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Humans are endowed with extraordinary sensory-motor capabilities that enable 
a successful interaction with and exploration of the environment, as is the case of 
human manipulation. Understanding and modeling these capabilities represents 
an important topic not only for neuroscience but also for robotics in a mutual 
inspiration, both to inform the design and control of artificial systems and, at the 
same time, to increase knowledge on the biological side. Within this context, 
synergies -- i.e., goal-directed actions that constrain multi DOFs of the human body 
and can be defined at the kinematic, muscular, neural level -- have gained increasing 
attention as a general simplified approach to shape the development of simple and 
effective artificial devices.

The execution of such purposeful sensory-motor primitives on the biological side 
leverages on the interplay of the sensory-motor control at central and peripheral 
level, and the interaction of the human body with the external world. This interaction 
is particularly important considering the new concept of robotic soft manipulation, 
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i.e. soft, adaptable yet robust robotic hands that can deform with the external 
environment to multiply their grasping and manipulation capabilities. Under this 
regard, a preeminent role is reserved to touch, being that skin isour primary organ 
to shape our knowledge of the external world and, hence, to modify it, in interaction 
with the efferent parts.

This Research Topic reports results on the mutual inspiration between neuroscience 
and robotics, and on how it is possible to translate neuroscientific findings on human 
manipulation into engineering guidelines for simplified systems able to take full 
advantage from the interaction and hence exploitation of environmental constraints 
for task accomplishment and knowledge acquisition.
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Editorial on the Research Topic

Mapping Human Sensory-Motor Skills for Manipulation Onto the Design and Control of

Robots

The extraordinary human sensory-motor capabilities arise from the interaction with the external
world and the interplay of different elements, which are controlled within a space whose
dimensionality is lower than the available number of dimensions, as suggested by the concept of
synergies, see (e.g., Turvey, 2007; Latash, 2008; Santello et al., 2013). This general simplification
approach has then been successfully used in robotics, to inform the development of simple yet
effective artificial devices, see (e.g., Santello et al., 2016). Mutual inspiration between robotics
and neuroscience could hence be the key to advance both these disciplines: through a bio-aware
approach for the design of mechatronic systems, on one side, and the deployment of technical
tools for novel neuroscientific experiments, on the other. The manuscripts presented in this e-book
shed light on the organization of human sensory-motor architecture, presenting instruments and
mechatronic systems that can be successfully applied to neuroscientific investigation. At the same
time, we report on robotic translations of neuroscientific outcomes.

INVESTIGATION OF HUMAN SENSORY-MOTOR BEHAVIOR

In Averta et al. functional principal component analysis (fPCA) was applied, for a first time,
to upper limb human actions, to unveil principal motor control schemes of arm joints.
Results show that a combination of few principal time-dependent functions can explain most
of trajectory variability in daily living activities. These findings can be applied for planning
robotic manipulators and characterizing human upper limb kinematics in physiological and
pathological conditions. The latter affects not only themotor components but also subjects’ somato-
sensation, whose assessment has received limited attention compared to motoric abilities. In
Ballardini et al. a low-cost, bimanual mechatronic system is presented, which acts as a tactile
stimulator and recorder. Results from tests with healthy subjects and post-stroke individuals
show that the system can be a viable solution for characterizing tactile perceptual abilities at
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different body locations. The correct quantification of the
performance of human somatosensory system can also provide
useful inspiration for a successful human-robot interaction
through haptic feedback. However, there are cases where the
hands, which can be regarded as the organ of touch (Bicchi
et al., 2011), are not accessible and other alternatives for
haptic feedback delivery have to be investigated. Relying on
the findings that humans can integrate normal force feedback
at the toe into the sensorimotor loop, in Hagengruber et al.
authors analyze human discrimination capabilities of spatial
forces with different amplitudes and directions of application,
at the bare front side of the toe. This provides a perceptual
workspace that can be employed to design robotic devices
for sensory substitution. Human afferences are not limited to
touch, but they encompass multiple sensing channels, such as
vision. Classic psychophysics characterizes sensory performance
in terms of Weber’s law and Just Noticeable Difference. However,
the assumptions underneath these approaches can be violated in
natural action-perception tasks, as it is the case of vision-guided
grasping. Since perception and action are not synchronized in
tele-robotic grasping, telerobotic systems can be an ideal platform
to study the underlying causes that determine a violation of
Weber’s law. Afgin et al. propose a telerobotic system with time
delays to investigate the perceptual basis of grasp control. White
et al. study themodulation of the grip force during the interaction
with soft and rigid virtual objects, when the stiffness is varied
continuously across trials. Results suggest a sudden transition
phase between two feedforward controllers, which is triggered at
a given stiffness level.

BIO-AWARE ROBOTICS AND

MAN-MACHINE INTERFACES

In Salvietti, the principal solutions for the design of robotic
hands that implement the inter-joint coupling associated to the
concept of hand synergies are reviewed. Synergistic inspiration
has been also combined with soft robotics for a novel generation
of deformable, robust, and functional artificial hands (Catalano
et al., 2014). These end-effectors have attracted the attention
of prosthesis designers, since they guarantee a simplified
control and a natural interaction with the environment. Under
this regard, promising results have been obtained with the
SoftHand—Pro, SHP (Godfrey et al., 2017), an anthropomorphic,
adaptable myo-prosthetic robotic hand with 19 DoFs but
actuated using only one motor [controlled with two surface
electromyographic (sEMG) electrodes]. To improve the SHP

capabilities for fine grasp force control (Fu and Santello), propose
a hybrid-gain myoelectric controller that switches the control
gain based on the hand sensorimotor state. Haptic feedback
was also delivered at the upper arm (Casini et al., 2015).
Results show that the hybrid control architecture improves
task completion speed and fine control, leading to performance
qualitatively similar to the one of native human hands. The
intrinsic capability of humans to vary the stiffness of their
muscular-skeletal system is another key feature that allows
complex motor behavior (Della Santina et al., 2017). Recently,

mechanical structures with variable intrinsic stiffness have been
proposed (Vanderborght et al., 2013) for energy-efficient action
completion, as it could be the case of prostheses for cyclical
drumming tasks. To achieve this goal, in Stillfried et al. able
bodied drummers were asked to play simple regular drum
beats. Results show that a series-elastic connection element
between the forearm and the drumstick appears to lower the
muscular effort of drumming, while a stiff connection seems
to minimize the mental load and has a positive effect on
the performance of drumming novices. In Zeng et al. an
augmented reality AR guiding assistance method is presented,
which enhances visual feedback to the user for a combined
electroencephalography—based Brain Machine Interface (BMI)
and eye tracking control of a robotic arm. Experimental results
show that such a hybrid Gaze-BMI controller with the inclusion
of AR information increases performance efficiency and reduces
the cognitive load. In Fathaliyan et al. human gaze behavior
and gaze–object interactions in 3D during a complex bimanual
task are investigated. The goal is to extract salient features that
can be fed to machine learning algorithms for human action
recognition, with promising applications to assistive robots and
robotic co-workers.
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The rich variety of human upper limb movements requires an extraordinary coordination
of different joints according to specific spatio-temporal patterns. However, unvealing
these motor schemes is a challenging task. Principal components have been often
used for analogous purposes, but such an approach relies on hypothesis of temporal
uncorrelation of upper limb poses in time. To overcome these limitations, in this work, we
leverage on functional principal component analysis (fPCA). We carried out experiments
with 7 subjects performing a set of most significant human actions, selected considering
state-of-the-art grasp taxonomies and human kinematic workspace. fPCA results show
that human upper limb trajectories can be reconstructed by a linear combination of
few principal time-dependent functions, with a first component alone explaining around
60/70% of the observed behaviors. This allows to infer that in daily living activities humans
reduce the complexity of movement by modulating their motions through a reduced set of
few principal patterns. Finally, we discuss how this approach could be profitably applied
in robotics and bioengineering, opening fascinating perspectives to advance the state of
the art of artificial systems, as it was the case of hand synergies.

Keywords: upper limb kinematics,motor control, daily living activities, functional analysis, human-inspired robotics

1. INTRODUCTION

Humanhands represent an extraordinary tool to explore and interact with the external environment.
Not surprisingly, a lot of studies have been devoted to model how the nervous system can cope with
the complexity of hand sensory-motor architecture (Mason et al., 2001; Todorov and Ghahramani,
2004; Zatsiorsky and Latash, 2004; Thakur et al., 2008; Gabiccini et al., 2013; Santello, 2014). These
studies have led to the definition of the so-called synergies, broadly intended as covariation patterns
that can be represented at different levels (Santello et al., 2016). More specifically, at the level of
motor units, neural activation shows a synergistic control in the time and/or frequency domain
(Santello, 2014). At the muscle level, different works explored patterns of muscle activity whose
timing and/or amplitude modulation enables the generation of different movements, see d’Avella
and Lacquaniti (2013) for a review. Synergies have also been identified and defined as covariation
patterns of joint angles, e.g., hand postural synergies (Santello et al., 1998, 2013; Mason et al., 2001),
or covariation patterns among digit forces [for a review see Zatsiorsky and Latash (2004)]. However,
to correctly understand human manipulation, in addition to hand analysis, the role of whole upper
limb movements should be also taken into account. Indeed, the whole upper limb motions are
devoted to guide and optimize position and orientation of the hand w.r.t. external targets.
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For these reasons, in addition tomanyworks devoted to analyze
hand behavior, it is also possible to find studies modeling human
upper limb motor workspace, either from a kinematic point of
view, or from a muscular or neural point of view. In Heidari et al.
(2016), the authors studied the kinematic movements of upper
limb during selected tasks in order to compare stroke patients and
normal subjects. In Butler et al. (2010), the authors developed a
quantitative method to assess upper limb motor deficits in chil-
dren with cerebral palsy using three-dimensional motion analysis
during the reach and grasp cycle. Other papers studied muscular
synergies in upper limb activities, as in d’Avella and Tresch (2002),
where the authors introduced a model based on combinations
of muscle time-varying synergies, and in d’Avella et al. (2006),
where authors recorded electromyographic activity from shoulder
and arm muscles during point-to-point movements. As for hand
synergies, whose robotic applications are reviewed in Santello
et al. (2016), synergies have also been applied to movement gen-
eration for virtual arms (Fu et al., 2013) as well as myocontrol of a
multi-DoF planar robotic arm using muscle synergies (Lunardini
et al., 2015). However, none of the previous studies considered the
dynamic aspects of human upper limb motion, i.e., that different
temporal evolutions and shapes of upper limb joints trajectories
would result in different final hand poses.

Typical approaches based on principal component analysis
are not suitable in this case because of the underlying hypothe-
sis of temporal uncorrelation of upper limb poses in time. For
this reason, to achieve this goal, we propose to use for the fist
time functional principal component analysis (fPCA) to study
upper limb motions. fPCA is a statistical method for investigating
dominant modes of variation of functional data in time and has
been widely used in one-dimensional or multi-dimensional time
series analysis in chemistry, weather phenomena, and medicine
(Aguilera et al., 1999; Gokulakrishnan et al., 2006; Dai et al., 2013).
The interested reader in functional data analysis could refer to
Ramsay and Silverman (2002), Ramsay (2006), and Ramsay et al.
(2009). In human movement studies, this method has been used
to explore the presence of variations in repetitions of a specific
task, e.g., in Ryan et al. (2006), an analysis of knee joint kinemat-
ics in the vertical jump was performed. In Coffey et al. (2011),
fPCAwas used to analyze a bio-mechanical dataset examining the
mechanisms of chronic Achilles tendon injury and the functional
effects of orthoses by comparing injured and healthy subjects. In
Dai et al. (2013), fPCA was used in conjunction with PCA for the
analysis of grasping motion. In this work, a new analysis of upper
limb movements by fPCA is proposed to provide a description of
the kinematic trajectories as combination of functional principal
components (fPCs).

The choice to use fPCA as main data analysis tool is motivated
by the fact that it allows to include some important features
of the signal, such as shape and time dependence, which can-
not be taken into account by other simpler data dimensional-
ity reduction techniques (e.g., principal component analysis). To
achieve this goal, we propose an experimental setup for studying
upper limb movements, based on a Motion Capture (MoCap)
system (Phase Space®). Using this tool, we carried out a series of
experiments with human considering a comprehensive dataset of
daily living activities (ADLs) and grasping/manipulation actions.

These actions were selected relying on the study of grasping
taxonomies (Cutkosky, 1989; Feix et al., 2016), and considera-
tions on human upper limb movement workspace (Lenarcic and
Umek, 1994; Abdel-Malek et al., 2004; Perry et al., 2007). Our
analysis has led to the reduction of complexity of upper limb
trajectories by describing these as linear combinations of few
principal functions (or modes). Implications for robotics are also
discussed.

2. EXPERIMENTAL PROTOCOL AND
SETUP

2.1. A Set of Daily Living Tasks
In order to develop a comprehensive study of human upper limb
movements, one of the key features for the generation of a valid
dataset is the definition of a set of meaningful actions (Santello
et al., 1998; Mason et al., 2001; Todorov and Ghahramani, 2004;
Vinjamuri et al., 2010). For this reason, we selected a set of move-
ments driven by the study of grasping taxonomies (Cutkosky,
1989; Feix et al., 2016), and the analysis of human upper limb
movement workspace (Lenarcic and Umek, 1994; Abdel-Malek
et al., 2004; Perry et al., 2007). The output of this selection resulted
in a set of 30 different actions, divided into intransitive, transitive,
and tool-mediated actions to avoid bias due to the affordances
of the objects used for the grasp investigation. Indeed, as Cubelli
et al. (2000) suggested starting from apraxia investigation and
Handjaras et al. (2015) confirmed with cortical imaging, different
movements are generated by different cortical activations, because
require different motor schema, based on the type of interaction
with the environment. These movements can be classified into
three classes, according to the presence or absence of an object
and, if the object is present, on the approach with it: intransitive
class, which collects actions that does not need the use of an object;
transitive class, which collects actions that introduces the use of an
object; and tool-mediated class, which collects actions where an
object is used to interact with another one. Tasks are meant to be
executed three times with dominant hand, the subject seating on a
chair, with the objects placed on a frontal table at a fixed distance.
At the end of the task, the subject returned to the starting point.
The complete list of actions is reported in Table 1.

2.2. An Experimental Setup for Data
Acquisition
We focused on kinematic recordings, which were achieved using
a commercial system for 3D motion tracking with active markers
(Phase Space®). Ten stereo-cameras working at 480Hz tracked
3D position of markers, which were fastened to supports rigidly
attached to upper limb links. In this manner, 20 markers were
accommodated on the upper limb so that the distance between ele-
ments of each support was fixed. Supports were suitably designed
for these experiments and printed in ABS (see Figure 1A). The
acquisition was implemented through a custom application devel-
oped in C++, employing Boost libraries (Schäling, 2011) to
enable the synchronization between Phase Space data and other
sensingmodalities, such as force/torque sensors and EEG, and the
Phase Space OWL library to get the optical tracking system data.
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TABLE 1 | Protocol actions.

# #Cutkosky Class Description

1 Intransitive Ok gesture (lifting hand from the table)
2 Intransitive Thumb down (lifting hand from the table)
3 Intransitive Exultation (extending the arm up in the air and keeping it in with closed fist)
4 Intransitive Hitchhiking (extending the arm along the frontal plane, laterally, parallel to the floor, with extended elbow, closed fist,

extended thumb)
5 Intransitive Block out sun from own face (with open hand, touching the face with the palm and covering the eyes)
6 Intransitive Greet (with open hand, moving wrist) (three times)
7 Intransitive Military salute (with lifted elbow)
8 Intransitive Stop gesture (extending the arm along the sagittal plane, parallel to the floor, with extended elbow, open palm)
9 Intransitive Pointing (with index finger) of something straight ahead (with outstretched arm)
10 Intransitive Silence gesture (bringing the index finger, with the remainder of the hand closed, on the lips)
11 2 Transitive Reach and grasp a small suitcase (placed along own frontal plane) from the handle, lift it and place it on the floor

(close to own chair, along own sagittal plane)
12 3 Transitive Reach and grasp a glass, drink for 3 s (stop signal by the examiner) and place it in the initial position
13 4 Transitive Reach and grasp a phone receiver (placed along own sagittal plane), carry it to own ear for 3 s (stop signal by the

examiner) and place it in the initial position
14 6 Transitive Reach and grasp a book (placed overhead on a shelf), put in on the table and open it (from right side to left side)
15 8 Transitive Reach and grasp a small cup from the handle (2 fingers+ thumb), drink for 3 s (stop signal by the examiner) and

place it in the initial position
16 11 Transitive Reach and grasp an apple, mimic biting, and put it in the initial position
17 12 13 Transitive Reach and grasp a hat (placed on the right side of the table) from its top and place it on own head
18 12 Transitive Reach and grasp a cup from its top, lift it and put it on the left side of the table
19 15 Transitive Receive a tray from someone (straight ahead, with open hand) and put it in the middle of the table
20 16 Transitive Reach and grasp a key in a lock (vertical axis), extract it from the lock and put it on the left side of the table
21 1 Tool mediated Reach and grasp a bottle, pour water into a glass, and put the bottle in the initial position
22 2 3 4 Tool mediated Reach and grasp a tennis racket (placed along own frontal plane), and play a forehand (the subject is still seated)
23 5 Tool mediated Reach and grasp a toothbrush, brush teeth (horizontal axis, one time on left side one time on right side), and put the

toothbrush inside a cylindrical holder (placed on the right side of the table)
24 6 Tool mediated Reach and grasp a laptop and open the laptop (without changing its position) (4 fingers+ thumb)
25 7 8 9 Tool mediated Reach and grasp a pen (placed on the right side of the table) and draw a vertical line on the table (from the top to the

bottom)
26 7 Tool mediated Reach and grasp a pencil (placed along own frontal plane) (3 fingers+ thumb) and put it inside a squared pencil

holder (placed on the left side of the table)
27 9 Tool mediated Reach and grasp a tea bag in a cup (1 finger+ thumb), remove it from the cup, and place it on the table on the right

side of the table
28 10 Tool mediated Reach and grasp a doorknob (disk shape), turn it clockwise, and counterclockwise and open the door
29 13 Tool mediated Reach and grasp a tennis ball (with fingertips) and place it in a basket placed on the floor (close to own chair)
30 14 Tool mediated Reach and grasp a cap (2 fingers+ thumb) of a bottle (held by left hand), unscrew it, and place it overhead on a shelf

FIGURE 1 | In these figures, we show the experimental setup. In (A) markers accommodation is shown. In (B) and (C), we report a scheme of the experimental
setup. The subjects were comfortably sit in front of the table. In the starting position, the subject’s hand was located at the right side of the table. Two cameras are
included to record the scene.

Seven adult right-handed subjects (5 males and 2 females, aged
between 20 and 30) performed the experiment. Each task was
repeated three times in order to increase the robustness of col-
lected data. The experimenter gave the starting signal to subjects.
In the instructions, the experimenter emphasized that the whole
movement should be performed in a natural fashion. The object
order was randomized for every subject. Each subject performed

thewhole experiment in a single day. No subject knew the purpose
of the study, and had no history of neuromuscular disorders.
Each participant signed an informed consent to participate in
the experiment, and the experimental protocol was approved by
the Institutional Review Board of University of Pisa, in accor-
dance with the declaration of Helsinki. The complete experimen-
tal setup is reported in Figures 1B,C. Moreover, we used two
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cameras (Logitech hd 1080p) to record the scene of the experi-
ments in order to visually compare the real and the reconstructed
movement.

3. MOTION IDENTIFICATION

3.1. Modeling of Upper Limb Kinematics
An accurate description of human upper limb is challenging
due to the high complexity of the kinematic structure, e.g., for
axis location and direction, which are usually time varying. In
order to explore the system complexity, the interested reader
can refer to Maurel and Thalmann (2000) and Holzbaur et al.
(2005). In this work, we used a trade-off between complexity
and accuracy taking inspiration from Benati et al. (1980). This
allows to get an acceptable computational time, still maintaining
a good level of explanation of physical behavior. Taking inspi-
ration from Gabiccini et al. (2013), we adopted a model with 7
degrees of freedom (DoFs) and 3 invariable shape links. Joints
angles are defined as q1, . . . , q7: q1 is associated with the shoulder
abduction–adduction; q2 is associated with the shoulder flex-
ion–extension; q3 is associatedwith the shoulder external–internal
rotation; q4 is associated with the elbow flexion–extension; q5 is
associated with the elbow pronation–supination; q6 is associated
with the wrist abduction–adduction; q7 is associated with the
wrist flexion–extension. In Figure 2A, a scheme of the model is
reported.

3.2. Model Parameters
In order to describe the forward kinematics of the arm, 5 different
reference systems was defined: Sref, centered in Oref, fixed to the

epigastrium; SS, centered in OS, Center of Rotation (CoR) of
shoulder joints, fixed to the arm; SE, centered inOE, CoR of elbow
joints, fixed to the forearm; SW, centered in OW, CoR of wrist
joints, fixed to the hand; SH, centered inOH, fixed to the hand. The
rigid transform between Sref and SS is TOrefOS ; the rigid transform
between SS and SE is TOSOE ; the rigid transform between SE and
SW is TOEOW ; the rigid transform between SW and SH is TOWOH .
The defined reference systems are shown in red in Figure 2B.
Green arrows indicate rigid transforms from a reference system
and the next one in the kinematic chain. To parameterize the
i-th segment, we use the product of exponentials (POE) formula
(Brockett, 1984):

gOrefOj(θ) =

[ j∏
k=1

eξ̂kθk

]
gOrefOj(0)

where ξ̂k are the twists of the joints defining the kinematic
chain, θ = [θ1, . . . , θk, . . . , θj]T are the exponential coordinates
of the second kind for a local representation of SE(3) (Special
Euclidean group, 4× 4 rototranslation matrices) for the j-th link,
and gOrefOj(0) is the initial configuration. For further details, the
interested reader can refer to Gabiccini et al. (2013).

3.3. Markers Modeling
Linksmovements were tracked by fastening optical activemarkers
to upper limb links. Markers positioning is inspired by Biryukova
et al. (2000). In order to improve tracking performance, a redun-
dant configuration of marker was used, in particular 4 markers
fixed to the chest, 6 markers fixed to the lateral arm, 6 markers

FIGURE 2 | System parametrization. In (A), we show the kinematic model used in this work. In (B), we report the kinematic parametrization. The labels q1, . . . ,q7
refers to joints of the model. Sref refers to the reference system centered in Oref, fixed to the epigastrium; SS refers to the reference system centered in OS, center of
rotation (CoR) of shoulder joints, fixed to the arm; SE refers to the reference system centered in OE, CoR of elbow joints, fixed to the forearm; SW refers to the
reference system centered in OW, CoR of wrist joints, fixed to the hand; SH refers to the reference system centered in OH, fixed to the hand. The label TOrefOS refers
to the rigid transform between Sref and SS; TOSOE refers to the rigid transform between SS and SE; TOEOW refers to the rigid transform between SE and SW; TOWOH
refers to the rigid transform between SW and SH.
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FIGURE 3 | Markers positioning. In the left figure, we report the arm markers position; in the central figure, we report the forearm markers position; and in the right
figure, we report the hand marker position.

fixed to the dorsal forearm, and 4 markers fixed to the hand
dorsum. A picture showing marker distribution is reported in
Figure 1A. The position of each marker can be calculated as
rigid transformw.r.t. the center of the corresponding support. The
supports kinematic can be described as a rigid transform from the
link reference system to the support reference system, as depicted
in Figure 3.

The model is completely parameterized using 14 parameters
(different for each subject) collected in a vector pG: bones length
(arm and forearm, 2 parameters); rigid transform from epigas-
trium to the shoulder CoR (3 parameters); rigid transform from
shoulder CoR to the center of armmarker support (3 parameters);
rigid transform from elbow CoR to the center of forearm marker
support (3 parameters); and rigid transform from wrist CoR to
the center of hand marker support (3 parameters). The parameter
vector pG was calibrated for each subject. Given pG, the upper limb
pose is described by 7 joints angles [q1, . . . , q7]T collected in a
vector x.

3.4. Model Calibration and Angles
Estimation
As previously mentioned, the parameters of the kinematic model
must be adapted for the specific subject that performs the exper-
iments. The optimal parameters were obtained by solving a con-
strained least-squares minimization problem:

(x∗, p∗
G) = arg min

xk∈Dx,pG∈Dp

1
2

Np∑
k=1

rTk rk.

The residual function rk is calculated as rk(xk, pG):= yk − f (xk,
pG), where: yk is the marker position vector measured with Phase
Space; xk is the vector of estimated joint angles; pG is the vector
of model kinematic parameters; Dx is the upper limb joints range
of motion; Dp is the variation around a preliminary estimation
of parameters performed with manual measurements; and f (xk,
pG) is the estimated positions vector of markers using the forward
kinematics. The vector of measures yk and the vectors of estima-
tions f (xk, pG) can be obtained by concatenating the measures
of marker positions and estimations at different time frames. To
obtain an effective calibration output, the selected frames for the

FIGURE 4 | Mean squared error obtained in the estimation procedure in a
sample. Initial error value is 57.1mm, related to the filter initialization.

calibration procedure must consider different poses of the kine-
matic chain. For the experiments reported in this work, we had rk
normalized w.r.t. the dimension of yk equal to 15.30± 16.25mm;
as an example we show in Figure 4 the values of rk in a sample
task. Taking inspiration from Gabiccini et al. (2013), the cali-
brated model was then used to identify the joints angles using
an Extended Kalman Filter (EKF). Indeed, the model can be
considered as an uncertain noisy process where at time frame k the
joints angle vector xk is the state of the process, yk is the markers
position vector, wk and vk are process and observation zero mean
Gaussian noises, with covarianceQk andRk, respectively, and f (xk)
is the forward kinematics. The system can be described using the
following equations: {

xk = xk−1 + wk

yk = f(xk) + vk
. (1)

Given the state at time frame k−1, the state at time k was
obtained using a 2-steps procedure: prediction of the future state
x̂k|k−1 = x̂k−1; update of the state estimated in the first step
by calculating x̂k|k = x̂k|k−1 + Kkr̃k. The correction amount of
the state prediction is the product between the residual values
vector r̃k = yk − f(x̂k|k−1) and the Kalman Gain Kk. This gain is
calculated as product between the covariancematrix estimation of
the predicted state Pk|k−1, the jacobian matrix, i.e., Hk = ∂(f(x))

∂(x) ,
and the inverse matrix of the residual covariance.
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3.5. Experimental Results
The performance of the estimation tool for time frame k can be
evaluated by calculating the mean squared error (MSE) Rk as

Rk =
1

Nmarkers
||(yk − f(x̂k|k))||

whereNmarkers is the number ofmarkers, yk is themarker positions
vector, and f(x̂k|k) is the vector of markers estimated positions
using the joint angles calculated with the EKF. Typical values of
Rk are ≈ 1 cm, with a mean error for hand and forearm markers
of ≈0.5 cm and a mean error for arm markers of ≈1.8 cm. Iden-
tified angles was used to reconstruct the movements, which were
represented using a virtual model of upper limb suitably imple-
mented in MatLab for these reconstructions. The reconstructions
were used for a visual check w.r.t. the real movement recorded
with cameras. This allows to verify the human-likeliness of the
reconstructed movement.

4. DATA ANALYSIS

The goal of this work is the study of functional motor synergies
of upper limb. This is accomplished using functional PCA, a
statistical method that allows to study the differences in shapes
between functions. In order to avoid the inclusion in this analysis
of undesired features due to misalignments in time or in velocity
of the samples, we performed the following pre-processing tech-
niques: segmentation, to divide the repetition of each task, time
warping, to synchronize in time all the elements of the dataset.

4.1. Segmentation
For each task, the three repetitions have been segmented using the
following procedure (see Figure 5):

1. select the data elements of the third DoF (q3);
2. find the first two peaks p1, p2 of the signal;

3. evaluate the mean slope s1, s2 of the signal in a section close to
each peak;

4. calculate the segmentation point as t1 = p1s1+p2s2
s1+s2 ;

5. repeat points 2–4 using the second and the third peaks and
obtain t2.

q3 data (i.e., shoulder flexion–extension) was used for segmenta-
tion because it almost always contains three distinct peaks. If the
peaks were not detectable, another DoF with detectable peaks was
used instead. Note that the segmentation is performed using the
same couple of segmentation points for all the 7 DoFs.

Considering different subjects and tasks, differences between
shapes are evident (see Figure 6A). The three repetitions of
each task should be replaced by the corresponding mean vec-
tor to increase robustness. This replacement can be performed
only after signal synchronization, achieved using a time-warping
procedure.

4.2. Time Warping
The synchronization between two signals allows to increase the
affinity by conforming starting-time and speed of the action. This
can be achieved by finding the optimal time-shift and time-stretch
of one signal w.r.t. the other one. This problem is known in
literature as dynamic time warping (DTW) and widely explored
in sound engineering and pattern recognition (Rabiner et al.,
1978; Berndt andClifford, 1994;Müller, 2007; Salvador andChan,
2007). In this work, DTW is needed to allow the mediation of the
three repetitions, to avoidmisalignment, and to compare different
tasks and subjects’ data. For the problem explored in this work,
the following assumptions were done: monotonicity, to preserve
data integrity, and linear distortion of time. Given two time series,
v1 and v2, the affinity between the two signals is increased by the
solution of the following least-squares minimization problem:

(S,T) = arg min
S>0,T

(||v1(t) − v2(St − T)||)

FIGURE 5 | Segmentation procedure. In the left figure, we report a sample of joint evolution in time. In the central figure, we show two peaks of the signal p1, p2 and
the mean slope of the signal s1, s2 evaluated in two ranges close to each peak. The segmentation point t1 is evaluated as t1 = p1s1+p2s2

s1+s2
. The same procedure is

repeated using the second and the third peaks of the signal and the output of the segmentation procedure is reported in the right figure.
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FIGURE 6 | Segmentation and time warping. (A) Segmented data: in this plot, a sample of segmented data is reported to show the differences in starting-time and
speed of the action. (B) Time-warped data: in this plot, the sample of data is shown after time warping and replacement of the three repetitions with the mean signal.

FIGURE 7 | Scheme of data analysis.

where S is a scaling factor for the velocity of signal v2 and T is
the amount of shifting in time applied to v2. The dataset elements
were time-warped w.r.t. a reference time series, selected in the set
as the element whose length is the mean value w.r.t. the length
of all dataset elements. For each element, S and T are calculated
by performing DTW on DoFs used for segmentation, then all the
components are time-warped using the optimum set of parame-
ters. The time-warped vectors have the same number of frames
(number of elements). Once the time warping was performed on
all the dataset elements, the three repetitions for each task can be
replaced by the corresponding mean vector. A sample output of
this procedure is reported in Figure 6B. In Figure 7, a scheme of
the data analysis procedure is reported.

4.3. Principal Component Analysis
To explain fPCA, it is useful to start from classic principal com-
ponent analysis (PCA). Principal component analysis (PCA) is
a statistical procedure that uses an orthogonal transformation to
convert a set of observations of possibly correlated variables into
a set of values of linearly uncorrelated variables called principal
components. This transformation is defined in such a way that the
first principal component (PC) has the largest possible variance
(that is, it accounts for the largest part of the variability in the
data). The other components explain an amount of variance in
decreasing order, with the constraint that each principal com-
ponent is orthogonal to the previous ones. Hence, the resulting
vectors represent an orthogonal basis set. Principal components
are calculated as eigenvectors of the covariancematrix of data. The
variance explained by each PC is calculated as normalization of
the corresponding eigenvalue. Given the first eigenvector ξ1, the

principal component score fi1 = ξ′
1xi maximizes

∑
i f

2
i1 subject to

||ξ1||= 1; the second eigenvector ξ2 maximizes
∑

i f
2
i2 subject to

||ξ2||= 1 and ξ′
2ξ1 = 0, and so on.

4.4. Functional Principal Component
Analysis
Functional PCA can be described as a functional extension of
PCA. The first functional principal component ξ1(t) is the func-
tion for which the principal component score fi1 =

∫
ξ1(t)xi(t)dt

maximizes
∑

i f
2
i1 subject to

∫
ξ21(t)dt = ||ξ1|| = 1; the second

functional principal component ξ2(t) maximizes
∑

i f
2
i2 subject to

||ξ2||= 1 and
∫

ξ2(t)ξ1(t)dt = 0, and so on. In practice, this is
done implementing the following steps:

1. Consider a dataset of functions xi and extract the mean signal
x̄ as x̄j = 1

N
∑N

i=1 xij;
2. Remove the mean calculated in step 1 from each data element

by x̃i = xi − x̄;
3. Define a basis function. The basis must contain a number of

functions large enough to consider all possible modes of varia-
tions of data. Usually basis elements are exponential functions,
splines, Fourier basis (Ramsay and Silverman, 2002; Ramsay,
2006; Ramsay et al., 2009);

4. Given the basis functions b1, . . . , bN, each data element can be
described as combination of basis elements x̃i =

∑N
k=1 θkbk;

5. Then each function is described by a vector of coefficients
Θ= (θ1, . . ., θN)′;

6. PCA is now performed on these vectors. This leads to define
the PCs, which are vectors of coefficients;
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7. Each PC is, then, transformed into the corresponding function
principal components (fPCs) using basis elements as xrec =
x̄ + c1ξ1 + c2ξ2 + c3ξ3 + . . .;

8. Each fPC explains a certain percentage of variance. The vari-
ance explained by an fPC is quantified normalizing (w.r.t. the
sum of the eigenvalues) the corresponding eigenvalue of the
covariation matrix.

4.5. Movement Reconstruction and
Performance Analysis
We used fPCA on this dataset after the post-processing phase
reported in previous sections. 15 fifth order spline basis elements
were used, taking inspiration for the polynomial description in
Flash and Hogan (1985). Each basis function is defined by piece-
wise polynomial functions. The places where the pieces of the
spline intersect are known as knots. Each piece has the following
form

sk(t) =
5∑

i=1
aik(t − tk)i

where tk is the kth knot. The fPCs can be used to reconstruct the
data sample by adding M fPCs weighted by coefficients ci, i.e.,
xrec = x̄ + c1ξ1 + . . . + ciξi + . . . + cMξM withM≤N.

This analysis allows to infer that the first fPC by itself account
for 60–70% of the variation w.r.t. the mean function, as reported
in Figure 8, with a mean value between the DoFs of 65.2%, a
minimum value of 54.4% and a maximum of 76.9%. What is
noticeable is that reconstruction with the first fPCs provides good
results, in fact the explained variance of the first three fPCs is

higher than 84% for all DoFs. In Figure 9, we show how the
main principal functions can shape the reconstruction of the joints
trajectories. Individual basis function does not need to represent
meaningful movements. What is needed is that a combination
of basis elements (plus an offset) could reproduce any original
trajectory of the joints of the dataset. The reconstruction per-
formance is showed in Figure 10A, in which a reconstruction
using 1, 2, and 3 fPCs is reported. In order to quantify the recon-
struction performance, an index of reconstruction error can be
evaluated as

ERMS =

√√√√√ 1
NDoF

NDoF∑
i=1


√√√√ 1

Nframes

Nframes∑
j=1

(x − xrec)2
2

where x is the real function and xrec is the reconstructed function.
Figure 10B reports a plot of the normalized error, calculated as

ERMS/max(ERMS), for different number of fPCs used. Initial point
refers to the case where onlymean function is used for reconstruc-
tion and the value of ERMS is 0.6 rad. The reconstruction using one
fPC has an ERMS value lower than 0.2 rad, adding other fPCs, the
reconstruction error decay, i.e., using three fPCs the ERMS value is
around 0.1 rad. Furthermore, the whole reconstructed movement
for the upper limb (considering all DoFs) was displayed using
a visualization tool developed in MatLab, showing a high level
of anthropomorphism and realism. We can conclude that the
kinematic complexity of upper limb trajectories can be simplified
and easily described using the mean function and few principal
functional modes.

FIGURE 8 | Explained variance for different DoFs and for each fPC.
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FIGURE 9 | In (A), we report the mean function (in black) and the same mean function with the contribution of the first principal function, weighted with a coefficient
α equal to one (with positive sign in red dashed line, with negative sign in red dotted line); in (B), we report the mean function (in black) and the same mean function
with the contribution of the second principal function with a coefficient α equal to one (same legend of (A)); in (C), we report the mean function (in black) and the
same mean function with the contribution of the third principal function with a coefficient α equal to one (same legend of (A)).
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FIGURE 10 | In (A) we show an example of trajectory reconstruction. The black line is the real data. The red line is the reconstructed data using the mean values and
the first principal component. The blue line is the reconstructed data using the mean values and the first two principal components. The green line is the
reconstructed data using the mean values and the first three principal components. In (B) we report the normalized reconstruction error (RMS). The initial point refers
to the error when only the mean function is used for reconstruction. The other points refer to the error when one or more fPCs are used for the reconstruction.

5. CONCLUSION AND IMPLICATIONS FOR
ROBOTICS AND BIOENGINEERING

In this work, we have shown that the complexity of upper limb
movements in activities of daily living can be described using a
reduced number of functional principal components. To achieve
this goal, we developed an experimental setup, which is based
on kinematic recordings but also allows to include additional
sensing modalities. Kinematic data are based on a 7 DoFs model
and are quantified through a calibration-identification procedure.
Collected data were used to characterize upper limb movements
through functional analysis. The findings of this work can be used
to pave the path toward amore accurate characterization of human
upper limb principal modes, opening fascinating scenarios in
rehabilitation, e.g., for automatic recognition of physiological and
pathological movements (e.g., stroke affected subjects) through
machine learning.

At the same time, the here reported results and future inves-
tigations could also offer a valuable inspiration for the design
and control of robotic manipulators. First, recognizing that few
principal modes describe most of kinematic variability could
provide insights for a more effective planning and control of
robotic manipulators. For the planning phase, using input tra-
jectories as combinations of the main functional components,
which explain most of the kinematic variability, could repre-
sent a successful initial guess to control the movement of the
robot—eventually combined with a feedback correction. This
combination of feedforward and feedback components could be
successfully employed also with soft robotic manipulators, i.e.,
robots designed to embody safe and natural behaviors relying
on compliant physical structures purposefully used to achieve
desirable and sometimes variable impedance characteristics. In
these cases, standard methods of robotic control can effectively
fight against or even completely cancel the physical dynamics of
the system, replacing them with a desired model—which defeats
the purpose of introducing physical compliance. To overcome this
limitation in Della Santina et al. (2017), an anticipative model of
human motor control was proposed, which used a feedforward

action combined with low-gain feedback, with the goal of obtain-
ing human-like behavior through iterative learning. Results pre-
sented in this work could be used to define the feedforward
component for the control of soft robots. Second, using human-
like primitives for controlling robotic systems could improve
the effectiveness and safety of human–robot interaction (HRI).
Indeed, several studies identified anthropomorphism as one of the
key enabling factor for successful, acceptable, predictable, and safe
HRI in many fields, such as human robot co-working and rehabil-
itative/assistive robotics (Duffy, 2003; Bartneck et al., 2009; Riek
et al., 2009; Dragan and Srinivasa, 2014). Furthermore, the here
reported experimental and analytical framework could be used to
identify principal actuation schemes for under-actuated robotic
devices. As an example, in Casini et al. (2017), we used the identi-
fication procedure and the kinematic model reported in this work
to estimate the contribution of wrist joints in the most common
poses for grasping. We performed PCA on the estimated joints of
the wrist pre-grasp poses and we found that the flexo-extension
DoF plays a dominant role. We used these results to calibrate an
under-actuated wrist system, which is also adaptable and allows
to implement different under-actuation schemes, demonstrating
its effectiveness to accomplish grasping and manipulation tasks.
Future works will aim at using functional data to allow a dynamic
implementation of principal kinematic modes of human upper
limb in robotic systems. Finally, the integration of other sensing
modalities, such as electro-encephalographic recordings, could be
used to study neural correlates of human upper limbmotions, thus
possibly inspiring the development of effective brain–machine
interfaces for assistive robotics.
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Many neurological diseases impair the motor and somatosensory systems. While
several different technologies are used in clinical practice to assess and improve
motor functions, somatosensation is evaluated subjectively with qualitative clinical
scales. Treatment of somatosensory deficits has received limited attention. To bridge
the gap between the assessment and training of motor vs. somatosensory abilities,
we designed, developed, and tested a novel, low-cost, two-component (bimanual)
mechatronic system targeting tactile somatosensation: the Tactile-STAR—a tactile
stimulator and recorder. The stimulator is an actuated pantograph structure driven by
two servomotors, with an end-effector covered by a rubber material that can apply
two different types of skin stimulation: brush and stretch. The stimulator has a modular
design, and can be used to test the tactile perception in different parts of the body
such as the hand, arm, leg, big toe, etc. The recorder is a passive pantograph that
can measure hand motion using two potentiometers. The recorder can serve multiple
purposes: participants can move its handle to match the direction and amplitude of
the tactile stimulator, or they can use it as a master manipulator to control the tactile
stimulator as a slave. Our ultimate goal is to assess and affect tactile acuity and
somatosensory deficits. To demonstrate the feasibility of our novel system, we tested the
Tactile-STAR with 16 healthy individuals and with three stroke survivors using the skin-
brush stimulation. We verified that the system enables the mapping of tactile perception
on the hand in both populations. We also tested the extent to which 30 min of training
in healthy individuals led to an improvement of tactile perception. The results provide
a first demonstration of the ability of this new system to characterize tactile perception
in healthy individuals, as well as a quantification of the magnitude and pattern of tactile
impairment in a small cohort of stroke survivors. The finding that short-term training with
Tactile-STAR can improve the acuity of tactile perception in healthy individuals suggests
that Tactile-STAR may have utility as a therapeutic intervention for somatosensory
deficits.

Keywords: tactile stimulation, somatosensory function, skin stretch, skin brush, stroke, neurological disease,
haptics
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INTRODUCTION

Many people with neurological diseases suffer from impairments
of the motor and the somatosensory functions. Reliable
methods to quantify somatosensory deficits are crucial for better
understanding the pathophysiology of the diseases and for
enhancing the detection of early symptoms and informing novel
neuro-rehabilitative approaches to improve upper-limb functions
and quality of life.

Impaired somatosensory function significantly affects the
quality of daily living. Somatosensation is critical for autonomy
in the environment and purposeful interaction with the external
world. An example of a somatosensory ability of a healthy
individual is identifying an object using only haptic perception,
or stereognosis (Irving, 1968). It entails active haptic exploration
(Jones and Lederman, 2006), and incorporates both movement
control to manipulate the object with the fingers, and the sensory
capacity to provide cues from texture, size, spatial properties,
and temperature (Yekutiel et al., 1994). Other examples include
perception of stiffness or other mechanical properties (Jones
and Hunter, 1993; Leib et al., 2016), and sensing contact and
friction forces for manipulation of objects and prevention of
their slippage (Kandel et al., 2000; Johansson and Flanagan,
2009).

There are two main somatosensory systems that are vital to
daily functions—kinesthetic and tactile. The kinesthetic system
provides information about the position and movement of the
body and limbs (proprioception) using muscle spindles and
joint mechanoreceptors, and force information using the Golgi
tendon organs (Winter et al., 2005; Proske and Gandevia, 2009,
2012). The tactile (or cutaneous) system provides information
about contact with objects using mechanoreceptors in the skin
(Demain et al., 2013). Information from these two systems is
integrated in the central nervous system (Gurari and Okamura,
2014; Culbertson et al., 2018) together with predictions from
internal representations (Körding and Wolpert, 2004) to create
perception of the external world and the body schema, to plan
and control movement (Morasso et al., 2015; Farajian et al.,
unpublished), and acquire skill (Vidoni et al., 2010). In this study
we focus on the tactile system.

In the neurological assessment, somatosensory functions are
most often subjectively assessed by clinicians using qualitative
clinical scales (Winward et al., 1999; Scott and Dukelow, 2011).
Several approaches are currently used to assess tactile acuity
(Craig and Johnson, 2000), including: two-point threshold, gap
detection (Stevens and Choo, 1996), and grating orientation. The
latter is a reliable index of recovery following nerve damage
(Van Boven and Johnson, 1994). An example of a quick and
low-cost device to detect thresholds for mechanical stimuli is
the Frey filaments (Von Frey, 1896; Johansson et al., 1980;
Woolf, 1983; Lambert et al., 2009). However, all of these
approaches evaluate static tactile acuity. By contrast, clinicians
often assess somatosensation by touching the skin of the patients
to evaluate their ability to detect the extent and the direction of a
moving tactile stimulus. Quantifying such dynamic acuity during
neurological examination remains difficult because of the limited
sensitivity and reproducibility of the clinical tests.

The introduction of robotic technologies into clinical
assessment and treatment has advanced the understanding
and the treatment of motor functions in many neurological
diseases (Prange et al., 2006; Kwakkel et al., 2008; Mehrholz
et al., 2012; Norouzi-Gheidari et al., 2012; Basteris et al.,
2014; Klamroth-Marganska et al., 2014). In contrast to this
vast proliferation of robotic technologies in rehabilitation of
motor functions, the somatosensory functions have received less
attention. Specifically, robotics technology has been successfully
used to quantify and characterize proprioceptive deficits in the
research domain (Carey et al., 1996; Dukelow et al., 2010,
2012; Wilson et al., 2010; Simo et al., 2011; Semrau et al.,
2013; Domingo and Lam, 2014; Aman et al., 2015; De Santis
et al., 2015; Chisholm et al., 2016; Kuczynski et al., 2016;
Maggioni et al., 2016; Marini et al., 2016, 2017), but their use in
the clinical settings is still limited. One possible impeding factor
in wider adoption of the several proposed technological solutions
in the clinic is their high costs. To date, in this domain, the tactile
system was almost neglected.

In comparison to the above-mentioned robotic technologies,
tactile stimulation devices are often low cost, small, lightweight,
and can be easily integrated into wearable technologies. These
qualities make tactile stimulation technology attractive for
rehabilitation and clinical assessment, especially in ambulatory
conditions. Tactile feedback can be provided by using electrical
and mechanical stimulations. Electrotactile stimulation involves
passing an electrical current through the skin (Szeto and
Saunders, 1982). It has been demonstrated that this type of
stimulation has positive effects on motor performance, limb
sensation, and the configuration of sensory evoked potentials of
the paretic limb in people with chronic stroke (Peurala et al.,
2002). Mechanical stimulation can be produced by vibration,
pressure, or skin stretch (Demain et al., 2013; Culbertson et al.,
2018). Specifically, vibrotactile stimulation is very prominent and
simple to administer, and the frequency of the delivered vibration
can be modulated to convey information (Sherrick et al., 1990).
It has been shown useful, for example, to synthesize and
deliver vibrotactile kinesthetic feedback to enhance stabilization
and reaching actions performed with the arm and hand in
neurotypical people (Krueger et al., 2017) and to improve
proprioception (Cuppone et al., 2016). However, some users
report continuous vibration to be annoying (Bark et al., 2008).
Another limitation of the vibration approach is that the Pacinian
corpuscles that detect vibration have large receptive fields, and
therefore, the source of the vibration cannot be accurately
localized (Bark et al., 2008).

In recent years, significant progress has been made in the
development of devices for tactile stimulation that deform the
skin by indentation or stretch (Drewing et al., 2005; Lévesque
et al., 2005; Luk et al., 2006; Gleeson et al., 2010; Prattichizzo
et al., 2012; Quek et al., 2014b, 2015a,b; Memeo and Brayda,
2016; Schorr and Okamura, 2017). There are many different
mechanical approaches to applying skin stimulation, including a
rotation of an end-effector on the skin (Bark et al., 2009; Chinello
et al., 2016; Battaglia et al., 2017) or movement of a rigid end
effector against the user’s fingerpad (Kuniyasu et al., 2012; Schorr
et al., 2013; Quek et al., 2014a, 2015b). Skin stretch is very effective
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in providing the users with rich information; for example,
stretch of the skin can augment perception of stiffness (Quek
et al., 2014a), force magnitude (Paré et al., 2002), and friction
(Provancher and Sylvester, 2009). Importantly, skin stretch can
be used to convey directional information (Gleeson et al., 2009),
and even replace kinesthetic information in navigation tasks
(Guinan et al., 2013; Quek et al., 2014b, 2015a). A skin-stretch
device was used to substitute for force in a teleoperated palpation,
more effectively than the widely used vibration feedback (Schorr
et al., 2015), and in a virtual peg-in-hole insertion task (Quek
et al., 2015b). This task is often used for evaluation of robotic
interfaces—participants have to insert an elongated peg into a
narrow hole.

In most of these applications, skin stretch was applied in the
fingertip (Pacchierotti et al., 2017) and it may be that in other
locations with larger surface areas and more rough skin, it may
be more effective to use brush stimulation. We define tactile
brushing as a slight pressure while moving along the surface of
the skin. Therefore, in the current work, we designed a device
that can apply a stretch or a brush stimulation to different parts
of the body, and focused on brush stimulation for our evaluation.

The long-term goal of our study is to develop a low-cost
haptic device for assessing and rehabilitating somatosensation
in subjects suffering from sensorimotor deficits. This device
shall be able to apply skin-brush and skin-stretch stimuli to
various parts of the body. Toward this goal, here we aimed
at: (1) designing a first prototype of the device: the Tactile-
STAR—a tactile stimulator and recorder, (2) validating its utility
in the assessment and training of tactile acuity by collecting
normative performance and training data in healthy human
participants, and (3) demonstrating its ability to detect and
quantify somatosensory deficits in a small cohort of stroke
survivors.

MATERIALS AND METHODS

System Design and Implementation
The Tactile-STAR system is composed of two interconnected
devices (Figure 1). The first device, the stimulator, is an
actuated pantograph structure driven by two servomotors. The
end-effector of the stimulator is covered by a cap of rubber
material that moves in contact with the skin. Depending on
its mechanical configuration, the device can provide different
forms of tactile stimulation (see below). The second device, the
recorder, is a passive pantograph that measures the motion of its
handle (its end effector) using two precision potentiometers. Both
systems interface to an Arduino microcontroller system, which
also interfaces to a laptop computer that runs a LabVIEW R© 2016
“virtual instrument” (National Instruments Inc.) that monitors
the state of both systems, controls the state of the stimulator
device, and provides user interfaces for the experimenter and the
research participant.

The Pantograph Structures
Both the stimulator and the recorder have identical
pantograph structures with four links and two degrees of

FIGURE 1 | The Tactile-STAR system is composed of the recorder device (left)
and the stimulator device (right). (A) The basic configuration of the
Tactile-STAR that was validated in a test with healthy individuals in Experiment
1. Red targets used in the verification study involving healthy participants are
shown projected onto the transparent plane situated above the recorder’s
handle. (B) The modified configuration validated with stroke survivors in
Experiment 2. A rigid mesh support grid was added to the stimulator on the
right, and the targets (left) were modified such that the participants only had to
match stimuli in the cardinal directions. (C) Picture of the device used by a
healthy control subject in Experiment 2. In the text we use the word “distal” for
referring to the links distal from the motors or the potentiometers, i.e., close to
the end effector, and the word “proximal” for the links close to the motors or
the potentiometers.

freedom (Campion et al., 2005); see section 1. “Direct and
Inverse Kinematics of the Stimulator and Recorder Devices”
(Supplementary Figure S1) of the Supplementary Material
for forward and inverse kinematics. The current prototype
(Figure 1) has a symmetric design such that the left and right
links of the device are identical, with lengths of 5.75 cm for the
proximal links and 6.75 cm for the distal links. We selected these
dimensions to obtain a workspace large enough to stimulate
almost half of the lower arm length, which ranges between
24.34 cm for females and 26.99 cm for males (Gordon et al.,
1989; Figure 2B, B). The mechanical linkage was required to
be rigid and lightweight. The rigidity is important because the
linkage must maintain its shape and not bend when stimulating
the skin. To increase rigidity without adding weight, we designed
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FIGURE 2 | The stimulator device. (A) An isometric view without the cover
(left), and the workspace of the device (right). (B) Top view with different
options for the cover. The figure on the left shows the circular aperture (7 mm
radius) for skin stretch; on the right is shown: A—rectangular aperture
(60 mm × 40 mm) for skin brush; B—elliptical aperture (22 mm × 18 mm) for
skin stretch. The center of each aperture is centered on the center of the
workspace. The aperture on panel (A) is the one used for both validation
experiments presented in this report. (C) Side view with three options for
end-effector height. For the skin-stretch stimulation, the tip of the end-effector
is raised from 1.5 to 2.5 mm (medium and high end-effector configurations)
above the surface upon which the tested body part rests. For skin-brush
stimuli, the tip of the end-effector is only slightly raised above the surface
where the limb rests (<1.5 mm, low end-effector configuration).

the links with a T-shaped cross-section (see Supplementary
Figure S2). The arm links were connected with a ball-bearing
(MinebeaMitsumi Inc.) fixed into one link, and a metal axle
rigidly connected to the adjoining link. We fixed a plastic ring
on the top of the axle in order to maintain the axle in the
correct perpendicular orientation during all movements. By
configuring the connection between the two arms in this way, we
ensured that: (1) the links were on two different levels to prevent
collisions between the arms; and (2) the resulting workspace
was maximized for the given link dimensions, and (3) there
were no unreachable points inside the workspace. All the parts
of the pantograph structure were manufactured by a Form 2
stereolithographic printer (FormLabs Inc.), with a resolution of
0.05 mm (see section 2. “Development of the Device Through
3D Printers” in Supplementary Material for more details).

