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The Earth-Moon neighborhood is the scene of a large variety of applications that 
concern asteroids, lunar exploration and space debris in Earth orbit. In particular, 
recent efforts by the scientific community have focused on the possibility of extending 
the human operations beyond the radiation belts; of exploiting in-situ resources, 
either on the lunar surface or on asteroids retrieved to the vicinity of the Earth; and 
of mitigating the space debris concern by taking advantage of the lunar perturbation.

The characteristic dynamics in the cislunar space represents an opportunity for the 
mission designer, but also a challenge in terms of theoretical understanding and 
operational control. This Research Topic covers the Earth-Moon dynamics in its 
complexity and allure, considering the most relevant aspects for both natural and 
artificial objects, in order to get a new comprehension of the dynamics at stake along 
with the operational procedures that can handle it.
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Editorial on the Research Topic

The Earth-Moon System as a Dynamical Laboratory

The aim of this collection is to address the dynamical challenges related to the cislunar space.
The Earth–Moon environment can be considered as a laboratory of dynamics, characterized by
very peculiar features. On the one hand, we can notice the high ratio between the mass of the
Earth and the mass of the Moon, the lunar orbit itself, the proximity to the Sun and the chaotic
behavior of the dynamics associated with small bodies (artificial and non). On the other hand,
crucial experiments are taking place in the cislunar place. First, it is well-known that there exists
a concrete effort to explore the lunar surface with both uncrewed and crewed missions, and to
operate a Lunar Gateway. Second, the understanding of the minor bodies population in the solar
system cannot overlook a deep knowledge of the minor bodies orbiting in the Earth–Moon system,
paying attention in particular to the objects of a few-meters diameter size, whose characterization
is still missing. Third, the gravitational attraction of the Moon exhibits a demonstrated influence
on high altitude Earth’ satellites, which can be crucial in the perspective of limiting the growth of
artificial space debris in the long term.

All these aspects are covered within this Research Topic, which includes 1 review, 1 mini review,
1 methods, and 7 original research papers, and it is the result of the collective commitment brought
by international experts in celestial mechanics and astrodynamics (both authors and referees). It
is worth noticing that they come from different background—mathematics, physics, aerospace
engineering- and different generations. The articles of the issue focus on theoretical and numerical
developments, but also on the practical use of the given models and tools. In practice, this reflects
into the design of space missions but also in the understanding of the motion of natural bodies
and their possible exploitation. Moreover, many of the mathematical and operational concepts
presented in the Research Topic can be extended to different planet-moon systems.

To study the motion of either a spacecraft or a natural body (in both cases assumed with a
negligible mass), the authors consider as a baseline dynamical model either the Circular Restricted
Three-Body Problem (CR3BP) (in Biggs et al., Cipriano et al., Lizy-Destrez et al., Jedicke et al., and
Sánchez et al.) or the classical theory of perturbations applied to the Kepler problem, assuming
as perturbations the Earth’s oblateness and the lunar perturbations (in Colombo and Daquin
et al.). The role of the Sun is accounted in Biggs et al. and Heiligers in terms of solar radiation
pressure (SRP) and in Daquin et al. and Jorba-Cuscó et al. in terms of gravitational perturbation.
In Valsecchi, the Hill’s model is applied to find orbital solutions for the motion of the Moon itself.

Natural bodies play a central role in the reviews by Jedicke et al. and Sánchez
et al. Jedicke et al. focus the analysis on the population of asteroids of a few-meter
diameter size, which are temporary-captured in the Earth–Moon system. The authors
address the aspects concerning the dynamical definition of these configurations, along with
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the possible mechanism of capture. Moreover, they explain
the challenges associated with the observation of this minor
body population, describing also their possible technological
and commercial exploitation. This analysis is complemented by
the review provided by Sánchez et al., who present the main
trajectory designs envisaged so far to retrieve an asteroid either
to the Earth–Moon system or to the Sun–Earth system.

The dynamics of artificial objects in the context of the
CR3BP is tackled by Cipriano et al., Biggs et al., Lizy-Destrez
et al., and Heiligers. Cipriano et al. present the LUMIO
(LUnar Meteoroid Impact Observer) mission, which was selected
for consideration for future implementation by the European
Space Agency under the SysNova Competition entitled “Lunar
CubeSats for Exploration.” The concept is particularly interesting
because it addresses the trajectory design of a Libration Point
Orbit (LPO) mission in the Earth–Moon system, but also
because it aims at the observation of impacts of meteoroids
on the lunar farside, by detecting their impact flashes, and
thus complementing the ground-based measures. LPO missions
in the Earth–Moon systems are the focus also of the work
by Biggs et al. and Lizy-Destrez et al. Biggs et al. show how
an Extended State Observer can be used to estimate the SRP
perturbation on a halo orbit, together with the possible injection
errors. The main purpose is to improve the station-keeping
control. Lizy-Destrez et al. face the rendez-vous problem in
the CR3BP, which is a fundamental topic for the establishment
and the operability of a Lunar Gateway. Finally, Heiligers
shows how to compute homoclinic and heteroclinic connections
between planar Lyapunov orbits in the CR3BP embedded
with a constant SRP acceleration. Such dynamical corridors,
opened by an ad hoc usage of solar sails, represent new
natural transport mechanisms that can be considered in the
cislunar space.

Daquin et al. and Colombo are concerned with the long-
term effect of the lunisolar gravitational perturbation onMedium
Earth Orbits and Highly Elliptical Orbits (HEO), respectively.
While Daquin et al. concentrate on the role of chaos and its
quantification, Colombo shows how to model accurately the

lunisolar perturbations on HEO, and how to exploit effectively
the corresponding dynamical maps for real missions.

In the last two articles, Valsecchi and Jorba-Cuscó et al.,
different dynamical models to work in the Earth–Moon system
are proposed. Valsecchi shows the existence of periodic solutions
in the Hill’s problem, that respect the periodicity of the Saros.
He also provides a comparison of the solutions with the NASA
Jet Propulsion Laboratory ephemerides of the Moon, obtaining
good consistency. A possible extension of this work is to have a
simple realistic model where the three gravitational attractions—
Sun, Earth, Moon—are considered, and that can be used to more
accurately define the dynamical behavior of a small body orbiting
in the cislunar space. With an analogous purpose, Jorba-Cuscó
et al. analyze the Bicircular Problem and the Quasi-Bicircular
Problem and their applicability in the neighborhood of the
collinear and triangular points of the original CR3BP.

In conclusion, the Earth–Moon system is the paradigm of
how a proper modeling of the dynamics and its understanding
leads to an effective exploitation of the environment for scientific
purposes. The various methods and applications presented in
the Research Topic also show that a key role is played by the
synergy that should be found among applied mathematics, space
engineering, and planetary science.
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Helsinki, Finland, 6Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology,
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Twelve years ago the Catalina Sky Survey discovered Earth’s first known natural

geocentric object other than the Moon, a few-meter diameter asteroid designated

2006 RH120. Despite significant improvements in ground-based telescope and detector

technology in the past decade the asteroid surveys have not discovered another

temporarily-captured orbiter (TCO; colloquially known as minimoons) but the all-sky

fireball system operated in the Czech Republic as part of the European Fireball Network

detected a bright natural meteor that was almost certainly in a geocentric orbit before

it struck Earth’s atmosphere. Within a few years the Large Synoptic Survey Telescope

(LSST) will either begin to regularly detect TCOs or force a re-analysis of the creation

and dynamical evolution of small asteroids in the inner solar system. The first studies of

the provenance, properties, and dynamics of Earth’s minimoons suggested that there

should be a steady state population with about one 1- to 2-m diameter captured

objects at any time, with the number of captured meteoroids increasing exponentially

for smaller sizes. That model was then improved and extended to include the population

of temporarily-captured flybys (TCFs), objects that fail to make an entire revolution around

Earth while energetically bound to the Earth-Moon system. Several different techniques

for discovering TCOs have been considered but their small diameters, proximity, and

rapid motion make them challenging targets for existing ground-based optical, meteor,

and radar surveys. However, the LSST’s tremendous light gathering power and short

exposure times could allow it to detect and discover many minimoons. We expect that

if the TCO population is confirmed, and new objects are frequently discovered, they can

provide new opportunities for (1) studying the dynamics of the Earth-Moon system, (2)

testing models of the production and dynamical evolution of small asteroids from the

asteroid belt, (3) rapid and frequent low delta-v missions to multiple minimoons, and (4)

evaluating in-situ resource utilization techniques on asteroidal material. Here we review

the past decade of minimoon studies in preparation for capitalizing on the scientific and

commercial opportunities of TCOs in the first decade of LSST operations.

Keywords: minimoon, asteroid, NEO, ISRU, dynamics
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1. MINIMOON INTRODUCTION

For more than four billion years the Earth has been accompanied
by the ∼3,500 km diameter Moon, its only permanent natural
satellite. Our outsized satellite places the Earth at the top of
the list of the eight planets in the Solar System in terms of
the primary-to-satellite mass ratio despite the fact that the
Moon is only about 1% of Earth’s mass. This work reviews the
history, properties, and future potential of natural objects that
are temporarily gravitationally bound within the Earth-Moon
system (EMS). We refer to them as either temporarily captured
objects (TCO) or temporarily captured flybys (TCF) depending
on whether they make at least one revolution around Earth (the
definition will be refined in section 3). As an homage to the
Moon and Austin Powers1 we usually refer to TCOs and TCFs as
“minimoons” though, to be more precise based on their relative
diameters, they may more accurately be considered micromoons.

The most basic definition of whether two objects are
gravitationally bound to one another requires that the sum of
their relative kinetic and potential energy must be less than zero.
i.e.,

ǫ =
ET

m
=

c3

2
=

1

2
v2 −

µ

r
< 0 (1)

where ǫ is an object’s specific orbital energy, the total energy (ET)
per unit mass (m) of the smaller object, c3 is its “characteristic
energy,” v and r are the relative speed and distance between the
objects, and µ = GM is the standard gravitational parameter
where G is the gravitational constant and M is the mass of
the primary. This definition breaks down when there are more
than two objects (i.e., in all real situations) and in our Solar
System “temporary capture” usually also requires a limit on the
separation between the objects of less than 3 Hill radii (e.g.,
Kary and Dones, 1996; Granvik et al., 2012). Minimoons are
temporarily captured natural satellites of Earth in the sense that
they have ǫ < 0 with respect to Earth and are within 3 Hill radii
(Figure 1).

The existence of minimoons was long regarded as impossible
or, at best, unlikely, because several long-running asteroid
surveys had not identified any natural geocentric objects in
many years of operation. We think this is most likely due to
these objects typically being too small, too faint, and moving
too rapidly to be efficiently detected, but there is also likely a
psychological bias against their discovery that still remains. Since
it is “well known” that Earth has no other natural satellites any
geocentric object must be artificial even if it was identified on an
unusual distant orbit. In this work we will show that this bias
is unwarranted, minimoons have been discovered and will be
discovered in even greater numbers in the near future as highly
capable astronomical surveys begin their operations.

2. MINIMOON DISCOVERIES

The Catalina Sky Survey (Larson et al., 1998) has been in
operation for about 20 years and has discovered many near-Earth

1A fictional secret agent played by the Canadian comedian Mike Myers.

FIGURE 1 | Minimoons (temporarily captured objects, TCOs) are

gravitationally bound to the Earth-Moon system while quasi-satellites (section

4) are not. (Top) Trajectory of the minimoon 2006 RH120 during its capture in

the Earth-Moon system in 2006–2007. The Earth is represented by the yellow

dot located at the origin of the J2000.0 mean equator and equinox reference

system. (Bottom) Trajectory of Earth’s quasi-satellite 2016 HO3 shown in blue

as projected onto the heliocentric ecliptic x − y plane in the synodic frame.

Earth is represented by the green dot in the center and the Moon’s orbit is

represented by the small white circle. Earth’s orbit is shown as as the white arc

from left to right and the direction to the Sun is to the bottom [credit: Paul

Chodas (NASA/JPL); Chodas, 2016].

objects (NEO; objects with perihelia q < 1.3 au) and comets but
in September 2006 they discovered the first verified minimoon2,
now known as 2006 RH120 (Kwiatkowski et al., 2009). While its
geocentric orbit was established soon after discovery there was
some controversy over its nature as an artificial or natural object.
Several launch vehicle booster stages have achieved sufficient
speed for them to escape the gravitational bonds of the EMS (e.g.,
Jorgensen et al., 2003) only to be subsequently recaptured in the
system after a few decades. Subsequent astrometric observations
of 2006 RH120 established its provenance as a natural object
because the perturbations to its trajectory caused by solar
radiation pressure3 were inconsistent with it being artificial

2MPEC 2008-D12; https://www.minorplanetcenter.net/mpec/K08/K08D12.html
3https://echo.jpl.nasa.gov/asteroids/6R10DB9/6R10DB9_planning.html
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(Kwiatkowski et al., 2009). Later radar observations established
that it is a few meters in diameter (Benner et al., 2015). 2006
RH120 remained bound in the Earth-Moon system for about a
year during which it made about four revolutions around the
geocenter (Figure 1). Its pre-capture orbit had a semi-major axis
of (a, e, i) ∼ (0.95 au, 0.05, 0.6◦) so its aphelion was near Earth’s
orbit while its post-capture orbit has a perihelion close to 1 au
with (a, e, i) ∼ (1.03 au, 0.03, 0.6◦) (Granvik et al., 2012). We will
show below that 2006 RH120’s dynamical properties make it a
poster child for minimoon behavior while asteroids close to its
few-meter diameter should be captured with decadal frequency.

While 2006 RH120 is undoubtedly the first verified minimoon
discovered while in its TCO phase there are other significant
minimoon observations. The first was “The Extraordinary
Meteoric Display” on 9 February 1913 that was observed from
Saskatchewan to Bermuda (Figure 2) and was described and
analyzed by Chant (1913a,b). Historical researchers have even
identified sightings of the event off the coast of Brazil (Olson
and Hutcheon, 2013)! The meteor display included dozens, and
perhaps hundreds, of fragments that moved slowly across the
sky in “perfect formation.” They were not the typical shooting
star that last for only a fraction of second—the entire procession
lasted more than 3 min! Witnesses reported that the meteors
caused a “rumbling noise” and houses to shake along the path.
Chant’s detailed analysis of eyewitness reports concluded that the
object’s speed with respect to Earth’s surface was between 8 km
s−1 and 16 km s−1 while Earth’s escape speed or, equivalently,
the speed at which an object with zero relative speed at infinity
would strike Earth, is about 11.2 km s−1. He thus concluded
that the meteoroid “had been traveling through space, probably
in an orbit about the Sun, and that on coming near the Earth
they were promptly captured by it and caused to move about it
as a satellite.” A few years later Denning (1916) concluded that
“the large meteors” that passed over Northern America in 1913
must have been temporary Earth satellites because they traveled
2,600 miles in the atmosphere suggesting that the orbits were
“concentric, or nearly concentric, with the Earth’s surface.” Given
that this event pre-dates the launch of any artificial objects it must
have been a natural object and a minimoon by our definition.

Clark et al. (2016) suggest that a meteor observed on 2014
January 13 in the Czech Republic with an all-sky digital camera
system that is part of the European Fireball Network has an
∼ 95% probability of having been on a geocentric orbit before
impact. Complementary spectroscopic data prove that it must
have been a natural object. Detailed modeling of the object’s
atmospheric deceleration and fragmentation suggest that its
pre-entry mass must have been about 5 kg with a diameter of
∼ 15 cm. It entered Earth’s atmosphere at just over 11.0 km s−1,
consistent with having a v∞ = 0 with respect to Earth as
expected for geocentric objects, and their backward dynamical
integrations suggest that it was a minimoon for at least 48
days and perhaps for more than 5 years. Clark et al. (2016)
concluded that the predicted rate of minimoon meteors was far
higher than the observed rate based on this object but we have
confirmed that their estimated rate did not account for the vastly
different detection efficiency of minimoon meteors compared to
heliocentric meteors. Meteor luminous efficiency, the fraction of

a meteor’s kinetic energy that is converted into visible light, is
proportional to the 4th or 5th power of the impact speed so
the apparent brightness of a meteor with a heliocentric origin
v ∼20 km s−1; (Brown et al., 2013) will be 16× to 32× brighter
than a minimoon meteor of the same initial mass.

3. MINIMOON DYNAMICS

Heppenheimer and Porco (1977) defined “capture” as “the
process whereby a body undergoes transition from heliocentric
orbit to a planetocentric orbit.” Therefore, the three-body
problem (3BP) is the natural framework to study the capture
mechanisms for which the invariant manifolds of the orbits
around the collinear Lagrange points are known to play a
significant role. The capture definition entails that the body
should remain gravitationally bound to the planet but, in a
purely gravitational three-body scenario, captures can only be
temporary (Huang and Innanen, 1983; Tanikawa, 1983).

The three-body problem has no general analytical solution
and is often simplified to the case in which twomassive bodies are
in circular orbits revolving around their center of mass while the
third body is massless andmoving in their gravitational potential.
In this circular restricted 3BP (CR3BP) the dynamical system has
an integral of motion that yields an invariant parameter known
as the Jacobi constant, C. It is related to the total energy of the
particle in the synodic frame (the co-rotating frame with origin
at the barycenter and the line between the two primary objects
fixed) and its constancy imposes a dynamical constraint between
the position and velocity of a particle.

For a given value of the Jacobi constant space is divided into
forbidden and allowable regions (Hill regions) that are separated
by “zero-velocity” surfaces (Szebehely, 1967). These surfaces
are defined in the synodic frame where they are invariant and
symmetrical with respect to the x − y plane in the CR3BP. The
surfaces’ intersection with the x− y plane yields the zero-velocity
curves (Figure 3). C1 and C2 are the values of the Jacobi constant
on the zero-velocity surface at the L1 and L2 libration points,
respectively. For the Sun-Earth-asteroid system (but without loss
of generality), when C < C1 there are three disjointed Hill
regions where the asteroid can reside: (1) in close proximity to
Earth; (2) in the vicinity of the Sun; and (3) in the exterior domain
that extends to infinity. None of these regions are connected, so
an asteroid that resides in the Hill region surrounding Earth is
gravitationally trapped and cannot escape into heliocentric orbit
and vice versa. When C = C1 the Hill regions around the Sun
and Earth connect at L1, and for C1 < C < C2 a pathway exists
around L1 that allows an asteroid to transition from heliocentric
to geocentric orbit. Equivalently, when C > C2 another gateway
opens at L2, connecting the exterior Hill region and enabling
distant asteroids to transition to geocentric orbit. Hence, in the
CR3BP framework it is impossible to effect a permanent capture
because when the Jacobi constant is such that transfers from
heliocentric to geocentric orbits are allowed there is no way to
prevent the asteroid from returning into heliocentric orbit. The
capture and escape trajectories are both governed by manifold
dynamics, so once asteroids reach the vicinity of L1 or L2 the

Frontiers in Astronomy and Space Sciences | www.frontiersin.org May 2018 | Volume 5 | Article 138

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Jedicke et al. Earth’s Minimoons

FIGURE 2 | On 9 February 1913 “The [Toronto] Globe [newspaper] office was flooded with reports of ‘a meteoric performance of stupendous dimensions”’

(Semeniuk, 2013). Toronto artist Gustav Hahn witnessed the minimoon fireball procession of 1913 and later painted it [University of Toronto Archives (A2008-0023)

Copyright Natalie McMinn]. The first meteor photograph was obtained in 1885 (Weber, 2005) but eyewitness accounts and paintings were acceptable forms of

observational evidence in the early twentieth century.

FIGURE 3 | Schematic view of the zero-velocity curves in the synodic frame for three different values of the Jacobi constant. The red shading illustrates regions where

it is impossible for an object with the given value of the Jacobi constant to be located. The positions of the primary bodies are indicated by the filled black circles on

the y = 0 line while L1 and L2 are labeled and illustrated as unfilled circles.

invariant manifolds of libration orbits are able to attract and
pull them into the region around the planet following a stable
manifold where they remain temporarily captured until they
escape following an unstable manifold (Carusi and Valsecchi,

1981; Koon et al., 2001). Note, however, that the duration of the
temporary capture can be arbitrarily long.

The eccentricity of the Earth’s orbit can be accounted for
within the framework of the elliptic restricted three-body
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problem (ER3BP). An immediate consequence is that the Jacobi
constant ceases to be an invariant quantity of the system (i.e., it
is no longer constant) and Hill regions, as well as zero-velocity
surfaces, are not invariant either; instead, they become periodic,
time-dependent functions. As the Earth revolves around the Sun,
the instantaneous Jacobi constant modulates and the Lagrange
points shift inwards and outwards. Accordingly, at every value
of Earth’s true anomaly a different set of pulsating zero-velocity
surfaces exist with shapes and dimensions that vary in time.
Hence, it might happen that the capture paths through L1 and
L2 always remain closed or open, or open and close periodically
every orbital revolution, depending on the geometrical layout
and instantaneous value of the Jacobi constant. As a consequence,
the eccentricity of planetary orbits is insufficient to provide a
feasible capture mechanism on its own. Even if Earth’s orbital
eccentricity might enable the transition into geocentric orbit of
asteroids that could not otherwise have transitioned within the
CR3BP (Makó and Szenkovits, 2004), there is no instrument
to prevent them from returning into the heliocentric domain;
the very same pathways will periodically reopen, thus enabling
the asteroid’s eventual escape. Therefore, in the gravitational
three-body problem no dynamical mechanism exists that enables
permanent capture. Doing so requires dissipative mechanisms
that produce an irreversible change in the value of the Jacobi
constant so that an asteroid may enter geocentric orbit through
an open gateway which later closes before the asteroid can escape.
Such dissipative mechanisms can only appear through the action
of non-gravitational forces (e.g., Pollack et al., 1979; Astakhov
et al., 2003), or the introduction of other perturbing bodies (e.g.,
other Solar System bodies, Nesvorný et al., 2007).

The Earth’s case is more complex due to the subtle dynamical
implications of theMoon so that a reliable study of the temporary
capture of Earth’s minimoons needs to be addressed within the
framework of the Sun-Earth-Moon-Asteroid four-body problem.

Despite the evidence of the “Chant Procession,” the minimoon
2006 RH120, and the well known properties of temporary
captures of comets and asteroids by the Jovian planets (e.g.,
Carusi and Valsecchi, 1981; Vieira-Neto and Winter, 2001;
Ohtsuka et al., 2008), the first estimate of the number and
properties of the EMS’s steady-state minimoon population
was performed by Granvik et al. (2012). They generated a
synthetic population of NEOs that are the minimoon “source”
population—the set of objects that may be captured in the EMS—
according to what was at that time the best estimate of the NEO
orbit distribution (Bottke et al., 2002), and then used an N-body
integrator to simulate their dynamical evolution and determine
the fraction that would be captured in the EMS. They included
the gravitational effects of the Sun, Moon, Earth, and the seven
other planets and found that about 0.00001% of all NEOs are
captured as minimoons (TCOs) per year (i.e., 10−7 of the NEO
population per year). This may seem like an insignificant fraction
but there are estimated to be on the order of 109 NEOs larger
than 1m diameter (e.g., Brown et al., 2013; Schunová-Lilly et al.,
2017), implying that a population of small minimoons is possible.
In their careful accounting of the capture probabilities Granvik
et al. (2012) calculated that there are likely one or twominimoons
& 1m diameter in the EMS at any time and that there should

also be a∼ 10× larger population of temporarily captured flybys
(TCF). The average minimoon spends about 9 months in our
system during which it makes almost 3 revolutions around Earth.

Fedorets et al. (2017) improved upon the earlier work of
Granvik et al. (2012) in a number of ways, notably by using an
improved NEO model (Granvik et al., 2016) and a more careful
accounting of the NEO orbital element distribution as e → 0
and i → 0◦. The improved NEO model has a higher resolution
in the orbital element distribution that was enabled by the use of
much higher statistics and smaller time steps in the underlying
dynamical integrations, and a significantly more careful analysis
of the orbital element distribution of themain belt NEO “sources”
(the main belt is the source of the NEOs just as the NEOs
are, in turn, the minimoon source population). Even with the
higher resolution in the NEO orbital element distribution they
found that it is still important to implement a more sophisticated
treatment of the distribution of orbital elements within the bins
at the smallest inclinations and eccentricities; i.e., the Granvik
et al. (2016) NEO model specifies the number of objects in the
bins that contain e = 0 and i = 0◦ but phase-space arguments
suggest that the number distributions near zero should go as
n(e) ∝ e3 and n(i) ∝ i3 (Harris et al., 2016). Since Earth-
like minimoon pre-capture orbits are highly favored (Figure 4)
their improved treatment of the distribution caused a reduction
of about 2× in the predicted steady-state TCO population. The
reduction in the predicted TCO population was somewhat offset
by a similarly more careful treatment of the TCF population.
Some of these objects may be bound to Earth for > 200 d, they
are more abundant than TCOs because of the reduced criteria
for number of revolutions around Earth, and they have a slightly
higher rate of impacting Earth during their capture. Summarizing
all their improvements, they found that the temporary natural
satellite population (TCO+TCF) is smaller by ∼ 10% compared
to Granvik et al. (2012)’s estimate.

Urrutxua and Bombardelli (2017) subsequently refined the
TCO and TCF definitions originally proposed by Granvik et al.
(2012). They suggested that since temporary captures around
Earth are best studied in a Sun-Earth synodic frame the number
of revolutions should be counted by recording the angle swept
by the ecliptic projection of the geocentric trajectory in the
synodic frame. Accordingly, temporarily captured objects can be
classified as TCOs when they complete at least one full revolution
around Earth or as TCFs if they fail to complete a full revolution
under this definition.

If TCOs followed circular orbits around Earth then there
would be a linear correlation between capture duration and
revolutions with a different slope for each geocentric distance
(Figure 6). The spread in the capture duration is thus linked
to each TCO’s average geocentric distance. Although Granvik
et al. (2012)’s minimoon sub-classification criteria is conceptually
sound, unanticipated complications arise in practice. For
instance, the synthetic minimoon in the left panel of Figure 5
completes several “loops” during a temporary capture spanning
11 months though it only counts 0.93 revolutions about Earth
and would be classified as a TCF according to Granvik et al.
(2012)’s definition. Similarly, the synthetic minimoon in the
right panel of Figure 5 is bound within the EMS for barely a
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FIGURE 4 | Combined TCO and TCF capture probability in heliocentric orbital element (a,e,i) space (adapted from Fedorets et al., 2017). Green circles represent

orbital elements of known NEOs as of 4 November 2014. Solid black lines correspond to q = 1au and Q = 1au, perihelion and aphelion at Earth’s orbit respectively.

The black square represents the orbital elements of 2006 RH120 at capture and the black triangle represents its current orbital elements.

FIGURE 5 | Adapted from Urrutxua and Bombardelli (2017). (Left) Geocentric synodic trajectory of a TCF that becomes a TCO under the new definition of Urrutxua

and Bombardelli (2017). (Right) A TCF that is misclassified as a TCO under the classical definition. The shaded area is the Hill sphere and the magenta curves depict

the Moon’s trajectory.

month while describing a short arc around Earth, yet the ecliptic
projection of the trajectory happens to make more than one
revolution so the object would be considered a TCO by Granvik
et al. (2012). These examples are contrary to common sense
that would suggest that the TCF would be better classified as
a TCO, while the TCO should be a TCF, i.e., they appear to
be misclassified. Examples of misclassified synthetic temporary

captures are common, which indicated that the minimoon
categorization algorithm required revision.

To address these issues Urrutxua and Bombardelli (2017)
proposed the simple yet effective idea of counting the revolutions
based on the intrinsic curvature of the synodic trajectory which
is better suited to the three-dimensional non-elliptical nature of
a minimoon’s trajectory. It also decouples the definition from
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a geocentric reference and tracks the actual trajectory and the
traversed arclength so it is more tightly linked to the dynamics
and yields a stronger correlation between the capture duration
and the number of completed revolutions (Figure 6). The revised
definition correctly reclassifies short-lived TCOs as TCFs, and
long-lived TCOs with a previously small revolution count now
have an appropriately higher number of revolutions. Thus, the
“banding” in Figure 6 (left) is caused by TCOs whose synodic
trajectories projected on the ecliptic describe loops that do not
sum to the revolutions count under the classical definition (e.g.,
left panel in Figure 5).

Urrutxua and Bombardelli (2017) also propose a classification
scheme for TCO sub-types (Figure 6). Type I TCOs cross the
Hill sphere and are separated into retrograde and prograde orbits
which reveals that, for an equal number of revolutions, prograde
TCOs typically have shorter capture durations than retrograde
ones i.e., the average geocentric distance during capture tends
to be smaller for prograde TCOs. Type II TCOs remain outside
the Hill sphere and are long duration captures at any revolution
count.

As described above, TCOs and TCFs are typically “captured”
(Figure 7), i.e., the moment their geocentric orbital energy
becomes negative (Equation 1), when they are near the Earth-
Sun L1 or L2 points (Granvik et al., 2012). Their geocentric
inclinations favor retrograde orbits in a 2:1 ratio, typical of
irregular satellites and, perhaps surprisingly, the Moon has little
to do with the capture process. Granvik et al. (2012) established
that the Moon is not important by running integrations with
and without the Moon (but incorporating the Moon’s mass into
Earth) and found essentially identical capture rates from the
NEO population. The only significant difference was their finding
that the Moon is a harsh mistress—it causes TCO and TCF
orbits to evolve to Earth-impacting trajectories while none of
them impacted Earth without the Moon’s influence. There is no
dynamical mechanism to shield Earth from minimoon impacts
without the Moon but ∼ 1% of minimoons strike Earth with
the Moon in the simulation while . 0.02% of minimoons strike
Earth without the Moon at the 90% confidence level.

Minimoon captures may begin over a wide range of geocentric
distances (Figure 7) and, as noted above, TCOs may or may not
cross the Hill sphere at all during their temporary capture. There
is a strong symmetry in the incoming TCO distribution at the
time of capture far from the Hill sphere but by the time they cross
it the symmetry is lost and they are evenly distributed over the
Hill sphere’s surface. This suggests that the Hill sphere is not an
appropriate reference surface for the study of temporary captures
(Urrutxua and Bombardelli, 2017).

Granvik et al. (2012)’s prediction that some minimoons can
strike Earth provides a means of testing the minimoon theory
because they calculated that about 0.1% of all Earth impactors
are TCOs. TCO meteors have a distinctive signature in that their
atmospheric impact speed is ∼ 11.18 ± 0.02 km s−1—essentially
Earth’s escape velocity or, equivalently, the speed at which an
object would strike Earth if it started at infinity with zero speed
with respect to Earth. Heliocentric meteors have v∞ > 0 and
therefore must impact with speeds >11.19 km s−1. They have
an average impact speed of ∼20 km s−1 (e.g., Taylor, 1995; Hunt

et al., 2004) but can range in speed anywhere from 11.19 km s−1

to 72 km s−1. The problem is that meteor luminous efficiency
(and the radar echo as well) is a very steep function of the
impact speed, so detecting a slow-moving meteor requires that
the object be particularly large to be detected. Thus, Clark et al.
(2016)’s detection of a meteor with an origin on a geocentric
orbit confirms Granvik et al. (2012)’s prediction that such objects
exist but can not be used to test the minimoon population’s size-
frequency distribution without a detailed understanding of the
detection biases.

Conversely, Hills and Goda (1997) calculated the probability
that an Earth-atmosphere-grazing meteoroid could be captured
into a geocentric orbit due to the loss of kinetic energy during
its atmospheric passage. They suggested that the cross section for
orbital capture is about 1/1,000th that of objects striking Earth
which implies that the time scale for atmospheric capture of a 1m
diameter object is a few decades—much longer than the capture
time scale calculated by Granvik et al. (2012) and Fedorets et al.
(2017). Furthermore, objects that are captured by atmospheric
drag must dive back into the atmosphere on every subsequent
orbit, thereby rapidly dissipating kinetic energy until they fall to
Earth as slow meteors. Given their infrequent capture and short
residence times we expect that this mechanism can not be amajor
minimoon source.

A sub-set of the minimoon population is the particularly
long-lived orbits associated with the Earth-Moon L4 and L5
Trojan regions (e.g., Marzari and Scholl, 2013; Hou et al., 2015).
These objects are deep within Earth’s Hill sphere and can have
lifetimes even up to a million years (Hou et al., 2015) if they
have small inclinations and eccentricities, and decameter-scale
objects would even be stable under the influence of the Yarkovsky
effect (Marzari and Scholl, 2013). The problem is that even
though minimoons in the E-M Trojan population have very long
dynamical lifetimes they are not long compared to the age of
the solar system. Thus, any E-M Trojan minimoon population
must be transient but capturing NEOs into this sub-population
is even less likely than the less restrictive captures described by
Granvik et al. (2012) and Fedorets et al. (2017). Furthermore,
there has never been a discovery of an Earth-Moon Trojan in
the decades of operations of modern NEO surveys or in targeted
surveys (Valdes and Freitas, 1983). We were unable to identify
any limits on the size of population in the existing literature even
though the requirements to do so are modest by contemporary
asteroid survey standards (Hou et al., 2015). One possible issue
is that their typical apparent rate of motion would be about the
same speed as the Moon’s, ∼ 12 deg day−1, which is quite fast
and would cause trailing of the detected asteroids on the image
plane during typical exposures. We expect that the LSST (Ivezic
et al., 2008; Schwamb et al., 2018) will either detect the first
E-M Trojans or set a tight upper limit on their size-frequency
distribution.

A missing component from minimoon population modeling
is an accurate incorporation of the Yarkovsky and YORP effects,
thermal radiation forces and torques that cause small objects
to undergo semimajor axis drift and spin vector modifications,
respectively, as a function of their spin, orbit, and material
properties (e.g., Bottke et al., 2006). These tiny thermal forces are
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FIGURE 6 | Adapted from Urrutxua and Bombardelli (2017). (Left) TCO revolutions vs. capture duration for the definition and synthetic minimoon population of

Granvik et al. (2012). (Right) The same population but using the definitions and method of revolution counting of Urrutxua and Bombardelli (2017). Type I TCOs, both

retrograde (blue) and prograde (orange), enter Earth’s Hill sphere. Type II TCOs (green) remain outside the Hill sphere during their entire capture phase. TCFs (magenta)

make less than one revolution around Earth (but the method for counting revolutions is different in the two panels). Dashed lines correspond to circular orbits at

geocentric distances of 0.5 and 1 Hill radii.

FIGURE 7 | Adapted from Urrutxua and Bombardelli (2017). TCO capture

location in the synodic frame at the moment that their energy becomes

negative with respect to the Earth-Moon barycenter. The Earth is located at

the origin, the Sun is far off to the left, and the shaded gray circle represents

Earth’s Hill sphere. There is no significance to the colors of the dots.

partly responsible for allowing many of these bodies to escape
the main asteroid belt in the first place. At present, it is unclear
how the inclusion of Yarkovsky thermal drift forces into our
models would modify the minimoon capture rate near Earth but
we suspect it would not be by very much because the change
in semimajor axis produced by the Yarkovsky effect is probably
on the order of 0.001 − 0.01 auMyr−1, very small when one
considers that their source NEO population is strongly affected
by planetary close encounters. It is probable that for every proto-
minimoon moved onto a trajectory where capture was possible

via the Yarkovsky effect, another would be moved off such a
trajectory. Ultimately, though, new models are needed to fully
evaluate their importance.

The heliocentric orbits after capture remain “capturable”
during subsequent Earth encounters (Figure 4 and Granvik et al.,
2012). This implies that artificial objects launched fromEarth that
escape the EMS to a heliocentric orbit can be captured during
subsequent EMS encounters; e.g., a recently discovered object
and candidate minimoon, 2018 AV2, was initially predicted to
have had an earlier capture in the late 1980s but follow-up
astrometry later showed that a capture did not happen and that
the object is likely artificial. (It is nearly impossible to distinguish
between minimoons and artificial objects based only on their
orbital elements and dynamics but section 5 describes how they
can be differentiated using their response to radiative forces to
measure their area-to-mass ratio.)

Finally, Earth is not the only world with minimoons. The

most commonly known “minimoons” in the Solar System are

associated with Jupiter whose Hill sphere is much larger than

Earth’s. Jupiter-family comets that evolve onto low-eccentricity,

low-inclination heliocentric orbits similar to that of Jupiter can

be captured in the Jupiter system via its L1 or L2 Lagrange
points; i.e., they form in the exactly the same way as described
above for Earth’s minimoons. The most famous example was
comet Shoemaker-Levy 9 that was likely captured around 1929
(Chodas and Yeomans, 1996) and orbited within Jupiter’s Hill
sphere until it passed within Jupiter’s Roche limit. This deep
encounter disrupted the comet and created the famous “string
of pearls” that later returned to strike Jupiter in 1994. Other
known comets have minimoon orbits with Jupiter (e.g., Comet
147P/Kushida-Muramatsu; Ohtsuka et al., 2008) but the steady
state population has yet to be quantified with the latest dynamical
models. Note that the orbits of Jupiter minimoons are different
from Jupiter’s irregular satellites, a population that exists on stable
orbits with semimajor axes between 0.1 and 0.5 Jupiter Hill radii.
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The irregular satellites were likely captured during a time of giant
planet instability and migration that took place 4–4.5 Gyr ago
(e.g., Nesvorný et al., 2007, 2014).

4. MINIMOON SOURCE POPULATION

The minimoon source population, the set of objects from which
minimoons are drawn, are Earth’s co-orbital asteroids (Morais
and Morbidelli, 2002), objects that are in a 1:1 mean-motion
resonance with Earth like 2010 TK7 (Connors et al., 2011), or at
least those objects very close to the 1:1 mean-motion resonance,
(Granvik et al., 2012; de la Fuente Marcos and de la Fuente
Marcos, 2013; Fedorets et al., 2017). Thus, understanding the
dynamics and population of co-orbitals is important to our
understanding of the minimoon population as well. The small
population of known co-orbitals are all transient objects and
therefore must not be primordial, having originated within the
inner solar system, perhaps as impact ejecta from Venus, Earth,
the Moon, or Mars, or, more likely, were delivered to the inner
solar system from the main belt (e.g., Granvik et al., 2017).

An interesting sub-class of asteroids that are tangentially
related to minimoons are “quasi-satellites” (e.g., Sidorenko
et al., 2014; Chodas, 2016; de la Fuente Marcos and de la
FuenteMarcos, 2016). Unlike geocentric minimoon orbits, quasi-
satellites are heliocentric but their specific orbit elements while
in the 1:1 mean-motion resonance cause them to appear to be in
a distant retrograde orbit around Earth from Earth’s perspective
(Figure 1). This type of orbit can be dynamically stable because
they never approach too close to any massive object and have
been proposed for astrophysical and asteroid survey spacecraft
missions because they provide inter-planetary-scale observations
of Earth but at relatively constant geocentric distances (e.g., Cyr
et al., 2000; Stramacchia et al., 2016; Perozzi et al., 2017).

Like minimoons, quasi-satellites are not just dynamical
mathematical curiosities—several examples are known to exist
including asteroids (164207), (277810), 2013 LX28, 2014 OL339,
and 2016 HO3 (Chodas, 2016; de la Fuente Marcos and de la
Fuente Marcos, 2016). Both minimoons and quasi-satellites are
drawn from the same NEO population and should have similar
taxonomic distributions. However, the dynamical lifetimes of
quasi-satellites can be orders of magnitude longer than for
minimoons so it is to be expected that there should be more
quasi-satellites and that the population should include larger
bodies. The largest object that may be in the steady-state
population at any time is directly related to the population
lifetime; e.g., the largest minimoon in the steady-state population
at any time is likely ∼ 1m diameter. Thus, given their long
lifetimes , it is not surprising that quasi-satellites like 2016 HO3

exist with an absolute magnitude H ∼ 24.2 corresponding to a
diameter of∼50m.

There are less than half the expected number of NEOs
with semi-major axes within half a Hill radius of Earth’s orbit
(Figure 8). We expect that this is an observational selection effect
because NEOs in or near Earth’s 1:1mean-motion resonance have
extremely long synodic periods (Figure 8). The closer the NEO is
to the 1:1 mean-motion resonance the longer its synodic period,

making it much more difficult to discover. Modern asteroid
surveys have only been in operation for a couple decades so they
have only an ∼ 2% chance of detecting an NEO with a 1, 000 yr
synodic period. Thus, the discovery of Earth’s co-orbitals, and
objects in the minimoon source population, simply requires a
long period of time or more aggressive space-based observation
platforms.

Finally, like minimoons, quasi-satellites are often touted as
promising spacecraft mission targets because they are in not-too-
deep space and always at relatively constant geocentric distances.
They are larger and easier to find than minimoons but require
higher 1v and longer communication times and, since they are
on orbits essentially identical to the minimoons’ NEO source
population, they will have the same taxonomic distribution as
minimoons.

5. MINIMOON CURRENT STATUS AND
FUTURE PROSPECTS

The major problem with the minimoon hypothesis is the small
number of known objects that have ever been minimoons
(section 2). On the other hand, there have been numerous cases
of objects that were TCOs or TCFs that later turned out to be
artificial objects. It would seem that the tremendous success of
the current generation of NEO surveys at finding different classes
of objects throughout the solar system ranging from a nearby and
fast interstellar object (e.g., Meech et al., 2017) to distant and slow
scattered disk objects (e.g., Chen et al., 2016) should translate into
more minimoon discoveries. To assist in identifying geocentric
objects the JPL Scout system4 (Farnocchia et al., 2016) includes
a geocentric orbit “score” to indicate whether an object may
be bound in the EMS and it has been successful at properly
recognizing artificial geocentric objects, particularly those with
large semi-major axis. So why haven’t the surveys found more
minimoons?

The explanation is simply that most minimoons are very
difficult to detect. Fedorets et al. (2017) calculated that the
largest object in the steady-state population is likely only about
80 cm in diameter and the most probable distance is about 4
lunar distances or 0.01 au (a function of the orbit distribution
and because the objects spend much more time at apogee than
perigee). At that distance a 1m diameter (H ∼ 32.75) object
at opposition has an apparent magnitude of V ∼ 22.7—one
magnitude fainter than the Pan-STARRS1 limiting magnitude
for detecting main belt asteroids in its most efficient wide-band
filter (Denneau et al., 2013). Since minimoons will typically be
moving much faster than main belt asteroids (∼ 3 deg day−1 vs.
∼ 0.25 deg day−1) they will be more difficult to detect because
their images will be trailed by more than the system’s typical
point-spread function. When minimoons are closer they are
brighter but also moving much faster, conditions under which
the matched-filter algorithm5 applied to high-speed, low-noise
cameras should excel (e.g., Gural et al., 2005; Shao et al., 2014;

4https://cneos.jpl.nasa.gov/scout/intro.html
5The matched filter algorithm is also known as the “shift-and-stack” algorithm or

“synthetic tracking” or “digital tracking.”
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FIGURE 8 | (Top) The distribution of known NEO semi-major axes near 1au as of 2018 Feb 25 (from astorb: ftp://cdsarc.u-strasbg.fr/pub/cats/B/astorb/astorb.html).

The green bins are for objects with semi-major axes very close to Earth’s with 0.995au < a < 1.005 au, in or close to the 1:1 mean-motion resonance. The red bins

correspond to NEOs just outside that range with 0.945 au < a < 0.995 au and 1.005 au < a < 1.055 au. (Bottom) The distribution of synodic periods color coded to

the same objects in the top panel. The blue histogram is the expected distribution of synodic periods if NEOs are distributed evenly in the range [0.995 au, 1.005 au]

based on an extrapolation from the range [0.845 au, 1.155 au].

Heinze et al., 2015). The problem is that these cameras are still
only available in small formats (i.e., small field-of-view). Thus, the
discovery of the next minimoon with the current survey systems
will likely be of the serendipitous capture of a few meter diameter
object like 2006 RH120, an event that occurs on the order of once
a decade (Fedorets et al., 2017).

Even though minimoons and minimoon-like objects are
difficult to detect the asteroid surveys do identify objects on
a geocentric orbit. Most are quickly associated with known
artificial satellites but there are currently a few dozen unidentified
geocentric objects6. Rapid follow-up on these objects is typically
problematic because they are faint and have high apparent rates
of motion. As described above, these objects are usually dismissed
as being artificial and this is probably true of almost all of them
and especially so for the lower eccentricity, small revolution
period objects. However, the most likely minimoon geocentric
orbits (Figure 9) overlap some of the longer period unidentified
objects with high eccentricity. Thus, while we agree that it is likely

6https://www.projectpluto.com/pluto/mpecs/pseudo.htm

that most of the unidentified objects are artificial it should not be
assumed that they are necessarily so.

Bolin et al. (2014) performed an extensive analysis of existing

capabilities for detecting minimoons and came to the same

conclusion—contemporary asteroid survey systems are only
capable of serendipitous detections of the largest minimoons on

decadal time scales. They also explored options for fortuitous

minimoon discoveries with existing space-based surveys such as

NEOWISE (e.g., Mainzer et al., 2011) and with all-sky meteor

surveys such as CAMS (Jenniskens et al., 2011), CAMO (Weryk
et al., 2013), and ASGARD (Brown et al., 2010) and, again,
arrived at the conclusion thatminimoon discoveriesmust be rare.

They suggested that targeted observations with a two-station (bi-

modal) radar system would have a high probability of detecting
a > 10 cm diameter minimoon in about 40 h of operation but
they note that their estimates are optimistic and that the effort
may not justify the expense. Their conclusion was that LSST
could detect many minimoons and that a targeted multi-night
survey with Hyper Suprime-Cam (HSC; Takada, 2010) on the
Subaru telescope on Maunakea had a small chance of detecting
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FIGURE 9 | Figure 10A from Fedorets et al. (2017). The residence time for synthetic minimoons as a function of their geocentric orbital elements. i.e., the amount of

time that minimoons spend on orbits with a given (a, e, i) combination. The green dashed line is the trajectory of 2006 RH120 through this representation of the orbital

element phase space.

a minimoon and would certainly be able to set a limit on the
population statistics.

Jedicke et al. (2017) then obtained five nights of targeted

minimoon surveying with HSC on Subaru under excellent

conditions in an observing cadence specifically designed to
identify geocentric objects over the course of a single night.

They acquired about 5 images of the same near-opposition fields

spaced roughly evenly over about 4–6 h in a field-of-regard of

about 1,000 deg2 (i.e., the total survey area). They predict that

they have about a 10% chance of discovering a minimoon but
the data analysis is still in progress. Even without discovering
a minimoon the data will allow the calculation of the first
controlled upper limit on the minimoon population.

The LSST’s advantages for minimoon discovery include its

8.4m diameter primary mirror that will achieve a limiting

magnitude of V ∼ 24.5 in 30 s exposures over a 9.6deg2 field-

of-view. LSST is currently under construction on Cerro Pachón,

Chile and is scheduled to commence operations in 2022 (e.g.,

Ivezic et al., 2008). Fedorets et al. (2015)’s simulated LSST survey

was based on a current implementation of the expected survey

pattern, weather, and performance characteristics to assess its
performance for detecting minimoons. The Fedorets et al. (2017)
synthetic population of TCOs and TCFs was run through the
LSST survey simulator and the output was then passed through
their moving object processing system (MOPS) to emulate their
baseline 10-year’s of operations. They found that LSST could

discover manyminimoons (Figure 10) and should efficiently and
single-handedly discover7 essentially all the larger members of
the population (if they can link detections of the same minimoon
acquired on different nights).

There remain at least a few difficulties with establishing the
reality of new minimoons: (1) overcoming a prejudice against
their existence, (2) obtaining evidence that they have a natural
provenance, and (3) establishing that they are not “merely” lunar
fragments ejected from the Moon’s surface during an impact
event.

The first issue will eventually be resolved when so many
minimoons have been discovered that it is impossible tomaintain
a prejudice against them or when a serious flaw is discovered in
the dynamical models that predict their existence.

Resolving the second issue is a key input to the first but
establishing the natural provenance of a tiny, fast moving,
transient object is difficult (see the discussion on 2018 AV2

at the end of section 3). Apart from in-situ observations, the
options for establishing a candidate as natural include obtaining
spectra or colors, radar observations, or measuring its area-to-
mass ratio (AMR) based on the magnitude of the effect of solar
radiation pressure on its trajectory. Obtaining sufficiently high
signal-to-noise ratio (SNR) spectra of small, faint, fast objects is

7We use the word “discover” here to mean that LSST can detect the same

minimoon multiple times in a single night and in at least three nights to determine

its orbit.
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FIGURE 10 | Adapted from Fedorets et al. (2015). Estimated number of TCOs (Left) and TCFs (Right) in the minimoon population (yellow) and which could be

discovered in 10 years of LSST operations (red) as a function of absolute magnitude (H). A 1m diameter object has H ∼ 33 and a 10 cm diameter minimoon has

H ∼ 38.

TABLE 1 | Area-to-Mass ratios (AMR) for select artificial satellites, the Moon, and

small asteroids.

Object Type AMR References

(×10−4m2kg−1)

Lageos 1 & 2 Artificial 7 Beutler et al., 2006

Starlette Artificial 10 Beutler et al., 2006

GPS (Block II) Artificial 200 Beutler et al., 2006

2006 RH120 Natural 11 ProjectPluto8

2009 BD Natural 2.97± 0.33 Micheli et al., 2012

2011 MD Natural 7.9± 7.4 Mommert et al., 2014

2012 LA Natural 3.35± 0.28 Micheli et al., 2013

2012 TC4 Natural 1.0± 0.4 JPL Small-Body Database9

2015 TC25 Natural 6− 7 Farnocchia et al., 2017

Moon Natural 0.0000013 Beutler et al., 2006

notoriously difficult and even low resolution color photometry
could require large telescopes and a disproportionate amount
of observing time. Radar observations can quickly establish an
object’s nature as the radar albedo easily differentiates between
a natural rocky surface and the highly reflective surface of an
artificial object, but there are few radar observatories in the world
and it is not always possible to obtain radar observations of
tiny, nearby objects that have very short round-trip times to
the candidate; i.e., minimoons are so close, and the reflected
signal returns so fast, that they require bi-static observations
in which one system transmits and the other receives. Thus,
perhaps the most straightforward manner of identifying natural
objects is the AMR. Artificial objects such as empty spacecraft
booster stages or defunct satellites tend to have high AMRs while
the few known small asteroids with measured AMRs are much

8https://www.projectpluto.com/pluto/mpecs/6r1.htm
9https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2012tc4

smaller (Table 1). The typical minimoon candidate is so small
that astrometric measurements over just a few month’s time,
comparable to the average minimoon’s capture phase, have been
sufficient to measure AMRs of similarly sized objects (Table 1).

Having established that a minimoon is natural there still
remains a “concern” that it could be fragment of lunar ejecta
launched into geocentric or heliocentric orbit by the impact of
a large asteroid on the Moon’s surface. We do not consider this
issue to be of concern for many reasons.

First, the scientific and practical utility of a large piece
of lunar ejecta is high; e.g., for developing in-situ resource
utilization technology and techniques. A single 1m diameter
lunar minimoon would have a mass of over 1, 000 kg (assuming
50% porosity and 5, 000 kgm−3) while the six Apollo missions
returned a total of about 382 kg or lunar material10 and the
combined mass of all known lunar meteorites11 is about 65 kg.
While their is a tremendous scientific value associated with
knowing the origin of the Apollo lunar samples it is also clear
that lunar meteorites are important to our understanding of
the Moon with 529 refereed journal papers listed on ADS12

including the words “lunar” and “meteorite” in the title. We
imagine that a verified lunar minimoon would have implications
for the lunar cratering rate, impact ejecta models, dynamics in
the EMS, measurement of Yarkovsky and YORP on small objects,
etc. From an ISRU and human mission perspective it matters not
whether a minimoon has a lunar or other origin as these objects
provide small, low 1v, cis-lunar candidates for testing system
operations.

