhang and Pu (2017) and Zhang et al. (2017) found that using different VED parameterizations over land and ocean in the PBL scheme resulted in more realistic intensity forecasts of landfalling hurricanes by HWRF, especially during the wind decay stage over land.
Furthermore, previous studies have found that roll vortices (RVs), a type of large turbulence eddy, exist in the TC PBL (Wurman and Winslow, 1998; Katsaros et al., 2000; Morrison et al., 2005; Huang et al., 2018). Numerical simulations by Foster (2005), Gao and Ginis (2016), and Gao et al. (2017) showed that these large-scale eddies could generate strong and counter-gradient flux, in contrast to that predicted by the traditional down-gradient turbulence parameterizations in mesoscale numerical models. Aircraft observations in TCs confirmed that counter-gradient turbulent transfer exists, leading to large VEDs near the top of the boundary layer in the eyewall and outer-core regions (Zhang and Drennan, 2012; Zhao et al., 2020). Results from large eddy simulation (LES) are consistent with these observations (Zhu, 2008; Li et al., 2021). A laboratory study found that horizontal rolls could even impact the intensification rate of TCs (Sukhanovskii and Popova, 2020). Therefore, the omission of RVs in the PBL scheme could potentially lead to relatively poor TC intensity forecasts (Ernst et al., 2019).
In light of the linkage between VED and RV in the PBL scheme within the Weather Research and Forecasting (WRF) model, Li and Pu (2021) improved the Yonsei University (YSU) PBL scheme (Hong et al., 2006; Hong, 2010) by adding RV effects based on the LES of landfalling Hurricane Harvey (2017). Numerical experiments indicated that the revised YSU scheme produced better hurricane track, intensity, and quantitative precipitation forecasting (QPF). The positive impacts of including RV effects in the WRF model motivate us to further evaluate these effects and implement the findings in other models. Specifically, RV effects have not yet been included in the NCEP operational Hurricane WRF (HWRF) regional model. The hybrid Global Forecast System (GFS) PBL scheme in the current version of the HWRF model was previously modified based on observations (Bu et al., 2017; Wang et al., 2018; Zhang et al., 2020) with a wind-speed-dependent VED parameterization, but no RV effect was considered. Therefore, the purpose of this study is to improve the previous RV parameterization and implement it into the PBL scheme of the HWRF model. We also aim to evaluate the effects of the RV parameterization on hurricane prediction. We use the operational version of the HWRF model (version 2020, referred to as H220 hereafter). Specifically, considering the high impact of landfalling hurricanes on our society, our focus is on improving forecasts of landfalling storms.
The development of the RV parameterization in the HWRF model is described in Section 2. The forecast results and evaluations are discussed in Section 3. The influence of the modified PBL scheme with RV effect on the hurricane intensity and structure is examined in Section 4. A summary and concluding remarks are provided in Section 5.
2 MODIFYING THE RV PARAMETERIZATION IN THE HWRF MODEL
2.1 A brief description of the HWRF model and GFS PBL scheme
HWRF (Version 4) is a NOAA/NCEP regional operational hurricane model. It is composed of the WRF (Weather Research and Forecasting) non-hydrostatic mesoscale model (NMM) on an E-grid dynamic core (Janjic et al., 2010), the Message Passing Interface Princeton Ocean Model for Tropical Cyclones (MPIPOM-TC) (Yablonsky et al., 2015), the NCEP coupler, and the GSI data assimilation platform (Kleist, et al., 2009; Wang, 2010). The HWRF model domains are configured to have a parent domain and two storm-following moving nested domains, with resolutions of ∼13.5 km, ∼4.5 km, and ∼1.5 km, respectively. The atmospheric model in the HWRF system employs a suite of advanced physics developed for TC applications, such as the Ferrier-Aligo microphysics scheme (Ferrier et al., 2002; Aligo et al., 2018), the simplified Arakawa-Schubert (SAS) deep convection scheme (Pan and Wu, 1995; Hong and Pan, 1998), the Geophysical Fluid Dynamics Laboratory (GFDL) longwave and shortwave radiation schemes (Lacis and Hansen, 1974; Schwarzkopf and Fels, 1991), the GFDL surface layer scheme (Kurihara and Tuleya, 1974; Sirutis and Miyakoda, 1990), the Noah land surface model (Ek et al., 2003), and the hybrid NCEP GFS or “GFS EDMF” PBL parameterization scheme (Gopalakrishnan et al., 2013; Wang et al., 2018; Zhang et al., 2020; Kalina et al., 2021).
The “GFS” or “GFS EDMF” PBL scheme is essentially a first-order nonlocal scheme that originated from the traditional NCEP Medium-Range Forecast (MRF) scheme (Troen and Mahrt, 1986; Hong and Pan, 1996; Han and Bretherton, 2019). In the latest operational version of the HWRF model (as of the end of 2020), a wind-speed-dependent VED of momentum (Km) modification has been applied in the GFS EDMF PBL scheme since 2015 (Bu et al., 2017; Wang et al., 2018):
[image: image]
where k=0.4 is the Von Kármán constant; [image: image] represents the mixed-layer velocity scale, and PBLH represents the height of the planetary boundary layer (PBL). The coefficient α is computed based on the diagnosed eddy diffusivity of momentum Km at a single level (h=500 m) based on observations (Zhang et al., 2011) and then applied through the entire PBL within that model column for grid points over the ocean.
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where WS denotes the wind speed and the subscript 500 stands for the variable collection height of 500 m.
2.2 RV parameterization
In Li and Pu (2021), the large eddy simulation (LES) of landfalling Hurricane Harvey (2017), was used to parameterize RV and its effect was added to the YSU PBL scheme in the WRF model. Figure 1 shows the azimuthally averaged Km (shading) from the simulations with the WRF YSU PBL scheme (Figure 1A) and LES (Figure 1B), and their difference (Figure 1C) at 17 UTC 25 August 2017 for Hurricane Harvey. The simulations indicated that RV always contributed to VED at distances less than 100 km from the hurricane center. The RV intensity, Iw = [image: image], is shown as a contour line to distinguish the RV’s contribution. Figure 1 also indicated that Km from the YSU scheme was weak, with a maximum of less than 90 m2s-1, while the area with solid RV (intensity over 0.5 m2s-2) always had larger Km in the LES, with a maximum of over 210 m2s-1. This large Km implies a strong vertical mixing effect led by the RV at 100–3,000 m in LES. Therefore, based on the significant relationship between the large Km and RV intensity shown in Figure 1, Li and Pu (2021) regard the VED difference between the simulation with WRF and WRF-LES as the contribution from RV to the total VED. The RV intensity was first related to the horizontal divergence in the PBL and then used to quantify the VED contribution from RV.
[image: Figure 1]FIGURE 1 | Azimuthally averaged vertical eddy diffusivity of momentum (shading) from the WRF simulations with (A) YSU PBL scheme, (B) LES, and (C) their difference (Kmr) at 17 UTC 25 August 2017 for Hurricane Harvey. The black contour line stands for the RV’s intensity at the same time.
Li and Pu (2023) found that the inflow transports the rolls in the entire storm boundary layer and accumulates near the eyewall to support the intense rolls there. Specifically, in Li and Pu (2021), RV intensity, Iw = [image: image], is linked to horizontal convergence (negative divergence), where [image: image] is the vertical component of the RV turbulence. Based on dimensional analysis, the maximum Iw (Iwm) is proportional to the square of the mean horizontal divergence (div) in a vertical column of the PBL below 400 height:
[image: image]
The coefficient a is 1.97 based on LES data following Li and Pu (2021). Note that below 400 m altitude, divergence is mostly negative, indicating convergence in the PBL.
To generate the vertical profile of Iw, the height of Iwm (Hm) is represented by the height of the minimum wind shear (du/dz). Then, with Hm and Iwm, Iw normalized by Iwm (g) in each vertical column is described by an adjusted gamma distribution function f as follows:
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where h is the height above the ground and g(h) is the normalized Iw profile distribution function. Finally, the Iw profile in a single column is derived:
[image: image]
As in the setup of the YSU PBL scheme, Li and Pu (2021) used a velocity scale, [image: image], for RV to determine the RV-induced VED of momentum, that is, Kmr, in the form of
[image: image]
where Ht is the height of the top of RV, which is assumed to be above Hm, and Iw = 0.05 Iwm. A height of 3,000 m is used as the Ht maximum. According to the dimensional analysis, [image: image] is proportional to the square root of Iw. A linear fitting method is applied as follows:
[image: image]
where b, the linear coefficient, is equal to 0.08 in the PBL and 0.20 in the free atmosphere from Li and Pu (2021). Then, Kmr is determined through Eq. 7 in the modified PBL scheme.
Since the vertical eddy diffusivity of heat (Khr) and moisture (Kqr) produced by RV is weak, a fixed ratio for Khr/Kmr and Kqr/Kmr is set to the mean value of 4.79×10−2 in LES for the RV parameterization in Li and Pu (2021). Finally, RV-induced Kmr, Khr, and Kqr are added to the original Km, Kh, and Kq of the PBL scheme. Further details can be found in Li and Pu (2021).
In the present study, we modify the RV parameterization of Li and Pu (2021) and apply it to the HWRF PBL scheme. The different horizontal grid spacings of WRF (coarse grid) and HWRF (fine grid) could lead to different values of coefficient b in Eq. 8, so a sensitivity test based on the WRF-LES simulation results was conducted with different horizontal grid spacings. Figure 2 shows the variation of b with the horizontal grid spacing, suggesting that b is not sensitive to the horizontal grid resolution, with a variance of less than 10%. This result also confirms that b = 0.20 for the free atmosphere and b = 0.08 for the PBL in Equation 8 work best for the HWRF model with the horizontal grid spacing of ∼0.033° for domain 2° and 0.011° for domain 3.
[image: Figure 2]FIGURE 2 | Coefficient b in Eq. 8 as a function of horizontal grid spacing. The dashed line represents coefficient b from LES in Li and Pu (2021).
In the LES simulation of Hurricane Harvey (2017) by Li et al. (2021) and Li and Pu (2021), the LES domain covers only the hurricane inner-core region (within a radius of less than 150 km from the hurricane center). Figure 1 shows that RV always contributes to VED at distances less than 100 km from the hurricane center. Therefore, an inner-core distance limitation, namely, 100 km, should be added to the HWRF system to avoid the RV contribution through the RV parameterization outside the inner core. To ensure that this hurricane’s inner-core region is covered by all three domains with their own grid spacings, distance limitations of 150 km for domain 1, 115 km for domain 2, and 101 km for domain 3 are used when modifying the HWRF PBL scheme to include the RV effect.
2.3 Improvement of RV parameterization over land
From Eq. 8, the relation of [image: image] and Iw differs only in the PBL and free atmosphere. Since this study emphasizes landfalling hurricanes, the different underlying surfaces of the land and ocean should be considered since they could lead to different VED (Zhang et al., 2017; Tang et al., 2018) and, thus, different values of b in Eq. 8. According to Li and Pu (2021), coefficient b in Eq. 8 is determined mainly by the hurricane simulation results over the ocean. Therefore, for the inland configuration, coefficient b in Eq. 8 needs to be adjusted. Figure 3 shows the fitting relationship of [image: image] and the mean root of Iw for the TC inland case based on additional LES simulations. Results show that b = 0.04 in the PBL and b = 0.06 in the free atmosphere should be used over land; these values are significantly different from the values of b over the ocean reported by Li and Pu (2021). This adjusted coefficient b in the RV parameterization over land is used in the modified HWRF PBL scheme.
[image: Figure 3]FIGURE 3 | Plot of [image: image] as a function of the mean root of Iw over land. The least-square best-fit lines for free atmosphere (blue) and PBL (black) are also shown.
3 HWRF EXPERIMENTS AND FORECAST IMPACTS
3.1 Experiment configurations
Following the modification of the PBL scheme with the RV parameterization in the HWRF model as described in the previous section, the impacts of the modified PBL scheme on TC forecasts are examined with the operational HWRF model (version H220). Considering the tuning coefficient α in the PBL scheme, as mentioned above, the following three experiments are configured. Note that two of the experiments combine the α effect with RV parameterization in the PBL scheme.
1) Control: no change in the HWRF model, where Km is parameterized using Eqs. 1, 2.
2) RV-A-α: in the hurricane inner-core region, the first guess of Km is modified by including the RV parameterizations (Kmr) first, and then it is adjusted by α to generate the final Km as follows:
[image: image]
Outside the inner-core region, there is no change from Control.
3) RV-C-α: in the hurricane inner-core region, when Kmr is not equal to zero, the first-guess Km is modified only by adding the above RV parameterizations without α adjustment, namely
[image: image]
Otherwise, when Kmr is equal to zero, the first-guess Km is adjusted only by α as defined in the current HWRF to generate the final Km, as described in Eqs 1, 2. Outside the inner-core region, there is no change from Control.
In the modified PBL scheme, α interacts with the added RV parameterization. In RV-A-α, the RV parameterization is added to the HWRF PBL while retaining the effect of coefficient α. In RV-C-α, adding the RV parameterization is an option to replace coefficient α conditionally.
With the above configurations, HWRF forecasts are conducted for Hurricane Florence (2018), with cycled forecasts (equivalent to the procedure of operational runs in 6 hourly analysis and forecast cycles) from 18 UTC 13 to 18 UTC 14 September 2018, and for Hurricane Laura (2020), with cycled forecasts from 00 UTC 25 to 00 UTC 27 August 2020. The forecast case is spun up at 00 UTC 13 September 2018 for Hurricane Florence, and at 06 UTC 24 August 2020 for Hurricane Laura with the cycled run. A total of 14 cases, 5 for Florence and 9 for Laura, are analyzed to evaluate the impacts of the revised PBL scheme on track, intensity, and structure forecasts compared to the original scheme.
To assess the quantitative precipitation forecasting (QPF), observations from NCEP stage IV precipitation data (Lin and Mitchell, 2005) are used to compute the threat score:
[image: image]
where forecast is the point number of the simulated QPF with special threshold precipitation, and observation is the point number of the QPF from the stage IV data. Correct is the point number of the correct forecast that agrees with the observation.
3.2 Track, intensity, and precipitation forecasts
3.2.1 Hurricane Florence
Figure 4 shows the forecast tracks of Hurricane Florence from the three experiments at different forecast times. The hurricane tracks of RV-A-α and RV-C-α are different from that of Control, with a slower-moving TC through the revised PBL scheme. Compared to the NHC best-track data, the simulated storms in these three experiments move slightly faster after landfall. The storm in RV-C-α is the slowest and is closest to the best track. Then, to quantify the forecast skill, the track and intensity errors are computed as shown in Figure 5. The track error of RV-C-α is smaller than that of Control, with a mean error reduction of 6.02 km. The mean track error of RV-A-α is 65.13 km, which is slightly larger than that of Control. For the maximum surface wind (MSW) error, RV-C-α also produces a mean error of −4.42 kt, which is smaller than that of Control (−6.44 kt). RV-A-α produces an MSW error similar to that of Control, with a mean error of −6.21 kt. When the hurricane decays over land, the MSW error of RV-C-α decreases with time and is smaller than those of the other two experiments. The most significant intensity forecast improvement is at 12 UTC 14 September 2018, at hurricane landfall. For the minimum sea level pressure (MSLP) forecast, the improvement in RV-C-α is not consistent, in that the MSLP error is smaller than that in Control in the first 24 h but larger at 30–66 h. Finally, the mean MSLP error is −4.62 hPa for RV-C-α, close to the mean error of −4.02 hPa for Control. RV-A-α has an MSLP error similar to that of Control, with a mean error of −4.03 hPa. Overall, RV-C-α produces the best hurricane track and MSW forecasts against the best track from the NHC report. Note that the MSLP forecast reduction by RV-C-α compared to Control is smaller (15%) than the MSW forecast improvement (>31%).
[image: Figure 4]FIGURE 4 | Comparison of forecast track with the best-track data for Hurricane Florence at (A) 18 UTC 13, (B) 00 UTC 14, (C) 06 UTC 14, (D) 12 UTC 14, and (E) 18 UTC 14 September 2018. Control, RV-A-α, RV-C-α, and best track are represented by the blue, red, green, and black lines, respectively.
[image: Figure 5]FIGURE 5 | Mean forecast errors against the best-track data for Hurricane Florence (A) track, (B) maximum surface wind (MSW), and (C) minimum sea level pressure (SLP). The black lines in (A,C) denote the best-track MSW and minimum SLP, respectively. The dashed line in (A) denotes the landfall time.
Accurate precipitation forecasts near hurricane landfall time are essential for public warnings. The 12 h accumulated precipitation forecast, initialized at 06 UTC 14 September 2018, is compared with the NOAA Stage IV precipitation analysis (Lin and Mitchell, 2005) during Hurricane Florence’s landfall between 06 and 18 UTC 14 September 2018 (Figure 6). RV-C-α performs better than Control, which underestimates the rainfall over the ocean. RV-C-α has an even larger precipitation maximum (160 mm) than RV-A-α (120 mm) close to the hurricane eye and eyewall regions over the ocean. Overall, RV-C-α provides the best rainfall forecast for Florence, consistent with the result of Li and Pu (2021). To further examine the improvement in the precipitation of Florence, the mean threat score (TS) of the QPF based on the NOAA Stage IV data for 12 h, 24 h, 36 h, and 48 h accumulated precipitation is analyzed (figures not shown). The results show a strong increase in the mean TS for heavy rainfall (over 160 mm) in RV-C-α, with a TS increase of over 0.1 from Control. The increased mean TS indicates that RV-C-α significantly improves the rainstorm forecast, which is important for public warnings. The slightly reduced (less than 0.04) or similar mean TS for the smaller rainfall (<160 mm) reflects a similar QPF ability for RV-C-α and Control at these precipitation thresholds. RV-A-α shows poor QPF with a gradually smaller mean TS than Control and RV-C-α.
[image: Figure 6]FIGURE 6 | The 12 h accumulated precipitation from (A) Stage IV, (B) Control, (C) RV-A-α, and (D) RV-C-α during Hurricane Florence’s landfall at 06-18 UTC 14 September 2018.
3.2.2 Hurricane Laura
Figure 7 shows the forecast storm tracks from the three experiments at different forecast times for Hurricane Laura. The storm tracks in these forecasts are all close to the NHC best track, with a maximum error of less than 100 km. Figure 8 shows the forecast track and intensity errors from these experiments. Compared to Control, RV-C-α provides a comparable track forecast. The absolute track error is 36.29 km for Control, 40.48 km for RV-A-α, and 37.04 km for RV-C-α. For the MSW error, RV-C-α again provides a smaller error, −10.51 knot, compared to the −12.16 knot from Control. The MSW error reduction by RV-C-α, compared to Control, increases and then decreases with time. RV-A-α provides a slightly worse MSW forecast than the other two experiments, with a mean error of −13.34 knot. RV-C-α also provides a better MSLP forecast in the first 42 h than Control, with the mean error reducing in magnitude from −1.29 hPa (Control) to −0.83 hPa. Overall, RV-C-α performs the best, with a 14% reduction in the MSW forecast error and a 36% reduction in the MSLP forecast error compared to Control and best track. Furthermore, the track error increment is less than 2% for RV-C-α.
[image: Figure 7]FIGURE 7 | Comparison of forecast track with the best-track data for Hurricane Laura at (A) 00 UTC 25, (B) 06 UTC 25, (C) 12 UTC 25, (D) 18 UTC 25, (E) 00 UTC 26, (F) 06 UTC 26, (G) 12 UTC 26, (H) 18 UTC 26, and (I) 00 UTC 27 August 2020.
[image: Figure 8]FIGURE 8 | Mean forecast errors against the best-track data for Hurricane Laura (A) track, (B) maximum surface wind (MSW), and (C) minimum sea level pressure (SLP). The dashed line in (A) denotes the landfall time.
The 12 h accumulated precipitation forecasts, initialized at 18 UTC 25 August 2020, for Hurricane Laura from 00 to 12 UTC 27 August 2020 are compared with the NCEP Stage IV precipitation analysis (Figure 9). RV-C-α reduces the overestimated rainfall over the ocean in Control and RV-A-α. Control strongly overestimates the rainfall, especially near the coastline, with a maximum of ∼280 mm compared to observations, while RV-A-α reduces this overestimation to some degree and RV-C-α significantly reduces the precipitation forecast error with a precipitation maximum of ∼160 mm.
[image: Figure 9]FIGURE 9 | The 12 h accumulated precipitation from (A) Stage IV, (B) Control, (C) RV-A-α, and (D) RV-C-α during Hurricane Laura’s landfall at 00–12 UTC 27 August 2020.
As with Florence, the mean threat score (TS) of the QPF of Laura against the NOAA Stage IV data for 12 h, 24 h, and 36 h accumulated precipitation is analyzed (Figure not shown). Because of the relatively weak precipitation from Laura, the mean TS is small and often less than 0.4 for threshold precipitation over 80 mm. For precipitation of less than 80 mm, the revised PBL scheme in RV-A-α and RV-C-α provides a neutral impact on the QPF, with mean TS reduction and increment both less than 0.04 against Control. The revised HWRF PBL scheme improves the 24 h and 36 h QPF. Due to its quick decay and relatively weak rainfall, the improvement from RV-C-α is somewhat weaker for Laura than for Florence.
3.3 Inner-core horizontal and vertical winds
To evaluate whether the modified PBL scheme improved the hurricane inner-core representation, we compared the HWRF wind fields with available NOAA airborne Doppler radar observations. Figure 10 shows the winds at 1,500 m from the three experiments, initialized at 18 UTC 26 August 2020, and NOAA radar for Hurricane Laura at 00 UTC 27 August 2020 during landfall. Compared to the radar data, Control overestimates the inner-core winds with a larger area of strong winds (over 50 m_1). RV-A-α only slightly reduces the high winds in the northern portion of the inner-core region. RV-C-α reproduces an asymmetric pattern similar to the radar observations and has a small high wind (over 50 m−1) area around the eyewall.
[image: Figure 10]FIGURE 10 | The 1,500 m wind from (A) NOAA Doppler radar, (B) Control, (C) RV-A-α, and (D) RV-C-α for Hurricane Laura near landfall time at 00 UTC 27 August 2020. The white contour line stands for wind over 50 m−1 for observations and simulations. The black line represents the cross-section in Figure 12.
Vertical wind profiles at 00 UTC 27 August 2020 from the NOAA P3 Doppler radar along the flight line (black line in Figure 10) are used to evaluate the forecasts of Hurricane Laura, initialized at 18 UTC 26 August 2020, shown in Figure 11. From the western portion of Laura, RV-C-α provides a high wind (>55 m−1) region closer to the radar observations, with high wind extending just to 7 km. Control and RV-A-α have too large an area with high wind (>55 m−1), extending to nearly 10 km. Compared to the eastern observations, RV-C-α provides a vertical structure similar to the radar data, with a separate high wind at ∼7 km and a small area with over 55 m−1 wind below 2 km altitude. Overall, RV-C-α shows a better wind speed pattern in both the east and west parts of hurricane with smaller area of strong winds. Control and RV-A-α still have stronger low-level and high-level wind.
[image: Figure 11]FIGURE 11 | Wind field of vertical cross section for Laura at 00 UTC 27 August 2020, from (A) NOAA P3 TDR radar, (B) Control, (C) RV-A-α, and (D) RV-C-α.
The above results indicate that adding the RV effect into the HWRF PBL scheme can improve the representation of hurricane inner-core wind profiles. The result here is quantitatively consistent with the findings of Zhang et al. (2015), who adjusted the VED to obtain better wind structure forecasts of TCs over the ocean, although they did not include the RV effect.
4 INFLUENCE OF RV PARAMETERIZATION ON THE EVOLUTION OF HURRICANE INNER CORE
The evolution of the hurricane inner-core structure is essential for hurricane track and intensity changes. In this section, we further examine the effects of the modified PBL scheme on the evolution of the hurricane inner-core structure, especially for the period near landfall. We use the Hurricane Florence case as an example, specifically, analyzing the forecasts initialized at 06 UTC 14 September 2018, when Florence was close to land.
Figure 12 shows the evolution of azimuthally averaged surface wind speed from Control (Figure 12A), RV-A-α (Figure 12B), and RV-C-α (Figure 12C) during the 60 h forecast. The maximum azimuthally averaged surface wind in RV-C-α is higher than that in Control and RV-A-α. The radius of MSW is smaller in RV-C-α in the first 12 h than in the other two experiments. After 24h, the azimuthally averaged surface wind speed in RV-C-α maintains a maximum wind of greater than 34 m-1. After this time, the maximum winds decay more slowly with time in RV-C-α than in the other two experiments. Through the intensity forecast analysis in Figure 5B, the simulated hurricane in Control and RV-A- α decays more quickly than the best track. The evolution of maximum wind here supports a much better intensity forecast of RV-C-α compared to Control (c.f., Figure 5).
[image: Figure 12]FIGURE 12 | Evolution of azimuthally averaged surface maximum wind of Hurricane Florence initialized at 06 UTC 14 September 2018, from (A) Control, (B) RV-A-α, and (C) RV-C-α. The radius of MSW is represented by the black line.
To further examine the reason why RV-C-α leads to a better intensity forecast, Figure 13 shows the azimuthally averaged momentum VED from Control (Figure 13A), RV-A-α (Figure 13B), and RV-C-α (Figure 13C) at the 12 h, 24 h, and 36 h forecast times. The maximum azimuthally averaged VED in RV-C-α is higher than that in Control and RV-A-α at the 24 h and 36 h forecasts. Previous studies have indicated that RV can enhance the vertical mixing effect near the TC eyewall region (Zhu, 2008; Zhang and Drennan, 2012; Zhao et al., 2020; Li et al., 2021), thus influencing hurricane intensity and evolution. Therefore, the larger VED in RV-C-α implies a larger vertical mixing effect on the wind speed. With the decay of the hurricane, the hurricane eye enlarges, and the RV effects extend from the hurricane center to its vicinity. Consequently, RV-C-α results in the largest VED within a radius of 100–150 km at the 36 h forecast among all three experiments.
[image: Figure 13]FIGURE 13 | Azimuthally averaged momentum vertical eddy diffusivity (VED) of Hurricane Florence initialized at 06 UTC 14 September 2018, from (A–C) Control, (D–F) RV-A-α, and (G–I) RV-C-α at (A,D,G) 12 h, (B,E,H) 24 h, and (C,F,I) 36 h.
Figure 14 shows the azimuthally averaged wind speed from the three experiments at the 12 h, 24 h, and 36 h forecast times. The maximum azimuthally averaged wind speed, which is typically located at 850–900 hPa, is the same in Control as in RV-A-α, with a value of 42 ms−1 at 12 h, 33 ms−1 at 24 h, and 30 ms−1 at 36 h, respectively. In contrast, RV-C-α provides stronger azimuthally averaged wind speeds, with a maximum of 42 ms−1 at 12 h, 36 ms−1 at 24 h, and 33 ms−1 at 36 h, respectively. The larger VED (as shown in Figures 13G–I) indicates that adding the RV parameterization in RV-C-α causes a stronger mixing of high wind downward from levels above 900 hPa to the boundary layer that acts to increase the surface wind speed (near the 1,000 hPa level) by offsetting the surface friction effect and maintain the hurricane intensity over land (as shown in Figure 3C).
[image: Figure 14]FIGURE 14 | Azimuthally averaged wind speed of Hurricane Florence initialized at 06 UTC 14 September 2018, from (A–C) Control, (D–F) RV-A-α, and (G–I) RV-C-α at (A, D, G) 12 h, (B, E, H) 24 h, and (C, F, I) 36 h.
Although the above analysis indicates that the higher surface wind is associated with the vertical mixing in RV-C-α, the reason for the stronger high-level (above 900 hPa) winds in RV-C-α still needs to be clarified. According to Persing and Montgomery (2003) and Montgomery et al. (2006), the high-entropy air in a hurricane eye can lead to a stronger hurricane through eye-eyewall mixing. Therefore, the strong hurricane in the RV-C-α could be associated with the high-entropy air and eye-eyewall mixing process. To test this hypothesis, Figure 15 shows the equivalent potential temperature (θe) difference between RV-A-α and RV-C-α as well as Control at 12 h, 24 h, and 36 h. There is a large area of positive θe difference (>0.6 K) close to the storm center between RV-C-α and Control. This positive difference is generally smaller between RV-A-α and Control, indicating stronger eye-eyewall mixing with the RV effect. Wang and Xu (2010) found that higher entropy in the boundary layer inflow can significantly enhance hurricane development through an energy budget argument. Since the RV effect in RV-C-α provides stronger mixing near the surface (Figures 13G–I), the increase in boundary layer entropy is associated with stronger mixing. This high-entropy air helps offset the downdrafts induced by low-entropy air into the boundary layer in sheared TCs and helps maintain convective activity in combination with the strong inflow. Overall, the RV effect enhances the simulated hurricane intensity and reduces the intensity forecast error in RV-C-α. Of note, the wind-speed-dependent VED in RV-A-α offsets the RV contribution to VED, leading to a weaker storm compared to that in RV-C-α, but the RV effect still helps improve the intensity forecast in RV-A-α compared to Control.
[image: Figure 15]FIGURE 15 | Difference in azimuthally averaged equivalent potential temperature of Hurricane Florence, initialized at 06 UTC 14 September 2018, between Control and (A–C) RV-A-α and (D-F) RV-C-α at (A,D) 12 h, (B,E) 24 h, and (C,F) 36 h.
5 SUMMARY
In this study, the parameterization of roll vortices (RV), a type of large turbulence eddy in the TC boundary layer, was added to the PBL scheme of the NCEP HWRF model. The RV parameterization scheme that was originally developed by Li and Pu (2021) based on WRF-LES runs was adjusted to fit into the GFS PBL scheme within the HWRF model. Improvement was also made to the RV parametrization over land. Based on additional WRF-LES sensitivity experiments of landfalling storms beyond previous work, the coefficient that connects the RV intensity, velocity scale, and VED was modified from 0.20 to 0.06 for the free atmosphere and from 0.08 to 0.04 for the PBL in HWRF, taking into account differences in both grid spacing and land versus ocean. The new VED parameterization with the RV effect was compared with the original wind-speed-dependent VED parameterization in HWRF (Control) to evaluate their impacts on hurricane forecasts. Cycled HWRF forecasts are performed for Hurricanes Florence (2018) and Laura (2020), with a total of 14 cases during the analysis and forecast cycles of the two storms.
The results showed a better surface MSW forecast with a 14%–31% improvement in the experiment with the modified PBL scheme with the RV effect, compared with the original PBL scheme. The improved performance of the revised scheme on track and SLP forecasts was significant, with an increment of −2%–9% for track and −15%–36% for SLP forecasts.
Further diagnoses showed that the vertical turbulent mixing adjustment due to the RV effect in the revised scheme leads to a better wind structure forecast than the original scheme compared to NOAA airborne Doppler radar observations. The RV effect also modulates the moisture structure by enhancing θe in the boundary layer. The enhanced θe leads to a stronger storm during landfall in the HWRF forecast with the RV parameterization. The overall intensity forecast performance is better using the scheme with the RV effect according to the retrospective forecast. Overall, the modified PBL scheme with the RV effect could potentially be applied in the HWRF model for real-time TC forecasts. More cases will be performed in future work.
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This study utilizes the Weather Research and Forecasting (WRF) to comparatively analyze the impact of three vertical grid resolution (VGR) enhancement schemes on the simulation of super typhoon Lekima under two different horizontal resolutions. The relationship between structural changes and typhoon intensity is explored from the perspective of the simulated three-dimensional thermodynamic and dynamic structure of the typhoon. The main conclusions obtained are as follows: Typhoon track simulation is not sensitive to the setting of VGR, while intensity simulation is greatly affected by it. Increasing VGR in the lower layer can enhance the simulated intensity of the typhoon, but when VGR enhancement is made in the middle layer, the simulated typhoon intensity decreases. For VGR enhancement in the upper levels, it is only when coupled with a simultaneous increase in horizontal resolution that the simulated typhoon intensity is enhanced. Different VGR enhancement schemes result in significant differences in the simulated thermodynamic and dynamic structures of the typhoon, which is a crucial factor causing variations in simulated typhoon intensity. In terms of dynamics, increasing VGR in the lower layer reduces the hydrostatic stability of the lower troposphere, which enhances convection and improves its symmetry. This leads to strengthened inflow and outflow activities of the typhoon, resulting in a stronger simulated typhoon with a tighter and straighter eyewall. In terms of thermal structure, increasing VGR in both the lower and upper levels enhances the warm core of the typhoon, thereby increasing its simulated intensity. However, the warm core simulated with upper layer enhancement extends to a higher altitude. This may be related to two different heating mechanisms, where lower layer VGR enhancement has a more pronounced effect on changes in boundary layer latent heat flux, while upper layer VGR enhancement promotes more sinking of high-entropy air from higher levels.
Keywords: WRF, vertical resolution, thermal and dynamic structures, typhoon intensity, Lekima
1 INTRODUCTION
Tropical cyclones (TCs) are cyclonic vortex systems with a warm core structure generated over warm sea surfaces in tropical or subtropical regions (Kepert, 2010). Influenced by the Warm Pool in the Northwest Pacific, this region stands out as the most active for TC activity globally (Chan and Liu, 2004; Klotzbach, 2006). TCs in this area typically follow a northwestward track under the combined effects of the beta effect and large-scale steering flows, constituting threats to the coastal areas of Southeast China (Chan, 2010). These regions are often severely affected by the landfall of TCs, posing significant risks to the lives and properties of the coastal residents (Zhang and Chen, 2019; Ren et al., 2022). Therefore, enhancing the forecast capability of TCs in the Northwest Pacific is crucial for disaster prevention and mitigation.
In recent years, advancements in observation technologies, data assimilation, and numerical models have led to substantial improvements in TC track forecasts (Pu et al., 2009; Tan et al., 2022). However, there still exist significant errors in the prediction of TC intensity (Duan et al., 2005; Chen et al., 2021). The intensity of TCs is significantly influenced by their thermal and dynamic structures. Studies have shown that enhanced inflow and outflow activities, vigorous convection, a strong warm core, and abundant sea surface heat flux transport all contribute to the further intensification of TCs (Holland and Merrill, 1984; Kepert, 2010). Additionally, the symmetry of the thermal and dynamic structures also play a crucial role in affecting TC intensity (Chen and Zhang, 2013; Tang et al., 2019). The distribution of atmospheric pressure fields in different layers of a TC usually exhibits central symmetry. However, the wind fields in the inflow and outflow layers, the TC warm core in the mid-levels, and the convective activity near the eyewall often show a certain degree of asymmetry (Li et al., 2014; Niu et al., 2021). The asymmetry in the inflow and outflow layer wind fields can affect the enthalpy flux transfer between the TC and the external environment, thereby influencing the intensity of the TC (Black and Anthes, 1971; Jin et al., 2023). The relationship between the symmetry of the warm core and intensity is more closely related. Tao et al. (2016) conducted a statistical analysis of a large number of TC cases between 1979 and 2010 and found that TCs with a more symmetrical warm core structure tend to be more intense. Moreover, typhoons with highly symmetrical convective rings tend to experience a faster intensification process. Conversely, those with less symmetry exhibit intermittent enhancement processes (Willoughby et al., 1982). In the case of mature typhoons undergoing convective structure changes, such as eyewall replacement, their intensity is more prone to weakening (Willoughby, 1990). Additionally, in the case of Hurricane Frances, the asymmetric enthalpy flux generated by the cold wake can influence the distribution of convection, thereby affecting the intensity of the TC (Lee and Chen, 2012). Therefore, improving the understanding of the thermal and dynamic structures of TCs and clarifying their relationship with TC intensity are essential steps to enhance the forecast capability of TC intensity.
The scarcity of observational data limits the study of the thermal and dynamic structures of TCs. Numerical models can provide high spatiotemporal resolution simulation data, enabling a detailed investigation of the three-dimensional structure of TCs. Numerous studies have demonstrated that increasing model horizontal resolution can yield finer TC simulated structures, thereby improving the simulation of TC intensity (Fierro et al., 2009; Gentry and Lackmann, 2010). However, as a three-dimensional system, TCs also exhibit high vertical complexity. While increasing horizontal resolution, due consideration should be given to the influence of vertical grid resolution (VGR). The setting of VGR in the model should be matched with horizontal resolution to avoid the generation of false gravity waves (Lindzen and Fox-Rabinovitz, 1989), which can lead to model instability and affect simulation results (Persson and Warner, 1991; Powers et al., 2017). There have been some studies that have focused on the impact of changes in vertical resolution on the simulation of typhoon intensity. For example, Zhang et al. (2015) found in an idealized typhoon experiment that increasing VGR can improve the simulation of typhoon intensity, but as the resolution is further increased, the simulation effect becomes worse. Li et al. (2014) discovered that increasing the VGR of the model at different height levels can produce significant changes in the simulated intensity of typhoons. Ma et al. (2012) further pointed out that increasing VGR in the lower levels of the model can result in stronger typhoon simulation intensity. However, these studies have paid less attention to the structure of typhoons, and none of them have explored the impact of changes in resolution on the three-dimensional thermodynamic structure of typhoons. In addition, there are significant differences in the VGR refinement schemes among these studies, and the improvement effects also vary for different typhoon cases.
Therefore, when conducting high-resolution simulations, it is essential to explore how to set the VGR of the model to improve the simulation of TC intensity. Furthermore, understanding how the simulated three-dimensional thermal and dynamic structures of TCs affect TC intensity is also a crucial question. In this study, Super Typhoon Lekima is selected, which occurred in 2019 and made landfall in East China, causing severe disaster impacts along its track (Tan et al., 2020). The clear eyewall structure of Lekima makes it suitable for a detailed study of TC structure. In Section 2 the model experiment and methodology are described. Section 3 analyzes the simulated paths and intensities under different schemes. Section 4 and 5 explore the impact of VGR enhancement in simulated typhoon dynamics and thermal structure, respectively. Finally, Section 6 concludes and discusses the findings.
2 MODEL EXPERIMENT AND METHODOLOGY
2.1 Model experiment
The non-hydrostatic mesoscale model Weather Research and Forecasting (ARW) Version 4.0 (WRF) was employed as the numerical model for this study, in accordance with current academic standards. The initial fields are generated using the 0.25° horizontal resolution ERA5 reanalysis data provided by ECMWF, and the detailed experimental setup is shown in Table 1 (Chen et al., 2022). The simulation period is from 00:00:00 on 6 August 2019 to 00:00:00 on 10 August 2019, covering various stages of typhoon development, maintenance, and weakening. To obtain detailed simulated typhoon structures, the model is configured with two horizontal resolutions: one at 6 km and another at 3 km, with a time integration interval of 30 and 10 s, respectively. The model top is set at 50 hPa. The China Meteorological Administration Tropical Cyclone Data Center (CMA) dataset is used as the observational data to verify the performance of the model in simulating Lekima (Ying et al., 2014; Lu et al., 2021).
TABLE 1 | Experimental configuration.
[image: Table 1]The WRF4.0 model employs a hybrid vertical coordinate system, where the low atmosphere uses terrain-following coordinates and the high atmosphere uses isobaric coordinates. The vertical coordinate is given by:
[image: image]
In Eq. (1), [image: image] and [image: image] are the atmospheric and surface pressures, [image: image] is the top pressure of the model, and [image: image] is a fixed value. The weighting function B(k) is calculated based on the vertical level k. When [image: image], the vertical layer follows the terrain. When the height reaches the level [image: image] (given height where isobaric coordinates are used), [image: image] becomes 0 and the vertical coordinate switches to isobaric.
The vertical layer thickness is given by:
[image: image]
In Eq. (2), [image: image] and [image: image] are the current and low vertical layer thicknesses, and h is a stretching coefficient. WRF provides two methods for setting the vertical layer distribution. One is to fix the bottom of the model layer and distribute the vertical layers evenly. The other is to calculate the vertical layer distribution based on user inputs of [image: image] (model layer bottom height), [image: image] (stretching coefficient for the low layer), [image: image] (stretching coefficient for the high layer), and [image: image] (maximum interval between layers). When the model layer interval reaches [image: image]/2, the stretching coefficient switches from [image: image] to [image: image]. In this study, we used the second method with default coefficients to ensure consistency in vertical layer distribution for all experiments except for those that require a denser low layer. An additional vertical layer was added at η=0.995 to ensure consistency in vertical layer distribution for these experiments.
This study set up three different vertical layer distribution schemes to investigate the impact of low-, middle-, and high-level atmospheric VGR on typhoon simulation. The vertical distribution of the mean radial wind speed within the 200 km radius of the typhoon center at the time of maximum wind speed is analyzed in the control experiment (Figure 1A). Based on the inflow and outflow vertical distribution, η ranges of 0.8–1, 0.3–0.8, and 0–0.3 are defined as the low, middle, and high layers, respectively. Keeping the remaining layers unchanged, 10 additional layers are added to the low, middle, and high layers based on C40_6 (C40_3), and name them as L50_6 (L50_3), M50_6 (M50_3) and H50_6 (H50_3), respectively. The numerical values behind the underline represent the horizontal resolution of 6 km or 3 km used in the experiment.
[image: Figure 1]FIGURE 1 | Profile of (A) mean radial wind within 200 km radius at time of typhoon maximum Intensity (12:00 on the 8th), and (B) vertical layer distribution as set in each experiment.
2.2 Case selection: Typhoon Lekima (2019)
Typhoon Lekima (1909) formed on 29 July 2019 (UTC) over the western Pacific east of the Philippines. It is upgraded to a tropical storm on August 4, and further strengthened to a severe tropical storm on August 5. Lekima continued to intensify and is upgraded to a typhoon on August 6, then to a super typhoon later that same day, with maximum sustained wind speed reaching 62 m/s and a minimum sea surface level pressure of 915 hPa. It made landfall in Chengnan Town, Wenling City, Zhejiang Province, China, at around 01:45 on August 10, with the maximum near-center wind force reaching 16 on the Beaufort Scale (52 m/s) and a minimum sea surface level pressure of 930 hPa.
2.3 Eye wall location and slope
In order to quantitatively describe the characteristics of the typhoon eyewall, this study defines two parameters: Eyewall Position (EWP) and Eyewall Slope (EWS). Based on the high reflectivity feature of the typhoon eyewall (Hence and Houze, 2011), within the 200 km radius of the typhoon core, the position with the azimuthally averaged maximum reflectivity at each height level is identified as the Eyewall Position (EWP). The Eyewall Slope (EWS) is defined as the slope of the line connecting the eyewall positions at the lowest and highest altitude levels. The larger the EWS, indicating a less inclined eyewall.
2.4 Static stability
Following Kepert (2010), static stability ([image: image]) is frequently defined through the Brunt–Väisälä frequency:
[image: image]
In Eq. (3), g is gravitational acceleration, [image: image] is virtual potential temperature and z is height coordinate. When [image: image] is greater than 0, the atmosphere exhibits static stability, causing vertical parcel perturbations to result in oscillations with a frequency of N. Conversely, when [image: image] is less than 0, the atmosphere becomes statically unstable, leading to the amplification of vertical perturbations.
2.5 Warm core area and height
The warm core intensity of typhoons is quantitatively described using temperature anomalies (TA), warm core area index (WCAI), and warm core height (WCH) (Fu et al., 2011). The TA is obtained by subtracting the average temperature on the corresponding isobaric surface from the temperature at each point. The average temperature on the isobaric surface is obtained by averaging the temperatures within a 1000-km radius of the typhoon on the isobaric surface. The WCAI is defined as the number of grid points in the azimuthally-averaged vertical TA profile with values greater than a specific threshold, which in this study is 12 K. The WCH refers to the height at which the maximum TA, after azimuthal averaging, is located. The azimuthal averaging method involves considering the tropical cyclone center as the origin and drawing equidistant concentric circles outward. Within each circle, the average of the physical quantity is computed, representing the azimuthal mean value at the inner radius of that circle.
2.6 Precipitation asymmetry
To quantify the asymmetry of typhoon precipitation, this paper employs Fourier expansion along the azimuthal direction for the precipitation field. It uses the first harmonic asymmetry within the 200 km radius of the typhoon core to characterize its asymmetry degree, where a larger numerical value indicates a more uneven distribution of precipitation. The specific procedure involves establishing a polar coordinate system with the typhoon center as the origin. The azimuthal angle (θ) is spaced at 1° intervals, and the radial direction (r) is spaced at 6 km or 3 km intervals. The model data is interpolated to a 1° × 6 (3) km grid using a nearest-neighbor interpolation method. Subsequently, the precipitation field R (r, θ) is subjected to a Fourier series expansion (Boyd, 2001):
[image: image]
In Eq. (4), [image: image] denotes the azimuthal angle-averaged precipitation at radius r, which is the zeroth harmonic component. Here, n represents the harmonic series, and [image: image] and [image: image] are the Fourier coefficient at radius r for the harmonic series n (Eqs 5, 6).
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The asymmetry of the typhoon core precipitation field is represented by the ratio of the amplitude components between the first harmonic and the zeroth harmonic (Eq. 7):
[image: image]
2.7 Drag coefficient and water vapor exchange coefficient
The drag coefficient ([image: image]) and the water vapor exchange coefficient ([image: image]) have significant impacts on the momentum flux and latent heat flux in the boundary layer, according to the formula proposed by Wu (1982).
[image: image]
In Eq. (8), [image: image] is the 10m wind speed. [image: image] can be obtained using the formula provided by Charnock (1955).
[image: image]
In Eq. (9), [image: image] is the von Kármán constant, and here, we use 0.4 as an approximate value. [image: image] is the reference height, set at 10 m, and [image: image] is the roughness length for water vapor.
3 TRACK AND INTENSITY
Concerning the simulation of the Lekima track, Figure 2C, F present the time series of simulated tracks and track deviations for each experiment. Among the three VGR enhancement schemes, simulations featuring enhanced VGR in the upper layers demonstrate superior track simulation performance. Specifically, H50_6 and H50_3 show smaller average deviations in track simulation compared to their control experiments, a result validated during both the typhoon intensification and weakening stages (Table 2). Improving VGR in the lower layers also contributes to the enhancement of track simulation, albeit to a lesser extent than observed in the experiments with enhanced VGR in the upper layers. Middle layers VGR enhancement does not yield a significant improvement in track simulation. Increasing the horizontal resolution to 3 km does not improve the simulation of the Lekima track; instead, track simulation deviations increase in all four experiments.
[image: Figure 2]FIGURE 2 | Temporal variation of (A) the maximum surface wind speed at 10 m (m/s), (B) the minimum sea level pressure (hPa) and (C) track for each experiment and the CMA best-track data (OBS). (D–F) represent maximum surface wind speed bias, minimum sea level pressure bias and track bias, respectively.
TABLE 2 | Root mean square error (RMSE) of maximum surface wind (Windspeed_rmse), minimum sea level pressure (Pressure_rmse), and track (Track_rmse).
[image: Table 2]For intensity, this study uses Maximum Surface Wind Speed (MSWS) and Minimum Sea Level Pressure (MSLP) as standards for measuring typhoon intensity. Figure 2A, B provide the time series of MSWS and MSLP for each experimental simulation. Figure 2D, F present the time series of deviations in MSWS and MSLP, respectively. Enhancing VGR in the lower layers improves the simulation of intensity, and this improvement remains unaffected by changes in horizontal resolution. It is particularly noticeable during the typhoon intensification stage, with L50_6 and L50_3 having smaller MSWS RMSE and MSLP RMSE compared to their control experiments (Table 2). Middle layers VGR enhancement has a negative effect on the simulation of typhoon intensity under both horizontal resolutions. Specifically, M50_6 and M50_3 do not increase Lekima’s maximum intensity. Although M50_3 slightly reduces MSWS RMSE and MSLP RMSE during the weakening stage, overall, enhancing VGR in the middle layer increases MSWS RMSE and MSLP RMSE during the simulation period. Enhancing VGR in the high layers, at a horizontal resolution of 6 km, does not improve the forecast accuracy of typhoon intensity. Specifically, H50_6 shows a general increase in MSWS RMSE and MSLP RMSE during the simulation period. When the horizontal resolution is increased to 3 km, H50_3’s intensity forecast accuracy improves, particularly during the intensification stage (Table 2).
In summary, experiments with improvement in VGR in the lower layer demonstrate superior performance in simulating typhoon intensity. VGR enhancement in the middle layers leads to a reduction in typhoon intensity, accompanied by a decline in both intensity and track simulation. VGR improvement in the upper layer results in optimal track simulation but is influenced by horizontal resolution in terms of intensity. At a 6 km resolution, H50_6 does not exhibit significant improvement. However, upon increasing the horizontal resolution to 3 km, H50_3’s intensity simulation performance shows a notable enhancement.
4 DYNAMIC STRUCTURE
The intensity of a typhoon is closely related to its three-dimensional structure. Section 4 will focus on the impact of different VGR schemes on the simulated dynamic structure of Lekima. This includes radial and tangential winds, vertical velocity, eye-wall slope, convective asymmetry, and static stability as key dynamic parameters. As the typhoon reaches its maximum intensity, its structure becomes clearer. Therefore, this study analyzes the period when Lekima reached its maximum intensity (12:00 on 8 August 2019).
4.1 Radial wind and tangential wind
The vertical distribution of azimuthally averaged radial and tangential winds (the extraction of radial and tangential winds is referenced from Braun et al. (2006)) for each experiment is depicted in Figure 3. In all experiments, the vertical distribution of radial winds exhibits low-level inflow and upper-level outflow. The inflow region is in the low levels outside the eyewall, with a height not exceeding 850 hPa. In the mid-levels, the airflow is primarily tangential, with a minimal radial wind component. The air within the eye region is relatively stable, with only a small amount of air inflow in the low levels. When horizontal resolution is 6 km, the typhoon core wind fields in L50_6 and C40_6 exhibit a similar vertical distribution, following the basic pattern of low-level inflow and upper-level outflow. In M50_6 and H50_6, the inflow and outflow activities are more dispersed in the vertical direction, and abnormal radial winds in the mid-levels weaken the tangential winds. Both show strong outflow activity in the mid-levels (600–300 hPa). When the horizontal resolution is increased to 3 km, L50_3 exhibits minimal changes compared to L50_6. However, for M50_3 and H50_3, the outflow activity in the mid-levels significantly weakens, and the outflow activity becomes more concentrated in the main outflow layer above 200 hPa.
[image: Figure 3]FIGURE 3 | Height-radius cross-sections of azimuthal mean radial wind (shaded color, Positive value for inflow, negative value for outflow) and tangential wind (contour line) at 12:00 on August 8, 2019 for each experiment. [(A–H) represent individual experiments, respectively. See Figure 1B for specific meanings].
The horizontal distribution of azimuthally averaged radial winds in the lower layer (below 900 hPa) and upper layer (200–100 hPa) for each experiment is illustrated in Figure 4. When horizontal resolution is 6 km, the distribution of inflow and outflow areas in the lower layer is generally consistent among experiments. The outflow area is concentrated in the left-front quadrant in the direction of typhoon movement, with other vast regions predominantly occupied by inflow. However, there are variations in the intensity of inflow and outflow among experiments. In L50_6, the inflow in the lower layer is the strongest, with an expanded inflow range, resulting in a more robust and uniform convergence. The outflow activity in the upper layer also intensifies, and the outflow area in the direction of movement is expanding. In M50_6, the inflow in the lower layer weakens, forming a band-like distribution of high inflow values. Due to the decrease in inflow, the outflow also weakens. The inflow in H50_6 is closest to that in C40_6, but the outflow in the upper layer intensifies on the right side of the Lekima’s moving direction. When the horizontal resolution is increased to 3 km, significant changes occur in the intensity and distribution of inflow and outflow in the lower layer for each experiment. The inflow activity on the left-rear side of the typhoon’s moving direction significantly strengthens, while the inflow on the right side noticeably weakens, leading to a large outflow area in the right-rear quadrant. Except for C40_3, other VGR enhanced experiments at a 3 km horizontal resolution show a significant weakening of outflow activity in the left-front quadrant. All VGR enhanced experiments enhance the symmetry of typhoon low-level inflow.
[image: Figure 4]FIGURE 4 | Distribution of azimuthal mean radial wind at lower levels (below 900 hpa) (A–H) and upper levels (200–100 hpa) (I–P) at 12:00 on August 8, 2019 for each experiment (black arrow represents the direction of typhoon movement, and dotted circle’s radius is 50 km).
4.2 Vertical velocity and reflectivity
The eyewall is the primary area of updraft in a typhoon, accounting for approximately 60% of the total upward transport. This is mainly accomplished by updrafts with speeds exceeding 1 m/s at the eyewall, and the upward motion at the eyewall exhibits significant asymmetry (Jorgensen et al., 1985; Black et al., 1996; Corbosiero and Molinari, 2003). Additionally, since the atmosphere above the boundary layer in a typhoon is in near-gradient balance, the eyewall typically tilts outward with height increases. This tilt significantly affects the efficiency of convective latent heat release, thereby influencing typhoon intensity (Kepert, 2010). In this section, we will analyze the vertical motion and reflectivity structure in the eyewall region, exploring the impact of lower, middle, and upper layers VGR on the convective asymmetry and eyewall features of the typhoon.
In the profiles of vertical velocity and reflectivity for each experiments (Figure 5), when horizontal resolution is 6 km, L50_6 exhibits a larger reflectivity center near the eyewall, a larger EWS, and a smaller EWP, indicating a straighter eyewall and a more compact typhoon eye. The high reflectivity region (dBz ≥ 10) at the top of the eyewall in M50_6 is lower, only reaching around 300 hPa, while the corresponding period in C40_6 can reach above 200 hPa. The EWS of M50_6 is the smallest at 0.21, indicating a greater tilt of its eyewall and a disorganized eyewall structure with more dispersed convective activity. H50_6 has the maximum vertical velocity near the eyewall, with dense contour lines, and the core of maximum vertical velocity is near 300 hPa. Additionally, the reflectivity center value at the eyewall in H50_6 is the smallest among the four experiments. Its EWP is the largest among the four experiments, indicating that its eyewall is farther from the center of the typhoon, and the energy released from convective latent heat may not effectively heat the warm core. When the horizontal resolution is increased from 6 km to 3 km, the eyewalls of all experiments are enhanced, with increased reflectivity and EWS. Among the four experiments at a horizontal resolution of 3 km, L50_3 and H50_3 have larger EWS, while M50_3 has a smaller EWS.
[image: Figure 5]FIGURE 5 | Height-radius cross-sections of azimuthal mean vertical velocity (contour line) and reflectivity (shaded color) at 12:00 on August 8, 2019 for each experiments (purple thick line represents the eyewall profile, [(A–H) represent individual experiments, respectively. See Figure 1B for specific meanings].
The profiles of extreme ascent and descent velocity for each experiments are shown in Figure 6. Extreme vertical velocities in the eyewall region play a crucial role in influencing typhoon intensity. Updrafts exceeding 10 m/s are particularly important as they facilitate the transfer of substantial momentum and moisture (Rotunno et al., 2009; Zheng et al., 2020; Jin et al., 2023). At a 6 km horizontal resolution, the vertical velocity distribution of L50_6 is similar to C40_6, with a relatively small vertical gradient of vertical velocity. M50_6 has a small variation in low-level vertical velocity but exhibits larger extreme ascent velocities in the mid to upper levels. H50_6 shows larger extreme ascent velocities near 200 hPa. When the horizontal resolution is 3 km, C40_3 has larger extreme ascent velocities in the upper and middle-lower levels, with the maximum intensity at 200–100 hPa. In L50_3 and M50_3 experiments, the distribution of extreme ascent velocities is similar to C40_3, but the overall intensity is lower than C40_3. In the high-resolution H50_3 experiment, there is a significant change in the distribution of extreme ascent velocities. Extreme ascent velocities in the mid to lower levels are notably enhanced, with extreme ascent velocities near 500 hPa significantly higher than the other three experiments. This can promote convection to reach greater heights, thereby enhancing typhoon intensity.
[image: Figure 6]FIGURE 6 | Vertical distribution of the threshold of the extreme updraft and downdraft within a 100 km radius at 12:00 on August 8, 2019 for each experiment [blue for the top 5%, red for the top 1%, and black for the top 0.1%, and (A–H) represent individual experiments, respectively. See Figure 1 for specific meanings].
4.3 Convective asymmetry and static stability
The intensity of precipitation in the typhoon core can characterize the strength of convection, while lower precipitation asymmetry represents a more symmetric and stable structure of the typhoon, which is conducive to the rapid intensification of the typhoon (Chen and Zhang, 2013; Chen et al., 2022). Figure 7A shows the time series of the asymmetry of core precipitation in each experiment. During the typhoon intensification period, when the horizontal resolution is 6 km, the experiments are sorted in descending order of precipitation asymmetry as follows: M50_6, H50_6, L50_6, and C40_6. When the horizontal resolution is increased to 3 km, the experiments are similarly sorted in descending order of core precipitation asymmetry: M50_3, H50_3, L50_3, and C50_3. The asymmetry of convection in the 3 km group is significantly stronger than in the 6 km group, which may also be the main reason for the significant increase in extreme ascending and descending speeds in the typhoon core region in the 3 km compared to the 6 km experimental group in Figure 6.
[image: Figure 7]FIGURE 7 | (A) Typhoon core precipitation asymmetry (labeled numbers represent the average asymmetry during the first 60 h). Average static stability within the core of the typhoon (within a radius of 200 km), including (B) upper levels (between 100 hPa and 250 hPa), (C) middle levels (between 500 hPa and 700 hPa) and (D) lower levels (below 900 hPa).
Furthermore, static stability ([image: image]) is closely related to the convection and intensity of a typhoon. When [image: image] is relatively large, vertical circulation is confined to lower levels; otherwise, convection can reach higher altitudes (Holland and Merrill, 1984). Additionally, a more stable atmosphere leads to a smaller Maximum Potential Intensity (MPI) of the typhoon (Kieu and Wang, 2017; Kieu and Zhang, 2018). Moreover, some scholars have pointed out that the impact of different height levels on typhoons varies. For instance, in the lower levels of the troposphere, a relatively deep unstable condition is one of the necessary conditions for typhoon formation (Briegel and Frank, 1997), In the upper levels of the troposphere, it enhances the lateral circulation and potential vorticity of the typhoon, thereby affecting its intensity (Duran and Molinari, 2019).
Figure 7B, C, D present the [image: image] time series of the averaged (within 200 km) static stabilities in the low, middle, and upper levels of the typhoon inner core, respectively. As observed in Figure 7D, increasing the lower layer VGR reduces the stability in that layer. In the 6 km and 3 km groups, the stability in the low level is lowest for L50_6 and L50_3, with other VGR enhanced experiments showing little difference in low-level stability. Throughout the simulation period, all experiments exhibit a trend of decreasing and then increasing stability in the low level. During the typhoon intensification phase, there is a significant reduction in lower levels [image: image], followed by a gradual increase. Lower [image: image] in the lower levels is conducive to the occurrence of convective activity, especially during the typhoon intensification phase. Coupled with strengthened inflow activity, this results in more vigorous convective activity, reduced asymmetry in convection, and a significant increase in the eyewall slope. Stronger convective activity provides more latent heat release, consequently resulting in L50_6 and L50_3 simulating a stronger maximum typhoon intensity. However, in contrast to increase in VGR, increasing the horizontal resolution from 6 km to 3 km causes a significant increase in [image: image] in all experiments in the lower levels. This suppresses convective activity, leading to increased asymmetry in the typhoon inner core convection, as reflected in Figure 7A. Increasing the VGR in the lower layer enhances the simulated intensity of typhoons, which is consistent with previous research findings (Ma et al., 2012; Zhang et al., 2015). Zhang et al. (2015) found that increasing the lower layer VGR can enhance vertical mass and moisture convergence. This study further points out that this approach essentially reduces the hydrostatic stability of the lower troposphere, which promotes the release of convective latent heat, thereby obtaining stronger simulated typhoon intensity.
Figure 7C illustrates the changes in [image: image] in the middle levels, and it is not difficult to observe that the differences among the experiments are relatively small, and the stability in the middle levels gradually increases during the simulation period. In both the M50_6 and M50_3 experiments, a larger [image: image] is maintained in the lower and middle levels, which will inhibit convective activities, increase the asymmetry of convection, and subsequently decrease the slope of the typhoon eyewall (Figure 5B, F). After increasing VGR in the middle levels, the simulated intensity of the typhoon weakens, and the typhoon eyewall becomes loose with a decreased slope. This result has also been mentioned in previous studies by Ma et al. (2012). They suggest that this is due to an increase in the vertical gradient of vertical wind, leading to increased convergence in the middle levels, which suppresses deep convection at the eyewall and ultimately weakens the simulated intensity of the typhoon. In this study, we also find from the perspective of atmospheric stratification stability that the increased hydrostatic stability in the lower and upper levels after increasing VGR in the middle levels can also inhibit the release of convective latent heat, resulting in a weakened simulated intensity of the typhoon.
As shown in Figure 7B, the stability is lowest for H50_6 and H50_3. Enhancing VGR at the upper levels can decrease the hydrostatic stability in the upper atmosphere. Additionally, Figure 7A indicates that increasing VGR at the upper levels can also enhance the convective asymmetry of typhoons. However, the effect of upper layer VGR enhancement on typhoon intensity simulations differs under different horizontal resolutions. When horizontal resolution is 6 km, increasing upper layer VGR leads to a decrease in the slope of the typhoon eyewall and a weakening of the simulated intensity. Under these conditions, increasing the VGR at the upper layer does not effectively strengthen the simulated intensity of Lekima, which is consistent with previous research findings (Ma et al., 2012; Zhang et al., 2015). However, when the horizontal resolution is increased to 3 km, enhancing the VGR at the upper layer significantly strengthens the simulated intensity. The differences in hydrostatic stability and asymmetry between the two sets of experiments are relatively small, and it is difficult to explain the source of the intensity simulation differences solely from this perspective. This may also be related to thermodynamic structures such as the warm core of the typhoon, which will be discussed in the next section.
5 THERMAL STRUCTURE
Typhoons are cyclonic vortex formed by latent heat release heating and sinking heating in the eye region, resulting in a warm-core structure. The structural characteristics, height, and intensity of the warm core significantly affect typhoon intensity (Fei, 1997; Komaromi and Doyle, 2017). In this section, two indices, the Warm Core Area Index (WCAI) and the Warm Core Height (WCH), will be used to quantitatively analyze the stimulated thermodynamic structural characteristics of Likema and explore the impact of VGR on typhoon thermodynamic structure. The definitions and calculation methods of these two indices have been detailed in Section 2.
5.1 Warm core
Figure 8 presents the azimuthally averaged radial height profiles of temperature anomalies, revealing the intensity and distribution characteristics of the warm core in each experiment. In Figure 8, a larger warm core center TA and WCAI (TA ≥ 12k) indicate a stronger warm core, and lower layer VGR enhancement can significantly enhance the intensity of the warm core. Conversely, middle layer encryption weakens the intensity of the warm core. Among experiments with the same horizontal resolution, the warm core intensity is strongest in the lower layer VGR enhancement experiments. The strength of the warm core after upper layer VGR enhancement is affected by the horizontal resolution. The warm core intensity of H50_6 is weaker than that of C40_6, and the warm core center is deviated from the low-pressure center, increasing the asymmetry of the warm core to some extent. However, when the horizontal resolution is increased to 3 km, the warm core intensity of H50_3 becomes stronger. Additionally, after increasing the horizontal resolution, the warm core intensity of each experiment decreased to varying degrees, with the most significant decrease observed in C40_3.
[image: Figure 8]FIGURE 8 | Height-radius cross-sections of azimuthal mean TA on August 8, 2019 for each experiments [(A–H) represent individual experiments, respectively. See Figure 1B for specific meanings].
Concerning warm core height, both lower and middle layer VGR enhancement at 6 km resolution can increase WCH. However, at 3 km horizontal resolution, the changes in WCH are not as pronounced. Upper layer VGR enhancement at both 3 km and 6 km resolutions increases WCH, with H50_6 showing the most significant change, reaching a WCH of 275 hPa. In terms of horizontal resolution, the WCH of the 3 km experiment group is generally higher than that of the 6 km experiment group. Therefore, increasing horizontal resolution tends to decrease warm core height.
Figure 9 divides the warm core along the direction of typhoon movement into four quadrants (Right Front (RF), Left Front (LF), Left Rear (LR), and Right Rear (RR)). It shows the warm core area ratio (a) and warm core height (b) based on quadrant statistics. When horizontal resolution is 6 km, L50_6 exhibits the lowest warm core asymmetry, with minimal differences in warm core area among quadrants. The warm core heights (WCH) in each quadrant are generally around 305 hPa, indicating consistent warm core heights. M50_6 has a warm core concentrated in the RF and LR quadrants, accounting for 65% of the total warm core area. Additionally, the warm core height on the right side is greater than the left side, showing a pronounced asymmetry in warm core distribution. H50_6’s warm core is predominantly concentrated in the RF quadrant, with only 8.2% in the LR quadrant. It exhibits a clear asymmetry, with the WCH on the left side greater than the right side, and the warm core center deviates from the low-pressure center. When the horizontal resolution is increased to 3 km, L50_3 maintains the best symmetry in its warm core, with minimal differences in warm core area and height among quadrants. M50_3 continues to exhibit the strongest warm core asymmetry among the three VGR enhancement experiments. In contrast, H50_3 shows significant changes. At a 3 km horizontal resolution, warm core symmetry is significantly improved.
[image: Figure 9]FIGURE 9 | (A) Proportion of warm core area (TA greater than 12 K) and (B) height in Each Quadrant on 8 August 2019 at 12:00.
5.2 Surface flux
The ocean is the primary underlying surface for the generation and development of typhoons, providing the necessary water vapor and energy for their intensification. A larger ratio of the enthalpy flux exchange coefficient ([image: image]) to the drag coefficient ([image: image]) promotes a larger MPI (Emanuel, 1995; Emanuel, 1995). Since the magnitude of latent heat flux is much larger than that of sensible heat flux (Xu and Wang, 2010; Ma et al., 2012), [image: image]/ [image: image] can well represent [image: image]/ [image: image]. Therefore, this study will analyze the data using [image: image], [image: image], and their ratio [image: image]/ [image: image] .
Figure 10A, B present the time series of the average drag coefficient ([image: image]) and moisture exchange coefficient ([image: image]) in the inner core region of each experiment, respectively. Both [image: image] and [image: image] are influenced by the surface wind speed and thus exhibit similar temporal variations during the simulation period, with [image: image] smaller than [image: image]. When horizontal resolution is 6 km, the changes in [image: image] and [image: image] for L50_6 and H50_6 compared to C40_6 are relatively small. The primary differences emerge in the middle layer VGR improvement experiments, where [image: image] and [image: image] for M50_6 are significantly smaller than those of the other experiments from the 40th to 80th hour of the simulation period. When the horizontal resolution is increased to 3km, [image: image] and [image: image] for all experiments decrease significantly compared to the 6 km group, while the differences among experiments with different upper layer VGR improvement are relatively minor. Overall, [image: image] tends to increase with intensity, consistent with the findings of Montgomery et al. (2010). A larger [image: image] tends to amplify low-level friction, increasing low-level inflow, which may be one of the reasons why low-level inflow in the 6 km group is generally larger than in the 3 km group (Figure 4). The temporal variation of [image: image]/ [image: image] (Figure 10C) is similar to that of the MSLP. As the typhoon intensifies, [image: image]/ [image: image] decreases, consistent with the result of Emanuel (1995). At a 6 km horizontal resolution, during the period from hour 40 to 80, the M50_6 experiment shows relatively high values, while the differences between the other experiments are small. When the horizontal resolution is increased to 3 km, the differences in [image: image]/ [image: image] between experiments become minimal. However, from the 20th hour of simulation, the 3 km group generally exhibits higher [image: image]/ [image: image] values than the 6 km group. During the intensification phase, the 3 km group has larger [image: image]/ [image: image] values, which would favor the typhoon intensification, leading to a stronger maximum intensity.