The Stimulator
The arms of the pantograph structure are connected on one
side to two servomotors (Parallax Standard Servo, Parallax Inc.)

and on the other side to the end effector (Figure 2B, A).
Each servomotor has a range of motion of 180◦. To ensure
against sliding between the proximal link and the motor, a
linchpin is used to lock the link to the motor. Although the
selected servomotor does not normally provide an output signal
corresponding to its angle of rotation, it is possible to measure
that signal by tapping into the servo’s internal potentiometer to
derive a voltage that is proportional to the angle of rotation.
We read that signal to verify that each commanded position was
reached correctly. The end-effector is placed on top of the upper
pantograph link distal form the motor and it is composed by a
base layer with a hollow cylinder. In the cylinder, there is a fillet
expansion insert that houses a screw. The head of the screw is
the tip of the end effector that would be in contact with the skin.
To make the sensation more comfortable while increasing the
friction, it is covered by a cap of rubber material (IBM ThinkPad
TrackPoint Cap). This screw allows regulating the height of the
tip of the end effector, thus providing different tactile sensations
(Figure 2C).

To have a skin-stretch sensation, it is necessary to place over
the stimulator device another structure with an aperture within
which the end effector moves. The design of this structure is
modular, such that it is possible to use different sizes and shapes
of the aperture and the end-effector, without changing the entire
structure (Figure 2C). Therefore, the sensation created by the
tactile stimulator can range from light-touch to skin stretch,
depending on the shape of the end-effector and on the size of
the aperture. The aperture structure placed over the pantograph
also serves as a support by sustaining weight placed on it by the
user’s arm. This structure is rigidly connected to a base-platform,
upon which the motors that move the robot arms are fixed. To
ensure that the end-effector remains at all times perpendicular
to the horizontal plane without bending, the base platform also
has a plastic plane that supports the distal, lower link of the
pantograph, immediately below the end-effector. To decrease
friction during sliding, the lower link’s contact point is covered
with a 2-mm layer of polytetrafluoroethylene (PTFE). When the
device is operated and the end-effector touches the skin, this
contact causes friction. Therefore, in each trial, we recorded
the reading of the potentiometers, and monitored whether or
not the end-effector motion was affected by the friction. During
experimental setup, we adjusted the height of the end-effector
such that the tactor did not become stuck at any time, and that
it would arrive to all desired targets.

The Recorder
The proximal links of the pantograph structure are connected to
two rotational, single-turn potentiometers (Vishay 132, Vishay
Intertechnology, Inc.) that have a linear taper, a resistance of
2 K� ± 3% and a linearity of ±0.5%. The distal links are
connected to a handle as described below (Figure 1). The
recorder has a baseplate structure designed such that the centers
of rotation of the two potentiometers are positioned relative to
one another in an identical manner as the servo motor centers of
rotation on the stimulator device. Thus, the pantograph structure
of the recorder is exactly the same as that of the stimulator. The
lower distal arm is connected through a brass axle to the handle
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of the device. The handle itself is composed of two parts: (1) a
cylinder (1 cm radius× 10 cm high), which is intended to be held
in the participant’s hand, and (2) a low-friction disk that supports
the hand’s weight. The bottom surface of the disk is coated with
PTFE to decrease friction as it slides over the top surface of the
rigid baseplate. The recorder can serve two purposes: (1) in its
passive mode, the user can move the recorder’s handle to match
the direction and amplitude of the tactile stimulus generated by
the stimulator, or (2) in the active mode, the user can move the
handle as a master manipulator to control the tactile stimulator
as a slave.

The stimulator and recorder are each mechanically connected
to a larger rigid ground plane (Figure 1). The two devices can be
mounted to the ground plane in several different configurations
and in this way, we can stimulate either the right or the left
hand and use the handle with the opposite hand. The distance
between the two devices can be modified according to individual
participant anthropometric measurements.

System Control Architecture (Figure 3)
A circuit board based on the Atmel ATmega328p microcontroller
(Atmel Inc.) performs analog-to-digital conversion on four input
voltage signals derived from the two potentiometers embedded
within each device. An additional analog input is reserved
for a force sensor that can be inserted optionally inside the
stimulator device to measure the force applied by the end-
effector to the skin. The microcontroller sends as outputs an
independent control signal for each of the two motors of the
stimulator. These two Pulse-Width-Modulation (PWM) signals
set reference angular positions for the two motors, which enforce
those positions under internal, closed-loop, feedback control.
The microcontroller also relays the potentiometers signals from
the stimulator and the recorder to a laptop computer, and
receives as input from the laptop the desired angular positions
of the stimulator joints (see Supplementary Figure S3 for more
details on electrical connections). The laptop runs a program
that controls the system, provides visual feedback of the task to
the research participant, and provides a user interface for the
experimenter.

The Tactile-STAR system can work in two distinct modes.
In the passive mode, the user moves the handle of the recorder
to match the direction and amplitude of motions produced
by the tactile stimulator. The laptop computes the desired
joint angles of the stimulator from the desired end-effector
path using the kinematic equations reported in section 1.
“Direct and Inverse Kinematics of the Stimulator and Recorder
Devices” in Supplementary Material. The joint angles from the
stimulator’s potentiometers are recorded to verify that the target
positions commanded by the laptop and controller are reached
correctly. The joint angles of the recorder are measured with its
potentiometers to verify that the participant correctly replicates
the stimulation. In the Tactile-STAR’s active mode, the user can
move the handle of the recorder as a master manipulator to
teleoperate the tactile stimulator as a slave. In this mode, the
joint angles of recorder device are used to set the desired joint
angles for the stimulator. In both modes, scale factors may be
programmed between the workspaces of the two devices in order
to break the nominal 1:1 correspondence between the recorder’s
handle and the stimulator’s end-effector.

Stimuli
The Tactile-STAR stimulator can produce two distinct forms of
tactile stimuli: skin-brush and skin-stretch stimulation. As for
the skin-stretch stimulation, the tip of the end-effector is raised
from 1.5 to 2.5 mm (Figure 2C) above the surface upon which
the tested limb (or body part) is resting and moves inside a
smaller aperture (elliptical shape: 0.022 m× 0.018 m) with raised
margins. As for the skin-brush stimulation, the aperture is larger
(rectangular shape: 0.060 m × 0.040 m), its margins are at the
same level of the surface where the limb is resting, while the tip of
the end-effector is slightly raised above it (<1.5 mm; Figure 2B).

Software
We used a custom LabVIEW 2016 program, along with the
LabVIEW Interface for Arduino (LIFA), to control the stimulator
and recorder devices, to provide real-time visual feedback to
the research participant, and to provide an experimental control
interface for the experimenter. The custom LabVIEW program

FIGURE 3 | A schematic representation of the control scheme of the Tactile-STAR. An Arduino Uno collects data from the potentiometers integrated into the two
devices, and sends the commands to the stimulator servomotors. The laptop receives from the Arduino measurements of the angles from both the recorder and the
stimulator, and sends the desired angles to the stimulator. The laptop provides both the graphical interface for the experimenter and online feedback to the
participants during the experiment.
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allows the experimenter to define experimental task parameters,
including participant anthropometrics. The program also stores
position (and optionally force) data to disk for subsequent
(offline) analysis.

Technical Validation
We validated the accuracy and precision of the stimulator’s
control of end-effector position using an optical motion tracking
system. Three infrared cameras (V120 slim, NaturalPoint Inc.,
OR, United States; software: C++ custom modification of
NaturalPoint SDK) recorded the three-dimensional position of
an active infrared marker that we fixed to the top of the
end-effector. We defined 24 spatial targets that were distributed
across four elliptic arcs that spanned the stimulator’s entire
workspace (Figure 2A, right panel; Figure 4). We programmed
the stimulator to reach each of the targets 10 times, and
to stay in the commanded position for 1 s. For each target
point, the constant error was less than 0.035 mm (mean ± SD
0.002 ± 0.018 mm), while the variable error was less than
0.005 mm (mean± SD 0.002± 0.001 mm).

We repeated the same calibration procedure for the recorder.
We manually positioned the tip of the end-effector on the same
target points used for calibrating the stimulator, and verified
that we reached the correct positions using the user interface
of the recorder device. We then recorded these positions using
both the encoders of the recorder and the optical system. For
each target point, the constant error was less than 0.009 mm
(mean ± SD 0.001 ± 0.004 mm), while the variable error was
less than 0.009 mm (mean ± SD 0.002 ± 0.001 mm). Thus, the
errors obtained with this low-cost prototype were negligible in
the experimental settings used for the validation testing described
below.

Verification Study Involving Human
Participants
All participants provided written informed consent to participate
in the study procedures, which were approved by a local
institutional ethics committee—Comitato Etico ASL3 Genovese
(Italy)—in compliance with the Declaration of Helsinki.

Verification Study Involving Healthy
Participants
We sought to perform a first functional test of the Tactile-STAR
system with young participants without somatosensory deficits
to verify its ability to characterize and affect tactile perception.
Participants were tested before and after 30 min of perceptual
training (described below) using the Tactile-STAR device. We
tested two main hypotheses: (1) the ability to identify correctly
distinct skin-brush stimuli applied to the palm of the hand is not
uniformly distributed across the palm; (2) the ability to correctly
identify distinct skin-brush stimuli applied to the palm of the
hand can improve following a short period (∼30 min) of practice.

Participants
Sixteen healthy young right-handed participants (eight females,
24± 2 years) participated in a single-session experiment wherein

they interacted with the Tactile-STAR for approximately 45 min.
All participants were naïve with respect to both the device and
the experimental procedures.

Experimental Set-Up
Participants sat on a chair in front of a table upon which
we placed the Tactile-STAR system. The recorder device was
centered on the participants’ midline, and the stimulator device
was placed on their right side (Figure 1C). Prior to testing, the
stimulator was configured to stimulate the palm of the hand
with a low end-effector profile. To prevent fatigue, the right
arm was supported against gravity by a fixture placed next to
the chair. The stimulator device had the center of its workspace
aligned with the center of the right-hand palm. To prevent visual
feedback of the stimulator’s position and motion, we added an
opaque box over the tactile stimulator, thus hiding the mechanical
structure from view. We also added a transparent plane on top of
the recorder device where we projected visual targets (red dots;
1.5 mm radius; Figures 1A,B) that the stimulator could reach
during testing. During the experiment, the participants did not
use headphones. However, they reported that the background
noise was higher than the device noise and that they relied on
their somatosensation and not on acoustic feedback for solving
the task.

Protocol
During testing (i.e., phase 2 and phase 4 of the experimental
protocol; see below), the Tactile-STAR produced 16 unique tactile
skin-brush stimuli of varying amplitudes and directions relative
to the center of the stimulator’s workspace (and thus, relative to
the center of the palm; Figure 4A). The stimulator’s end-effector,
in light contact with the skin, made movements from the center
of the workspace outward to targets placed on two concentric
ellipses, resulting in center-out brushing stimulation on the
participant’s palm. The dimensions of the axes of the inner
ellipse were half of the respective axes of the outer ellipse (outer
ellipse axes: 4 and 5 cm). The larger axis was aligned along the
proximal–distal direction while the minor axis was aligned along
the medio-lateral direction. Eight targets were equally distributed
(45◦ apart) on each ellipse.

The experimental protocol consisted of four sequential phases
(Figure 4A):

Phase 1: familiarization
The purpose of this phase was to allow participants to gain
familiarity with the spatiotemporal characteristics of skin-brush
stimulation. The Tactile-STAR was placed in active mode and
participants used the recorder’s handle to freely explore the
stimulator’s end-effector workspace. When the participants
moved the handle of the recorder device, the stimulator
device produced an end-effector motion that was identical in
magnitude and direction to the movement they made. This
phase continued for a minimum of 2 min and a maximum of
4 min.

Phase 2: pre-training test
The purpose of this phase was to assess each participant’s ability to
discriminate between skin-brush stimuli of different magnitudes
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FIGURE 4 | Experimental protocols. (A) The protocol for healthy participants. It consisted of four phases: familiarization, pre-training test, training, and post-training
test. During familiarization, the Tactile-STAR was placed in active mode and the subjects moved the handle of the recorder device to produce stimulator end-effector
motions that were identical in magnitude and direction to the movements of the recorder endpoint (handle). In both the test phases, 16 test targets located on two
concentric ellipses were presented five times in random order. During training, a subset of eight targets was presented nine times each. (B) The protocol for the
validation experiments with stroke survivors. The test was performed on both hands, and for each hand, we had both a familiarization and a test phase. The targets
for the test phase are placed in the four cardinal directions on two concentric circles.

and directions (see section “Protocol”), and to use those stimuli
to guide the planning and execution of goal-directed reaching
movements. To do this, the Tactile-STAR was placed in passive
mode and the tactile stimulator presented skin-brush stimulation
to the palm of the hand using end-effector trajectories that
moved from the central position to one of the target positions
at a constant speed of 0.02 m/s. Upon reaching the target,
the end-effector held its position as the participants moved the
handle of the recorder device with their non-dominant hand
until they believed that they had reached the corresponding
target. Then, they held this position for a minimum of 0.5 s
and declared to the experimenter that they had identified the
stimulus. After having done so, they were instructed to return
the handle of the recorder to the central position, and the
stimulator returned to the start position at the maximal speed
of the motors. After a pause of 1.5 s, the next stimulation trial
started. Each of the 16 test targets was presented to the participant
five times in random order (80 trials total). Participants received
no feedback about their performance either during or after
training.

Phase 3: training
The purpose of the training phase was to provide participants
with extended practice in a stimulus-discrimination and
replication task designed to encourage sensorimotor learning
of the mapping between the motion of the recorder device’s
handle and the motion of the stimulator’s end-effector. Each
trial in the training phase had two parts. First, as in phase 2,
participants were presented with tactile skin-brush stimulation
as the end effector moved at 0.02 m/s from the central target
to each of eight training targets selected from the set of 16
testing targets (Figure 4A, training). When the end-effector
arrived at the target, that position was held for 1.5 s before
returning at maximum speed to the central position. Second,
the participant had to replicate with the non-dominant hand
the handle motion corresponding to the skin-brush stimulation
they had just experienced. To encourage sensorimotor learning
in this training phase, the Tactile-STAR was placed in active mode
during movement replication such that the participants received
tactile feedback corresponding to motions they made during the
replication trials; i.e., the stimulator replicated the motion of the
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recorder. In other words, participants received state feedback
in the stimulated hand that corresponded to the position and
motion of the recording hand. When the participant believed that
they had arrived at the cued target, they declared that fact to the
experimenter and then returned the handle to the central “home”
position. If they had erred and reached the wrong target, they
would hear an audible, non-startling error tone, and the same
stimulus was repeated until the participants correctly interpreted
it. Inter-trial intervals were nominally 1.5 s.

During training, participants performed three “training sets”
that were separated by 3-min pauses to minimize to likelihood
that participants might experience fatigue. In each training set,
each of the eight training stimuli was presented three times in
pseudo-random order, with the constraint that the same stimulus
could not be presented more than two times in a row. To evaluate
the learning without spatial accuracy biases that can arise due to
the inertial anisotropy of the arm and hand (Gordon et al., 1994;
Simo et al., 2011), or due to differences in the sensitivity to the
stimulation, the same training target pattern was rotated 45◦ such
that there were eight possible target configurations (one for every
two participants). Across the participant group, each of the 16
targets was included in the training set of eight participants.

Phase 4: post-training test
The protocol in the post-training test phase was identical to that
in the pre-training test phase (i.e., phase 2).

Data Analysis
We defined final hand position as the recorder’s handle location
at the moment the participant declared he/she had arrived at the
desired target. We defined the final target as the target with the
smallest Euclidean distance from the final hand position. When
the participants moved the handle of the recorder device, they
were instructed to choose one of the 16 possible targets displayed
on the transparent plane on top of the recorder device. Thus,
we used the minimal Euclidian distance to identify which one
of these 16 targets the participant indicated as correspondent to
the perceived stimuli. Our primary outcome measure was the
percentage of stimuli correctly perceived and replicated by the
user (i.e., percentage of correct responses).

We used the Kolmogorov–Smirnov test to assess normality
of the data distribution. For all data sets, the null hypothesis
that these data come from a standard normal distribution was
rejected at the 5% significance level. We expected this result,
because the metrics we chose describe the percentage of targets
recognized correctly. The percentage (unless well in the middle
of the range) is expected to be distributed binomially, and violate
the assumption of normality. Therefore, we used non-parametric
tests that are based on rank statistics for testing our hypotheses.

Specifically, to test our first hypothesis (i.e., that the ability
to correctly identify distinct skin-brush stimuli is not uniformly
distributed across the palm), we applied the Friedman test to the
percentage of correct responses obtained by each participant for
each stimulus during both experimental test phases. To confirm
the results obtained with the primary outcome in the test sets, we
repeated the same analysis comparing the first and last training
sets.

To test our second hypothesis (i.e., that the ability to correctly
identify distinct skin-brush stimuli applied to the palm of the
hand can improve following a short period of practice), we
used the Wilcoxon signed-rank test to compare the percentage
of stimuli correctly perceived in the pre- and post-training test
phases. We also evaluated the number of attempts participants
made before correctly interpreting each stimulus during the
training phase.

Then, to identify which aspects of target acquisition were
affected by the tactile stimulation, and test whether the
potential benefits of training were specific to the trained targets
or generalized to untrained targets, we performed follow-up
analyses. The purpose of these exploratory investigations was to
gain a preliminary understanding of what may be the strengths
and weaknesses of our novel stimulation device and training
protocol, and therefore, in these follow-up analyses, we did
not correct for multiple comparisons. Another reason for this
decision was that our follow-up tests were not independent, and
the probability of making at least one Type I error would then be
less than Bonferroni or Holm–Bonferroni assume. However, we
also verified and report whether our results were robust against
Holm–Bonferroni corrections.

We computed the following additional metrics:

Correct direction (%)
Percentage of stimuli in which the participants correctly
interpreted the direction of the stimulation, independent from
the perception of the amplitude. We inferred that the direction
was identified correctly if the target that was indicated by the
participant was in the same direction of the correct one.

Correct amplitude (%)
Percentage of stimuli in which the participants correctly
interpreted the amplitude of the stimulation, independent from
the perception of the direction.

We calculated these metrics for all the targets, and also
separately for (a) the trained and untrained targets and (b) the
targets of the outer and the inner ellipses.

Finally, we computed:

Nearest targets (%)
To compute this metric, we considered the answer correct if the
participant indicated as perceived stimulus the correct target or
one of its three nearest neighbors. This metric would be higher
than the percentage of correct answers if the errors were due to
insufficient perceptual resolution. Two of the nearest neighbors
have the same amplitude as the correct target, and the third has
the same direction.

To confirm the results obtained in the test phases, we repeated
the same analysis for the training block by comparing the first and
the last trial set. The threshold of statistical significance was set at
p = 0.05.

Validation Study With Stroke Survivors
We sought to provide a first proof-of-concept demonstration
that the Tactile-STAR system is able to detect deficits of
tactile perception in participants with neurological diseases. We
hypothesized that the device would be able to identify significant
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stroke-related differences in tactile perception between the two
hands, and that these differences would not be observable in
healthy controls.

Participants
Three chronic stroke survivors (two females) participated in the
experiment, as did three healthy controls matched for gender and
age (±2 years). Each participant was enrolled by a neurologist
and a physiotherapist, who performed the clinical evaluation
(Table 1).

Experimental Set-Up
The experimental set-up described above was adapted for use
by participants with a neurological injury. Since many stroke
survivors have difficulty keeping the fingers of their affected
hand extended, we added a wire grid (with 1 cm spaces between
the bars) to the box over the stimulator. The central part of
the grid was open in correspondence with the aperture of the
stimulator device so as not to interfere with the end-effector
motion (Figures 1B,C). An elastic band, adjustable in size and
position for each participant, was used to keep the fingers
comfortably opened and to hold the wrist on top of the grid
(Figure 1C). When positioned correctly, the center of the palm
corresponded to the center of the stimulator’s workspace. The
position of the participant with stroke was the same as for the
healthy participants when the right hand was tested. When we
tested the left hand, the stimulator was positioned under the left
hand, and the recorder was in front of the participant.

Experimental Protocol
We simplified the protocol with respect to the previous task
in terms of the number and spatial distribution of the stimuli
(Figure 4B). Here, we presented eight stimuli that tested two
different amplitudes (5 and 2.5 cm) along the four cardinal
directions. Since we expected that stroke survivors might have
difficulty moving the matching device with the impaired hand
when the unimpaired hand was tested with the stimulator
device, we asked the participant to indicate verbally the target
corresponding to the perceived stimulus. Both hands were tested,
and the protocol was identical for the two hands. We did not test
training effects in this protocol. The order in which the two hands
were tested was the same for the stroke survivor and the related
control participant—we first tested the right hand, and then the
left.

Before each test, there was a familiarization phase in
which the experimenter moved the handle of the matching
device controlling the tactile stimulator motion. In this phase,
participants familiarized themselves with the perception of tactile
stimuli across all of the workspace, and specifically with stimuli
having the same amplitude and directions as the ones used in the
test phases.

In the two test blocks, each stimulus was presented five
times in a random order, with no more than three consecutive
repetitions of a same stimulus. When the end-effector reached
the target position, the participant had to indicate the perceived
stimulus. After the tactile stimulator returned to the central
position, if a participant was not able to identify the stimuli,

he/she could ask to repeat the stimulation up to three times. The
successive stimulation started after a pause of 1.5 s. Participants
did not receive any feedback about their performance. The
experiment lasted about 30 min. Participants were free to stop
the experiment at any time if they were tired or needed a break.

Data Analysis
We followed a single-subject design, and tested the differences
in tactile acuity between the right and the left hand within each
participant by using the Wilcoxon signed-rank test. Our primary
performance measure was the “percentage of correct responses”
and we decomposed this metrics by looking at the percentage
of correct responses referred either to the correct identification
of direction or amplitude of the stimuli (see section “Validation
on Healthy Participants”). The stimuli were ordered taking into
account the symmetry between the two hands (i.e., by mirroring
the targets on the left hand to make them corresponding to the
same on the right hand). Threshold for significance was set at
p = 0.05.

RESULTS

Validation on Healthy Participants
The tactile sensibility of 16 healthy participants was tested before
and after 30 min of training. We tested two main hypotheses.
Hypothesis 1 proposed that the ability to correctly identify
distinct skin-brush stimuli applied by the device would not be
uniformly distributed across the palm of the hand (i.e., that there
would be a significant difference in perceiving brushing stimuli
moving in different directions and of different extents relative to
the center of the palm). Hypothesis 2 proposed that the ability to
correctly identify distinct skin-brush stimuli applied to the palm
can improve following a short (∼30 min) period of practice. We
tested the two hypotheses in the experimental test sets and then
we verified that the data from the training set confirmed results
obtained in the test sets.

Test Block Performance
We visualized each participant’s ability to discriminate tactile
stimuli (Hypothesis 1) by presenting, for each target, a colormap
corresponding to the percentage of trials in which the user
correctly identified the corresponding stimulus (Figure 5A).
Colors for intermediate points were obtained via linear
interpolation. A Friedman test detected a significant difference
in the identification of the stimuli associated to different target
locations both in the pre-training test (p < 0.001) and the
post-training test blocks (p < 0.001). To test Hypothesis 2, we
compared stimulus replication accuracy in the post-training test
block to performance in the pre-training test block (Figure 5B).

Overall, we found a significant improvement for all the targets
(p = 0.004), and for the trained (p = 0.004), while for the
non-trained targets (p = 0.051) we did not reach the threshold
of significance; that is, about 30 min of training led to an
improvement for the trained targets, whereas improvement was
not significant for the untrained targets. Analysis of individual
participant’s performance revealed that the significant group
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TABLE 1 | Data of the stroke survivors.

Subject data

Age range (years) E PH DD (years) Lesion location

P1 40–45 I R 12 Left basal ganglia, internal capsule, and parietal lobe

P2 66–70 H L 2 Right thalamus

P3 66–70 H L 12 Right fronto-parietal pre-Rolandic

Clinical test scores

FMA MAS NAS Vibration

A–D H Wrist Fingers Thumb P S Left Right

0–66 0–12 0–4 0–4 0–4 0–3 0–2 Elbow Wrist Elbow Wrist

P1 22 10 2 2 2 3 1 8 7 8 7

P2 26 9 3 2 1 3 1 4.5 4.5 6.5 6.5

P3 17 2 1 1 1 2 0 6 5.5 4.5 6

Top rows: age, paretic hand (PH; L, left; R, right), the etiology (E) of ictus: ischemic (I)/hemorrhagic (H), the disease duration (DD) in years, and the location of the lesion.
Bottom rows: clinical tests scores. FMA, Fugl–Meyer Assessment; MAS, Modified Ashworth Scale (Bohannon and Smith, 1987); NAS, Nottingham Assessment Scale (P,
proprioception; S, stereognosis); vibration tested with the tuning fork.

effects were driven by 15 of the 16 participants, who improved
their performance in the trained targets. By contrast, the
lack of a significant effect for untrained targets was driven
by four participants: whereas 12 of 16 subjects improved
their performance at the untrained targets pre-to-post training,
performance decreased slightly for three participants, and one
participant did not change his performance pre-to-post training.

Detection of Stimulus Direction
To further understand the effects of short-term training with
the Tactile-STAR, we repeated the analysis considering only
the ability to correctly identify stimulus direction. Here, we
considered a “correct answer” one that discriminates the
direction of a stimulus independently from its amplitude. Across
all targets, the Wilcoxon signed-rank test identified a significant
improvement in the detection of stimulus direction for all the
targets (p = 0.015), although this improvement was driven mainly
by trials involving the trained targets (p = 0.015) and stimuli
corresponding to targets on the outer ellipse (p = 0.017). Stimuli
corresponding to untrained targets and to stimuli corresponding
to targets on the inner ellipse did not reach statistical significance
when analyzed separately (p > 0.05).

Detection of Stimulus Amplitude
We also isolated the ability to correctly identify the amplitude
of stimuli by considering as “correct” those responses that
replicated stimulus amplitude (i.e., short vs. long) regardless of
movement direction. The Wilcoxon signed-rank test identified a
significant improvement in the detection of all targets (p = 0.007),
as well as the trained (p = 0.007), but not for the untrained
targets (p = 0.087). We also find an improvement for the larger
(p < 0.001) and the shorter stimuli (p = 0.041).

Nearest Neighbor Analysis
For this analysis, we considered a given response as “correct”
if the participant’s response indicated one of the cued targets’

three nearest targets. Two of the nearest targets have the same
amplitude as the cued target, while the third has the same
direction. The value of the nearest neighbor parameter was always
over 70%, indicating that even if the subject did not match
the correct target identically, in most cases the error did not
exceed one target distance. Participants had the same high level of
performance both for trained and untrained stimuli. No training-
dependent improvements were observed for this parameter
regardless of how we subdivided the stimuli (p ≥ 0.124). Thus,
improvements observed with other indicators were mainly due
to improvements in the resolution of stimulus recognition.

The significance obtained for the two main hypotheses was
robust against Holm–Bonferroni corrections. In contrast, most
of the significant effects in our follow-up analysis in the test and
training data sets would not survive these corrections. Therefore,
testing more subjects will be necessary to fully understand which
aspects of the tactile stimulation influence the performance
improvements.

Training Block Performance
We analyzed training set data as an independent challenge of our
two hypotheses. First, we considered the percentage of “correct
answers” considering only the initial answers given by each
subject. Next, we took into account the number of attempts
needed to yield a correct response. The performance indicators
were computed for cued targets in the first and last training
blocks. Friedman test of Hypothesis 1 detected a significant
difference in the identification of the stimuli across the palm in
both the first (p < 0.001) and last training blocks (p = 0.006;
Figure 6A). The Wilcoxon signed-rank test of Hypothesis 2
identified a significant improvement in the percentage of stimuli
correctly interpreted on the first attempt between the first and the
last training block (p < 0.001; Figure 6B). These improvements
in the ability to identify stimuli during the training phase support
the findings of the test-set analyses.

Frontiers in Neurorobotics | www.frontiersin.org April 2018 | Volume 12 | Article 1229

https://www.frontiersin.org/journals/neurorobotics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neurorobotics#articles


fnbot-12-00012 April 4, 2018 Time: 18:25 # 11

Ballardini et al. Stimulator-Recorder for Tactile Perception

FIGURE 5 | Tactile acuity of healthy individuals before and after training with
the Tactile-STAR. (A) A colormap of the percentage correct responses for
brush stimuli as a function of palm location. 100% corresponds to red, while
0% corresponds to dark blue. The black dots indicate the coordinates of the
targets reached by the stimulator device, which started moving from the
central target. The colors associated to intermediate coordinates were
obtained by linear interpolation from the test points. Between the two
colormaps, the illustration of the right hand shows where the stimuli were
applied. The central position of the map corresponds to the center of the
palm. (B) Bars represent population average percentage correct responses
for each parameter: correct target (gray), correct direction (green), correct
amplitude (blue), and nearest targets (red). Light colors are associated with
performance before training; dark colors are associated with performance
after training. Error bars indicate the standard error of the mean. ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001.

Detection of Stimulus Direction and Amplitude in
Isolation
As in the test phase, we repeated the analysis considering the
ability to correctly identify—in isolation—the direction and
amplitude of the stimuli. For stimulus direction, we found a
significant improvement in detection accuracy across all targets
(p = 0.008). By contrast, we only found significant improvement
in detection accuracy for the larger stimuli amplitudes (p = 0.004),
but not for the inner-target stimuli (p = 0.888) or for all targets
considered together (p = 0.072).

Nearest-Neighbor Analysis
As in the analysis of test-block performance, the value of the
nearest-neighbor parameter in the training set was high for every
subject in each training block (i.e., over 70% in each block). There
was not a statistically significant improvement of this parameter
between the first and last blocks of the training phase (p = 0.363).

Number of Attempts
On the training data set, we also report the number of attempts
required for each stimulus to be identified correctly (Figure 6C).
In support of Hypothesis 1, Friedman test found a statistically

FIGURE 6 | Tactile acuity of healthy individuals during training with the
Tactile-STAR. (A) Colormap of the percentage correct responses as in
Figure 5. (B) Population average percentage correct responses as in
Figure 5B. (C) Colormap of the number of attempts needed to correctly
identify the stimulus. Colors closer to blue indicate a larger number of wrong
attempts to identify the stimulus. ∗∗p < 0.01, ∗∗∗p < 0.001.

significant difference in the identification of stimuli across the
palm in both in the first (p < 0.001) and last training blocks
(p = 0.001).

Validation on Stroke Survivors
The data of stroke survivors provide a first proof-of-concept
assessment of Tactile-STAR’s ability to identify somatosensory
deficits. Specifically, we investigated the ability of the participant
to discriminate—in both hands—brush stimuli of two different
amplitudes in each of the four cardinal directions. Given the
heterogeneity of sensorimotor impairments expressed in stroke
survivors, we used a single-subject analysis approach to probe
for statistical differences of tactile perception between the two
hands on a subject-by-subject basis. We expected to find
significant differences between the two hands for each of the
stroke survivors, but not for their matched, healthy, controls
(Figure 7).

Stroke survivor P1 had a left-hemisphere lesion (left basal
ganglia, internal capsule, and parietal lobe), which resulted
in sensorimotor impairment on the right side of his/her
body. Thus, we expected his/her ability to recognize tactile
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FIGURE 7 | Tactile acuity in both hands of the stroke survivors and the control participants. The histograms show the average percentage performance in term of:
correct answer (A), correct direction (B), and correct amplitude (C) for each hand for each subject. Error bars indicate the standard error of the mean. ∗∗∗p < 0.001.

stimuli to be lower with the right hand than with the left
(Figure 8). The experimental data confirmed this hypothesis:
stimulus detection was worse with the right hand than with the
left for all parameters analyzed (p < 0.001). By contrast, when
we performed the same analyses with an age- and sex-matched
control subject, we found no statistically significant differences

in tactile perception between the two hands (p > 0.24 for all
indicators).

Stroke survivor P2 had left-sided sensorimotor impairment
(with a brain lesion located primarily in the right thalamus).
Our experimental data showed that while the less-affected hand
had better performance than the more-involved hand in terms
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of identifying the correct direction (p < 0.001), the participant
expressed a bilateral difficulty in correctly identifying stimulus
amplitude (p = 1), particularly in the upward direction (Figure 8).
As expected, this participant’s control generally had markedly
better performance, and did not show any significant difference
between the two hands (p > 0.130 in all cases), although the
performance was slightly better for the non-dominant hand.

Stroke survivor P3 had a right fronto-parietal, pre-Rolandic
lesion (i.e., left-side impairment). As expected, he/she expressed
greater difficulty in interpreting stimuli with the left hand than
with the right hand (Figure 8) both in terms of overall correct
response (p < 0.001) and in the identification of stimulus
direction (p < 0.001). By contrast, the ability to discriminate
between the two stimulus amplitudes was not significantly
different between the two sides of the body, due to bilateral
difficulty to correctly interpret the stimulus amplitude (p = 0.617).
The control participant of this stroke survivor, instead, showed
no significance difference for all the indicators we evaluated (all
p > 0.24).

For each stroke survivor, the values of significance are reported
without corrections for multiple comparisons; however, all the
effects that were significant were robust to the Holm–Bonferroni
corrections.

In summary, the Tactile-STAR device was able to identify
specific differences in tactile acuity between the two hands in each
of the three stroke survivors that participated in this study. These
differences were due mainly to deficits in the ability to recognize
the direction of tactile stimuli.

DISCUSSION

We developed and validated a new mechatronic system—
the Tactile-STAR—for testing tactile acuity and treating
somatosensory deficits in individuals with neurological diseases.
Our preliminary validation testing supports the conclusions that:
(1) The Tactile-STAR can characterize tactile perception and
somatosensory deficits; and (2) A short bout of training with
the Tactile-STAR system can improve the tactile perception of
healthy individuals.

We obtained evidence in support of our first hypothesis
in tests of Tactile-STAR’s skin-brushing stimulation mode. For
each of 16 healthy participants, testing yielded a map of tactile
perception on the hand. Results indicate that tactile acuity
typically is non-uniform across multiple directions and distances
from the center of the palm. This perceptual anisotropy may
be the result of a non-uniform density of the mechanoreceptors
in the palm of the hand (Kandel et al., 2000; Johansson and
Flanagan, 2009) or the result of differences in the neural
processing of the signals derived from those receptors (Kandel
et al., 2000). Longo and Haggard (2011) found anisotropies of
tactile size perception on the dorsum, but not on the palm of the
hand. However, the task was different—the participants judged
which of two tactile distances felt larger: the one aligned with the
proximo-distal axis (along the hand), or the one aligned with the
medio-lateral axis (across the hand). Future studies are needed
to examine the utility of Tactile-STAR to characterize tactile

FIGURE 8 | Tactile acuity in the left and right hand of stroke survivors.
Colormap (as in Figure 5) of the percentage correct responses of each
participant.

perception with respect to skin-stretch displacement distance
and direction, as well as to test the generalizability of target
acquisition training under both skin stretch and skin brush
modes on untrained movements guided by these tactile feedback
signals.

In a small cohort of stroke survivors, we also performed a
preliminary validation of the ability of the Tactile-STAR to detect
sensory deficits after stroke. The device identified differences in
tactile perception between the more- and less-impaired hands
in each survivor. Intermanual differences were due mainly to
impaired ability to recognize the direction of tactile stimuli
in the more involved hand. Consistent with expectation, such
differences were not found in control subjects, thus assuring that
the pattern of results observed in the stroke survivors were not a
result of handedness.

Taken together these results demonstrate that the Tactile-STAR
system can offer quantitative and reliable measures of tactile
acuity in the hand. We propose that the system also may be
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effective for characterizing tactile acuity in different dermatomes,
and for monitoring changes due to aging, disease progression, or
therapeutic intervention. In particular, we believe that the device
could be used for testing different body parts, such as the feet,
where deficits in the ability to detect sensory stimuli could be a
sign of early onset of disease.

We obtained evidence in support of our second hypothesis
in a test of short-term perceptual training with the Tactile-
STAR. A mere 30 min of training with the system improved
the ability of participants to recognize (and reproduce with one
hand) specific skin-brushing stimuli applied to the other hand:
In the post-training tests, healthy participants improved the
percentage of stimuli recognized with respect to pre-training
tests. Improvements in performance were detected both in terms
of direction discrimination and in the accuracy of reproduction
of “larger” stimuli directed to the periphery of the palm (i.e.,
the outer targets). This finding corroborates historical (Ruch
et al., 1938) and recent reports (Carey et al., 1993; Yekutiel
and Guttman, 1993) that somatosensory training can reduce
somatosensory deficits. In the current study, improvements were
significant for trained targets but not for untrained targets. We
speculate that this specificity of training may have been due
to the short duration of training. Indeed, this is an important
point to further investigate since this perceptual learning is
rooted in the low-level cortex and several studies suggest that it
can generalize to different locations, but within a somatotopic
framework and with a tactile memory distributed differentially
according to the stimulus type (Harris et al., 2001; Harrar
et al., 2014). Future studies should examine the ability of
extended training with Tactile-STAR to improve detection and
reproduction performance for both trained and untrained stimuli
of multiple magnitudes. In particular, the experimenters noticed
that increasing the number of short training sessions seems to
be more beneficial than having fewer, longer sessions, suggesting
possible difficulties in attending to stimuli for a long time and the
risk of over-stimulation.

Training-dependent improvements in the ability to recognize
both trained and untrained tactile stimuli would suggest that
the Tactile-STAR could be a promising technology for the
rehabilitation of somatosensation. This potential as a therapeutic
tool should be verified in future studies by investigating whether
the improvement is present and for how long it can last in
neurological patients. If proved effective, the Tactile-STAR system
could be impactful because somatosensory deficits are frequent
outcomes of cerebral lesions (Feigenson et al., 1977). Not only
are sensory deficits limiting on their own, but they also strongly
limit the possibility of motor function recovery (Van Buskirk and
Webster, 1955; Kusoffsky et al., 1982; Smith et al., 1983; Zeman
and Yiannikas, 1989). Despite this evidence, training methods,
devices, and protocols addressing somatosensory deficits and
their rehabilitation are still limited.

The preliminary results presented here suggest that Tactile-
STAR can be used to deliver augmented or supplemental feedback
of hand position in space to guide goal-directed reaching actions.
We are currently evaluating the extent to which training with
Tactile-STAR can improve goal-directed actions performed with
the more involved arm after a stroke. In this line of research, it is

important to verify the efficacy of various information encodings
(e.g., hand position error vs. state feedback; cf., Krueger et al.,
2017). Future tests will compare the ability of skin-brush and
stretch stimulations to enhance both tactile acuity and the
performance of goal-directed reaching with the contralateral
hand.

CONCLUSION

We have developed a modular device that can apply controlled
tactile stimulations to the palm. With modifications to the
stimulator’s aperture, the device could be used to test the
tactile acuity of different body parts. By investigating the
two hypotheses described above for validating the system, the
current study helps fill the gap in the literature pertaining to
somatosensory assessment and retraining. Our future studies will
focus on further developing the device and on advancing our
understanding of tactile acuity and its training. The preliminary
results described here motivate experiments aimed at both
understanding the psychophysics of the sensory processing, and
identifying optimal ways to enhance sensory abilities. Developing
a mechanistic understanding of tactile somatosensation is
important for a variety of applications that involve artificial
interfaces designed to enhance sensorimotor control in both
impaired and healthy motor systems. Specific examples include:
rehabilitation (Krueger et al., 2017); prosthetics (Akhtar et al.,
2014; Battaglia et al., 2017); brain–computer interface (Sketch
et al., 2015); and sensory substitution and augmentation (Schorr
et al., 2013; Quek et al., 2014a). Thus, the findings presented
in this work are the first step toward a more ambitious goal
of providing sensitive and reliable instruments that are capable
of assessing and training tactile perception, and are suitable for
enhancing sensory feedback in a variety of applications.
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A key factor for reliable object manipulation is the tactile information provided by the

skin of our hands. As this sensory information is so essential in our daily life it should

also be provided during teleoperation of robotic devices or in the control of myoelectric

prostheses. It is well-known that feeding back the tactile information to the user can lead

to a more natural and intuitive control of robotic devices. However, in some applications

it is difficult to use the hands as natural feedback channels since they may already be

overloaded with other tasks or, e.g., in case of hand prostheses not accessible at all.

Many alternatives for tactile feedback to the human hand have already been investigated.

In particular, one approach shows that humans can integrate uni-directional (normal)

force feedback at the toe into their sensorimotor-control loop. Extending this work, we

investigate the human’s capability to discriminate spatial forces at the bare front side

of their toe. A state-of-the-art haptic feedback device was used to apply forces with

three different amplitudes—2N, 5N, and 8N—to subjects’ right big toes. During the

experiments, different force stimuli were presented, i.e., direction of the applied force

was changed, such that tangential components occured. In total the four directions

up (distal), down (proximal), left (medial), and right (lateral) were tested. The proportion

of the tangential force was varied corresponding to a directional change of 5◦ to 25◦

with respect to the normal force. Given these force stimuli, the subjects’ task was to

identify the direction of the force change. We found the amplitude of the force as well

as the proportion of tangential forces to have a significant influence on the success rate.

Furthermore, the direction right showed a significantly different successrate from all other

directions. The stimuli with a force amplitude of 8N achieved success rates over 89% in

all directions. The results of the user study provide evidence that the subjects were able

to discriminate spatial forces at their toe within defined force amplitudes and tangential

proportion.

Keywords: tactile feedback, haptics, haptic display, teleoperation, prosthesis, human-in-the-loop, sensory

substitution

1. INTRODUCTION

Tactile perception is essentially involved in manual dexterity. The interaction of sensory input
(tactile feedback) and motor output (movement) at our hands allows for a dexterous manipulation
of objects. The sensory information produced by the mechanoreceptors in the glabrous skin
of our hands allows for manipulation tasks such as precisely lifting an object in a pinch grip,
which has been investigated intensively (Johansson and Flanagan, 2008). The importance of
tactile feedback can be seen for example in experiments with anesthetized digits as done in
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Johansson et al. (1992) and Nowak et al. (2001). With the
evoked absence of the tactile grasp information of the digits the
regulation of the grip force is impaired leading to a considerably
reduced success of grasping. Even if visual feedback is still an
essential feedback during grasping, the mechanoreceptors in the
hands provide information about shape and stiffness, which can
override the visual prediction (Johansson and Flanagan, 2008).
Haptic Feedback is nowadays state-of-the-art in teleoperation
and in virtual reality. It can be provided by various haptic
feedback devices and can be composed of kinesthetic or tactile
sensation. Naturally, the haptic sense consists of both, tactile and
kinesthetic sensing (Anderson et al., 1999). While the kinesthetic
sensing provides perception of limb position andmovement from
the mechanoreceptors in the muscles, tactile sensation provides
touch information and is generated by the mechanoreceptors in
the skin (Jones, 2000). Designs of both modalities are possible
(e.g., in haptic feedback devices Fritschi et al., 2006; Meli et al.,
2014).

Also modern teleoperated robotic systems are able to feed
back forces from the task scene. An example for this is the
DLR HUG (Hulin et al., 2011). It provides, besides the visual
feedback, haptic information of the remote robot directly to the
hands of the operator. A more complex system is the DLRMIRO
(Hagn et al., 2008), a system for minimal invasive surgery, which
consists of three robotic arms equipped with different force and
torque sensing technologies. Such complex systems may require
additional feedback channels to provide more information to the
surgeon. Another robotic systems is the BairClaw (Hellman et al.,
2015), a robotic finger equipped with different haptic sensors
which can provide remote information to the user.

Due to the importance of the grasp information, the lack
of feedback is also a major issue in upper limb prosthesis.
Consumer studies on amputees using hand-prosthesis showed
that one of the most wanted features they would love to be added
is to feel the forces occurring during grasping (Biddiss et al.,
2007; Pylatiuk et al., 2007). Plenty of invasive and non-invasive
feedback approaches for hand prosthesis were investigated in
research. In invasive methods nerves are often directly stimulated
by implanted electrodes (e.g., Dhillon and Horch, 2005; Rossini
et al., 2010; Raspopovic et al., 2014). A different invasive approach
is the Targeted Muscle Reinervation (TMR), where the nerve
endings are reinervated in available muscles (Kuiken et al.,
2009). Non-invasive techniques includemethods of electrical and
mechanical (force or vibrotactile) stimulation. Examples thereof
can be seen in Patterson and Katz (1992), Cipriani et al. (2008),
Witteveen et al. (2012), Meek et al. (1989), and Antfolk (2012).
Furthermore, neural interfaces for amputees which provide force
feedback are discussed in Hellman et al. (2015). However, tactile
feedback is not available in commercial hand prosthesis yet.
While most investigations show a positive influence for the
control of the prosthesis, the lack of product availability is
possibly caused by different reasons. Firstly, in studies of non-
invasive methods, the feedback is often applied to the hairy
skin of the body (e.g., forearm and upper arm). However, the
mechanoreceptors in the hairy skin provide different sensory
information as those in the glabrous skin of the hands (Vallbo
et al., 1995; Koeppen and Stanton, 2010). Furthermore, the space

on the forearm is usually occupied by the shaft of the prosthesis,
which makes it troublesome to access this area for feeding back
sensory information.

Some of the aforementioned systems show applications where
the usage of our hands as natural feedback channel is limited or
impossible. Either in prosthesis, where the hand is not available
at all, or in teleoperated robotic systems, where the hands
and respective feedback channels may already be overloaded
with other tasks. New feedback approaches can help to address
this problem. One promising approach is to provide the grasp
information to the bare front side of the toes. This approach is
of special interest, since the neural structure of the skin of the
toe shows similarities to that in the hands (Kennedy and Inglis,
2002). All four kinds of mechanoreceptors, which are known to
exist in the glabrous skin of the hand, are available in the glabrous
skin of the foot as well. A particularly interesting region of the
foot sole is the big toe, where three of the four mechanoeceptors
found in the hand are also available. This may lead to superior
perception capabilities compared to other skin regions. Looking
at the two-point discrimination threshold, it is evident, that the
value at the toe with 9–10mm is closer to that of the finger (2–
3mm) as compared to other body parts with hairy skin (35mm)
(Panarese et al., 2009).

In Panarese et al. (2009) uni-directional forces representing
the grasp force in a teleoperation task were applied to the
subjects’ toes. Their work showed that the mechanoreceptors
at the toe allow for embedding uni-directional force feedback
into the sensorimotor-system, which improved the control
of a robotic hand. Furthermore, it demonstrates the basic
concept, i.e., that humans are able to close the loop between
(artificial) motor functionality provided at the hand and sensory
information given to the toe. However, in contrast to the
human hands, literature lacks about psychophysical analysis
at the toe for spatial force feedback. The perception in
hands and fingers is a broad topic with many interesting
findings about the perception and discrimination abilities.
Among others, these involve investigations of discrimination of
curvature (Gordon and Morison, 1982), vibrotactile frequencies
(Franzén and Nordmark, 1975), or gratings (Sinclair and
Burton, 1991). Furthermore, for the fingers it is known that
the mechanoreceptors allow not only discrimination of uni-
directional feedback but also the discrimination of spatial forces.
Panarese and Edin (2011) showed that the mechanoreceptors
of the skin of fingertips enable the discrimination of three-
dimensional (spatial) forces. A mechanical force of 5N was
applied to the index fingertip of twelve participants. The authors
found that a minimal tangential angle of 7.1◦ could be perceived.
Another study of Wheat et al. (2004) could demonstrate human’s
ability to discriminate tangential forces at the fingers during
grasping. In an additional proof of concept, we were able
to show that spatial toe force-feedback can be successfully
integrated into the sensorimotor control for teleoperating a
robotic arm (Hagengruber et al., 2017). However, literature is
lacking comparable fundamental studies of how well humans are
able to discriminate spatial toe force-feedback.

Based on these findings, this study aims at analyzing the
capability of humans for discriminating spatial forces at the bare
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front side of the big toe. In order to achieve this, we performed a
study with 24 healthy subjects. During the experiments various
force stimuli were presented to subjects’ toe using a standard
force feedback device. In each trial the force vector changes
its direction with respect to the force acting normal to the
toe. Four directions are used: up (distal), down (proximal), left
(medial), and right (lateral). The proportion of the tangential
force was varied in each stimulus. It changes between 5◦ and
25◦ with respect to the normal acting force. Furthermore, catch-
trials, in which no tangential force component was present, were
applied. The tests were performed three times with absolute
force amplitudes of 2N, 5N, and 8N. A modified state-of-the-
art haptic feedback device was used to realize the stimulation
of the toe. The experiments present a pure investigation on the
perception at the toe and not the integration of a feedback to
the sensorimotor-control. The haptic device provided forces to
a specific location of the skin and thereby relies more on tactile
than on kinesthetic sensation. It is known that such approaches
do not impair the perception of the feedback (Meli et al., 2014;
Pacchierotti et al., 2014). Relying on tactile sensation may be of
importance with respect to creating a miniaturized and wearable
toe-feedback-device.

2. METHODS

In this section we will outline the experimental design, explain
used equipment as well as the experimental protocol and will
present the statistical model for investigating dependencies
between factors and defined metrics.

2.1. General Description and Participant
Task
Since object manipulation provides normal as well as tangential
force information, the experiment is designed to cover both
force types. Therefore, two main tests were implemented: a
Tangential Test (TT) and a Normal Test (NT). The Tangential
Test is designed to investigate the capability for discriminating
spatial forces at the toe, meaning the possibility to discriminate
for certain directions is of interest. Whereas the Normal Test
deals with the participants’ perception of changes in the normal-
force amplitude. In each test a reference force was applied to
the glabrous skin of the distal phalanx of the subjects’ right
big toe. Depending on the test, either the direction of force
(TT) or its amplitude (NT) was changed in each trial with
respect to this reference force. Subjects were asked to identify
the presented force change at the toe either in amplitude or
direction. In total, the subjects were asked to perform four test
cycles (one Normal Test and three Tangential Tests). The NT
was performed with a reference contact force of 5N. Starting
at this reference, the force was either decreased, or increased
and returned back to the reference after each trial. This test
allows to draw conclusions about the minimal required change
in amplitude to be detected at the toe. The NT was always
performed first by the subjects. The TT is designed to investigate
if a spatial discrimination at the toe is possible at all. Furthermore,
it allows to draw conclusions whether the proportion between

tangential and total force amplitude has an influence on this
discrimination. The TT was performed at three different Force
Levels of 2N (low), 5N (medium), and 8N (high). For each Force
Level, the factor Direction (up, down, left, and right) as well as
the Tangential Component (5◦ to 25◦) was varied randomly. The
participants were asked to enter the perceived force change at
their toes via the number pad of a computer keyboard. To guide
the subjects through the test, a graphical user interface (GUI)
was implemented. The GUI visualizes the possible answers for
selection. For the NT increased, decreased, or same is displayed,
whereas for the TT the options up, down, left, right, and same
were available. As soon as the subjects reported their decision
on the given stimulus, they could start the next stimulus by
pressing the space bar, which allowed them to take as much
time as they need for the experiment. Depending on the decision
time, a test cycle (NT, or one TT) lasted between 4 to 9 minutes.
The subjects had to complete a training phase before the main
tests to become familiar with the experimental procedure and the
amount of applied force. Only during this training, the subjects
got experimenter feedback about correctness of their decision.
The results of the training have not been used for the analysis and
thus, were not recorded. In order to ensure identical experimental
conditions, subjects had to sit—not walk or stand—5 min
before starting the experiments. A 5 min break was included
between tests accordingly. During each break a questionnaire had
to be filled, in which the subjects were asked about their mental
demand, their self-estimation in performance, their frustration
level, and their comfort during the test. Each of these metrics
had to be rated on a scale of 1–20, with 1 corresponding to very
low/very well and 20 to very high/very bad. The NASA TLX
questionnaire (Hart and Staveland, 1988) served as a guideline.
The average time for the whole test procedure was about 70 min.