Second, Granvik et al. (2016)’s dynamical simulations of
orbital evolution of objects from the main belt into the NEO
population show that there are dynamical pathways to the Earth-
orbit-like heliocentric orbits necessary for capture in the EMS

10https://curator.jsc.nasa.gov/lunar/
11https://curator.jsc.nasa.gov/antmet/lmc/lunar_meteorites.cfm
12http://adsabs.harvard.edu/, The SAO/NASA Astrophysics Data System.
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(i.e., orbits with a ∼ 1 au, e ∼ 0, and i ∼ 0◦). Using that model,
Fedorets et al. (2017) calculated that in the steady state there
should be 3.5 ± 1.4 NEOs with H < 25 on “capturable” orbits
so there must be many more objects on those kinds of orbits at
smaller sizes. We stress that the NEO model already accounts
for dynamical scattering of the NEOs by the EMS and should
be considered the best possible model of the minimoon source
population that is currently available. (One possible issue is the
impact of Yarkovsky on the evolution of the smallest NEOs as
discussed earlier.)

Third, let’s assume a large impact on the Moon took place,
and that ejecta from this event delivered a large number of
small objects from the Moon’s surface to orbits within the Earth-
Moon system. Dynamical models suggest many will quickly
impact Earth, the Moon, or will escape to heliocentric space.
For the latter, many may return at later times as impactors
and potential minimoons. In this scenario, the impact capable
of creating numerous meter-sized minimoons well after the
event took place should also produce many lunar meteorites.
Accordingly, we would predict that the petrology of many lunar
meteorites should indicate they came from the same region while
the cosmic ray exposure (CRE) ages of many lunar meteorites
should have similar ages but neither prediction is supported by
lunar meteorite studies. Warren (1994) studied the delivery of
lunarmeteorites and argued that their formation craters are likely
to have been both small and scattered across the Moon. The
CRE ages of lunar meteorites are consistent with this formation
scenario as most of their ages are short (< 1Myr) with only a
small fraction between 2 − 10Myr (Eugster et al., 2006). There
is little evidence for a group of lunar meteorites having similar
ages. Note that the largest young impact crater on the Moon, the
22 km diameter Giordano Bruno crater, formed about 4Myr ago
yet there is no obvious indication that ejecta from this impact
event is present in the lunar meteorite record. Accordingly, we
are skeptical that lunar ejecta is a good source of present-day
minimoons.

6. MINIMOON SCIENCE OPPORTUNITIES

Minimoons will provide interesting science opportunities as a
consequence of their small sizes and their relatively long capture
duration. Although similarly sized non-captured objects are
much more numerous they are typically observable for a much
shorter period of time during their Earth fly-by. No meter-scale
objects have ever been recovered during a subsequent apparition
and hence their observability is limited to the discovery
apparition. The minimoons’ longer observation window allows
for more detailed follow-up observations. In addition, the orbital
uncertainty for minimoons becomes negligible within a few days
and therefore allows for detailed follow-up to be carried out
earlier than for non-captured objects (Figure 12 and Granvik
et al., 2013).

The interior structure of meter-scale meteoroids is largely
uncharted territory that could be tested with minimoons (it
is arguable that the interior structure of asteroids of any
size is largely unknown). There is essentially no data to
constrain models that range from “sandcastles” held together by
cohesive forces (Sánchez and Scheeres, 2014) to solid, monolithic

structures. Measured rotation rates are inconclusive because even
small internal cohesive forces allow for faster rotation rates than
would otherwise be possible for a non-rigid body. An asteroid’s
density provides some information to constrain its interior
characteristics because we can assume that most of the material
is “rocky” so a measured density less than rock implies that
the interior contain voids (e.g., Carry, 2012). Asteroid volumes
are typically based on photometry and/or radar data while mass
estimation requires that it gravitationally perturbs a less massive
test body such as a spacecraft or another much smaller asteroid
(e.g., Siltala and Granvik, 2017, and references therein). Neither
of these techniques is suitable for measuring a minimoon’s mass
but a minimoon’s AMR (described above) can provide useful
constraints on mass and density (e.g., Micheli et al., 2012, 2013;
Mommert et al., 2014). The AMR can provide a measure of an
object’s bulk density when combined with an estimate of its size
and shape derived from lightcurve measurements. Minimoons,
that spend months in Earth orbit, are particularly suited to AMR
estimation since measuring the AMR requires that the object is
small and tracked for a long period of time.

While remote minimoon measurements can be useful for
answering some scientific questions we think it is clear that
the most important science opportunities derive from in-situ
minimoon measurements. A small spacecraft mission could
determine the shape and structure of a meteoroid, its regolith
properties, and obtain high-resolution surface images in many
wavelengths that can be compared to remote measurements of
much larger asteroids. Returning a minimoon to Earth will be
difficult but minimoons could provide a tremendous amount
of pristine asteroid material from many different asteroids.
Remember that meter-scale meteoroids deliver meteorites but
only the strongest material survives passage through Earth’s
atmosphere, and impact and weathering on Earth’s surface.
Minimoons provide an intact, pre-contact meteoroid in its
entirety, with all the fragile components in their original context.

7. MINIMOON MISSION OPPORTUNITIES

After the discovery of 2006 RH120 and the realization that there
is likely a steady-state population of similar objects, Earth’s
minimoons have entered the game as candidates for future space
missions. They have been delivered for free to cis-lunar space by
the solar system’s gravitational dynamics and are now available
in our own backyard under favorable energetic conditions
which make them ideal targets. Given their small size, Earth
proximity, and their accessibility to long-term capture orbits,
minimoons could enable affordable robotic and crewed missions
using existing technology, as well as retrieval of substantially
larger amounts of material compared to traditional sample
return missions. Also, scaled versions of hazardous asteroid
mitigation techniques could be tested at a fraction of the cost of
current proposals. For all these reasons, minimoons stand out as
compelling candidates for asteroid retrieval missions.

From a technological and commercial perspective they
provide an ideal opportunity for: (1) the development and
testing of planetary defense technologies (e.g., deflecting an
asteroid); (2) validating and improving close-proximity guidance,
navigation, and control algorithms, (3) testing close-proximity
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FIGURE 11 | Artist’s illustration of asteroid ISRU showing astronauts at an asteroid as well as other mining and transportation vehicles operating in space (image

credit: TransAstra Corporation & Anthony Longman).

procedures and protocols for safe operation of crewed missions
around asteroids, and (4) establishing the feasibility of asteroid
mining technologies for future commercial applications, all in
an environment where the round-trip light-time delay is a few
seconds. This short list illustrates that minimoons have far-
reaching non-science implications for different stakeholders.

Many studies have suggested that a substantial amount of
asteroidal resources can be accessed at an energy cost lower than
that required to access resources from the Moon’s surface (e.g.,
Sanchez and McInnes, 2011, 2013; Jedicke et al., 2018). Very
simply, the lower the required 1v for a spacecraft to return from
mining an asteroid, the lower the cost of the mission and, more
importantly, the higher the profit. Known NEOs are accessible
with much lower 1v than main belt asteroids (e.g., Elvis et al.,
2011; García Yárnoz et al., 2013a; Taylor et al., 2018) and the
population of yet-to-be-discovered small NEOs on Earth-like
orbits offers the possibility of manymore commercially profitable
asteroid missions (Jedicke et al., 2018).

These ideas has been around for a while in the realm
of speculative science and science-fiction literature and
have recently started to gain popularity in the public and
private aerospace community. The renewed interest has led
to the development of new trajectory designs, and asteroid
retrieval and mining concepts (e.g., Figure 11; Brophy and
Muirhead, 2013; Strange et al., 2013; Graps et al., 2016;
Jedicke et al., 2018). Some of these technologies involve the
artificial deflection of an asteroid’s trajectory to shepherd
it into cis-lunar space; i.e., the creation of human-assisted
natural minimoons (García Yárnoz et al., 2013b; Chen,
2016). In these scenarios, the selection of target asteroids is
usually driven by minimizing a mission’s 1v (cost). Naturally

captured minimoons provide an excellent, easily-accessible
testbed for developing those technologies (Granvik et al.,
2013).

Baoyin et al. (2010) proposed capturing asteroids passing close
to Earth by providing them with the necessary 1v so that zero-
velocity surfaces would close within the framework of the CR3BP
(i.e., creating minimoons) and their best (known) target asteroid,
2009 BD, only requires a 1v ∼ 410 m s−1. Hasnain et al. (2012)
then studied the total 1v required to transport an asteroid into
Earth’s sphere of influence including capture, concluding that a
1v = 700 m s−1 for 2007 CB27 was the best opportunity for
a known asteroid. A lunar flyby can be used to provide some
of the required 1v for capture in the EMS as shown by Gong
and Li (2015) who obtained a long duration capture with a
1v = 49 m s−1 for asteroid 2008 UA202. It is important to note
that all these studies were limited to known objects—the number
of objects increases dramatically at smaller sizes for which the
known population is only a small fraction of the total population.
Thus, in the future, there will undoubtedly be many more objects
available at even lower 1v, especially if space-based missions are
designed specifically to identify these targets.

In a search for novel minimoon capture-enhancement
strategies, NASA developed an innovative mission concept to
deliver asteroid 2008 HU4 into a stable “distant retrograde orbit”
(DRO) around the Moon (i.e., a minimoon on a geocentric orbit
such that it becomes a quasi-satellite of the Moon in the EMS),
with an estimated 1v ∼ 170 m s−1 (Brophy et al., 2012). DROs
are stable solutions of the three-body problem that can be used
whenever an object is required to remain in the neighborhood of
a celestial body without being gravitationally bound (e.g., Perozzi
et al., 2017).
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FIGURE 12 | Adapted from Granvik et al. (2013). The evolution of the orbital uncertainty for a synthetic minimoon as a function of increasing observational timespan

and number of observations; (Top left) 3 detections in 1 h, (Top right) 6 detections in 25 h, (Bottom left) 9 detections in 49 h, and (Bottom right) 12 detections in

73 h. The black line shows the true orbit in the XY and XZ planes in an ecliptic coordinate system that is co-rotating with the Sun so that the Earth is always in the

center (0, 0, 0) and the Sun is always at about (1, 0, 0). The gray shaded area shows the extent of all acceptable orbits and the red dots mark the locations of the

synthetic minimoon at the observation dates. All orbits were extended 500 days into the future starting from the date of the first observation.

Another interesting strategy was proposed by García Yárnoz
et al. (2013a), who utilized the CR3BP invariant manifold
dynamics to identify low energy asteroid retrieval transfers. In
particular, they coined the term “Easily Retrievable Objects” to
refer to the subclass of NEOs that can be gravitationally captured
in bound periodic orbits around the Earth-Sun L1 and L2 points.
Interestingly, the lowest 1v object was 2006 RH120, the first
minimoon, that is now on a heliocentric orbit, at an astounding
∼ 50 m s−1.

The utility of minimoons as spacecraft targets may be limited
by the length of time they remain captured (average capture
durations of about 9 months; Granvik et al., 2012; Fedorets et al.,
2017) but there are at least two ways to overcome this limitation:
(1) artificially extend the capture duration or (2) have rendezvous
spacecraft emplaced and “hibernating” in a high geocentric
orbit for serendipitous missions of opportunity once a desirable
minimoon is discovered. Normal spacecraft-asteroid rendezvous
mission time frames for proposal, development, launch, and
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FIGURE 13 | Adapted from Brelsford et al. (2016). (Left) 1v distribution to 3,000 synthetic TCOs (Granvik et al., 2012) from an Earth-Moon L2 halo orbit. (Right) The

lowest 1v transfer from the distribution at left at 88 m s−1. The Moon’s orbit is shown as the blue ellipse around the green Earth. The thin gray path is the orbit of the

TCO starting from its capture point (green triangle) to its escape point (red square). The blue circle on the TCO orbit marks where the TCO is when the spacecraft

departs from its halo orbit, and the yellow star represents the rendezvous location. The magenta path is the spacecraft’s trajectory and its three burn maneuvers are

marked as yellow dots (including the final rendezvous burn).

operations are much longer than typical minimoon lifetimes and
have not been considered to-date in the literature.

With the first vision in mind, Urrutxua et al. (2015) found
that artificially extending a minimoon’s capture duration could
be accomplished in many cases at strikingly low 1vs. They
found that a 1v ∼ 44 m s−1 (with slow deflection techniques)
during 2006 RH120’s minimoon phase in 2006–2007 could have
extended its capture duration to over 5.5 years from its nominal
9 month’s time in cis-lunar space. In the unlikely scenario that
the artificial deflection can begin before the temporary capture
phase the authors concluded that by starting ∼ 316 d before
perigee a total 1v ∼ 32 m s−1 would have sufficed to extend the
capture for an additional 5 years. It might be argued that 2006
RH120 was an unusual minimoon, so the authors extended their
study to nine randomly selected virtual minimoons provided
by Granvik et al. (2012) and found that some of their captures
could be extended for decades at 1vs of just 9 m s−1. They also
suggested that temporary captures could be artificially induced
for asteroids that would otherwise not be captured at all and
in-so-doing produce captures that last for decades with a small
to moderate early deflection. Of course, the challenge resides
in identifying candidate asteroids with sufficient time to enable
an asteroid retrieval mission to be planned and dispatched in a
timely manner.

Several other studies suggest that capturing NEOs as
minimoons is possible with small 1v. Tan et al. (2017)
investigated opportunities using momentum exchange between
an asteroid pair to capture one of the asteroids as the pair is

directed close to one of the Sun–Earth L1 or L2 points. They
proposed the ambitious concept of first creating the asteroid pair
by engineering a capture or impact during the fly-by of a small
asteroid by a large one.While their work shows that the process is
possible, they note there remain “significant practical challenges.”
The same three authors also examined less complicated “direct
capture” mechanisms whereby the orbit of a heliocentric NEO
is modified with a small 1v to induce capture in the EMS (Tan
et al., 2017). This scenario is essentially enhancing the natural
minimoon capture process to capture specific NEOs onto long-
lived geocentric orbits. Similarly, Bao et al. (2015) studied the use
of lunar and Earth gravity assists (LGA and EGA) inmaneuvering
NEOs into becomingminimoons. They found that NEOsmoving
at <1.8 km s−1 with respect to Earth within Earth’s Hill sphere
could be captured using LGA and even higher speed objects could
be captured using combinations of LGAs and EGAs. The known
NEO with the smallest capture 1v ∼ 76 km s−1 is 2000 SG344

but there are many, many more unknown NEOs that could be
captured using these techniques.

The second technique to overcome the limitation of the
short-duration minimoon captures is to maintain a spacecraft
in a “hibernating” orbit awaiting the arrival and discovery of a
suitably interesting minimoon. This idea may seem untenable at
this time but will become practical once LSST begins discovering
manyminimoons permonth (section 5). Unlike distant asteroids,
minimoon orbits can be rapidly and accurately determined
(Figure 12) to enable this opportunity and could even allow for
multiple minimoon missions with the same spacecraft.
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With this technique in mind, minimoon rendezvous missions
have been studied using indirect (minimization) methods within
the circular restricted four-body problem (CR4BP; Sun, Earth,
Moon, spacecraft) with the Sun acting as a perturbation on the
Earth-Moon-spacecraft CR3BP (Brelsford et al., 2016). Using a
random sample of 3,000 TCOs from Granvik et al. (2012) they
showed that rendezvous trajectories could be designed for all of
them with a median 1v just under 680 m s−1 (Figure 13) with
most of the transfer durations, the time from EM L2 departure to
minimoon rendezvous, requiring less than 3 months. The mean
1v = 725 m s−1 is about 7% higher than the median due to a
tail of high 1v transfers but the minimum 1v is only 88 m s−1

with a transfer time of 41 d (Figure 13). Even more intriguing,
in a future where the LSST is discovering all the large minimoon
captures on a regular basis, we can envision multiple successive
minimoon rendezvous missions with transfers directly between
the minimoons. As a first step to modeling this possibility
Brelsford et al. (2016) examined round tripmission opportunities
for TCO 2006 RH120 because, in a worst case scenario, multiple
minimoon missions could simply be back-to-back missions from
the EM L2 hibernating halo orbit (they assumed a z-excursion
of 5,000 km in the halo orbit). The round trip is composed
of a transfer to bring the spacecraft to 2006 RH120, followed
by a rendezvous phase where the spacecraft travels with the
asteroid, and finally a return transfer back to the hibernating
orbit. The lowest round-trip 1v required only 901 m s−1 with
a total duration of 630 d (173 d for the approach and 240 d for the
return) including 217 d at the asteroid.

8. CONCLUSIONS

Earth’s minimoons will provide an opportunity for low-1v
scientific exploration and commercial exploitation of small
asteroids where most of the effort of bringing the objects to
Earth has been accomplished by their slow dynamical evolution
from the main belt. While naturally produced minimoons
will be too small for commercially profitable enterprises they
will be extremely useful for testing techniques in a cis-lunar
environment before moving operations into distant heliocentric
space. There are also opportunities of artificially enhancing the
minimoon population by selectively maneuvering scientifically
or commercially interesting asteroids onto geocentric capture
trajectories from their heliocentric orbits.

The challenge in minimoon studies or capture is discovering
them. Naturally produced minimoons are small, with the
largest in the steady state population being perhaps only 1m
in diameter. Enhancing the minimoon capture rate requires

detecting decameter-scale asteroids long before they enter Earth’s
Hill sphere.

The Large Synoptic Survey Telescope will be capable of
detecting the largest natural minimoons and will also detect a
substantial number of NEOs that could be artificially induced
into becoming minimoons but the real future for mining
asteroids awaits an affordable space-based detection system.
Once those assets are in place they will unlock the exploration of
the solar system with minimoons being the first stepping stones.
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In simple terms, an asteroid retrieval mission envisages a spacecraft that rendezvous

with an asteroid, lassos it and hauls it back to the Earth’s neighborhood. Speculative

engineering studies for such an ambitious mission concept appeared in scientific

literature at the beginning of the space age. This early work employed a two-body

dynamical framework to estimate the 1v costs entailed with hauling an entire asteroid

back to Earth. The concept however has experienced a revival in recent years, stimulated

by the inclusion of a plan to retrieve a small asteroid in NASA’s 2014 budget. This later

batch of work is well aware of technological limitations, and thus envisages a much

more level-headed space system, capable of delivering only the most minimal change of

linear momentum to the asteroid. As a consequence, the design of retrieval trajectories

has evolved into strategies to take full advantage of low energy transfer opportunities,

which must carefully account for the simultaneous gravitational interactions of the Sun,

Earth, and Moon. The paper reviews the published literature up to date, and provides a

short literature survey on the historical evolution of the concept. This literature survey is

particularly focused on the design of asteroid retrieval trajectories, and thus the paper

provides a comprehensive account of: the endgame strategies considered so far, the

different dynamical models and the trajectory design methodologies.

Keywords: near-earth asteroids, asteroid capture, low-energy trajectories, low-thrust trajectories, ballistic

capture

INTRODUCTION

Our Solar System is crisscrossed by millions of minor bodies, including asteroids and comets.
Significant attention is devoted to these small and irregular objects, since they ultimately hold
the key to understand the formation and evolution of our Solar System. NASA, ESA, JAXA, and
recently the China National Space Administration (CNSA) have conceived and launched a series of
missions to obtain data from such bodies; particularly, from near Earth asteroids (NEAs). Among
all asteroids, NEAs have stepped into prominence because they are the easiest celestial bodies to
reach from the Earth, while also representing a potential impact threat to our planet [1].

Furthermore, in recent years, the concept of utilization of in-space resources has also been
receiving a renewed and notable support. In-space resources would clearly benefit science and
exploration, since their utilization in space would enable otherwise unaffordable mission scenarios.
An increasing number of scientists and engineers are now advocating for the necessary technologies
to prospect, mine and utilize materials in space [2]. Asteroids present particularly appealing
concentrations of potentially valuable resources, as well as a plethora of useful materials [3];
e.g., volatiles, such as water, may be found in carbonaceous chondrite asteroids, while metals,
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semi-conductors and rare Earth elements are present in metal-
rich asteroids or ordinary chondrites.

Amid these trends, asteroid retrieval or capture missions
were proposed. This mission concept envisages a spacecraft that
rendezvous with an asteroid, lassos it and hauls it back to the
Earth’s neighborhood, so that it can be more easily accessed. The
mission has clear synergies with all three of the above aspects
of asteroid missions: science, planetary defense and resource
utilization.

The paradigm of in-space utilization of asteroid resources was
conceived together with the pioneering of rocketry at the start of
twentieth century [4]. Thus, with the beginning of the space race,
rocketry futurists, such as Cole and Cox [5], began to envisage
ambitious mission scenarios where asteroids would be moved
from their original orbits by means of large nuclear propulsion
systems, for subsequent extraction of their resources. However, a
much more level-headed mission concept, and serious effort to
develop it, was pursued more recently; within NASA’s Asteroid
Initiative. Announced in 2013, the Asteroid Initiative included,
among other activities, the Asteroid Redirect Robotic Mission
(ARRM), which initially1 aimed at hauling an asteroid to a distant
retrograde lunar orbit [6].

It is immediately clear that capturing an asteroid, whose
mass may be several orders of magnitude larger than that
of a typical interplanetary spacecraft (∼103 kg), will require
an extremely powerful propulsion system and/or an extremely
low-energy transfer. This short paper concerns with the latter
topic: the body of literature studying trajectory opportunities to
retrieve asteroids has seen a many-fold increase in the last few
years. Hence, the objective of this paper is to compile a short
literature review and state-of-the-art of the trajectory design
methodologies for the retrieval of asteroids.

The paper is structured as follows: section Introduction
provides a general background introduction and a statement of
the aim of the paper. Section Trajectories to Move an Asteroid
contains the main literature survey, which follows a rough
chronological order, where exceptions to the strict chronology
are allowed for the sake of clarity. Section Trajectories to Move
an Asteroid’s literature survey focuses only on published work
that has tackled the problem of designing trajectories to retrieve
asteroids. Section Concluding Remarks instead provides a non-
comprehensive literature review of a limited number of issues
that relate to the trajectory design for asteroid retrieval.

TRAJECTORIES TO MOVE AN ASTEROID

Conceptually, the trajectory design for asteroid retrieval missions
can be sketched into two distinctive elements: the Earth delivery
trajectory and the endgame orbit. The former accounts for
the transfer and rendezvous trajectory with the target asteroid
(outbound leg) and the Earth delivery trajectory to bring the
asteroid into the planet’s neighborhood (inbound leg). On the

1The concept later evolved into a plan to haul a multi-ton boulder from the surface

of a larger NEA, and was finally cancelled in 2017.

other hand, the endgame2 orbit refers to the selection of the
particular destination orbit where the captured asteroid is to
be placed. The dynamical richness of the Earth-Moon system
offers a variety of appealing endgame options; Figure 1 shows a
schematic view of the endgame options that have been considered
so far in the literature. Table 1 summarizes inbound leg delivery
trajectories and endgame strategies as published by some of the
literature reviewed in the following paragraphs.

The nineteenth century began with the discovery of asteroids,
namely main belt objects, while it was not until the beginning
of the twentieth century that NEAs were discovered. With only
50 known NEA by the late 70’s [16], asteroids were already
recognized as potential interplanetary stepping stones, prior to an
eventual human mission to Mars [17], as well as potential targets
for space resources [18].

Bender et al. [16] conducted the first comprehensive trajectory
analysis for the retrieval of asteroids into Earth-bound orbits, i.e.,
with a characteristic energy (C3) smaller than 0 km2/s2. In their
work, round-trip trajectories are shown to be possible with 1v
from 6 km/s, as computed in a patched conics approximation and
including Earth, Moon, and Venus gravity assists. O’Leary et al.
[19] argued that minimizing the 1v of the out-bound leg reduces
the total wet mass of the retrieval spacecraft, since the in-bound
1v was assumed to be achieved with a mass driver system and
considering asteroidal reaction mass (i.e., the propellant for the
return trip was expected to be obtained from in-situ resources).
Nevertheless, the conceived retrieval spacecraft was still a colossal
space endeavor, requiring on-orbit assembly and a total of 50
Space Shuttle launches [19]. This was due to the fact that the early
population of NEAs was entirely made up with very large objects,
since these are much brighter and easier to detect.

By early 2000, the population of known asteroids had already
increased sufficiently to allow a sensible statistical analysis
[20, 21]. Thus, instead of focusing on known objects, Sanchez
and McInnes [22] analyze the orbital region that is accessible
given a limiting 1v threshold, and study the statistical number
of asteroids that should be found considering a state-of-the-
art asteroid probability density function [21]. Using a free-
phase patched conics approximation, Sanchez and McInnes [22]
hypothesize that there should be a 10-m diameter asteroid that
could be retrieved with only 30 m/s 1v.

Even a 10-m diameter boulder, whose density may range
anywhere from 1.3 to 5.3 g/cm3 depending on composition
and structure [23], is likely to be from 100s to 1000s of
times heavier than the standard interplanetary spacecraft. Hence,
propulsion systems with high exhaust velocity would appear to
be the most suitable systems to haul large inert masses. This is
identified in Brophy et al. [24], where a high-power solar electric
propulsionmission is conceived to haul a 2-m notional boulder to
rendezvous with the ISS. Similarly, Hasnain et al. [25] investigate
the necessary thrust to haul a series of known low inclination
asteroids into Earth-bound orbits, by means of implementing a

2Term borrowed from chess, meaning the closing stage of a game, in which only a

few pieces are left on the board; it is also used figuratively to refer to the final stage

of some action or process (e.g., negotiation, dispute, contest, war, . . . ).
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FIGURE 1 | Endgame options tree for asteroid retrieval missions. EMS, Earth-Moon System; DRO, Distant Retrograde Orbit; DPO, Distant Prograde Orbit; LPO,

Libration Point Orbit.

TABLE 1 | Summary of asteroid retrieval missions found in the literature.

Bibliographic references Target asteroid V (m/s) Endgame orbit Comments

Baoyin et al. [7] 2009 BD 400 Generic EMS-bound –

Brophy et al. [8] 2008 HU4 170 Earth-Moon DRO (i.e., LDRO) NASA’s ARRM mission concept

García Yárnoz et al. [9] 2006 RH120 58 Sun-Earth LPO –

Strange et al. [10] 2008 LD 36 Resonant: Earth-Mars Cycler –

Urrutxua et al. [11] 2006 RH120 31 Enhanced Temporary Capture Extended temp. capture of 5.5 year

Bao et al. [12] 2000 SG344 79 Generic EMS-bound Using lunar gravity assist

Gong and Li [13] 2008 UA202 49 Generic EMS-bound Capture duration of at least 10 year

Tan et al. [14] 2000 SG344 40 Earth-Moon LPO Optimal direct capture

Neves and Sánchez [15] 2012 TF79 73 Sun-Earth LPO –

Indicated 1v values account only for the retrieval transfer and capture phases (inbound-leg). To the knowledge of the authors, the table shows all published papers with explicit values

of 1v for the inbound-leg, as of July 2018.

sub-optimal control law and a constant thrust assumption in a
patched conics dynamical framework.

Earlier, Massonnet and Mayssignac [26] argue that asteroids
that could be easily maneuvered, as of with a small 1v, must be
energetically close to the Earth. Following a similar framework,
Baoyin et al. [7] search for asteroids with an Earth close approach
well within the sphere of influence of the Earth. The work
then implements an impulsive 1v maneuver such that the zero
velocity curves (ZVC) in the elliptical restricted three-body
problem (ER3BP) close at both Sun-Earth L1 and L2 points. Such
an approach would effectively capture an asteroid, and Baoyin
et al. [7] identify one object, 2009 BD, which could have been
captured with a1v of 410 m/s during its close encounter in 2009.

Asteroids energetically close to the Earth are also nearly co-
orbital, thus Bombardelli et al. [27] implement a sub-optimal
low-thrust control law to modify the asteroid period in order
to insert the body into a Quasi-Satellite Orbit (QSO) around
the Earth (also known as Sun-Earth Distant Retrograde Orbits).
On the other hand, both Massonnet and Mayssignac [26] and
García Yárnoz et al. [9] focus instead on the endgame of capturing
asteroids into Sun-Earth libration point orbits (LPOs).

García Yárnoz et al. [9] present a systematic approach to
design impulsive retrieval transfers into the stable hyperbolic
manifold of Sun-Earth LPOs in the Circular Restricted Three-
Body Problem (CR3BP). Easily Retrievable Objects (EROs) are
then identified as all those asteroids that can be captured with
a total 1v maneuver of <500 m/s, and an initial list of 12 such
objects is provided.

The original ARRM concept was proposed in 2011 after
a feasibility study workshop at the Keck Institute of Space
Studies [8]. In Landau et al. [28] a round-trip retrieval
trajectory to asteroid 2008 HU4 is shown to be able to
retrieve up to 1,300 tons of material (i.e., ∼7-m object).
The retrieval spacecraft uses a high-power (∼40 kW) solar
electric propulsion, has a wet mass of 18 tons, of which
5.5 tons are dry mass. The retrieval trajectories benefit from
out-bound and in-bound lunar gravity assists to increase
or decrease the Earth-relative orbital energy (i.e., C3), as
well as Earth-Earth leveraging transfers [29]. The endgame
option is a lunar Distant Retrograde Orbit (LDRO), although
options that are not Earth-bound are also discussed in Strange
et al. [10].
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It is thus widely agreed that a level-headed asteroid retrieval
mission must use high-power electric propulsion and should
target asteroids that are energetically close to the Earth. This
implies that the design of low-thrust, low-energy trajectories must
both: (1) solve the optimal control problem defined by a low-
thrust trajectory; and (2) take into account dynamical models
that carefully consider the simultaneous gravitational interaction
of multiple bodies (i.e., Sun, Earth, and Moon). Lladó et al. [30]
solve the optimal control problem for the low-thrust retrieval
of 39 small asteroids. The transfer is computed in a two-body
dynamical framework, however the targeted final state is that
of the Sun-Earth L2 point as computed using JPL ephemeris
model. Mingotti et al. [31] employ instead a CR3BP framework
to solve the optimal control for the retrieval of the 12 EROs
identified by García Yárnoz et al. [9]. Sánchez and García Yárnoz
[32] present similar optimal control low-thrust solutions for 17
EROs. All [30–32] solve the optimal control problem using direct
transcription methods, although their generation of necessary
first guess solutions present a diverse range of techniques. He
et al. [33] tackled the same optimal control problem in the
restricted four-body dynamical framework (i.e., Sun, Earth, and
Moon) within the context of a trajectory design competition,
which proposed an asteroid retrieval mission as optimization
challenge.

Granvik et al. [34] predict that one 3-m diameter asteroid
should be on a temporarily captured orbit around the Earth every
10 years, due to a natural capture phenomenon that occurs in
the dynamics of a multi-body system. Urrutxua et al. [11] studied
how these temporary captures could be extended. In the specific
case of 2006 RH120 (∼3-m diameter object), an asteroid which
temporarily orbited the Earth for about 1 year in 2007, Urrutxua
et al. [11] show how its stay could have been lengthened to 5 years
with a 1v of only 32 m/s. Extending the temporary capture to a
more permanent one is considered by Verrier and Mcinnes [35],
who discuss a chaos-assisted capture mechanism associated with
Kolmogorov–Arnold–Moser (KAM) orbits. Verrier andMcInnes
[35] demonstrate the process within the dynamical framework of
the planar Hill problem. De Sousa-Silva and Terra [36] discuss
a similar long-term capture within regions of effective stability
near the triangular points L4 and L5 of the Earth-Moon system
CR3BP.

Both Verrier and McInnes [35] and De Sousa-Silva and Terra
[36] agree with Urrutxua et al. [11] on the fact that, in order
for these highly sensitive capture trajectories to be applicable
to real test cases, high-precision numerical ephemerides are
indispensable. In particular, as discussed by both Granvik et al.
[34] and Urrutxua et al. [11], the Moon plays a paramount role
in the temporary capture of asteroids. This is also investigated
by Gong and Li [13] who, in a planar restricted three-body
framework, characterize the heliocentric orbit conditions that
lead to a capture after a Moon fly-by. The process is also
demonstrated in an ephemerismodel (DE405) for a few test cases.

The active role of the Moon in the process of capturing an
asteroid is also investigated by Mingotti et al. [31] and Tan et al.
[14]. In these cases, however, the design strategy focuses on
exploiting the stable hyperbolic manifold structures associated
with periodic orbits in the Earth-Moon CR3BP. Tan et al. [14]

target Earth-Moon LPOs, while Mingotti et al. [37] also consider
LDRO and Lunar Distant Prograde Orbits (LDPO). In both
cases, the intrinsic instability of these orbits is exploited by back-
propagating a set of stable hyperbolic manifolds, which can be
targeted by the asteroid-spacecraft system. While the generation
of the stable hyperbolic manifold structures is performed in the
CR3BP, the back-propagation and/or targeting are carried out
in a restricted four-body problem considering Sun, Earth, and
Moon.

Finally, the role of the Earth, not only as destination of
retrieval trajectories, but also as leverage to reduce the final
retrieval 1v is explored by Bao et al. [12] and Neves and Sánchez
[15]. Bao et al. [12] explore the use of Earth-Earth leveraging
transfers, as well as Moon fly-bys, to facilitate the capture of
asteroids. The approach however is a relatively high-energy, in
the sense that Lambert arcs and patched conic approximation
are considered. Instead, Neves and Sánchez [15] present a
methodology to benefit from Earth encounters that occur well
outside the classic sphere of influence. The methodology allows
exploiting the chaotic sensitivity of the multi-body problem,
albeit at the cost of extremely long transfers.

One more exotic capture mechanism was recently described
in Tan et al. [38]. As in previous scenarios, Tan et al. [38] also
target stable hyperbolic invariant manifolds associated with Sun-
Earth LPOs; however, in this case, the change of velocity needed
to carry out the capture is produced by a linear momentum
exchange. This is achieved by modifying the trajectory of a
smaller asteroid so that this either impacts the targeted capture
asteroid or performs a tethered fly-by.

In summary, it is noteworthy to highlight the diverse set
of endgame orbits that have been considered in the literature
(see Figure 1). Each endgame strategy implies a different set of
methodologies to approach the design of the retrieval transfer.
A substantial amount of work has not targeted a specific final
capture orbit, but instead considered the energy conditions to
enable permanent (or long-term stable) capture within the Earth’s
sphere of influence [7, 11–13, 25]. The other common approach
has been to target a specific final orbit for the captured object;
such as, Lunar Distant Retrograde Orbits (LDROs), as for NASA’s
ARRM concept [28, 31, 39], Sun-Earth LPOs [9, 26, 32, 40], or
Earth-Moon LPOs [14, 31]. Additionally, Near Rectilinear Lunar
HaloOrbits (NRHO) have recently been considered, as these have
attracted attention as possible locations for a potential cis-lunar
space station [41]. Note that the trajectory design techniques used
to target many of the above final capture orbits benefit from their
intrinsic instability; in the sense that one can construct the so-
called stable hyperbolic invariant manifold structures associated
to these orbits, which can be used for efficient targeting of the
retrieval transfer. However, some of the proposed final orbits
are instead linearly stable [35, 36], and do not have such a
mathematical construct associated with them.

CONCLUDING REMARKS

The intrinsic stability or instability of the final capture orbit
has been often quoted as a critical issue for the choice of an
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appropriate location for the retrieved asteroid [8, 42]. Ideally,
one would choose a stable orbit if this implies a well-behaved
long term evolution of the uncontrolled trajectory. However, as
shown by Roa and Handmer [43]3, a small deviation from a
nominally stable LDRO may still trigger the escape from the
Moon neighborhood. In contrast, station-keeping requirements
for unstable orbits may be smaller than the standard station-
keeping 1v budget for a geostationary satellite [44], as in the
case of JWST [45]. Another important aspect which has not been
yet fully explored is that of the navigability and controllability
of the retrieval trajectory. Ceriotti and Sanchez [46] consider
the impact of uncertainties in the insertion into the stable
invariant manifolds associated with Sun-Earth LPOs. However,
a full analysis considering navigation errors, uncertainties and
maneuverability is still lacking.

The majority of the work has focused on the design of the
in-bound retrieval trajectories. This should perhaps be expected,
since the in-bound retrieval legs are key to the feasibility of
the mission, especially regarding propulsion performance and
propellant consumption. This is a clear consequence of the much
larger mass that needs to be hauled on the way back, unless, of
course, asteroidal reaction mass is considered [19, 47]. However,
due to the long synodic period of easily retrievable objects, the
out-bound trajectories need to be considered carefully indeed,
to avoid a significant impact on the propulsion system and
propellant consumption [48].

Note that the reviewed literature has only discussed the design
of trajectories under the framework of gravitational forces. To
the knowledge of the authors, no paper on trajectory design for
asteroid retrieval missions has yet considered a non-gravitational
acceleration, such as that caused by solar radiation pressure
impinging on a solar sail [49]. Nevertheless, the benefit of a

3Roa and Handmer [43] perturb a LDRO by adding a small 1v within the CR3BP

framework.

propulsion system requiring no reactionmass was identified early
on within the wider literature on in-space resource utilization,
(e.g., [50]). It must be noted however that the directionality of
the thrust vector is heavily constrained for a solar sail [51], while
the low thrust transfers discussed here assume a thrust vector that
can be freely oriented.

Finally, from the discussion in section Trajectories to Move
an Asteroid, the targeted population for low energy retrieval
trajectories can be clearly identified as that of small asteroids in
Earth-like orbits [9, 34]. As of July 2018, more than 18,000 NEAs
have been discovered4, from which about 3,500 are boulder-
sized (<30m diameter) and may potentially be candidates to
be moved with near- to mid-term propulsion technology, akin
to the ones reported in Table 1. While important uncertainties
on the amount of boulder-size near-Earth asteroids yet exist
[52, 53], this number is likely to be in the order of thousands of
millions. Hence, the completeness level of the easily retrievable
asteroid population is extremely low. New wide-field ground-
based surveys, such as the Large Synoptic Survey Telescope, are
likely to increase these levels by several orders of magnitude
[54, 55].
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The Lunar Meteoroid Impacts Observer, or LUMIO, is a space mission concept awarded

winner of ESA’s SysNova Competition “Lunar CubeSats for Exploration,” and as such it

is now under consideration for future implementation by the Agency. The space segment

foresees a 12U CubeSat, placed at Earth–Moon L2, equipped with an optical instrument,

the LUMIO-Cam, which is able to spot the flashes produced by impacts of meteoroids

with the lunar surface. In this paper, the work undertaken to design the baseline orbit

of LUMIO is documented. The methodology is thoroughly described, both in qualitative

and quantitative terms, in support to the mission analysis trade-off activities. The baseline

solution is presented with evidence to support the orbit design.

Keywords: LUMIO, orbit design, lagrange point, lunar meteoroid, impact flash

1. INTRODUCTION

1.1. Scientific Relevance
Near-Earth Objects (NEOs) are asteroids or comets with a perihelion of <1.3 astronomical units
(AU), whose orbits encounter the Earth neighborhood. In the Minor Planet Center database1, the
vast majority of NEOs are classified as Near-Earth Asteroids (NEAs), while only a small fraction are
classified as Near-Earth Comets (NECs). Both types of minor bodies (NEAs andNECs) are remnant
debris of the solar system formation and contain clues that can contribute to the understanding
of the composition of planets. The relatively easier accessibility of NEOs, when compared to deep-
space asteroids, represents a valuable opportunity to improve the understanding of the solar system
at an affordable cost.

Impacts due to Near-Earth Objects could cause a devastating humanitarian crisis and potentially
the extinction of the human race. While the probability of such an event is low, the outcome
is so catastrophic that it is imperative to invest resources to mitigate them. The largest impact
event recorded in history is attributed to a NEO impact, is know as the Tunguska event and
occurred in 1908. According to Brown et al. (2013), an event like this could occur every 100 years.
The second largest airburst event recorded occurred in 2013 in the Russian city of Chelyabinsk,
causing damages over a 120 km radius and at least 374 injured (Popova et al., 2013). Telescopic
surveys detect NEOs whose size ranges from slightly larger than 1 km down to tens of meters
(Koschny and McAuliffe, 2009), but there are few direct methods for monitoring the sub-meter
meteoroid population. Serendipitous monitoring of atmospheric explosions due to airbursts of
large meteoroids are also being undertaken.

Meteoroids are small Sun-orbiting fragments of asteroids and comets, whose sizes range from
micrometers to meters and masses from 10−15 to 104 kg (Ceplecha et al., 1998). Their formation

1https://www.minorplanetcenter.net/. Last retrieved on May 2018.
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is a consequence of asteroids colliding with each other or with
other bodies, comets releasing dust particles when close to the
Sun, and minor bodies shattering into individual fragments.
Meteoroids are hardly detectable even with dedicated surveys.
However, they may be observed indirectly when an impact
occurs with a planetary or moon solid surface. An impact
represents in fact a unique opportunity to understand and update
the models describing the spatial distribution of NEOs in the
solar system, which is critical for a number of reasons. The
development of reliable models for the small meteoroid impact
flux is required for the sustainable design of space assets: if the
models fail to predict the correct flux of meteoroids that may
potentially impact a spacecraft, the result could be either an
over-conservative or an ineffective shielding, affecting the overall
mission performance. The study of micrometeoroids, whose size
ranges from 10 µm to 2 mm (Rubin and Grossman, 2010), is
also of interest for space weather phenomena: the development
of reliable models in the micrometeoroid size range can help
deepening the understanding of the change of airless bodies
optical properties. Finally, vast amounts of meteoroids and
micrometeoroids continuously enter the Earth–Moon system
and consequently become a potential threat which has caused,
in particular, a substantial change in the lunar surface and its
properties (Oberst et al., 2012). As such, the ability to accurately
and timely predicting these impacts by relying on accurate
meteoroid models becomes a fundamental asset.

1.2. Lunar Meteoroid Impacts
Estimations of the larger-than-1-kg meteoroid flux at the Moon
varies across the literature. The model in Brown et al. (2002)
estimates 1290 impacts per year, while the one in Ortiz et al.
(2006) estimates approximately 4000 impacts per year (Gudkova
et al., 2011). More recent studies suggest that the meteoroid
impact flux at the Moon is approximately 6× 10−10/m2/year, for
meteoroids larger than 30 g (Suggs et al., 2014). Assuming a lunar
collecting area equal to its surface area, 3.8 × 1013 m2, this gives
a larger-than-30-grams meteoroid flux of approximately 23, 000
impacts per year. Part of the discrepancies across literature is due
to the current lack of knowledge regarding meteoroid impact
physics, such as the luminous efficiency of an impactor (see
section 2.2.2), and a non-uniformity on how lunar meteoroid
impacts data is processed (Ortiz et al., 2015; Suggs et al., 2017).
As such, more experimental data on lunar meteoroid impacts is
still required.

There are also speculations on the possible asymmetries of the
spatial distribution of impacts across the lunar surface (Oberst
et al., 2012; Suggs et al., 2014). In Oberst et al. (2012), it is
theorized that the Moon nearside has approximately 0.1% more
impacts than the lunar farside, due to the Earth gravity field; the
equatorial flux is 10–20% larger than that at polar regions, due to
the higher number of largemeteoroids in low orbital inclinations;
and the lunar leading side (apex) encounters between 37 and
80% more impactors than the lunar trailing side (antapex), due
the Moon synchronous rotation. Full-disk observations of the
Moon are necessary to definitively confirm or rule out these
characteristics.

Monitoring the Moon surface for meteoroid impacts allows
covering a significantly larger area than the traditional methods
that monitor portions of the Earth atmosphere (Ortiz et al.,
2006). In a lunar meteoroid impact, the kinetic energy of the
impactor is partitioned into (1) the generation of a seismic
wave, (2) the excavation of a crater, (3) the ejection of particles,
and (4) the emission of radiation. Any of these phenomena
can be observed to detect lunar meteoroid impacts. The main
characteristics of each observationmethod are summarized in the
form of a graphical trade-off in Table 1. The detection of lunar
impact flashes is the most advantageous method since it yields an
independent detection of meteoroid impacts, provides the most
complete information about the impactor, and allows for the
monitoring of a large Moon surface area. Remote observation of
light flashes is thus baselined for the detection of lunar meteoroid
impacts.

1.3. Lunar Meteoroid Impact Flashes
Light flashes at the Moon are typically observed by detecting
a local spike of the luminous energy in the visible spectrum
when pointing a telescope at the lunar nightside. The background
noise is mainly composed by the Earthshine (Earth reflected light
on the Moon surface) in the visible spectrum, and by thermal
emissions of the Moon surface in the infrared spectrum (Bouley
et al., 2012). Measurements with high signal-to-noise ratios
can be obtained through observations of the lunar nightside
(Bellot Rubio et al., 2000). The detected luminous energy spike
is quantified using the apparent magnitude of the light flash.

Lunar impact flashes detected from Earth-based observations
have apparent magnitude between +5 and +10.5 (Oberst et al.,
2012), which correspond to very faint signals. Also, Earth-based
observations of lunar impact flashes are restricted to periods
when the lunar nearside illumination is 10–50% (Ortiz et al.,
2006; Suggs et al., 2008). The upper limit restriction is due to the
dayside of the Moon glaring the telescope field of view (FOV).
The lower limit restriction of 10% corresponds to the NewMoon
phase. During this phase, the observations should be made when
the Moon presents itself at low elevations in the sky (morning or
evening), but the observation periods are too short to be useful
(Suggs et al., 2008; Oberst et al., 2012).

The first unambiguous lunar meteoroid impact flashes were
detected during 1999’s Leonid meteoroid showers and were
reported in Ortiz et al. (2000). The first redundant detection
of sporadic impacts was only reported 6 years later in Ortiz
et al. (2006). These events gave origin to several monitoring
programs. In 2006, a lunar meteoroid impact flashes observation
programme was initiated at NASA Marshall Space Flight Center
(Suggs et al., 2008). This facility is able to monitor 4.5 × 106

km2 of the lunar surface, approximately 10 nights per month,
subject to weather conditions. Approximately half of the impact
flashes observations occur between the Last Quarter and New
Moon (0.5–0.1 illumination fraction) and the other half between
NewMoon and First Quarter (0.1–0.5 illumination fraction). The
former monitoring period occurs in the morning (waning phase)
and the latter occurs in the evening (waxing phase), covering
the nearside part of the eastern and western lunar hemisphere,
respectively. 126 high-quality flashes were reported in Suggs et al.
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TABLE 1 | Trade-off analysis of methods for the lunar meteoroid impacts observation.

Observation Type of method Moon surface covered (%) Meteoroid impacts detection Meteoroid information obtained

red red red

Seismic waves In-situ ∼ 1.3% Not possible independently None independently

green yellow yellow

Craters Remote sensing ∼ 100% Formation of new craters; if independently,

with time-consuming process

Position of impact and crater size

red green yellow

Particles In-situ ∼ 0% Burst of particles; independent detection Position and time of impact

yellow green green

Radiation Remote sensing up to 50% Observation of light flashes; independent

detection

Position and time of impact; kinetic energy

(mass and/or velocity)

green Good features; yellow Fair features; red Poor features.

(2014), for 266.88 h of monitoring, over a 5 years period. The
magnitude range detected is between +10.42 and +5.07, which
is estimated to correspond to an impactor kinetic energy range
between 6.7×10−7 and 9.2×10−4 kton TNT, taking into account
the correction factor of 4 suggested in Ortiz et al. (2015). The
corresponding impact velocities range from 24 km/s to 70 km/s.

The most recent monitoring program, NELIOTA, was
initiated on February 2017 in Greece under ESA fundings. As
of November 2017, 16 validated impacts have been detected
over 35 h of observations. NELIOTA aims to detect flashes as
faint as +12 apparent visual magnitude (Bonanos et al., 2015)
and is the first allowing the determination of the impact flash
blackbody temperature by observing both in the visible and
infrared spectrum. Monitoring the Moon for impact flashes
inherently imposes several restrictions that can be avoided if the
same investigation were conducted with space-based assets, such
as LUMIO.

1.4. The LUMIO Mission
Observing lunar impacts with space-based assets yields a number
of benefits over ground-based ones:

• No atmosphere. Ground-based observations are biased by the

atmosphere that reduces the light flash intensity depending
upon present conditions, which change in time. This requires
frequent recalibration of the telescope. Inherent benefits of the
absence of atmosphere in space-based observations are 2-fold:
(1) there is no need of recalibrating the instrument, and (2)
fainter flashes can be detected.
• No weather. Ground-based observations require good

weather conditions, the lack of which may significantly reduce
the observation time within the available window. There is no
such constraint in space-based observations.
• No day/night. Ground-based observations may only be

performed during Earth night, significantly reducing the
observation period within the available window. There is no
such limitation when space-based observations are performed.
• Full disk. Ground-based observations are performed in the

first and third quarter, when nearside illumination is 10–50%.
Full-disk observations during New Moon are not possible

because of low elevation of the Moon and daylight. Space-
based observations of the lunar farside can capture the
whole lunar full-disk at once, thus considerably increasing the
monitored area.
• All longitudes. Ground-based observations happening during

the first and third quarter prevent resolving the meteoroid flux
across the central meridian. There is no such restriction in
space-based, full-disk observations.

Moreover, observing the lunar farside with space-based assets
yields further benefits, i.e.,

• No Earthshine. By definition, there is no Earthshine when
observing the lunar farside. This potentially yields a lower
background noise, thus enabling the detection of fainter
signals, not resolvable from ground.
• Complementarity. Space-based observations of the lunar

farside complement ground-based ones

- In space. The two opposite faces of the Moon are monitored
when the Moon is in different locations along its orbit;

- In time. Space-based observations are performed in periods
when ground-based ones are not possible, and vice-versa.

High-quality scientific products can be achieved with space-based
observations of the lunar farside. These may complement those
achievable with ground-based ones to perform a comprehensive
survey of the meteoroid flux in the Earth–Moon system. All of
the above considerations drove the formulation of the LUMIO
mission statement:
LUMIO is a CubeSat mission orbiting in the Earth–Moon region
that shall observe, quantify, and characterize meteoroid impacts on
the lunar farside by detecting their impact flashes, complementing
Earth-based observations of the lunar nearside, to provide global
information on the lunar meteoroid environment and contribute
to Lunar Situational Awareness.

LUMIOmission is conceived to address the following issues.

• Science Question. What are the spatial and temporal
characteristics of meteoroids impacting the lunar surface?
• Science Goal. Advance the understanding of how meteoroids

evolve in the cislunar space by observing the flashes produced
by their impacts with the lunar surface.
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• Science Objective. Characterize the flux of meteoroids
impacting the lunar surface.

The mission utilizes a 12U form-factor CubeSat which carries
the LUMIO-Cam, an optical instrument capable of detecting
light flashes in the visible spectrum to continuously monitor
and process the data. The mission implements a novel orbit
design and latest CubeSat technologies to serve as a pioneer in
demonstrating how CubeSats can become a viable tool for deep
space science and exploration.

The selection of the operative orbit is detailed throughout
the rest of the paper, which is organized as follows. In section
2 the methodology is given, including the criteria defined and
the models developed to support the trade-off. In section 3, the
trade-off process is detailed by following a hierarchical structure
ranging from qualitative to quantitative arguments. Potential
operative orbits are presented in section 3.3.4, and final remarks
are drawn in section 4.

2. METHODOLOGY

The methodology used for LUMIO orbit design relies on the
following approach (refer to Figure 1):

1. Evaluation criteria are defined, based on requirements and
mission objectives.

2. The relevant orbit types for lunar remote sensing are
identified.

3. A preliminary trade-off scans orbit families, accounting for
their main characteristics and eliminating clearly non-feasible
options. The orbit families encompass two-body Keplerian
orbits and several three-body libration point orbits (LPOs).
Candidate orbits are the output of the preliminary trade-off.

4. A coverage analysis is performed for the candidate orbits. The
physics of the impact is modeled together with the space
environment, the local orbital geometry, and the payload
characteristics. The model is then validated against a known
dataset. Ad-hoc simulations engage the scientific goal of
maximizing the number of observable impacts with the
need to have lunar full-disk visibility for autonomous optical
navigation (Topputo et al., 2017). Non-feasible candidate
orbits, according to these criteria, are eliminated and the
remaining feasible orbits move on to the next orbital trade-off
level.

5. A detailed trade-off quantifies and compares station-keeping
and transfer costs for each feasible orbit. Evaluation criteria
related to 1v budget are first determined by optimizing the
transfer trajectory and station-keeping costs and later applied
to select LUMIO operative orbit.