[image: Figure 10]FIGURE 10 | Temporal variation of (A) drag coefficient ([image: image]), (B) moisture surface exchange coefficient ([image: image]), (C) [image: image]/ [image: image] ratio, and (D) latent heat averaged within the typhoon core for each experiments (the dashed vertical line represents the simulation at the 60th hour).
Regarding latent heat flux (Figure 10D), at a 6 km horizontal resolution, the differences among most experiments are minimal during various periods. However, around the 60th hour (the peak intensity of the typhoon), M50_6 shows slightly lower values compared to other experiments. When the horizontal resolution is increased to 3 km, the differences among all experiments become less apparent. Increasing horizontal resolution is effective in enhancing latent heat flux in the early stages of the simulation (approximately before the 30th hour). However, in the middle and later stages, the 3 km group generally exhibits lower latent heat flux than the 6 km group.
Figure 11 further illustrates the distribution of latent heat flux in the core region of the typhoon at the moment of maximum intensity. The regions with high latent heat flux values (greater than 600 W/m2) in each experiments show a good correspondence with the inflow region in Figure 4. At a 6 km horizontal resolution, all experiments exhibit high-value regions near the eyewall of the typhoon. Additionally, in the control experiment C40_6, the high-value regions are mainly concentrated in the front and right front of the typhoon movement. With increased VGR, high-value regions also appear in the left rear, reflecting a higher level of symmetry in the distribution of latent heat flux. Specifically, in L50_6 and H50_6, the latent heat flux significantly strengthens, both in terms of the range and intensity of the high-value regions. In the M50_6 experiment, the high-value regions in the front and left front narrowed, and the overall intensity of the latent heat flux decreases. When the horizontal resolution is increased to 3 km, the high-value region in the front of the typhoon significantly weakens or disappears. Apart from the eyewall, the high-value regions are mainly concentrated in the left rear, increasing the asymmetry in the distribution of latent heat. Moreover, in the 3 km experimental group, the differences in latent heat flux among the three VGR enhancement schemes (lower, meddle, and upper layer) are not significant. Therefore, at a 3 km horizontal resolution, the distribution of latent heat flux is not highly sensitive to the VGR settings in the model.
[image: Figure 11]FIGURE 11 | Horizontal distribution of latent heat flux for each experiment at 12:00 on 8 August 2019 [red arrow represents the direction of typhoon movement, and (A–H) represent individual experiments, respectively. See Figure 1B for specific meanings].
The above analysis indicates that latent heat flux is sensitive to the setting of VGR. Increasing VGR at both the lower and upper layer can enhance the latent heat transport and make its distribution more symmetric in simulated typhoons, while increasing VGR at the middle layer has the opposite effect. The boundary layer processes that affect latent heat flux, such as inflow, outflow, and convective triggering, are highly sensitive to the setting of VGR (Zhang and Wang, 2003). The increased drag coefficient resulting from the refinement at the lower and upper layer enhances bottom friction, which may contribute to the increased latent heat flux and more symmetric distribution (Ma et al., 2012). On the other hand, increasing VGR at the middle layer suppresses convective activity, leading to a reduction in latent heat transport.
5.3 Pseudo-equivalent potential temperature
The descent and warming of high-entropy air in the upper levels have a significant impact on enhancing and sustaining the warm core of a typhoon (Willoughby, 1998), The pseudo-equivalent potential temperature ([image: image]) is conserved in adiabatic processes and can be used to analyze the motion of upper-level air. Figure 12 presents the azimuthally averaged pseudo-equivalent potential temperature radius-height profiles for each experiments at the time of maximum Lekima intensity (12:00 on 8 August 2019).
[image: Figure 12]FIGURE 12 | Height-radius cross-sections of azimuthally-averaged pseudo-equivalent potential temperature for each experiment at 12:00 on 8 August 2019 [(A–H) represent individual experiments, respectively. See Figure 1B for specific meanings].
In previous studies on the thermal and dynamic structure of typhoons, researchers have noted that in the eye region of a typhoon, the lower levels are characterized by moist air, the middle levels exhibit an inversion layer, and the upper levels contain dry and warm high-entropy air (Gierens et al., 1999; Braun, 2002; Xu and Wang, 2010; Durden, 2013). Within the eye region of a typhoon, there is intense subsidence, and this descending high-entropy air heats the warm core of the typhoon, leading to a decrease in central atmospheric pressure (Willoughby, 1998). Figure 12 illustrates that the simulated thermal and dynamic structure of the typhoon cores in all experiments is consistent with previous research. High-entropy air with [image: image] greater than 374 K is primarily distributed in the upper atmosphere and the near-surface layer below 850 hPa within the eye region. The middle layer of the eye region and outside the eyewall contains moist low-entropy air. Air masses converging at lower levels move into the typhoon eyewall, where, under thermal and dynamic forcing, they undergo strong upward motion, leading to a reduced vertical gradient of [image: image] in this region. These air masses then diverge and flow out near the top of the typhoon, while simultaneously, higher-level air descends within the eye region, replenishing the typhoon eye.
In the vicinity of the eyewall in L50_6, the 374 K [image: image] isopleths penetrate both upper and lower layers. This creates favorable conditions for the subsidence of high-level air, thereby enhancing the subsidence warming effect and consequently increasing the intensity of the warm core. In the M50_6 experiment, the 374 K [image: image] isopleths stabilize near 200 hPa, which is less conducive to the subsidence of high-level air, resulting in a relatively weaker subsidence warming effect. In H50_6, the 374 K [image: image] isopleths in the high-altitude region within the eye (radius within 50 km) are generally maintained above 300 hPa, but the subsidence height of high-level air within the eye is somewhat lower. When the horizontal resolution is increased to 3 km, the [image: image] structure in L50_3 changes insignificantly compared to C40_3. In M50_3, the 374 K [image: image] isopleths in the high altitude region are similar to those in M50_6, stabilizing near 200 hPa, which is unfavorable for the subsidence of high-level air. In H50_3, the 374 K [image: image] isopleths in the high-altitude region within the eye extend downward, enhancing subsidence and thereby strengthening the warm core, with the warm core height slightly lower compared to H50_6.
The sensitivity of the warm core intensity to VGR settings is higher. Increasing lower layer VGR enhances the warm core intensity and reduces asymmetry, while middle layer VGR enhancement has the opposite effect. The effect of enhancing upper layer VGR on warm core intensity depends on the horizontal resolution. At a horizontal resolution of 6km, upper layer VGR enhancement leads to a decrease in warm core intensity. However, as the horizontal resolution increases, the warm core intensity also increases. The enhancement of the warm core by lower and upper layer VGR seems to be aided by a lower asymmetry in latent heat flux distribution and the heating effect of sinking air at higher levels. After middle layer VGR enhancement, the decreased latent heat flux and internal circulation that hinders sinking air at higher levels limit the development of the warm core.
This study explores the impact of VGR settings at different heights on typhoon simulations from the perspective of thermodynamic structure. Compared to previous studies (Ma et al., 2012; Zhang et al., 2015), the finest 3 km experimental group obtained a more detailed and reliable typhoon structure. Furthermore, this study complements previous research on the impact of upper layer VGR enhancement on typhoon simulations. In fact, when the horizontal resolution is sufficiently high, increasing the same number of vertical layers at either the lower or upper levels has a similar enhancing effect on typhoon simulation intensity.
6 CONCLUSION
This study utilizes the WRF numerical model at horizontal resolutions of 6 km and 3 km to compare the differences in the simulated three-dimensional thermal and dynamic structures of typhoons resulting from three VGR enhancement schemes at low, middle, and upper layer. The relationship between structural changes and typhoon intensity is explored, yielding the following main conclusions:
Track and Intensity Simulation: The experimental results obtained from different enhancement schemes show little difference, indicating that the track simulation of Lekima is not sensitive to the vertical resolution settings. For intensity simulation, the control experiment exhibits an overall weaker simulation of typhoon intensity during its developmental phase. Increasing the VGR at lower layer enhances simulated typhoon intensity, resulting in improved performance. However, intensity decreases when enhancing resolution at middle layer, increasing simulation biases. Upper layer enhancement results are significantly influenced by horizontal resolution; at 6 km, there’s insignificant improvement in simulated typhoon intensity, while at 3 km, the intensity simulation is effectively improved.
Dynamic Structure Simulation: Changes in VGR significantly affect the wind fields and stability in the inflow and outflow layers, and eyewall morphology. Specifically, increasing the vertical resolution of the lower layer would decrease the static stability of the lower layer and enhance the activities of typhoon inflow layer, which would promote the convection activities of typhoon. The asymmetry of convection would decrease accordingly, and the simulated typhoon intensity would be stronger, and the slope of typhoon eye wall would be greater. Enhancing resolution at middle layer increases outflow, strengthens asymmetry in convective activity, reduces simulated typhoon intensity, and results in a looser and less steep eyewall. Higher VGR at upper layer reduces stability, enhances outflow layer vertical motion, but increases asymmetry in convective activity, resulting in a decrease in simulated typhoon intensity. However, coupled with increased horizontal resolution, the simulated intensity is strengthened, with a steeper typhoon eyewall.
Thermal Structure Simulation: Changes in VGR affect low-level surface fluxes and upper-level high-entropy air, influencing the simulated structure and intensity of the typhoon’s warm core, and subsequently affecting the simulated typhoon intensity. Lower layer VGR enhancement experiments exhibit a more uniform distribution of surface latent heat flux, coupled with strong descent of high-entropy air, resulting in the strongest and most symmetrical warm core. Middle layer enhancement experiments show slightly lower latent heat flux intensity and significant asymmetry in distribution, yielding the weakest warm core and typhoon intensity. Upper layer enhancement reduces stability in the outflow layer, intensifies descent of high-entropy air in the typhoon eye region, and effectively enhances the warm core. Coupled with increased horizontal resolution, this effect is further strengthened, resulting in a stronger and more symmetrical typhoon warm core, and consequently, an improved simulation of typhoon intensity.
In summary, resolution settings play a crucial role in fine-scale typhoon simulations, directly impacting the simulated intensity. Using Typhoon Lekima as an example, increasing VGR at lower layer significantly improves the simulation, while the improvement is less pronounced when enhancing resolution at middle layer. Increasing resolution at upper layer requires concurrent enhancement of horizontal resolution for better typhoon simulation results. The suggested VGR settings provided in this study are specific to the uncoupled WRF model and apply solely to the Lekima typhoon case. Further experiments are required to validate the applicability of these settings to other typhoon cases and coupled models such as HWRF and COAWST, ensuring more reliable conclusions.
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In August 2019 Hurricane Dorian traveled through the Caribbean Sea and Tropical Atlantic before devastating the Bahamas. The operational hurricane forecasting models under-predicted the intensity evolution of Dorian prior to the storm reaching its maximum strength. Research studies have shown that a more realistic upper-ocean characterization in coupled atmosphere-ocean models used to forecast hurricanes has the potential to lead to more accurate hurricane intensity forecasts. In this work, we evaluated four ocean products: the ocean component from one NOAA operational hurricane forecasting model that used ocean initial conditions from climatology, the ocean components from two NOAA experimental models using ocean initial conditions from a data-assimilative operational ocean model, and one US Navy data-assimilative operational ocean model for reference. The upper-ocean metrics used to evaluate the models include mixed layer temperature, mixed layer salinity, ocean heat content and depth-averaged temperature in the top 100 m. The observations used are temperature and salinity profiles from an array of six autonomous underwater gliders deployed in the Caribbean region during the 2019 hurricane season. We found that, even though the four models have good skill in predicting temperature and salinity over the whole observed water column, skill significantly deteriorates for the upper-ocean metrics. In particular, the models failed to capture the barrier layer that was present during the passage of Hurricane Dorian through the glider array. We also found that even small differences in the mixed layer temperature along the storm track on the hurricane models evaluated, led to noticeable differences in the total enthalpy fluxes delivered from the ocean to the atmosphere throughout the storm’s synoptic history. These findings highlight the need to improve the upper-ocean initial conditions and representation in coupled atmosphere-ocean models as part of the larger efforts to improve the various modeling aspects that control the hurricane intensity forecast.
Keywords: Hurricane Dorian 2019, gliders, forecast models, upper-ocean metrics, HWRF
1 INTRODUCTION
In the last three decades there has been a 50%–70% reduction in the forecast error of the storm track in operational Atlantic hurricane models (https://www.nhc.noaa.gov/verification/verify5.shtml). On the other hand, the error reduction in the intensity forecast has been marginal, particularly for short (24–48 h) lead forecast times (https://www.nhc.noaa.gov/verification/verify5.shtml). There are several reasons why tropical cyclone intensity forecasting has remained a challenge. This includes inaccuracies in ocean initial conditions and the difficulty of correctly representing the upper-ocean mass properties and processes that feedback into the hurricane through air-sea heat and momentum fluxes in coupled atmosphere-ocean models (Chen et al., 2007; Zhang et al., 2008; Halliwell et al., 2011; Jaimes et al., 2011).
The classical theory of tropical cyclones establishes that the intensity of a storm, measured as the minimum central surface pressure, is the result of the balance between the air-sea enthalpy fluxes, energy loss due to frictional dissipation, and heat loss to the surroundings (Emanuel, 1986). It is then clear that both the atmospheric conditions as well as the oceanic conditions are important in the genesis, development, and intensity changes of tropical cyclones. In particular, it has been shown that the upper-ocean thermal (Emanuel, 1999; Shay et al., 2000) and salinity structures (Balaguru et al., 2012, 2020; Domingues et al., 2015; Dong et al., 2017) play a key role in the intensification of tropical cyclones. For example, it has been reported that a number of tropical cyclones intensify when they travel over warm ocean features (Leipper and Volgenau, 1972; Shay et al., 2000; Lin et al., 2009; Le Hénaff et al., 2021) or over low salinity barrier layers (Domingues et al., 2015), and that a reduced sea surface temperature cooling of the ocean area under the storm inner-core is linked to storm intensification (Cione and Uhlhorn, 2003).
Since 2011 the National Oceanic and Atmospheric Administration, with the participation of other government, academic, and private industry partners, is leading efforts to conduct ocean observations from an array of underwater gliders in support of hurricane research and forecast, in areas of the North Atlantic Ocean, tropical Atlantic Ocean, the Gulf of Mexico, and the Caribbean Sea, where tropical storms form and evolve (e.g., Glenn et al., 2016; Miles et al., 2017, 2021; Domingues et al., 2019). These efforts are complemented by the already in place components of the sustained ocean observing system and of targeted observations dedicated specifically to tropical cyclone research. The use of data from these sustained and targeted observations has been shown to reduce the error in intensity forecasts within various experimental and operational schemes and models (Mainelli et al., 2008; Dong et al., 2017; LeHenaff et al., 2021).
On 19 August 2019, Hurricane Dorian developed from a tropical wave off the west coast of Africa and moved through the Caribbean Sea gaining strength. On 28th August, it transitioned from a tropical storm to a category 1 hurricane. Around this date, the path of Dorian moved through a glider array (Figure 1) operated by the NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML) and the Caribbean Regional Association of the integrated Ocean Observing System (CARICOOS), in the Caribbean Sea off Puerto Rico and the U.S. Virgin Islands. After traveling through this glider array, Dorian continued moving northwestward and made landfall in Great Abaco Island (Bahamas) on September 1st as a category 5 hurricane, becoming the strongest hurricane on record to make landfall in the Bahamas. None of the operational hurricane forecast models captured the correct intensity evolution during the 5 days prior to Dorian reaching its maximum strength (Avila et al., 2020).
[image: Figure 1]FIGURE 1 | (A) North Atlantic map showing the path of hurricane Dorian (red dots) and the glider trajectories between 20 August and 7 September 2019 (orange lines). (B) Zoom in on the black rectangle in (A) showing the path and category (circles) of Hurricane Dorian and the glider trajectories.
The goal of this manuscript is to present an assessment of how different initialization strategies used in coupled atmosphere-ocean hurricane models affected the representation of upper-ocean thermal fields that are key for air-sea heat fluxes during Hurricane Dorian. In order to accomplish this, we evaluated the upper-ocean thermal structure simulated by three NOAA coupled atmosphere-ocean hurricane models during the approach of Dorian to the Bahamas. The data set used here contains 587 temperature and salinity profiles from the array of underwater gliders present south of Puerto Rico from August 28 00 UTC to September 02 06 UTC, 2019. We also evaluated the data-assimilative Navy operational Global Ocean Forecasting System (GOFS 3.1) in order to provide a baseline for the skill of several ocean metrics from a data-assimilative model as compared to the free-running ocean component of the hurricane forecasting models.
As part of the work, we assessed four upper-ocean metrics that have been previously identified as being linked to the intensification of tropical storms. The first two metrics are the mean temperature and mean salinity within the surface mixed layer. The surface mixed layer is the surface portion of the water column where turbulent processes, such as wind-driven mixing, make water density nearly uniform (de Ruijter, 1983). The disequilibrium between the air surface temperature and the sea surface temperature, estimated here as the mixed layer temperature, controls the magnitude and direction of the air-sea sensible and latent heat fluxes (Malkus and Riehl, 1960; Emanuel, 1986). The mixed layer salinity is important since a low salinity mixed layer is often associated with the presence of salinity-induced barrier layers. Barrier layers form when a surface layer of fresh water dominates the upper layer density structure over temperature changes, so that the depth of the isothermal layer (the layer of quasi-constant temperature at the ocean surface) and the depth of the mixed layer (the layer of quasi-constant density at the ocean surface) differ. Barrier layers are often observed in the eastern Caribbean Sea, portions of the Tropical Atlantic, and in the northern Gulf of Mexico. The surface layer of low salinity waters in the Caribbean Sea and adjacent portions of the Tropical Atlantic is the result of the spreading of the Amazon and/or Orinoco river plumes (Hu et al., 2004). Data retrieved from the Optimally Interpolated Sea Surface Salinity Global Dataset V2 (https://podaac.jpl.nasa.gov/dataset/OISSS_L4_multimission_7day_v2) shows that during the passage of Hurricane Dorian through the Caribbean, the influence of the Amazon/Orinoco river plumes extended north, affecting the sea surface salinity south and north of Puerto Rico, with average salinity values of 34.5 and 35.5, respectively. Similarly, barrier layers in the northern Gulf of Mexico are created by the outflow of fresh waters from the Mississippi river. There is evidence that when storms travel over barrier layers, these layers can promote the intensification of tropical cyclones by enhancing the vertical stability of the water column and, therefore, reducing the storm-induced vertical mixing (Balaguru et al., 2012, 2020; Domingues et al., 2015; Rudzin et al., 2019). The third metric analyzed in this work is the ocean heat content (OHC), defined as the excess of heat in the surface ocean above the 26 degrees isotherm (Whitaker, 1967; Leipper and Volgenau, 1972). The OHC or Tropical Cyclone Heat Potential (TCHP) is a metric that has been shown to be correlated with the intensification of major hurricanes in the Atlantic Ocean (Mainelli et al., 2008). The fourth metric is the depth-averaged temperature in the top 100 m (T100). T100 was proposed as a metric that quantifies the resulting sea surface temperature after the passage of a hurricane that fully mixes the top 100 m, accounting for the effect of cold subsurface water and the strength of vertical mixing on storm weakening (Price, 2009).
This manuscript is organized as follows. The glider observations and the hurricane forecasting models used here are described in Section 2. The results of the model evaluation are reported in Section 3. The implications and conclusions of our results for coupled atmosphere-ocean models are presented in Section 4.
2 METHODS
2.1 Observational data sources
A fleet of 54 underwater gliders was deployed in the Caribbean Sea and tropical Atlantic, Gulf of Mexico, the South and Mid-Atlantic Bight during the 2019 hurricane season as part of a U.S. government, academic, and private industry wide effort to carry out ocean observations in support of Atlantic hurricane research and forecasts (Miles et al., 2021). Underwater gliders are autonomous vehicles that use variable buoyancy to travel in a sawtooth-like profile and are equipped to collect a variety of ocean variables. This effort complemented other observations carried out by profiling floats, surface drifters, eXpendable BathyThermographs (XBTs), moorings, and other observational platforms. During the passage of Hurricane Dorian through the Caribbean region, six gliders operated by the NOAA/AOML and the CARIbbean Coastal Ocean Observing System (CARICOOS), collected temperature and salinity profiles along fixed predetermined transects to 500 m depth with an approximate repeat interval of 2 h (Figure 1). The data from these six gliders are used in this study as the main observational asset to evaluate the coupled models outputs.
2.2 Numerical data sources
We first evaluated the US Navy Global Ocean Forecasting System (GOFS 3.1) (Metzger et al., 2017). GOFS 3.1 is based on the HYbrid Coordinate Ocean Mode (HYCOM) coupled with the Los Alamos Sea Ice Code (CICEv4) with a 3-dimensional variational (3DVar) data assimilation algorithm implemented in the Navy Coupled Ocean Data Assimilation (NCODA). GOFS3.1 has 41 hybrid vertical layers and a horizontal resolution of 0.08 of a degree in latitude and longitude between 40 degrees South and 40 degrees North. Poleward of 40 degrees North/South, the grid has a resolution of 0.08 degrees in longitude and 0.04 in latitude. It is forced by the US Navy Global Environmental Model (NAVGEM; Hogan et al., 2014). NCODA assimilates satellite altimeter data, satellite and in situ sea surface temperature, in situ vertical temperature and salinity from Argo floats, buoys, gliders, and XBTs (temperature only). Details about the GOFS 3.1/NCODA system can be found in the GOFS 3.1 validation test report (Metzger et al., 2017). The hindcast output for GOFS 3.1 used here can be accessed at https://tds.hycom.org/thredds/dodsC/GLBv0.08/expt93.0/ts3z.html.
In addition, three coupled atmosphere-ocean hurricane forecast models were evaluated in this work:
(1) The Hurricane Weather and Forecasting model (HWRF) coupled to the Message Passing Interface Princeton Ocean Model—Tropical Cyclone (MPIPOM-TC), which was until 2022 one of the operational hurricane forecasting systems ran by NOAA National Centers for Environmental Prediction (NCEP) (Biswas et al., 2018). Hereafter, we will call this coupled system HWRF2019-POM. The MPIPOM-TC of HWRF2019-POM was initialized from the Generalized Digital Environmental Model (GDEM) monthly ocean temperature and salinity climatology (Carnes, 2009; Teague et al., 1990) and a feature-based modeling procedure (Yablonski and Ginis, 2008), to sharpen thermal fronts using information of remote sensed sea surface temperature and the Naval Oceanographic Office (NAVO) frontal analysis (Rhodes et al., 2001). The atmospheric component of HWRF2019-POM used initial and boundary conditions from the Global Forecasting System (GFS) v15.1 (GDAS/GFS v15.0.0, 2018). For this configuration, MPIPOM-TC contains 40 terrain-following vertical levels, with a vertical resolution that ranges between 2 and 20 m in the top 100 m of the water column. For the North Atlantic domain, the grid extends from 7.5 to 45.0 degrees North and from −98.5 to −15.3 degrees West, with a uniform horizontal resolution of 9.2 km in latitude and 10.5 in longitude. The vertical mixing parameterization used in the upper ocean mixed layer is Mellor-Yamada 2.5 turbulence closure model (Mellor and Yamada, 1982).
(2) An experimental coupled model, HWRF2020-POM, with the same ocean component, vertical and horizontal resolution, and model physics as HWRF2019-POM but initialized from the HYCOM-based NOAA’s Real Time Ocean Forecasting System (RTOFS) (Garraffo et al., 2020). During the 2019 hurricane season, RTOFS was initialized daily from GOFS 3.1. But since December 2020, it has used its own flow-dependent 3DVar data-assimilative system with quality control, variational analysis and diagnostics. This system was originally based on the Navy Coupled Data Assimilation System (Cummings and Smedstad, 2013), and includes assimilation of ADT SSH, satellite SST, satellite SSS, satellite ice coverage, in situ SST, SSS, and profiles.
(3) An experimental system, HWRF coupled to HYCOM, HWRF2020-HYCOM, was also initialized from RTOFS (Kim et al., 2014, 2022). The difference from HWRF2020-POM is the model configuration, subgrid mixing physics and a set of feedback forcing variables (Biswas et al., 2018). HYCOM uses the same model configuration as the global RTOFS. In the open ocean, the vertical coordinate is isopycnal and transitions to z-levels in the weakly stratified upper-ocean mixed layer. In shallow waters, the vertical coordinate is terrain-following sigma and transitions to z-levels in the upper mixed layer. In the configuration used, HYCOM has 41 hybrid vertical layers, with a vertical resolution ranging between 2 and 20 m in the top 100 m of the water column. For the North Atlantic domain, the grid extends from 1 to 45.7 degrees North and from −98.2 to −7.5 degrees West. The horizontal resolution is of approximately 9 km in longitude and ranges from 8.7 km to 6.1 km in latitude. HYCOM supports several vertical mixing schemes. This configuration used the K profile parameterization (KPP) (Large et al., 1994).
The models used in this analysis are summarized in Table 1.
2.3 Upper-ocean metrics
In this study we considered four upper-ocean metrics: mixed layer temperature, mixed layer salinity, ocean heat content, and average temperature in the upper 100 m.
TABLE 1 | Summary of numerical models.
[image: Table 1]The mixed layer depth (MLD) was estimated as the surface portion of the water column within which changes of hydrographic characteristics are smaller than a threshold value. We used two definitions of the MLD, one based on a temperature criteria with the threshold value of 0.2°C (Eq. 1), and the other based on a density criteria with a threshold value 0.125 kg m−3 (Eq. 2) (de Boyer Montégut et al., 2004).
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Where T10 and ρ10 are the water temperature and density at 10 m depth, respectively. The choice of 10 m as a reference depth does not affect the estimates of the mixed layer depth because this depth is always within the low salinity layer that is often found at the ocean surface in the study area. In general, there is no guarantee that the temperature and density criteria cannot be satisfied for depths deeper than the MLD. However, in our study area of the 587 density profiles analyzed, the density criteria was never satisfied below the MLD, implying that density was monotonically increasing with depth. The average temperature and salinity within the mixed layer are calculated as the average temperature and salinity of the portion of the vertical profile that is within the mixed layer.
The Ocean Heat Content (OHC) is defined as the depth-integrated excess above 26°C between the sea surface and the depth of the 26°C isotherm (Z26) (Whitaker, 1967; Leipper and Volgenau, 1972):
[image: image]
Where Cp is the heat capacity of sea water, ρ0 is the mean density of the water column down to Z26, and T(z) is temperature at different depths in degrees Celsius.
The depth-averaged temperature in the top 100 m (T100) is a metric that estimates the potential resulting SST after the passage of a hurricane due to vertical mixing processes. A depth of 100 m is chosen as a typical depth of complete vertical mixing under a category 3 hurricane (Price, 2009; Domingues et al., 2015). This metric is particularly informative in waters where the OHC cannot be estimated, i.e., for temperatures lower than 26°C, but still provides information on the subsurface temperature structure. However, in regions where salinity significantly contributes to the vertical stratification of the upper water column, e.g., regions with barrier layers, T100 may not be a good approximation for the resulting SST due to the storm-induced vertical mixing. In this case, a more general metric should be used where the depth over which the temperature is averaged, depends on the assumption that the bulk Richardson number of the surface mixed layer is less than 0.6 (Price, 2009).
2.4 Taylor diagrams and bias
In order to quantify the skill of the four models in reproducing the upper-ocean thermal structure, we estimated the normalized standard deviation and correlation between the observational and the model data. We used all the available temperature and salinity profiles from the six gliders located north and south of Puerto Rico when Hurricane Dorian was transiting through that region, from 28 August to 2 September 2019 (Figure 1). In order to conduct these comparisons, we found the corresponding grid points and timestamps in the different models for the observed temperature and salinity profiles, by linearly interpolating in space and time the measurement locations and times onto the model’s grids and times. For the hurricane forecasting models, we used the forecasting cycle 2019082800 that started at 00 UTC on 28 August, and included the time when Hurricane Dorian transitioned from a Tropical Storm to a Category 1 hurricane as it was passing through the glider array. We want to point out that, because of a 2-day latency between the last data assimilation and the state estimate in the RTOFS system used in 2019, the ocean estimates from RTOFS, which are used in the HWRF2020-POM and the HWRF2020-HYCOM products, do not include observations past August 26 00 UTC in the considered cycle. This means that the coupled models were not fed with recent observations at the time of the passage of the hurricane. For GOFS 3.1, we used the aggregated analysis time series, which includes data assimilation throughout the study period.
The normalized standard deviation and correlation for all the different metrics can be visualized together by constructing a Taylor diagram (Taylor, 2001), giving us a compact way to assess the skill of each coupled atmosphere-ocean hurricane forecast model. The bias and the bias percentage are:
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Where Xobs is the observed mean value of a specific metric and Xmodel is the mean value of the same metric obtained from the outputs of the various models.
2.5 Cross track radius and sea surface heat loss per unit area
The cross track radius (r) of a geographical point at a specific time is defined as the distance from the center of the storm to that specific point. The normalized cross track radius is defined as the cross track radius divided by the radius of maximum winds (Rmax).
The sea surface heat loss per unit area (SSHL), is defined as the enthalpy flux, i.e., the sum of the sensible and latent heat flux, integrated over time (Shay and Uhlhorn, 2008; Jaimes et al., 2015), Eq. 6,
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where Q represents the enthalpy flux and dt is the time interval that the storm travels along the storm path. Since we are using the HWRF output to estimate SSHL, dt is equal to 3 h, which is the time interval between consecutive model outputs.
3 RESULTS
3.1 Model evaluation
The temperature transects from the glider observations show that the surface temperatures in the tropical Atlantic Ocean just north of Puerto Rico at the end of August were close to 30°C and that the Z26 was approximately at 100 m depth (Figure 2A). A qualitative comparison of the temperature field between the glider transect SG665, GOFS 3.1, and the three coupled hurricane forecast models (forecast cycle 2019082800) from 28 August to 2 September 2019, shows that Z26 is approximately 100 m in the observations, and around 10 m shallower for all the models (Figures 2B–E).
[image: Figure 2]FIGURE 2 | (A) Temperature transect for glider SG665 from 29 August to 2 September. (B–E) The same along-track transect as for SG665 but interpolated onto the respective model grid and timestamp. The cyan and green lines show the mixed layer depths based on the temperature criteria (Eq. 1, “MLD dT” in the legend) and the density criteria (Eq. 2, “MLD drho” in the legend), respectively. The black contour in figures (A–E) shows the 26°C isotherm. The dashed vertical line in all figures shows the time when Hurricane Dorian was the closest to glider SG665. For this figure we used the forecast cycle 2019082800 for the hurricane forecasting models and the aggregated analysis time series for GOFS 3.1.
The glider observations also show that the MLD based on the temperature criteria (Eq. 1) is about 25 m deeper than the MLD based on the density criteria (Eq. 2) (Figures 2–4). Overall, all four models exhibit the same pattern of a deeper MLD based on the temperature criteria, although the MLDs differ from the value obtained from the observations, and among the models. For example, the mean value from 28 August to 2 September 2019 of the MLD based on the density criteria is: 20.5 m for the glider observations, 19.3 m for GOFS 3.1, 18.4 m for HWRF2019-POM, 24.4 m for HWRF2020-POM, and 27.9 m for HWRF2020-HYCOM. Therefore, the current operational models appear limited in their capacity to represent and, consequently, predict the mixed layer thickness and its evolution.
[image: Figure 3]FIGURE 3 | (A) Salinity transect for glider SG665 from August 29 to September 2. (B–E) The same along-track transect as for SG665 but interpolated onto the respective model grid and timestamp. The blue and green lines show the mixed layer depths based on the temperature criteria (Eq. 1, “MLD dT” in the legend) and the density criteria (Eq. 2, “MLD drho” in the legend). The dashed vertical line in all figures shows the time when Hurricane Dorian was the closest to glider SG665. For this figure we used the forecast cycle 2019082800 for the hurricane forecasting models and the aggregated analysis time series for GOFS 3.1.
[image: Figure 4]FIGURE 4 | Vertical profiles of (A) temperature, and (B) salinity, for glider SG665 (blue), GOFS 3.1 (red), HWRF2019-POM (IC clim.) (purple), HWRF2020-POM (IC RTOFS) (green) and HWRF2020-HYCOM (IC RTOFS) (orange) at the time when Hurricane Dorian was the closest to glider SG665. For this figure we used the forecast cycle 2019082800 for the hurricane forecasting models and the aggregated analysis time series for GOFS 3.1. The dashed lines show the mixed layer depth based on (A) the temperature criteria and on (B) the density criteria, in both for glider SG665.
The difference in the MLD estimates using the two different criteria is caused by the presence of barrier layers. During the passage of Hurricane Dorian close to the glider array, there was a barrier layer north of Puerto Rico, with surface salinity values of 35.5, consistent with the data retrieved from the Optimally Interpolated Sea Surface Salinity Global Dataset V2, as it is shown in the salinity transect from glider SG665 (Figure 3A) and salinity vertical profile (Figure 4B). As a consequence, salinity rather than temperature controlled the vertical stratification at the surface in that portion of the Tropical Atlantic. For this reason, we will use the estimate of the surface mixed layer depth based on the density criteria from now on in our analysis.
Despite the general agreement in the Z26, there are differences of about 0.9°C to 0.1°C between the observed and the model-derived mixed layer temperature (MLT) (Figure 5A). HWRF2019-POM, initialized from climatology, is ∼1°C colder than observations. HWRF2020-POM and HWRF 2020- HYCOM, both initialized from RTOFS, have a similar temperature of 29.3°C as the observations during the first 24 h, but beyond this point the mixed layer temperature gets progressively colder. GOFS 3.1, the data assimilative model, starts colder than the glider temperature but it approaches the observed temperature values at 12Z on August 30.
[image: Figure 5]FIGURE 5 | Time series of (A) mixed layer temperature (MLT), (B) mixed layer salinity, (C) ocean heat content (OHC) and (D) depth-averaged temperature in the top 100 m (T100) for glider SG665 (blue), GOFS 3.1 (red), HWRF2019-POM (IC clim.) (purple), HWRF2020-POM (IC RTOFS) (green) and HWRF2020-HYCOM (IC RTOFS) (orange). The dashed vertical line in all figures shows the time when Hurricane Dorian was the closest to glider SG665. For this figure we used the forecast cycle 2019082800 for the hurricane forecasting models and the aggregated analysis time series for GOFS 3.1.
The time series of the mixed layer salinity (Figure 5B) shows that around the time of the passage of Hurricane Dorian through the glider array, none of the models captured the lower salinity that characterized the surface layer at that time. Additionally, the vertical structure of salinity in the different models has a surface layer of low salinity that is deeper and less sharp than the observations reveal. The first key result shown here is that the models failed to capture the upper-ocean salinity values and the vertical structure of the associated barrier layer during this period (Figures 3B–E, 4B, 5B).
Before the passage of Dorian, the OHC observed by the glider SG665 (located north of Puerto Rico) is ∼85 kJ cm−2, well above 60 kJ cm−2 (Figure 5C), which is a statistically-determined threshold shown to favor storm intensification in the Atlantic (Mainelli et al., 2008). The OHC in HWRF2019-POM during that same time-frame is ∼60 kJ cm−2, which is well below the observed value. The other models exhibit an OHC closer to the measured OHC, although HWRF2020-HYCOM is consistently lower than the glider estimate. In agreement with the results for the OHC, T100 from HWRF2019-POM is the lowest of all the models, while GOFS3.1 exhibits values between 27.8°C and 28.1°C, being closer to the observations (Figure 5D).
We obtained the skill of the models by obtaining the normalized Taylor diagram and calculating the bias between the glider observations and the different models. The normalized Taylor diagram shows that all the models have a good skill in the temperature (Temp) and salinity (Salt) averaged over the entire observed water column, i.e., down to 500 m (Figure 6A). However, the models’ skill substantially decreases for the upper-ocean metrics. A second key result is that the four metrics relevant for the air-sea heat fluxes: mixed layer temperature (MLT), mixed layer salinity (MLS), ocean heat content (OHC) and depth average temperature in the top 100 m (T100), are not well represented in the different models. In particular, HWRF2019-POM, initialized from climatology has the lowest skill for the upper-ocean metrics (Figure 6B), while HWRF2020-HYCOM, initialized from RTOFS, and GOFS 3.1, the data assimilative model, have the highest skill for the same metrics.
[image: Figure 6]FIGURE 6 | Normalized Taylor diagram showing the skill of the four models evaluated: GOFS 3.1, HWRF2019-POM (IC clim.), HWRF2020-POM (IC RTOFS) and HWRF2020-HYCOM (IC RTOFS). In (A) the skill is grouped by different quantities, namely, temperature (Temp) and salinity (Salt) over the full depth covered by the glider profiles, mixed layer temperature (MLT) and mixed layer salinity (MLS) using the density criteria (Eq. 2), ocean heat content (OHC) (Eq. 3) and depth average temperature in the top 100 m (T100). In (B) the skills for the three thermal upper-ocean metrics, i.e., MLT, OHC, and T100, are grouped according to the different models. For this figure we used the forecast cycle 2019082800 for the hurricane forecasting models and the aggregated analysis time series for GOFS 3.1 from 28 August to 2 September 2019.
The bias (Table 2) for the MLT shows that all the models are colder than observations within the ocean surface mixed layer, with HWRF2019-POM initialized from climatology being the coldest. We see a similar pattern for the OHC. HWRF2019-POM presents a 22% (−18.8 kJ cm−2) deficit in OHC with respect to the observations, while data assimilative model GOFS 3.1 has only a deficit of 3.6% (−3.1 kJ cm−2). Among the coupled hurricane forecast models, HWRF2020-HYCOM has the lowest MLT and OHC bias. The bias for the MLS shows that all the models tend to predict higher salinity values in the mixed layer. A key third result obtained here is that the model with the lowest MLS is GOFS 3.1, demonstrating the benefits of ocean data assimilation to correct the biases not only in temperature but also in salinity.
TABLE 2 | Bias (Eq. 4) and bias percentage (Eq. 5) between the observations and the different models for the mixed layer temperature (MLT), mixed layer salinity (MLS), ocean heat content (OHC) and depth average temperature in the top 100 m (T100).
[image: Table 2]3.2 Mixed layer temperature and sea surface heat loss
We estimated the mixed layer temperature (MLT) and sea surface heat loss (SSHL) at three different times along Dorian’s forecasted track (Figure 7): At 18 h forecast lead time, T1, Dorian’s intensity is close to category 1 in all models, At 66 h lead time, T2, the intensity of the different models differ by at least 1 category, and at 84 h lead time, T3, all the models are predicting approximately a category 4 hurricane.
[image: Figure 7]FIGURE 7 | (A) Best track (black line) and Forecasted tracks, (B) observed (black line) and forecast intensity, and (C) Absolute relative intensity error for the three coupled hurricane forecasting models evaluated: HWRF2019-POM (IC Clim.) in purple, HWRF2020-POM (IC RTOFS) in green, and HWRF2020-HYCOM (IC RTOFS) in yellow. The forecast cycle used here is cycle 2019082800. The forecasted lead times highlighted in the figures are the 18 h (T1), 66 h (T2), and the 84 h (T3) lead times.
For all the models the spatial structure of MLT around the eye of the storm shows significant variability (Figure 8). Most notably, there is a clear cold wake on the southeast quadrant at T3, when the storm becomes a major hurricane. The mean MLT as a function of the normalized cross track radius shows that the MLT of HWRF2019-POM (IC Clim) is consistently colder than the MLT of the other two models at the three different times for all the radius (Figure 8 right column). HWRF2020-HYCOM (IC RTOFS) has the highest mean MLT at T1 but it is comparable to HWRF2020-POM (IC RTOFS) at T2 and T3.
[image: Figure 8]FIGURE 8 | Mixed layer temperature (MLT) for three different forecast lead times for cycle 2019082800: 18 h (T1), 66 h (T2), and 84 h (T3) (shown in Figure 5) and for three hurricane forecasted models: HWRF2019-POM (IC Clim.), HWRF2020-POM (IC RTOFS), and HWRF2020-HYCOM (IC RTOFS). The circles are centered at the storm eye and show from 1 radius to 8 radius of maximum winds. The green start shows the location of the maximum winds. The last column shows the mean (markers) and the spread around the mean (shades) as a function of the normalized radius r/Rmax. For the calculation of the mean, the MLT field was grouped in bins of 0.5 normalized radius.
The SSHL per unit area is largest at the radius of maximum winds (eye wall region) in all cases (Figure 9), however there are marked spatial differences among the models. For instance on T3, SSHL values larger than 0.7 kJ/cm2 are concentrated to a radius less than 2Rmax in HWRF2019-POM, while these values extent up to 4Rmax in the other two models, showing that the largest energy input from the ocean is found in a larger area in HWRF2020-POM and HWRF2020-HYCOM. Consistently HWRF2020-HYCOM is the model with the highest mean SSHL values for radii less than 4Rmax and HWRF2019-POM is the model with the lowest values for all radii for the three different times (Figure 9 right column).
[image: Figure 9]FIGURE 9 | Sea surface heat loss (SSHL) per unit area for three different forecast lead times: 18 h (T1), 66 h (T2), and 84 h (T3) (shown in Figure 5) and for three hurricane forecasted models: HWRF2019-POM (IC Clim.), HWRF2020-POM (IC RTOFS), and HWRF2020-HYCOM (IC RTOFS). The circles are centered at the storm eye and show from 1 radius to 8 radius of maximum winds. The green start shows the location of the maximum winds. The last column shows the mean sea surface heat loss per unit area (markers) and the spread around the mean (shades) as a function of the normalized radius r/Rmax. For the calculation of the mean, the SSHL field was grouped in bins of 0.5 normalized radius. The figures correspond to the forecast cycle 2019082800.
Another quantity that reflects the differences in the spatial variability of SSHL is the area integrated SSHL, which provides information about the potential cumulative effect of an improved representation of air-sea fluxes along the hurricane track (Figure 10). This quantity is larger in HWRF2020-HYCOM for almost all lead times and as a consequence, the accumulated thermal energy input from the ocean to the atmosphere during the first 84 h is larger in HWRF2020-HYCOM by 17% compared to HWRF2019-POM. The same quantity is 12% higher in HWRF2020-POM than in HWRF2019-POM. Along with this result, we found that the MLT along the storm track for HWRF2019-POM is the coldest, about 0.5 degrees colder than HWRF2020-HYCOM (Figure 8, right column), for all forecast lead times. This implies that even a modest difference of about −0.5 degrees in the MLT can cause a cumulative decrease in the estimated total energy delivered from the ocean to the atmosphere of about 17% in a forecast cycle.
[image: Figure 10]FIGURE 10 | Area integrated sea surface heat loss as a function of forecast lead time. The area of integration is ± 2 degrees of longitude and latitude around the storm eye. The total energy delivered from the ocean to the atmosphere, which is the area under the curve, between 6 h and 84 h lead time for each model is shown in the legend of the figure.
4 DISCUSSION AND CONCLUSION
Of the three coupled hurricane forecasting models evaluated, the model for which the ocean component was initialized from climatology, HWRF2019-POM, is the model with the largest MLT and OHC bias of −0.9°C and −18.8 kJ cm−2, respectively, at the location and time of the glider observations during the passage of Hurricane Dorian North of Puerto Rico. In addition, this model is the hurricane forecasting model in which the ocean component has the lowest skill for the four metrics relevant to the air-sea heat fluxes assessed here.
Conversely, HWRF2020-HYCOM, initialized from RTOFS, is the hurricane forecasting model in which the ocean component has the highest skill for the four upper-ocean metrics and is the closest in skill to the data assimilative model GOFS 3.1. This gives us confidence that of the three air-sea coupled hurricane forecasting models evaluated, HWRF2020-HYCOM is the one that best represents the upper-ocean fields.
Nonetheless, HWRF2020-HYCOM and GOFS 3.1 do not excel in the upper-ocean metrics skills in spite of having a good skill to represent the temperature and salinity of the entire observed water column (down to 500 m). In particular, the salinity in the upper mixed layer was not properly represented. In this study, none of the models captured the salinity and depth of the barrier layer at the location of the glider array.
The barrier layer in the Caribbean Sea and tropical North Atlantic is caused by the spreading of the Amazon and Orinoco river plumes. The barrier layer spatial and vertical extend is controlled not only by the seasonal variability but also by the interannual variability of the river discharge (Hu et al., 2004), which cannot be captured by the ocean models studied here because only a monthly climatology river discharge was provided as input. This explains why salinity is rather ill-simulated and highlights the need to better take into account real-time river runoff, rather than monthly climatology, in ocean models, in addition to assimilate high quality in situ salinity.
Another aspect that needs improvement is the representation of vertical mixing processes in the surface boundary layer, which will lead to a better representation of the SST response during tropical cyclones. The traditional vertical mixing schemes, e.g., KPP mixing scheme, underpredict the vertical mixing in global models when compared to large eddy simulations. There exists vertical mixing parameterizations that include the effects of Langmuir turbulence that have shown to enhance vertical mixing when compared to the non-Langmuir schemes, but there are still large discrepancies on the estimate of the mixed layer depth among those (Li et al., 2019). Under hurricane wind conditions, there is evidence that including Langmuir turbulence can improve the SST evolution (Li et al., 2019; Zhou et al., 2023). In addition, Kim et al. (2022) demonstrates that the skill of 3-way coupled simulations for Hurricane Laura is improved over 2-way coupled forecasts, by explicitly including the Langmuir turbulence to the KPP mixing with HYCOM. This suggests that future hurricane forecast systems can improve the forecast skills by including a 3-way atmosphere-ocean-wave coupling.
Along hurricane Dorian’s forecasted track, the MLT in HWRF2019-POM is about −0.5 degrees colder than the MLT in HWRF2020-HYCOM. Accordingly, the area integrated and time integrated SSHL in HWRF2020-HYCOM is 17% higher than the SSHL in HWRF2019-POM during the first 84 h of the forecast cycle. This result indicates that even differences of several tenths of a degree in the MLT in hurricane forecasting models, can lead to substantial differences in the total enthalpy fluxes delivered from the ocean to the atmosphere throughout the storm’s synoptic history.
The upper-ocean fields assessed in this work, which are relevant to the air-sea heat fluxes, were not accurately represented in the three coupled atmosphere-ocean hurricane forecasting models evaluated here, and need to be better captured on future models currently under development. In particular, a more accurate representation of barrier layers could improve the model forecast skill during storms. This work also shows that large biases in the upper-ocean conditions can be introduced if the ocean model is initialized with climatological temperature and salinity fields. Therefore, there is a critical need to improve the upper-ocean initial conditions leading to better ocean representation in coupled atmosphere-ocean models, as part of the larger effort to improve the different aspects that control the hurricane intensity forecast.
In addition, this study demonstrates a methodology to assess a model skill of the upper-ocean conditions that contribute to the TC intensity forecast, and it makes the case that the upper-ocean profile observations of temperature and salinity are a very valuable asset to help improve, through data assimilation techniques, the ocean representation, particularly of barrier layers and of ocean heat content, which have been linked to hurricane intensity changes.
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This document summarizes the physics schemes used in two configurations of the first version of the operational Hurricane Analysis and Forecast System (HAFSv1) at NOAA NCEP. The physics package in HAFSv1 is the same as that used in NCEP global forecast system (GFS) version 16 except for an additional microphysics scheme and modifications to sea surface roughness lengths, boundary layer scheme, and the entrainment rate in the deep convection scheme. Those modifications are specifically designed for improving the simulation of tropical cyclones (TCs). The two configurations of HAFSv1 mainly differ in the adopted microphysics schemes and TC-specific modifications in addition to model initialization. Experiments are made to highlight the impacts of TC-specific modifications and different microphysics schemes on HAFSv1 performance. Challenges and developmental plans of physics schemes for future versions of operational HAFS are discussed.
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1 INTRODUCTION
Based on NOAA’s unified forecast system (UFS) framework, Hurricane Analysis and Forecast System (HAFS) is a UFS application specialized in tropical cyclone (TC) research and forecasting, which has been under active development with collaborative efforts among multiple agencies as well as the broader research communities. The first operational implementation of HAFS (HAFSv1) at NCEP occurred in June 2023 as a planned replacement for operational Hurricane Weather Research and Forecasting (HWRF) model (Tallapragada, 2016) and the Hurricane Multi-scale Ocean-coupled Non-hydrostatic (HMON) model (Mehra et al., 2018; Wang et al., 2019). The newly-developed HAFS was highlighted in the 10th WMO international workshop for TCs held in December 2022 as one of the most important developments of TC dynamic modeling during the last 4 years because it has shown the capability to further improve dynamic model guidance for TC track and intensity (Zhang et al., 2023). Multiple configurations of HAFS have been used in real-time experiments since 2019 to improve model performance. Before 2021, all experiments, including a HAFS-based ensemble system (Zhang et al., 2021), were based on a fixed basin-scale domain with high resolution (3 km) and without a vortex initialization process (Dong et al., 2020; Hazelton et al., 2021; Chen et al., 2023). The moving nest capability and a combined vortex modification and data assimilation system was developed and added to HAFS in late 2021; these additions were tested in the 2022 real-time experiment (Hazelton et al., 2023a).
The operational HAFSv1 is configured as a convection-allowing high resolution atmosphere-ocean-wave coupled TC forecasting system with one storm-following moving nest, advanced vortex initialization, data assimilation, and physics suite that is specially calibrated for hurricane predictions taking into account multiscale interactions (Zhang et al., 2023). The atmospheric model dynamics is based on the fully compressible Finite-Volume Cubed-Sphere (FV3) dynamical core (Lin and Rood, 1996; Lin, 1997; Lin and Rood, 1997; Lin, 2004; Harris et al., 2020) with a Lagrangian vertical coordinate (Chen et al., 2013). The ocean model implemented in HAFS is HYbrid Coordinate Ocean Model (HYCOM) (Bleck, 2002; Bleck et al., 2002). HAFSv1 has two configurations (HFSA and HFSB) to maintain the current operational capability of dynamical model diversity, with the former replacing HWRF and the latter replacing HMON. Like the HWRF and HMON models, both HFSA and HFSB are configured with one movable and two-way interactive nested horizontal grid that follows the projected path of a storm. Both HFSA and HFSB use an Extended Schmidt Gnomonic (ESG) horizontal grid system (Purser et al., 2020), with spatial resolutions of 6 km in the parent domain and 2 km in the nested domain. In addition, both configurations use 81 vertical levels on a sigma-pressure hybrid system with a model top of 10 hPa and the lowest level approximately at 20 m above the surface. There are 23 levels below 1.5 km, with vertical grid spacing varying approximately from 20 m near the surface to 130 m near 1.5 km, to reasonably resolve physical processes in the planetary boundary layer (PBL). A major difference between HFSA and HFSB is in microphysics schemes they used. The single-moment GFDL (Geophysical Fluid Dynamics Laboratory) microphysics scheme (Lin et al., 1983; Lord et al., 1984; Krueger et al., 1995; Chen and Lin, 2013) is used in HFSA, while the double-moment Thompson microphysics scheme (Thompson and Eidhammer, 2014) is used in HFSB. Because the double-moment Thompson scheme is more computationally costly than the single-moment GFDL scheme, HFSB uses a slightly smaller parent domain and lower calling frequency of the radiation scheme than HFSA to guarantee the running time of HFSB forecast jobs fit within the operational time window. Other differences include adjustments in the PBL and convection schemes and the thresholds used in the vortex initialization process. Zhang et al. (2023) gives the details of HFSA and HFSB as well as the development history of HAFS.
In this paper, we will describe the physics schemes used in both HFSA and HFSB, with a focus on TC-specific modifications and microphysics schemes. Section 2 summarizes individual physics schemes. Section 3 describes HAFS experiments used to highlight the impacts of different microphysics schemes and TC-specific modifications on the performance of HAFSv1. Challenges and future developmental plans of HAFS physics schemes are discussed in Section 4. A summary is provided in Section 5.
2 DESCRIPTIONS OF PHYSICS SCHEMES
In general, HAFSv1 uses the same physics schemes as in the NCEP Global Forecast System version 16 (GFSv16), except for a few TC-specific modifications for better TC intensity forecasts and different microphysics schemes for diversity of the configurations. Table 1 summarizes the physics schemes used in both configurations of operational HAFSv1. The main differences in physics schemes between HAFSv1 and the legacy HWRF and HMON are in the selection of surface layer, PBL, and microphysics schemes. HWRF and HMON use the GFDL surface layer scheme (Bender et al., 2007), GFS hybrid K-based Eddy-Diffusivity Mass-Flux (EDMF) PBL scheme with TC-specific modifications (Han et al., 2016; Wang et al., 2018), and the Ferrier-Aligo microphysics scheme (Ferrier et al., 2002; Aligo et al., 2018). In this section, the physics schemes and modifications in HAFSv1 are briefly described.
TABLE 1 | Physics schemes used in HFSA and HFSB. (TC-specific modifications are marked in bold and differences between HFSA and HFSB are marked in italics).
[image: Table 1]2.1 Land and ocean surface models
2.1.1 Land surface model
The Noah land surface model (LSM) is used in HAFSv1 to characterize hydrological processes over land. The model is derived originally from the Oregon State University land surface model and has a long history of development. It provides surface sensible and latent heat fluxes, skin temperature, albedo, and other quantities to the atmospheric model. The Noah LSM includes a four-layer soil model, with the thickness of 0.1, 0.3, 0.6, and 1 m, respectively, from top to bottom. It solves the prognostic equations for soil temperature and moisture with the parameterized physical processes of surface energy and water budgets, including precipitation, surface runoff and infiltration, canopy evaporation and transpiration, soil evaporation, sublimation from snowpack, and more. The model uses a few look-up tables to prescribe soil, vegetation, and other general parameters in addition to key input datasets including land-use/vegetation type, soil texture, and slope. The NASA Visible Infrared Imaging Radiometer Suite (VIIRS) vegetation type is used in HAFSv1. Ek et al. (2003) gives a detailed description of the Noah model, its evolution, refinements, as well as key references of the schemes for various physical processes.
2.1.2 Ocean model
HYCOM solves three-dimensional hydrostatic primitive equations without tides at 1/12-degree resolution on the Arakawa C grid and 41 hybrid-z vertical coordinates (Bleck, 2002; Chassignet et al., 2003; Wallcraft et al., 2009). HYCOM in HAFSv1 uses the same solver and model grids as in the NCEP global Real-Time Ocean Forecast System (RTOFS), except it is a regional application (Kim et al., 2014; Kim et al., 2022). The regional domain covers the Atlantic, eastern Pacific, and central Pacific basins from 23.03oS to 47.0oN in latitude and from 182oE to 15.0oE in longitude. The lateral boundaries are closed with a buffer zone with 10 horizontal grid spacings, to relax the interior solutions to the climatology. The initial conditions (ICs) for each cycle are provided by subsets of daily nowcast and forecast products of the global RTOFS. The global nowcasts are analyses produced from a flow-dependent three-dimensional variational data assimilation system with 6 hourly incremental analysis updates. The K-Profile Parameterization (KPP) scheme is used to represent sub-grid turbulent momentum and scalar fluxes via diffusivity and viscosity profiles from the sea surface to the bottom of the boundary layer.
Time integration uses the time-split method to apply a longer time step to solve the slow internal mode and a shorter time step to resolve the fast external barotropic mode. The momentum and scalar advection schemes are for second-order and second-order flux-corrected transport (Zalesak, 1979), respectively. HYCOM dynamically remaps the vertical layers in response to density changes at a given time step, using a weighted Arbitrary Lpositive definiteness for falling hydrometeors.agrangian-Eulerian (ALE) approach (Boscheri and Dumbser, 2014). Coupling variables between HYCOM and FV3 are atmospheric surface momentum flux, heat flux, precipitation rates and mean sea level pressures to force HYCOM (Kim et al., 2014). HYCOM provides sea surface temperature to the atmospheric model. More details are found in Kim et al. (2024)1.
2.2 Surface layer scheme
As the lowest part of the atmospheric boundary layer, the surface layer is the region at the bottom 10% of the boundary layer depth and links the atmosphere and the surface (Stull, 1988). The atmosphere and the surface interact through the exchange of surface fluxes of heat, moisture and momentum (Olson et al., 2021).
The surface layer parameterization scheme used in the NCEP GFSv16 was originally developed by Long (1984) and Long (1986). This scheme utilizes the Monin–Obukhov (MO) similarity theory to describe the vertical behavior of nondimensionalized mean flow and turbulence properties within the surface layer (Monin and Obukhov, 1954), with an alternative flux-profile formulation which has no limitation of a finite critical bulk Richardson number throughout a continuous range of the stable regime. Moreover, under stable conditions, a stability parameter constraint proposed by Zheng et al. (2017) is used to prevent the land-atmosphere system from fully decoupling. This constraint yields a more proper downward heat transport between the land and the atmosphere in very stable surface layer conditions, and thus largely mitigates the systematic deficiencies and substantial errors in NCEP GFS near-surface 2-m air temperature forecasts. Momentum and thermal roughness lengths (z0m and z0t) are prescribed to estimate the surface fluxes from the surface-layer MO similarity theory. Moisture roughness length z0q is equal to z0t. Over the land, the vegetation-dependent formulations of momentum and thermal roughness lengths were proposed by Zheng et al. (2012) in the GFSv16 model to reduce the substantial cold bias in land surface skin temperature over arid and semiarid regions during daytime in warm seasons. Over the water, the GFSv16 surface layer scheme’s default z0m and z0t (with the namelist option z0_type = 0) were derived by Zeng et al. (1998), which is valid for the wind speed range from 0 to 18 m·s−1 and limited by the values at 18 m·s−1. Over open ocean, the momentum roughness length is based on a Charnock relation (Charnock, 1955), capped by a constant (0.0317 m). In 2021, surface-layer physics parameterization has been updated, including the calculations of the maximum z/L (L is the obukhov length), thermal and momentum roughness lengths, canopy storage, and sea spray effects (Han et al., 2021).
HAFSv1 uses the same surface layer scheme as GFSv16, except for the parameterizations of the roughness lengths over ocean. The sea surface roughness lengths (z0m and z0t) used in HWRF and HMON (Biswas et al., 2018) were implemented in UFS and adopted in both HFSA and HFSB configurations (with the namelist option z0_type = 6). With this option, the relationships between air-sea surface exchange coefficients and 10-m winds are consistent with those supported by observations, despite large uncertainty for high-wind conditions. The sea surface momentum exchange coefficient (Cd) under low-to-moderate winds is consistent with the COARE algorithm V3.5 (Edson et al., 2013), which is supported by numerous observations. Under high-wind conditions, the momentum roughness length is obtained by fitting Cd to available field measurements from various observations (Powell et al., 2003; French et al., 2007; Jarosz et al., 2007; Bell et al., 2012; Holthuijsen et al., 2012; Bi et al., 2015; Potter et al., 2015; Zhao et al., 2015; Richter et al., 2016). The sea-surface scalar roughness length from the COARE algorithm V3.0 (Fairall et al., 2003), which was obtained from various field measurements under low-to-moderate winds, is used to calculate sea-surface heat fluxes. Under high wind conditions, z0t-wind relation is fitted so that the sea-surface enthalpy exchange coefficient (Ck) is capped around 0.00135 with little variation with wind speed, despite large uncertainty based on field measurements (e.g., Bell et al., 2012; Jeong et al., 2012) and laboratory studies (e.g., Komori et al., 2018; Troitskaya et al., 2018). More discussions about the variations of Cd and Ck with 10-m wind used in HAFS are given in Section 3.2.1.
2.3 PBL scheme
For vertical turbulent mixing in the PBL, the scale-aware TKE (turbulent kinetic energy)-based moist EDMF scheme (Han and Bretherton, 2019) from NCEP GFS is used. In the scheme, the sub-grid scale turbulent flux is represented by contributions from large eddies and local small eddies parameterized using a mass-flux (MF) scheme and an eddy-diffusivity (ED) scheme, respectively. The nonlocal flux includes the contribution of the stratocumulus-top-driven downdraft as well as for the thermal in the unstable boundary layer during the daytime. In addition, the scheme also considers the effect of enhanced buoyancy during the moist adiabatic process. The contribution of sub-grid scale cumulus convection to TKE is estimated by parameterized cumulus mass flux. Entrainment rates in cumulus convection schemes are proportional to sub-cloud mean TKE. The scale-aware parameterization is based on the scale-aware cumulus convection parameterization (Han et al., 2017), where the mass flux for the updraft decreases with increasing the updraft area fraction for the horizontal grid spacing where the large turbulent eddies are partially resolved. The scheme also includes a TKE dissipative heating proportional to the TKE dissipation rate.
In a recent update (Han et al., 2022), the mass-flux scheme was modified to eliminate negative values for tracers such as water vapor, cloud condensate, TKE, and all other scalar variables. To reduce the excessive vertical turbulence mixing in strongly sheared environments such as in hurricanes, the turbulent mixing length was modified to decrease in larger environmental wind shear. To better predict surface inversion as well as capping inversion near the PBL top, the background turbulent eddy diffusivity was also modified to be reduced in the inversion layers.
There are two modifications in the PBL scheme used in HFSA and HFSB, respectively, for improving TC intensity forecasts.
2.3.1 Modification in HFSA—adjustment of the near-surface mixing length
The sfc_rlm = 1 option is used in HFSA, which forces the mixing length near the surface follows the MO similarity theory so that the near-surface mixing length scale used in the PBL scheme is consistent with that in the surface-layer scheme. This modification improves the intensity bias and wind profiles at low levels near the eyewall (Wang et al., 2022; Wang et al., 2023a). The maximum allowable mixing length (Lmax) is set to 300 m and 250 m, respectively in parent and nest domains. The default Lmax value in NCEP GFSv16 is 300 m.
2.3.2 Modification in HFSB—TCPBL adjustment
The tc_pbl = 1 option is used in HFSB. The tc_pbl option uses a recently developed modeling framework tailored to hurricane boundary layers (Chen et al., 2021). It refers to four major changes to the TKE-EDMF scheme based on boundary layer theories and large-eddy simulations (Chen et al., 2022). These changes include 1) determining values of two coefficients in the eddy viscosity and TKE dissipation term to match the surface layer and PBL parameterizations (discussions in Chen et al., 2022), 2). reducing Lmax from 300 to 75 m over the nest domain (which agrees with the upper end of the observational values, see Figure 3 in Chen et al., 2022), while Lmax is still 300 m in the parent domain, 3) implementing a different bulk-Richardson-number-based PBL height (Vogelezang and Holtslag, 1996) that performs better in high-wind conditions, and 4) reducing mass fluxes from the nonlocal portion of the PBL scheme in high-wind conditions (Chen and Marks, 2024). These changes effectively reduce the excessive vertical mixing in hurricane conditions as seen from the original TKE-EDMF scheme, and have been shown to lead to improved forecasts of TC structure and rapid intensification in HFSB (Gopalakrishnan et al., 2021; Hazelton et al., 2021).
2.4 Scale-aware deep and shallow convection schemes
The deep cumulus con.vection scheme in both configurations of HAFSv1 is the same as that used in NCEP GFSv16 (Han and Pan, 2011; Han et al., 2017). It uses a bulk mass-flux scheme for well-organized updraft and complementary environments such as cumulus convection. The parcel property is calculated by a single entraining and detraining plume model. The lateral entrainment and detrainment are formulated in proportion to environmental relative humidity to suppress convection in a drier environment. The cloud base mass flux is determined with a quasi-equilibrium assumption for horizontal grid spacing larger than 8 km, while it is determined by a mean updraft velocity for horizontal grid spacing smaller than 8 km. Convection triggering conditions include the distance between the convection starting level and the level of free convection, sub-cloud convective inhibition, and sub-cloud mean relative humidity. The distance threshold is proportion to the grid-scale vertical velocity, ranging from 120 to 180 hPa. The scheme also includes the effects of the convection-induced pressure gradient force on convective momentum transport. The cloud condensate in the upper cloud layers is detrained into the grid-scale condensate. The scale- and aerosol-aware parameterizations are based on Han et al. (2017). In the current version, the scale-aware parameterization considered the ratio of advection time scale to convective turnover time scale. The convective turnover time scale is used as the convective adjustment time scale. The rain conversion rate is a function of air temperature above the freezing level, decreasing with decreasing air temperature. The scheme also considers the mutual interaction between convection and TKE (Han and Bretherton, 2019; Han et al., 2021). TKE is transported and contributed by parameterized convection. As a simple parameterization, the TKE contribution due to convection is calculated by cloud mass fluxes. The entrainment rates in convection updrafts are proportional to sub-cloud mean TKE.