2.2. Participants
A total of 24 healthy subjects including 20 men and 4 women, age
21–38 years, performed the experimental protocol as described
above. No subject had a reported history of neurological disorder
or neuromuscular injury affecting the CNS or the muscles. All
subjects participated voluntarily and gave written consent to
the procedures, which were conducted in partial accordance
with the principles of the Helsinki agreement (non-conformity
concerns the point B-16 of the 59th World Medical Association
Declaration of Helsinki, Seoul, October 2008: no physician
supervised the experiments). Approval was received from the
works council of the German Aerospace Center, as well as
its institutional board for data privacy ASDA; the collection
and processing of experimental data were approved by both
committees. Before starting the experiments, subjects were
quickly briefed by describing them the experimental procedure
and the goal of the experiments. The experimental setup was
adjusted to each subject such that they felt comfortable and the
stimulation could be performed properly.

2.3. Experimental Setup
The setup includes the haptic feedback device, an adjustable foot
shell with a fixation for the toe, and a table with adjustable
height with a screen and a keyboard on top. The setup is
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FIGURE 1 | Experimental setup. (Left) Haptic feedback device omega.3 with mounted force-torque sensor. The coordinate system is depicted, with its origin at the

tip of the device. (Right) The whole setup includes the haptic feedback device, a foot orthosis as well as a foot shell to fix the toe in front of the feedback device, and

a graphical user interface that allows the subject to provide feedback about the perceived stimulation at the toe. The interface is realized by a screen and a keyboard

on a table with adjustable height.

depicted in Figure 1. The stimulation was realized with the
modified haptic feedback device omega.3 of the company Force
Dimension (Force dimension, 2013). The device is a delta-
based parallel kinematic with active gravity compensation and
3 Degrees of Freedom (DoF). It provides a cylindrical work
space with a diameter of about ∅ 160mm and length of 110mm.
Furthermore, it allows for a maximum force of 20N and a
stiffness of 14.5N/mm. To measure the exact interaction forces
between toe and device the DLR Fingertip sensor was mounted
to the end-effector of the haptic device. The dimensions of the
cylindrical 6DoF force-torque sensor are ∅ 30× 17mm. It is
based on a strain-gauge technology and designed for forces of up
to 30N in each direction. The sensor allows for a closed control
loop to adjust the applied forces at the toe using a PID controller.
The control software for the haptic device was developed in
MATLAB Simulink and executed on a Linux based real-time
computer. Implementation of the user interface and the test
protocol was also realized in MATLAB and MATLAB Simulink.

For an optimal skin connection a hemispheric plastic tip with
comparably high stiffness (in relation to the stiffness of human
skin) having a diameter of 10mm was mounted at the force
sensor. The modified haptic device allowed the stimulation of
spatial forces of up to 10N at a maximum frequency of 5Hz.
The device is mounted out of view for the subjects, i.e., below
the table and 200mm above the ground, in order to prevent
subjects being influenced by visual feedback of the devices
movement. Additionally, the participants were equipped with
hearing protection to block any acoustic information originating
from the feedback device and to avoid distraction due to
surrounding sounds. An adjustable foot shell in front of the
feedback device holds the foot in the right position. The ball of
the foot props to a wooden plate. A slight angle occurs at the joint
between the first proximal phalanx and the metatarsal bone. The
toe is straightened and the glabrous skin of the toe is positioned
perpendicular to the haptic device. A stabilizing orthosis made
of medical grade thermoplastic is used to immobilize the toe.
It guarantees a rather fixed stiffness of the toe’s joints during

FIGURE 2 | The experimental setup with a close-up view from the toe. The

toe is fixed in front of the haptic feedback device. The device stimulates the

bare front side of the distal phalanx of the toe.

the tests. Without the orthosis, the applied force could have
been compensated by the subjects. A close-up view of the toe
and the haptic device can be seen in Figure 2. The z-axis acts
perpendicular to the skin of the toe, the y-axis acts to the distal,
and the x-axis to the lateral side of the toe, respectively.

2.4. Force Pattern
The Tangential Test is based on changes of the effective direction
of the force. A schematic illustration of the force pattern is given
in Figure 3. In order to stabilize the contact of the stimulation
device to the skin, an offset force of 0.5N is initially applied, as
soon as the subject is in position. Once the subject starts the test
cycle the normal force is increased to the respective Force Level of
the test (2N, 5N, or 8N). This pure normal force (plantar to the
toe, i.e., in z-direction) represents the reference force to which the
subject compares the stimulus. The individual trials of the tests
were started by pressing the space bar. After a randomly selected
waiting time tw (1s ≤ tw ≤ 1.5s), the actual stimulus is applied.
In the TT, the total force of the stimulus is being kept constant.
Consequently, the presence of the tangential force (±x or ±y)
results in a decrease of normal force. The exact values of the

Frontiers in Neurorobotics | www.frontiersin.org April 2018 | Volume 12 | Article 1340

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Hagengruber et al. Discrimination of Spatial Forces at the Big Toe

FIGURE 3 | Schematic illustration of the Tangential Test. The blue line indicates the z-component, which acts plantar to the toe, red the x-component which acts

medial-lateral, and green indicates the y-component which acts proximal-distal. The pure z-component represents the reference for the tangential stimulation.

Different directional stimuli occur and are preserved until the decision for a direction has been taken. When the stimulus is started a randomly selected waiting time tw
is applied. The trial is terminated by resetting the force to the starting point.

tangential and normal parts can be seen inTable 1. The portion of
the Tangential Component was selected from the discrete levels
of 0◦, 5◦, 10◦, 15◦, 20◦, or 25◦. To achieve a smooth transition
from reference force to the actual stimulus, the application of the
stimulus is blended with a scaled 2Hz half-sinusoid waveform.
This blending function was selected analogously to the work
by Panarese et al. (2009). After the directional stimulus is fully
achieved, it stays constant until the subject has given its decision
about the perceived Direction of stimulation. Upon decision,
the force is reset to the reference within the same time as the
Tangential Component returns to zero. During this process the
Normal Component decreases shortly to the offset of 0.5N and
then back to the reference force. This way, no further haptic
information about the previous stimulus is provided to the
subject. After resetting, the reference force is constantly applied
until the next trial is initiated by the subject pressing the space
bar.

Each TT comprises five stimuli in four directions and four
catch trials. This sums up to 24 different stimuli, which were
randomized and repeated three times each. This 72 stimuli were
repeated for each of the single Force Levels (i.e., 216 stimuli in
total). In order to detect whether the order of presentation of the
three Force Levels makes any difference, we permuted it resulting
in six different constellations (3!). With a total of 24 subjects, each
possible constellation was performed by four subjects.

The force pattern of the Normal Test follows the same scheme
as the Tangential Test. The initial force of 5N represents the
reference force. Starting at this level, the stimulus consists either
of an increased or decreased normal force. No tangential forces
are applied here. As prior tests indicated that an increase in
force is easier to detect than a decrease in force, more stimuli
of decreasing forces opposed to increasing force were used.
Therefore, increasing stimuli occur in the range of +0.25N to
+2.0N sampled at 0.25N steps. Whereas, decreasing stimuli
occur from −0.25N to −2.75N with −0.25N steps. This sums
up to a total of 20 different stimuli with increasing or decreasing
force. Similar to the TT, a reset sequence occurs after each
decision and before the reference force is applied again. The
different stimuli were repeated three times each, summing up

to a total of 60 stimuli for the NT. The randomization has been
performed within the 20 different trials.

2.5. Data Analysis
For statistical analysis a logistic regression model with fixed and
random effects based on Equation (1) is used. The fixed values
are given by the vector of parameters βT = (β0,β1, ...,βm) and
the vector of influential variables x. The random effect is given by
γ and the error term by ε.

log

(

P

1− P

)

= xT ∗ β + ε + γ (1)

Here, the vector of parameters is defined by the factors Level
and Direction, whereas the only influential variable is the factor
Degree. For the analysis of NT the factor of Direction (increase –
decrease) is the fixed parameter and the Force Change acts as the
influential variable. The correct answer per trial with yi ∈ {0, 1}

is used for the analysis. The direction same was not considered
in the deeper analysis. These catch trials were recognized with
close to 100% and showed no further information about the
directional recognition. The statistical analysis was performed
in R. Based on the logistic regression model the Just Noticeable
Difference (JND) averaged over all subjects can be determined.
This psychometric value relates to the difference required in a
stimulus, such that the subjects are able to notice it on 50% of the
trials. This recognition-rate is clearly higher than the chance-level
of 20% (one out of five possible answers).

3. RESULTS

In the following, the results for the Tangential and the Normal
Test and their statistical analysis are presented.

3.1. Tangential Test
The collected data include the correct answers with yi ∈ {0, 1},
each assigned to a factor Force Level (low, medium, and high),
Direction (up, right, down, and left), and Degree of Tangential
Component (0◦, 5◦, 10◦, 15◦, 20◦, and 25◦). Table 2 shows the
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TABLE 1 | Exact values for the Normal Component (acting in z-direction, plantar to the toe) and the Tangential Component (+x: lateral; −x: medial; +y: distal; −y:

proximal) for the displacements of 0◦, 5◦, 10◦, 15◦, 20◦, and 25◦.

Change

Force Low [N] Medium [N] High [N]

Normal Tangential Normal Tangential Normal Tangential

0◦ (same) 2 0 5 0 8 0

5◦ 1.99 0.17 4.98 0.44 7.97 0.70

10◦ 1.97 0.35 4.92 0.87 7.88 1.39

15◦ 1.93 0.52 4.83 1.29 7.73 2.07

20◦ 1.88 0.68 4.70 1.71 7.52 2.74

25◦ 1.81 0.85 4.53 2.11 7.25 3.38

The acting force vector results from both components.

TABLE 2 | Estimated value of the logistic regression model.

Parameters Estimate coefficient Std. error p-value

β0 0.02 0.35 <2e-16

βLevel,Low 1 − −

βLevel,Medium 4.08 0.27 2.45e-7

βLevel,High 6.47 0.26 1.30e-11

βDirection,down 1 − −

βDirection,up 0.94 0.12 0.60

βDirection,left 0.87 0.12 0.24

βDirection,right 0.65 0.12 2.4e-4

Degree 1.22 0.02 <2e-16

Degree : βLevel,Medium 1.03 0.02 0.09

Degree : βLevel,High 1.06 0.02 1.0e-3

Given are all values of the parameter vector β and the influential variable degree of the

logistic regression model. Parameters linked with “:” indicate the interaction of these

factors.

estimated values of the logistic regression model. The shown
results relate to the used base (i.e., level low and direction
down). The values in estimate coefficient describe the increase
of the odds for a correct answer in comparison to the base
value. Since the analysis is based on a logit-model, it originally
provides results in a logarithmic scale. For better readability, the
values for estimate coefficient are converted to linear scale. Thus,
for example, the odds for a correct answer on a trial at level
medium in comparison to the base low is increased by a factor
of exp(βLow) = 4.08. The p-values with the corresponding std.
error in the table show again the influence to the odds. The used
logit-model is based on the two factors Degree and Level, which
showed significant interaction.

The statistical analysis shows that all factors have a significant
influence on the directional discrimination. The interaction of
the factors Force Level and Degree of Tangential Component is
significant as well. This implies that the Tangential Component
influences the results dependent on the applied total force and
vice versa. Furthermore, it can be seen that the direction right
was recognized significantly worse than the other directions. The
factor Direction shows no significant interaction with the other
factors.

At the lowest level of 2N a maximum of about 60% of
correct answers is achieved. The medium level (5N) shows
maximum results of about 80%, and the highest level with 8N
reaches correct answers up to 90% and above. The direction

same achieved a considerably higher recognition-rate of 92% and
above in all levels. The used regressionmodel allowed to calculate
the probability to recognize a tangential force stimulus depending
on the given factors. Figure 4 shows this probability per Level
and Direction. The maximal tangential stimulus of 25◦ leads to
a probability close to one in medium and high level. However, at
the low level only a probability of 0.75 is achieved. This means,
that the probability to recognize a tangential stimulus in the
high level is much higher than for a stimulus in the low Force
Level. Finally, the 50% recognition-rate can be determined which
indicates clear differences in the three Force Levels. Table 3 lists
the values for the 50%-JND per Level and Direction. In the level
low more than 20◦ of Tangential Components were necessary to
achieve a recognition-rate of 50%. The JND of the medium level
is between 11.6◦ and 13.5◦ depending on the direction. At the
high level, the estimated JND is between 8.4◦ and 10.1◦.

At the Force Level of 2N only the 25◦ stimulus is larger than
the JND at this level. In this stimulus a tangential force of 0.85N
(and 1.81N in z) is applied to the toe. The exact values can be
taken from Table 1. A stimulus corresponding to the JND at this
level would have a Tangential Component of 0.72N considering
the average JND over all directions at 20.95◦. The Force Levels
5N and 8N result in higher correct perception rates. At the
medium level, the 15◦ stimulus exceeds the JND. The values for
the spatial and normal force reach 1.29N and 4.83N, respectively,
whereas the stimulus corresponding to the average JND would
have about 1.06N and 4.88N. The amount of correct answers per
Tangential Component increases until 25◦ (up to: 86% up; 86%
down; 89% left; 79% right).

At the high Force Level at least 50% correct answers occurred
within 10◦ Tangential Component (tangential force: 1.39N;
normal force: 7.88N). Here, the stimulus corresponding to JND
would consist of 1.25N tangential force and 7.90N normal force,
considering the average JND of the directions with 9.05◦. Again,
higher spatial force changes lead to a higher amount of correct
answers. 25◦ Tangential Component evoke correct answers of
about 90% in all directions. Table A1 presents detailed results
about the correct answers of the subjects. The mean values of
correct answers over all subjects per Direction and Tangential
Component is given.

The results provide evidence that the minimal angle needed to
reliably detect a spatial force, is depending on the total amount of
force applied.
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FIGURE 4 | Probability to recognize a tangential force stimulus per Levels and Direction. The curves give the probability from 0 to 1 to successfully recognize a

tangential force stimulus per Level and Direction. The Just Noticeable Difference (JND) can be read at 50% probability.

TABLE 3 | Just Noticeable Difference (JND) per Level and Direction.

Level Direction JND [◦]

Low Up 20.5

Right 22.3

Down 20.2

Left 20.8

Medium Up 11.9

Right 13.5

Down 11.6

Left 12.2

High Up 8.7

Right 10.1

Down 8.4

Left 9.0

The JND is the difference that subjects are able to notice in 50% of trials. The values show

that the JND changes for the different Force Levels.

The factor Direction showed a significant influence, whereas
the direction right has an influence on the outcome measures.
A further analysis, which is illustrated in Figure 5, shows that
there is no general confusions in terms of two directions across
all subjects. In two-third of wrong decisions, subjects have
chosen the answer same. The remaining three possible wrong
answers are almost equally distributed within each Direction.
Each of the directions has been chosen wrongly in 8–15% of
the cases.

Additionally, we examined subjects’ decision time, i.e., the
time required to take a decision to an individual stimulus.
The time recording started with the onset of the stimulus—
i.e., the 250ms needed to apply the full stimulation force is
included. Themean time for the decision for all stimuli was about
1.7 s. Hence, a decision time of more than 12 s appears to be
unrealistic and therefore was defined as an outlier. According
to this, 11 decisions were not considered for the time analysis.

These outliers appeared when subjects paused the test session for
example to ask questions to the supervisor of the experiment.
Focusing on the decision time, the lowest Force Level of 2N
showed a significant difference in comparison to 5N and 8N.
Figure 6 depicts in form of a confusion matrix per Force Level
the average times required for answering. Mean times between
1.3 and 5.5 s occur. The diagonal represents the required reaction
time for the correct answers. The white box illustrates a confusion
which did not occur. The confusion matrix for the lowest Force
Level shows in contrast to the other Force Levels least variation.
The decision time required for correct and wrong answers at 2N
is comparable. The other two matrices, especially the one for 8N,
show shorter decision times for the correct answers.

Furthermore, we had a look on effects of learning or
fatigue between the three repetitions of the 24 different
stimuli and found no considerable variation across
these repetitions. For the analysis, the success rate per
repetition was used. An overall analysis of learning or
fatigue effects in terms of subject’s performance, across
all subjects and the whole test procedure, cannot be
performed because of the different permutations of Force
Levels.

3.2. Normal Test
The results of the NT show that the amount of Force Change
(−2.75N .. +2.0N), the Directions (increase - decrease) as well
as the interaction between these factors play a significant role for
its discrimination (with increased forces as base: βDirection,decrease

with std. error = 0.45 p-value < 2e-16, βDirection,decrease : βforce

with std. error 0.35 and a p-value of 5.71e-05). The 20 blue
bars in Figure 7 represent the correct responses for the different
stimuli in percent. The bar with the label 0.0 refers to same
during the stimulation phase. The positive values from 0.25N to
2.0N describe increasing force stimuli and the negative values
represent the decreasing forces. The result shows that correct
answers increase with an increase in force. The amount of
correct answers at +0.25N is about 3%. The change of +1.0N
in comparison to the reference force shows 65% and a change
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FIGURE 5 | Wrong answers. For each of the commanded directions the perceived wrong decisions same, up, right, down, and left are depicted in percent (wrong

direction was selected by the subjects); each bar illustrates the wrong decision for the respective applied direction.

FIGURE 6 | Required time for answering. Illustration of the needed answering time across all subjects per Force Level. Excluded are outliers with times more than

12 s. The y-axes shows the force which was applied to the subjects’ toe and the x-axis encodes the Direction which was chosen by the subjects. The diagonal

corresponds to the correct answers. The white box illustrates a confusion which did not occur.

FIGURE 7 | Recorded answers for the NT for all force stimuli between −2.75N and +2.0N, while the reference force of 5N is subtracted. Here 0.0N corresponds to

5N with no force change; all negative values correspond to a decreasing stimuli and all positive values correspond to an increasing stimuli; in dark green, correct

answers in percent; in yellow, decision to same instead of correct direction; in bright green, decision to the wrong direction.

of +2.0N 96% correct answers, respectively. The stimuli with
reduced normal force shows as well a higher success rate with
higher changes in force. The range between −0.25N and −1.0N
causes only a correct perception of a maximum of 13% at
−0.75N. The result of the decreased force stimulus of −1.25N
and−1.5N achieves results comparable to the+0.75N stimulus.
Starting with a force change of −1.75N (65% correct answers)
the amount of correct answers increases continuously with
higher changes. The stimulus of −2.75N produced 95% correct
responses. Figure 7 also illustrates the wrong decisions of the

subjects during the test. Similar to the TT, in most of the cases
of a wrong decision same was chosen.

The logistic regression model allowed to estimate a 50%-JND
as well. The JND of the NT was at 0.95N for the increasing force
and at−1.62N decreasing force with the reference force of 5N.

3.3. Secondary Results
The questionnaire about mental demand, the self-estimation
performance, frustration level, and comfort were rated with
respect to the test results. Themental demand and frustration was
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higher in the level with lower acting force and the performance
at the highest Force Level was perceived as the best. However,
the subjects felt more comfortable during the application of the
lowest Force Level, followed by the medium and the high Force
Level.

Additionally a Touch Test based on von Frey Filaments has
been performed before and after the test cycles of the four main
tests. Sensory evaluators were applied to the same effective area
as in the main tests. The test allows the identification of the
minimal noticeable touch force at the skin. The evaluator size
and consequently the acting force were increased until the person
could notice at least six out of ten trials. The results are of
secondary importance for this paper and hence not mentioned
before. Neither the results of the preceding nor of the succeeding
test showed any correlation to the Normal or Tangential Tests
(r-value of about−0.35 and 0.16 p-values larger than 0.05).

4. DISCUSSION AND CONCLUSION

We investigated the ability of 24 subjects to discriminate spatial
forces given to their right big toe. We varied force amplitude,
relation between tangential and normal component, as well
as the acting direction while asking subjects for the perceived
changes. The experimental protocol was divided into two tests,
namely the Tangential and Normal Test, separating for the
influences of direction and amplitude. We found the Degree
of Tangential Component, the Force Level and the Direction
having a significant influence on subjects’ success in perceiving
the applied direction. Moreover, we found an influence whether
the force amplitude increases or decreases, meaning that subjects
were significantly better to sense an increase in force compared
to a decrease.

In principal, these results provide evidence for the basic
purpose of our study, meaning that subjects were able to
discriminate spatial forces at the toe varying in amplitude and
Tangential Component. Although subjects were able to recognize
all directions, the direction right could be perceived significantly
worse compared to the other directions. The reason for this effect
can not be determined from the result of our study, but it would
be of interest to investigate whether this effect can analogously be
found on the left big toe.

Our study shows that the directional discrimination threshold
at the toe is clearly increased compared to that at the fingertips.
Panarese and Edin (2011) identified a minimal tangential
discrimination threshold of about 7.1◦ for the fingertips. The
threshold is valid for a total force of 5N. At the toe, the
respective JND is between 11.9◦ and 12.2◦ depending on the
direction, at the Force Level of 5N. When applying 8N to
the toe, lower JNDs with about 9◦ are reached. This is not
surprising due to physiological differences between the plantar
and the palmar skin (Kennedy and Inglis, 2002). The toe consists
of a thicker skin with less mechanoreceptors. Additionally, the
distribution of these receptors is different in comparison to the
fingers. Moreover, the tactile sensation at the toe is primarily
used for balancing during walking and standing. It was a new
experience for the subjects to recognize forces at their toe and

to assign them to certain directions. The results show that there
is a difference in terms of perceiving forces in comparison
to the fingers. Nevertheless, a directional discrimination at
the toe is possible, but with less accuracy compared to the
fingertips.

The applied forces to the toe can describe force feedback
during gasping. This type of force feedback represents a
natural modality (i.e., force information is fed back as force)
at a non-natural stimulation site. The natural stimulation
modality offers the advantage that no relearning of the provided
stimulus is necessary. Nevertheless, it needs to be investigated,
whether the non-natural stimulation location may reduce
the acceptance in possible applications. Methods like direct
intraneural electrical stimulation or reinnervation techniques
can potentially allow for a more natural feedback. However, these
invasive techniques are not yet widely available and stimulation
to the surface of the skin may provide a viable alternative. Here,
the glabrous skin offers a better resolution than hairy regions
of the body, when considering the two-point discrimination
threshold. With respect to the two-point discrimination
threshold, the toe is—besides the skin of the face— the only
region of the body that offers values close to those of the
hand (Weinstein, 1968). Stimulation of glabrous skin instead of
hairy skin seems to be advantageous also from a physiological
point of view.

Furthermore, the results indicate that a minimal Tangential
Component is needed for reliable (50%-JND) directional
discrimination. The medium and highest Force Level reached
recognition rates of more then 50% with Tangential Components
of more than 1N. The lowest level does not exceed this force.
However, in a friction based setup, a high total force is needed in
order to apply a large Tangential Component.While higher Force
Levels lead to more clear results, the questionnaire showed that

FIGURE 8 | Idea behind. Schematically illustration of the closed feedback-loop

by feeding back force information to the human’s toe. Two scenarios are

considered: controlling a prosthesis and the teleoperation of a robotic device.
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subjects’ comfort was significantly reduced. By realizing higher
friction between stimulation device and skin, this issue can be
compensated for.

In a previous proof of concept we could show that force
feedback to the toe can be integrated into the sensorimotor-
control, when teleoperating a robotic arm in a force task
(Hagengruber et al., 2017). Subjects teleoperated blind-folded a
DLR Light-Weight Robot by external optical tracking of their
index finger. The task was to push a toy train along the rails.
The only feedback of the performed task was presented as force
feedback to the subjects’ toe. The stimulation of the toe was
comparable to this work, despite that the force was applied
continuously and presented the forces which were measured
at the robots end-effector. With this earlier result and the
results obtained in this work, we assume that at least from the
physiological point of view, force feedback to the toe can be
used for applications in telepresence scenarios or prosthetics.
A schematically illustration of such applications can be seen
in Figure 8. A practicable technical application is not existent
yet. However, using the findings of this work, it is possible to
determine a mapping function, to ensure that the tactile stimuli
provided to the toe can actually be perceived by the subject.
Provided with force information to the toe, users may be able to
improve control of such an assistive device. People who rely on
a prosthetic hand could get the possibility for a more precise and

natural interaction with their environment. Finally, such devices
could help in future to further increase the personal acceptance of
assistive technologies by increasing their practicality. Moreover,
it would be of interest to see, whether similar results can be
obtained from stimulation of the other toes, and finally whether
subjects are able to discriminate different force vectors at multiple
toes, simultaneously.
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APPENDIX

TABLE A1 | Mean values of correct answers of three trials over all subjects per

Direction and Tangential Component; Results for (A) Level Low; (B) Level

Medium; (C) Level High.

Change Up Down Left Right

(A)

Low [mean ± std]

5◦ 0 ± 0 0 ± 0 0.04 ± 0.2 0.16 ± 0.63

10◦ 0.46 ± 0.59 0.54 ± 0.83 0.29 ± 0.63 0.20 ± 0.51

15◦ 1.08 ± 1.21 1.20 ± 1.41 0.88 ± 1.07 0.96 ± 1.20

20◦ 1.65 ± 1.24 1.79 ± 1.41 1.54 ± 1.02 1.21 ± 1.18

25◦ 1.79 ± 1.14 1.95 ± 1.08 1.75 ± 1.15 1.71 ± 1.04

(B)

Medium [mean ± std]

5◦ 0.38 ± 0.64 0.16 ± 0.48 0.04 ± 0.2 0.20 ± 0.59

10◦ 1.37 ± 1.21 1.58 ± 1.14 1.83 ± 1.13 1.54 ± 1.14

15◦ 2.16 ± 1.09 2.21 ± 1.06 2.21 ± 0.83 1.92 ± 1.05

20◦ 2.63 ± 0.77 2.45 ± 0.97 2.54 ± 0.83 2.15 ± 1.08

25◦ 2.58 ± 0.78 2.58 ± 1.02 2.66 ± 0.63 2.38 ± 0.92

(C)

High [mean ± std]

5◦ 0.54 ± 0.88 0.38 ± 0.77 0.33 ± 0.63 0.46 ± 0.93

10◦ 2.25 ± 1.03 2.33 ± 1.09 2.25 ± 0.98 1.79 ± 1.21

15◦ 2.5 ± 0.78 2.58 ± 0.65 2.71 ± 0.55 2.67 ± 0.56

20◦ 2.75 ± 0.61 2.71 ± 0.63 2.58 ± 0.88 2.63 ± 0.77

25◦ 2.75 ± 0.68 2.75 ± 0.53 2.75 ± 0.53 2.66 ± 0.76
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Weber’s law is among the basic psychophysical laws of human perception. It determines 
that human sensitivity to change along a physical dimension, the just noticeable differ-
ence (JND), is linearly related to stimulus intensity. Conversely, in direct (natural), visually 
guided grasping, Weber’s law is violated and the JND does not depend on stimulus 
intensity. The current work examines adherence to Weber’s law in telerobotic grasping. 
In direct grasping, perception and action are synchronized during task performance. 
Conversely, in telerobotic control, there is an inherent spatial and temporal separation 
between perception and action. The understanding of perception–action association 
in such conditions may facilitate development of objective measures for telerobotic 
systems and contribute to improved interface design. Moreover, telerobotic systems 
offer a unique platform for examining underlying causes for the violation of Weber’s law 
during direct grasping. We examined whether, like direct grasping, telerobotic grasping 
with transmission delays violates Weber’s law. To this end, we examined perceptual 
assessment, grasp control, and grasp demonstration, using a telerobotic system with 
time delays in two spatial orientations: alongside and facing the robot. The examina-
tion framework was adapted to telerobotics from the framework used for examining 
Weber’s law in direct grasping. The variability of final grip apertures (FGAs) in perceptual 
assessment increased with object size in adherence with Weber’s law. Similarly, the 
variability of maximal grip apertures in grasp demonstration approached significance in 
adherence with Weber’s law. In grasp control, the variability of maximal grip apertures 
did not increase with object size, which seems to violate Weber’s law. However, unlike 
in direct grasping, motion trajectories were prolonged and fragmented, and included an 
atypical waiting period prior to finger closure. Therefore, in this condition, maximal grip 
aperture was an inappropriate indicator of JND. Instead, we calculated the aperture at 
the end of the opening phase, the initial grip aperture (IGA), and the FGA at the beginning 
of the waiting period, as more appropriate indicators for the JNDs. The IGAs adhered 
to Weber’s law. The FGAs approached significance in the same direction. This suggests 
that perception–action association during telerobotic grasping with transmission delays 
significantly diverges from direct grasping.

Keywords: Weber’s law, telerobotics, grasping, motor control, human factors
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inTrODUcTiOn

Through the years, psychophysical research has uncovered 
several laws governing human perception–action integration. 
Among these is Weber’s law, which is considered a basic psycho-
physical principle of human perception (Baird and Noma, 1978). 
According to Weber’s law, the perceptual sensitivity, largely across 
all sensory modalities, to a change along a physical dimension is 
linearly related to the intensity of the stimulus, i.e., the just notice-
able difference (JND) is larger for stronger stimuli. This finding 
was supported by numerous experiments. In striking contrast, 
visually guided, direct (natural) grasping violates Weber’s law.

When remotely controlling a robotic manipulator, the human 
operator is required to integrate cognition, perception, and 
action while accounting for the spatial separation of the local 
and remote sites. In such setups, the human operator controls 
a manipulator that differs in structure and dynamics from the 
operator’s limbs, sensory perceptions are limited and biased, 
and there are inherent transmission delays. These characteristics 
make both design and operation of telerobotic systems, chal-
lenging. Grasping is fundamental in most telerobotic tasks. It is  
especially challenging, as contact must be made between the 
robotic end-effector and the object to be grasped, which requires 
high spatiotemporal perception–action integration. It is, thus, 
important to study adherence to Weber’s law in the context of 
telerobotic grasping, as indication of the underlying internal 
processing mechanisms employed by the user. Additionally, the 
inherent spatial and temporal separation between perception and 
action in telerobotic systems offers a unique platform for examin-
ing underlying causes for the violation of Weber’s law in grasping.

It is common in psychophysics to use explicit methods to 
measure JNDs, such as the method of constant stimuli, i.e., extra-
cting JND values from the psychophysical function. However, 
for the purpose of measuring JNDs during motor control, it is 
necessary to use a different method that directly taps onto move-
ment trajectories. For this purpose, we and others (Ganel et al., 
2008) use the classical method of adjustment. According to this 
method, the variance of the responses to a stimulus reflects an 
“area of uncertainty,” which is a measure of the JND for that 
stimulus. The use of the method of adjustment for measuring 
JNDs has not been limited to grasping or to motor control per se. 
Indeed, this method has been used for many years across differ-
ent perceptual domains, such as time and auditory perception 
[for discussion, see Ganel et al. (2014)].

In grasping, the JND is measured as the within-participant 
variability of the maximal finger aperture during the reach-to-
grasp movement and it remains invariant with object size, in 
violation of Weber’s law (Ganel et al., 2008). Several experimen-
tally confirmed hypotheses have been suggested for explaining 
this phenomenon (Smeets and Brenner, 2008; Jazi et  al., 2015; 
Löwenkamp et al., 2015; Utz et al., 2015; Jazi and Heath, 2016). 

The different perspectives from which these hypotheses have 
emerged have not been resolved thus far. However, it is com-
monly assumed that the immunity of the visuomotor system to 
Weber’s law reflects an absolute processing style during grasping, 
which is in sharp contrast to the relative processing style of the 
human perceptual system (Ganel and Goodale, 2003; Ganel et al., 
2008; Jazi and Heath, 2016).

Perceptual–motor transparency is a major concern in 
telerobotic system interfaces as it determines system fidelity and 
usability (Preusche and Hirzinger, 2007; Nisky et al., 2013). It was 
analyzed extensively based on the characteristics of the commu-
nication channel. A three-layered human-centered measure of 
transparency was suggested, where the layers include perceptual 
transparency, local motor transparency, and remote transpar-
ency (Nisky et al., 2013). Perceptual transparency is assessed by 
quantifying perceptual bias and discrimination thresholds in the 
mechanical properties of the environment. Local (remote) motor 
transparency is assessed through comparison of human (remote 
manipulator) motion trajectories while teleoperating the robot, 
to those that would be executed if the operation was performed 
directly on the remote environment. Yet, even these measures are 
of external operation parameters, such as motion trajectories, and 
cannot ascertain internal processing similarity within the central 
nervous system (CNS). Indeed, only systems that can elicit such 
a degree of transparency, can be considered truly transparent and 
facilitate very high fidelity and usability. Similarity of the internal 
processing in natural (direct) and in telerobotic environments 
can be assessed only by uncovering the underlying mechanisms 
determining human perception–action operation during natural, 
direct motion and during telerobotic control. Such analysis is 
expected to improve the understanding of human operation, 
facilitate the development of objective measures for quantifying 
transparency, and lead to design of efficient telerobotic interfaces.

The UnDerlYing caUses  
OF WeBer’s laW

For assessing the implications of violation or adherence to 
Weber’s law in telerobotic grasping, it is important to understand 
the underlying perception and action processing mechanisms. 
Hypotheses explaining the lack of Weber’s law in grasping vary 
considerably in their postulations regarding these mechanisms. 
These hypotheses relate to visual or haptic sensory perceptions, 
motion planning processes, and biomechanical constraints 
during motion execution. In the following, we detail the major 
hypotheses.

The violation of Weber’s law in grasping may stem from the 
functional separation of visual information processing. In the 
neuroscience literature, it is well established that, perception and 
action are mediated by separated neural networks. The two visual 
systems hypothesis proposed by Goodale and Milner (1992) pro-
vides a contemporary example for such an account that details 
the organization of the primate visual system. According to this 
proposal, the ventral “perception” pathway provides the rich and 
detailed visual representation of the world, and the dorsal “action” 
pathway enables flexible control of actions directed to objects. 

Abbreviations: CNS, central nervous system; FGA, final grip aperture. The aperture 
at the end of the movement (mm); IGA, initial grip aperture. The aperture after the 
end of the opening time (mm); JND, just noticeable difference; MGA, maximum 
grip aperture. The maximum aperture during the movement (mm); STCPD, The 
scaled sagittal TCP transport distance; TCP, Robotic Tool center point.
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This proposal of a functional separation between visual systems 
underlying action and perception is supported by converging 
evidence from neuropsychological patient data and behavioral 
psychophysics. Behavioral studies provide evidence that, unlike 
visual perception, which is largely governed by relational and 
Gestalt representations of objects’ size and shape, visually guided 
action treats objects in a more analytic fashion. In-line with this 
view, the lack of adherence to Weber’s law in visually guided, 
direct grasping, results mainly from the functional separation 
between the visual systems (Ganel et  al., 2008). This view is 
consistent with many other examples of dissociations between 
perception and action, such as in the case of the size–weight 
illusion (Flanagan and Beltzner, 2000) or the effect of delayed 
force information on perception of impedance and grip force 
adjustment (Leib et al., 2015).

An alternative account for the violation phenomena is based 
on the role of haptic feedback, as grasping a physical object 
involves haptic cues when the fingers touch the target object. 
Thus, integration of haptic and visual cues may be imperative 
for absolute specification of object size leading to the violation 
of Weber’s law in grasping. Moreover, the lack of haptic feedback 
may be the cause of Weber’s law appearing in pantomime grasp-
ing (Jazi et  al., 2015; Jazi and Heath, 2016). Ozana and Ganel 
(2017) examined adherence to Weber’s law in direct grasping 
of physical objects placed beyond a transparent glass surface. 
They found that Weber’s law was maintained when subjects 
were instructed to end the motion close to the glass surface, 
but without touching it, and conversely, that Weber’s law was 
violated when subjects were instructed to touch the surface at 
the end of the motion. Their findings suggest that even indirect 
haptic information is sufficient to allow analytic processing dur-
ing grasp.

Another alternative explanation of the violation of Weber’s 
law in grasping stems from motion planning mechanisms. Most 
contemporary research of reach-to-grasp motion asserts that 
it is comprised of two separately controlled, yet coordinated, 
functional components, the reaching motion bringing the hand 
toward the object, and the grasp formation shaping the hand 
according to object features (Jeannerod, 1981; Jeannerod et al., 
1995). In contrast, Smeets and Brenner (1999, 2001) claim reach-
to-grasp motion should be viewed as a coordination of separate 
finger motion plans. They suggest that reach-to-grasp motion 
planning is based on reaching with the finger to a position on the 
object rather than on the object’s size (Smeets and Brenner, 2008), 
and therefore, finger aperture during reach-to-grasp movements 
does not reflect the computation of size and is not expected to 
adhere to Weber’s law.

Finally, the violation of Weber’s law in grasping may be attrib-
uted to biomechanical constrains effecting motion execution 
rather than to planning or perceptual processing (Löwenkamp 
et al., 2015; Utz et al., 2015). Ceiling effects caused by the limited 
human finger span and human tendency to avoid large and 
uncomfortable apertures, can suppress variation in large finger 
apertures precluding the manifestation of Weber’s law. We note, 
however, that recent research has shown that the dissociation 
between perception and action in terms of their adherence to 
Weber’s law persists even when the possibility of biomechanical 

constrains are accounted for (Ganel et  al., 2017; Heath and 
Manzone, 2017; Heath et al., 2017; Manzone et al., 2017).

The eFFecTs OF TransMissiOn 
DelaYs

In natural grasping, reach-to-grasp motion profiles comprise 
two components, arm motion for moving the hand toward the 
object, and hand (finger) motion for grip formation (Lacquaniti 
and Soechting, 1982; Jeannerod, 1984; Marteniuk et  al., 1990; 
Wallace et al., 1990; Santello et al., 2002). Arm motion profiles 
follow a stereotypical human motion path based on minimum 
jerk optimization (Flash and Hogan, 1985) and adhere to Fitts’ 
law for various object types and sizes (Crossman and Goodeve, 
1983). Fitts’ law, among the basic psychophysical laws related to 
movement control, models the speed-accuracy tradeoff of human 
motion. It determines that reaching motion time is a logarithmic 
function of the ratio between the distance and the width of the 
target (Fitts, 1954). Grip formation has two stages, opening (fin-
ger stretching) and closing (closing fingers toward contact with 
the object). The formation of the finger grip occurs during arm 
motion (hand transportation), where maximum arm endpoint 
(wrist) velocity is typically reached in parallel to maximal aper-
ture (Jeannerod, 1984; Marteniuk et al., 1990; Rand et al., 2000).

In teleoperation, transmission delays between control 
movements and feedback from the remote system response are 
inevitable, especially when the distances between the human 
operator and the controlled robotic device are long. The effects 
of such delays on operator performance have been extensively 
studied (Rohde and Ernst, 2016). It was shown that a modified 
form of Fitts’ law modeling a multiplicative relationship between 
movement time, an index of difficulty, and transmission 
delays, provides an accurate predictor of the experimental data 
(Hoffmann, 1992). Visuomotor delays increase errors in driving 
(Cunningham et al., 2001) distort drawing and writing (Kalmus 
et al., 1955; Morikiyo and Matsushima, 1990) and impede motor 
adaptation (Honda et al., 2012a,b). Moreover, a consistent expo-
sure to delay eventually leads to adaptation (Foulkes and Miall, 
2000; de la Malla et  al., 2014; Farshchiansadegh et  al., 2015; 
Rohde et al., 2014; Avraham et al., 2017; Leib et al., 2017), and 
aftereffects are evident upon delay removal (Smith and Bowen, 
1980; Botzer and Karniel, 2013; Avraham et al., 2017). A delayed 
visual feedback also affects weight perception, with participants’ 
reports of an increased mass (Honda et al., 2013) or resistance 
(Takamuku and Gomi, 2015) in the presence of delay. Similarly, 
delayed force feedback biases perceived stiffness of elastic objects 
(Leib et al., 2015, 2016) where the effects of delay on actions with 
elastic objects are often different from their effects on perception 
(Nisky et al., 2011; Leib et al., 2016).

For long delays (above about 0.7 s), a change in control strat-
egy was also found, from a more continuous form of control to 
a move-and-wait strategy. Experimental data in both long and 
short delays fit the modified Fitts’ model predictions with differ-
ent coefficients (Sheridan and Ferrell, 1963; Ferrell, 1965). It was 
additionally shown that when participants were asked to track the 
motion of a visual bar with their hand, they were able to adjust 
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to motion displacement only when there were no transmission 
delays. When the delays were longer than 0.3  s, participants 
were unable to adjust to their motion displacements, leading the 
authors to conclude that for such delays the correlation between 
visual feedback and motor control commands is disrupted (Held 
et al., 1966).

The amalgamation of these findings make the region of 
0.3–0.7  s delays, where motion is continuous yet perception–
action synchronization is disrupted, particularly interesting for 
analyzing telerobotic control. In the current work, we examined 
Weber’s law in a telerobotic control scenario with such transmis-
sion delays. We sought to determine if indeed participant behav-
ior during telerobotic control with such delays would adhere to 
Weber’s law. We hypothesized that, as in direct conditions, in 
telerobotic perceptual-based tasks, participant behavior would 
adhere to Weber’s law. Indeed, establishing adherence to Weber’s 
law during perceptual assessment is crucial for establishing 
testbed validity. We further hypothesized that, when percep-
tual transformations are required during telerobotic control,  
e.g., when viewing and action directions are not aligned, 
participant behavior would also adhere to Weber’s law. To this 
end, we developed a telerobotic environment with transmission 
delays and telerobotic versions of direct tasks used for examining 
Weber’s law. A different study from our lab examined Weber’s law 
in a surgical robotic setup with negligible transmission delays 
(Milstein et al., submitted).1

MaTerials anD MeThODs

Participants
Sixty-three healthy, right-handed participants (age 18–31 years, 
mean 24.3, 30 males) participated in the experiment. Participants 
had normal or corrected-to-normal vision with no neurological, 
sensorimotor, or orthopedic impairments. To avoid fatigue, the 
participants were divided into six groups (two perceptual assess-
ment groups with 10 participants each, two grasp control groups 
with 11 participants each, and two grasp demonstration groups 
with 10 and 11 participants), where each group performed one 
of the experimental procedures described below. According to 
the requirements of the Helsinki declaration, the Human Subject 
Research Committee of Ben-Gurion University of the Negev 
approved the experimental protocol.

apparatus
A unilateral telerobotic system (without force feedback to the 
user) was constructed based on a Motoman UP6 robotic manipu-
lator (Yaskawa, Japan), a controlled jaw gripper, AVG 55 (Schunk, 
Germany), and a pair of Phantom Premium devices fitted with 
finger thimbles (Geomagic, USA). The human finger aperture 
determined the robotic gripper opening (without scaling) and the 
center of the human finger aperture determined the tool center 

1 Milstein, A., Ganel, T., Berman, S., and Nisky, I. (submitted). The effect of gripper 
scaling on human-centered transparency of grasping in robot-assisted minimally 
invasive surgery. 

point (TCP) position (with a 1:2.2 scaling). To simplify the task, 
robot motion toward (and away from) the object was possible 
only along a straight horizontal line (forward and backward). 
Similarly, lifting and placing the object back on the table were 
also possible only along the vertical axis.

To support robustness and modularity, the system was devel-
oped as a distributed system with each hardware component 
constituting a separate agent. The control was implemented in a 
data-driven approach, where communication between the com-
ponents was established over the internet. The communication 
apparatus was developed using the data distribution service (RTI, 
USA). The data transmission rate from the Phantom devices was 
set to 100 Hz and the control cycle delays of the robot and gripper 
were 0.6 and 0.3 s, respectively. The delays were determined based 
on hardware constraints and preliminary examination of system 
operation. The system’s transmission delays are determined by 
the control cycle delays. For such delays motion is expected to be 
continuous yet perception–action synchronization is disrupted.

Five cylinders with different diameters ranging from 20 to 
40 mm in 5-mm steps (XS, S, M, L, XL) were used in the experiments 
(Figure 1D). A small table was placed in front of the robot inside 
the robot’s work-volume for placing the cylinder to be grasped.  
A single cylinder was placed on the table for each experimental run.

experimental Procedure
The experiment comprised three tasks: perceptual assessment, 
grasp control, and grasp demonstration. The tasks were con-
structed as a telerobotic version of classical (direct) visual percep-
tion, visually guided grasping, and pantomimed grasping tasks 
typically used for assessing Weber’s law (Ganel et al., 2008; Smeets 
and Brenner, 2008; Jazi et al., 2015; Löwenkamp et al., 2015; Utz 
et al., 2015; Jazi and Heath, 2016). In the grasp control task, the 
subject is required to grasp the object. In the visual perception 
task, the subject indicates her perception of the size of the object 
with finger aperture. So this task includes finger motion, though 
not a grasping movement. In pantomimed grasping, the subject 
pantomimes a grasping motion, so the task includes grasping 
motion, but not toward a physical object.

Each task was conducted in two orientations of the opera-
tor with respect to the robot: alongside (Figure 1A) and across 
(Figure 1B). These two orientations were selected because they 
provide different control directions and viewing conditions. When 
alongside each other the robot and operator have aligned control 
directions, as would be the case in direct grasping (when the 
participant grasps the object using his/her own hand), yet unlike 
direct grasping, the view of the grasp contact point on the object 
of the remote robotic finger is obscured. When facing each other 
in the across orientation the movement directions of the operator 
and robot are mirrored, i.e., different from direct grasping condi-
tions, yet grasp contact points on the object of both fingers are 
clearly visible. In both orientations, the participants sat outside the 
robotic work-volume, about 2 m away from the robot base. Two 
pseudorandom sets of object order were prepared. In each condi-
tion (task and orientation combination), the participants were 
equally divided and performed the experiment according to one of 
the two sets. In all tasks at the beginning of each trial, participants 
placed their fingers at the initial position (Figure 1C) with their 
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FigUre 1 | Experimental setup. (a) Alongside, (B) across, (c) initial position, (D) tested cylinders. Written and informed consent has been obtained from the 
depicted individual for the publication of his identifiable image.
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eyes closed, waiting for a computerized audio cue to open their 
eyes and start moving. Then, they performed the task, paused, 
and then returned to the initial position. Transitions between the 
stages were marked by a computerized audio cue. Participants 
performed the trials for each of the five objects and were allowed 
to rest at will twice during the experiment. Before starting the 
experiment, participants practiced the task for a few repetitions 
until they reported feeling comfortable in performing it.

In the perceptual assessment task, participants were asked 
to indicate the cylinder’s width by opening the gripper to an 
equivalent aperture during a 5.1-s time window. In this task, 
only the gripper opening was controlled by the participants, 
and the robot manipulator did not move. The choice of such 
pantomimed reporting of a perceptual assessment is consistent 
with prior studies of perception–action dissociations in their 
adherence to Weber’s law. It is important for making sure that the 
perceptual assessment and the grasp control are performed using 
similar finger motion and, therefore, attributing any differences 
in violation or adherence to Weber’s law to the underlying neural 
processing. The adaptation to the telerobotic environment is in 
that the aperture of the robotic figures, rather than the aperture 
of the participant’s fingers, is the object size indicator. Participants 
performed 20 trials for each of the five objects (100 trials overall).

In the grasp control task, participants were requested to 
teleoperate the robot, and to use it to grasp and lift the object 
in three consecutive stages, pausing between stages until they 
received a computerized audio command to continue. The stages 
were reach and grasp the object (during a 7.2-s time window), 
raise the object and place it back on the table (during a time 
window of 3.9 s), and release the object and return to the initial 

position. Participants performed 20 trials for each of the five 
objects (100 trials overall).

In the grasp demonstration task, there were two experimental 
stages. In the first stage, participants practiced remotely control-
ling the robot with the Phantom interface. They remotely grasped 
and lifted a cylinder placed on the table using the robotic system 
(as was performed in the grasp control task). This was done for 
several minutes until they reported feeling comfortable with the 
task. This stage was introduced to assure that the participants attain 
an understanding of the robotic task and appreciate the capabilities 
of the robotic system. In the second stage, participants were asked 
to demonstrate reach-to-grasp motion to the robot (in a 4.2-s time 
window), while their fingers were placed in the Phantom thimbles, 
just as in the grasp control stage. During the demonstrations the 
robot or gripper did not move. The adaptation of the pantomime task 
to the telerobotic demonstration has three components: acquaint-
ing the participants with the capabilities of the robotic system; the 
use of the Phantom interface, and requesting the participants to 
demonstrate the task to the robot, which is important for placing 
their actions in context of the robotic operation, rather than their 
own direct operation. Participants performed 15 demonstration 
trials for each of the five objects (75 trials overall).

Data analysis
Motion trajectories were recorded at 100  Hz and were filtered 
using a standard two-way, low-pass Butterworth filter (n  =  3) 
with a 5.54-Hz cutoff (verified against the data). For the assess-
ment task (Figure 2B), Maximal aperture speed was determined 
over all the movement. Movement start was determined as the 
time at which the aperture speed exceeded and remained above 
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FigUre 2 | Aperture velocity. (a) Grasp control task, start and end of 
aperture opening and closing marked. (B) Assessment task, start and end of 
aperture opening marked.
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10% of the maximal aperture speed, for 0.1 s. To ensure inclu-
sion of final motion corrections movement end was similarly 
determined as the time at which the aperture speed decreased 
and remained below 10% of the maximal aperture speed, for 
0.5  s. For the grasp control and grasp demonstration tasks 
(Figure 2A), only the reach-to-grasp phase was analyzed. Two 
maximal speeds were determined, maximal opening speed, 
during the first part of the movement in which finger aperture 
increased, and maximal closing speed during the final part of 
the movement (after reaching maximal aperture) in which finger 
aperture decreased. Movement start was determined as the time 
at which the aperture speed exceeded and remained above 10% 
of the maximal aperture opening speed, for 0.1 s. The end of the 
aperture opening phase was determined as the time at which the 
aperture opening speed decreased and remained below 10% of 
the maximal aperture opening speed, for 0.1 s. The start of the 
aperture closing phase was determined as the time at which the 
aperture closing speed increased and remained above 10% of 
the maximal aperture closing speed, for 0.1  s. Movement end 
was determined as the time at which the aperture closing speed 
decreased and remained below 10% of the maximal aperture 
closing speed, for 0.1 s.

Two measures were defined for all tasks and additional four 
measures were defined for the grasp control and grasp demon-
strations tasks. For all tasks, movement time was computed as 
the time difference between movement start and end. The mean 
aperture opening speed was computed as the mean speed dur-
ing the aperture opening time. For the grasp control and grasp 
demonstration tasks, aperture opening time ratio (OTR) was 
computed as the time between movement start and the end of the 

aperture opening divided by movement time. Aperture transport 
time ratio (TTR) was computed as the time between the end of 
the aperture opening and the beginning of the aperture closing 
divided by movement time. The final waiting time (FWT) was 
computed as the time between the end of both aperture opening 
and forward TCP motion, and the beginning of aperture closing. 
When aperture closing started prior to the end of the forward 
TCP motion, the FWT was set as 0, i.e., the FWT is a non-negative 
measure. The scaled sagittal TCP transport distance (STCPD) 
was calculated as the difference between the TCP position at 
movement start and end, multiplied by the robot movement 
scaling-factor (which was 1:2.2 in the experimental apparatus).

For the assessment task, the final grip aperture (FGA) was 
computed as the aperture at the end of the movement. For the 
grasp control and grasp demonstration tasks the maximum grip 
aperture (MGA) was computed over all the aperture motion. For 
the grasp control task the initial grip aperture (IGA), and the FGA 
were also calculated. IGA was determined as the aperture after 
the end of the opening phase, when aperture speed additionally 
decreased to 3.3% of the global mean maximum aperture open-
ing speed where, the global mean maximum aperture opening 
speed was computed over all the movements of all the subjects 
who performed the grasp control task. This value was chosen 
to ensure the aperture was sampled after the end of the opening 
phase in a speed that is not related to object size. This is important 
for verifying that aperture variability is not affected by aperture 
velocity, which may lead to an indirect dependence on object size 
(Ganel et al., 2014; Ganel, 2015). FGA for the grasp control task 
was determined as the aperture at the end of both aperture open-
ing and the forward TCP motion (when aperture closing had not 
yet started), i.e., the aperture at the beginning of the FWT.

statistical analysis
Failure in the task was defined as failure to complete the task 
within the designated time window or, additionally in the grasp 
control task, if the robot collided with the object. Participants 
were excluded from the analysis if more than 10% of their move-
ments resulted in failure. Data distribution was symmetrical, and 
therefore, outliers were determined for each remaining partici-
pant using the interquartile range of the MGA.