2.1. Evaluation Criteria for LUMIO Orbits
The evaluation criteria are divided into acceptance criteria and
selection criteria. The former are defined based on the science
and mission requirements (Topputo et al., 2017). The latter are
defined based on orbital performance parameters and allow the
selection of optimal orbits, from a set of candidate orbits that
meet the acceptance criteria. The acceptance criteria are defined
as follows:

EC.A.01 The operational orbit shall allow the detection of
meteoroids in the equivalent kinetic energy range at Earth of
10−6 to 10−1 kton TNT.
EC.A.02 The operational orbit shall allow the detection of at
least 240 meteoroid impacts during the mission lifetime.
EC.A.03 The operational orbit shall allow the detection of
at least 2 meteoroid impacts in the equivalent kinetic energy
range at Earth of 10−4 to 10−1 kton TNT.
EC.A.04 The operational orbit shall allow the detection of at
least 100 meteoroid impacts in the equivalent kinetic energy
range at Earth of 10−6 to 10−4 kton TNT.
EC.A.05 The operational orbit shall allow monitoring of the
lunar farside at night.
EC.A.06 The operational orbit shall support a minimum
mission lifetime of 1 year, with a maximum total 1v budget
of 200 m/s.
EC.A.07 The operational orbit shall be accessible from the
departure orbit, with a maximum total 1v budget of 200 m/s.

Evaluation criterion EC.A.01 defines a kinetic energy range to

be observed, which is mainly a function of orbit altitude (see

section 2.2.2). On the other hand, evaluation criteria EC.A.02–
04 are mainly a function of cumulative observation time in the

mentioned kinetic energy ranges. In EC.A.02, the approximate

number of meteoroid impact flashes used by Suggs et al. (2014) to
estimate the lunar impact flux in this range has been considered

reasonable for an acceptance criteria. Evaluation criteria EC.A.05
is directly related to the mission requirement of detecting impact

flashes on the lunar farside and the need to monitor it at

night follows from the fact that impact flashes can only be
detected under very low illumination conditions. Finally, in

EC.A.06 and EC.A.07, a total 1v budget of 200 m/s is considered

based on the constraint on the maximum mass of 24 kg for
LUMIO. The allocated 1v budget is deemed reasonable for a
CubeSat, in order to support a minimum mission lifetime of
1 year and deployment from a Lunar Orbiter, which would
release LUMIO in a given injection orbit around the Moon (see
section 3.3).

The selection criteria defined are the following:

EC.S.01 The total number of meteoroids detected during the
mission lifetime shall be maximized.
EC.S.02 The total 1v budget shall be minimized.
EC.S.03 The duration spent in observing the lunar full-disk
shall be maximized.

The selection criteria are defined in view of mission objectives.
As such, in order to determine a good orbit to improve current
Earth-based lunar impact flashes observation, the selection
criteria are defined in view of the performance of the orbit.
EC.S.01 is chosen because one of the main goals of lunar
impact flashes monitoring is to improve the current solar system
meteoroid models, and a larger number of observations can
contribute toward this goal. Moreover, selecting the orbit with
the minimum 1v budget can also contribute toward the same
goal. This is because the station-keeping 1v could be increased,
allowing for a larger mission lifetime and, so, the possibility
of detecting more meteoroid impact flashes. Finally, in order
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FIGURE 1 | Trade-off scheme for the selection of LUMIO operative orbit.

to perform reliable optical navigation using the lunar full-disk,
EC.S.03 is defined to ensure navigation images can be acquired
whenever necessary (Franzese et al., 2018). Furthermore, EC.S.03
also allows for a more uniform coverage of the lunar farside,
which can contribute to the understanding of lunar meteoroid
impact flux asymmetries.

2.2. Models
2.2.1. Orbital Geometry in Near-Lunar Space
Three different classes of orbits are considered: Keplerian;
perturbed Keplerian, and libration point orbits. Only orbits
that allow a periodic or repetitive motion with respect to the
Moon surface are considered as lunar remote sensing orbits.
Orbits whose range to the lunar surface exceeds one third of the
Earth–Moon distance (≈ 100, 000 km) are excluded from the
analysis. The considered Keplerian orbits are low lunar orbits
(LLO) and elliptical lunar orbits (ELO). LLO have a constant
low altitude, h, with respect to the Moon surface and a short
period (roughly 2 h for the h = 100 km case). For h >

100 km, Earth gravitational field affects the satellite motion in
such a way that the orbit can no longer be considered as only
under the influence of the lunar gravity field (Abad et al., 2009;
Carvalho et al., 2010). ELO typically have low perilune altitude
and relatively large apolune altitude. Therefore, the spacecraft-
to-Moon distance varies significantly in one orbital revolution,
along with the coverage periods of certain lunar regions.

The considered perturbed Keplerian orbits are frozen orbits
(FO) and Sun-synchronous orbits (SSO). FO are orbits whose
orbital elements are stationary, due to reduced or null secular
and long-period perturbations. They usually exist only for
certain combinations of a (semi-major axis), e (eccentricity), i
(inclination), and ω (argument of perilune). The latter is typically
fixed at 90 or 270 degrees, meaning that the periapsis of the orbit

remains directly above the north or south pole of the central
body in case of polar orbits. Hence, the satellite altitude remains
constant over each latitude, making coverage patterns repetitive.
Two different types of lunar frozen orbits are considered. The
first takes only into account perturbations by the zonal terms of
the lunar nonspherical gravity field, i.e., Jn-terms, and has low
altitudes, i.e., h ≤ 100 km. The second takes also into account
perturbations of the Earth gravity field, and has higher altitudes
(h > 100 km). On the other hand, SSO are orbits whose line
of nodes rotates to freeze the orbital plane orientation relative to
the Sun, i.e., the orbital plane rotates at ≈ 0.9856 deg/day as the
Earth–Moon system revolves about the Sun. Table 2 summarizes
the main characteristics of Keplerian and perturbed Keplerian
orbits.

When compared with selenocentric Keplerian orbits, libration
point orbits are typically more easily accessible from Earth,
have more favorable thermal environments, few or no lunar
eclipses, and infrequent Earth shadowing/occultation (Pergola
and Alessi, 2012;Whitley andMartinez, 2016). However, they are
mostly associated to large instability indicators. The definition of
stability index S used in the present work is that of Folta et al.
(2015):

S =
1

2

(

|ν| +
1

|ν|

)

, (1)

where ν denotes the (reciprocal) pair of eigenvalues associated
with the stable/unstable subspace of the orbit. With this
definition, S > 1 indicates instability of the orbit, and S ≤ 1
indicates stability. A large stability index is usually associated with
large station-keeping costs, but lower transfer costs (Grebow,
2006). Five types of three-body periodic orbits have been
considered for orbital design: Lyapunov orbits (LYO), halo
orbits (HO), Lyapunov vertical orbits (VO), distant retrograde
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orbits (DRO), and low prograde orbits (LoPO). Table 3

summarizes themain characteristics of the LPO, also presented in
Figure 2.

LYO circulate L1,2 in the circular restricted three-body
problem (CRTBP) xy plane and are typically characterized by
the amplitude along the x axis (Ax). Their orbital periods in
the Earth–Moon system range from approximately 15–30 days
and their stability index is relatively high (S ∼ 300). HO
circulate L1,2 with a three-dimensional motion. The frequency of
their out-of-plane motion matches the in-plane motion and only
exist for a specific set of Ay (Farquhar and Kamel, 1973). Halo
orbits at the Earth–Moon L1,2 become almost rectilinear when
close to the Moon (Breakwell and Brown, 1979), generating the
family of near-rectilinear halo orbits (NRHO), whose stability
index is smaller than that of the nominal halos. NRHO are

not considered in this work. VO circulate L1,2 in eight-shaped
trajectories, crossing the x axis twice in one orbital period
(Folta et al., 2015). Their orbital periods in the Earth–Moon
system range from approximately 10–20 days and their stability
index is in between that of halo and Lyapunov orbits (S ∼
200). Given their shape, these orbits can be used to monitor
both lunar poles in one orbital revolution. DRO circulate the
smaller primary (e.g., the Moon) in a retrograde motion (Hénon,
1970). These orbits have no apparent size limit, so they can
even encompass both L1 and L2 (Ming and Shijie, 2009). LoPO
circulate also the smaller primary, but in a prograde motion
(Hénon, 1970). Their orbital periods range from approximately
2–14 days and their stability index vary significantly with size.
LoPO may be used to cover more extensively the nearside of the
Moon.

TABLE 2 | Characteristics of Keplerian and perturbed Keplerian lunar remote sensing orbits.

Orbit h (km) e i (deg) ω (deg) P (h) Coverage characteristics

LLO < 100a,b 0 [0, 180] – < 2 Constant altitude

ELO < 10, 000c (apoapsis

altitude)

< 0.74 (crash) [0, 180] [0, 360] < 27 (e = 0.1;

ha = 10000 km)

Variable altitude; possible to cover

more extensively certain regions

FO < 100a (only Moon zonal

harmonics)

[0, 0.1]a,d [0, 63] ∪

[73, 86.5]∗,a,d
90 or 270±3a < 2 (e = 0.01;

ha = 100 km)a
Possibly variable altitude, but

constant over each latitudeb

[100, 9000]a,e (Moon zonal

harmonics and Earth)

[0, 0.7]
†

(h = 3700 km)

0 or [40, 70]a 90 or 270a < 24 (e = 0.6;

ha = 9, 000 km)e

SSO < 100b (only Moon’s J2 and

C22)

< 0.05 (crash) [125, 170] [0, 360] < 2 Approximately constant altitude and

illumination angles

The information within brackets denotes the conditions corresponding to interval limits.
aAbad et al. (2009); bCarvalho et al. (2009); cWhitley and Martinez (2016); dElipe and Lara (2003); eEly and Lieb (2006).

*Symmetric intervals with respect to 90 deg also exist (Park and Junkins, 1994).
†Smaller interval for lower altitudes (Abad et al., 2009).

TABLE 3 | Characteristics of libration point lunar remote sensing orbits.

Orbit Geometry h (103 km) P (days) S∗ Coverage characteristics Earth Visibility

LYO 2D [40, 78]a

(Ax = 20, 000 km, P = 15.5 days )

L1:[12, 32]

L2:[14, 36]
b

L1:350

L2:300
b

Lunar nearside or farside and possibly

lunar apex and antapexc
Occultation can

occur

DRO 2D [20, 50] ∪ [60, 80]d

(Initial distance to the Moon)

[4, 16]d

(resonant state:

TMoon/T ∈ [1.6, 6])

1b Lunar nearside and farside Occultation can

occur

LoPO 2D [38, 50]e

(Maximum range in X-axis)

[2, 14]b 4b Lunar nearside covered more

extensively

Occultation can

occur

HO 3D L1:[20, 65]

L2:[10, 75]
f

(Maximum distance)

L1 :[7, 13]

L2 :[4, 15]
f

L1:175

L2:100

Lunar nearside or farside and possibly

north or south pole

Always visible

VO 3D L1:[50, 60]

L2:[50, 65]
f

(Maximum distance)

L1:[10, 18]

L2:[14, 18]
b,f

L1:250

L2:200
b

Lunar nearside or farside and both

poles

Occultation can

occur

aBernelli Zazzera et al. (2004); bFolta et al. (2015); cDoedel et al. (2007); dTurner (2016); eGuzzetti et al. (2016); fGrebow (2006).

*Average over orbit family.
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FIGURE 2 | Libration point orbit families, represented in the Moon-centered CRTBP reference frame.

2.2.2. Environment Model
In support to the coverage analysis, a meteoroid environment
model is needed capable of 1) estimating the kinetic energy
of the impactor from the light flash intensity detectable by
the payload and of 2) representing the lunar impact time and
space flux with accuracy. This model is then used to predict
the number of meteoroid impacts that can be observed from
a given orbit. Two different methods are used to estimate the
detectable kinetic energy. These are referred to as the luminous
efficiency method and the blackbody method. The first assumes a
directly proportional relation between light emitted in the visible

spectrum and the impactor kinetic energy. The second assumes
that the impact flash emits radiation as a blackbody and the
emitting surface scales with the size of the impact crater.

The luminous efficiency method used consists of the
following steps.

1. Estimation of received energy flux (J/m2) in the visible
spectrum (Raab, 2002),

ER =
simpact

τAlens

Eγ

qe
, (2)
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where simpact is a number in the range of signals detectable
by one pixel of the camera, in e−/pixel (see section 2.2.3 for
more details), qe and Eγ are the mean quantum efficiency and
mean photon energy over the sensor observation spectrum,
respectively, Alens is the area of the optic lens, and τ is a
constant that accounts for lens transmissivity, transparency,
and the light spreading across multiple pixels.

2. Estimation of the total emitted energy in the visible spectrum
(Bellot Rubio et al., 2000),

EV = 2πd2 ER, (3)

where d is the distance between the payload sensor and the
impact flash and radiation is assumed to be emitted into 2π
steradians, as done in Suggs et al. (2014).

3. Estimation of themeteoroid kinetic energy (Bellot Rubio et al.,
2000),

KE =
EV

η
, (4)

where η is the luminous efficiency in the visible spectrum.

The luminous efficiency is assumed to be in the range η ∈

[5, 50] × 10−4 (Bouley et al., 2012) and its nominal value is
assumed to be η = 20× 10−4 (Ortiz et al., 2015).

The blackbodymethod used consists of the following steps.

1. Estimation of the flux of electrons (e−/m2) generated in the
sensor (Raab, 2002),

eR =
simpact

τAlens
. (5)

2. Estimation of the total flux of photons emitted in the visible
spectrum, converted to an electron flux (Bouley et al., 2012),

eT = 1t

∫ λ2

λ1

L(λ,TF)
qe(λ)

Eγ (λ)
dλ, (6)

with

L(λ,TF) : = π
2hc2

λ5

[

exp

(

hc

λk TF

)

− 1

] and Eγ (λ) : =
h c

λ
,

(7)
where 1t is the assumed duration of the impact, λ ∈ [λ1, λ2]
is the observed wavelength, and TF is the assumed (constant)
blackbody temperature of the flash. L(λ,TF) is Plank’s law in
W/m2/nm and Eγ (λ) is the energy of a photon (γ ).

3. Estimation of the emitting surface area, i.e., the effective area
of the impact flash (Bouley et al., 2012):

S = 2πd2
eR

eT
. (8)

4. Estimation of the impact’s crater diameter,

D =
2
√
S/π

ncrater
, (9)

where ncrater is the ratio between the diameter of the impact
flash and respective crater (Bouley et al., 2012). Assuming that
the impact is only detected by one pixel, D should be smaller
than the ground sampling distance (GSD).

5. Estimation of themeteoroid kinetic energy, fromGault’s crater
law (Bouley et al., 2012; Madiedo et al., 2015),

KE =

(

D

0.25ρ0.167
p ρ

−0.5
t g−0.165(sin θi)1/3

)1/0.29

, (10)

where ρp and ρt are the projectile and target densities, g is the
gravitational acceleration at the Moon, and θi is the impact
angle with respect to the horizontal.

The nominal parameters assume 1t = 10 ms, which is the lower
bound of the impact flashes detected on Earth (Bouley et al.,
2012), TF = 2, 700 K, which is within the interval mentioned
in Suggs et al. (2017), ncrater = 1, which is the minimum ratio
assumed in Bouley et al. (2012), ρp = 2000 kg/m3; ρt = 3000
kg/m3 and θi = 45 deg (Bouley et al., 2012). It should be noted
that 1t, TM , and ncrater are assumed as constants and not a
function of the impactor kinetic energy, as no relation is known
yet.

In both methods, for (perturbed) Keplerian orbits the distance
between the impact flash and payload is assumed equal to the
satellite altitude, i.e., the impact is assumed to occur at nadir.
However, such assumption significantly affects the libration point
orbits results. The number of impacts detectable closer to the
edge of the payload FOV area is found to be approximately 90%
lower than the number of impacts detectable at nadir. As such,
the impacts are conservatively assumed to occur at the midpoint
between nadir and the edge of the FOV-area.

The meteoroid impact flux model used in this work is that of
Brown et al. (2002):

log10[fE(≥ KEE)] = 0.5677− 0.9 log10(KEE), (11)

where fE is the cumulative number of meteoroid impacts with
Earth, per year, for kinetic energies equal or >KEE. However, the
meteoroid impact flux at the Moon is smaller than the meteoroid
impact flux at Earth given by Equation 11, due to (1) the smaller
surface area and (2) the weaker gravity field. As such, in order
to scale down the flux at Earth to a meteoroid flux at the Moon,
the Moon–Earth surface area ratio and a gravitational correction
term for the Earth are taken into account. The gravitational
correction term for the Moon is considered negligible (Bouley
et al., 2012). The implemented gravitational correction considers
both a larger effective target area of Earth and a larger impactor
velocity relative to the Earth when compared to true physical
values. The gravitational correction factors applied are (Suggs
et al., 2014)

farea = fKE : = Aeff/Aphy = 1+ v2esc/v
2, (12)

where Aeff is the effective cross sectional area of the target
body, Aphy is the physical cross sectional area of the target
body, vesc is the escape velocity at the target body, and v is the
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impactor velocity, relative to the target body, before gravitational
correction. Assuming vesc = 11 km/s (Suggs et al., 2014) and
v = 17 km/s (Bouley et al., 2012), the gravitational correction
factors are farea = fKE = 1.42. The cumulative yearly meteoroid
impact flux at the Moon is then:

fM(≥ KEM) =
fE(fKEKEM)

farea

R2M
R2E

, (13)

where KEM is the impactor kinetic energy at the Moon and RM
and RE are the radii of the Moon and Earth, respectively. For
a given instrument FOV, the estimated impact rate detectable
(impacts/year), as a function of time, is computed:

fimpacts(t) =
1

2

FOVeff(t)

4πR2M

[

fM(≥ KEmin(t))− fM(≥ KEmax(t))
]

,

(14)
where FOVeff(t) is the observable nonilluminated Moon surface
area, and KEmin(t), KEmax(t) are the minimum and maximum
kinetic energy detectable, estimated using Equations (4–10).
Equation 14 also includes a factor of 50% reduction of meteoroid
impacts detectable to take into account possible occultations by
lunar mountains (Koschny and McAuliffe, 2009). It should be
noted that, using Brown’s flux in this fashion, it is inherently
assumed that the impact flux of meteoroids is uniform across the
lunar surface and is evenly distributed throughout the year.

This meteoroid environment model is validated with data
from the NELIOTA program: a telescope with 1.2 m diameter,
capable of performing observations in the R-band (λ ∈ [520, 796]
nm). Since 16 impacts in 35 h observation time had been detected
by November 2017, it is assumed that the program typically
detects 0.46 impacts per hour. The visual magnitudes ranged
from +11 to +6. Assuming that these values correspond to the
limiting capacity of the detector, it is possible to estimate the
minimum and maximum signal received at the detector. Then, it
is possible to apply both kinetic energy estimation methods and
predict the total number of impacts detectable from Earth (d =
384, 401 km). For that purpose, the FOV-area of the telescope
has been assumed as 1/3 of the entire (dark) Moon disk. Using
the luminous efficiency method, a rate of between 0.35 and 0.12
impacts per hour is determined, assuming 1t ∈ [10, 33] ms.
Using the blackbody method, a rate of 0.13 impacts per hour is
estimated. As such, the results obtained with both methods used
in this work are the same order of magnitude as the detected in
the NELIOTA program.

2.2.3. Payload Model
In order to determine if the signal of an impact flash is detectable
by LUMIO’s CCD sensor, the concept of signal-to-noise ratio
(SNR) is used. Given the signal of the impact (simpact) and the
Poisson noise associated with all signals (σ ), the SNR is defined
as:

SNR =
simpact

σ
, (15)

where simpact is measured in electrons generated in the CCD,
per pixel (e−/pixel), and σ is measured in electrons root-mean-
square (rms). The Poisson noise of a signal is defined as σi =

√
si

and the total Poisson noise is given by

σ =

√

∑

i

σ 2
i . (16)

The CCD sensor also has the possibility of amplifying the
incoming signals by a gain factor G, at the expense of an
excess-noise factor (ENF). When computing the SNR, all signals
generated in the detector before the multiplication register must
be multiplied by G and the corresponding noises by ENF, as
follows:

SNR =
G simpact

√

ENF2 G (simpact + sM + sC + sDC)+ σ 2
RON + σ 2

OCN + σ 2
QN

,

(17)
where σ 2

i = G si, for the first four noise sources considered,
which correspond to the incoming signals. In Equation (17), the
noise sources that are taken into account are:

• σimpact, the noise associated with the impact flash signal itself.
• σM , the Moon surface background noise, estimated at

σ 2
M = GsM = G eRM Alens τ , (18)

where eRM is the flux of photons received, due to the Moon
background light emission, converted to an electron flux
Bouley et al. (2012),

eRM =
SMoontexp

2πh2

∫ λ2

λ1

L(λ,TM)
qe(λ)

Eγ (λ)
dλ, (19)

and h is the satellite’s altitude, TM ≈ 150 K is the assumed
(constant) blackbody temperature of the Moon, texp is the
exposure time of the sensor and SMoon is the emitting surface
of the Moon, which is assumed equal to the Moon surface area
observed by one pixel at nadir.
• σC, the cosmic background noise, estimated as follows (Raab,

2002),

σ 2
C = G sC = G pRC Alens τ qe, (20)

where pRC is the flux of photons received at the sensor,

pRC = 2748 texp AIFOV, (21)

and it is assumed that the cosmic background noise
corresponds to visual magnitude mV = +18, so, 2748 γ /s/m2

per square arc second are received by the sensor (Raab, 2002).
AIFOV is the sensor instantaneous FOV in square arc seconds.
• σDC, the CCD internal noise, known as Dark-Current,

estimated as follows:

σ 2
DC = G sDC = GDC texp, (22)

where DC is the number of electrons generated in the sensor
per second and per pixel, at a certain temperature.
• σRON , the CCD Read-Out Noise, given in Table 4.
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TABLE 4 | LUMIO-Cam parameters, including those of the chosen detector

(Teledyne e2V CCD201-20*).

Parameter Acronym/

Symbol

Value Units

Exposure time texp 66 ms

Field of view FOV 6 × 6 deg × deg

Observation spectrum [λ1, λ2] 400–900 nm

Optics aperture d∅ 55 mm

Optics focal length dFL 127 mm

Optics lens reduction

factor

τ 53.55† %

Detector frame Npixels 1024× 1024 pixels×pixels

Detector pixel size dpixel 13× 13 µm × µm

Detector capacity cap(G) 8× 104 (no gain) electrons/pixel

73× 104 (with gain)

Detector dark-current DC 260 (at 20 deg C) electrons/s/pixel

Detector read-out noise σRON 43 electrons

Detector gain G 2 –

Detector excess noise

factor

ENF
√

2 –

Detector Off-chip noise offn 20× 10−9 volt/
√

Hz

Detector output

amplifier Responsivity

OAR 1.4× 10−6 electrons/volt

A/D bit number Nbits 14 bits

*Datasheet accessed on July 23, 2017.
†Takes into account transmissivity, transparency and the light spreading across multiple

pixels.

• σOCN , the CCD Off-Chip Noise, estimated as

σOCN =
offn

OAR

√

π Npixels

texp
, (23)

where offn denotes the off-chip noise, OAR denotes the Output
Amplifier Responsivity of the detector and Npixels denotes the
total number of pixels of the sensor.
• σQN , the A/D converter’s noise, known as Quantisation Noise,

estimated as

σQN =
0.7 capG

2Nbits
√
12

, (24)

where capG is the multiplication register capacity (detector
with gain) and Nbits is the A/D converter number of bits.

Assuming that the impact flash can be detected for SNR ≥
SNRmin, the determination of the minimum signal detectable was
made by solving Equation (17) for simpact = smin, as

smin =

(SNRmin ENF)
2
+

√

(SNRmin ENF)4 + 4Noise SNR2
min

2G
,

(25)
with

Noise : = ENF2(σ 2
M + σ 2

C + σ 2
DC)+ σ 2

RON + σ 2
OCN + σ 2

QN . (26)

On the other hand, themaximum impact flash signal detectable is
given by the capacity of the detector (cap), given inTable 4. Given
the payload characteristics presented in Table 4 and considering
that a signal is detectable for SNRmin = 5, the range of
signals detectable by the CCD is given by s = [smin, smax] =
[292, 80000] e−/pixel. These values apply for all altitudes, as
σM(d) is found to be negligible with respect to other noise
sources, and are then used to estimate the minimum and
maximum kinetic energy detectable by the payload, using the
methods presented in section 2.2.2.

3. LUMIO OPERATIVE ORBIT TRADE-OFF

3.1. Preliminary Analysis
The main characteristics of the candidate orbit types presented in
section 2 are assessed and compared in order to eliminate non-
feasible options by means of criteria EC.A.05-07 and EC.S.01-
02 (see section 2.1). Results are presented in Tables 5, 6 for the
(perturtbed) Keplerian and three-body orbits, respectively. The
first column of the tables indicate the orbit family. The remaining
five columns indicate the compatibility of the orbit family with
criteria EC.A.05-07 and EC.S.01-02.

All orbital families presented in section 2, with the exception
of L1-circulating LYO, halos, and VO, have orbits which allow the
monitoring of the lunar farside at night (EC.A.05), at least once
per synodic month.

Selection criteria EC.S.01 requires the maximization of the
total number of impacts detected, for which detailed modeling is
required. However, it is possible to directly relate this criterion
with the total lunar nightside observation time, per synodic
month. This is easier to estimate than the total number of
meteoroid detections. Recurring to orbital dynamics, it is thus
used to assess preliminary performance with respect to EC.S.01.
L2-circulating orbits (i.e., LYO, halos, and vertical orbits) observe
mostly the lunar farside and opposite lunar phases than an
observer on Earth. As such, assuming that <50% illumination
is required for impact flashes detection, these orbits can only
observe 50% of the time the lunar nightside, per synodic month.
Selenocentric orbits can observe both the lunar nearside and
farside. However, for a resonant DRO, the sequence of lunar
phases observed by the spacecraft can be very similar to those
of L2 orbits. It is conservatevely estimated a lunar nightside
observation time of approximately 50%, per synodic month. An
analogous reasoning is made for the remaining selenocentric
orbits.

The orbital lifetime (EC.A.06) is dominated by the satellite
duration before crashing on theMoon or escaping withoutmeans
of recovery. It is only defined for (perturbed) Keplerian orbits.
Since a mission lifetime larger than 1 year is required, this
characteristic can be useful in assessing if that requirement is met.
Nonetheless, if the natural lifetime of an orbit is smaller than
1 year, it is its maintenance 1v that determines the compliance
with EC.A.06. LLO typically have an orbital lifetime smaller than
200 days, the exception being inclinations for which the orbit is
frozen (Ramanan and Adimurthy, 2005). SSO orbital lifetime is
rouglhy 300 days. On the other hand, the lifetime of ELO varies
from 140 days, for e = 0.45, to 1, 000 days, for e = 0.01 (Prado,
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TABLE 5 | Trade-off of (perturbed) Keplerian orbits.

Total 1v budget (EC.S.02)

Orbit

Type

Farside monitoring

at night

Nightside observation time

per synodic month (%)

Lifetime (days) Maintenance 1v

(m/s per year)

Accessibility from departure

orbit

EC.A.05 EC.S.01 EC.A.06 EC.A.06 EC.A.07

blue green red yellow red

LLO Possible < 50 [16, 160]a > 50b Low — High

(best case scenario) (i < 90 deg, h = 100 km

orbit, NSG: n = 100)

(i ∈ [0,360] deg, h = 100

km)

(> 150 m/s, from circular

h = 500 km to h = 100 km)

blue red yellow red blue

ELO Possible [8, 92] [140;1, 000]c > [120, 300]b Low — Medium

(function of line of nodes

angle with Sun direction;

ha = 10, 000 km, i = 0 deg

and e = 0.74)

(function of decreasing e,

from 0.45 to 0; a = 7, 000

km)

(i = 0 deg, e = [0.1, 0.73],

a ≈ 7, 000 km)

(> 72 m/s, from circular to

elliptic; or > 4 m/s, between

elliptic)

blue green green green yellow

FO Possible If circular: < 50 > 1000d 0b Low — Medium

(best case scenario:

low-altitude)

(e = 0, i = 78 deg, h = 100

km)

(i = 40 deg, e = 0.6,

880× 8, 800 km)

(≈ 140 m/s, from circular

h = 500 km to h = 1, 000 km)

blue green yellow yellow red

SSO Possible < 50 ≈ 300a > 50b High

(i = 100 deg, h = 100 km) (i ∈ [0, 360] deg, h = 100

km)

(> 890 m/s, from i = 90 to

i = 125 deg, at circular

h = 100 km)

aRamanan and Adimurthy (2005); bWhitley and Martinez (2016); cPrado (2003); dElipe and Lara (2003).

green Exceeds requirements; blue Meets requirements; yellow Correctable deficiencies; red Unacceptable.

Accessibility 1v: Low→< 200 m/s; Medium→ [200, 600] m/s; High→> 600 m/s.

TABLE 6 | Trade-off of CRTBP orbits.

Total 1v budget (EC.S.02)

Orbit Type Farside monitoring

at night

Nightside observation time

per synodic month (%)

Maintenance 1v

(m/s per year)

Accessibility from departure orbit

EC.A.05 EC.S.01 EC.A.06 EC.A.07

blue green blue red

LYO Possible if L2 orbit < 50 [15;18]a Medium – High

(small orbit) (L2 orbit) (Plane change maneuver required)

blue green blue green

HO Possible if L2 orbit < 50 [0;55]a Low

(Not too close to the Moon) (L2 orbit, smaller for orbits closer

to the Moon)

(< 140 m/s, departing from elliptic

selenocentric orbit)

blue green yellow yellow

VO Possible if L2 orbit < 50 ∼ 88b Low – Medium

(small orbit) (L2 orbit, not optimized) (< 300 m/s from elliptic selenocentric

orbit)

blue green green red

DRO Possible < 50 [3, 5]a Medium – High

(resonant state) (large orbit) (Plane change maneuver required)

blue green yellow red

LoPO Possible < 50 Unknown Medium – High

(resonant state) (Plane change maneuver required)

aFolta et al. (2015); bGrebow (2006).

green Exceeds requirements; blue Meets requirements; yellow Correctable deficiencies; red Unacceptable.

Accessibility 1v: Low→< 200 m/s; Medium→ [200, 600] m/s; High→> 600 m/s.
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2003). A lifetime larger than 1 year is only possible for a low-
eccentricity orbit of e < 0.15. Lastly, FO have been estimated to
last more than 3 years (Elipe and Lara, 2003).

However, it is mainly the maintenance 1v that dictates
compliance with EC.A.06, the exception being frozen orbits
that have orbital lifetimes larger than 1 year and, theoretically,
do not need intervention (Whitley and Martinez, 2016). There
are some ELO and SSO with low eccentricities which also
have longer-than-1-year orbital lifetimes, but their coverage
characteristics quickly degenerate with time. For highly elliptic
ELO, the station-keeping 1v can be larger than 300 m/s,
while for SSO and LLO (h = 100 km) it may overcome
50 m/s per year (Whitley and Martinez, 2016). For low-
eccentricity orbits, an estimation is done at 120 m/s per
year. The maintenance 1v budget for most of the CRTBP
orbits has been taken from (Folta et al., 2015). These were
computed with a long-term strategy of 12 orbital revolutions as
nominal guidance, including random errors in position, velocity
and impulsive correction maneuvers, for an average of 500
trials. VO require 88 m/s station-keeping (S/K) 1v per year
(Grebow, 2006). No information regarding LoPO maintenance
is available.

The accessibility from the departure orbit (EC.A.07) is
measured in terms of the 1v spent for the transfer to the
operational orbit. For Keplerian orbits, the optimal transfer 1v
can easily be estimated resorting the orbital dynamics knowledge
of the two-body dynamics. For three-body orbits, the optimal
transfer 1v needs to be computed numerically, e.g., using
optimization methods. As such, in this preliminary trade-off,
only optimal transfers between Keplerian orbits are computed.
For three-body orbits, representative values found in literature
are assumed.

The amount of propellant spent in reaching the operational
orbit andmaintaining it are two quantities that should be assessed
together, given that there is only a limit for their sum: the total
1v budget (EC.S.02). This should be <200 m/s to comply with
EC.A.06-07 and should be the smallest possible to comply with
EC.S.02.

As a result of the preliminary trade-off analysis, summarized
in Tables 5, 6, we consider (1) Circular frozen orbits with h ∈
[100, 1, 000] km and i ∈ [50, 90] degrees (which is chosen to
reduce plane change cost); (2) L2-circulating halo orbits; and
(3) L2-circulating vertical orbits. The trade-off is conducted
assuming that the Lunar Orbiter would deploy LUMIO either in
a 500 km-altitude circular parking orbit or a 200 by 15, 000 km
lunar parking orbit. The inclination of this orbit is assumed to be
between 50 and 90 degrees.

These orbits have been modeled in order to perform the
following coverage analysis. Preliminary lunar frozen orbits
have been found by numerically minimizing the amplitude
of the osculating eccentricity, taking into account third body
perturbations from Earth and the lunar non-spherical gravity
model GL0660B (Konopliv et al., 2013), up to degree and
order 7. The initial conditions for Halo and Vertical orbits
have been found in the CRTBP, using a time-varying targeting
scheme. All orbits have been propagated for one synodic
month.

3.2. Coverage Analysis
The evaluation criteria related to lunar meteoroid impacts
are applied, and a meteoroid impact flashes coverage analysis
is performed. The coverage analysis is characterized by the
interaction between three modules:

1. FOV-area module. The surface area that an instrument can
observe (FOV-area), at one instant or extended period of
time, defines the coverage of the central body. The FOV-area
of LUMIO is computed considering the instrument working
principles, the LUMIO-Cam characteristics, and the actual
curvature of the central body. The payload FOV and the S/C
position are the two main inputs of this module. Furthermore,
is is assumed that the S/C points toward nadir.

2. Lunar nightside monitoring module. The effective FOV-
area is defined as the fraction of the FOV-area that it
is not illuminated by the Sun. Since lunar impact flashes
can only be detected on the lunar nightside, this module
allows the determination of the lunar portion in which
meteoroids flashes may be actually detected. The main input
is the Sun–Moon–spacecraft angle (β), which determines the
illumination conditions of the FOV-area, such that

FOVeff(t) =

{

fdark FOVarea, if β(t) ≥ 90 deg,

0, if β(t) < 90 deg,
(27)

where fdark(t) = β(t)/180 is the percentile dark lunar portion,
with β ∈ [0, 180] deg. In Equation (27), the effective FOV-
area is zero when fdark < 0.5, thus no observations can be
performed in this range.

3. Meteoroid environment module. Given the range of signals
detectable by the payload at each instant and an altitude
profile, this module can independently determine the range
of kinetic energies detectable by LUMIO (see section 2), for
each candidate orbit. Given also the effective FOV-area, the
total number of meteoroids detected in the kinetic energy
range [KEmin, KEmax], over themission lifetime, is determined
through (1) Estimation of the impact flux (indicator of impacts
per year) visible in the satellite effective FOV-area, as function
of time (Equation 14); (2) Estimation of the average impact
flux visible in the satellite effective FOV-area, during one
synodic month by means of an integral function; and (3)
Estimation of the total number of meteoroids detected over
the mission lifetime (1 year).

3.2.1. Coverage Trade-Off
Figures 3A,B show the minimum and maximum kinetic energy
detectable by the LUMIO-Cam from a frozen orbit, for
the luminous efficiency and blackbody methods. Only the
inclinations which allow the maximum number of detections,
per semi-major axis, are presented for brevity, but the results
shown are representative of all inclinations. With both methods,
KEmin and KEmax increase with altitude, but they considerably
disagree in the kinetic energy ranges detectable for frozen
orbits. The luminous efficiency method estimates that KEmin ∈

[10−13, 10−9] kton TNT and KEmax ∈ [10−10, 10−7] kton
TNT, while the blackbody method estimates that KEmin ∈

[10−18, 10−12] kton TNT and KEmax ∈ [10−12, 10−8] kton TNT.
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FIGURE 3 | Estimation of detectable kinetic energy range and meteoroid impacts for frozen orbits. (A) Luminous efficiency method. (B) Blackbody method. (C)

Detected meteoroids (LE). (D) Detected meteoroids (BB).

Figures 3C,D show the corresponding total number of
meteoroid detections during the mission lifetime, where the
luminous efficiency method predicts more meteoroid detections
for increasing altitude, while the blackbody method predicts
the opposite trend. This is because, using the luminous
efficiency method the number of impacts detectable is actually
proportional to h0.2 and with the blackbody method the number
of impacts detectable is proportional to h−1.1, given that, for
low altitudes, the FOV-area is proportional to h2 (see section
2.2.2). Furthermore, due to the disagreement in the estimation
of KEmin, the luminous efficiency method predicts the detection
of much less meteoroids than the blackbody method. The former
estimates between 4 and 9 thousands meteoroid detections
during the mission lifetime for a frozen orbit, while the later
estimates roughly between 2×106 and 2×108 meteoroids during
the same period. Given the LUMIO-Cam optical properties, the
estimation made by the luminous efficiency method is more in
alignment with the one presented in Oberst et al. (2011). On the
other hand, the blackbody method overestimates the number of

impacts detectable from a frozen orbit by at least two orders of
magnitude.

Figures 4A,B show the minimum and maximum kinetic
energy detectable by the LUMIO-Cam for the candidate
three-body orbits and for the two kinetic energy estimation
methods applied. The black lines represent the kinetic energy
requirements as per EC.A.03-04. Being these energies defined at
Earth, they are scaled trough the Earth gravitational correction
factor (section 2.2.2) to obtain 7× 10−7 and 7× 10−2 kton TNT
at the Moon. The methods disagree with respect to the estimated
kinetic energy range, especially regarding KEmax. The blackbody
method predicts a wider kinetic energy range, with smaller KEmin

and larger KEmax.
The difference between the two methods, for three-body

orbits, when it comes to the number of meteoroid detections,
is not as prominent as for frozen orbits. Figures 4C,D show
the corresponding total number of meteoroid detections during
the mission lifetime. As can be seen in this figure, for halos
and vertical orbits, the number of impacts estimated by both
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FIGURE 4 | Estimation of detectable kinetic energy range and meteoroid impacts for the considered three-body orbits over the mission lifetime. Black lines represent

the kinetic energy limits as set in the requirements (corrected for the Moon). (A) Luminous efficiency method. (B) Blackbody method. (C) Detectable meteoroids (LE).

(D) Detectable meteoroids (BB).

methods is in the same order of magnitude (between 103

and 104). This is because, for higher altitudes, the methods
are in agreement with respect to KEmin, parameter which
drives the number of meteoroid detections. The total number
of detections estimated for a satellite permanently at the
Earth–Moon L2 is also presented, for comparison. The results
at L2 represent a limit case for L2-circulating candidate
orbits.

The error bars shown here for the luminous efficiency
method are associated with the luminous efficiency uncertainty,
while the errors bars shown for the blackbody method
are a 1σ error related to the magnitude measured by the
CCD sensor (Raab, 2002). The blackbody method results
show smaller error bars than the luminous efficiency results,
but it inherently has more assumptions than the luminous
efficiency method and the possible errors associated with
those assumptions are not represented in the results shown
here.

The results presented here do not account for scattered light
from the Moon dayside, consequent detector blooming, and
impact flash detection redundancy. In fact, scattered light and
blooming may potentially hinder the detection of impact flashes
and influence the minimum detected kinetic energy estimation
the most, as opposed to the maximum detected kinetic energy.
Impact flash detection redundancy can be dealt with in two
ways: (1) by slightly defocussing the LUMIO-Cam, in order to
avoid false positives; or (2) by adding a second detector to the
camera. In both cases, the minimum kinetic energy estimation
is also affected. However, to compensate for the loss of signal,
the camera sensitivity can be increased with gains G > 2. These
issues affect neither the assessment of orbit types made in this
work nor the validity of the coverage trade-off that follows. These
issues will be taken into account in future mission design phases.

The coverage trade-off accounts for evaluation criteria
EC.A.01-04. Table 7 displays the orbit trade-off for the results
of both luminous efficiency method and blackbody methods, as
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TABLE 7 | First orbit trade-off, given the results of both luminous efficiency method and blackbody method.

Orbit Allows observations in KE ∈ 10−[6,1]

kton TNT

Nimpacts ≥ 240 Nimpacts ≥ 2 for KE ∈ 10−[4,1]

kton TNT

Nimpacts ≥ 100 for KE ∈ 10−[6,4]

kton TNT

EC.A.01 EC.A.02 EC.A.03 EC.A.04

red green red red

FO None All assessed None None

blue green green green

(NR)HO All assessed All assessed All assessed All assessed

blue green green green

VO All assessed All assessed All assessed All assessed

green Exceeds requirements; blue Meets requirements; yellow Correctable deficiencies; red Unacceptable.

the two sets of results obtained lead to identical conclusions on
orbits feasibility. Both methods exclude frozen orbits (1 out of
4 acceptance criteria related to meteoroid impacts met), while
both halo and vertical orbits meet all acceptance criteria. The
halo family has the additional advantage of allowing a constant
visibility of the spacecraft from Earth and a quasi-resonance 2:1
with the synodic period.

3.3. Detailed Analysis
It has been shown that remotely detecting flashes is the
only technically and economically viable option for a CubeSat
to monitor meteoroid impacts on the lunar surface. When
considering the conclusions of the preliminary trade-off (section
3.1), the coverage trade-off (section 3.2), the mission type flight
heritage, and solar eclipse occurrences, the Earth–Moon L2 halo
family is baselined for LUMIO mission. The vertical Lyapunov
orbit family is selected as back-up plan and it is not detailed in
this paper.

The LUMIO mission is divided in 4 well defined phases (refer
to Figure 5),

1. Parking:

(a) Starts when the lunar orbiter deploys LUMIO on the
prescribed selenocentric elliptic parking orbit (orbital
elements of the parking orbit are shown in Table 8);

(b) Ends when LUMIO performs the Stable Manifold Injection
Maneuver (SMIM);

(c) Lasts 14 days.

2. Transfer:

(a) Starts when LUMIO completes the SMIM;
(b) Ends when LUMIO performs the Halo Injection Maneuver

(HIM);
(c) Lasts 14 days.

3. Operative:

(a) Starts when LUMIO completes the HIM;
(b) The primary mission modes during the operative phase are

Science Mode and Navigation and Engineering Mode (or
Nav&Eng), that alternate between every other orbit;

(c) Ends after 1 year of operations.

4. End of Life (EoL):

(a) Starts with de-commission of all (sub)systems;
(b) Ends when the EoL maneuver is correctly performed for

safe disposal of the spacecraft.

3.3.1. Earth–Moon L2 Halos in High-Fidelity Model
A set of quasi-periodic halo orbits (sometimes referred here
as quasi-halos or quasi-halo orbits) about Earth–Moon L2 are
found by employing the methodology described in Dei Tos
and Topputo (2017a). Fourteen quasi-halo orbits are computed
in the high-fidelity roto-pulsating restricted n-body problem
(RPRnBP) and saved as SPICE2 kernels (see Dei Tos and
Topputo, 2017a for more details on frames and models). The
initial feeds to compute the quasi-halo samples are Earth–
Moon three-body halos at 14 different Jacobi constants, ranging
from Cj = 3.04 to Cj = 3.1613263. The latter value
corresponds to the one assumed for the very first iteration
of the activities. All orbits are computed starting from 2020
August 30 00:00:00.000 TDB. Although quasi-halos, shown in
Figure 6, are computed for a fixed initial epoch, the persistence
of libration point orbits in the solar system ephemeris model
allows wide freedom in the refinement algorithm also for
mission starting at different epochs (Dei Tos and Topputo,
2017b).

Quasi-halo orbits of Figure 6 are all possible LUMIO
operative orbits. As the orbit becomes more energetic (or as
its CRTBP Jacobi constant decreases), the quasi-halo exhibits a
wider range of motion both in terms of a) Moon range and of
b) geometrical flight envelope about the corresponding CRTBP
trajectory. The latter trend is disadvantageous when a hard
pointing constraint must be respected (e.g., Moon full disk on
optical instrument). On the other hand, the lunar distance places
a constraint on the minimum FOV for the optical instrument
on board LUMIO to be able to resolve the Moon full disk at
any location along the quasi-halo, compatibly with evaluation
criteria EC.S.03. Bar charts in Figure 7 show the ranges from
the lunar surface to the quasi-halo samples. For given values of

2SPICE is NASA’s Observation Geometry and Information System for Space

Science Missions (Acton Jr, 1996; Acton Jr et al., 2018). The toolkit is freely

available through the NASA NAIF website http://naif.jpl.nasa.gov/naif/. Last

downloaded on February 7, 2018.
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FIGURE 5 | Outline of LUMIO mission phases.

TABLE 8 | Main parameters for the transfer phase.

Parameter hp ha i � ω ϑ T tpo tsm

Value 200 14964.2 78.1 30.0 301.2 ≈ 0 22.42551 0.7406 7.5397

Units [km] [km] [deg] [deg] [deg] [deg] [hours] [adim] [adim]

FIGURE 6 | Projection of Earth–Moon L2 quasi-halos in the roto-pulsating frame. (adim. stands for nondimensional variable).

the camera FOV, simple trigonometric calculations provide the
minimum distance above which the Moon disk is entirely seen
by the instrument. The wider the FOV, the closer LUMIO can get
to the Moon still being able to see its full disk. The horizontal
dashed lines in Figure 7 indicate this distance for different values
of FOV in degrees.

3.3.2. Orbital Transfer
The transfer phase of LUMIO is done entirely in the CRTBP.
Free transport mechanisms are leveraged to reach a target halo.
Specifically, intersection in the configuration space is sought
between the halo stable manifolds and the selenocentric injection
orbit in which LUMIO is deployed by the lunar orbiter. Since

Frontiers in Astronomy and Space Sciences | www.frontiersin.org September 2018 | Volume 5 | Article 2946

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Cipriano et al. Orbit Design for LUMIO

FIGURE 7 | Bars for quasi-halos ranges from lunar surface.

the sought intersection occurs only in configuration space, a
maneuver is necessary for orbital continuity. This maneuver
places the spacecraft on the stable manifold of the target halo
and is thus called stable manifold injection maneuver (SMIM),
1vSMIM. The transfer phase starts when the SMIM is executed,
and ends after the halo injection maneuver (HIM), 1vHIM,
inserts the S/C into the target halo orbit. The aim of the transfer
design analysis is to find the parameters of the injection orbit
and the stable manifold that lead to a minimum 1vSMIM at the
intersection. The optimization problem is stated and solved with
a NLP method.

It is convenient to briefly recall the methodology used to
numerically compute the invariant manifolds in the CRTBP. This
approach relies on finding a linear approximation of themanifold
in the neighborhood of an orbit. An algorithm is implemented
that scans the stable manifold space by varying the time along the
originating halo, tpo, and the time along the stable manifold, tsm.
Once tpo and tsm are specified, the stable manifold is completely
determined (Topputo, 2016). tpo uniquely specifies a state along
the halo, x(tpo). At x(tpo), the invariant manifolds are locally
spanned by the stable and unstable eigenvectors of M(tpo), the
monodromy matrix associated to x(tpo). The initial conditions
used to compute the stable manifold are xs0 = x(tpo)±εvs, where
vs is the stable eigenvector ofM(tpo) and ε is a small displacement
perturbing in the stable direction, whereas the ± discriminates
which of the two branches of the manifold has to be generated. As
for ε, it should be small enough to preserve the local validity of
the linear approximation, but also large enough to prevent from
long integration times needed to compute the manifold. In this
work, ε = 10−6 has been used, consistently with the arguments
in Gómez et al. (1993). tsm is the duration xs is flown in backward

time. The stable manifold state yields:

xs = ϕ(xs0 , 0;−tsm), (28)

where ϕ is the flow of the CRTBP from xs0 to−tsm. An outline of
the transfer design logic is shown in Algorithm 1. The problem
of transfer design with an optimal impulsive maneuver can be
formally stated as a constrained minimization:

min
y

J(y) s.t.

{

ceq = 0,

c ≤ 0,
(29)

where

y = (hp, ha, i,�,ω, θ , tpo, tsm), J(y) = ‖1vSMIM‖, (30)

ceq =

(

rt − rs
hp − 200

)

, c =

(

500− ha
ha − 15, 000

)

; (31)

where rt is the position along the injection orbit, and rs is
the position along the stable manifold according to Equation
(28). The minimization is solved with an active-set algorithm.
Algorithm 1 is applied to all halos in the Jacobi energy range
detailed above. Note that if the inclination of the injection orbit
is found to be outside of the admissible range ([50, 90] deg), a
plane chance maneuver (PCM) is added. The transfer parameters
to quasi-halo generated by Cj = 3.09 are shown in Table 8. As
expected, the SMIM occurs at the periselene of the injection orbit
(θ ≈ 0).

3.3.3. Station-Keeping
In many cases, it is not strictly necessary for the spacecraft
to move precisely along the nominal trajectory to accomplish
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Algorithm 1 Transfer design.

procedure INITIALIZATION

Set the CRTBP as default dynamical model
Select Cj of target halo orbit
Select manifold branch flying toward the Moon (i.e., left branch for L2 LPOs)

end procedure

procedureMANIFOLD SCAN FOR INITIAL GUESS GENERATION

Set bounds for the time along the target halo, tpo ∈ [0,T]

Set maximum time along the stable manifold, t
(max)
sm

Discretize tpo by dtpo to get nt discrete values
Initialize vector τ ∈ R

nt×3

for tpo = 0→ T by dtpo with index k do

Get stable manifold state, xs, for current tpo and t
(max)
sm ⊲ See Equation (28)

Find tsm at which altitude, hp, is closest to 200 km
Store (tpo, tsm, hp) in the k-th row of vector τ

end for

end procedure

procedure TRANSFER MANEUVER

Initialize vector Ŵ ∈ R
nt×16

loop in τ with index j
repeat

Randomly initialize injection orbit elements in e = (ha, i,�,ω, θ)
Solve for 1vSMIM using e and j-th row of τ as first guess ⊲ Equation (29)

until convergence is attained
if i(opt) /∈ [50, 90] deg then

Select nearest target inclination of parking orbit, ipk ⊲ See section 3.1

Schedule plane rotation around apoaxis by 1i = |ipk − i(opt)|
Compute plane rotation maneuver at apoaxis, 1vpc
Compute updated �pk and ωpk of parking orbit

else

Set 1vpc = 0

Set parking orbits elements equal to transition orbit elements
end if

Store optimization results, (1vSMIM,1vpc, y
(opt),�pk,ωpk), in Ŵ j-th row

end loop

end procedure

mission objectives. Indeed, once the nominal orbit is determined,
it is desired to maintain the spacecraft within some region
(e.g., torus- or box-shaped) about the reference path. Non-
modeled perturbations and errors will cause the spacecraft
to drift from the nominal path, and the unstable nature of
the libration point orbits will further amplify the deviation.
Assuming discrete and impulsive corrections, the station-keeping
problem consists in finding the required corrective maneuvers
in terms of magnitude, direction, and timing of each 1v.
In optimal station-keeping problems, the total 1v budget
is minimized.

In light of the limited 1v capability, fuel consumption for
station-keeping (S/K) around the operative orbits will be a
critical factor for mission sustainability. Taking advantage of
the generated orbits as reference trajectories, a computationally
efficient Monte-Carlo routine is devised for estimation of the
cost of each S/K maneuver. An effort is directed toward the
development of a station-keeping strategy that can be used to
maintain CubeSats near such nominal LPOs.

The S/K cost is estimated by employing the target points
method (TPM) first introduced in Dwivedi (1975), then adapted
to the problem of LPOs by Howell and Pernicka (1993), and
finally used for JAXA’s EQUULEUS mission analysis (Oguri
et al., 2017). A massive Monte-Carlo simulation is performed
with 10, 000 samples, considering the impact of the injection,
tracking, and maneuver execution processes on the nominal
orbit determined in the presence of solar radiation pressure and
gravity of the main solar system celestial bodies (i.e., Sun, 8
planets, the Moon, and Pluto). To precisely simulate a realistic
trajectory,

1. The initial conditions of the quasi-halos are altered to account
for orbit insertion error.

2. Tracking windows are considered in which orbit
determination (OD) campaigns modify the actual knowledge
of the spacecraft state by means of optical measurements and
non-linear filtering. Because of various uncertainties in the
OD process, the spacecraft position and velocity are never
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FIGURE 8 | Overview of S/K simulation process and target points method.