The shallow cumulus convection scheme in HAFSv1 is also based on that in NCEP GFSv16 (Han and Pan, 2011; Han et al., 2017). There are three major differences from the deep convection scheme. Firstly, the shallow cloud base mass flux is calculated as the updraft velocity averaged in a cloud layer, rather than with a quasi-equilibrium assumption. Secondly, only convection updrafts are considered in the shallow scheme. Thirdly, the entrainment rate is larger than that in deep convection. In a horizontal grid, only either deep or shallow convection is allowed. Separation of deep and shallow convection is determined by cloud depth (currently set to 200 hPa).
There is one modification to the deep convection scheme in HFSA, where the entrainment rate is increased. Experiments indicate that this adjustment can improve intensity forecasts (see Section 3.2.3).
2.5 Microphysics schemes
The GFDL and Thompson microphysics schemes are used, respectively, in HFSA and HFSB to increase model diversity. The former is used in NCEP GFSv16.
2.5.1 GFDL microphysics scheme
GFDL microphysics scheme is a single-moment scheme. It predicts five hydrometeors (cloud water, cloud ice, rain, snow and graupel). The scheme was developed based on the Lin-Lord-Krueger cloud microphysics scheme (Lin et al., 1983; Lord et al., 1984; Krueger et al., 1995) and was substantially revised and redesigned at GFDL for the GFDL global high-resolution model HiRAM (High- Resolution Atmospheric Model) in the early 2000s (Zhao et al., 2009; Chen and Lin, 2011; 2013; Harris et al., 2016). The scheme was updated by Zhou et al. (2019), and was named GFDL MP v1. The GFDL MP v1 was implemented into the NCEP GFS in 2019. The GFDL microphysics scheme is formulated with a strict moist energy conservation during phase changes, and maintains heat and momentum budgets for all condensates. A part of the scheme is in-core fast saturation adjustment which is called after the “Lagrangian-to-Eulerian” remapping in the code. The scheme uses time-splitting between warm-rain and ice-phase processes. Scale awareness is achieved by an assumed horizontal sub-grid variability and a second-order finite-volume-type vertical reconstruction for autoconversion processes.
2.5.2 Thompson microphysics scheme
The Thompson microphysics scheme predicts the mixing ratios of cloud water (qc), rain (qr), cloud ice (qi), snow (qs), and graupel (qg), plus the number concentration of ice (Ni) (Thompson et al., 2004; Thompson et al., 2008). In a later version, the number concentration of rain is added as a prognostic variable, and, therefore, the scheme becomes a double moment for both ice and rain. In 2014, the scheme was updated with an option to explicitly incorporate aerosols in a simple and cost-effective manner (Thompson and Eidhammer, 2014). The scheme nucleates water and ice from their dominant nuclei and tracks and predicts the number of available aerosols. In the 2014’s update, three new prognostic variables were added: the number concentration of cloud water, as well as the number concentrations of the two new aerosol variables. This scheme adopts a generalized gamma particle size distribution assumption for all hydrometer species except for snow. The snow distribution is based on Field et al. (2005). The method by Srivastava and Coen (1992) is used in the calculations of the evaporation of cloud rain and the sublimations of cloud ice, snow, and graupel. An explicit bin method in the Stochastic Collection Equation (SCE) is used to represent the effects of collisions between hydrometeors. The conversion of cloud ice to snow is represented by an explicit and non ad hoc method. To reduce the numerical instability when using this scheme with large time steps in weather forecast application, a smaller time step than the FV3 physics time step can be used though an option of inner loop through FV3 namelist or setting a sub-cycle loop in the physics suite definition file controlled by the common community physics package (CCPP, https://dtcenter.ucar.edu/gmtb/users/ccpp/docs/sci_doc_v2/) framework. Another namelist option to reduce the instability is to use the Semi-Lagrangian sedimentation of rain and graupel proposed by Juang and Hong (2010), in which a sub-time step is only applied to sedimentation computation (Sun et al., 2023).
2.6 Radiation scheme
The radiation scheme used in HAFS is the Rapid Radiative Transfer Model for GCMs (RRTMG). The RRTMG calculates shortwave (SW) flux, longwave (LW) flux and the radiative heating/cooling rates of all model levels at any given location. Details for the implantation of RRTMG in NCEP GFSv16 can be found in Liu and Yang (2023). For computational efficiency, the correlated K-method is used in RRTMG. The accuracy of this method is consistent with the computationally more expensive line-by-line radiative transfer models. The SW algorithm includes 112 g-points in 14 bands, while 140 unevenly distributed g-points (quadrature points) in 16 broad spectral bands are included in the LW algorithm. Key atmospheric absorbing gases include ozone, water vapor, and carbon dioxide. RRTMG also considers the effects of minor absorbing species including methane, nitrous oxide, oxygen, and halocarbons (CFCs). Aerosol optical properties, cloud liquid water and ice paths and effective radius are used to represent the radiative effects of aerosols and clouds in the calculation. The effects of sub-grid scale clouds are treated by a Monte-Carlo Independent Column Approximation (McICA) method, with a decorrelation length overlap assumption for multi layered clouds.
2.7 Gravity wave drag scheme
The CCPP Suite shared by GFS and HAFSv1 is the Unified Gravity Wave Physics (UGWP), developed within the framework of NOAA’s UFS. HAFSv1 uses an orographic drag suite and a non-stationary gravity wave drag parameterization.
Some of the topographic effects can be resolved explicitly in atmospheric model’s dynamic core, however, its sub-grid scale impact needs to be parameterized, which is done in the UGWP orographic drag suite, including four orographic physical parameterizations: (1) Mesoscale Orographic gravity wave drag (MSOGWD), developed by Kim and Arakawa (1995), and later modified by Kim and Doyle (2005) and Choi and Hong (2015). (2) Low-level flow blocking by subgrid-scale orography in the UGWP suite follows the scheme of Kim and Arakawa (1995). (3) The small-scale GWD (SSGWD) scheme of Steeneveld et al. (2008) and Tsiringakis et al. (2017), captures the effects of gravity waves produced by horizontal terrain variations on scales down to about 1 km in length. Just as MSOGWD, such small-scale waves can propagate vertically under highly stable conditions. The scheme is active for all horizontal grid spacings. (4) The turbulent orographic form drag (TOFD) parameterization is based on Beljaars et al. (2004), and accounts for drag due to horizontal topographic variations on scales of 5 km and smaller. Note that TOFD is not a gravity wave phenomenon, as it does not involve the vertical transport of momentum and energy. The effects of the horizontal grid resolution on the strength of the parameterized GWD is accounted for. These parameterizations are essential to accurately forecasting the near-surface winds, the zonal circulation in global models and alleviating the high westerly wind speed biases and associated “cold pole” problems that develop without parameterized GWD.
The non-topographic, sub-grid-scale gravity wave sources, including deep convection, frontal instability, and stratified shear instability associated with the tropospheric jet, must be parameterized in order to provide realistic forecasts of winds in the middle atmosphere (Scinocca and Ford, 2000; Scinocca, 2003).
A scheme to move from a single-wavenumber representation of sub-grid topography to a Fourier series of two-dimensional ridges approach has been proposed. Particular consideration for HAFS, which has a very high horizontal resolution, is clearly necessary in the future.
3 EXPERIMENTS, RESULTS, AND DISCUSSIONS
Experiments were designed to highlight the impact of TC-specific modifications and different physics options on HAFS performance. The HAFS system using the NCEP GFSv16 physics package (Table 2) without any modifications was first run to illustrate the necessity of modifications, referred to as HGFS. Then, two sets of experiments were run based on the HFSA and HFSB configurations, respectively, as summarized in Tables 2, 3, to analyze the impact of each modification on HAFS performance. Note that TC intensity in the following analyses refers to the maximum 10-m wind speed (Vmax) unless otherwise specified.
TABLE 2 | Summary of HFSA-based experiments.
[image: Table 2]TABLE 3 | Summary of HFSB-based experiments.
[image: Table 3]Since there are three TC-specific modifications used in the HFSA configuration, three HFSA-based experiments, referred to as HAZ0, HAL0, and HAET, were run, where the respective modifications were not adopted. The HAZ0 experiment uses the default roughness length formulations over open ocean as used in NCEP GFSv16 (default z0_type = 0 in the model namelist) to assess the impact of the TC-specific roughness length formulations on HAFS performance. The HAL0 experiment uses the default settings of the TKE-EDMF PBL scheme as used in NCEP GFSv16 (i.e., sf_rlm = 0 and tc_pbl = 0) to assess the impact of the adjustment of near-surface mixing length in the PBL scheme (sf_rlm = 1) on HAFS performance. The HAET experiment uses the default value of the entrainment rate coefficient (clam_deep = 0.1), which is smaller than that used in the operational HFSA, to assess the impact of the increased entrainment rate. The fourth experiment (HAMP) runs HFSA with the Thompson microphysics scheme instead of the GFDL microphysics scheme to assess the impact of different microphysics schemes on HAFS, although different microphysics schemes were originally intended to add model diversity to HAFS forecasts.
Two TC-specific modifications are used in the HFSB configuration. One is the TC-specific roughness length (z0_type=6) like in HFSA. The other is the TCPBL adjustment in the PBL scheme (tc_pbl = 1). To assess the impact of the TCPBL adjustment in the PBL scheme on HFSB performance, a HFSB-based experiment was run, referred to as NOTB, where the default PBL settings are used, to highlight the impact of the TCPBL adjustment.
For all experiments, the HAFS system is initialized every 6 h with a combined vortex initialization and data assimilation system using data from the NCEP GFSv16 analysis and global data assimilation system. HAFS’s 6-h forecasts from the previous cycle are also used in the initialization for warm cycling (a first-guess of vortex) when the initial Vmax is greater than a threshold (50 kt in HFSA and 40 kt in HFSB). HGFS and each HFSA-based experiment simulated most of the TCs with life cycles longer than 2 days in 2021 and 2022 over the North Atlantic (NATL) basin as listed in Table 4, producing 618 forecast cycles. The HFSB-based experiment simulated the same storms, but also included five NATL storms in 2020 (Table 4), adding 147 cycles to the sample.
TABLE 4 | List of NATL storms simulated in retrospective HAFS experiments.
[image: Table 4]The evaluation below focuses on the performance of track, Vmax, and vortex size forecasts by the HAFS experimental runs. NHC’s verification package is used to assess the statistical performance of each experiment against the best-track analysis data.
Figure 1 compares the performance of the HAFS experiments using the NCEP GFSv16 physics package (HGFS, blue lines) and the legacy HWRF (red lines), along with operational configurations (HFSA in purple lines and HFSB in green lines). There are 543 verifiable cycles for this set of 4-run comparison. Compared with HWRF, HGFS has noticeably improved the forecasts of track (Figure 1A) and the radius of 64-kt wind (R64) (Figure 1F) as well as comparable performance in the forecasts of the radii of 34-kt wind (R34) (Figure 1D) and 50-kt wind (R50) (Figure 1E). However, HGFS generates larger root-mean-squared (RMS) errors and biases in Vmax than the legacy HWRF does, with the mean Vmax of HGFS approximately 10 kt weaker than HWRF and the best-track analysis (Figure 1B). In addition, HGFS has degraded the performance in the forecasts of the radius of the surface maximum wind (RMW) (Figure 1C), with larger RMS errors and positive biases than HWRF. This comparison indicates that modifications are needed so that the performance of HAFS is comparable to or better than the then-operational HWRF model at NCEP. As a result, TC-specific modifications are introduced to the two configurations (i.e., HFSA and HFSB) of the operational HAFSv1. Figure 1 shows that the performance of HFSA and HFSB is close to or better than that of HWRF, except for RMW forecasts. Next, we will analyze the impact of each modification on HAFS performance.
[image: Figure 1]FIGURE 1 | (A) RMS errors of track simulated by HFSA, HFSB, HGFS, and legacy HWRF. RMS errors and biases of (B) Vmax, (C) RMW, (D) R34, (E) R50, and (F) R64.
3.1 Case study—Hurricane IAN (09 L)
This section compares the simulated track and Vmax of Hurricane Ian (09 L) from different HAFS experiments to illustrate the impact of the TC-specific modifications or different microphysics schemes on HAFS forecasts.
Hurricane Ian (09 L) was a major Category five hurricane over the NATL basin in 2022. The maximum sustained 10-m wind speed of this hurricane reaches 160 mph, with the central pressure of 937 hPa, just before making landfall in Southwest Florida, United States around 12 UTC on 28 September 2022. Ian originated from a tropical wave. It becomes a numbered storm (09 L) at 12 UTC on 23 September 2022. After that, Ian nearly kept intensifying till 12 UTC on 28 September 2022, with the maximum 10-m wind speed increase reaching 30 kt during 12 h before it reaches peak wind. Ian made three major landfalls during its life cycle. It made its first landfall on the western Cuba as a category three hurricane on 27 September 2022, and its final landfall in South Carolina on 30 September 2022. It was completely dissipated by 12 UTC on 1 October 2022.
The HAFS cycling system in each experiment simulating Hurricane Ian starts from cycle 2022092306 through 2023100106 UTC, initialized every 6 h. Each experiment produced 31 5-day forecasts of track, Vmax, and other atmospheric and oceanic fields.
Figures 2A–E compare the spaghetti plots of the simulated tracks of Hurricane Ian (09 L) from all forecast cycles by different HFSA-based runs, along with the best-track analysis (black solid line). In general, the track forecasts of all runs at lead times beyond 72 h exhibit westward biases, except that some track forecasts initialized on September 23 and 24, 2022 are biased to the east (red lines). Comparing HAZ0, HAL0, and HAET with HFSA shows that the TC-specific modifications do not have major impacts on track forecasts, despite improved track biases in some cycles. Using the Thompson microphysics scheme improves the track forecasts at lead times less than 72 h or 96 h of the cycles initialized on September 23 and 24, 2022 (i.e., less eastward biases) but it degrades the track forecasts at lead times beyond 72 h of the cycles initialized on September 25–28, 2022 (i.e., more westward biases, see red, green, and blue lines). Figures 2F–J compare the spaghetti plots of Vmax forecasts for all cycles. It shows that the modified roughness lengths and mixing length as well as the entertainment rate adjustment do improve the rapid intensification (RI) forecasts initialized on September 23–26, 2022 (red and green lines). HFSA with the Thompson microphysics scheme (HAMP) produces not only stronger Vmax forecasts but also better RI forecasts than that with the GFDL scheme. Figure 3 quantitatively compares the RMS errors and mean biases of track, Vmax, and vortex sizes at different forecast lead times. HAZ0 and HAL0 do not have major changes in the track RMS errors, compared with HFSA, while increasing the entrainment rate (HAET vs. HFSA) does reduce the track RMS errors for lead times beyond 96 h. The run with the Thompson microphysics scheme (HAMP) degrades the track forecast for Hurricane Ian, due to large westward bias as shown in Figure 2. HFSA has smaller RMS errors and biases in Vmax than HAZ0, HAL0, and HAET, indicating improvements by those TC-specific modifications. Noticeably, HAMP has the smallest Vmax biases, although RMS errors are close to those of HFSA. For TC structure verifications, all RMS errors in vortex sizes are very close among the experiments, but differences in the mean sizes from the different experiments are noticeable. For lead times beyond 48 h, using the modified roughness length in HAFS reduces the mean RMW, while adjusting the mixing length and entrainment rate increases the mean RMW, leading to positive RMW bias. The mean R34 decreases with lead time for all experiments, resulting in large negative R34 bias for lead times beyond 96 h. Overall, using the modified roughness length and increasing the entrainment decreases the mean sizes of R34, R50, and R64, respectively. Both adjusting the mixing length and using the Thompson microphysics scheme increase the vortex size.
[image: Figure 2]FIGURE 2 | Spaghetti plots of the simulated tracks of Hurricane Ian (09 L) from all forecast cycles (2022092306–093018) of different HFSA-based experiments. (A) HFSA, (B) HAZ0, (C) HAL0, (D) HAET, and (E) HAMP. The black line denotes the best track analysis. Colored lines are for the tracks of different cycles initialized at different days. (F–J) same as (A–E) except for Vmax.
[image: Figure 3]FIGURE 3 | (A) RMS errors of track from the simulated IAN (09 L) cycles from HFSA-based experimental runs, RMS errors and biases of (B) Vmax, (C) RMW, (D) R34, (E) R50, and (F) R64. Note that the bias of RMW minus 20 is shown in (C).
Similarly, Figure 4 shows the spaghetti plots of track and Vmax from all cycles of Hurricane Ian (09 L) in the HFSB and NOTB experiments. Overall, the track forecasts of HFSB and NOTB have westward biases at lead times beyond 72 h, with the former slightly more westward than the latter (Figures 4A, B). Applying the tc_pbl option improves RI in the cycles initialized on September 23–26 (red and green lines in Figures 4C, D). From the analyses of errors and biases, a notable difference is the improvement of Vmax bias with the tc_pbl option (Figure 5B), although track is slightly degraded on day 5 (Figure 5A). There are no major differences in the RMS errors in RMW, R34, R50, and R64. The TCPBL adjustment in HFSB reduces mean R34, but increases mean R50 and R64 sizes; this degrades the R34 and R64 biases, compared with NOTB. This issue could be due to the impact of the reduced value of Lmax in the nest domain as well as zeroing surface-driven mass fluxes for nearly neutral conditions (Chen and Marks, 2024) in HFSB on vortex size.
[image: Figure 4]FIGURE 4 | Spaghetti plots of track from all cycles of Hurricane Ian (09 L) simulated by (A) HFSB and (B) NOTB. (C, D) are the same as (A, B) except for Vmax. Same color legend as in Figure 2.
[image: Figure 5]FIGURE 5 | Same as Figure 3 except for HFSB and NOTB.
3.2 Statistical performance
Based on the criteria of the NHC’s verification package, there are 548 verifiable cycles from all 618 forecast cycles of each HFSA-based experiment. To assess the HAFS performance of weak and strong cycles, a stratified verification analysis is conducted by grouping all verifiable cycles into 367 strong (≥64 kt) and 181 weak (<64 kt) cycles of each HFSA-based experiment based on the maximum Vmax of the best-track analysis during the same 5 days of each cycle. For HFSB-based experiments, there are 684 verifiable cycles from all 765 cycles for each experiment. The verifiable cycles are grouped into 497 strong cycles and 187 weak cycles.
3.2.1 Impact of the modified roughness lengths (z0_type = 6)
Many investigations have shown that the intensity and structure of a TC simulated by numerical models are sensitive to surface drag coefficients (i.e., Cd and Ck) (e.g., Montgomery et al., 2010; Bryan, 2012; Smith et al., 2014). Ck and Cd characterize the turbulent exchanges of heat and momentum between the ocean and atmosphere in numerical models, respectively. In the atmospheric model of HAFS, the surface fluxes are calculated through the MO similarity theory by specifying the momentum and thermal roughness lengths, rather than directly specifying Cd and Ck values. To compare with observations, we calculate Cd and Ck at 10-m level using the output of HFSA and HAZ0 simulations and display them as a function of 10-m wind speed in Figure 6. The default momentum roughness length over the open ocean in the NCEP GFSv16 model is based on a Charnock relation (Charnock, 1955), capped by a constant (0.0317 m). This relation results in a nearly constant drag coefficient (approximately 0.0025) when 10-m winds are stronger than 30 m/s (Figure 6A). With the modified roughness length described in Section 2.2, the drag coefficient increases generally with 10-m wind speed to approximately 0.0025 from 5 m/s to approximately 30 m/s, then decreases to 0.0016 until 50 m/s, and levels off afterward. This variation is more consistent with the observations (symbols in Figure 6A) than that of the drag coefficient derived from the default momentum roughness length, despite large uncertainty in Cd under strong wind conditions. The values of Ck, derived from the MO similarly theory respectively with the default and modified thermal roughness lengths, are close and much less variable than Cd when 10-m wind speeds are stronger than 5 m/s. For strong winds, Ck is approximately 0.0013–0.0014, despite large uncertainty from observations (Figure 6B).
[image: Figure 6]FIGURE 6 | (A) Momentum drag coefficient (Cd) at 10 m as a function of 10-m wind speed used in HAFS experiments and derived from various field or laboratory studies (symbols and black line). Error bars on the purple and orange lines denote the 5th and 95th percentiles in each bin of wind speed of 2 m/s. Triangles represent Cd values from several studies (Bell et al., 2012; Holthuijsen et al., 2012; Bi et al., 2015; Potter et al., 2015; Zhao et al., 2015; Richter et al., 2016); (B) enthalpy exchange coefficient (Ck). Cd and Ck in HAFS are calculated from the HFSA and HAZ0 simulations of Hurricane IAN (09 L), initialized at 2022092806.
Figure 7 compares the HAFS performance using the default (HAZ0) and modified (HFSA) roughness lengths, showing that the modification to the sea surface roughness lengths is necessary for simulating strong TCs. For strong cycles, the largest improvement with the modified roughness lengths is in the Vmax bias, without degrading RMS errors in track (Figure 7A) and Vmax (Figure 7B). While the mean intensities of both HAZ0 and HFSA at all lead times are weaker than those from the best-track analysis, the negative bias on day 5 of HFSA is reduced by 60%, compared with HAZ0. In regard to vortex size, RMS errors and biases in RMW, R34, R50, and R64 near the surface of HFSA are close to those of HAZ0 except that the mean R34 and R50 values of HFSA are reduced. For weak cycles, using the modified roughness lengths does not change the overall performance of HAFS, except for slightly improved track and reduced mean in R34 and R50. This is expected because Cd and Ck in HFSA are very close to those in HAZ0 for weak winds (Figure 6).
[image: Figure 7]FIGURE 7 | (A) Comparisons of RMS track errors for strong cycles simulated in HFSA and HAZ0 experiments, and RMS errors and biases of (B) Vmax, (C) RMW, (D) R34, (E) R50, (F) R64. (G–K) are the same as (A–E), except for weak cycles. Case count is shown in gray in the upper x-axis.
3.2.2 Impact of the mixing length adjustment in HFSA (sf_rlm = 1)
HFSA and HAL0 experiments are identical except that the options of sf_rlm = 1 and 0 are used in HFSA and HAL0, respectively. With sf_rlm = 1, the vertical mixing length in the TKE-EDMF PBL scheme is modified to make sure it is consistent with the MO similarity theory near the surface (within the level of 5% of PBL height). HAL0 uses the original TKE-EDMF PBL scheme (i.e., sf_rlm = 0). Wang et al. (2023a) described and analyzed the modification and the sensitivity of HAFS performance to different formulations of vertical mixing length. They also showed that the modification improves the vertical profiles of near-surface wind in the eyewall area.
Figure 8 compares the HAFS performance with and without the modification. Compared with HAL0, the RMS errors in track and Vmax of HFSA are slightly reduced for both weak and strong cycles. A more notable improvement is that the negative Vmax bias is reduced by 40%–50% for strong cycles (Figure 8B). The increased mixing length near the surface enhances the downward momentum mixing, and hence strengthens the radial wind to maintain dynamic balance, in favor of vortex intensification. The RMS errors in the vortex sizes of HAL0 and HFSA are close. However, the mean sizes of R34, R50, and R64 in HFSA are increased with the modification; this makes R34 and R50 of HFSA closer to the best-track analysis at all lead times than those of HAL0 (Figures 8C, D) but produces too large R64 (Figure 8F). Despite the differences in mean R34, R50, and R64, the modification does not noticeably change the mean RMW values. For weak cycles, the performances of HAL0 and HFSA are close except that HFSA slightly increases the positive bias of Vmax and reduces the negative R34 bias (Figures 8H, J). As the number of strong cycles is approximately twice that of weak cycles, the modification improves the operational HFSA in general but more efforts are still needed to reduce the positive Vmax bias of weak cycles and positive R64 bias of strong cycles. The detailed analyses on the impact of the modification on storm structure can be found in Wang et al. (2023a).
[image: Figure 8]FIGURE 8 | Same as Figure 7, except for HAL0 and HFSA to assess the impact of sf_rlm = 1 option.
3.2.3 Entrainment rate adjustment in HFSA
The deep convection entrainment rate (Ꜫ) of the scale-aware Simplified Arakawa-Schubert (SAS) convection scheme is formulated as (Han and Pan, 2011; Han et al., 2017),
[image: image]
where z is the height; c a tunable parameter (called clam_deep in the model namelist) whose default value is set to be 0.1 (Han and Pan, 2011; Han et al., 2017); qs and qsb the saturation specific humidity values at the parcel level and the cloud base, respectively; d1 a tunable parameter of O (10−4); RH the environmental relative humidity. Shin et al. (2022) have showed that the storm Vmax is sensitive to this parameter and the overall Vmax forecast can be improved when the c value is increased based on the previous real-time HAFS experiments conducted in the 2020–2022 hurricane seasons. They also found that the simulated storms can respond differently to changes in the entrainment rate of the SAS deep convection scheme. Figure 9 compares the 60 h forecasts of 850-hPa radar reflectivity distributions from HAFS simulations using the c values of 0.1 (C010) and 0.13 (C013), respectively, for Hurricane Teddy initialized at 2020091600 and Hurricane Danielle initialized at 2022090300. For Hurricane Teddy, both C010 and C013 experimental runs produce well-developed strong vortices and do not produce large differences in Vmax and convective structure (Figures 9A–C). However, this is different for Hurricane Danielle simulation (Figure 9D). The storm generated by the C010 experiment exhibits a compact structure with a well-defined eyewall while the C013 experiment produces a relatively weaker and larger storm with more diffusive convective patterns (Figures 9E, F). As described in Shin et al. (2022), changing c and hence different storm environments could cause large differences in the Vmax forecast. Details about the influence of c on the Vmax forecast will be analyzed in a separate paper.
[image: Figure 9]FIGURE 9 | (A) Vmax time series from two HFSA-based experiments (cyan: C010 and red: C013) and from NHC best-track analysis (black) for the Hurricane Teddy simulation initialized at 2020091600. (B) 850-hPa radar reflectivity (shaded: dBZ) and isobar (black contours with 10-hPa interval) from the 60 h forecast of the C010 experiment for the Hurricane Teddy simulation shown in (A). (C) is the same as (B) but from the C013 experiment; (D), (E, F) are the same as (A–C), respectively, but for the Hurricane Danielle simulation initialized at cycle 2022090300. The horizontal and vertical axes are the distance (unit: degree) from the storm center in (B, C, E, F).
Given that increasing c appears to be beneficial for the Vmax forecast, a slightly higher c (clam_deep) value of 0.15 is adopted in the first version of operational HFSA. Figure 10 demonstrates that the operational version of HFSA predicts the storm Vmax better for both strong and weak cycles in terms of RMS errors and biases when 0.15 is used instead of the default value of 0.1. Track RMS errors are also improved. The RMS errors and biases in vortex sizes are nearly unchanged except that the mean R34 of HFSA is slightly smaller than that of HAET.
[image: Figure 10]FIGURE 10 | Same as Figure 7, except for HAET (clam_deep = 0.1) and HFSA (clam_deep = 0.15) to assess the impact of the increased entertainment rate.
3.2.4 Impact of microphysics schemes
Given the uncertainty in physics schemes, the purpose of using different microphysics schemes in HFSA and HFSB configurations is to increase the forecast diversity in addition to other differences in both configurations (Section 2). To highlight the impact of different microphysics schemes on HAFS performance, we run HFSA with the Thompson microphysics scheme (HAMP) replacing the GFDL microphysics scheme. In the literature, numerous studies have reported that varying cloud microphysics assumptions, resulting in different thermal and dynamical effects induced by phase changes, can have major impacts on the intensity of TCs simulated by mesoscale models with different microphysics schemes (see a review paper by Tao et al. (2011), and references therein). Fovell et al. (2009) showed that TC track forecast may also be influenced by different microphysics assumptions via cloud–radiative interaction.
Figure 11 shows the statistical errors in track, Vmax, and vortex size of TCs simulated by the HAFS model with GFDL (HFSA, purple lines) and Thompson (HAMP, red lines) microphysics schemes. The simulations with the two microphysics schemes have noticeable impacts on track and Vmax. For strong cycles, it appears that HAMP produces larger track errors for lead times beyond 48 h than HFSA, while it produces smaller Vmax RMS errors for nearly all lead times with larger mean intensities (and smaller negative biases) within 48 h. The RMW errors and biases of HAMP are generally close to those of HFSA, except that HAMP has slightly smaller RMW errors and smaller mean RMW for the lead times beyond 72 h. The RMS errors in R34, R50, and R64 from both runs are also close, but HAMP produces smaller mean values of R34 and R50 than HFSA. The mean R64 values of HAMP are larger than those of HFSA for the lead times within 60 h, and smaller afterward. For weak cycles, HAMP has smaller track errors for nearly all lead times, especially for the lead times beyond 84 h. The RMS errors and biases in Vmax and vortex size of HAMP are generally close to those of HFSA.
[image: Figure 11]FIGURE 11 | Same as Figure 7, except for HAMP and HFSA to assess the impact of different microphysics schemes.
As described in Section 2, major differences in the two microphysics schemes are in the treatments of ice processes and the number concentrations of hydrometeors. In-depth comparisons of the impact of the two schemes are beyond the scope of this document. Here we only show the vertical distributions of azimuthally-averaged mixing ratios of hydrometeors from the two schemes in one cycle simulation of Hurricane Fiona (07 L) as an example to highlight differences in hydrometeors simulated by the two schemes (Figure 12). An apparent difference in the distributions of hydrometeors is that the Thompson microphysics scheme produces much more snow than the GFDL microphysics scheme and less cloud ice and graupel, although we do not have sufficient observational data to verify those results. Different treatments of the conversion of water vapor and hydrometeors are likely to generate different condensational heating rates and cloud-radiative interactions, affecting the simulations of the Vmax and track of TCs. Some case studies also showed that using the Thompson microphysics scheme in HAFS tends to produce a slightly taller vortex than using the GFDL microphysics scheme. The Thompson scheme has notably weaker reflectivity than the GFDL microphysics scheme aloft probably due to the larger bias of snow and lack of small ice particles being lifted far above the freezing level. In addition, HAFS with the GFDL microphysics scheme has slightly higher vertical velocity maxima aloft. For detailed analyses, see Hazelton et al. (2023b).
[image: Figure 12]FIGURE 12 | Vertical distributions of azimuthally-averaged mixing ratios (g/kg) of hydrometeors at the forecast time of 30 h for Hurricane Fiona (07 L) simulated by HAFS using the GFDL (left column) and Thompson (right column) microphysics schemes with the same initial conditions at 2022092106. (A,B) liquid cloud, (C,D) rain, (E,F) cloud ice, (G,H) snow, and (I,J) graupel. Horizontal lines are the contours of temperature (K) and curved lines are the contours of tangential winds.
3.2.5 Impact of TCPBL adjustment in HFSB (tc_pbl = 1)
The configuration of the NOTB run is identical to that of the HFSB run except that the default PBL scheme (tc_pbl=0) is used in NOTB, while the TCPBL adjustment in the PBL scheme (tc_pbl = 1) is used in HFSB. For strong cycles, the TCPBL adjustment improves the Vmax bias by 50% (Figure 13B), despite a slight increase in track errors for lead times beyond 96 h (Figure 13A). It does not have major impacts on the RMS errors in vortex sizes (RMW, R34, R50, and R64), but results in some improvements to mean biases in RMW, R50, and R64. One noticeable impact is on the mean R34 bias, as shown in Figure 13D. Both HFSB and NOTB have negative biases in R34. Using the TCPBL adjustment increases the negative R34 bias with forecast time. This issue is primarily attributable to the setting of turning off surface-driven mass fluxes (Mu) where the surface stability parameter is greater than −0.5 (Chen and Marks, 2024). The objective of this setting is to retain Mu only in convective boundary layers, as Mu essentially represents buoyant thermal plumes in convective boundary layers. Exploring a suitable threshold of surface stability parameter differentiating buoyancy-driven and shear-driven boundary layers is currently underway. For weak cycles, the impact of the TCPBL adjustment is small as expected, except that track errors are increased for the lead times beyond 72 h.
[image: Figure 13]FIGURE 13 | Same as Figure 7, except for NOTB and HFSB to assess the impact of tc_pbl=1 option in HFSB.
Other testing has also shown that the TCPBL adjustment improves the simulated structure of TCs in HAFS (Chen et al., 2022; Chen et al., 2023). An examination of the relative impacts of TCPBL adjustment and the Thompson microphysics scheme in HFSB retrospective forecasts has also demonstrated that the TCPBL adjustment was critical to the improved detection of RI in HFSB (Hazelton et al., 2023a; Hazelton et al., 2023b). Composite structures have shown that the TCPBL adjustment increases the boundary layer inflow strength, leading to more compact and robust vortices that spin up more quickly (Hazelton et al., 2023a; Hazelton et al., 2023b).
3.3 Pressure-wind relation
Numerous early investigations have shown that the Vmax of a TC is closely related to its minimum central pressure (e.g., Holland, 2008 and references therein), called pressure-wind relation. Near the TC center, the horizontal pressure gradient and centrifugal forces are approximately balanced. The pressure-wind relation is a useful metric to evaluate the model performance. Figure 14 presents the fitted pressure-wind relationships from all the experiments and the best-track analysis, respectively. It is seen that all HAFS experiments generally produce a weaker Vmax than the best-track analysis does under a given central pressure. This is consistent with the general negative biases in Vmax of HAFS runs as shown in Section 3.2. In the HFSA-based experiments, using the Thompson microphysics scheme (HAMP) and the modified mixing length near the surface (HAL0) do not significantly change the pressure-wind relation, as compared with that of HFSA. However, using the modified roughness length and increased entrainment rate can noticeably improve the pressure-wind relation for intensities stronger than 80 kt, with an increased Vmax at a given central pressure lower than 960 hPa, respectively (HFSA vs. HAZ0, and HFSA vs. HAET). For intensities weaker than 80 kt, all experimental runs produce nearly the same pressure-wind relation. In the HFSB-based experiment, the TCPBL adjustment in the PBL scheme (HFSB) improves the pressure-wind relation, compared with that without the adjustment (NOTB). Specifically, the TCPBL allows greater Vmax at a given central pressure when the central pressure is lower than 980 hPa (or for Vmax stronger than 60 kt).
[image: Figure 14]FIGURE 14 | Fitted Pressure-wind relations of (A) HFSA-based experiments and (B) HFSB-based experiments. Black lines are fitted from the best track analysis.
3.4 RI analysis
The probability of detection (POD) index of the observed RI events and false alarm ratio (FAR) index of the forecasted RI events are used to characterize the model performance in predicting RI events. We calculated POD and FAR indices for the observed and forecasted RI events, respectively, by aggregating the forecasts at all lead times of all cycles in each experiment. Figure 15A shows the performance diagram summarizing POD, success ratio (SR = 1-FAR), and critical success index (CSI, also known as threat score) of each experiment. The POD values of all HAFS experiments are smaller than their respective SR values, although both POD and SR are not high. Compared with HAZ0, using the modified roughness lengths in HFSA increases POD by 15% and reduces FAR by 5%. Likewise, the increased entrainment rate leads to an increased POD by 12% and a reduced FAR by 3% (HAET vs. HFSA). Adjusting the near-surface mixing length increases POD by 9% without increasing FAR (HAL0 vs. HFSA). Using the Thompson microphysics scheme in HFSA further increases POD by 7% and reduces FAR by 14% (HAMP vs. HFSA), improving FAR more than POD. In the HFSB-based experiment, using the TCPBL adjustment increases POD by 8% without increasing FAR (NOTB vs. HFSB). All TC-specific modifications increase POD and reduce or do not increase FAR in both HFSA and HFSB; this improves the CSI values of RI forecasts. The improvement of POD is more noticeable than that of FAR. Nevertheless, the POD is still low for both HFSA and HFSB; this needs to be addressed in future upgrades.
[image: Figure 15]FIGURE 15 | (A) Performance diagram of RI forecasts by different experimental runs. The critical intensity increase for RI is 30 kt per 24 h. Dashed lines are bias scores. Solid labeled contours are critical success indexes (also known as threat score). (B) The percentage of the cycles in each HAFS experiment successfully detecting the observed RI events during individual 5-day forecasts. (C) Same as (B), except for the cycles falsely predicting RI events.
In addition, we analyzed POD and FAR during each single 5-day forecast period, referred to as POD5 and FAR5, respectively, to assess the performance of RI forecasts of each cycle (Wang et al., 2023c). A forecast cycle is thought to successfully detect the observed RI events if POD5 is larger than 0.5, and falsely predicts RI events if FAR5 is larger than 0.5. Figures 15B, C show the percentages of the cycles successfully detecting the observed RI events and falsely predicting RI events during 5-day forecasts in each experiment. All TC-specific modifications do improve the ratio of the cycles successfully detecting the observed RI events. They also slightly reduce the ratio of the cycles falsely predicting RI events except for the modified roughness lengths and the TCPBL adjustment increasing the number of false RI prediction cycles. Comparing HAMP with HFSA, using the Thompson microphysics scheme slightly decreases the percentage of successful cycles and increases the percentage of false cycles.
4 CHALLENGES AND FUTURE PLAN
Future HAFS upgrades focus mainly on increasing the diversity between HFSA and HFSB, improving the forecasts of rapid changes in intensity, particularly for NATL basin, reducing intensity forecast errors at long lead times, and improving vortex structure forecasts. Both HFSA and HFSB are capable of forecasting rapid changes in Vmax, but they still suffer from high biases in Vmax, false prediction of RI, underpredicting Vmax changes, and the timing of onset of rapid intensity changes. These forecasting challenges also remain for other regional dynamic models as summarized by Zhang et al. (2023). These are one of the major challenges for the further development of HAFS. For example, both HFSA and HFSB predicted RI of hurricane Lee (13 L) 12–24 h later than the best-track analysis for the cycles initialized earlier than 2023090706, and struggled to predict rapid weakening after the intensification period. This led to large intensity errors and biases for lead times beyond 24 h, resulting in underperformance compared to the legacy HWRF model. Although the reasons for the underperforming forecast of rapid intensity changes are not clear yet, preliminary experimental studies suggested that it could be related to model dynamics and physics (Liu et al., 2023; Zhang and Zhang, 2023). Another challenge is to improve the structure of the forecasted vortex. As shown in Figure 1, RMW errors and biases of HAFS are still lager than those of the legacy HWRF.
To further improve physics schemes in the operational HAFS, we will continue to explore the upgraded physics schemes for NCEP GFS in TC simulations using HAFS, including the improved PBL and convection schemes in strong shear environment conditions (Han et al., 2021; Han et al., 2024) as well as the next version of the GFDL microphysics scheme. Given the critical role of the PBL in TC forecasts, the MYNN-EDMF PBL scheme (Olson et al., 2019), which has been extensively tested in the regional Rapid Refresh Forecast System at NCEP and can be well performed in simulating hurricane boundary layers (Chen and Bryan, 2021; Chen, 2022), is also worth testing in HAFS with some modifications for strong wind conditions. Despite the high horizontal resolution used in HAFS, convection schemes still play an important role in modulating both intensity and track of TCs in HAFS. Therefore, other convection schemes such as Tiedtke cumulus scheme (Tiedtke, 1989) and Grell-Freitas scheme (Freitas et al., 2021) are being tested in HAFS. Other upgrade plans include the use of NOAH-MP (Niu et al., 2011) in HAFS, testing different options in the advection scheme, and testing the physics-dynamics interaction.
Research efforts should be made to further improve the capability of a single physics scheme applied to multiple scales, i.e., scale-awareness, and to test model parameters such as the entrainment rate in convection schemes and diffusivity in PBL schemes as well as different treatments of microphysical processes for TC scenarios. It is worth mentioning that the entrainment rate is an important parameter in convection schemes and has noticeable impacts on TC intensity forecasts as shown in Section 3.2.3. There are many studies on how to improve the entrainment parameterization (e.g., Zhang et al., 2016; Xu et al., 2021; Villalba-Pradas and Tapiador, 2022). It is warranted to test the impact of different entrainment rate parameterizations on TC forecasts of HAFS. In addition, the role of microphysical processes in TC simulations should be further investigated, given that the performance of HAFS is sensitive to microphysics schemes it chooses. It is beneficial for HAFS to test the sensitivity of TC simulations in HAFS to different treatments of microphysical processes such as mixing evaporation and autoconversion processes and their relationships (Liu et al., 2023; Lu et al., 2023).
5 SUMMARY
This paper describes the physics schemes used in the first version of operational HAFS. The physics schemes are the same as those used in NCEP GFS version 16, with the exception of four TC-specific modifications and a different microphysics scheme in one of the two HAFSv1 configurations. The four modifications include (1) the observation-based sea-surface roughness lengths, (2) increased near-surface mixing length in the PBL, (3) increased entrainment rate in the SAS deep convection scheme, and (4) adjustments for TC PBL including reduced maximum allowable mixing length, the adjusted two coefficients in the eddy viscosity and TKE dissipation term, and tapering nonlocal mass fluxes in high-wind conditions. Experiments show that all of the modifications improve Vmax forecasts, particularly for mean Vmax biases of strong cycles, without degrading track forecasts. The modifications have nearly negligible impacts on RMS errors in R34, R50, and R64, but have noticeable impacts on mean biases, with the largest impact on mean R34 bias. RMW errors and biases are not affected by the modifications. All modifications improve the POD of the observed RI events and FAR of the forecast RI events. The improvement of the POD is larger than that of the FAR, although the POD is still low and the FAR is still high. The use of the Thomspson microphysics scheme in one HAFSv1 configuration was originally intended to increase the diversity of HAFS forecasts between the two configurations. However, the experiment indicates that using the Thompson microphysics scheme can greatly improve HFSA intensity forecasts for both strong and weak cycles as well as POD and FAR of RI forecasts.
In addition to the analyses of track and intensity as presented in this paper, it is worth further investigating the impact of physics schemes and their modifications on the structure of TCs simulated by HAFS. This is needed to identify issues common for all models or specific to HAFS. Priority issues to be addressed include the over prediction of intensity in low shear environment, RI onset timing, large cycle-to-cycle variability, and other common issues of regional dynamic models identified by forecasters (Wang et al., 2023b; Zhang et al., 2023). Future work on the HAFS physics package includes:
(1) Testing the upgraded GFS physics schemes in HAFS configurations and making adjustments if necessary.
(2) Exploring other existing PBL and convection schemes in UFS suitable for TC simulations.
(3) Developing new modifications or schemes tailored to HAFS based on research efforts such as improving scale-awareness and sensitivities of HAFS simulations to model parameters (e.g., entrainment rate, diffusivity, and others) and to different treatments of microphysical processes.
DATA AVAILABILITY STATEMENT
The raw data supporting the conclusion of this article will be made available by the authors, without undue reservation.
AUTHOR CONTRIBUTIONS
WW: Conceptualization, Formal Analysis, Investigation, Methodology, Visualization, Writing–original draft, Writing–review and editing. JH: Conceptualization, Writing–original draft, Writing–review and editing. JuS: Conceptualization, Formal Analysis, Investigation, Writing–original draft, Writing–review and editing. XC: Conceptualization, Formal Analysis, Investigation, Writing–original draft, Writing–review and editing. AH: Formal Analysis, Investigation, Methodology, Writing–original draft, Writing–review and editing. LZ: Formal Analysis, Investigation, Writing–original draft, Writing–review and editing. H-SK: Investigation, Methodology, Writing–original draft, Writing–review and editing. XL: Investigation, Writing–original draft, Writing–review and editing. BL: Formal Analysis, Investigation, Methodology, Writing–original draft, Writing–review and editing. QL: Formal Analysis, Investigation, Writing–original draft, Writing–review and editing. JoS: Investigation, Writing–original draft, Writing–review and editing. RS: Investigation, Writing–original draft, Writing–review and editing. WZ: Formal Analysis, Investigation, Writing–original draft, Writing–review and editing. ZZ: Conceptualization, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Writing–original draft, Writing–review and editing. FY: Conceptualization, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Writing–review and editing, Writing–original draft.
FUNDING
The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. XC was supported by the National Oceanic and Atmospheric Administration Grants NA23OAR4590380 and NA21OAR4320190. AH was supported by NOAA grants NA19OAR0220187 and NA22OAR4050668D.
ACKNOWLEDGMENTS
The authors thank Mary Hart, Drs. Jiayi Peng, and Lydia Stefanova providing comments and suggestions on the manuscript during EMC internal review.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
FOOTNOTES
1Kim, H.-S., Liu, B., Thomas, B., Rosen, D., Wang, W., Hazelton, A., et al. (2024). Ocean component of the first operational version of hurricane analysis and forecast system: HYbrid coordinate Ocean model (HYCOM). Front. Earth Sci. in review.
REFERENCES
 Aligo, E. A., Ferrier, B., and Carley, J. R. (2018). Modified NAM microphysics for forecasts of deep convective storms. Mon. Weather Rev. 146 (12), 4115–4153. doi:10.1175/MWR-D-17-0277.1
 Alpert, J., Kanamitsu, M., Caplan, P. M., Sela, J. G., White, G. H., and Kalnay, E. (1988). “Mountain induced gravity wave drag parameterization in the nmc medium-range forecast model,” in Eighth conf. On numerical weather prediction (Baltimore, MD: Amer. Meteor. Soc.). 
 Beljaars, A. C. M., Brown, A. R., and Wood, N. (2004). A new parametrization of turbulent orographic form drag. Q. J. R. Meteorological Soc. 130, 1327–1347. doi:10.1256/qj.03.73
 Bell, M. M., Montgomery, M. T., and Emanuel, K. A. (2012). Air–Sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci. 69 (11), 3197–3222. doi:10.1175/JAS-D-11-0276.1
 Bender, M. A., Ginis, I., Tuleya, R., Thomas, B., and Marchok, T. (2007). The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Weather Rev. 135 (12), 3965–3989. doi:10.1175/2007MWR2032.1
 Bi, X., Gao, Z., Liu, Y., Liu, F., Song, Q., Huang, J., et al. (2015). Observed drag coefficients in high winds in the near offshore of the South China Sea. J. Geophys. Res. Atmos. 120 (13), 6444–6459. doi:10.1002/2015JD023172
 Biswas, M. K., Abarca, S., Bernardet, L., Ginis, I., Grell, E., Iacono, M., et al. (2018). Hurricane weather research and forecasting (HWRF) model: 2018 scientific documentation. Available at: https://dtcenter.org/sites/default/files/community-code/hwrf/docs/scientific_documents/HWRFv4.0a_ScientificDoc.pdf.
 Bleck, R. (2002). An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean. Model. 4 (1), 55–88. doi:10.1016/S1463-5003(01)00012-9
 Bleck, R., Halliwell, G. R., Wallcraft, A. J., Carroll, S., Kelly, K., and Rushing, K. (2002). HYbrid Coordinate Ocean Model (HYCOM) user's manual: details of the numerical code. HYCOM, version 2, 1–211. 
 Boscheri, W., and Dumbser, M. (2014). A direct Arbitrary-Lagrangian–Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D. J. Comput. Phys. 275, 484–523. doi:10.1016/j.jcp.2014.06.059
 Bryan, G. H. (2012). Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Weather Rev. 140 (4), 1125–1143. doi:10.1175/MWR-D-11-00231.1
 Charnock, H. (1955). Wind stress on a water surface. Q. J. R. Meteorological Soc. 81 (350), 639–640. doi:10.1002/qj.49708135027
 Chassignet, E. P., Smith, L. T., Halliwell, G. R., and Bleck, R. (2003). North atlantic simulations with the hybrid coordinate Ocean Model (HYCOM): impact of the vertical coordinate choice, reference pressure, and thermobaricity. J. Phys. Oceanogr. 33 (12), 2504–2526. doi:10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2
 Chen, J.-H., and Lin, S.-J. (2011). The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys. Res. Lett. 38 (11). doi:10.1029/2011GL047629
 Chen, J.-H., and Lin, S.-J. (2013). Seasonal predictions of tropical cyclones using a 25-km-Resolution general circulation model. J. Clim. 26 (2), 380–398. doi:10.1175/jcli-d-12-00061.1
 Chen, X. (2022). How do planetary boundary layer schemes perform in hurricane conditions: a comparison with large-eddy simulations. J. Adv. Model. Earth Syst. 14 (10), e2022MS003088. doi:10.1029/2022MS003088
 Chen, X., Andronova, N., Van Leer, B., Penner, J. E., Boyd, J. P., Jablonowski, C., et al. (2013). A control-volume model of the compressible euler equations with a vertical Lagrangian coordinate. Mon. Weather Rev. 141 (7), 2526–2544. doi:10.1175/mwr-d-12-00129.1
 Chen, X., and Bryan, G. H. (2021). Role of advection of parameterized turbulence kinetic energy in idealized tropical cyclone simulations. J. Atmos. Sci. 78 (11), 3593–3611. doi:10.1175/JAS-D-21-0088.1
 Chen, X., Bryan, G. H., Hazelton, A., Marks, F. D., and Fitzpatrick, P. (2022). Evaluation and improvement of a TKE-based eddy-diffusivity mass-flux (EDMF) planetary boundary layer scheme in hurricane conditions. Weather Forecast. 37 (6), 935–951. doi:10.1175/waf-d-21-0168.1
 Chen, X., Bryan, G. H., Zhang, J. A., Cione, J. J., and Marks, F. D. (2021). A framework for simulating the tropical cyclone boundary layer using large-eddy simulation and its use in evaluating PBL parameterizations. J. Atmos. Sci. 78 (11), 3559–3574. doi:10.1175/jas-d-20-0227.1
 Chen, X., Hazelton, A., Marks, F. D., Alaka, G. J., and Zhang, C. (2023). Performance of an improved TKE-based eddy-diffusivity mass-flux (EDMF) PBL scheme in 2021 hurricane forecasts from the hurricane analysis and forecast system. Weather Forecast. 38 (2), 321–336. doi:10.1175/WAF-D-22-0140.1
 Chen, X., and Marks, F. D. (2024). Parameterizations of boundary layer mass fluxes in high-wind conditions for tropical cyclone simulations. J. Atmos. Sci. 81, 77–91. doi:10.1175/jas-d-23-0086.1
 Choi, H.-J., and Hong, S.-Y. (2015). An updated subgrid orographic parameterization for global atmospheric forecast models. J. Geophys. Res. Atmos. 120 (24), 12445–12457. doi:10.1002/2015JD024230
 Dong, J., Liu, B., Zhang, Z., Wang, W., Mehra, A., Hazelton, A. T., et al. (2020). The evaluation of real-time hurricane analysis and forecast system (HAFS) stand-alone regional (SAR) model performance for the 2019 atlantic hurricane season. Atmosphere 11 (6), 617. doi:10.3390/atmos11060617
 Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J., Fairall, C. W., et al. (2013). On the exchange of momentum over the open ocean. J. Phys. Oceanogr. 43 (8), 1589–1610. doi:10.1175/JPO-D-12-0173.1
 Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., et al. (2003). Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 108 (D22). doi:10.1029/2002JD003296
 Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J. B. (2003). Bulk parameterization of air–sea fluxes: updates and verification for the COARE algorithm. J. Clim. 16 (4), 571–591. doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2
 Ferrier, B. S., Jin, Y., Lin, Y., Black, T., Rogers, E., and DiMego, G. (2002). Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model. 19th conf. On weather analysis and forecasting/15th conf. On numerical weather prediction (San Antonio, TX: American Meteorology Society). 
 Field, P. R., Hogan, R. J., Brown, P. R. A., Illingworth, A. J., Choularton, T. W., and Cotton, R. J. (2005). Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. 
 Fovell, R. G., Corbosiero, K. L., and Kuo, H.-C. (2009). Cloud microphysics impact on hurricane track as revealed in idealized experiments. J. Atmos. Sci. 66 (6), 1764–1778. doi:10.1175/2008JAS2874.1
 Freitas, S. R., Grell, G. A., and Li, H. (2021). The Grell–Freitas (GF) convection parameterization: recent developments, extensions, and applications. Geosci. Model Dev. 14 (9), 5393–5411. doi:10.5194/gmd-14-5393-2021
 French, J. R., Drennan, W. M., Zhang, J. A., and Black, P. G. (2007). Turbulent fluxes in the hurricane boundary layer. Part I: momentum flux. J. Atmos. Sci. 64 (4), 1089–1102. doi:10.1175/JAS3887.1
 Gopalakrishnan, S., Hazelton, A., and Zhang, J. A. (2021). Improving hurricane boundary layer parameterization scheme based on observations. Earth Space Sci. 8 (3), e2020EA001422. doi:10.1029/2020EA001422
 Han, J., and Bretherton, C. S. (2019). TKE-based moist eddy-diffusivity mass-flux (EDMF) parameterization for vertical turbulent mixing. Weather Forecast. 34 (4), 869–886. doi:10.1175/waf-d-18-0146.1
 Han, J., Li, W., Yang, F., Strobach, E., Zheng, W., and Sun, R. (2021). Updates in the NCEP GFS cumulus convection, vertical turbulent mixing, and surface layer physics. Office note (National Centers Environ. Predict. (U.S.)) 505, 18pp. doi:10.25923/cybh-w893
 Han, J., and Pan, H.-L. (2011). Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Weather Forecast. 26 (4), 520–533. doi:10.1175/WAF-D-10-05038.1
 Han, J., Peng, J., Li, W., Wang, W., Zhang, Z., Yang, F., et al. (2024). Updates in the NCEP GFS PBL and convection models with environmental wind shear effect and modified entrainment and detrainment rates and their impacts on the GFS hurricane and CAPE forecasts. Weather Forecast. 39 (4), 679–688. doi:10.1175/waf-d-23-0134.1
 Han, J., Wang, W., Kwon, Y. C., Hong, S.-Y., Tallapragada, V., and Yang, F. (2017). Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Weather Forecast. 32 (5), 2005–2017. doi:10.1175/waf-d-17-0046.1
 Han, J., Witek, M. L., Teixeira, J., Sun, R., Pan, H.-L., Fletcher, J. K., et al. (2016). Implementation in the NCEP GFS of a hybrid eddy-diffusivity mass-flux (EDMF) boundary layer parameterization with dissipative heating and modified stable boundary layer mixing. Weather Forecast. 31 (1), 341–352. doi:10.1175/waf-d-15-0053.1
 Han, J., Yang, F., Montuoro, R., Li, W., and Sun, R. (2022). Implementation of a positive definite mass-flux scheme and a method for removing the negative tracers in the NCEP GFS planetary boundary layer and cumulus convection schemes. doi:10.25923/5051-3r70
 Harris, L., Chen, X., Zhou, L., and Chen, J.-H. (2020). The nonhydrostatic solver of the GFDL finite-volume cubed-sphere dynamical core. doi:10.25923/9wdt-4895
 Harris, L. M., Lin, S.-J., and Tu, C. (2016). High-resolution climate simulations using GFDL HiRAM with a stretched global grid. J. Clim. 29 (11), 4293–4314. doi:10.1175/JCLI-D-15-0389.1
 Hazelton, A., Alaka, G. J., Gramer, L., Ramstrom, W., Ditchek, S., Chen, X., et al. (2023a). 2022 real-time Hurricane forecasts from an experimental version of the Hurricane analysis and forecast system (HAFSV0.3S). Front. Earth Sci. 11. doi:10.3389/feart.2023.1264969
 Hazelton, A., Chen, X., Alaka, G. J, Alvey, G. R., Gopalakrishnan, S., Marks, F., et al. (2024). Sensitivity of HAFS-B tropical cyclone forecasts to planetary boundary layer and microphysics parameterizations. Weather Forecast. 39 (4), 655–678. doi:10.1175/WAF-D-23-0124.1
 Hazelton, A., Zhang, Z., Liu, B., Dong, J., Alaka, G., Wang, W., et al. (2021). 2019 atlantic hurricane forecasts from the global-nested hurricane analysis and forecast system: composite statistics and key events. Weather Forecast. 36 (2), 519–538. doi:10.1175/waf-d-20-0044.1
 Holland, G. (2008). A revised hurricane pressure–wind model. Mon. Weather Rev. 136 (9), 3432–3445. doi:10.1175/2008MWR2395.1
 Holthuijsen, L. H., Powell, M. D., and Pietrzak, J. D. (2012). Wind and waves in extreme hurricanes. J. Geophys. Res. Oceans 117 (C9). doi:10.1029/2012JC007983
 Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D. (2008). Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 113 (D13). doi:10.1029/2008JD009944
 Jarosz, E., Mitchell, D. A., Wang, D. W., and Teague, W. J. (2007). Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science 315 (5819), 1707–1709. doi:10.1126/science.1136466
 Jeong, D., Haus, B. K., and Donelan, M. A. (2012). Enthalpy transfer across the air–water interface in high winds including spray. J. Atmos. Sci. 69 (9), 2733–2748. doi:10.1175/JAS-D-11-0260.1
 Juang, H.H.-M., and Hong, S.-Y. (2010). Forward semi-Lagrangian advection with mass conservation and positive definiteness for falling hydrometeors. Mon. Weather Rev. 138 (5), 1778–1791. doi:10.1175/2009MWR3109.1
 Kim, H.-S., Lozano, C., Tallapragada, V., Iredell, D., Sheinin, D., Tolman, H. L., et al. (2014). Performance of ocean simulations in the coupled HWRF–HYCOM model. J. Atmos. Ocean. Technol. 31 (2), 545–559. doi:10.1175/JTECH-D-13-00013.1
 Kim, H.-S., Meixner, J., ThomasReichl, B. G. B., Liu, B., Mehra, A., Wallcraft, A., et al. (2022). Skill assessment of NCEP three-way coupled HWRF–HYCOM–WW3 modeling system: hurricane laura case study. Weather Forecast. 37 (8), 1309–1331. doi:10.1175/WAF-D-21-0191.1
 Kim, Y.-J., and Arakawa, A. (1995). Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci. 52 (11), 1875–1902. doi:10.1175/1520-0469(1995)052<1875:IOOGWP>2.0.CO;2
 Kim, Y.-j., and Doyle, J. D. (2005). Extension of an orographic-drag parametrization scheme to incorporate orographic anisotropy and flow blocking. Q. J. R. Meteorological Soc. 131 (609), 1893–1921. doi:10.1256/qj.04.160
 Komori, S., Iwano, K., Takagaki, N., Onishi, R., Kurose, R., Takahashi, K., et al. (2018). Laboratory measurements of heat transfer and drag coefficients at extremely high wind speeds. J. Phys. Oceanogr. 48 (4), 959–974. doi:10.1175/JPO-D-17-0243.1
 Krueger, S. K., Fu, Q., Liou, K. N., and Chin, H.-N. S. (1995). Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteorology Climatol. 34 (1), 281–287. doi:10.1175/1520-0450-34.1.281
 Lin, S.-J. (1997). A finite-volume integration method for computing pressure gradient force in general vertical coordinates. Q. J. R. Meteorological Soc. 123 (542), 1749–1762. doi:10.1002/qj.49712354214
 Lin, S.-J. (2004). A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Weather Rev. 132 (10), 2293–2307. doi:10.1175/1520-0493(2004)132<2293:avlfdc>2.0.co;2
 Lin, S.-J., and Rood, R. B. (1996). Multidimensional flux-form semi-Lagrangian transport schemes. Mon. Weather Rev. 124 (9), 2046–2070. doi:10.1175/1520-0493(1996)124<2046:mffslt>2.0.co;2
 Lin, S.-J., and Rood, R. B. (1997). An explicit flux-form semi-Lagrangian shallow-water model on the sphere. Q. J. R. Meteorological Soc. 123 (544), 2477–2498. doi:10.1002/qj.49712354416
 Lin, Y.-L., Farley, R. D., and Orville, H. D. (1983). Bulk parameterization of the snow field in a cloud model. J. Appl. Meteorology Climatol. 22 (6), 1065–1092. doi:10.1175/1520-0450(1983)022<1065:bpotsf>2.0.co;2
 Liu, B., Kim, H.-S., Shin, J., Thomas, B., Zhang, Z., Li, B., et al. (2023a). “The 2023 HAFSv1.1A real-time parallel experiment,” in 2023 HFIP annual meeting . 3A.2, Nov. 14-17, 2023, Miami, FL. 
 Liu, Q., and Yang, F. (2023). Solar and thermal infrared radiation transfer schemes in the NCEP Global Forecast System (GFS). doi:10.25923/cryn-tp50
 Liu, Y., Yau, M.-K., Shima, S.-i., Lu, C., and Chen, S. (2023b). Parameterization and explicit modeling of cloud microphysics: approaches, challenges, and future directions. Adv. Atmos. Sci. 40 (5), 747–790. doi:10.1007/s00376-022-2077-3
 Long, P. J. (1984). A general unified similarity theory for the calculation of turbulent fluxes in the numerical weather prediction models for unstable condition. Silver Spring, MD, United States: NCEP Office Note 302, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Meteorological Center. 
 Long, P. J. (1986). An economical and compatible scheme for parameterizing the stable surface layer in the medium-range forecast model, NCEP office note 321, U.S. Department of commerce, national oceanic and atmospheric administration, national weather service, national meteorological center. 'Silver Spring, MD, United States. 
 Lord, S. J., Willoughby, H. E., and Piotrowicz, J. M. (1984). Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci. 41 (19), 2836–2848. doi:10.1175/1520-0469(1984)041<2836:roapip>2.0.co;2
 Lu, C., Zhu, L., Liu, Y., Mei, F., Fast, J. D., Pekour, M. S., et al. (2023). Observational study of relationships between entrainment rate, homogeneity of mixing, and cloud droplet relative dispersion. Atmos. Res. 293, 106900. doi:10.1016/j.atmosres.2023.106900
 Mehra, A., Tallapragada, V., Zhang, Z., Liu, B., Zhu, L., Wang, W., et al. (2018). Advancing the state of the art in operational tropical cyclone forecasting at ncep. Trop. Cyclone Res. Rev. 7 (1), 51–56. doi:10.6057/2018TCRR01.06
 Mlawer, E. J., Iacono, M. J., Pincus, R., Barker, H. W., Oreopoulos, L., and Mitchell, D. L. (2016). Contributions of the ARM program to radiative transfer modeling for climate and weather applications. Meteorol. Monogr. 57, 15.1–15.19. doi:10.1175/AMSMONOGRAPHS-D-15-0041.1
 Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 102 (D14), 16663–16682. doi:10.1029/97JD00237
 Monin, A. S., and Obukhov, A. M. (1954). Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst. Akad. Nauk. SSSR 24, 163–187. 
 Montgomery, M. T., Smith, R. K., and Nguyen, S. V. (2010). Sensitivity of tropical-cyclone models to the surface drag coefficient. Q. J. R. Meteorological Soc. 136 (653), 1945–1953. doi:10.1002/qj.702
 Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., et al. (2011). The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 116 (D12), D12109. doi:10.1029/2010JD015139
 Olson, J. B., Kenyon, J. S., Angevine, W. A., Brown, J. M., Pagowski, M., and Sušelj, K. (2019). A description of the MYNN-EDMF scheme and the coupling to other components in WRF–ARW. doi:10.25923/n9wm-be49
 Olson, J. B., Smirnova, T., Kenyon, J. S., Turner, D. D., Brown, J. M., Zheng, W., et al. (2021). A description of the MYNN surface-layer scheme. doi:10.25923/f6a8-bc75
 Potter, H., Collins III, C. O., Drennan, W. M., and Graber, H. C. (2015). Observations of wind stress direction during Typhoon Chaba (2010). Geophys. Res. Lett. 42 (22), 9898–9905. doi:10.1002/2015GL065173
 Powell, M. D., Vickery, P. J., and Reinhold, T. A. (2003). Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422 (6929), 279–283. doi:10.1038/nature01481
 Purser, R. J., Jovic, D., Ketefian, G., Black, T., Beck, J., Dong, J., et al. (2020). The Extended Schmidt Gnomonic grid for regional applications. Boulder, CO, United States: UFS Users' Workshop. July 27–29, 2020. Available at: https://dtcenter.org/sites/default/files/events/2020/2-purser-james.pdf. 
 Richter, D. H., Bohac, R., and Stern, D. P. (2016). An assessment of the flux profile method for determining air–sea momentum and enthalpy fluxes from dropsonde data in tropical cyclones. J. Atmos. Sci. 73 (7), 2665–2682. doi:10.1175/JAS-D-15-0331.1
 Scinocca, J. F. (2003). An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. J. Atmos. Sci. 60 (4), 667–682. doi:10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2
 Scinocca, J. F., and Ford, R. (2000). The nonlinear forcing of large-scale internal gravity waves by stratified shear instability. J. Atmos. Sci. 57 (5), 653–672. doi:10.1175/1520-0469(2000)057<0653:TNFOLS>2.0.CO;2
 Shin, J. H., Liu, B., Zhang, Z., Zhang, C., Wang, W., Thomas, B., et al. (2022). “The impact of scale-aware simplified arakawa-schubert deep convection parameterization on the hurricane over-intensification issue and rapid-intensification forecasts of HAFS,” in 35th conference on hurricanes and tropical meteorology 09-13 may 2022 (New Orleans, LA: AMS). 
 Shin, J. H., Liu, B., Zhang, Z. J. H., Mehra, A., and Tallapragada, V. (2024). “Impact of adjusting the deep convection parameterization on HAFS intensity forecast improvement,” in 104th American meteorological society annual meeting (Baltimore, MD: American Meteorological Society). 
 Smith, R. K., Montgomery, M. T., and Thomsen, G. L. (2014). Sensitivity of tropical-cyclone models to the surface drag coefficient in different boundary-layer schemes. Q. J. R. Meteorological Soc. 140 (680), 792–804. doi:10.1002/qj.2057
 Srivastava, R. C., and Coen, J. L. (1992). New explicit equations for the accurate calculation of the growth and evaporation of hydrometeors by the diffusion of water vapor. J. Atmos. Sci. 49 (17), 1643–1651. doi:10.1175/1520-0469(1992)049<1643:NEEFTA>2.0.CO;2
 Steeneveld, G. J., Holtslag, A. A. M., Nappo, C. J., van de Wiel, B. J. H., and Mahrt, L. (2008). Exploring the possible role of small-scale terrain drag on stable boundary layers over land. J. Appl. Meteorology Climatol. 47 (10), 2518–2530. doi:10.1175/2008JAMC1816.1
 Stull, R. B. (1988). An introduction to the boundary layer meteorology. Kluwer Academic. 
 Sun, R., Yang, F., Hong, S., Bao, J., Han, J., Aligo, E., et al. (2023). “Thompson microphysics updates in the unified forecast system,” in WGNE BLue book . Available at: https://wgne.net/bluebook/uploads/2023/docs/04_Sun_Ruiyu_Microphysics.pdf.
 Tallapragada, V. (2016). “Overview of the NOAA/NCEP operational hurricane weather research and forecast (HWRF) modelling system,” in Advanced numerical modeling and data assimilation techniques for tropical cyclone prediction ( Springer), 51–106.
 Tao, W.-K., Shi, J. J., Chen, S. S., Lang, S., Lin, P.-L., Hong, S.-Y., et al. (2011). The impact of microphysical schemes on hurricane intensity and track. Asia-Pacific J. Atmos. Sci. 47 (1), 1–16. doi:10.1007/s13143-011-1001-z
 Thompson, G., and Eidhammer, T. (2014). A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci. 71 (10), 3636–3658. doi:10.1175/jas-d-13-0305.1
 Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D. (2008). Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Mon. Weather Rev. 136 (12), 5095–5115. doi:10.1175/2008MWR2387.1
 Thompson, G., Rasmussen, R. M., and Manning, K. (2004). Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: description and sensitivity analysis. Mon. Weather Rev. 132 (2), 519–542. doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2
 Tiedtke, M. (1989). A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather Rev. 117 (8), 1779–1800. doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
 Troitskaya, Y., Druzhinin, O., Kozlov, D., and Zilitinkevich, S. (2018). The “bag breakup” spume droplet generation mechanism at high winds. Part II: contribution to momentum and enthalpy transfer. J. Phys. Oceanogr. 48 (9), 2189–2207. doi:10.1175/JPO-D-17-0105.1
 Tsiringakis, A., Steeneveld, G. J., and Holtslag, A. A. M. (2017). Small-scale orographic gravity wave drag in stable boundary layers and its impact on synoptic systems and near-surface meteorology. Q. J. R. Meteorological Soc. 143 (704), 1504–1516. doi:10.1002/qj.3021
 Villalba-Pradas, A., and Tapiador, F. J. (2022). Empirical values and assumptions in the convection schemes of numerical models. Geosci. Model Dev. 15 (9), 3447–3518. doi:10.5194/gmd-15-3447-2022
 Vogelezang, D. H. P., and Holtslag, A. A. M. (1996). Evaluation and model impacts of alternative boundary-layer height formulations. Boundary-Layer Meteorol. 81 (3), 245–269. doi:10.1007/BF02430331
 Wallcraft, A. J., Metzger, E. J., and Carroll, S. N. (2009). Software design description for the hybrid coordinate ocean model (HYCOM), 149. Version 2.2. NRL/MR/7320-09-9166. 
 Wang, W., Han, J., Yang, F., Steffen, J., Liu, B., Zhang, Z., et al. (2023a). Improving the intensity forecast of tropical cyclones in the hurricane analysis and forecast system. Weather Forecast. 38 (10), 2057–2075. doi:10.1175/WAF-D-23-0041.1
 Wang, W., Liu, B., Zhang, Z., Mehra, A., and Tallapragada, V. (2022). “Improving low-level wind simulations of tropical cyclones by a regional HAFS,” in Research activities in Earth system modelling. Working group on numerical experimentation ed . Editor E. Astakhova, 9–10. 
 Wang, W., Sippel, J. A., Abarca, S., Zhu, L., Liu, B., Zhang, Z., et al. (2018). Improving NCEP HWRF simulations of surface wind and inflow angle in the eyewall area. Weather Forecast. 33 (3), 887–898. doi:10.1175/waf-d-17-0115.1
 Wang, W., Zhang, Z., Cangialosi, J. P., Brennan, M., Cowan, L., Clegg, P., et al. (2023b). A review of recent advances (2018–2021) on tropical cyclone intensity change from operational perspectives, part 2: forecasts by operational centers. Trop. Cyclone Res. Rev. 12 (1), 50–63. doi:10.1016/j.tcrr.2023.05.003
 Wang, W., Zhu, L., Kim, H., Iredell, D., Dong, J., Zhang, Z., et al. (2019). “NCEP HMON-based hurricane ensemble forecast system,” in Research activities in atmospheric and oceanic modelling. CAS/JSC working group on numerical experimentation ed . Editor E. Astakhova (Geneva: WMO). 
 Wang, W., Zhu, L., Liu, B., Zhang, Z., Mehra, A., and Tallapragada, V. (2023c). A forecast cycle–based evaluation for tropical cyclone rapid intensification forecasts by the operational HWRF model. Weather Forecast. 38 (1), 125–138. doi:10.1175/WAF-D-22-0007.1
 Xu, X., Sun, C., Lu, C., Liu, Y., Zhang, G. J., and Chen, Q. (2021). Factors affecting entrainment rate in deep convective clouds and parameterizations. J. Geophys. Res. Atmos. 126 (15), e2021JD034881. doi:10.1029/2021JD034881
 Zalesak, S. T. (1979). Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31 (3), 335–362. doi:10.1016/0021-9991(79)90051-2
 Zeng, X., Zhao, M., and Dickinson, R. E. (1998). Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Clim. 11 (10), 2628–2644. doi:10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2
 Zhang, G. J., Wu, X., Zeng, X., and Mitovski, T. (2016). Estimation of convective entrainment properties from a cloud-resolving model simulation during TWP-ICE. Clim. Dyn. 47 (7), 2177–2192. doi:10.1007/s00382-015-2957-7
 Zhang, Z., Wang, W., Doyle, J. D., Moskaitis, J., Komaromi, W. A., Heming, J., et al. (2023). A review of recent advances (2018–2021) on tropical cyclone intensity change from operational perspectives, part 1: dynamical model guidance. Trop. Cyclone Res. Rev. 12 (1), 30–49. doi:10.1016/j.tcrr.2023.05.004
 Zhang, Z., Wang, W., Liu, B., Zhu, L., Mehra, A., and Tallapragada, V. (2021). “Performance of HAFS-based ensemble prediction system (HAFSv0.2E) in 2021 atlantic hurricane season,” in 2021 HFIP annual meeting . Available at: https://hfip.org/sites/default/files/events/269/1245-zhanzhang-hafsv02e.pdf (accessed in Feb. 2023, Nov 15-18, 2021. 
 Zhang, Z., and Zhang, X. (2023). HAFS initial operational capability: evaluations and future plans. 3A.1, 2023 HFIP annumal meeting, nov. 14-17, 2023. Miami, FL. 
 Zhao, M., Held, I. M., Lin, S.-J., and Vecchi, G. A. (2009). Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Clim. 22 (24), 6653–6678. doi:10.1175/2009JCLI3049.1
 Zhao, Z.-K., Liu, C.-X., Li, Q., Dai, G.-F., Song, Q.-T., and Lv, W.-H. (2015). Typhoon air-sea drag coefficient in coastal regions. J. Geophys. Res. Oceans 120 (2), 716–727. doi:10.1002/2014JC010283
 Zheng, W., Ek, M., Mitchell, K., Wei, H., and Meng, J. (2017). Improving the stable surface layer in the NCEP global forecast system. Mon. Weather Rev. 145 (10), 3969–3987. doi:10.1175/MWR-D-16-0438.1
 Zheng, W., Wei, H., Wang, Z., Zeng, X., Meng, J., Ek, M., et al. (2012). Improvement of daytime land surface skin temperature over arid regions in the NCEP GFS model and its impact on satellite data assimilation. J. Geophys. Res. Atmos. 117 (D6). doi:10.1029/2011JD015901
 Zhou, L., Lin, S.-J., Chen, J.-H., Harris, L. M., Chen, X., and Rees, S. L. (2019). Toward convective-scale prediction within the next generation global prediction system. Bull. Am. Meteorological Soc. 100 (7), 1225–1243. doi:10.1175/BAMS-D-17-0246.1
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2024 Wang, Han, Shin, Chen, Hazelton, Zhu, Kim, Li, Liu, Liu, Steffen, Sun, Zheng, Zhang and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 16 May 2024
doi: 10.3389/feart.2024.1396390