A mixed model ANOVA analysis was conducted for move-
ment time with task (assessment, control, demonstration) and 
orientation (alongside, across) as between-subjects independent 
factors, and movement set, as the within-subject independent 
factor. A similar analysis was conducted separately for each task 
with orientation as the between-subjects independent factor, and 
movement set, as the within-subject independent factor for all 
other measurers (movement time, aperture OTR, aperture TTR, 
FWT, and STCPD) except for mean aperture opening speed. 
Mean aperture opening speed was analyzed for each task with 
orientation as the between-subjects independent factor, and 
movement set and object size as within-subject independent fac-
tors. A confidence interval was determined for the mean STCPD 
for facilitating comparison to the physically required distance. 
A linear trend analysis was conducted for the mean and SD of 
FGA, MGA, and IGA for each task. The analysis of the mean was 
conducted to verify that the participants were sensitive to object 
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FigUre 3 | Perceptual assessment and grasp control: representative motion profiles for tool center point motion (TCP) toward the object (dotted line) and for the 
grip aperture (full line). (a) Grasp control, across, object L (Participant 1). (B) Grasp control, alongside, object L (Participant 2). (c) Grasp control, alongside, object 
XL (Participant 3). (D) Assessment, across, orientation object M (Participant 4). For grasp control movements gray background marks aperture opening and closing 
durations. Dotted background marks motion forward duration.
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size. Similar to other experiments for assessing Weber’s law in 
grasping, participants were excluded from the analysis when 
linear trend analysis of the mean did not show a significant linear 
trend, i.e., analysis showed they were not sensitive to object size. 
For the perceptual assessment task, the analysis was based on 
FGA, for grasp control and grasp demonstration the analysis was 
based on MGA. The analysis of the SD was conducted to test for 
the adherence to Weber’s law. The coefficients used for the linear 
components of the trend analysis were: −2, −1, 0, 1, 2 for object 
sizes XS, S, M, L, XL, respectively. These are the coefficients com-
monly used for linear trend analysis for a set of size five.

resUlTs

Two participants in the grasp control task were excluded from 
the analysis as they had many failures and outliers (one alongside 
14%, one across 12%). All participants in the perceptual assess-
ment and the grasp demonstration group succeeded in complet-
ing the task. Six additional participants (perceptual assessment: 
one alongside and one across; grasp control: one across; grasp 
demonstration: one alongside and two across) were excluded 
from the analysis as statistical analysis showed they were not 
sensitive to object size (they did not show a linear relationship 
for MGA or FGA as a function of object size, with a significance 
threshold of 0.05) and, therefore, they had failed to comply with 
the experimental task. For the remaining participants (percep-
tual assessment: nine alongside, nine across, grasp control: 10 
alongside, nine across, grasp demonstration: 10 alongside, eight 
across), failure and outlier ratio ranged between 0 and 7%, with 

a mean ratio of 1.6% and they performed all tasks without major 
retractions (Figures 3 and 4).

Statistical tests showed that all measures in each task had 
similar values for both orientations and both movement sets; 
therefore, all subsequent analysis of the data from each task 
was conducted jointly for participants from both orientations 
and both movement sets. Mean values and SD for each task for 
movement time, aperture OTR, aperture TTR, FWT, STCPD, and 
mean aperture opening speed are presented in Table 1.

The mean movement time significantly differed between tasks 
[F(2,52) = 197.5, p < 0.0001]. Mean movement time for grasp 
control was longer (3.67 s) then grasp demonstration (1.45 s), and 
perceptual assessment (0.77 s). Mean aperture opening speed for 
grasp control and grasp demonstration was significantly larger 
for wider cylinders [grasp control p < 0.001, F(4,1852) = 18.78; 
grasp demonstration p < 0.001, F(4,1321) = 74.32].

Taking the length of the gripper’s fingers into account (90 mm 
finger length), the physical distance the robot has to transverse 
for performing the grasp successfully is 180–270  mm. That is, 
when the object is grasped at the tip of the gripper’s fingers, the 
required travel distance is 180 mm and when it is grasped near 
the wrist, the distance is 270  mm. For grasp control the 95% 
confidence interval of STCPD was 231.9–236.0 mm and for grasp 
demonstration, it was 271.7–280.6 mm.

Aperture motion in the grasp control task was fragmented and 
had a clear opening stage, a transport stage in which participants 
kept their fingers open, and finally a short closing stage. The 
forward motion of the TCP started with the aperture opening 
(Figures 3B,C) or after the end of the opening phase (Figure 3A). 
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FigUre 5 | Mean of means (SD marked by crosshair) for assessment final 
grip aperture (FGA), grasp control initial grip aperture (IGA), FGA, and 
maximum grip aperture (MGA), and grasp demonstration MGA.

TaBle 1 | Mean values for motion descriptors, SD values in parentheses.

Measure+ Perceptual 
assessment

grasp control grasp demonstration

MT (s) 0.77 (0.51) 3.67 (0.91) 1.45 (0.53)
MOS (mm/s) 61.7 (41.8) 109.0 (58.1) 149.7 (74.4)
OTR (%) 12 (9) 32 (17)
TTR (%) 80 (11) 40 (24)
FWT (s) 1.74 (0.82) 0.11 (0.19)
STCPD (mm) 234 (47) 276 (83)

+MT, movement time; MOS, mean aperture opening speed; OTR, aperture opening 
time ratio; TTR, aperture transport time ratio; FWT, final waiting time; STCPD, the 
scaled sagittal tool center point transport distance.

FigUre 4 | Grasp demonstration: representative motion profiles for tool center point motion (TCP) toward the object (dotted line) and for the grip aperture (full line). 
(a) Alongside, object L (Subject 1). (B) Across, object XL (Subject 2). (c) Across, object M (Subject 3). (D) Alongside, object L (Subject 4). Gray background marks 
aperture opening and closing epochs. Dotted background marks TCP motion epochs.
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Almost all of the trials (98.93%, 1,855 of the trials) included a 
significant FWT (mean 1.74 s), at the end of the transport stage, 
after the end of the aperture opening and TCP forward move-
ment, and before aperture closing. MGAs were found in various 
time points along the transport stage (Figure 3).

In the grasp demonstration task, grip formation had three 
stages: opening, transport, and closing in only 20% of the move-
ments (263 trials) (Figures  4A,B). Other movement trials had 
either two stages, where the transport occurred simultaneously 
with the opening (35%, 469 trials) or the closing (8%, 110 tri-
als) of the fingers (Figure 4C), or one stage where the transport 
occurred simultaneously with the finger opening and closing 
movements (36%, 483 trials) (Figure  4D). Many of the move-
ments (52.67%, 710 of the trials) had a distinguishable waiting 
time, yet waiting time (mean 0.11 s) was significantly smaller than 
for grasp control [p < 0.0001, F(1,35) = 211].

During grasp control, for all objects, mean MGAs were larger 
than mean FGAs which in turn, were larger than mean IGAs 
[p  <  0.0001, F(2,5592)  =  312.8] (Figure  5). The mean MGAs 
for grasp control were smaller than the mean MGAs for grasp 
demonstration [p < 0.001, F(1,35) = 15.188], and mean IGAs for 
grasp control were larger than mean FGAs for perceptual assess-
ment [p < 0.0001, F(1,35) = 31.34].

For grasp assessment, the SD of FGAs increased linearly with 
object size [p < 0.01, F(1,84) = 9.08] (Figure 6A). For grasp con-
trol, the SD of IGAs increased linearly with object size [p < 0.05, 
F(1,89) = 4.26], and the SD of FGAs had an approaching signifi-
cance linear trend with object size [p = 0.08, F(1,89) = 3.16], but 
the SD of MGAs did not change with object size (Figures 6C,D). 
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FigUre 6 | Mean of SD marked by crosshair. (a) final grip aperture (FGA), perceptual assessment. (B) maximum grip aperture (MGA), grasp demonstration.  
(c) initial grip aperture (IGA), grasp control. (D) MGA, grasp control.
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For grasp demonstration, the SD of MGAs had an approaching 
significance linear trend with object size [p = 0.09, F(1,84) = 2.93] 
(Figure 6B).

DiscUssiOn

As in direct conditions (Ganel et al., 2008), the motion of partici-
pants in the perceptual assessment task adhered to Weber’s law, 
i.e., the JND, as measured by the SD of FGA, increased linearly 
with the size of the object. Similar to pantomime-grasping condi-
tions (Jazi et al., 2015; Jazi and Heath, 2016), the motion of par-
ticipants during the grasp demonstration task adhered to Weber’s 
law, i.e., the JND, as measured by the SD of MGA, approached 
significance for the linear increase with the size of the object. The 
SD of MGA in the grasp control task did not linearly increase 
with the size of the object. Yet, movement fragmentation and the 
prolonged aperture transport stage in the grasp control task have 
most likely influenced MGA, and therefore, reduced the validity 
of the SD of MGA as an indicator for the JND. Accordingly, we 
argue that the lack of the linear trend for the MGA in the grasp 
control task cannot be considered as reliable indicator for the vio-
lation of Weber’s law. In contrast, IGA, the grip aperture after the 
opening stage, and FGA, the grip aperture after the end of both 
the opening and forward motion, are less influenced by fatigue 
and random movement fluctuations, and thus their SD provide 
a better indicator for JNDs. Our results indicate that the SD of 
IGA increased linearly with the size of the object and the SD of 
FGA approached significance for the linear increase with the size 
of the object. Therefore, the results of the current study show, for 
the first time that, unlike direct grasping, telerobotic grasping 
with transmission delays adheres to Weber’s law. This suggests 
that telerobotic grasping with transmission delays is mediated 

by different perception–action associations compared to direct 
grasping. The evidence for the use of different perception–action 
mechanisms points at an inherent lack of transparency. Such 
a lack of transparency may indicate an inefficient visuomotor 
control during telerobotic operation.

In a related study, by Milstein et al. (see text footnote 1), the 
authors report that telerobotic control without transmission delays 
violates Weber’s law. These findings indicate that the time delays 
may be the most probable cause of the disruption to the ability 
of the operator to effectively utilize dorsal-stream computations 
when performing grasping tasks. Although a clear grasp success 
indication was attained from the lifting stage following object 
grasping, the participants did not receive haptic feedback during 
trials, as under the system’s time delays such feedback was highly 
unnatural and confusing. Therefore, an additional disruption of 
natural grasp processing may have been contributed by the lack 
of complete haptic and visual sensory integration in conveying 
grasp success. Yet, this was also the case in Milstein et  al. (see 
text footnote 1), where violation of Weber’s law was found during 
telerobotic grasping without transmission delays.

The two additional mechanisms suggested as possible causes 
for the violation of Weber’s law in grasping, namely motion 
planning and biomechanical constraints, were not supported 
in the current study. While biomechanics may have influenced 
MGAs during the aperture transport stage, it clearly did not 
affect IGAs, or grasp control FGAs, i.e., the preparation of the 
finger aperture for grasping. Yet, biomechanics cannot be fully 
ruled out, as MGAs were larger than the IGAs and FGAs. As 
for motion planning for grasping, movement fragmentation 
and the similarity of results in both orientations support the 
assertion that, at least for remote manipulation with time delays, 
participants plan two motion components, reach and grasp 
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formation, and that the planned grasp formation is based on 
object size.

In almost all cases, the participants were able to complete the 
tasks successfully. Most of the participants were clearly sensitive 
to object size as shown by the linear increase in mean aperture 
value for MGA, IGA, and FGA. This is also strengthened by the 
demonstrated dependence of the mean opening speed on the 
object size, as predicted by Fitts’ law (Hoffmann, 1992). These 
results indicate that the experimental setup and protocol were 
suitably adapted to the capabilities of the participants.

The participants in the grasp demonstration task controlled 
the telerobotic system for a few minutes during the first, training 
stage of the experiment. This stage was constructed to familiarize 
the users with the capabilities of the system. During the train-
ing, they were exposed to the system’s transmission time delays. 
It is well documented that consistent exposure to delay leads 
to adaptation (Foulkes and Miall, 2000; de la Malla et al., 2014; 
Farshchiansadegh et al., 2015; Rohde and Ernst, 2016; Avraham 
et al., 2017; Leib et al., 2017). Demonstrated movement charac-
teristics were slower and larger (larger aperture opening, longer 
forward TCP motion) than required for successful task comple-
tion. Mean movement time was much longer (approximately 
twice) than movement time in natural reach-to-grasp motion 
(Jeannerod, 1984; Marteniuk et  al., 1990; Wallace et  al., 1990), 
and considerably longer than the movement time attainable by 
the robot. The spatial motion parameters, i.e., MGA and STCPD, 
were larger than the values required for performing task. It seems 
that participants have mistakenly assigned the temporal control 
error induced by the transmission delays to system dynamics. 
Identifying a lag in visual response as an increased system mass, 
force, or inertia is a well-known phenomenon (Smith, 1972; 
Vercher and Gauthier, 1992; Sarlegna et al., 2010; Honda et al., 
2013; Takamuku and Gomi, 2015; Leib et  al., 2017). In addi-
tion, compensating for inertial perturbations can be achieved 
by slowing down, which has been frequently found as a way to 
compensate for sensory delays, albeit being suboptimal (Rohde 
and Ernst, 2016). Regardless, the demonstrated movement pro-
files were easily adapted for successfully programing a robot to 
perform the task (Davidowitz and Berman, 2016).

The current research highlights the impacts of telerobotic 
system characteristics, specifically the transmission delay, on the 
operator’s motion. We show differences in adherence to Weber’s 
law between telerobotic operation with transmission delays, 
and operation without transmission delays, or direct grasping. 
Such differences may be related to differences internal percep-
tion–action mechanisms within the CNS. Telerobotic operation 
with transmission delays has been shown to lack transparency 

and to be more largely dependent on high-level cognitive control 
mechanisms than direct operation. In such conditions, telero-
botic operators are more likely to be subjected to higher cognitive 
loads, a potential factor which should be accounted for in the 
design of telerobotic systems.
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Switched systems are common in artificial control systems. Here, we suggest that
the brain adopts a switched feedforward control of grip forces during manipulation of
objects. We measured how participants modulated grip force when interacting with soft
and rigid virtual objects when stiffness varied continuously between trials. We identified
a sudden phase transition between two forms of feedforward control that differed in
the timing of the synchronization between the anticipated load force and the applied
grip force. The switch occurred several trials after a threshold stiffness level in the range
100–200 N/m. These results suggest that in the control of grip force, the brain acts as
a switching control system. This opens new research questions as to the nature of the
discrete state variables that drive the switching.

Keywords: phase transition, grip force, internal model, stiffness, uncertainty

INTRODUCTION

A driver switches between different gears, air conditioners switch between on and off states and
irrigation mechanisms switch between closed and open circuits. In control theory, hybrid systems
are systems with continuous and discrete states. The examples outlined above are switched systems,
a subclass of hybrid systems, that are defined as continuous time systems with isolated discrete
switching events (Liberzon, 2003). The discrete switching often occurs based on a threshold
value of another continuous variable, e.g., the velocity in the former example, the temperature of
the thermostat in the second and moisture in the last. Such control systems have many benefits,
including economy in control effort (Ben-Itzhak and Karniel, 2008; Karniel, 2011; Leib and Karniel,
2012) and the ability to stabilize otherwise unstable systems (Wicks et al., 1998; Liberzon, 2003;
Margaliot and Liberzon, 2006; Lin and Antsaklis, 2009).

Switching is also common in human control of movement. For example, human hand and
limb movements are intermittent (Craik, 1947; Navas and Stark, 1968; Neilson et al., 1988; Miall
et al., 1993; Doeringer and Hogan, 1998; Squeri et al., 2010; Gawthrop et al., 2014), they switch
between different types, such as phase and anti-phase cyclic movements (Kelso, 1984; Levy-Tzedek
et al., 2010, 2011) and neural activity states, such as bistability of Purkinje cells firing patterns upon
sensory input (Gross et al., 2002; Loewenstein et al., 2005; Yartsev et al., 2009). Several models
based on switching were proposed to describe control of standing (Bottaro et al., 2005; Asai et al.,
2009; Gawthrop et al., 2014), stick balancing (Gawthrop et al., 2013), and hand movements (Ben-
Itzhak and Karniel, 2008; Leib and Karniel, 2012). Intermittent control was proposed to be at least as
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efficient as continuous control (Loram et al., 2011). Here we
present evidence suggesting that the feedforward control of grip
force during object manipulation is a switched control system,
and we mention several candidate variables that correlate with
the switching and that are therefore worth exploring in future
investigations.

Many studies have used the modulation of grip force with
anticipated load force as an evidence for prediction in the
control of voluntary movement (Johansson and Westling, 1984,
1988). Moving an object held in precision grip requires the
anticipation of inertial and gravitational forces that may cause
its slippage (Flanagan et al., 1993; Flanagan and Wing, 1995).
The anticipatory adjustment of grip force generalizes to less usual
forms of load force including those dependent on object position
(Descoins et al., 2006; Danion and Sarlegna, 2007; Sarlegna
et al., 2010; Leib et al., 2015), velocity (Flanagan et al., 2003;
Nowak et al., 2004), modified gravitational forces (Augurelle
et al., 2003; White, 2015) and when forces are generated by whole
body actions such as walking or jumping (Gysin et al., 2008).
These predictive mechanisms also generalize to other forms
of grip configurations (Flanagan and Tresilian, 1994). Without
exception, when load forces are generated by a direct action of
the body on the environment, grip force and load force profiles
match closely as usually quantified by close-to-zero lags between
their peak values, or close-to-zero lags in peak cross-correlation
between them.

These studies present evidence for the anticipation of
smoothly varying, often self-generated, forces (soft forces).
However, in many natural object manipulation tasks, the
central nervous system must also adjust grip forces to deal
with impulse-like destabilizing forces induced by the nearly
instantaneous contact between an object and a hard surface
(stiff forces). Several studies also addressed the control of grip
force in impact-like tasks: when participants had to anticipate a
sudden increase of weight after dropping a ball in a hand-held
receptacle (Johansson and Westling, 1988; Bleyenheuft et al.,
2009), when opening a drawer to its mechanical stop (Serrien
et al., 1999), when hitting an object against a pendulum (Turrell
et al., 1999) or a surface (White et al., 2011, 2012) or in
a step-down task (Ebner-karestinos et al., 2016). A common
observation was the occurrence of a maximum of grip force
approximately 60 ms after peak load force that signed the impact.
A natural question occurred as to whether this delayed grip force
peak resulted from a feedback process. Recently, by studying
grip force in catch trials, where load forces are not applied,
experiments unambiguously demonstrated this behavior reflects
a feedforward process and is not a mere reflex response to a
perturbation signal (Bleyenheuft et al., 2009; White et al., 2011).
Nonetheless, this feedforward strategy contrasts sharply with
the zero-delay coupling observed between grip and load forces
when the latter vary smoothly. To sum up, past investigations
showed that grip force control in soft and stiff elastic force
fields exhibits different feedforward control strategies. This is
surprising since the underlyingmechanics is described by a single
stiffness parameter (k) that varies continuously.

Here, we set out to explore the nature of the transition
between these two different feedforward control strategies.

We studied grip force adjustment during repeated interactions
with virtual objects rendered as elastic force fields. In the
repeated interactions, the objects properties varied between
soft objects to rigid surfaces or vice versa, resulting in
systematically changing impact forces, either increasing or
decreasing. We hypothesized that if participants adopt a
continuous control strategy, when the stiffness will increase
(or decrease) continuously over trials, the grip force—load
force delay will continuously increase (or decrease) with respect
to the impact. Alternatively, if participants adopt a switching
control strategy, we expect to find a stiffness level around
which there will be a phase transition in the synchronization
between the modulation of grip force and the anticipated load
force.

MATERIALS AND METHODS

Participants
Eighteen right-handed adults (14 females and 4 males,
20–40 years old, mean = 24.3, SD = 10.2 years) participated
voluntarily in the experiment. All participants were healthy,
without neuromuscular disease and with normal or corrected
to normal vision. The experimental protocol was carried out
in accordance with the Declaration of Helsinki (1964), the
procedures were approved by the local ethics committee of
Université de Bourgogne and a written informed consent was
obtained from all participants. All participants were naïve as
to the purpose of the experiments and were debriefed after the
experimental session.

Apparatus and Stimuli
Participants sat in front of a virtual haptic environment with
their head on a chin rest (Figure 1A). A mini40 force-torque
sensor (ATI Industrial Automation, NC, USA) was mounted
on the handle of a robotic device (Phantom 3.0, Sensable
Technologies, RI, USA) to record grip force which is the normal
force applied by the thumb and the index finger on the transducer
(−Fz) and load force (

√
F2x + F2y ). The 3d positions and forces

of the robotic arm were controlled in closed loop at 1 kHz.
Participants looked into two mirrors that were mounted at
90 degrees to each other, such that they viewed one LCD screen
with the right eye and one LCD screen with the left eye. This
stereo display was calibrated such that the physical location
of the robotic arm was consistent with the visual disparity
information.

Experimental Procedure
Participants grasped the force sensor with a precision grip
(thumb on one side and index finger on the other side, Figure 1B
inset). To initiate a trial, participants moved their right hand,
displayed as a gray 0.5-cm sphere, into another gray starting
sphere (1 cm diameter), displayed at body midline and at chest
height. Then, a green target rectangle (12 cm width, 1 cm
height) appeared 15 cm above home position (Figure 1B).
Participants were instructed to move the cursor straight upward
to touch the target and bring it immediately back to home
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FIGURE 1 | Description of experimental setup and procedures. (A) View of the virtual reality stereoscopic display. A participant is seated and holds the transducer
with his right hand. The vertical yellow arrow that points downward represents the pushing force operated by the robotic device. (B) A gray sphere was moved
toward a green target through a parameterized elastic force field. The gray gradient represents the magnitude of the force field for a given stiffness. It is low far from
the target (bright gray) and increases when vertical position approaches the target (dark gray). Left: feedback of achieved peak velocity. The right inset depicts the
force sensor attached to the end of the robot handle held in precision grip. (C) Examples of force-position trajectories of five elastic force fields parametrized by five
pairs of stiffness levels and force onset position. Force onset occurred between 3 cm and 14.5 cm above home position. The steeper the slope the stiffer the force
field. The circle highlights the second order interpolation between a null force field and a linear elastic force field. (D) Structure of “Ascending” and “Descending”
blocks, where stiffness increases (red) and decreases (blue), respectively. Catch trials, for which the stiffness is set to 0 N/m, are positioned at the bottom of the trace.

position without stopping at the reversal point. No instructions
were provided regarding how they had to adjust grip force.
To avoid large trial-to-trial variability in movement kinematics,
after each trial, a line was displayed at a height proportional
to peak velocity together with lower (45 cm/s) and upper
(55 cm/s) bounds displayed as black horizontal segments. The
color of the line was red if peak velocity was outside the
interval or green in successful trials (Figure 1A). Participants
adjusted their movement such that peak velocity fell in that
interval.

The target was located inside an elastic force
field F that was haptically rendered according to

F =
{

0, y(t) < y0
k (y(t)− y0), y(t) ≥ y0

, where y0 is the boundary

of the object and k the stiffness value. Such force field emulates
a one-sided spring-like object that only resists compression.
The more the cursor approached the target, the more effort
was required to move it to the target (see gray gradient in
Figure 1B). The stiffness of the force field and its onset were
varied systematically such that force fields with higher levels of
stiffness also onset further along the movement progression (as
depicted in Figure 1C for five different force fields). The weakest
elastic force field was generated when force onset occurred at
3 cm and linearly ramped up to a maximum force of 4 N along
the 12 remaining cm (Figure 1C, k = 4/0.12 = 33 N/m). Similarly,
the strongest force field was obtained when force onset occurred
0.5 cm below the target’s lower surface and ramped up to a
maximum force of 14 N (Figure 1C, k = 14/0.005 = 2800 N/m).

Force onset (y0) and stiffness (k) pairs, were parameterized
independently trial by trial. The transitions between zero force
outside of the elastic force field and non-zero force was smoothed
with a second order polynomial interpolation (Figure 1C, circle)
to avoid mechanical vibrations and overheating of the robot
motors, particularly in stiff trials. Consequently, movements
were felt as natural and continuous.

The recording session consisted of 10 blocks with
45 movements in each block. In the first five blocks, the
stiffness of the elastic force field increased during 41 trials and
plateaued for the last four trials (Figure 1D, red ‘‘Ascending’’
blocks). Force onsets were linearly spaced between 3 cm and
14.5 cm by steps of exactly 0.2875 cm. In the last five blocks,
force field stiffness decreased over trials (Figure 1D, blue
‘‘Descending’’ blocks). Ten participants started the experiment
with the ‘‘Ascending’’ blocks and eight participants started
the experiment with the ‘‘Descending’’ blocks. In every block,
six trials (13%) were randomly chosen to be catch trials in which
the stiffness and onset of the elastic force field were set to zero,
effectively vanishing the force field (Figure 1D, green disks).
Their order was counterbalanced between participants. In the
remaining 39 trials, the natural dynamics remained intact.

Data Processing and Statistical Analyses
Position and grip forces were recorded at 500 Hz. Grip force rate,
velocity and acceleration were obtained using a central-difference
algorithm and smoothed with a zero phase-lag autoregressive
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filter (cutoff 20 Hz). All trials were aligned to movement onset,
defined as the time when velocity went above 3 cm/s during
at least 100 ms. We also recorded temporal occurrences and
values of peak acceleration, grip forces and vertical force field
(minmax function in matlab and visual check). The last one
corresponded to the time of impact. Finally, we extracted the
value of grip force rate at expected force onset. We programmed
the trial sequences in such a way to record what stiffness would
have been generated in catch trials. Therefore, we know the
theoretical stiffness and the corresponding force profile (that is
not rendered in catch trials). This measure provides an estimate
of feedforward mechanisms of grip force and allows direct
comparison between normal and catch trials. To compare real
and catch trials, we grouped trials of the same block in sevenmini
blocks of five trials each (except the first and last mini blocks
with 10 trials each). That way, every mini block had both real
and catch trials. Because stiffness spanned multiple orders of
magnitudes, we sometimes used logarithmic scale to plot these
values.

We verified that starting with five ‘‘Ascending’’ blocks
(N = 10) or five ‘‘Descending’’ blocks (N = 8) did not
influence any of the above variables (all F(1,17) < 1.2,
p > 0.312). We therefore pooled these two groups together.
Quantile-quantile plots were used to assess normality of the
data. A three-way ANOVA was conducted on the above
variables to assess the effects of stiffness (Mini block, 1–7),
Block condition (‘‘Ascending’’ vs. ‘‘Descending’’) and Type
of trial (‘‘Real’’ vs. ‘‘Catch’’). Paired t-tests of individual
participant means or bootstrap procedures were used to
investigate differences between conditions on the above
variables. Significance level was set to alpha = 0.05. Data
processing and statistical analyses were done using Matlab (The
Mathworks, Chicago, IL, USA). Linear fits were calculated
with the polyfit function. Partial eta-squared values are
reported for significant results to provide indication on effect
sizes.

RESULTS

Participants grasped a force transducer attached to the handle
of a haptic device and produced vertical arm movements to
touch a virtual target situated 15 cm above home position
(Figure 1A). The robotic device generated a resistive vertical
elastic force field that was parameterized by the stiffness of
the field. As trials progressed, the stiffness of the force field
either increased or decreased between two extremes, and force
onset was shifted further from or closer to movement onset,
depending on block condition (‘‘Ascending’’ and ‘‘Descending’’,
respectively, Figure 1C). Force fields with the lowest stiffness
were similar to a soft elastic force fields that are typically used
in other studies (Descoins et al., 2006). In contrast, the force
fields with the highest stiffness resembled collisions between the
hand-held device and a rigid surface (White et al., 2011, 2012). To
measure the feedforward grip force adjustment, we interspersed
catch trials, in which visual information was available but no
forces were applied. We explored the transition in grip force
control between these two extremes.

FIGURE 2 | Averaged traces corresponding to the stiffest (left column) trials
and softest (right column) trials across blocks and participants. Top to bottom:
vertical position, vertical acceleration, load force, grip force and grip force rate
are depicted as a function of time. Black and green lines correspond to real
and catch trials, respectively. All traces are aligned with peak of impact
(vertical dashed cursor across panels, time 0). Cursors for the grip force traces
are positioned at their respective maximum. The lags calculated between
peaks of grip and elastic forces illustrate the difference between high-stiffness
(lag = 40 ms, SD = 6 ms) and low-stiffness (lag = 4 ms, SD = 6 ms)
conditions. Error shade areas correspond to SEM. Traces are not normalized.

Grip Force Is Different When Interacting
With High-Impact and Low-Impact Elastic
Force Fields
Figure 2 illustrates trials in the stiffest condition (left column,
solid line) and in the softest condition (right column, solid line)
averaged across blocks and participants in a force field trial (black
line) and in a catch trial (green line). This figure highlights
how the trials differ between the two extreme conditions. In the
high-stiffness condition, the vertical position increased until the
target was touched at 15 cm and then decreased to return to
the home position. Participants achieved mean peak velocities
of 49.9 cm/s (SD = 8.3 cm/s), within the prescribed 45–55 cm/s
interval. The elastic force field was null until the position of the
hand reached the boundary of the field at x = 14.5 cm and then
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FIGURE 3 | Grip force is adapted to stiffness. (A) Distribution of grip force maximum (averaged across participants) in function of ln(stiffness) in “Ascending” (red
trace) and “Descending” block conditions (blue trace). The dashed lines are the best fourth order polynomial fits of each series. Goodness of fit: r2 = 0.72 in
“Ascending” condition and r2 = 0.84 in “Descending” condition. The vertical cursors are positioned at peak grip force (“Ascending”: 5.07; “Descending”: 4.89, which
correspond to stiffness of 159.7 N/m and 133.2 N/m, respectively). Error bars are between participants SE. (B) Individual normalized plots showing the same
behavior at the participant level (except for participant 14 in the “Descending” condition).

increased up to 13.75 N (middle row, black line). The vertical
pushing force increased when the cursor approached the target
and decreased on its way back to the starting position. Grip
force increased first to counteract the inertial force (Figure 2,
Acceleration row) induced by accelerating the mass of the device
and exhibited a first local peak synchronized with a local peak
in the load force. Then, after a small dip, grip force increased
again in anticipation of the contact. This is also reflected by
positive grip force rates for 200 ms before impact (bottom row).
However, in this stiffness condition, peak grip force was clearly
delayed by 40 ms (SD = 6 ms) after the peak of the elastic force
field.

In the low-stiffness trials (Figure 2, right column), the
position and acceleration trajectories resembled those for
the high-stiffness trials. However, the elastic force field was
smoother: it increased for 400 ms up and reached a 4-N peak.
Grip force and grip force rates paralleled the traces observed in
the stiff condition with one notable difference: peak grip forces
were synchronized with the impact, both in real and catch trials
(mean = 4 ms, SD = 6 ms).

Motor Planning Is Similar Between Real
and Catch Trials
It is important to stress that the delay between grip force peak
and load force peak observed in high-stiffness trials is not a

consequence of a feedback control, but rather a feedforward
control that includes a delay. We observed the same behavior
in catch trials without the presence of the resistive elastic forces
(Figure 2, green lines). The green vertical line is positioned at
the time when peak elastic force would have occurred given the
vertical position. In particular, grip force peaks were delayed by a
similar amount relative to impact or expected impact in both real
and catch trials.

Due to the absence of resistive forces, different kinematic
profiles after t = 0 (the anticipated onset of the perturbation)
were induced, and the peak position overshot the target.
Moreover, in these trials, participants expected a force ramp
but did not feel it. It could be argued that these errors
signals could have driven a feedback adjustment of grip
force rather than reflect a feedforward strategy even in catch
trials. We conducted complementary analyses to show that
several parameters characterizing motor planning were the same
between real and catch trials.

First, we extracted the value of grip force rate, a reliable index
of feedforward grip force control (White et al., 2008), at the
time of expected force rise. A t-test failed to report a difference
between real and catch trials on grip force rate (t17 = 0.5,
p = 0.642).

Second, we examined the trial-by-trial variations, and verified
that grip force rate in catch trials were not statistically
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FIGURE 4 | Grip force control switches for certain stiffness values. (A) Average lags across participants between grip force peak and impact as a function of the
natural logarithm of stiffness. The same lags are plotted for individual participants in the lower panel (B). The lags vary with stiffness. Positive values of latencies mean
that grip force peaks lag impacts. Black cursors are positioned at the ln(stiffness) identified from grip force peaks that correspond to the average between the
“Ascending” and “Descending” conditions. Error bars are SEM.

different from grip force rate in the real trial that immediately
preceded or succeeded them. To do so, we defined two
additional variables by subtracting grip force rate in the
previous (Rt−1) or next real trial (Rt+1) from grip force
rate in the catch trial (Ct) between them (Ct − Rt−1 and
Ct − Rt+1). The ANOVA reported no difference for Ct − Rt−1
(Mini block: F(6,238) = 1.8, p = 0.109; Block condition:
F(1,238) = 0.7, p = 0.414) and for Ct−Rt+1 (Mini block:
F(6,238) = 0.5, p = 0.821; Block condition: F(1,238) = 1.0,
p = 0.329).

Figure 2 shows that acceleration traces diverge around the
perturbation induced by the elastic force field. Acceleration
signals also reflect the output of the motor plan. We conducted
a last analysis to quantify how acceleration profiles differed
between catch and real trials. To do so, we considered mini
blocks because they included real and catch trials. We averaged
acceleration traces in real trials and in catch trials separately, per
participant and per mini block. Then, we ran an independent
iterative t-test that compared values of acceleration between both
trial types, from trial onset to maximum elastic force (time = 0),
and by 20-ms bins. This allowed us to extract the exact time
point from which both acceleration traces diverged significantly
for at least 150 ms (p < 0.05). We identified a divergent point

unambiguously on every averaged acceleration profile in mini
blocks (all t17 > 4.1, all p < 0.001, all η2p ≥ 0.56). Acceleration
values between catch and real trials exhibited a divergent point
some 30 ms after force onset in every stiffness condition. This
analysis clearly shows that motor planning, in terms of its
consequences measured through acceleration, is not affected by
trial type.

Based on these analyses, we conclude that in both trial types:
(1) motor planning was similar; and (2) grip forces is adjusted on
a feedforward manner.

Grip Force Switches Between Different
Control Strategies
At the individual trial level, grip force always exhibited a clear
peak over time (see Figure 2). Interestingly, the distribution
of grip force peaks themselves as a function of stiffness of
the elastic force field also reached a global extremum, both
in ‘‘Ascending’’ and ‘‘Descending’’ blocks (Figure 3A, average
across participants). This observation also held in individual
participants except for participant 14 in the ‘‘Descending’’
block condition (Figure 3B). To compare these global grip
force extrema as a function of stiffness, we fitted polynomial
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FIGURE 5 | Grip force is synchronized with the inertial, acceleration-dependent, force whatever the stiffness values. (A) Average lags across participants between
the first local grip force peak and the acceleration shortly after movement onset as a function of the natural logarithm of stiffness. The same lags are plotted for
individual participants in the lower panel (B). The lags are distributed around zero. Error bars are SEM.

models to the data averaged across participants (Figure 3A,
dashed lines) or for each participant (Figure 3B, dashed
lines). Since inter-participant variability was large, we adopted
a bootstrap method to test whether grip force peaks of
participant fits occurred at the same stiffness level between
‘‘Descending’’ and ‘‘Ascending’’ block conditions (sample = 18,
repetitions = 10,000, SD = 0.18). The 95%-confidence interval
(CI) of the difference between both population means was
0.08–0.77, excluding zero (at p = 0.014). Hence, we conclude
that the extremum for the ‘‘Descending’’ block condition
occurred at lower stiffness values than in the ‘‘Ascending’’ block
condition.

Another strategic change in grip force control is illustrated
in Figure 4. The difference between times of grip force
peaks and times of elastic force peaks is depicted as a
function of the natural logarithm of stiffness (no significant
difference between block conditions, t17 = 0.04, p = 0.973),
for all participants together (Figure 4A) or individually
(Figure 4B). The individual plots in Figure 4B reveal that
most of the participants had a prominent transition in the
dependency of the time difference as a function of natural
logarithm of stiffness around a threshold value. Indeed,
the delay seems to linearly increase from negative (leading

latencies) and then plateau to a positive value (lagging
time).

To reliably quantify this effect, we first extracted slopes
of the linear fits of the lag in function of ln(stiffness)
on individual participant data. Note that there was large
inter participant variability in the quality of the change.
Therefore, our analysis focused on determining the statistical
significance of the difference in the slopes rather than on
the analysis of the average behavior in each stiffness range.
We partitioned the data in a low-stiffness and high-stiffness
subset, according to the individual thresholds (averaged between
the two block conditions) estimated as the value ln(stiffness)
for which peak grip force occurred (see Figure 3B). We
then statistically tested whether slopes differed between both
stiffness conditions. To do so, we defined a random variable
as the absolute difference of slopes between low and high
stiffness conditions and bootstrapped that statistics (sample = 18,
repetitions = 10,000, SD = 7.14). The CI was calculated by
finding the interval containing 95% of the data (2.5 and
97.5 percentiles). As previously, we reasoned that if zero belonged
to the 95% CI, then, the means could not be deemed as
being different. In contrast, if zero is found outside the CI,
then, slopes are different at p < 0.05. The results of our
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analysis show that slopes were different (p < 0.001) between
low and high stiffness conditions (CI: 10.5–38.3). The Akaike
information criteria (AIC) confirmed that a piecewise linear
model describes our experimental data better than a single
linear regression, despite the larger number of free parameters
in the former. Indeed, the AIC for the piecewise regression
is smaller than the AIC for the single regression both in
‘‘Ascending’’ (222.8 < 235.5) and ‘‘Descending’’ conditions
(219.8< 272.41).

In agreement with previous studies, grip force exhibited
a first local peak that coincided with a peak of acceleration
that occurred early after movement onset. In contrast to the
observation of the change in the lag of synchronization of grip
force with load force for the elastic load force, Figure 5A shows
that the delay of the first, inertial, peak varied around zero
on average for all participants and held true without exception
on a participant basis (Figure 5B). The ANOVA confirmed
this observation and failed to report any effect on the lag
between these two peaks (all F < 0.2, all p > 0.551). A t-test
revealed its value was not different from zero (mean = −2.3 ms;
t34 = 0.3, p = 0.365). This highlights that the switching
strategy was specific to the interaction with the elastic load
force and the impact that characterized this interaction rather
than a general change in lag between grip force and load
force.

The system responds by switching the grip force lag to
a different control strategy following a monotonic change in
the environment. We hypothesize that this switch is triggered
by a change in the value of a discrete variable that indicates
the need for a qualitative change in the behavior of the
system. One immediate candidate for such variable is the
crossing of a stiffness threshold. Indeed, the switching in both
increasing and decreasing series occurs around k = 147 N/m.
However, crossing a stiffness threshold is not the only possible
switching variable. In previous investigations, acceleration was
shown to be a key information to perform tasks involving,
for instance, eye-hand coordination (Binsted and Elliott, 1999;
Helsen et al., 2000; White et al., 2012). Interestingly, we found
that the stiffness threshold that we identified previously marked
the transition between positive and negative accelerations
at the time of force onset, that is, whether the hand of
the participant was accelerating or decelerating when forces
started acting on the hand (Figure 6). We identified, for each
participant, the switch in the acceleration sign at impact, and
plotted the switch in strategy as a function of the switch
in the sign of acceleration at impact. The correlation was
statistically significant across participants (r = 0.36, p = 0.030).
This highlights that a correlation exists at a participant-level
between these two variables, which however, does not imply
causation.

DISCUSSION

We set out to understand the phase transition between two
distinct grip force control strategies during tool-mediated
interaction with elastic force fields. Participants interacted with
springs with increasing or decreasing stiffness between two

FIGURE 6 | Hand acceleration at force onset (or expected) in function of
natural logarithm of stiffness for Ascending (blue) and Descending trials. The
horizontal black line is positioned at sign(acc) = 0. The two vertical cursors are
positioned at the thresholds identified on the distribution of grip force peaks.

values and controlled grip force according to the expected
dynamics in all trials, including in zero-stiffness catch trials.
Peak grip force reached a maximum for an average stiffness of
147 N/m. Participants exhibited different qualitative behaviors
related to the lag between peak grip force and elastic force
in function of stiffness. For most of them, the lag increased
with stiffness upon a certain threshold. Based on these
observations, we suggest that the central nervous system acts
as a hybrid controller that is characterized by continuous
and discrete states and operates a phase transition upon a
specific stiffness value, potentially triggered by the stiffness
value, the sign of the acceleration at the time of the initial
contact with the elastic force field, or other candidate switching
variables.

The Brain Modulates the Grip Force Lag to
Optimize Stability
Some tasks are quintessentially complex, nonlinear and
high dimensional, leading to postural instabilities and task
uncertainties such as when we make contacts between two
objects. Our results support a view according to which the
central nervous system switches strategy in grip force control
in the face of locally unstable tasks. Participants unconsciously
modulate the lag between peak grip force and (expected, in
catch trials) peak elastic load force. Stiff trials produce larger
uncontrollable transitory forces (see Figure 6 in White et al.,
2011). Our data is in line with the idea that long latencies
are better suited to trials for which instability is largest.
Indeed, as we showed previously, long latencies allow the
viscoelastic properties of the skin to dissipate more energy
than short latencies, for which the hand is stiffer (White
et al., 2011). In other words, the latency is proportional to
instability. Consistently, it was suggested that increasing the
delay in a control loop may, in some cases and for certain
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values, improve stability (Malakhovski and Mirkin, 2006).
Consequently, in stiff trials, grip force is smaller at the time
when perturbations are maximal than a few tens of millisecond
after. In addition to the ability to dissipate energy, lowering
the forces has two other positive effects. First, the perturbing
forces attributable to signal-dependent noise also decrease with
lower forces (Jones et al., 2002; Hamilton et al., 2004). Second,
excessive co-activation is energy greedy (Foley and Meyer,
1993; Sih and Stuhmiller, 2003). These grip force adjustment
differences are happening within the range of grip forces that
protect the participant from object slippage, as evidenced by
the fact that none of the participants ever lost grip of the
object.

This latency was not constant. Prior studies observed
this latency without attempting to experimentally control it
(Johansson and Westling, 1988; Johansson et al., 1992; Serrien
et al., 1999; Turrell et al., 1999; Bleyenheuft et al., 2009), and
found values consistent with the maximal latency (75 ms)
we observed in stiff interactions between a hand-held object
and a surface (White et al., 2011). In a recent study, we
failed to alter that latency by changing stiffness of a virtual
surface and direction of movement (White et al., 2011). This
was likely the case because the stiff and soft targets were
implemented with 1200 N/m and 240 N/m virtual springs,
which were both above the stiffness values encountered here.
However, in a different study, we observed modulation of
latency during profound gravitational changes induced by
parabolic flights that challenged participants by confronting
them with fundamental environmental uncertainties (White
et al., 2012).

Switching Is Stiffness-Dependent
Perhaps the most striking observation is that the central nervous
system switched between grip force strategies around a certain
individual threshold identified through three independent
observations. First, it marked the average stiffness at which
grip force peaked (Figure 3B). Second, the piecewise linear
fit had a remarkable point close to this stiffness (Figure 4A).
Third, hand acceleration at force onset reversed its sign
around that threshold. It is also worth reporting that a few
hundreds of milliseconds before impact, in the very same trial,
grip force exhibited a local peak that was synchronized with
the small yet significant load force maximum due to inertia
(Figures 5A,B). When comparing Figures 4A,B, 5A,B, it is
very clear that participants predictively control grip force very
differently when they are confronted to inertia or impacts. A
more subtler adjustments also hold for low and high stiffness
interactions.

Interestingly, while the lag was not statistically different
between the two block conditions, there were two well identified
global maxima in the peaks of the grip force as a function
of stiffness. There is a hysteresis in the stiffness level at
which the grip force is maximal: the maximum in the grip
force appears at a higher level of stiffness in the ascending
series than in the descending series. Such hysteresis behavior
does not appear in the lag between grip force and load

force. This suggests that during repeated interactions with
the elastic force fields, the motor system identifies crossing
a stiffness threshold, and switches the feedforward control
strategy. Then, once evidence for having crossed the threshold
is available and the success of the change in the strategy
accumulates, the system reacts with a decrease of the magnitude
of the grip force peak. The presence of a hysteresis is a
signature of some inertia in the mechanisms that drive the
switching.

The switching in grip force control strategy might be
coupled with another example of a switch between two
dichotomies in interaction with elastic force fields: during
tool-mediated interaction with elastic objects, the motor system
can choose between controlling movement trajectories to
controlling interaction forces. Previous studies suggested that
stiffness (Chib et al., 2006; Mugge et al., 2009) and stiffness
discontinuity crossing (Nisky et al., 2008) lead to different
weighting of position and force control in manual interaction.
When participants interact with low-stiffness force fields, they
control kinematics, and estimate the stiffness of the elastic
field based on integration of position information with sensed
forces. With increasing stiffness, the reliability of stiffness
estimation deteriorates in accordance with Weber’s law (Jones
and Hunter, 1990). When participants interact with elastic force
fields with higher stiffness (Chib et al., 2006; Mugge et al.,
2009), or more frequently cross stiffness discontinuity (Nisky
et al., 2008), they favor control of interaction forces rather than
the control of kinematics. When this transition happens, the
central nervous system might start estimating the compliance
of the elastic field (the ratio between the displacement and
the force that caused it) rather than its stiffness (the ratio
between the force and the displacement that caused it), resulting
again in reliable estimates. Such view of different estimation
is consistent with our observation that peak grip forces are
largest around the transition and are smaller for very high
or very low stiffness levels. It is also strikingly consistent
with the threshold of around 100–200 N/m in the stiffness-
dependent weighting of force and position feedback (Mugge
et al., 2009).

If indeed a stiffness threshold is used as a switching variable,
to use this information in control of robotic interfaces, it is
important to model how the brain estimates stiffness. Various
computational models were proposed, including: peak force
divided by perceived penetration (Pressman et al., 2007, 2008,
2011), or regression of force over position or position over
force data (Nisky et al., 2008, 2010, 2011). Another proposed
measure is Extended Rate Hardness, a measure of the perceived
hardness of a surface based on rate of force change and
penetration velocity (Han and Choi, 2010). Skin deformation
accompanying the probing also likely plays a role in perception
of stiffness (Quek et al., 2014, 2015; Farajian et al., 2017). Here,
we do not attempt to spill more light on this matter, but it is
likely that the estimated stiffness is used in the process of the
switching.

We investigated the behavioral aspects of the switching and
its potential underlying switching variable. The question remains
open which neural structures operate this switching. In previous
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studies, we have shown that the left supplementary motor area
(SMA) is a crucial node in the network that processes the
internal representation of object dynamics (White et al., 2013)
leaving this neural structure as a potential candidate to host
the decision variable that controls the phase transition. We also
showed that the posterior parietal cortex (PPC) is involved in
the perception of stiffness (Leib et al., 2016). Other candidate
areas may include the cerebellum and the insula. Several studies
reported bistable states of Purkinje cells in the cerebellum
that may serve as a switching trigger (Yartsev et al., 2009).
Finally, the insula seems to be involved in switching between
the executive control and default networks (Sridharan et al.,
2008).

Finally, it is worth pointing out that our results are apparently
at odd with the fact participants cannot switch control policies
in reaching movements between two opposing viscous force
fields (Karniel and Mussa-Ivaldi, 2002). The occurrence of each
force field was cued. The authors suggested that competition
occurred between two different internal models that could not
co-exist in the brain. In our experiment, switching occurred
while the nature of the force field varied predictively as well.
However, its variations were far more continuous than in the
Karniel and Mussa-Ivaldi experiment. Therefore, we suggest that
in our paradigm, the brain could rely on a single internal model
and re-estimate the upcoming stiffness value based on recent
history. As shown, the switched behavior took some trials to
really occur after the thresholds were broken. Instead, in the
Karniel and Mussa-Ivaldi study, the difference between force
fields were more contrasted, making it difficult to re-estimate the
force field based on a single parameter that took very different
discrete values. We think that switching or learning is possible
if the nature of the force field changes continuously and gently,
whatever the complexity of the changes (for instance, we showed
recently that participants could immediately adapt grip force
in new gravitational phases generated by a centrifuge (Barbiero
et al., 2017; White et al., 2018)). In addition, we previously
found that the control of grip force may be characterized by
different control policies than perception or manipulation—for
example, during interaction with elastic force fields, delay causes
bias in perception but not in the control of grip forces (Leib
et al., 2015). Moreover, and perhaps closer to our current study,
the predictive control during lifting of series of objects with
increasing mass (Mawase and Karniel, 2010) was fundamentally
different from during reaching with perturbing force fields with
a series of increasing viscosity parameters (Mawase and Karniel,
2012).

Limitations and Perspectives
We should however also underline two limitations of the
present study. First, we failed to explain these results within
a fully coherent, average behavior. Instead, we found some
idiosyncratic changes in strategy. This new question should
be addressed in a follow-up experiment aiming at identifying
what caused these switches. Second, our data exhibit large
variability, which is inevitable when studying the interaction
between mechanical interactions and physiological processes.
Future investigations should improve the technical design of

these experiments. Our contribution paves the way toward using
switched systems theory in modeling human motor control and
opens new research questions as to the nature of the discrete
state variables that drive the switching between different control
strategies.

How can these results be employed in the control of
robotic systems? Identifying human control strategies in
object manipulation is crucial for developing efficient control
algorithms for a variety of human-operated robotic applications
ranging from tele-operated surgical robotics to smart prostheses.
Modulation between grip force and load force in human
grasping allows for securing held objects against slippage without
applying excessive forces. This modulation is impossible in the
absence of force feedback (Gibo et al., 2014). Therefore, in
state of the art tele-operation robot-assisted surgery systems,
users apply unnatural grip force control strategies (Gibo et al.,
2014), likely leading to suboptimal performance. Adding some
form of force feedback about the load force of manipulated
objects contributes to natural coordination between grip
force and load force. Our current results suggest that the
force feedback that is presented to the user should be
designed in a manner that the switching strategy can be
employed. If this is impossible due to limited tele-operation
control gains, the tele-operated gripper can incorporate local
smart switching in grip force control. Similar ideas may
be implemented in next generation prostheses to facilitate
natural manipulation of objects. Future studies are needed to
develop such human-inspired controllers and test their potential
benefits compared to state of the art grippers and prostheses
controllers.

To conclude, we show here evidence that the central nervous
system adopts qualitatively different grip force controls to cope
with impact-like environments. Our results show that the central
nervous system acts as a switching system. Our findings may
have very practical implications since human-machine interfaces
nowadays involve haptic feedback, but many applications of fine
object manipulation are missing haptic feedback, such as robot-
assisted surgery and prosthetics.
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This review reports the principal solutions proposed in the literature to reduce the

complexity of the control and of the design of robotic hands taking inspiration from

the organization of the human brain. Several studies in neuroscience concerning the

sensorimotor organization of the human hand proved that, despite the complexity

of the hand, a few parameters can describe most of the variance in the patterns

of configurations and movements. In other words, humans exploit a reduced set of

parameters, known in the literature as synergies, to control their hands. In robotics, this

dimensionality reduction can be achieved by coupling some of the degrees of freedom

(DoFs) of the robotic hand, that results in a reduction of the needed inputs. Such coupling

can be obtained at the software level, exploiting mapping algorithm to reproduce human

hand organization, and at the hardware level, through either rigid or compliant physical

couplings between the joints of the robotic hand. This paper reviews the main solutions

proposed for both the approaches.