Algorithm 2 Cost estimation for of station-keeping along a
reference quasi-halo.

1: function DVSK(t0, tf , 8, 1tv, 1tc, 1ti, σ 2
OI , σ

2
OD, σ

2
EX , Q, R)

2: t← t0

3: Generate six-dimensional OI error, εOI ∼ N (0, σ 2
OI)

4: OI: δxtrue ← εOI

5: while t ≤ tf & δxtrue ≤ 10, 000 km do

6: tv ← t +1tv

7: tc ← tv −1tc

8: ti ← t +1ti

9: δxtrue ← 8(t, tc)δxtrue

10: Generate six-dimensional OD error, εOD ∼ N (0, σ 2
OD)

11: OD: δxc ← δxtrue + εOD, where δxc = [δrc; δvc]

12: Maneuver planning: 1vS/K = A
∑Npt

i=1 (αiδrc + βiδvc)

⊲ See Equation (34)
13: δxtrue ← 8(tc, tv)δxc

14: Generate three-dimensional maneuver execution
error, εEX ∼ N (0, σ 2

EX)

15: 1v← 1v +1v ◦ εv ⊲Here, ◦ represents the
Hadamard product

16: Maneuver execution: δxtrue ← δxtrue + [03×1;1v]

17: t← tv

18: end while

19: end function

exactly known. To simulate tracking errors, the six S/C states
are altered at the end of each OD campaign.

3. At various times along the trajectory, the S/K strategy will
determine that a maneuver is required, and its magnitude
and direction will be computed. To model the inaccuracy of
maneuvers actual implementation, each 1vS/K component is
randomly altered.

The orbit injection, εOI , orbit determination, εOD, and the
maneuver execution, εEX , errors are all modeled and generated
with zero-mean Gaussian distributions, i.e., εOI ∼ N (0, σ 2

OI),

TABLE 9 | Standard deviations.

Standard deviation LUMIO Units

σOIx , σOIy , σOIz 10, 10, 10 [km]

σOIu , σOIv , σOIw 10, 10, 10 [cm/s]

σODx , σODy , σODz 10, 10, 10 [km]

σODu , σODv , σODw 10, 10, 10 [cm/s]

σEXu , σEXv , σEXw 2, 2, 2 [%]

εOD ∼ N (0, σ 2
OD), εEX ∼ N (0, σ 2

v ), where σ 2
OI , σ 2

OD, σ 2
EX are

the covariances of the orbit insertion, orbit determination, and
maneuver execution uncertainties, respectively.

The station-keeping maneuvers are conducted at specific
selected epochs during the mission. That is, maneuver timings
are parameters of the S/K strategy, rather than variables.
Referring to Figure 8, every OD campaign is always terminated
1tc time units before the maneuver execution. 1tc is termed
cut-off duration and it is necessary to compute, schedule,

and prepare the maneuver. The S/K maneuver planning is
assumed to use Npt downstream points, i.e., the target points,
as reference states to compute the maneuver magnitude and
direction. In Figure 8, there are two target points, Npt = 2,
and one S/K maneuver per halo orbit. The algorithm for the
detailed station-keeping cost analysis is shown in Algorithm
2.

The TPM provides optimal 1vS/K computed as solution of a
LQR problem that minimizes a weighted sum of the maneuvers
cost and the position deviation from a reference trajectory at Npt

downstream control points. The cost function reads

JS/K = 1vTS/KQ1vS/K +

Npt
∑

i=1

dTi Ridi, (32)

where 1vS/K is the station-keeping maneuver, Q the cost weight
matrix, di the predicted position deviation from the reference
trajectory at the i-th target point, and Ri the weighing matrix of
the deviation at the i-th target point. The position deviation is
predicted by means of the state transition matrix of the reference
trajectory, 8:

di = 8rr(tc, ti)δrc +8rv(tc, ti)δvc +8rv(tv, ti)1vS/K . (33)

In Equation (33), 8rr and 8rv are 3-by-3 matrices that map
deviation of position and velocity, respectively, to a position
deviation at a subsequent epoch, tc is the cut-off epoch, tv
is the maneuver execution epoch, and ti the epoch of the
i-th target point. The solution of the minimization problem
yields the analytic expression for the optimal station-keeping
maneuver:
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1vS/K = A

Npt
∑

i=1

(αiδrc + βiδvc) ;

A = −





(

QT
+ Q

)

+

Npt
∑

i=1

8T
rv(tv, ti)

(

RTi + Ri

)

8rv(tv, ti)





−1

,

αi = 8T
rv(tv, ti)

(

RTi + Ri

)

8rr(tc, ti),

βi = 8T
rv(tv, ti)

(

RTi + Ri

)

8rv(tc, ti).

(34)
Table 9 reports the standard deviations of orbit insertion,
navigation, and maneuver execution errors for the S/K analysis.
The values of Table 9 are in well accordane with existing
applications (Folta et al., 2014). More important, simulations
have shown the standard deviations of Table 9 can be achieved
with the autonomous optical navigation algorithm on-board
LUMIO (Franzese et al., 2018). All parameters for the correct
functioning of Algorithm 2 have been fine-tuned with extensive
simulation campaigns. The parameters fine-tuned values of the
S/K algorithm are shown in Table 10. The cut-off duration
of 12 h is at the same time sufficiently short to prevent the
spacecraft state knowledge from growing excessively, and long
enough to schedule maneuver execution operations on-board
LUMIO. The target points are located at 35 and 42 days after
orbit insertion and any subsequent S/K maneuvers. This ensures
approximately 1 month of operations in case of maneuver
execution failure. Finally, having the eigenspectrum of Q a larger
magnitude than that Ri means the optimization weighs the
deviation with respect to reference position more than the 1vS/K
cost.

TABLE 10 | Standard deviations.

Parameter Value Units

1tc 12 [h]

1t1 35 [days]

1t2 42 [days]

Q I3×3 · 10
−1 [-]

R1 I3×3 · 10
−2 [-]

R2 I3×3 · 10
−2 [-]

Figure 9 shows the strategy employed for station-keeping
maneuvers timing. For clarity, just 70 days of operations are
shown and the quasi-halo orbital period is assumed to be fixed
and equal to 14 days. The first quasi-halo orbit is entirely
dedicated to recover any orbit insertion (OI) errors by means
of two maneuvers, 1 and 7 days after OI, respectively. In the
orbits after that, nominal operations occur, i.e., there is a series
of Nav&Eng and Science orbits. Three S/K maneuvers are placed
within the Nav&Eng orbit: the first at the entry point, the second
in the middle (i.e., 7 days after the entry), and the third at the end
of the Nav&Eng orbit. This maneuvers frequency configuration
allows for pristine Science orbit operations, albeit it increases the
cost when compared to a more spread and regular distribution of
S/K maneuvers.

Station-keeping cost is computed for 1 year of life cycle
for each of the quasi-halos considered. To obtain reliable
station-keeping cost estimation results, a massive Monte-Carlo
simulation of 10, 000 cases is performed with respect to each
reference orbit generated. Each Monte-Carlo run employs
Algorithm 2 to compute S/K cost for a realization of εOI ,
εOD, and εEX . Table 11 displays the 1-year S/K cost with 1σ ,
2σ , and 3σ confidence. The Monte-Carlo data is fitted by

TABLE 11 | Confidence for the 1-year station-keeping cost.

Cj [adim] S/K cost [m/s]

1σ 2σ 3σ

3.16132363 75.5 137.9 196.5

3.16 72.4 131.6 186.9

3.15 53.4 92.7 128.4

3.14 40.1 66.4 89.7

3.13 29.2 45.4 59.2

3.12 22.0 31.6 39.1

3.11 17.8 23.8 28.5

3.10 13.3 16.9 19.6

3.09 18.3 23.9 28.1

3.08 11.0 13.9 15.6

3.07 8.8 10.2 11.2

3.06 8.5 9.9 10.9

3.05 7.6 8.6 9.3

3.04 7.2 7.9 8.4

FIGURE 9 | Strategy for station-keeping maneuvers timing.
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FIGURE 10 | Total transfer cost for different halos.

means of an Inverse Gaussian distribution. As expected, the
S/K cost increases for smaller (i.e., higher Jacobi constant)
quasi-halos. This trend reflects the stability (eigenspectrum
of monodromy matrix) properties of halo orbits. That is,
a larger halo is generally less unstable and thus cheaper
to maintain.

Preliminary observations have been made on alternative
station-keeping strategies: an i) Orbit continuation approach
and the ii) Floquet unstable modes cancellation method (FM).
Although the FM appears as the least expensive in terms of
station-keeping total budget (Folta et al., 2014), the TPM is able to
give a wider latitude on the selection of the S/K maneuver epoch
and phasing, favoring LUMIO orbital geometry and ConOps.
Indeed, the FM tends to place S/K maneuvers when the halo
unstable component exceeds a defined threshold, regardless of
the Phase LUMIO is flying. A further analysis on how to adapt
the Floquet modes approach to the LUMIO case may still reduce
the station-keeping costs presented in this work. In addition,
the 1vS/K calculation may be overly constrained since the LQR
strategy requires the use of target locations and fine-tuning of
weight matrices. A different optimization may also reduce the
S/K costs presented here.

3.3.4. Detailed Trade-Off
Figure 10 shows the total transfer cost for different halos. The
cost includes S/K, SMIM, and plane change maneuvers. It is
conjectured the reason why the transfer cost has a clearcut
minimum area is 2- fold. (1) For high energy levels (i.e., low
Jacobi constant), the stable manifold configuration space does
not get close enough to the Moon to permit intersection with the
selenocentric transition orbit. At the other end of the spectrum,

TABLE 12 | Mission 1v budgets for LUMIO operative orbit.

Maneuver Deterministic Cost [m/s]

1σ 2σ 3σ

PCM 0 – – –

Injecton orbit S/K – 8 8 8

SMIM 89.47 – – –

TCM1 – 28.6 53.0 73.1

TCM2 – 6.5 15.0 24.8

HIM 0.5 – – –

1-year S/K – 18.3 23.9 28.1

Disposal 3 – – –

TOTAL 154.4 192.9 227.0

(2) for high Jacobi constant values, the stable manifolds cross the
lunar region sufficiently close to provide patching opportunities
with a selenocentric transition orbit, but the speed mismatch is
comparatively large. i.e., the outbound stable manifold is much
faster than the S/C at periselene.

Quasi-halo generated from Cj = 3.09 is the designated
LUMIO operative orbit. The selection of LUMIO operative orbit
is based on results of Figure 10. Indeed, the quasi-halo is located
at the center of a minimum plateau for total transfer cost which
provide both a) Optimality of maneuvers cost, and b) Robustness
against errors in the actual energy level of the injected stable
manifold.

The selected operative orbit for the LUMIO mission is the
most suitable only according to the specified evaluation and
acceptance criteria. The selection may change if additional
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criteria and requirements are investigated in a further step of the
mission.

Mission1v budgets for eachmaneuver and phase are reported
in Table 12 with both deterministic and confidence values.
The total 1σ -cost is 154.4 m/s, which is also in line with a
12U CubeSat volume and mass budgets and with acceptance
criteria EC.A.06–07. Note that ESA “Margin philosophy for
science assessment studies” (Ref. SRE-PA/2011.097/, item MAT-
DV-14) states that stochastic maneuvers shall be calculated
based on the 3σ confidence interval with no additional margins
(SRE-PA and D-TEC staff, 2012). The choice to consider a
1σ confidence interval on stochastic maneuvers for LUMIO is
motivated by the inherently higher risk of a low-cost mission.
Nonetheless, the overall stochastic 1v computed based on a
95.32% confidence level of a combination of all stochastic
maneuvers is smaller than linear sum by 19%. With this
approach, the 3σ 1v budget sums up to 191.3 m/s (195.5 m/s
with margins on SMIM, HIM, and disposal maneuver), which
is still within the bounds for mission feasibility, according to
EC.A.06-07.

4. CONCLUSION

The primary science goal of LUMIO mission is to observe
meteoroid impact flashes on the lunar farside in order to study
the characteristics of meteoroids and to improve the meteoroid
models of the solar system. This might lead to a further
study of the sources of these meteoroids, such as asteroids in
the near-Earth environment and comets. The LUMIO mission
complements ground-based observations with remote space-
based observations, so improving the lunar situational awareness.

A number of potential orbit families have been considered
as candidate operative orbits for LUMIO, namely Keplerian,
perturbed-Keplerian, and three-body orbits. An orthodox trade-
off logic has been followed with hierarchical structure. An

initial pruning has been made based on the way qualitative
indicators delivered against acceptance and selection criteria.
A second-level trade-off has been performed by coupling the
developed models for the environment, impact flash, payload,
and astrodynamics. The capability of the payload to resolve the
impact flash in each of the candidate orbits as well as to satisfy
the mission requirements has been assessed. As a result, L2
halo orbits have been selected. Within the third-level trade-off,
a fully quantitative analysis has been conducted by considering
the accessibility and station-keeping costs with a high-fidelity
concept of operations. Eventually, the LUMIO operative orbit has
been baselined.
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Ceplecha, Z., Borovička, J., Elford, W. G., ReVelle, D. O., Hawkes, R. L., Porubčan,
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Recently there has been a resurgence of interest in missions to the moon and a major

challenge of such missions is to provide a continuous communication between the Earth

and the Moon’s far side. Orbits around the L2 Earth-Moon Lagrange point have been

a topic of interest in this field due to their potential for constant communication with

both the Earth and the Moon, however the Lagrange point orbits are innately unstable

and so station-keeping control is required to maintain them. Station-keeping problems

are highly nonlinear and a traditional approach to control design is first to linearize the

nonlinear system. However, this first-order approximation introduces errors if there are

large injection errors. This paper demonstrates how a simple Extended State Observer

(ESO) can be used to improve the convergence time of spacecraft to the reference orbit

given with large injection errors. Additionally, solar radiation pressure (SRP) a dominant

disturbance in deep-space, can lead to inefficient station-keeping if it is not taken into

account in the reference orbit design. New reference orbits can be designed that exploit

the SRP perturbation but this assumes that it is known apriori. Here we show how an

ESO could provide an in-orbit measurement of the SRP which could be used to modify

the reference trajectory to a more fuel efficient one. Finally, it is shown how an ESO can

be used to estimate, not only the disturbance, but simultaneously the velocity of the

spacecraft meaning that only the position of the spacecraft is required.

Keywords: station-keeping control, lagrange points, linear quadratic regulator, extended-state observer, active

disturbance rejection control

1. INTRODUCTION

Deep-space station-keeping exploits the natural dynamics of the solar system to design fuel-efficient
reference trajectories [1–5]. Natural orbits, such as Libration Point Orbits (LPOs) in the circular
restricted three body problem (CRTBP) have been used to design reference orbits in real missions
such as ISEE-3, Wind, SOHO, ACE, Genesis, DSCVER and Lisa pathfinder which exploit LPO
in the vicinity of the Earth-Sun Libration point L1, while the spacecraft ARMETIS and Chang′e
5-T1 exploit LPOs in the vicinity of the Earth-Moon Libration point orbits (see [3] and references
therein). More recently LPOs in the vicinity of L2 have been identified as the ideal position for a 12
UCubeSat mission for the purpose of observingmeteroid impact with theMoon [6]. In Shirobokov
et al. [3] it is pointed out that only investigations including precise models of the dynamics of
the spacecraft are of relevance to station-keeping design particularly in the Earth-Moon system.
Moreover, if the reference is designed in a low-fidelity model then the station-keeping cost in a
high-fidelity model will require greater cost. Furthermore, although high-fidelity models such as
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SPICE [7] are available to design fuel-efficient spacecraft the
precise nature of the SRP acting on the spacecraft in deep space
is uncertain (for example through degradation of a solar sails
reflective surface in the space environment [8, 9]).

Solar Radiation Pressure (SRP) should also be taken into
account in order to design fuel-efficient orbits and it can also be
used to obtain observational advantages [10–15]. However, the
design of these SRP perturbed reference orbits requires that the
force exerted on the solar sail is accurately known. In this paper it
is shown that by using an extended state observer (ESO) the SRP
can be measured on-board from the knowledge of the position
of the spacecraft and therefore adjustments to the reference orbit
could be made during the mission. Indeed, it could be possible
that once an accurate measure of the SRP is obtained on-board
that a differential corrector could be used to refine the reference
orbit to one that requires less station-keeping control. In other
words with a known SRP a natural reference trajectory can be
constructed that incorporates realistic perturbations.

The second major aspect of mission planning on LPO is
to design an efficient station-keeping control since these orbits
are inherently unstable. Deep-space station-keeping is made
more complicated by initial orbit injection errors, uncertain
dynamics such as SRP and sensor faults. There are a plethora
of different strategies for station-keeping on LPOs; those
which exploit the underlying dynamics of the CRTBP, mainly
by Floquet theory and those which apply classical control
techniques such as the linear quadratic regulator (LQR)[4,
13–15], nonlinear regulation [16], disturbance accommodating
control [17] and sliding mode control [18] amongst others (see
[3] for a review of current methods). In this paper we focus
on coupling a simple proportional feedback-control with an
ESO and demonstrate the potential benefits to station-keeping
on LPOs. Moreover, it is shown to improve convergence in
the presence of large injection errors, measure the SRP on-
board while simultaneously measuring the spacecraft’s velocity
(only knowledge of the spacecraft position is required). Although
the focus here is on complimenting a simple proportional
controller with an ESO in-the-loop it could potentially
improve a wide range of existing controls [4, 13, 14, 16–
18].

The use of ESOs in station-keeping design was first
demonstrated in Zhu et al. [19] whereby the reference orbit
was designed using a linearization in the vicinity of an LPO in
the CRTBP and then the control to track this was implemented
in a high-fidelity model including eccentricity and SRP. These
perturbations were considered to be unknown and the ESO
was used to measure the entire disturbance which was then
compensated for in the control. It was shown to improve the
tracking error with respect to an LQR controller while maintaing
the 1V requirement. In Narula and Biggs [20] it was shown that
an ESO could be used to estimate the extent of a fault in an
actuator and then the control input adjusted to compensate for
this fault. In this paper we demonstrate how including an ESO
can improve convergence time of a proportional controller and
show that the closed-loop system yields a tunable linear response.
It is also shown that it is possible to perform low-thrust station-
keeping in the Earth-Moon system in the presence of SRP with

only knowledge of the position of the spacecraft making the
control robust to failures of velocity sensors.

The paper is presented as follows: In section 2 the station-
keeping problem is formulated including the equations of motion
in the circular-restricted three-body problem (CR3BP) in the
Earth-Moon- Spacecraft system with SRP and the reference
trajectory. In section 3 we construct a Linear active uncertainty
measurement control that couples a proportional controller with
a linear ESO and then with a nonlinear ESO. This section
demonstrates the use of each control in terms of improving
convergence, SRP and velocity measurements. Simulations are
given to demonstrate the effectiveness of the controller.

2. PROBLEM FORMULATION

From Gómez et al. [5], we consider the CR3BP equations in
the synodic frame, centered at the Earth-Moon barycenter and
rotating with the angular speed of the Moon. We denote by
(x, y, z) the coordinates of the spacecraft in this frame, while we
denote by (̂X,̂Y ,̂Z) the inertial frame, a Cartesian frame centered
at the Earth with fixed axes. The coordinates used are non-
dimensionalized; i.e., the sum of the masses, the distance between
the primaries, and the gravitational parameter all equal one and
these values are normalized by a three-body parameter µ, which
is defined as the ratio of the smaller primary’s mass to the sum of
the mass of the two primaries,

µ =
m2

m1 +m2
(1)

where m1 and m2 are the masses of the Earth and the Moon
respectively. With the distance between the two primaries equal
to one, the distances between the barycenter and the primary
and barycenter and the secondary are equal to −µ and 1 − µ,
respectively where µ = 0.01215. To this CR3BP we add the
control u = [ux, uy, uz]. We also add the solar radiation pressure

(SRP), the disturbance force vector aS = [axS a
y
S azS]

T arising
from the incoming solar photons perpendicular to the surface
of the large spacecraft, in the direction n. Thus the spacecraft
dynamics are given by

ẍ− 2ẏ− x+
(1− µ)(x+ µ)

d3
−

µ(x− (1− µ))

r3
= ux + axS

ÿ+ 2ẋ− y+
(1− µ)y

d3
−

µy

r3
= uy + a

y
S

(2)

z̈ +
(1− µ)z

d3
−

µz

r3
= uz + azS

where

d2 = (x+ µ)2 + y2 + z2,

r2 = (x− (1+ µ))2 + y2 + z2 (3)

Assuming that the solar radiation pressure is constant in
magnitude throughout the Earth-Moon system, the SRP aS can
be written as:
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aS = a0(S · n)
2n (4)

where S is the vector direction of the Sun-line

S = [cos(�St),− sin(�St), 0]
⊤ (5)

with �S = 0.9252 the angular rate of the Sun line in the
non-dimensional variables, and a0 is the SRP acceleration
in non-dimensional units. The characteristic acceleration is
the acceleration generated by the spacecraft when it faces the
Sun at Earth’s distance. Note that this parameter is difficult to
measure and is not known with certainty. The right-hand side
of (2) possesses a constant of integration known as the Jacobi
Constant Jc.

Jc = x2 + y2 + 2
1− µ

r1
+ 2

µ

r2
− (ẋ2 + ẏ2 + ż2)

= 2U − (ẋ2 + ẏ2 + ż2)

where U is the modified potential energy function

U =
1

2
(x2 + y2)+

(1− µ)

d
+

µ

r
(6)

which can be expressed in the simple form [5]















ẍ =
∂U
∂x + 2ẏ+ ux + axS

ÿ =
∂U
∂y − 2ẋ+ uy + a

y
S

z̈ =
∂U
∂z + uz + azS

(7)

which can be expressed in the form

ẋ1 = x2

ẋ2 = f (x1, x2)+ u+ aS
(8)

where the position x1 = [x, y, z] and the velocity x2 = [ẋ, ẏ, ż]
and x = [x, y, z, ẋ, ẏ, ż], aS = [axS, a

y
S, a

z
S] is the uncertain SRP that

is required to be estimated. The initial conditions have been taken
from Gómez et al. [5] and modified to increase the precision
using a differential corrector to yield LPOs when SRP is not
included in the model. We briefly analyze these orbits to choose
the one with the maximum coverage of the lunar surface. The
choice of orbit is based on the percentage time in contact with
Moon and ground station on Earth. Since the Chandrayan-I
mission and LCROSS by NASA has pointed out many important
crater locations on the far side of the moon, the decision is
based on the orbit coverage of the important craters of moon.
By evaluating the percentage time of coverage time for each of
the orbit candidates (shown in Table 1). It can be seen that best
performing orbit is the halo orbit, and so for the purpose of
providing continuous communications to a lunar ground station
as well as continuous connection with stations with Earth, a halo
orbit is chosen as the candidate reference orbit in this paper.

TABLE 1 | Percentage coverage of each orbit.

Zone of coverage Vertical

Lyupanov (%)

Planar Lyupanov (%) Halo orbit (%)

Tsiolkovsky crater 65.75 44.81 75.21

SPA-1 crater 53.34 47.06 90.86

Schrödinger center 27.70 56.78 97.82

Shakaleton crater 23.65 57.35 88.36

It can be seen that best performing orbit is the halo orbit,
and so for the purpose of providing continuous communications
to a lunar ground station as well as continuous connection
with stations with Earth, a halo orbit with the following initial
conditions is chosen as the candidate reference orbit in this paper:

















x0
y0
z0
ẋo
ẏ0
ż0

















=

















1.12424283994529
0

0.187435048916681
0

−0.223784191244108
0

















(9)

The general problem is then to design a feedback control such
that the magnitude of the error state converges to zero as t → ∞

in the presence of potentially large injection errors, SRP and only
position measurements.

3. A GENERAL ACTIVE UNCERTAINTY
MEASUREMENT CONTROL (AUMC)

The general AUMC is based on the original idea of the active
disturbance rejection control (ADRC) proposed in Han [21].
ADRC is used to measure the unknown disturbances within the
system and to cancel the estimated disturbance in the control at
each sampling period. In this paper we refer to the coupling of a
proportional controller and an ESO as AUMC as the ESO is used
to measure (depending on its form) the SRP disturbance while
taking into account the higher-order terms in the linearization
and velocity measurement. In this section we introduce a general
AUMC which combines a proportional-type controller coupled
with an ESO of the form:

u = −Kδx− x̂3 (10)

where δx = x − xref , K is a gain matrix that can be tuned
experimentally or computed using LQR [20] by removing the
unknown dynamics from the equation of motion. The current
state of the spacecraft x is assumed to be measurable and x̂3 is the
output of the following ESO:

˙̂x1 = x̂2 + β1(x1 − x̂1)

˙̂x2 = x̂3 + g(x)+ u+ β2(x1 − x̂1)

˙̂x3 = β3(x1 − x̂1)

(11)
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where x̂1 is the estimate of x1 (or δx1 if the linearization of
f (x1, x2) is used), x̂2 is the estimate of x2 (or δx2 in the linear
case) and x̂3 is the estimate of

h = f (x1, x2)− g(x1, x2)+ aS (12)

where g(x) is a prescribed function that is defined by the control
engineer depending on the control objectives, for example, it can
be set to be the known nonlinear or linearized dynamics or simply
set to zero. To initialize the estimator we set x̂1(0) = x1(0)
and x̂2(0) = x2(0) (or x̂1(0) = δx1(0) and x̂2(0) = δx2(0)
if the linearized dynamics are being used for control design) as
these values are known and assumed to be given by the sensors,
while x̂3(0) = 0 as this is an uncertain quantity. Note that this
control requires the input of both the position and the velocity (or
position and velocity errors in the linear case) of the spacecraft
x1, x2 which will require both reference or optical sensors as well
as an inertial measurement unit. In the case that there is a fault
in the velocity measurement sensor the control law (10) can be
adapted to:

u = −K1δx1 − K2δx̂2 − x̂3 (13)

where δx1 = x1 − x
ref
1 and δx̂2 = x̂2 − x̂

ref
2 where x̂2 and x̂3 are

outputs of the ESO:

˙̂x1 = x̂2 + β1(x1 − x̂1)

˙̂x2 = x̂3 + g(x1, x̂2)+ u+ β2(x1 − x̂1)

˙̂x3 = β3(x1 − x̂1)

(14)

Defining the unknown derivative of h = x3 as ẋ3 = φ and the
error to be ei = xi− x̂i for i = 1, 2 and e3 = h− x̂3 then the error
dynamics of the ESO can be defined as:

ė1 = e2 − β1e1

ė2 = e3 − β2e1

ė3 = φ − β3e1.

(15)

We adopt the general tuning method for second order active
disturbance rejection controls described in Xing et al. [22] where
β1 = 3ω0,β2 = 3ω2

0 ,β3 = ω3
0 where ω0 is denoted as the

observer band-width and k is an additional tuning parameter
reducing the tuning to only one parameter. Then writing
e2/ω0 = f 2 and e3/ω

2
0 = f 3 we have

ė1 = f 2ω0 − 3ω0e1

ḟ 2 = f 3ω0 − 3ω0e1

ḟ 3 = φ/ω2
0 − ω0e1.

(16)

then adapting the proof in Bai et al. [23] to the higher-
dimensional problem here and defining ε = [e1 f 2 f 3]

T we
write

ε̇ = ω0Aε + B φ

ω2
0

A =





−3I3×3 I3×3 03×3

−3I3×3 03×3 I3×3

−I3×3 03×3 03×3



 ,B =





03×3

03×3

I3×3





(17)

defining ε̃i = [e1i f2i f3i]
T where e1 = [e11 e12 e13]

T ,
f 2 = [f21 f22 f23]

T and f 3 = [f31 f32 f33]
T we can re-write

the expression as

dε̃i
dt

= Ãε̃i + B̃ φi

ω2
0

Ã =





−3ω0 ω0 0
−3ω0 0 ω0

−ω0 0 0



 , B̃ =





0
0
1





(18)

which has the solution

ε̃i(t) = exp(Ãt)ε̃i(0)+

∫ t

0
exp[Ã(t − τ )]B̃

φi

ω2
0

dτ (19)

it follows that

∥

∥ε̃i(t)
∥

∥ ≤
∥

∥exp(Ãt)ε̃i(0)
∥

∥ +

∥

∥

∥

∥

∫ t

0
exp[Ã(t − τ )]B̃

φi

ω2
0

dτ

∥

∥

∥

∥

(20)

where ‖·‖ is the Euclidean Norm then

∥

∥ε̃i(t)
∥

∥ ≤
∥

∥exp(Ãt)ε̃i(0)
∥

∥ +

∥

∥B̃φi

∥

∥

ω2
0

∥

∥

∥

∥

∫ t

0
exp[Ã(t − τ )]dτ

∥

∥

∥

∥

F
(21)

where ‖·‖F is the Frobenius Norm of a matrix then assuming the
disturbance is bounded such that ‖φi‖ < ∂ then

∥

∥ε̃i(t)
∥

∥ ≤
∥

∥exp(Ãt)ε̃i(0)
∥

∥ +
∂

ω2
0

∥

∥−Ã−1[I − exp(Ãt)]
∥

∥

F
(22)

Then noting that the eigenvalues of Ã are λ = −ω0,−ω0,−ω0

then exp(Ãt) → 03×3 as t → ∞ such that in the limit

∥

∥ε̃i(t)
∥

∥ ≤
∂

ω2
0

∥

∥−Ã−1
∥

∥

F
(23)

then

∥

∥ε̃i(t)
∥

∥ ≤

√
21∂

ω3
0

(24)

This implies that x̂3 → h as t → ∞ to within some small
bounded error which can be decreased with an increase in the
gain ω0. Furthermore, as x̂2 → x2 then g(x1, x̂2) → g(x).
Therefore given the position (and velocity if it is available)as an
input then the estimated output of the ESO x̂2 converges to the
velocity vector x2 within an error bound defined by

∥

∥x̂2 − x2
∥

∥ ≤
√
21∂
ω2
0

and x̂3 converges to the uncertain dynamics x3 = h within

an error bound defined by
∥

∥x̂3 − x3
∥

∥ ≤

√
21∂
ω2
0
. Therefore, for a

high-gain (ω0 → ∞) we can assume that the error of the ESO is
negligible.

3.1. Linear AUMC for Improved
Convergence With Orbit Injection-Errors
Low-thrust propulsion station-keeping often linearizes the
nonlinear equations about the reference trajectory, in this case
a halo orbit, and applies linear control theory such as an optimal
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Linear control as LQR. Defining the error state δx = x − xref ,

where x(t) = [x, y, z, ẋ, ẏ, ż]T and xref is the reference halo we can
write (7) in the form:

d(δx)

dt
= A(t)δx+ u+ as +O(δx22) (25)

where where A(t) is given by

A(t) =

[

03X3 I3X3
U ij 2Ω

]

(26)

for

Ω =





0 0 1
−1 0 0
0 0 0



 (27)

and U ij is the Jacobian of U, where each term is defined as

Uxx = 1−
1− µ

d3
−

µ

r3
+ 3

(1− µ)(x+ µ)2

d5
+ 3

µ(x− 1+ µ)2

r5

Uyy = 1−
1− µ

d3
−

µ

r3
+ 3

(1− µ)y2

d5
+ 3

µy2

r5

Uzz =
1− µ

d3
−

µ

r3
+ 3

(1− µ)z2

d5
+ 3

µz2

r5

Uxy = 3
(1− µ)(x+ µ)y

d5
+ 3

µ(x− 1+ µ)y

r5
= Uyx (28)

Uxz = 3
(1− µ)(x+ µ)z

d5
+ 3

µ(x− 1+ µ)z

r5
= Uzx

Uyz = 3
(1− µ)yz

d5
+ 3

µyz

r5
= Uzy

which can be expressed in terms of the position and velocity,
writing x1 = [δx, δy, δz], x2 = [δẋ, δẏ, δż], where

ẋ1 = x2

ẋ2 = C(t)δx+O(δx22)+ u+ as
(29)

where C(t) is the 6 × 3 matrix C(t) =
[

U ij 2Ω
]

. Note that
using the ESO (14) with δx from (25) as the input and setting

f (x1, x2) = g(x1, x2) = C(t)δx then x̂3 → h as t → ∞ where
h = O(δx22)+ as, with the linear control taking the form

u = −Kδx− x̂3 (30)

where x̂3 is the output of the following Linear ESO:

˙̂x1 = x̂2 + β1(x1 − x̂1)

˙̂x2 = x̂3 + C(t)δx+ u+ β2(x1 − x̂1)

˙̂x3 = β3(x1 − x̂1)

(31)

as t → ∞ the closed-loop dynamics of (25) become:

ẋ1 = x2

ẋ2 ≈ (C(t)− K)δx
(32)

which can be expressed as δẋ ≈ A(K, t)δx then the gain matrix
K can be chosen such that A(K, t) is point-wise negative definite
and the convergence of the system has a linear response even
in the presence of unknown higher-order nonlinear terms and
SRP. Typically for large injection errors without an ESO a simple
proportional controller would render the closed-loop dynamics
nonlinear. Thus, using an ESO to compliment a linear controller
can provide the guarantee of a global linear response. The
performance of the linear AUMC which yields a linear response
is compared to the nonlinear closed-loop response of the LQR in
the following subsection.

3.1.1. Simulations

The velocity increments 1V and the position errors of the
spacecraft are important performance metrics to assess the
station-keeping strategies. However, when comparing these
performance metrics between LQR and AUMC there is only a
small improvement when using an ESO. However, simulations
show that there is an improvement in the convergence time when
considering large injection-errors to within a bounded region of
the reference orbit of 20 km and 0.05 m/s . In the simulations this
is demonstrated for an initial injection error of δX = 100 Km, δV
= 1 m/s. The observer is tuned with ω0 = 100. In this simulation

FIGURE 1 | Errors in the position and velocity: LQR.
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we assume the SRP is negligible. Recall that in the case of a Linear
ESO the inputs are δx

Figure 1 highlights the results of halo orbits position and
velocity errors encountered due to the presence of injection error
of 100 Km for the LQR control. Similar results can be seen for the
control AUMC in Figure 2.

It takes around 17.027 days to converge to a steady state error
within 20 km compared to 27.117 days for LQR which is about
of 37.2% decrease in convergence time while the error is just
decreased by 4.2%.

It can be seen from Figure 3 that the control effort over time
for the AUMC and the LQR is similar in magnitude and nature
and therefore the 1V is approximately the same.

Note that an additional possibility for the design of a linear
ESO is to set g(x1, x2) = 0. In this case h = C(t)x + aS and
therefore as t → ∞ the output of ESO x̂3 → C(t)x+ aS. Then as
t → ∞ the closed-loop linear system becomes:

ẋ1 = x2

ẋ2 = −Kδx
(33)

Therefore, K can be chosen such that the system is asymptotically
stable. In this case the closed-loop system exhibits a linear
response independently. This type of control is also useful as it
requires only the position of the spacecraft with respect to the
reference trajectory and does not require the dynamics of the
problem to be stored on-board.

3.2. Nonlinear AUMC for Velocity and SRP
Estimation
In this section we consider using the control with an ESO where
g(x1, x2) = f (x1, x̂2) is described by the full-nonlinear function.
In contrast to the linear ESO whose input is δx the input to the
nonlinear ESO is the absolute position of the spacecraft x1. In
this case h = aS and therefore as t → ∞ the output of ESO
x̂3 → aS. Therefore, while stabilizing the spacecraft on a Halo
orbit it is possible to measure the SRP aS and given that the Sun-
direction can be obtained from a Sun sensor and the position of
the spacecraft is known then the uncertain coefficient a0 can be

obtained. As x̂2 → x2 as t → ∞ then f (x1, x̂2) → f (x1, x2). In
this case as t → ∞ the closed-loop dynamics are:

ẋ1 = x2

ẋ2 = f (x1, x2)− K1δx1 − K2δx2
(34)

although the closed-loop dynamics is independent of the SRP a
linear response can only be guaranteed if f (x1, x2) ≈ C(t)δx.
For the nonlinear stability to be guaranteed we can augment the
control (35) to include a sliding-mode component and setting
K1 = kK2 with kK1xi = K2xi = k1xi where k1 is a scalar
then

u = −k1S− x̂3 − k3sgnS (35)

where S defines the sliding surface S = kδx1 + δx2 that this
is assuming that the estimator accurately measures the velocity.

FIGURE 3 | Control effort of LQR and AUMC.

FIGURE 2 | Errors in the position and velocity: AUMC.
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Then considering the Lyapunov function:

V =
1

2
STS (36)

differentiating this with respect to time and substituting in (35)
yields

V̇ = ST Ṡ = ST(kδẋ1 + δẋ2)

= ST(kδx2 + C(t)δx+O(δx22)− k1S− k3sgnS)

= −k1S
TS− k3S

TsgnS+ ST(kδx2 + C(t)δx+O(δx22))

≤ −k1S
TS− k3 |S| + |S|

∣

∣kδx2 + C(t)δx+O(δx22)
∣

∣

(37)

Therefore, we have asymptotic stability if k3 >
∣

∣kδx2 + C(t)δx+O(δx22)
∣

∣.

3.2.1. Simulations

In the following simulations we assume that a single side of
the spacecraft and its solar panels (or a solar sail surface) is
controlled to point continuously toward the Sun such that is
S = n in (4). In addition for the purpose of demonstration
we choose a large value for the SRP acceleration in non-
dimensional units to be a0 = 0.0798 or 0.215mms−2 which
is a typical value considered for the characteristic acceleration
of the Sunjammer Solar sail [11]. However, we consider here
that this value is uncertain and must be accurately estimated
on-board. The nonlinear ESO is able to accurately measure
the characteristic acceleration using only inputs of the position
of the spacecraft. Figure 4 shows that the estimator converges
to the correct value of a0 after approximately 0.6 days. The
simulation is carried out with an initial position error magnitude
of 120 km. Recall that this simulation includes injection errors,
large characteristic acceleration due to SRP and only position
knowledge. The demonstrated simulations here only include the
disturbance rejection and proportional part of the controller so
that they are more readily comparable to the linear case.

Figure 5 illustrates the estimated velocity in the x-direction
which shows good tracking performance after an initial transient

of approximately 2 days while an additional improvement in the
estimation error can be seen after around 10 days.

Figure 6 shows the tracking error over time and Figure 7

shows the corresponding control. The tracking error is within
the range of 50 km although this can be improved by increasing
the magnitude of the gain matrix K but at the expense of an
increase in the control magnitude. The important point here
is that station-keeping is achieved without knowledge of the
velocity. It is not possible to obtain good tracking performance
without velocity measurements or an estimate of the velocity
provided by ESO.

The simulations demonstrate that a nonlinear ESO can
be useful for estimating the uncertain disturbances such as
SRP in deep-space. Such information would be useful to
modify the reference orbit to obtain more fuel-efficient station-
keeping. Moreover, although high-fidelity solar system models
are available SRP is still uncertain and an ESO provides a simple
mechanism for estimating it. Furthermore, the ESO provides
robustness to velocity sensor failure. In particular, without
velocity information a proportional controller will perform very
poorly and the tracking error can be unacceptably large. Using an
ESO the tracking performance and corresponding control effort
is improved significantly.

4. CONCLUSION

The dynamics of a spacecraft in a Lagrange point orbit are
highly nonlinear and are affected by uncertain forces of solar
radiation pressure. In this paper, we construct active uncertainty
measurement controls for station-keeping that can guarantee
asymptotic stability in the presence of orbit injection errors
and SRP. The SRP acceleration parameter is estimated by the
observer while station-keeping. This could be useful as accurate
measures of the disturbances would allow a more accurate
dynamical model of the spacecraft’s orbit and the reference
trajectory could be updated to a more efficient one during
the mission. In addition, it is shown that station-keeping and

FIGURE 4 | Plot of the output estimation of the ESO of the characteristic acceleration a0 related to the SRP disturbance.
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FIGURE 5 | The ESO estimation of the velocity in the x-direction: The real velocity is in gray and the dashed line is the estimated velocity.

FIGURE 6 | Tracking position error over time.

FIGURE 7 | Control signal over time.
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disturbance measurements can be undertaken simultaneously
using only the position knowledge of the spacecraft. This
could be useful in the event that velocity sensors experience
failure. This paper has demonstrated the potential uses of
coupling a simple ESO with a proportional control to form an
AUMC. However, there is scope for potential improvement in
performance by replacing the proportional controller with other
higher-performance controllers, such as slidingmode controllers,
while replacing the simple ESO with nonlinear observers with
the potential for greater accuracy and faster convergence. Future
work could also include coupling the ESO that measures the
solar radiation pressure with an on-board differential corrector
so that when an accurate measure of the disturbance is obtained
the reference orbit can be updated to a more natural one of
the true dynamical model. In addition while we show here that
the ESO can be used to measure the SRP with only knowledge
of the position of the spacecraft it could be possible to use an

extension of this approach to estimate highly-inhomogeneous
gravity fields when orbiting asteroids orMoons. Furthermore, the
mathematical demonstration of stability and the linear response

of the closed-loop system in this paper relies on the assumption
that the estimation error of the ESO is negligible. Future work
could develop stability proofs and control laws that do not
include this assumption.
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In the context of Human Spaceflight exploration mission scenario, with the Lunar

Orbital Platform- Gateway (LOP-G) orbiting about Earth-Moon Lagrangian Point (EML),

Rendezvous and Docking (RVD) operational activities are mandatory and critical for the

deployment and utilization of the LOP-G (station assembly, crew rotations, cargo delivery,

lunar sample return). There is extensive experience with RVD in the two-body problem:

in Low Earth Orbit (LEO) to various space stations, or around quasi-circular Low Lunar

Orbits (LLO), the latter by Apollo by means of manual RVD. However, the RVD problem in

non-Keplerian environments has rarely been addressed and no RVD has been performed

to this date in the vicinity of Lagrangian points (LP) where Keplerian dynamics are no

longer applicable. Dynamics in such regions are more complex, but multi-body dynamics

also come with strong advantages that need to be further researched by the work

proposed here. The aim of this paper is to present methods and results of investigations

conducted to first set up strategies for far and close rendezvous between a target (the

LOP-G, for example) and a chaser (cargo, crew vehicle, ascent and descent vehicle,

station modules, etc.) depending on target and chaser orbit. Semi-analytical tools have

been developed to compute and model families of orbits about the Lagrangian points in

the Circular Restricted Three Body Problem (CR3BP) like NRHO, DRO, Lyapunov, Halo

and Lissajous orbits. As far as close rendezvous is concerned, implementation of different

linear and non-linear models used to describe cis-lunar relative motion will be discussed

and compared, in particular for NRHO and DRO.

Keywords: rendezvous, trajectory, CR3BP, Earth-Moon system, Lagrangian points, relative motion

INTRODUCTION

On the road to a solar system human exploration, the International Space Exploration
Coordination Group (ISEGC) (ISECG, 2018) has identified several mission scenarios beyond Low
Earth Orbit (LEO) as significant landmarks. In particular, it envisions to develop and operate with
the collaboration of all main international space agencies a Lunar Orbital Platform—Gateway
(LOP-G) as an outpost, located about one of the Earth-Moon Lagrangian points. This station
will be used as a strategic platform and a logistic hub for human missions in cis-lunar space,
including lunar surface and even beyond (Mars or asteroids destinations). Moreover, innovative
technologies could be tested onboard, taking benefit from a unique environment. At this time,
such an option is likely to rely on the NASA/ESA Orion MPCV (Multi-Purpose Crew Vehicle)
and a heavy launcher, like the Space Launch System (SLS). Thus, Rendezvous and Docking (RVD)
operational activities become mandatory and critical for the deployment and utilization of the
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LOP-G (like station assembly, crew rotations, cargo delivery,
or lunar sample return). As the next space station will be a
gateway for future exploration missions, various rendezvous
missions may be performed, including logistics flight and crew
transportation missions from the Low Earth Orbit (LEO),
Geostationary (GEO) or LLO (Lunar Low Orbit), so as to reach
NRHO (Near Rectilinear Halo Orbit), DRO (Distant Retrograde
Orbit) or Halo Orbits. As the capacity to rendezvous in the
vicinity of Earth-Moon Lagrangian Points is by nature necessary,
its analysis becomes fundamental.

Despite a very extensive experience with RVD in the two-body
problem (in Low Earth Orbit to various space stations, or around
quasi circular Low Lunar Orbits, the latter by Apollo by means of
manual RVD), the RVD problem in non-Keplerian environment
has rarely been addressed and no RVD has yet been performed
to this date in the vicinity of Lagrangian points where Keplerian
dynamics are no longer applicable. As a consequence, researches
presented in this paper contribute to a better understanding
of potential mission scenarios to rendezvous in the vicinity of
Earth-Moon Lagrangian Points.

This paper aims to study the rendezvous trajectories in the
vicinity of the Earth-Moon Lagrangian points, EML1 or EML2.
The Circular Restricted Three–Body Problem (CR3BP) has been
highlighted among more complex models so as to describe the
non-linear dynamics in this area. In the selected scenario, the
target’s orbit is assumed to belong to Halo orbits, NRHO or
DRO families, with a fixed attitude. The chaser is supposed
to be equipped with chemical propulsion. Considering only
impulsive maneuvers, their effect is instantaneous and chaser’s
motion is ballistic between maneuvers. This paper addresses
the feasibility of a rendezvous based on trajectories benefiting
from natural dynamics and limiting fuel consumption. Once
the feasibility has been demonstrated, an optimization process
will be carried out in order to minimize rendezvous operations’
duration and the consumption. This optimal scenario can be
then used as a first guess to develop refined trajectories with
intermediate maneuvers so as to correct the effects of orbit
estimation’s errors, of maneuvers inaccuracies and perturbations
(gravitational influence of the other celestial bodies like the Sun,
the Sun radiation pressure, etc.). In this paper, those effects are
neglected.

After transfer from LEO, lunar surface or other distant
locations (Mars, asteroids, etc.) and before docking activities, the
rendezvous is decomposed in two main stages. On the one hand,
far rendezvous and close rendezvous are analyzed independently
from the theoretical point of view. On the other hand, for
application purposes, a unique scenario will be presented for
NRHO, with proposed extensions to other families of orbits,
and in particular when the chaser and the target’s orbit are of a
different type. Moreover, when close rendezvous is concerned,
the objective is to extend classical methods proven in the two-
body problem to the three-body problem. The first contribution
of this paper is to propose a far rendezvous strategy with the use
of invariant structures extended by Lambert arcs to minimize
the cost of the mission. A second contribution lies in the use
of a non-linear model to describe the relative motion during
close rendezvous stage. The third contribution corresponds to a

preliminary safety analysis in case of a failure of the propulsion
sub-system (either in direction or in magnitude).

After a summary of the bibliographical context and a
description of the theoretical background, this paper will propose
strategies for far and close rendezvous between a target and a
chaser depending on both vehicles’ initial orbits. In the case of the
far rendezvous, a strategy in three maneuvers is presented, with
the main objective of using the invariant structures derived from
the natural dynamics in the vicinity of the Lagrange point. In
the case of the close rendezvous, the algorithm used to compute
the trajectory of the chaser to the target is detailed in two steps:
a first guess, where the relative motion between the chaser and
the target is linearized, then a more precise computation of the
trajectory arcs with a non-linearized relative motion. The last
paragraph depicts two specific scenarios where the chaser and the
target are in orbits (from the same family) around the EML2. The
selected examples mainly concern the Halo and NRHO orbits.
They are chaining the far rendezvous and the close rendezvous,
before analyzing the safety aspects.

HISTORICAL OVERVIEW OF THE
BIBLIOGRAPHICAL CONTEXT

A growing interest of the space scientific community for
trajectories toward, around and from Lagrangian points has
been registered in recent years. In particular, the three-body
problem (Szebehely, 1967) is one of the most studied models
not only in celestial mechanics, but also in mathematics. For
the early first solar system exploration missions (like Voyager), a
patched conics model was satisfactory to compute the trajectory.
As interplanetary missions became more demanding (as far
as fuel consumption or accuracy are concerned), this strategy
connecting several two body-problems was applied as a first
design approximation. Thus, other strategies (like three body-
problem and more) can be preferred. Moreover, some science
space missions take advantage of particular properties of the
Lagrangian points. In recent decades, many theoretical studies
have demonstrated the benefits of highly non-linear dynamics to
space exploration missions.

When looking at the set of studies performed in the field of
Lunar Libration Points, one stumbles upon the fathers and main
advocates of utilization concepts for these points repeatedly.
Lagrangian points are defined as equilibrium points in the
rotating referential of the studied system. R. Farquhar published
the first papers on the utilization of co-linear EMLs in the
late sixties and early seventies, including the application for
communication relay satellites (Farquhar, 1967), inhabited space
stations in a Halo orbit around EML2 (Farquhar, 1972) and
moreover, on the utility of Lagrangian Points (LPs) for human
solar system exploration (Farquhar et al., 2004)

Beyond the study of utilization of the Lagrangian Points
location, the interest in these models focuses on the emergence
of invariant structures, such as periodic or quasi-periodic orbits
(Farquhar, 1973; Richardson, 1980; Howell, 1984) and their
related stable and unstable manifolds (Gómez et al., 2001, 2004;
Koon et al., 2001). These invariant structuresmake it possible first
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to design staging orbits in the vicinity of the Lagrangian points,
then to establish low-energy trajectories for transfer between
the Earth, the Moon and the Lagrangian points. This paved
the way for mission’s concepts taking benefit of these invariant
structures so as to minimize fuel consumption through various
strategies like Indirect transfer (Alessi et al., 2010),Weak Stability
Boundary (Belbruno andCarrico, 2000; Belbruno, 2002) or Lunar
flyby (Mingtao and Zheng, 2010), for Earth-to-EML2 (Parker
and Anderson, 2013) or Earth-to-Moon tranfers (Mingotti et al.,
2012).

Despite this vast literature on orbits about the Lagrangian
points and transfers in the cis-lunar realm, the scientific
community has, at the moment, very few relevant researches on
rendezvous trajectories in non-keplerian dynamics. Actually, a
large amount of publications from 1950s to today dealing with
rendezvous can be found. But the typical rendezvous problem
considers that both vehicles are in orbit about a massive celestial
body (Earth, Moon, Mars. . . ) and lies only in the two-body
problem. Even though rendezvous is a critical phase, it has
rarely been studied in the context of the non-keplerian dynamics
except by Gerding (1971) in 1971, Jones and Bishop (1994)
in 1993 and 1994 and by Canalias (Canalias and Masdemont,
2006) in 2006. Nevertheless, a recent emergence of some sparse
publications can be observed since 1993, with a growing interest
after 2015 that can be explained by the studies related to LOP-G
and Orion missions (Davis et al., 2017; Williams et al., 2017).
Two main periods can be noticed: first scenario with the target
on Halo orbit around EML2, second scenario with the target
on NRHO or a DRO around EML1/2. During the first period,
Mand (2014) expressed linearized relative motion of the chaser
compared to the target on a Halo orbit around the EML2
within an ephemeris model. Afterwards Ueda and Murakami
(Murakami et al., 2015; Ueda and Murakami, 2015) presented
a global scenario with a departure from LEO, a transfer in cis-
lunar realm, a lunar flyby, an insertion on the target’s Halo
orbit around EML2, close rendezvous and proximity operations,
within ephemeris model for transfer and CR3BP in the vicinity
of EML2. This scenario is limited to a unique case with a
given Halo orbit of the target, with a fixed attitude and only
one insertion point for the chaser (best compromise between
fuel consumption and time of flight). Meanwhile, Lizy-Destrez
(2015) proposed a different strategy with three burns, relying
on invariant structures in the CR3BP to transfer the chaser
from a Halo parking orbit to the target’s parking orbit. This
approach is detailed in section Far Rendezvous Strategy. A
parametric analysis was conducted to evaluate the impact of the
chaser’s departure location, of the position of the intermediate
maneuver and of the insertion location on the target’s Halo
orbit on the rendezvous performances (duration, time of flight).
Colagrossi (Colagrossi et al., 2016) extended the theme to
rendezvous with very large infrastructures, including coupling
effects between orbital and attitude motion. A second period
took place after recent publications from NASA (Whitley and
Martinez, 2016; Davis et al., 2017; Williams et al., 2017), that
confirmed the attractiveness of less classical families of orbits, like
DRO andNRHO. In 2015,Murakami (Murakami and Yamanaka,
2015) introduced transfer trajectories from LEO to DRO with

three-impulsivemaneuvers, one of which is a lunar flyby. In 2017,
Ueda (Ueda et al., 2017) evaluates the guidance performance of a
linearized relative motion on Halo orbits, a NRHO or a DRO.
In 2017, Campolo (Campolo et al., 2017) presented a general
close approach rendezvous strategy designed to ensure safety
throughout during all rendezvous stages in the NRHO about
EML2 case.