[image: image2]
A flexible tropical cyclone vortex initialization technique for GFDL SHiELD
Kun Gao1*, Lucas Harris2, Mingjing Tong2, Linjiong Zhou1, Jan-Huey Chen2 and Kai-Yuan Cheng1
1Cooperative Institute for Modeling the Earth System, Princeton University, Princeton, NJ, United States
2NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, United States
Edited by:
Zhan Zhang, NCEP Environmental Modeling Center (EMC), United States
Reviewed by:
Yuqing Wang, University of Hawaii at Manoa, United States
Junghoon Shin, National Oceanic and Atmospheric Administration (NOAA), United States
* Correspondence: Kun Gao, kun.gao@noaa.gov
Received: 05 March 2024
Accepted: 11 April 2024
Published: 16 May 2024
Citation: Gao K, Harris L, Tong M, Zhou L, Chen J-H and Cheng K-Y (2024) A flexible tropical cyclone vortex initialization technique for GFDL SHiELD. Front. Earth Sci. 12:1396390. doi: 10.3389/feart.2024.1396390

Tropical cyclone (TC) intensity forecasting poses challenges due to complex dynamical processes and data inadequacies during model initialization. This paper describes efforts to improve TC intensity prediction in the Geophysical Fluid Dynamics Laboratory (GFDL) System for High-resolution prediction on Earth-to-Local Domains (SHiELD) model by implementing a Vortex Initialization (VI) technique. The GFDL SHiELD model, relying on the Global Forecast System (GFS) analysis for initialization, faces deficiencies in initial TC structure and intensity. The VI method involves adjusting the TC vortex inherited from the GFS analysis and merging it back into the environment at the observed location, enhancing the analyzed representation of storm structure. We made modifications to the VI package implemented in the operational Hurricane Analysis and Forecast System, including handling initial condition data, reducing input domain size, and improving storm intensity enhancement. Experiments using the T-SHiELD configuration demonstrate that using VI significantly improves the representation of initial TC intensity and size, enhancing TC predictions, particularly in storm intensity and outer wind forecasts within the first 48 h.
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1 INTRODUCTION
Tropical cyclone (TC) intensity forecasts have been a persistent challenge, primarily attributed to the complex dynamical processes affecting the storm intensity changes and the inadequacy of data for model initialization in the inner core region. Predicting the intensity evolution of initially strong TCs is particularly difficult if the model depends on external datasets generated by a coarse-resolution model used for its initialization. In such cases, the storm structure and intensity are typically not adequately represented. A variety of vortex initialization (VI) methods have been proposed to improve the representation of the TC vortex in Numerical Weather Prediction models, which were well summarized by Liu et al. (2020).
The operational hurricane forecasting models at National Oceanic and Atmospheric Administration (e.g., Hurricane Analysis and Forecast System, or HAFS; Hurricane Weather Research and Forecasting model, or HWRF) commonly employ a combination of VI and data assimilation (DA) to create a proper three-dimensional initial storm structure that more accurately depicts the current state of the observed storm (Tong et al., 2018). VI here refers to a relatively simple technique for adjusting size and intensity of the TC vortex in the model initial state (see Section 2.1 for an overview). In the self-cycled operational hurricane models, VI is used to create the first guess for the DA system, which in turn, utilizes various observations to further refine the storm structure.
In research-oriented models, such as the Geophysical Fluid Dynamics Laboratory (GFDL) System for High-resolution prediction on Earth-to-Local Domains (SHiELD; Harris et al., 2020), VI or DA cycling is typically not used. The forecast jobs are usually cold started and launched independently. However, even in this setup, the model can still benefit from an improved storm initialization. The SHiELD applications usually relies on the Global Forecast System (GFS) analysis for model initialization. While this is generally valid for synoptic weather patterns, there can be notable deficiencies in the representation of initial TC structure and intensity due to the coarse resolution used by GFS. The use of the VI could be an effective means to improve the representation of initial TC vortex structure.
In this work, we adopt a similar VI approach as in HAFS and HWRF to adjust the initial TC vortex in GFDL SHiELD applications because of its simplicity and computational efficiency. This approach extracts the TC vortex in existing atmospheric state and adjust its size and intensity to match with observed values. Our main objectives are to document the change we made in the public-released VI package in HAFS, and also present our first attempt to use VI to improve TC forecasts in SHiELD applications.
2 THE VORTEX INITIALIZATION METHOD
2.1 Overview
The technical details of the VI method are well documented in Liu et al. (2020) and we only present a brief overview here of the basic ideas. First, the TC vortex and its surrounding environment components are separated following the vortex filtering method originally developed by Kurihara et al. (1995; K95 hereafter). The TC vortex component is then adjusted to ensure some of its characteristics (intensity, size parameters) match with the estimated values of the observed storm, while the environmental component remains untouched. As the last step, the adjusted TC vortex flow component is merged back into the environment, with its center relocated to the observed location. The operational dataset for observed TCs is the Tropical Cyclone Vitals Database (TC vitals), which is generated in real time by the National Hurricane Center.
The VI code package is structured into two layers. The lower layer consists the code that handles the actual VI tasks, such as vortex filtering, storm size and intensity adjustments, and vortex-environment merge. This layer of code requires input data adhering to a fixed format, which contains atmospheric variables in a storm-centered latitude-longitude box on A grids. The upper layer, which is the Input/Output (I/O) layer, is designed to perform two primary functions: a) formatting model-specific data to match the requirements of the lower layer, and b) post-processing the output of the lower layer into a format directly useable by the model.
In the operational models where the continuous DA cycling mode is used, VI is used as a procedure to create the first guess field for the DA system. The initial TC vortex could either be extracted from the GFS analysis, or the 6-h forecast from the previous cycle, depending on the availability of the previous forecast and the storm intensity. The extracted TC vortex will go through the VI steps (if the intensity is weaker than the observed value) and then be merged with the environmental component at the observed location.
2.2 Our modifications
We aim to adopt the same VI package used by HAFS (https://github.com/hafs-community/HAFS/tree/develop/sorc/hafs_tools.fd) to improve the TC initialization in SHiELD applications. During the development process, we made several modifications (described below) to facilitate the implementation of the package into the SHiELD workflow.
a) Introduced new capacity to handle the initial condition data created by SHiELD pre-processing package
In a cycled forecast system, the forecast initialized at a given time relies on the forecast from the previous cycle (e.g., the 06:00 UTC forecast job relies on the data produced by the 00:00 UTC job). However, for most SHiELD applications, cycling is not used. Instead, the SHiELD forecasts are usually cold-started and launched directly using the initial condition (IC) files generated by a pre-processing package. These IC files are in NetCDF format and have the same horizontal layout as the model grid (i.e., the cubed-sphere tiles).
We introduced new capacity to the VI package to handle SHiELD IC files, which involves introducing new code to the upper I/O layer as described in Section 2.1. We created new functionality that prepares the data in the required format for the lower layer based on IC files. Additionally, it post-processes the output of the lower layer into a format that is consistent with the original IC files. Specifically, our new functionality handles tasks such as i) transforming horizontal Earth-relative wind components between A grids and the staggered grids, ii) selecting data in a uniform latitude-longitude box centered at the TC center from the IC file, and iii) merging the selected boxed data (VI-adjusted) back to the IC file.
b) Reduced input domain size
The vortex filtering method developed by K95 contains two steps. In the first step, the total field is split into the basic field and disturbance field with an iteratively applied local filter (see equations 3.4–3.6 in Kurihara et al., 1993). In the second step, the disturbance field is further divided into the TC and non-TC disturbances through an optimum interpolation method as in K95.
To clarify the terminologies used thus far, the environment component we mentioned earlier constitutes the basic field and the non-TC disturbances (consistent with the terminologies used in K95 and Liu et al., 2020). In the second step of the K95 method, the filter domain is determined based on the tangential component of the total disturbance wind at a given level (e.g., 850 mb) along 24 radial directions. The filter domain therefore can have an irregular polygonal shape (see Figure 2A in K95).
In the current HAFS implementation, both steps of the filtering procedure operate on data that have been coarse-grained to 1° resolution over a 40 x 40° domain, centered on the storm. The high-resolution TC vortex for the subsequent size and intensity adjustment operations is obtained by subtracting the coarse-resolution environment component from the total high-resolution data.
The 40 x 40° data are generated by blending data from the high-resolution inner-nest and the coarser-resolution outer nest in HAFS. However, for SHiELD applications, certain storms may be positioned too close to the tile edges, hindering the selection of 40 x 40° boxed data. This holds true for both the parent global tile and the nested high-resolution tile.
We also noticed that in the HAFS implementation, the actual vortex filter domain determined via the K95 method undergoes additional smoothing along the azimuthal direction and then is further limited based on the observed Radius of the Outermost Closed Isobar (ROCI). The final filter domain is thus mostly circular, with its radius not exceeding 1.1 times of the ROCI in any of the 24 radial directions.
Due to the aforementioned reasons, we reduced the required domain size of the input data for the VI procedures from 40 x 40° to 10 x 10°. This change significantly relaxes the data requirement, allowing more TCs to qualify for VI even when their location is not too distant from the grid tile edges. While the change in domain size may not matter much for the detection of the filter domain, as it can always be contained in the 10 x 10° box, we acknowledge that it does affect the first step of the vortex filtering procedure due to the repeated application of the local filters. However, in practice, we observed that the impact of the domain size on the filtering results is overall insignificant, as shown in Figure 1.
c) Improved method for storm intensity enhancement
[image: Figure 1]FIGURE 1 | The tropical cyclone vortex obtained via the vortex filtering procedure based on data in a 40 x 40° latitude-longitude box (A–C) and 10 x 10° box (D–F). The 10 m height wind fields shown are from Hurricane Fiona (2022) and extracted from the GFS analysis on 2022-09-20 00:00 UTC. The left panel is the longitudinal wind, middle panel is the latitudinal wind, and the right panel is the total horizontal wind speed. The wind pattern to the south of the storm center was affected by the land surface.
In the current HAFS implementation, storm size and intensity adjustments are performed after the vortex filtering procedure, with technical details well described in Liu et al. (2020). Here we only describe our modification on the intensity enhancement strategy, which is only applied when the size-adjusted storm still has an intensity lower than the observed intensity (often true for hurricane-strength storms).
By default, the storm enhancement is done by adding a portion of an axisymmetric “bogus” vortex to the existing vortex. This “bogus” vortex can be either the azimuthally-averaged TC vortex from the 6-h forecast from the previous cycle, or a predefined axisymmetric synthetic vortex (Liu et al., 2020). In the present study, we use a predefined synthetic vortex. Take the Earth-relative longitudinal wind U, for example, the three-dimensional increment can be written as follows.
[image: image]
where [image: image] represents the longitudinal wind increments, [image: image] represents the longitudinal wind component of the bogus vortex, and the value for parameter [image: image] is determined via Equation 38 in Liu et al. (2020), which ensures that the total surface maximum wind speed after the enhancement equals the observed value.
By default, [image: image] does not have spatial variation, which means that wind increments are added not just in the TC core region, but across the entire storm. Such a strategy is usually suitable for a cycled prediction system, in which the intensity of the model initial vortex is repeatedly adjusted, and the wind increments are not expected to be large. However, we noticed that in our cold-started forecasts, using a constant [image: image] can overly enhance the outer wind when there is a large difference between the observed intensity and the TC intensity in the initial condition data. This is particularly evident for the initially strong storms (e.g., major hurricanes).
To alleviate this issue, we allow the [image: image] parameter to vary radially. For example, the new longitudinal wind increment is given by Eq. 2 below.
[image: image]
[image: image]
where r is the radial distance of a given point relative to the storm center, RMW is the Radius of Maximum Wind and R34 is the four-quadrant-mean 34 knots wind radius. Both RMW and R34 are diagnosed based on the estimated 10m surface wind field in the model prior to the wind increments being added. [image: image] in Eq. 3 is the same as in Eq. 1, and determined via Equation 38 in Liu et al. (2020).
According to the new formula, the same wind increments are added within the RMW as in the original formula. This ensures the adjusted storm maximum wind still matches with observations. However, the wind increments gradually decrease with the radial distance from the RMW and become zero once the radius exceeds the gale-force wind radius.
Figure 2 provides an example showing the impact of our modification on the adjusted wind field for Hurricane Larry (2021). The maximum 10 m wind speed is similar between the two methods. However, when using a constant [image: image] for the wind enhancement (Figure 2A), the wind speed at the outer region is overly enhanced, manifested by the adjusted gale-force wind region greatly exceeding the observed. Using a radius-dependent [image: image] mitigates this issue (Figure 2B). Similar improvements can be observed in other cases when the differences between the unadjusted model TC intensity and observed intensity are large (e.g., greater than 10 m/s).
[image: Figure 2]FIGURE 2 | The total adjusted 10 m wind speed with two wind enhancement methods. (A) using a spatially constant [image: image], (B) using a radius-dependent [image: image]. The black contour represents the gale-force wind speed (34 knots or ∼17.5 m/s). The gray contour shows the averaged gale-force wind radii based on TC vital observations (mean of the values in the four quadrants).
3 WORKFLOW AND EXPERIMENT SETUP
3.1 Workflow with vortex initialization
The modified VI package can then be directly used in the SHiELD workflow, which is based on the standard UFS_UTILS suite (https://ufs-community.github.io/UFS_UTILS/). Figure 3A illustrates the workflow of a typical forecast based on SHiELD that cold starts from IC files. We first create IC files for a specific date and time by remapping the corresponding GFS analysis to the model horizontal grids. And then the forecast job for this initial time can be launched directly using the IC files and other required external datasets.
[image: Figure 3]FIGURE 3 | The workflow for launching a SHiELD forecast. (A) not using Vortex Initialization (VI) and (B) using VI.
In our proposed workflow that incorporates VI (Figure 3B), VI is introduced as an additional step in the preprocessing procedure. After generating the IC files, we apply the VI procedure to them if there are TCs that satisfy the user-specified criteria (e.g., the observed storm intensity exceeds a threshold value). If multiple storms require VI, the VI procedures can be applied sequentially, one storm after another. Note that we do not adopt cycling, even with VI incorporated. The forecast job is still cold started, but launched with the VI-adjusted IC files.
3.2 Model and experiments
To demonstrate the impact of using our modified VI method on TC prediction, we conducted experiments using the T-SHiELD configuration, which is a two-way nested configuration of SHiELD (Harris et al., 2020; Gao et al., 2021) that features a large high-resolution nest (3.25 km grid spacing) over the North Atlantic (Figure 4).
[image: Figure 4]FIGURE 4 | Grid layout of the two-way nested T-SHiELD. Each plotted cell represents 48 × 48 actual grid cells. Heavy black lines represent cubed-sphere edges; red lines represent nested grids. The horizontal resolution is about 13 km in the global tile and 3.25 km in the nest (a refinement ratio of 4 is applied).
The hindcast experiments spanned August and September from 2020 to 2022, with initialization at 00:00 UTC and 12:00 UTC. We only considered the cases in which there was at least one storm with an observed maximum surface wind speed greater than 20 m/s (which is our VI threshold) in the nested region of T-SHiELD. We conducted two sets of T-SHiELD experiments, one with and the other without VI. The VI procedures are only applied to the IC files for the nested region.
4 RESULTS
4.1 Selected cases
We begin by examining the prediction of track, intensity and gale-forece wind radii (R34) of two selected hurricanes to gain a direct understanding of the impact of VI on individual TC predictions. Here R34 refers to the mean value of the gale-force wind radii averaged over the four quadrants. All track, intensity and wind radii values from the model were diagnosed using the GFDL Vortex Tracker (Marchok 2021).
Figure 5 shows the prediction for Hurricane Larry (2021) initialized on 2021-09-05 00:00 UTC. Using VI only has minor impact on the predicted track, which is somewhat expected, given that we only made modifications on the initial TC vortex but not the environment or the steering flow. There are significant impacts on the predicted storm intensity and R34. Most notably, the gap between the model and observed intensity at initiation (∼10 m/s) is effectively closed (Figure 5B).
[image: Figure 5]FIGURE 5 | Prediction of Hurricane Larry initialized on 2021-09-05 00:00 UTC. (A) track, (B) intensity as measured by maximum 10 m wind speed, and (C) the mean gale-force wind radii (four-quadrant mean value is shown).
We further note that there is a benefit at longer lead time due to the improved initialization: the prediction for both intensity and R34 are improved even beyond day 3. This is an interesting finding considering that the model physics is not changed at all. The improvement at longer lead time here indicates that, at least for certain storms, the initialization of the storm intensity and structure has a long-lasting impact on storm evolution.
Figure 6 illustrates another successful case of using VI in the model, which is the prediction of Hurricane Fiona (2022), initialized on 2022-09-20 00:00 UTC. Similar to the Hurricane Larry (2021) case, there is little impact of using VI on track prediction, but VI effectively reduced the initial storm intensity bias. We also noted that the model predicted intensity and R34 of Fiona were not significantly different from those in the forecast with the use of VI method beyond 24 h. This implies that the impact of VI may be storm dependent. This motivates us to further examine the mean impact of using VI on multi-season statistics, which will be addressed in the following section.
[image: Figure 6]FIGURE 6 | Prediction of Hurricane Fiona initialized on 2022-09-20 00:00 UTC. (A) track, (B) intensity as measured by maximum 10 m wind speed, and (C) the mean gale-force wind radii (four-quadrant mean value is shown).
4.2 Multi-season error statistics in T-SHiELD
We next present the TC track, intensity and R34 prediction error statistics in the T-SHiELD hindcasts done in the 2020-2022 North Atlantic Hurricane seasons (Figures 7–9). In the verification, we exclude storms that do not meet the VI thresholds; therefore, the difference between the two sets of experiments can clearly demonstrate the impact of VI. The key points are summarized below.
• The net impact of using VI on mean track error is small (Figure 7), consistent with what we observed in the individual forecasts (Figures 5A, 6A).
• There is a significant reduction in the mean intensity forecast bias and error (Figure 8), primarily within the first 48 h. Over a longer lead time, the mean bias and error in the set using VI are nearly the same as the reference set.
• For predictions of surface wind structure, T-SHiELD struggles with a persistent negative R34 forecast bias (Figure 9), suggesting that certain physical processes affecting R34 are not well captured by the model. However, the improvements in mean R34 forecast bias and error when using VI are encouraging: the reductions in the mean R34 forecast biases and errors persist throughout the entire 5-day period, indicating that the outer wind changes introduced by using VI can last for an extended period.
[image: Figure 7]FIGURE 7 | Mean track error from the two sets of T-SHiELD hindcast experiments with or without Vortex Initialization. The sample number for each lead time is shown in parenthesis.
[image: Figure 8]FIGURE 8 | Same as Figure 7 but for (A) mean intensity bias and (B) mean intensity error.
[image: Figure 9]FIGURE 9 | Same as Figure 7 but for (A) mean R34 bias and (B) mean R34 error. R34 represents the four-quadrant-mean gale-force wind radii. The number in the parentheses indicates the total number of data records used.
To summarize, we observe several benefits of using VI in the T-SHiELD experiments and there is no noticeable degradation in the model forecast skills. This led us to decide to incorporate VI in the workflow for the near real-time T-SHiELD for the 2023 hurricane season.
4.3 Implication of using VI at 6.5 km resolution SHiELD
The VI package can easily be implemented in other SHiELD configurations to improve the TC representation in the IC. The benefits in 3.25 km resolution T-SHiELD motivate us to further assess the impact of VI in coarser-resolution SHiELD configurations. One SHiELD configuration under development at GFDL is the global uniform 6.5 km resolution SHiELD, which represents our most recent effort towards using global storm resolving-resolution for medium-range weather forecasting across the globe (a documentation paper is currently being prepared).
We next conducted exploratory experiments to probe the potential impact of using VI on TC forecasting at 6.5 km resolution. Considering the computational challenge involved in running the model at 6.5 km resolution globally, we introduce a reduced-resolution version of T-SHiELD, with a similar domain setup as T-SHiELD (Figure 4), but with the horizontal grid spacing in the nested region changed to 6.5 km. Similar to the two sets of T-SHiELD hindcasts we discussed in previous sessions, we conducted another two sets of hindcasts using the 6.5 km resolution nested configuration, one with VI and the other without.
The primary goal of using VI is to improve TC intensity and we therefore only focus on the storm intensity verification in these two sets of experiments (Figure 10). As expected, reducing the model resolution has a detrimental effect on TC intensity forecast skill across the entire 5-day period. However, we emphasize that the use of VI leads to significant improvement in the TC intensity forecast skill at 6.5 km resolution. Firstly, both the mean intensity bias and error in the first 24 h are significantly reduced, which is consistent with the finding from the 3.25 km resolution T-SHiELD experiments in Section 4.2. Secondly, the mean intensity error at even longer lead time is reduced because of the use of VI. The mean intensity errors on Days 4 and 5 in the 6.25 km resolution VI experiments are even close to those in the 3.25 km resolution T-SHiELD. These preliminary results suggest that correcting the initial TC intensity and structural biases with VI in the global uniform 6.5 km resolution SHiELD could have nontrivial impact on the TC intensity prediction. This finding underscores the need for additional efforts in this area. These results also imply that VI may be beneficial in lower-resolution prediction models and not just in kilometer-scale T-SHiELD and HAFS.
[image: Figure 10]FIGURE 10 | (A) Mean intensity bias and (B) intensity error from experiments done with a 6.5 km horizontal resolution nested SHiELD configuration (see text in Section 4.3 for details).
5 SUMMARY
The main goal of this paper is to document the development and implementation of a Vortex Initialization (VI) technique in the GFDL SHiELD applications. We started with the publicly-released VI package implemented in the operational Hurricane Analysis and Forecast Model and made several modifications to facilitate its implementation in the SHiELD workflow, which includes the modifications made to the handling initial condition data, reducing input domain size, and improving storm intensity enhancement. Our proposed VI workflow can be easily implemented in any SHiELD application.
We conducted experiments using the T-SHiELD configuration, a global nested model with a 3.25 km-resolution two-way nest over the North Atlantic. Results show that incorporating VI effectively improves the representation of the initial TC intensity and size, and also improves TC prediction, particularly in storm intensity and outer wind predictions within the first 48 h. The impact on storm outer wind is observed even at longer lead times, indicating the lasting effects of improved initialization. Moreover, exploratory experiments conducted using a 6.5 km resolution configuration suggest that similar benefits may be seen even at coarser-resolution SHiELD configurations.
The results presented in this work are only our initial efforts. In our current VI implementation, we still cold start the model from GFS analysis and the wind increments for storm intensity enhancement are taken from a predefined synthetic vortex. The wind increments are vertically uniform and did not have a typical boundary layer flow structure. This could cause a sudden weakening of the TC intensity in the first 6 h or so as. Future work will focus on improving the storm enhancement strategy by either improving the structure of the predefined synthetic vortex, or using the spun up TC vortex from the previous forecast.
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The “23.7” event, an extreme rainstorm that affected North China from July 29 to 2 August 2023, was simulated using the Weather Research and Forecasting (WRF) model, version 4.2. We focus on dynamically diagnosing and analyzing the mass and latent heat budgets of rainwater during the extreme precipitation event on July 31 in the Beijing area, where the hourly rainfall reached an extraordinary 111.8 mm. Generally, the model effectively simulated the rainstorm, enabling further assessment of the extreme precipitation. Results indicated that under the combined influence of three major weather systems—the residual circulation of Typhoon Doksuri (a low-pressure system after typhoon landfall), the embryonic stage of Typhoon Khanun, and the North China high-pressure dam—a continuous influx of moisture and energy was transported to the North China region, promoting heavy precipitation. Application of vorticity equation diagnostics indicates that the horizontal transport term is the primary source term. Mass balance analysis reveals that the primary source of rainwater is the accretion of cloud droplets by rain, and the condensation of water vapor into cloud droplets is the main contributor to the latent heat.
Keywords: microphysical processes, extremely heavy rainfall, Beijing, “23.7”, budget analysis
1 INTRODUCTION
Frequent occurrences of extreme heavy rainfall events have had a major impact on the socio-economic structure and ecological systems, causing widespread concern from all walks of life. (Min et al., 2011; Zahiri et al., 2016; Tellman et al., 2021). Although research into heavy rainfall mechanisms has advanced, accurately predicting these events remains a significant challenge due to their complexity, locality, and rapid variability (Christopher and Zhang, 2012; Gao et al., 2018; Yu et al., 2019). Northern China, particularly Beijing, has experienced a notable increase in extreme precipitation events, presenting critical challenges to urban infrastructure, ecological health, and public safety. Thus, a detailed investigation into the mechanisms of these events is essential not only for enhancing our understanding but also for improving forecast accuracy and developing effective disaster prevention and mitigation measures.
Previous studies have shown that cloud microphysical processes play a key role in precipitation formation and have a significant impact on the thermodynamic and cloud dynamical processes of various convective systems from mesoscale, and synoptic to large scales (Li et al., 2016; Shu et al., 2023; Gao et al., 2015). This effect is crucial for a comprehensive understanding of precipitation dynamics. Within clouds, the transformation of different types of hydrometeors (cloud water, rain, cloud ice, snow, graupel and hail) is controlled by complex cloud microphysical processes. These processes include the collision and coalescence of cloud water/rainwater, the melting and aggregation of cloud ice, and the accretion/boiling between supercooled water and ice particles, resulting in the phase change of water material (Takahashi and Kawano, 1998; Yang et al., 2015; Mao et al., 2018). Gao et al. (2021) observed that the budget of rainwater in South China rainstorms indicates that the warm-rain process plays a pivotal role during the initiation stage of convection. And previous studies have clarified that the main mechanism driving atmospheric precipitation is the large-scale movement and convergence of water vapor. These processes result in the condensation or freezing required for cloud formation and then the development and release of precipitation from these clouds (Cui, 2009; Yin et al., 2023). In addition, phase changes in hydrometeors and the resulting release of latent heat can significantly alter dynamic processes within clouds. Marinescu et al. (2016) noted that deposition and condensation were the primary reasons for the observed potential warming in simulated Mesoscale Convective Systems (MCS) during mid-latitude continental convective cloud experiments. Yin et al. (2023) demonstrated that microphysical processes typically cool the lower atmosphere while warming the upper troposphere. Clark et al. (2014) suggested that, during the mid-life of a system, cold pools are broadly related to system propagation speed, enabling the convective band to “sweep over” any convective cells triggered prior to the system. For the mechanism of precipitation, Gao et al. (2005) combined the water vapor budget with the cloud hydrometeor budget to derive a diagnostic equation-a surface rainfall budget equation in a two-dimensional cloud-resolving model framework. And then Huang et al. (2016) extended the 2D surface rainfall equation to the 3D WRF-based precipitation equation to examine the rainfall budget. Huang et al. (2019) calculated moisture, momentum, and heat budgets to study the mechanisms of record-breaking rainfall in South China.
Regarding heavy rains in Beijing, previous studies have mostly focused on the two extremely heavy rains of “7.21” (July 21–22, 2012, Beijing) and “7.20” (July 19–21, 2016, Beijing). The complex physical process mechanism of heavy rain formation is studied in many aspects such as large-scale circulation conditions, topographic effects, underlying surface effects, urban heat islands and urbanization, and mesoscale convective systems (Zhu and Xue, 2016; Dou and Miao, 2017; Chang et al., 2021; Li et al., 2020). Zhang and Zhai (2011) conducted a study on the spatiotemporal distribution characteristics of extreme precipitation in my country and pointed out that the probability of extreme precipitation events in North China is higher during the hour than around the evening. Li et al. (2017) found that the precipitation of hourly heavy rainfall events can reach more than 30% of the total precipitation in the warm season. Yang et al. (2021) found that when low-level warm and humid air encounters mountainous terrain, the local convergence formed under the influence of terrain uplift is very conducive to the triggering of convection and the occurrence and development of precipitation systems. Previous studies have mostly focused on the effects of microphysical processes on the formation and development stages of precipitation. Chen et al. (2021) found that compared to the bulk scheme, the bin scheme led to lower convective heights, which in turn resulted in stronger precipitation by the WRF model to diagnose mass and latent heat budgets in a heavy precipitation event in Beijing. The formation of cold pools during phase transitions of water substances also affects cloud dynamics. Mao et al. (2018) compared warm-sector precipitation and cold-frontal precipitation and found that the accretion of cloud droplets by rain was the biggest source of rainwater, the main cooling effect was due to the evaporation of rainwater and cloud water. However, the cloud microphysical transformation and dynamic and thermodynamic mechanisms during extremely heavy precipitation are not yet fully understood. So what are the mass source and sink terms at extremely heavy rainfall moments during heavy rain? What is the latent heat source and sink term? And what is the specific dynamic and thermodynamic mechanism? We conduct research on these issues.
An extreme precipitation event, known as the “23.7” Event, struck northern China from July 29 to 2 August 2023. Our focus is on a significant rainfall event in Beijing, where the hourly precipitation reached 111.8 mm. This study aims to explain this event’s development mechanism through a comprehensive analysis of microphysical processes, dynamic characteristics and their interactions. Utilizing the Gridpoint Statistical Interpolation (GSI) assimilation system, the Weather Research and Forecasting (WRF) mesoscale model, and observational data, this study investigates the critical characteristics of this rainstorm, which encompass thermodynamic processes, the mass balance of hydrometeors, and the energy budget. Furthermore, the research aims to develop a conceptual model that enhances understanding and prediction of such extreme precipitation events, thereby providing a scientific foundation for future weather forecasting and disaster management strategies.
2 CASE OVERVIEW, METEOROLOGICAL BACKGROUND, MODEL DESCRIPTION, AND VERTIFICATION
2.1 Case overview
The “23.7” event resulted in substantial economic losses, surpassing several billion yuan. In Beijing, this catastrophic event led to the tragic loss of 33 lives, with an additional 18 individuals reported missing. Remarkably, the total precipitation during this period represented 60% of Beijing’s annual average rainfall, totaling 331 mm. The districts of Mentougou and Fangshan recorded average rainfall figures of 538.1 mm and 598.7 mm, respectively. However, the most significant rainfall was observed at Changping’s Wangjiayuan Reservoir, which registered an unprecedented 744.8 mm of rain, marking the highest rainfall recorded in the city. Instrumental data confirm that this event represents the most substantial amount of precipitation recorded in the Beijing region in the past 140 years. Furthermore, Qianlingshan in Fengtai district experienced the highest hourly precipitation intensity on July 31 between 0200 and 0300 UTC, with an astonishing 111.8 mm falling per hour. This extreme weather event underscores the critical need for enhanced understanding and forecasting of meteorological phenomena to mitigate the impacts of such severe natural disasters.
2.2 Meteorological background
The meteorological background of the “23.7” event was analyzed using the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis data, featuring a horizontal resolution of 0.25° × 0.25°. Figure 1 shows the large-scale atmospheric circulations at 12 UTC on July 30 and 00 UTC on 31 July 2023, respectively.
[image: Figure 1]FIGURE 1 | Distribution of 96-h (0000 UTC 29 July to 0000UTC 2 August) accumulated rainfall (mm; shaded) from the intensive surface rain gauge observations (A) and simulation (B).
On 30 July 2023, major atmospheric circulation patterns featured continental high pressure in the northwest, subtropical high pressure in the east, the residual circulation of Typhoon Doksuri in the southwest (a low-pressure system post-typhoon landfall), and the embryonic stage of Typhoon Khanun in the southeast at 0000 UTC. The intense rainfall was primarily driven by the northward and far inland movement of Doksuri’s residual circulation after landfall. This trajectory’s persistence necessitated a planetary-scale weather system larger than the typhoon itself, namely, the western Pacific subtropical high. This stable and relatively static subtropical high began its northward movement in mid-July and had strengthened by month’s end, moving slightly further north. The powerful Western Pacific subtropical high forced the typhoon’s remnants to move along its southwestern periphery, steering the airflow northwestward towards the Beijing area. By 0000 UTC on July 31, the continental and subtropical high pressures had interconnected, forming a robust and extensive “high-pressure dam” in the north. This dam blocked the northward movement of the typhoon’s remnant vortex, thereby triggering and sustaining heavy rainfall in the region. As the low vortex advanced northward, it encountered hindrance from the high-pressure dam, causing the North China region to remain under the influence of either the low vortex or its inverted trough. By 0000 UTC on July 31, the diminished inverted trough and the emerging warm shear line in central North China had created ideal conditions for heavy rainfall.
Abundant water vapor conditions were critical to the generation of sustained heavy rainfall. In this process, Doksuri and the embryonic Typhoon Khanun synergistically formed a potent water vapor transport channel. The southeastern jet stream between 700 hPa and 850 hPa in East China was abnormally strong, with jet core wind speeds of 20–24 m/s, and the specific humidity at 925 hPa reached 18 g/kg; the entire layer of precipitable water exceeded 75 mm (Figure 1).
To summarize, the genesis of this meteorological event was linked to the northward movement of Typhoon Doksuri’s remnants, which encountered substantial impediments due to the formidable blocking effect of the high-pressure system over North China. This phenomenon led to the stagnation of the typhoon’s progression. Concurrently, the persistent transport of moisture and energy from both Typhoon Doksuri and the developing Typhoon Khanun established a conducive environment. This setting, characterized by a stable, overarching large-scale atmospheric circulation, proved instrumental in fostering the formation and recurrent manifestation of mesoscale convective systems. These atmospheric configurations played a crucial role in facilitating the occurrence of significant heavy rainfall events, highlighting the complex and synergistic interactions between regional atmospheric disturbances and broader climatic systems in the genesis of extreme weather phenomena.
2.3 Model description and data
The observed precipitation data is sourced from the China Meteorological Administration Multisource Precipitation Analysis System (CMPAS) dataset, specifically the CMPAS_1 km_NRT. These datasets are provided by the National Meteorological Information Center (NMIC) of the China Meteorological Administration (CMA). The CMPAS_1 km_NRT is a radar–satellite–gauge merged precipitation product with a resolution of 0.01 × 0.01 (native resolution: 1 km), and the temporal resolution is hourly. The composite reflectivity and three-dimensional reflectivity factor data employed in this study is derived from a weather radar networking product, developed by the NMIC, CMA. This data is updated at intervals of 10 min. The single-station radar data referenced in this study is sourced from the S-band Doppler weather radar situated at the Haituoshan station in Beijing. Characterized by a wavelength of around 10 cm, this radar boasts a maximum detection range of 460 km and conducts comprehensive volumetric scans at 6-min intervals.
The three-dimensional and non-hydrostatic Advanced Research WRF (WRF-ARW) model, version 4.2, was used to simulate this “23.7” event. The numerical experiment consists of three one-way nested domains with 9-, 3-, and 1-km horizontal resolutions. We use 54 vertical levels from the surface to model top of 50 hpa. The horizontal grid points are 784 × 620, 1807 × 1,327, and 1,057 × 1,162, respectively.
The Kain-Fritsch cumulus parameterization (Kain, 1993; Kain, 2004) was applied in the 9 km domain (D01; Figure 2), but not in the 3 km domain (D02) and 1 km domain (D03; Figure 2). The other model physical parameterization schemes include the Morrison (2-moments) microphysics scheme, the Mellor-Yamada-Janjic (Eta) TKE planetary boundary layer scheme (Mesinger, 1992; Janjić, 1994) and the surface layer parameterization, the RRTMG long- and shortwave radiative scheme, and the unified Noah land surface model (Tewari et al., 2004).
[image: Figure 2]FIGURE 2 | Nested model domains used for the WRF simulation with grid resolutions of 9 km (D01), 3 km (D02), and 1 km (D03). Shadings denote topography.
The WRF simulations over all three nested domains are integrated for 96 h, starting from 0000 UTC 29 July 2023, with outputs at 10-min intervals in D03. The European Centre for Medium-Range Weather Forecasts ERA5 reanalysis data, with a horizontal resolution of 0.25 × 0.25 and a temporal resolution of 3 h is used for the initial field and lateral boundary conditions.
In order to make the initial field of the model more accurate, we used the GSI assimilation system to assimilate the reflectance and radial wind of 49 SA-band weather radar data (including Beijing, Tianjin and Zhangjiakou in Hebei Province station) in the D01 and D02 regions nationwide (The quality control of radar-based data has been achieved through the automated radar pre-processing program 88d2arps developed by the Center for Storm Analysis and Forecasting (CAPS) at the University of Oklahoma); ground observation data from over 2000 stations of the National Station of the China Meteorological Administration (except for precipitation), including ground pressure, temperature, specific humidity, meridional wind, and zonal wind. The data undergo automated quality control during collection, including checking for extreme value ranges, and temporal and spatial consistency; the brightness temperature data from Himawari Satellite; and rainfall station data comes from the Meteorological Department, Information Center of the Ministry of Water Resources of People’s Republic of China. Rainfall stations are distributed in seven major river basins across China, with about 45,000 stations.
2.4 Model verification
From the 96-h cumulative precipitation data spanning July 29 to 2 August 2023, it is evident that the rain belt generally extends in a north-south direction, featuring two significant precipitation centers: one in the north stretching from western Beijing to central Hebei, and another in the south situated at the border between western Hebei and Shanxi Province (Figure 3A). The simulation results effectively capture the overall orientation of the rain belt and the locations of the intense precipitation centers, particularly in western Beijing (Figure 3B). However, the simulation slightly underestimates the southern precipitation center. This study primarily focuses on the intense precipitation in western Beijing from 0100 UTC to 0400 UTC on July 31, with an astonishing 111.8 mm falling per hour between 0200 and 0300 UTC. The 6-h cumulative precipitation data show that the model accurately simulates the intense precipitation center in the Beijing area, yet it underestimates precipitation in central Beijing and overestimates it in central and western Hebei (Figures 4A,B). Owing to the high precision of the simulation, some minor precipitation centers are detectable in the simulated data, which might go undetected in actual observations due to the lower resolution of observation stations. Regarding the hourly evolution of precipitation (Figure 5), the simulation shows a delay of approximately 2 hours compared to the observed data. However, the simulation accurately captures both the location of the intense precipitation center and the overall direction of the rain belt. Although the simulated area of intense precipitation is slightly smaller than observed, overall, the simulation of precipitation in western Beijing is relatively accurate.
[image: Figure 3]FIGURE 3 | Synoptic-scale atmospheric circulation fields at (A1–A4) 1200UTC on 30 July and (B1–B4) 0000UTC on 31 July 2023. (A1, B1) Geopotential height (blue contours, units: gpm), wind speed (shadding, units: m/s) at 500 hpa; (A2, B2) Geopotential height (blue contours, units: gpm), wind field (barbs), wind speed (shadding, units: m/s) at 700 hpa; (A3, B3) Geopotential height (blue contours, units: gpm), wind field (barbs), specific humidity (shadding, units: kg/kg) at 925 hpa; (A4, B4) Atmospheric precipitable water (shading, units: mm) and wind vector at 500 hpa. The red dot indicates the location of Beijing.
[image: Figure 4]FIGURE 4 | Distribution of observed (A), from 2300 UTC on 30 July to 0500 UTC on 31 July 2023) and simulated (B), from 2300 UTC on 30 July to 0500 UTC on 31 July 2023) 6-h accumulated rainfall (units: mm).
[image: Figure 5]FIGURE 5 | Distribution of observed (A1–A3) and simulated (B1-B3) 1-h accumulated rainfall (units: mm). The times are (A1) 0000UTC, (A2) 0100UTC, (A3) 0200UTC, (B1) 0200UTC (B2) 0300UTC (B3) 0400UTC 31 July 2023.
From the observation and simulation of radar reflectivity of convective cells, it is apparent that the mesoscale convective system causing heavy precipitation in Beijing originates from the Hebei convective system and moves northwest, culminating in heavy rain in Beijing. The high precision of the simulation facilitates the identification of numerous small convective systems in the radar plan view. At 2330 UTC on July 30, the convective system was located southeast of Beijing, with radar reflectivity at the convective center ranging between 45 and 50 dBZ (Figures 6A1, B1). At approximately 0030 UTC on July 31, after moving near the Fengtai district—a center of intense precipitation—the system not only maintained but also intensified, resulting in localized heavy rainfall at 0200 UTC with the convective center’s radar reflectivity exceeding 55 dBZ (Figures 6A2, B2, A6, B6). Overall, during the initial stages and throughout the movement of the convective system, the simulated convective center was slightly south of the actual location and covered a broader area, yet the simulation of the center’s intensity remained accurate. Additionally, the position of the mesoscale convective center during intense precipitation showed good correspondence between the simulation and observation.
[image: Figure 6]FIGURE 6 | Time series of the observes radar reflectivity and simulated results (color shading; units: dBZ). The black straight lines in (A6, b6) denote locations of cross sections. The times are (A1) 2330UTC 30th July, (A2) 0000UTC, (A3) 0030UTC, (A4) 0100UTC (A5) 0130UTC (A6) 0200UTC 31 July 2023, (B1) 0150UTC, (B2) 0220UTC, (B3) 0250UTC, (B4) 0320UTC (B5) 0350UTC (B6) 0420UTC 31 July 2023.
As evident from the vertical cross sections of radar reflectivity (Figure 7), the observed radar reflectivity at 0030 UTC on July 31 (Figures 7A1, B1) shows the convective system just moving near 116°E. At this time, the convective system was relatively weak, with an overall radar reflectivity below 45 dBZ. Subsequently, the convective system began to intensify. The simulated cross-section at this moment indicates the onset of convection, with slightly weaker lower-level radar reflectivity, yet the location of convection initiation aligns well with observations. By 0130 UTC (Figures 7A2, B2), the convection had intensified, with 50 dBZ radar reflectivity extending up to 3 km and the 40–45 dBZ reflectivity heights surpassing the zero-degree layer. At the peak of convection at 0200 UTC (Figures 7A3, B3), the height of the 50 dBZ radar reflectivity surpassed the zero-degree layer, with 55 dBZ reflectivity developing above 3 km. At this point, a strong updraft was evident within the convective center, extending above 6 km. Overall, the location and intensity distribution of the radar echoes closely match the actual observations, making them suitable for further analysis.
[image: Figure 7]FIGURE 7 | Vertical cross sections of radar reflectivity (color shading; units: dBZ) during the initiation, development and mature stages of observation (A1–A3) and simulation (B1–B3). The times are (A1) 0030UTC, (A2) 0130UTC, (A3) 0200UTC, (B1) 0250UTC x) 0340UTC (B3) 0400UTC 31 July 2023 (the same in subsequent similar figures.).
3 DYNAMIC, THERMAL, AND MICROPHYSICAL CHARACTERISTICS OF THIS TORRENTIAL RAIN EVENT
3.1 Dynamic and thermal characteristics
At the initial time (Figure 8A), vorticity is weak across all altitudes, with upward motion near the surface reaching approximately 1 m/s. A slight divergence field is evident at altitudes between 10 and 14 km. During the development stage (Figure 8B), two vorticity centers around 116°E at altitudes of 2 km and 6 km emerge and intensify rapidly. The upward motion strengthens significantly between 2 and 6 km, while the divergence field shows more modest development. In the mature stage (Figure 8C), from the surface up to 10 km, the convective center exhibits strong upper-level divergence and pronounced lower-level convergence, accompanied by clear upward motion. This pattern greatly facilitates convective development and the creation of strong instability. The overall structure, comprising upward motion, converging airflow, and diverging airflow branches, is well-aligned. The evolution of this rainstorm event shows a strong correlation with changes in the vorticity field, prompting further analysis using the vorticity equation (Feng et al., 2019; Huang et al., 2019; Fu et al., 2022). The vertical vorticity equation in Cartesian coordinates is expressed as follows:
[image: image]
[image: Figure 8]FIGURE 8 | Vertical cross sections of the vorticity (color shading; unit: 10–5·s−1), divergence (black contours, the range is 40 to 120, 10 intervals; unit: 10–5·s−1), vertical velocity (blue contours, the range is 0.7 to 1.9, 0.3 intervals; unit: 10–5·s−1) during the initiation (A), development (B) and mature stages (C) of simulation.
In Equation 1, [image: image] represents the vertical component of relative vorticity, [image: image] is the Coriolis parameter, [image: image] and [image: image] denote pressure and density, respectively. The terms on the right side of this equation, HA and VA signify vorticity horizontal advection and vorticity vertical advection, respectively. Til is the tilting term (representing the tilting of horizontal vorticity into the vertical), Div is the convergence-divergence (or stretching) term, Solenoid represents the solenoid term, and Coriolis advection (the change in vertical vorticity resulting from latitudinal displacement). The final term is the residual term.
Given the importance of vertical vorticity evolution in this “23.7” event, a budget analysis of vertical vorticity was conducted. Figure 9 displays vertical cross-sections showing trends in vertical vorticity due to horizontal advection, vertical advection, tilting, and stretching from the convective development to the peak phase. The solenoid and Coriolis advection terms are two orders of magnitude smaller than the aforementioned four terms and are thus ignored in this analysis. Furthermore, the residual term (RES) is sufficiently small to be neglected in this analysis.
[image: Figure 9]FIGURE 9 | Vertical cross sections along the black thick solid lines shown in Figure 7 of the mature stage vertical vorticity tendencies (shaded, units: 10−6 s–2) due to (A) horizontal advection, (B) vertical advection, (C) total advection, (D) tilting, (E) stretching, and (F) sum of tilting and stretching. The contours in each panel indicate vertical vorticity (40, 60, 80, 100, 120, 140 × 10−5 s–1).
Horizontal transport is the primary source term, predominantly moving positive vertical vorticity to the left side of the maximum vertical vorticity center. Although weaker than horizontal transport, the vertical advection term mainly transports vertical vorticity from the lower to the upper levels, particularly to the right side of the maximum vertical vorticity center. Tilting was a significant source for the development of each vertical vorticity core, exerting a positive effect across the entire vertical vorticity center, primarily accumulating below the core of the positive vertical vorticity center. The stretching term additionally contributed to vertical vorticity development near 5 km (Figure 9E). Consequently, due to the horizontal and vertical transport of vorticity, local vorticity begins to develop. Strong updrafts enhanced the tilting and stretching of vertical vorticity (Figure 9F), generating robust vertical vorticity and subsequently inducing locally low dynamic perturbation pressure.
The cross-section of the disturbance in potential temperature and wind field (Figure 10) clearly illustrates these changes. In the initial stage, a thermal anomaly of approximately 0.5K is present at an altitude of 2–4 km, accompanied by a weak updraft due to early convection. As convection intensifies, the anomaly increases to approximately 2K at altitudes of 4 km and 8 km. At the peak of the event, the thermal anomaly extends to ground level, indicating strong upward motion and robust convective development.
[image: Figure 10]FIGURE 10 | As in Figure 8 but for the disturbed potential temperature (color shading; units: K), vertical velocity (blue contours, the range is 0.7 to 1.9, 0.3 intervals; unit: 10−5·s−1) and wind field (vector arrows).
Simultaneously, the evolution of the convective system, through precipitation evaporation and heat absorption, cools the surrounding area, forming a cold pool within the lower 4 km layer, beneath the zero Celsius isotherm. The increase in upper-level potential temperature is attributed to water vapor condensation. The descent of hydrometeors facilitates the release of latent heat, thereby intensifying this effect. The formation of the cold pool augments thermodynamic compensation, thereby amplifying dynamical impacts. These combined thermal and dynamic processes crucially drive the development and escalation of the convective system.
Figure 11 displays vertical cross-sections of various hydrometeor mixing ratios and the vertical wind field, providing a comprehensive analysis of the interaction between the cloud water content and the dynamic field. Initially (not shown), the liquid water content was very low, accumulating mainly in the lower layers at below 1 g/kg, while solid water content was relatively higher, generally exceeding 1.8 g/kg. Rainwater particles were the primary contributors to the liquid water content, with a cloud water mixing ratio lower than that of rainwater and concentrated near the surface. Snow particles were the main source of solid water content, with a concentration of around 1.8 g/kg. The graupel mixing ratio was exceedingly low, below 0.1 g/kg, and ice particles, found mainly above 10 km, had a lower content. During the convective development phase, both liquid and solid water contents increased; however, rainwater and snow particles continued as the primary contributors to their respective categories. At this stage, the rainwater mixing ratio’s concentration center rose to 3 km, with a content of about 1.4 g/kg. The cloud water and ice mixing ratios remained low, while the graupel mixing ratio began to increase, reaching 0.6 g/kg at 6 km. The snow mixing ratio increased further to above 2.2 g/kg. In the mature stage of convection, a strong updraft emerged in the convective center, rapidly increasing the mixing ratios of all hydrometeors except for ice. At this stage, rainwater was the main contributor to liquid water, increasing sharply below the 0°C layer to above 2.4 g/kg. Meanwhile, the cloud water mixing ratio also increased near 5–8 km to 1 g/kg. Graupel and snow particles, due to increased concentrations, were the primary solid water contributors. Graupel particles increased significantly above the 0°C layer, reaching concentrations above 2 g/kg, while snow particle concentrations further increased to above 2.4 g/kg.
[image: Figure 11]FIGURE 11 | Vertical cross sections of various hydrometeors (color shading; units: g·kg−1) in mature stage. (A) cloud water; (B) cloud ice; (C) graupel; (D) snow; (E) rainwater; (F) the mixing ratio of liquid water (blue shading) and ice phrase (green shading).
In general, the formation of a cold surface generated a terrain-induced convergence line, resulting in strong updrafts. The convective center developed within an environment of latent heat release, with hydrometeor concentrations increasing as this environment intensified and expanded. During evaporation, rainwater absorbs heat, leading to the formation of a cold water pool in the lower atmosphere. In the upper atmosphere, water vapor condensed into ice particles, releasing heat during their descent; this heat was subsequently absorbed by the upper layers. This process resulted in a transformation from ice-phase to water-phase particles. This repetitive cycle established a dynamic interaction and feedback loop between the environmental and microphysical processes.
3.2 The microphysical characteristics
To accurately assess the impact of microphysical processes on the intense stage of convection during this torrential rain event, this section analyzes the hydrometeors within the convective system, focusing on the mass of rainwater and the latent heat budget. Utilizing previously discussed simulation data, this analysis diagnoses the microphysical processes during the mature stage of convective cells and their feedback on the mesoscale environment. A conceptual model has been developed to elucidate the potential mechanisms and effects contributing to the formation of convective cells.
From main source and sink items (Figure 12), during the mature phase of this precipitation event, the accretion of cloud droplets by rain is identified as the largest source term in the system, predominantly occurring between 2–6 km within the convective system, with an overall content exceeding 0.6 10−5 kg kg−1 s−1, accompanied by strong updrafts. This indicates that intense updrafts likely facilitate this process. The melting of graupel into rainwater, the second-largest contributor to rainwater, occurs primarily from 3 km up to the 0°C layer, with content about 0.6 10−5 kg kg−1 s−1, mainly distributed on both sides of the convective center and less so at the center itself, modestly present on the right side. Snow melting into rainwater, the third-largest source, primarily occurs from 4 km up to the 0°C height, with relatively lower content, roughly 0.25 10−5 kg kg−1 s−1, distributed on both sides of the convective center. In terms of sinks for rainwater mass, rain-graupel collection is the primary sink, distributed from the 0°C layer up to 7 km, with content approximately 0.3 10−5 kg kg−1 s−1; rain-snow collection, the second-largest sink, is more prominent on the left side of the convective center, with similar content, and less so on the right.
[image: Figure 12]FIGURE 12 | Vertical cross sections of main source (pra (A): accretion droplets by rain, psmlt (B): melting of snow, pgmlt (C): melting of graupel, color shading; units: 10–5 kg kg–1 s–1) and sink items (pracg (E): rain-graupel collection, pracs (F): conversion to graupel due to collection rain by snow, color shading; units: 10–5 kg kg–1 s–1) and net items (D), color shading; units: 10–5 kg kg–1 s–1) at the mature stage.
This aligns with the results from single-station dual-polarization radar measurements at Haituo Mountain (Figure 13), where the Correlation Coefficient near the convective center is close to 1, and the Differential Reflectivity values range from 1.5 to 2 dB. These values suggest that the convective center predominantly consists of medium-sized raindrops, corroborating the earlier finding that the accretion of cloud droplets by rain is the main source term.
[image: Figure 13]FIGURE 13 | The mean production rates [(A), units: 10−6 kg kg−1 s−1] and mean heating rates of microphysical processes [(B), units: 10–3 K s−1] in heavy rainfall centers at the mature stage (0400UTC 31 July 2023). Here, piacr denotes ice-rain collection, mnuccr denotes contact freezing of rain, pre denotes evaporation of rain, pra denotes accretion droplets by rain, psmlt denotes melting of snow, pgmlt denotes melting of graupel, pracs denotes rain-snow collection, psacr denotes conversion due to collection of snow by rain, piacrs denotes ice-rain collection and added to snow, pracg denotes rain-graupel collection, pgracs denotes conversion to graupel due to collection rain by snow, prds denotes deposition of snow, pcc_neg denotes evaportaion of cloud droplets, evpmg denotes melting and evaporation of graupel, prdg denotes deposition of graupel, prd denotes deposition of cloud ice, psacwg denotes collection droplets by graupel, pcc_pos denotes condensation of cloud droplets.
The roles of latent heat release and cooling in cloud microphysical processes are crucial to the dynamic structure of intense convective systems. Therefore, we apply the latent heat formula to analyze the latent heat budget in hydrometeors, aiming to precisely understand the feedback of various microphysical processes on the mesoscale environment within the convective system. In cloud microphysics, condensation, freezing, and deposition contribute to heating, whereas evaporation, melting, and sublimation are cooling processes. Employing methodologies established by Hjelmfelt et al. (1989) and Guo et al. (1999), we can calculate the latent heating and cooling rates by
[image: image]
In Equation 2, [image: image], [image: image] and [image: image] are the latent heats of evaporation, melt, and sublimation, respectively; [image: image] is the specific heat at constant pressure; [image: image], [image: image], [image: image], [image: image], [image: image] and [image: image] are the rates of mass changes due to condensation, freezing, deposition, evaporation, melting and sublimation.
Figure 14B presents the profile of latent heat release terms for rainwater during the intense convective period of this precipitation event. It shows that the most significant latent heat release during this period is from the condensation of water vapor into cloud droplets, predominantly occurring below 8 km, including beneath the 0°C level. Above the 0°C layer, between 6 and 10 km, four processes contribute to latent heat release: the deposition of water vapor into snow, into ice crystals, into graupel, and the collection of droplets by graupel. The primary cooling processes include the evaporation of cloud droplets into water vapor, the evaporation of rainwater, the melting of graupel into rainwater, and the melting of snow into rainwater.
[image: Figure 14]FIGURE 14 | The polarization diagram of the single-station dual-polarization radar at Haituoshan in Beijing, including Differential Reflectivity (A), units: dB), Equivalent reflectivity factor (B), units: dBZ) and Correlation Coefficient (C).
Figure 15 further illustrates the profile distribution of the primary latent heat heating and cooling terms previously mentioned. As the largest latent heat release term, the condensation of water vapor into cloud droplets occurs predominantly throughout the interior of the convective center, accompanied by strong updrafts and an overall intensity exceeding 0.015 K s−1. As the second-largest latent heat release term, the deposition of water vapor into snow occurs primarily above 7 km, extending to the −20°C layer in the upper part of the convective center. Water vapor deposition into graupel and water vapor deposition into ice crystals, as the other latent heat release terms, have a relatively smaller impact on around 0.001 K s−1 and are primarily distributed at the upper part of the right side of the convective center. As the most significant latent heat cooling term, the evaporation of cloud droplets into water vapor primarily occurs around the 0°C layer of the convective center, absorbing heat at a rate of 0.003 K s−1. Another significant latent heat cooling term, the evaporation of rainwater into water vapor, is predominantly found in the lower layers, 2–4 km beneath the convective center. The remaining latent heat cooling terms, the melting of graupel and snow into rainwater, occur mainly at 4–6 km. The melting of graupel into rainwater is focused on both sides and particularly on the right side of the convective center, while the melting of snow into rainwater, which has a weaker cooling effect compared to graupel, is primarily on both sides of the convective center.
[image: Figure 15]FIGURE 15 | Vertical cross sections of main heating (A–D) and cooling items ((E–H), color shading; units: 10−5 kg kg−1 s−1) and net items (color shading; units: 10−5 kg kg−1 s−1) at the mature stage.
This suggests that latent heat absorption at the convective center enhances the thermal environment through the heat released by water particles. Concurrently, cooling processes beneath the 0°C layer amplify the cold pool and further intensify circulation, in conjunction with upper-level latent heat. This enhanced circulation facilitates the transformation among water particles, ultimately boosting rainwater production.
Based on the analysis above, we propose a conceptual model for the “23.7” event in Beijing (Figure 16), which thoroughly examines the physical mechanisms through which convection impacts precipitation. From a mass budget perspective, the primary source of rainwater is the accretion of cloud droplets by rain. This process is predominantly distributed from the ground up to the 0°C melting layer, pervading the entire convective core and creating a warm, moist environment beneath the melting layer. The second major source is the melting of graupel into rainwater, which occurs from the 0°C melting layer up to 3 km altitude, mainly located on either side of the convective center. The third source, the melting of snow into rainwater, occurs near the 0°C melting layer and is situated at the sides of the convective center.
[image: Figure 16]FIGURE 16 | A conceptual model of the possible mechanism impact of cloud microphysical processes on hourly extreme precipitation in Beijing during the “23.7” event.
In terms of the heat budget, latent heat release from 2 km to near the −20°C layer is primarily caused by the condensation of water vapor into cloud droplets. The deposition of water vapor into graupel and ice crystals forms a heating center above the 0°C layer, while the deposition of water vapor into snow creates a heating center at the −20°C layer. Regarding the interplay between microphysical and dynamical processes, orographic lifting and convergence at the lower part of the convective center introduce a bottom-level inflow, resulting in strong upward motion. This strong upward motion enhances the accretion of cloud droplets by rain and forms a supercooled water region near the 0°C layer. Simultaneously, evaporation of cloud droplets into water vapor, melting of graupel, and snow into rainwater near the 0°C melting layer lead to the formation of a cold pool below this layer. The strong upward airflow within the convective center ascends and then descends in front of the center after flowing out from the top, forming a secondary circulation. The ascending branch of this circulation, influenced by the cold pool, further intensifies convection and can lead to the genesis of new convective cells.
4 CONCLUSION AND DISCUSSION
This article presents a meteorological analysis, numerical simulation, and synoptic diagnosis of the “23.7” event that occurred in North China from July 29 to 2 August 2023. Subsequently, this study performs a dynamic diagnosis and analyzes the sources and sinks of rainwater mass and latent heat for the extreme precipitation event in Beijing on July 31, where the hourly rainfall reached 111.8 mm. This analysis identifies potential cloud microphysical processes and their feedback mechanisms during periods of extremely heavy rainfall. The main conclusions of this study are as follows:
1) The “23.7” event occurred as the remnants of Typhoon Doksuri moved northward, impeded and stalled by the blocking effect of the North China high-pressure dam. Against the backdrop of sustained moisture and energy transport from both Typhoon Doksuri and the embryonic form of Typhoon Khanun, the stable large-scale circulation created a favorable environment for the development and recurrent emergence of mesoscale convective systems, facilitating heavy rainfall.
2) Vorticity equation diagnostics indicate that the horizontal transport term is the primary source term, mainly moving positive vertical vorticity to the left side of the maximum vertical vorticity center. The vertical transport, tilting, and stretching terms have relatively smaller effects; however, their roles are significant and cannot be overlooked. The solenoid and Coriolis force terms are negligible due to their small magnitudes.
3) The mass balance analysis reveals that the primary source of rainwater is the accretion of cloud droplets by rain, predominantly distributed from the ground to the 0°C melting layer. This distribution engulfs the entire convective center, creating a warm, moist environment below the melting layer. The second and third major sources, the melting of graupel and snow into rainwater, are located on either side of the convective center, respectively.
4) The latent heat balance analysis indicates that the primary contributor to latent heat heating is the condensation of water vapor into cloud droplets. The deposition of water vapor into graupel and ice crystals forms a heating center above the 0°C layer, while the deposition into snow creates a heating center at the −20°C layer.
5) The latent heat release and cooling effects of microphysical processes enhance vertical updrafts in the secondary circulation, thereby increasing the buoyancy of the air mass. This increased buoyancy facilitates the initiation and development of convective cells, potentially representing a key mechanism through which microphysical processes influence weather patterns. The evaporation of cloud droplets into water vapor, along with the melting of graupel and snow into rainwater near the 0°C melting layer, contributes to the formation of a cold pool beneath this layer. The formation of this cold pool strengthens lifting actions, which in turn promote the development and intensification of new convection.
This research marks the first occasion that rainfall station data from the seven principal river basins under the Ministry of Water Resources have been assimilated, culminating in the successful simulation of the “23.7” event. Our findings reveal that at the peak of extreme precipitation, the predominant mass source term was the accretion of cloud droplets by rain, consistent with the findings of Mao et al. (2018). However, the primary heating sources were identified as the condensation of water vapor into cloud droplets, while the main cooling processes involved the evaporation of cloud droplets and rainwater into water vapor. Accurately representing such extreme precipitation events in cloud-resolving models remains a challenge; the effectiveness of these simulations largely depends on the choice of cloud microphysics scheme. Determining the most appropriate cloud microphysical scheme and reducing its associated uncertainties pose significant challenges for simulating heavy rainfall events. Therefore, future research should focus on comparative studies of cloud microphysical schemes under various heavy rainfall scenarios to enhance the accuracy and reliability of these models. Additionally, in future applications of artificial weather modification, referencing the transformation of water substances during heavy rains may catalyze the generation and consumption of precipitation.
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The first operational version of the coupled Hurricane Analysis and Forecast System (HAFSv1) launched in 2023 consists of the HYbrid Coordinate Ocean Model (HYCOM) and finite-volume cubed-sphere (FV3) dynamic atmosphere model. This system is a product of efforts involving improvements and updates over a 4-year period (2019–2022) through extensive collaborations between the Environmental Modeling Center at the US National Centers for Environmental Prediction (NCEP) and NOAA Atlantic Oceanography and Meteorology Laboratory. To provide two sets of numerical guidance, the initial operational capability of HAFSv1 was configured to two systems—HFSA and HFSB. In this study, we present in-depth analysis of the forecast skills of the upper ocean that was co-evolved by the HFSA and HFSB. We chose hurricane Laura (2020) as an example to demonstrate the interactions between the storm and oceanic mesoscale features. Comparisons performed with the available in situ observations from gliders as well as Argos and National Data Buoy Center moorings show that the HYCOM simulations have better agreement for weak winds than high winds (greater than Category 2). The skill metrics indicate that the model sea-surface temperature (SST) and mixed layer depth (MLD) have a relatively low correlation. The SST, MLD, mixed layer temperature (MLT), and ocean heat content (OHC) are negatively biased. For high winds, SST and MLT are more negative, while MLD is closer to the observations with improvements of about 8%–19%. The OHC discrepancy is proportional to predicted wind intensity. Contrarily, the mixed layer salinity (MLS) uncertainties are smaller and positive for higher winds, probably owing to the higher MLD. The less-negative bias of MLD for high winds implies that the wind-force mixing is less effective owing to the higher MLD and high buoyancy stability (approx. 1.5–1.7 times) than the observations. The heat budget analysis suggests that the maximum heat loss by hurricane Laura was O(< 3°C per day). The main contributor here is advection, followed by entrainment, which act against or with each other depending on the storm quadrant. We also found relatively large unaccountable heat residuals for the in-storm period, and the residuals notably led the heat tendency, meaning that further improvements of the subscale simulations are warranted. In summary, HYCOM simulations showed no systematic differences forced by either HFSA or HFSB.
Keywords: Earth system modeling, coupled ocean–hurricane modeling, ocean forecast modeling, hurricane forecast, upper ocean response to a tropical cyclone, operational modeling, heat budget in the upper ocean mixed layer, tropical cyclone quadrant dependent ocean mixed layer response
1 INTRODUCTION
The US National Centers for Environmental Prediction (NCEP) has a long history of developing coupled regional hurricane–ocean forecast systems and running operationally with the goal of providing improved numerical guidance to hurricane specialists at the National Hurricane Center (NHC) since 2001. Over the past two decades, a new system has replaced the old system with improved/advanced physics, coupling, high resolution, nesting, and data assimilation. For example, the Geophysical Physical Dynamics Laboratory (GFDL) Hurricane Prediction System was decommissioned in 2014, and the hurricanes in a multiscale ocean-coupled non-hydrostatic model (HMON) was used to maintain continuity for the NHC official forecasts, with higher-resolution nesting and eddy-resolving ocean model coupling. The Hurricane Weather and Forecast System (HWRF) has been operated as another regional system in the NCEP product suites, and its high forecasting skills have been widely acknowledged by operational forecasters, including the US Navy’s Joint Typhoon Warning Center (JTWC), which is attributed to the advancements made through collaborations between scientists at the Environmental Modeling Center (EMC) and research community, with support from the NOAA Hurricane Forecast Improvement Program (HFIP). Similarly, a new-generation Hurricane Analysis and Forecast System (HAFS) replaced the legacy HWRF and HMON, with operations commencing in June 2023.
The HAFS development started in 2019 and was built to the initial operational capability (IOC) for the coupled hurricane–ocean modeling system (Zhang et al., 2023). After 4 years of extensive developmental efforts, including real-time tests in each hurricane season followed by updates for further improvements, the IOC was transitioned to the first operational version of the numerical guidance model HAFSv1 in June 2023. This version has two configurations, namely HFSA and HFSB. To maintain diversity, the models have different configurations of the model physics. Large-scale retrospective tests of the North Atlantic hurricanes from the 2020 to 2022 seasons show approximately 12% higher tracking skills than the HWRF (H221 in Figure 1A). The intensity (defined by a 1-min sustained maximum wind speed denoted as Vmax) skills (Figure 1B), on the other hand, are mixed and are poor/better for early/late lead times than the HWRF (H221 in Figure 1B). The HAFSv1 also outperforms HMON (M221) for both track (Figure 1A) and intensity predictions (Figure 1B). Between HFSA and HFSB, the former has higher tracking skill by ≤ 8% (at 72 h) for the entire lead time, except for brief periods of 36 and 42 h for poor skills ≤1%. The HFSA also has better skills at intensity forecasting (by < 6%) for the first 42 h of lead time, but the HFSB shows persistently high skills after the 48 h point (<9.5%).
[image: Figure 1]FIGURE 1 | Skill comparisons of the two latest configurations of the HAFS (HFSA and HFSB) with operational HMON (M221) relative to the operational HWRF (H221) for (A) tracking and (B) intensity (1-min sustained maximum wind, Vmax) as functions of the forecast lead time in hours and number of cases. The statistical results were generated for a total of 995 homogeneous cases (at a 12-h forecast lead time) encompassing three hurricane seasons (2020–2022) in the North Atlantic basin. The graphics were generated using the National Hurricane Center (NHC) verification package.
One of the roles of the HYbrid Coordinate Ocean Model (HYCOM) in HAFSv1 is to support accurate simulations of air–sea interaction processes by exchanging updated state variables with the finite-volume cubed-sphere (FV3) model components. The HYCOM has been widely used and extensively tested by the research community. Because it is an operational ocean forecast model in the US Navy Fleet Numerical Meteorology and Oceanography Center (FNMOC) (Chassignet et al., 2007; Burnett et al., 2014; Metzger et al., 2014) and a backbone model supported by multiple institutions sponsored by the National Ocean Partnership Program (NOPP) as part of the US Global Ocean Data Assimilation Experiment (Chassignet et al., 2007), the leveraged efforts have contributed to significant improvements to HYCOM, including data assimilation (DA) (Cumming, 2005; Cummings and Smedstad, 2013). The HYCOM has also been popularly used to study physical processes at the regional (Heffner et al., 2008; Subrahmanyam et al., 2009;) and larger scales (Kara et al., 2005; Rasmussen et al., 2011; Wang et al., 2015). There are also numerous research studies that have examined and tested its validity for mixing physics under different environments (Halliwell, 2004; Kara et al., 2008; Kara et al., 2010; Pottapinjara and Joseph, 2022; Zamudio and Hogan, 2008).
HYCOM also serves as an operational ocean forecast system in the US NCEP, starting from an earlier operational version of the Atlantic Real-Time Forecast System (RTOFS) (Mehra and Rivin, 2010) to the global RTOFS. At present, the global system is operated daily as part of the NCEP product suite to produce weather-scale ocean products, including 2 days of nowcasts and 8 days of forecasts at 6-h intervals. The system temporally integrates the initial conditions assimilated with timely available observations by the flow-dependent 3DVar DA algorithm (Cummings, 2005; Garraffo, et al., 2020). The regional HYCOM configuration leverages the in-house global RTOFS to seamlessly obtain initial and boundary conditions for the cycling forecast system for coupled regional hurricane systems, such as the HWRF and HMON. Its skills for two-way coupling were documented by Kim et al. (2014) and three-way ocean–hurricane–wave coupling were reported by Kim et al. (2022).
In the present work, we document the application of a regional HYCOM to support two-way interactions for the HAFS as well as assessments of the forecast skills of HFSA and HFSB. We show validations and analyses with data from hurricane Laura (2020 season) selected from large-scale tests. The reason for this choice is that the Gulf of Mexico (GOM) has a variety of oceanic features that modulate the sea-surface temperature (SST) feedback and is a region where many landfalling storms have resulted in damage and casualties in the past owing to the warm upper oceanic conditions in favor of tropical cyclone (TC) intensification. Hurricane Laura underwent two phases of rapid intensification (RI) when transiting over the semi-enclosed basin. The GOM entails various mesoscale features, such as warm loop currents (LCs), warm/cold core eddies, and freshwater barriers, which could enhance the enthalpy exchanges by the perennially warm SST of the GOM. In Section 2, we briefly introduce the HAFS for the Unified Forecast System (UFS) framework and component models. Section 3 describes the data and analysis methods, along with brief descriptions of two cases of interest. Section 4 presents the results of this study, and Section 5 summarizes the findings and discussion.
2 HURRICANE ANALYSIS AND FORECAST SYSTEM
Figure 2 is a schematic describing the HAFS in the UFS framework. The model includes the FV3 atmosphere and HYCOM components for the ocean. The coupling components are the Earth system modeling framework (ESMF) and National Unified Operational Prediction Capability (NUOPC) that are located at the upper level of each component model and activated by a wrapper under the Community Mediator for Earth Prediction Systems (CMEPS).
[image: Figure 2]FIGURE 2 | HAFS model components and data flow with the atmospheric data assimilation (ATM-DA) module. The exchange variables are shown in italics between the HYCOM and FV3 model via the Community Mediator for Earth Prediction Systems (CMEPS). Sources for the initial and boundary conditions (ICs and BCs) for FV3 and HYCOM are included. Flux includes the wind stress, net shortwave radiation, net longwave radiation, latent heat flux, and sensible heat flux. Prate and MSLP denote the precipitation rate and mean sea-level pressure, respectively.
The atmospheric model is based on the FV3 dynamic core (Lin and Rood, 1996; Lin, 2004) with a choice of a physics suite from the Common Community Physics Package (CCPP). The configuration involves one quasi-stationary parent domain at a grid spacing of ∼6 km on the Extended Schmidt Genomic grids (Purser et al., 2020) and typical horizontal dimensions of 1,320 by 1,200, with a moving nest following a storm of interest one at a time at a resolution of ∼2 km over the 600×600 dimensions. Two-way nesting was performed using the flexible modeling system (FMS) between the stationary (parent) and moving (nested) domains. Figure 3 shows an example of the atmospheric coverage (shaded boxes) to provide numerical predictions of the TCs over the World Meteorological Organization (WMO) Regional Tropical Cyclone bodies (https://community.wmo.int/en/tropical-cyclone-regional-bodies) around the globe. Only the parent domain has direct communication with the ocean. The solution in the vertical direction is obtained from 81 layers at 20 m above the mean sea level to the 10 hPa model top. To improve the subset of initial conditions (ICs) from the coarse resolution of the FV3-based Global Forecast System (GFS) analysis, the HAFS employs 4DEnVar with background error covariance from the Global Data Assimilation System (GDAS) and vortex initialization. The boundary conditions (BCs) are the interpolated GFS forecast products. The CCPP is one of the UFS modules that supports various physics schemes, including the planetary boundary layer (PBL) physics, microphysics, radiation, cumulus convection, and gravity wave drag, for the atmospheric model (Wang et al., 2024; companion paper). The surface to boundary-layer physics for the HAFSv1 is specially tailored for application to TCs, where the turbulence fluxes are updated using the SST and bulk exchange coefficients empirically defined as functions of 10-m winds (Biswas et al., 2018). The details of the physics schemes may be found in Wang et al. (2024), and detailed differences between the HFSA and HFSB configurations may be found in Zhang et al. (2023).
[image: Figure 3]FIGURE 3 | HYCOM basin domains for hurricanes in the North Atlantic and East/Central North Pacific basins, which are the areas of responsibility for the forecasters at the NHC and Central Pacific Hurricane Center (NHC; blue box); typhoons in the Western North Pacific and North Indian basins (JTWC NH; red box) and for Cyclones in the South Indian and Pacific basins (JTWC SH; green box) are the responsibility of the forecasters at the Joint Typhoon Warning Center (JTWC). Shaded areas are examples of the FV3 parent and nested domains of each basin.
The HYCOM is an eddy-resolving ocean general circulation model that solves 3D primitive equations in an Arakawa C-grid at a resolution of 1/12 degrees on the Mercator projection and 41 hybrid z-isopycnic vertical coordinates (Bleck, 2002; Chassignet et al., 2007; Chassignet et al., 2020). These regional domains are shown in Figure 3, covering the tropics in both the Northern and Southern hemispheres, with dimensions of 2,413 by 964 for the area of responsibility for forecasters at the NHC (blue box) as well as 1,938 by 937 (JTWC NH; red box) and 2,689 by 756 (JTWC SH; green box) for the JTWC.
The HYCOM for regional applications has the same numerical configuration as that of the global RTOFS to utilize the readily available data in the real-time computational environment for providing ICs on the fly without remapping, interpolation, or delayed computations. Solutions over the non-overlapping areas are obtained by one-way forcing as the ocean preparation step before forecast integration. These are subsets of the 3-h global FV3 products of wind stress components, net shortwave radiation, net longwave radiation, latent heat flux, sensible heat flux, precipitation rate (Prate in Figure 2), and mean sea-level pressure (MSLP in Figure 2). Vertical mixing is based on non-local k-profile parameterization (KPP; Large et al., 1994), with a background viscosity of 3 × 10−5 m2 s−1 and diffusivity of 10−5 m2 s−1. The shear instability is restricted by the maximum allowed values of 5 × 10−5 m2 s−1 for both the viscosity and diffusivity and a maximum gradient Richardson number of 0.7. Lateral mixing uses a Laplacian operator that is a deformation-dependent eddy viscosity with a velocity scale factor of 0.05 m s−1.
The ICs are different for the 00Z and rest cycles; the ICs for the 00Z cycle, for example, are a simple subset of the global RTOFS 3D restart file composed of temperature (T), salinity (S), east (u) and north velocity components (v), and layer thicknesses from the 24-h nowcast. For the other cycles, we combine the 00Z analysis field with the 6, 12, and 18 h forecasts to retain the assimilated state variables for the time integration. The lateral BCs are closed but relaxed to the climatology, and the ICs are integrated at 120 and 10 s using the explicit–implicit splitting-model solutions with forcing exported from the FV3 component model by the CMEPS at 360 s intervals (Figure 2). The dynamically updated SST field is passed to the FV3 at the same 360 s coupling time (Figure 2) for the surface boundary layer module to update the momentum and enthalpy flux using the bulk exchange coefficients based on the empirical relationship of the roughness length scale and wind speeds [Figure 2 in Kim et al. (2022)].
3 DATA AND METHODOLOGY
3.1 Hurricane forecast data
Model outputs were produced in 3D volume data of the diagnostic and prognostic variables in the netCDF format at 3-h intervals for the FV3 and in the binary format at 6-h intervals for the HYCOM. Additional postprocessing was employed to convert some of the atmospheric variables to grib2 files and the oceanic variables including MLD, 26°C isotherm, and ocean heat content (OHC) to netCDF files. One important postprocessing step is producing numerical guidance, which is achieved with the GFDL vortex tracker (Marchok, 2021).
On-time delivery of numerical products is critical to the operational environment. To meet the real-time requirements, extensive profiling was performed, including optimizations of the codes, tiling, and number of cores. Supplementary Appendix S1 provides more details, including the individual workflow steps, execution timings, and required numbers of cores.