Keywords: human hand synergies, robotic hand control, mapping strategies, human motor control, hand

1. INTRODUCTION

In the last decade, several roboticists have tried to replicate human hand motor control to possibly
simplify the design and actuation of robotic hands. The neuroscientific foundation supporting this
approach is the demonstration that, despite the intricate nature of the human hand, a reduced
number of variables is able to explain a large part of the variance in patterns of the human hand
configurations and movements, as pioneered by Bernstein (1966) and later reported by Santello
et al. (1998). These variables are usually referred to as postural synergies and can be interpreted
as a correlation of DoFs in frequently used patterns, Santello et al. (2016). Several experimental
approaches, ranging from recording of electromyography and cortical activities to the studies of
finger movement kinematics, have investigated the neural control of the hand. The results confirms
that the simultaneous motion of the fingers underlay to coordinated patterns that reduce the
number of independent DoFs to be controlled. The idea that particular arrangements of muscular
activities could compose a base set analogous to the concept of basis in the theory of vector spaces
was introduced by Easton (1972). Todorov et al. (2005) proposed an optimal stochastic control
based on the same geometrical system of redundancy resolution.

Santello et al. (1998) investigated the postural synergies hypothesis by recording a large data set
of grasping poses from subjects that were asked to mime grasps of a set of 57 objects. A Principal
Components Analysis (PCA) of this data reported that more than 80% of the variance could be
accounted with the first two principal components, whereas the first three components explained
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up to 90% of the variance in the data. This suggests that a
much lower-dimensional subspace of the hand DoFs space can
efficiently characterize the recorded data. In other words, instead
of controlling the single 20 DoFs of a human hand, only two or
three joints coupling leading to coordinated motions of the hand
could be used to achieve many of the grasps used in everyday
life. These ideas can be exploited in robotics, as they introduce a
novel and principled manner to simplify the design and analysis
of hands different from other sometimes arbitrary and more
empirical design attempts.

In this work, the main approaches used to design and control
robotic hands exploiting the synergy concept are reviewed. First,
several robotic hands mechanically designed to resemble human
hand synergies are described in section 3. Then, in section 4, the
principal mapping algorithms used to synergically control multi-
DoFs hands are introduced. Finally, in section 5, a discussion on
the current work and future direction is reported.

2. HAND SYNERGIES FROM
NEUROSCIENCE TO ROBOTICS

Fully actuated robotic hands have been extensively studied and
several tools for modeling and control are available in literature,
as reported by Murray et al. (1994) and Prattichizzo and Trinkle
(2016). However, to fully exploit the wide dexterity of multi-DoF
hands with independent actuated joints it is necessary to design
sophisticated control strategies that often represent the main
roadblock to the plain usability and efficiency of robot hands
in real-world scenarios. Among the several attempts to reduce
robotic hand control parameters, the one based on synergies is
attracting a critical mass of researchers. The main reason behind
this diffusion resides on the neuroscientific results reporting
that, between other possible choices for the basis to describe the
hand configuration, most of the hand grasp posture variance is
explained by the first two synergies, as reported by Santello et al.
(1998).

A direct interpretation of these results would implicate that
the robotic hand joint configuration vector q ∈ ℜnq , where
nq is the number of joints in the hand, could be represented
as a function of fewer elements, collected in a synergy vector
z ∈ ℜnz with nz ≤ nq. As formalized by Bicchi et al. (2011)
and Prattichizzo et al. (2013), indicating with q̇ the hand joint
velocities, we can define the linear map q̇ = S(z)ż, where S is
the synergy matrix and ż represents synergy velocities. Columns
of the matrix of synergies S ∈ ℜnq×nz represent the postural
synergies, also named as eigengrasps in the literature, e.g., by
Ciocarlie and Allen (2009). In other terms, the columns represent
the joint velocities that are obtained acting on each single
synergy ż. This pure kinematicmodel fails to describe the possible
grasps of an object since does not consider a possible hand
adaptation to the shape of the grasped object. A possible solution
is to consider the most general case of statically-indeterminate
grasps (Prattichizzo and Trinkle, 2016), and thus introduce both
contact and joint compliance in the analysis. Doing so, we assume
that the synergistic hand displacements δz ∈ ℜnz does not
directly command the joint displacements δq ∈ ℜnq , but the

synergistic displacements input δz commands the joint reference
positions qref as:

δqref = Sδz, (1)

which are related to the actual joint displacements by the
constitutive equation:

δq = δqref − Cqδτ , (2)

where Cq models the joint compliance and δτ represents the
torques at the joints, as reported by Prattichizzo et al. (2010).
When no contact with the object is present, the reference and
real joints positions overlap, whereas if contact forces are present,
the compliance of the hand forces the real hand to diverge from
the reference one. This means that the real hand configuration is
synergy driven, but can modify its posture so to comply with the
object shape. Gabiccini et al. (2011) defined this approach as soft
synergymodel of hands.

In the following sections, the main attempts to reproduce,
either mechanically or by means of the control, the matrix S
representing the synergistic joint coupling are reported.

3. MECHANICAL IMPLEMENTATION OF
POSTURAL SYNERGIES

In section 2, two possible ways to model the hand synergies
have been introduced. The distinction between “rigid” and “soft”
synergies also represents the two main approaches in literature
to mechanically implement the coordination of joint motions
in underactuated hands. Brown and Asada (2007) pioneered
the idea of using a mechanism to rigidly couple the motion
of the joints according to the human synergies. A train of
pulleys of different radii was used to transmit simultaneously
different motions to each joint. The radii of the pulleys were
set according to the scalar weight that compose the columns of
synergy matrix S. In other words, changing the radius of the
pulleys, it was possible to regulate how much a certain joint is
displaced once the motor is activated. Motions corresponding to
the first two synergies were superimposed via tendons and idle
pulleys resulting in the prototype illustrated in the left hand side
of Figure 1. A similar approach has been used by Li et al. (2014)
to design a prosthetic hand where twelve DoFs are activated
using only two motors. Xu et al. (2014b) proposed a prototype
where the postural synergies were mechanically implemented in
an underactuated anthropomorphic hand using planetary gears.
Rosmarin and Asada (2008) proposed a hybrid actuation system
using two DC motors and shape memory alloy (SMA) actuators.
The two DC motors drove the entire robotic hand according to
the direction of the two most significant synergies. The synergies
were determined through the PCA analysis of a set of robotic
hand postures. The higher order terms were actuated by SMA so
to reduce the actuators’ encumbrance.

The “soft” synergies approach described in section 2 is
an efficient solution to design anthropomorphic hands with
a synergistic motion. Catalano et al. (2014) have investigated
how to exploit the soft synergy concept through the design of
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FIGURE 1 | Two of prototypes of robotic hands that mechanically implement synergies. On the left, rigid synergies are obtained through a mechanism that embeds

tendons and pulleys, from Brown and Asada (2007), License Number 4350150698742. On the right side, adaptive synergies are obtained designing the tendon

transmission system and the joint compliance.

underactuated hands that have desirable adaptivity to shapes
of the grasped objects. Birglen et al. (2008) have reported
how underactuation can be achieved effectively with simple
differential and elastic elements. Catalano et al. leveraged on this
design principles to realize a soft synergy model defined by a
synergy matrix S and a joint compliance matrix Cq through the
definition of a proper transmission matrix and the design of
the joint stiffness. The authors defined this solution as adaptive
synergies. The resulting prototype, called the Pisa/IIT SoftHand,
has 19 DoFs arranged in four fingers and an opposable thumb, see
the right side of Figure 2. Only one actuator drives all the fingers
so to resamble the first synergy defined as in Santello et al. (1998).
Recently, Piazza et al. (2017) have exploited the same concept of
adaptive synergies to design a prosthetic hand.

Finally, Xu et al. (2014a) proposed a continuum structure for
the mechanical implementation of the postural synergies. Using
a continuum mechanism, two independent translational inputs
were scaled and combined to generate six translational outputs
to drive a prosthetic hand prototype.

4. SOFTWARE PROCEDURES FOR
SYNERGISTIC CONTROL OF MULTI-DOF
ROBOTIC HANDS

Software synergies refers to all the techniques that have been
proposed in literature to control a multi-DoF hand with a
reduced number of parameters so to resamble the synergistic
actuation of the human hand. The several approaches proposed
over the last decade can be classified into two main categories:
(i) mapping of synergies from humans to robots, and (ii)
redefinition of synergies for robotic hands. The main idea of
the former method is to define a synergy matrix computed

through some statistical analysis of human poses over objects
and to replicate the synergistic motion onto the kinematic of
the robotic hand using a proper mapping strategy. The work
of Ciocarlie and Allen (2009) is one of the first examples of
this method. They used a joint-to-joint mapping to replicate
the synergy subspaces obtained by Santello et al. onto four
different models of hands. Joint-to-joint mapping considers a
direct association between joints on the human hand and joints
on the robotic hand. Other researchers have investigated this
approach. Rosell and Suárez (2014) used a sensorized glove
to collect data from the joints of the human hand captured
while an operator was moving freely the fingers, i.e., without
executing or simulating grasping or manipulation actions, and
then joint-to-joint mapped the data onto the Schunk SAH
hand. Kim et al. (2016) proposed an algorithm that uses a
tensor composed of data relevant to different individuals and
various motions in multiple dimensions to evaluate human hand
synergies. The corresponding values for a robot hand were then
computed assuming that the coefficients of the synergies of
the human hand were identical to those of the robotic hand.
It is worth noting that joint-to-joint mapping represents the
simplest way to define a correspondence between the joints
of human and robotic hands. This mapping results efficient
when the robotic hand has an anthropomorphic structure,
whereas, when non-anthropomorphic devices are considered,
the joint correspondence is usually defined considering some
heuristics that often reduce the reliability of the motion
reproduction.

Another method to map the human hand synergies is the so
called Cartesian space mapping. Cartesian mapping focuses on
the relation between the workspaces of the human and robot
hand and usually tries to find a correspondence between the
motion of the fingertips of the two hands. Ficuciello et al. (2018)
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FIGURE 2 | Schematic representation of the principal mapping techniques. In the top, joint-to-joint mapping. In the center, an example of Cartesian mapping where

fingertips positions are mapped. In the bottom, the object-based mapping where the motions and deformations of the two virtual objects are put in correspondance.

mapped human grasps onto a robotic underactuated hand using
fingertips measurements, obtained through a RGBD camera
sensor, and inverse kinematics. Geng et al. (2011) realized a two
stage mapping. Firstly, they extracted the synergies from human
grasping data and later they implemented an optimized mapping
to replicate fingertip positions of the human hand to those of a
robot hand. Cartesian mapping presents some advantages with
respect to the joint-to-joint mapping, since it is not a necessity
to relate each robotic joint motion to that of human joints.
However, this method fails in replicating a correct mapping in
terms of forces and movements exerted by the robotic hand on
a grasped object. Gioioso et al. (2013) have presented a method
for mapping synergies defined in the task space that tries to
overcome the problem of dissimilar kinematics between human
and robotic hand. The main idea of the approach is to define
two virtual objects, one on the robotic hand and one on a model
of the human hand. Each virtual object is defined considering

the minimum volume sphere containing a set of reference points
defined on the hand, see the bottom part of Figure 2. The human
hand model can be moved according to a synergistic motion
computed using the dataset of Santello et al. (1998). Such motion
displaces the reference points on the hand generating a rigid
body motion and a deformation of the virtual object. These
transformations of the object are then imposed, possibly scaled,
onto the object defined on the robotic hand. An inverse kinematic
technique is used to compute robotic joint motions that comply
with the virtual object motion and deformation. The authors
proved that the virtual object method is more efficient in terms
of force mapping and accuracy in reproduction of the directions
of motion with respect to joint-to-joint and Cartesian mappings.
In Gioioso et al. (2012), the method was extended considering an
ellipsoid instead of a sphere as virtual object. This improvement
consented to describe the virtual object deformation using three
parameters, the ellipsoid semi-axis variations, instead of one, the
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sphere radius variation. Salvietti et al. (2014) used the average
homogenous transformation of the reference points so to capture
a larger set of possible motions of the virtual object. All the
techniques related to the object-based mapping of the human
hand synergies have been collected in a freely available Matlab
toolbox, called SynGrasp (Malvezzi et al., 2015). Figure 2 shows
a schematic representation of the mapping strategies.

The second main approach to define software synergies
consists in collecting data from grasps obtained directly with
the robotic hand and using a statistical analysis to extract the
primitives for the specific hand. Ficuciello et al. (2014) computed
the first two fundamental synergies for the UB Hand IV applying
PCA on a set of 36 grasps of different objects, involving both
precision and power grasps. Matrone et al. (2010) collected the
sensory data of a prosthetic hand while performing 50 different
grasps, and subsequently used a PCA based algorithm to drive the
16 DoFs of an underactuated prosthetic hand prototype, called
CyberHand, with a two dimensional control input. Wimböck
et al. (2011) analyzed a large grasp database collected over years
of use of the DLR Hand II. Using PCA, they found that 74% of
these grasps, originally defined by the twelve joint variables of the
hand, could be represented by two coordinates. As a second step,
a synergy impedance controller was derived and implemented to
extend the work on passivity based hand control for the DLR
Hand II. Later, Salvietti et al. (2013) combined the object based-
mapping with the synergy impedance controller to simplify
robotic hand control in the synergy subspace. Bernardino et al.
(2013) teleoperated a Shadow Hand and an iCub Hand so
to perform the grasp of 12 different objects and then used
the collected joint data from the robotic hands to compute
postural synergies using PCA. Finally, Cotugno et al. (2014)
used a kinaesthetic teaching approach to collect data from the
iCub Hand. The teaching was performed by a human operator
guiding the fingers of the robot with the motors switched off
so to perform a pick and place operation over a set of objects.
Singular value decomposition was later performed on the pre-
processed joint data in order to obtain the postural primitives of
the hand that span the variability of the corresponding grasping
demonstrations.

5. DISCUSSION AND PERSPECTIVE

In this review, the main mechanical and software solutions
that explicitly exploit the concept of human hand synergies
have been reported. The main reason is the direct link between
neuroscientific studies and robotics. There are several other
works on underactuation both from a software and a hardware
point of view that have not been treated in this work. Among

all, it is worth mentioning recent results on the design of
underactuated soft hands which are designed to include intrinsic
passive compliant elements, see e.g., the hand proposed by
Deimel and Brock (2016). In this context, Salvietti et al. (2017)
have proposed a procedure to compute the stiffness ratio between
the passive compliant joints of a robotic hand so to resemble the
trajectory for the fingertips obtained through the execution of the
first synergy.

Concerning the software synergies, both the presented
approaches have pros and cons. The use of data collected from the
human hand allows to exploit human brain control mechanisms
that resulted from thousands of years of evolution. However, the
adaptation of the data to the kinematics of a robotic hand is prone
to errors that may compromise the fine control of the forces
exerted on a grasped object. On the contrary, synergies defined
directly on the robotic hand are highly specialized for the specific
hand kinematics, but may highly depend on the set of grasps
decided by the operator or by the operator kineasthetic teaching.
This could result in very specialized primitives thatmay difficultly
generalize over a wider set of objects.

Although the complexity reduction brought by the synergistic
organization of the hand have led to encouraging results in
grasping, how to exploit high order synergies to perform more
complex manipulation tasks is still an open issue. A possible
tradeoff between the complexity of the control and the level of
dexterity of the robotic hand will probably come from a more
deep interaction between designers and controllers so to embed
part of the control directly in the hand structures.
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Kinematics 2016, eds J. Lenarčič and J. P. Merlet (Cham: Springer), 225–233.

Ficuciello, F., Palli, G., Melchiorri, C., and Siciliano, B. (2014). Postural synergies

of the ub hand iv for human-like grasping. Robot. Auton. Syst. 62, 515–527.

doi: 10.1016/j.robot.2013.12.008

Gabiccini, M., Bicchi, A., Prattichizzo, D., and Malvezzi, M. (2011). On the role

of hand synergies in the optimal choice of grasping forces. Auton. Robot 31,

235–245. doi: 10.1007/s10514-011-9244-1

Geng, T., Lee, M., and Hülse, M. (2011). Transferring human grasping synergies to

a robot.Mechatronics 21, 272–284. doi: 10.1016/j.mechatronics.2010.11.003

Gioioso, G., Salvietti, G., Malvezzi, M., and Prattichizzo, D. (2012). “An object-

based approach to map human hand synergies onto robotic hands with

dissimilar kinematics,” in Robotics: Science and Systems VIII, eds Eds. N. Roy,

P. Newman, S. Srinivasa (Sydney, NSW: The MIT Press), 97–104.

Gioioso, G., Salvietti, G., Malvezzi, M., and Prattichizzo, D. (2013). Mapping

synergies from human to robotic hands with dissimilar kinematics:

an approach in the object domain. IEEE Trans. Robot. 29, 825–837.

doi: 10.1109/TRO.2013.2252251

Kim, S., Kim, M., Lee, J., and Park, J. (2016). “Robot hand synergy mapping using

multi-factor model and emg signal,” in Experimental Robotics, eds M. Hsieh, O.

Khatib, and V. Kumar (Cham: Springer), 671–683.

Li, S., Sheng, X., Liu, H., and Zhu, X. (2014). Design of a myoelectric prosthetic

hand implementing postural synergy mechanically. Industr. Robot Int. J. 41,

447–455. doi: 10.1108/IR-03-2014-0312

Malvezzi, M., Gioioso, G., Salvietti, G., and Prattichizzo, D. (2015). Syngrasp: a

matlab toolbox for underactuated and compliant hands. IEEE Robot. Autom.

Mag. 22, 52–68. doi: 10.1109/MRA.2015.2408772

Matrone, G. C., Cipriani, C., Secco, E. L., Magenes, G., and Carrozza, M. C. (2010).

Principal components analysis based control of a multi-dof underactuated

prosthetic hand. J. Neuroeng Rehabil. 7:16. doi: 10.1186/1743-0003-7-16

Murray, R., Li, Z., and Sastry, S. (1994). A Mathematical Introduction to Robotic

Manipulation. CRC Press.

Piazza, C., Catalano, M. G., Godfrey, S. B., Rossi, M., Grioli, G., Bianchi, M.,

et al. (2017). The softhand pro-h: a hybrid body-controlled, electrically powered

hand prosthesis for daily living and working. IEEE Robot. Autom. Mag. 24,

87–101. doi: 10.1109/MRA.2017.2751662

Prattichizzo, D., Malvezzi, M., and Bicchi, A. (2010). “On motion and force

controllability of grasping hands with postural synergies,” in Robotics: Science

and Systems VI, eds Y. Matsuoka, H. Durrant-Whyte, and J. Neira (Zaragoza:

The MIT Press), 49–56.

Prattichizzo, D., Malvezzi, M., Gabiccini, M., and Bicchi, A. (2013). Onmotion and

force controllability of precision grasps with hands actuated by soft synergies.

IEEE Trans. Robot. 29, 1440–1456. doi: 10.1109/TRO.2013.2273849

Prattichizzo, D., and Trinkle, J. C. (2016). Chapter “Grasping” in the Springer

Handbook of Robotics. Springer.

Rosell, J., and Suárez, R. (2014). “Using hand synergies as an optimality criterion

for planning human-like motions for mechanical hands,” in Humanoid Robots

(Humanoids), 2014 14th IEEE-RAS International Conference on (Madrid:

IEEE), 232–237.

Rosmarin, J. B., and Asada, H. H. (2008). “Synergistic design of a humanoid

hand with hybrid dc motor-sma array actuators embedded in the palm,” in

Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on

(Pasadena, CA: IEEE), 773–778.

Salvietti, G., Hussain, I., Malvezzi, M., and Prattichizzo, D. (2017).

Design of the passive joints of underactuated modular soft hands for

fingertip trajectory tracking. IEEE Robot. Autom. Lett. 2, 2008–2015.

doi: 10.1109/LRA.2017.2718099

Salvietti, G., Malvezzi, M., Gioioso, G., and Prattichizzo, D. (2014). “On the use of

homogeneous transformations to map human hand movements onto robotic

hands,” in Proceedings of the IEEE International Conference on Robotics and

Automation (Hong Kong), 5352–5357.

Salvietti, G., Wimboeck, T., and Prattichizzo, D. (2013). “A static intrinsically

passive controller to enhance grasp stability of object-based mapping between

human and robotic hands,” in Proceedings of the IEEE/RSJ International

Symposium Intelligent Robots and Systems (Tokyo), 2460–2465.

Santello, M., Bianchi, M., Gabiccini, M., Ricciardi, E., Salvietti, G., Prattichizzo,

D., et al. (2016). Hand synergies: integration of robotics and neuroscience for

understanding the control of biological and artificial hands. Phys. Life Rev. 17,

1–23 doi: 10.1016/j.plrev.2016.02.001

Santello,M., Flanders,M., and Soechting, J. (1998). Postural hand synergies for tool

use. J. Neurosci. 18, 10105–10115. doi: 10.1523/JNEUROSCI.18-23-10105.1998

Todorov, E., Li, W., and Pan, X. (2005). From task parameters to motor synergies:

a hierarchical framework for approximately-optimal control of redundant

manipulators. J. Robot. Syst. 22:691. doi: 10.1002/rob.20093

Wimböck, T., Jahn, B., and Hirzinger, G. (2011). “Synergy level impedance

control for multifingered hands,” in Proceedings of the IEEE/RSJ International

Symposium Intelligent Robots and Systems (San Francisco, CA: IEEE), 973–979.

Xu, K., Liu, H., Du, Y., Sheng, X., and Zhu, X. (2014a). “Mechanical

implementation of postural synergies using a simple continuum mechanism,”

in Proceedings of the IEEE International Conference on Robotics and Automation

(Hong Kong: IEEE), 1348–1353.

Xu, K., Liu, H., Du, Y., and Zhu, X. (2014b). Design of an underactuated

anthropomorphic hand with mechanically implemented postural synergies.

Adv. Robot. 28, 1459–1474. doi: 10.1080/01691864.2014.958534

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Salvietti. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner are credited and that the original publication in this journal is cited,

in accordance with accepted academic practice. No use, distribution or reproduction

is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org June 2018 | Volume 12 | Article 2778

https://doi.org/10.1177/0278364913518998
https://doi.org/10.1177/0278364909105606
https://doi.org/10.1177/0278364915592961
https://doi.org/10.1016/j.robot.2013.12.008
https://doi.org/10.1007/s10514-011-9244-1
https://doi.org/10.1016/j.mechatronics.2010.11.003
https://doi.org/10.1109/TRO.2013.2252251
https://doi.org/10.1108/IR-03-2014-0312
https://doi.org/10.1109/MRA.2015.2408772
https://doi.org/10.1186/1743-0003-7-16
https://doi.org/10.1109/MRA.2017.2751662
https://doi.org/10.1109/TRO.2013.2273849
https://doi.org/10.1109/LRA.2017.2718099
https://doi.org/10.1016/j.plrev.2016.02.001
https://doi.org/10.1523/JNEUROSCI.18-23-10105.1998
https://doi.org/10.1002/rob.20093
https://doi.org/10.1080/01691864.2014.958534
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


January 2018 | Volume 11 | Article 71

Original research
published: 10 January 2018

doi: 10.3389/fnbot.2017.00071

Frontiers in Neurorobotics | www.frontiersin.org

Edited by: 
Keum-Shik Hong,  

Pusan National University,  
South Korea

Reviewed by: 
Kyujin Cho,  

Seoul National University,  
South Korea  

Lorenzo Masia,  
Nanyang Technological  

University, Singapore

*Correspondence:
Qiushi Fu  

qiushi.fu@ucf.edu

Received: 31 October 2017
Accepted: 18 December 2017

Published: 10 January 2018

Citation: 
Fu Q and Santello M (2018) 

Improving Fine Control of Grasping 
Force during Hand–Object 

Interactions for a Soft Synergy-
Inspired Myoelectric Prosthetic Hand.  

Front. Neurorobot. 11:71.  
doi: 10.3389/fnbot.2017.00071

improving Fine control of grasping 
Force during hand–Object 
interactions for a soft synergy-
inspired Myoelectric Prosthetic hand
Qiushi Fu1,2* and Marco Santello1

1 Neural Control of Movement Laboratory, School of Biological and Health Systems Engineering, Arizona State University, 
Tempe, AZ, United States, 2 Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States

The concept of postural synergies of the human hand has been shown to potentially 
reduce complexity in the neuromuscular control of grasping. By merging this concept 
with soft robotics approaches, a multi degrees of freedom soft-synergy prosthetic hand 
[SoftHand-Pro (SHP)] was created. The mechanical innovation of the SHP enables 
adaptive and robust functional grasps with simple and intuitive myoelectric control from 
only two surface electromyogram (sEMG) channels. However, the current myoelectric 
controller has very limited capability for fine control of grasp forces. We addressed this 
challenge by designing a hybrid-gain myoelectric controller that switches control gains 
based on the sensorimotor state of the SHP. This controller was tested against a conven-
tional single-gain (SG) controller, as well as against native hand in able-bodied subjects. 
We used the following tasks to evaluate the performance of grasp force control: (1) pick 
and place objects with different size, weight, and fragility levels using power or precision 
grasp and (2) squeezing objects with different stiffness. Sensory feedback of the grasp 
forces was provided to the user through a non-invasive, mechanotactile haptic feedback 
device mounted on the upper arm. We demonstrated that the novel hybrid controller 
enabled superior task completion speed and fine force control over SG controller in 
object pick-and-place tasks. We also found that the performance of the hybrid controller 
qualitatively agrees with the performance of native human hands.

Keywords: neuroprosthetics, hand function assessment, object manipulation, grasping, haptic feedback, force 
control

inTrODUcTiOn

Restoring hand function through prostheses in individuals with upper limb loss is critically impor-
tant to help them regain independence and improve quality of life. Unfortunately, the current state 
of commercially available prosthetic hands is still far from achieving human level dexterity, even 
in relatively simple object grasping tasks. Limitations in the reliability, function, and robustness 
of hand prosthesis has led to little use or abandonment of advanced terminal devices, as these 
factors are considered to be most important to the amputees (Atkins, 1989; Atkins et  al., 1996; 
Biddiss and Chau, 2007a,b). Human-inspired approaches have been recently proposed to tackle this 
challenge through novel mechanical design (Godfrey et al., 2013), intuitive control (Ajoudani et al., 
2014; Jiang et al., 2014), and sensory feedback (Clemente et al., 2015). Specifically, by observing 
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how the human neuromuscular system solves the sensorimotor 
complexity of controlling hand movements during grasping 
tasks, it was found that hand postures used to grasp a large set 
of common objects can be approximated by a few finger joint 
coordination patterns, i.e., synergies (Santello et al., 1998, 2002). 
This implies a synergy control scheme in which controlling a 
large number of degrees of freedom could be simplified by 
using a reduced set of neural signals [for review, see Santello 
et al. (2013, 2016)]. By combining the concept of synergy with 
soft robotics technologies, a prosthetic hand, the SoftHand-Pro 
(SHP), was developed to simultaneously maximize simplicity 
and functionality (Godfrey et al., 2013). Specifically, this hand 
employs an under-actuated design where the number of syner-
gies, and thus, the number of actuators, was reduced to one,  
i.e., the first principal component observed in human grasping 
data that accounts for more than 50% of the variance in grasp 
posture data (Santello et al., 1998). Movement from the motor 
was transmitted to all 19 finger joints of the SHP by means of a 
single tendon, hence the SHP follows the movement described 
by the first synergy for human grasping: flexion and adduction 
of the metacarpal-phalangeal and inter-phalangeal joints of 
the fingers, accompanied by flexion and palmar abduction of 
the thumb. This design is combined with an elastic recoil force 
implemented as elastic ligaments in all joints to help the fingers 
conform to arbitrary object shapes, and bring the fingers back 
to their starting position. These ligaments also accommodated 
temporary joint displacements during unexpected perturbations 
through hyperextension and/or torsion. Such flexibility avoids 
stress that could damage the hand and the environment, while 
enabling versatility to grasp a wide variety of objects. The embed-
ded flexibility in the mechanical design also simplifies myoelectric 
control with surface electromyography (sEMG), as the user does 
not need to generate a sequence of muscle activation to produce 
hand postures that match different object shapes. Indeed, only 
two sEMG channels from a pair of antagonistic muscles are 
needed to operate the hand efficiently in individuals with upper 
limb loss (Godfrey et al., 2017). Although the SHP demonstrated 
human-like motion during reach-to-grasp (Fani et al., 2016), its 
capability to interact with objects with human-like force remains 
to be systematically validated. Such human-like force control is 
important in activities of daily living (ADL), which includes but 
are not limited to moving delicate objects, modulating grasp 
force to object weight, and manipulate compliant objects.

The main objective of the current study was to improve force 
control of the SHP. The default control gain of the SHP is tuned 
to enable fast free motion response, but the motor current (and, 
therefore, grasp force) ramps up quickly after the SHP contacts 
the object. This makes it difficult for the user to modulate the 
grasp force to the desired level (Gailey et  al., 2017). In fact, a 
recent study, individuals with upper limb loss using SHP did not 
exhibit proper modulation of grasp force when lifting objects 
with different weights, even with the help of a mechanotactile 
haptic feedback device (Godfrey et al., 2016). One way to solve 
this limitation is to let the user modulate the control gain through 
co-contraction of the muscles (Ajoudani et al., 2014), such that 
a high co-contraction level can be mapped to high stiffness of 
the SHP. However, this approach could increase the complexity 

of myoelectric control, as the user would have to adjust co-
contraction level while exerting differential activity between the 
flexor and extensor. Another approach is to use a force-position 
hybrid control scheme to handle motion and force automatically 
within the hand based on feedback from force/position sensing 
(Engeberg et  al., 2008; Engeberg and Meek, 2013). However, 
such controller relies on accurate measurement of finger force 
and position in a prosthetic hand with rigid structure, and 
therefore, it is not fully compatible with SHP, a device designed 
to be mechanically compliant with only synergistic sensing of 
force and position across all fingers. Therefore, we propose a 
novel approach that automatically switches control gain based 
on grasping context detected from combined information from 
force, position, and EMG channels. This approach will be tested 
against the conventional SHP controller, as well as human hands, 
in functional tasks that require fine control of grasp forces.

MaTerials anD MeThODs

subjects
Sixteen subjects enrolled in the study (nine females and seven 
males, ages 19–34  years). They had normal or corrected-to-
normal vision, and no history of musculoskeletal or neurological 
disorders. All subjects were naive to the experimental purpose 
of the study and gave informed consent to participate in the 
experiment. The experimental protocols were approved by the 
Institutional Review Board at Arizona State University in accord-
ance with the Declaration of Helsinki. Before data collection, sub-
jects signed an informed consent and completed the Edinburgh 
Handedness Questionnaire. Fifteen subjects were right-handed, 
and one subject was ambidextrous. They were randomly assigned 
to two “controller” groups [i.e., single-gain (SG) and hybrid-gain 
(HG) controllers, see below].

experimental apparatus
For the present investigation of myoelectric controllers for hand 
prostheses, we used the SHP which is a soft robotic hand inspired 
from human hand synergies (Godfrey et al., 2013). Although we 
tested only able-bodied subjects, it has been shown that transra-
dial amputees are able to use SHP effectively in ADL (Godfrey 
et al., 2017). In addition to the SHP, each subject wore a Clenching 
Upper-limb Force Feedback device (CUFF) for haptic feedback of 
the grasping force (Casini et al., 2015). Finally, we built a gravity 
compensation system to off-load the weight of harness worn by 
subjects on their forearm and the SHP, thus minimizing fatigue 
(Figure 1A). We describe these systems below.

SoftHand-Pro
The SHP is the prosthetic version of the Pisa/IIT SoftHand 
(Catalano et  al., 2014). The size and weight of the SHP were 
designed to approximate a large male hand. The electronic 
control board was enclosed in the back of the hand. A glove is 
used to cover the joints and increase contract area and friction. 
The battery was placed on user’s body and connected to the 
hand through a cable. For testing with able-bodied subjects, a 
customized socket interface was used to mount the SHP on their 
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FigUre 1 | Prosthetic system implementation. (a) Complete setup with integration of SoftHand-Pro, Clenching Upper-limb Force Feedback device (CUFF), and 
gravity compensation. (B) Design of the Single-gain myoelectric controller. (c) Design of the hybrid-gain myoelectric controller.
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forearms (Figure 1A). Importantly, as part of the interface, we 
used a Quick Disconnect Wrist (Hosmer 61921, Fillauer LLC, 
TN, USA) to allow task-specific manual adjustment of supina-
tion/pronation angle. This ensures subjects to maintain a neutral 
supination/pronation angle with their own wrist throughout the 
experiment. The onboard microcontroller drives the motor with 
PID position/current control. It also communicates with EMG 
sensors and external programs. For myoelectric control, we 
used two sEMG electrodes that are commonly used for myoe-
lectric prostheses (13E200 Myobock electrodes, Otto Bock, 
Germany). These electrodes are equipped with a logarithmic 
sensitivity adjustment and high common-mode rejection in the 
low frequency range (>100 dB at 50 Hz). The output of the elec-
trodes was appropriately filtered and rectified. We placed the 
electrodes over m. flexor digitorum superficialis (FDS) and m.  
extensor digitorum communis (EDC) for flexion and exten-
sion, respectively. The difference between the sEMG magnitude 
measured from flexor and extensor muscles is used to drive the 
change of the reference motor position for the SHP (see below). 
This type of velocity-based proportional control allows users to 
scale the speed of the finger motion by modulating their EMG 
activities, as well as to minimize fatigue.

The SHP does not have force sensors, and it estimates the over-
all grasp force by current sensor. This approach takes advantage 
of the synergy design, since all fingers are connected by a single 
cable to one motor. Therefore, the grasp forces of all fingers can 
be transmitted to this cable, absorbing current from the motor. 
The motor total current (C) is the sum of grasp force-dependent 
and motor kinematics-dependent (CK) components. The latter 
component can be calibrated with a model that consists of 
position, velocity, and acceleration terms (Ajoudani et al., 2014; 

Casini et  al., 2015). After proper calibration, the grasp force-
dependent current (Residual Current, CR) can be estimated as 
the difference between C and CK. It has been demonstrated that 
relation between the overall grasp force and the residual current 
is approximately linear (Casini et al., 2015).

SG Controller
The SG controller is mostly identical to the best performing SHP 
motion controller demonstrated by Fani and colleagues (Fani 
et al., 2016). A small modification was made to dynamically limit 
the reference position. Specifically, this EMG-to-motion map-
ping uses the difference between the sEMG signals from wrist 
flexor and extensor muscles to drive the SHP. After a signal dead 
zone of 2% MVC was applied to each channel, the channel dif-
ferential Ed was used to drive the change of SHP motor reference 
position with a predetermined gain Km based on preliminary 
testing and previous studies (Figure  1B). Therefore, the sign 
and the magnitude of the differential Ed dictate the direction and 
velocity of the finger movement during free motion, respectively. 
Furthermore, we used an adaptive motor position limit which 
prevents the increase of reference position if the motor total 
current C is close to the max capacity. This prevents the refer-
ence position “closing into” the object too much, thus allowing 
consistent opening motion from objects with any size. Eight 
subjects were assigned to use the SG controller (SG group).

HG Controller
As mentioned earlier, the main drawback of the SG differential 
controller is that it cannot adapt to both free motion control 
and grasp force control equally well, if the reference position 
changes too quickly. To overcome this problem, we created a HG 
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TaBle 1 | Summary of sensorimotor states for the hybrid-gain controller.
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controller. The overall design of the HG controller is similar to the 
SG controller. However, the EMG-to-motion gain changes adap-
tively depending on the state of the SHP (Figure 1C). We defined 
three sensorimotor states of the SHP using the residual current CR 
as well as the EMG differential Ed. Specifically, Free Motion state is 
when the grasp force is 0 or very low, i.e., CR = 0. Fine Force state 
is when grasp force is above minimum and the user is trying to 
control grasp force, i.e., CR > 0 and Ed > 0. The last state, Quick 
Release, is when grasp force is above minimum and subject is 
trying to quickly release the grasped object i.e., CR > 0 and Ed < 0. 
We used a large gain Km for both Free Motion and Quick Release 
states, and a small gain Kf for Fine Force state (see Table 1). Eight 
subjects were assigned to use the HG controller (HG group). We 
would like to emphasize that the adjustable gain is used to map 
EMG activity to the reference position of the motor. Unlike previ-
ous work (Ajoudani et al., 2014), the control gain for the internal 
motor control loop remain unchanged, therefore preserving the 
stability during the passage from one state to another.

Clenching Upper-Limb Force Feedback Device
The force feedback device CUFF used in this study has been 
demonstrated to enable intuitive modulations of grasp forces 
and correct softness discrimination (Ajoudani et  al., 2014; 
Casini et al., 2015). Briefly, the CUFF is comprised of two DC 
motors attached to an elastic belt worn around the upper arm 
(Figure  1A). When the motors spin in opposite directions to 
tighten or loosen the band on the arm, the pressure around the 
arm applied by the band would increase or decrease, respectively. 
This type of mechanotactile cues provides the same modality of 
somatosensation as the one involved in the hand–object interac-
tions (e.g., grasping), although at a different location. This may 
have advantages over other types of haptic feedback due to its 
ability to deliver natural feeling of force/pressure (Li et al., 2017). 
When the subjects use CUFF and SHP as an integrated system, 
the SHP estimates the grasp force using residual current CR which 
is then linearly mapped to CUFF motor positions. Therefore, the 
grasp force can be proportionally delivered as pressure through 
the CUFF. Specifically, due to differences in the biomechanical 
characteristics of arms, we calibrated CR to CUFF motor map-
ping for each subject. The automated calibration procedure finds 
the motor position range when the CUFF motor current reaches 
high and low threshold. Then the full range of CR is linearly 
mapped to CUFF motor position range.

Gravity Compensation System
In most studies of hand prosthetics with able-bodied subjects, 
the prosthesis is either mounted on subject’s arm or fixed on the 
table separately from the subject. Both approaches are suboptimal 
in the investigation of object manipulation. When the prosthetic 

hand is mounted on the arm, healthy subjects have to overcome 
significant added weight to move the system. This could lead to 
muscle fatigue in long period of testing, thus negatively impact 
subjects’ performance. Additionally, the weight from the hand 
prosthesis may influence subject’s perception of the object physi-
cal property, preventing modulation of grasping force in response 
to object weight. In contrast, if the prosthetic hand is detached 
from the subjects, the experiments could not assess the hand-
arm coordination (e.g., reach to grasp), which is an important 
component of natural hand-object interactions (Grafton, 2010; 
Davare et  al., 2011). To overcome these drawbacks, we built a 
gravity compensation system that offsets the gravitational force 
created by wearing the prosthetic hand (Figure 1A). This system 
is functionally similar to the one developed in Wilson et  al. 
(2017). Specifically, we use a light cable and a series of pulleys to 
connect the wrist part of the prosthesis to a counter-weight. The 
counter-weight has the same weight as the entire hand prosthetics 
(SHP and harness) worn by the subjects. This system helped to 
prevent fatigue in our study, which required intensive repetition 
of hand movement over more than 1 h of testing.

experimental Protocol
Our study consisted of three sessions: (1) baseline trials: experi-
mental tasks with normal right hand, (2) training trials: training 
tasks with SHP and CUFF, and (3) SHP trials: experimental tasks 
with SHP and CUFF. We use the data from normal hand as a 
benchmark to evaluate the performance of the prosthetic system. 
The tasks used in our study are described below.

Training Tasks
We developed a two-step simple training scheme that helps 
subjects to familiarize with myoelectric control of the SHP and 
haptic feedback from the CUFF.

Motion Control Training
The objective of this training was to help subjects learn the EMG-
to-motion mapping of the SHP. No CUFF feedback was given 
during this task. Subjects sat comfortably wearing the prosthetic 
system, with their forearm resting on the table. We adjusted the 
quick connector at the wrist to have the SHP 90° supinated, such 
that palm of the SHP facing upwards. A monitor was placed in 
front of the subjects, showing continuous visual feedback of the 
motor position of the SHP, as well as a target motor position. 
Subjects were required to control the open and close of the SHP 
to match the target motor positions as quickly as possible (0° and 
170° are fully open and close, respectively). We defined five levels 
of target motor position: 30°, 60°, 90°, 120°, and 150°. The target 
position automatically advanced to the next if the actual motor 
position stays within target with an error margin of ±5° for an 
accumulated 1 s. There were three trials for this task. Each trial 
consists of eight “close and open” actions that always start from 
30° and move to one of the other positions, then move back to 
30° (Figure 2A).

Force Control Training
The objective of this training is to help subjects learn the haptic 
feedback given by the CUFF. We directly measure grasp force 
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FigUre 2 | Training and experimental tasks. (a) Representative trial of motion control training. (B) Representative trial of force control training from hybrid-gain 
group. (c) Representative trial of force control training from single-gain group. (D) Design of the objects used for training and experimental tasks. From left to right: 
Compliant object, Large object, Small object. The compartments at the bottom of Large and Small objects allow additional mass to be inserted and changing the 
weight of the objects. Large object can be set to 820 or 420 g, whereas Small object can be set to 420 or 220 g. The force sensors in the middle of Large and 
Small objects measure grasp forces, which can be used to render the Fragility of the objects. (e) Top view of the setup for object pick-and-place task.
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with a cylindrical object fixed to the table. The object is split 
into two grasp surfaces with a Force/Torque sensor (Nano 25, 
ATI Industrial Automation, NC, USA) is installed in the center 
(Figure  2D). Each grasp surface is a curved surface (3.25  cm 
radius 150° arch) with a height of 12 cm. In this task, the quick 
connector at the wrist was adjusted to neutral position to allow 
natural power grasp around the cylindrical object, with thumb 
and fingers of the SHP placed on each grasp surface. Visual 
feedback of the actual grasp force and target force were shown on 
the monitor. To get ready for each trial, subjects were instructed 
to move the SHP to the close proximity of the cylindrical object. 
Upon hearing a “Go” cue, subjects control the SHP to grasp on 
the object and they were instructed to match the target force as 
quickly as they can. Three target levels of grasp force were defined 
and repeated three times in the same order within a trial: 6, 12, and 
0 N (Figures 2B,C). Similar to motion training, the target force 
automatically advanced to the next if the actual grasp force stays 
within target with an error margin of ±1 N for an accumulated 1 s. 
There was a total of five training trials. Most importantly, subjects 
were told that the pressure applied by the CUFF is proportional to 
the displayed grasp force, and they should familiarize themselves 
with the CUFF feedback.

Experimental Tasks
To assess the performance of two myoelectric controllers, we 
developed the following three Experimental Tasks. They were 
inspired by commonly used clinical hand function assessment 
tools (e.g., Southampton Hand Assessment Procedure, Block 
and Box Test, etc.), with the focus on the ability of fine control of 
grasp forces during functional use of the prosthetic hand. Note 
that these tasks were performed with native right hand and the 
SHP in baseline trials and SHP trials, respectively.

Large Object Pick and Place
Grasp and transport object is one the most common activities in 
daily life. Subjects were instructed to pick and place a cylindrical 
object (Figure 2D) with power grasp repetitively. The object was 
the same as the one used in the CUFF familiarization task, but it 
was free to move instead of being fixed to the table. Additionally, 
the weight of the object can be modified by inserting mass into 
the base of the object. There were two object weights: Medium 
(420 g) and Heavy (820 g). A soft mat was placed on the table in 
front of the subjects to prevent damage to the object if dropped. 
We marked two target regions separated by 30 cm, and a 5-cm 
high metal bar was placed on the mid-line between the two 
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target regions as an obstacle (Figure 2E). Subjects had to align 
their right shoulder with this obstacle. The proximal end of 
the obstacle was defined as the start region, which was 30 cm 
away from the right shoulder. For SHP trials, we set the wrist 
at neutral position to enable natural grasp posture (i.e., thumb 
and fingers of the SHP placed on each grasp surface). Subjects 
were asked to start a trial with either their normal hands or 
the SHP in the start region, and the object started in the right 
target region.

On an auditory “GO” signal, subjects reached to grasp the 
object and transport it to the other target region and move their 
hand back to the start region, and repeat this process as many 
times as possible successfully within 45 s. A successful transport 
was recorded if the object was not dropped or “crushed.” The 
crushing of the object was rendered by giving “glass breaking” 
sound when the force normal to the grasp surface exceeded a 
pre-defined crushing threshold. There were two types of fragil-
ity. The Solid type had a crushing threshold of 80 N, therefore 
subjects did not need to be careful about crushing the object. 
The Fragile type had a crushing threshold defined based on the 
object weight, such that the threshold is ~3 N above the mini-
mum grip force required to prevent slipping. The coefficient of 
friction between the glove and the object was estimated to be 
0.5. Therefore, the fragile crushing threshold for the Medium 
and Heavy objects was 6 and 9  N, respectively. We instructed 
subjects to replace the object to the closest target region if the 
object is “crushed,” and they can retry without completely release 
the object. The kinematics of the object was tracked by motion 
capture system with a marker placed on the base of the object 
(Impulse, Phasespace, Inc.).

Small Object Pick and Place
This task was similar to the Large object pick-and-place task, 
the only difference being that the object is smaller (Figure 2D). 
Specifically, there were two small grasp surfaces (size: 3.5 cm × 4 cm,  
3  cm distance) and subjects were required to use a three-digit 
precision grasp (tips of thumb, index, and middle finger). For 
SHP trials, we set the wrist at 45° pronation to allow natural grasp 
posture. The small object used in this task required a higher preci-
sion in reach-to-grasp in order to place the thumb accurately on 
the grasp surface. Similar to the large object, the object weight 
can be adjusted by inserting weight into the base of the object. 
Two object weights were used: Light (220 g) and Medium (420 g). 
The solid crushing threshold was again 80 N. The fragile crush-
ing thresholds for the Light and Medium objects were 4 and 6 N, 
respectively. Subjects received same instruction as the large object 
pick and place regarding task objective. The kinematics of the 
object was tracked by motion capture system.

Compliant Object Squeeze
Subjects were instructed to repetitively squeeze a compliant 
object (Figure 2D) with power grasp. The object consisted of two 
curved grasp surfaces, which were connected by a pair of linear 
sliders and a spring. Therefore, the object only allows one dimen-
sional deformation with maximum width of 8.5 cm (determined 
by a mechanical stop). The compliance of the object was deter-
mined by the stiffness of the spring, and two types of compliance 

were selected: Soft (0.33  N/mm) and Hard (0.54  N/mm).  
Visual feedback about the deformation of the object was given 
to the subjects on the monitor by tracking the positions of the 
grasp surfaces with motion capture system. To prepare for a 
trial, subjects had to lightly grasp the object (<0.2  cm defor-
mation) with either their normal right hand or the SHP. For 
SHP trials, the wrist was set at 60° supination to allow natural 
grasp posture. On a “Go” signal, subjects were asked to match 
the target deformation shown on the monitor repetitively. There 
were two levels of target deformation 0.8 cm, and 1.8 cm with 
an error margin of 0.2 cm, each was presented five times within 
a trial. These two target levels alternated, and each level had to 
be maintained for 1 s continuously to automatically proceed to 
the next one.

experiment Procedure
Both SG and HG groups followed the exact same experimental 
procedure, and the only difference between the two groups 
was the myoelectric controllers. In experiment preparation, we 
placed the sEMG electrodes over the muscle bellies of the target 
muscles (i.e., FDS and EDC). The skin was cleaned with alcohol 
pads and the electrodes were secured by elastic medical tape. 
A calibration procedure was implemented by asking subjects 
to perform maximal voluntary isometric contraction (MVC) 
of the FDS or EDC. The onboard gains of the electrodes were 
adjusted such that the maximum output voltage represents the 
MVC of the corresponding muscle. In the baseline session, sub-
jects performed all experimental tasks with their normal right 
hand wearing the same glove as the SHP glove, such that the 
friction conditions are matched. There were four conditions for 
Large object pick-and-place task: Heavy-Solid, Heavy-Fragile, 
Medium-Solid, and Medium-Fragile. Similarly, there were four 
conditions for Small object pick-and-place task: Medium-Solid, 
Medium-Fragile, Light-Solid, and Light-Fragile. Finally, there 
were two conditions for the Compliant object squeeze task: Soft 
and Hard. One baseline trial was performed for each of these 
ten conditions, with 1 min break given between conditions (see 
Table 2 for summary of conditions). The order of these condi-
tions was randomized within each task for each subject. Most 
importantly, before each condition involving fragile object, 
subjects were given 15  s to understand the corresponding 
crushing threshold. Subjects were instructed to slowly ramping 
up the grasp force multiple times without lifting the object, until 
they heard the glass breaking sound. We also told subjects to 
memorize the fragility in association with the object type (e.g., 
Large Heavy) for the SHP trials later. For all baseline trials, we 
also recorded the position of the wrist center with the motion 
capture system, in addition to object positions, grasp forces, 
and sEMG.

Following baseline session, subjects were fully equipped 
with the prosthetic system and went through two training 
tasks. One-minute break was given after each training task. 
After training session, subjects performed all ten experimental 
conditions again with SHP, with three consecutive trials per 
each condition (Table  2). The order of these conditions was 
also randomized within each task for each subject. In contrast 
to the baseline session, subjects were not allowed to explore 
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FigUre 3 | Sample experimental recording. (a) Representative 3-dimensional trajectory profile during object pick-and-place task. (B) Representative temporal 
profile of multiple experimental variables from one object pick-and-place trial.

TaBle 2 | Summary of experimental conditions for both controller groups.

Native hand Large object Heavy (820 g) Solid (80 N)
Fragile (9 N)

SoftHand-Pro Large object Heavy (820 g) Solid (80 N)
Fragile (9 N)

Medium (420 g) Solid (80 N) Medium (420 g) Solid (80 N)

Fragile (6 N) Fragile (6 N)

Small object Medium (420 g) Solid (80 N) Small object Medium (420 g) Solid (80 N)

Fragile (6 N) Fragile (6 N)

Light (220 g) Solid (80 N) Light (220 g) Solid (80 N)

Fragile (4 N) Fragile (4 N)

Compliant object Soft (0.33 N/mm)
Hard (0.54 N/mm)

Compliant object Soft (0.33 N/mm)
Hard (0.54 N/mm)

Actual order was randomized.
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the crushing threshold for the fragile objects, but only rely on 
their previous experience with the same object instead. For all 
baseline trials, we recorded the position of the wrist center of 
the SHP, object positions, grasp forces, SHP residual current, 
SHP motor position, CUFF motor current, and sEMG. All 
tasks were implemented using customized Matlab, C++, and 
LabView programs.

Data Processing and analysis
Experimental Variables
Training Tasks
For motion control training, we assessed the performance by 
computing the averaged time to perform each target action, 
which was defined as the time between the onsets of two con-
secutive target positions. Within each trial, there were four types 
of required change of motor positions (30°, 60°, 90°, and 120°) 
combined with two actions (open or close). Each specific action 
(e.g., open 60°) occurred twice, and we used the average time of 
the two as within trial performance. Note that the two controller 
groups had the same EMG-to-motion gains in this task, because 
the SHP is always in Free Motion state. For force control train-
ing, we assessed the performance by computing the total time 

to complete each trial. Additionally, we computed the averaged 
EMG magnitude as an indicator of motor effort within each trial.

Experimental Tasks
For both object pick-and-place tasks, we mainly focus on the 
following measures. First, we use the number of successful 
transport completed within 45 s as the gross outcome measure. 
This is computed from both object marker data and object force 
sensor data, since successful completion requires no dropping 
(kinematics) or crushing (force) of the object between two target 
regions. Second, we assess hand-arm coordination by defining 
transport speed during successful transport. This is computed as 
wrist velocity at the time when the object is moving across the 
obstacle. Third, we assess the force modulation by defining grasp 
force during successful transport. This is computed as the force 
normal to the grasp surface at the time when the object is moving 
across the obstacle. Finally, we evaluate the myoelectric control by 
defining flexor activation, extensor activation, and co-contraction. 
These are computed as the average magnitude of the correspond-
ing sEMG signals. Note that for SHP trials, each experimental 
condition consists of three trials and we take the average for these 
measures. A representative trial (sub13, Large object, Medium 
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FigUre 4 | Motion and force training results. (a) The time to complete open and close of the SoftHand-Pro in motion training across four levels of required absolute 
change of the motor position, averaged across three trials. (B) The time to complete all force targets with two controllers across five training trials (mean ± SE).

TaBle 3 | Summary of experimental variables for both controller groups.

Motion training Averaged time to perform each target open/close action
Force training Total time to complete each trial

Averaged EMG magnitude

Object pick and place Number of successful transport completed within 45 s
Grasp force during successful transport
Transport speed during successful transport
EMG activation of flexor
EMG activation of extensor
EMG activation of co-contraction

Object squeeze Averaged time to complete each trial
EMG activation of flexor
EMG activation of extensor
EMG activation of co-contraction
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weight, Fragile) is shown in Figure 3. For the object squeeze task, 
we computed the time to complete one trial (i.e., five squeezes), 
as well as the averaged EMG magnitude for flexor, extensor, and 
co-contraction. A summary of variables is given in Table 3.