Thanks to this analysis of the bibliographic context, it can be
observed that the theme of the transfer trajectories in the Earth-
Moon system has been largely covered, that the theme of the
rendezvous strategies is booming and that the theme of the safety
begins slowly.

THEORETICAL PROBLEM OVERVIEW

Themathematical model selected here to represent the dynamical
environment is the Circular Restricted Three-Body Problem, as
it produces quick and efficiently quantitative results for transfers
between primaries and libration orbits. As this model has been
deeply detailed in many publications, this paper mainly refers to
Parker and Chua (2012), which proposes a complete synthesis.

Circular Restricted Three-Body Problem
The 3-body problem consists in the prediction of the motion
of a particle of mass m under the gravitational influence of two
massive bodies with respective masses (m1 and m2), with m <<

m2 < m1. The three bodies are assumed to be isolated, that is to
say that no other effect has to be taken into account. Considering
that the particle is massless, the problem is said to be “Restricted.”
The model becomes the Circular Restricted Three-Body Problem
(CR3BP) when the primaries are supposed to be on circular orbits
about their common center of mass. The equations of motion
of the particle are described in the rotating reference synodic
frame, centered on O, the center of mass of the system M1-
M2 and with the x-axis directed from M1 (the larger primary)
to M2 (the smaller primary) and the y-axis in the plane of the

FIGURE 1 | Inertial and synodic reference frames.
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primaries’ motion (see Figure 1), the z-axis completes the right
hand system.

Masses, distances and time are normalized respectively with
the sum of the primaries’ masses, the distance between them and
their angular velocity around their barycenter. The unit of time
is taken such that the period of the orbits of the primaries is 2π.
The universal constant of gravitation, G, becomes then G = 1.
The only remaining parameter in the system of equations is the
mass parameter, µ, defined as µ =

m2
m1+m2

where µ ∈
[

0, 12
]

.
When the position vector of the particle is given by r =

(

x, y, z
)

, its equations of motion in the CR3BP (Koon et al., 2001),
using Newton’s law are:















ẍ− 2ẏ = ∂U
∂x

ÿ+ 2ẋ =
∂U
∂y

z̈ = ∂U
∂z

(1)

where the effective potential, Ū, is given by:

Ū
(

x, y, z
)

=
x2 + y2

2
+

1− µ

r1
+
µ

r2
+
µ (1− µ)

2
(2)

where r1 =

√

(x+ µ)2 + y2 + z2 and r2 =
√

(x− 1+ µ)2 + y2 + z2 are the distances from the particle to

M1 and M2 primaries.

The dot (˙) denotes the time first derivative (velocity) and the
double dot (¨) denotes the time second derivative (acceleration).
The state of the particle is given by: X = (x, y, z, ẋ, ẏ, ż). The
equations of motion (1) can be written as:

Ẋ = f (X) (3)

From the equation of motion (3), let’s denote, 8 , the flow map
of the system, mapping the position of the particle from its
initial location at time, t0 to its location at time, t, with under
initial conditions X0: 8(t, t0,X0) :X(t0) → X (t)∀t ≥ t0 with
8(t0, t0,X (t0)) = X0.

Lagrangian Points and Families of Orbits in
the CR3BP
The system (1) has five equilibrium points, referred to as
Libration or Lagrangian points, Li, i = 1 . . . 5 or EMLi in
the Earth-Moon system. The collinear points L1, L2, and L3 are
on the line connecting the two primaries, while L4 and L5 are
equilateral points. In this paper, the distance from Li, to the
smallest primary, is named γi (Szebehely, 1967). According to
the literature (Szebehely, 1967; Farquhar, 1972, 1973; Whitley
and Martinez, 2016), several families of orbits around them exist,
usually designated as: Lissajous orbits, Horizontal Lyapunov
orbits, Vertical Lyapunov orbits, Halo orbits (including Near
Rectilinear Halo Orbits) or Distant Retrograde Orbits. This paper
mainly focuses on Halo orbits, which are three-dimensional and
periodic with the same in- and out-of-plane oscillation and

FIGURE 2 | Examples of periodic orbits around EML2. (A) Lissajous trajectory with Ay = Az = 3,500 km, (B) Halo trajectory Az = 5,000 km, (C) Eight shape Lissajous

trajectory with Ay = Az = 3,500 km and (D) Horizontal Lyapunov trajectory with Ay = 3,500 km.
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NRHO, which are particular case of Halo orbits, with a close
passage over a lunar pole. Moving inside the family toward the
Moon, the Halo orbits become more and more rectilinear as
the lunar gravitational influence becomes highly predominant.
Some studied cases refer to Horizontal Lyapunov orbits, which
lays in the orbital plane of the primaries (xy-plane), to Vertical
Lyapunov (or eight-shaped) orbits, which are three-dimensional,
almost vertical and periodic orbits. Some scenarios are also
applied on DRO, which are very stable solutions, encircling
the Moon in a clockwise way in the Earth-Moon rotating
frame.

Figure 2 depicts some examples of periodic orbits about
EML2, obtained from an expansion of the linearized equations
of motions in the CR3BP with Legendre polynomials, as a
first guess for the Lindstedt-Poincaré method (Parker and
Chua, 2012). Plots on Figure 2 correspond to (A) Lissajous
trajectory with Ay = Az = 3,500 km, (B) Halo trajectory Az =

5,000 km, (C) Eight shape Lissajous trajectory with Ay = Az =

3,500 km and (D) Horizontal Lyapunov trajectory with Ay =

3,500 km.
From (Canalias, 2007), the system (1) of equations of

motion of the particle can be linearized in the vicinity of the
studied Lagrangian point with the Legendre polynomial. Under
those conditions, the solutions of the linearized system can be

FIGURE 3 | Schematic representation of a Poincaré map.

expressed as:






x = A1e
λt
+ A2e

−λt
+ Ax cos (ωPt + φ)

y = cA1e
λt
− cA2e

−λt
+ κAx sin (ωPt + φ)

z = Az cos (ωvt + ψ)

(4)

where A1, A2, Ax, Az, φ, and ψ depend on the initial condition
(

±λ,±iωp,±iωv,
)

are the eigenvalues of the characteristic
equation of the system (1) and c, κ depend exclusively on themass
parameter µ and the Libration point that is studied (in our case
EML2). Solutions with A1 and A2 equal to zero correspond to
periodic orbits, with an amplitude Ax and a phase ϕ in xy-plane
and an amplitude Az and a phase ψ in z direction.

A differential correction scheme is deployed to compute the
orbits, with a high order analytical approximation as first guess
(Howell, 1984). The method used for the first guess depends on
the orbit family studied.

Invariant Manifolds
The concept of unstable and stable manifold is exploited to
determine transfers from the orbits about the primaries to the
vicinity of the Lagrangian points as well as periodic solutions.

For a given orbit, the stable (resp. unstable) invariant manifold
is defined as the sub-space of the 6-dimensional phase space
consisting of all vectors whose future (resp. past) positions
converge to the periodic orbit. The corresponding trajectories
in the vicinity of the orbit are often called asymptotic orbits
since they slowly converge to or diverge from the orbit. As the
equations of motion are Hamiltonian, the system has an energy
integral of motion. Its expression is given by

E
(

x, y, z, ẋ, ẏ, ż
)

=
1

2

(

ẋ2 + ẏ2 + ż2
)

+ Ū
(

x, y, z
)

(5)

From the expression of the solutions of the linearized system of
Equations (4), it can be concluded that a small variation of the
trajectory can put the spacecraft on the unstable manifold A1 and
correspond to the hyperbolic amplitudes of the solution, with
A1 for the unstable component and A2 for the stable one. This
concept is then used to compute trajectories that converge toward
the orbit around the Lagrangian point (stable manifold) and
departs from the orbit (unstable manifold). Actually, the stable
manifold will converge to the desired orbit, while the unstable
manifold will exit the region of the Lagrangian point.

The invariant manifolds are often referred as “tubes“
since they exhibit tube-like shapes when projected onto the
3-dimensional position space.

For any given stateX =
(

x, y, z, ẋ, ẏ, ż
)

, on the aforementioned
given periodic orbit, the invariant stable (resp. unstable)manifold
can be computed thank to a linear approximation, while
considering a small perturbation ε applied to X which becomes
Xs (resp. Xu) and propagating the equations of motion backward
(resp. forward) from Xs (resp. Xu), with:

- For the stable manifold Ws: Xs =X ± εvs
- For the unstable manifold Wu: Xu =X ± εvu

where vs and vu are eigenvectors associated to the real eigenvalues
of themonodromymatrix of the closed trajectory. vu corresponds
to the eigenvalue> 1 and vs to the eigenvalue smaller than one.
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As the small perturbation, ε, can be positive or negative, two
stable (resp. unstable) manifolds can be obtained, which are
denominated, respectively interior and exterior. The manifold is
generated from a starting point, selected at a distance dM in the
stable or unstable direction provided by the eigenvector. For this
study, dM is set to 50 km (Gómez et al., 2001).

In order to decide when to stop the propagation of the
manifold branches, a Poincaré map (recorded as PΣp) is used.
Considering 8(t, t0,X (t0)), the trajectory representing one
solution of the system with X0 as initial conditions and Σp, a
hypersurface, the Poincaré map, PΣp, is defined as the set of
points of the trajectory, 8(t, t0,X (t0)) when it intersects the
hypersurface,Σp with:

P6p =
{

X =
(

x, y, z, ẋ, ẏ, ż
)

/X ∈ 6p and Ẋ = f (X)
}

(6)

Figure 3 provides a schematic representation of the use of a
Poincaré Map.

Manifolds Connection
Given an initial orbit and a final orbit, denoted by ψi and
ψf , respectively. Intersections between the unstable manifold

Wu(ψ i) of the initial orbit and the stable manifoldWs(ψ f ) of the

final orbit is defined as the set

Xp ⊂ Wu (ψi) ∩Ws
(

ψf

)

=















































xu
yu
zu
ẋu
ẏu
żu

















∈ Wu (ψi) ,

















xs
ys
zs
ẋs
ẏs
żs

















∈ Ws
(

ψf

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xiu = x
j
s

yiu = y
j
s

ziu = z
j
s

ẋiu = ẋ
j
s

ẏiu = ẏ
j
s

żiu = ż
j
s































(7)

FIGURE 4 | Example of a 3-maneuvers scenario for Halo-to-Halo far rendezvous. (A) 3-maneuvers, manifold-to-manifold far rendezvous scenario, (B) 4-maneuvers

trajectory refinement: Lambert’s arc.
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Intersections in 6-D space of the manifolds are called free
intersections and provide an asymptotic path from one periodic
solution to another one (Parker and Chua, 2012). However, such
connections require stringent conditions on the initial and final
orbits, for example, they must be of the same energy level (5).

For the purpose of this study, only physical intersections (x,y,z)
between the manifolds will be sought for. While intersections
can happen at any point of space, the search space will be
restricted on a Poincaré map to reduce the computational
burden.

FIGURE 5 | Example of stable and unstable manifolds connections for EML2 Halo orbits and NRHO. (A) stable and unstable manifolds originated from Halo Southern

orbits (with ACz = 8,000 km in purple and ATz = 10,000 km in blue) (B) stable and unstable manifolds originated from Northern NRHO (with ACz = 70,000 km and

ATz = 74,960 km).

FIGURE 6 | Example of Halo-to-Halo far rendezvous, ACz = 7,800 km, ATz = 8,000 km, θC
i
=330, θT

f
=80, ϕPM=4.46. (A) Relative distance between chaser and target

over time, 3-burn strategy as a first guess, adimensional units, (B) Relative distance between chaser and target over time, 4-burn continuation, adimensional units.
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RENDEZVOUS

This paper focuses on rendezvous problematic in the vicinity of
EML2, as it constitutes one of the most critical sets of operations
during a Human spaceflight mission scenario.

Rendezvous Concepts Definition
Houbolt (1960) defines the rendezvous as:

”The problem of rendezvous in space, involving, for example, the

ascent of a satellite or space ferry as to make a soft contact with

another satellite or space station already in orbit.“

The space vehicle that is already in orbit is commonly
called the target, while the one that is arriving, is named
the chaser. Rendezvous then consists in all maneuvers and
trajectories performed by both vehicles to get nearer and
nearer before contact. The different phases and maneuvers
of a typical rendezvous mission from launch to docking
have been extensively studied from the Apollo missions to
the International Space Station (ISS) resupply missions. They
are mostly named: launch, transfer, orbital injection, phasing,
and proximity maneuvers (including homing, closing and final
approach). Rendezvous can be followed by either docking or
berthing, depending on the nature of the chaser. Rendezvous
operations considered in this study will start from the departure
of the chaser from its parking orbit to the injection maneuver
onto the target orbit in the vicinity of the Lagrangian point. As an
extension of successful rendezvous operations performed in Low
Earth Orbit, it is possible to identify three successive phases in
a rendezvous scenario: transfer phase, far rendezvous and close
rendezvous.

Far Rendezvous Strategy
Two different scenarios can be identified depending on the chaser
injection. The chaser can either travel on its transfer trajectory
from the Earth to the target orbit or can be injected on a parking
orbit about the Lagrangian point. It is not necessary that the
chaser’s parking orbit belong to the same families as target’s orbit.
In the second case, the chaser will wait there until far approach
operational activities start. Considering the launch and transfer
uncertainties inherent to the first scenario, the paper focuses on
scenarios including the use of a parking orbit. Four phases are
considered: parking orbit, far approach, insertion on the target’s
orbit and close rendezvous operations. Both chaser and target are
assumed to be traveling on two different closed orbits about the
L2 libration point, which admit stable and unstable manifolds.

The far approach strategy proposed in this paper takes
advantage of the natural dynamics of the system and follows
two steps. A 3-maneuver scenario is considered first. The chaser
performs a first maneuver (1v1) to leave its parking orbit and to
travel on the unstable manifold. It will then perform a second
maneuver (1v2) to leave the unstable manifold so as to reach
the stable manifold of the target orbit. Finally, arriving near
the target, it will perform a third maneuver (1v3) to leave
the manifold and enter the target parking orbit. As mentioned
previously, finding exact intersections between manifolds is

difficult and resource-consuming, a distance gap between the
stable and unstable manifold at the intersection exists in this
scenario. The second and final step is to use the 3-burns trajectory
as a first guess for a 4-burns trajectory design with a lambert arc
connecting the extremities of both manifolds. Figure 4 presents
an example of the methodology used in this work for a Halo-
to-Halo rendezvous about EML2 (target and chaser amplitudes
AT
z = 30, 000 km and AC

z = 8, 000 km, respectively). On
the upper hand (A), the 3-maneuvers strategy is presented, while
on the lower hand (B), the connection between the manifolds is
depicted for the 4-maneuvers refinement: the two burns (1v21)
and (1v22) replace the single burn (1v2) of the 3-maneuvers
scenario.

3-Maneuvers Scenario
The total 1v for the 3-maneuvers scenario is, as defined
previously:

1v = 1v1 +1v2 +1v3 (8)

The main challenge of this study case is to find the right
location and best moment to perform the intermediate maneuver
(1v2), to compute a trajectory that resembles a free connection.
This leads to finding a compromise between the time of flight
(duration of the transfer) and the cost (quantified by the total
1v).

Assuming that the chaser leaves its parking orbit at time, t1,
reaches the intersection between both manifolds at time, t2, and
is inserted in the target parking orbit at time, t3, the rendezvous
trajectory of the chaser is split into three arcs:

• From t1 to t2, the chaser travels on the unstable manifold of the
chaser parking orbit,WC

u , after the first maneuver (1v1)
• At t2 the second burn (1v2), the chaser leaves W

C
u , and gets

into the stable manifold of the target parking orbit,WT
S .

• From t2 to t3, the chaser travels on WT
S before the last

maneuver (1v3).

As mentioned previously, only physical intersections between
manifolds in the (x,y,z) subspace are sought. The resulting gap in
the velocity subspace will provide the intermediate required burn,
(1v2). Writing

(

xCu , y
C
u , z

C
u

)

the position vector on the unstable

manifold issued from the chaser parking orbit and
(

xTs , y
T
s , z

T
s

)

the position vector on the stable manifold issued from the target
parking orbit, the rendezvous problem can be stated as:

- t ∈ [t1; t2[,
d8(t,t1 ,X

C
0 )

dt
= f

(

8(t, t1,X
C
0

)

with 8(t1, t1,X
C
0 ) =

XC
0

- at t= t2,






xCu (t2) = xTs (t2) = x2
yCu (t2) = yTs (t2) = y2
zCu (t2) = zTs (t2) = z2

(9)

- ∀t ∈ [t2; t3],
d8(t,t3 ,X

T
0 )

dt
= f

(

8(t, t3,X
T
0

)

with 8(t3, t3,X
T
0 ) =

XT
0

Solving the problem is equivalent to finding the three unknown
variables, (t1, t2, t3) that satisfy system (9). This is equivalent to
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finding three others variables
(

θCi , θ
T
f
,ϕPM

)

, where θCi defines

the angular parameter of the chaser on its parking orbit at time
t1 (defined as an angular fraction of the period of the orbit), θT

f

defines as well the angular parameter of the chaser on the target
orbit at time t3. With this parameterization, the NRHO aposelene
corresponds to θ = π, while the periselene corresponds to θ =0.
ϕPM is the angle defining the Poincaré map, used to determine
the location of spatial intersections of the two manifolds. The
manifold propagation stops at its spatial intersection with the
plane defined, by the angle ϕPM .

Figure 5 depicts examples of possible connections between
stable (blue) and unstable (purple) manifolds for part (A) with
EML2 Southern Halo orbit (with for the chaser, in purple
AC
z = 8,000 km andAT

z = 10,000 km) and for part (B), with EML2
northern NRHO (with for the chaser, in purple AC

z = 70,000 km
and AT

z = 74,960 km). ϕPM is set equal to 2◦ for Halo orbits and
3◦ for NRHO.

The selected Poincaré map is a plane perpendicular to the xy-
plane, forming an angle ϕPM with the x-axis from EMLi, where
i= 1 or 2 depending on the considered Lagrangian point. As a
summary:

- θCi is determined by
(

xCu , y
C
u , z

C
u

)

at t= t1,

- θT
f
is determined by

(

xTs , y
T
s , z

T
s

)

at t= t3,

-







x2 =
√

x22 + y22 × cos (ϕPM)

y2 =
√

x22 + y22 × sin (ϕPM)

As the problem cannot be solved analytically, the following
numerical methodology is applied:

- Generating the target orbit and the chaser parking orbit.
- Propagating the stable manifold, WT

s

(

θT
)

issued from each

angular location θTon the target orbit until the Poincaré map,
PM .

- Propagating the unstable manifold, WC
u

(

θC
)

, from each
angular location θC on the chaser parking orbit until the
Poincaré map, PM.

- Computing for each pair
(

WT
s

(

θT
)

,WC
u

(

θC
))

, the distance
gap,1X, and the velocity gap,1v2.

The integration of the equations of motion must be performed
using a numerical solver. This work relies on Runge-Kutta
propagators, ODE45 (or even ODE113), implemented in Matlab.
The solver implies that all components (time and state) have been
discretized. As a consequence, the concept of exact intersection
in the spatial sub-space is replaced by the minimization of the
distance between the positions on both manifolds at the Poincaré
map location.

To select the best
(

θCi , θ
T
f
, ϕPM

)

candidate, the following

optimization process has been applied, so as to:

- Find a compromise between cost (total 1V) and duration
(time of flight,1T).

- Ensure feasibility (distance gap, 1X), that is to say, to
define numerically the acceptable distance between the two
manifolds at the intersection.

The problem to be optimized is:

min J = ‖1V2‖

subject to ‖1X‖ ≤ d (10)

‖.‖ denotes the quadratic norm: ‖1X‖ refers to the gap in
position between the position of the chaser on the unstable
manifold and the position of the chaser on the stable manifold, at
the intersection, ‖1V2‖ refers to the gap in velocity between the
position of the chaser on the unstable manifold and the velocity
of the chaser on the stable manifold, at the intersection and
d = 50 km is the maximum distance allowed between the two
spacecrafts at the Poincaré section.

4-Maneuvers Trajectory Refinement
Results from the 3-maneuvers strategy are used as an initial
guess, feeding a local optimization process based on the variation
the time of flight in both the unstable and stable manifold.
The connection between the manifolds is not considered as a
simple discontinuity in the state space anymore but is “patched”
by means of a Lambert’s arc computed in the CR3BP. In this
scenario, the PM intersection constraint at the manifold end
points is relaxed.

The cost function of the new optimization problem, using
the terminology presented in the introduction of section Far
Rendezvous Strategy, is:

J = ‖1V21‖+‖1V22‖ (11)

The outputs of this process are the new positions of the end
points of both manifolds, the total ‖1V‖ and the time of flight
required to perform the transfer between both manifolds. An
entire continuous trajectory can then be built, for the chaser to
rendezvous the target, starting from its parking orbit, passing
by an unstable manifold, Lambert arc and stable manifold and
finishing on the target parking orbit. The far rendezvous strategy
now includes an additional trajectory arc that connects properly
the unstable and stable manifolds.

Figure 6 provides an example of the procedure detailed in
this section. The study case is between two Halo orbits of the
Southern family about EML2, with an elongation of 8,000 km for
the target orbit and 7,800 km for the chaser parking orbit The
chaser transfer trajectory from its parking orbit to the chaser
orbit is plotted in bold dark blue solid line. The chaser initial
angular location is θCi = 330 and the target final location is θT

f
=

80. Performances are obtained for ϕPM = 4.46. Figure 6A shows
the result of the 3-burn strategy as an initial guess, and Figure 6B
showcases the continuation of the solution and relaxation of the
ToF constraint. The total velocity increment in that particular
case is 0.374 .s−1 km with a Lambert’s time of flight of∼ 1.39 h.

Close Rendezvous Strategy
The main goal of the close rendezvous phase is to conduct
gradually the chaser from its insertion location closer to the
target so as to allow berthing or docking operations. This
time, unlike for the far rendezvous phase, chaser and target are
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traveling on the same trajectory, but with a gap in position.
For safety considerations, the close rendezvous trajectory is split
into several legs, delimited by hold points (HP), as security
checkpoints. In this phase, maneuvers are considered impulsive,
performed instantaneously at the HPs and the motion on the
arcs is ballistic. The proposed strategy is based firstly on the
selection of breakpoints, then on the calculation of the arc-by-arc
trajectory from the equations of motion. Finally, safety aspects
are discussed. Actually, trajectory design must take into account
an assortment of random errors acquired while in orbit, such as
the initial condition dispersions or inaccurate thrust velocities.
Free drift motion may occur if the thrusters of the chaser cease to
operate. This phenomenon has been simulated while assuming
dispersion on maneuver. Safety analyses must verify that the
selected trajectory of the chaser will not enter the safety region,
in case of a missed maneuver, so as to avoid collision with the
target in case of failure.

Hold-on Points Determination
In close rendezvous scenarii, the HP are significant locations on
chaser’s trajectories where to perform maneuvers after security
checks (missions parameters, chaser health status), as the chaser
is not permitted to approach freely the target. In case of failure,
braking may become impossible and the failure could jeopardize
the mission. The chaser must thus follow a precise path, meeting
all the hold points. Similarly to Mand (2014), two geometrical
strategies are proposed to define their positions: line-of-sight
corridor (LoS-C) and line-of-sight glide (LoS-G). With them,
the chaser is always approaching the target along its docking
port direction within the field of view of its rendezvous sensors
modeled by a cone. The target attitude is not taken into account,
as its attitude is assumed to be perfect. The implemented
strategies are:

- LoS-C, characterized by three angles: two trigger angles (α, β)
and an offset angle, ϕ as φ < α and φ < β . Each time the
chaser’s trajectory (assumed to be locally rectilinear) intersects
one side of the cone, a maneuver is performed to reorient the
chaser inside the field of view. Hold points are then located at
this intersection.

- LoS-G, characterized by two angles: one trigger angle α and
one offset angle φ as φ < α. Within LoS-G, the chaser does not
cross the line of sight as in LoS-C, but remains on the same side
of the cone.

Figure 7 represents both strategies, with a definition of the angles,
in the LVLH (Local-Vertical/Local-Horizontal) reference frame,
defined in section Clohessy-Wiltshire Equations.

The process outputs the number of required hold points.
In addition to HP, two safety regions are defined around the
target, as an extension of concepts developed in Keplerian
dynamic (mainly in LEO). They are identified as two spheres:
the Approach Sphere (AS) and the Keep Out Sphere (KOS), both
centered on the target.

Trajectory Arcs Computation
Dealing with close rendezvous means an analytic description of
the relative motion of the chaser according to the target, referring

FIGURE 7 | Line of Sight Corridor and Line of sight Glide scenario strategies in

the LVLH. (A) Line of Sight Corridor, (B) Line of sight Glide.

to two relative reference frames and one inertial frame, presented
on Figure 8.

In blue, the Earth-Moon synodic reference frame is a
rotating frame centered on the center of gravity of Earth-
Moon system, with Moon and Earth fixed on the x-axis.
The z-axis is orthogonal to the plane of motion of the
celestial bodies. The y-axis completes the right-hand rule. In
black, the Moon-Centered inertial (MCI) frame is defined
such that the origin is at the center of the Moon. An
Earth-Centered inertial (ECI) reference frame could also have
been selected. x-axis and y-axis are selected so as to overlap
at initial conditions. In red, the LVLH reference frame is
presented.

The equations of motion of both vehicles and their relative
motions are described in the CR3BP in (Mand, 2014) and
(Campolo et al., 2017). Their expression leads to a complete
set of non-dimensional non-linear relative equations. As the
distance between chaser and target is very low compared to the
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FIGURE 8 | Reference frames definition for close rendezvous.

FIGURE 9 | Close Rendezvous with failure at HP n◦7 in the LVLH for Halo-to-Halo case.

dimensions of the system (for example, distance between the two
primaries), the expression of the relative motion can be linearized
to simplify the problem, as a first approximation.

The expression of the simplified equations of the relative
motion will all be presented in a state-space form as Ẋr =

AiXr where i denominates the selected simplified method. Three
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models are compared: Linearized Relative (LR), Clohessy—
Wiltshire (C–W), and Straight-Line (SL).

Since the matrix A is time-dependent, the trick consists
in dividing each transfer in smaller arcs, where A can be
considered as constant. The approach to compute the trajectory
arc between two HP corresponds to solving arc-by-arc small
Lambert problems. It lies in finding a trajectory between an initial
and final position given a specific time of flight, (1T). For each
arc, the time of flight is fixed and the HP provide initial and final
points.

The algorithm is divided into two steps:

- Linear targeting: computation of the maneuver 1vHPi_linear

first guess
- Shooting method: computation of final1vHPi to be performed
by the chaser with 1vHPi_linear as a first guess. The shooting
algorithm cycles with a full non-linear relativemodel in CR3BP
until the final position error is considered acceptable.

For certain families of orbits (above all for NRHO), the accuracy
of linear models depends on the orbital regions where the
computation is performed. As a consequence, the first section
compares the three methods to estimate the error introduced
by the three relative linear models with respect to the non-
linearmodel and consequently, to assess their ability to accurately
model the dynamics during close rendezvous operations. For
each arc of the trajectory, an approximation of the solution of
the system is computed numerically with the three previously
linearized methods. The linear method that presents the lowest
error in terms of final position (distance from the target) is then
selected to perform the second step. This two-steps algorithm
is an iterative process to compute the entire close rendezvous
trajectory of the chaser.

Non-linear relative equations
The non-dimensional non-linear relative equations of motion
written in the synodic reference frame can be obtained by the
difference of the absolute equations of motion (2) of the chaser
and the target, respectively, in the CR3BP:
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ẍr − 2ẏr − xr = (1− µ)

[

xT+µ
∥

∥rT1
∥

∥

3 −
xT+xr+µ
∥

∥rT1 +ρ
∥

∥

3

]

+µ

[

xT+µ−1
∥

∥rT2
∥

∥

3 −
xT+xr+µ−1

∥

∥rT2 +ρ
∥

∥

3

]
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(12)

where the relative state is Xr = X
C
−X

T
=

(

xr , yr , zr, ẋr , ẏr , żr
)

,
the absolute state of the target is given by

X
T
=

(

xT , yT , zT , ˙yT ˙, zT
)

, the absolute state of the chaser is

given by XC
=
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xC, yC, zC, ˙xC, ˙yC, żC
)

. The position vector of the

target to M1 is rT
1
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, the position of the target

to M2 is r
T
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and the relative position is
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.
The absolute distances of the target from M1 and M2 are

respectively:
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Linearized relative equations
The Linearized Relative equations can be adapted from formation
flight studies (Luquette, 2006), while linearizing the dynamics
about the target as a reference vehicle, taking into account a
canonical CR3BP synodic frame. From (12), assuming that ‖ρ‖≪
rT1 „ ‖ρ‖ ≪ rT2 and applying a second order Taylor expansion

(1+ ε)−3
≈ 1 − 3ε + o (ε) to linearize relative equations of

motion in the synodical frame:

Ẋr=
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 and n1=


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 .

Clohessy—wiltshire equations
The Clohessy-Wiltshire equations (Clohessy andWiltshire, 1960)
describe relative motion in a 2-Body environment. This model
assumes only one primary mass, the target’s orbit is circular
and that the relative distance between target and chaser is small
with respect to target-attractor distance. These assumptions are
not usually valid in the CR3BP, and can only be applied locally
to generate a first guess. The model is given in the local-
vertical/local-horizontal (LVLH) reference frame of the primary
M2, centered on the center of gravity of the target. The x-axis
points along the direction of the velocity of the target. The z-
axis points the direction from the target to M2. The y-axis is
mutually perpendicular to the x- and z-axes so as to form a right-
handed coordinate frame. An example of LVLH is given in red on
Figure 8 for motion description of an NRHO in cis-lunar space.
The Earth-Moon synodical reference frame Rem is represented
in blue, while, the Moon-Centered Inertial (MCI) frame Rm is in
black.

The C-W equations, written in the LVLH reference frame are:







ẍr − 2nżr = 0

ÿr + n2yr = 0

z̈r + 2nẋr − 3n2zr = 0
(14)
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Where n represents the mean angular motion of the M2-centered
keplerian circular orbit with a radius of rT2 and is given by n =
√

µ

rT2
3 .

The C-W equations can also be written in state-space
representation:

Ẋr =

[

03 I3
� −2n× n2

]

Xr = ACWXr (15)

where� =





0 0 0

0 −n2 0
0 0 3n



 and n2 =





0 0 1
0 0 0
−1 0 0



.

Straight line equations
In the Straight-Line approach, the velocity vector of the chaser
points to the target at time, ti, after a maneuver 1vi, disregarding
any gravitational effect. The expression of 1vi in the LVLH
reference frame is, during the period of time1ti = ti+1 − ti

1vi =
1

1t
× (ri+1 − ri)−vi (16)

Where ri and vi indicate the initial position and velocity at
time, ti, and ri+1 the final position at time, ti+1. The state-space
representation of the system is:

Ẋr=

[

0 I3
0 0

]

Xr = ASLXr (17)

STUDIED CASES

The objective of this paragraph is to assess the feasibility of the
proposed strategies for far and close rendezvous, then to study
the safety aspects of an end-to-end scenario. The output is the
entire trajectory of the chaser from its parking orbit to the target
orbit, in a three-steps process (far and close rendezvous and safety
analysis). Guaranteeing the safety aspects requires going through
an intermediate orbit, which is the final objective of the far
rendezvous and the starting point of close rendezvous. Two study
cases have been selected to illustrate the proposed strategies, in
order to be consistent with the results of the historical study of the
bibliography. They both lie in the Earth-Moon system, modeled
by the CR3BP. Chaser parking orbit and target parking orbit
belong to the same family. The first part of Table 1 summarizes

TABLE 1 | Study cases input parameters.

Parameter Symbol Units Value

Earth-Moon system parameters Gravitational constant G km3.kg−1.s−2 6.67428. 10−11

Earth mass m1 kg 5.97219. 10+24

Moon mass m2 kg 0.07346. 10+24

Earth-Moon mass ratio µ – 0.012150581623434

Scenario step Parameter Units Halo NRHO

End-to-end scenario inputs Parking ACz km 7000 70000

mC – Northern Northern

ATz km 9000 75000

mT – Northern Northern

Far rendezvous dM km 50 50

θ I ◦ 2 2

θC ◦
−2 −2

AIz km 8980 74960

mI – Northern Northern

ϕPM
◦ 0 0

WC
u direction – Interior Interior

W I
sdirection – Exterior Exterior

Close rendezvous θT ◦ 0 0

duration h 10 10

Line-of-Sight – corridor corridor

α ◦ 15 15

β ◦ 15 15

Safety rKOS m 200 200

rAS m 2000 2000

Error in magnitude (3σ) % 1 1

Error in pointing (3σ) mrad 1 1

Number of Monte Carlo simulations – 100 100
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the parameters of the Earth-Moon system. The name of a study
case is composed by:

“NAME_of_chaser_parking_orbit-to-NAME_of_target_orbit.”

For example, HALO-to-HALO means that the chaser parking
orbit is a Halo orbit and the target orbit is a Halo orbit. The
considered study cases are: Halo-to-Halo and NRHO-to-NRHO.

At the end of this chapter, further conducted analyses are
presented: a systematic analysis for far rendezvous (paragraph
5.4) within different orbit families and a close rendezvous on a
DRO (paragraph 5.4 and section 5.5).

Scenario Algorithm
The final angular location, θT , of the chaser on the target orbit
being fixed, the corresponding scenario is divided into four
steps:

- Parking orbit: the chaser parking orbit at the beginning of the
scenario is defined by its maximal elongationAC

z and its family
mC

∈ {1; 3}. The target orbit is also defined by its maximal
elongation AT

z and its familymT
∈ {1; 3}.

- Far rendezvous strategy: at this stage, the chaser leaves its
parking orbit and targets an angular location θ I , on the
intermediate orbit, defined by its maximal elongation AI

z and
its family mI

∈ {1; 3}. θ I is forced to be equal to θT . An
optimization process is run to identify the best θC to minimize
criterion (10). The outputs are: θC, TOF and v, where TOF is
the time of flight, necessary for the chaser to travel from θC

to θ I .
- Close rendezvous strategy: the chaser then approaches the

target situated at θT on the target orbit defined by
(

AT
z ,m

T
)

from its intermediate angular location θ I on the intermediate
orbit defined by

(

AI
z ,m

I
)

. The outputs are the number of HP
(nHP), the position of the HP and the total velocity vclose.

- Safety analysis: A failure is injected at the selected HP with
dispersion of velocity in magnitude and in direction. A Monte
Carlo process models the influence of random dispersion on
the trajectory. Chaser trajectory is propagated for a time of
24h starting with new conditions of velocity. The output is
a label that indicates if there is a risk of collision. Lessons
learnt from ISS resupply cargo missions lead to defining two
spheres centered on the target identified as the safety regions:

TABLE 2 | Study cases results.

Scenario step Parameter Units Halo NRHO

End-to-end scenario

outputs

Far rendezvous 1v1 km/s 0.0182 0.0046

1v2 km/s 0.1772 1.2606

1v3 km/s 0.0018 0.0045

1vfar km/s 0.2134 1.2697

1T h 05h00 02h26

Close rendezvous nHP – 7 6

1vclose km/s 0.0168 0.0018

the Approach Sphere (AS) with radius rAS and the Keep out
Sphere (KOS) with radius rKOS. The values of rAS and rKOS
are selected from operational missions like the European cargo
ATV (Automated Transfer Vehicle) and the Japanese HTV
(H-1 Transfer Vehicle).

Scenario Input Parameters and Results
The second part of Table 1 presents input parameters for the
two study cases. Selected values for (α,β) correspond to actual
navigation sensor field-of-view equal to 30◦, which imposes a
relative distance of 20 km (resp. 40 km) between the intermediate
Halo (resp. NRHO) orbit and the target Halo (resp. NRHO) orbit.
′′WC

u direction” represents the chosen direction to propagate the
unstable manifold issued from chaser parking orbit, while "WI

s

direction” corresponds to the propagation direction for the stable
manifold that converges to the intermediate orbit. Direction can
take two values: “interior” or “exterior” for interior realm or
exterior realm. Proposed variation ranges for θC and ϕM come
from preliminary exploratory analyses. Chaser and target angular
locations are computed with respect to EML2 (resp. the center
of the Moon) for Halo case (resp. for NRHO case). The angle
reference is set on the Earth-Moon axis in the synodic frame.
The angle value grows clockwise: 0◦ is on the side of the Earth.
The angle ϕM is also measured from the same reference axis and
origin, but anti-clockwise.

For the studied scenario, the selected angular location for
rendezvous is (θT = 0). In the case of the close rendezvous on
a NRHO, it corresponds to the periselene. Consequentially, it is
an interesting location for ISRU (In-Situ Resource Utilization) or
Moon sample return missions. Preliminary analyses conducted
in this orbital zone have shown that the LR method appears
less reliable than C-W or SL. Performances were thus obtained,
by computing the difference in position, at the HP, between
the arc generated by the linearized model and the Lambert’s
arc. Result can mainly be explained by the particularity of the
observed zone. On the one hand, as LR equations are designed
in the CR3BP problem, their validity is quite limited when the
Moon influence is very predominant . On the other hand, the
CW model evaluated under a Two-Body problem is the most
suitable method in the periselene zone. As a consequence, it is
recommended to select the LR model only for very large Halo
orbits or in aposelenic zones. The selected initial angular location
of the chaser on its parking orbit is (θC = −2), since the
chaser and target must be in a same proximity area. The location
of the PM, ϕPM , is set equal to 0◦ to minimize the transfer
distance.

For close rendezvous, the chaser starts its trajectory on the
intermediate orbit defined by

(

AI
z ,m

I
)

, at angular location θ I .
The algorithm computes the number of HPs, their location, the
maneuver to be performed at each HP and the arc of trajectory
between two of them, so as to comply with a maximal duration of
10 h and following the LoS-C strategy. Results highly depend on
the location on orbit where the rendezvous will take place.

Table 2 provides syntheses of main results computed for the
entire RDV scenario in both study cases, for far and close
rendezvous. Results obtained for far rendezvous in the Halo
study case are very encouraging, with a total duration about
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5 h and a total cost about 0.21 km/s. In the NRHO case, the
duration is even more affordable with about 2h26, but with the
cost > 1.27 km/s. The selection of the rendezvous location at
periselene can explain these performances. Actually, in this zone,
the gravitational influence of the Moon cannot be neglected.
The out-of-plane component of the maneuver between both
trajectories is thus very expensive. Those results are coherent with
the ones presented in (Campolo et al. (2017), recommending to
perform close rendezvous at the aposelene.

Those far rendezvous simulations support the use of invariant
structures for low-cost transfer from the chaser parking orbit
to the target, extended with a Lambert arc at the connection.
Parametric analysis on the angular location of both vehicles could
then be conducted to propose best scenarios compliant with
operational constraints of ground segments.

For close rendezvous, with a fixed duration of 10 h, computed
cost is affordable, for both scenarios. At this stage, the most
important criteria are the safety performances, because of
the highly non-linear dynamics. Actually, the proposed far
rendezvous strategy tries to take advantage to reduce fuel
consumption. On the contrary, safety analysis seeks to prevent
collision when the chaser motion becomes ballistic, after a failure.
For both study cases, one injects a failure at each HP. The chaser
trajectory is then propagated during 24 h, taking into account
the dispersion (1% in magnitude (3σ) and an error of 1 mrad

in pointing direction (3σ). In the particular Halo-to-Halo case, it
results that when the failure takes place between HP n◦1 and HP
n◦4, there is no risk of collision between the chaser and the target,
as the chaser doesn’t not get into the AS. When the failure occurs
at HP n◦5 or HP n◦6, the chaser trajectory with dispersion may
enter the AS but not the KOS. Finally, when the failure happens
beyond the 6th HP, the chaser enters the KOS and thus, there is
a risk of collision. Figure 9 presents the dispersion (in red) of the
chaser trajectory when a failure is injected at HP n◦7 in the Halo-
to-Halo study case. The green circle represents the AS, while the
purple one is the KOS. In the NRHO-to-NRHO study case, there
is no risk of collision from the first HP to the third one. When
there is a failure at HP n◦4, the chaser enters the AS, but not the
KOS. If the failure occurs at HP n◦5 or HP n◦6, the collision is
certain. Figure 10 presents the dispersion of the chaser trajectory
when a failure is injected at HP n◦7 (in red) in the NRHO-to-
NRHO study case. This safety analysis emphasizes the necessity
for an accurate definition of safety areas as AS or KOS. Inside
these zones, the HP should not only be maneuver locations, but
also safety check-points, where decision are made with Go/No-
Go to continue close rendezvous approach, depending on the
vehicle heath status.

Two additional studies were conducted to analyze the impact
of orbits from different families and close rendezvous on a DRO
orbit and are presented in the two next sections.

FIGURE 10 | Close Rendezvous with failure at HP n◦7 in the LVLH for NRHO-to-NRHO case.
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FIGURE 11 | Far rendezvous systematic algorithm.

Exploration n◦1: Far Rendezvous
Systematic Analysis
Actually, some exploration missions (vehicle coming back from

Mars, Asteroids, or the Moon) can include parking orbit issued
from other periodic families so as to take into account the
inclination. The far rendezvous proposed strategy has been

applied extensively to three rendezvous scenarios, so as to
compare their performance cost (1vfar), duration (1T), and

feasibility (1X), in the Earth-Moon system, to extend the
preceding studies cases to others libration periodic orbits

families. It is assumed that the target is on a Halo orbit with
a maximal elongation, AT

z . The chaser parking orbit can be a
Halo orbit, a Horizontal Lyapunov orbit or Vertical Lyapunov

orbit. For each type of chaser parking orbit, performances are
computed with interior or exterior manifolds. A wide simulation

campaign was run based on an inclusive Matlab-based tool
whose algorithm is presented on Figure 11. For each category

of simulation, a first set was run so as to refine the range of
variation of the parameters: amplitude of the chaser parking orbit
AC
z and angular location of the intermediate maneuver (ϕPM) at

the Poincaré map. This first step was followed by two successive
sets so as to further refine the results. The preliminary scenarios

present a 5◦ step in ϕPMwhile the refined ones present a 1◦ step.
Figure 12 presents the best results obtained for three scenarios

(Halo-to-Halo, Halo-to-Planar Lyapunov and Halo-to-Vertical
Lyapunov) with interior and exterior directions, ϕPMǫ [0 : 1 : 5]

in deg., AT
z fixed equal to 8,000 km, AC

z ǫ [8, 000 : 500 : 9, 000] in
km,

(

θC, θT
)

ǫ [0 : 1 : 5] × [0 : 1 : 5] in deg. On this figure, the
plot depicts the duration “Rendezvous time” in days and the
cost “Total delta v” in km/s for three scenarios (Halo-to-Halo
in red, Halo-to-Planar Lyapunov in blue and Halo-to-Vertical
Lyapunov in green), for interior (+) and exterior (o) manifolds
at three different value of AT

z (AT
z = 8, 000 km in solid line, in

AT
z = 8, 500 km in dot line and AT

z = 9, 000 km in dashed
line). The plot makes it easy to infer the variation of cost and
duration required as the parking orbit changes. Best results are
obtained for Halo-to-Halo rendezvous with a AT

z = 8, 500 km on
interior manifold with a1vfar = 0.83m / s and a1T= 2,47 days.
Being only initial guesses, these results do not take into account
the Lambert arc to connect the manifolds. The doubly iterative
process, proposed in this paper, can improve them. From this
graph, it can be observed that obtained performances belong to
four distinct groups, depending on the type of chaser parking
orbit and type of manifold. It can obviously be deduced that
cost increases largely from Halo to Planar Lyapunov and Vertical
Lyapunov, for both interior and exteriormanifolds. This confirms
initial intuition that the best option is a Halo-to-Halo rendezvous,
which can help for decision-making duringmission design phase.

However, this study remained within the context of periodic
orbits. It could be interesting to further investigate Lissajous
and other quasi-periodic orbits, but it would require a different
approach in term of procedures, that could be part of future
research work.
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FIGURE 12 | Far Rendezvous duration vs. delta-v for the three scenarios.

Exploration n◦2: Close Rendezvous on a
DRO
First planed mission for Orion will take place on a DRO (Whitley
and Martinez, 2016). Figure 13 presents on the left the 14 first
orbits computed from Henon (1969) data and on the right the
enlarged family obtained by the continuation process.

As a consequence, it seems relevant to envisage rendezvous
on this kind of orbit. Lunar DRO cannot be related to invariant
structure such as stable or unstable manifolds (Ueda et al., 2017).
The proposed strategy for far rendezvous cannot be applied. This
exploratory analysis therefore focuses on the close rendezvous,
applying a simplified algorithm compared to the one presented in
5.1. with only three steps: parking orbit (the chaser parking orbit
defined by its maximal elongation AC

z and target orbit defined
by its maximal elongation AT

z ), close rendezvous strategy (the
chaser approaches the target situated at θT on the target orbit
from its initial location θC on its parking orbit defined byAC

z ) and
safety analysis (with Monte Carlo simulations to model failure
occurrence).

In this analysis, the rendezvous is assumed to take place on
DRO at θT = 180, on the target orbit defined by AT

z =

70, 000 km. The chaser initial conditions are: AC
z = 69, 930

km and θC = 178. The reference angle is the x-axis (i.e., the
Earth-Moon axis in the synodic reference frame), and the origin
is the center of the Moon. Angles are measured clockwise. The
Line-of-Sight corridor strategy is applied with a cone with a half

top angle of±15. The same parameters as Halo and NRHO study
cases are taken into account for safety analysis. The AS is a sphere
with a radius, rAS, equal to 2km, and the KOS with a radius, rKOS,
equal to 200m. Both spheres are centered on the target position.
100 simulations are run to model an error of 1% in magnitude
(3σ) and an error of 1 mrad in pointing direction (3σ).

As far as the accuracy obtained along the chaser trajectory arcs
is concerned, the differences in position, at the HP obtained by
the three linearized model and the Lambert’s arc are compared.
From this simulation campaign, it appears that, in the particular

case of close rendezvous on a DRO, the LR algorithm is far more
precise, than C-W and SL, with even a wider validity domain.

In fact only C-W can lead to better performance when the
rendezvous occurs on a DRO with an elongation AT

z < 50, 000
km. However, the length of the elongation is not the only
influencing parameter. The angular location of the final point for
the rendezvous on the DRO plays a major role.

Coupled analyses for close rendezvous and safety aspects are
then conducted. As a result, sevenHP are obtained, with a vclose =
8, 92 m/s, within 10 h and LOS-C strategy. When a failure occurs
at HP n◦1 to HP n◦4, there is no risk of collision as the chaser
trajectory does not intersect neither AS, nor KOS. For a failure
injected at HP n◦5, the rendezvous is still safe as the chaser enters
the AS, but not the KOS. From HP n◦6 and HP n◦7, the chaser
trajectory becomes dangerous for the target as the chaser enters
the KOS after the failure injection.
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FIGURE 13 | DRO family in the Earth-Moon synodic frame. (A) 14 first DRO in the Earth-Moon synodic frame, (B) Enlarged DRO family obtained with the continuation

process.

It can be concluded that the proposed strategy for close
rendezvous on a DRO is applicable. Close rendezvous and safety
analyses performed at DRO lead to results similar to the ones
obtained for Halo orbits and NRHO. Further research will be
necessary to propose a generic strategy, including an innovative
far rendezvous strategy.

PERSPECTIVES AND CONCLUSION

In a context of growing interest of the international space
community to design Human spaceflight missions to Earth-
Moon Lagrangian point, the strategy for rendezvous in the
vicinity of the Moon becomes an actual challenge. This paper
studies a scarcely explored field of astrodynamics, dealing with
relative motion in highly non-linear dynamics. The intrinsic
complexity of the three-body problem demands a departure from
the standards of relative motion in the two-body problem, while
still ensuring a smooth transition between far rendezvous and
close proximity operations. This paper has first summarized
the bibliographical context and a description of the theoretical
background for rendezvous strategy in the vicinity of Lagrangian
point in the CR3BP. Then, it has discussed strategies for far
and close rendezvous. As far as far rendezvous was concerned,
a three-maneuvers strategy based on natural connection between
manifolds of the target orbit and the chaser orbit was presented.
Then a close rendezvous strategy was described, composed of
two main steps to obtain the chaser’s approach trajectory arcs:
a first guess computed from the best-adapted linearized model,
then a second iteration with a non-linear model as a solution of
the Lambert’s problem. Afterwards, safety aspects were discussed,
adapted from lessons learned from cargo missions to resupply
the ISS. Finally, two studies cases were introduced to illustrate
the end-to-end scenario from parking orbit to close rendezvous,
with safety criteria. Complementary analyses were presented to
explore different rendezvous scenario when the chaser and target

orbits belong to different periodic solution family and to study
close rendezvous on a DRO.

Studies cases and exploratory analyses have shown that, for a
given mission stating target and chaser initial conditions, an end-
to-end scenario can be established, based on two-steps scenario,
chaining sequentially far rendezvous and close rendezvous. The
scenario will be unique for each given mission. The methodology
will recommend locations for maneuvers (angular location for far
rendezvous and HP number and position for close rendezvous).
This study also highlighted the sensitivity of the close rendezvous
performance to the performance of navigation sensors. Finally,
it also emphasized the definition of safety zones such as the
Approach Sphere and the Keep-Out Sphere, which should be
standardized for better collaboration in international programs
such as the future Lunar Orbital Platform-Gateway.

Complementary studies could be conducted so as to compare
this methodology to other ones. A first option could be to
elaborate a systematic process to find spatial intersections
between the manifolds, without using Poincaré map. A second
option could be based on a direct Lambert arc between chaser
and target parking orbits, without the utilization of stable and
unstablemanifolds. To go even further the exploratory systematic
analysis should be completed with planar (like DRO) and quasi-
periodic solutions. The close rendezvous strategy is almost
mature. It would now be interesting to see the possibilities of
embedding it in flight software, taking into account the actual
characteristics of flight equipment.
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This paper explores the existence of homo- and heteroclinic connections between

solar-sail periodic orbits in the planar Earth-Moon circular restricted three-body problem.

The existence of such connections has been demonstrated to great extent for the

planar and spatial classical (no-solar sail) three-body problem, but remains unexplored

for the inclusion of a solar-sail induced acceleration. Similar to the search for homo- and

heteroclinic connections in the classical case, this paper uses the tools and techniques

of dynamical systems theory, in particular trajectories along the unstable and stable

manifolds, to generate these connections. However, due to the time dependency

introduced by the solar-sail induced acceleration, common methods and techniques to

find homo- and heteroclinic connections (e.g., using the Jacobi constant and applying

spatial Poincaré sections) do not necessarily apply. The aim of this paper is therefore

to gain an understanding of the extent to which these tools do apply, define new tools

(e.g., solar-sail assisted manifolds, temporal Poincaré sections, and a genetic algorithm

approach), and ultimately find the sought for homo- and heteroclinic connections. As a

starting point of such an investigation, this paper focuses on the planar case, in particular

on the search for homo- and heteroclinic connections between three specific solar-sail

Lyapunov orbits (two at the L1 point and one at the L2 point) that all exist for the same

near-term solar-sail technology. The results of the paper show that, by using a simple

solar-sail steering law, where a piece-wise constant sail attitude is applied in the unstable

and stable solar-sail manifold trajectories, homo- and heteroclinic connections exist for

these three solar-sail Lyapunov orbits. The remaining errors on the position and velocity

at linkage of the stable and unstable manifold trajectories are <10 km and <1 m/s.

Future studies can apply the tools and techniques developed in this paper to extend

the search for homo- and heteroclinic connections to other solar-sail Lyapunov orbits in

the Earth-Moon system (e.g., for different solar-sail technology), to other planar solar-sail

periodic orbits, and ultimately also to the spatial, three-dimensional case.