The guidance model outputs produced by the vortex tracker include a set of six hourly TC center locations; Vmax; minimum sea-level pressure (Pmin); radius of the maximum wind (RMW); as well as 34-kt (R34), 50-kt (R50), and 64-kt (R64) winds in each quadrant. The verifications were performed using the NHC verification tools with the NHC’s Best Track data. The results for the total of 1,091 homogeneous cases over three hurricane seasons (2020–2022) suggest that HAFSv1 statistically performs better than the legacy models HWRF and HMON, especially for lead times from 18 h for tracking and from 30 h (HFSA)/42 h (HFSB) for intensity (Figure 1). The Vmax intensity bias ranges between −2.5 and 1.5 kt (Figure 4A) and is comparable with that of the HWRF but better than that of the HMON that has a negative trend with lead time. Conversely, the Pmin bias is consistently negative throughout the lead time, with magnitudes of less than −4 hPa. The Pmin bias of HAFSv1 is similar to that of the HWRF (Figure 4B), whereas none of the models outperform the HMON. Overall, it is suggested that the wind-pressure relationships for models except the HMON are approximately similar to those of the observed data.
[image: Figure 4]FIGURE 4 | Bias comparisons of (A) Vmax, (B) Pmin, (C) radius of the maximum wind (RMW), and (D) radius of the 34-kt wind (R34) for HFSA and HFSB against the HWRF (H221) and HMON (M221). The units are kt, hPa, and nautical mile (NM) for (A), (B), and (C, D), respectively. A total of 1,091 homogeneous cases were verified against the best track (BT).
In general, HAFSv1 predicts a larger bias of the RMW compared to those for the HWRF and HMON, with a maximum of ∼10/8 NM for the HFSA/HFSB, while the HWRF and HMON match the observations for the best and worst cases, respectively (Figure 4C). On the contrary, the outermost TC sizes (R34) for the HFSA and HFSB start with almost zero biases but gradually grow smaller in the lead time and reach maximum negative biases at 120 h (Figure 4D). Between the HFSA and HFSB, the HFSA R34 agrees with the observed size at an average of < 5 NM than the HFSB. As for the R50 and R64 (not shown), both HFSA and HFSB show similar predictions with better agreement with the observations compared to the HWRF and HMON.
To avoid redundancy in this work, we chose an exemplary storm from our samples that undergoes various TC stages and contacts diverse oceanic conditions. Hurricane Laura from the year 2020 fits these specifications: the storm achieved at least four landfalls during its heading toward the GOM from the major development region (MDR) but maintained Tropical Storm (TS) strength over the period. The intensity at the time it entered the GOM was 60 kt, but the storm gradually intensified to 75 kt as it transited the LC of the warm body of water, followed by RI to a Category 4 hurricane (130 kt) at 00Z on 27 August 2020. During its final landfall at Cameron, Louisiana (approximately 06Z on August 27), the intensity remained that of a Category 4 hurricane.
The GOM is a semi-enclosed ocean and a unique place where a TC can make a complete transit in as short a duration as 2.5 days at a typical moving speed while experiencing various oceanic features, such as warm LCs, cold/warm core eddies, and freshwater barriers often offshore advected from the Mississippi river discharge (Da Silva and Castelao, 2018). These features often play crucial roles in TC intensification via air–sea interactions, particularly modulating the enthalpy flux and probably influencing the intensity changes of the TC. Conversely, the ocean is also influenced by the storms and probably retains their impacts for a while to eventually impact the general circulation in the GOM and the following storm (Avila-Alonso et al., 2020; Eley et al., 2021; Gong et al., 2023).
3.1.1 Hurricane Laura (2020)
A tropical depression was first classified around 00Z on 20 August 2020 about 850 NM east–southeast of Antigua (Pasch et al., 2021). Soon after, it underwent repetitive cycles of organization/disorganization until it became a tropical storm at around 00Z August 22. While moving parallel to the southern part of the Greater Antilles Island chain, it gained strength to ∼45 kt (Figure 5). At the time when the storm was positioned off the southern coast of Cuba over the Caribbean Sea around 00Z on August 24, the observed maximum wind speed was about 55 kt. Continuing along the west–northwest direction, the storm showed little change in intensity until it made landfall in the west Cuba island at ∼00Z on August 25. Six hours later, the storm contacted the LC core beneath; after entering the warm body of water in the GOM, it underwent RI to a relatively higher degree and gained 55 kt to reach 130 kt (Category 4 hurricane) over the 24-h period between 00Z on August 26 and August 27 (Figure 5C). When hurricane Laura achieved its final landfall near Cameron, Louisiana, the maximum wind speed had changed very little, which resulted in 101 casualties and $19 billion in economic losses in Louisiana (Marler, 2023).
[image: Figure 5]FIGURE 5 | Comparisons of predicted tracks between HFSA (blue) and HFSB (orange) for the (A) 202082406 and (B) 2020082500 cycles superimposed on the best track (black); (C) Vmax intensities for both cycles and runs with respect to the observed intensity (best track). The blue/red curves in (A, B) denote 17 cm of sea-surface height anomalies (SSHAs) for HFSA/HFSB estimated at 06Z on 24/26 August 2020 (blue/red). The black curve represents the AVISO daily SSHAs at 00Z on (A) August 24 and (B) August 26. The four green stars denote the locations for the heat budget analysis (details in Section 4.2).
The HAFSv1 systematically shows a westward bias in the track forecasts, particularly for the later lifecycle of hurricane Laura. Nevertheless, we chose two cycles (2020082406 and 2020082500) for detailed analyses. The track forecasts are similar for both cycles and have mean absolute errors of ∼12.4 km and 28.7 km for cycles 2020082406 and 2020082500, respectively, compared to the best track (BT) (Figure 5). The track forecast errors increase gradually, and the maximum deviations from BT are ∼293.4/266.3 km for HFSA/HFSB for the former case and ∼357.8/279.5 km for the latter case. However, the intensity forecasts were quite different between the cycles, especially for the HFSB, which significantly underpredicted Vmax and also RI for the cycle 2020082406.
The observed TC had two RI events: a 25-kt Vmax change between 18Z on August 24 and 00Z on August 26 as the storm passed over the LC, and a 55-kt increase over 24 h from 00Z on August 26 to 00Z on August 27. The HFSA predicted one RI from 52 kt at 06Z on August 25 to 135 kt at 06Z on August 27; the HFSB showed RI in two phases, similar to the above observations, where both events started with underpredicted Vmax that first gained 23 kt over 24 h between 00Z on August 25 and 00Z on August 26, followed by another gains of 26 kt from 06Z on August 25 to 06Z on August 27.
3.1.2 Ocean observational data
The in situ Argo profiles and glider data were sourced from the World Ocean Database 18 (WOD18) and Coriolis database (http://www.coriolis.eu.org; Cabanes et al., 2013), respectively. The in situ SST observations were obtained from the US National Data Buoy Center (NDBC) database.
3.2 Methodology
3.2.1 Ocean variables and skill metrics
Each cycle simulation encompasses 6-hourly 3D volume outputs over a 126-h forecast period. The simulation assessments were focused on five ocean metrics, namely SST, mixed layer depth (MLD), mixed layer temperature (MLT), mixed layer salinity (MLS), and mean temperature over a 100-m depth (T100), as well as the OHC relative to the 26°C isotherm (Z26) as given by Eq. 1:
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where [image: image] is the constant heat capacity of seawater (3,985 J kg−1 K−1), [image: image] is the seawater density (kg m−3), and [image: image] is the temperature (Celsius) at a depth of [image: image] (Leipper and Volgenau, 1972). The MLD is defined as the minimum density jump of 0.0125 kg m–3 or an equivalent temperature jump of 0.3°C across the base of a mixed layer and is one of the HYCOM diagnostic variables. These variables have a cause-and-effect relation for the ocean–TC coevolution and quantitatively indicate the heat loss due to direct SST cooling, vertical mixing, and advection by a TC. More details on these parameters may be found in Aristizábal Vargas et al. (2024).
The ocean validation was conducted with observations using the skill metrics of bias, root mean-squared error (RMSE), centered root mean-squared deviation (CRMSD), and Pearson correlation coefficient (CC), which are respectively expressed by Eqs. (2–5). Detailed explanations of these skill metrics may be found in Rochford (2016). A Python package supporting these metrics may be found at http://github.com/PeterRochford/SkillMetrics.
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and
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where [image: image] is the predicted and [image: image] is the observed variable, and [image: image] is the number of samples. The underbar represents the temporal mean of a variable over a 120-h forecast period.
To effectively visualize the skills of the models, we employed the normalized Taylor diagram (Taylor, 2001) on the essential ocean variables. The variables were first estimated from observations before being mapped to the model’s vertical layer, and comparisons were performed with the model counterparts through the nearest grid point and time at 6-h intervals for the upper 350-m depth.
3.2.2 Heat budget in the mixed layer
To assess the processes governing the bulk temperature in the upper layer in response to the TC, we used the heat budget expression for the mixed layer employed in the study on Hurricane Gilbert (Jacob et al., 2000):
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where T is the bulk MLT, (u,v) are the current velocities at the MLD, [image: image] is the thermal energy flux, [image: image] is the density of seawater (1,025 kg m–3), [image: image] is the heat capacity of seawater (3,850 J kg−1 K−1), [image: image] is the MLD, [image: image] is the temperature difference between the mixed layer base and MLT beneath, [image: image] is the entrainment velocity at the base of the mixed layer, and [image: image] is the residual accounting for the heat storage controlled by the combination of air–sea exchange and turbulent diffusion.
The parameter [image: image] is also the entrainment heat flux by vertical mixing across the base of the mixed layer and can be estimated the mass conservation equation (Jacob et al., 2000):
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where [image: image] is the vertical advection at [image: image]. The terms on the right-hand side (RHS) are diagnosed from the model output. In the HYCOM, the turbulent vertical (Kv) and horizontal diffusivity (Kd) are scale-dependent, with background values of 1 cm2 s−1 and 0.1 cm2 s−1, respectively.
The heat flux term on the RHS of Eq. 6 is estimated as the sum of the net radiative, latent heat, and sensible heat fluxes as received through CMEPS from the FV3 model at each coupling step (360 s).
4 RESULTS
4.1 Comparisons with observed data
The normalized Taylor diagram for cycle 2020082406 (Figure 7A) shows that HFSA and HFSB have the best skill for T100, with CC of O(0.96) and CRMSD of ∼0.68°C. On the other hand, these models have the worst forecast skills for MLD, followed by SST. Between the HFSA and HFSB, the former has a slightly higher/lower skill for MLD/SST than the latter. According to the mean bias (Table 1), both HFSA and HFSB underperform for SST and MLD at O(1°C) and O(10–12 m), respectively, which are statistically significant at the 95% confidence level. The same negative bias for the modeled MLT and OHC shown in Table 1 suggests that HYCOM has poor skill in predicting the thermal state variables. However, the CC and CRMSD indicate that HYCOM has relatively good skill for predicting variations of the integrated properties, such as the OHC, T100, MLT, and MLS.
TABLE 1 | Mean bias and RMSE for the SST, MLD, MLT, MLS, OHC, and T100 for the 2020082406 and 202082500 cycles. npts indicates number of points in counts.
[image: Table 1]Lower negative bias and RMSE, as shown in Table 1, considered together with the skill metrics shown in Figure 7A suggest that the upper layer simulations forced by the weaker Vmax of HFSB are in better agreement with the observations than those of the HFSA. For a similar and high Vmax (Figure 7B), however, HYCOM has poor skills, especially for the MLD, MLT, and OHC. Among these, MLD has the largest degradation, with CC values lower by ∼49%/58% and CRMSD higher by ∼18%/17% for the HFSA/HFSB. Interestingly, for similar Vmax forcing, the HYCOM coupled to HFSB exhibits higher skill deficit. The more negative biases for SST, MLT, and OHC in Table 1 for the 2020082500 case also support the observation of poor skills, specifically that HYCOM predicts a cooler upper ocean. As far as the CC, CRMSD, and standard deviation are concerned (Figure 7B), the only ocean metric that is improved for the 2020082500 case compared to the 2020082406 is the SST, implying that the HYCOM’s temporal and spatial SST variations are better predicted for stronger winds. It is noted that there are slight changes in the MLS skill, with CC of 0.81–0.82 and CRMSD of about 0.77–0.78, and small differences in the mean biases in the range of 0.13–0.18 PSU. In summary, high atmospheric winds impact the thermal properties and result in cooler conditions, and HYCOM has better forecast skills for wind with weaker Vmax values.
Figure 8 shows SST comparisons between the model and observations from the NDBC moorings for lead times of 60 h/42 h for the 2020082406 (b-e)/2020082500 (f-i) cycles. At 12Z on August 26, hurricane Laura was at (−91.4oE, 26.4oN), with 100-kt winds. The observations then ranged between 27.9°C and 32.8°C (Figure 8A). The minimum modeled SST from the 2020082406 cycle is ∼28.0°C, and the maximum SST is 31.9°C/32.3°C for HFSA (Figure 8D)/HFSB (Figure 8E). Figures 8H, I suggest that the model SSTs are generally higher along the northern and western coasts, with maximum values of 2.8/2.9°C for HFSA (Figure 8H)/HFSB (Figure 8I); this trend is opposite along the west and east coasts of Florida, with values of −3.0/−2.7°C for HFSA/HFSB. The mean bias is negative, and the values of the lead time are 0.34°C for HFSA and 0.32°C for HFSB. The model SST differences between the two configurations varied between −0.52°C and 0.32°C, with an average difference of −0.04°C (Figure 8B).
The modeled SST difference for the 2020082500 cycle is overall positive, ranging from −0.15°C to 0.49°C with a mean value of 0.06°C (Figure 8C). This probably resulted from less underprediction or smaller error by the HFSA (Figure 8J) than HFSB (Figure 8K). The mean SST error for HFSA is −0.29°C, with the values varying between −2.7 and 2.6°C, which is about 0.06°C smaller uncertainty compared to the HFSB counterpart.
At the time the storm was located ∼55.35 km west, a mooring at (−90.85oE, 26.41oN) observed an SST of 29.1°C. This suggests that the observed SST cooling by hurricane Laura was about 1.4°C. The observations also indicate that the SST cooling continued to decrease until it reached a local peak of O(28.3°C) at 18Z on August 26 and remained thus for at least 60 h thereafter. However, unfortunately, we cannot verify the magnitude of the storm-induced SST cooling from our simulations because of the bias in the predicted track, e.g., between 109.16 and 156.27 km to the southwest from the mooring location. Despite the bias, our estimates suggest similar degrees of SST cooling at the mooring site (1.75/1.32°C for HFSA/HFS for the 2020082406 cycle and 1.15/1.60°C for HFSA/HFSB for the 2020082500 cycle) and that the cooler SSTs remained consistent with the observed values until the end of the simulations.
Figure 10 shows the in situ T/S profile observations at 06Z on 26 August 2020. We chose this time to demonstrate the upper ocean conditions from the point observations during the intensification period. Since the simulations at these locations show little differences between the two forcing configurations, we only compare the HFSB simulations. Figure 10 suggests that HYCOM underestimates T and S in the upper mixed layer, which are reflected in the MLT, MLS, and MLD in Figure 7 and Table 1. We note that the T and S discrepancies become larger with depths, specifically toward cooler and fresher locations. At Argo 3 (Figure 10C), there were little changes in the upper T and S from the previous 10 days; this could be a part of the LC system and describes the condition 24 h after the passage of hurricane Laura. However, the 2020082500 cycle simulations depicts a deeper, cooler, and salty upper layer MLD (lighter blue and red) than the forecast from the 2020082406 cycle (darker blue and red), which might be due to the stronger and larger TC prediction. The HFSB predicts a large MLS at Argo 1 (Figure 10A) between the two cycles, with smaller errors for the 30-h forecasts of the 2020082500 cycle. Argo 2 exhibits strong stability at its location (Figure 10B), which may be caused by the deepening of the halocline over the previous 9.75 days. We found that HYCOM predicted this similarly. At the Argo 1 and 2 locations, the upper layer S below MLD was rather complex, yet HYCOM appeared to have difficulty in replicating reality, except that it was only able to provide rough estimates of the subsurface maximum S and depth.
A glider (4802976) situated at −90.98oE and 26.54°N (g1 in Figure 6) encountered hurricane Laura at 12Z on August 26 about 44.5 km to the west. Figure 11 presents the time evolution of the upper T responses from the glider (a), HFSA and HFSB simulations (b–e), and the differences (f–i). When hurricane Laura approached the location, the upper layer responses included higher MLD and cooling MLT (Figure 11A). After hurricane Laura passed, the MLT continued cooling in an undulating pattern, with local extrema of 29.3 and 28.2°C, which was equivalent to about 1.3–2.4°C of cooling. The observed undulations that penetrated the depths were likely internal waves excited by the storm at the MLD base, and the largest amplitude of these motions was centered at a depth of ∼220 m. Unlike the observations, the HFSA (Figure 11B) and HFSB (Figure 11C) simulations are less impressive, especially for the post-storm period. Although HYCOM was able to simulate the cooling at a similar magnitude (Figures 11F, G), it failed to simulate the upwelling and undulating motions at least in the upper 130 m by either overpredicting or underpredicting Vmax for the 2020082406 case.
[image: Figure 6]FIGURE 6 | Locations of the temperature and salinity profiles from the Argo floats (PFL), gliders, and XBT as superimposed on the best track for the period from August 24 to August 30. Observations inside the dashed blue box are used in the study. The numbers in the box denote the locations of Argo 4903254, 4093238, and 4903252 for 1, 2, and 3, respectively; g1 is the location of glider 4802976.
The HFSA simulations for the 2020082500 cycle are not significantly different from the HFSB case (Figures 11D–I). However, one of the notable differences is less cooling at an average of 0.5°C, which could be due to smaller immediate cooling or warmer MLT resulting from the 23 kt difference in Vmax at the time that hurricane Laura passed (Figures 11F, H). Under HFSB forcing, the pre-storm conditions and MLT are similar to those of HFSA; however, the storm response is significantly different at least in the upper mixed layer (e.g., MLT cooling and its periodic variations). The temperature differences in the upper MLD suggest that the HFSB simulations best agree with the observations (Figure 11I), except for the overestimated MLT when hurricane Laura was situated closest.
Figures 11F–I suggest that a large temperature difference caused by the storm exists near the MLD base. We investigate this through the buoyancy frequency (N2). Figure 12 shows the mean N2 before (black curve) and after hurricane Laura (red curve) from the glider observations (light curves with dots) based on interpolation at 2-m intervals from depths of 2–300 m over 3 hours from approximately 1.5–1.6 h samplings. There are two local peaks in the mean profile at 26 m and 65 m, with magnitudes of ∼55.0 × 10−5 s−2. After hurricane Laura passed, both peaks moved to depths of 70–80 m, with 1.2–1.4 times increase in their magnitudes. The HFSA and HFSB pre-storm estimates showed two peaks as well, but their magnitudes were 1.3–1.4 times larger than those observed. The post-storm simulations exhibit one major peak in the mean N2 for both the 2020082406 and 2020082500 cycles. Although these peaks exist at the same depth as in the observations, their values are as small or as large as 93.1 × 10−5 s–2 or equivalently ∼1.5 to 1.7 times larger. The total number of glider profiles considered for the estimate is only 33, and their values are only 3.2 times those of the model profiles. These high variations in the observations are attributed to the fine vertical samplings, which governs the large N2 value that is greater than 100 and less than 205 × 10−5 s−2.
4.2 Mixed layer heat budget
Mesoscale features such as the cold/warm core eddies play a role in the TC intensification (Wang et al., 2018; Jaimes and Shay, 2015; Hong et al., 2000), which are explained by the SST feedback that primarily account for the vertical mixing in the oceanic upper layer. The objective here is to study the feedback associated with the oceanic thermal front, such as the LC, using the heat budget in the mixed layer. For detailed analyses, we chose four locations in the vicinity of the LC (see Figure 5A), each of which represents the individual TC quadrants. These are located at distances of 82.21–86.45 km between R34 and R50 from the TC center of the 30-h forecast for the 2020082406 case.
The heat tendency over the first 18 h (Figures 13A–D) changes abruptly from the maximum value O(<3.5°C d−1) to a local minimum within a 3-h interval, as was common at all locations of interest. The first positive peak at 12 h is equally dominated by the heat flux (Figures 13I–L) and vertical entrainment (Figures 13M–Q) (see Table 2 for the extreme values that are omitted from Figure 13). Their cause may be explained by the thin MLD during the local daytime in contrast to the large solar heating.
TABLE 2 | Extreme values of the graphs not shown in Figure 13.
[image: Table 2]The tendency for the following 36 h varies at different locations. A point on the left side of the predicted track (Figure 13I) recovers heat from the local peak loss at 18 h (−2.55/−2.56 °C d−1 for HFSA/HFSB) owing to the northward ocean currents that carry the warm Caribbean waters (positive advective term; Figure 13E). However, as hurricane Laura leaves, this point encounters the northerly and loses the acquired heat, reaching a local minimum peak that is as large as the first negative value. This is a result of the negative advection (Figures 13E) that brings relatively cooler water from the north, combined with the contributions from the surface heat flux (Figures 13I). Compared to the HFSB estimates (red in Figure 13A and orange in Figures 13E, I, M), we found relatively less negative advection (Figure 13E) and higher negative advection in the vertical direction (Figure 13M) that resulted in less negative heat in the mixed layer for the HFSA. However, the net values from the HFSA reversed over the next 6 h mainly because of delayed recovery of the northward currents, which was attributed to the relatively larger TC (∼1.18 times for the 30-h R34).
Compared to Figure 13I, the heat budget for the pre-storm period at a point outside the LC (Figures 13II) is lower and exhibits a notable difference between the HFSA and HFSB (Figure 13B), with the magnitude variation being ∼30% less for the former (blue) than the latter (orange). We found that this location exhibited the largest storm impact. The process responsible for the difference was the large entrainment for HFSB ([image: image]−2.90°C d−1) compared to that for HFSA (−1.61°C d−1), which was caused by the relatively larger MLD horizontal (second and third terms on the RHS of Eq. 7) and vertical advections (fourth term on the RHS of Eq. 7) as well as larger temporal MLD changes (first term on the RHS of Eq. 7). The post-storm variations are larger for the HFSA than HFSB, which are dominated by advection (Figure 13G) and vertical entrainment (Figure 13Q). It is noted that all three source terms vary in time over a 24-h period but lag from each other by approximately 6 h.
At a point in the right quadrant (Figure 13III) where the MLD currents are mainly eastward, the storm and current interactions are a little more complicated than at other locations. For example, the advection source term (Figure 13G) shows the largest positive value for both models, with a larger magnitude (∼3.30/3.05°C d−1) for HFSA than HFSB (2.21/2.37°C d−1) at 36/54 h. Unlike Figure 13II, the variations of all the source terms are in phase, except for the in-storm period where the entrainment achieves a local maximum at 24 h and advection becomes almost zero (Figure 13G), in contrast to the local minimum of the entrainment and positive advection over the same period. While the heat flux term (Figure 13K) varies by only 0.09°C d−1 from the mean values of −0.31°C d−1 and −0.29°C d−1 for the HFSA and HFSB, respectively, over the 36-h period from 18 to 54 h, the large heat advection (Figures 13G) overwhelms the sum of the negative heat flux (Figure 13K) and entrainment (Figure 13O). However, because of the large positive heat from advection and negative vertical entrainment, the net heat loss is longer by 6 h in the right quadrant. The major factor contributing to the peak at 36 h is the MLD current amplified by the tail end of the TC winds, but the second positive peak at 60 h is mainly caused by the MLT associated with the cold wake that extends upstream. It is found that the positive peaks of the entrainment at 48 h for the HFSA and 54 h for the HFSB are caused by MLD deepening via storm-induced mixing. However, the respective negative and positive peaks at 72 h and 84 h are caused by the cold wake from the undulation motions in the MLD.
A point inside the LC (Figure 13IV) exhibits the least variation among all source terms (Figures 13H, L, Q). However, because of the relatively long period of heat loss in the entrainment term (Figure 13Q) and heat flux with little variations (Figure 13L), the net heat budget was relatively constant during the transit of hurricane Laura (Figure 13D). In particular, the heat advection is small because of the relatively weak currents and uniform MLT inside the LC. Although the variations of the entrainment heat flux are small, the in-storm estimates definitely exhibit the influence of the storm, especially for HFSA whose predicted TC is stronger (by 5/10 kt at 30/36 h) and larger (by ∼1.18/1.16 times at 30/36 h for R34) than that by the HFSB. The RHS estimates (thin curves in Figures 13I–IV) explicitly demonstrate the heat changes before and after the 30-h forecast, which are associated with interactions with the front and rear quadrants, respectively.
It is of interest to observe the lag changes in the residual [image: image] (thin curves in Figures 13Q–T) before and after hurricane Laura. The post-storm [image: image] varies at a certain frequency but lags the heat tendency. On the other hand, the pre-storm estimates generally lead the tendency, and the lag time is shorter on the outside (Figure 13R) and inside (Figure 13T) than at the left (Figure 13Q) and right quadrants (Figure 13S). We can probably conclude that the governing processes for the lag difference is due to the shear instability driven by the TC winds, as opposed to buoyancy stability in response to the diurnal heat flux rather than mechanical wind forcing. We can also conclude that a relatively larger residual exists for the in-storm period and that the spatial variations are complex because of the non-linear interactions with the LC and TC.
5 SUMMARY AND CONCLUSION
The GOM is a unique, semi-enclosed ocean where a TC can make a complete transit in as short as 2.5 days at an average speed of 5 m s−1; further, it is one of the areas that are densely populated by TC activities, where storms can potentially experience rapid changes in intensity owing to the warm upper layers and various oceanic mesoscale features, such as the warm LC, cold/warm core eddies, and freshwater barrier that is often offshore advected from the Mississippi river discharge (Da Silva and Castelao, 2018). These features play crucial roles in the air–sea interactions, particularly modulating the enthalpy flux and consequently changing the TC intensity under the right environmental conditions. At the same time, the ocean responds to such changes, resulting in continuous feedback.
We validated the upper layer simulations from the coupled HAFS runs for two cycles of hurricane Laura, where the Vmax intensities were significantly underestimated for the 2020082406 and 2020082500 cycles. By examining the ocean variable such as SST, MLD, MLT, MLS, T100, and OHC, we obtained surprising findings regardless of the substantial differences in the predicted intensity forecasts. The skill assessments (Figure 7) suggest that underpredicted intensity forcing represents the ocean conditions better than high wind forcing. However, comparisons of the hydrographic profiles (Figure 10) showed no notable differences between the configurations of each cycle. Further, there were differences between the two cases, with degradation for HFSB over HFSA. This was primarily governed by the MLD (also shown in Figure 7), which is in turn associated with the MLT.
[image: Figure 7]FIGURE 7 | Skill comparisons via Taylor diagram for the (A) 202082406 and (B) 2020082500 cycles for mixed layer depth (MLD), mixed layer temperature (MLT), mixed layer salinity (MLS), ocean heat content (OHC), and mean temperature over 100-m depth (T100). The green contours represent the CRMSD.
The SST underperformed similar to the MLD. Comparisons with the NDBC mooring observations (Figure 8) demonstrated negative biases (−0.34°C to 0.16°C) with large variations in the range of −3.0°C to 2.9°C at the time of the peak winds (at 60-h and 42-h lead times for cycles 2020082406 and 20200825, respectively) that provide evidence supporting the skills. An SST value beneath the TC implies negative SST, meaning that there is higher cooling than that observed, and the cooling is greater for the HFSA in the 2020092406 case and HFSB in the 2020082500 case. Regardless of underpredicted or overpredicted intensity, the ocean simulations forced by the HFSB winds generally estimate warmer SSTs by an average of 0.5°C or 0.15°C (Figures 8B, C).
[image: Figure 8]FIGURE 8 | Comparisons of the SST at 12Z on August 26 at 52 NDBC mooring locations: (A) observations, (B–C) SST differences between HFSA and HFSB for the 20200824006 and 2020082500 cycles, respectively, (D–G) model SSTs for 60-h and 42-h lead times for cycles 2020082406 and 2020082500; (H–K) SST differences between the model and observations for the same lead forecast times for each cycle. The best and predicted tracks are shown by the black and colored curves with dots (ref. Figures 5A, B). The units are in degrees Celsius (°C).
Using the six-hourly model outputs, we quantified the magnitudes and variations of the upper layer responses in space and time between the two systems. Figure 9 shows the SST and MLD changes for the 202082406 case as an example. The upper ocean appears to respond proportionally to the forcing; for example, at the 60-h lead time, the estimated SST cooling is 2.9°C–4.1°C and the MLD deepens by about 47–57 m/34 m for the 76 kt/120 kt winds of the retrospective HFSB and HFSA, respectively. The figure also shows manifestation of inertial waves during the intensification period in an area between 1,000 and 1,600 km, which is weaker for weaker winds. The SST cooling variations associated with the inertial motions are similar for the HFSA and HFSB, but the mean bias is larger by 0.7°C for the latter. The MLD variations of the HFSB (Figure 9D) are 1.0/1.6 times that of the HFSA deepening/shoaling (Figure 9C) and indicate that there are two regimes dominated by shoaling and deepening across 1,300 km.
[image: Figure 9]FIGURE 9 | (A, B) SST and (C, D) MLD changes from the initial values as functions of the predicted tracks from the initial storm center (in km along x axis) and lead time (in hour along y axis) for hurricane Laura’s 2020082406 cycle for the (A, B) HFSA and (C, D) HFSB. Each black dot denotes the predicted storm center at the corresponding lead time (y axis) and location (x axis). The area between 600 and 720 km denotes Cuba, and the area between ∼440 and 600 km represents the Gulf of Batabano (model depth of 5 m).
Another response noted in Figure 9 is in the LC frontal region (at ∼950 km), where the SST response to the storm is drastically different between the windward side (inside the LC) and leeward side (outside the LC). Inside the LC, the storm induces warmer SSTs for the HFSA (Figure 9A) by about 0.2°C magnitude, but the opposite occurs outside the LC at a similar magnitude. A similar bimodal pattern exists for the HFSB (Figure 9B); however, the positive SST change in the windward side is about 0.2°C higher on average than that for the HFSA. The SST cooling outside the LC, on the other hand, is smaller by O([image: image]0.15°C) than the HFSA counterpart. The MLD change in the same frontal area is not as drastic as the SST change, especially for the HFSB (Figure 9D); instead, there is a persistent deepening of the MLD in the windward side, with the magnitude varying in an undulation pattern. Hence, high Vmax prediction by the HFSA results in higher SST cooling (maximum of 3.5°C) and greater MLD deepening (maximum of 56.6 m) of 0.6°C and 10 m, respectively, than by the HFSB.
In comparison, the SST and MLD changes at a point in the right quadrant (∼50 km east of the TC center) estimate higher cooling by 0.7/0.2°C and shoaling by 11.9/4.1 m for the HFSA/HFSB, respectively, than those at the TC center (Figure 9). The local maximum of the positive SST change exists at the LC front again, whose magnitude is 0.6/0.8°C for the HFSA/HFSB. Compared to the SST changes in Figures 9A, B, the values are 3 and 1.6 orders of magnitude larger for the HFSA and HFSB, respectively, which are accounted for by the stronger wind stresses in the right quadrant. However, the lower MLD changes imply that the storm-induced upwellings are weaker than those at the predicted TC centers (Figure 9).
The location dependency of the storm coordinates is reflected in the heat budget as well. As seen in Figure 13, the budget in the upper mixed layer is less dramatic inside the LC (Figure 13IV) than that outside the LC (Figure 13II); this is because of the deep thermocline of the LC. However, the LC frontal area presents a more complex heat budget for storm interactions. The implicit processes investigated herein first include the non-linear interactions of the MLD currents with the cyclone winds that can be either interrupted or amplified. Second, the storm-induced vertical motions become significant. Third, local storm-induced cooling can be less significant because the advected heat would be the governing process.
Because of the heavy rains and thick clouds (Lin and Rossow, 1944; Karstens et al., 1994), remotely sensed SST observations using microwave sensors are minimally useful for SST validation. The gridded SST products are also less desirable because they are available at most daily, and the decorrelation length scale employed in the interpolation method (e.g., optimum Interpolation) may not adequately represent either the eddy-abundant real ocean conditions or rapid changes due to the fast-moving storm. Hence, validations were conducted using a few Argo profiles, dense but space-limited observations from gliders, and the NDBC moorings popular in shallow waters.
With the limited in situ observations, we found that the modeled T/S profiles agreed with the observations, especially in deep waters (Figures 10, 11). We also found similar SST cooling as the observations (Figure 8). However, we conclude that the HYCOM simulations are overall biased to the cold upper ocean conditions. The upper layer responses accordingly correspond to the winds, specifically the stronger winds, as well as larger SST and MLT biases. However, using the responses of the model MLD, such as the weaker winds, the higher MLD is difficult to explain using only the buoyancy frequency (Figure 12) without the shear instability.
[image: Figure 10]FIGURE 10 | Temperature (T; thick black) and salinity (S; thick dark red) observations at 06Z (A–C) on 26 August 2020 at three locations (see Figure 6) compared with the modeled T (blue) and S (red) values for the HFSB at 48/30 h lead times for cycles 2020082406/2020082500. The T (think black) and S profiles (think dark red) sampled approximately (A, B) 9.75 days and (C) 10.0 days prior are also shown.
[image: Figure 11]FIGURE 11 | T transect along the glider 4802976 track (see Figure 6) (A) sampled at 6-h intervals and compared with (B, D) HFSA and (C, E) HFSB simulations for cycles 2020082406 and 2020082500 as functions of the lead time [h] along x axis and depth along y axis. The model T differences from observations shown for HFSA (F) and HFSB (G); and HFSA (H) and HFSB (I) for cycle 2020082406 and 2020082500, respectively. The units are in degrees Celsius. The closest distance to hurricane Laura is at 12Z on August 26 (dashed vertical lines at 54 h for cycle 2020092406 and 36 h for cycle 2020082500). The total excursion for the period is ∼47.2 km. The contour intervals are 0.5 °C for the shades and 1 °C for the contours.
[image: Figure 12]FIGURE 12 | Mean buoyancy frequency (N2) for the pre- and post-storm periods for glider observations (black and red) superimposed on estimates from the individual observations (thin lines with dots). The model estimated profiles are shown for the period from before to after hurricane Laura for the 2020082406 and 2020082500 cycles. Note that the pre-storm mean profiles for each cycle are almost identical between the HFSA (light blue and orange for the 2020082406 and 2020082500 cycles, respectively) and HFSB (darker blue for cycle 2020082406 and green for cycle 2020082500).
We conducted heat budget investigations in the upper mixed layer in the LC area through HFSA and HFSB forcing. The results suggest that the heat balance is complex owing to the non-linear interactions between the oceanic thermal front and a TC (Figure 13). Inside the LC where the thermocline is deep, the storm impact on heat budget is mainly through advection and entrainment flux. However, the points in the LC front exhibit that the two advection and entrainment flux terms either counteract or enhance the heat depending on the storm quadrant. Specifically, the entrainment flux is significant enough to render the heat budget negative. The time series of the heat tendency (Figure 13) suggests that the perennial heat supply in the LC by the strong currents can be interrupted by the TC and that such a pause can be as long as 21 h. We found that there were relatively significant heat residuals, especially over the in-storm period. This was accounted for by the unresolved mixing in the shear-dominant environment. One way to rectify this is to at least include wave coupling to explicitly consider the Langmuir turbulence mixing as well as non-linear interactions with the waves, TC, and ocean currents.
[image: Figure 13]FIGURE 13 | Time series of the heat budget estimates for the 2020082406 cycle at four points of interest (Figure 5A): (A–D) show the tendencies of the total heat in thick/thin blue and red lines for the left-hand side (LHS)/right-hand side (RHS) of Eq. 6; (E–H) depict the advection terms; (I–L) depict the heat flux terms; (M–P) are the entrainment terms on the RHS of Eq. 6; (Q–T) are the residuals [image: image] (thin blue and red lines) against the tendencies (thick lines). The light blue and orange lines in (E–P) denote the HFSA and HFSB estimates, respectively. The locations of the points are (−86.55oE, 23.05oN), (−86.78oE, 23.69oN), (−86.20oE, 23.71oN), and (−86.23oE, 23.13oN) for I–IV, respectively, where I and III are at the LC front and the others are outside (II) and inside (IV) the LC. See Table 2 for the extreme values omitted from each panel.
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Coupling a three-dimensional ocean circulation model to an atmospheric model can significantly improve forecasting of tropical cyclones (TCs). This is particularly true of forecasts for TC intensity (maximum sustained surface wind and minimum central pressure), but also for structure (e.g., surface wind-field sizes). This study seeks to explore the physical mechanisms by which a dynamic ocean influences TC evolution, using an operational TC model. The authors evaluated impacts of ocean-coupling on TC intensity and structure forecasts from NOAA’s Hurricane Analysis and Forecast System v1.0 B (HFSB), which became operational at the NOAA National Weather Service in 2023. The study compared existing HFSB coupled simulations with simulations using an identical model configuration in which the dynamic ocean coupling was replaced by a simple diurnally varying sea surface temperature model. The authors analyzed TCs of interest from the 2020–2022 Atlantic hurricane seasons, selecting forecast cycles with small coupled track-forecast errors for detailed analysis. The results show the link between the dynamic, coupled ocean response to TCs and coincident TC structural changes directly related to changing intensity and surface wind-field size. These results show the importance of coupling in forecasting slower-moving TCs and those with larger surface wind fields. However, there are unexpected instances where coupling impacts the near-TC atmospheric environment (e.g., mid-level moisture intrusion), ultimately affecting intensity forecasts. These results suggest that, even for more rapidly moving and smaller TCs, the influence of the ocean response to the wind field in the near-TC atmospheric environment is important for TC forecasting. The authors also examined cases where coupling degrades forecast performance. Statistical comparisons of coupled versus uncoupled HFSB further show an interesting tendency: high biases in peak surface winds for the uncoupled forecasts contrast with corresponding low biases, contrary to expectations, in coupled forecasts; the coupled forecasts also show a significant negative bias in the radii of 34 kt winds relative to National Hurricane Center best track estimates. By contrast, coupled forecasts show very small bias in minimum central pressure compared with a strong negative bias in uncoupled. Possible explanations for these discrepancies are discussed. The ultimate goal of this work will be to enable better evaluation and forecast improvement of TC models in future work.
Keywords: hurricane modeling, ocean modeling, tropical cyclone forecasting, coupled modeling, air-sea interaction, tropical cyclone intensity, tropical cyclone wind radii
1 INTRODUCTION
Although tropical cyclones (TCs) form from atmospheric circulation features such as baroclinic instability in eastward tropical waves, TC development largely depends on the oceanic conditions beneath. For this reason, a fully coupled dynamic ocean is a necessary component of a TC forecasting model, as it captures the transfer of momentum from the atmosphere to the ocean and the feedback from the ocean to the atmosphere through sea surface temperature (SST) evolution, which modulates air-sea enthalpy fluxes (heat and moisture transfer, hereafter ASEF).
Many early studies highlight the role of the ocean in modulating intensity and ASEF (Riehl, 1950; Sutyrin et al., 1979; Khain and Ginis, 1991; Bender et al., 1993; Schade and Emanuel, 1999). Some early TC modeling studies, e.g., Chang and Anthes (1979) and Chang and Madala (1980), were conducted using constant SST as a lower boundary condition. They concluded that negative feedback with SST is important to TC evolution; those findings led to studies using a one-dimensional ocean model (Wada, 2005; Davis et al., 2008). Limitations in these one-dimensional ocean models, in turn, suggested that dynamic three-dimensional (3D) ocean coupling would provide more accurate feedback and hence better forecasts of the development of TCs, because a coupled 3D ocean provides not only negative but also positive SST feedback depending on the mesoscale structure of the upper ocean and the dynamics of TC-forced ocean circulation (e.g., Bender et al., 1993).
A number of observational studies have demonstrated that upper-ocean thermal structure (Leipper and Volgenau, 1972; Shay et al., 2000; Lin et al., 2009; Jaimes et al., 2015) and the response of the ocean surface boundary layer to TC winds (Cione and Uhlhorn, 2003; Jaimes et al., 2015) play key roles in the intensification of TCs. These studies support the value of full air-sea coupling, in particular with an eddy-resolving ocean model, to simulate multi-scale coevolution of the ocean and TC. Ocean-TC interaction studies have also directly shown the modulation of TC intensity by dynamic ocean response, for example, Wu et al. (2007) and Tuleya and Kurihara (1982).
In addition to intensity, studies have found that coupling impacts other TC features as well. Numerical (Yuan and Jiang, 2011; Yun et al., 2012; Ren et al., 2014; Sun et al., 2017; Yuan and Jiang, 2017) and observational studies (Agrenich, 1984) show the influence of SST on TC track, including left- and right-of-track biases and differences in TC translation speed. Holt et al. (2011) for example, found that TC track error was reduced by ocean coupling at 48 h, although they also found TC track spread increased in coupled vs uncoupled experiments. Similarly, a number of studies have found that coupling can strongly influence forecast storm size (Pun et al., 2021), and specifically storm size can be impacted by SST cooling (Guo et al., 2020; Xu et al., 2020). Previous studies have also highlighted the impact of ocean coupling on large-scale and climate conditions that influence TC activity (Li and Sriver, 2019), e.g., large-scale environmental factors that can modulate TC genesis and seasonal activity. Similarly, previous studies have discussed the importance of both pantropical and TC-TC interaction (Cai et al., 2019; Alaka et al., 2020), which can involve mediation by the ocean. No previous studies, however, have used high resolution modeling to discuss the impact of air-sea coupling on the environment surrounding TCs.
Finally, numerical studies of coupled ocean-atmosphere models have shown that more realistic representations of ocean profiles for temperature and salinity, and of sub-mesoscale currents, are necessary to ensure adequate modeling of ocean response under TC conditions (Halliwell et al., 2011; Jaimes et al., 2011; Le Henaff et al., 2021; Rudzin and Chen, 2023). These previous results highlight the fact, further elucidated in the present work, that the impact of a dynamic ocean on TC forecasts can be different in different ocean regions and oceanographic regimes. Mogensen et al. (2017) for example, showed that in the western Pacific, an uncoupled modeling system produced TCs which were too weak in the southern part of that basin and too intense in the northwest, with important differences in the spatial pattern for their coupled experiment. To date, the present authors are not aware of any similar published results for the Atlantic basin.
The US National Weather Service has a long history of operating coupled ocean-hurricane forecasting systems, including the Geophysical Fluid Dynamics Lab (GFDL) hurricane model since 2002, Hurricane Weather and Forecast System (HWRF) since 2007, and Hurricane Multi-scale Ocean-coupled Non-hydrostatic model (HMON) since 2017. In 2023, the next-generation Hurricane Analysis and Forecast System (HAFS) became an official coupled ocean-hurricane forecast system, intended to replace the legacy HWRF and HMON. The first operational version of HAFS, HAFSv1, has two configurations - HAFS-A (HFSA) and HAFS-B (HFSB). For 2023, both of these systems were coupled with the HYbrid Coordinate Ocean Model (HYCOM) as their ocean component (Bleck et al., 2002).
To simulate two-way air-sea feedback, HYCOM continuously provides updated SST, while it receives net shortwave and longwave radiative fluxes, precipitation rate, sensible and latent heat fluxes, zonal and meridional momentum fluxes, and mean sea level pressure. HYCOM solves 3D primitive ocean equations using scale-dependent lateral mixing and the K-Profile Parameterization (KPP) for vertical mixing (Large et al., 1994). HYCOM has demonstrated forecast skill in coupled hurricane forecast systems running operationally, including HWRF and HMON (Kim et al., 2014; Kim et al., 2022a; Kim et al., 2022b). It accomplishes this skill with evidence-based model parameterizations of physical processes (Kara et al., 2005; Heffner et al., 2008; Rasmussen et al., 2011; L’Hégaret et al., 2015), relying on validation studies for ocean mixing (Kara et al., 2008; Zamudio and Hogan, 2008; Halliwell et al., 2011; Pottapinjara and Joseph, 2022). HYCOM ocean model configurations (Chassignet et al., 2007; Metzger et al., 2014) have been extensively supported by the research community.
The present study investigated changes in TC forecasts with and without HYCOM ocean coupling using HFSB. The goal was to assess the mechanisms by which dynamically evolving SST influences the intensity (maximum sustained surface wind and minimum central pressure), track (center motion), and structure (e.g., surface wind field size, vertical temperature anomaly) of TCs. This work aims to enable future improvements in operational hurricane forecasting capabilities. The paper is organized as follows: Section 1 is this Introduction, Section 2 describes Materials and Methods, Section 3 presents Results, and finally Section 4 is Discussion.
2 MATERIALS AND METHODS
This study evaluated impacts of ocean coupling on TC intensity and structure forecasts from version 1.0 of the HFSB configuration, using an uncoupled version of the model for comparison, as detailed in Section 2.1. Forecast quality metrics were evaluated between the two versions using the Verification tools of the Developmental Test Center Model Evaluation Tools for Tropical Cyclones (MET-TC; Jensen et al., 2023), as well as the GRaphics for OS(s)Es and Other modeling applications on TCs (GROOT) verification package (Ditchek et al., 2023), as described in Section 2.2.
2.1 Model configuration
As mentioned above, this study relied on NOAA’s HAFS v1.0B configuration (HFSB), which NOAA made operational in 2023, to provide numerical guidance to operational forecasters in weather centers. HAFS is a tropical cyclone modeling and data assimilation system that is part of NOAA’s Unified Forecast System (UFS) framework. HAFS consists of a regional configuration of NOAA’s FV3 finite-volume atmospheric model (Lin, 2004; Putnam and Lin, 2009) using atmospheric data assimilation, coupled with HYCOM (Bleck et al., 2002) through the Community Mediator for Earth Prediction Systems (CMEPS). More details can be found in Kim et al. (2024, submitted). The HFSB version of HAFS incorporates updated parameterizations for planetary boundary layer (PBL) mass flux and atmospheric microphysics (Hazelton et al., 2023).
2.1.1 Model grid and domain
HFSB features a regional atmospheric parent domain that is storm-centric and uses an Extended Schmidt Gnomonic (ESG) grid with horizontal resolution of 6 km and an extent of approximately 75 × 75°. It also features a moving nest with a 2 km horizontal resolution and an extent of about 12 × 12°. Its vertical grid has 81 vertical levels with a 2 hPa model top. The HYCOM ocean domain is fixed (non-storm centric) and covers the National Hurricane Center (NHC) areas of responsibility for the North Atlantic, Eastern North Pacific & Central North Pacific basins (23.0°S-47.0°N, 178°W-15.0°E). It has a 1/12-degree horizontal grid spacing and 41 vertical levels.
2.1.2 Model initialization
Atmospheric initial conditions (ICs) and 3-hourly lateral boundary conditions (BCs) for the parent domain are provided by the Global Forecasting System version 16 (GFSv16). In addition, HFSB features vortex initialization (e.g., Lin, 2004), including vortex relocation for all cases, and vortex modification only when the initial storm intensity is at least 30 m/s (58 kt). Four-dimensional ensemble variational (4DEnVar) and First-Guess at Appropriate Time (FGAT) data assimilation techniques are implemented as well. Examples of observations used for assimilation are tail Doppler radar and other airborne reconnaissance observations (Hazelton et al., 2021).
HAFS implements a “warm-start” cycling technique for the atmospheric model, that consists of initializing subsequent forecast cycles from the previous cycle, once the first cycle is completed. For HFSB, the storm intensity at the initial time of a forecast cycle has to be at least 40 kt for warm-start cycling to take place, otherwise the cycle is initialized from GFS initial conditions (“cold start”).
Ocean ICs come from the operational Real Time Ocean Forecasting System (RTOFSv2) with high resolution ocean data assimilation (Garraffo et al., 2020). The ICs consist of temperature, salinity, east and north velocity components, and layer thicknesses from the daily analysis or appropriate RTOFS forecast hour.
Ocean lateral BCs are closed, but the solutions near the domain boundary are relaxed to climatology with an e-folding scale of 30 days within 10 grid cells, while the ICs are integrated at 36 and 10 s using explicit-implicit splitting-model solutions with forcing exported from the FV3 component model by the Community Mediator for Earth Prediction Systems (CMEPS) after remapping and merging, at 360 s intervals. The dynamically updated SST field is passed to FV3 at the same 360 s coupling time.
2.1.3 Model physics
HFSB uses atmospheric physics parameterization options as documented in Hazelton et al., 2023. For example, HFSB uses the scale-aware Simplified Arakawa-Schubert (SAS) convective scheme (Han et al., 2017) as well as the turbulent-kinetic-energy (TKE)-based eddy diffusivity mass flux (EDMF-TKE) PBL scheme (Han and Bretherton, 2019) and the Thompson microphysics scheme (Thompson et al., 2004). Other important physics parameterizations used are the Rapid Radiative-Transfer Model for Global climate models (RRTMG) with the Shortwave/Longwave Radiation Scheme (Iacono et al., 2008), and the National Centers for Environmental Prediction, Oregon State U., Air Force, Hydrologic Research Lab—NWS (NOAH) land surface model (Ek et al., 2003).
On the ocean side, HYCOM solves the 3D primitive equations with no tides on the Arakawa C-grid at a resolution of 1/12-degree in horizontal and 41 hybrid-z layers, using scale-dependent Laplacian operator for the horizontal viscosity/diffusivity, and the KPP for vertical mixing.
2.1.4 Air-sea interaction and coupling
The atmospheric and ocean models are run concurrently and communicate through CMEPS. The coupling variables from the atmosphere to the ocean are air-sea momentum flux, sensible and latent heat fluxes, net shortwave and longwave radiative fluxes, surface pressure, and precipitation. SST is passed from the ocean to the atmosphere. The fixed ocean domain covers a larger area than the storm-centered atmosphere domain, while some portions of the atmospheric domain will also lie outside of the ocean domain. Therefore there are areas of the ocean and atmospheric domain that do not overlap and can not directly exchange variables. For these non-overlapping areas, the ocean receives atmosphere forcing from the GFSv16 forecast, and the atmosphere domain is forced by a constant SST. Currently, HFSB is not coupled to an ocean wave model.
The version of HAFS described here can be obtained from the production/hafs.v1 branch of the HAFS GitHub repository
For comparison with HFSB forecasts, we generated uncoupled forecasts for each TC case, taking advantage of the self-cycling assimilation of atmospheric observations implemented in HFSB. The uncoupled forecasts utilized an identical atmospheric model configuration to that described above, including atmospheric DA, but replaced the HYCOM dynamic ocean model with static SST based on GFS analysis at initialization time superimposed with a simple empirical diurnal cycle (NSST, e.g., Lybarger et al., 2023). Note that even at analysis time (forecast hour 0), the SST for the uncoupled experiments differed from the initialization of SST in the coupled model - only slightly on average, but by as much as ±8 K in some locations.
2.2 Forecast selection, evaluation, and analysis
The authors first analyzed all HFSB retrospective forecasts of priority TCs for the 2020–2022 north Atlantic hurricane seasons. This period was chosen to take advantage of the novel, nearly complete archive of retrospective Atlantic forecasts generated by the coupled HFSB system for these years. For additional, comparative statistical analysis, we selected those TCs which had a substantial number of 5-day forecast cycles producing small track errors relative to the NHC Best Track, bridging portions of each storm’s life cycle from prior to cyclogenesis through extratropical transition and/or landfall (the “coupled experiment”). The planned approach was to compare HFSB coupled forecasts with paired uncoupled forecasts, so the authors used the modeling system configured with NSST in place of HYCOM (the “uncoupled experiment”) to generate forecast cycles matching those selected for comparative statistical analysis from the coupled experiment. Finally, we selected five case studies from the comparative statistical analysis, by identifying individual forecast cycles which showed similar tracks from both experiments but showed substantial differences between coupled and uncoupled forecasts in wind intensity and radius of 34 kt winds.
Forecast skill (i.e., % skill score, SS) compares prediction errors E for each experiment with a reference error E_ref (Alaka et al., 2017). For this study, errors from all retrospective HFSB coupled forecasts for 2020–2022 were used as reference (E_ref) for both the coupled and uncoupled experiments, so that skill represents the % improvement or degradation of each experiment compared to HFSB as a whole: SS = 1—E/E_ref. In Figure 1, marker size is inversely proportional to skill (i.e., larger markers indicate less skill). Large, dark red markers are meant to draw the eye to experiment forecasts that are worse than the reference.
[image: Figure 1]FIGURE 1 | Spatial patterns in forecast skill (% difference relative to all HFSB forecasts, 2020–2022) for coupled (left) and uncoupled (right) cases at hour 72 of each forecast; largest dark red markers are for the lowest skill, dark blue for the most improved forecasts. Point locations indicate storm position at that forecast hour: (A, B) absolute track positional errors. (C, D) intensity as estimated by maximum sustained 10 m wind speed; and (E, F) radius of 34 kt winds (mean of the four quadrant-estimates).
Model verification statistics (Franklin, 2009; Jensen et al., 2023) are calculated for the coupled and uncoupled HAFS experiments over the entire coincident sample, which includes a total of 298 5-day forecasts by each model for 15 selected TCs during the 2020–2022 Atlantic hurricane seasons. The present study focuses on ocean impacts on tropical systems, so this sample set includes early-life cycle forecasts of invests - designated areas of disturbed weather - but excludes forecast cycles consisting primarily of periods when a TC had already undergone extratropical transition or was over land. Table 1 summarizes these comparative statistical analysis cases. The resulting sample size for the intensity metrics comprises 288 TC cases (forecasts of fully developed tropical cyclones) at forecast hour 0, and, excluding post-landfall, dissipation, or extratropical transition, 162 cases at forecast hour 120.
TABLE 1 | All forecast cycles (298 total) analyzed for the present study.
[image: Table 1]The sample sizes for storm size metrics (e.g., 34 and 64 kt wind radii) were noticeably smaller because TCs in certain forecast cycles did not meet the criteria for those wind speeds. The quadrant-averaged statistics for R34, R50, and R64 presented below include zero values, which may have imparted some biases in the relative structure metrics between the two experiments. The authors thus further examined frequency distributions for the quadrants having both the smallest and largest radii for each metric, while excluding zero values.
For analysis of the contributions of individual storms to skill degradation in the comparative statistical analysis, we used the GROOT verification package (Ditchek et al., 2023). GROOT applies thresholds to three separate statistical metrics (mean absolute error or MAE skill, median absolute error skill, and frequency of superior performance) for each model performance metric, to objectively evaluate lead times with improvement or degradation that was either fully or marginally consistent across a sample. Thus, using this verification technique allows us to assess the robustness of differences in forecast skill. For the consistency metric and MAE skill for all metrics, retrospective forecasts of the HFSB for 2020–2022 were used as a baseline.
For the case studies, our aim was to identify TC characteristics which were enhanced or weakened in the uncoupled model relative to the coupled model, during and prior to significant TC intensity or structure change. Characteristics we considered included mid-level dry air intrusion, vertical wind shear (related to vertical TC alignment), and steering currents (related to translation speed), as well as differences in warm-core anomaly and surface wind fields. The definition of warm-core anomaly used here is the difference between the azimuthal mean potential temperature profile at each radial distance bin and the potential temperature profile averaged in the 200–300 km annulus from the center of the storm (Stern and Nolan, 2012; Zhang et al., 2020). The authors also analyzed coupled-versus-uncoupled differences in total (latent plus sensible) ASEF from the models, prior to TC structural changes. Wherever possible, we related these differences to changes in forecast SST that might be attributed to oceanographic processes (e.g., upper ocean mixing, upwelling, downwelling) forced by surface atmospheric conditions in the coupled model.
3 RESULTS
This paper first presents forecast verification statistics and statistical comparisons of SST and ASEF for all coupled and uncoupled forecasts which met NHC’s priority storm criteria. Based on these statistical results, the authors then select and analyze five individual TC forecasts in more detail: case studies that each demonstrate a different mechanism by which coupling a 3D dynamic ocean model can influence TC forecasts.
3.1 Forecast verification statistics
Figure 1 shows the spatial distribution of relative forecast skill between all coupled and uncoupled forecasts for several metrics at forecast hour 72, mapped to their corresponding forecast track location. The maps show that the sample of forecasts considered in this study spanned TCs which developed in the main TC development region of the central and eastern tropical north Atlantic, as well as those which developed or matured in the Caribbean Sea, Gulf of Mexico, and northwestern Atlantic. Figures 1A,B show that patterns of absolute positional error were similar between the two experiments. Figures 1C,D show the relative wind intensity forecast skill, and Figures 1E,F show relative forecast skill for mean 34 kt wind radii: Spatial patterns in both these latter sets of figures suggest that uncoupled forecasts often experience the greatest overintensification in regions of the ocean subject to the most variable SST, i.e., the subtropics of the North Atlantic and northern Gulf of Mexico. Interestingly, however, for a number of cases in the subtropics, structure (34 kt radius) skill in the coupled experiment (Figure 1E) was actually worse than that in uncoupled (Figure 1F).
When the authors compared absolute errors and biases between the coupled and uncoupled HFSB experiments (Figure 2), many of our results confirmed long-held hypotheses, but some of these analyses led to unexpected results. In contrast to previous work (see Introduction and Discussion), there were no statistically significant differences in absolute track errors (Supplementary Figure S3D), nor in along- or cross-track errors (figures not shown) between the coupled and uncoupled HFSB experiments.
[image: Figure 2]FIGURE 2 | Forecast verification statistics for coupled (blue) and uncoupled (red) HFSB experiments relative to Best Track, comparing absolute errors (A–D) and biases (E–H) in maximum wind speed (A, E), minimum central pressure (B, F), 34 kt radius (C, G), and 64 kt radius (D, H), respectively. Case counts for each variable as a function of forecast hour are listed below the x-axis (cyan).
The dynamic ocean coupling reduced absolute intensity errors in forecasts of both maximum 10-m winds (Figure 2A) and minimum central pressure (Figure 2B). Beginning near forecast hour 36, the absolute intensity errors in maximum 10-m winds diverge and the uncoupled HFSB experiment performs much worse than the coupled HFSB. The difference is statistically significant at the 95% confidence level from about forecast hour 42 onward. Day 5 was an anomaly with indistinguishable median intensities between coupled and uncoupled, albeit it was also the day with the smallest sample size; however, uncoupled outliers were significantly more intense, with maximum surface winds as high as 180 kt compared with 147 kt for coupled (Supplementary Information, hereafter “SI”; Supplementary Figure S1). Furthermore, the uncoupled HFSB experiment results in a positive intensity bias at all forecast lead times with a maximum wind speed bias of nearly 8 kts at 5 days (Figure 2E). In contrast, the coupled HFSB experiments show a negative intensity bias after forecast hour 12 (Figure 2E), particularly noticeable from Day 2 onward (Supplementary Figure S1).
For intensity errors as measured by minimum central pressure, the uncoupled simulations produce large absolute errors characterized by a minimum central pressure bias that reaches −15 hPa at day 5. Interestingly, the coupled simulations perform better for minimum central pressure (Figure 2F) than for maximum 10-m winds (Figure 2E), with biases that are within 2 hPa of zero after day 1. When contrasted with the results in Figure 2E, the results in Figure 2F may show an inconsistency in the pressure-wind relationship in the coupled HFSB. It may also suggest that the distribution of kinetic energy in the coupled forecasts is wider than that in the actual TCs; we examine this possibility briefly in the analysis of differences in surface wind field sizes between the experiments below. Consideration of other potential explanations can also be found in the Discussion.
Regarding storm motion, if the present results had shown a significant negative bias in translation speed, this could be viewed as a possible cause of the concomitant negative bias in maximum 10 m winds for the coupled experiment: Over the open ocean, the dynamic ocean response represented in the coupled model is expected to have a greater impact on intensity for slower moving TCs (e.g., translation speeds of 10 kt or less; Halliwell et al., 2011). This expected impact is due to the development of the oceanic cold wake beneath the TC reducing the available energy at the air-sea interface. To examine this possibility, the authors compared biases in the storms’ median forecast motion (their translation speeds) between our coupled and uncoupled experiments, and found no statistically significant differences (Supplementary Figure S1) at the 95% confidence level; in fact, translation speeds among the coupled and uncoupled experiments and the Best Track were all statistically similar. This suggests that translation speed differences did not play a major role in intensity differences between the experiments.
In terms of the importance of the ocean to these results, it is notable that both experiments produced TCs with median translation speeds of approximately 10 kt (SI, Supplementary Figure S2A). In 50% of all forecasts, translation speeds were between 7 and 14 kt in days 1–3. These ranges of translation speeds suggest that the majority of cases in the present study would be impacted by coupling to a dynamic ocean (Halliwell et al., 2011). A few outliers were likely experiencing extratropical transition by days 4 and 5, with one forecast TC in the uncoupled experiment moving at 48 kt on day 5. Finally, we note that for both wind speed error biases (Supplementary Figure S1) and 34 kt radii in the largest quadrant (Supplementary Figure S2), later forecast hours of the uncoupled experiment show greater skew (distribution asymmetry) and heteroskedasticity (heterogeneity of variance) suggesting potentially lower predictability when compared with coupled HFSB.
The statistical analysis comparing structure metrics for the coupled and uncoupled experiments showed that average 34-kt radius errors were larger in the coupled HFSB experiment after day 3 (Figure 2C), while also resulting in negative bias, meaning the outer 34 kt wind field is much smaller in the coupled HFSB than uncoupled (Figure 2G). Average 64 kt radius errors are similar for both experiments, consistently near 15 km absolute error at all forecast lead times (Figure 2D). However, the coupled HFSB has a nearly zero bias in 64 kt radius, particularly after 36 h, while the uncoupled HFSB has a positive bias of nearly 10 km (Figure 2H). Therefore, the uncoupled HFSB produced an expanded 64-kt (hurricane strength) forecast wind field. Absolute errors in the radius of maximum winds (RMW, not shown) are similar between the experiments, with errors close to 20 km at all lead times. The bias in RMW (not shown) is also similar, with a positive bias of <10 km at all lead times. The uncoupled HFSB has a lower positive bias than the coupled experiment, highlighting the slight contraction of the RMW in the uncoupled experiment (not shown). The above summary highlights the different ways that dynamic ocean coupling (or lack thereof) can impact forecasts of storm structure and the associated wind field. Below, we consider metrics of vertical storm structure as well.
It was noted above that the coupled experiment produced negative wind speed biases after day 1, but very small minimum central pressure biases. These two findings appear to be inconsistent with a simplistic understanding of the wind-pressure relationship; as previously mentioned, one possible explanation for this inconsistency relates to wind field sizes. If that were the case, we might expect that the coupled model would overestimate the size of the TC; however, Figure 2G shows that the models, especially the coupled model, substantially underestimated the radii of 34 kt winds. Finally, comparing minimum and maximum 34 kt radii between the two experiments in days 1–4 (SI, Supplementary Figure S2), we note that the coupled forecasts were significantly smaller in both median (horizontal middle line) and 25th percentile (lower box boundaries) beginning with day 2. On day 5, the 34 kt radii for the uncoupled experiment became much larger, in fact, although this may simply be consistent with the more intense forecast TCs in that experiment. The authors note that minimum central pressure relates to the overall dynamic balance in a TC, whereas peak wind is not in balance, subject to turbulence, and therefore can be very noisy. The Discussion considers these results for wind intensity, minimum central pressure, and storm structure in more detail.
As a final part of our statistical analysis, we consider the processes by which the uncoupled HFSB contributed to more intense forecasts relative to the coupled HFSB in the present study. Figures 3A,B show that SST and ASEF within 100 km of the TC center, respectively, were consistently greater in the uncoupled experiment for all forecast days after day 1. Figure 3C shows peak warm-core anomaly temperatures, with peak coupled model temperature anomaly from individual 3 h coupled forecast periods on the y-axis and peak model temperature anomaly from the corresponding uncoupled forecast on the x-axis. While individual forecasts show outliers where the anomaly is greater for the coupled forecast (points above black 1-to−1 line) particularly for earlier forecast hours (days 1–4), by days 4 and 5 the great preponderance of points lie below the 1-to−1 line. There are a significant number of extreme points with anomaly > = 7 K from the uncoupled forecasts, with corresponding values for coupled near 0 K.
[image: Figure 3]FIGURE 3 | Boxplots of (A) SST and (B) ASEF averaged within 100 km annulus of TC center locations for the coupled (blue) and uncoupled (red) HFSB experiments as a function of forecast lead time. Case counts (magenta numbers) for each forecast lead time are listed along the x-axis. (C) Scatter plot of coupled versus uncoupled warm-core anomaly peak temperature across all model levels below 18 km. Color coding shows days into each forecast: red for forecast hours 0–23, magenta 24–47, yellow 48–71, green 72–95, blue 96–126.
Supplementary Figure S5 shows scatter plots of warm-core anomaly maximum for individual forecast days: on day 1, the relationship between uncoupled and coupled is essentially 1-to−1. By days 3 and 4, an increasing number of outliers are seen below the 1-to−1 line, showing the rapidly developing negative influence of a dynamic ocean on intensity. Also of note, however, are the continued cases of forecasts where we see the opposite: a greater warm-core anomaly for the coupled case, particularly on day 4. These cases likely include the evolution of open-ocean storms at higher latitudes, but also TCs that are interacting increasingly with land.
3.2 Case studies
In this section, we analyze case studies of individual TC forecasts for five hurricanes: Larry, Earl, Fiona, Ian, and Elsa. Each case demonstrates a different physical process related to coupling that influences intensity forecasts. Figure 4 shows wind speed intensities, TC average SSTs (within 100 km of storm center), and TC average ASEF for forecast cycles of Larry, Earl, Fiona, and Ian. Figure 5 relates these patterns of SST and ASEF to the vertical structure of one representative example, Fiona. Figure 6 shows the influence of coupling on the near-storm environment of Elsa as it moved across the northwest Caribbean. Overall, the range of case studies presented below highlight different aspects of what is a diverse response of TCs to a dynamic ocean in coupled forecast models.
[image: Figure 4]FIGURE 4 | (Inset) Forecast wind intensity for coupled (blue) versus uncoupled (red) forecasts. (left) Mean (line) and +/- 1 STD (shading) of sea-surface temperature (SST) within 100 km of storm center for coupled and uncoupled forecasts. (right) Mean and +/- 1 STD of total air-sea enthalpy fluxes (ASEF) for coupled and uncoupled. Case studies shown are: ((A, B), 1st row) Hurricane Larry, 12L 2021, ((C, D), 2nd row) Hurricane Earl, 06L 2022, ((E, F), 3rd row) Hurricane Fiona, 07L 2022, and ((G, H), 4th row) Hurricane Ian, 09L 2022.
[image: Figure 5]FIGURE 5 | Evolution of warm-core anomaly (shading) and radial velocity (contours) for a forecast of Hurricane Fiona, highlighting the period of most rapid divergence between coupled (left panels, (A, D, G, J)) and uncoupled (middle panels, (B, E, H, K)) intensities (compare Figure 4E inset). Mean temperature anomalies at each model height between 0 and 15 km from the eye are shown in the right panels (c, f, i,l). Forecast hours shown are: (A,B, C) f000, (D,E, F) f024, (G,H, I) f054, and (J, K, L) f066.
[image: Figure 6]FIGURE 6 | Relative humidity for forecasts of Hurricane Elsa averaged from 400 to 700 hPa for (A, B) HFSB coupled forecast, (C, D) uncoupled forecast, and (E, F) GFS analysis. The HFSB model output is from cycle 2,021,070,112 at two forecast hours, f012 (left) and f018 (right). The GFS analysis matches the valid time from HFSB.
An uncoupled forecast of Hurricane Larry initialized at 0600 UTC 2 September 2021, when both forecasts were moving west-northwest through the tropical Atlantic, showed intensification beginning on day 3 (Figure 4A, inset). This intensification coincided with the forecast TC’s passage over a region of higher SST (>27 C, Figure 4A); the higher SST resulted in an increase in ASEF (Figure 4B) that contributed directly to the uncoupled forecast intensification. In the case of Larry, this intensification ultimately verified versus Best Track (black line in Figure 4A inset) while the coupled forecast remained too weak, suggesting that coupling to the dynamic ocean model did not improve the skill for this forecast cycle.
Three of the remaining case studies (Earl, Fiona, Ian, below) follow this same broad pattern, but with the contrasting result that the coupled forecast shows significant improvement over the uncoupled as described below. An uncoupled forecast of Hurricane Earl for 2022–09–06 at 18Z showed substantial overintensification relative to both the coupled forecast and observations (Figure 4C, inset). The TC in the uncoupled forecast experienced warm SSTs throughout the period of overintensification (Figure 4C), and significantly greater ASEF particularly during day 3 (Figure 4D).
A forecast for Fiona (Figures 4E,F), initialized on 2022–09–19 at 00Z, showed a very similar pattern of unverified overintensification (Figure 4E, inset) and enhanced SST (Figure 4E) in the uncoupled forecast at least on days 2–3. ASEF was also greater in the uncoupled case (Figure 4F), albeit differences were less in day 2, suggesting the near-storm environment may have also played a role in differences between coupled and uncoupled forecasts for Fiona (see Elsa case below). Further analysis of the vertical atmospheric structure of Fiona during intensification is summarized below.
Forecasts for Hurricane Ian (Figures 4G,H), initialized on 2022–09–27 at 06Z, show early spin-down (potentially related to atmospheric data assimilation, see Annane and Gramer, 2022); but just prior to Florida landfall, around forecast hour 42, the uncoupled case showed increases in intensity (Figure 4G, inset), SST (Figure 4G), and ASEF (Figure 4H) that did not verify, as compared to the coupled forecast.
For one of the case studies, Fiona, we discuss the evolution of relative heat and moisture concentration in the TC core as represented by the warm-core anomaly (Figure 5, see Methods). At forecast initialization, both the coupled (Figure 5A) and uncoupled storms (Figure 5B) have very similar vertical structures. The structure of the warm-core anomaly evolves through time coincident with the changes in ASEF (Figure 4F). As we have seen in Figure 4, differences in the time evolution of the SST and ASEF correlate well with differences in the intensity forecast between the coupled and uncoupled experiments. This is clearly seen from hours 12 to 24 (Figure 4) when the SST, the ASEF, and the intensity all start to diverge. Beyond this time, the uncoupled case continues to intensify along with a further divergence in SST and ASEF. In terms of the vertical structure at t hour 24 (Figures 5D,E), the temperature anomaly is similar in the lower 6 km for both cases, but above this height the uncoupled case begins to show an enhanced warm core, consistent with more rapid intensification beginning at that hour.
By hour 54, the center of the warm-core anomaly for the uncoupled case (Figure 5H) has increased in height and intensified significantly relative to the coupled (Figure 5G); at a height of 11 km, this anomaly difference amounts to 8 K (Figure 5I). By hour 66, when the uncoupled case has reached its maximum intensity, this difference is even greater (Figures 5J,K), with anomaly differences at heights above 10 km of more than 10 K (Figure 5L). In general, at hour 66, the temperature anomalies differ notably in the bottom 2 km and above 6 km (Figure 5). This result demonstrates that the presence of a dynamic ocean can strongly affect the temperature and humidity structure of a storm far above the boundary layer.
The final case study, Elsa, initialized at 1200 UTC 01 July 2021, is an example of the indirect influence of ocean coupling on TC intensity, as mediated through differences in the near-storm environment between coupled and uncoupled experiments. Unlike in the Earl case, differences in footprint SST and ASEF for Elsa were not substantial (Supplementary Figure S6) during the period of anomalous overintensification in the uncoupled forecast (hours 24–60, Supplementary Figure S4E). And differences in footprint SST between coupled and uncoupled were actually mixed throughout that period of rapid intensification in the uncoupled run. This suggests that something other than the development of a cold wake caused the intensity of the coupled forecast for Elsa to verify better in days 2 and 3 of the forecast.
Figure 6 shows the mid-level (400–700 hPa) mean relative humidity in the coupled and uncoupled runs, both at hour 12 when the two intensity forecasts were very similar, and at hour 18 when they began to diverge substantially (Supplementary Figure S4). Also shown is the GFS Analysis, which included moisture soundings. These figures confirm that a major contributor to the weakening of the TC in the coupled forecast was mid-tropospheric dry air intrusion; this feature did not arise in the uncoupled forecast, even though both the storm intensity and the near-storm mid-tropospheric moisture at 12 h were nearly identical (Figures 6A,C). As the only configuration difference between the two experiments was the dynamic ocean response in the coupled experiment, this case demonstrates that ocean coupling can modify the broader environment of the TC in ways that can impact intensity forecasts.
4 DISCUSSION
The present study examined forecasts of TCs from the 2020–2022 Atlantic hurricane seasons produced by NOAA’s operational HFSB forecasting system, which couples the FV3 model (initialized using vortex modification and atmospheric data assimilation) to the HYCOM ocean model (initialized from data-assimilating nowcasts of the global RTOFS). The analysis period of 2020–2022 allowed the researchers to leverage the nearly complete archive of retrospective forecasts from HFSB for those years. However, this period included both a highly active (2020) and two less active seasons (2021, 2022) for Atlantic TCs, and included periods both with and without the influence of important external factors, such as El Niño-Southern Oscillation (ENSO) variability. The authors therefore believe that the present study encompasses a large enough sample to capture between-season variability, and that many of our conclusions will find more general applicability in the future.
In order to examine the effects of coupling on forecasts, we selected NHC-priority TCs for which the coupled HFSB produced relatively small errors in forecast track during these three seasons. For these storms, we produced coincident uncoupled forecasts using an atmospheric configuration identical to HFSB, except that the dynamically coupled HYCOM was replaced by the NSST product. NSST superposes near-surface (“foundation”) sea temperature from the GFS modeling system at initialization time, with a simple diurnal model of upper ocean temperature variability (a “static ocean”).
The uncoupled forecasts produced significant negative biases in minimum central pressure, and significant positive biases in peak winds and structure statistics, consistent with many prior findings (see Introduction). The coupled forecasts, on the other hand, produced overall skillful minimum central pressure (e.g., Schade et al., 1994) and TC inner core structure, but with overly small TC outer structure (negative bias in 34 kt wind radii) and overly weak maximum winds (negative bias in 10 m surface wind) relative to observations. We noted that the coupled experiment did provide more reliable information about inner storm structure, even though it was less skillful than the uncoupled experiment at forecasting outer storm structure. (In particular, R64 and RMW had lower biases coupled vs uncoupled, while the quadrant-mean R34 negative biases noted above in our coupled experiment, on the other hand, were largely due to lower medians and 25th-percentiles in the largest quadrant at days 2–5.) This is in contrast to earlier findings regarding coupling and outer wind field size (Guo et al., 2020; Pun et al., 2021). Forecasts with too small an outer wind field, as is the case with our coupled experiment, can reduce reliability in forecasting hazards (waves, storm surge), so the mechanisms underlying this finding are worth further study. Additional analysis may also shed light on the impact of coupling on the radii of 50 kt winds specifically, which are important for wind hazard forecasting (Powell and Reinhold, 2007).
Our results for pressure and structure are consistent with previously identified biases in HFSB (Hazelton et al., 2024) as well as other models (Takaya et al., 2010). This combination of results may simply be a matter of pressure being in balance in the atmospheric model, while peak wind is not, thereby making peak wind less predictable. However, it is also possible that these results for pressure, peak wind, and storm size suggest an inconsistency in the way the pressure-wind gradient relationship is modeled in HFSB. They may, for example, point to an issue with thermodynamic-mechanical energy conversion, e.g., in the atmospheric planetary boundary layer physics.
On the other hand, the results for wind intensity and size may also suggest that, in some cases, the ocean modeled in HFSB responds more vigorously than the real ocean to the TC above it. Additional research is called for to help distinguish these potential causes for the observed discrepancies. Finally, bias differences in 34 kt wind radii between coupled and uncoupled forecasts could suggest issues with the definitions used for wind radius estimates by the tracking software in HFSB as compared to those used by the NHC; different handling of missing R34 quadrant estimates, for example, (see Results above), may still account for some part, albeit not all, of the observed bias. We believe these hypotheses to be worthy of further investigation.
In particular, for future work we would suggest isolating and removing the effects of any methodological differences in wind radius estimation between NHC best track and the model tracker. For residual biases in size between the coupled and uncoupled forecasts, we would then recommend investigating as follows. Tangential wind evolution has been found to be sensitive to the storm-relative location of ASEF as well as convective heating (e.g., Maclay et al., 2008; Musgrave et al., 2012). Enthalpy redistribution within the RMW tends to confine radial velocity response to the near center, directly contributing to intensity increase. Heating and enthalpy redistribution outside the RMW, on the other hand, tends to increase storm size. For a future study therefore, we would propose comparing ASEF and convective heating within the RMW vs outside of it, particularly for forecasts where coupled vs uncoupled experiments show significant differences in storm size change.
Another new finding of the present study was the minimal differences in track between coupled and uncoupled experiments across multiple Atlantic seasons. This finding expands upon some earlier, more limited studies (Chen et al., 2010), but contradicts others (e.g., Holt et al., 2011; Sun et al., 2017; Chen et al., 2023) that show improvements to TC track with model coupling. One hypothesis to explain this is that these differences may in part be due to the inclusion criteria for storms in our experiment. In particular, the present study began with coupled forecasts that had low track error (see above); a more complete sample of all TC forecasts for an extended period (multiple seasons) may well reproduce earlier results on the improvement of track skill due to coupling.
A further original finding of the present study was the differing spatial patterns of forecast error/skill between coupled and uncoupled experiments, in particular, for intensity (Figures 1C,D) and size (R34; Figures 1E,F). The result for intensity expands previous findings from the western Pacific (Mogensen et al., 2017) into storms in the Atlantic basin; the R34 result appears to be wholly novel. In addition, we noted in the present study that error distributions for wind speed and R34 radii deviated further from a normal (Gaussian) distribution in the uncoupled experiment. This suggests that the coupled experiment offers greater predictability of intensity and structure than the uncoupled.
In line with the many atmospheric forecast differences noted above between the experiments, we found that waters beneath the storm were generally warmer and provided more enthalpy in the uncoupled experiment after the first day, particularly for those TCs over the deep ocean. Consistent with this warmer SST and greater ASEF, air in the inner storm core for these cases was warmer and more moist (deeper, warmer WCA) in the uncoupled experiment as well after day 1. This latter result is novel for the Atlantic in the sense that it shows coincident evolution of cooler SST, lower ASEF, and shallower WCA in the dynamic ocean case. This result confirms earlier results in other ocean basins (Srinivas et al., 2016; Mohan et al., 2022). The coincidence of these effects links the coupled experiment to slower and more skillful forecasts of TC intensification, in particular for central pressure. There were also some forecasts that showed greater WCA in the coupled case. These counterexamples are consistent with the fact that other processes besides cooling SST also drive vertical structure change; future research should focus on characterizing and distinguishing these factors from the effects of ocean cooling directly beneath the storm (see discussions of the Fiona, Ian, and Elsa case studies below).
This work presented individual forecasts of storms where the coupling produces a clear forecasting advantage, e.g., Ian. For this case, the reduction in ASEF in the coupled forecast occurs over the west Florida shelf, leading us to hypothesize that the balance between vertical ocean mixing and shallow-ocean processes (in this case, coastal downwelling, Gramer et al., 2022) might have played an important role in the rate of intensification in this TC just before landfall. The ocean dynamics underlying this and similar TC-shelf interaction cases are something we hope to examine in much more detail with future work.
It is also of note, however, that the improved pressure forecast performance in coupled HFSB as compared to uncoupled is dominated in our sample by three large, open-ocean storms: Earl, Fiona, and Teddy (SI, Supplementary Figure S3B). These same three storms (together with Delta, Supplementary Figure S3A), also dominated differences in wind intensity. When forecast cycles for just these three storms were removed from our analysis (figures not shown), the differences in forecast skill between coupled and uncoupled were far less substantial. This, together with our findings from individual case studies (e.g., Ian above, and Larry, discussed below), suggests that coupling effects are nonlinear and that coupling to a dynamic ocean does not always produce better results. This may often be the case for smaller or faster-moving TCs, but fast-moving TCs were few in the sample analyzed here (Supplementary Figure S2A). However, regardless of storm motion, coupling in HFSB does tend to improve forecasts for storms that are in environments liable to produce substantial intensification, such as the open subtropical ocean (as is the case with Earl, Fiona, Teddy; Supplementary Figure S4). One possible reason for this is that in coastal storms, the coupled ocean model may not always reproduce the coastal ocean circulation appropriately; the coastal storms in our sample may also intensify more quickly, leaving less time for ocean impacts to be felt. We again recommend further studies to examine these questions.