Statistical Analysis
One subject in the differential control group was excluded from 
the data analysis because he was not able to finish training within 
an acceptable performance range, therefore did not participate 
the experimental task with SHP. To compare between two 
controllers, we used mixed ANOVA with Group as the between 
subject factor and task conditions as within subject factors. 
We also used repeated measure ANOVA to assess benchmark 
performance with subject’s normal hand. Post hoc comparisons 
were used with Bonferroni correction when needed.

resUlTs

Motion control Training
The motion training was designed to familiarize subjects with 
the myoelectric controller. For both “open” and “close” actions, 
subjects were able to perform quite well from the beginning 
and we did not observe improvement over three training trials. 
With separate three-way mixed ANOVA (Group, Trial, and 
Target), we found only a significant effect of Target for both 

“close” and “open” actions (p  =  0.001 and p  <  0.001, respec-
tively). This is expected, since both SG and HG groups used the 
same free motion controller that has been previously shown to 
be intuitive and efficient (Fani et  al., 2016). Furthermore, we 
performed another three-way mixed ANOVA after averaging 
across trials (Group, Target, and Action). We found a significant 
Target  ×  Action interaction (p  =  0.015, Figure  4A). Post hoc 
T-test showed that 30° close took significantly shorter time than 
the other three closing actions, whereas 120° open took signifi-
cantly longer than the other three opening actions (p < 0.05). 
This indicates that subjects were able to take advantages of the 
proportional control implemented for the SHP to scale the 
movement speed of the fingers as a function of the distance to be 
covered. Note that such scaling is an important feature observed 
in human when grasping object with different sizes (Bootsma 
et al., 1994).

Force control Training
Force training was designed to precisely generate desired grasp 
force with the help of visual feedback. Additionally, subjects 
could associate the haptic feedback from the CUFF to their 
own actions. Unlike motion control, force control with SHP 
was challenging in the beginning for both controller groups. 
The performance gradually improved over five training trials. 
Importantly, SG group performed consistently worse than the 
HG group (Figure  4B). These findings were confirmed by 
two-way ANOVA (Group and Trial) which showed signifi-
cant effect of both Trial (p <  0.001) and Group (p =  0.048). 
Furthermore, we examined the average EMG used in force 
control training with two-way mixed ANOVA (Group and 
Trial). For both flexor and extensor muscles, we found HG 
group used significant larger activity than the SG group across 
training trials (main effect of Group p < 0.001 and p = 0.01; no 
effect of Trial). This result suggests that the hybrid controller 
allows better control of grasping force but requires greater 
effort/energy. We want to point out that, unlike natural grasp-
ing, here the energy is spent in modulating grasp force, but not 
maintaining grasp force, due to the nature of velocity-based 
myoelectric control.
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FigUre 5 | Number of successful transport in pick-and-place tasks. (a) and (B) Native hand performance for Large and Small objects, respectively. (c) and (D) 
SHP performance for Large and Small objects, respectively.
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Object Pick-and-Place Tasks: 
Performance
We first quantified subjects’ performance with their native hand. 
This allows us to establish benchmark behavior for our novel 
tasks, which is then used evaluate the SHP controllers. Similar 
benchmark quantifications will also be used in the following 
sections regarding different aspects of the object pick-and-place 
tasks. The overall task performance is assessed by the number of 
successful transport within 45 s, using three-way mixed ANOVA 
(Group, Weight, and Fragility) per object size. For both Large 
and Small object pick-and-place tasks, two groups performed 
equally well. Furthermore, only Fragility but not Weight of the 
objects played a role in the net performance (Figures  5A,B). 
We found that the number of successful transport for fragile 
objects is significantly less than the solid ones (only main effect 
of Fragility with both Large and Small object p <  0.001). This 
could be because subjects handled the fragile objects with more 
caution, thus being slower.

With SHP, both groups performed the tasks much slower 
than their native hands, and we found that HG controller 
outperformed SG controller when transporting fragile objects 
(Figures  5C,D). Specifically, with the Large object, we found 
significant Fragility × Group (p = 0.003) and Fragility × Weight 
interactions (p = 0.023). Post hoc comparisons suggested that the 
HG group performed significantly better than the SG group in 
Heavy-Fragile, Medium-Solid, and Medium-Fragile conditions 
(p  <  0.05; Figure  5C). No difference was found between two 
groups in the Heavy-Solid condition. Similarly with the Small 
object, we found a significant Fragility  ×  Group interaction 
(p = 0.035). Further t-test suggested that hybrid group performed 
significantly better than differential group in Heavy-Fragile, 
Medium-Solid, and Medium-Fragile conditions (p  <  0.05; 

Figure 5D), but not in Heavy-Solid condition. Interestingly, we 
demonstrated a qualitatively similar pattern of Fragility effect 
between SHP and native hand in the HG group but not the SG 
group, despite of significantly less number of completion overall.

To further understand the difference between the HG and 
SG controller, we examined the hand-arm coordination using 
the velocity of the wrist center when the object was moving over 
the obstacle during successfully completed object transport.  
For the native hands, the velocity is significantly lower for Fragile 
objects than Solid objects (Figures  6A,B). Three-way mixed 
ANOVA (Group, Weight, and Fragility) showed only main effect 
of Fragility with both Large and Small objects (p < 0.001). With 
SHP, subjects were also moving slower with Fragile objects (main 
effect of Fragility, p = 0.003 and p = 0.005 for Large and Small 
objects, respectively). There were also significant Weight × Group 
interaction (p = 0.033 and p = 0.019 for Large and Small objects, 
respectively). Post hoc analyses showed that HG group was mov-
ing significantly faster in Heavy-Fragile, Medium-Solid, and 
Medium-Fragile conditions (p  <  0.05, Figures  6C,D). These 
results suggest that the superior performance of HG controller 
can be partially attributed to the faster arm movement when 
holding an object.

Object Pick-and-Place Tasks:  
grasp Forces
In addition to performance, we also measured grasp force when 
the object was moved over the obstacle during successfully 
completed object transport. For the native hands, we found that 
subjects scaled grasp force to object weight and fragility in both 
object size conditions (Figures 7A,B). Specifically, subjects used 
larger grasp force for heavier objects, and smaller grasp force 
when the object was fragile. These observations were confirmed 
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FigUre 7 | Grasp force in pick-and-place tasks. (a) and (B) Native hand grasp force for successful transport of Large and Small objects, respectively. (c) and (D) 
SHP grasp force  for successful transport of Large and Small objects, respectively.

FigUre 6 | Wrist velocity in pick-and-place tasks. (a) and (B) Native hand wrist velocity for successful transport of Large and Small objects, respectively. (c) and 
(D) SHP wrist velocity for successful transport of Large and Small objects, respectively.
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by three-way mixed ANOVA (Group, Weight, and Fragility). With 
the Large object, there was a significant main effect of both Weight 
(p = 0.003) and Fragility (p < 0.001), but not Group. Similarly with 
the Small object, we found significant main effect of both Weight 
(p < 0.001) and Fragility (p < 0.001), but not Group.

With SHP, subjects were able to modulate grasp force 
in successful transport (Figures  7C,D). With the Large 
object, we found a main effect of Weight (p  <  0.001), and a 

significant Fragility × Group interaction (p = 0.024). Post hoc 
comparisons showed that HG group used significantly smaller 
grasp force than the SG group in Medium-Solid condition 
(p  <  0.05; Figure  4C). Similarly with the Small object, we 
also found a main effect of Weight (p = 0.003), and significant 
Fragility × Group interaction (p < 0.001). t-Test showed that 
HG group used significantly smaller grasp force than the 
SG group in both Medium-Solid and Light-Solid conditions 
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FigUre 8 | sEMG magnitude in pick-and-place tasks. (a), (B), and (c) sEMG activities of flexor, extensor, and co-contraction in Large object tasks, respectively. 
(c), (D), and (e) sEMG activities of flexor, extensor, and co-contraction in Small object tasks, respectively.

FigUre 9 | Performance and sEMG in compliant object squeeze tasks. (a) and (B) Completion times for Native hand and SHP, respectively. (c), (D), and (e) sEMG 
activities of flexor, extensor, and co-contraction in compliant object tasks, respectively.
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(p < 0.05; Figure 4D). When compared with native hand, we 
found that HG group showed qualitative similar pattern of 
grasp force modulation, but SG group did not.

Object Pick-and-Place Tasks: eMg
To better understand how subjects use their muscle activities 
with SG and HG controllers, we also compared the average EMG 
used in these tasks. Note that we do not use EMG from native 
hand here as benchmark because (1) velocity-based myoelectric 
control is different from natural muscle control by nature and (2) 
the two sEMG channels cannot provide comprehensive measure 
of the muscle activity from native hand used in these tasks  
(e.g., missing intrinsic muscles).

With the Large object, we found no difference in the aver-
age flexor EMG magnitude between the two controller groups 
(Figure  8A; three-way mixed ANOVA, only main effect of 
Weight and Fragility, p  =  0.035 and p  <  0.001, respectively). 
Furthermore, we found no difference in the extensor EMG 
magnitude between the two groups (Figure  8B; only main 
effect of Fragility p  =  0.002). Finally, we found no difference 
in the co-contraction of the muscles between two groups 
(Figure 8C). With the Small object, we found a main effect of 
Fragility (p  =  0.009) for the wrist flexor muscle, as well as a 
Group × Weight interaction (p = 0.038). Post hoc comparisons 
showed that subjects in the HG group used less EMG for light 
weight than for the medium weight, but the SG group did not 
show difference between weights (Figure  8D). For the wrist 
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extensor muscle, we found no difference between the two 
controller groups (Figure  8E; only main effect of Fragility 
p  =  0.005). Finally, we again found no difference in the co-
contraction of the muscles between two groups (Figure 8F). To 
summarize, subjects used less EMG from both flexor and exten-
sor muscles for fragile objects regardless of group (Figure 8#). 
This is expected because fragile objects require much smaller 
grasp force (Figures 8C,D), therefore less EMG was needed to 
drive the reference motor position. Interestingly, it was found 
that the flexor activity was scaled to object weight in all condi-
tions for the HG group, but not SG group.

compliant Object squeeze Task
In addition to object pick-and-place tasks, subject performed 
compliant object task in which they had to deform a compliant 
object with either their native hand or the SHP. There were two 
levels of compliance that were set by the stiffness of the spring 
inside the object (soft and hard, 0.33 and 0.54 N/mm, respec-
tively). There was no difference between the two compliance 
levels for the native hand (Figure 9A). For the SHP, we found 
that single gain and the HG controller performed similarly in 
this task, and both were much slower than their native hands 
(Figure 9B). Two-way mixed ANOVA (Group and Compliance) 
showed a significant Group × Compliance interaction (p = 0.032). 
However, post  hoc comparison between two compliance levels 
did not reveal significant differences.

We also compared the average EMG between the two controller 
groups with two-way mixed ANOVA (Group and Compliance). 
For the flexor muscle, we found that subjects used significant 
larger activity in the hybrid controller group (Figure  9C; only 
main effect of Group, p = 0.011). For the extensor activity and 
co-contraction, no significant difference was found between the 
two groups (Figures 9D,E).

DiscUssiOn

The goal of this study was to improve the myoelectric control 
of grasp forces in functional tasks using a soft synergy-based 
prosthetic hand. Specifically, we developed and implemented 
a HG controller and compared its performance to a previously 
validated conventional SG controller. We demonstrated that 
the new controller (a) significantly improved subjects’ ability to 
perform fine force control when transporting objects with differ-
ent shapes, weights and fragility (Figure 5) and (b) qualitatively 
demonstrated natural modulation of grasp force in response to 
object’ physical property, such as weight (Figure 7). We discuss 
our results and future work below.

Quantitative assessment of Performance 
of hand Prosthesis with Functional Tasks
To meet the needs of creating reliable, functional, and robust 
hand prostheses, it is important to assess their performance in 
functional tasks that require physical interaction with objects, as 
well as coordination of arm and hand. This is because the use of 
prosthetic hand in ADL often involves dynamic and unstructured 

environments, in which the effect of gravity and object physical 
properties needs to be properly compensated. There are several 
clinical assessment tools available, such as Southampton Hand 
Assessment Procedure, Box and Block Test, and Jebsen Hand 
Function Test. However, these tests are usually scored based 
on gross measures, such as task completion time or quality of 
movement. As such, they do not provide information about how 
the tests are completed (i.e., movement kinematics, grasp force). 
Additionally, these tasks typically do not assess subjects’ ability 
to control grasp force, which plays an important role in ADL. 
Researchers have recently started to incorporate motion capture 
and force sensors to quantify and standardize the evaluation 
of the hand–object interactions during use of prosthetic hands 
(Hebert and Lewicke, 2012; Engeberg and Meek, 2013; Fani et al., 
2016; Godfrey et al., 2016; Wilson et al., 2017). Such quantitative 
assessment can identify potential bottlenecks and issues within 
the complex integration among hardware, control, and human 
user input, therefore helping to validate and optimize the pros-
thetic systems. In the current study, we developed a set of novel 
functional tasks that aimed to quantify the capability of prosthetic 
system to control grasp forces. The advantages of our tasks are 
threefolds. First, our tasks use objects that can be easily adjusted 
to cover a wide range of different physical properties, such as size, 
weight, and fragility. This allows us to test the versatility of the 
function of a prosthetic hand. Second, our tasks require repetitive 
dynamic actions similar to the Box and Block Test, which can 
be used to assess the reliability and robustness of the prosthesis. 
Third, our setup is fully equipped with both motion capture and 
force sensing technologies, thus being able to capture multiple 
dimensions of the task performance. Furthermore, our experi-
mental design also allows comparison between the prosthetic 
system and benchmark performance from the native hands. We 
believe that the ability of a prosthetic system to exhibit human-
like kinematic and kinetic behavior is critical for the acceptance 
of the terminal device.

improved Force control with context-
Dependent hg controller
Fine grasp force control is a defining feature in human’s manual 
dexterity. When grasping and moving an object, it is well 
known that the grasp force is regulated to the object’s weight 
and friction. Specifically, there is a minimum level of grasp 
force required to prevent object slip, given a weight and friction 
coefficient combination. The applied grasp force is normally 
slightly higher than the minimally required, demonstrating a 
consistent “safety margin” which balances energy efficiency and 
slip prevention (Johansson and Westling, 1984; Westling and 
Johansson, 1984). When friction is constant as in our study, 
such grasp force control will lead to the natural scaling of 
grasp force to object weight (e.g., larger grasp force on heavier 
objects). Indeed, in current study we showed that subjects 
were able to modulate grasp force in response to object weight 
with their native hands even when wearing a glove (Figure 7). 
Extensive investigation has revealed that weight specific grasp 
force control is achieved by a combination of memory based 
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feed-forward control and sensory feedback driven corrections. 
During initial encounter with a novel object, feedforward motor 
command can be generated based on the object’s physical prop-
erties which are visually estimated using previous experiences 
with similar objects (Gordon et  al., 1993). If the motor com-
mand is erroneously programmed due to inaccurate estimation, 
the central nervous system (CNS) can use somatosensory 
feedback to generate corrective responses after contact and/or 
after lift (Johansson and Westling, 1988; Johansson and Cole, 
1992). After repetitive interaction with the same object, internal 
representation of the object properties can be formed and used 
to generate more precise feedforward motor command in the 
following interactions (Flanagan et al., 2001). Importantly, the 
“safety margin” for grasp force can also be flexibly adjusted in a 
feedforward fashion to account for uncertainty in the dynamic 
environment (Hadjiosif and Smith, 2015), or the fragility of 
objects (Gorniak et al., 2010). In the current study, subjects used 
much less grasp force on the fragile object than on the solid ones 
(assuming same object weight) with their native hands. Such 
drop of “safety margin” was accompanied by decreased arm 
movement speed, which is consistent with previous findings 
(Gorniak et al., 2010).

There are two common ways to enable grasp force control 
in prosthetic hands. The first approach is fully automated by 
the implementation of force feedback loop using force and 
position sensors (Engeberg et  al., 2008, 2009; Engeberg and 
Meek, 2013). While the accuracy and reliability of automated 
force control is very good in single degrees of freedom rigid 
prosthetic hand (e.g., Motion Control Hand), it is challenging 
to scale this approach up to multi-finger hands and/or hands 
with embedded compliance (e.g., SHP) due to complex hand–
object interactions. Alternatively, the force control can be fully 
operated by the user with some form of haptic feedback about 
the grasp force [for review, see Antfolk et al. (2013) and Li et al. 
(2017)], such as vibrotactile stimulation (Rombokas et al., 2013; 
Lum et al., 2014), electrotactile stimulation (Wang et al., 1995), 
mechanotactile stimulation (Ajoudani et al., 2014; Casini et al., 
2015), and direct nerve stimulation (Raspopovic et al., 2014). In 
most cases, the feedback signal carries continuous information 
about grasp force, allowing subjects to reduce grasp force or 
perceive object softness. A more recent study also showed that 
discrete feedback about mechanical events during hand-object 
interaction is sufficient to allow user to better handle fragile 
object (Clemente et  al., 2015). However, most of the studies 
used relatively static and/or constrained tasks, and have not 
tested the user’s ability to integrate haptic feedback in force 
control during highly dynamic tasks across a range of different 
object size and weight. In the current study, we showed that 
our novel hybrid controller, paired with a soft synergy-based 
hand and continuous mechanotactile feedback can achieve this 
goal. Most importantly, to the best of our knowledge, we are 
the first to demonstrate human-like grasp force modulation to 
object weight.

Instead of tuning the haptic feedback, our approach focused 
on the design of EMG-to-motor control interface. This is 
because we acknowledge the importance to enable users to 

(1) accurately generate anticipatory motor command and (2) 
to make fine corrective motor response after receiving sensory 
feedback. Both of which are crucial to human’s manual dexter-
ity, as reviewed in the beginning of this section. Furthermore, 
we propose that, in a proportional EMG control scheme as in 
SHP, the EMG-to-motor control mapping has to be optimized 
separately for free motion and grasp force due to distinct 
behavior of the motor during motion and force generation. 
Note that the modulation of EMG-to-motor mapping can be 
designed to fully rely on the user, such as the concept of “tel-
eimpednace” where muscle co-contraction is used to change the 
mapping (Ajoudani et al., 2014). However, this would increase 
the complexity of the myoelectric interface, leading to higher 
demand in attention to simultaneously control multiple vari-
ables. It has been shown that a trade-off has to be made when 
deciding the level of sharing of control between the user and 
the hardware, and an intermediate level of interaction between 
the two was favored (Cipriani et al., 2008). Following this idea, 
context-dependent switching scheme can be found in several 
recent studies to control kinematics of the prosthetic hands 
based on sEMG pattern (Amsuess et al., 2016), limb kinematics 
and/or grasp force (Jiang et al., 2013; Patel et al., 2017), or vision 
(Markovic et al., 2014, 2015; Ghazaei et al., 2017). It has been 
argued that such semi-autonomous shared control can help to 
shield some low level execution details and decreases cognitive 
burden while maintaining high level function (Castellini et al., 
2014). We agree with this assessment, and furthermore believe 
that the prosthetic system needs to merge both sensory and 
motor information to best determine the context of operation, 
including both sensors in the hardware and the sEMG from user 
input. Therefore, we choose to improve prosthesis force control 
by implementing a “context aware” controller that changes the 
EMG-to-motor mapping based on both the condition of the 
hand (i.e., free motion or object grasping) and the intent of 
the user (i.e., open or close). We note that the state switching 
rules were relatively simple in our study due to limited sensing 
capability associated with the design goal of enabling intuitive 
control of the SHP Nevertheless, the present work provides 
proof-of-concept evidence that human-like force control can 
be achieved using the proposed approach.

effort-Performance Trade-Off in 
Myoelectric control of hand Prosthesis
We want to point out that the superior performance of the 
hybrid controller came at a cost of increased demand of energy 
(i.e., muscle activation at higher amplitude and for longer time). 
However, this is not necessarily undesired. In fact, our result 
where subjects scale grasp force to object weight indicates that 
the increased energy demand from our controller effectively 
evoke the CNS’s ability to optimize the motor command for 
energy efficiency. This indirectly leads to lower energy con-
sumption in the prosthetic hand as the grasp force is subse-
quently optimized, which can extend the usage time thanks to 
less battery consumption and reduced tension of the driving 
tendon.

91

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Fu and Santello Force Control of Prosthetic Hand

Frontiers in Neurorobotics | www.frontiersin.org January 2018 | Volume 11 | Article 71

conclusion and Future Work
Our results provide strong support to the functional advantage 
of a context-dependent myoelectric interface for the control 
of grasp force during hand–object interactions. Although the 
controller was only tested with a soft-synergy based prosthetic 
hand and a mechanotactile feedback system, we believe that it 
can be extended to other terminal devices and feedback systems, 
including next generation of SHP with multiple actuators (Delia 
Santina et al., 2015) and direct nerve stimulation. Future work 
includes, but not limited to, finding optimal EMG-to-motor 
mapping parameters in different sensorimotor states, better state 
definition and transitions, as well as determining the level of 
control sharing between user and hardware.
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Recently, progress has been made in the development of mechanical joints with variable

intrinsic stiffness, opening up the search for application areas of such variable-stiffness

joints. By varying the stiffness of its joints, the resonant frequency of a system can be

tuned to perform cyclical tasks most energy-efficiently, making the variable-stiffness joint

a candidate element for an advanced prosthetic device specifically designed for the

cyclical task of drumming. A prerequisite for a successful variable-stiffness drumming

prosthesis is the ability of human drummers to profitably employ different stiffness levels

for playing different beats. In this pilot study, 29 able-bodied subjects (20 drumming

novices and 9 experts) wear a cuff on the forearm, to which a drumstick is connected

using changeable adapters, consisting of several leaf springs with different stiffness and

one maximally stiff connection element. The subjects are asked to play simple regular

drum beats at different frequencies, one of which is the resonant frequency of the

adapter-drumstick system. The subject’s performance of each drumming task is rated

in terms of accuracy and precision, and the effort is measured using questionnaires

for the perceived stress as well as electromyography (EMG) for the muscular activity.

The experiments show that using springs instead of the stiff connection leads to lower

muscular activity, indicating that humans are able to use the energy-storing capabilities

of the springs, or that muscular activity is reduced due to the lower mass of the springs.

However, the perceived stress is increased and the novices’ performance lowered,

possibly due to a higher cerebral load for controlling the elastic system. The hypothesis

that “matching the resonant frequency of the spring-drumstick system to the desired

frequency leads to better performance and lower effort” is not confirmed. Possible

explanations are discussed. In conclusion, a series-elastic element appears to lower the

muscular effort of drumming, while a stiff connection appears to minimize the mental load

and has a positive effect on the performance of drumming novices.

Keywords: variable-stiffness actuators, series-elastic actuators, wrist prosthetics, drumming, cyclical tasks,

energy storage
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1. INTRODUCTION

Series-elastic actuators (SEAs) as well as variable-stiffness
actuators (VSAs) have been recently introduced into robotics
(Vanderborght et al., 2013) to address current problems of
robotic arms with torque sensing and actively controlled
compliance (Albu-Schäffer and Hirzinger, 2002; Albu-Schäffer
et al., 2007).

Compared to actively compliant actuators, VSAs and SEAs
yield several advantages. They can (a) reduce impacts of collisions
for motors and gears (Grebenstein et al., 2011), (b) increase
dynamic capabilities by allowing to frequently store elastic
energy, and (c) embody desired behavior (Visser et al., 2011).

SEAs include an elastic element to decouple motor and link-
side positions. VSAs are additionally able to tune this elasticity
by using a second motor. This intrinsic elasticity inherently
dominates the orientation of favorable compliant directions for
multi-joint robotic arms and determines their resonance modes.
While this inherent behavior and the more complex dynamics of
SEAs and VSAs increase the complexity of controlling arbitrary
behavior, they allow reducing the control effort (Visser et al.,
2011) and energy consumption of dominating tasks if these are
accounted for in the design process of the robotic system.

Currently, we are searching for tasks that can exploit the
full potential of SEAs and VSAs. Using joint elasticity to store
potential energy appears particularly promising in the reversal
points of cyclical tasks. They can be performed energy-efficiently
at different speeds if the system performing the task contains
VSAs, because the resonance frequency of the system can be
tuned by changing the stiffness values of its joints. An example
for a cyclical task involving the upper limbs is drumming. It has
already been proven that the drum roll frequency of a robotic
drummer can be controlled by varying the robot’s passive stiffness
(Hajian et al., 1997; Hajian, 1997). In the same study, the authors
“. . . present evidence that drummers vary the stiffness of their
hands to control the bounce frequency. . . ”. They showed that
healthy subjects increase grip force and—since grip stiffness and
grip force go hand in hand (Höppner et al., 2011)—naturally
grip stiffness as well, to increase the drumming speed during
double-stroke drum rolls.

Studying human impedance is an active field of research that
frequently inspires robotics. Studies in human wrist stiffness
show that wrist stiffness is increased in the presence of unstable
loads and, similar to grip stiffness, increases linearly with the
applied load (De Serres and Milner, 1991). Additionally, active
control, namely the stretch reflex, considerably assists the wrist
in a fast return of the limb after displacement (Sinkjær and
Hayashi, 1989). Moreover, it is essential to note that wrist stiffness
and damping increase as finger force increases, e.g., applied in a
tripod-grasp (Kuchenbecker et al., 2003). In general, the human
hand can be considered as a VSA rather than a SEA and is able

Abbreviations: DC, Direct current, static part of a signal; DLR, Deutsches

Zentrum für Luft- und Raumfahrt, German Aerospace Center; EMG,

electromyography; LMU, Ludwig-Maximilians-Universität; RMS, square root

of mean squared; SD, standard deviation; SEA, series-elastic actuator; VSA,

variable-stiffness actuator.

FIGURE 1 | Jason Barnes— The drummer is wearing a prosthesis with

actively controlled drumsticks on the stump. The rebound of the drumstick is

tuned by using a DC motor in a variable-impedance shared-control

framework. Picture by Lwp Kommunikáció (2014). License: CC-BY 2.0.

to decouple stiffness from its linear increase with force using
cocontraction of antagonistic pairs of muscles (Höppner et al.,
2017).

There are cases in which drummers lose their wrist due to
accident or illness, and cases in which persons with congenitally
absent parts of the arm would like to play the drums. In
these cases, the drumstick has to be attached to the remaining
part of the arm (except if they use only the intact arm, or
compensate using their legs). A prosthetic drumstick holder
is commercially available, including an elastic element, but
without variable stiffness (TRS Inc., 2017). Increasing the level
of technological sophistication, researchers from Georgia Tech
in Atlanta equipped drummer Jason Barnes’ right arm, which
has suffered a transradial amputation, with a myo-electrically
controlled robotic prosthesis (see Figure 1). The prosthesis was
equipped with a drumstick and, by using a DC motor in
a variable-impedance shared-control framework, the rebound
of the drumstick after initial impact was controlled (Bretan
et al., 2016). However, no variable mechanical elasticity was
implemented.

If variable mechanical elasticity was implemented, it could
be tuned by either a myo-electrical or velocity-proportional
control. Myo-electrical control of position and stiffness of
a VSA was investigated by Hocaoglu and Patoglu (2012),
while this study did not investigate energetic interactions with
the environment. Ajoudani et al. (2012) and Godfrey et al.
(2013) tuned an actively controlled compliance—also called
apparent stiffness in biomechanics (Latash and Zatsiorsky,
1993)—using electromyography (EMG) and were able to show
general advantages of compliance during object handling and
manipulation. However, benefits of mechanical elasticity as
energy storage in reversal points during cyclic movements were
not the focus of these studies.

Fujii et al. (2009) investigated the drumming performance of
unimpaired non-drummers, ordinary drummers and the world’s
fastest drummer. They found a maximal single-stroke drumming
frequency for non-drummers and ordinary drummers alike of
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6–7Hz, while the world’s fastest drummer was able to play
beats of 10Hz. We use the values of non-drummers and
ordinary drummers in our study to limit the range of drumming
frequencies that subjects are supposed to play.

Based on the double motivation of searching for an
application of VSAs and trying to improve prosthetic drumming
experience, we want to investigate in a user study whether
introducing inherent elasticity into a wrist prosthesis might be
beneficial for drumming and want to answer the question: Can
drummers take advantage of variable stiffness in a prosthetic wrist?

It seems clear that stiffness is increased in healthy drummers
to increase drumming speed (Hajian et al., 1997; Hajian, 1997).
But it remains unclear whether this coupling between stiffness
and bounce frequency is the result of an increase in grip
strength or whether stiffness per se is the primarily optimized
parameter, for example to enhance exploitation of energy storing
capabilities. Moreover, it is known that the motor control of
humans is able to achieve and stabilize coordinated cyclic
movements even in the presence of strong dynamic non-
linearities (Lakatos et al., 2014). But can we exploit benefits
of artificial elastic joints to reduce the required energy and to
increase comfort? Compared to a rigid attachment, an elastic
attachment might not only reduce the required amount of energy
but would be able to absorb the impact of the drum on the
drumstick.

Furthermore, it is of interest whether a prosthetic wrist with
a fixed elasticity is sufficient, or whether changing the stiffness
during drumming is beneficial. Fixed elasticity is implemented
using SEAs and variable stiffness using VSAs, which has a serious
commercial background, since VSAs require the implementation
of an additional drive.

Hence, the main purpose of this study is to investigate
which of the following prosthetic wrist types enables best
drumming performance and provides the most comfortable
playing experience: a stiff connection, a spring with a fixed
stiffness, or an elastic adapter with variable stiffness.

To simplify the preparation of the experiment, instead of a
joint with continuously variable stiffness, discrete elastic elements
with different stiffness values are used.

Using a velocity-proportional control scheme, the discretely
variable stiffness is chosen so that the design frequency, which
is an approximation of the resonant frequency of the system,
matches the desired playing frequency. We call this control
scheme “diagonal-type variable stiffness,” because it corresponds
to the diagonal of the combination matrix of desired frequency
and variable stiffness (Figure 2).

Our hypotheses are (a) that subjects play best with diagonal-
type variable stiffness, and, (b) that experts are better in taking
benefit of the variable stiffness, since they are familiar with the
general task of drumming, which probably frees their mental
capacities for adapting to the new device.

2. MATERIALS AND METHODS

This study involved 20 unimpaired drumming novices and 9
unimpaired drumming experts who wore a cuff on the forearm,
to which a drumstick was attached using stiff and elastic adapters.

FIGURE 2 | Trials— Combination matrix of the factors “desired frequency” and

“adapter type.” Each dot represents one trial, i.e., the subjects are asked to

play all combinations. Note that the desired frequencies are chosen so that

they correspond to the design frequencies of the four springs. The

variable-stiffness strategy of this study, where the desired frequency is

matched by the design frequency, corresponds to the highlighted diagonal of

the matrix.

Hence, the subjects’ intact wrists were not used but replaced
with an experimental prosthetic attachment, simulating the
situation of a missing hand. The subjects were asked to play all
combinations of adapter types and desired frequencies shown
in the combination matrix in Figure 2. The desired frequencies
ranged from typical beats of popular music (3–4Hz) to the
maximum single stroke frequency that an average drumming
novice can reach according to Fujii et al. (2009) (6–7Hz).
Measurements of muscular activity and a questionnaire were
used to assess each subject’s stress level, while the inaccuracy and
imprecision of the beat were used to judge the quality of the
drumming.

2.1. Experiment Setup
The experiment setup is shown in Figure 3. The experiment took
place in a space secluded by curtains from the rest of the room in
order to avoid distraction of the subject.

The subject wore a cuff constraining movements of the
wrist (extension/flexion and radial/ulnar deviation). The cuff was
coupled to the drumstick via a changeable adapter. The set of
changeable adapters consisted of four leaf springs with different
stiffness values (see exemplary spring in Figure 4) and one
maximally stiff connection element (see Figure 5). The adapter
was approximately aligned in parallel to the plane of the radial
and ulnar deviation of the wrist.

Between spring and cuff a force-torque sensor ATI Mini45
SI-290-10 was placed (measurement range: Fx/y = ±290N,
Fz = ±580N, Tx/y/z = ±10Nm; resolution: 1Fx/y/z =

±1/8N, 1Tx/y = ±1/376Nm, 1Tz = ±1/752Nm). This sensor
was used for determining the design frequency of each adapter
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FIGURE 3 | Experimental Setup— Subjects were equipped with a cuff with

the attached drumstick, electrodes for measuring muscular activity of

respective muscles, as well as markers for optical tracking. Force-torque

sensors were placed between drumstick and cuff as well as on the drumming

plate. Subjects were given head phones with a metronome beat with the

desired drumming frequency. This picture shows one of the researchers and

co-authors of this study, who has provided written informed consent to this

publication of his image.

element, which corresponds to the resonant frequency of the
whole cuff including force-torque sensor, spring and drumstick.
For this, the cuff was fixed in a bench vise, and the drumstick
was jolted into free oscillation. From the force-torque sensor
data, the frequencies of the oscillation were found to be at 3.7,
4.4, 5, and 6.3Hz for the springs and at 27Hz for the stiff
connection. The force sensor remained between spring and cuff
during the experiments to avoid changing the design frequencies.
The springs were approximately 70–90 g lighter than the stiff
connection, leading to a reduction of the moment of inertia
around the elbow flexion axis of about 5–6%.

The drum strokes were recorded by a JR3 90M31A3 force-
torque sensor fixed on a table (measurement range: Fx/y =

±200N, Fz = ±400N, Tx/y/z = ±20Nm; resolution: 1Fx/y =

±0.050N, 1Fz = ±0.10N, 1Tx/y/z = ±0.005Nm). The sensor
was covered with rubber mats for damping the noise and making
the drumming more comfortable (see Figure 3). Note that this
damping influenced the peak forces, but not the time of impact,
the latter being relevant for evaluating drumming imprecision
and inaccuracy. The height of the table was adjusted to the
subject’s height.

The force-torque sensor data was low-pass filtered using
a Butterworth filter with 100Hz cutoff frequency. The time
between strokes was determined using the peak detection

FIGURE 4 | Drumming cuff with a soft spring— The force-torque sensor as

well as the markers for optical tracking of the drumstick can be seen. The cuff

is designed such that it prevents the wrist from extension/flexion and

radial/ulnar deviation.

FIGURE 5 | Drumming cuff with the stiff connection.

function of Matlab on the filtered vertical force data, with the
parameters minimum peak height set to 0.5 times the 95th
percentile of the filtered data set and minimum peak distance
set to 0.5 times the desired time between strokes. Times between
strokes that exceeded 1.5 times the median time between strokes
were counted as missed strokes or pauses and discarded.

For possible later reference, the positions of cuff and
drumstick were continuously monitored through optical
tracking.

The desired frequency was given by the beat of a metronome
via head phones, which was also recorded for later reference.

We used EMG electrodes for measuring the muscular activity
of subjects. The surface electrodes of the Delsys Trigno Wireless
System have an internal amplification of 1 kV/V and provide
an analog signal at 4 kHz with a constant delay of 48ms.
These electrodes comply with the requirements put forth by the
Medical Device Directive 93/42/EEC, and we complied with their
intended use.

We measured the muscular activity of 8 muscles involved
in shoulder and elbow movements: biceps brachii (elbow and
shoulder flexion, shoulder abduction), pectoralis major (humerus
adduction), deltoideus posterior (shoulder extension), deltoideus
medius (shoulder abduction), deltoideus anterior (shoulder
flexion), anconeus (elbow extension), triceps brachii long head
(elbow and shoulder extension), and triceps brachii lateral head
(elbow extension). The mean of the EMG values over all trials
of each electrode was subtracted subject-wise to remove any
constant DC offset. Furthermore, after subtracting the DC offset,
the EMG values of each electrode were normalized subject-wise
by dividing by the RMS value over all trials. This eliminates
differences in electrodes due to location-specific tissue resistance
and gives the variations between trials of the signal of each
electrode the same weights.
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Additionally, the measurement setup consisted of a host
computer running Linux, a real-time target computer running
VxWorks and aWindows computer. The real-time computer ran
the software (developed using Matlab/Simulink) to read out the
force-torque and EMG sensors at 1 kHz. The marker positions
were recorded by the Windows computer and transferred to
the Linux host using the DLR communication protocol aRDnet
(Bäuml and Hirzinger, 2008).

2.2. Study Design and Experiment Session
Protocol
A total of 29 healthy subjects, 25 male and 4 female, all right-
handed and initially fully naive to the experiment, performed the
experimental protocol as described below. 9 out of the 29 subjects
had at least 1 year of drumming experience and were therefore
considered as experts, and the other 20 were counted as novices.
All subjects participated voluntarily and gave written informed
consent to the procedures, which were conducted in partial
accordance with the principles of the Helsinki agreement (non-
conformity concerns the point B-16 of the 59th World Medical
Association Declaration of Helsinki, Seoul, October 2008: no
physician supervised the experiments). Approval was received
from the works council of the German Aerospace Center, as well
as its institutional board for data privacy ASDA; the collection
and processing of experimental data were approved by both
committees. For all subjects and experiments the right hand was
used, which was restricted by the design of the cuff. Subjects stood
upright in all experimental conditions.

The experiment session lasted between 20 and 25 min
per subject. At the beginning of each experiment session,
the participant was instructed about the experiment using a
standardized presentation.

The subjects were asked to play all 20 trials consisting of the
combinations of adapter types and desired frequencies shown in
the combination matrix in Figure 2. During the trials, subjects
were observed and asked to keep the orientation of the leaf spring
so that the drumming motion is in the direction of its minimal
stiffness. In order to prevent effects of learning or fatigue, the
combinations were given to them in a block-randomized order:
the adapter types were randomized, and within each adapter type,
the desired frequencies were randomized.

Before each trial, subjects had the possibility to get used to
the current combination of desired frequency and adapter type
within a time of 10 s, followed by a phase of 15 s of collecting

drumming data. The 10 s of training data were not recorded.
After each trial, subjects were asked to fill in a questionnaire
about the combined physical and mental stress level that they felt

during playing at the respective combination of desired frequency
and adapter type. The question was “How high was the perceived
stress while playing of each frequency, with respect to physical
and mental effort” 1: very low, 8: very high1.

Before and after the trials, base noise EMG during rest of the
arm was measured, as well as EMG and maximum force during
maximum voluntary contraction in a lifting-up and a pushing-
down task. This was used for checking whether the signals look
plausible. Unfortunately, for unknown reasons, the electrodes
of pectoralis major and anconeus showed very noisy signals for
many subjects. We therefore discarded the results of these two
electrodes.

2.3. Statistical Design
To answer our research questions and evaluate our hypotheses,
we predefined four outcome measures, which are gathered for
each subject and trial:

• The inaccuracy, i.e., the difference between the desired time
interval and the mean played time interval between two drum
strokes, which tells how well the desired frequency could be
met; a lower inaccuracy means a better performance:

yinaccuracy =

∣

∣

∣

∣

∣

1

fdesired
−

1

nstrokes

nstrokes
∑

s=1

(Tplayed,s)

∣

∣

∣

∣

∣

; (1)

• the imprecision, i.e., the standard deviation of the time
between two strokes, which tells how evenly the frequency was
played; a lower imprecision means a better performance:

yimprecision = SD
s∈{1,...,nstrokes}

(Tplayed,s); (2)

• the perceived stress consisting of physical and mental effort,
i.e., the result of the questionnaire; lower stress means higher
comfort:

yperceived_stress = questionnaire_entry; and (3)

• the measured muscular activity, i.e., the mean normalized
root-mean-square (RMS) EMG signals, where normalizing
means subtracting the per-electrode DC offset and dividing by
the per-electrode RMS of the signals of all trials; again, a lower
muscular activity means a higher comfort:
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√
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√
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, (6)

1This is translated from the original questionnaire, which was in German: “Wie

hoch war die empfundene Belastung beim Spielen der einzelnen Frequenzen, in

Bezug auf körperliche und geistige Anstrengung” 1: sehr wenig, 8: sehr viel.
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where EMGelt is the measured EMG signal of electrode e at time
sample t in trial l, with nelectrodes = 6, ntrials = 20 and nsamples =

3,000.
To statistically analyze the results we built and applied a

mixed-effects regression model with fixed and random effects. It
allowed to directly include the two hypotheses as fixed effects into
our model. The formula of the mixed-effects model is:

yijklmn=β0 + βadapter_type,i + βdesired_frequency,j + βexpert_status,k

+βdiagonal,l+βdiagonal×expert_status,kl+βadapter_type×expert_status,ik

+mβtrial_number + ǫsubject,n + ǫmn, (7)

where yijklmn is the response variable, i.e., any of the four
above-mentioned outcome measures, i is the adapter type, j is
the desired frequency, k is the expert status, l is the diagonal
status, which is 1 if the combination of adapter type and
desired frequency is on the diagonal and 0 otherwise, m is
the within-subject trial number, n is the subject number, β0

is the intercept, which is a constant term, βadapter_type,i is the
fixed effect of the adapter type, βdesired_frequency,j is the fixed
effect of the desired frequency, βexpert_status,k is the fixed effect
of the expert status, βdiagonal,l is the fixed effect of playing on
the diagonal, βdiagonal×expert_status,kl is the fixed effect of the
interaction between the expert status and playing on the diagonal,
βadapter_type×expert_status,ik is the fixed effect of the interaction
between expert status and adapter type,mβtrial_number is the trial-
number-dependent fixed effect of learning or fatigue, ǫsubject,n
is the subject-specific random effect and ǫmn is the residual
random error. The random effects are assumed to follow normal
distributions as follows:

ǫmn
i.i.d.
∼ N(0, σ 2) and (8)

ǫsubject,m
i.i.d.
∼ N(0, τ 2). (9)

The factors adapter type, desired frequency, expert status and
diagonal status can assume the levels shown in Table 1. The zero
level of each factor is taken as the reference configuration, for
which all categorical βs are zero.

The parameters of the mixed models were fitted to the
measured outcome measures using the lmer function of the lme4
library (Bates et al., 2015) of the R statistics software (R Core
Team, 2015). It turned out that for inaccuracy and imprecision,
the distribution of the residuals ǫmn could be made much more
similar to the assumed normal distribution by transforming them
with natural logarithms of their values in s:

yln(inaccuracy) = ln

(∣

∣

∣

∣

∣

1

fdesired
−

1

nstrokes

nstrokes
∑

s=1

(Tplayed,s)

∣

∣

∣

∣

∣

/s

)

and

(10)

yln(imprecision) = ln

(

SD
s∈{1,...,nstrokes}

(Tplayed,s)/s

)

. (11)

Hence, these transformed outcome measures were used in the
statistical analysis of the experiment. The results of the statistical

model were calculated as the numerical values of the parameters
of the mixed-effects regression model. The most important
effects were plotted as 95% confidence intervals, which allows
hypothesis testing at a significance level of α = 0.05.

3. RESULTS

The measurement data is summarized in Table 2. The measured
inaccuracy ranges from less than 0.1 to 39ms, the imprecision
from 4 to 33ms, the perceived stress from 1 to 8 (the whole range
of the questionnaire) and the normalized muscular activity from
0.36 to 2.76. Comparing the imprecision at the highest desired
frequency to the results of Fujii et al. (2009, Table 3), the experts
in Fujii et al. (2009) play slightly better, while their novices play
slightly worse.

Fitting the statistical models to the measurement data yields
values for the parameters that tell how much each of the factors
influenced the outcome measures. Values for all fitted parameters
are found in Table 4.

The inaccuracy is most strongly influenced by the
expert status and the desired frequency. The imprecision
is most strongly influenced by the adapter type and
expert status. The perceived stress is dominated by the
desired frequency. The most important influence factors
on muscular activity are desired frequency and adapter
type.

The effect of the trial number, which represents learning and
fatigue, is between one and three orders of magnitude smaller
than the other effects.

The effects of the most important parameters on the outcome
measures are shown as 95% confidence intervals in Figures 6–8.
Whenever the 95% confidence interval does not include zero, the
effect is statistically significant at a significance level of α = 0.05.
In some cases of a slight overlap between the confidence interval
and the zero level we carefully speak of tendencies.

Figure 6 depicts the influence of the desired frequency on
the outcome measures. On all of them, increasing the desired
frequency has a detrimental effect.

The influence of the factors that are related to the question
which adapter type is most suitable for a drumming prosthesis,
namely the adapter type, the diagonal status (i.e., whether the
design frequency matches the desired frequency) and their
interactions with the expert status, are shown in Figure 7.

The first hypothesis, that variable stiffness provides the best
performance and comfort, and the second hypothesis, that
experts are better able to make use of the variable stiffness,
can be tested by regarding the differences between playing on
or off the diagonal shown in Figure 7A. The effects of the
diagonal on the inaccuracy are in opposite directions for experts
and novices2. For the experts, the effect of the diagonal is a
reduction of the inaccuracy, while for novices it is an increase
in inaccuracy. The imprecision of novices also increases with

2Since the logarithm is a monotonically increasing function, a higher logarithmic

outcome measure corresponds to a higher plain outcome measure, so that, for

example, a higher logarithmic inaccuracy can be described simply as a higher

inaccuracy.

Frontiers in Neurorobotics | www.frontiersin.org March 2018 | Volume 12 | Article 999

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Stillfried et al. Drumming With Elasticity

TABLE 1 | Levels of the factors of the mixed model in Equation (7).

i Adapter type j Desired frequency k Expert status l Diagonal status

0 Stiff connection 0 3.7Hz 0 Expert 0 Off the diagonal

1 Spring 1 1 4.4Hz 1 Novice 1 On the diagonal

2 Spring 2 2 5.0Hz

3 Spring 3 3 6.3Hz

4 Spring 4

TABLE 2 | Summary of the measurement data.

Minimum 1st quartile Median Mean 3rd quartile Maximum

Inaccuracy (ms) <0.1 1.58 2.12 4.58 3.36 39.2

Imprecision (ms) 4.26 7.51 9.26 11.2 13.5 33.2

Perceived stress 1 2 4 4.3 6 8

Muscular activity 0.36 0.72 0.87 0.92 1.05 2.76

Note that for the statistical model, the values inaccuracy and imprecision were transformed by the natural logarithm.

Here the values are shown untransformed for easier interpretation.

TABLE 3 | Comparison of imprecision (Equation 2) at maximum drumming frequency between Fujii et al. (2009) and our study (mean±SD).

Fujii et al., 2009 Our study at a desired frequency of 6.3Hz

Own hand Spring 1 Spring 2 Spring 3 Spring 4 Stiff conn.

Novices 27± 20ms at 7.0±0.9Hz 18± 10ms 14± 6ms 18± 7ms 20± 9ms 12± 3ms

Experts 7± 5ms at 6.8± 0.6Hz 14±8ms 13± 7ms 13± 7ms 13± 4ms 9±3ms

TABLE 4 | Estimates for the parameters of the fitted linear mixed models in Equation (7).

Estimated effects on outcome measures

Parameter ln(inaccuracy) ln(imprecision) Perceived stress Muscular activity

β0 −6.094 −4.895 2.845 0.925

βadapter_type,1 0.218 0.361 0.594 −0.165

βadapter_type,2 0.311 0.296 0.238 −0.231

βadapter_type,3 0.020 0.222 0.224 −0.209

βadapter_type,4 −0.046 0.147 0.872 −0.153

βdesired_frequency,1 0.334 0.028 0.694 0.077

βdesired_frequency,2 0.472 0.126 1.709 0.173

βdesired_frequency,3 0.678 0.129 2.945 0.559

βexpert_status,1 0.471 0.339 −1.143 −0.082

βdiagonal,1 −0.358 0.074 −0.183 0.043

βtrial_number −0.030 0.000 −0.022 −0.006

βdiagonal×expert_status,11 0.693 0.091 0.150 −0.055

βadapter_type×expert_status,11 0.169 0.094 0.872 0.194

βadapter_type×expert_status,21 0.201 −0.028 0.619 0.113

βadapter_type×expert_status,31 0.102 0.036 0.320 0.162

βadapter_type×expert_status,41 0.263 −0.024 −0.097 0.116

playing on the diagonal and the imprecision of experts shows a
trend of increase. The comfort measures were less affected by the
diagonal.

Figure 7B shows the differences between playing with an
elastic spring and playing with the stiff connection and helps
to answer the question whether stiff or elastic adapters are
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FIGURE 6 | Effect of the desired frequency on the outcome measures. The diagram shows the estimates and 95% confidence intervals of the differences between

outcome measures at the higher desired frequencies and the outcome values at a frequency of 3.7Hz. Since the statistical model (Equation 7) does not contain any

interaction terms between frequency and expert status, the values are the same for experts and novices. Lower values are better.

more suitable. Regarding performance, the springs show a
mostly detrimental effect. The imprecision when playing with the
springs is higher than when playing with the stiff connection and
increases with increasing softness of the springs. The inaccuracy
also shows a tendency to increase when using springs instead of
a stiff connection, especially for the springs with lower stiffness.
Regarding the influence of using elastic springs on the comfort
measures, there is a discrepancy between perceived stress and
muscular activity. On the one hand, the perceived stress of
novices is higher when using the springs, and also the perceived
stress of experts tends to be higher. On the other hand, playing
with springs rather than a stiff connection reduces the muscular
activity of experts and shows a tendency for reduction of the
muscular activity of novices.

Since the use of diagonal-type variable stiffness shows a
beneficial effect on the accuracy of experts but the use of
some of the springs shows a detrimental effect with a similar
magnitude, it is interesting to see the differences in inaccuracy
of experts between using the springs in diagonal-type variable
stiffness mode and using the stiff connection. These effects of the
springs on the diagonal are the sum of the effect of the diagonal
(Figure 7A) and the effects of the springs (Figure 7B) and are
shown in Figure 8. The diagram shows a tendency for reduced
inaccuracy when playing with diagonal-type variable stiffness.

4. DISCUSSION AND CONCLUSION

In this study, we investigated whether drummers can take
advantage of a variable-stiffness joint in a prosthetic wrist. We
asked 20 novices and 9 experts to play different frequencies using
different elastic elements and one stiff element in a connection
between a cuff on the forearm and a drumstick. We hypothesized
that subjects will perform best and require the least effort when
playing the elastic elements at their resonant frequencies, which
is one main argument for variable-stiffness actuation. Moreover,
we hypothesized that such an effect will be more obvious for an
expert drummer.

Can drummers take advantage of a variable-stiffness joint in
a prosthetic wrist? Our experimental design was unable to verify
that variable stiffness is useful for a prosthetic wrist. Even if
experts showed a trend for a reduced inaccuracy when playing
the diagonal, they showed the opposite trend for imprecision,

and it is difficult to judge which of the two is more relevant. For
novices, both inaccuracy and imprecision increased when using
the diagonal-type variable stiffness.

The results showed the expected influence of elasticity on the
EMG-measured effort, namely that elasticity reduces the effort,
and that experts are better than novices in doing so. Despite that,
there was a clear discrepancy between measured and perceived
effort for both groups.While themuscular activity decreased with
decreasing stiffness of the adapter, the perceived stress increased.
We find this effect surprising.

A possible interpretation is that subjects are indeed able
to save muscular effort by making use of the energy-storing
capabilities of the spring. However, the effort by the brain
for controlling the more complex dynamics of the system
involving the springs is likely higher than for controlling the
system involving the stiff connection. In the answers to the
questionnaire, the increased cerebral effort might therefore
outweigh the reduced muscular effort.

A further explanation for the lower EMG-measured effort
when using the springs lies in the fact that the they are more
lightweight than the stiff connection and that less muscular
effort might have been necessary to accelerate and decelerate it.
However, the reduction of inertia (5–6%) is considerably lower
than the reduction of EMG-measured effort (16–25%). Assuming
that muscular activity is roughly proportional to accelerated
inertia, we therefore estimate that the influence of the different
weights on the EMG-measured effort is small and that the effect
of the adapter types on muscular activity is dominated by their
elasticity.

These findings somewhat confirm the study of Fujisawa and
Miura (2010), who found that removing the rebound of the drum
or adding weight would lead to increased EMG levels. However,
this comparison is limited by differing places of energy storage
(drum skin vs. elastic wrist) and investigated muscles (wrist
muscles vs. elbow and shoulder muscles).