Keywords: solar sailing, circular restricted three-body problem, homoclinic connections, heteroclinic connections,

transfer trajectories, Lyapunov orbits, libration point orbits
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INTRODUCTION

In recent years, the L1 and L2 libration points of the Earth-Moon
system have drawn renewed interest as they hold potential to
support future human space exploration activities. Such support
may come in the form of landing missions [1, 2], lunar far-
side communication capabilities [3, 4], or as a gateway to more
distant interplanetary destinations [1, 5, 6]. The natural motion
around the libration points has been studied in great detail
[7–9] and several families of (quasi-)periodic orbits around
the libration points have been identified, e.g., Lissajous [10],
Lyapunov [11], and halo [12] orbits, with more families in, for
example, Kazantzis [13, 14]. Though of immense importance,
the fact that the spacecraft dynamics in these works are

fully governed by gravitational accelerations only leaves little

flexibility. Recent work by the author and her collaborators [15]
has therefore explored an extension of the families of libration

point orbits by complementing the dynamics with a solar-sail
induced acceleration.

Solar sailing is a flight-proven form of in-space propulsion
that makes use of an extremely thin, mirror-like membrane
to reflect solar photons. The momentum exchange between
the photons and the membrane induces a force, and therefore
an acceleration, on the spacecraft which can be used for
spacecraft orbit and trajectory design [16]. As a propellant-less
form of propulsion, it holds great mission enabling potential
[17] with applications in advanced space weather warning
[18, 19], multi-asteroid rendezvous [20, 21], geomagnetic
tail monitoring [22], and polar observation [23, 24]. With

a range of successful solar-sail technology demonstration
missions to date [25–27] and more such missions planned
for the near future [28, 29], the application of solar sailing
as main propulsion system on a science mission is in
reach.

The addition of a solar-sail induced acceleration to the
classical Earth-Moon three-body dynamics yields families of
solar-sail planar and vertical Lyapunov, halo, and distant
retrograde orbits [15, 30] and allows new orbit families to
arise with potential applications for high-latitude observation
of the Earth and Moon [4]. In particular, the work in
Heiligers et al. [4] shows that a constellation of two sailcrafts
in so-called clover-shaped orbits can achieve near-continuous
coverage of the Earth’s North Pole. If motion to the mirrored
counterpart of this constellation can be achieved, a single solar-
sail mission may enable high-temporal resolution observations
of both the North and South Poles, thereby significantly
increasing the mission’s scientific return. To date only one
mission, the ARTEMIS mission, has exploited such motion
between libration point orbits when it transferred between
Lissajous orbits at the Earth-Moon L1 and L2 points [31,
32].

The objective of this paper is to start the investigation
of maneuver-free motion between solar-sail periodic orbits
in the Earth-Moon system, where “maneuver-free” refers to
no induced acceleration other than from the solar sail. Both
homoclinic and heteroclinic motion will be investigated. In
the classical system, the design and application of homo-

and heteroclinic connections has already been researched
extensively [33–38] with extensions to higher-fidelity dynamics
in Haapala and Howell [38] and optimal control approaches
for the inclusion of a variable specific impulse system or
to connect periodic orbits in different three-body systems in
Stuart et al. [39] and Heiligers et al. [40]. In the classical
sense, homo- and heteroclinic connections are established by
exploiting the instability of the libration point orbits and
exploring motion along their associated invariant manifolds.
By identifying connections on suitable spatial Poincaré sections
of trajectories that depart from one orbit along the unstable
manifold and arrive on another orbit along the stable
manifold, such transfers can be established. A similar approach
is adopted here, however connections between trajectories
along the solar-sail assisted stable and unstable manifolds
are sought after in order to achieve homo- and heteroclinic
connections between solar-sail periodic orbits in the Earth-
Moon system. Here, solar-sail assistedmanifolds are the invariant
manifolds of the solar-sail periodic orbit where the same
sail-steering law is adopted along the manifolds as in the
solar-sail periodic orbits. The dynamics are thus consistent
throughout the solar-sail periodic orbit and its invariant
manifolds.

Though the approach may be similar, the search for
connections in the solar-sail three-body problem is more
complex due to the (periodic) time dependency that the solar-
sail induced acceleration introduces into the dynamics. This
prevents, for example, the use of “spatial” Poincaré sections.
The effect of this time dependency needs to be understood,
appropriate searchmethods need to be established, and the actual
existence of homo- and heteroclinic connections needs to be
verified. This paper will go through each of these individual
steps. As a first investigation into the problem, the paper
will limit itself to planar motion, in particular to homo- and
heteroclinic connections between solar-sail Lyapunov orbits,
with the idea to define a framework that can be extended in
future work to other planar solar-sail periodic orbits in the
Earth-Moon system as well as to the spatial, three-dimensional
case.

To set up such a framework, the rest of this paper is organized
as follows. First, the dynamical framework is introduced in the
section “Dynamical Framework”. The three solar-sail Lyapunov
orbits that will act as test cases in this paper will be discussed
in the section “Solar-sail Lyapunov Orbits” with a description
of their associated solar-sail assisted invariant manifolds in the
section “Solar-sail Assisted Invariant Manifolds”. The section
“Problem Definition” will continue with the problem definition
and a discussion on the applicability of tools traditionally
used for the search of homo- and heteroclinic connections in
the classical three-body problem (spatial Poincaré section and
the Jacobi constant). The conclusion of that section leads to
an exploration of new tools (temporal Poincaré section and
a figure of merit) in the section “Exploration Methodology”.
In the sections “Homoclinic Connections” and “Heteroclinic
Connections” these tools will be further extended to generate
homoclinic and heteroclinic connections through grid searches
and a genetic algorithm. The paper ends with the conclusions.
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DYNAMICAL FRAMEWORK

The dynamical framework employed in this paper is that of
the Earth-Moon circular restricted three-body problem (CR3BP)
[41], complemented with the acceleration generated by the
solar sail. Note that the perturbative acceleration due to the
gravitational attraction of the Sun is not included in the
dynamics: for reasonable solar-sail technology, this perturbative
acceleration is much smaller than the solar-sail induced
acceleration throughout much of the Earth-Moon system. The
assumptions in the classical (no-solar sail) CR3BP are that the
motion of a mass m is governed by the gravitational attraction
of two larger masses m1 and m2; that the gravitational effect of
mass m on masses m1 and m2 is negligible; and that m1 and m2

move in circular co-planar orbits about their barycenter. When
complementing the classical CR3BP with a solar sail, the motion
of m is no longer governed by gravitational accelerations only,
but also by the acceleration generated by the sail. In this paper,
m is thus the sailcraft, whereas m1 and m2 represent the Earth
and Moon, respectively. It is convenient to define the motion
of the sailcraft in a synodic frame of reference, R

(

x, y, z
)

, which
has its origin at the Earth-Moon barycenter, the x axis pointing
from the Earth to the Moon, the z axis perpendicular to the
Earth-Moon orbital plane, and the y axis completing the right-
handed reference frame, see Figure 1. With respect to inertial
space, this frame rotates at an angular rate ω around the z axis:
ω = ωẑ. Furthermore, a set of canonical units is used, where
the sum of m1 and m2, the distance between m1 and m2, and
1/ω are taken as the units of mass, length, and time, respectively.
Finally, the mass ratio µ = m2/ (m1 +m2) = 0.01215 is defined.
Then, the dimensionless masses of the Earth and Moon become
1 − µ and µ , respectively, and their location along the x axis
of frame R

(

x, y, z
)

are −µ and 1 − µ , respectively. In frame
R

(

x, y, z
)

, the equations of motion of the sailcraft are given
as [16]

FIGURE 1 | Schematic of top view of solar-sail Earth-Moon circular

restricted three-body problem.

r̈+ 2ω × ṙ+∇U = as (t) . (1)

The left-hand side of Equation (1) represents the classical
CR3BP, whereas the right-hand side adds the solar-sail induced
acceleration. In Equation (1), r is the sailcraft position vector,
which, combined with the sailcraft velocity vector, gives its state

vector, x =
[

r ṙ
]T
; U is the effective potential from which the

gravitational and centripetal accelerations can be computed

U = −
1
2

(

x2 + y2
)

− ([1− µ] /r1 + µ/r2) , (2)

where r1 =

∥

∥

∥
r+

[

µ 0 0
]T

∥

∥

∥
and r2 =

∥

∥

∥
r−

[

1− µ 0 0
]T

∥

∥

∥
.

Finally, in Equation (1), as (t) is the solar-sail induced
acceleration vector.

To define the solar-sail induced acceleration vector, the
motion of the Sun in frame R

(

x, y, z
)

is assumed to be in the
Earth-Moon plane, i.e., in the

(

x, y
)

plane, thereby neglecting the
small, 5◦ inclination difference between the ecliptic and Earth-
Moon orbital planes. Furthermore, the Sun orbits the Earth-
Moon system in a clockwise direction at a dimensionless rate of
�S = 0.9252 with a dimensionless period of PS = 2π/�S, which
will be referred to as the synodic period throughout the paper.
The position vector of the Sun is then given through

rS = rSŜ = rS





− cos (�St)
sin (�St)

0



 . (3)

In Equation (3), the Sun is assumed to be on the negative x
axis at time t = 0. In this work, a constant value for the
magnitude of the Sun’s position vector rS of 1 astronomical
unit (au) is assumed. Furthermore, because the magnitude of
the sailcraft’s position vector is much smaller than that of the
Sun, i.e., ‖r‖ << rS, the sail-Sun distance is also assumed to
be equal to 1 au, i.e., ‖rs→S‖ = rS, see Figure 1. The result of
this assumption is a constant solar radiation pressure throughout
the Earth-Moon system. To further define the solar-sail induced
acceleration vector, an ideal solar-sail model is adopted where the
sail is assumed to be a perfect reflector, resulting in pure specular
reflection of the impinging solar photons [16]. For realistic sails,
optical imperfections and wrinkles will cause diffuse reflection,
absorption, and thermal emission of the solar photons [16], but
for the preliminary analysis considered in this paper, these effects
are neglected. Under the assumption of specular reflection, the
solar-sail induced acceleration vector acts perpendicular to the
solar-sail membrane and can be defined as [15, 42]

as (t) = a0,EMcos2 (α) n̂ (4)

with a0,EM the dimensionless characteristic solar-sail
acceleration, −90o ≤ α ≤ 90o the solar-sail pitch angle,
see Figure 1, and n̂ the unit vector normal to the solar-sail
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membrane. The latter can be defined through the pitch angle, α ,
and a rotation around the z axis of angle−�St

n̂ = Rz (−�St)





cosα
sinα

0



 . (5)

Finally, the characteristic solar-sail acceleration, a0,EM , is the
acceleration generated by the solar sail at 1 au when α = 0,
i.e., when the sail is oriented perpendicular to the direction
of sunlight and the unit vectors n̂ and Ŝ are aligned, but
opposite, i.e., n̂ = −Ŝ. Near-term values for this dimensionless
characteristic solar-sail acceleration are in the order of a0,EM =

0.1, which equates to a dimensional value of 0.2698 mm/s2

[15, 18].

SOLAR-SAIL LYAPUNOV ORBITS

As mentioned in the introduction, previous work by the author
and her collaborators [15] has extended the families of classical
Lyapunov orbits to families of solar-sail Lyapunov orbits. These
orbits are generated by first selecting classical Lyapunov orbits
with a period that coincides with the period of the Sun around
the Earth-Moon system, i.e., the synodic period. Subsequently, a
continuation is started on the solar-sail characteristic acceleration
a0,EM and for each increment in a0,EM a differential correction
scheme is applied to find a periodic solar-sail Lyapunov orbit.
This procedure results in a family of solar-sail Lyapunov orbits
parameterized by a0,EM . Different families can be generated for
different steering laws and by choosing either of the two y axis
crossings of the initial classical orbit as the starting point for the
orbit propagation, i.e., either the initial condition on the left-
or right-hand side of the libration point. This choice of starting
point, hereafter referred to as the Sun-sail phasing, results in a
different phasing of the solar sail and the Sun over time and
therefore in different solar-sail Lyapunov orbit families.

The orbits selected for this study are shown in Figure 2A

(Figure 2Bwill be discussed in the section “ProblemDefinition”).
The figure shows three orbits, designated by the numbers 1–
3, which all have a period equal to one synodic period, PS,
and they exist for a0,EM = 0.1 and a zero-pitch angle steering
law, i.e., α = 0 and thus n̂ = −Ŝ. Orbits 1 and 2 exist
around the L1 point, whereas orbit 3 exists around the L2 point.
Finally, the initial condition of orbit 1 lies on the left-hand
side of L1, while the initial conditions of orbits 2 and 3 lie on
the right-hand side of either L1 or L2. Note that many other
solar-sail Lyapunov orbits could have been selected [15], e.g.,
for different steering laws, different dimensionless characteristic
solar-sail accelerations, and so on. However, the three orbits
in Figure 2A are considered sufficient for the purpose of the
current investigation: they consider a realistic value for the
characteristic solar-sail acceleration, consider orbits about both
the L1 and L2 points, incorporate both types of Sun-sail phasing,
and use a simple steering law. Finally, by limiting the number
of orbits to three, the number of connections to be investigated,
see Table 1, also remains limited to a workable number of six.
Note that the numerical designation of the transfers introduced

in Table 1 will be used throughout this paper. While transfers
1–3 represent homoclinic connections, transfers 4–6 consider
heteroclinic connections, where transfers 4 and 5 connect orbits
around the L1 point with orbits around the L2 point, while
transfer 6 connects the two different orbits at the L1 point. The
latter allows a change in the Sun-sail phasing between the orbits.
Note that the reverses of transfers 4–6 (e.g., from L2 to L1) are not
considered.

SOLAR-SAIL ASSISTED INVARIANT

MANIFOLDS

The stability analysis carried out in Heiligers et al. [15] showed
that all three orbits in Figure 2A are highly unstable, implying
the existence of stable and unstable invariant manifolds [9,
43]. Trajectories along these manifolds can be obtained by
propagating the dynamics in Equation (1) from a state-vector
along the stable and unstable eigenvectors of the linearized
system around the periodic orbit, i.e., the reference trajectory,
r0. Replacing r → r0 + δr in Equation (1) gives the following
linearized system

δẋ = Aδx (6)

and

A =

[

0 I

−
∂∇U
∂r

∣

∣

r0
�

]

,� =





0 2 0
−2 0 0
0 0 0



 . (7)

Note that the solar-sail induced acceleration does not appear in
the linearized system as it is not a function of the Cartesian
position coordinates. This is a direct result of the assumption that
‖rs→S‖ = rS and therefore that the solar radiation pressure is
constant throughout the Earth-Moon system. For a system of the
form δẋ = Aδx, the state-vector at time t after the initial time
t0 can be obtained through the state transition matrix (STM),
8 (t; t0), as

δx (t) = 8 (t; t0) δx (t0) , (8)

where the STM can be obtained by simultaneously propagating
the equations of motion in Equation (1) and

8̇ (t; t0) = A8 (t; t0) . (9)

The STM evaluated after one full orbit, i.e., at time t = t0 + PS,
is called the monodromy matrix. Its six eigenvalues, λi with i =
1, 2, ..., 6, appear in reciprocal pairs and define the linear stability
properties of the orbit. An orbit is stable if all six eigenvalues
lie on the unit circle. If the norm of any of the eigenvalues is
larger than one, ‖λi‖ > 1, the orbit is unstable, with larger norm
values indicating greater instability. The largest eigenvalues,
λmax = max (λi), for orbits 1–3 in Figure 2A are 7.09410 × 105,
11.08556 × 105, and 8.12799 × 105, respectively, indicating that
these orbits are indeed highly unstable. The unstable invariant
manifold is defined as the set of trajectories that the spacecraft
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FIGURE 2 | Selected solar-sail Lyapunov orbits. (A) Orbits. (B) Jacobi constant value along the orbits.

TABLE 1 | Homo- and heteroclinic connections to be investigated.

Transfer number Homo- or heteroclinic Starting orbit Final orbit

1 Homoclinic 1 1

2 Homoclinic 2 2

3 Homoclinic 3 3

4 Heteroclinic 1 3

5 Heteroclinic 2 3

6 Heteroclinic 1 2

takes if it is perturbed anywhere along the orbit in the direction
of the local eigenvector associated with this largest eigenvalue,
wU
0 [9, 43]. Similarly, the stable invariant manifold contains all

trajectories that a spacecraft takes backwards in time after a
perturbation in the direction of the local eigenvector associated
with the eigenvalue 1/λmax,w

S
0 [9, 43]. This manifold contains

the trajectories that asymptotically wind onto the periodic orbit.
The local stable and unstable eigenvectors along the orbit at any
time t, wU (t) and wS (t), can efficiently be obtained after a single,
full-orbit propagation of the STM through

wU (t) = 8 (t, t0)w
U
0 (10)

wS (t) = 8 (t, t0)w
S
0. (11)

Initial conditions along the local unstable and stable invariant
manifolds, xUM,0 and xSM,0, are obtained by perturbing any state

vector along the periodic orbit, x
(

tM,0

)

, by a magnitude ε along
the unstable and stable eigenvectors as

xUM,0

(

tM,0

)

= x
(

tM,0

)

± ε
wU

(

tM,0

)

∥

∥wU
(

tM,0

)
∥

∥

(12)

xSM,0

(

tM,0

)

= x
(

tM,0

)

± ε
wS

(

tM,0

)

∥

∥wS
(

tM,0

)∥

∥

. (13)

The actual trajectories along the unstable invariant manifolds
can be obtained by forward propagating the initial condition
in Equation (12) in the dynamics of Equation (1), whereas

the actual trajectories along the stable invariant manifolds can
be obtained by backward propagating the initial conditions
in Equation (13) in the dynamics of Equation (1). Note that
the dynamics in Equation (1) include the solar-sail induced
acceleration. The propagation thus leads to solar-sail assisted
manifold trajectories where the same sail steering law is applied
as in the orbits themselves, i.e., n̂ = −Ŝ. This steering law
will be used throughout the paper unless explicitly mentioned
otherwise (from the section “Non-zero Pitch Angles” onwards).
The plus-minus signs in Equations (12) and (13) represent
the two branches of the invariant manifolds that either move
toward the smaller body (the interior manifold) or away from
the smaller body (the exterior manifold). In this work, only the
interior manifolds will be exploited for both the homoclinic and
heteroclinic connections. Finally, in this work a value for the
perturbation magnitude in Equations (12) and (13) of ε =10−6

(0.38 km) is used.
The resulting solar-sail assisted manifolds for orbit 1

appear in Figure 3. This figure has been generated by
propagating 50 trajectories along each manifold (unstable/stable
and interior/exterior) for an integration time of 1.2 PS and
by truncating the trajectories when their distance to the
Moon becomes smaller than twice the lunar radius to prevent
operational difficulties. The red trajectories follow the unstable
manifold, whereas the green trajectories follow the stable
manifold. The figure shows that the symmetry, which is
inherent in the classical CR3BP, is preserved in the solar-sail
CR3BP due to the periodicity and symmetry of the solar-
sail induced acceleration. Therefore, the interior and exterior
unstable and stable manifolds are mirrored in the (x, z) plane.
More specifically, mirrored trajectories can be found for initial
conditions xUM,0

(

tM,0

)

and xSM,0

(

PS − tM,0

)

along the solar-sail
Lyapunov orbits.

PROBLEM DEFINITION

For the rest of the paper, it is useful to specify a set of conventions,
see Figure 4. This will allow to properly define the initial and
final conditions of the unstable and stable manifold trajectories as
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FIGURE 3 | Trajectories along the solar-sail assisted stable (green) and

unstable (red) manifolds of orbit 1.

well as the time of linkage between these trajectories. The initial
conditions of the (un)stable manifold trajectories are defined
as discretized coordinates along the periodic orbits, while their
final conditions and the time of linkage are defined through the
integration time along the manifolds. Note that, throughout this
and the following sections, a subscript M relates to variables
associated with the manifold trajectories, while the omission of
the subscript M refers to variables associated with the solar-sail
periodic orbits.

First of all, the initial time in the starting and final solar-sail
Lyapunov orbits are designated by tU0 = 0 and tS0 , respectively,
see Figure 4. The initial time in the final orbit, tS0 , occurs an
integer number of synodic periods after tU0 , i.e., t

S
0 = nPS to

allow time for the homo- or heteroclinic transfers to take place.
Note that tS0 = nPS can be seen as the earliest arrival time
in the final orbit. The value chosen for n will determine how
much time is allowed for the transfer and may take on different
values for different cases throughout the paper to achieve the best
results.

The orbits are discretized into NM number of equally spaced
points in time from where different manifold trajectories are
assumed to start. The actual node numbers are denoted by iUM and
iSM for the unstable and stable manifold trajectories, respectively,
with iUM and iSM from 1 to NM , see again Figure 4. Note that the
first and last nodes coincide, i.e., iUM = 1 and iUM = NM as well
as iSM = 1 and iSM = NM , in order to demonstrate some periodic
features throughout the paper. The time between discretization
nodes is given by 1t = PS/ (NM − 1). The time at each of the
discretization nodes is the initial time of the manifold trajectory
and is given by tUM,0 = tU0 +

(

iUM − 1
)

1t for the starting orbit and

tSM,0 = tS0 +
(

iSM − 1
)

1t for the final orbit. The state vector at the
start of the unstable and stable manifold trajectories are denoted
as xUM,0 and xSM,0. These are propagated over an integration time

of tUint and tSint up to the final times tU
M,f

and tS
M,f

so that tUint =

tU
M,f

− tUM,0 and tSint = tS
M,f

− tSM,0. The state vectors at the end of

the propagation are denoted as

xUM,f =

[

rU
M,f

vU
M,f

]T
=

[

xU
M,f

yU
M,f

ẋU
M,f

ẏU
M,f

]T
and

xSM,f =

[

rS
M,f

vS
M,f

]T
=

[

xS
M,f

yS
M,f

ẋS
M,f

ẏS
M,f

]T
.

For a connection, the state vectors at the end of the unstable and
stablemanifold trajectories shouldmatch, i.e., xU

M,f
= xS

M,f
, which

occurs at the linking time, tlink. This implies that the following
four constraints need to be satisfied

xU
M,f

= xS
M,f

(14)

yU
M,f

= yS
M,f

ẋU
M,f

= ẋS
M,f

ẏU
M,f

= ẏS
M,f

.

For the classical (no-solar sail) case, two of these constraints can
easily be satisfied by choosing a suitable Poincaré section, e.g., by
propagating both the unstable and stable manifold trajectories up
to xU

M,f
= xS

M,f
= 1 − µ , thereby inherently satisfying the first

constraint in Equation (14). In addition, by choosing the starting
and final orbits such that they have the same Jacobi constant
value (which is inherently the case for a classical homoclinic
connection), the compliance of another constraint, e.g., the third
constraint in Equation (14), can be ensured. This leaves only
the compliance of two constraints to be evaluated, which can

be found visually by plotting the values for
(

yU
M,f

, ẏU
M,f

)

and
(

yS
M,f

, ẏS
M,f

)

at the Poincaré section.

When adding the time-dependent solar-sail induced
acceleration to the dynamics, an additional constraint needs to
be satisfied: the ends of the stable and unstable trajectories not
only need to match in the spatial domain, but also in time

tlink = tUM,f = tSM,f . (15)

The consequence of this time constraint is that it impedes the use
of “spatial” Poincaré sections as the time of arrival at the Poincaré
section will be different for each trajectory. Instead, Poincaré
sections “in time” will have to be used, where all trajectories are
not propagated up to, for example, a prescribed x coordinate, but
up to a specific integration time.

The time-dependent solar-sail induced acceleration also
impedes the use of the Jacobi constant to automatically satisfy
one of the constraints in Equation (14). The Jacobi constant is
defined as [41]

CJ = 2

(

1− µ

r1
+

µ

r2

)

+
(

x2 + y2
)

−
(

ẋ2 + ẏ2 + ż2
)

. (16)

First of all, for heteroclinic connections between solar-sail
periodic orbits in the Earth-Moon system (like the solar-sail
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FIGURE 4 | Schematic of conventions. Note that, for a homoclinic connection the starting and final orbits are the same orbit.

FIGURE 5 | Jacobi constant along six trajectories along the stable (red, solid) and unstable (green, dashed) manifolds of orbit 1, where iM = iU
M

= iS
M
.

Lyapunov orbits considered in this paper), it will be difficult,
if not impossible, to find two orbits with the same value for
CJ , as the main orbit selection criterion will be that both orbits
exist for the same sail technology, i.e., for the same value for

a0,EM . Furthermore, due to the time dependent solar-sail induced
acceleration, the value for CJ is not constant along the orbits, see
Figure 2B. Though not constant, its value is periodic and could
therefore potentially provide a means to reduce the number of
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constraints. However, as soon as the manifold trajectories are
being propagated from their initial condition, the periodicity in
the value for CJ is lost, see Figure 5.

Figure 5 provides the CJ-value along the stable and unstable
manifolds of orbit 1 for NM = 6 (six trajectories per manifold),
n = 2 (the earliest arrival time in the final orbit is two synodic
periods after the initial time of the starting orbit), and tUint =

tSint = PS (the manifold trajectories are propagated for one
synodic period). By selecting the parameter values as such, the
time constraint in Equation (15) is automatically satisfied for
iUM = iSM . However, the different plots in Figure 5 show a
difference in CJ-value at the end of the stable and unstable
manifold trajectories for iUM = iSM . Only for iUM = NM + 1 − iSM
does the symmetry in the dynamical system guarantee the same
CJ-value after an integer number of synodic periods, see for
example the thick lines for iUM = 2 and iSM = 5 in Figure 5.
However, for this combination of manifold trajectories, the time
constraint is not satisfied, i.e., while a link in CJ-value exists, the
trajectories do not link in time. It can therefore be concluded that
the Jacobi constant does not provide any benefit in the search for
either homoclinic or heteroclinic connections between solar-sail
Lyapunov orbits in the Earth-Moon system.

EXPLORATION METHODOLOGY

The previous section has demonstrated that methods,
conventionally used to find homo- or heteroclinic connections
between Lyapunov orbits in the classical Earth-Moon system, do
not apply for the inclusion of a solar-sail induced acceleration.
Connections can therefore not simply be obtained from a
visual inspection of two-dimensional spatial Poincaré sections.

This section will explore a different methodology, where the
time constraint in Equation (15) is satisfied by suitable choices
of “temporal” Poincaré sections (either by defining a fixed
propagation time, see the section “Fixed Propagation Time”,
or a fixed linkage time, see the section “Fixed Linkage Time”).
Furthermore, the coordinate constraints in Equation (14) are
assessed by defining the following figure of merit (or objective):

J = w1r + 1v, (17)

with w a weight and

1r =
∥

∥

∥
rUM,f − rSM,f

∥

∥

∥
,1v =

∥

∥

∥
vUM,f − vSM,f

∥

∥

∥
. (18)

The objective in Equation (17) is thus a weighted sum of the error
in dimensionless position and dimensionless velocity between the
ends of the unstable and stablemanifold trajectories. In this work,
a value for the weight of w = 5 is selected. This value is based on
trial runs as well as the fact that an error in velocity is of slightly
less importance than an error in position as it can be physically
overcome, e.g., in worst case, by an additional propulsion source.

For brevity, the applicability of the proposed tools will be
explored for homoclinic connections only, i.e., for transfers 1–3,
and will be shown to provide a good framework. However, more
flexibility in both the temporal “positioning” of the Poincaré
section as well as other design parameters such as the solar-
sail steering law is required to fully satisfy the constraints in
Equations (14) and (15). This will be further explored for the
homo- and heteroclinic connections separately in the sections
“Homoclinic Connections” and “Heteroclinic Connections”,
respectively.

FIGURE 6 | Search for homoclinic connections for a fixed propagation time of one synodic period (FLTR: transfers 1–3).
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Fixed Propagation Time
In the section “Problem Definition”, a propagation time of one
synodic period was used to generate the results in Figure 5, in
which case the time constraint in Equation (15) is satisfied only
for connections between trajectories where iUM = iSM . This can
be generalized to a propagation time of any integer number of
synodic periods, i.e., tUint = tSint = nintPS. Then, the total transfer
time becomes 2nint and thus n = 2nint, i.e., t

U
M,0 ∈ [0, PS] and

tSM,0 ∈ [2nintPS, (2nint + 1) PS].
The results for nint = 1 and NM = 1,000 appear in

Figure 6 and in the first data column of Table 2 (heading “Fixed
propagation time”). Note that the other columns in Table 2 will
be discussed in the following sections where more advanced
approaches in the search for homoclinic connections will be
explored. The figures in the top row of Figure 6 provide for
transfers 1–3 the objective value for the different manifold
trajectory numbers, i.e., for different values for iUM = iSM . Gaps
in these results appear due to the early truncation of trajectories
that approach the Moon at less than twice the lunar radius. The
figures clearly show the symmetry in the dynamics, i.e., the results
in terms of objective value are the same for iUM = iSM andNM+1−
iUM = NM+1− iSM . The computational effort for generating these
results could thus be reduced by only considering iUM = iSM =

1, 2, ..., 12NM . The red star indicates one of two minima in the
objective value with further numerical values on the departure,
link and arrival times (tUM,0, tlink, and tSM,0, all in synodic period

units) in Table 2. These different epochs are all one synodic
period apart due to the fixed propagation time. The figures
in the bottom row of Figure 6 show the actual unstable (red)
and stable (green) manifold trajectories corresponding to that
minimum objective value, where circles and crosses mark the
start and end of the manifold trajectories. Due to the condition
iUM = iSM , the circles overlap. For true homoclinic connections,
the crosses should also overlap. This is clearly not the case for
the results in Figure 6. In fact, Table 2 shows that the errors
on the position are between 18,000 and 83,000 km and that the
errors on the velocity are in the range 17–606 m/s. Note that
longer integration times have been considered, e.g., nint = 2,
but that this did not lead to improvements in the objective
value.

Fixed Linkage Time
To loosen the requirement that only connections for iUM = iSM can
be explored, this section moves away from a fixed propagation
time of an integer number of synodic periods and instead
propagates the initial conditions xUM,0 and xSM,0 forward and

backward up to a specific linkage time, tlink. Consequently, t
U
M,f

=

tS
M,f

= tlink and Equation (15) is automatically satisfied. The

results can then be presented as temporal Poincaré sections at
the linkage time, see the figures on the left-hand side of Figure 7.
In this figure, the red and green dots represent the position

TABLE 2 | Objective value, dimensional errors on position and velocity, and further details for transfers 1–3 for different approaches in the search for homoclinic

connections.

Transfer Fixed propagation

time

Fixed linkage time Grid search: free

linkage time

Grid search: non-zero pitch

angles

Genetic algorithm

1 J 0.8414 0.2226 0.0836 0.0262 5.111 × 10−7

1r, km 18962.9 2554.9 113.3 609.6 4.7 × 10−3

1v, m/s 605.6 192.9 83.6 18.6 4.6 × 10−4

tU
M,0, synodic period 0.212 0.563 0.999 0.83 0.641

tlink , synodic period 1.212 2 1.906 2.048 1.791

tS
M,0, synodic period 2.212 3.385 3.020 3.16 3.308

αU, deg 0 0 0 63 40.2

αS, deg 0 0 0 −63 −27.8

2 J 0.4552 0.1146 0.0734 0.0165 2.199 × 10−4

1r, km 33705.5 592.8 1361.4 1141.1 0.8

1v, m/s 17.1 108.8 56.7 1.7 0.2

tU
M,0, synodic period 0.349 0.523 0.636 0.84 0.836

tlink , synodic period 1.349 2 2.142 2.046 1.950

tS
M,0, synodic period 2.349 3.478 3.479 3.17 3.153

αU, deg 0 0 0 46 48.2

αS, deg 0 0 0 −46 −43.9

3 J 1.2099 0.0366 0.0098 0.0350 2.609 × 10−4

1r, km 82925.4 530.4 424.1 900.2 0.6

1v, m/s 133.6 30.2 4.4 23.7 0.3

tU
M,0, synodic period 0.726 0.571 0.573 0.47 0.480

tlink , synodic period 1.726 1.5 1.504 1.456 1.483

tS
M,0, synodic period 2.726 2.429 2.432 2.53 2.540

αU, deg 0 0 0 15 13.9

αS, deg 0 0 0 −15 −15.6
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FIGURE 7 | Search for homoclinic connections for a fixed linkage time. (A) Transfer 1. (B) Transfer 2. (C) Transfer 3.

coordinates at the end of the unstable and stable manifold
trajectories, respectively, for transfers 1–3. For transfers 1 and
2, these Poincaré sections are generated for n = 3 (i.e., tUM,0 ∈

[0, PS] and tSM,0 ∈ [3PS, 4PS]), while for transfer 3 better results

were obtained for n = 2 (i.e., tUM,0 ∈ [0, PS] and tSM,0 ∈

[2PS, 3PS]). Furthermore, the linkage time is defined halfway, i.e.,
tlink =

1
2 (n+ 1) PS, NM = 1,000 and trajectories that approach

the Moon by less than twice the lunar radius are again discarded.

The symmetry in the dynamics is once again clear from
these figures (allowing the computational effort to be halved)
and some connections in position can be observed, i.e., where
the red and green dots overlap. Information on the velocity
at the end of each trajectory can be included in the temporal
Poincaré sections by using the “glyph representation” introduced

by Haapala and Howell [38]. This glyph representation is shown
in the figures in the middle column of Figure 7 where an arrow

indicates a scaled version of the velocity vector at the end

of the unstable and stable manifold trajectories, i.e., vU
M,f

and

vS
M,f

. If a green and red dot overlap and the accompanying

velocity arrows are of the same magnitude and point in the
same direction, a homoclinic connection is established. The best
connection, i.e., the combination of unstable and stable manifold
trajectories with the smallest objective value in Equation (17),
is highlighted in color in the figures in the middle column of
Figure 7, while all other velocity vectors are marked in gray.
The corresponding trajectories appear on the right-hand side of
Figure 7. Comparing these trajectories with those in Figure 6

shows the improvement that a fixed linkage time can establish
over a fixed propagation time. Actual numerical values on the
objective value and errors in position and velocity are provided
in the second data column of Table 2 (heading “Fixed linkage
time”), which shows a reduction in the objective by a factor
3.7–33.1 and a reduction in the position error of 1–2 orders of
magnitude.
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FIGURE 8 | Trajectory times per manifold trajectory number for transfer 1 including the departure, link, and arrival epochs for the best stable and unstable manifold

trajectories.

FIGURE 9 | Search for homoclinic connections for a free linkage time (FLTR: transfers 1–3).

This section has shown the usability of temporal Poincaré
sections and the figure of merit in Equation (17) for the search
of homoclinic connections. However, the highly constrained
definition of the temporal Poincaré section as well as other
design parameters such as the solar-sail steering law, cause the
absolute values for the linkage errors to be too large in order
to consider these transfers as true homoclinic connections. The
subsequent sections will therefore introduce more flexibility
into the design of the homo- and heteroclinic connections

in the sections “Homoclinic Connections” and “Heteroclinic
Connections”, respectively.

HOMOCLINIC CONNECTIONS

Building on the results found for homoclinic connections in the
previous section, this section introduces more flexibility into the
design of the homoclinic connections by allowing the linkage
time to be freely selected and by adopting non-zero solar-sail
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pitch laws. To find the optimal linkage time and sail-steering law,
two approaches are adopted: a simple grid search in the section
“Grid Search” and a genetic algorithm approach in the section
“Genetic Algorithm”.

Grid Search
This section will explore the use of grid searches to improve the
quality of the homoclinic connections by choosing a free linkage
time, see the section “Free Linkage Time”, and non-zero solar-sail
pitch angles, see the section “Non-zero Pitch Angles”.

Free Linkage Time
To explore the idea of a free linkage time, the following grid-
search approach is adopted:

- NM = 1,000 trajectories are propagated along the unstable and
stable manifolds for two synodic periods, i.e., tUint = tSint = 2Ps.

- As in the previous section, n = 3 for transfers 1 and 2,
while n = 2 for transfer 3. This means that the initial
conditions of the trajectories along the unstable and stable
manifolds are bound to the domains tUM,0 ∈ [0, PS] and tSM,0 ∈

[2PS, 3PS] (n = 2) and tSM,0 ∈ [3PS, 4PS] (n = 3).
- A minimum transfer time of 0.9PS is enforced to ensure that
the trajectories will sufficiently move away from the solar-sail
Lyapunov orbits. The final conditions of the trajectories along
the unstable and stable manifolds are then confined to the
domains tU

M,f
∈ [0.9PS, 3PS] and tS

M,f
∈ [0, 2.1PS] (n = 2)

and tS
M,f

∈ [PS, 3.1PS] (n = 3). There thus exists an overlap

in linkage time in the domain t
link

∈ [0.9PS, 2.1PS] (n = 2)
and t

link
∈ [PS, 3PS] (n = 3).

- Each propagated trajectory is interpolated at nnodes = 1,000
equally spaced nodes in time.

FIGURE 10 | Effect of non-zero pitch angle on the unstable (red) and stable

(green) manifold trajectories of orbit 1 for iU
M

= iS
M

=1, i.e., at tU
M,0 = tS

M,0 = 0,

and for pitch angles between −90◦ (dark color) and 90◦ (light color) with a

step size of 10◦.

- The position and velocity coordinates at those nodes
are stored in four individual matrices (one for each of
the two position and two velocity coordinates) of size
[

NM , 12 (n+ 1) nnodes
]

. The rows of these matrices represent
the trajectory numbers, whereas the columns represent the
time at the nodes. This is further demonstrated in Figure 8

for transfer 1, where the horizontal and vertical axes can
be interpreted as the columns and rows of the matrices,
respectively, and the colored surfaces indicate which elements
of the matrices are filled. Note that the gaps in Figure 8 are
introduced by an early truncation of the trajectories because
of a close lunar approach.

- After filling up the four individual matrices, for each
potential linkage time [i.e., for each column between t

link
∈

[0.9PS, 2.1PS] (n = 2) or t
link

∈ [PS, 3PS] (n = 3)], the errors
in position and velocity for each combination of rows of the
matrices for the stable and unstable manifolds are computed.

- Finally, the absolute minimum objective value for the best
linkage time is extracted and the corresponding unstable and
stable manifold trajectories are further evaluated.

The results for transfers 1–3 appear in Figure 9. The figures
in the top row of Figure 9 show the smallest objective value
at each possible linkage time and the red star indicates the
absolute minimum. The corresponding trajectories appear in the
bottom row of Figure 9 with numerical values for the objective,
errors in position and velocity, and departure, link and arrival
epochs in the third data column of Table 2 (heading “Grid
search: free linkage time”). For transfer 1, the epochs are also
illustrated in Figure 8. From Table 2 it can be concluded that
a free linkage time further reduces the objective value by a
factor 2.7–8.9, bringing the errors on the position and velocity
at linkage down to less than the lunar radius (<1,738 km)
and <100 m/s, respectively. For transfer 3, the result is very
close to that for a fixed linkage time: the departure and
arrival conditions along the solar-sail Lyapunov orbit and
linkage time are only slightly changed. The result is a near-
homoclinic connection with 1r = 424.1 km and 1v =

4.4 m/s.

Non-zero Pitch Angles
Up to this point, the attitude of the solar sail in the stable and
unstable manifold trajectories has been assumed equal to that of
the solar-sail Lyapunov orbits, i.e., α = 0 and thus n̂ = −Ŝ.
This section investigates if further improvements on the objective
value can be achieved by orienting the sail at a constant, but
non-zero, pitch angle along the stable and unstable manifold
trajectories. Note that, when considering non-zero pitch angles,
the terms “invariant manifolds” or “manifold trajectories” no
longer really apply, but that, for consistency, this paper will
continue to use these terms.

By changing the sail’s orientation with respect to the incoming
solar radiation through the pitch angle, see Figure 1, the solar-
sail induced acceleration changes as per Equation (4). Figure 10
demonstrates the effect of a non-zero pitch angle along the
manifold trajectories of orbit 1. To generate Figure 10, the initial
conditions at iUM = iSM = 1, i.e., xUM,0 (0) and xSM,0 (0), are
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forward and backward propagated for different pitch angles in the
unstable, αU , and stable, αS, manifold trajectories. In particular,
a range in αU and αS of [−90o, 90o] is considered with a step
size of 10o. Note that pitch angles larger than 70o may not always
fall within mission constraints [29], but that the full theoretical
range in pitch angles is considered in this paper for illustrative
purposes. Also note that using different pitch angles in the stable
and unstable manifold trajectories requires an instantaneous
attitude change at linkage, but that this may be smoothed in
future work by employing optimal control algorithms. However,
this is considered beyond the scope of the current investigation.

Figure 10 shows that, by pitching the sail away from αU
=

αS
= 0, a wealth of new trajectories arises. Note that the sign in

Equations (12) and (13) is chosen such that the interior manifold
results for αU

= αS
= 0 and that non-zero pitch angles

subsequently cause the manifold trajectories to divert away from
the Moon and move toward the Earth. The figure furthermore

shows that the symmetry as explained in the section “Solar-sail

Assisted Invariant Manifolds” is maintained for xUM,0(tM,0 ) and

xSM,0(PS−tM,0) as long as αU
= −αS, see the trajectories indicated

with αU
= −60◦ and αS

= 60◦ in Figure 10.
To assess the improvement in the objective value for non-zero

pitch angles, the approach detailed in the section “Free linkage
Time” is expanded by a loop around that approach to evaluate the

minimum objective value for a mesh in αU of αU
∈ [−90◦, 90◦]

with a step size of 1
◦

. The pitch angle in the stable manifold

trajectories is constrained to αS
= −αU The only difference with

respect to the approach in the section “Free linkage Time” is a
reduction in the number of manifolds trajectories to NM = 100

to counter the increase in computational time introduced by the
loop over αU . The trajectories that yield the smallest objective
value for transfers 1–3 appear in the top row of Figure 11 with
numerical values in the fourth data column of Table 2 (heading
“Grid search: non-zero pitch angles”). From Table 2 it can be
concluded that the best trajectories abide by, or are close to,
the condition of xUM,0(tM,0) and xSM,0(PS − tM,0) (i.e., the sum of

tUM,0 and tSM,0 is equal to an integer number of synodic periods)
and thus exploit the symmetry in the system. This is also clear
from the position of the circle markers in Figure 11. As such, for
transfers 1 and 2 a further reduction in the objective value of a
factor 3.2–4.4 is achieved to position and velocity errors that start
to resemble true homoclinic connections. However, the reduction
in the number of manifold trajectories from NM = 1000 in the
previous section to NM = 100 in the current investigation leads
to an increase in the objective value for transfer 3.

Genetic Algorithm
The use of a grid search inherently limits the search space to
discrete steps in the departure/arrival locations along the solar-
sail Lyapunov orbits (tUM,0 and tSM,0), the linkage time, tlink, and
the pitch angles in the unstable and stable manifold trajectories
(αU and αS). To efficiently explore the design space in between
these discrete steps, this section investigates the use of a genetic
algorithm. In particular, the Matlab R© function ga.m is used to
find the values for the design parameters, pGA, that minimize
the objective in Equation (17). The parameters are the previously
used design variables tUM,0, t

S
M,0, α

U , αS, and tlink, and bounds on

FIGURE 11 | Best homoclinic connections (FLTR: transfers 1–3). (A) For opposite-sign pitch angles. (B) For genetic algorithm approach.
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these parameters are defined as
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. (19)

Furthermore, the following linear constraints are imposed to
ensure that departure, linkage and arrival occur sequentially

tUM,0 + ξ ≤ tlink ≤ tSM,0 − ξ . (20)

In Equation (20), ξ represents the previously introduced
minimum transfer time to ensure that the trajectories move
sufficiently away from the solar-sail Lyapunov orbits

ξ = 0.9PS. (21)

The genetic algorithm is initiated for a population of 1,000
individuals, is run for 100 generations and for five different seeds
of the random generator to account for the inherent randomness

of the genetic algorithm approach. For ease of implementation,
the ga.m function is used with its default settings. The results
appear in the bottom row of Figure 11 and in the last column
of Table 2. Especially the last column of Table 2 shows that
the continuous, instead of discrete, design space for the design
parameters enables a reduction in the objective value of several
orders of magnitude, with resulting errors in the position and
velocity of <1 km and <1m/s. This proves the feasibility of
homoclinic connections between solar-sail Lyapunov orbits as
well as the applicability of temporal Poincaré sections, the figure
of merit in Equation (17), and the genetic algorithm approach for
finding these connections.

HETEROCLINIC CONNECTIONS

This section follows the same approach as in the section
“Homoclinic Connections” to find heteroclinic connections
between the different solar-sail Lyapunov orbits, see trajectories
4–6 in Table 1. However, while that section first considered zero-
pitch angles in the stable and unstable manifold trajectories,
followed by opposite-sign pitch angles, the section “Grid Search”

FIGURE 12 | Best heteroclinic connections (FLTR: transfers 4–6) for grid search in pitch angles (top and middle row) and for genetic algorithm approach (bottom row).
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TABLE 3 | Objective value, dimensional errors on position and velocity, and further

details for transfers 4–6 for different approaches in the search for heteroclinic

connections.

Transfer Grid search: non-zero Genetic

pitch angles algorithm

4 J 0.0203 6.8450 × 10−4

1r, km 535.0 4.8

1v, m/s 13.6 0.6

tU
M,0, synodic period 0.76 0.613

tlink , synodic period 2.188 1.389

tS
M,0, synodic period 3.93 3.454

αU, deg −60 36.0

αS, deg −80 −32.2

5 J 0.0124 5.9987 × 10−4

1r, km 934.2 9.8

1v, m/s 0.2 0.5

tU
M,0, synodic period 0.62 0.766

tlink , synodic period 2.058 1.676

tS
M,0, synodic period 3.95 2.5072

αU, deg −90 34.5

αS, deg −90 −9.6

6 J 0.0248 2.0332 × 10−4

1r, km 1524.5 3.6

1v, m/s 5.1 0.2

tU
M,0, synodic period 0.01 0.034

tlink , synodic period 1.758 2.989

tS
M,0, synodic period 3.11 3.257

αU, deg −90 −80.6

αS, deg −70 −25.3

below will immediately merge those approaches based on the
improvements that non-zero pitch angles provided. The section
“Grid Search” will even expand the search space on the usable
pitch angles. Subsequently, in the section “Genetic Algorithm”
the genetic algorithm approach will be applied to the search for
heteroclinic connections.

Grid Search
To consider a wide range of pitch angle values in both the stable
and unstable manifold trajectories, this section takes an approach
similar to the one described in the section “Non-zero Pitch
Angles”. However, that section constrained the pitch angle in the
stable manifold trajectory to αS

= −αU to exploit the symmetry
in the system. Because this symmetry is lost for heteroclinic
connections, this section allows αS to take on any value within
a predefined mesh. For this, an extra loop is created around the
approach in the section “Non-zero Pitch Angles”, where now
the inner- and outer loops consider meshes in the pitch angles
of αU

∈ [−90◦, 90◦] and αS
∈ [−90◦, 90◦]. Note that the

only differences with the methodology for the grid search for
homoclinic connections are that no minimum transfer time is
defined, that n = 3 for all transfers, and that, to limit the increase
in computation cost introduced by the additional loop, the step
size in αU and αS is increased to 10◦.

For each combination of αU and αS, the unstable and stable
manifold trajectories that yield the smallest objective value for
transfers 4–6 appear in the top row of Figure 12. From this
figure the lack in symmetry for the heteroclinic connections
is indeed clear. The best result, i.e., the combinations of αU

and αS that lead to the absolute minimum objective value are
indicated by a white cross. Further details on these trajectories
are shown in the middle row of Figure 12 with numerical details
in the first data column of Table 3 (heading “Grid search: non-
zero pitch angles”). The remaining results in these tables will
be discussed in the section “Genetic Algorithm” below. Despite
the lack in symmetry, the objective values in Table 3 hint at
the possibility for heteroclinic connections with errors on the
position and velocity that are of similar magnitude as for the
“opposite-sign pitch angles”-approach in the section “Non-zero
Pitch Angles”. Finally, from the data in Table 3 it is interesting
to note that very large pitch angles provide the best results.
Since very large pitch angles create very small solar-sail induced
accelerations, the current approach appears to provide the
best heteroclinic connections by exploiting the (near-)classical
dynamics.

Genetic Algorithm
The second, and final, step in the search for heteroclinic
connections is near-identical to the approach previously
described for homomclinic connections: a genetic algorithm
is taken at hand to explore the design space in between the
discrete steps of the meshes used in the previous section for the
design parameters tUM,0, t

S
M,0, tlink, αU , and αS. The set-up of

the algorithm is that as described in the search for homoclinic
connections, only the margin on the minimum transfer time
in the unstable and stable manifold trajectories is significantly
loosened, i.e., ξ = 0.01PS for use in Equation (20).

The results appear in the bottom row of Figure 12 with
numerical details in the last column of Table 3. With errors
in the position and velocity of <10 km and <1 m/s, also
the feasibility of heteroclinic connections between solar-sail
Lyapunov orbits and the suitability of the proposed tools has
been demonstrated. While for the grid searches in the previous
section the best pitch angles were of rather large values, the
genetic algorithm approach shows that much smaller angles
(and therefore significant solar-sail induced accelerations) are
required to establish these connections.

CONCLUSIONS

This paper has established an understanding of, and a framework
for, the computation of homo- and heteroclinic connections
between planar solar-sail Lyapunov orbits in the Earth-Moon
three-body problem. These connections have been found by
linking the unstable and stable solar-sail assisted invariant
manifolds associated to the orbits. Since the solar-sail induced
acceleration introduces a time dependency into the dynamics,
the use of traditional techniques (Jacobi constant and spatial
Poincaré sections) were proven to be of no benefit in the search
for these connections. Instead, connections have been found
by introducing temporal Poincaré sections, defining a suitable
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figure of merit to assess the quality of the connections, and using
grid searches on the departure, arrival and linkage times as well
as on constant, non-zero solar-sail pitch angles in the unstable
and stable manifold trajectories. While these methods allowed
to find homo- and heteroclinic connections with errors on the
position and velocity at linkage of <1,525 km and <25 m/s, true
connections were only found when exploring the design space in
between the discrete mesh of the grid search. For this a genetic
algorithm approach has been successfully applied, reducing the
errors down to <10 km and <1 m/s. With that, this paper has
proven the feasibility of homo- and heteroclinic connections
between solar-sail Lyapunov orbits for a simple solar-sail steering

strategy in the form of a piece-wise constant sail attitude. These
results and the framework defined in this paper form only the
start of a much larger investigation into homo- and heteroclinic
connections between other planar solar-sail periodic orbits in
the Earth-Moon system as well as into the extension to the
spatial, three-dimensional case.
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The slow deformation of terrestrial orbits in the medium range, subject to lunisolar

resonances, is well approximated by a family of Hamiltonian flow with 2.5

degree-of-freedom. The action variables of the systemmay experience chaotic variations

and large drift that we may quantify. Using variational chaos indicators, we compute

high-resolution portraits of the action space. Such refined meshes allow to reveal the

existence of tori and structures filling chaotic regions. Our elaborate computations

allow us to isolate precise initial conditions near specific zones of interest and study

their asymptotic behaviour in time. Borrowing classical techniques of phase-space

visualization, we highlight how the drift is mediated by the complement of the numerically

detected KAM tori.