This paper discusses five individual case studies. The first, as mentioned above, is an important counterexample to the general argument of the paper: an uncoupled forecast of Larry produced a more intense TC but was also more skillful than the coupled. Larry was a relatively slow moving TC in both experiments and in the observations, during the 5 days of this forecast. The Larry forecast suggests that other factors besides storm size or translation speed, including non-linear effects that result from a combination of factors, should be considered in future analyses of coupled TC forecasts.
The coupled forecasts for the Earl, Fiona, and Ian case studies followed the pattern of cooler SST, lower ASEF, and slower, more physical intensification set out in the full statistical results above. Earl in particular provided a good example of the general linkage between cooling and intensity seen in Figure 2 and Figure 3. The differences in ASEF between the coupled and uncoupled Fiona forecasts were less marked, while Ian showed evidence of coastal and shelf ocean interaction for which coupling was also important. For Fiona, the somewhat weaker distinction in ASEF between the coupled and uncoupled forecasts also suggested that ocean coupling played some role in modifying the wider environment around the storm as well. Further work elucidating this indirect effect of coupling may be valuable (see below). For Ian, the pattern of difference between coupled and uncoupled played out while the storm was largely interacting with the shallow rather than the deep ocean, suggesting that coupling is important for forecasting landfalling cases as well (e.g., Gramer et al., 2022).
For both Earl and Fiona in the open ocean, coupling produced ocean cooling near the inner core of the TC (Figure 4) and improved forecasts for intensity and structure (Supplementary Figure S4). For cases where SST response beneath the core is strong, the link between ocean dynamics and reduced warm-core anomaly and ultimately reduced intensity is clear. For a case like Fiona, the differences in SST and ASEF between the coupled and uncoupled cases, while not as strong, still correlate well with the differences in intensity between the experiments (Figure 4). In particular, we see with Fiona that the WCA (Figure 5) evolved in lockstep with changes in the ASEF over time. This case, while complex, nonetheless illustrates the result noted in our statistical analysis above, that the presence of a dynamic ocean may strongly affect the temperature structure of a storm far beyond the boundary layer.
As Hurricane Ian crossed the west Florida shelf just prior to landfall, HFSB coupling produced a forecast which avoided a notable overintensification seen in the uncoupled forecast. For Hurricane Larry, the ocean coupling degraded the forecast relative to the uncoupled experiment. We hypothesize that this case might indicate that coupling can reinforce issues in the atmospheric forecast related to other causes, e.g., atmospheric physics parameterization. This might suggest a need to tune physics parameterizations simultaneously in both the ocean and atmosphere, a hypothesis worthy of further research.
For our final case study, Elsa, the coupled intensity forecast was better than the uncoupled, apparently because of differences in the near-storm environment rather than the inner TC core, i.e., the intrusion of mid-tropospheric dry air. Although timing and extent of the dry-air intrusion were not perfectly forecast in this case study, the coupled model reproduced a dry slot near Elsa’s core that was apparent in GFS analysis, while the uncoupled model failed to do so. As the storm moved across the northeast Caribbean, the improved forecast of this dry slot in turn allowed the coupled model to forecast a reduced intensity relative to uncoupled, which was ultimately verified. One possible explanation for this is that the uncoupled forecast had already begun to over-intensify by hour 12, shielding the core from dry-air intrusion in a way that did not verify with the real TC. As noted in our Introduction, literature has discussed the impact of ocean coupling on large-scale climate conditions related to TC activity (Cai et al., 2019; Li and Sriver, 2019) and on TC-TC interaction (Alaka et al., 2020). The present study, however, is the only published result we are familiar with that attributes intensity changes to coupling-related changes in the near-TC environment.
These case studies by no means represent an exhaustive analysis of all intensification processes in all coupled HFSB forecasts, but they demonstrate some of the mechanisms by which a dynamic ocean can be directly linked with intensity and structure change in TC forecasts. Together with the statistical analyses presented in Section 3.1, these results may serve as a guide for modelers and researchers in future efforts to improve coupled TC models. The authors therefore hope that the present study will ultimately help to point future research in fruitful directions.
5 SCOPE STATEMENT
The present study directly addresses the following themes within the focus of Frontiers Earth Sciences, and specifically the special issue on “Tropical Cyclone Modeling and Prediction: Advances in Model Development and Its Applications”: Model development (two distinct configurations of a TC modeling system are utilized and examined); Air-sea interaction (in particular, the mechanisms by which air-sea interaction directly impact coupled TC forecasts), and Model track and intensity verification (including methods for evaluating the ocean component of coupled TC modeling systems). The paper further presents results of novel or recently developed evaluation tools for TC modeling systems (100-km storm-centered footprint averages and standard deviations of key model variables; warm-core anomaly comparisons between experiments; the Ditchek GROOT package).
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Tropical cyclones models have long used nesting to achieve higher resolution of the inner core than was feasible for entire model domains. These high resolution nests have been shown to better capture storm structures and improve forecast accuracy. The Hurricane Analysis and Forecast System (HAFS) is the new-generation numerical model embedded within NOAA’s Unified Forecast System (UFS). The document highlights the importance of high horizontal resolution (2 km or finer) in accurately simulating the small-scale features of tropical cyclones, such as the eyewall and eye. To meet this need, HAFS was developed by NOAA leveraging a high-resolution, storm-following nest. This nest moves with the cyclone, allowing better representation of small-scale features and more accurate feedback between the cyclone’s inner core and the larger environment. This hurricane following nest capability, implemented in the Finite-Volume Cubed-Sphere (FV3) dynamical core within the UFS framework, can be run both within the regional as well as global forecast systems. A regional version of HAFS with a single moving nest went into operations in 2023. HAFS also includes the first ever moving nest implemented within a global model which is currently being used for research. In this document we provide details of the implementation of moving nests and provide some of the results from both global and regional simulations. For the first time NOAA P3 flight data was used to evaluate the inner core structure from the global run.
Keywords: hurricane, numerical weather prediction, tropical cyclone, HAFS, FV3, nesting
1 INTRODUCTION
Improved model resolution is a long-standing approach for better forecasting tropical cyclones (TCs). Sufficient horizontal resolution can capture the dynamically important features of the primary and secondary circulations in the TC. The inner core of a TC contains dynamically important features such as the eye and eyewall with sharp gradients over scales of a few kilometers. In particular, for a mature cyclone, the eye diameter can range from under 5 km to over 200 km. The area of vigorous convection in the eyewall also occurs in a narrow radial range. Thus, we need horizontal resolution of 3 km or smaller to accurately represent the size of these features (Gopalakrishnan et al., 2011).
One goal of increased resolution for the hurricane core is the ability to reach resolutions that can explicitly simulate convective scale features–on the order of 1–4 km. The convective elements are critical to the maintenance and intensification of tropical cyclones. In addition, weakening of tropical cyclones depends on response of those convective elements to unfavorable environmental conditions such as vertical wind shear and mid-level dry air.
The moving nest will continue to provide benefits as the parent regional or global resolutions achieve convective scales, as the nest can move to large eddy simulation (LES) scales. This scale will enable simulation of fine-scale details of the eyewall, and give a clearer view of localized wind maxima that are most likely to cause structural damage at landfall. Finer resolution also can help the modeled storms to accurately simulate very narrow eye and eyewall structures that can occur in the strongest storms; these features can be difficult to accurately simulate when they are on the scale of only a few grid cells.
Global non-hydrostatic models are being envisioned by several operational centers to be run at higher resolutions than the current 9 km–13 km by the end of this decade. However, it remains to be seen whether these models can routinely operate at 1–3 km resolution, providing reliable forecasts with the refresh frequency needed to support the creation of operational forecast products. In the absence of a very high-resolution global model in all basins, grid nesting over individual storms is a practical approach for the hurricane-forecasting problem, both at the regional and global scales.
2 BACKGROUND
It has long been recognized that modeling TCs requires higher resolution than mid-latitude synoptic systems. Static and storm-following nest configurations have been designed in a number of models to balance the requirement of high resolution for the TC within the number of available supercomputer processors and amount of elapsed forecast runtime. Forecast runtime constraints are imposed both by the availability of processors between runs of other models and the scheduling exigencies of forecasting agencies.
We will now describe a number of previous numerical models for hurricanes that were built using nests to achieve high resolution in the immediate vicinity of TCs. All of the previous nested hurricane models have run on regional parent domains.
An early implementation of static nests for modeling TCs is shown in Harrison, 1973. The paper describes a forecast of an idealized TC on a regional configuration with triple telescoping static nests centered on the cyclone’s initial location. The inner nest resolution for this experiment was run at 66.7 km (36 n mi).
Storm-following moving nests have been implemented in a number of hurricane models beginning with the moveable fine-mesh (MFM) model that began running in 1975 and went into operations in 1978 at NOAA’s National Meteorological Center (Shuman, 1989). The inner-nest resolution was 60 km for TCs. This model was also used for heavy precipitation events. The parent domain covered the entire Northern Hemisphere, on a stereographic projection, with symmetric boundary conditions used at the equator (Phillips, 1978). The MFM generated a TC forecast out to 48 h in around 100 min of wall clock time (Kerlin, 1979).
More recent storm-following hurricane models include the Geophysical Fluid Dynamics Laboratory (GFDL) and Hurricane Weather Research and Forecasting (HWRF) models. Kurihara et al. (1979) describe initial work at GFDL on a movable nest with two-way coupling in a one-dimensional primitive equation model. Kurihara and Bender (1980) extend that work to an 11-level primitive equation model tracking a small vortex. The GFDL Hurricane Prediction System became operational in 1995 with a 75X75 parent grid at 1-degree resolution, with nests at ⅓-degree and ⅙-degree resolution. The first case run of this system during development was for 1985s Hurricane Gloria. The 1994 parallel test model was configured to run a 72-h forecast in under 20 min of wall clock time. (Kurihara, et al., 1998). The model remained in operations until spring 2017 (Bender et al., 2019).
The HWRF model involved implementation of storm-following moving nests for the Weather Research and Forecasting Nonhydrostatic Mesoscale Model (WRF-NMM) core. (Gopalakrishnan et al., 2006; Gopalakrishnan et al., 2011). The HWRF implementation included two-way feedback between the nest and parent grids, and an algorithm to find the center of the storm after each timestep to direct nest motion. HWRF has been running operationally at NOAA since 2007, and has shown significant improvements in track and intensity accuracy as the operational model went to higher resolutions and upgraded physics parameterizations (Alaka et al., 2024).
HWRF was extended to run multiple moving nests in a basin configuration in (Alaka et al., 2022). This configuration showed the largest improvements in intensity skill when five or more tropical cyclones were active in the model domain. The paper attributes these improvements to more accurate simulation of storm-storm interactions for nearby systems, as well as more accurate indirect storm-storm interactions due to upper-tropospheric outflow.
Coupled Ocean–Atmosphere Mesoscale Prediction System-Tropical Cyclones (COAMPS-TC) is another operational model with storm-following moving nests, described in (Doyle et al., 2014), built on its own dynamic core, providing the capability of telescoped moving nests, with horizontal resolutions of 45, 15, and 5 km. Komaromi et al., 2021 detailed an 11-member ensemble of COAMPS-TC forecasts with 4-km resolution moving nests, which provides well-calibrated track spread forecasts, but intensity forecast spread is under dispersive.
In this work we document the implementation of the moving nest within NOAA’s Unified Forecast System (UFS) focusing on TCs. For the first time, such a numerical tool was evaluated using flight-level data collected by a NOAA WP-3D research aircraft during the eyewall penetration of hurricane Ian (2022). In the next section we discuss the model and moving nest details. In section 3 we discuss the results from case studies. Section 4 provides a summary.
3 HAFS MODELING SYSTEM
HAFS is NOAA’s next-generation multi-scale numerical model, with data assimilation package and ocean/wave coupling, which will provide operational analysis and forecast out to 7 days, with reliable and skillful guidance on tropical cyclone track and intensity (including RI), storm size, genesis, storm surge, rainfall and tornadoes associated with Tropical Cyclones. The UFS is a community-based, coupled comprehensive Earth system modeling system based on the finite volume cubed-sphere (FV3) dynamical core, whose numerical applications span local to global domains and predictive time scales from sub-hourly analyses to seasonal predictions. It is designed to support the Weather Enterprise and to be the source system for NOAA’s operational numerical weather prediction applications. HAFS will be a part of UFS geared for hurricane model applications. For the first time moving nest was implemented within this system for the FV3 dynamical core. The moving nest can be employed both in the global as well as the regional configuration of the UFS. In addition, such a numerical tool was evaluated using flight-level data collected by a NOAA WP-3D research aircraft during the eyewall penetration of Hurricane Ian (2022). This set of capabilities makes HAFS storm-following nesting unique.
The goal of the HAFS model is accurately forecast tropical cyclones with current compute resources and available resolutions, and have the flexibility to continue to advance in the future. A number of features will permit more accurate and more efficient forecasts with this model. The FV3 design of nest boundary conditions allows nests to run in parallel with the parent grids, giving much faster performance than previous models which ran serially. The flexibility to configure either regional or global domains will allow high-resolution regional configurations that fit on current operational clusters, and research on the global configuration. As larger compute resources become available, global operational runs will benefit from consistent model dynamics and physics for the whole world, and a potential for earlier model start times by eliminating the requirement to wait for lateral boundary conditions from previous forecasts.
3.1 Model overview
This paper details the moving nest implementation in HAFS based on the UFS framework. The HAFS model is based on the finite volume cubed sphere (FV3) dynamic core. The finite volume method is used to discretize each of the model equations. The horizontal grid structure is provided in Figure 1. Horizontal wind, expressed as the u and v components, is represented on a D-grid stagger, which allows for exact computation of circulation and vorticity for each grid cell. All other prognostic variables (mass and tracers) are average values computed about the center of the grid cell in the horizontal direction (Harris and Lin, 2013). The vertical coordinate in this model is a terrain-following pressure coordinate, with layers defined by the delta of pressure in the vertical, dp and the delta of geometric height in the vertical, dz.
[image: Figure 1]FIGURE 1 | Diagram of placement of prognostic variables as cell average mass values, and staggered edge values for wind. Variables are eastward wind (u). Northward wind (v), virtual potential temperature (Θv), vertical delta of pressure (δp), vertical delta of geometric height (δz), moisture species (q), vertical velocity (w).
3.2 Nesting
Harris and Lin, 2013 introduced static nesting with high-resolution nests aligned to the parent grid (Figure 1). Horizontal alignment means that for 3X nest resolution, nine high-resolution grid cells will fit exactly in a single parent grid cell. This alignment permits exact conservation of quantities when summed from the high-resolution cells in the nest, and improved computational efficiency. While vertical nesting is also provided by the static-nest functionality, it is beyond the scope of this moving nest implementation.
The static nest functionality of the UFS permits multiple nests as well as telescoping nests (Mouallem et al., 2022). This initial implementation of HAFS detailed in this paper allows a single moving nest without telescoping. In later work, we plan to extend the moving nest functionality to multiple moving nests and telescoping nests.
The WRF model restricted nesting refinement ratios to odd numbers only; most often used were 3x and 5X. Even numbered refinement ratios were not permitted due to the grid staggering used in WRF. Due to the grid layouts of the FV3 dynamic core, odd and even refinement ratios are permitted by the static nesting code. On the global cubed sphere layout, the surface of the Earth is projected onto 6 square cube faces. Each nest currently must remain on a single parent cube face, without crossing onto another cube face (Mouallem et al., 2022). Later work may permit us to allow nests to cross cube edges and corners. In a regional configuration, the nest can be positioned on any portion of the regional parent grid. In each configuration, the nest edge must remain several points away from the parent cube face edge, due to requirements for neighboring points for differencing schemes in the model.
Nest motion in the UFS is accomplished by shifting the nest one coarse grid cell in the x and/or y direction at a time. When the nest is moved, the high-resolution points at the leading edge need to be filled in with a full set of consistent and balanced surface and atmospheric data. There are five different types of model variables that need to be shifted or recalculated when the nest is moved forward. The variable types are prognostic atmospheric variables, physics variables, surface fields, land-masked surface fields, and navigation fields. The method of generating the high-resolution data of each of these types will be described in this section.
Nest motion in the UFS is configured using namelist options; there are capabilities for prescribed motion in a constant direction and storm-following. Configuration options allow setting the number of model timesteps that should be executed before the next evaluation of whether the nest should be moved.
3.3 Nest motion steps
For prognostic and physics fields that evolve during the forecast run, the following nest motion algorithm that leverages the nest halo concept shown in Figure 2 from the original implementation of the FV3 dynamic core is used. The processor layout defined in the namelist files assigns a set of processors to the parent grid(s), and a separate set of processors to the nest grid. Each processor manages a rectangular grid of points in the x/y direction. For nest processors, the Flexible Modeling System (FMS) layer tracks how each point connects to the parent point and processor.
[image: Figure 2]FIGURE 2 | Schematic diagram of layout of data domain, compute domain, and halo for a single processor in the model. The compute domain in this example encompasses 90 points in the x-direction, numbered from 1–90, and 72 points in the y-direction numbered from 1–72. A halo region for communication with neighboring processors is made up of 3 points in the x- and y-directions surrounding the compute domain. The union of the halo region and compute domain is defined as the data domain, extending from −2 to 93 in the x-direction, and from −2 to 75 in the y-direction.
When the storm tracker code has determined the nest should be moved on this timesteps, the following steps are executed as shown in Figure 3:
0 –Figure 3A shows the starting state, before the nest move begins.
1 – Figure 3B shows the coarse data interpolated to leading edge of nest.
2 –Figure 3C shows that the leading edge has been populated.
3 – Figure 3D shows the halo data being shifted between processors (PEs) internal to nest.
4 – Figure 3E shows that all halos have been populated with variable data.
5 – Figure 3F shows the internal arrays shifted on each PE, with the nest move fully complete, and the model state ready for next dynamics timestep.
[image: Figure 3]FIGURE 3 | (A–F): Diagrams showing steps 0–5 of filling halos with data to accomplish a nest move, illustrating the handling of PEs on the leading edge of the nest, and internal to the nest. The white rectangles indicate the compute domains for each nest processor that make up the entire nest grid, in a 4x4 decomposition. Grey fill indicates data that needs to be updated before the nest move can be completed. Dark blue fill indicates data that has been updated with values after a nest move. Land areas are shaded with topography, and ocean areas are shaded with bathymetry.
3.3.1 Nest move begins
Each processor manages a rectangular area of the parent or child grid. The set of grid cells where model dynamics and physics are integrated is called the compute domain. In order to have a sufficient number of adjacent values to calculate derivatives, a halo of 3 points of data beyond the edge of the compute domain is defined, and filled with valid data that was computed on the adjacent processors. The larger area that consists of the compute domain plus the halos is called the data domain.
When the nest move begins, the halos for all nest processors contain old data from the prior timestep, and need to be refilled.
3.3.2 Coarse data interpolated to leading edge of nest
The first action of the nest move is to fill the halos at the leading edge of the moving nest. In the case illustrated in Figure 3B the nest is shifting west, so the westernmost halo points in the nest (highlighted in yellow) are populated by interpolating from the coarse grid parent points. This action is performed by the nest processors requesting a buffer of coarse data values from the overlapping parent processors, which the parent processors send via MPI to the nest processors. Then the nest processor performs the interpolation to the finer nest resolution cells.
3.3.3 Leading edge has been populated
At this point, the leading edge of the nest has been populated with the necessary data, so we show the leading edge in dark blue.
3.3.4 Halo data shifted between processors (PEs) internal to nest
The next step is to populate the interior halos on the nest processors with data from the neighboring nest processors. This step does not require any interpolation, as the data on the neighboring processors is also at the fine nest resolution.
3.3.5 All halos have been populated
At this stage, all of the halos in the nest have been populated with up-to-date data.
3.3.6 Internal arrays shifted on each PE using fortran intrinsic function EOSHIFT - Ready for next dynamics timestep
The final step of the nest move involves shifting the data in the interior of the nest. Here, we use the Fortran intrinsic function EOSHIFT, which efficiently shifts an array of data. The data in the interior of the nest is shifted from the original nest offset location to the new nest offset location to reflect the position after the nest move. This step does not require any communication between processors.
3.4 Prognostic atmospheric variables
The explicit prognostic fields in the model are shifted with each nest move. This set includes a number of variables that represent the finite element averages on an Arakawa A-grid (Arakawa and Lamb, 1977). Horizontal winds are expressed as u- and v-components, staggered on a D-grid. The A-grid variables are potential temperature, vertical motion (w), grid cell thickness in geometric height (delz), grid cell thickness in pressure (delp), and arrays for moisture species. The moisture species include water vapor, as well as various forms of cloud water and cloud ice, plus precipitation species. These variables could also include items such as cloud fraction. The water species will vary depending on the microphysics scheme chosen.
These fields are moved using the method detailed in steps 0–5 above.
3.5 Physics variables
Physics variables which vary during the model run such as surface roughness, surface temperature, soil temperature, soil moisture, vegetation canopy moisture, and lake parameters, among others, that are parts of the model physics or NOAA’s Common Community Physics Package (CCPP) (Heinzeller et al., 2023) are also shifted with each nest move. For computational efficiency, the physics variables are stored and calculated in 1-D arrays or blocks, to enable efficient vectorization by the Fortran compiler.
Each time the nest moves, the 1-D arrays of physics data for each variable on each nest PE are copied into temporary 2-D arrays in the same shape as the atmospheric prognostic variables. These temporary variables are then shifted using the same subroutines as for the prognostic variables, with values interpolated from the coarse parent grid at the nest leading edge, values communicated to neighboring nest PEs along the internal boundaries, and the remainder of values shifted on each PE using the Fortran intrinsic function EOSHIFT. After the shifting step has been completed, the values in the updated 2-D arrays are copied into the 1-D vectors for the rest of the model to use at the next timestep.
3.6 High-resolution static surface fields
Many surface fields, such as terrain, land/sea/ice mask, vegetation type, and more, remain static during a weather-scale (0–10 days) forecast run. These are transferred onto the forecast grid during preprocessing. To gain the maximum benefit of the increased resolution in the moving nest, we use these fields at the high resolution of the nest. Additional fields are static inputs to quantities that are derived from surface properties and conditions that evolve with precipitation or other weather during the course of the forecast; these include albedo input variables for shortwave and longwave radiation which are combined with snow cover, solar zenith angle and potentially other quantities to produce the effective albedo at each forecast time.
3.7 Land-masked surface fields
A number of surface fields that vary during the course of a model run are also moved. These include emissivity, albedo, and surface roughness. These fields are also partitioned into different variables for land points, water points, and ice points. Interpolation of values is performed at the leading edge of the moving nest taking into account the land/sea/ice mask to only consider values from the same surface type. If no matching landmask values are found in the 3x3 square around the nest point, a default value is assigned instead using the same algorithm as model initialization.
3.8 Navigation fields
Another set of fields in the dynamic core are used for describing the location of the grid cells and corners in latitude/longitude coordinates, as well as cell edge distances, cell areas, the Coriolis terms for the point based on its latitude, and related terms. All of these fields are directly computable from the latitude/longitude coordinates of the supergrid components. For accuracy, these are computed in 64-bit precision in most configurations of the model. When the nest has been shifted, and the new latitude/longitude coordinates have been set for the leading edge of the nest, then these navigation fields are computed for the nest.
3.9 Terrain smoothing
The static nest code described in Harris and Lin, 2013, applies a smoothing algorithm to the terrain heights on the interior edge of the nest. The smoother blends the coarse-resolution terrain with the high-resolution terrain with linearly increasing weight to the high-resolution data over five points. The goal of this terrain smoothing is to reduce instabilities along the nest edge when it lies over areas of sharp terrain. Initial development of the moving nest did not implement this smoothing after nest moves, which led to the production of strong gravity waves when the moving nest encountered higher terrain, and occasional model crashes. We then introduced the same terrain smoothing algorithm along the nest interior edges after each nest move, greatly reducing gravity wave production and eliminating the model crashes.
3.10 Concurrent nesting
The moving nest algorithm uses the concurrent nesting strategy introduced in Harris and Lin 2013, which aids in the efficiency and accuracy of the model. The time-extrapolated boundary conditions at the nest edge computed during the previous time step are used by the nest time step calculations at the same time that the parent domain is performing its time step calculations. This allows the nest grids and parent grids to advance their time step in parallel on separate processors; a significant upgrade from nest behavior in WRF which time stepped the nests after the parent.
3.11 Automated storm tracker
In order for the nest to follow the center of a TC, we ported a version of the internal storm tracking code from HWRF to HAFS. This code is based on the GFDL vortex tracker (Marchok, 2021) with modifications to use prognostic and diagnostic fields available inside the model code and to skip the geographical smoothing from the original algorithm that would require expensive communication between nest PEs. The nest can move a single coarse grid cell in both the x- and y-direction at the same time, but it is not permitted to move 2 or more coarse grid cells in one direction at once.
The current implementation restricts the motion in the x- and y-directions to −1, 0, or +1 parent grid cells. This restriction is based on the use of the halo data structures and subroutines, which extend 3 grid cells beyond the edge of the computational domain. The restriction is also in place to enhance the stability of the model, by not interpolating a large number of cells at a single timestep. We have concerns that shifting multiple cells at once could lead to oscillations or other instabilities, and testing this has been beyond the current scope of our development. The variables used to track the storm are sea level pressure. At each level of 10 m above the surface, 850 mb, and 700 mb, vorticity, wind speed, and geopotential height are used. The center is calculated by averaging the centers from each of the variables, within 225 km of the previous center location. If no center can be determined, or the center is found beyond 225 km from the previous center location, nest motion is not performed for this timestep.
In the namelist for the forecast job, several options for the vortex_tracker are available. Option 1 allows hard-coded nest motion, which is useful for test cases, debugging, and research runs for weak systems without a discernible center. Option 2 will allow an intermediate nest to follow the highest resolution nest, when telescoped moving nests are implemented in a later upgrade. Option 3 is a simple tracking algorithm that only follows the minimum sea level pressure. This option may not follow the storm center properly if the nest encounters areas of terrain. Option 6 is adopted from the HWRF tracker, using a subset of the tracking variables. Option 7 is the most complete storm tracking algorithm, also based on the HWRF vortex tracker.
3.12 Feedback to parent grid
The nested grid performs two-way feedback to the parent grid at 100% using the same methods as the static nesting in UFS (Harris and Lin, 2013). Cell-centered variables are updated with the average of the nest cells that make up the parent cell. Wind values which are staggered on the D-grid are computed from cell faces. This method updates temperature, u-winds, v-winds but does not update dp. The lack of update of dp means that mass is conserved. This mass-conserving remapping update is demonstrated in Harris and Lin, 2013 to introduce only small errors or artifacts for a variety of meteorological conditions. For the hurricane model, the feedback allows the improvements in track and intensity of the storm due to resolution to propagate back to the larger environment.
3.13 Preprocessing
As part of the setup to run a model forecast, preprocessing steps are run to transform static datasets such as terrain, vegetation type, albedo, etc. From standardized input datasets onto the model grid. Some of these fields are purely static on a weather timeframe, such as terrain height. Other variables are interpolated to a daily value from monthly averages, for fields such as vegetation greenness, to account for seasonality.
For a static nest configuration, these fields are generated at the parent resolution for the parent grid, and at the high resolution for the nest. For moving nest configurations, we run an extra step in the preprocessing to generate all of these static fields prior to the model run at the high resolution but covering the area of the whole parent grid–either the full regional domain, or the parent cube face from the global cubed sphere. This allows the model to benefit from high-resolution surface data for the moving nest, rather than downscaling from the coarse parent grid at runtime. This means that the surface fields will have the same high resolution in the moving nest as they have at static nest initialization. This is particularly important when the hurricane within the nest makes landfall or encounters islands, so that full resolution of the land sea mask and terrain and associated properties can be utilized by the model. For current resolutions, this data can be handled by one file for each variable, covering the entire parent domain. As the parent grid size is expanded or resolution is increased, we will likely need to implement a tiling scheme for generating and reading these variables.
The current implementation of the model reads high-resolution grids into memory at startup, then repopulates the surface variables in the moving nest by copying the relevant section from the large high-resolution grid.
3.14 Performance
The code to perform the nest moves makes calls to many of the subroutines and data structures defined in GFDL’s Flexible Modeling System (FMS) (Balaji, 2004). Important features provided by FMS include data structures to define the splitting of the parent and nest grids between all of the assigned processors (processor decomposition), and subroutines to arrange communication between a nest processor and the parent processors that overlap it. These communication subroutines ensure maximal parallelization and performance by requesting data from the exact parent processors to be sent to the nest processor, avoiding any aggregation of data which would slow performance and require synchronization between different processors.
Since the goal of nesting and moving nests is to be able to run forecasts that are highly efficient in CPU usage, we spent significant effort in performance profiling to find slow code segments and optimization efforts. Important considerations for fast performance include parallelization to allow each processor to run independently and reducing waiting on results from other processors as much as possible. The moving nest code was designed to follow the parallelization strategy used by the existing static nest code. This means that the bulk of the computation to accomplish a nest move occurs on the processors allocated to the nest grid cells.
The initial architecture of the moving nest algorithm relies on the existing halo subroutines in the FMS subsystem. (Balaji, 2004). The halo subroutines allow the nest PE to communicate with only the necessary parent PEs to gather the needed data, allowing efficient and highly parallel operations. Away from the nest edges, all of the nest variables need to be shifted to their new coordinates when nest motion occurs. This operation occurs on each nest PE independently. Parent PEs do no processing during this step. We leveraged the Fortran intrinsic function EOSHIFT, which performs the shift of array elements. Since this is a built-in function, its performance is very fast.
Performance profiling revealed some bottlenecks in the nest motion algorithm, so these were rewritten to speed the code. After these optimizations, testing compared moving nest cases with identically-sized static nest configurations, and found the moving nest code added between 3% and 7% to the wallclock runtime.
4 RESULTS AND DISCUSSION
Below, we will discuss forecast results and performance for several configurations of the model for Hurricane Ian (2022), both in global and regional configurations. More detailed analysis of the 2022 North Atlantic season with a regional configuration of the model is provided in Hazelton et al., 2023. For the North Atlantic 2022 season, two HAFS configurations with moving nest showed track skill improvements compared to the operational HWRF from forecast hours 24–60, and slight improvements to neutral from hours 60–108.
4.1 Global model configuration
The moving nest is implemented in the regional as well as the global cubed sphere configurations of UFS. We believe this is the first moving nest ever implemented for a global NWP model. A global configuration offers a number of benefits in terms of scientific improvements and operational efficiency. Consistency of the model dynamics and physics for the globe is achieved by removing a dependency on lateral boundary conditions, which are generally from a model with different resolutions, and potentially different dynamical cores and physics parameterizations. The lateral boundaries are often the site of artifacts in many atmospheric fields. Enabling the global moving nest model to start with only initialization files, either from another model or from a data assimilation system, can allow an operational forecast system to begin earlier, leading to more timely forecasts.
The global moving nest configuration consists of 6 tiles to cover the globe in the cube sphere configuration, and the moving nest at with nest refinement factor of 3 on tile 6. A schematic diagram of the moving nest on a global cubed sphere is shown in Figure 4. The global resolution of C768 which corresponds to grid cells with spacing of approximately 13 km in the horizontal; the nest refinement of 3X yields nest resolution at approximately 4 km. For the run shown below, tile 6 and the moving nest are centered on the initial storm location based on the NHC advisory.
[image: Figure 4]FIGURE 4 | Schematic of moving nest on a global cubed sphere configuration.
The global grids remain static throughout the model run. The global grid was configured with tile 6 centered at 23.5N and 83.3W, based on the advisory location of the storm at model initialization time (National Hurricane Center, 2022). The moving nest grid at 4 km resolution spans 720 X 720 grid cells, or approximately 25o X 25o of latitude and longitude, and is initialized at the center of the tile 6 grid. The nest was allowed to move every 2 timesteps, following the storm center based on the storm tracking algorithm. The nest can move one coarse grid cell in the x and y directions at a time. A storm moving slower than 160 km/h will be accurately followed by these settings. If the nest reaches the edge of the parent cube face, nest motion is stopped.
The model is run with 81 vertical levels on a terrain-following sigma coordinate in both the parent and nest. Physics options chosen are GFDL microphysics and the NOAH land surface model. New model variables that are introduced by a physics parameterization must be explicitly handled in the moving nest code, so at present, not all of the CCPP physics parameterizations are currently supported in the moving nest code.
For simplicity, we use a cold start initialization directly from the GFS global analysis. While the real-time parallel experiment (Hazelton et al., 2020) and operational implementation use vortex initialization and data assimilation to improve the analysis of the TC at initialization, we omit those steps here to focus solely on the functionality of the moving nest. Boundary conditions are not required for a global run; instead, initial conditions are generated for all grid cells on the globe, and then the forecast can be time-stepped forward.
The model timestep dt_atmos is 90s. For the nest we use a vertical remapping factor of five and an acoustic timestep factor of 9. These options mean that the physics are called every 90s, vertical remapping is called every 18s, and dynamics are called every 2s. The global parent uses a vertical remapping factor of 2 and an acoustic timestep factor of 5, so that for the nest, physics are called every 90s, vertical remapping is called every 45s, and dynamics are called every 9s.
The parent grid is coupled to the HYCOM ocean model, with two-way flux feedback coupling frequency every 4 timesteps, or every 6 min. The ocean model domain covers the North Atlantic and East Pacific basins from 23°S to 46°N and 178°W to 15°E. Sea surface temperature updates from the ocean model are downscaled to the moving nest when it moves and on every coupling timestep.
Each of the 6 global tiles is distributed onto 12x10 processors, for a total of 720 processors. The nest is also distributed onto 12x10 processors, and 120 processors are allotted for parallel writing of forecast result files (the write_grid component). The total number allotment for this run is 960 processors, and the forecast completed in 26,428 s, or just over 7 h.
4.2 Example case forecast results
Hurricane Ian began as a tropical wave moving off of Africa, and intensified to a tropical depression in the southern Caribbean on 23 September 2022 at 13.9°N 69.6°W. It reached hurricane intensity on 26 September 2022 at 09Z SW of the Cayman Islands in the Caribbean Sea. The hurricane then crossed western Cuba, emerging into the SE Gulf of Mexico on 27 September. After quickly reorganizing, the storm intensified and underwent an eyewall replacement cycle, and made landfall near Cayo Costa, FL around 1905Z on 28 September 2022 with a maximum sustained windspeed of 130 kts and central pressure of 940 mb (Bucci et al., 2023).
The global forecast for Ian was initiated at 18Z on 27 September 2022 when Ian had just emerged into the Gulf of Mexico after crossing western Cuba at 23.5°N 83.3°W. The NHC advisory at that time indicated maximum sustained winds of 120 mph and a minimum central pressure of 955 mb.
Figure 5 shows the initial location of the nest on the global tile. The nest moved 664 times during the 126 h forecast run, around 5 times per hour.
[image: Figure 5]FIGURE 5 | Configuration of global tile 6 and initial position for moving nest for Hurricane Ian forecast initialized on 20220927 18Z.
The evolution of the storm is shown in Figure 6, as Ian moves from near Cuba at forecast hour 0 to landfall in SW Florida at hour 24 then up the Florida peninsula at forecast hours 36 and 48. The storm and moving nest are shown moving through the Gulf of Mexico, making landfall in Florida, and emerging east of Florida. This demonstrates the ability of the moving nest code to handle moving the atmospheric variables, as well as the various surface physics and terrain fields. It also shows that the automated storm tracker follows the storm center over the open ocean as well as across land masses.
[image: Figure 6]FIGURE 6 | Timeseries of mean sea level pressure (MSLP) in millibars forecast hours 0 to 48 of moving nest for global simulation of Hurricane Ian, initialized 20220927 18Z.
The azimuthal mean tangential wind for the global run is shown in the time series in Figure 7, from hour 0 to hour 48. The storm reaches maximum intensity of 948 hPa central pressure and 107 kts maximum winds in the 24 h forecast, which was about 1 h before landfall. With the cold start from the coarser-resolution global GFS, the initial radius of maximum winds is near 60 km. The 12 and 24 h forecasts best show the structure of the eyewall, with a radius of maximum winds decreasing to about 40 km by the 24 h forecast. After landfall, in the 36 and 48 h forecasts, we see the wind speeds decreasing and the radius of maximum winds spreading as the storm weakens.
[image: Figure 7]FIGURE 7 | (A–E) shows the azimuthal mean of tangential wind of the inner nest of the global run, from forecast hour 0 to forecast hour 48.
4.3 Regional model configuration
A regional model configuration that was tested for operational implementation was used for these runs. In this configuration, a parent grid at 6 km resolution and a moving nest at 2 km resolution are run for a 126 h forecast. A parent grid at 6 km resolution spanning 1,320 X 1,320 grid cells, or approximately 90o X 90o of latitude and longitude, is centered on the initial storm location based on the NHC Best Track dataset, as shown in Figure 8. This grid remains static throughout the model run. The moving nest grid at 2 km resolution spans 600 X 600 grid cells, or approximately 15o X 15o of latitude and longitude, and is initialized at the center of the parent grid. The model timestep dt_atmos is 90s.
[image: Figure 8]FIGURE 8 | Moving nest initial location on terrain of parent regional grid for Hurricane Ian 20220927 18Z case.
The parent regional nest has a remapping factor set at 2 and an acoustic timestep factor set at 5. These options mean that the physics are called every 90s, vertical remapping is called every 45s, and dynamics are called every 9s. The moving nest has a remapping factor set at 4 and an acoustic timestep factor set at 9. These options mean that the physics are called every 90s, vertical remapping is called every 15s, and dynamics are called every 2.5s. The nest will be allowed to move every 2 timesteps, following the storm center based on the storm tracking algorithm.
The model is run with 81 vertical levels on a terrain-following sigma coordinate in both the parent and nest. Physics options chosen are GFDL microphysics and NOAH land surface model. New model variables that are introduced by a physics parameterization must be explicitly handled in the moving nest code, so at present, not all of the UFS physics parameterizations are supported in the moving nest code.
As with the global case, we use a cold start initialization directly from the GFS global analysis. Vortex initialization and data assimilation are omitted. Boundary conditions at the edge of the parent regional grid are supplied every 3 h from the GFS global forecast.
The parent grid is coupled to the HYCOM ocean model, with two-way flux feedback coupling frequency every 4 timesteps, or every 6 min. Sea surface temperature updates from the ocean model are downscaled to the moving nest when it moves and on every coupling timestep.
The parent grid runs on 600 processors, in a 30x20 decomposition. The nest grid runs on an additional 600 processors, also in a 30x20 decomposition. Total wallclock runtime was 14,913 s, or just over 4 h.
4.4 Forecast results
For consistency, the regional forecast for Ian was initiated at the same time as the global case, 18Z on 27 September 2022, when Ian had just emerged into the Gulf of Mexico after crossing western Cuba. In order to concentrate demonstrating the moving nest features, we initialized with a cold start directly from the GFS; no extra data assimilation, vortex relocation, or vortex initialization was performed. The operational implementation uses more elaborate vortex-scale initialization for improved storm intensity, structure, and location for the model initial conditions.
The nest moved 1,387 times during the 126 h forecast run, around 10 times per hour. Figure 9 shows the track of this model run compared with the best track and other operational models. The storm and moving nest are shown moving through the Gulf of Mexico, making landfall in Florida, and emerging east of Florida. The track from HAFS aligns very well with the best track in the Gulf of Mexico and crossing Florida, then has a left bias as the storm moves northward into the Southeast.
[image: Figure 9]FIGURE 9 | Hurricane Ian Track from HAFS model run in orange, compared with other operational models and best track.
Figure 10 shows the mean sea level pressure on the static parent grid at 12 hourly intervals from the forecast initialization through hour 48.
[image: Figure 10]FIGURE 10 | Plots of Parent Domain Mean Sea Level Pressure forecast hour 0, 12, 24, 36, 48.
The time series of parent (Figure 10) and nest (Figure 11) plots of mean sea level pressure shows the storm evolution in the regional configuration from forecast hour 0 to forecast hour 48, as Ian intensifies up in the Gulf of Mexico until making landfall in SW Florida, then crossing the peninsula.
[image: Figure 11]FIGURE 11 | Plots of Nest Mean Sea Level Pressure forecast hours 0, 12, 24, 36, 48.
This demonstrates the ability of the moving nest code to handle moving the atmospheric variables, as well as the various surface physics and terrain fields. It also shows that the automated storm tracker follows the storm center over the open ocean as well as across land masses.
The azimuthal mean tangential wind for the regional run is shown in the time series in Figure 12, from hour 0 to hour 48. The storm reaches maximum intensity of 952 hPa central pressure and 109 kts maximum winds in the 24 h forecast, which was about 1 h before landfall. These values are similar to the 948 hPa and 107 kts seen in the global run. With the cold start from the coarser-resolution global GFS, the initial radius of maximum winds is near 60 km. The 12 and 24 h forecasts best show the structure of the eyewall, with a radius of maximum winds decreasing to about 40 km by the 24 h forecast. After landfall, in the 36 and 48 h forecasts, we see the wind speeds decreasing and the radius of maximum winds spreading as the storm weakens.
[image: Figure 12]FIGURE 12 | (A–E): Plots of the azimuthal mean of tangential wind of the inner nest of the global run, from forecast hours 0,12, 24, 36, 48.
4.5 Comparison with flight level data
The maintenance and development of the warm-core structure and inner-core winds are central to the intensification of hurricanes. For the first time, we have used flight-level observations to evaluate the structure and development of the temperature, humidity, and wind structure of the hurricane in the HAFS high-resolution moving nest. This will allow us to verify that the combination of model dynamics and physical parameterizations are capturing the structure of the storm.
In this section we verify the performance of the high-resolution nest in depicting the inner core structure of hurricanes by comparing the key prognostic variables in the model against the flight level data. The software was created to mine data from the model along the flight tracks. We have performed several forecast runs for Hurricane Ian (2022) to compare with flight level data from the NOAA P3 observations of wind velocity, temperature, and dewpoint. These retrospective regional runs were performed to match times when the reconnaissance aircraft was sampling the storm; the in-flight measurements are generally taken near the 700 mb level. Model runs were executed on storm-centered domains, with a 2 km resolution moving nest and a 6 km parent. Many other sources of in situ observations are also available such as radar and Stepped Frequency Microwave Radiometer (SFMR) data, which could be used to further validate the accuracy of the forecasts in future work.
4.5.1 Hurricane Ian 20220926 00Z model initialization
The first forecast run we compare with in-flight observations is from 20220926 00Z when Ian was in the Western Caribbean to the SW of Cuba and had just been upgraded to hurricane intensity of 65 knots. Analytics were run to center the modeled storm with the observed center location then compare flight-level winds, temperature, dewpoint with the modeled values. Figure 13A shows the flight track, while Figures 13B–D compare wind speed, temperature, and dewpoint values. We see excellent agreement between the observed values shown with the blue lines vs the modeled values shown with the brown lines. The wind plots show the most fine-scaled details, which match quite well between observations and model; with an accurate portrayal of the winds in the sectors of the storm that were sampled.
[image: Figure 13]FIGURE 13 | Hurricane Ian Model Initialization from 20220926 00Z compared with flight-level observations. (A). Shows the flight track (image courtesy of: NOAA) (B). Comparison of observations vs model wind speed in m/s (C). Comparison of observations vs model temperature. (D). Comparison of observations vs model dew point.
In Figure 13B, we compare wind speeds at flight level from the reconnaissance aircraft with the modeled values. The flight legs begin in the NW, with relatively light winds for a long flight segment. Around observation 200, we see that both the observations and model wind speeds have peaks around 20 m/s on either side of a nearly calm eye. From observations 220–350, we see windspeeds slowly increasing from around 15 m/s to around 25 m/s as the aircraft heads SE, then NE, then W in the SE sector of the storm. From observations 350–460, lighter windspeeds are observed and modeled in the SW sector of the storm. Just after observation 460, the flight track passes through the most intense part of the storm, just to the NE of the center, with observed and modeled windspeeds approaching 30 m/s, in line with the advisory intensity of 65 kts. Windspeeds then decrease rapidly as the flight track continues to the NE away from the storm center.
The comparison between observed and modeled windspeeds demonstrates that the model has accurately modeled the storm structure and asymmetries. In particular, the model accurately captured the relatively weak winds in all quadrants of the storm except for the NE.
In Figure 13C, we compare air temperature at flight level between the aircraft observations and the model. The temperature plot shows nearly constant values of approximately 10°C from around observation 150 to observation 550. The observations show two small temperature peaks around observation 200 and 460 as the flight neared the center of the storm; these do not seem to be captured by the model.
More interesting is the dewpoint data in Figure 13D. The flight legs spanning observations 150 to observation 550 correspond to the nearly constant temperature of 10°C. The dewpoint depression demonstrates dry air between observations 201–360 (in the SW quadrant of the storm), with the model broadly in agreement with the observations, but with the model a bit drier in the section from around observation 200–230.
This case shows that the HAFS model captured the structure and asymmetries of the storm as it was reaching hurricane intensity. The strongest windspeeds are accurately modeled to the NE of the storm center, and dry air was accurately modeled to the SW of the center.
4.5.2 Hurricane Ian Model Initialization 20220926 12Z
A subsequent model run was initialized at 20220926 12Z when Ian had intensified to a 100 kt hurricane and was passing over western Cuba. Flight observations were taken a few hours later as the storm had moved into the Gulf of Mexico. After adjustments for the offset of storm center location, the observations shown in Figure 14 also are in quite close agreement with the modeled values for wind speed, temperature, and dewpoint. We notice warming of the inner core, larger area of dew points above 10°C, and intensification of winds. When examining the plot of wind speed, we see a general agreement of the maximum intensity around 35 m/s, though the exact placement of some of the peak winds is offset radially a few kilometers.
[image: Figure 14]FIGURE 14 | Hurricane Ian Model Initialization from 20220926 12Z compared with flight-level observations. (A). Shows the flight track (image courtesy of: NASA MTS) (B). Comparison of observations vs model wind speed in m/s (C). Comparison of observations vs model temperature. (D). Comparison of observations vs model dew point.
Figure 14B shows a comparison of flight-level observations with modeled windspeeds. The first flight leg is an approach from the N and NW of the storm center, shown in observations 0–200. Around observation 200, the flight crosses the center of the storm, with observed winds near 0; the modeled winds drop to approximately 6 m/s in the same area. The flight then samples the SE quadrant of the storm from observation 200–360. Windspeeds are stronger in this entire section of the storm, with maximum values just under 40 m/s observed to the immediate E of the center. From about observation 400–480, the aircraft samples the weaker SW quadrant of the storm, with observed windspeeds generally below 20 m/s. The model shows a similar trend but with some short sections of stronger winds. From observations 480–550, the aircraft passes from SW to NE through the center of the storm, again observing windspeeds just below 40 m/s. The aircraft observes windspeeds near 0, indicating it has located the storm center. The model values remain above 15 m/s in this segment, indicating that the storm center in the model is not completely aligned with the observed location. After observation 550, the windspeeds decrease as the aircraft continues to the NE away from the storm center.
Figure 14C shows the comparison between observed and modeled flight-level temperatures. Observed and modeled temperatures range from 10°C to 15°C from observations 150–550 when the aircraft is taking low-level samples. Three peaks in observed temperature are observed near observations 200, 360, and 500, corresponding to the times when the aircraft near or through the storm center. The model values are in general agreement with the observed temperatures, but at each peak, the model values are slightly lower than the observed maximum temperature.
Figure 14D shows the comparison between observed and modeled flight-level dewpoints. It is notable that the flight-level observations at center crossings near observations 200, 360, and 500 each show dewpoints lower than the temperature peaks at those locations, indicating passage through the somewhat dry eye, despite it containing some clouds as shown in 14a due to land interaction with western Cuba. Dewpoints from the model generally follow the trend of the observations, but with values a few degrees C lower especially in the NW quadrant in observations 100–200. For later observations, the general trend is for agreement between the observations and modeled values, but the fine-scale variations do not align. This is expected behavior as variations due to individual convective elements are not likely to be accurately represented.
Overall, comparison of flight-level observations with model values from this case shows that the model accurately captures many features of the storm, including the maximum intensity of the storm (as measured by windspeed) and the lack of a fully dry eye.
5 SUMMARY
A moving nest algorithm for the FV3 dynamic core of the HAFS system has been implemented for global and regional configurations, and it provides stable and accurate model forecasts following the TC along its path. Preprocessing infrastructure generates static fields to exploit the full resolution of terrain and landcover datasets. During model execution data is needed at the leading edge of the nest when it moves. Prognostic fields and physics variables are interpolated from the coarse parent grid. Surface parameters are read from high-resolution files, and navigation values such as grid cell areas and length of cell edges are calculated from latitude and longitude points.
The moving nest code performs efficiently, adding between 3% and 7% runtime overhead compared to a static nest of the same dimensions. This allows researchers and operational centers to benefit from storm-scale nests that run significantly faster than a configuration with a static nest large enough to encompass a multi-day storm track. Analysis of global and regional cases shows accurate modeling of the intensity and track of a landfalling hurricane. Comparison with flight-level observational data confirms that the model reproduces many features of the storm structure and intensity distribution. Further studies will analyze the performance of the model over entire tropical cyclone seasons.
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In the 2023 hurricane season, the Hurricane Analysis and Forecast System (HAFS) based Ensemble Prediction System (EPS) was being ported to the Amazon Web Service cloud. This relocation aimed to provide real-time hurricane probabilistic forecast guidance for National Hurricane Center (NHC) forecasters. The system comprises Stochastically Perturbed Physics Tendencies (SPPT), Stochastically Kinetic Energy Backscatter (SKEB), and Stochastically Perturbed PBL Humidity (SHUM). Initial and boundary conditions are derived from the National Centers for Environmental Prediction (NCEP) operational Global Ensemble Forecast System (GEFS) 21-member forecast data. The performance of HAFS-EPS for 2023 Atlantic hurricane forecasts was compared with the global GEFS, global ECMWF ensemble, and operational HAFS-A/B forecasts. This comparison highlighted the advantages of higher-resolution regional ensemble forecasts for hurricane track, intensity, Rapid Intensification (RI) probability, and various hazards, including wind, wave, and storm surge probability guidance.
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1 INTRODUCTION
The hurricane track forecast error has been significantly reduced in the past decades through multi-model global deterministic and ensemble forecast guidance. This guidance incorporates various models, including the National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) as detailed by Zhou et al. (2017), Zhou et al. (2022), the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Forecast Suite (available at https://confluence.ecmwf.int/display/FUG/Section+2.1.2.1+ENS+-+Ensemble+Forecasts), and the Canadian Meteorological Centre (CMC) Ensemble Prediction System (EPS) described by Houtekamer et al. (1996). The global EPS reduces the hurricane track forecast error and provides probability guidance for the hurricane position forecasts. However, it is worth noting that it may exhibit a significant bias in hurricane intensity forecasts due to its lower resolution of the horizontal grid.
Three major mesoscale models were employed to establish mesoscale ensemble forecast systems. The NCEP Hurricane Weather Research and Forecast model-based Ensemble Prediction System (HWRF-EPS) was developed for hurricane forecasts during the 2011–2012 Atlantic hurricane seasons (Zhang et al., 2014). In HWRF-EPS, uncertainties in initial and boundary conditions were generated from the NCEP GEFS with randomly perturbing initial TC positions and maximum wind speed in the best track. The model physics uncertainty was accounted for through stochastically perturbing the convective trigger function in the cumulus convection parameterization scheme, and the surface drag coefficients. However, the HWRF-EPS exhibited an overall under-dispersion for track and intensity in the verifications of the 2011–2012 seasons. Torn (2016) utilized the Weather Research and Forecasting (WRF) ensemble to examine uncertainties in Tropical Cyclone (TC) intensity forecasts for multiple Atlantic storms during 2008–2011. Torn’s evaluation indicated that atmospheric perturbations contributed the most to intensity spread and perturbing the drag coefficient proved beneficial in the first 48 h of the forecast. Since 2014, the U.S. Naval Research Laboratory has developed and upgraded the Coupled Ocean-Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS-TC) ensemble to produce probabilistic forecasts of TC track, intensity, and structure (Komaromi et al., 2021). The COAMPS-TC ensemble integrates perturbations in initial and boundary conditions, the initial vortex, and model physics to account for various sources of uncertainty affecting track and intensity forecasts. Initial and boundary condition perturbations contribute to track spread at all lead times, and intensity spread from 36 to 120 h, while vortex and physics perturbations are crucial for generating meaningful spread in intensity predictions within the first 36 forecast hours. The spread–skill relationship of the COAMPS-TC ensemble displays a well-calibrated track forecast but an under-dispersive intensity prediction.
The U.S. Naval Research Laboratory’s COAMPS-TC 11-member ensemble has been running in operation by the Fleet Numerical Meteorology and Oceanography Center (FNMOC) since 2020 (Komaromi et al., 2021). This ensemble system, capable of running up to two storms per cycle, allocates slots for National Hurricane Center (NHC) and Central Pacific Hurricane Center (CPHC) basins if not requested by the Joint Typhoon Warning Center (JTWC). The standalone atmospheric HAFS-based ensemble system was employed for the 2021 Atlantic storms as a real time parallel experiment (Zhang et al., 2021). Despite these efforts, the lack of a skillful high-resolution ensemble remains a significant challenge for forecasters at NHC and JTWC when issuing forecasts related to TC intensity, structure changes, and hazards such as wind, waves, and storm surges (Brennan, 2023; Kucas, 2023). The absence of a high-resolution regional ensemble poses a fundamental hurdle for effective hazard risk communication. Without probabilistic guidance on the magnitude, timing, and location of hazards, NHC and JTWC forecasters face difficulties optimizing risk communication (Hogsett, 2023). There has been a recent shift from deterministic Impact-based Decision Support Services (IDSS) to probabilistic/ensemble IDSS in hurricane forecasting, as outlined in the National Weather Service (NWS) strategic plan for the next 10 years (Graham, 2023). To address these goals and meet the urgent demands from NHC/JTWC forecasters, the HAFS-based EPS has been transitioned to the Amazon Web Service (AWS) Cloud computing because of the limited resource in NCEP operational super computer. This transition enables real-time operation, providing hurricane probabilistic forecast guidance for NHC forecasters during the 2023 hurricane season.
The configuration of the HAFS EPS is thoroughly documented in Section 2, detailing the key elements that constitute the predictive model. Section 3 delves into the major products generated from HAFS-EPS, shedding light on the critical outputs contributing to our understanding of hurricane probabilistic forecasts. In section 4, we meticulously examine the performance of the HAFS-EPS during the 2023 hurricane season, providing insights into its accuracy and reliability. Finally, in Section 5, we draw our findings together to present a conclusion that synthesizes the outcomes of our analysis. Additionally, we outline potential avenues for future development, paving the way for advancements in hurricane ensemble forecasting methodologies. This comprehensive structure ensures a thorough exploration of the HAFS-EPS and its implications for the 2023 hurricane season.
2 HAFS ENSEMBLE CONFIGURATION IN AWS CLOUD
2.1 HAFS ensemble model overview
HAFS is a newly developed hurricane modeling system featuring the Finite Volume Cubed Sphere Dynamical Core, developed by Geophysical Fluid Dynamics Laboratory (GFDL) (Lin and Rood, 1996; Lin and Rood, 1997; Lin, 1997; Lin, 2004; Harris et al., 2021). The system became operational on 27 June 2023, with two deterministic configurations, namely, HAFS-A and HAFS-B (Zhang et al., 2023). The HAFS ensemble, based on the HAFS-A (version 1) configuration, incorporates the Common Community Physics Package (CCPP, available at https://dtcenter.ucar.edu/gmtb/users/ccpp/docs/sci_doc_v2/), encompassing key components.
1) Rapid Radiative Transfer Model for GCMs (RRTMG) radiation (Mlawer et al., 1997; Iacono et al., 2008).
2) Unified Gravity Wave Physics version 1 (uGWPv1) for gravity wave drag.
3) GFDL single-moment microphysics (Lin et al., 1983; Lord et al., 1984; Krueger et al., 1995; Chen and Lin, 2013).
4) Scale-aware Simplified Arakawa–Schubert (SAS) parameterization for deep and shallow cumulus.
5) Scale-Aware Turbulent Kinetic Energy Eddy-Diffusivity/Mass-Flux (Sa-TKE-EDMF) boundary layer with TC-related mixing length adjustments.
6) Global Forecast System (GFS) surface layer, with TC-specific sea surface roughness adopted from the HWRF model (Wang et al., 2023).
The land and ocean are two-way coupled with the Noah Land-Surface Model (Noah-LSM; Ek et al., 2003) and the HYbrid Coordinate Ocean Model (HYCOM; Bleck, 2002), respectively. The ice model (CICE4) and the wave model (WW3) are not included in the HAFS ensemble system. The model operates on a single domain with an Extended Schmidt Gnomonic (ESG, Purser et al., 2020) grid at 6 km horizontal resolution, as illustrated in Figure 1. The atmospheric model has 65 vertical levels with a top layer at 2 hPa.
[image: Figure 1]FIGURE 1 | HAFS ensemble domain with 6 km resolution. The terrain height (meter) is shaded.
The atmospheric model physics uncertainties are accounted in the HAFS ensemble system in three ways, i.e., the Stochastic Kinetic Energy Backscatter scheme (SKEB; Shutts, 2005; Berner et al., 2009); the Stochastic HUMidity perturbations in the boundary layer scheme (SHUM; Tompkins and Berner, 2008); and the Stochastically Perturbed Parameterization Tendencies (SPPT; Buizza et al., 1999).
SKEB was developed to model the upscale propagation of small-scale variability commonly lost through numerical diffusion. SKEB introduces random perturbations to the stream function with a prescribed power spectrum and amplitude dependent on the local dissipation rate to counteract excessive kinetic energy loss in regions with significant dissipation. The stochastic patterns for SKEB in the HAFS ensemble are correlated in the vertical by smoothing the patterns in the vertical by approximately 30 passes of a 1–2–1 filter. The random pattern for each level uses a length scale of 500 km and a time scale of 6 h. The SHUM scheme is based on the idea that the actual triggering of deep convection will happen from plumes below the scale of the model grid. There is a stochastic aspect to the sub-grid variability of temperature and moisture. The stochastic effect of this sub-grid variability within the parameterization of deep convection is estimated by directly perturbing the near-surface grid scale humidity field, multiplying that field by a random pattern with a mean of 1.0 and variance that decays exponentially with height. A single random pattern is used, with a length scale of 500 km and a time scale of 6 h. SPPT represents uncertainty within physical parameterizations. Random spatial patterns are multiplied by the spatial patterns of the physical tendencies of model variables. The random spatial patterns have a specified decay time and spatial decorrelation scale but no vertical variability, except that the amplitude is typically reduced near the surface and tapers to zero above 100 hPa for numerical stability (Palmer et al., 2009). The random pattern for each level uses a length scale of 500 km and a time scale of 6 h.
The initial and lateral boundary uncertainties in the HAFS EPS are generated from the NCEP GEFS. The initial condition and the lateral boundary condition of the 20-member (perturbed) and 1-control (unperturbed) are generated from the GEFS (20-member + 1-control) GRIdded Binary version 2 (GRIB2) dataset in 0.5-degree resolution. There is no re-centering process in the current version of the HAFS ensemble. Since the operational GEFS has 30 perturbed members, the HAFS ensemble members are a subset of the GEFS members, which may introduce a bias for the ensemble mean fields. The initial ocean condition for the HYCOM model comes from the analysis of the NOAA’s Global Real-Time Ocean Forecast System (Global RTOFS).
2.2 Code porting to AWS cloud
The AWS provided the High-Performance Computing (HPC) resources for the HAFS ensemble in the cloud via the Parallel Works middleware platform. A permanent Lustre file system containing 48 TB of disk space and 168 Amazon Reserved Instances (nodes) were obtained to perform real-time forecasts for the 21-member HAFS ensemble. A job-running environment, similar to NOAA’s on-premises machines, is created by installing the necessary modules/libraries and the HAFS ensemble workflow (Rocoto). All forecast data generated by the HAFS ensemble was stored in an AWS S3 bucket, facilitating accessibility for downstream users such as NHC and the National Ocean Service (NOS) for applications like wind, wave, and storm surge forecasts. Additionally, a subset of files was transferred to the NOAA Research and Development High-Performance Computing Systems (RDHPCS) machine to generate the graphics and display them in the NCEP Environmental Modeling Center (EMC) website (https://www.emc.ncep.noaa.gov/HAFS/HAFSEPS/index.php). Details about the primary HAFS ensemble products are presented in the following section.
3 HAFS ENSEMBLE PRODUCTS
The hurricane forecasters at the NHC and JTWC rely on a skillful and reliable high-resolution ensemble to issue forecasts for hurricane intensity, structure, and hazards (wind, wave, and storm surge) probabilities. The real-time HAFS ensemble was operated in the AWS cloud for the storms in the 2023 hurricane season, showcasing the advantages of high-resolution regional ensemble forecasts for hurricane track, intensity, Rapid Intensification (RI) probability, and hazard probability guidance.
3.1 Track and intensity forecast
Hurricane Idalia (AL10-2023) made landfall as a major hurricane (category 3) in Florida during the 2023 Atlantic hurricane season. Before its landfall at 12Z on 30 August 2023, Hurricane Idalia underwent a RI process, experiencing a 40-knot increase in its 10-meter maximum wind within 24 h, spanning from August 29 (06Z) to August 30 (06Z). The storm left a trail of significant damage across the Big Bend region of Florida and southeastern Georgia, resulting in the damage or destruction of thousands of structures and the unfortunate loss of four lives due to storm-related incidents in these two states. Early estimates pegged insured losses in the $2.2–5 billion range. During this event, the HAFS ensemble prediction system provided real-time probability guidance for Hurricane Idalia. This encompassed storm track predictions, intensity changes, wind, and precipitation. Such information proved invaluable for NHC forecasters, aiding in issuing hazard guidance (wind, wave, and storm surge) for the residents of Florida and other states along the East Coast.
Figure 2 displays Hurricane Idalia’s track ensemble forecast initialized at 00Z on 28 August 2023. The envelopes of the ensemble tracks cover the observed storm positions. Also, the landfall time and location of Idalia were predicted accurately by the HAFS ensemble 60 h before its landfall, which helped the emergency managers of the Federal Emergency Management Agency (FEMA) and the local government officers to plan ahead the evacuation of the residents in Florida.
[image: Figure 2]FIGURE 2 | Hurricane track ensemble forecast for storm “Idalia” initialized at 00Z of 28 August 2023. The black: best track (observation); The red: ensemble-mean track; The green: the stronger members with their 10-meter maximum wind speed greater than the ensemble mean value; The gray: the weaker members with their 10-meter maximum wind speed smaller than the ensemble mean value.
The HAFS ensemble intensity forecast for the same cycle is demonstrated in Figure 3. The envelope of the ensemble intensity (10-meter maximum wind speed in (Figure 3A) and minimum sea level pressure (Figure 3B)) at each forecast hour covers the observation intensity of Idalia. Also, the intensity change rate agrees well with the observed intensity change. The probability of the RI of Idalia is about 70% (Figure 4), which is a good indicator for forecasters to issue the hazards (wind, wave, and storm surge) guidance before Idalia actually made landfall on the west coast of Florida.
[image: Figure 3]FIGURE 3 | Hurricane intensity ensemble forecast for storm “Idalia” initialized at 00Z of 28 August 2023. (A) Maximum 10 m wind speed. (B) Minimum sea level pressure. The black: observation; The red: ensemble-mean value; The green: the stronger members; The gray: the weaker members.
[image: Figure 4]FIGURE 4 | Hurricane intensity change probability forecast for storm “Idalia” initialized at 00Z of 28 August 2023. The red bar: maximum 10 m wind speed change exceed 30 kts in 24 h, which is the Rapid Intensification definition.
3.2 Wind speed probability forecast
The HAFS ensemble also provides the probability of the 10-meter winds greater than 34-knot, 50-knot, and 64-knot (Figure 5 for 34-knot). The orange to red region in Figure 5 indicates an 80% higher probability of the 34-knot surface winds. This product would help NHC forecasters to issue wind damage warnings on the ocean for ship voyages and the residents on land on the west coast of Florida. The five-dimensional wind fields and other variables from the HAFS ensemble forecast could be applied to drive the downstream wave and storm surge models, which will help NHC forecasters issue the wave and storm surge probability guidance.
[image: Figure 5]FIGURE 5 | Hurricane surface wind probability forecast for storm “Idalia” initialized at 00Z of 28 August 2023. (A) Day 01; (B) Day 02; (C) Day 03; (D) Day 04; (E) Day 05 and (F) 5 days in total. The black lines: ensemble tracks. The shaded: the probability of the maximum 10-meter wind speed greater than 34 kts.
3.3 Precipitation probability forecast
The 5 days’ Probabilistic Quantitative Precipitation Forecasts (PQPF) with the surface precipitation exceeding 1, 4, and 8 inches are another important products from the HAFS ensemble forecasts (Figure 6 for 1 inch PQPF). The NWS Weather Prediction Center (WPC) and NHC would use these forecasts to issue the flooding warning before the landfall of Hurricane Idalia. The 24-hour (30–31 August, 2023, 00Z) observation precipitation from the NCEP Climatology-Calibrated Precipitation Analysis (CCPA) dataset (Figure 7) indicates that the Day-3 HAFS ensemble PQPF agrees well with the pattern of the observed heavy rainfall in the east coast, including Florida, Georgia, and South/North Carolina states.
[image: Figure 6]FIGURE 6 | Hurricane precipitation probability forecast for storm “Idalia” initialized at 00Z of 28 August 2023. (A) Day 01; (B) Day 02; (C) Day 03; (D) Day 04; (E) Day 05 and (F) 5 days in total. The black lines: ensemble tracks. The shaded: the probability of the 24-hour precipitation greater than 1 inch.
[image: Figure 7]FIGURE 7 | The 24 h (30–31 August, 2023, 00Z) precipitation (unit: inch) from NCEP Climatology-Calibrated Precipitation Analysis (CCPA).
4 PERFORMANCE OF THE HAFS ENSEMBLE IN 2023 HURRICANE SEASON
The current NOAA GEFS-v12 was implemented on 23 September 2020. It has 30 perturbed and 1 control member with a 25 km horizontal resolution. ECMWF’s Integrated Forecasting System (IFS) upgrade to Cycle 48r1 was implemented on 27 June 2023. In the meantime, the horizontal resolution of 51-member ECMWF medium-range ensemble forecasts (ENS) has increased from 18 km to 9 km. The forecasters from NHC and JTWC usually apply the global ensembles’ track forecasts to generate the probability guidance of hurricane positions. They also demand a skillful high-resolution ensemble to predict TC intensity and structure change, which helps them to issue the hazards’ probability guidance for wind, wave, and storm surges. The HAFS ensemble was running in real-time in the AWS cloud to meet the needs of our forecasters.
4.1 Comparison to global ensembles
The performance evaluation of the HAFS ensemble forecasts during the 2023 hurricane season involved assessing both control-member and ensemble-mean forecasts, although the HAFS ensemble could provide critical uncertainty information for hurricane position, intensity, and structural changes. Even though the initial and lateral boundary conditions of HAFS ensemble were generated from GEFS forecast dataset, the comparative analysis between GEFS and HAFS ensemble aimed to demonstrate the advantages of the high-resolution regional ensemble for hurricane intensity forecasts.
Figure 8B illustrates that the ensemble mean intensity errors are notably smaller within 96 h compared to the corresponding GEFS mean intensity errors. The bias of HAFS ensemble intensity remains under 6 knots (see Figure 8C), while GEFS exhibits a larger bias, approximately 14 knots, in the 2023 Atlantic hurricane intensity forecasts. Notably, because the current HAFS ensemble does not include Vortex Initialization (VI) and Data Assimilations (DA), a negative bias is shown within the first 84 h. This limitation is anticipated to be addressed and reduced in the next version of the HAFS ensemble by invoking VI/DA processes.
[image: Figure 8]FIGURE 8 | The 2023 Atlantic hurricane track error (A), intensity error (B) and intensity bias (C) for the GEFS/HAFS ensemble mean (AEMN/HEMN) and the GEFS/HAFS control-member (AC00/HC00) from the GEFS and HAFS ensemble forecasts.
On a different note, the HAFS ensemble track forecasts exhibit some degradation compared to GEFS forecasts (Figure 8A). The considerable track errors observed during the 2023 Atlantic hurricane season, particularly for the challenging track-forecast storm Philippe (AL17-2023), are attributed to its interaction with another storm, Rina (AL18-2023), known as the Fujiwhara Effect. Future updates for the HAFS model physic package are expected to improve this aspect.
As mentioned, the 51-member ECMWF ensemble was implemented with a 9 km horizontal resolution on 27 June 2023. The HAFS ensemble ran on a single regional domain with a 6 km horizontal resolution. This little difference in the resolution between HAFS and ECMWF ensembles significantly affects their hurricane intensity forecasts. The two ensemble forecast systems have many differences in their physics schemes, which may play a significant role in hurricane intensity forecasts. As shown in Figure 9A, the ECMWF ensemble has much bigger intensity errors than the HAFS ensemble in the first 84 forecast lead hours. The intensity bias is less than 6 kts for the HAFS ensemble, which is much smaller than the corresponding ECMWF ensemble with the 15 kts intensity bias (Figure 9B). The forthcoming integration of VI/DA utilities is expected to reduce the negative bias exhibited by the HAFS ensemble.
[image: Figure 9]FIGURE 9 | The 2023 Atlantic hurricane intensity error (A) and bias (B) for the ECMWF/HAFS ensemble mean (EEMN/HEMN) and the ECMWF/HAFS control-member (EC00/HC00) from the HAFS and ECMWF ensemble forecasts.
4.2 Comparison to HAFS-A model
The physics configuration of the HAFS ensemble is derived from the operational HAFS-A model, which features a parent domain at 6 km resolution and a moving nested domain at 2 km resolution. In contrast, the HAFS ensemble adopts a single uniform domain with a horizontal resolution of 6 km. Another method for evaluating the HAFS ensemble’s capability for intensity forecasts involves comparing its performance with the operational HAFS-A. Figure 10A reveals that the ensemble mean intensity errors of the HAFS ensemble closely align with the HAFS-A intensity errors, except for initial, more significant errors for the HAFS ensemble. This discrepancy in initial errors is attributed to the fact that the operational HAFS-A, benefiting from VI and DA in the nested domain, starts with a model vortex intensity close to the observed storm intensity. Conversely, the HAFS ensemble, lacking VI/DA functions, exhibits a negative intensity bias within the first 84 forecast hours (Figure 10B).
[image: Figure 10]FIGURE 10 | The 2023 Atlantic hurricane intensity error (A) and bias (B) for the HAFS ensemble mean (HEMN) and control-member (HC00), and the operational HAFS-A and HAFS-B forecasts.
4.3 The spread-skill relationship of HAFS ensemble
The primary objective of the HAFS ensemble is to depict the uncertainty inherent in hurricane forecasts, encompassing track, intensity, and structural changes. Typically, as forecast time progresses, the ensemble mean forecast error tends to increase, leading to a corresponding growth in uncertainty, represented by the ensemble spread. Ideally, a direct correspondence between ensemble spread and ensemble mean error should exist. Figure 11 illustrates the spread-skill relationship of GEFS and HAFS ensemble forecasts during the 2023 Atlantic hurricane season. As track errors expand over forecast hours, the spread amplifies with time as well. Both ensembles exhibit under-dispersive characteristics for hurricane track forecasts, with the GEFS ensemble displaying a better spread-skill relationship. On the other hand, the HAFS ensemble demonstrates smaller intensity errors compared to the GEFS ensemble. However, its intensity spread surpasses that of the GEFS ensemble, resulting in a more favorable spread-skill relationship for intensity forecasts with the HAFS ensemble. The HAFS ensemble’s track and intensity forecasts exhibit under-dispersive characteristics, which suggests the potential for improvement through advanced Stochastic Parameter Perturbation (SPP) in the model physics. Additionally, a comparison between the forecasts of the 21-member and 31-member HAFS ensembles for select hurricanes in the 2023 Atlantic season indicates that the 31-member ensemble provides a more robust Probability Density Function (PDF) and higher spread than the 21-member ensemble (Figure omitted for brevity).
[image: Figure 11]FIGURE 11 | The 2023 Atlantic hurricane track error and spread (A), and intensity error and spread (B) from the HAFS (red) and GEFS (blue) ensemble forecasts.
5 CONCLUSION
The absence of a skillful and reliable high-resolution ensemble remains a substantial challenge for forecasters in the operational centers when issuing forecasts for TC track, intensity, structural changes, and associated hazards such as wind, wave, and storm surge probabilities. In response to the challenge, the HAFS-based EPS has been successfully transitioned to the AWS cloud. It operates in real-time, providing NHC forecasters with probabilistic hurricane forecasts throughout the 2023 hurricane season. Remarkably, the stability of the 168 Amazon Reserved Instances (nodes) allocated for the HAFS ensemble system ensured robust real-time forecasts during the 2023 Atlantic hurricane season.
The HAFS-EPS incorporates atmospheric model uncertainty through its stochastic physics suite, including Stochastically Perturbed Physics Tendencies (SPPT), Stochastically Kinetic Energy Backscatter (SKEB), and Stochastically Perturbed PBL Humidity (SHUM). Initial and lateral boundary conditions are derived from the NCEP operational GEFS 21-member forecasts. A comprehensive performance comparison of HAFS-EPS with global GEFS, global ECMWF ensemble, and operational deterministic HAFS forecasts for the 2023 Atlantic hurricane season reveals the advantages of higher resolution regional HAFS ensemble forecasts. Notably, the current version of the HAFS ensemble lacks VI and DA, leading to a significant bias in forecasting strong storms.
Both track and intensity spread of HAFS ensemble grow with forecast hours, but exhibit under-dispersive characteristics, indicating the need for more stochastic processes like SPP in the new version of the HAFS ensemble. In the meantime, the under-dispersive track forecasts can be addressed through perturbations in the initial position and intensity of vortices within the VI process.
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This study examines the influence of NASA Cyclone Global Navigation Satellite System (CyGNSS) Level 2-derived 10 m (near-surface) wind speed over the ocean on analyses and forecasts within the NOAA operational Hurricane Analysis and Forecast System (HAFS). HAFS is coupled with a regional configuration of the HYCOM ocean model. The primary advantages of data from the CyGNSS constellation of satellites include higher revisit frequency compared to polar-orbiting satellites, and the availability of reliable wind observations over the ocean surface during convective precipitation. CyGNSS data are available early in the life cycle of tropical cyclones (TCs) when aerial reconnaissance observations are not available. We focus on TCs whose forecasts were initialized when the TC was a depression or tropical storm. In the present study, we find first, that assimilation of CyGNSS near-surface winds improves storm track, intensity, and structure statistics in the analysis and early in the forecast, for many cases. Second, we find that assimilation of CyGNSS observations provides additional insights into the evolution of air-sea interaction in intensifying TCs: In effect, the ocean responds in the coupled model to modifications in the initial 10 m wind field, thereby impacting forecasts of intensity, storm structure, and sea surface height, as demonstrated by two case studies. We also discuss some forecasts where assimilating CYGNSS appears to degrade performance for either intensity or structure.