In interpreting the results with respect to variable stiffness,
three main limitations of our experimental design have to also be
considered. (a) We measured the resonant frequency of the cuff
including the elastic element and the drumstick. The influence
of the rebound of the drum skin as well as the elasticity of
the soft tissue and the (variable) stiffness of the joints due to
muscle contraction and cocontraction were not gathered when
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FIGURE 7 | Main results— The diagrams in this figure show how the four outcome measures are affected by the factors diagonal (A) and adapter type (B). The dots

in the diagram represent the estimates of the effects on the measures and the lines represent their 95% confidence intervals. For all outcome measures, lower values

are better.

measuring the resonant frequency of the cuff-spring-drumstick
combination. This possibly leads to lower resonant frequencies of
the whole system including the human arm, which could explain

the better performance of the stiffer springs. (b) There might
be variable-stiffness strategies other than matching the resonant
frequency of the system to the desired frequency. In order to

Frontiers in Neurorobotics | www.frontiersin.org March 2018 | Volume 12 | Article 9102

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Stillfried et al. Drumming With Elasticity

FIGURE 8 | Effect of variable stiffness on the inaccuracy of experts. The

diagram shows the estimates and 95% confidence intervals of the differences

between inaccuracy with diagonal-type variable-stiffness springs and with the

rigid connection. Lower values are better.

potentially discover those other variable-stiffness strategies, in
future experiments, one could ask subjects to play a more fine
grained set of frequencies and try to discover patterns in the
outcome measures. (c) Even the expert drummers were naive
to the experiment and the time to become acquainted with
the system for any combination of adapter type and desired
frequency was limited to 10 s.While this was helpful for achieving
a reasonable experiment duration, allowing a subject to practice
using a variable-stiffness drumming system for weeks or months
might show long-term learning effects.

Future experiments into variable-stiffness drumming
prostheses might use the following improvements to possibly
find a beneficial effect of variable stiffness. A new device with

continuously variable stiffness instead of separate adapters with
different stiffness levels could be built so that subjects can better
match the resonant frequency of the whole system including
the rebound of the drum to the desired frequency or employ a
different variable-stiffness strategy. This would also remove the
problem of different masses of the stiff connection adapter and
the springs. Furthermore, subjects could be given more time
(hours, days or weeks) to become more acquainted with the
system in order to learn the more complex dynamics.

Conclusively, our experimental results argue that series-
elastic elements can be used to reduce the muscular activity of
drumming, but that their stiffness does not need to be variable.
However, the elastic elements appear to initially put an increased
control burden on the user. While expert drummers seem to be
able to deal with their more complex dynamics, novice drummers
seem to reach a better performance with a stiff connection.
Prosthesis users may benefit from this study if its results or the
results of a future, improved study are incorporated into the
design of an actual prosthetic device.
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Brain-machine interface (BMI) can be used to control the robotic arm to assist paralysis

people for performing activities of daily living. However, it is still a complex task for the

BMI users to control the process of objects grasping and lifting with the robotic arm. It is

hard to achieve high efficiency and accuracy even after extensive trainings. One important

reason is lacking of sufficient feedback information for the user to perform the closed-loop

control. In this study, we proposed amethod of augmented reality (AR) guiding assistance

to provide the enhanced visual feedback to the user for a closed-loop control with a

hybrid Gaze-BMI, which combines the electroencephalography (EEG) signals based BMI

and the eye tracking for an intuitive and effective control of the robotic arm. Experiments

for the objects manipulation tasks while avoiding the obstacle in the workspace are

designed to evaluate the performance of our method for controlling the robotic arm.

According to the experimental results obtained from eight subjects, the advantages of

the proposed closed-loop system (with AR feedback) over the open-loop system (with

visual inspection only) have been verified. The number of trigger commands used for

controlling the robotic arm to grasp and lift the objects with AR feedback has reduced

significantly and the height gaps of the gripper in the lifting process have decreased

more than 50% compared to those trials with normal visual inspection only. The results

reveal that the hybrid Gaze-BMI user can benefit from the information provided by the

AR interface, improving the efficiency and reducing the cognitive load during the grasping

and lifting processes.

Keywords: brain-machine interface (BMI), eye tracking, hybrid Gaze-BMI, human-robot interaction, augmented

reality feedback, closed-loop control

INTRODUCTION

It has been demonstrated that Brain-machine interface (BMI) can be used for paralysis people to
control the robotic arm for the objects manipulation tasks in activities of daily living (Millan et al.,
2010). BMI users can directly control the robot using the extracted movement intentions from
the brain without any muscular intervention (Schwartz, 2016). Although the user can control the
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robotic arm in three dimensional space to reach and grasp
the objects after training via invasive BMIs (Hochberg et al.,
2012; Downey et al., 2016), where the neural activity of the
brain is measured using the electrodes placed on the surface
of the cerebral cortex or implanted directly into the gray
matter of the brain, it is necessary to place the electrodes
via surgery procedure with medical risks and fewer patients
can benefit from this method (Morgante et al., 2007). Non-
invasive techniques, which measure the brain activity from
the external surface of the scalp without surgical implantation,
are more valuable than the invasive ones, e.g., functional
magnetic resonance imaging (fMRI; Gudayol-Ferre et al., 2015),
functional near-infrared spectroscopy (fNIRS; Naseer and Hong,
2015), magneto encephalography (MEG; Fukuma et al., 2016),
electroencephalography (EEG; Moghimi et al., 2013). The EEG
signals acquired by placing the electrodes on the surface of the
scalp are mostly studied because of its high time resolution, few
risks to the user and requires less expensive equipment.

For the EEG based non-invasive BMI, the EEG signals
obtained during visual cue or motor imagery are mapped to the
commands for the external devices such as humanoid robots
(Duan et al., 2015; Andreu-Perez et al., 2017), virtual helicopter
(Doud et al., 2011; Shi et al., 2015), wheelchairs (Kim et al.,
2017; Li et al., 2017), locomotion exoskeletons (Lee et al., 2017),
telepresence mobile robot (Escolano et al., 2012; Zhao et al.,
2017), and even animals (Kim et al., 2016). In order to obtain
sufficient number of commands for controlling the robotic arm
with multiple degrees of freedom, it is desired to perform the
multiplemental states classification (Hortal et al., 2015; Kim et al.,
2015; Meng et al., 2016). Nevertheless, it is a challenging task in
practice for the BMI user to switch among multiple mental states
constantly. In fact, it is much easier for a user tomaintain a switch
between two mental states than that among multiple states.
However, it is unable to provide a sufficient degree of control
flexibility in such a way. To overcome this shortcoming, many
hybrid methods are proposed by combining BMI with additional
signals, such as eye-tracking (Kim et al., 2014), electromyography
(Leeb et al., 2011; Bhagat et al., 2016), electrooculography (Ma
et al., 2015; Soekadar et al., 2016), fNIRS (Khan and Hong,
2017) and so on, so as to increase the number of commands
(Hong and Khan, 2017). Gaze selection is demonstrated to be
natural, convenient and faster compared with other interaction
approaches (Wang et al., 2016). Therefore, the method has been
proposed in Onose et al. (2012) andMcMullen et al. (2014) where
the target is selected via eye tracking and the classified result
of the EEG signals is used to initiate the automatic reaching,
grasping and delivering actions by a robotic arm.

Although the hybrid Gaze-BMI system by combing eye-
tracking and BMI has shown its ability to help the patients
with motor disabilities to complete the sophisticated motor task,
recent studies have demonstrated that patients working with
assistive devices are not satisfied with fully automatic control
by the robot only (Kim et al., 2012; Downey et al., 2016). In
other words, it is desired for the BMI user to intervene with the
controlling process when working with assistive devices rather
than fully automatic control. Nevertheless, it is still a challenging
task for the user to control the process of objects grasping and

lifting via non-invasive BMI (Popović, 2003). High efficiency
and accuracy are hard to achieve, even after extensive training
(Lampe et al., 2014). An important reason is that usually only
the visual feedback is provided to the BMI user, and the user
relies exclusively on the visual feedback during the grasping and
lifting processes, which may contribute to a time-consuming and
ineffective controlling process (Johansson and Flanagan, 2009;
Mussa-Ivaldi et al., 2010). Moreover, studies show that it will
cause significant increase of the cognitive load if the user has
to rely on the visual inspection only to find out whether the
current controlling process is completed (Biddiss and Chau,
2007; Antfolk et al., 2013). Therefore, it is desired by the patients
to have more intuitive and understandable feedback approaches
in BMI based systems.

To this end, we propose to utilize the AR technique to
provide the intuitive and effective feedback for a hybrid Gaze-
BMI based robotic arm control system, where the eye tracking
system is used for the robot position control (i.e., the target
selection) and the movement intention is decoded from the EEG
signals as the confirmation of the target position selected by
the user or the trigger command to be executed on the target.
Experiments for the objects manipulation tasks while avoiding
the obstacle in the middle of the workspace are designed, where
the manipulation tasks are divided into five phrases: reaching,
grasping, lifting, delivering and releasing. For the grasping and
lifting tasks that requires fine operations, the human supervisory
is often desired. For the less demanding tasks, i.e., reaching,
delivering and releasing, they can be automatically completed by
the robotic arm once the movement intention is detected from
the EEG signals. Therefore, our main idea is to maintain as much
manual control as possible in the grasping and lifting processes
using the hybrid Gaze-BMI, while providing the user with the
enriched visual information about the gripper status through the
AR technique in real time. The performance of the hybrid Gaze-
BMI based systems both in open-loop (with visual inspection
only, without AR feedback) and close-loop (with AR feedback)
will be compared in the experiments.

The rest of the paper is organized as follows: section Materials
and Methods describes the components of the proposed system
as well as the experimental protocols used in this study. The
results of the experiments are presented in section Results. The
discussion of this study is provided in section Discussion and
followed by the conclusion in section Conclusion.

MATERIALS AND METHODS

System Architecture
The block diagram of the proposed system is shown in Figure 1.
The functional modules of BMI, eye tracking, image processing,
automatic control and AR interface are integrated in this system
to allow the user performing the objects manipulation tasks.
Image processing is applied to segment all the potential cuboids
from the image of the workspace. The segmented objects can be
selected by the subjects via eye tracking. The outputs decoded
from the BMI are used to (1) confirm the object selection by
the user, or (2) trigger the switching of action sequence, or
(3) constantly control the aperture and height of the gripper
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FIGURE 1 | The block diagram of the proposed hybrid Gaze-BMI based robotic arm control system with AR feedback. Image processing is applied to segment all the

potential cuboids from the image of the workspace. The segmented objects can be selected by the subjects via eye tacking and confirmed using the trigger

commands from the BMI. The initiation commands from the hybrid Gaze-BMI are used to (1) confirm the object selection by the user, or (2) trigger the switching of

action sequence or (3) constantly control the aperture and height of the gripper during the grasping and lifting processes, respectively. AR feedback is provided to the

BMI user during the grasping and lifting processes via the monitor. The robotic arm implements the reaching, grasping, lifting, delivering and releasing tasks, in

response to the trigger commands obtained from the hybrid Gaze-BMI.

during the grasping and lifting processes, respectively. The
intentionally selected object by the user as well as the status
of the grasping and lifting operations is visually fed back to
the user via the computer screen using AR techniques in real
time. Eventually, the robotic arm implements the reaching,
grasping, lifting, delivering and releasing tasks, in response to the
outputs decoded from the hybrid Gaze-BMI. The experimental
setup used in this study is shown in Figure 2. The physical
system is composed of an eye tracker, an EEG headset, a
PC, a robotic arm, and an USB camera. The participants are
seated in front of the computer comfortably wearing the EEG
headset on their head to perform the object manipulation tasks.
The distance from the user to the “23.6” LCD monitor is
∼90 cm. The monitor displays the live video captured from
the workspace. The interaction between the subjects and the
system is via the hybrid Gaze-BMI and the enhanced visual
feedback by AR.

Brain-Machine Interface
A low-cost commercial EEG acquisition headset, Emotiv
EPOC+ (Emotiv Systems Inc., USA), is used to obtain the
user’s intention to rest or to perform hand motor imagery.
This device is consisted of 14 EEG channels (AF3, F7, F3,
FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4)
and two reference channels (P3, P4). The data are sent to
the computer through Bluetooth with a sampling rate of
128Hz.

The OpenVibe toolbox is used for the training session of
the BMI decoding model. Firstly, the Graz Motor Imagery BCI
Stimulation in the OpenVibe toolbox is used as the EEG signals
acquisition paradigm, where the right arrow and the left arrow
are shown in a random order to guide the user for the motor
imagery tasks as is shown in Figure 3. When the right arrow is
presented, the user should imagine the right hand movements
until the green cross in the window disappears, while the user
should keep relaxed when the left arrow or no arrow is presented.
Participants are asked to remain relaxed to reduce the effects from
muscle signals during the EEG recording process. Nextly, the pre-
processing and feature extraction are applied on the EEG data.
A 5th-order Butterworth band pass filter is utilized for temporal
filtration with cut-off frequency from 8 to 12Hz. The filtered
signals are then segmented with a 1s-long sliding window in
steps of 62.5ms. The commonly used feature extraction method,
i.e., common spatial pattern (CSP), is applied on the signals to
extract the features that discriminates between the hand motor
imagery and the relax states. Subsequently, a linear discriminant
analysis (LDA) classifier is trained to classify the two mental
states. Finally, the learned CSP filter and the LDA classifier are
applied for the online user intent identification. Two kinds of
brain states, i.e., rest and motor imagery, are classified from
the EEG signals, alone with an action power, a unidimensional
scalar index ranging between 0 and 1 representing the detection
certainty that the user has entered the “motor imagery” state.
To achieve a reasonable trade-off between true positives and
false positives, the detection certainty threshold for the “motor
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FIGURE 2 | Experimental setup used in this study. The live video of the workspace captured by the camera and the enhanced visual feedback are presented to the

user via the monitor. Using the eye-tracking device EyeX, the user can select the object that he/she intends to manipulate. The movement intention can be detected

by the BMI device Emotiv EPOC+, which can confirm the user’s selection or initiate the control on the selected object. Dobot executes the reaching, grasping, lifting,

delivering, and releasing tasks in response to the trigger commands from the user. The enlarged Graphical User Interface, which is programmed in C++ under Qt

framework, is shown on the right side of the picture above.

FIGURE 3 | The graz motor imagery BCI stimulation in openvibe. The right

arrow and left arrow are used to guide the user to perform the motor imagery

and the relax task, respectively.

imagery” state is set to 0.60 by rule of thumb in our experiments.
Namely, motor imagery state with the detection certainty above
0.60 is used to initiate the execution of a command, otherwise
the decoded mental state will be deemed as the “rest” state. The
movement intention decoded by OpenVibe is delivered to the
robotic arm control engine through the Analog VRPN Server
in the OpenVibe every 62.5ms. When the robotic arm is in
operation, no action will be executed.

Image Processing and Eye Tracking
An USB camera, with a resolution of 1,280 × 720 pixels, is used
to capture the live video data of the workspace and sends the
video to the computer via an USB 2.0 connection. For the eye
tracking, a commercial desktop eye tracker, EyeX (Tobii AB Inc.,
Sweden), is used to detect and map the user’s pupil position to
the cursor on the monitor. The eye tracker is fixed at the bottom
of the computer monitor (cf. Figure 2). The data are transmitted
to the computer via USB 3.0 at a rate of 60Hz. The gaze points
acquired from the EyeX system are filtered to remove the minor
gaze fluctuations, which is achieved by calculating the 10-point
moving average. Then the filtered gaze points are fed to the
computer for updating the position of the cursor position on the
monitor every 30ms.

Image processing and eye-tracking are used for the objects
identification and selection in the manipulation tasks. Three
kinds of cuboids (10 × 20 × 10mm) with different colors (red,
green and blue) are used in the experiment (cf. Figure 2 right).
Cuboids in the workspace are detected using image processing
techniques based on their colors. Firstly, the image of the
workspace is converted from the RGB space to the HSV space
to lessen the illumination effect from the natural environment.
Subsequently, the contours of the objects in the image are
confirmed based on the threshold of different colors. Finally,
all the potential cuboids are segmented from the image of the
workspace. It is necessary to perform the calibration procedure
for the eye tracker before the experiment. The calibration
procedure lasts <1min for each subject, during which the user
gazes at seven points shown on the computermonitor one by one.

The user can move the cursor on the monitor over the target
to be manipulated, and then a visual feedback is provided to the
user by highlighting a red rectangle surrounding the target (cf.
Figure 7A). When the object is confirmed by the subject, i.e.,
when the subject fixates upon the object and the motor imagery
state is detected from the EEG signals, the color of the rectangle
changes from red to green (cf. Figure 7B). Similarly, the switch of
the action sequence will be triggered when the user fixates their
gaze points on the specific position andmeanwhile themovement
intention is detected. For example, when the target position for
placing the objects is fixated on with the motor imagery state
being decoded from the EEG signals, the action sequence will
switch from the lifting process to the delivering process.

Robotic Arm
For the actuated system, a desktop robotic arm with 5◦ of
freedom,Dobot (Shenzhen Yuejiang Technology Co Inc., China),
is used. The robotic arm controller can directly convert the
XYZ position to the corresponding joints positions based on
the inverse kinematics. Therefore, the user can directly give the
motion end-point information in 3D environment via the hybrid
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Gaze-BMI, and the controller of Dobot will plan the path to the
target position automatically. Then the robotic arm executes the
manipulation tasks in response to the trigger commands from the
hybrid Gaze-BMI user.

The workspace is predefined using a rectangle (150mm ×

150mm) in the real scene. The webcam screen view coordinates
will then be mapped with the corresponding robot workspace
coordinates, as is shown in Figure 4. Firstly, the coordinates of
the vertexes (p1, p2, p3, and p4 in Figure 4A) in the image plane
are acquired. Nextly, the pose value of the robotic arm in the
four vertexes (P1, P2, P3, and P4 in Figure 4B) of the rectangle is
obtained. Subsequently, a perspective transform matrix from the
pixels to the coordination of the robotic arm is calculated based
on the calibration data (p1∼p4 and P1∼P4). Finally, the position
of the objects in the image plane of the workspace is mapped
to the coordination of the robotic arm based on the perspective
projection. The commands are sent to the robotic arm engine
via its Application Programming Interface (API). In this way, the
height and the aperture of the gripper can be obtained from the
Dobot engine in real time, so as to present the current state of the
tasks to the user with the AR feedback.

Augmented Reality Interface
The AR interface is implemented with OpenCV and OpenGL.
The marker-based tracking method is used to calculate the
camera pose relative to the real world to align the real camera and
the virtual camera in OpenGL. Firstly, the camera is calibrated
using a chessboard. The distortion parameters and the intrinsic
parameters of the camera are obtained during the calibration
procedure. Then, the extrinsic parameters should be solved,
which encode the position and the rotation of the camera relative
to the 3D world. To calculate the extrinsic parameters, a square
with the same center of the cuboids is used as the simulated
marker, as shown in Figure 5. The width of the square is 1mm,
which is calibrated in advance. The virtual objects are of the
same size of the virtual markers. Therefore, the size of the virtual
objects can be controlled by the size of the simulated marker. The
center of the square (O) is assumed to be (0, 0, 0) in 3D world.
Then the extrinsic parameters can be solved using solvePnP in

OpenCV (Opencv, 2017). Finally, a perspective projection in
OpenGL with the field of view and the aperture angle of the
camera from intrinsic parameter are obtained, and the virtual
camera in OpenGL is put in the position given by the extrinsic
parameters to align the virtual and real objects.

In the objects manipulation tasks, the AR feedback is provided
to the user during the grasping and lifting processes. Firstly, the
enriched visual information, such as the virtual gripper aperture
and the simulated grasping force, is presented to the user on the
screen during the grasping process in real time. A virtual box
whose length is of the same with the aperture of the gripper is
placed near to the object, representing the information about
the gripper aperture (Figure 7C). When the gripper aperture
becomes smaller than the width of the object, i.e., the objects
has been grasped by the gripper, the grasping force then will be
simulated by two arrows normal to the gripper that are overlaid
over the cuboid in the image (Figure 7D). In addition, the greater
the difference between the size of the object and the aperture
of the gripper is, the longer the arrows are (i.e., the stronger
the grasping force is). Secondly, during the lifting process, the
altitude of the gripper is fed back to the subject through the
height of the virtual box in the middle of the virtual obstacle (see
Figure 7F). The altitude of the gripper on the table is calibrated
in advance. The height of the virtual box is calculated by the
difference value between the real time pose data of the robotic
arm in vertical direction and the height of the gripper on the
table.

Experimental Protocol
Experiments for the objects manipulation tasks are designed to
evaluate whether the hybrid Gaze-BMI users can benefit from
the AR feedback for the grasping and lifting processes, where the
human supervisory is involved. The workspace is shown in the
right side of Figure 2. The user is instructed to select and grasp
the object, then deliver it to the target position. The height of
the virtual obstacle is 15mm, which should be avoided by the
robotic arm during the delivering process. The object should be
released to the rectangular area with the same color as the object.
The grasping and lifting processes are controlled manually by the

FIGURE 4 | Mapping of the object coordinates from the image panel to those of the robotic arm workspace. (A) The coordinates of the object in the image panel.

(B) The coordinates of the object in the robotic arm workspace.
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FIGURE 5 | The maker-based tracking method to calculate the camera pose

relative to the real world.

BMI user, i.e., the user will decide when to stop the grasping
process and whether the height of the gripper is enough for a
safe delivering. The complete objects manipulation protocol is
introduced as follows.

Reaching
Several cuboids in different colors are placed randomly in
the workspace with different orientations (Figure 2 right).
The cuboid will be highlighted with a virtual red rectangle
surrounding it when the cursor (gaze point) is over it
(Figure 7A). Once the reaching action is triggered successfully,
i.e., the gaze point is being over the object and the motor
imagery state has been decoded from the BMI, the color of
the rectangle surrounding it will change from red to green
indicating the confirmation of the selected object (Figure 7B).
The position of the selected object in the workspace is mapped to
the coordination of the robotic arm as the end-point information.
Then the robotic arm will move to the pre-grasp position over
the objects. The orientation of the gripper will be adjusted
automatically, according to the angle of the object in the
workspace based on the image processing results. If a motor
imagery state is detected from the EEG signal while no object is
being selected, this command will be ignored by the system.

Grasping
Subsequently, the aperture of the gripper will be controlled
manually by the user. The gripper is open in the initial state with
an aperture of 25mm. The aperture of the gripper will decrease
1mm each step in the grasping process if the user maintains the
motor imagery state and meanwhile fixates on the object in the
image panel. The aperture of the gripper is mapped to the angle
of the servo to accomplish the control of the gripper. The relation

between the aperture of the robotic arm and the angle of the
servo is estimated based on data fitting, as is shown in Figure 6.
The circle with a letter “G” in it will appear at the bottom of the
GUI, indicating that the user has arrived at the grasping phrase.
The width of the virtual box changes with the aperture of the
gripper (Figure 7C). The arrows shown in the video means that
the grasping force is being generated on the object (Figure 7D).
If the cuboid has already been grasped tidily while the user
insists on generating the trigger commands, the gripper will
continue responding to the commands, and the length of the
arrow will continue to increase so as to present the increasing of
the grasping force.

Lifting
Then the individual should switch the grasping process to the
next action sequence that picking the object up to avoid the
obstacle. The user should fixate their gaze at the red circle with
a letter “G” inside at the bottom of the GUI and perform motor
imagery to initiate the switch. The letter in the red circle changes
from “G” to “M” indicating a successful state switching from
the gasping process to the lifting process (Figure 7E). After that
the user is able to control the robotic arm by moving in the
vertical direction to avoid the virtual obstacle in the middle of
the workspace. The height of the robotic arm will increase 1mm
in response to each trigger command from the hybrid Gaze-BMI.
A virtual box, whose height is equal to the altitude of the robotic
gripper obtained from the Dobot engine, will be presented right
in the middle of the virtual obstacle. In this way, the subject can
easily find out whether the height of the robotic gripper is enough
for a safe delivering (Figure 7F).

Delivering and Releasing
Subsequently, the subject may switch from the lifting process to
the delivering process, by fixating his gaze to one of the three
target rectangular areas in different colors and then performing
motor imagery. Then the Dobot will generate a path in the plane
with the same height as that of the gripper and deliver the object
to the target position automatically (Figure 7G). Finally, once the
OpenVibe has detected the motor imagery state from the EEG
signals, the object will be released and the robotic arm returns
to the initial position automatically, waiting for the next trial
(Figure 7H).

Grasping and lifting processes in open-loop (with visual
inspection only, without AR feedback) are also implemented for
the comparison with the same protocol above. Figure 7 shows
the whole process in the object manipulation tasks both with
and without AR feedback. In the open-loop protocol, the user
decides when to stop the grasping and lifting processes by visual
inspection only, as is shown in Figures 7I–L.

Performance Evaluation
Eight participants (all males, 24.5 ± 1.2 years old) are recruited
from the campus to perform the objects manipulation tasks
using the proposed system. All of them are healthy and
right handed. This study is carried out in accordance with
the recommendations of the Ethics Committee of Southeast
University with written informed consent from all subjects. All
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FIGURE 6 | The relation between the aperture of robotic gripper and the angle of the servo.

subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Firstly, the BMI decoding model was trained for each subject
in the training session described in the subsection brain machine
interface. The training session for each subject was composed
of a randomly sorted sequence of 40 trials, 20 for the hand
motor imagery tasks and 20 for the relax tasks. The execution
of each task lasted for 4 s, and it was spaced from the beginning
of the next task with an interval lasting randomly from 1 to 3 s,
during which the subject could relax concentration. Each task was
triggered through visual cues displayed on the screen. The 5-fold
cross-validation BMI decoding performance on the data from the
training session is then reported.

Secondly, the online evaluation of the robotic arm control
system based on the hybrid Gaze-BMI with or without AR
feedback was performed. For each subject, the online evaluation
session consisted of a randomly sorted sequence of 30 trials, 15
for the system with AR feedback and 15 for the system without
AR feedback (i.e., with normal visual inspection only). The online
decoding model of BMI is obtained by training with all the
data from the training session above. For each online trial, the
BMI user operates the robotic arm to transfer a cuboid to the
target area in the same color while avoiding the virtual obstacle
in the middle of the workspace. The subject can have a rest
whenever needed between two trials. We do not limit the task
completion time for each trial and the user is asked to bare
successful grasping and safe delivering in mind. Therefore, all the
subjects can successfully accomplish the object transferring task
both with and without the AR feedback.

The online manipulation performance will be evaluated with
the following two indices: (1) The number of trigger commands
used in both the grasping and the lifting process, as used in
Tonin et al. (2010) and Kim et al. (2012). The BMI user generates
the trigger commands with the hybrid Gaze-BMI, thereby the
number of commands used in the grasping and lifting processes

can be used to characterize the efforts of the hybrid Gaze-
BMI users with or without AR feedback during the object
manipulation tasks. When the object has already been grasped
tidily while the user still maintains the motor imagery state and
fixates on the object, the robotic arm will continue to execute the
trigger commands. Though the aperture of the gripper may not
change dramatically, the contact force on the object will increase
which may be harmful to the object and the robotic gripper.
Similarly, when the height of the gripper is enough for a safe
delivering while the user still produces the trigger commands,
the gripper will continue moving in the vertical direction. Those
unnecessary mental commands will increase the workload of the
BMI users and reduce the efficiency of the controlling process. (2)
The height gap of the robotic gripper in the lifting process. This
index is used for the following considerations. When the BMI
user move their gaze point to the target area and perform motor
imagery to finish the lifting process, the robotic arm will move
to the target area in the plane with the same height as that of the
gripper. An ideal condition is that the final height of the robotic
gripper in the vertical direction (Z) is just fine for a safe delivering
over the obstacle. Therefore, the height gap of the gripper in the
lifting process is defined as the altitude difference between the
gripper and the obstacle. Those two indices are used to evaluate
whether the BMI user can benefit from the AR feedback to
successfully complete the delivering task with less efforts. The
performance difference between the proposed approach with AR
feedback and the one with visual inspection only was evaluated
using the one-tailed Wilcoxon rank sum test.

RESULTS

The Classification Performance of the BMI
The 5-fold cross-validation classification accuracy of the BMI
for each subject is shown in Table 1. The average classification
accuracy for the relax state is 85.0 ± 6.3%. An average accuracy
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of 86.4 ± 6.4% for the motor imagery state is achieved using
the BMI decoding model. The aggregated classification accuracy
across the subject is 85.16%, with a standard deviation of 4.83%.
The highest accuracy of the BMI achieved on subject 6 is 94.01%.
Subject 7 has obtained the worst performance with an average
accuracy of 77.42%.

Online Manipulation Performance in
Grasping Process
The average number of commands used in the grasping process
for each subject is shown in Figure 8A. The number of trigger

commands used for the objects grasping with AR feedback is
generally less than that with visual inspection only. In particular,
for subject 4, the number of trigger commands has been reduced
from 33 to 17 when the enhanced visual feedback is provided.
With normal visual inspection only, (i.e., no AR feedback is
provided), it is hard for the users to clearly observe the status of
the grasping process, especially when the robotic arm hinders the
objects from the subjects’ view (e.g., Figure 7J). Furthermore, in
order to grasp the object tightly, the user has to generate more
controlling commands by the hybrid Gaze-BMI in the grasping
process without AR feedback than that with AR feedback. By

FIGURE 7 | The process of objects manipulation tasks with and without AR feedback. The area of the gripper is expanded as is shown in (C–L). Reaching: (A) The

robotic arm is in the initial position. An object can be selected by the gaze points of the user, and a red rectangle will then appear around the object, indicating that the

user is starring at it. (B) The color of the rectangle changes from red to green when the target object is confirmed by the user once the motor imagery state is

detected. Next, the robotic arm moves to the position for the subsequent grasping. Grasping (AR): (C) The circle with a letter “G” in it will appear at the bottom of the

GUI, indicating that the user has arrived at the grasping phrase. The orientation of the gripper is adjusted automatically based on the orientation of the object in the

workspace. The aperture of the gripper is presented to the user based on AR feedback interface via a virtual box near the object. (D) When the selected object has

been grabbed tidily, two virtual arrows normal to the gripper are then overlaid over the object, simulating the grasping force. Lifting (AR): (E) the letter in the circle

changes from “G” to “M” indicating a successful switching of action sequence from the grasping process to the lifting process. The user can control the gripper

moving in the vertical direction to lift the object. The height of the gripper to the table is represented by that of a virtual box in the middle of the obstacle. (F) When the

height of the virtual box is higher than the obstacle, it is deemed that the altitude of the robotic arm is enough for a save delivering. Delivering and Releasing: (G) when

the lifting process is completed, the user fixates his/her gaze on the target rectangle and performs motor imagery to trigger the robotic arm moving to the target

position automatically. Besides, the color of the rectangle around the object changes from green to cyan, indicating a successful action sequence switching. (H) The

object is released in the target position. Then Dobot returns to the initial position automatically, waiting for the next trial. Grasping and Lifting (NoAR): (I–L) the grasping

and lifting processes without AR feedback, where the hybrid Gaze-BMI user has to decide when to stop the current process by the visual inspection only.
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contrast, the aperture of the gripper and the simulated grasping
force between the gripper and the objects are shown for the user
with AR feedback in real time. Therefore, it is much easier for the
user to handle the grasping process. The results have revealed that
the grasping task can be completed with less trigger commands
and more consistent performance across the subjects with AR
feedback than that with visual inspection only. The number of
trigger commands used in the grasping task with the AR feedback
is statistically less than that without the AR feedback for each
subject (ps1 = 0027, ps2 = 0.0022, ps3 = 0.0089, ps4 = 0.0032,
ps5= 0.0025, ps6= 0.0018, ps7= 0.0029, ps8= 0.0010).

TABLE 1 | The BMI cross-validation classification accuracy for each subject.

Participant ID Correct rate (%)

Relax Motor imagery Total

S1 74.7 92.3 82.7

S2 80.6 82.1 81.4

S3 87.5 92.3 89.2

S4 87.2 88.8 86.9

S5 92.1 75.3 82.8

S6 92.1 96.4 94.0

S7 90.6 84.2 87.0

S8 75.3 79.8 77.4

Mean ± STD 85.0 ± 6.3 86.4 ± 6.4 85.2 ± 4.6

Online Manipulation Performance in Lifting
Process
The average number of commands used in the lifting process
is shown in Figure 8B. In order to avoid the obstacle in the
middle of the workspace, the user should control the gripper
moving in the vertical direction until the height of the gripper
is higher than the obstacle for a safe delivering. The number of
commands generated from BMI has been reduced significantly
with AR feedback. When no AR feedback is provided, it is hard
for the user to decide whether the height of the robotic gripper
is already higher than that of the obstacle in the lifting process.
Therefore, to ensure a safe delivering, the user tends to generate
more controlling commands by the hybrid Gaze-BMI. In the
approach with AR feedback, a virtual box, whose height is equal
to the altitude of the robotic gripper obtained from the Dobot
engine, was presented right in the middle of the virtual obstacle.
Furthermore, the height of the virtual box changes along with
the altitude of the gripper in real time. In this way, the user
can better perceive the status of the lifting process based on the
enhanced visual feedback. The results have revealed that all the
subjects can finish the lifting task in around 20 trigger commands
with AR feedback. By contrast, much more commands are used
in the same task with visual inspection only than the one with
AR feedback. The number of trigger commands used in the
lifting task with the AR feedback is also statistically less than
that without the AR feedback for each subject (ps1 = 0.0054,
ps2 = 0.0066, ps3 = 0.0089, ps4 = 0.0039, ps5 = 0.0135, ps6 =

0.0018, ps7= 0.0036, ps8= 0.0010).

FIGURE 8 | Comparisons of the number of trigger commands and the height gaps in the objects manipulation tasks between the system with AR feedback and those

with visual inspection only. The statistically significant performance difference has been marked by “*” (p < 0.05). (A) The number of trigger commands used in the

grasping process for each subject. (B) The number of trigger commands used in the lifting process for each subject. (C) The height gaps of gripper for each subject in

the object lifting process. (D) The height gaps of the gripper and the number of trigger commands used in the grasping and lifting processes averaged over all the

subjects.
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The height gap of the robotic gripper for each user is shown
in Figure 8C. The height gaps with AR feedback are generally
smaller than those with visual inspection only for all subjects,
which shows that the subject is capable of find out when to finish
the lifting process in time with less efforts based on the enhanced
visual feedback. Moreover, the results also show that the height
gaps in the lifting task are much more consistent across the
subjects with AR feedback than those without AR feedback. The
gripper height gaps obtained with AR feedback are statistically
smaller than those without AR feedback (ps1 = 0.0040, ps2 =

0.0066, ps3 = 0.0018, ps4 = 0.0040, ps5 = 0.0282, ps6 = 0.0018,
ps7= 0.0015, ps8= 0.0021).

Overall Manipulation Performance for All
Subjects
Figure 8D shows the average height gaps of the gripper as well
as the average number of trigger commands used in the grasping
and lifting processes for all the subjects with the system with or
without AR feedback. The average height gap of the gripper is
<4mm with AR feedback, whereas it is more than 9mm when
only the visual inspection is provided, leading to a reduction
in more than 50%. The average number of commands for all
subjects decreases from 26.75 to 18.28 and 30.92 to 18.12 in
the grasping and lifting processes, respectively. Furthermore,
the standard deviation of the number of commands with AR
feedback is smaller than that without AR feedback. This is
because different subjects may have different understandings of
the current task status with visual inspection only. By contrast,
it is easier for all the subjects to perceive the task status with
AR feedback, and to take advantage of the feedback information
provided by AR interface in completing the grasping and lifting
tasks. Therefore, the performance with AR feedback of all the
subjects is more consistent than that with visual inspection
only, indicating that the AR feedback indeed can enhance the
performance of the hybrid Gaze-BMI controlled grasping and
lifting processes in the objects manipulation tasks.

DISCUSSION

Subject Variability of the Manipulation
Performance
Firstly, we will illustrate the necessity to remove the subject
variability effect of the BMI decoding when evaluating the
manipulation performance for the systems with or without
the AR feedback. It is well-known that there is the BMI
decoding performance variability across the subjects (Huster
et al., 2015; Ouyang et al., 2017), which is also the case for
our implementation of BMI (see subsection The Classification
Performance of the BMI). Because the aim of our online
experiments is to testify the possible manipulation performance
improvement by introducing the AR feedback to the hybrid
Gaze-BMI based robotic arm control system, the subject
variability factor associated with the BMI decoding should be
removed. To this end, the number of trigger commands used
in both the grasping and the lifting process, and the height
gaps of the robotic gripper in the lifting process were utilized as

the indices for the system manipulation performance, since the
commands only can be triggered when the motor imagery state
has been detected successfully.

Secondly, the subject variability on the manipulation
performance of the complete system will be discussed. As can be
observed from Figure 8, these three manipulation performance
indices are almost consistent across subjects when the AR
feedback is provided in the system, whereas this is not the case
for the system without the AR feedback. This is mainly due to
the reason that the AR feedback can provide the timely hints
for the user to switch on the next action. For example, once the
subject observes the arrows overlaid over the gripper, which
simulate the grasping force between the gripper and the object,
the subject can stop generating the trigger commands by the
hybrid Gaze-BMI. By contrast, when there is no AR feedback
provided, the user has to rely on their own perception of the
grasping status by normal visual inspection only. As a result,
the manipulation performance of the system without the AR
feedback has demonstrated significant subject variability.

AR Feedback vs. Visual Inspection Only
The objects manipulation tasks with AR feedback and with visual
inspection only are performed by the subjects, respectively. In
this work, AR feedback is presented in the real scene, which
will help the user to understand the meaning of the feedback
information. The most significant advantage of AR feedback
is that it can provide abundant and flexible information for
the patients in an intuitive way via the visual communication
channel. In specific, the change in color of the virtual rectangle
surrounding the objects indicates the user’s conformation of the
selected objects, the width of a virtual box is used to represent
the aperture of the gripper, the arrow stands for the simulated
grasping force in the contacted phase, and the virtual box, whose
length is the same as the altitude of the gripper, is overlaid right
in the middle of the virtual wall. For the object manipulation
tasks, the grasping and lifting processes are executed manually
by the hybrid Gaze-BMI users with AR feedback. The hybrid
Gaze-BMI can provide a sufficient degree of flexibility for the
robotic arm control with the combined gaze selection and BMI
control strategy. Meanwhile the subject can utilize the enriched
visual information provided by the AR interface to establish the
closed-loop control. The performance of the hybrid Gaze-BMI
based system using AR feedback is improved notably compared
to the one without AR feedback, in terms of both the number of
commands used in the controlling process and the height gap of
the robotic gripper.

It is necessary to point out that the AR feedback is not a rigid
requirement in the objects manipulation tasks according to our
experimental results, because the subject can also complete the
tasks without AR feedback. However, the performance of the
proposed method is improved significantly with the enhanced
visual feedback. When no AR feedback is provided, the BMI
users tend to rely exclusively on the visual feedback. However,
the object may be hided from the field of view by the robotic
gripper, in addition, it is hard to estimate the difference between
the altitudes of the gripper and the height of the obstacle with
the normal visual inspection only. Therefore, this approach may
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contribute to time-consuming and ineffective performance, thus
increasing the workload on the BMI user. The experimental
results has demonstrated that the closed-loop control for the
grasping and lifting tasks can be achieved by the hybrid Gaze-
BMI based system integrating with the AR guiding assistance.
Furthermore, the performance of the BMI user with the enhanced
visual feedback is improved significantly over that with visual
inspection only.

Fully Automatic Control vs. Manual Control
Previous studies have demonstrated that subjects can perform the
objects manipulation tasks using the BMI. The object is selected
in the workspace using gaze tracking (McMullen et al., 2014)
or using EEG P300-evoked response to the visual cue over the
object (Lenhardt and Ritter, 2010; Ying et al., 2017). In those
studies, once the object is confirmed by the BMI user, the task
will be completed by the robotic arm automatically without the
user’s intervention, which may fail to improve the user’s level
of gratification (Kim et al., 2012; Downey et al., 2016). Rather
than completing the task automatically, we divide the task into
five phrases. For the grasping and lifting tasks requiring fine
operations where the human supervisory is desired, they are
controlled by the BMI users manually. For the less demanding
tasks, such as reaching, delivering and releasing, are completed
by the robotic arm automatically once the movement intention is
detected from the EEG signals.

The main challenge of the manual control is that the feedback
information from the visual inspection only is not sufficient
for the user, which may lead to time-consuming and ineffective
grasping and lifting tasks (Johansson and Flanagan, 2009).

In order to achieve an effective and efficient manual control
in the grasping and delivering processes, AR feedback is used to
provide the user with the enhanced visual feedback information
about the current status of the tasks. Specifically, the aperture
and the altitude of the gripper are controlled manually by the
user, and the user can decide when to stop the current action and
switch to the next action by means of the information providing
by AR interface. In this way, the user is able to maintain as much
control as possible in the grasping and lifting processes via the
hybrid Gaze-BMI, while obtaining the feedback information via
the AR interface.

Comparison with Other BMI Systems
It is important for patients working with assistive devices to
restore their ability for performing activities of daily living such
as objects manipulation. Patients with severs motor disabilities
cannot fully benefit from assistive devices because of their limited
access to the latest assistive products (Millan et al., 2010). To solve
the problem, many researchers have focused on BMI based on
both invasive and non-invasive neural signals (Nicolas-Alonso
and Gomez-Gil, 2012; Chaudhary et al., 2016).

For the invasive BMI, the neural activities of the brain are
measured using the electrodes placed on the surface of the
cerebral cortex or implanted directly into the gray matter of
the brain. Then the acquired neural signals are used to control
the robotic arm continuously in three dimensional (Hochberg
et al., 2012; Collinger et al., 2013; Downey et al., 2016). In

Hochberg et al. (2012), the neural activity is collected with the
implanted microelectrode array, and the endpoint velocity of the
robotic arm is continuously mapped from the decoded neural
activity without other assistance. However, it is very difficult to
establish a fine continuous mapping for the low-level control of
the robotic arm from the noisy neural activities, two tetraplegia
and anarthric patients can only complete the tasks in about 60%
trials. Moreover, it has to implant the electrodes via surgical
procedures with medical risks.

For non-invasive BMI, various modalities have been
proposed such as fMRI, fNIRS, MEG, and EEG (Nicolas-
Alonso and Gomez-Gil, 2012). Although fMRI and MEG
have better spatial resolution compared with EEG, these
two methods need expensive equipment which is non-
portable (Muthukumaraswamy, 2013). fNIRS is a relative
new measurement method which employs infrared light to
characterize non-invasively acquired fluctuations in cerebral
metabolism during neural activity. Though fNIRS uses low cost
equipment and an acceptable temporal resolution, one of the
major limitations of fNIRS based BMI is the inherent delay of
the dynamic response (Naseer and Hong, 2015). Therefore, the
EEG signals by placing the electrodes on the surface of the scalp
are mostly studied, due to its high temporal resolution, few risks
to the user and requires less expensive equipment.

It has been shown that the EEG signals acquired during
multiple types of motor imagery tasks can be decoded for moving
the robotic arm in multiple directions (Wang et al., 2012).
Nevertheless, it is difficult to achieve an accurate classification
of multiple mental states using EEG signals of poor signal-to-
noise ratio. Furthermore, it is a challenging task in practice for
the BMI user to switch among multiple mental states constantly.
It is much easier to implement a 2-class based BMI, but it lacks
sufficient flexibilities for controlling the robotic arm. Therefore,
the hybrid Gaze-BMI is used in our study: the user’s gaze points
on the monitor are provided by the eye-tracking for the object
selection, and themovement intention of the user can be detected
by the BMI for confirming the selected object or initiating the
control command to be executed on the selected object.

Limitations and Future Work
One of the drawbacks of our study is that AR feedback is provided
to the subjects via the computer monitor. It will reduce the
hommization of this system and limit the scope of application
to communication with the assistive devices via the computer
monitor. Besides, we are also aware that patients may interact
with various objects with different size and colors in activities
of daily living, while the object manipulated in this study are of
the same size. Besides, the AR feedback in our paper is based on
the difference between the width of the objects and the gripper
aperture, whichmay limit the usability of this method in activities
of daily living.

The purpose of our study is to find out whether the hybrid
Gaze-BMI user can benefit from AR feedback to perform
the closed-loop control in the grasping and lifting tasks.
Such a functional ability will be enhanced with the following
improvements in our future work. Firstly, the ponderous
computer monitor can be replaced by the wearable AR glasses
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integrated with eye tracking to increase the flexibilities and
the scope of application. Secondly, the gripper with pressure
sensors will be used to monitor the grasping status, and the real
force generated in the contacting phrase will be presented to
the user using AR techniques. Thirdly, the participants in this
study are all healthy individuals, the feasibility of this method
will be evaluated on the patients with motor impairments after
stroke. Lastly, the performance of the proposed system will be
integrated with other kinds of feedback interfaces, such as the
haptic feedback, the auditory feedback, and so on.

In addition, the hybrid Gaze-BMI and the proposed AR
feedback method for the assistive robot used in our paper can
be seamlessly applied for the rehabilitation robot. For example,
patients use eye gaze to indicate a desired position in a real
environment setting, the robotic arm exoskeleton can be used
to assist the patients to perform the reaching movement along
online human-like generated trajectories when the self-initiation
movement intention is detected with BMI. Besides, the wearable
AR glasses can be exploited for the user to provide AR feedback
for the operation status in order to implement an effective closed-
loop control.

CONCLUSION

In this paper, we have proposed a novel AR guiding assistance
for closing the hybrid Gaze-BMI based robotic arm control
loop. The subjects are trained to reach, grasp, lift, deliver
and release an object while avoiding the obstacle in the
workspace, by operating a robotic arm with the hybrid
Gaze-BMI. Instead of perceiving the current states of the
tasks by the visual inspection only, the AR interface has
been established in the real scene from the workspace to
feedback the current gripper status for the subjects. The hybrid
Gaze-BMI users are instructed to rely on the AR feedback
information while accomplishing the objects manipulation
tasks.

The experimental evaluation of the complete setup was
conducted with eight healthy subjects. The average BMI
classification accuracy across the subjects is 85.16 ± 4.83%. The
number of trigger commands used for controlling the robotic
arm to grasp and lift objects with AR feedback has reduced
significantly compared to that without AR feedback, and the
height gaps of the gripper in the lifting process have decreased
more than 50% compared to those trials with normal visual
inspection only. The results have revealed that the hybrid Gaze-
BMI user can benefit from the information provided by the
proposed AR interface, improving the efficiency and reducing the
cognition load during the hybrid Gaze-BMI controlled grasping
and lifting processes.
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exploiting Three-Dimensional gaze 
Tracking for action recognition 
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Alireza Haji Fathaliyan†, Xiaoyu Wang† and Veronica J. Santos*

Biomechatronics Laboratory, Mechanical and Aerospace Engineering, University of California, Los Angeles,  
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Human–robot collaboration could be advanced by facilitating the intuitive, gaze-based 
control of robots, and enabling robots to recognize human actions, infer human intent, 
and plan actions that support human goals. Traditionally, gaze tracking approaches to 
action recognition have relied upon computer vision-based analyses of two-dimensional 
egocentric camera videos. The objective of this study was to identify useful features 
that can be extracted from three-dimensional (3D) gaze behavior and used as inputs 
to machine learning algorithms for human action recognition. We investigated human 
gaze behavior and gaze–object interactions in 3D during the performance of a bimanual, 
instrumental activity of daily living: the preparation of a powdered drink. A marker-based 
motion capture system and binocular eye tracker were used to reconstruct 3D gaze 
vectors and their intersection with 3D point clouds of objects being manipulated. 
Statistical analyses of gaze fixation duration and saccade size suggested that some 
actions (pouring and stirring) may require more visual attention than other actions (reach, 
pick up, set down, and move). 3D gaze saliency maps, generated with high spatial 
resolution for six subtasks, appeared to encode action-relevant information. The “gaze 
object sequence” was used to capture information about the identity of objects in con-
cert with the temporal sequence in which the objects were visually regarded. Dynamic 
time warping barycentric averaging was used to create a population-based set of char-
acteristic gaze object sequences that accounted for intra- and inter-subject variability. 
The gaze object sequence was used to demonstrate the feasibility of a simple action 
recognition algorithm that utilized a dynamic time warping Euclidean distance metric. 
Averaged over the six subtasks, the action recognition algorithm yielded an accuracy of 
96.4%, precision of 89.5%, and recall of 89.2%. This level of performance suggests that 
the gaze object sequence is a promising feature for action recognition whose impact 
could be enhanced through the use of sophisticated machine learning classifiers and 
algorithmic improvements for real-time implementation. Robots capable of robust, real-
time recognition of human actions during manipulation tasks could be used to improve 
quality of life in the home and quality of work in industrial environments.

Keywords: action recognition, bimanual manipulation, eye tracking, gaze fixation, gaze object sequence, gaze 
saliency map, human–robot collaboration, instrumental activity of daily living
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inTrODUcTiOn

Recognition of human motion has the potential to greatly impact 
a number of fields, including assistive robotics, human–robot 
interaction, and autonomous monitoring systems. In the home, 
recognition of instrumental activities of daily living (iADLs) 
could enable an assistive robot to infer human intent and col-
laborate more seamlessly with humans while also reducing the 
cognitive burden on the user. A wheelchair-mounted robot with 
such capabilities could enhance the functional independence of 
wheelchair users with upper limb impairments (Argall, 2015). 
During bimanual iADLs, humans rely heavily on vision to 
proactively gather task-relevant visual information for planning 
(Johansson et al., 2001). For example, task-relevant information for 
manipulation could include the three-dimensional (3D) location 
of an object as well as its structure-related and substance-related 
properties, such as shape and weight, respectively (Lederman and 
Klatzky, 1987). Saccades typically precede body movement (Land 
et al., 1999) and reflect one’s strategy for successful completion 
of a task.

The relationships between human vision, planning, and intent 
have inspired roboticists to adopt similar vision-based principles 
for planning robot movements and to use human gaze tracking 
for the intuitive control of robot systems. For instance, gaze 
fixation data collected during the human navigation of rocky 
terrain have been used to inspire the control of bipedal robots, 
specifically for the identification and selection of foot placement 
locations during traversal of rough terrain (Kanoulas and Vona, 
2014). Human eye tracking data have also been used in the 
closed loop control of robotic arms. Recently, Li et  al. (2017) 
demonstrated how 3D gaze tracking could be used to enable 
individuals with impaired mobility to control a robotic arm in 
an intuitive manner. Diverging from traditional gaze tracking 
approaches that leverage two-dimensional (2D) egocentric 
camera videos, Li et  al. presented methods for estimating 
object location and pose from gaze points reconstructed in 3D.  
A visuomotor grasping model was trained on gaze locations in 
3D along with grasp configurations demonstrated by unimpaired 
subjects. The model was then used for robot grasp planning 
driven by human 3D gaze.

In this work, we consider how human eye movements and 
gaze behavior may encode intent and could be used to inform 
or control a robotic system for the performance of bimanual 
tasks. Unlike repetitive, whole-body motions such as walk-
ing and running, iADLs can be challenging for autonomous 
recognition systems for multiple reasons. For instance, human 
motion associated with iADLs is not always repetitive, often 
occurs in an unstructured environment, and can be subject to 
numerous visual occlusions by objects being manipulated as 
well as parts of the human body. Prior studies on recognition 
of iADLs often applied computer vision-based approaches to 
images and videos captured via egocentric cameras worn by 
human subjects. Video preprocessing methods typically consist 
of first subtracting the foreground and then detecting human 
hands, regions of visual interest, and objects being manipulated 
(Yi and Ballard, 2009; Fathi et al., 2011, 2012; Behera et al., 2014; 
Nguyen et al., 2016).

A variety of methods have been presented for feature extrac-
tion for use in machine learning classifiers. In some studies, 
hand–hand, hand–object, and/or object–object relationships 
have been leveraged (Yu and Ballard, 2002; Fathi et al., 2011; 
Behera et  al., 2012). The state of an object (e.g., open vs. 
closed) has been used as a feature of interest (Fathi and Rehg, 
2013). Another study leveraged a saliency-based method to 
estimate gaze position, identify the “gaze object” (the object 
of visual regard), and recognize an action (Matsuo et  al., 
2014). Other studies have employed eye trackers in addition 
to egocentric cameras; researchers have reported significant 
improvements in action recognition accuracy as a result of 
the additional gaze point information (Yu and Ballard, 2002; 
Fathi et al., 2012).