Keywords: lunisolar secular resonance, Hamiltonian chaos, drift, terrestrial dynamics, Earth satellite

1. INTRODUCTION

Various groups of scientists have become enchanted anew by the lunisolar resonances affecting the
dynamics of terrestrial orbits. The study of them and the resurgence of their significance has not
been visible since the notorious and colossal triptych of Breiter [1–3]. Later rebranded by Rossi

[4] in the context of the medium-Earth orbits (MEOs), the study of their long-term dynamics,
and in particular their eccentricity growths in the elliptic domain [5], represent current deep
motivations for the community. In our opinion, the most complete and up-to-date panorama
of the literature is excellently presented by Armellin and San-Juan [6]. The existence of such a
condensation allows us to adopt here a rather direct style in this present contribution. We are
particularly interested by questions related to the stability of orbits. Based on the divergence of
nearby trajectories, the existence of a mixed phase space where there is a cohabitation of stable and
chaotic components has been recently pictured [7–11] and partially explained applying Chirikov’s
resonances overlap criterion [12]. The Hamiltonian flow obtained under the simplest assumptions
for the disturbing effects of the perturbers (i.e., a development restricted to its lowest order and
averaged over fast variables), Moon and Sun, encapsulates all the details of the dynamics in which
we are interested [7]. In particular, the Hamiltonian possesses 2 degrees-of-freedom (DOF) and
depends periodically on the time t (see [11] for omitted details). We recall in the next section how
the Hamiltonian

H : D× T2
× T → R, (x, y, t) 7→ H(x, y, t) = h0(x)+ εh1(x, y, t) (1.1)

with h1(x, y, t) =
∑

m∈A⊂Z
3
⋆
hm(x) cos(m · (y, t)+φm) is obtained. The form of Equation (1.1) is the

standard form of a nearly-integrable problem written in action-angles variables. The non-linearity
parameter ε belongs to a certain subinterval I of R+ and is function of the semi-major axis, which
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is a first integral in the secular approximation. The functions
{hm}m∈A are real valued functions of the sole action x ∈

D ⊂ R2 (and some constant physical parameters), the φm are
phase terms. When ε sweeps I, a transition from a globally
ordered phase space to a mixed phase space is known to exist.
It turns out that the presence of a chaotic regime for large values
of ε, say for ε close to max I, corresponds to the range of
semi-major axes where the navigation satellites are located. The
occurrence of the two apparent antonyms, “how awkward it is”1

and “how useful and fruitful it can be”2, crystallizes assuredly
the challenges, implications and beauty of the dynamical and
engineering problems we face.

Gravitational problems are kaleidoscopes of pure and
applied science. Our Solar System has been the source and
receptacle of many theoretical and practical dynamical facets and
aspects (KAM theory, hyperbolic dynamics, shadowing theory,
numerical analysis, phase visualization techniques). Spaceflight
dynamics is not excluded and has gained from this rich heritage
[13–15]. We cannot take a definitive position on the space-
debris mitigation via “chaos targeting” and transfers in phase
space, nevertheless, let us underline that the concept embraces
the continuous necessary exchanges between (technological and
scientific) communities.

In this paper, we depart from former goals where the main
impetus was the explanation of the mechanisms supporting the
apparition of chaos. Instead, we focus rather on (i) the physical
consequences in terms of transport in the phase space and (ii)
on the visualization of these excursions via double sections in
the action-like phase space. The techniques we used have been
extensively employed in Dynamical Astronomy and overall in
the context of the dynamics of quasi-integrable Hamiltonian
systems and symplectic discrete maps (confer [16–20], just to
name a few). To achieve our tasks, we provide a cartographic
view of the prograde and retrograde region in section 3.2,
based on a lighting-fast ad-hoc secular model that we recall in
section 3.1. The fine resolutions of the meshes used to discretize
the domains D allow for highly detailed views of the phase space.
We then focus on the computation of diameters-like quantities to
relate the degree of hyperbolicity (a local property) with a more
practical transport-like index (a global property). Thanks to our
resolved grids, precise initial conditions (ICs) can be extracted,
which lie near specific structures of interest, in particular where
large diameters are expected. Once obtained, we proceed to their
asymptotic analysis (in time) using ensemble orbit propagation
(section 4). We close with section 5 where we summarize our
contributions and discuss an open problem that inspires our
future efforts.

2. THE MODEL

We recall briefly, for the sake of completeness, under which
hypotheses the 2.5-DOF Hamiltonian is obtained. After the

1 The Lyapunov times τL, which dynamically speaking constitute the barriers of

predictability, are on the order of decades [7].
2 There is a birth of a new ideology to remedy the space-debris problem, based on

a “judicious” use of the instabilities to define re-entry orbits and navigate the phase

space.

presentation of the model, we present to the newcomers a few
facets of the resonant aspects.

2.1. Derivation of the Hamiltonian Model
Numerical evidence has shown that, for the range of the treated
perturbation I (recall I ≃ [2.2r⊕, 4.65r⊕]), refinements of
the gravitational potentials beyond the quadrupolar level are
not necessary to capture details of the global dynamics we are
interested in, even on long timescales [7]. It means that when
the potentials of the Earth and those of the external bodies,
Moon and Sun, are developed using Legendre expansions, terms
with l > 2 are disregarded. By recognizing the timescales of
the dynamics, further simplifications are even possible to get a
more pertinent analytical model (and numerical as well; see also
section 3.1). Based on the Lagrangian averaging principle [21–
23], the potentials are averaged over the mean anomaly of the
test particle ℓ and those of the third bodies3, ℓ⊙ and ℓ$.

For an oblate Earth, we recall the classical averaged potential

HJ2 (G,H) = αJ2

(

G−3
− 3G−5H2

)

(2.1)

expression, with αJ2 = J2r
2
⊕
µ4
⊕
/4L3 ∈ R. Here (G,H)

denotes the second and third variables of the Delaunay actions
(L,G,H), µ⊕ denotes the (Earth’s) gravitational parameter. The
canonically conjugated vector of angles is classically denoted
(ℓ, g, h). Omitting details that might be found in Celletti et al.
[9, 11], the disturbing function of the Sun’s attraction,R⊙, reads
as

R⊙(G,H, g, h)

=

2
∑

m=0

2
∑

p=0

α⊙smF2,m,p(i)F2,m,1(i⊙)H2,p,2p−2(e) cos
(

fm,p(g, h)
)

(2.2)

with

fm,p : T2
→ T, (g, h) 7→ (2− 2p)g +m(h− h⊙). (2.3)

The scalar α⊙ = µ⊙

(

a2

a3
⊙

)

(1− e2
⊙
)−3/2 has a constant magnitude

of ∼ 3.96 × 10−14 in the international system of units. The
coefficients sm are defined as sm = Km(2 − m)!/(2 + m)!.
The functions F2,m,p(•) refers to Kaula’s inclination function [24]
and H2,p,2p−2(e) is related to the Hansen coefficients. For the
disturbing function of the Moon, the following formula holds
true

R$(G,H, g, h, h$) =

2
∑

m=0

2
∑

p=0

2
∑

s=0

α$mm,sF2,m,p(i)F2,s,1(i$)H2,p,2p−2(e)

×
(

Um,−s
2 cos

(

gm,p,s(g, h)
)

+ Um,s
2 cos

(

hm,p,s(g, h)
))

(2.4)

3In the following, we use the subscripts •⊕, •$, •⊙ to denote parameters referring

to the Earth, Moon and Sun, respectively.
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with

gm,p,s : T2
→ T, (g, h) 7→ (2− 2p)g +mh+ sh$ + s

π

2
− ysπ ,

(2.5)

hm,p,s : T2
→ T, (g, h) 7→ (2− 2p)g +mh− sh$ − s

π

2
− ysπ .

(2.6)

The expressions Um,±s
2 are function of the obliquity of the

eccliptic, and are present due to a rotation of the spherical
harmonics needed in this mixed-reference frame formalism.
Note that the size of the coefficient α$ =

µ$
2

(

a2

a3
$

)

(1 −

e2
$
)−3/2

∼ 4.32×10−14 is close to α⊙ (The ratio α$/α⊙ ∼ 1.09).

The coefficients mm,s are defined as mm,s = (−1)[m/2]KmKs(2 −
s)!/(2 + m)!. It turns out that the time derivative of the angle
h$ is well approximated by a constant frequency defining a
period of 18.6 years. In other words, we consider the explicit time
dependence of the lunar potential as linear. At this stage, it is
recognizable and transparent that the Hamiltonian formed on the
perturbations,

H = HJ2 (G,H)−R⊙(G,H, g, h)−R$(G,H, g, h, t), (2.7)

possesses 2 DOF and is periodically-time dependent (i.e., a 2.5-
DOF problem). The explicit time dependence due only to the
node of the Moon4 plays a fundamental role in shaping the
dynamics. The well-known distinctive feature with the case of
2 DOF is that, a priori (in absence of additional known first-
integrals apart the energy function itself), the tori cannot act as
practical barriers preventing transport in the phase space (for
an N-DOF autonomous problem with N ≥ 3, the codimension
between the N-dimensional tori and the dimension of the phase
space restricted to an energy surface (2N − 1) is at least 2). The
Delaunay variable ℓ being a cyclic variable, its conjugate variable
L =

√
µa is a constant of motion. Let us introduce normalized

new actions x̃ = x/
√

µa. The reduced system is kept canonical
as long as the new angles ỹ =

√
µa · y are introduced and the

physical-time multiplied by the same factor. It is clear that the
new Hamiltonian has the same form as in Equation (2.7). The
previous factor αJ2 absorbs now a contribution from L and we get
the new αJ2 = J2r

2
⊕
µ4/4L6. Factorizing the external perturbation

by the greatest α$, the Hamiltonian can be rewritten as

H(G̃, H̃, g̃, h̃,
√

µat) = αJ2 f0(G̃, H̃)
︸ ︷︷ ︸

h0(G̃,H̃)

+α$

(

−
α⊙

α$

R̃⊙(G̃, H̃, g̃, h̃)− R̃$(G̃, H̃, g̃, h̃,
√

µat)
)

︸ ︷︷ ︸

h1(G̃,H̃,g̃,h̃,t)

.

(2.8)

4 We emphasize that the Hamiltonian depends on time just through the lunar

contribution as we assumed that, over our timescale of interest, the rate of variation

of the ascending node of the Sun is zero (see discussions in Celletti et al. [11]).

The hierarchy α$ ≪ αJ2 enables us to write α$ = εαJ2 , ε ≪ 1,
and Equation (2.8) becomes

H(G̃, H̃, g̃, h̃,
√

µat) = h0(G̃, H̃)+ εh1(G̃, H̃, g̃, h̃, t). (2.9)

ClearlyH shares the form of the standard perturbed Hamiltonian
system as announced in the introduction. The very useful
information that we got from these manipulations is that the
dimensionless perturbative parameter ε is proportional to the
secular invariant semi-major axis,

ε(a) ≡
α$

αJ2

=

2n2
$

(1− e2
$
)3/2

·
1

J2n2

(a

r

)2
. (2.10)

(The mean motions of the test particle and disturbing bodies
are noted n and n$, respectively.) Note that this perturbing
parameter is of the same nature as that introduced by Breiter
[3], but we are treating herein the regime of the lunisolar secular
(not semi-secular) resonances. The Hamiltonian model based on

the quadrupolar level is physically relevant up to a semi-major
axis close to amax = 6r⊕ (beyond, octupolar refinements, l = 3,
are needed) corresponding to ε(amax) = 0.8. In the following,
we will be interested in semi-major axes up to a = 29, 600 km,
leading to ǫ = 0.22. From our numerical investigations, we noted
that for a = 13, 600 km, the chaos is thin and confined to a few
inclination-dependent-only resonances. These two constraints
together define the subinterval I = [0.004, 0.22] ⊂ R+ of
interest for ε. Adding quite “virtually” the point {0} to this

set, ε ∈

(

{0}
⋃

I

)

, we obtain when ε = 0 an integrable

dynamics with a linear flow on a torus. The actions are constant
and determine the invariant tori. On these tori the dynamics
consist of a rotation at constant speed characterized by the
vector of constant frequencies (the unperturbed frequency vector)
�(G,H) = (̟g ,̟h) given by







̟g =
1

2
κ(5 cos2 i− 1)(1− e2)−2,

̟h = −κ cos i(1− e2)−2,

(2.11)

where κ =
3
2 J2nr

2
⊕
/a2 ∈ R [24].

Let us be more precise regarding the definition of the interval
I and the energy function considered. An important factor
leading to the 2.5 DOF model lies in the omission of the tesseral
contributions in the Hamiltonian (2.7). Tesseral resonances
occur when the commensurability Ṁ/θ̇ ∼ q/p takes place. Given
the upper and lower bounds of I, the main tesseral resonances
affecting the motion are given by the set of commensurabilities
T = {2 : 1, 3 : 1, 4 : 1} (see e.g., [25, 26]). Near a tesseral resonance,
the semi-major axis is no longer secularly invariant and, in
fact, might experience (confined) chaotic variations near their
corresponding resonant action value L

p : q
⋆ . Putting all of these

together, a more precise definition of our interval of interest

for the perturbing parameter ε is instead I
′

= I \ IT where
IT =

⋃

p : q∈T
[ε(L

p : q
⋆ − δp : q, ε(L

p : q
⋆ ) + δp : q] where δp : q

characterize the strength (width) of the resonance. The eventual
local coupling of the tesseral contributions and the lunisolar
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resonances on the evolutions of the actions (G,H), for perturbing
values precisely within the tesseral resonant domain (i.e., for
ε ∈ [ε(L

p : q
⋆ − δp : q, ε(L

p : q
⋆ ) + δp : q]), is not discussed in this

contribution, but is the object of a further study (accordingly,
tesseral contributions are disregarded in the energy function).
Using estimations obtained in former works [25, 26], let us
stress that the ratio of the measures m(I ′)/m(I) ∼ 0.99 is very
close to 1. Moreover, accurate low-altitude or very local studies
could require additional refinements of the energy function (e.g.,
near the critical inclination, see [27]). Although our model is
subject to these possible limitations, we should highlight that
the considered dynamics are accurate enough to describe general
MEO orbits, and from a mathematical point of view provide a
simple testbed to investigate transport theories and capture the
big picture.

We abused the vocabulary and treat the eccentricity e and
inclination i as “actions,” instead of using the veritable actions
variables (G,H). This is rather to stick to classical notations
[24]. Nevertheless, these variables are functionally independent
and the “true” actions easily obtained as e2 = 1 − (G/L)2

and cos i = H/G. Let us precise that, when dealing with the
autonomous Hamiltonian by introducing an extra conjugated
variables (Ŵ, γ ) ∈ R × T for ε 6= 0, one couple of actions
x = (G,H) characterize an invariant torus of T3 since Ŵ does
not enter into the equations of motion. In other words, we can
consider the orbits in the reduced phase space defined by X =
{

(G,H, g, h, γ ), x = (G,H) ∈ D ⊂ R2, y = (g, h, γ ) ∈ T3
}

.
In section 3, we will offer views of the dynamics in action-action
sections, meaning that within the space X , we fix the angles to
a specific vector to obtain the section S =

{

(G,H) ∈ D ⊂

R2
| (g, h, γ ) = v⋆, v⋆ ∈ T3

}

. Let us now discuss fundamental
phenomenon for ε 6= 0.

2.2. Secular Lunisolar Resonances
A determinant feature in the long-term properties of nearly-
integrable systems of the form h(x, y) = h0(x) + ǫh1(x, y) is
the presence of resonances5 [30]. They arrive when a vector
k ∈ Zn

⋆ satisfy with the (unperturbed) frequency vector a
commensurability condition over the rationals. The resonant
condition reads k · �(x) = 0. For a fixed vector k ∈ Zn

⋆ , the
sets (potentially empty) of the actions x such that k · �(x) = 0
form the resonant manifolds. The resonance under consideration
is then characterized by an index, the resonance order, usually
though the ℓ1-norm of k,

∥

∥k
∥

∥

1
=

∑

i |ki|. Under the quadrupolar
assumption, the system (2.9) is prone to resonate with a maximal
order of 6. Let us consider the frequency vector �(x) =

(̟g(x),̟h(x),̟$), then, as already recognized by Ely [25], the
resonant conditions read as

k1̟g(x)+ k2̟h(x)+ k3̟$

= 0, k1 ∈ {−2, 0, 2}, k2 ∈ [[0, 2]], k3 ∈ [[−2, 2]], k 6= 0. (2.12)

5In the “multiscale analysis” community, resonances are sometimes named “slow

hidden variables,” see e.g., [28, 29]. This semantic is pretty accurate as this is

precisely what resonances are: resonances form “new slow variables” solely under

specific combinations of the fast variables. Having this in mind, it is clear that in

the presence of resonances the direct averaging may be crude (“naive” averaging)

and conducts to a wrong dynamics.

These algebraic equations admit non-trivial solutions that define
the lunisolar resonant manifolds. The resonant manifolds are
mirrored with respect to the resonance (0, k, 0) · �(x) =

k̟h(x) = 0. (However, as we will clearly illustrate it, the
symmetry of the resonant manifolds does not imply a mirroring
of the geography of the KAM tori and hyperbolic structures.)
In Daquin et al. [7], the extent of the resonant zones have been
estimated (in a subdomain of the prograde 0 < i ≤ π/2
domain) by reducing the Hamiltonian to the first fundamental
model of resonance, a pendulum. This procedure involved
the introduction of resonant coordinates through canonical
transformations Tk ∈ SL(3,Q) leading to an intuitive physical
interpretation of Chirikov’s overlap as a driver of chaos. However,
since the work of Celletti et al. [9], it has been observed that such
a reduction does not always capture the features of the dynamics.
In order to get a more refined and precise view of the extent of
chaos, a superior way is instead to look at the destruction of KAM
curves, e.g., using fast dynamical indicators.

3. PHASE-SPACE VIEWS

We revisit and complement the transition order/chaos in
terrestrial orbits by scanning the dynamics under the rays of
a first order variational chaos indicator. The motivation is
twofold:

(1) The resolutions used in former studies are generally sufficient
to detect and isolate chaotic components; yet, they are too
coarse to detect the eventual presence of structures immersed
within them. In addition, the dissection of the dynamics with
a fine resolution makes possible the extraction of the chaotic
skeleton with surgical precision6. This property will be used
to study transport properties (confer section 4).

(2) Gkolias et al. [10] claimed that “the retrograde orbits are not
intrinsically more stable then their prograde counterparts.” This
diagnosis was established by scanning the region with an
averaged FLI (over some angles) focusing on low eccentricity
(up to e = 0.1). We feel necessary to investigate further
this assertion beyond e = 0.1 without the averaged indicator
(which naturally tends to smooth and absorb the details).

To overcome and constrain these two symptoms, we first briefly
recall how we efficiently deal with the equations of motions, after
which we present and discuss our highly-resolved phase-space
views on a macroscale.

3.1. Numerical Treatment of the Equations
of Motions
Ordinary and partial differential equations with disparate scales
(spatial, temporal) are numerically challenging. The difficulty
arrises from the fact that the inhomogeneities in the scale
constrain parameters of the numerical methods employed (say,
e.g., the size of the timestep, the discretisation of the mesh)
to be small and highly resolved. In the present case, we deal
with (highly) oscillatory ODEs. They are omnipresent in the

6In a somehow different but connected context, Armellin and San-Juan [6] have

shown that fine discretisations are also needed for optimizers to operate properly.
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context of Newton’s equations7 and are ubiquitous in the context
of Celestial Mechanics. To circumvent the problem, effective
models and model reductions techniques are often employed.
The core idea is to substitute to the original dynamics a more
amenable, numerical and/or analytical, dynamical system [33–
35]. One method of choice to design effective dynamics relies
on the Lagrangian averaging principle [21–23, 36], which has a
long-lasting tradition in Celestial Mechanics. This principle is
usually used when the components of the equations themselves
allow to recognize explicitly the time scales. When it is so, the
fast dynamics is integrated into the slow variables to design an
averaged approximation. In this setup, the new slow constituents
somewhat incorporate the informations of the fast-dynamics
and serve as a new input for the investigations. To deal
efficiently with our problem at hand, we adopt here our own
secular MILAN model, as presented by Gkolias et al. [10]. The
MILAN model is based on the vectorial Milankovitch element
and admits a minimal force model (consisting of the averaged
J2 contribution, to which is added the secular quadrupolar
third-bodies perturbations). The MILAN formulation bears also
net advantages compared to the numerical treatment of the
Hamiltonian equations in forms of those given in section 2.1.
First, the formulation is free of singularity and, secondly, the
averaging is done in a closed form in the eccentricity. The
external third-bodies potentials are both averaged over the fast
variables of the problem, i.e., over the mean-anomaly of the
test particle and the mean anomalies of the third bodies. This
“doubly” averagedmodel allows the propagation of a test-particle
over 106–107 orbital periods in a few seconds only. Such a
performance is essential in investigating properties of the phase
space for range of parameters. When invoking effective models,
we always face the question of the relevance of the reduced model
(how sound are the qualitative or quantitative informations
derived from it). Gkolias et al. [10] established the testimony of
this doubly-averaged model against a singly-averaged approach.
By simulating the two dynamics on different domains of the
action-action, action-angle and angle-angle spaces8, we showed
that dynamical features of interests were reproduced and in
perfect agreement. Even if the simulation of the full dynamics
(i.e., the original, non-reduced and “exact” dynamics) on such
domains is still missing in the literature, recent reassuring
numerical agreements have been presented by Armellin and San-
Juan [6]. Namely, they presented nice agreements between their
in-house doubly average model and the original non-averaged
dynamics. All these together allow us to be confident enough on
the numerical results presented hereafter.

3.2. Highly Resolved Phase-Space Views
We use the Fast Lyapunov Indicator (FLI), a first-order
variational indicator initially introduced by Froeschlé et al.
[37], to discriminate orbit stability. This scalpel has been used
extensively over the past decade across different dynamical

7They arrive also inMolecular Dynamics (see [31] and [32] for introductory papers

and issues).
8In Gkolias et al. [10], we presented only sections in the angle-angle space but we

have evidences of the agreement on complementary sections also for a range of

different semi-major axes.

problems, ranging from Symplectic Maps studies to Dynamical
Astronomy, including Astrodynamical practical problems [38–
41]. The work of C. Froeschlé, M.Guzzo and E. Lega over the last
decade provides a good overview of its possibilities and range of
applications. When the dynamics under consideration is written
in first order and autonomous form as ẋ = f (x), x ∈ Rn, the FLI
is simply derived from the variational system in R2n,

{

ẋ = f (x),

ẇ = ∂xf (x)(w),
(3.1)

as

FLI(x0,w0, τrun) = sup
0≤t≤τrun

log
∥

∥w(t)
∥

∥ . (3.2)

Contrarily to Lyapunov exponents, the FLIs (computed at some
time τrun for a specific set of initial conditions x0,w0) keep trace
of the resonant nature of the orbits, while taking approximately
the same value FLI ∼ log(τrun) on KAM tori [38, 42]. By
computing the FLIs on a discretised specific 2d-section of ICs
(e.g., related to the action-action, action-angle, or angle-angle
planes) on a domain D, we can reveal the geography of the
survival KAM tori and their complement hyperbolic set. The
information given by the FLIs (“intensity”) is then color-coded
to obtain a map of stability. Note that sometimes, in order to
get a sharper visualization, the FLIs that initially take variation
in J ⊂ R+ are restricted to a subinterval K of J (see e.g.,
[16, 19]). This rescaling is achieved by fixing the two following
thresholds. The notion of chaoticity is based on the exponential
evolution of the norm between two nearby orbits. Therefore, to
reveal anomalies with respect to the linear trend (log-scale of an
exponential growth), the criteria

FLI(τrun) ≥ log(τα
run) = α log(τrun), α > 1, (3.3)

can be used to derive a lower threshold for chaotic orbits
(i.e., all FLIs larger than α log(τrun) are assigned to α log(τrun)).
Symmetrically, we obtain an upper threshold to judge regularity
with the criteria

FLI(τrun) ≤ log(τrun/β), β > 1. (3.4)

(And again, all the FLIs smaller than log(τrun/β) are assigned
to log(τrun/β).) The Figures 1, 2 resume in many ways the
transition from order to chaos in the prograde and retrograde
region of terrestrial orbits. This original unscrewed fence
views of the action-action phase space are very illuminative
(and pedagogical) to visualize, with respect to the non-linear
parameter ε(a), the proliferation of chaos. Each map represents
the result of 1, 000 × 500 ICs propagated over a long timescale.
Different simulation times τrun have been used according to
the perturbing parameter (the stronger is the perturbation, the
shorter is the time required to get a sharp contrast of the
dynamics). For the smallest perturbing parameter, a = 18, 600
km, τrun represents 30 lunar nodes, while for a = 29, 600
km 16 lunar nodes are sufficient to get a sharp contrast (most
probably those propagation times could be slightly shortened).
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FIGURE 1 | A highly-resolved fence view of the stability of the prograde and

retrograde regions obtained under the FLIs. The three slides depict the stability

for a particular value of the non-linearity parameter ε(a) which depends on the

secularly invariant semi-major axis. KAM tori correspond to white to light-red

color, stable resonant orbits appear in blue while red colors correspond to

chaotic orbits. The values ε(a) correspond to the three semi-major axis

{18.6, 22.6, 24.6} × 103 km (the z-scale is only symbolic, in particular the

scale is not linear). This unscrewed view presents in a global, original and

concise way the transition from order to chaos. See text for comments.

It represents about 7 × 105 and 1.8 × 105 test particle
revolutions. The “actions” have been uniformly distributed along
the rectangle [50◦, 130◦]× [0, emax], with emax determined by the
apogee-altitude condition emax = 1 − (r⊕ + δ)/a, δ = 120
km. In all our maps, we have set the initial angles y0 ∈ T3 to
zero. Anticipating a bit the next section, we are here interested
in the dynamical mechanisms leading to transport; in particular
we have not discriminated collisional orbits as we did in earlier
work. As it has already been discussed several times and pointed
out in several contributions [7, 8, 10], the inclination dependent-
only resonances widen and develop chaos when ε is increasing,
letting less and less room for invariant KAM tori. Eventually for
a = 29, 600, there is a macroscopic chaotic component. At this
macroscale, we even have the feeling of a chaotic path-connected
space (i.e., for every two points in the hyperbolic set, there exists
a hyperbolic path connecting them). This property is not exactly
true as isolated chaotic islands do exist. Nevertheless, the volume
of such isolated chaotic sea is rather small. Let us precise that,
given the fact that we used different τrun, the color palette has a
symbolic meaning only. Also, in the same way, the z-scale which
sets the different levels of the perturbing parameter ε(a) is not a
linear scale, and again, has only a schematic pictorial purpose.

For the two extreme perturbing parameters considered in this
work, ε(a) with a = 18, 600 or 29, 600 km, we have superimposed
for the newcomers the resonant manifolds obtained under the
quadrupolar assumption (confer Equation 2.12). It is interesting
to notice that, despite the symmetry of the resonant manifolds
along the (0, k, 0) resonance, the chaos is not mirrored at all
in the retrograde region (see Figure 3). The coefficients of each
harmonic, excepting the critical inclination, are dependent on the

FIGURE 2 | The same as in Figure 1 apart that the values ε(a) correspond to

the three semi-major axis {27.6, 28.6, 29.6} × 103 km.

cosine of the inclination and hence the resonant topologies for
prograde and retrograde orbits are necessarily different. A further
striking illustration of this fact, on a microscale, is exemplified
in Figure 4. Such fine resolutions allow to reveal incredible
structures and details of the phase space. These two simulations
clearly show us, at least for this realization of angles, that the
retrograde region is more stable than its prograde counterpart.
Applying the criteria given by Equation (3.3) with α = 1.1,
we found on that domain that the volume of chaotic orbits is
4 times larger than in its retrograde counterpart. We further
quantified this question by applying various criteria on our
former simulations. Table 1 summarizes our results by giving
the volume of chaotic orbits in the prograde vs. the retrograde
region, for slightly different values of α on a macroscale. From
our survey (which should be extended for completeness), the
numerics tend to show that, for small to moderate values of the
perturbing values of ε, the volume of chaotic orbits is roughly
the same. However, for larger values of ε, the prograde region
is more chaotic than its counterpart, the difference being now of
several percent. (But again, we are aware of the dependence of our
result against the choice of y0. Further numerical investigations
could constrain even more the result.) At a smaller scale, as
already recognizable in Figure 4, the discrepancies may be largely
more significant. It would be interesting to support or invalidate
this phenomenology by characterizing (i) the widths of the
resonances of the retrograde domain and (ii) by exploring their
numerical widths as a function of the angles. Such an enterprise
is yet to be performed.

4. DRIFT AND VISUALIZATION OF
TRANSPORT

The computation of the FLIs provided a quantification of the
degree of hyperbolicity and a discrimination of orbit stability.
From a “practical” perspective, one might be more interested
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FIGURE 3 | Detailed views of the prograde and retrograde regions for the

two-extreme values of the parameter ε considered in this work (Top

a = 18, 600 km, Bottom a = 29, 600 km). The resonant manifolds defined by

Equation (2.12) are superimposed on the FLIs. Despite the symmetry of the

resonant manifolds, the chaos of the prograde region is not mirrored in the

retrograde region.

in drift estimation and visualization of transport to quantify
changes of the unperturbed first integrals. This section is devoted
to this task by investigating asymptotic properties of initial
conditions close or immersed in hyperbolic structures. We
base our approaches on individual propagations and on spatial
ensemble averages.

4.1. Drift Estimation
There exist a tension between the local degree of hyperbolicity
and the eventual large transport. In fact, the astronomical concept
of stable chaos teaches us that positivity of a Lyapunov exponent
does not necessarily implies large excursion in the phase space
[43]. Large excursions in the phase space can be the signature
of transport along the level curves of an integrable system.
Nekoroshev’s long-time stability theorem does not exclude
the existence of chaotic variation. Finally, beyond a critical
value, Chirikov’s overlap criterion of resonances give rise to

FIGURE 4 | Two detailed views of the phase space under the FLI analysis.

701× 701 orbits have been propagated revealing the existence of very thin

structures and KAM tori filling the chaotic regions. On this domain, the

retrograde region contains 4 time less orbits satisfying the condition

FLI(τrun) ≥ α log(run), α = 1.1.

large connected chaotic domains, allowing possibly macroscopic
transport [12].

The problem of chaotic transport (sometimes referred as
chaotic diffusion) in nearly-integrable Hamiltonian systems and
Dynamical Maps still occupy efforts of various dynamicists (see
e.g., [40, 44, 45]). Given an orbit computed up to a final time
τrun, γ (t) =

{(

x(t), y(t)
)}

0≤t≤τrun
, we use the diameter along

the action-variables to measure the drift of the unperturbed first-
integrals.More precisely, given an action-like vector x ∈ D ⊂ Rn,
the diameter D of the orbit is defined as

D(x0, y0, τrun) = max
0≤t,s≤τrun

∥

∥x(t)− x(s)
∥

∥ . (4.1)

For our computations we chose the ℓ∞-norm and computed the
drift along the normalized action variables, i.e., along x = (G̃, H̃)
with G̃ = G/L and H̃ = H/L (we recall that in the secular
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TABLE 1 | The estimation of the volume of chaotic orbits in the prograde and

retrograde regions, for various perturbing parameters and on various domains.

Domain D Size of a

fixing

ε(a) [km]

Threshold

α

Volume of

chaotic

orbits

V
+

α V−

α

[0, 0.65]× [0,π/2] 18, 600 1.1 0.009 0.009

1.25 0.005 0.005

1.3 0.004 0.005

[0, 0.74]× [0,π/2] 24, 600 1.1 0.05 0.05

1.25 0.038 0.04

1.3 0.035 0.038

[0, 0.76]× [0,π/2] 27, 600 1.1 0.18 0.12

1.25 0.12 0.09

1.3 0.1 0.08

[0, 0.78]× [0,π/2] 29, 600 1.1 0.22 0.14

1.25 0.16 0.09

1.3 0.14 0.08

The domain D refers to the definition of the domain in the prograde region, in the

eccentricity-inclination action phase space. This domain is then mirrored in its retrograde

counterpart to serve as a new domain to determine the volume of chaotic orbits in the

retrograde region, V−
α . The Equation (3.3) is used as a discrimination criteria. All results

have been established with a fine mesh (all domains have been uniformly discretised with

a grid consisting of at least 500× 500 initial conditions). The prograde region appears to

be slightly more chaotic than the retrograde counterpart on a macroscale the more we

increase the perturbing parameter. Significant differences may also exist at smaller scales.

approximation, L is a constant parameter determined by the
semi-major axis).

The results of the computation of the diameters, according
to Equation (4.1) for two-extreme non-linearity parameters are
shown in Figure 5. Comparing the results with the FLIs maps, we
note that the relation between hyperbolicity and large transport
is not that straightforward. For a = 18, 600 km, we remark that
regions with the larger FLIs do not necessarily correspond to
regions where the transport is maximal. Conversely, the almost
vertical resonant manifold emanating near i ∼ 56.1◦ does not
have the largest degree of hyperbolicity; yet it carries the largest
transport index. Switching to a = 29, 600 km, we note that
the lowest diameter is already one order of magnitude larger
than in the former case. The largest diameter is also significantly
larger which confirm the known fact of the instabilities in the
MEOs. We emphasize that the diameters have been computed
on the same predefined grids of ICs used to estimate the FLIs
(i.e., a highly-resolved grid of ICs). The emanating feeling of
a resolution deterioration in the maps is once again a nice
testimony of the sensitivity of variational indicators.

For large perturbing parameters, globally speaking, large
hyperbolicity corresponds to large diameters. This fact has to be
nuanced slightly near e ∼ 0.7 and i ∼ 70◦. Using an empirical
criterion, we extracted from the maps the actions that satisfy
the condition FLI(x, τrun) ≥ 1.2 log(τrun) (i.e., chaotic orbits) as
those satisfying D(x, τrun) ≥ 0.35. The tracing orbits are shown
in Figure 6 and illustrate the link between large hyperbolicity and
large diameters, and the necessity of finely resolved meshes (thin

stable structures stripe the chaotic domains and can be detected
with the diameters also).

Let us now comment on the diameter indicator that we used.
Very often diameters-like quantities in terrestrial dynamics have
been estimated using a more restrictive definition, namely a
one-dimensional diameter of a specific observable f (see e.g.,
[41, 46]). This strategy reduces to nothing else than the amplitude
estimation, equivalent to the estimation of 1f = maxt f (x) −
mint f (x). For the MEO problem, the eccentricity diameter along
the time is, rightly, tracked (as efforts are directed toward the
perigee height and the need of re-entry solutions). However,
when used as an empirical “measure of chaos,” this diameter
may be too loose. In fact, having in mind the geography of
the resonant manifolds derived from the resonant condition in
Equation (2.12) and the fact that two actions characterizes an
invariant torus of T3, it is easy to “create” a quasi first-integral
by choosing ICs near certain manifold. As an example, let us
fix a = 29, 600 km and consider a cluster of ICs in a small
neighborhood of V(x⋆), where x⋆ = (e⋆, i⋆) = (0.616, 88◦). The
time evolution (over 25 lunar periods) of the eccentricity and
inclination for the whole cluster of orbits (k = 200 orbits) is
displayed in Figure 7. The spatial averaged orbit is displayed and
superimposed with a bold red line9. Clearly, the eccentricities of
the whole cluster evolve in an apparent regular fashion. All the
orbits incorporate similar dynamical informations, both on the
quantitative and qualitative point of view. On the contrary, the
inclination time-histories experience significant variations and
a net sensitive dependence upon the ICs. From this example,
easily generalisable, we easily infer why a one-dimensional
diameter (based on the eccentricity) would fail in capturing
these particularities. Pushing further the idea, we extended this
approach on a grid of ICs near the point x⋆ by computing
accordingly the diameters (and the FLIs). The obtained maps
are presented in Figure 8. They confirm the rationale behind
the intuition developed through the former example. Whilst the
diameter based on both actions is in agreement with the FLI
map, the method based on the one-diameter approach give an
irrelevant and uniform signal.

Having presented a general way to quantify the drift, let us
focus now on how the drift is mediated in the phase space.

4.2. Visualization of Transport
In the previous sections, we computed FLIs and diameters in
various sections

S(v) =
{

(x, y) ∈ D× T3
| y = v, v ∈ T3

}

(4.2)

with D ⊂ R2. By fixing y = 0, particular features in S(0) have
been depicted. In order to visualize transport properties, and
to show how its mediation is related to the detected hyperbolic
web, we use projection and visualization techniques that have
been extensively used over the past decade to study transport in

9 Let us consider a cluster of size k, that we propagate up to time τrun. We obtain k

orbits γk ∈
(

C[0, τrun]
)

. Le us denote by xj(i, t) the instantaneous value of the j-th

component of the orbit γi at a specific epoch t. The spatial averaged orbit of the

component j (1 ≤ j ≤ n), 〈xj〉, is then defined through its components obtained at

any time t by 〈xj(t)〉 =
1
k

∑k
i=1 xj(i, t).
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FIGURE 5 | Estimation of the diameters for the two perturbing parameters ε(a) with a = 18, 600 km and a = 29, 600 km.

FIGURE 6 | Extraction of the ICs satisfying D(x, τrun) ≥ 0.35 (left hand-side) and the chaotic ICs satisfying FLI(x, τrun) ≥ 1.2 log(τrun).

nearly-integrable Hamiltonian system, symplectic Maps and in
Dynamical Astronomy [16, 18, 19, 40, 42]. For a recent overview
specifically around the FLIs and their applications, we advise the
reader to consult [20] for a pedagogical introductory note. The
methodology consists in the following. First, we compute the FLIs
over a section S(v), say on S(0)10. After this step, we are then
able to recognize initial conditions close to hyperbolic borders
or immersed within the chaotic sea. We then select one IC of
interest in S(0). Let x⋆ ∈ S(0) denotes this IC. Next, we define
a small neighborhood V(x⋆) of k ICs of x⋆. In theory, it would
be sufficient to deal with the sole numerical propagation up to
τrun of the orbit emanating from x⋆. However, the procedure is
computationally facilitated by considering a cluster of k orbits.
From these computed orbits γk(t) ∈ C

(

[0, τrun]
)

, we keep trace
only of the points that return close enough to the section S(v). For
that purpose, we introduce the family of sections {Sδ(v)}δ which
are δ-close to S(v). These sections are defined as

Sδ(v) =
{

(x, y) ∈ D× T3
|
∥

∥y− v
∥

∥ ≤ δ
}

, δ ≪ 1 ∈ R+. (4.3)

10 In this work we were interested in the action-action plane, but the approach

can be extended to action-angle or angle-angle planes. For example, a angle-angle

section can be defined as T =
{

(x, y) ∈ D × T
3
| (y1, y2) ∈ B ⊂ T

2, x ∈ D, y3 =

v3
}

.

When δ → 0, we recover the “exact” section S(v). The
introduction of this family of section is essentially to circumvent
numerical limitations. Firstly, we deal with a finite time τrun (that
we would like to keep “as small as possible” but “large enough”
to extract dynamical mechanisms). Secondly, in practice we do
not deal with an orbit γk(t) ∈ C

(

[0, τrun]
)

, but with a discretised
version of this orbit computed, say (to facilitate the exposition), at
eachmultiple of the fixed step size1t, {γk(t), t = i1t}ni=0, n1t =
τrun. All points of the orbits γk(t) ∈ C

(

[0, τrun]
)

that return
during the simulation to a section of {Sδ(v)}δ are identically
projected into the exact section S(v), on which the FLIs are used
as a background. By doing that, we are able to relate transport
with the web detected by the FLIs. In our computation we dealt
with the ℓ∞-norm, δ is problem dependent and best determined
by a calibration procedure11. Finally we worked with a cluster of
size k = 200 initial conditions.

Figure 9 presents results in the range of “small” perturbation
for two initial points of interest applying the methodology
described previously. The clusters has been propagated up to a
timescale of about 5.8 × 105 orbits revolution (25 lunar nodes).

11To give an idea of the size of δ, the results presented in this manuscript have been

obtained with δ = 0.08 for the small range of ε, δ = 0.1 for larger range. Different

admissible δ just change the number of points on the section collected, but leave

invariant the transport properties (angles are expressed in radians).
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FIGURE 7 | Ensemble integration of a cluster of k = 200 orbits in a neighborhood V (x⋆) of x⋆= (0.616, 88◦). The ensemble averaged orbit of the considered

observables are shown in red. The eccentricities do not experience a net sensitive dependence to the ICs, contrarily to the inclinations. From this example, it can be

easily inferred that a diameter-measure based solely on the eccentricity (or equivalently on G) would fail to capture properties of the dynamics.

FIGURE 8 | The figures enable us to quantify how a one-dimensional diameter coefficient (here based on the action G, top left) may be inappropriate in some cases in

capturing dynamical properties. A contrario, the two-dimensional diameter coefficient (bottom left) based on both actions, G and H, captures the subtleties of the

dynamics and reconcile the results with the FLIs analysis.

The ICs serving a definition to the cluster are depicted in red.
The points of the orbits that cross the double sections of the
set {Sδ}δ are depicted in green. (To facilitate the reading and
interpretation of the figures, the FLIs background have been color
coded with a light opacity-like filter. The points returning to
the section are intentionally magnified.) The two clusters focus

on thin manifold that still carry transport (see Figure 5). As the
transport index is rather small, excursions are modest and rather
confined. The returning points are guided by the thin hyperbolic
skeleton detected by the FLI computation.

In Figure 10, we repeated the same experiment with a
larger ε for 4 different scenarios. The approach enables us
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FIGURE 9 | Two diffusive scenarios illustrating transport scenarios along resonances in the regime of small perturbative parameters. The red spot indicates the initial

condition where the ensemble of initial conditions are defined. Points of the orbits that return sufficiently close to the section (on which the FLIs appear as a

background) are depicted with a green point. See text for comments.

to visualize and quantify the spread of the actions in the
regime of strong chaos. The orbits of the clusters have been
propagated on about 1.4 × 2.8 × 105 orbits revolution. The
spread of the orbits is well more appreciable and develops more
drastically within the action-space. It covers a large portion
of the connected chaotic domain. As it is observed for all
scenarios, the change in inclination can be superior to 15◦,
with extremely large variations for the eccentricity (namely,
the mechanism allows nearly circular orbits to become very
eccentric).

It would be extremely interesting to extend the approaches
and visualization of the diffusive properties by extending the
dimension of the visualized space. Taking advantage of our
model, we were able to extend the traditional stability maps
in one more direction by stitching together ad-hoc others FLI
sections. The results presented in Figure 11 complement the
global stability picture of the actions space by “unrolling” the
dynamics according to one angle, here�. The resonantmanifolds
computed using Equation (2.12) are depicted in black in the
“action-space.” In the regime of small perturbation (left panel), a
pendulum-like structure is clearly identifiable (minor structures
can also be identified). By varying the size of the perturbation,
a bifurcation-like phenomena occurred and the initially elliptic
point becomes of a hyperbolic nature where collisional orbits
develop. Such a systematic parametric methodology would allow,
besides the quantification of chaos and the determination of
the resonant regime (cf. [38]), the determination of precise
perturbing parameters where such phenomena occur.

5. DISCUSSION AND CONCLUSIVE
REMARKS

Dynamical chaos indicators as the FLI are valuable and
formidable allies to gain knowledge on the dynamical system
under investigation. Their systematic use over nearly the past
two decades in transverse fields has brought its share of results.
Applications toward terrestrial dynamics are still at their early
stage but the current situation seems to evolve positively. In
this contribution, we complemented and refined our past studies

related to the long-term dynamics of terrestrial orbits in the
range 2.91–4.64 Earth radii (ε ∈ [0.02 : 0.22]). We showed the
complementarity and benefits of visualizing the global dynamics
via sections, corroborated with the computation of the FLIs
and practical action-diameter quantities. From our numerical
experiments, we have seen that when the detected hyperbolic
manifolds are very thin (but still carry large diameters), the
transport occurs precisely along them. For higher values of
the non-linearity parameter, resonances do overlap significantly
and the transport is across a large domain of the chaotic sea.
This mechanism allows nearly-circular orbits to become highly
eccentric on a few lunar nodes only. In the later case of strong
chaos, preferred directions for the transport are hard to establish.
The FLIs allow to follow and delineate the routes of transport
where the spread in the phase space take place. The natural
complementary step that deserves serious attention concerns
the nature of the transport, the computation of diffusion-like
coefficients and its scaling with ε (Note that if in our actual set-
up, we do have access only to a limited number of different order
of magnitudes of ε. A theoretical possibility to extend its range
is to artificially increase the semi-major axis - even if we know
that physically the procedure is not that relevant as octupolar
contributions should be incorporated). Let us comment and
relate recent difficulties that we encountered in investigating
these last points. Transport properties are generally characterized
through the computations of moments of different order q,

Mq(τ ) =
〈

|x(τ )− 〈x(τ )〉|q
〉

. (5.1)

Let us underline once more that when we deal with the dynamics
numerically, we only have access to finite time moments. Usually,
the second-order moment, i.e., the spread of the actions (the
variance), is used to discriminate the case of diffusion we deal
with. More precisely, under the explicit ansatz that

M2(τ ) =
〈

|x(τ )− 〈x(τ )〉|2
〉

∼ D2τ
ν , (5.2)

the diffusion is called either subdiffusive (ν < 1), diffusive
(ν = 1) or superdiffusive (ν > 1). (The particular case of
superdiffusive behavior with ν = 2 is referred to ballistic
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FIGURE 10 | Diffusive scenarios illustrating transport scenarios within the hyperbolic web in the regime of large perturbative parameters and strong resonances

overlap. The red spots indicate the initial condition where the ensemble of initial conditions are defined. Points of the orbits that return sufficiently close to the section

(on which the FLIs appear as a background) are depicted with a green point. See text for comments.

FIGURE 11 | These two FLI cubes, computed for a = 18, 600 km (Left) and a = 29, 600 km (Right) highlight a bifurcation phenomena. The resonant manifolds

appear in black in the “action-action” space.

diffusion.) The real parameter D2 is the estimated diffusion
coefficient, and its sole determination can be sometimes tricky
due to technical difficulties (see, e.g., Lega et al. [16] and further
references in Cincotta et al. [45]). Anomalies to the strict diffusive
case (ν = 1), i.e., aberrations with respect to Gaussianity,
might be the results of the existence of a mixed phase space
(cohabitation of regular and chaotic components in the phase
space) and correlation effects [47, 48]. Let us note that, to the
best of our knowledge, the study of the correlation function
C(τ ) (even at least for the specific observable of interest, the

eccentricity) and its possible decay which give us the scale of
the correlation time τC (see discussions in [49, 50]) has never
been undertaken for the MEO problem. (The exception is found
in Wytrzyszczak et al. [51] where the autocorrelation function
properties are used to discriminate regularity for geosynchronous
objects.) Daquin et al. [52] claimed the normal character of
the diffusion for the eccentricity observable in the regime of
strong chaos. We redid some experiments along those lines
apart that we used the spatial averaging ideology (and no
longer the temporal averaging) assuming that all ICs of the
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cluster are equivalent. We met difficulties to confirm our former
conclusions and we stress here that they should be taken with
a grain of salt. In fact, in our experiments, we noticed that
such a conclusion depends strongly on the ansatz made on the
evolution of the variance and the choice of the time-horizon
investigated. Regarding the question related to the time-horizon,
there might exist a transient time τtr. that should be constrained
first. Indeed, in order to derivemeaningful statistical conclusions,
we have to ensure that τ ≫ τtr. (as a transient time seems
to exist) and τ ≫ τC. It is possible that, unfortunately, in
our present setting, τtr. ∼ τ , making conclusions hard to
reach.

Constraining those difficulties are the directions being taken
by our current research.
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This paper investigates the long-term evolution of spacecraft in Highly Elliptical Orbits

(HEOs). The single averaged disturbing potential due to luni-solar perturbations, zonal

harmonics of the Earth gravity field is written in mean Keplerian elements. The double

averaged potential is also derived in the Earth-centered equatorial system. Maps of

long-term orbit evolution are constructed bymeasuring themaximum variation of the orbit

eccentricity to identify conditions for quasi-frozen, long-lived libration orbits, or initial orbit

conditions that naturally evolve toward re-entry in the Earth’s atmosphere. The behavior

of these long-term orbit maps is studied for increasing values of the initial orbit inclination

and argument of the perigee with respect to the Moon’s orbital plane. In addition, to allow

meeting specific mission constraints, quasi-frozen orbits can be selected as graveyard

orbits for the end-of-life of HEO missions, in the case re-entry option cannot be achieved

due to propellant constraints. On the opposite side, unstable conditions can be exploited

to target Earth re-entry at the end-of-mission.

Keywords: luni-solar perturbation, third body perturbation, highly elliptical orbit, orbit stability, frozen orbit, orbital

perturbations, re-entry, mission end-of-life

INTRODUCTION

Highly Elliptical Orbits (HEOs) about the Earth are often selected for astrophysics and astronomy
missions, as well as for Earth missions, such as Molniya or Tundra orbits, as they offer vantage
point for the observation of the Earth and the Universe (Draim et al., 2002). Moreover, elliptical
Geostationary Transfer Orbits are commonly selected to inject spacecraft in geostationary orbit.
HEOs guarantees spending most of the time at an altitude outside the Earth’s radiation belt;
therefore, long periods of uninterrupted scientific observation are possible. In addition, geo-
synchronicity is opted to meet coverage requirements, enhanced at the apogee, and optimize the
ground station down-link. If the inclination is properly selected, HEO can minimize the duration
of the motion inside the eclipses.

This paper, whose preliminary version was presented at the 25th AAS/AIAA Space Flight
Mechanics Meeting, in Williamsburg (VA) in January 2015 (Colombo, 2015), investigates the long-
term evolution of spacecraft in HEOs through the exploitation and development of semi-analytical
techniques. The dynamics of HEOs with high apogee altitude is mainly influenced by the effect of
third body perturbations due to the Moon and the Sun, which induces long-term variations in the
eccentricity and the inclination, corresponding to large fluctuations of the orbit perigee and the
effect of the Earth’s oblateness.
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The semi-analytical technique based on averaging is an
elegant approach to analyze the effect of orbit perturbations. It
separates the constant, short periodic and long-periodic terms of
the disturbing function. The short-term effect of perturbations
is eliminated by averaging the variational equations, or the
corresponding potential, over one orbit revolution of the
small body. Indeed, averaging corresponds to filtering the
higher frequencies of the motion (periodic over one orbit
revolution), which typically have small amplitudes (Ely, 2014).
The resulting system allows a deeper understanding of the
dynamics (Shapiro, 1995; Krivov and Getino, 1997). Moreover,
the use of the average dynamics reduces the computational
time for numerical integration as the stiffness of the problem is
reduced, while maintaining sufficient accuracy compatible with
problem requirements also for long-term integrations.

The effect of third body is usually modeled as a series
expansion of the potential with respect to the ratio between the
orbit semi-major axis and the distance to the third body. In
averaged development the potential is usually truncated to the
second order. For example, Cook’s formulation gives the secular
and long-periodic perturbation due to luni-solar perturbation
obtained through averaging over one orbit revolution of the
satellite (Cook, 1962). It assumes circular orbit for the disturbing
bodies and considers only the second term of a/a′, where a
and a′ are, respectively, the spacecraft and the disturbing body
semi-major axis about the Earth (Blitzer, 1970). However, it
does consider the obliquity of the Sun and the Moon over the
equator and the precession of the Moon plane due to the Earth’s
oblateness (in a period of 18.6 years with respect to the ecliptic).
For orbits above Low Earth Orbits, considering only the second
order is not enough to accurately estimate the effect of luni-
solar perturbations. For example, Lara et al. (2012) focused on
orbital configurations, such as the Global Navigation Satellite
Systems, for which the second order effects of J2 can be of the
same order of magnitude as perturbations due to the P2 up to P5
terms in the Legendre polynomials expansion of the third-body’s
disturbing function. For this reason, some recursive formulations
of the third body potential were developed (Cefola and Broucke,

FIGURE 1 | Geometry of the third body with respect to the spacecraft and the

central body.

1975; Laskar and Bou, 2010) also for recovering the short periodic
effects (El’yasberg, 1967).