Keywords: tropical cyclones, numerical weather prediction, surface winds, data impact, data assimilation, ocean models, air-sea heat fluxes
1 INTRODUCTION
Improving 10 m wind analyses is crucial to improving forecasts of potential hazards from tropical cyclones (TCs) such as wind gusts and, in particular, perhaps the deadliest TC hazard, storm surge (Rappaport et al., 2009; Powell and Reinhold, 2007). Storm surge in recent US landfalling TCs has accounted for more deaths than any other cause. For example, the National Hurricane Center (NHC), in its end-of-season report on landfall damage from Hurricane Ian, states, “Ian was responsible for at least 156 fatalities, 66 of which were considered deaths directly caused by the storm. […] Storm surge was the deadliest hazard, claiming 41 lives, with 36 of the 41 surge fatalities occurring in Lee County, Florida […] Of other causes, only] 4 were related to wind, and 1 was due to rough surf.” (NHC, 2023). In the present study, we will see that assimilating near-surface wind data can significantly influence forecasts of TC intensity, of the ocean conditions beneath the TC, and ultimately, the initial conditions upon which storm surge forecasts are based.
Extensive literature shows that satellite 10 m wind observations over the ocean help to improve the accuracy of numerical weather analyses and forecasts (Atlas et al., 2001; Atlas, 1997; Candy et al., 2009; Leidner et al., 2003; Schulz et al., 2007). However, most existing satellite observing systems have limited temporal resolution (e.g., 1–2 overpasses per day), and some of those based on scatterometry may saturate at higher wind speeds, and may provide less accurate ocean 10 m high wind speed data when there is precipitation. Scatterometry performance depends on the type of scatterometer: C-band scatterometers (e.g., ASCAT) perform well in precipitation, but usually have smaller swaths, while Ku-band scatterometers (e.g., QSCAT, OSCAT) experience significant attenuation in precipitation. Both types of scatterometers, however, tend to saturate at high wind speed (Dani et al., 2023).
Of satellite remote sensing instruments, only L-band receivers, such as those on the NASA Cyclone Global Navigation Satellite System (CyGNSS; Ruf C. S. et al., 2016; Ruf C. et al., 2016), can observe winds in the presence of heavy rain - a ubiquitous feature within the core and feeder bands of a TC. Thus, CyGNSS has the potential to mitigate some of the previous shortcomings in the temporal and spatial sampling of the 10 m wind field in TCs (Rappaport et al., 2009). CyGNSS also provides more frequent wind speed retrieval than other systems, which can be critical in sampling the rapid evolution of TC wind structure (Rogers et al., 2013), especially during rapid intensification (RI) or eyewall replacement cycles. These features of CyGNSS also have the potential to improve the accuracy of the forecast wind products which are required for operational and research storm surge models, e.g., the Coastal and Estuarine Storm Tide (CEST; Xiao et al., 2006) and the Sea, Lake, and Overland Surges from Hurricane (SLOSH; Glahn et al., 2009) models.
Due to coordinated efforts such as the Hurricane Forecast Improvement Project (HFIP; Gopalakrishnan et al., 2021), operational TC forecasting has improved markedly over the last 15 years. The accuracy of TC track forecasts has continued to improve, particularly at longer lead times (4 and 5 days, e.g., Landsea and Cangialosi, 2018). Furthermore, research programs have recently also improved intensity forecasts as measured by either maximum 10 m winds or minimum central pressure (Cangialosi et al., 2020; Alaka jr et al., 2024). Finally, recent research has focused on other metrics important to forecasting TC hazards, such as wind radii (e.g., Cangialosi and Landsea, 2016).
The current study presents the results of an observing system experiment (OSE), building upon previous research which used observing system simulation experiments (OSSEs). Numerous studies have explored the effects of simulated CyGNSS-derived winds through regional OSSEs (McNoldy et al., 2017; Zhang et al., 2017; Annane et al., 2018; Leidner et al., 2018). OSSEs operate on the same principle as OSEs, but utilize observations derived from a simulated atmosphere to assess observations that are not yet available (e.g., Hoffman and Atlas, 2016). The four CyGNSS OSSE studies mentioned earlier employed a regional OSSE system, wherein the Hurricane Weather Research and Forecasting (HWRF) limited-area model was utilized to generate TC forecasts using simulated observations.
McNoldy et al. (2017) and Zhang et al. (2017) investigated scalar winds' impact and identified enhancements in the analyses and forecasts of track, storm intensity, and storm structure. McNoldy et al. (2017) proposed that incorporating a directional component may improve results. Annane et al. (2018) observed positive impacts on track and intensity forecasts from scalar and vector winds, particularly when cycling every 3 h compared to 1- or 6-h cycling intervals. Leidner et al. (2018), on the other hand, noted more consistent improvements from wind data assimilation in storm intensity (2-5 knots) than in track forecasts, but their findings also showed that vector winds were more beneficial than scalar winds in improving model representation of 10 m wind field structures. Analyses without directional wind components were found to be more susceptible to dynamic imbalances and non-physical storm structure asymmetries.
This study focuses on the impact of CyGNSS-derived 10 m wind speed observations over the ocean on numerical weather prediction (NWP) analyses and forecasts of the NOAA operational Hurricane Analysis and Forecast System (HAFS). The aim of the present study is, first, to look at the impacts of CyGNSS on statistics for storm track, intensity, and structure, then, second, to analyze the effects of CyGNSS on the evolution of air-sea interaction in intensifying TCs. In the discussion below, we also briefly note that such data can contribute to improving NWP model parameterizations for surface air-sea fluxes (wind stress and sensible and latent heat). However, such improvements are beyond the scope of the present work. The paper is structured as follows: Section 2 outlines the OSE framework and presents the experimental design, while Section 3 discusses the results. Section 4 summarizes this study, focusing on its findings and limitations, and briefly outlines future planned studies.
2 DATA AND METHODS
Since a global modeling system is heavily parameterized and cannot sufficiently resolve the small scales that are significant contributors to the rapid intensification processes of TCs, a regional model specifically developed for TCs is utilized in this study (Mueller et al., 2021). A version of the operational HAFS model is chosen (see Sec. 2.2). This approach enables the assessment of the impact of CyGNSS Level 2 data through improved HAFS initial conditions (ICs). We evaluated impacts of assimilating CyGNSS data on TC intensity and structure forecasts from the “B” configuration (hereafter, HFSB) of NOAA HAFS v1.0 (Hazelton et al., 2023) using two experiments (see Table 1). Initialization for all experiments occurs at the specified time indicated in column 2 of Table 2, until reaching the date and time specified in column 3. For each 5-day forecast within a given OSE experiment, Error metrics are computed every 6 h with respect to the Best Track data, where error is defined as the difference between the experiment and the Best Track data.
TABLE 1 | List of experiments.
[image: Table 1]TABLE 2 | All forecast cycles (87 total) analyzed for the present study.
[image: Table 2]The initial four cycles (full day) of the experimental period for each storm is used to initialize the model state with CyGNSS observations, while forecast cycles from all subsequent days are utilized to generate TC statistics. Mueller et al. (2021) took a similar approach, but used 15 days to initialize the model state with CYGNSS observations; theirs however, was a global model. Annane et al. (2018) on the other hand used 1 day in the regional hurricane model HWRF.
2.1 CyGNSS
The CyGNSS constellation, comprising GPS receivers aboard eight minisats launched on 17 December 2016, captures reflected ocean surface signals of opportunity emitted by existing GPS satellites (level-1). Unlike traditional scatterometers with a monostatic setup, where the transmitter and receiver are collocated, CyGNSS utilizes a bistatic configuration as depicted in Figure 1, where the transmitter and receiver are positioned on separate platforms. CyGNSS Level 2 data comprises 10 m derived winds extracted from the level-1 data. These level-1 data represent the raw scattered GPS radio signals collected by CyGNSS receivers, initially processed into Level-1 observables such as normalized bistatic radar cross-section and leading-edge slope (Gleason et al., 2016; 2019; Clarizia and Ruf, 2016a; Clarizia and Ruf, 2016b).
[image: Figure 1]FIGURE 1 | The geometry of bistatic radar measurement involving GPS-based quasi-specular surface scattering is depicted. The GPS direct signal, the transmitter, furnishes location, timing, and frequency references. Conversely, the forward scattered signal, received by CyGNSS as the receiver, carries ocean surface information. Image credit: Rose et al. (2014).
Various CyGNSS-retrieved ocean surface data versions are generated through different processing and calibration methods applied to the CyGNSS Level I data. The geophysical model functions (GMFs) used to convert Level-1 to Level-2 data vary based on the sea state (Ruf and Balasubramaniam, 2019). We have two sea states: young seas with limited fetch (YSLF), characterized by rapidly changing wind and sea state, often observed in stormy weather conditions, and fully developed seas (FDS), characterized by mature periodic waves without rapid changes in wind or sea state. For this study, winds retrieved using the YSLF algorithm were chosen because YSLF conditions prevail over a large portion of the ocean surface where the HAFS storm-following moving nest operates.
The CyGNSS Level 2 wind speed data (Version 3.1) is extracted from the NETCDF files available at the following link: https://podaac.jpl.nasa.gov/dataset/CyGNSS_L2_V3.1. The data undergoes quality control, where only winds with errors less than or equal to 3 m/s are retained. After this filtering, we are left with a relatively small sample, particularly at high wind speeds. Discrepancies in error statistics are observed when comparing different versions of CyGNSS Level 2 winds, as discussed by Pu et al. (2022). The latest operational versions, v3.0 and v3.1, show an increase in high wind speeds relative to v2; however, they also come with larger uncertainties. The 6-hourly prepbufr files required by HAFS DA are generated from CYGNSS for the times listed in Table 2.
Incorporating CYGNSS data into assimilation poses a challenge due to its spatial measurement density, which stands at 6 km along the specular path. This leads to notable overlap between consecutive observations, sampling much of the same ocean surface area within seconds, thereby introducing a correlation between observations. Using all these observations without adjustments risks overfitting the model state to the data. In our OSE, we choose not to thin the CyGNSS data but to utilize all available data and inflate the errors associated with CyGNSS relative to other observation sources with smaller observation samples, to avoid overfitting with CyGNSS. This follows the approach outlined by Mueller et al., 2021. Figure 2 depicts an example of CyGNSS Level 2 10 m winds for the analysis time of 06:00 UTC on 7 October 2018.
[image: Figure 2]FIGURE 2 | CyGNSS Level 2 10 m winds for analysis time: 7 October 2018 06:00 UTC. Assimilation windows span 6 h ( ± 3 h) and are centered at the analysis times. Each individual point on the plot corresponds to observations at specular points. Due to the scale of the plots, these points may appear to create lines, commonly referred to as specular point tracks.
2.2 Hurricane Analysis and Forecast System
The HFSB configuration of NOAA HAFS v1.0 was made operational in 2023. HAFS is a hurricane application of NOAA’s Unified Forecast System (UFS) framework, which couples a regional configuration of the FV3 finite-volume atmospheric model (Lin and Rood, 1996; Lin, 2004) using assimilation of atmospheric observations, with the Hybrid-Coordinate Ocean Model (HYCOM) (Bleck et al., 2002) through the Community Mediator for Earth Prediction Systems (CMEPS). The HFSB version of HAFS incorporates updated parameterizations for planetary boundary layer (PBL) mass flux and atmospheric microphysics. HFSB uses a fixed, storm-centric, 75x75° outer regional atmospheric domain based on Extended Schmidt Gnomonic (ESG) projection with horizontal resolution of 6 km. Coupled with this outer domain is a moving nest of about 12x12° at 2 km horizontal resolution (Figure 3). The moving nest vertical grid has 81 vertical levels reaching 2 hPa. The HYCOM domain is fixed (non-storm centric) and covers the NHC’s areas of responsibility for the North Atlantic, Eastern North Pacific and Central North Pacific basins, at 1/12-degree horizontal grid spacing with 41 vertical ocean levels.
[image: Figure 3]FIGURE 3 | The black box represents the outer domain (fixed, initially storm-centric with 6-km grid spacing). The red box indicates the storm-centered moving nest with 2-km grid spacing. The HYCOM ocean domain (with 9-km grid spacing) is depicted in blue.
The Global Forecasting System version 16 (GFSv16) provides atmospheric initial conditions and 3-hourly lateral boundary conditions for the outer domain. HFSB also features vortex initialization (e.g., Lin, 2004), comprising vortex relocation for all cases and vortex modification (intensity and size) when initial TC intensity is ≥30 m/s. Techniques used to assimilate atmospheric observations include four-dimensional ensemble variational (4DEnVar, using GDAS ENKF ensemble members) and First-Guess at Appropriate Time (FGAT). HAFS also implements self-cycling (warm-cycling) for the atmospheric model, initializing subsequent forecast cycles utilizing the previous cycle. HAFS currently only performs DA on the inner moving atmospheric nest. Ocean initial conditions come from the operational Real Time Ocean Forecasting System (RTOFSv2; Garraffo et al., 2020), which performs ocean DA; HAFS HYCOM itself performs no ocean DA. At each coupling time step, FV3 and HYCOM exchange coupling variables as outlined in the companion paper by Gramer et al. (2024). HFSB uses atmospheric physics parameterization options as documented in Hazelton et al., 2023, including the scale-aware Simplified Arakawa-Schubert (SAS) convective scheme (Han et al., 2017), the turbulent-kinetic-energy (TKE)-based eddy diffusivity mass flux (EDMF-TKE) PBL scheme (Han and Bretherton, 2019), and the Thompson microphysics scheme (Thompson et al., 2004). See Hazelton et al. (2023) for further details.
The version of HAFS described here can be obtained from the production/hafs. v1 branch of the HAFS GitHub repository, https://github.com/hafs-community/HAFS.
To assess the impact of CyGNSS, we generated forecasts from the time of cyclogenesis for each TC case, taking advantage of self-cycling atmospheric DA. The CyGNSS forecasts utilized an identical atmospheric model configuration to that described above, including atmospheric DA, but also incorporating CyGNSS v3.1 data as described above.
2.3 Experimental setup
Two experiments (Table 1) are conducted to evaluate the simulated impact of CyGNSS observations on hurricane analysis and forecasting. Firstly, a control DA experiment (CNTL) assimilates standard conventional data routinely integrated into the 2023 HAFS Global DA System (GDAS). This includes radiosondes, tail Doppler radar, ground-based radar, atmospheric motion vectors, and various satellite-based observations, as listed in Zhang (2021), but excludes CyGNSS data. The second experiment (CV31) involves adding CyGNSS v3.1 Level 2 wind speeds to the control.
2.4 Case selection
Two criteria guide the selection of case studies for this analysis, aiming to showcase the potential impact of CyGNSS data.
1. Intensity Forecast Errors: Based on previous OSSE results, cases where the operational HWRF model exhibited notable errors in intensity forecasting were chosen. The objective is to assess whether CyGNSS data can enhance these forecasts.
2. Early-Stage TCs: Specifically targeting initial forecasts of tropical depressions and tropical storms, which often lack adequate observation (e.g., TC Larry). Leveraging CyGNSS’s frequent revisit time, valuable insights into the structure of these developing systems can be obtained. However, CyGNSS winds are not reliable at higher wind speeds (see above). In addition, many of the TCs in this study began to display some subtropical and extratropical features later in their life cycles, making it increasingly less likely that ocean impacts would be important. For both of these reasons, the full lifecycle of most TCs was not evaluated, except for Ian.
All TCs listed in Table 2 meet the two criteria above and are included in this data impact study. In each experiment, a 5-day HAFS forecast is initiated every 6 h, with verification against the NHC Best Track conducted for each case.
2.5 Diagnostic and evaluation methods
The TCs analyzed are illustrated in Figure 4. All TCs occurred between 2021 and 2022. Tracking of TCs was performed using the latest version of the GFDL vortex tracker (Marchok, 2021). Forecast verification was conducted using Best Track data from the NHC HURDAT-2 database (Landsea and Franklin, 2013). These Best Track data provided TC location in increments of 0.1° for latitude and longitude, maximum 10 m winds in increments of 5 kt, and minimum sea-level pressure in increments of 1 hPa. The results presented are based on homogeneous samples of all analyzed forecasts for that experiment, and were verified every 6 h. Additional forecast metrics presented below include the consistency metric, described in Ditchek et al. (2023), and other commonly calculated mean absolute error (MAE) and bias statistics. MAE skill, as referred to below, is the ratio between MAEs for two experiments, expressed as a percentage.
[image: Figure 4]FIGURE 4 | Storm track from NHC Best Track (colored lines) for TCs investigated in this study: Ian 2022AL09, Fiona 2022AL07, Lisa (2022AL15), Sam (2021AL18), Earl 2022AL06,Julia (2022AL13), and Larry (2021AL12).
Additional statistics were defined as follows: we calculated 100 km annular “footprint” averages and standard deviations, centered at the forecast storm center, for each of sea surface temperature (SST), total latent and sensible heat fluxes at the air-sea interface, planetary boundary layer (PBL) height, and (average only) warm core anomaly. PBL heights were determined based on mean height of zero inflow (radial) velocity, following the method of Zhang et al. (2020). The definition of warm core anomaly used here is the difference between the azimuthal mean potential temperature profile at each radial distance bin, and that of the azimuthal mean potential temperature averaged in the 200–300 km annulus from the center of the storm (Stern and Nolan, 2012; Zhang et al., 2020).
3 RESULTS
The outcomes of the experiments are presented in two parts: First, we analyze forecast metrics from each experiment across all cycles (see Table 2 above), including absolute positional errors, intensity in the form of minimum central pressure (PMIN), radius from the TC center at which maximum 10 m wind occurs (radius of maximum wind or RMW), and radii averaged over all four cardinal quadrants for 34, 50, and 64 kts, respectively (R34, R50, R64). We then examine two individual forecast case studies, which for the CV31 experiment incorporate several previous cycles of CyGNSS data, in order to elucidate likely mechanisms by which CyGNSS 10 m wind initialization impacted the above-mentioned forecast metrics. As outlined below, these studies were chosen to represent both an open ocean TC in the Atlantic and a landfalling TC case that transited the Gulf of Mexico.
3.1 Statistical forecast results
Figure 5 compares the overall track results of the CNTL (red) and CV31 (green) experiments. We see improvements in absolute track accuracy across more than half of all lead times, excepting hours 0 and 24 h. Overall, the MAE track skill showed a 4.7% improvement over CNTL.
[image: Figure 5]FIGURE 5 | Mean Absolute Error (MAE, top panels, [km]) and MAE skill (bottom panels) for the CV31 (green) and CNTL (red) experiments for absolute track error. Shaded boxes between the MAE and MAE skill panels indicate, for individual forecast lead times, whether results were fully consistent (dark green), marginally consistent (light green to light orange), or not consistent (dark red, none in this figure). Sample size is given below the x-axis in each panel. Mean relative skill percentage is highlighted in boxes at the lower right of each panel.
Figure 6 compares the overall PMIN and VMAX results of the CNTL (red) and CV31 (green) experiments. In the panel at left, we see enhanced performance of CV31 for PMIN in the initial state (Figure 6A), and improvement (positive values) in skill space (line graph) and in the consistency metric (shaded boxes; see Ditchek et al., 2023) in five of the 22 forecast periods (every 6 h through forecast hour 126), peaking at 20% MAE skill and positive consistency metric at hours 0 and 84. However, we do note that the only extended period of marginally consistent improvement was forecast hours 84–90, and that there were three forecast periods of marginally consistent degradation for hours 42, 48, and 96. In addition, in the panel at right (Figure 6B), we see skill improvements (positive line graph and positive consistency in the shaded boxes) in maximum surface wind speed accuracy across nearly half of all lead times. We also see forecast periods showing consistent CV31 degraded performance at hours 0, 6, and 48. Overall, the MAE skill for PMIN in CV31 showed a 4.3% improvement over CNTL; for MAE VMAX skill, this improvement was 5.8%. Statistical results for RMW, R34, R50, and R64 (figures not shown) indicated mixed outcomes when comparing CV31 to CNTL. At analysis time, when DA has the most significant impact, both RMW and R34 for CV31 demonstrated improvements over CNTL (not shown).
[image: Figure 6]FIGURE 6 | The MAE (top panels) and MAE skill (bottom panels) for the CV31 (green) and CNTL (red) experiments for (A) minimum central pressure (PMIN [hPa]), (B) maximum wind speed (VMAX; [m/s]). Shaded boxes between the MAE and MAE skill panels indicate consistency for each forecast lead time, as in Figure 5. The sample size is given below the x-axis in each panel. Mean relative skill percentage is highlighted in boxes at the lower right of each panel.
Overall, we find that CyGNSS data enhanced TC intensity forecasts statistically (Figure 6) relative to CNTL. We also note that the consistency metric takes into account Frequency of Superior Performance (FSP), MAE, and median absolute difference in errors (MDAE), as well as MAE skill. Forecast track was also improved at most forecast hours throughout 5 days forecasts with the assimilation of CyGNSS data (Figure 5).
Supplementary Figure S1 in the Supplementary Information (SI) plots percentage-point contributions (Ditchek et al., 2023) from forecast life cycles of individual storms to mean absolute error skill for intensity. Consistent with Figure 6, these results show overall improvement in PMIN (Supplementary Figure S1A) and slight degradation in VMAX (Supplementary Figure S1B) at hour 0. However, the degraded VMAX at analysis time is shown to be largely the result of three storms, Earl, Fiona, and Ian - two of which show marked positive impact of CV31 on PMIN at that same forecast hour 0. We finally note that for VMAX, published observational uncertainties in Best Track have been shown in prior studies to exceed 10 kts (Landsea and Franklin, 2013).
Additional statistical analyses for two case studies follow in the succeeding sections.
3.2 TC-ocean interaction case studies
We next examine individual forecast cycles for two storms, Ian and Larry, chosen to represent the cumulative warm-start impact of several previous cycles of CYGNSS DA. We chose the case study for Ian at a cycle for which the CNTL had settled on a very good track relative to Best Track, and just 24 h prior to its major impact at Florida landfall; this case provides useful insights into the interaction between the forecast TC and the continental shelf and coast of western Florida. The other case study for Larry was chosen to show the interaction of a major hurricane with the open ocean in the central tropical Atlantic. The Ian forecast shows an over intensification in the CNTL; the Larry cycle by contrast shows an under forecast in CNTL.
3.2.1 Shelf and coastal interaction (TC Ian)
In this subsection, we will delve into TC Ian, which made landfall in Florida as a Category 4 hurricane, one of the most impactful hurricanes of 2022 (NHC, 2023). Ian originated over the Caribbean Sea in late September and underwent rapid intensification before crossing western Cuba. It then further intensified into a Category 5 hurricane in the Gulf of Mexico before hitting southwest Florida with powerful winds, heavy rainfall, and destructive storm surges. Figure 4A illustrates Ian’s track. Aerial reconnaissance for Ian was initiated on September 21 when it was an INVEST, but regular flights did not begin until after 09:38 UTC on September 23.
Initialization for the Ian case study starts at 23 September 2022 at 06:00 UTC, incorporating a CyGNSS overpass into the CV31 experiment. A 5-day HAFS forecast was initiated every 6 h. Cycling continued until 28 September at 18:00 UTC, resulting in a total of 27 analyses and forecasts. Verification against the Best Track was performed for each experiment.
In Figure 7, we look at statistical results for all forecasts of TC Ian considered in this study. We see multiple forecast periods with enhancements from CV31 relative to CNTL, in consistency metrics for track, intensity (both VMAX and PMIN), R34, and R64 during the initial 18–24 h of all forecasts, with improvements in R34 apparent out to 48 h; these early results are then followed by varying outcomes thereafter. Significant degradation is only seen in one parameter, R64 at forecast hour 48. By contrast, we see marginally consistent improvements with CV31 for track throughout much of the 5 days forecasts represented in the figure, and persistent improvements in R34 within the first 2 days of each forecast. Overall, we see nine periods of improvement for CV31 in track, seven periods of improvement in PMIN including fully consistent improvement during the first forecast period, and eight periods of improvement in R34.
[image: Figure 7]FIGURE 7 | A consistency scorecard detailing CyGNSS’s direct influence on all TC Ian forecasts considered for the present study, covering track, VMAX, PMIN, R34, R50, R64, and RMW error metrics, arranged in descending order. Box colors are as described in Figure 5, with shades of green indicating improvement in the CV31 results vs CNTL.
We now examine in more detail, as a case study, a single forecast for Ian initialized on 27 September 2022, at 18:00 UTC, because it shows the impact of 4 days of accumulated cycled DA with CyGNSS on a TC which is also close to landfall. (Note that the prior statistical results in Figure 7 included a number of forecasts where Ian was primarily over the Caribbean, and where the track bias in HFSB tended to bring Ian to the west and north of its final landfall location.). Landfall in this forecast occurred between hours 21 and 24 in each of the CNTL and CV31, matching NHC-reported landfall at 20:20 UTC on September 28 (NHC, 2023). The track for both the CNTL forecast (plotted in red in Figure 8A) and CV31 forecast (in blue) matched well with the Best Track (in black) up through Ian’s landfall and passage over Florida.
[image: Figure 8]FIGURE 8 | Hurricane Ian forecasts initialized on 27 September 2022 at 18:00 UTC. (A) Track from NHC Best Track (black), CV31 (blue), and CNTL (red). (B) Intensity [kts]. Wind field at analysis time [kts] for (C) CNTL, and (D) CV31.
The intensity (Figure 8B) for the CNTL shows an increase relative to CV31 and Best Track at forecast hours 0–18, just prior to Ian’s landfall in west Florida. The CV31 experiment by contrast matches the NHC Best Track intensity (plotted in black) more closely through landfall and the rapid weakening which followed. After passage of the storm center onto land, 10 m winds for CV31 decay less rapidly (9 h to decrease below hurricane intensity) than for CNTL (6 h), matching the Best Track more closely for a period of 12 h. The 10 m wind field analysis for the CNTL (Figure 8C) shows broader 34 and 64 kt wind fields than CV31 (Figure 8D), with CV 31 verifying more closely with Best Track (figure not shown). Both of these initial outer core wind fields show pronounced asymmetry. However, the inner core winds for the CNTL (>83 kt, shown in yellow and red) not only are broader than those of CV31 but also, unlike CV31, wrap nearly the entire way around the center.
We next examine the available enthalpy at the air-sea interface in the two coupled model configurations, to identify differences which may be related to these disparate intensity forecasts. In Figure 9, we observe broader and more intense air-sea enthalpy fluxes (ASEF) around the eyewall in the CNTL (left; brighter, broader yellows) as compared to CV31 (right; dimmer, darker greens and yellows) throughout the initial period of the forecast. The enthalpy fluxes also show greater symmetry around the inner core for the CTRL. In the CTRL, these broader, more symmetric features in the ASEF correlate well with a broader initial wind field, and greater wind-field symmetry in the inner core (compare winds >83 kt, shown in yellow and red in Figure 8C, with Figure 9B) relative to CV31 (compare Figures 8D, 9D).
[image: Figure 9]FIGURE 9 | As in Figure 8, Hurricane Ian forecasts initialized on 27 September 2022, at 18:00 UTC. Net (sensible + latent) enthalpy fluxes [W/m2] at hours 6 (panels a and c) and 12 (B, D) for CTRL (A, B) and CV31 (C, D).
In Figure 10, we see azimuthal (“footprint”) averages within 100 km around the storm center at each forecast hour, for SST (Figure 10A), ASEF (Figure 10B), and PBL height (Figure 10C), as well as warm-core temperature anomaly (WCA, Figure 10D), for both CTRL (red) and CV31 (blue). Figure 10A shows identical footprint average SSTs between the two experiments at hour 0; however, the average and standard deviations increase more rapidly for the CNTL in the first 18 h. We note here that the two forecasts made landfall within approximately 3 h of one another, between forecast hours 24 (CNTL) and 27 (CV31). Similarly, ASEF (Figure 10B) for the CNTL is slightly less than CV31 at hour 0, but then also increases much more rapidly, already surpassing CV31 at hour 6. Finally, footprint statistics for PBL height (Figure 10C) and WCA (Figure 10D) for the CTRL begin at lower values, but then increase more rapidly, surpassing CV31 by hour 12. As a result of assimilating CyGNSS, Ian’s initial outer-core wind field in CV31 was weaker but more symmetric (Figure 8D) than the CTRL (Figure 8C). The greater initial symmetry in the CV31 winds explains the fact that the footprint average ASEF for CV31 was slightly greater than for CNTL (Figure 10B) at hour 0.
[image: Figure 10]FIGURE 10 | As in Figure 8, Hurricane Ian forecasts initialized on 27 September 2022 at 18:00 UTC. 100-km azimuthal averages (solid lines) and standard deviations (dashed) from CTRL (red) and CV31 (blue) for: (A) SST [°C], (B) ASEF [W/m2], (C) PBL height [m], and (D) warm-core-anomaly [K].
Interestingly, CTRL’s broader and stronger initial wind field (Figure 8C) relative to CV31 (Figure 8D) corresponds to a more rapid footprint SST warming in CNTL than in CV31 (Figure 10A). The reasons for this are apparent in the differences between sea-surface heights produced by the ocean models in the two experiments over the west Florida ocean shelf (Figure 11A, with corresponding SST differences in Figure 11B). At forecast hour 18, red areas along the southern Florida shelf break in Figure 11C show that the larger, stronger wind field of the CNTL was already forcing significant convergence in ocean surface currents (Supplementary Figure S2A, showing convergence at hour 12), resulting in a pronounced sea-surface “bulge” relative to CV31 (Figure 11D; Supplementary Figure S2B). Such bulges in shelf sea surface height over one or more inertial periods are associated with the development of coastal downwelling (Gramer et al., 2022), resulting in sustenance or enhancement of SST over the shelf. The differences in SST between CNTL and CV31 at the same forecast hour (Figure 11B) bear this result out, with a region of significantly warmer SST beneath the core of the TC on the outer shelf shown at hour 18. As a final comment, we note again that the improvement in intensity in the first 24 h of this CV31 forecast relative to CNTL, as seen in Figure 8A, differs from the overall intensity statistics as presented in Figure 7.
[image: Figure 11]FIGURE 11 | As in Figure 8, Hurricane Ian forecasts initialized on 27 September 2022, at 18:00 UTC. (A, B) Differences at forecast hour 18 between CNTL and CV31 for TC Ian, in (A) sea surface height [m], and (B) SST [K]. (C, D) Sea surface height at forecast hour 18, just before Florida landfall, in (C) CNTL and (D) CV31.
The impact of the enhanced initial 10 m wind field in the CNTL was not limited to its greater forecast maximum intensity: as Figure 11C shows, the broader, stronger wind field in CNTL may have produced a greater likelihood of widespread storm-flooding on Florida’s west coast than CV31. The region of sea surface height above 1 m in the CNTL stretched from Tampa Bay to Florida Bay, as compared with a narrower, shorter band of extreme sea-surface height increase for CV31 (Figure 11D). This is a direct consequence of the enhanced coastal Ekman convergence associated with the wind fields in CNTL, and would have likely produced a forecast for more widespread inundation than the corresponding CV31 forecast would have done. Corresponding differences in the expected impacts to coastal and shelf marine ecosystems from the CNTL vs CV31 forecasts could have resulted as well.
The more rapid SST warming in CTRL in hours 3–18 (Figure 10A), in combination with higher 10 m winds, led to more rapidly increasing ASEF in hours 6–18 (Figures 9, 10B). Greater ASEF in the CTRL would have been consistent with more buoyant uplift near the surface and a higher PBL (Figure 9A) for hours 6 through landfall. Inflow of this increased buoyancy would have been consistent with a more buoyant eyewall and greater WCA (Figure 9B) for CNTL. The ensuant deepening of convection associated with this enhanced WCA would very likely have contributed to the anomalous over intensification of the CTRL forecast vs CV31 in those later forecast hours.
The authors clearly acknowledge however, that the anomalous intensification of the CTRL in the very early forecast (hours 3–12) would have been driven largely by other differences in the near-storm environment between the experiments, beyond the scope of the present analysis; the above results however demonstrate that as the forecast progressed, the dynamic ocean response to the surface wind field, evolving from the different analysis in CV31 vs CNTL, appears to have influenced the available enthalpy, in a way that was consistent with and likely contributed to the evolution of the forecast intensity during hours 9 through Florida landfall. Finally, the enhanced breadth and strength of the wind field for CNTL produced greater convergence and larger areas of enhanced sea-surface height near the coast (Figure 11C) relative to CV31 (Figure 11D). Although a storm surge model was not a part of the present study, the sea-surface height difference just offshore of the coast highlighted here would have provided substantially different boundary conditions for storm surge modeling.
Supplementary Figure S3A is a histogram of data points assimilated from CYGNSS per cycle for TC Ian, from tropical depression through hurricane landfall in Florida. In general, we have three passes over the storm per day, and the data coverage is often inconsistent; coincidentally, the cycles with greatest coverage in the vicinity of Ian were 25/12Z, 26/12Z, and 27/12Z. Supplementary Figure S3B–M show data coverage and quality-controlled speed retrievals for individual overpasses over the moving model nest for Ian. The 00Z and 06Z cycles for this period, particularly 06Z, have much less data than the 12Z cycles; there is no coverage for 18Z cycles.
We previously noted (discussion of Supplementary Figure S1 above) that in the early cycles of several of the TCs from our experiment, the impact of initial CYGNSS data assimilation on forecast metrics was more mixed. In Supplementary Figure S4, we show track and intensity (VMAX), translation speed, and the structure metrics (RWM, R34, R50, R64) for a forecast earlier in the life cycle of Ian, initialized on 25 September 2022 at 06Z. This cycle forecast landfall further west in Cuba, and much further north and west in Florida and Alabama. CV31 VMAX was stronger from the analysis time until continental landfall, as a result of initializing with a slightly stronger, substantially more symmetric near-surface wind field (Supplementary Figure S5A) as compared to CNTL (Supplementary Figure S5B).
3.2.2 Open ocean interaction (TC Larry)
TC Larry (12L) originated from a tropical wave that emerged off the coast of Africa, coalescing into a tropical depression on 2021 August 31. Within a day, the depression intensified into a tropical storm named Larry. Rapidly traversing the far eastern tropical Atlantic, it escalated into a Category 1 hurricane by the morning of September 2. After a period of swift intensification, Larry surged to a major Category 3 hurricane early on September 4. Figure 4G illustrates Larry’s track. Aerial reconnaissance for Larry was not initiated until September 5.
Initialization for the Larry case study started at 31 August 2021 at 18:00 UTC. A 5-day HAFS forecast was initiated every 6 h. Cycling continued until 03 September at 12:00 UTC, resulting in a total of 12 analyses. Verification against the Best Track data was performed for each experiment.
Larry is a TC which intensified rapidly over the open, tropical ocean. For our second case study we examine the forecast of Larry initialized on 2021 September 03 at 12Z, when several overpasses of CyGNSS had previously provided surface winds for atmospheric DA. For this cycle, both experiments performed well in forecasting the center position relative to Best Track throughout the 5 days forecasts (Figure 12A). However, unlike in the case of Ian, CV31 forecast a stronger TC (Figure 12B, blue) relative to CNTL (red). This stronger forecast verified better versus Best Track (black) for hours 6–66, but worse thereafter.
[image: Figure 12]FIGURE 12 | Larry forecasts initialized 2021 September 03 at 12Z. (A) Track from NHC Best Track (black), CV31 (blue), and CNTL (red). (B) Intensity in kts. Wind field at analysis time for (C) CNTL, and (D) CV31.
The initial 10 m wind field for CNTL (Figure 12C) was both smaller (narrow fields between 34 and 83 kts in cyan and green), and more intense (>96 kts in the northwestern quadrant, bright red) than that for CV31 (Figure 12D). However, an important feature of the hour 0 wind field in CNTL was the presence of 105 kts wind in the inner core (Figures 12B, red), a feature which was not present in either CV31 or the Best Track. The rapid intensification in the CV31 forecast occurred within 9 h of initialization. Although this was a more rapid intensification than Best Track, it does suggest that the improvement in intensity forecast was closely associated with the additional information on the initial 10 m winds from CyGNSS.
In the CNTL experiment, DA produced a vortex at analysis time that had a substantial imbalance as evidenced by the initial 10 m wind field in Figure 12. The result of this imbalance was a spindown between hours 0 and 3 (Tong et al., 2018). This spindown was not present in CV31. The impact of this difference between the experiments on the ocean, and on the evolving structure of the TC after hour 6 is examined in Figure 13. In particular, this difference in 10 m wind field analysis and early evolution between CNTL and CV31 corresponds to differences in the SST (Figure 13A) and ASEF (Figure 13B) beginning in forecast hour 6. Although footprint SST at hours 6–18 cooled rapidly for both CNTL and CV31, the patterns of this cooling differed between the experiments: initially, through hour 6, CV31 cooled more rapidly than CNTL. Nevertheless, by hour 9, this pattern reversed, with CNTL SST continuing to cool rapidly, while CV31 cooling began to moderate. What these results show is that the initial spindown in the CNTL corresponded for most of the hours 9–54 with reduced ASEF (Figure 13B), PBL height, and WCA, relative to CV31.
[image: Figure 13]FIGURE 13 | As for Figure 12, Larry forecasts initialized 2021 September 03 at 12Z. 100-km azimuthal averages (solid lines) and standard deviations (dashed) from CTRL (red) and CV31 (blue) for (A) SST [°C], (B) ASEF [W/m2], (C) PBL height [m], and (D) warm-core-anomaly [K].
The result of the reduced 10 m wind in the CNTL forecast, together with the enhanced cooling, was to substantially reduce production of buoyancy by ASEF within 100 km of the center. This reduced ASEF in turn corresponded with reduced PBL height within CNTL relative to CV31 (Figure 13C) beginning at hour 18, reaching a peak difference from CV31 at hour 42. The impact of an initial vortex imbalance in the CNTL was reflected very quickly (by forecast hour 6) in the reduced WCA peak temperature in the CNTL relative to CV31 (Figure 13D). However, this WCA difference was enhanced up to hour 18, and maintained itself through hour 45. These features were all coincident with the weaker intensification of CNTL relative to both CV31 and Best Track (Figure 12B).
4 CONCLUSION
In this study, we utilized the Hurricane Analysis and Forecast System (HAFS) to assess the impact of CyGNSS-derived scalar (CV31) near-surface winds on TC track, intensity, and storm structure forecasts. The initial day of the experimental period for each storm was used to spin up the model state with CyGNSS observations, while subsequent days were utilized for generating TC statistics. All observational data were assimilated using the hybrid 4DEnVar, which was the assimilation method employed in operational settings during the experimental period. Observations were assimilated within 6-h windows centered on four daily analysis times (0000, 0600, 1,200, and 1800 UTC).
As a newly established observing system, CyGNSS posed a challenge to the current study by necessitating the consideration of serial correlation in the information content and errors inherent in the 1-Hz CyGNSS specular point tracks of retrieved winds. Future research endeavors will prioritize the development of a more foundational approach to address CyGNSS observation error correlation within each specular point track and its integration into the operational model.
For the present study, 7 TCs were selected for OSEs in the Atlantic Basin using HFSB, a configuration of the coupled operational HAFS. These TCs covered a range of conditions such as deep water, shelf, Gulf storms, weakening and intensifying storms (Table 2). A broad summary of the conclusions in the present study included the following.
• CyGNSS enhanced initial TC intensity forecasts as evidenced by PMIN (Figures 5, 7).
• Forecast track improved with the assimilation of CyGNSS data (Figure 5).
• PMIN for CV31 showed an overall improvement of 4.7%; VMAX showed overall improvement of 5.8%.
• Later CV31 forecasts in the sample for five out of 7 TCs showed more consistent improvement in PMIN vs CNTL within the first 36 h, resulting from the accumulation of several days of CYGNSS data assimilation. For four of the TCs, later CV31 forecasts showed marginal or fully consistent improvements in early-forecast VMAX as well.
• For one case study, that of a late, landfalling forecast for TC Ian, assimilating near-surface winds modified the modeling of ocean mixing and transport (e.g., upwelling and downwelling) in such a way as to potentially contribute to an improved intensity forecast (Figure 8), and modified the sea-surface height forecast (Figure 11) in a way which would have substantially modified surge-model boundary conditions and so could well have significantly modified storm surge forecasts (Dullaart et al., 2024; Powell and Reinhold, 2007). We also briefly examined an earlier forecast for Ian, showing an example where the experiment produced some forecast degradation.
• An additional case study over the open ocean, TC Larry, also showed improvement in intensity and structure from CyGNSS data. In this case, coastal and shelf interaction played no role. Furthermore, this was a case where the CNTL persistently underforecast the TC’s intensity relative to both Best Track and CV31. However, in this case, as for Ian, the ocean is implicated as playing a role, albeit a somewhat different one, and in this case, in the later evolution of intensity from forecast hours 9 onward.
• For the present study, CyGNSS provided critical observations early in the TC lifecycle, when aerial reconnaissance is seldom available.
Some inconsistencies in CV31 improvements in surface wind and MSLP fields presented here suggest that assimilating purely dynamical observations may lead to inconsistencies in thermodynamic fields from cross-variable corrections. Previous studies. Like Lu and Wang (2020), showed that this issue can be addressed by assimilating more coincident near-storm thermodynamic observations during DA. The maximum wind speed is closely tied to MSLP through the relationship between wind and pressure gradient (Knaff and Zehr, 2007). Commenting on the wind-pressure relationship in HAFS is a complicated topic (e.g., Chavas et al., 2017) and beyond the scope of the present study; however, we note that our sample was dominated by early life-cycle forecasts (when systems were tropical depressions or tropical storms), when the wind-pressure gradient relationship would have been weaker (Hazelton et al., 2023). Furthermore, given that this study is limited to a small sample, future work could address this question more directly using larger samples, incorporating full life cycles of multiple TCs.
Including CyGNSS led to improvements in average wind radii for the first 6 hours of forecasts analyzed here. Mixed results at later forecast hours relative to Best Track, including times when there were no aerial or ground observations of TC wind fields, will bear further examination in future work. Previous analyses have acknowledged (Cangialosi and Landsea, 2016) considerable uncertainty in wind radii estimates from Best Track, particularly for TCs that are not yet monitored by aircraft reconnaissance or ground radar, which are precisely the candidate cycles we chose for the present work. We therefore hypothesize that, notwithstanding the limitations to structure validation statistics for the present study, CyGNSS data may actually prove useful to improve the uncertainty in Best Track estimates of these important wind radii in further studies.
Understanding how these results align with previous efforts to enhance TC forecasts using CyGNSS data is crucial. As outlined in section 1, prior OSSEs conducted with the HWRF model (Annane et al., 2018; Leidner et al., 2018) reported neutral impacts on track forecasts and modest improvements (generally ≤5 knots) in maximum wind speed (VMAX) forecasts for individual TC case studies. Previous OSEs (Pu et al., 2022; Cui et al., 2019), which also utilized HWRF, demonstrated generally neutral to positive impacts on track and intensity forecasts, offering promising results. In the Mueller et al. (2021) OSE, CyGNSS was globally assimilated, and this run was used as a lateral boundary condition (LBC) in HWRF, also showing an improvement in track and intensity. The present study, however, is the first that the authors are aware of that looks at operational HAFS retrospective forecasts, and the first to examine over 50 individual forecasts spanning 7 TCs.
The current study identified enhancements in track forecasts and improvements in intensity metrics. A primary distinction between the findings of this study and those of previous studies is the utilization of a coupled model that integrates HYCOM, which may contribute to HAFS’s superiority over HWRF in providing greater skill at modeling the air-sea dynamics which can be critical to TC forecasting (e.g., Kim et al., 2024). As a result of the considerations above, any direct comparisons between the outcomes of previous studies and this study should be approached with caution, as the methodologies employed here represent a significant break with past work.
It is critical to point out that the impact of assimilating observations from CyGNSS for the initial 10 m wind field were not limited simply to improved intensity and structure forecasts. As both case studies (TC Ian in Figure 11, TC Larry in Figure 13) demonstrate, the near-surface wind structure in hour 0 analysis can also significantly impact the evolution of the ocean beneath the storm. As the Ian case showed, storm flooding for landfalling TCs may also be significantly impacted as a result. Corresponding differences in the forecast impact to marine ecosystems may also occur. Verifying these hypotheses will require inputting surface wind and sea level data into storm inundation models in future studies.
Finally, the present study highlights an important mechanism by which near-surface wind analysis can impact both sea-surface height and TC intensity structure, namely, by modifying the air-sea enthalpy fluxes during early forecast hours. Changes in SST warming or cooling, in combination with differing 10 m winds, can lead to significant differences in air-sea enthalpy fluxes. These modified inputs of moisture and heat in turn result in modifications to the forecast buoyant uplift within the PBL, and thus to modifications in the buoyancy in the TC core as evidenced by warm-core anomaly differences in the present study (Figures 11, 13). Finally, moving forward, we hope that future observational studies utilizing CyGNSS as a component will allow for improvement and verification of air-sea enthalpy parameterizations for TC forecasting models.
We further hope that future modeling studies will be able to provide additional insights into the broader impacts of improving near-surface analyses using CyGNSS and future observational systems. Ultimately, we wish to more directly address the mechanisms by which improving surface wind analysis with CYGNSS can improve intensity forecasts with HAFS, particularly in the case of RI. Based on analyses carried out with the sample in this study, not described, our approach in a future work will be to examine the impact of CYGNSS DA on inflow for rapidly intensifying TCs.
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Quantitative precipitation forecasts (QPF) from numerical weather prediction models need systematic verification to enable rigorous assessment and informed use, as well as model improvements. The United States (US) National Oceanic and Atmospheric Administration (NOAA) recently made a major update to its regional tropical cyclone modeling capabilities, introducing two new operational configurations of the Hurricane Analysis and Forecast System (HAFS). NOAA performed multi-season retrospective forecasts using the HAFS configurations during the period that the Hurricane Weather and Forecasting (HWRF) model was operational, which was used to assess HAFS performance for key tropical cyclone forecast metrics. However, systematic QPF verification was not an integral part of the initial evaluation. The first systematic QPF evaluation of the operational HAFS version 1 configurations is presented here for the 2021 and 2022 season re-forecasts as well as the first HAFS operational season, 2023. A suite of techniques, tools, and metrics within the enhanced Model Evaluation Tools (METplus) software suite are used. This includes shifting forecasts to mitigate track errors, regridding model and observed fields to a storm relative coordinate system, as well as object oriented verification. The HAFS configurations have better performance than HWRF for equitable threat score (ETS), but larger over forecast biases than HWRF. Storm relative and object oriented verification show the HAFS configurations have larger precipitation areas and less intense precipitation near the TC center as compared to observations and HWRF. HAFS QPF performance decreased for the 2023 season, but the general spatial patterns of the model QPF were very similar to 2021-2022.
Keywords: HAFS, tropical cyclones, verification, quantitative precipitation forecasts, numerical modeling
1 INTRODUCTION
Quantitative precipitation forecasts (QPF) from numerical weather prediction (NWP) models are used across a range of forecast and impact planning applications, as well as for model development cycles. Systematic QPF verification that examines overall performance, biases, and spatial patterns enables informed use for forecast applications and future model improvements. QPF verification on an event level is more challenging than model verification for continuous fields (e.g., temperature) because continuous fields often have less skewed distributions (e.g., more Gaussian) while precipitation is discontinuous with many zero values, highly right-skewed, with many small non-zero values and few large (but consequential) values (Rossa et al., 2008). Because precipitation has a highly skewed distribution and is spatiotemporally discontinuous, more advanced verification techniques, including spatially insensitive or spatially aware metrics are needed, particularly for event based precipitation verification (Ebert and McBride, 2000; Ebert and Gallus, 2009; Gilleland et al., 2009; Wolff et al., 2014; Clark et al., 2016; Matyas et al., 2018; Zick, 2020; Newman et al., 2023). Even with these challenges, bulk QPF verification for global and regional NWP forecasts is routinely done across major modeling centers (e.g., McBride and Ebert, 2000; Haiden et al., 2012).
However, QPF verification for specific features such as tropical cyclones (TCs) is even more challenging beyond general QPF verification. Feature specific spatial displacement error corrections and spatially aware verification techniques are more critical for TC QPF verification because TCs are relatively localized features with large spatial gradients of precipitation intensity that are tied to internal dynamics, and NWP forecasts often have large spatial displacement errors. Several TC specific QPF verification methodologies to address these challenges have been developed over the past one to 2 decades (Marchok et al., 2007; Cheung and Coauthors, 2018; Chen et al., 2018; Yu et al., 2020; Ko et al., 2020; Newman et al., 2023; Stackhouse et al., 2023). These methods and systems can be applied to large-sample TC QPF forecasts and provide useable information about QPF performance for model improvement (Newman et al., 2023).
Recently, the United States (US) National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) made a major update to its regional tropical cyclone (TC) NWP capabilities. Two configurations of the new Hurricane Analysis and Forecast System (HAFS) were made operational in advance of the 2023 season. Extensive model development and testing was performed by NCEP and the broader TC research community before the HAFS configurations were made operational (Dong et al., 2020; Hazelton and Coauthors, 2021; Zhang et al., 2023; Hazelton, 2022). The pre-implementation testing included a multi-season retrospective forecast evaluation with both HAFS configurations, with case samples corresponding to operational forecasts from the Hurricane Weather and Forecasting (HWRF) model. Accumulated precipitation was archived across forecast lead times from the models for the operational and retrospective forecasts, but was not systematically examined as part of the operational model implementation decision making process.
Here we present the first systematic, large-sample QPF verification of the HAFS and HWRF forecasts for the 2021 and 2022 season retrospective forecasts along with evaluation of the two operational HAFS configurations during the 2023 season, the first operational season for HAFS. We use a set of the TC and QPF specific tools within the enhanced Model Evaluation Tools (METplus) software system (Jensen et al., 2023; Brown and Coauthors, 2021). Newman et al. (2023) describe the development and application of the METplus TC and QPF tools for large-sample TC QPF verification. These tools include capabilities to shift model forecasts to mitigate track errors, regridding model and observed fields to a storm relative cylindrical coordinate system, as well as use of the object oriented verification using the MET Method for Object-Based Diagnostic Evaluation (Davis et al., 2006) tool applied to TC precipitation objects. This initial application of the suite of METplus QPF verification tools for TCs lays the foundation for future implementation of more comprehensive QPF verification within the HAFS workflow and broader TC research and forecasting communities, as HAFS and METplus are open-source, community capabilities.
2 DATA AND METHODS
2.1 Datasets
2.1.1 Models
Three NOAA NCEP operational regional hurricane models were used for this evaluation. The Hurricane Weather Research and Forecast (HWRF, Tallapragada, 2016; Mehra et al., 2018; Biswas, 2018) model became operational during the 2007 hurricane season (Tallapragada, 2016). Here we use the HWRF operational version for the 2021-2022 hurricane season. HWRF uses a triple-nested domain configuration with horizontal resolutions of 13.5 km for the parent domain, 4.5 km for the intermediate nest and 1.5 km for the inner nest. HWRF includes self-cycled hybrid Ensemble Kalman Filter (EnKF) data assimilation, ocean and wave coupling. The physics parameterizations used in the HWRF model are summarized in Table 1. Next, NOAA’s Unified Forecast System (UFS)-based hurricane application using the Finite-Volume Cubed-Sphere (FV3) dynamical core, the Hurricane Analysis and Forecast System (HAFS), became operational in June 2023. This new regional hurricane system is scheduled to fully replace the HWRF model, as well as the operational Hurricanes in a Multi-scale Ocean coupled Non-hydrostatic model (HMON; Mehra et al., 2018), with two distinct configurations. These configurations are referred to as HAFS-A and HAFS-B, using the 4-letter identifiers HFSA and HFSB, respectively. Both HAFS configurations are run with one moving nest, with horizontal grid spacing of 6 km for the parent and 2 km for the inner nest. Similar to HWRF, the HAFS system is run with ensemble variational data assimilation, ocean and wave coupling. Table 1 highlights the physics differences between the HAFS configurations. Most notable are the differences in the planetary boundary layer (PBL) scheme options and the microphysics schemes used. The use of distinctly different microphysics schemes in the HWRF, HFSA, and HFSB is an important consideration when evaluating the QPF performance of each system. A notable difference between the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) microphysics used in HFSA and the Thompson microphysics used in HFSB is that the GFDL microphysics is a single-moment bulk cloud microphysics scheme whereas the Thompson microphysics is a double-moment scheme. The double-moment framework gives more flexibility for predicted particle size distribution, which may lead to better representation of precipitation processes. Note, the HWRF model uses the Ferrier-Aligo microphysics scheme, which is a single-moment scheme, with a single precipitation ice class (combined snow-graupel), diagnostic riming, and simplified sedimentation and may be the most different as compared to the other two microphysics schemes.
TABLE 1 | Summary of key physics parameterizations for each model configuration.
[image: Table 1]Retrospective forecasts of the North Atlantic basin 2021 and 2022 seasons for HFSA and HFSB, operational HWRF output from the North Atlantic basin 2021 and 2022 seasons, along with the operational output for the 2023 North Atlantic basin season for HFSA and HFSB are used in the evaluation. Finally, the parent domain was used for all three modeling systems. This was done to ensure consistency in horizontal resolution of the QPF fields from inner to outer regions of the storm.
2.1.2 Observations
QPF was verified against different observations over land and water. The quality and availability of observations over land and the ocean was a primary consideration. Over land, the Climatology-Calibrated Precipitation Analysis (CCPA; Hou et al., 2014) dataset was used for the verification. CCPA is a 5-km grid spacing, gauge corrected radar observation product that combines gauge analysis and stage IV data (Lin and Mitchell, 2005). Over water, model QPF was verified against the Integrated Multi-satellitE Retrievals for GPM (IMERG; Huffman et al., 2020; Qi et al., 2021). IMERG is a state-of-the-science 0.10° satellite precipitation product combining spaceborne radar, passive microwave, and geostationary satellite data. All models and observations were re-gridded to the common IMERG grid.
The best track analysis (Jarvinen et al., 1984; Rappaport and Coauthors, 2009; Landsea and Franklin, 2013), which is a subjective analysis of the track position and maximum wind speeds based on available observational data, was used for evaluation methods requiring track location. Best track files were obtained from the National Hurricane Center ftp server (https://ftp.nhc.noaa.gov/atcf/btk/).
2.2 Methodology
All large-sample verification results are a homogeneous sample that includes all forecast-observation pairs that have a best track and event equalization across all three models (e.g., all models have the same forecast valid times).
2.2.1 Tropical cyclone specific processing
Following the QPF verification methodology described in Newman et al. (2023), TC-specific processing was employed. First, similar to Marchok et al. (2007), a track shift was applied to forecast data prior to grid-based verification in order to mitigate the effects of the track error. Figure 1A is a schematic representation of this process, where the model field, in this case precipitation, is shifted laterally to account for the track difference between the model forecast track as diagnosed by the GFDL vortex tracker (Marchok, 2021) and the best track analysis. A 600-km mask around the best track location at each valid time was applied to focus on the near-storm environment (Figure 1A). Additionally, Figure 1B demonstrates the mask designating the land boundaries, which was applied for the different observational datasets based on the storm location over land or water.
[image: Figure 1]FIGURE 1 | Schematic of (A) forecast field shifting using forecast minus analyzed track errors at three forecast valid times and (B) storm-relative distance masks within MET. User-specified range intervals (100 km) shown in colors are computed relative to the storm center (black line with circle markers, 12-h interval between markers) using the Gen-Vx-Mask Tool for both the model (left) and observations (right). Additional masking between the land (hatching colors over gray background) and water (colors over white background) is highlighted here. Original images from Newman et al. (2023), Figures 2, 4, ©American Meteorological Society. Used with permission.
2.2.2 METplus tools
The enhanced Model Evaluation Tools version 11.1.0 (METplus; Jensen et al., 2023), was utilized for the verification. Newman et al. (2023) describes the individual tools employed for TC QPF verification, including the Gen-Vx-Mask tool for creating a 600 km mask around the storm track at each forecast lead time and used for the grid-to-grid verification, the Regrid-Data-Plane tool for interpolating forecasts and observations to a common grid (which is required by the MODE tool), the Shift-Data-Plane tool for the track shifting methodology, the Pcp-Combine tool for generating precipitation accumulation intervals, the Grid-Stat tool for matching gridded forecast and observation grid points, the TC-RMW to regrid model and observation data onto a moving range-azimuth grid centered along the points of the storm track, and the MODE tool for identifying precipitation objects. The TC-RMW and MODE tools allow for storm-centric and object oriented approaches, which is a complementary approach to the track shifting methodology described in Section 2.2.1.
3 RESULTS
3.1 Verification of 2021–2022 North Atlantic basin seasons
3.1.1 Description of storms
The 2021 North Atlantic basin hurricane season had twenty one named storms, with seven reaching hurricane strength, including four major hurricanes. Eight storms made landfall in the US, including six tropical storms and two hurricanes (Brennan, 2021). 101 deaths were attributed directly to TC impacts, many due to flooding, with nearly 80 billion dollars in US damage reported. (National Hurricane Center, 2022). Significant rainfall occurred for US landfalling storms. For example, Tropical Storm Fred impacted the eastern US, with catastrophic flooding occurring in parts of the southern Appalachian mountains with over 10.78 inches of rainfall at Mt. Mitchell, North Carolina (Berg, 2021), while Hurricane Nicholas brought heavy rainfall across the US states of Louisiana, Mississippi, Georgia, and Florida with a maximum total rainfall of 17.29 inches at Hammond, Louisiana (Latto and Berg, 2022).
The 2022 North Atlantic basin hurricane season had fourteen named storms, with nine reaching hurricane strength, including three major hurricanes. Four storms made landfall in the US, including one tropical storm and three hurricanes (Reinhart, 2022). 119 deaths were reported as a direct result of the tropical cyclones, with 116 billion dollars in damage in the US alone (National Hurricane Center, 2023). Several TCs had highly impactful rainfall effects, for example, Hurricane Ian brought widespread rainfall and flooding to Florida as well as the mid-Atlantic US states. The maximum storm total rainfall observed during Hurricane Ian was 26.95 inches in Grove City, Florida (Bucci et al., 2023).
3.1.2 Large sample verification
First, the track shifted grid-based QPF verification was compared against grid-based QPF verification of the same sample without track shifting applied to demonstrate the impact of track shifting on grid-based evaluation metrics. Figures 2A–D shows the equitable threat score (ETS) and frequency bias for 6 h accumulated precipitation across forecast lead times for low thresholds of greater than or equal to 0.1 inches (Figures 2A,C) and higher precipitation thresholds of greater than or equal to 2.5 inches (Figures 2B, D) with confidence intervals applied for the 95th percentile. For the ETS, a value of 0 indicates no skill and a value of 1 represents a perfect forecast as compared to random chance. The impact of the shifting is less evident for lower thresholds when there are many grid cells with precipitation than with the larger thresholds. The shifting mitigates average spatial error, thus helping to stabilize the skill scores at longer lead times due to ETS being a non-neighborhood metric, in particular for the larger precipitation thresholds. The overall lower magnitude of the ETS skill scores (ETS of less than 0.2) may be attributed to issues with ETS calculations of random chance adjustment with many rainy grid cells over a small domain (Wang, 2014). For example, the ETS scores for the full parent domain without storm area masking are higher than those in Figures 2A, B (not shown).
[image: Figure 2]FIGURE 2 | 6-h accumulated precipitation (A, B) ETS and (C, D) frequency bias for thresholds of greater than or equal to (A, C) 0.1 inch and (B, D) 2.5 inches for HFSA (blue), HFSB (green), and HWRF (purple) with bars denoting 95% parametric confidence intervals by lead time. Shifted (dashed) and unshifted (solid) track forecasts verified over water for all storms during the 2021-2022 North Atlantic basin hurricane seasons.
The frequency bias for the shifted and unshifted forecasts is shown in Figures 2C, D. Frequency bias is defined with a value of 1 representing an unbiased forecast, values greater than one indicating the precipitation is forecasted too frequently, and values less than one indicating the precipitation is not forecasted frequently enough. The general trend of over forecasting precipitation for lower thresholds (Figure 2C) and under forecasting for larger thresholds (Figure 2D) is evident for both the shifted and unshifted forecasts. Track shifting does not have a large impact on the frequency bias results, with the exception of the HWRF forecasts at the longest lead times. This could be attributable to large track errors at those longer lead times, but all three configurations have similar magnitude track errors (not shown). However, the storm structure in HWRF appears to be different from HFSA and HFSB (see Sections 3.1.3.1). The HWRF storm structure differences may have resulted in different precipitation feature shifting behavior along the boundaries of the 600-km mask when the larger shifts at longer lead times were applied. The relatively small impact from the track shifting methodology on the frequency bias results other than situations where the spatial errors are very large is expected because this statistic does not use spatial information, just the counts of rainy and non-rainy grid cells.
For the remainder of the multi-season analysis, only the shifted track forecasts will be shown. Figures 3A–F shows the ETS for 6 h accumulated precipitation for a variety of thresholds ranging from greater than or equal to 0.1 inches to greater than or equal to 5.0 inches for each of the 3 model configurations. The forecasts over land (Figures 3A–C), verified against the CCPA, demonstrate that the lowest skill occurs at the largest and smallest thresholds (greater than or equal to 5 and 0.1 inches, respectively). Particularly evident for the HAFS configurations, the intermediate precipitation thresholds of greater than or equal to 0.5 inch to 1.5 inches have precipitation forecasts with the highest skill. When comparing the trends of the HAFS configurations to those of the HWRF model, the HWRF model demonstrates more stable skill with increasing lead time, whereas the HAFS configurations skill drops relatively more with increasing lead time. For forecasts over water (Figures 3D–F), verified against IMERG, the lowest skill across all three model configurations occurs at the lowest threshold of greater than or equal to 0.1 inch. This is likely attributed to the ETS calculation itself as previously discussed. The track shifting over water results in a fairly constant ETS throughout the 5-day forecast period. Similar to the land-only verification results, the lower ETS values for the HAFS configurations are associated with the largest thresholds, with increasing ETS for the intermediate precipitation thresholds. The HWRF configuration performs more similarly across all precipitation thresholds above the lowest threshold.
[image: Figure 3]FIGURE 3 | 6-h accumulated precipitation ETS for HFSA (a,d; blue), HFSB (b,e; green), and HWRF (c,f; purple) verified against CCPA over land (A–C) and IMERG over water (D–F) for all storms during the 2021-2022 North Atlantic basin hurricane season by lead time. Precipitation thresholds range from greater than or equal to 0.1 inch (lightest shade) to greater than or equal to 5.0 inches (darkest shade).
Frequency bias for track forecasts over land (Figures 4A–C), verified against CCPA, show that the model accumulated precipitation at the largest thresholds are forecasted well, with frequency bias values near 1. The smaller precipitation thresholds have overforecasted precipitation for all models and configurations. When verifying the track forecasts over water (Figures 4D–F), verified against IMERG, the largest precipitation thresholds are often under forecasted for all models and configurations, while the smallest precipitation thresholds are over forecasted by all models and configurations. For all models and configurations, the frequency bias behaviors remain relatively constant throughout the 5-day forecast period. One exception is in the first 12–18 h, the HAFS configurations have slightly decreasing frequency bias, while HWRF has increasing values, particularly at larger thresholds, which could be due to the differences in model initialization and spin-up.
[image: Figure 4]FIGURE 4 | 6-h accumulated precipitation frequency bias for HFSA (a,d; blue), HFSB (b,e; green), and HWRF (c,f; purple) verified against CCPA over land (A–C) and IMERG over water (D–F) for all storms during the 2021-2022 North Atlantic basin hurricane season by lead time. Precipitation thresholds range from greater than or equal to 0.1 inch (lightest shade) to greater than or equal to 5.0 inches (darkest shade).
3.1.3 Hurricane Ian
Hurricane Ian occurred from 23 to 30 September 2022 and was the ninth named storm in the North Atlantic basin during the 2022 hurricane season. Ian made landfall in southwestern Florida as a category 4 intensity on the Saffir-Simpson scale on 28 September 2022 near Punta Gorda, Florida. Hurricane Ian was responsible directly for 66 deaths and an estimated 112 billion dollars in damage, making it Florida’s costliest hurricane and the third most costliest hurricane in US history. Storm total rainfall reports showed a maximum of 26.95 inches of rainfall at Grove City, Florida (Bucci et al., 2023).
3.1.3.1 Storm-centric verification
Mean 6-hourly precipitation accumulation (mm) for 16 initializations of Hurricane Ian at the 12-h lead time for over 25 September 2022 at 00 UTC to 28 September 2022 at 18 UTC are shown in Figures 5, 6. The 12 h forecast was chosen as a representative example of the storm in a time period where the forecast errors are not too large, but far enough away from initialization shock issues. This is the period when Ian was a tropical storm or hurricane in the Gulf of Mexico and making landfall in southwestern Florida. The analysis is done using the TC-RMW tool in METplus, which transforms the cartesian coordinates of the model domain into storm-relative coordinates normalized by the radius of maximum winds (RMW). The shading represents the precipitation accumulation in millimeters per 6 h. Relative to the IMERG analysis, the model configurations show a smaller storm and less precipitation in the eastern semicircle (Figure 5). The HAFS configurations, HFSA and HFSB (Figures 5B, C) are fairly similar in placement and intensity of the precipitation, with the HFSA producing slightly higher precipitation accumulations in the storm center as well as the western semicircle. The HWRF model shows more compact, intense precipitation accumulations closer to the center of the storm with less precipitation in the eastern semicircle than the HAFS configurations. A notable feature is the persistent outer band in the upper right quadrant around 5-10 RMW, which has the best placement in the HAFS configurations. We leave distance in units of RMW as this normalization ties precipitation features more directly to the dynamics of the storms. In some cases, it may be more informative to convert back to physical distance, which depends on the specific use-case and verification purpose.
[image: Figure 5]FIGURE 5 | Mean 6-hourly precipitation accumulation (mm) for 16 initializations of Hurricane Ian at the 12-h lead time for (A) IMERG, (B) HFSA, (C) HFSB and (D) HWRF at the same valid times. Radii are normalized by the radius of maximum wind.
[image: Figure 6]FIGURE 6 | Boxplot of all 6-hourly precipitation accumulation (mm) grid points aggregated across 16 forecast initialization times from Hurricane Ian for the 12-h lead time forecasts for (A) HFSA, (B) HFSB and (C) HWRF compared to IMERG. For each box, the notches indicate the median and the bottom and top edges show the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers.
The output from the TC-RMW tool was used in Figure 6, which are box plots of accumulated precipitation using distance bins of 0.4 RMW. Relative to IMERG, the HAFS configurations show lower precipitation accumulations, whereas the HWRF configuration has larger accumulations closer to the RMW with a steep drop after about 2-3 RMW. In general, the HAFS gradients, moving from the center, better match those of IMERG. Comparing the two HAFS configurations, the HFSA configuration shows a distribution and mean that is closer to IMERG, in particular out to 3 RMW.
3.1.3.2 Object based verification
The Method for Object-based Diagnostic Evaluation (MODE) within METplus is used for spatial verification of the precipitation field. The MODE object identification algorithm mimics the subjective matching of observed and forecasted objects by human forecasters using a multistep process and fuzzy logic engine (Davis et al., 2006). The 6 h accumulation for the 12 h forecast of Hurricane Ian valid at 06 UTC 28 September 2022 (18 UTC 27 September 2022 initialization) for a specific configuration of MODE is shown in Figure 7 for demonstration. Figure 7A is the forecasted accumulated precipitation from the HFSA configuration with MODE filtering applied. Similarly, Figure 7B shows the same field for the combined IMERG and CCPA datasets using the MODE filtering algorithm. The IMERG and CCPA observations were combined into a single observation based on the land mask in order to support the MODE object identification. Figure 7C shows the MODE object identification of the forecast objects in the shading and observed objects in the outline. This MODE analysis configuration was performed for all 12 h forecasts during the period of Hurricane Ian used in Section 3.1.3.1.
[image: Figure 7]FIGURE 7 | An example of MODE accumulated precipitation fields from the (A) 12 h HFSA forecast, (B) combined IMERG and CCPA observations, and (C) forecast objects for Hurricane Ian, identified as one object cluster in red with observation objects overlaid using blue outlines. The forecast valid at 06 UTC 28 September 2022 (18 UTC 27 September initialization) is shown.
All grid points with precipitation within the identified objects were used to calculate the frequency of 6 h precipitation accumulation (Figures 8A–C). The HAFS configurations both have a peak in the lightest precipitation and another area of precipitation greater than the combined IMERG and CCPA observations around 75–100 mm, most notably in the HFSA configuration. Conversely, the HWRF model is dominated by the heavy precipitation, as seen with the over forecast of precipitation accumulation near the storm center (Figures 6C, 8C), which could be due to the Ferrier-Aligo microphysics used in HWRF. The conclusions reached from the object based approach supports the findings using the storm-centric approaches in Section 3.1.3.1.
[image: Figure 8]FIGURE 8 | Log frequency of 6-h precipitation accumulations (mm) for (A) HFSA in blue, (B) HFSB in green, and (C) HWRF in purple compared to combined IMERG and CCPA observations in black.
3.2 Verification of 2023 North Atlantic basin season
3.2.1 Description of storms
The 2023 North Atlantic basin hurricane season had nineteen named storms, with seven reaching hurricane strength, including three major hurricanes. Three storms made landfall in the US, including two tropical storms and one hurricane (National Hurricane Center, 2024). 15 deaths were attributed directly to TC impacts during the 2023 season, with many associated with rainfall hazards (National Hurricane Center, 2024). Hurricane Franklin brought major rainfall associated impacts and damages to the Dominican Republic (Beven, 2024), and Hurricane Ophelia produced flooding throughout North Carolina with a maximum rainfall report of 9.51 inches near Greenville, North Carolina (Brown et al., 2024). The largest damage occurred in the US with Hurricane Idalia, described in Section 3.2.3.
3.2.2 Large sample verification
With a limited number of landfalling cases during the 2023 Atlantic basin hurricane season, the sample sizes were too small at the longest lead times to separate the land and water verification. Therefore, Figures 9, 10 show track shifted statistics from the combined forecasts over land and water, using the same observational datasets as before. Additionally, while the HWRF model was still run in limited capacity during the 2023 season, the gridded output was not available and therefore not included in this analysis. Figures 9A, B shows the ETS for 6 h precipitation accumulations for the same precipitation thresholds described in Section 3.1.2 and Figure 3. Again, the lowest ETS values are associated with the largest and smallest (greater than or equal to 0.1 inch) thresholds for both the HFSA and HFSB. Precipitation forecasts at the intermediate thresholds, ranging from greater than or equal to 0.5 inches to greater than or equal to 1.5 inches, consistently score higher. HFSB scores slightly higher than HFSA for lead times longer than 72 h. The impact of track shifting at longer lead times during the 2023 season did not prevent a decrease in ETS with lead time, as shown in the 2021-2022 season retrospective runs.
[image: Figure 9]FIGURE 9 | 6-h accumulated precipitation ETS for HFSA ((A) blue) and HFSB ((B) green) verified against both CCPA over land and IMERG over water for all storms during the 2023 North Atlantic basin hurricane season by lead time. Precipitation thresholds range from greater than or equal to 0.1 inch (lightest shade) to greater than or equal to 5.0 inches (darkest shade).
[image: Figure 10]FIGURE 10 | 6-h accumulated precipitation frequency bias for HFSA ((A) blue) and HFSB ((B) green) verified against both CCPA over land and IMERG over water for all storms during the 2023 North Atlantic basin hurricane season by lead time. Precipitation thresholds range from greater than or equal to 0.1 inch (lightest shade) to greater than or equal to 5.0 inches (darkest shade).
The frequency bias for the combined land and water verification is shown in Figures 10A, B. The models again tend to under forecast the largest precipitation thresholds, whereas the smallest thresholds tend to be over forecasted. Precipitation forecasts for thresholds of greater than or equal to 1.0–1.5 inch typically perform well with frequency bias values around 1. In general, the under forecasting of heavy precipitation is more extreme during the 2023 season than during the retrospective runs for the 2021-2022 seasons.
3.2.3 Hurricane Idalia
Hurricane Idalia occurred from 26 to 31 August 2023 and was the 10th named storm in the North Atlantic basin during the 2023 hurricane season. Idalia rapidly intensified in the Gulf of Mexico, making landfall in Florida’s big bend region as a category 3 hurricane. Idalia produced rainfall across the southeastern US states, with a maximum total rainfall of 13.55 inches reported at Holly Hill, SC. Idalia was responsible for 8 direct casualties, and an estimated damage of 3.6 billion US dollars. The rural region of Idalia’s landfall resulted in less damages than prior landfalling US TCs, primarily affecting the agricultural industry (Cangialosi and Alaka, 2024).
3.2.3.1 Storm-centric verification
Similar to Section 3.1.3.1, composites of 12 h forecasts of 6 h precipitation accumulation from 26 August 2023 at 18 UTC to 30 August 2023 at 18 UTC, which covers when Idalia was a tropical storm or hurricane, are shown in Figure 11. Both HAFS configurations show a smaller storm core with less precipitation than the IMERG observations. The HAFS configurations are similar to each other with placement of the most intense precipitation just to the east of IMERG. The HFSB configuration shows higher precipitation intensities compared to HFSA near the storm center.
[image: Figure 11]FIGURE 11 | Mean 6-hourly precipitation accumulation (mm) for 17 initializations of Hurricane Idalia at the 12-h lead time for (A) IMERG, (B) HFSA, and (C) HFSB at the same valid times. Radii are normalized by the radius of maximum wind.
Box plots of precipitation accumulation using distance bins from the storm center normalized by RMW are shown in Figures 12A, B. Using the median of the distribution at each range bin, HFSA has an underestimation closer to the RMW, whereas HFSB has an overestimation around the RMW. Both HFSA and HFSB have slight underestimation of precipitation beyond 3 RMW.
[image: Figure 12]FIGURE 12 | Boxplot of all 6-hourly precipitation accumulation (mm) grid points aggregated across 17 forecast initialization times from Hurricane Idalia for the 12-h lead time forecasts for (A) HFSA, and (B) HFSB compared to IMERG. For each box, the notches indicate the median and the bottom and top edges show the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers.
3.2.4 Hurricane Lee
Hurricane Lee occurred from 5 to 16 September 2023 and was the 13th named storm in the North Atlantic basin during the 2023 hurricane season. Lee formed in the eastern Atlantic and rapidly intensified to a category 5 hurricane, remaining over water before making landfall in Nova Scotia as a post tropical system. The rainfall impacts occurred in eastern Maine and New Brunswick, Canada (Blake and Nepaul, 2024).
3.2.4.1 Storm-centric verification
For Hurricane Lee, 6 h accumulated precipitation for 12 h forecast composites are shown in Figure 13 covering 07 September 2023 at 00 UTC to 15 September 2023 at 06 UTC. This corresponds to the period when Lee was a tropical storm or hurricane in the North Atlantic basin. The HAFS configurations have a similar placement shape to the precipitation with more precipitation in the southeast quadrant. However, the intensity of the precipitation relative to IMERG is too weak in the southeast quadrant and stronger than IMERG in both configurations. The HFSA configuration also shows slightly higher precipitation accumulations relative to the HFSB configuration.
[image: Figure 13]FIGURE 13 | Mean 6-hourly precipitation accumulation (mm) for 34 initializations of Hurricane Lee at the 12-h lead time for (A) IMERG, (B) HFSA, and (C) HFSB at the same valid times. Radii are normalized by the radius of maximum wind.
The precipitation accumulation box plots shown in Figure 14 further demonstrate HFSA over estimated precipitation near RMW (Figure 14A) using the median of the distributions at each range bin, whereas the mean precipitation accumulations for HFSB near RMW closely match those of IMERG (Figure 14B). Beyond 1 RMW, the HAFS configurations are more similar.
[image: Figure 14]FIGURE 14 | Boxplot of all 6-hourly precipitation accumulation (mm) grid points aggregated across 34 forecast initialization times from Hurricane Lee for the 12-h lead time forecasts for (A) HFSA and (B) HFSB compared to IMERG. For each box, the notches indicate the median and the bottom and top edges show the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers.
4 SUMMARY AND DISCUSSION
Here we performed the first multi-season verification of QPF from the new NOAA operational regional TC forecasting system, HAFS. We use state-of-the-science methods to mitigate track errors for traditional grid-to-grid comparison methods, and spatially aware verification using both a storm-relative coordinate system and an object oriented approach (Newman et al., 2023).
Comparisons between the HAFS configurations and the HWRF model show that the more complex microphysics in the HAFS configurations better represent the tropical cyclone precipitation and features of TCs than the legacy Ferrier-Aligo microphysics scheme used in the HWRF model from the 2021-2022 North Atlantic basin retrospective forecasts. Generally, the HAFS version 1 configurations tend to over forecast precipitation for smaller thresholds and under forecast precipitation for larger thresholds. During the 2023 season, the HAFSv1 configurations demonstrated the same trends as the 2021-2022 seasonal retrospective, which includes over forecasting light precipitation and under forecasting larger accumulation thresholds, along with similar spatial patterns and gradients moving away from the storm center. However, the HAFSv1 configurations exhibited larger underestimation of higher thresholds relative to the 2021-2022 seasons. This could be from a variety of reasons (e.g., unique differences in 2023 such as record SSTs) and may be worth further investigation. Performance of the HAFS configurations varies across the case studies, with HFSA performing better for Idalia while HFSB performs better for Ian and Lee.
There are several considerations and avenues for future work within this specific type of analysis and TC QPF verification more generally. We see future research opportunities using these types of large-sample and case study QPF approaches for further process-oriented studies (e.g., Ko et al., 2020) to better understand relationships between model QPF spatial patterns and rapid intensification/rapid weakening forecasts, representation of internal core dynamics, and improved use of HAFS forecasts for inland freshwater flood forecasting. For our specific methodology, additional metrics or modifications to our existing metrics are needed when assessing ETS or possibly other scores over smaller verification domains when a large number of precipitating grid cells are present in the verification domain. Examination of or inclusion of different spatial interpolation techniques (e.g., Accadia et al., 2003) should be done, as well as in-depth examination of inherent intensity differences across models due to resolution or other factors, as well as across observations. Finally, improved automation and inclusion of QPF verification into the HAFS verification workflow is underway to enable near-real time TC QPF verification.
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Schemes HFSA HFSB References
Land/ocean Surface NOAH LSM with VIIRS veg type, NOAH LSM with VIIRS veg type, Ek etal. (2003), Bleck (2002)
HYCOM HYCOM
Surface Layer GFS, TC-specific sea surface GFS, TC-specific sea surface Long (1984), Long (1986), Zheng et al.
roughness roughness (2012), Zheng et al. (2017)
Boundary Layer Scale aware TKE-EDME, near-surface | Scale aware TKE-EDME, model Han and Bretherton (2019), Wang et al.
‘mixing length adjustment coefficients and mass flux adjustment | (2022), Wang et al. (2023a), Chen et al
(2022)
Microphysics GEDL single-moment Thompson double-moment Lin et al. (1983), Chen and Lin (2013),
‘Thompson and Eidhammer (2014)
Radiation RRTMG Called every 720 s RRTMG Called every 1800 s Tacono et al. (2008), Mlawer et al.