In the literature, the phrase “saliency map” has been used to 
reference a topographically arranged map that represents visual 
saliency of a corresponding visual scene (Itti et al., 1998). In this 
work, we will refer to “gaze saliency maps” as heat maps that 
represent gaze fixation behaviors. 2D gaze saliency maps have 
been effectively employed for the study of gaze behavior while 
viewing and mimicking the grasp of objects on a computer screen 
(Belardinelli et  al., 2015). Belardinelli et  al. showed that gaze 
fixations are distributed across objects during action planning 
and can be used to anticipate a user’s intent with the object  
(e.g., opening vs. lifting a teapot). While images of real world 
objects were presented, subjects were only instructed to mimic 
actions. In addition, since such 2D gaze saliency maps were con-
structed from a specific camera perspective, they cannot be easily 
generalized to other views of the same object. One of the objec-
tives of this work was to construct gaze saliency maps in 3D that 
could enable gaze behavior analyses from a variety of perspec-
tives. Such 3D gaze saliency maps could be mapped to 3D point 
clouds trivially obtained using low-cost RGB-D computer vision 
hardware, as is common in robotics applications. Furthermore, 
given that all manipulation tasks occur in three dimensions, 
3D gaze saliency maps could enable additional insights into 
action-driven gaze behaviors. Although our experiments were 
conducted in an artificial lab setting using an uncluttered object 
scene, the experiment enabled subjects to perform actual physi-
cal manipulations of the object as opposed to only imagining or 
mimicking the manipulations, as in Belardinelli et al. (2015).

The primary objective of this study was to extract and rigor-
ously evaluate a variety of 3D gaze behavior features that could 
be used for human action recognition to benefit human–robot 
collaborations. Despite the increasing use of deep learning tech-
niques for end-to-end learning and autonomous feature selec-
tion, in this work, we have elected to consider the potential value 
of independent features that could be used to design action 
recognition algorithms in the future. In this way, we can consider 
the physical meaning, computational expense, and value added 
on a feature-by-feature basis. In Section “Materials and Methods,” 
we describe the experimental protocol, methods for segmenting 
actions, analyzing eye tracker data, and constructing 3D gaze 
vectors and gaze saliency maps. In Section “Results,” we report 
trends in eye movement characteristics and define the “gaze 
object sequence.” In Section “Discussion,” we discuss observed 
gaze behaviors and the potential and practicalities of using gaze 
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FigUre 1 | (a) Each subject was seated in the motion capture area.  
A blackout curtain was used to minimize visual distractions. (B) The subject 
wore a head-mounted eye tracker. Motion capture markers were attached to 
the Yale-CMU-Berkeley objects, the eye tracker, and subjects’ upper limbs. 
Each trial used the object layout shown. (c) Retroreflective markers were 
placed on a mug, spoon, pitcher, pitcher lid, and table. These objects will be 
referenced using the indicated color code throughout this manuscript. The 
subject shown in panels (a,B) has approved of the publication of these 
images.
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saliency maps and gaze object sequences for action recognition. 
Finally, in Section “Conclusion,” we summarize our contributions 
and suggest future directions.

MaTerials anD MeThODs

experimental Protocol
This study was carried out in accordance with the recommen-
dations of the UCLA Institutional Review Board with written 
informed consent from all subjects. All subjects gave written 
informed consent in accordance with the Declaration of Helsinki. 
The protocol was approved by the UCLA Institutional Review 
Board. A total of 11 subjects (nine males, two females; aged 
18–28 years) participated in the study, whose preliminary results 
were first reported in Haji Fathaliyan et al. (2017). According to 
a handedness assessment (Zhang, 2012) based on the Edinburgh 
Handedness Inventory (Oldfield, 1971), two subjects were “pure 
right handers,” seven subjects were “mixed right handers,” and 
two subjects were “neutral.”

Subjects were instructed to perform a bimanual tasks involv-
ing everyday objects and actions. In this work, we focus on one 
bimanual task that features numerous objects and subtasks: the 
preparation of a powdered drink. To investigate how the findings 
of this study may generalize to other iADL tasks, we plan to apply 
similar analyses to other bimanual tasks in the future. The objects 
for the drink preparation task were selected from the benchmark 
Yale-CMU-Berkeley (YCB) Object Set (Calli et al., 2015b): mug, 
spoon, pitcher, and pitcher lid. The actions associated with these 
objects were reach for, pick up, set down, move, stir, scoop, drop, 
insert, and pour.

Subjects were instructed to repeat the task four times with a 
1 min break between each trial. The YCB objects were laid out and 
aligned on a table (adjusted to an ergonomic height for each sub-
ject) as shown in Figure 1. The experimental setup was reset prior 
to each new trial. Subjects were instructed to remove a pitcher lid, 
stir the contents of the pitcher, which contained water only (the 
powdered drink was imagined), and transfer the drink from the 
pitcher to the mug in two different ways. First, three spoonfuls 
of the drink were to be transferred from the pitcher to the mug 
using a spoon. Second, the pitcher lid was to be closed to enable 
to pouring of the drink from the pitcher to the mug until the 
mug was filled to two-third of its capacity. In order to standardize 
the instructions provided to subjects, the experimental procedure 
was demonstrated via a prerecorded video.

Subjects wore an ETL-500 binocular, infrared, head-mounted 
eye tracker (ISCAN, Inc., Woburn, MA, USA) that tracked their 
visual point of regard, with respect to a head-mounted egocentric 
scene camera, at a 60 Hz sampling frequency. Calibration data 
suggest that the accuracy and precision of the eye tracker are 
approximately 1.43° and 0.11°, respectively. Six T-Series cameras 
sampled at 100 Hz and a Basler/Vue video camera (Vicon, Culver 
City, CA, USA) were used to track the motion of the subjects and 
YCB objects (Figure 1). Retroreflective markers were attached to 
the YCB objects, eye tracker, and subjects’ shoulders, upper arms, 
forearms, and hands (dorsal aspects). Visual distractions were 
minimized through the use of a blackout curtain that surrounded 
the subject’s field of view.

action segmentation: Task, subtask,  
and action Unit hierarchy
Land et al. (1999) reported on gaze fixation during a tea-making 
task. In that work, a hierarchy of four activity levels was consid-
ered: “make the tea” (level 1), “prepare the cups” (level 2), “fill the 
kettle” (level 3), and “remove the lid” (level 4). Spriggs et al. (2009) 
reported on a brownie-making task and divided the task into 29 
actions, such as “break one egg” and “pour oil in cup.” Adopting a 
similar approach as these prior works, we defined an action hier-
archy using a task–subtask–action unit format (Table 1). Subtasks 
were defined similar to Land et al.’s “4th level activities” while the 
action units were defined according to hand and object kinemat-
ics. All subjects performed all six subtasks listed in Table 1, but 
not all subjects performed all action units. For example, a couple 
of subjects did not reach for the pitcher during Subtask 2 (“move 
spoon into pitcher”).

The start and end time of each action unit were identified accord-
ing to hand and object kinematics and were verified by observing 
the egocentric video recorded from the eye tracker. For example, 
the angle of the spoon’s long axis with respect to the pitcher’s long 
axis and the repetitive pattern of the angle were used to identify the 
beginning and end of the action unit “stir inside pitcher” (Figure 2).

gaze Fixation and saccade labeling
Saccadic movements of the eye were discovered by Edwin 
Landott in 1890 while studying eye movements during reading 
(Kandel et  al., 2000). According to Kandel et  al., saccadic eye 
movements are characterized by “jerky movements followed by 
a short pause” or “rapid movements between fixation points.” 
In our study, saccades were detected using the angular velocity 
of the reconstructed gaze vector (see 3D Gaze Vector and Gaze 
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FigUre 3 | (a) A given gaze fixation period was associated with a specific action 
unit if the gaze fixation period overlapped with the action unit period ranging from 
0.3 to 0.7 T (blue shaded region), where T was the duration of the specific action 
unit. (B) A given saccade was associated with a specific action unit if the 
saccade occurred during the action unit period ranging from −0.2 to 0.8 T.

FigUre 2 | The repetitive nature of the spoon’s kinematics with respect to the 
pitcher was used to identify the start and end of the action unit “stir inside pitcher.” 
Although the spoon was not manipulated until approximately 6 s had elapsed in 
the representative trial shown, the full trial is provided for completeness.

TaBle 1 | Six subtasks (bold) were defined for the task of making a powdered drink; action units were defined for each subtask according to hand and object 
kinematics.

subtask 1: remove 
pitcher lid

subtask 2: move  
spoon into pitcher

subtask 3:  
stir inside  
pitcher

subtask 4: transfer  
liquid from pitcher  
to mug using spoon

subtask 5: replace  
pitcher lid

subtask 6: pour  
liquid into mug

Action  
units

Reach for pitcher lid Reach for pitcher Stir Scoop inside pitcher Reach for pitcher lid Reach for mug
Reach for pitcher Reach for spoon Reach for mug Reach for pitcher Pick up mug
Pick up pitcher lid Pick up spoon Move mug to pitcher Pick up pitcher lid Move mug to pitcher
Set down pitcher lid Move spoon Move spoon to mug Move pitcher lid to pitcher Reach for pitcher handle

Drop liquid into mug using spoon Insert pitcher lid into pitcher Pick up pitcher
Set down mug Pour liquid
Set down spoon Set down pitcher
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end of action units were defined based on hand and object kin-
ematics. A heuristic approach, as outlined in Figure 3, was used 
to associate gaze fixation periods and saccades in the eye tracker 
data with action units. A given gaze fixation period was associated 
with a specific action unit if the gaze fixation period overlapped 
with the action unit period ranging from 0.3 to 0.7 T, where T 
was the duration of the specific action unit. A given saccade was 
associated with a specific action unit if the saccade occurred dur-
ing the action unit period ranging from −0.2 to 0.8 T. Saccade 
to action unit associations were allowed prior to the start of the 
action unit (defined from hand and object kinematics) based on 
reports in the literature that saccades typically precede related 
motions of the hand (Land et al., 1999; Johansson et al., 2001). 
The results of the approach presented in Figure 3 were verified 
through careful comparison with egocentric scene camera videos 
recorded by the eye tracker.

3D gaze Vector and gaze saliency  
Map construction
The eye tracker provided the 2D pixel coordinates of the gaze 
point with respect to the image plane of the egocentric scene 
camera. The MATLAB Camera Calibration Toolbox (Bouguet, 
2015; The MathWorks, 2017) and a four-step calibration proce-
dure were used to estimate the camera’s intrinsic and extrinsic 
parameters. These parameters enabled the calculation of the pose 
of the 2D image plane in the 3D global reference frame. The origin 
of the camera frame was located using motion capture markers 
attached to the eye tracker. The 3D gaze vector was reconstructed 
by connecting the origin of the camera frame with the gaze point’s 
perspective projection onto the image plane.

Using the reconstructed 3D gaze vector, we created 3D gaze 
saliency maps by assigning RGB colors to the point clouds 
obtained from 3D scans of the YCB objects. The point cloud 
for the mug was obtained from Calli et  al. (2015a). The point 
clouds for the pitcher, pitcher lid, and spoon were scanned with 
a structured-light 3D scanner (Structure Sensor, Occipital, Inc., 
CA, USA) and custom turntable apparatus. This was necessary 
because the YCB point cloud database only provides point clouds 
for the pitcher lid assembly and because the proximal end of the 
spoon was modified for the application of motion capture markers 
(Figure 1C). Colors were assigned to points based on the duration 
of their intersection with the subject’s 3D gaze vector. In order 
to account for eye tracker uncertainty, colors were assigned to a 
5 mm-radius spherical neighborhood of points, with points at the 

Saliency Map Construction) and intervals between saccades that 
exceeded 200 ms were labeled as gaze fixations, as in Nyström and 
Holmqvist (2010). As described previously, the beginning and 
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FigUre 4 | Box and whisker plots are shown for each of the six  
action unit verb groups for (a) normalized gaze fixation duration and  
(B) saccade size. The tapered neck of each box marks the median  
while the top and bottom edges mark the first and third quantiles.  
The whiskers extend to the most extreme data points that are not 
considered outliers (black dots). For normalized gaze fixation duration, 
both “pour” and “stir” were statistically significantly different from the 
other action unit verb groups, as indicated by underlines. For saccade 
size, both “move” and “stir” were statistically significantly different from 
the other action unit verb groups.

TaBle 2 | The lower left triangle of the table (shaded in gray) summarizes 
p-values for t-tests of average normalized gaze fixation duration for different pairs 
of action unit verbs while the upper right triangle represents p-values for t-tests 
with regards to saccade size.

saccade
Fixation

reach Pick  
up

set 
down

Move Pour stir

Reach 0.012 0.050 3e−6* 0.030 2e−13*

Pick up 0.707 0.450 5e−10* 0.462 3e−12*

Set down 0.242 0.496 3e−10* 0.938 2e−9*

Move 0.666 0.992 0.432 9e−8* 9e−23*

Pour 1e−10* 6e−9* 2e−8* 4e−10* 3e−8*

Stir 3e−9* 1e−7 4e−7* 1e−8* 0.512

Asterisks indicate the t-tests that were statistically significant for a Bonferroni-corrected 
α = 0.003.
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center of the sphere (intersected by the 3D gaze vector) being most 
intense. Color intensity for points within the sphere decreased 
linearly as the distance from the center of the sphere increased. 
Both gaze fixation and saccades were included during RGB color 
assignment. For each subtask, the RGB color intensity maps were 
summed across subjects and then normalized to the [0, 1] range, 
with 0 as black and 1 as red. The normalization was performed 
with all task-relevant objects considered simultaneously and not 
on an object-specific basis. This enabled the investigation of the 
relative visual importance of each object for each subtask.

resUlTs

eye Movements: gaze Fixation Duration 
and saccade size
Gaze fixation duration and saccade size have previously been iden-
tified as important features for gaze behaviors during iADLs. As in 
Morrison and Rayner (1981), we use “saccade size” to refer to the 
angle spanned by a single saccade. Land et al. (1999) reported over-
all trends and statistics for the entire duration of a tea-making task. 
However, information about dynamic changes in gaze behavior is 
difficult to extract and analyze when eye tracker data are convolved 
over a large period of time. In order to address eye movements at a 
finer level of detail, we investigated trends in gaze fixation duration 
and saccade size at the action unit level. Gaze fixation duration data 
were normalized by summing the durations of gaze fixation periods 
that belonged to the same action unit and then dividing by the total 
duration of that action unit. This normalization was performed to 
minimize the effect of action unit type, such as reaching vs. stir-
ring, on gaze fixation duration results. Gaze fixation duration and 
saccade size were analyzed according to groupings based on six 
common action unit verbs: “reach,” “pick up,” “set down,” “move,” 
“pour,” and “stir” (Figure 4). “Drop” and “insert” were excluded, as 
they occurred infrequently and their inclusion would have further 
reduced the power of the statistical tests.

We conducted two ANOVA tests with a significance level of 
α  =  0.05. One test compared the distributions of gaze fixation 
duration across the six action unit verb groups while the other 
test compared the distributions of saccade size. In both cases, 
the ANOVA resulted in p < 0.001. Thus, post hoc pairwise t-tests 
were conducted to identify which verb groups were significantly 
different (Table  2). A Bonferroni correction was additionally 
applied (α = 0.05/k, where k = 15, the total number of pairwise 
comparisons) to avoid type I errors when performing the post hoc 
pairwise comparisons. It was found that the average gaze fixation 
durations for “pour” and “stir” were significantly greater than 
those of other verbs (Figure 4A). Saccade sizes for “move” and 
“stir” were significantly different from those of other verbs 
(Figure  4B). Saccade sizes for “move” were significantly larger 
than those of other verbs while those for “stir” were significantly 
smaller (Figure 5).

3D gaze saliency Maps and gaze Object 
Percentages
The 3D gaze saliency map for each object is shown for each of the 
six subtasks in Figure 5. We use “gaze object” to refer to the object 
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FigUre 6 | (a) Each raw gaze object sequence was represented by a 
(1 × N) set of frames. In this example, the gaze object transitioned from the 
pitcher lid to the pitcher. The colors in the figure correspond to the 
color-coded objects in Figure 1c. (B) The raw sequence of gaze objects 
was filtered using a rolling window of 10 frames. (c) The gaze object 
sequence was represented by an (M × N) matrix for M task-relevant objects.

FigUre 5 | Three-dimensional gaze saliency maps of the task-related objects (mug, spoon, pitcher, and pitcher lid) are shown for each of the six subtasks  
(a–F). The RGB color maps were summed across subjects and then normalized to the [0, 1] range for each subtask. The RGB color scale for all gaze saliency 
maps is shown in panel (a). Gaze object percentages are reported via pie charts. The colors in the pie charts correspond to the color-coded objects in Figure 1c.
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that is intersected by the reconstructed 3D gaze vector. This 3D 
approach is analogous to the use of 2D egocentric camera videos 
to identify the gaze object defined as the “object being fixated 
by eyes” or the “visually attended object” (Yi and Ballard, 2009). 
In the case that multiple objects were intersected by the same 
gaze vector, we selected the closest object to the subject as the 
gaze object. We defined the gaze object percentage as the amount 
of time, expressed as a percent of a subtask, that an object was 
intersected by a gaze vector. Gaze object percentages, averaged 
across all 11 subjects, are presented for each of the six subtasks in 
pie chart form (Figure 5). Although the table in the experiment 
setup was never manipulated, during some subtasks, the gaze 
object percentage for the table exceeded 20% for subtasks that 
included action units related to “set down.”

recognition of subtasks Based on gaze 
Object sequences
The Gaze Object Sequence
In order to leverage information about the identity of gaze objects 
in concert with the sequence in which gaze objects were visu-
ally regarded, we quantified the gaze object sequence for use in 
the automated recognition of subtasks. The concept of a gaze 
object sequence has been implemented previously for human 
action recognition, but in a different way. Yi and Ballard (2009) 
performed action recognition with a dynamic Bayesian network 
having four hidden nodes and four observation nodes. One of the 
hidden nodes was the true gaze object and one of the observation 
nodes was the estimated gaze object extracted from 2D egocentric 
camera videos. In this work, we define the gaze object sequence as 
being comprised of an (M × N) matrix, where M is the number of 

objects involved in the manipulation task and N is the total num-
ber of instances (frames sampled at 60 Hz) that at least one of the 
M objects was visually regarded, whether through gaze fixation 
or saccade (Figure 6C). Each of the M = 5 rows corresponds to 
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FigUre 7 | Characteristic gaze object sequences were produced using 
dynamic time warping barycenter averaging over data from 11 subjects for 
each of six subtasks (a–F). The colors in the figure correspond to the 
color-coded objects in Figure 1c. The lengths of the sequences were 
normalized for visualization.
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a specific object. Each of the N columns indicates the number of 
times each object was visually regarded within a sliding window 
consisting of 10 frames (Figures 6A,B).

A sliding window was used to filter the raw gaze object 
sequence to alleviate abrupt changes of values in the matrix. The 
size of the sliding window was heuristically selected to be large 
enough to smooth abrupt changes in the object sequence that 
could be considered as noise, but also small enough so as not to 
disregard major events within its duration. In preliminary analy-
ses, this sliding window filtration step was observed to improve 
recognition accuracy.

Creating a Library of Characteristic Gaze Object 
Sequences
Intra- and inter-subject variability necessitate analyses of human 
subject data that account for variations in movement speed and 
style. In particular, for pairs of gaze object sequences having 
different lengths, the data must be optimally time-shifted and 
stretched prior to comparative analyses. For this task, we used 
dynamic time warping (DTW), a technique that has been widely 
used for pattern recognition of human motion, such as gait recog-
nition (Boulgouris et al., 2004) and gesture recognition (Gavrila 
and Davis, 1995).

Dynamic time warping compares two time-dependent sequ-
ences X and Y, where X S U∈ ×  and Y S V∈ × . A warping path 
W p p p pi i i ij iKi= … …[ , , , , , ]1 2  defines an alignment between pairs of 
elements in X and Y by matching element(s) of X to element(s) 
of Y. For example, pij = (u, v) represents the matched pair of xu 
and yv. If the warping path is optimized to yield the lowest sum 
of Euclidean distances between the two sequences, the DTW 
distance between the two sequences X and Y can be defined as 
the following:

 
DTW X Y d W W W W W
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In order to identify a characteristic gaze object sequence for 
each subtask, we employed a global averaging method called 
dynamic time warping barycenter averaging (DBA), which 
performs the DTW and averaging processes simultaneously. This 
method uses optimization to iteratively refine a DBA (average) 
sequence until it yields the smallest DTW Euclidean distance  
(see Recognition of Subtasks Using DTW Euclidean Distances) 
with respect to each of the input sequences being averaged 
(Petitjean et al., 2011). The gaze object sequences were averaged 
across all trials for all subjects for each subtask using an open 
source MATLAB function provided by the creators of the DBA 
process (Petitjean, 2016). A total of 43 trials (4 repetitions per 
each of 11 subjects, less 1 incomplete trial) were available for each 
subtask. Figure 7 shows visual representations of the DBA gaze 
object sequence for each of the six subtasks.

Recognition of Subtasks Using DTW Euclidean 
Distances
Traditionally, the Euclidean distance is used as a metric for 
similarity between two vectors. However, the Euclidean distance 

alone is not an accurate measure of similarity for time series data 
(Petitjean et al., 2011). Here, we use the “DTW Euclidean distance,” 
which is calculated as the sum of the Euclidean distances between 
corresponding points of two sequences. The DTW process mini-
mizes the sum of the Euclidean distances, which enables a fair 
comparison of two sequences. The smaller the DTW Euclidean 
distance, the greater the similarity between the two sequences. 
A simple way to associate a novel gaze object sequence with a 
specific subtask is to first calculate the DTW Euclidean distance 
between the novel sequence and a characteristic sequence (gener-
ated using the DBA process) for each of the six candidate subtasks 
and to then select the subtask label that results in the smallest 
DTW Euclidean distance.

Figure  8 shows a novel gaze object sequence and its DTW 
Euclidean distance with respect to each of the candidate DBA 
sequences (one for each of six subtasks). The DTW Euclidean 
distance is reported as a function of the (equal) elapsed times for 
the novel and DBA gaze object sequences. This enables us to relate 
recognition accuracy to the percent of a subtask that has elapsed 
and to comment on the feasibility of real-time action recognition. 
For instance, for Subtask 4 (“transfer water from pitcher to mug 
using spoon”), the DTW Euclidean distance between the novel 
gaze object sequence and the correct candidate DBA sequence 
does not clearly separate itself from the other five DTW distances 
until 30% of the novel gaze object sequence has elapsed for the 
specific case shown (Figure 8). Subtask recognition accuracy gen-
erally increases as the elapsed sequence time increases. Figure 8 
illustrates how a primitive action recognition approach could be 
used to label a subtask based on a gaze object sequence alone. 
However, only one representative novel gaze object sequence was 
shown as an example.

In order to address the accuracy of the approach as applied to 
all 43 gaze object sequences, we used a leave-one-out approach. 
First, one gaze object sequence was treated as an unlabeled, 
novel sequence. Dynamic time warping barycenter averaging 
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FigUre 9 | Using a leave-one-out approach, the performance of the action recognition algorithm is reported as a function of the elapsed time of a novel gaze 
object sequence for each subtask. Accuracy (black solid line), precision (red dashed line), and recall (blue dotted line) are shown for each of the six subtasks  
(a–F). The characteristic gaze object sequence is shown above each subplot. The colors in the sequence correspond to the objects shown in Figure 1c.

FigUre 8 | (a) A representative novel gaze object sequence is shown. The 
colors in the figure correspond to the color-coded objects in Figure 1c.  
(B) A DBA gaze object sequence is shown for Subtask 4, which is the 
correct subtask label for the novel gaze object sequence shown in panel (a). 
(c) The DTW Euclidean distance is shown for the comparisons of a novel 
gaze object sequence and the DBA sequence for each of the six subtasks. 
The DTW distance was calculated using equal elapsed times for the novel 
and DBA sequences. The lowest DTW distance would be used to apply a 
subtask label. Subtask recognition accuracy generally increases as the 
elapsed sequence time increases.
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was applied to the remaining sequences. The DTW Euclidean 
distance was calculated between the novel and candidate DBA 
sequences, and the pair with the smallest DTW distance was 
used to label the novel sequence. This process was repeated 
for each of the gaze object sequences. The DTW distance was 
calculated using equal elapsed times for the novel and DBA 
sequences.

The resulting recognition accuracy, precision, and recall for 
each subtask are reported in Figure 9 as a function of the percent 
of the subtask that has elapsed. Accuracy represents the fraction 
of sequences that are correctly labeled. Precision represents the 
fraction of identified sequences that are relevant to Subtask i. 
Recall represents the fraction of relevant sequences that are 
identified (Manning et al., 2008)
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TPi, TNi, FPi, and FNi represent the number of true positive, 
true negative, false positive, and false negative sequences when 
attempting to identify all sequences associated with Subtask i. 
For example, consider the task of identifying the 43 sequences 
relevant to Subtask 1 out of the total of (43*6) unlabeled 
sequences. Using all sequence data, at 100% elapsed time of a 
novel gaze object sequence, the classifier correctly labeled 36 of 
the 43 relevant sequences as Subtask 1, but also labeled 10 of the 
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FigUre 10 | The confusion matrix is shown for 100% of the elapsed time of 
a novel gaze object sequence for each subtask. Predicted subtask labels 
(columns) are compared to the true subtask labels (rows). Each subtask has 
a total of 43 relevant sequences and (43*5) irrelevant sequences. Each 
shaded box lists the number of label instances and parenthetically lists the 
percentage of those instances out of 43 relevant subtasks.
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(43*5) irrelevant sequences as Subtask 1. In this case, TP1 = 36, 
TN1 = 205, FP1 = 10, and FN1 = 7. Using Eqs 2–4, this results in 
an accuracy of 93.4%, precision of 78.2%, and recall of 83.7% for 
Subtask 1, as shown in Figure 9A.

Figure 10 shows a confusion matrix that summarizes the subtask 
labeling performance of our simple action recognition algorithm 
at 100% of the elapsed time for the novel and DBA gaze object 
sequences. Predictions of subtask labels (columns) are compared 
to the true subtask labels (rows). Consider again the task of 
identifying the 43 sequences relevant to Subtask 1. TP1 is shown 
as the first diagonal element in the confusion matrix (row 1,  
column 1). FP1 and FN1 are the sum of off-diagonal elements in 
the first column and first row, respectively.

DiscUssiOn

gaze Fixation Duration and saccade size 
May reflect Differences in Visual attention
Eye movements were investigated at the action unit level through 
gaze fixation duration and saccade size. For gaze fixation duration, 
both “pour” and “stir” were statistically significantly different from 
the other action unit verb groups (Figure 4A). The median nor-
malized gaze fixation duration values for “pour” and “stir” were, 
respectively, 41 and 33% greater than the largest median duration 
value of the “reach,” “pick up,” “set down,” and “move” verb groups 
(36% for “move”). The lengthier gaze fixation durations could be 
due to the fact that pouring and stirring simply took longer than 
the other movements. The trends could also indicate that more 
visual attention is required for successful performance of pouring 
and stirring. For instance, pouring without spilling and stirring 
without splashing might require greater manipulation accuracy 
than reaching, picking up, setting down, or moving an object. 
However, based on the data collected, it is unknown whether 

subjects were actively processing visual information during these 
fixation periods. Gaze fixation durations could also be affected by 
object properties, such as size, geometry, color, novelty, etc. For 
instance, fixation durations might be longer for objects that are 
fragile, expensive, or sharp as compared to those for objects that 
are durable, cheap, or blunt. The effects of object properties on gaze 
fixation duration and saccade size require further investigation.

For saccade size, both “move” and “stir” were statistically signifi-
cantly different from the other action unit verb groups (Figure 4B).  
The relatively large saccade size for “move” was likely a function 
of the distance by which the manipulated objects were moved 
during the experimental task. The relatively small saccade size 
for “stir” (4.7° ± 2.7°) could be due to the small region associated 
with the act of stirring within a pitcher and the fact that subjects 
did not follow the cyclic movements of the spoon with their gaze 
during stirring.

The concept of “quiet eye,” originally introduced in the litera-
ture with regards to the cognitive behaviors of elite athletes, has 
been used to differentiate between expert and novice surgeons 
(Harvey et  al., 2014). Quiet eye has been defined as “the final 
fixation or tracking gaze that is located on a specific location or 
object in the visuomotor workspace within 3° of the visual angle 
for ≥100 ms” (Vickers, 2007). It has been hypothesized that quiet 
eye is a reflection of a “slowing down” in cognitive planning (not 
body movement speed) that occurs when additional attention is 
paid to a challenging task (Moulton et al., 2010). Based on the 
gaze fixation duration trends (Figure 4A), one might hypothesize 
that pouring and stirring require additional attention. Yet, “stir” 
was the only verb group that exhibited a small saccade size in the 
range reported for quiet eye. We are not suggesting that stirring 
is a special skill that can only be performed by experts; we would 
not expect a wide range of skill sets to be exhibited in our subject 
pool for iADL. Nonetheless, it could be reasoned that certain 
action units may require more visual attention than others and 
that gaze fixation and saccade size could assist in recognition of 
such action units employed during everyday tasks.

gaze saliency Maps encode action-
relevant information at the subtask  
and action Unit levels
Gaze saliency maps at the subtask level can be used to represent 
gaze fixation distribution across multiple objects. The gaze sali-
ency maps for the six subtasks (Figure  5) supported Hayhoe 
and Ballard’s finding that gaze fixation during task completion 
is rarely directed outside of the objects required for the task 
(Hayhoe and Ballard, 2005). Considering Subtask 4, (“transfer 
water from pitcher to mug using spoon”), the objects comprising 
the majority of the gaze object percentage pie chart (Figure 5D) 
were grasped and manipulated (spoon) or were directly affected 
by an action being performed by a manipulated object (pitcher 
and mug). While the table was not manipulated, it was often 
affected by action units that required the picking up or setting 
down of an object, as for the pitcher lid, spoon, and pitcher in 
Subtasks 1, 2, and 6 (Figures 5A,B,F), respectively. The gaze fixa-
tion percentage for the table was dwarfed by the importance of 
other objects in Subtasks 4 and 5 (Figures 5D,E).
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FigUre 11 | Three-dimensional gaze saliency maps of the task-related 
objects [mug (a), spoon (B), pitcher (c), and pitcher lid (D)] are shown for a 
subset of action units. The RGB color scale for all gaze saliency maps is 
shown in panel (a).

Haji Fathaliyan et al. 3D Gaze-Based Action Recognition

Frontiers in Robotics and AI | www.frontiersin.org April 2018 | Volume 5 | Article 25

In some cases, a gaze saliency map could be easily associated 
with a subtask. For instance, gaze saliency was uniquely, simul-
taneously intense on the spoon bowl and tip, inner wall of the 
mug, and inner wall of the pitcher for Subtask 4 (“transfer water 
from pitcher to mug using spoon”) (Figure 5D). In other cases, 
differences between gaze saliency maps were subtle. For example, 
the gaze saliency maps were quite similar for the inverse subtasks 
“remove pitcher lid” and “replace pitcher lid” (Figures  5A,E). 
In both cases, gaze saliency was focused near the handle of the 
pitcher lid and the upper rim of the pitcher. However, gaze fixa-
tion was slightly more intense near the pitcher spout for Subtask 
5 (“replace pitcher lid”) because subjects spent time to carefully 
align the slots in the pitcher lid with the spout for the “pour liquid 
into mug” Subtask 6 that was to immediately follow.

Likewise, the gaze saliency maps for Subtask 2 (“move spoon 
into pitcher”) and Subtask 3 (“stir inside pitcher”) were distin-
guished only by the subtle difference in gaze fixation distribution 
on the spoon (Figures  5B,C). The diffuse and homogeneous 
distribution across the entirety of the spoon for Subtask 2 was 
contrasted by a focused intensity on the bowl of the spoon for 
stirring. This was because the “reach for,” “pick up,” and “move” 
action units performed with the spoon were summed over time 
to produce the gaze saliency map at the subtask level. Given that 
the details of each action unit’s unique contribution to the sali-
ency map becomes blurred by temporal summation, it is worth 
considering gaze saliency maps at a finer temporal resolution, at 
the action unit level. Due to the short duration of action units 
(approximately 1 s long), the gaze saliency maps at the action unit 
level only involve one object at a time. A few representative gaze 
saliency maps for different action units are shown in Figure 11. 
The RGB color intensity maps were summed across subjects and 
then normalized to the [0, 1] range, with 0 as black and 1 as red, 
according to the duration of the action unit.

Some gaze saliency maps could also be easily associated 
with specific action units. For instance, gaze saliency intensity 
was greatest at the top of the pitcher for the action unit “reach 
for pitcher,” but greatest at the bottom for “set down pitcher” 
(Figure 11C). By contrast, the gaze saliency maps for the pitcher 
lid were similar for action units “pick up pitcher lid” and “insert 
pitcher lid into pitcher.” Subtle differences were observed, 
such as more focused gaze intensity near the slots in the lid, in 
preparation for the “pour liquid into mug” Subtask 6 that was 
to immediately follow. Gaze saliency maps for different action 
units were also similar for the mug (Figure 11A), possibly due to 
its aspect ratio. Not only is the mug a relatively small object but 
also its aspect ratio from the subject’s viewpoint is nearly one. 
During both “reach for mug” and “set down mug,” gaze fixation 
was spread around the mug’s centroid. This was surprising, as we 
had expected increased intensity near the mug’s handle or base 
for the “reach” and “set down” action units, respectively, based 
on the findings of Belardinelli et al. (2015). There are a couple of 
possible explanations for this. First, the Belardinelli et al. study 
was conducted with a 2D computer display and subjects were 
instructed to mimic manipulative actions. In this work, subjects 
physically interacted with and manipulated 3D objects. It is also 
possible that subjects grasped the mug with varying levels of pre-
cision based on task requirements (or lack thereof). For instance, 

a mug can be held by grasping its handle or its cylindrical body. 
Had the task involved a hot liquid, for example, perhaps subjects 
would have grasped and fixated their gaze on the handle of the 
mug for a longer period.

Although 3D gaze saliency maps are not necessarily unique 
for all subtasks and action units, it is likely that a combination 
of the gaze saliency maps for a subtask and its constituent action 
units could provide additional temporal information that would 
enable recognition of a subtask. While beyond the scope of this 
work, we propose that a sequence of gaze saliency maps over time 
could be used for action recognition. The time series approaches 
presented for the analysis of gaze object sequences could similarly 
be applied to gaze saliency map sequences.

Practical Considerations and Limitations of Gaze 
Saliency Maps
If the dynamic tracking of 3D gaze saliency maps is to be practi-
cally implemented, one must address the high computational 
expense associated with tracking, accessing, and analyzing 
dense 3D point clouds. In this work, the 3D point clouds for the 
spoon and pitcher were comprised of approximately 3,000 and 
20,000 points, respectively. At least two practical modifications 
could be made to the gaze saliency map representation. First, 
parametric geometric shapes could be substituted for highly 
detailed point clouds of rigid objects, especially if fine spatial 
resolution is not critical for action recognition. The use of a 
geometric shapes could also enable one to analytically solve for 
the intersection point(s) between the object and gaze vector. 
Second, gaze fixation can be tracked for a select subset of regions 
or segments, such as those associated with “object affordances,” 
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which describe actions that can be taken with an object (Gibson, 
1977), or “grasp affordances,” which are defined as “object-
gripper relative configurations that lead to successful grasps” 
(Detry et al., 2009). Computational effort could then be focused 
on regions that are most likely to be task-relevant, such as the 
spout, rim, handle, and base of a pitcher. Additionally, techniques 
can be leveraged from computer-based 3D geometric modeling. 
For example, triangle meshes and implicit surfaces have been 
used for real-time rendering of animated characters (Leclercq 
et al., 2001). A similar approach could be used to simplify the 
3D point clouds. In addition to tracking the shape and move-
ment of an object, one could track the homogeneous properties 
(e.g., RGB color associated with gaze fixation duration) of patch 
elements of surfaces. The spatial resolution of each gaze saliency 
map could be tuned according to the task-relevant features of 
the object and reduced to the minimal needs for reliable action 
recognition.

One limitation of this work is that we cannot comment on 
the subject’s true focal point or whether subjects were actively 
processing visual information. A gaze vector may pass through 
multiple objects, or even through materials that are not rigid 
objects (e.g., a stream of flowing water). We calculated the 
intersection points between a gaze vector and objects in its path 
and then treated the closest intersection point to the user as a 
gaze fixation point. This approach may not work if some of the 
task-relevant objects are transparent and subjects look through 
one object to visually attend to a more distant object. In this 
work, objects sometimes passed through the path of a stationary 
gaze vector, but may not have been the focus of active visual 
attention. For example, the gaze saliency map for Subtask 3 
(“stir inside pitcher”) displayed regions of greater intensity on 
both the bowl of the spoon and the inner wall of the pitcher 
(Figure 5C). However, the egocentric camera attached to the eye 
tracker revealed that the gaze fixation point remained near the 
water level line in the pitcher. Since the spoon was moved cycli-
cally near the inner wall of the pitcher, in the same region as the 
surface of the water, the gaze fixation point alternated between 
the spoon and the pitcher. As a result, both the spoon and pitcher 
gaze saliency maps were affected. In one case, a subject’s gaze 
fixation point was calculated as being located on the outer wall 
of the pitcher during stirring. This interesting case highlights the 
fact that a direct line of sight (e.g., to the spoon, water, or inner 
pitcher surface) may not be necessary for subtask completion, 
and mental imagery (“seeing with the mind’s eye”) may be suf-
ficient (Pearson and Kosslyn, 2013).

Future work should address methods for enhancing the robust-
ness of action recognition algorithms to occlusions. For example, 
if a gaze object is briefly occluded by a moving object that passes 
through the subject’s otherwise fixed field of view, an algorithm 
could be designed to automatically disregard the object as noise 
to be filtered out. In addition, a more advanced eye tracker and/
or calibration process could be leveraged to estimate focal length. 
Focal length could be combined with 3D gaze vector direction to 
increase the accuracy of gaze object identification in cases, where 
the 3D gaze vector intersects multiple objects.

Human gaze behavior “in the wild” will differ to some (as yet 
unknown) extent as compared to the gaze behavior observed in 

our laboratory setting. Our use of black curtains and the provi-
sion of only task-relevant objects enabled the standardization of 
the experimental setup across subjects. However, this protocol 
also unrealistically minimized visual clutter, the presence of novel 
objects, and distractions to the subject. In a more natural setting, 
one’s gaze vector could intersect with task-irrelevant objects in 
the scene. This would result in the injection of noise into the gaze 
object sequence, for example, and could decrease the speed and/
or accuracy of action recognition. Probabilistic modeling of the 
noise could alleviate this challenge.

The gaze Object sequence can Be 
leveraged for action recognition to 
advance human–robot collaborations
During everyday activities, eye movements are primarily associ-
ated with task-relevant objects (Land and Hayhoe, 2001). Thus, 
identification of gaze objects can help to establish a context for 
specific actions. Fathi et  al. (2012) showed that knowledge of 
gaze location significantly improves action recognition. However, 
action recognition accuracy was limited by errors in the extraction 
of gaze objects from egocentric camera video data (e.g., failing to 
detect objects or detecting irrelevant objects in the background), 
and gaze objects were not treated explicitly as features for action 
recognition. Moreover, model development for gaze-based action 
recognition is challenging due to the stochastic nature of gaze 
behavior (Admoni and Srinivasa, 2016). Using objects tagged 
with fiducial markers and gaze data from 2D egocentric cameras, 
Admoni and Srinivasa presented a probabilistic model for the 
detection of a goal object based on object distance from the center 
of gaze fixation. In this work, we propose to leverage 3D gaze 
tracking information about the identity of gaze objects in concert 
with the temporal sequence in which gaze objects were visually 
regarded to improve the speed and accuracy of automated action 
recognition.

In the context of human-robot collaboration, the gaze object 
sequence could be used as an intuitive, non-verbal control signal 
by a human operator. Alternatively, the gaze object sequence 
could be provided passively to a robot assistant that continuously 
monitors the state of the human operator and intervenes when 
the human requires assistance. A robot that could infer human 
intent could enable more seamless physical interactions and col-
laborations with human operators. For example, a robot assistant 
in a space shuttle could hand an astronaut a tool during a repair 
mission, just as a surgical assistant might provide support during 
a complicated operation. Maeda et al. (2014) introduced a proba-
bilistic framework for collaboration between a semi-autonomous 
robot and human co-worker. For a box assembly task, the robot 
decided whether to hold a box or to hand over a screwdriver 
based on the movements of the human worker. As there were 
multiple objects involved in the task, the integration of the gaze 
object sequence into the probabilistic model could potentially 
improve action recognition accuracy and speed.

The practical demonstration of the usefulness of gaze object 
sequence is most likely to occur first in a relatively structured 
environment, such as that of a factory setting. Despite the unpre-
di ctability of human behavior, there are consistencies on a 
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manufacturing line that suggest the feasibility of the gaze object 
sequence approach. The number of parts and tools used during 
manual manufacturing operations are uniform in their size and 
shape and are also limited in number. Although the speed with 
which a task is completed may vary, the task itself is repetitive. 
Luo et al. (2017) have demonstrated human–robot collaboration 
for industrial manipulation tasks for which human reaching 
motions were predicted to enable robot collaboration without 
collision in a small-shared workspace. In that work, the robot 
had access to real-time information about the human collabora-
tor’s upper limb kinematics, such as palm and arm joint center 
positions. Focusing on the safety of human–robot collaboration, 
Morato et  al. (2014) developed a framework that uses a colli-
sion avoidance strategy to assist human workers performing an 
assembly task in close proximity with a robot arm. Numerous 
RGB-D cameras were used to track the location and configura-
tion of humans within the collaborative workspace. The common 
theme of such approaches is to track human kinematics and infer 
intent from kinematic data alone. The additional use of the gaze 
object sequence could infer human intent at an earlier stage and 
further advance safety and efficiency for similar types of human–
robot collaboration tasks.

The gaze object sequence could also be demonstrated in the 
familiar environment of someone’s home if a recognition system 
were properly trained on commonly used objects, where the 
objects are typically located (e.g., kitchen vs. bathroom), and 
how they are used. The performance of household robots will 
largely depend on their ability to recognize and localize objects, 
especially in complex scenes (Srinivasa et al., 2012). Recognition 
robustness and latency will be hampered by large quantities of 
objects, the degree of clutter, and the inclusion of novel objects 
in the scene. The gaze object sequence could be used to address 
challenges posed by the presence of numerous objects in the 
scene. While the combinatorial set of objects and actions could 
be large, characteristic gaze object sequences for frequently used 
subject-specific iADLs could be utilized to quickly prune the 
combinatorial set.

Up to now, we have focused primarily on the task-based aspects 
of gaze tracking for human–robot collaboration. However, gaze 
tracking could also provide much needed insight into intangible 
aspects such as human trust in robot collaborators (Jenkins and 
Jiang, 2010). Our proposed methods could be used to quantify 
differences in human gaze behavior with and without robot inter-
vention and could enhance studies on the effects of user familiar-
ity with the robot, human vs. non-human movements, perceived 
risk of robot failure, etc. Consider, for example, a robot arm that 
is being used to feed oneself (Argall, 2015). Such a complicated 
task requires the safe control of a robot near sensitive areas such 
as the face and mouth and may also be associated with a sense 
of urgency on the part of the user. A gaze object sequence could 
reveal high-frequency transitions between task-relevant objects 
and the robot arm itself, which could indicate a user’s impatience 
with the robot’s movements or possibly a lack of trust in the robot 
and concerns about safety. As the human–robot collaboration 
becomes more seamless and safe, the frequency with which the 
user visually checks the robot arm may decrease. Thus, action 
recognition algorithms may need to be tuned to inter-subject 

variability and adapted to intra-subject variability as the beliefs 
and capabilities of the human operator change over time.

Other potential applications of the gaze object sequence include  
training and skill assessment. For instance, Westerfield et  al. 
(2015) developed a framework that combines Augmented Reality 
with an Intelligent Tutoring System to train novices on computer 
motherboard assembly. Via a head-mounted display, trainees 
were provided real-time feedback on their performance based 
on the relative position and orientation of tools and parts during 
the assembly process. Such a system could be further enhanced 
by, for example, using an expert’s gaze object sequence to cue 
trainees via augmented reality and draw attention to critical 
steps in the assembly process or critical regions of interest dur-
ing an inspection process. Gaze object sequences could also be 
used to establish a continuum of expertise with which skill level 
can be quantified and certified. Harvey et  al. (2014) described 
the concepts of “quiet eye” and “slowing down” observed with 
surgeons performing thyroid lobectomy surgeries. Interestingly, 
expert surgeons fixated their gaze on the patient’s delicate laryn-
geal nerve for longer periods than novices when performing 
“effortful” surgical tasks that required increased attention and 
cognition. Gaze behavior has also been linked with sight reading 
expertise in pianists (Truitt et al., 1997). Gaze fixation duration 
on single-line melodies was shorter for more skilled sight-readers 
than less skilled sight-readers.

In short, the gaze object sequence generated from 3D gaze 
tracking data has been demonstrated as a potentially powerful 
feature for action recognition. By itself, the gaze object sequence 
captures high-level spatial and temporal gaze behavior informa-
tion. Moreover, additional features can be generated from the 
gaze object sequence. For instance, gaze object percentage can 
be extracted by counting instances of objects in the gaze object 
sequence. Gaze fixation duration and saccades from one object 
to another can be extracted from the gaze object sequence. Even 
saccades to different regions of the same object could potentially 
be identified if the resolution of the gaze object sequence were 
made finer through the use of segmented regions of interest for 
each object (e.g., spout, handle, top, and base of a pitcher).

Practical Considerations and Limitations of Gaze 
Object Sequences
In this work, we have presented a simple proof-of-concept 
methods for action recognition using a DTW Euclidean distance 
metric drawn from comparisons between novel and character-
istic gaze object sequences. In the current instantiation, novel 
and characteristic sequences were compared using the same 
elapsed time (percentage of the entire sequence) (Figure  8). 
This approach was convenient for a post hoc study of recognition 
accuracy as a function of time elapsed. However, in practice, the 
novel gaze object sequence will roll out in real-time and we will 
not know a  priori what percent of the subtask has elapsed. To 
address this, we propose the use of parallel threads that calculate 
the DTW Euclidean distance metric for comparisons of the novel 
sequence with different portions of each characteristic sequence. 
For instance, one thread runs a comparison with the first 10% 
of one characteristic gaze object sequence; another thread runs 
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a comparison for the first 20% of the same characteristic gaze 
object sequence, etc. Such an approach would also address sce-
narios in which an individual happens to be performing a subtask 
faster than the population, whose collective behavior is reflected 
in each characteristic gaze object sequence. For example, it can 
be seen that the novel gaze object sequence in Figure  8A has 
a similar pattern as the characteristic gaze object sequence in 
Figure 8B. However, the individual subject is initially perform-
ing the subtask at a faster rate than the population average. The 
(yellow, blue, black, red, etc.) pattern occurs within the first 
10% of the novel sequence, but does not occur until 30% of the 
characteristic sequence has elapsed. The delayed recognition of 
the subtask could be addressed using the multi-thread approach 
described above Figure 8. To further address the computational 
expense commonly associated with DTW algorithms, one could 
implement an “unbounded” version of DTW that improves the 
method for finding matching sequences, which occur arbitrarily 
within other sequences (Anguera et al., 2010).

For human-robot collaborations, the earlier that a robot can 
recognize the intent of the human, the more time the robot will 
have to plan and correct its actions for safety and efficacy. Thus, 
practical limitations associated with the computational expense 
of real-time gaze object sequence recognition must be addressed. 
At the least, comparisons of a novel sequence unfolding in 
real-time could be made with a library of characteristic subtask 
sequences using GPUs and parallel computational threads (one 
thread for each distinct comparison). The early recognition 
of a novel subtask is not just advantageous for robot planning 
and control. The computational expense of DTW increases for 
longer sequences. Thus, the sooner a novel sequence can be 
recognized, the less time is spent on calculating the proposed 
DTW Euclidean metric. Since DTW uses dynamic program-
ming to find the best warping paths, a quadratic computational 
complexity results. While not implemented in this work, the 
computational expense of the DTW process could be further 
reduced by leveraging a generalized time warping technique 
that temporally aligns multimodal sequences of human motion 
data while maintaining linear complexity (Zhou and De la 
Torre, 2012).

Potential Advancements for a Gaze Object 
Sequence-Based Action Recognition System
As expected, recognition accuracy increased as more of the novel 
gaze object sequence was compared with each characteristic gaze 
object sequence (Figure  9). However, the simple recognition 
approach presented here is not perfect. Even when an entire 
novel gaze object sequence is compared with each characteristic 
gaze object sequence, the approach only achieves an accuracy 
of 96.4%, precision of 89.5%, and recall of 89.2% averaged 
across the six subtasks. The confusion matrix (Figure 10) shows 
which subtasks were confused with one another even after 100% 
elapsed time. Although the percentage of incorrect subtask 
label predictions is low, the subtasks that share the same gaze 
objects have been confused the most. For instance, the Subtask 1 
(“remove pitcher lid”) and Subtask 5 (“replace pitcher lid”) were 
occasionally confused with one another. It is hypothesized that 
the training of a sophisticated machine learning classifier could 

improve the overall accuracy of the recognition results, especially 
if additional features were provided to the classifier. Potential 
additional features include quantities extracted from upper limb 
kinematics and other eye tracker data, such as 3D gaze saliency 
maps.

As with the processing of any sensor data, there are trade-
offs with speed and accuracy in both the spatial and temporal 
domains. In its current instantiation, the gaze object sequence 
contains rich temporal information, but at the loss of spatial 
resolution; entire objects are considered rather than particular 
regions of objects. By contrast, the 3D gaze saliency map and 
gaze object percentage contain rich spatial information, but at 
the loss of temporal resolution due to the convolution of eye 
tracker data over a lengthy period of time. For practical pur-
poses, we are not suggesting that spatial and temporal resolution 
should be maximized. In practice, an action recognition system 
need not be computationally burdened with the processing of 
individual points in a 3D point cloud or unnecessarily high 
sampling frequencies. However, one could increase spatial 
resolution by segmenting objects into affordance-based regions 
(Montesano and Lopes, 2009), or increase temporal resolution 
by considering the temporal dynamics of action units rather 
than subtasks.

While object recognition from 2D egocentric cameras is an 
important problem, solving this problem was not the focus of 
the present study. As such, we bypassed challenges of 2D image 
analysis such as scene segmentation and object recognition, and 
used a marker-based motion capture system to track each known 
object in 3D. Data collection was performed in a laboratory set-
ting with expensive eye tracker and motion capture equipment. 
Nonetheless, the core concepts presented in this work could be 
applied in non-laboratory settings using low-cost equipment 
such as consumer-grade eye trackers, Kinect RGB-D cameras, 
and fiducial markers (e.g., AprilTags and RFID tags).

cOnclUsiOn

The long-term objective of the work is to advance human-robot 
collaboration by (i) facilitating the intuitive, gaze-based control 
of robots and (ii) enabling robots to recognize human actions, 
infer human intent, and plan actions that support human goals. 
To this end, the objective of this study was to identify useful 
features that can be extracted from 3D gaze behavior and used 
as inputs to machine learning algorithms for human action 
recognition. We investigated human gaze behavior and gaze-
object interactions in 3D during the performance of a bimanual, 
iADL: the preparation of a powdered drink. Gaze fixation 
duration was statistically significantly larger for some action 
verbs, suggesting that some actions such as pouring and stirring 
may require increased visual attention for task completion. 3D 
gaze saliency maps, generated with high spatial resolution for 
six subtasks, appeared to encode action-relevant information 
at the subtask and action unit levels. Dynamic time warping 
barycentric averaging was used to create a population-based 
set of characteristic gaze object sequences that accounted for 
intra- and inter-subject variability. The gaze object sequence 
was then used to demonstrate the feasibility of a simple action 
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recognition algorithm that utilized a DTW Euclidean distance 
metric. Action recognition results (96.4% accuracy, 89.5% pre-
cision, and 89.2% recall averaged over the six subtasks), suggest 
that the gaze object sequence is a promising feature for action 
recognition whose impact could be enhanced through the use 
of sophisticated machine learning classifiers and algorithmic 
improvements for real-time implementation. Future work 
includes the development of a comprehensive action recogni-
tion algorithm that simultaneously leverages features from 3D 
gaze–object interactions, upper limb kinematics, and hand–
object spatial relationships. Robots capable of robust, real-time 
recognition of human actions during manipulation tasks could 
be used to improve quality of life in the home as well as quality 
of work in industrial environments.
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