Cumulus convection (deep and
shallow)

Scale-aware-SAS calibrated decp
‘convection entrainment rate

Scale-aware-SAS

(1997), Mlawer et al. (2016), Liu and
Yang (2023)

Han etal. (2017), Shin et al. (2024)

Gravity wave drag

Unified GWD v0 (orographic
on/convective off)

Unified GWD v0 (orographic
on/convective off)

Alpertetal. (1988), Kim and Arakawa
(1995), Kim and Doyle (2005)
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Configuration

Horizontal resolution 6km ‘ 3km
Period 20190806_00:00:00-20190,810_00:00:00
Time step 305 ‘ 105
Domain 110°E-130°E, 10°N-30°N (436 x 349)
Top of Levels 50 hPa

Microphysics Scheme Purdue Lin Scheme

Longwave Radiation Rapid Radiative Transfer Model
Shortwave Radiation Dudhia Scheme

Land Surface Noah Land Surface Model

Planetary Boundary layer Yonsei University Scheme

Cumulus Parameterization Kain-Fritsch scheme Turn off
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Windspeed_ Pressure_ Windspeed_ Pressure_

rms rms rms rms

(m/s) (hPa) (m/s) (hPa)

Development Stage (before 60 h) Weakened Stage (after 36 h)
L50_6 3.84 6.35 26.99 3.86 12.42 38.95
M50_6 5.69 10.18 3045 4.38 v 12.32 51.87
H50_6 5.87 9.23 26.59 4.87 9.31 25.99
C40_6 5.79 9.01 35.68 419 10.31 22
L50_3 53 8.12 47.83 6.25 19.18 76.11
M50_3 7.04 11.64 50.03 5.01 18.65 106.72
H50_3 537 8.74 44.67 74 20.84 73.79
€403 6.37 10.11 47.23 7.09 19.32 109.83
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Experiment Description and TC-related physics namelist options

HFSA Operational HESA v1, default NCEP GESv16 settings* except for z0_type = 6,sf_rlm = 1, clam_deep = 0.15
HAZ0 Same as HESA, except z0_type = 0 (default)
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CCpP Common Community Physics Package

CMEPS Community Mediator for Earth Prediction Systems

CNES National Centre for Space Studies or Centre
National d' E tudes Spatiales

CRMSD Centered Root Mean-Squared Difference

EMC Environmental Modeling Center

ESMF Earth System Modeling Framework

FMS Flexible Modeling System

FV3 Finite-Volume Cubed-Sphere

GDAS Global Data Assimilation System

GFDL Geophysical Physical Dynamics Laboratory

GFS Global Forecast System

GODAE US Global Ocean Data Assimilation Experiment

GOM Gulf of Mexico

GSL Global Systems Laboratory

HAFS Hurricane Analysis and Forecast System

HAFSv1 Hurricane Analysis and Forecast System version 1
(operational in the hurricane season year 2023)

HFIP NOAA Hurricane Forecast Improvement Program

HFSA Hurricane Analysis and Forecast System A

HFSB Hurricane Analysis and Forecast System B

HYCOM HYbrid Coordinate Ocean Model

10C Initial Operation Capability

LC Loop Current

LHS Left-Hand Side

MLD Mixed Layer Depth

MLS Mixed Layer Salinity

MLT Mixed Layer Temperature

MSLP Mean Sea-Level Pressure

NCEP National Centers for Environmental Prediction

NCODA Navy Coupled Ocean Data Assimilation

NDBC NOAA National Data Buoy Center

NOAA US National Oceanic and Atmosphere Administrator

NOPP National Ocean Partnership Program

NUOPC National Unified Operational Prediction Capability

NWS NOAA National Weather Service

OHC Ocean Heat Content

PBL Planetary Boundary Layer

Prate Precipitation Rate

R34 Radius of the 34-knot Wind-Speed Threshold

R50 Radius of the 50-knot Wind-Speed Threshold

RHS Right-Hand Side

RMW Radius of the Maximum Wind

RMSD Root Mean-Squared Difference

RTOFS Rea-Time Ocean Forecast System

SST Sea-Surface Temperature

TC Tropical Cyclone

T100 Averaged Temperature over Depth Below 100 m

UFS Unified Forecast System

WMO World Meteorological Organization

WOD

World Ocean Database
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GOFS 3.1 HWRF2019-POM HWRF2020-POM HWRF2020-HYCOM
Analysis Forecast Forecast Forecast
Stage Operational Operational Experimental Experimental
Coupled Coupled Coupled Coupled
Type T
Ocean-Ice Atmosphere-Ocean Atmosphere-Ocean Atmosphere-Ocean
3D-Var
Data assimilated: satellite
Data Assimilation altimeter, satellite and in sifu N/A N/A N/A
sea surface temperature, in situ
vertical temperature and
salinity from Argo floats,
buoys, gliders, and XBTs
Ocean n
N/A GDB: 3'““:1‘;3" i RTOFS RTOFS
Initial Conditions cature Mode
403<lat<40N 0.08° for lat and 9.2 km for lat. 92 km for lat. ~9.2 km for lon.
lon
Horizontal Resolution
40S>1at>40N 0.04° for lat, 10.5 for lon. 105 for lon. 8.7 km-6.1 km for lat.
0.08° for lon
Vertical Grid 41 hybrid vertical layers 40 terrain-following vertical 40 terrain-following vertical 41 hybrid vertical layers
levels levels
Vertical Mixing Schemes Mellor-Yamada 2.5 Mellor-Yamada 2.5 KPP
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