In this paper, the single averaged disturbing potential due
to luni-solar perturbations is developed in series of Taylor of
the ratio between the orbit semi-major axis and the distance
to the third body, following the approach by Kaufman and
Dasenbrock (1972). The effect of other zonal harmonic of the
Earth gravity field is also modeled up to order 6 considering also
the J22 term (Liu and Alford, 1980). As we want to focus here on
the interaction between the terms of the Legendre polynomial
of the luni-solar perturbation and the Earth’s oblateness, the
effect of solar radiation pressure and aerodynamics drag is
neglected in this work. The perturbed dynamics is propagated
in the Earth-centered equatorial frame by means of the single
averaged variation (over the orbit revolution of the spacecraft)
of the disturbing potential, implemented in the suite PlanODyn
(Colombo, 2016). The long-term evolution of high elliptical
orbits is characterized in the phase space of eccentricity,
inclination and argument of the perigee with respect to the
Earth-Moon plane. Maps of long-term evolution are constructed
to assess the maximum and minimum eccentricity attained
as function of the initial conditions. Through these maps,
conditions for quasi-frozen, or long-lived libration orbits are
identified. Recent projects funded by the European Space Agency
on the design of disposal trajectories for Medium Earth Orbits
(Rossi et al., 2015), Highly Elliptical Orbits and Libration Earth
Orbits (Armellin et al., 2014; Colombo et al., 2014b) have
demonstrated the possibility of exploiting orbit perturbations
for designing of passive mitigation strategies for debris disposal.
From the results of these projects, many work stemmed out
proposing the use of maps for characterizing conditions for
natural re-entry in low Earth orbit (Alessi et al., 2018), medium
Earth orbit (Alessi et al., 2016; Daquin et al., 2016; Gkolias
et al., 2016; Skoulidou et al., 2017), geostationary Transfer orbit
(Srongprapa, 2015), geostationary orbit (Colombo and Gkolias,
2017; Gkolias and Colombo, 2017), and highly elliptical orbit
(Colombo, 2015).

Third body perturbations show important effects on the
long-term evolution of orbits within the Medium Earth orbit
region and above. A relevant contribution to the understanding
of high-altitude orbit dynamics was given by Kozai’s (1962)
analytical theory on secular perturbations of asteroid with high
inclination and eccentricity. Assuming one perturbing body on a
circular orbit, and considering the second term of the disturbing
potential, an analytical solution was found, later named as Kozai-
Lidov dynamics (Kozai, 1962; Lidov, 1962), which links the
eccentricity of the orbit with the inclination, measured from the
perturbing body plane, and the argument of the perigee. Their
work was more recently extended to consider the slow variation
due to the 4th term of the potential and highlighting shirking
characteristics in the phase space (Katz et al., 2011; Naoz et al.,
2013). Always in the line of long term analysis of the third body
effect, El’yasberg (1967) derived the double averaged equations of
the second term of the disturbing potential and Costa and Prado
(2000) continued on the effort by El’yasberg by expanding the
derivation of the double averaged potential up to order 8th. Their
interest concerned the critical value of the inclination between
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the perturbed and the perturbing body related to the stability of
near-circular orbits. In other words for inclination higher than
the critical values, circular orbits get very elliptic, while for lower
values the orbit stays nearly circular. In El’yasberg (1967) and
Costa and Prado (2000) the double averaging was performed
using the orbital elements of the spacecraft as definedwith respect
to the third body plane. However, when considering both the
third body effects of the Sun and the Moon, one has to assume
that they orbit on the same plane; this reduce to consider that
the 5.1◦ inclination of the Moon’s plane over the ecliptic is equal
to zero.

In this work, to guarantee the consistency with the single-
averaged approach, we do not make this assumption. The double
average variation is here obtained averaging on the fast variable
describing the orbital motion of the perturbing body around
the Earth as in El’yasberg (1967) and Costa and Prado (2000),
but the different inclination of the perturbing bodies planes is
retained. The double-averaged disturbing potential is derived in
the Earth-centered equatorial reference system. The choice of
this system has the advance of allowing the description of the
perturbing effect of the Sun and theMoon, considering the actual
ephemerides and their inclination with respect to the equator,

and accommodating also the inclusion of the effect of the zonal
harmonics of the Earth potential, which also affect the motion.

By using the single averaged and double averaged equations
presented in this paper, the behavior of quasi-frozen solutions
appearing for high inclinations orbits can be reproduced. The
choice of representing the maps in terms of inclination and
argument of the perigee with respect to the Moon plane is
quite appropriate here as we want to study the effects on highly
elliptical orbit for which the Moon third body perturbations is
the most relevant effect. In addition, to allow meeting specific
mission constraints, stable conditions for quasi-frozen orbits
can be selected as graveyard orbits for the end-of-life of HEO
missions, in the case re-entry option cannot be achieved due
to propellant constraints, such as XMM-Newton, which is
taken here as practical example. On the opposite side, unstable
conditions can be exploited to target an Earth re-entry at the
end-of-mission (Jenkin andMcVey, 2008; Colombo et al., 2014a).
This is the case of the end-of-life of INTEGRAL mission,
requiring a small delta-v maneuvers for achieving a natural re-
entry assisted by perturbations. In this paper, maps of stable and
unstable HEOs are built, to be used as preliminary design tool for
graveyard or frozen orbit design or natural re-entry trajectories

FIGURE 2 | XMM Newton’s ephemerides: actual ephemerides in blue and propagation with PlanODyn in red. (A) Eccentricity, (B) inclination, (C) argument of the

ascending node, and (D) argument of the perigee. The x-axis represents the time in Modified Julian Date since 2000 (Time origin at 12:00 year 2000).
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at the end-of-life. Given the available delta-v on-board, the
reachable space of orbital elements can also be identified as in
the case of XMM-Newton mission.

LONG-TERM ORBIT EVOLUTION

Orbit Evolution With Single-Averaged

Disturbing Potential
To analyze the long-term and secular effect of orbit
perturbations, it is convenient to use an averaging approach.
In the case the effect of perturbations is conservative, this can
be described through a disturbing potential R. In this work we
consider the perturbation to the two-body dynamics due to the
zonal harmonics of the Earth gravity field, and the third-body
perturbation of the Sun and the Moon as

R = Rzonal + R3−Sun + R3−Moon

The variation of the orbital elements is described through the
planetary equations in the Lagrange form (Battin, 1999):

da
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that can be written in condense form as

dα

dt
= f

(

α,
∂R

∂α

)

(2)

where α is here used as the condensed form of the Keplerian

elements α =
[

a e i � ω M
]T
, where a is the semi-major axis,

e the eccentricity, i the inclination, � the right ascension of the
ascending node, ω the argument of the perigee and M the mean
anomaly. Through single averaging operation, the potential can
be replaced by the orbit-averaged form of the disturbing function:

R̄ = R̄zonal + R̄3−Sun + R̄3−Moon (3)

obtained under the assumption that the orbital elements are
constant over one orbit revolution of the spacecraft around the
central planet. Therefore, the variation of the mean elements is
described by:

dα

dt
= g

(

α,
∂R̄

∂α

)

(4)

where now ᾱ is the vector of the averaged orbital elements.

Luni-Solar Averaged Potential
For describing the effects of luni-solar third body perturbations,
we follow the approach proposed by Kaufman and Dasenbrock
(1972). Their approach is summarized in this section as is
fundamental to give an insight into the orbital dynamics that
is exploited in section Luni-Solar and Zonal Harmonics Maps.
The disturbing potential due to the third body perturbation is
(Murray and Dermott, 1999):

R
(

r, r′
)

= µ′

(

1

|r− r′|
−

r · r′

r′3

)

(5)

FIGURE 3 | Evolution of a high altitude orbit under the effect of luni-solar and zonal perturbations. (A) Comparison of the actual ephemerides (blue) with single

averaged (red) and double averaged (cyan) dynamics. (B) Evolution in the eccentricity-2ω phase space, where the argument of the perigee is measured with respect

to the Moon plane.
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where µ′ is the gravitational coefficient of the third body, r and
r′ are the position vectors of the satellite and the third body
with respect to the central planet, respectively, as represented in
Figure 1. Equation (5) can be expressed as function of the angle
ψ between r and r′ if the cosine rule is exploited in the first term
of Equation (5) and the dot product in the second term is resolved
(Murray and Dermott, 1999):

R
(

r, r′
)

=
µ′

r′

(

(

1− 2
r

r′
cosψ +

( r

r′

)2
)−1/2

−
r

r′
cosψ

)

(6)

where

cosψ =
r · r′

rr′

Kaufman andDasenbrock (1972) express the disturbing potential
as function of the spacecraft’s orbital elements, choosing as
angular variable the eccentric anomaly E, the ratio between the
orbit semi-major axis and the distance to the third body r′:

δ =
a

r′

and the orientation of the orbit eccentricity vector with respect to
the third body (Kaufman and Dasenbrock, 1972):

A = P̂ · r̂′

B = Q̂ · r̂′

where the eccentricity unit vector P̂, the semilatus rectum unit

vector Q̂, and the unit vector to the third body r̂′ are expressed
with respect to the equatorial inertial system, through the
following composition of rotations (Kaufman and Dasenbrock,
1972; Lara et al., 2012):

P̂ = ℜ3 (�)ℜ1 (i)ℜ3 (ω) ·
[

1 0 0
]T

FIGURE 4 | XMM-Newton orbit evolution and minimum and maximum

eccentricity attained during the motion evolution. Blue line: actual

ephemerides, red line: propagation with PlanODyn.

R̂ = ℜ3 (�)ℜ1 (i)ℜ3 (ω + π/2 ) ·
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1 0 0
]T
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(

�′
)
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(

i′
)
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(

u′
)

·
[

1 0 0
]T

(7)

where R1 represents the rotation matrix around the x axis, R2 the
rotation matrix around y axis and R3 the rotation matrix around

the z axis. The full expression of P̂, Q̂, and r̂′ in terms of Keplerian
elements can be found in Chao-Chun (2005). The variables
�′, ω′, i′, and f ′ in Equation (7) are, respectively, the right
ascension of the ascending node, the argument of the perigee,
the inclination and the true anomaly of the perturbing body on
its orbit (described with respect to the Earth-centered equatorial
reference frame) and u′ = ω′

+ f ′. Under the assumption that the
parameter δ is small (i.e., the spacecraft is far enough from the
perturbing body), Equation (6) can be rewritten as a Taylor series
in δ as Kaufman and Dasenbrock (1972):
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δkFk (A,B, e,E)

Note that the summation starts from k = 2 as the term zero of
the series is influent as is a constant, while the term 1 simplifies
with the second term of Equation (6). The average operation
in eccentric anomaly, passing through the mean anomaly via
dM = (1− e cosE) dE can then be performed, assuming that the
orbital elements of the spacecraft a, e, i, �, and ω are constant
over one orbit revolution:
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where the averaged terms F̄k (A,B, e) are reported in Kaufman
and Dasenbrock (1972) and in Appendix in a more compact
form. Note that the term 2 of Equation (8) is the one given by
Chao-Chun (2005). Equation (8) can be now inserted into the
Lagrange equations by computing the partial derivatives with
respect to the orbital elements, considering that the dependences
of the terms in Equation (8) are: A
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The derivatives up to the 8th order of the Taylor series are
reported by Kaufman and Dasenbrock (1972); we report them in
Appendix in a more concise form up to order 6th.

Earth Zonal Harmonic Potential
The disturbing function of the zonal harmonic potential is
expressed also in terms of classical orbital elements. The zonal
harmonics were modeled up to order 6 considering also the J22
term (Blitzer, 1970; Liu and Alford, 1980). We report here only
the term associated with J2 that is the one most important one for
the application considered in this work. However, all the terms
were retained in the orbit propagation.

R̄J2 = W
na2

6

3cos2i− 1
(

1− e2
)3/2

whereW is the oblateness parameter

W =
3

2
J2
R2
Earth

a2
n

where J2 = 1.083 · 10−3 denotes the second zonal harmonic
coefficient and REarth is the mean radius of the Earth. n =
√

µEarth/a3 is the orbit angular velocity of the spacecraft on its
orbit, with µEarth the gravitational constant of the Earth.

Model Validation
The averaged dynamical model described in section Orbit
Evolution With Single-Averaged Disturbing Potential was
validated by comparison with the actual ephemerides of two
artificial satellites in highly-elliptical orbit: INTEGRAL and
XMM-Newton. The orbit of INTEGRAL was used in Colombo
et al. (2014a) and validated against the ephemerides from the
NASA-Horizon system. XMM-Newton orbit was propagated in
the time span from 1999/12/15 to 2013/01/01 with the initial
Keplerian elements on 1999/12/15 at 15:00 as: a = 67045 km,
e = 0.7951, i = 0.67988 rad, Ω = 4.1192 rad, ω = 0.99259 rad,
true anomaly f = 3.2299 rad, and radius of the perigee 13,737 km.
Figure 2 shows the results of the validation with the actual

ephemerides form ESA (2013) (blue line). Luni-solar and Earth
zonal harmonics perturbations are included in this validation
with PlanODyn (red line) (Colombo, 2016). The reference system
used is inertial, centered at the Earth, on the Earth equator.

Orbit Evolution With Double-Averaged

Disturbing Potential
Under the further assumption that the orbital elements do not
change significantly during a full revolution of the perturbing
body around the central body (i.e., Earth), the variation of the
orbit over time can be approximately described through the
disturbing potential double averaged over one orbit evolution
of the s/c and over one orbital revolution of the perturbing
body (either the Moon or the Sun) around the Earth. The
terms of the disturbing potential due to the third body effect
in Equation (3) can be substituted by the double-averaged one
¯̄R3−Sun and

¯̄R3−Moon:

¯̄R = R̄zonal +
¯̄R3B-Sun +

¯̄R3B-Moon (10)
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∞
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δk ¯̄Fk
(

e, i,�,ω, i′
)

(11)

In this work we decided to express the double-averaged potential
with respect to the Keplerian elements described in the Earth’s
centered equatorial reference system. This will give a more
complex expression for the potential in Equation (11), with
respect to the one by El’yasberg (1967) and Costa and Prado
(2000) but it has the advantage of avoiding the simplification
that Moon and Sun orbit on the same plane and facilitating the
introduction of the effect of the zonal harmonics.

The terms of the third body potential are obtained starting
from the single-averaged terms, performing the averaging

operation ¯̄Fk (A,B, e).
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)

,

B
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)

, e
)

df ′

FIGURE 5 | Luni-solar + zonal 1e maps for XMM Newton orbit: (A) Forward propagation, and (B) backward propagation. The initial inclination and the argument of

the perigee are measured with respect to the Moon’s plane.
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where 1� = � − �′. The term up to order four of the

potential were computed; only the second term ¯̄F2 is reported

here as ¯̄F3 = 0:
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·
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) (
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)

(12)

The evolution of the orbit in time can be then computed
computing the partial derivatives of Equation (10) and
substituting them into the Lagrange form of planetary equations
Equations (1).

FIGURE 6 | Luni-solar + zonal maps for semi-major axis of XMM Newton orbit a = 67045.39 km: (A) 1e map, (B) 1te map, (C) imin map, (D) imax map, and (E) 1i

map. The initial inclination and the argument of the perigee are measured with respect to the Moon’s plane.
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FIGURE 7 | Continued
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FIGURE 7 | Continued

Frontiers in Astronomy and Space Sciences | www.frontiersin.org July 2019 | Volume 6 | Article 34121

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Colombo Highly-Elliptical Orbits Evolution Maps

FIGURE 7 | Continued
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FIGURE 7 | Luni-solar + zonal 1e maps for semi-major axis equal to 67045.39 km (XMM Newton’s orbit) for different values of initial inclination with respect to the

orbiting plane of the Moon. The initial inclination and the argument of the perigee are measured with respect to the Moon’s plane. (A) Initial inclination = 0.5 deg.

(B) Initial inclination = 5deg. (C) Initial inclination = 10deg. (D) Initial inclination = 15deg. (E) Initial inclination = 20deg. (F) Initial inclination = 25deg. (G) Initial

inclination = 30deg. (H) Initial inclination = 35deg. (I) Initial inclination = 40deg. (J) Initial inclination = 45deg. (K) Initial inclination = 50deg. (L) Initial

inclination = 55deg. (M) Initial inclination = 60deg. (N) Initial inclination = 64.2823deg. (O) Initial inclination = 65deg. (P) Initial inclination = 70deg. (Q) Initial

inclination = 75deg. (R) Initial inclination = 80deg. (S) Initial inclination = 85deg. (T) Initial inclination = 90deg.

Note that, with the same procedure, the double averaged
disturbing potential can be also written in the form proposed
by El’yasberg (1967) and Costa and Prado (2000). A different
reference system needs to be used, which is still centered
at the central body (i.e., Earth) but the x-y plane lay
on the perturbing body orbital plane, with its x-axis in
the direction of the perturbing body on its orbit, the
z-axis in the direction of the perturbing body angular
momentum, and the y-axis that completes the reference
system. The corresponding orbital elements are α3Bsys =
[

a3Bsys e3Bsys i3Bsys �3Bsys ω3Bsys M
3Bsys

]T
. It is interesting to

note that this rotating reference system is equivalent to
the synodic system used in the circular restricted three-
body problem.

In this case the eccentricity unit vector P̂3Bsys, the semilatus

rectum unit vector Q̂3Bsys and the unit vector to the third body
r̂′3Bsys have to be expressed with respect to the third body rotating
system, through the following composition of rotations

P̂3Bsys = ℜ3

(

�3Bsys

)

ℜ1

(

i3Bsys
)

ℜ3

(

ω3Bsys

)

·
[

1 0 0
]T

R̂3Bsys = ℜ3

(

�3Bsys

)

ℜ1

(

i3Bsys
)

ℜ3

(

ω3Bsys + π/2
)

·
[

1 0 0
]T

r̂′3Bsys = ℜ3 (0)ℜ1 (0)ℜ3 (0) ·
[

1 0 0
]T

=
[

1 0 0
]T

(13)

where �3Bsys = �3Bsys, 0 − u′. By using Equations (13), the new
expressions of A3Bsys and B3Bsys are found as

A3Bsys = P̂3Bsys · r̂
′
3Bsys

B3Bsys = Q̂3Bsys · r̂
′
3Bsys

that are function of A3Bsys

(

u′ −�3Bsys, i3Bsys,ω3Bsys

)

,
B3Bsys

(

u′ −�3Bsys, i3Bsys,ω3Bsys

)

so that the doubly averaged

potential loses the dependence on the right ascension of the
ascending node,

¯̄F3Bsys, k
(

e3Bsys, i3Bsys,ω3Bsys

)

=
1

2π

∫ 2π

0
F̄3Bsys, k

(

A3Bsys

(

u′ −�3Bsys, i3Bsys,ω3Bsys

)

,

B3Bsys
(

u′ −�3Bsys, i3Bsys,ω3Bsys

)

, e3Bsys
)

df ′.

So equivalently to Equation (12), we can compute the terms 2 to
4 were we dropped the subscript 3BSys.

¯̄F3Bsys, 2 =
1

32

((

2+ 3e2
)

(1+ 3 cos (2i))+ 30e2 cos (2ω) sin2i
)

¯̄F3Bsys, 3 = 0

¯̄F3Bsys, 4 =
9

32768

((

8+ 40e2 + 15e4
)

(9+ 20 cos (2i)+ 35 cos (4i))

+560e2
(

2+ e2
)

(5+ 7 cos (2i)) cos (2ω) sin2i

+ 5880e4 cos (4ω) sin4i
)

that are equivalent to the expression in El’yasberg (1967) and
Costa and Prado (2000). If the partial derivatives of Equation
(11) are inserted into the Lagrange form of planetary equations
we get the expression of variation of elements double-averaged
over one orbit evolution of the s/c and over one orbital
revolution of the perturbing body (either the Moon or the
Sun). Figure 3 compares the evolution of a high-altitude orbit
using the single averaged dynamics (red line) and the double
averaged dynamics (cyan line) in eccentricity and argument of
the perigee with respect to the Moon plane. It is interesting
to see the evolution in the phase space of eccentricity and
argument of the perigee measured with respect to the Moon
orbiting plane as done in Ely (2005) and Colombo et al. (2014a).
For the initial conditions in Figure 3, the simplified model by
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El’yasberg (1967) and Kozai (1962) predicts a pure librational
orbit (Ely, 2005) (magenta line) which, in reality, is corrupted
by the coupling between Moon and Sun third-body effect and
by the effect of J2 (see the red and cyan lines). The double
averaged propagation derived in Equation (12) is used for the
Moon and the Sun in Equation (10) for obtaining the orbit
propagation represented with the cyan line, while the single

averaged propagation described in sections Luni-Solar Averaged
Potential and Earth Zonal Harmonic Potential is used for
obtaining the orbit propagation represented with the red line.
The single and double average propagation are compared against
the actual spacecraft ephemerides from the NASA Horizon
system in blue. Both the single and the double averaged approach
show very good accuracy against the real ephemerides. With

FIGURE 8 | Maps for initial inclination with respect to the Moon’s plane of 45◦ and semi-major axis equal to 67045.39 km. The initial inclination and the argument of

the perigee are measured with respect to the Moon’s plane. (A) Eccentricity-2ω plot for e0 = 0.05. (B) Eccentricity-2ω plot for e0 = 0.25. (C) Eccentricity-2ω plot for

e0 = 0.45. (D) Eccentricity-2ω plot for e0 = 0.65. (E) Eccentricity-2ω plot for e0 = 0.8. (F) Eccentricity-2ω plot for e0 = 0.9.
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respect to the pure librational loop predicted by the Lidov-Kozai
dynamics, still a quasi-librational behavior can be noted and will
be further studied in the next section through propagation via the
single-averaged dynamics.

LUNI-SOLAR AND ZONAL HARMONICS

MAPS

To the purpose of studying the long term evolution of many
initial conditions, a grid was built in the domain of inclination,
eccentricity and argument of the perigee. Equally spaced steps
in initial eccentricity (19 steps between 0.05 and 0.9), initial
inclination (20 steps between 0.5◦ and 90◦) and initial right
ascension of the ascending node (36 steps between 0◦ and
180◦) were selected as starting points. Note that, inclination and
argument of the perigee are here described with respect to the
Moon plane reference system; in other words i is the inclination

of the spacecraft orbit with respect to the Moon’s orbit plane and
ω is the argument of the perigee measured from the direction
of the ascending node of the spacecraft’s orbit with respect to
the Moon’s orbit plane. Each initial condition on the grid is
propagated over 30 years with the tool PlanODyn (Colombo,
2016) using the single averaged dynamics. As mentioned before,
only luni-solar and zonal harmonics perturbations are here taken
into account as we want to analyze their interaction. For each
initial condition we evaluate the change between the minimum
and the maximum eccentricity that the spacecraft will attain
during its motion (see Figure 4):

1e = emax − emin (14)

with

emax = max
t

e (t) t ∈
[

0 1tdisposal
]

emin = min
t

e (t) t ∈
[

0 1tdisposal
] (15)

FIGURE 9 | Continued
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FIGURE 9 | Continued
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FIGURE 9 | Continued
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FIGURE 9 | Maps for initial inclination with respect to the Moon’s plane of 64.28◦ and semi-major axis equal to 67045.39 km. The initial inclination and the argument

of the perigee are measured with respect to the Moon plane. (A) Eccentricity-2ω plot: e0 = 0.05. (B) Polar plot: e0 = 0.05. (C) Eccentricity-2ω plot: e0 = 0.15. (D)

(Continued)
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FIGURE 9 | Polar plot: e0 = 0.15. (E) Eccentricity-2ω plot: e0 = 0.25. (F) Polar plot: e0 = 0.25. (G) Eccentricity-2ω plot: e0 = 0.35. (H) Polar plot: e0 = 0.35. (I)

Eccentricity-2ω plot: e0 = 0.45. (J) Polar plot: e0 = 0.45. (K) Eccentricity-2ω plot: e0 = 0.55. (L) Polar plot: e0 = 0.55. (M) Eccentricity-2ω plot: e0 = 0.65. (N) Polar

plot: e0 = 0.65. (O) Eccentricity-2ω plot: e0 = 0.705. (P) Polar plot: e0 = 0.705. (Q) Eccentricity-2ω plot: e0 = 0.75. (R) Polar plot: e0 = 0.75. (S) Eccentricity-2ω

plot: e0 = 0.85. (T) Polar plot: e0 = 0.85. (U) Eccentricity-2ω plot: e0 = 0.90. (V) Polar plot: e0 = 0.90.

setting 1tdisposal = 30 years. As introduced the idea will be
then to select limited 1e for graveyard disposal orbits or, at
the opposite, maximum 1e orbits can be exploited for disposal
through re-entry or for passive orbit transfer by exploiting the
effects of perturbations.

Figure 5 represents the result of the forward (a) and backward
(b) integration for 30 years using, as initial conditions, the
semi-major axis of XMM-Newton orbit, i.e., 67045.39 km, and
different values of initial eccentricity and argument of the perigee
in the grid, measured in the Moon reference system. The initial
condition in terms of inclination and eccentricity corresponding
to the one of the XMM-Newton orbit is represented by a
star symbol. The maps are colored according to the maximum
change of eccentricity 1e = emax − emin during the 30-year
forward or backward propagation, respectively. If, for some
initial conditions, the maximum eccentricity reaches the value
of the critical eccentricity ecritical, corresponding to a perigee of
hp, re-entry = 50 km

ecritical = 1−
RE + hp, re-entry

a

the integration is terminated and the corresponding initial
condition is marked with a cross symbol in Figure 5. Note
that, for those solutions, the actual orbit evolution should be
computed considering the effect of aerodynamic drag. This
was not done in the current work to limit the computational
time, however, we expect that the effect of drag will act as a
dumping of the dynamical system, decreasing the amplitude of
the librational or rotational loops in the (e, 2ω) phase space
and progressively decreasing the semi-major axis, as shown in
Colombo and McInnes (2011) for the case of solar radiation
pressure, Earth’s oblateness and drag. This will be subject of
future work.

Now, if we compute the maps considering both a forward and
a backward propagation, both for 30 years, the map becomes
more symmetric, as no particular choice (in terms of symmetry
in the position of the Sun and the Moon) was made for the
initial epoch. This is due to the fact that, if in the propagation the
eccentricity reaches the maximum value eimpact corresponding to
a perigee equal to the Earth radius,

eimpact = 1−
RE

a

the integration is terminated. Performing, from each starting
point in the grid both a forward and a backward integration
in time, instead, allows characterizing the dynamics in the
phase space (e, 2ω) in terms of reachable conditions. Figure 6A
shows the forward-backward maps starting from a semi-major

axis of 67045.39 km, where now 1e = emax − emin is
computed as

emax = max
t

e (t) t ∈
[

−1tdisposal +1tdisposal
]

emin = min
t

e (t) t ∈
[

−1tdisposal +1tdisposal
]

setting 1tdisposal = 30 years. The map in Figure 6A present and
island of low eccentricity variation close to the initial condition
of XMM Newton’s orbit. The condition of quasi-frozen orbit is
located around 2ω0 = 180 deg and e0 ≃ 0.8. The solutions
around this conditions librate around the limited-eccentricity
orbit. Other two islands of small eccentricity are present in this
map, one around 2ω0 = 180 deg and e0 ≃ 0.2 and another
around 2ω0 = 0 deg and high values of the initial eccentricities.
Those solution corresponds to orbits which rotate is terms of ω
but have a limited variation in terms of eccentricity. Solutions
starting at eccentricity close to zero have the highest variation
of eccentricity. This means that for this semi-major axis and
inclination, spacecraft on circular orbit can naturally get on an
elliptical orbit and eventually reach re-entry.

In order to approximate the half-period of the oscillation in
the (e, 2ω) phase space, the time interval between the points
when the spacecraft attain the minimum and the maximum
eccentricity is computed (as an averaged between the forward
and the backward propagation) and shown in Figure 6B. From
Figure 6B it is for example possible to see that the quasi-
frozen solution is stable for 30 years. Indeed, due to the
oscillation in inclinations, which has longer period, the orbit
may encounter some instability is a longer propagation time
is chosen as the eccentricity may increase beyond the critical
eccentricity [this can be noted for example in the case of the
INTEGRAL spacecraft (Colombo et al., 2014a)]. The maximum
and minimum inclination attained with respect to the Moon’s
plane are shown in Figures 6C, D, while the variation of
inclination is represented in Figure 6E. As it can be seen from
Figure 6E the limited eccentricity conditions do not have a zero
variation of the inclination; therefore, the long-term stability over
longer time period is not guaranteed and an analysis over longer
timeframe is required.

Once the behavior on the (e, 2ω) phase space is understood
by looking at the map showing the result of the backward and
forward propagation as in Figure 6A, it is possible to study the
sensitivity to the initial condition in inclination with respect to
the Moon’s plane. In Figure 7, the 1e maps are computed for
different starting inclination with respect to the orbiting plane
of the Moon to show how the phase space changes depending
on the initial inclination. For low inclinations the solutions are
all rotational in ω (measured with respect to the Moon’s plane)
and exhibits a higher variation of eccentricity the more the
initial eccentricity is high (Figures 7A–E) and for a high initial
eccentricity the solutions which exhibits a higher eccentricity
variation are characterized by 2ω0 = 180 deg. This behavior is
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clearer in Figures 7F–L: the solutions initiating from the yellow
area of high initial eccentricities and 2ω0 = 180 deg rotate in
ω, while quasi-equilibrium solutions exists at high eccentricities
and 2ω0 ≃ 0 deg (red island around 2ω0 ≃ 0 deg). This is
also visible from Figure 8 that shows the orbit evolution in the

(e, 2ω) phase space for many initial conditions all at starting
inclination with respect to the Moon’s plane of 45◦ and semi-
major axis equal to 67045.39 km but for different starting ω0

(color code) and for different initial eccentricity (Figures 9A,L).
Going back at the 1e maps in Figure 7, a new island appear

for inclinations above 45◦ at low eccentricities and 2ω0 ≃

180 deg of quasi-equilibrium solutions and librational solutions
(Figure 7L), while the island at high eccentricities and 2ω0 ≃

0 deg move up. This is clearly visible from Figure 9 that shows
the orbit evolution in the (e, 2ω) phase space and the polar
plots for many initial conditions all at starting inclination with
respect to the Moon’s plane of 64.28◦ and semi-major axis equal
to 67045.39 km but for different starting ω0 (color code) and for
different initial eccentricity (Figures 9A, L).

For the semi-major axis considered (67045.39 km)
i0 = 45 deg is approximately the critical inclination (Kozai,
1962; Costa and Prado, 2000). Indeed, for inclination higher
than the critical values, circular orbits get very elliptic (see
yellow path in Figures 7L–T). The more the initial inclination
with respect to the Moon increases, the more the initial orbit
reaches the critical eccentricity for re-entry (cross symbols).
Finally, for initial inclinations above i0 = 70 deg, the quasi-
equilibrium solutions in correspondence of 2ω0 ≃ 180 deg are
in correspondence of e0 > ecritic, therefore not feasible, however,
the fast eccentricity solution starting from e0 = 0 still exist. It
is important to remember that, even if qualitatively similar, the
behavior depends also on the orbit semi-major axis that here is
kept constant.

RE-ENTRY OR GRAVEYARD DESIGN

The initial conditions characterized by limited 1e variation
identified in Figures 7L–T could be selected as graveyard orbits
(Ely, 2005), while the high eccentricity variation solutions as

initial condition for passive eccentricity increase to target Earth
re-entry. It must be stressed that, while a re-entry trajectory will
remove completely the spacecraft from the space environment, a
graveyard solution will leave the satellite on a long-term stable
orbit. In this sense, however, the time within which the orbit
stability has been verified becomes an important parameter as
the orbit may de-stabilize afterwards (Daquin et al., 2016). On
the other side, it must be noted that re-entry need to be carefully
designed according to casualty risk constraints on ground
(Merz et al., 2015).

This section will exploit the findings from the previous
Sections to design the end-of-life disposal for XMM-Newton
mission by enhancing the effect of the natural dynamics or luni-
solar and J2 perturbation. The approach for the optimal 1v
computation was detailed in Colombo et al. (2014a) where the re-
entry of the INTEGRAL spacecraft was designed. The approach is
summarized here and extended to the graveyard disposal design.
For the disposal a single maneuver is considered, performed
during the natural orbit evolution of the spacecraft (computed
under the effect of perturbations). The finite variation in orbital
elements 1α achieved by an impulsive maneuver, is computed
through Gauss’ planetary equations written in finite-difference
form and the new set of orbital elements after the maneuver is
propagated with PlanODyn (Colombo, 2016) in single-averaged
orbital elements considering luni-solar perturbation and the
zonal terms of the Earth gravity potential for the maxim
disposal time 1tdisposal = 30 years. Re-entry transfer orbits
are selected that achieve in the propagation time 1tdisposal the
critical eccentricity ecritical as in Colombo et al. (2014a), while
for selecting a suitable graveyard disposal, solutions that attain
the minimum 1e over the propagation time are selected. A
graveyard orbit is designed imposing that after the maneuver,
the variation of the eccentricity in time stays limited, that is
1e in Equation (14) is minimized. In order to analyze a wide
range of disposal dates, different starting dates for the disposal
were selected, whereas, to determine the maneuver magnitude
1v and direction (α and β) and the point on the orbit where the
maneuver is performed f, an optimization procedure with genetic
algorithm was performed in order to find the optimal set of

FIGURE 10 | XMM-Newton re-entry disposal. (A) Maneuvers in the eccentricity-2ω phase space (black points: starting times analyzed for the re-entry disposal). (B)

Minimum perigee reached during the orbit long-term evolution for each solution. The initial inclination and the argument of the perigee are measured with respect to

the Moon’s plane.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org July 2019 | Volume 6 | Article 34130

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Colombo Highly-Elliptical Orbits Evolution Maps

parameters x = [1v α β f ] thatminimizes the cost function J =
1e+w·1vwherew is a weighting factor set equal to 1,000. Rather
than optimizing the timing for the optimal disposal maneuver;
it was chosen instead to leave the time for that maneuver as a
parameter of a sensitivity analysis; in other words, the insertion
to graveyard was optimized for many different starting dates to
analyze how the natural evolution of the orbit can be exploited.
A maximum magnitude for the 1v is considered based on the
available on-board propellant.

XMM-Newton Re-entry Disposal
The time interval considered for the disposal design is from
2013/01/01 to 2035/01/01. The maximum 1v available for the
maneuver sequences is estimated to be 40.5 m/s in 2013/01/01
(Colombo et al., 2014a). The re-entry can be considered satisfied
when an altitude of 50 km or lower is reached from the Earth’s
surface. The natural orbit evolution of the spacecraft is shown
in Figure 10 in the (e, 2ω) phase space. The black points
represent the initial conditions (and corresponding starting time)
considered for the maneuver of disposal. For each starting point
an impulsive maneuver of maximum magnitude equal to two
times the available 1v on board on 2013/01/01 (equal to 81.1
m/s) is optimized in direction in order to maximize the following
variation of the orbit eccentricity in the available 1tdisposal. The
results of the 1v optimization for each initial starting condition
along the natural orbit evolution are reported in Figure 10 in
colored line. Moving toward the external part of the phase space
correspond to target the yellow regions in Figure 7P (for that
map the initial semi-major axis and inclination are the one of the
XMM spacecraft). Corresponding to large eccentricity variation.
However, as it can be seen from Figure 10B, re-entry is not
achievable within the considered 1tdisposal for the maximum
1v considered (equal to 81.1 m/s) as the minimum perigee
reached (among all the possible starting dates) is equal or above
4,700 km (too high for re-entry). This demonstrates that re-
entry for XMM-Newton is not a feasible option during this
time range as the propellant requirements for such a disposal

would be over the actual propellant on-board the spacecraft.
Figure 10A represents the maneuver in the eccentricity-perigee
angle (measured with respect to the Earth-Moon plane) phase
space. Future studies for XMM-Newton disposal through re-
entry could investigate the possibility to increase the propagation
time to verify whether the interaction between Moon and Sun
third body perturbation will cause a natural decrease in the
perigee. However, it needs to be taken into account that the
available 1v on-board the spacecraft decreases with time due to
orbit correction.

XMM-Newton Graveyard Disposal
Another disposal option that can be investigated for HEO in
case the re-entry option is not feasible, is the option to transfer
the spacecraft into a graveyard orbit. The existence of long-
term stable orbits can be investigated, where the evolution of
the orbital elements due to natural perturbation is limited. Such
orbits can be chosen as graveyard orbits. Such orbits are visible
in the map in Figure 7P (for that map the initial semi-major
axis and inclination are the one of the XMM spacecraft) with
a red color corresponding to a small variation of eccentricity.
Importantly, note that the strategy would ideally aims at reaching
the center of libration in the phase space; however, due to
the limitation in the maximum available 1v, imposed as an
upper bound for the global optimization, a more stable orbit
cannot be reached, but only an orbit that is more stable than
the nominal one. In other words, optimal solution is to move
toward the center of the phase space loop. Also note that,
due to the chaotic behavior of the orbit evolution under the
effect of luni-solar perturbation, a driving factor is the time
period 1tgraveyard used for the propagation of the orbit after
the maneuver to compute Equations (15) and (14). For this
study 1tgraveyard was set equal to 30 years, but this number
can be easily increased for further work. Figure 11A shows the
optimal maneuver for a transfer into a graveyard orbit for each
starting time analyzed. The maneuver is represented in the phase
space of eccentricity, inclination and anomaly of the percenter

FIGURE 11 | XMM-Newton graveyard disposal. (A) Optimal maneuvers in the eccentricity-2ω phase space (black points: starting times analyzed for the re-entry

disposal). (B) Example of a disposal trajectory (cyan line). The initial inclination and the argument of the perigee are measured with respect to the Moon’s plane.
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with respect to the Earth-Moon plane. The magnitude of the
maneuver is always close to the upper bound of available 1v
as is clear that a higher 1v would allow reaching a more stable
orbit. However, the new graveyard orbit reduces at least the
oscillations in eccentricity, preventing the spacecraft from an
uncontrolled re-entry within the 30-year period. As an example, a
disposal trajectory, whose maneuver is performed on 20/04/2016,
is shown in Figure 11B.

CONCLUSION

This article analyzed the effect of luni-solar perturbations and
the Earth’s oblateness on the stability of highly elliptical orbits.
The disturbing potential of the third body perturbation is written
in Taylor expansion of the distances to the third body. The
potential is firstly averaged over the revolution of the spacecraft
around the Earth (mean anomaly) then is averaged again over
the revolution of the perturbing body around the Earth. The
existence of quasi-frozen, librational and rotational trajectories
foreseen by the Kozai’s analytical theory are found also when
the Sun third body effect and the Earth’s oblateness are included
in the simulation. Maps are constructed over a wide domain
of initial conditions in terms of eccentricity, inclination and
argument of the perigee with respect to the Moon’s plane. These
maps represents the change in eccentricity over a long time space
and in general can be used to study the orbit stability properties.
These findings are finally used to design the end-of-life disposal
for the XMM-Newton spacecraft as graveyard orbit injection or
Earth re-entry. In this work, the effect of tesseral harmonics was
not taken into account, while this could be important for creating
maps in correspondence of lower semi-major axis, for example
for Geostationary transfer orbits; the same approach however
could be followed.
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APPENDIX

Luni-Solar Perturbation Development
The average disturbing potential due to the third body effect can
be written as Kaufman and Dasenbrock (1972):

R̄
(

r, r′
)

=
µ′

r′

∞
∑

k=2

δkF̄k (A,B, e) (16)

where µ′ is the gravitational coefficient of the third body, r′ is the
spacecraft distance to the third body. The factors of the Taylor
expansion can be written as function of the power of the ratio
between the orbit semi-major axis and the distance to the third
body δ = a/r′ multiplied by the function Rk(A,B, e), which is
function of the orbit eccentricity and the functionA and B (Chao-
Chun, 2005) that are here written in terms of ABlizer and BBlizer
given by Blitzer (1970) to show the link between them.

A = cosωABlizer + sinωABlizer

B = − sinωABlizer + cosωABlizer

ABlizer = cos1� cos u′ + cos i′ sin u′ sin1�

BBlizer = − cos i
(

cos u′ sin1�− cos i′ cos1� sin u′
)

+ sin i sin i′ sin u′

The terms Fk(A,B, e) in Equation (16) are given by Kaufman and
Dasenbrock (1972) and are here reported in a more compact
form up to order 6th as:

F̄2 (A,B, e) =
1

4

((

−2+ 3A2
+ 3B2

)

− 3
(

1− 4A2
+ B2

)

e2
)

F̄3 (A,B, e) =
5

16
Ae
((

12− 15A2
− 15B2

)

+
(

9− 20A2
+ 15B2

)

e2
)

F̄4 (A,B, e) =
3

64

((

8− 40A2
+ 35A4

− 40B2 + 70A2B2 + 35B4
)

+
(

40− 410A2
+ 420A4

+ 10B2 + 350A2B2 − 70B4
)

e2

+
(

15− 180A2
+ 280A4

+ 30B2 − 420A2B2 + 35B4
)

e4
)

F̄5 (A,B, e) = −
21

128
Ae
((

40− 140A2
+ 105A4

− 140B2

+210A2B2 + 105B4
) (

100− 490A2

+ 420A4
+ 70B2 + 210A2B2 − 210B4

)

e2

+
(

25− 140A2
+ 168A4

+ 70B2 − 420A2B2

+ 105B4
)

e4
)

F̄6 (A,B, e) =
1

256

((

−80+ 840A2
− 1890A4

+ 1155A6

+ 840B2 − 3780A2B2 + 3465A4B2 − 1890B4

+ 3465A2B4 + 1155B6
)

+
(

−840+ 16380A2

− 42525A427720A6
+ 1260B2 − 39690A2B2

+ 51975A4B2 + 2835B4 + 20790A2B4

−3465B6 + 20790A2B4 − 3465B6
)

e2

+
(

−1050+ 23625A2
− 75600A4

+ 55440A6

−1575B2 + 28350A2B2 − 51975A2B4

+ 3465B6
)

e4

+
(

−175+ 4200A2
− 15120A4

+ 14784A6
− 525B2 + 15120A2B2 − 55440A4B2

− 945B4 + 27720A2B4 − 1155B6
)

e6
)

The derivatives of Equation (16) with respect to the orbital
elements need to be computed to be inserted into the Lagrange
planetary equations Equation (4) as in Equation (9), with

∂B

∂�
= cosω

(

− cos u′ sin1�+ cos i′ cos1� sin u′
)

− cos i sinω
(

cos1� cos u′ + cos i′ sin1� sin u′
)

∂B

∂�
= sinω

(

cos u′ sin1�− cos i′ cos1� sin u′
)

− cos i cosω
(

cos1� cos u′ + cos i′ sin1� sin u′
)

∂A

∂i
= CBlitzer sinω

∂B

∂i
= CBlitzer cosω

∂A

∂ω
= B

∂B

∂ω
= −A

where (Blitzer, 1970): CBlizer =

sin i
(

cos u′ sin1�− cos i′ cos1� sin u′
)

+ cos i sin i′ sin u′.
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In the framework of the restricted, circular, 3-dimensional 3-body problem

Sun-Earth-Moon, Valsecchi et al. (1993) found a set of 8 periodic orbits, with duration

equal to that of the Saros cycle, and differing only for the initial phases, in which the

motion of the massless Moon follows closely that of the real Moon. Of these, only 4 are

actually independent, the other 4 being obtainable by symmetry about the plane of the

ecliptic. In this paper the problem is treated in the framework of the 3-dimensional Hill’s

problem. It is shown that also in this problem there are 8 periodic orbits of duration equal

to that of the Saros cycle, and that in these periodic orbits the motion of the Moon is very

close to that of the real Moon. Moreover, as a consequence of the additional symmetry

of Hill’s problem about the y-axis, only 2 of the 8 periodic orbits are independent, the

other ones being obtainable by exploiting the symmetries of the problem.

Keywords: moon, lunar orbit, periodic orbits, Hill’s problem, restricted 3-body problem

1. INTRODUCTION

Roy (1973) was apparently the first to notice and discuss the occurrence of near Mirror
Configurations in the main lunar prolem. In a system of n gravitating point-masses, a Mirror
Configuration (MC; Roy and Ovenden, 1955) occurs when each radius vector from the centre of
mass of the system happens to be perpendicular to every velocity vector. The importance of MCs
for such systems is due to the following property: if, during its evolution, a system of n gravitating
point-masses passes through an MC, then the Mirror Theorem (Roy and Ovenden, 1955) states
that the time evolution of the system afterwards is the mirror image of the evolution before the
occurrence of the MC; moreover, a corollary of the Mirror Theorem states that, if a system passes
through two MCs, then each of its point-masses is on a periodic orbit.

The latter property was exploited, in the framework of the circular, restricted, 3-dimensional
3-body problem (CR3D3BP) Sun-Earth-Moon, to show the existence of periodic orbits with
duration equal to that of the Saros (Valsecchi et al., 1993), an eclipse cycle known since more
than two millennia, in which the mutual configurations of Sun, Earth and Moon nearly repeat,
to considerable accuracy, after 223 synodic months (Roy, 1973; Perozzi et al., 1991).

In this paper, the issue is revisited in the framework of the 3-dimensional Hill’s problem (3DHP),
proceeding as in Valsecchi et al. (1993), and it is shown that 8 periodic orbits with duration equal to
that of the Saros exist also in this case, but only 2 of them are actually independent, while the other
ones can be obtained considering the symmetries of the problem.
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2. MIRROR CONFIGURATIONS

According to Roy and Ovenden (1955), there are two types of
MCs: colinear MCs, in which all the bodies are located along a
straight line, with their velocity vectors orthogonal to the straight
line, and coplanar MCs, in which all the bodies are located on a
plane, with the velocity vectors orthogonal to that plane.

2.1. MCs in the CR3D3BP
In Valsecchi et al. (1993) the two types of MCs are discussed in
the framework of the CR3D3BP Sun-Earth-Moon. Given that in
this problem the Earth moves on a circular orbit about the Sun,
a colinear MC is achieved if the massless Moon is at perigee
or apogee, at the ascending or at the descending node of its
geocentric orbit, and perfectly aligned with the Sun and the Earth
(i.e., in solar or lunar eclipse configuration).

In terms of the geocentric orbital elements of the Moon, these
conditions imply that the Moon must be at mean anomaly M
equal to either 0◦ or 180◦, argument of mean latitude θ = ω+M
equal to either 0◦ or 180◦, and difference of mean longitude
1λ = λ − λ′ between the mean longitude of the Moon λ and
that of the Sun λ′ again equal to either 0◦ or 180◦.

For a coplanar MC to occur, the constraints onM and 1λ are
the same, while that on the argument of mean latitude becomes θ

equal to either 90◦ or 270◦. Given that anyway M must be either
0◦ or 180◦, the constraint on the argument of latitude implies
ω = 0◦ orω = 180◦ for a colinearMC, andω = 90◦ orω = 270◦

for a coplanar MC.
Table 1 summarizes the situation; in it the MCs are coded as

in Valsecchi et al. (1993), with a three-digit code representing ω,
M and 1λ as multiples of 90◦. Note that MCs differing by 180◦

in ω are grouped together in the same row, due to the symmetry
of the problem about the plane in which the Sun and the Earth
move.

2.2. MCs in the 3DHP
In the 3DHP the possible MCs are again 16, and their coding
is exactly the same as in the CR3D3BP. In this case, however,
there is an important difference, due to the additional symmetry
present in this problem, namely, the one about the y-axis; as a
consequence, two MCs differing only because in one of them
1λ = 0◦ and in the other 1λ = 180◦ are equivalent. Taking

TABLE 1 | The 16 possible MC’s of the CR3D3BP.

MC ω M 1λ

000:200 0◦:180◦ 0◦ 0◦

002:202 0◦:180◦ 0◦ 180◦

020:220 0◦:180◦ 180◦ 0◦

022:222 0◦:180◦ 180◦ 180◦

100:300 90◦:270◦ 0◦ 0◦

102:302 90◦:270◦ 0◦ 180◦

120:320 90◦:270◦ 180◦ 0◦

122:322 90◦:270◦ 180◦ 180◦

this into account, in the case of the 3DHP we rearrange the MCs
of Table 1 as shown in Table 2.

3. THE SAROS CYCLE AND THE
ASSOCIATED PERIODIC ORBITS

There is a vast literature concerning lunar cycles (see, e.g., Steves,
1997) and the Saros is perhaps the most interesting one among
them. In fact, at variance from most of the other lunar eclipse-
predicting cycles, it involves not only the synodic and the nodical
months, but also the anomalistic one. Let us consider the mean
durations of the synodic (T1λ), anomalistic (TM) and nodical
month (Tθ ), given by:

T1λ = 29.530 589 d

TM = 27.554 551 d

Tθ = 27.212 220 d;

then, one easily sees that:

223T1λ = 6 585.32 ≃ 239TM = 6 585.54 ≃ 242Tθ = 6 585.36.

In the rest of this paper, the duration of the Saros will be taken to
be that of 223 synodic months, i.e., 6 585.321 347 d.

During a Saros, the argument of perigee ω of the lunar orbit
makes 3 full revolutions; this happens because the argument of
latitude makes 242 revolutions (the 242 nodical months), and the
mean anomaly M makes 239 revolutions (the 239 anomalistic
months): the difference is due to the 3 revolutions of ω. If the
Moon is started from, say, the MC coded 000, in which ω = 0◦,
M = 0◦, 1λ = 0◦, after a half Saros each of these angles will
have made a half-integer number of revolutions; thus, the MC
occurring at that time will be 222, in which ω = 180◦,M = 180◦,
1λ = 180◦. In this way it is possible to establish the pairs of MCs
that occur during the periodic orbits of duration equal to that of
the Saros (Valsecchi et al., 1993).

3.1. Periodic Orbits in the CR3D3BP
As shown in Valsecchi et al. (1993), there exist 8 such periodic
orbits in the CR3D3BP, in which the 16 MCs are combined in
pairs as discussed above. To find these orbits, Valsecchi et al.
(1993) used a 3-dimensional Newton-Raphson root finder and
Everhart’s integrator RADAU (Everhart, 1985) at 15th order. In
these computations, the ratio of the mass of the Earth to that of
the Sun was set to

m⊕ =
1

328 900.53
,

TABLE 2 | The 16 possible MC’s of the 3DHP.

MC ω M 1λ

000 : 002 : 200 : 202 0◦ : 0◦ : 180◦ : 180◦ 0◦ 0◦ : 180◦ : 0◦ : 180◦

020 : 022 : 220 : 222 0◦ : 0◦ : 180◦ : 180◦ 180◦ 0◦ : 180◦ : 0◦ : 180◦

100 : 102 : 300 : 302 90◦ : 90◦ : 270◦ : 270◦ 0◦ 0◦ : 180◦ : 0◦ : 180◦

120 : 122 : 320 : 322 90◦ : 90◦ : 270◦ : 270◦ 180◦ 0◦ : 180◦ : 0◦ : 180◦
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corresponding to that of the real Earth-Moon system.
The Moon was placed in one of the 8 colinear MCs, say 000,

by specifying the appropriate values for ω, M and 1λ from
Table 1, assigning tentative values for the starting geocentric
orbital elements a, e and i, and then looking for the occurrence
of the paired MC (in this case 222) at the end of a numerical
integration for half of a Saros. The Newton-Raphson root finder
was used to converge to the values of a, e and i that led to the
occurrence of the paired MC. In this way, all the 8 periodic orbits
were found; they are summarized in Table 3.

3.2. Periodic Orbits in the 3DHP
The procedure followed to find the periodic orbits associated to
the Saros in Hill’s problem has been the same as in Valsecchi et al.
(1993), the only difference being in the equations ofmotion; those
used in the present work are the ones of Hill’s problem, in the
form given in Schmidt (1979):

ẍ = −
µ

r3
x+ 2n′ẏ+ 3n′2x

ÿ = −
µ

r3
y− 2n′ẋ

z̈ = −
µ

r3
z − n′2z,

where:

k = 0.017 202 098 95

µ = k2m⊕

n′ =
k

√
1+m⊕

r =

√

x2 + y2 + z2.

In this way, distances are in astronomical units, and time is in
days.

The resulting periodic orbits are given in Table 4; comparing
the values of a, e, i with those of the corresponding MCs in
Table 3, one sees that the differences are rather small.

The time behaviour of the geocentric orbital elements of
the Moon in these periodic orbits is quite close to that of the

TABLE 3 | The osculating elements a, e and i of the massless Moon, in the

periodic orbits associated to the Saros, when at the 16 possible MCs of the

CR3D3BP (from Valsecchi et al., 1993).

MC a (au) e i (◦)

000 : 200 0.002 580 997 16 0.083 356 670 5.690 814 6

222 : 022 0.002 590 632 07 0.056 488 496 5.688 171 3

002 : 202 0.002 580 820 66 0.083 864 066 5.691 513 5

220 : 020 0.002 590 854 05 0.056 953 569 5.688 726 1

100 : 300 0.002 580 819 14 0.083 936 251 5.365 847 6

322 : 122 0.002 590 433 42 0.057 165 911 5.348 172 9

102 : 302 0.002 580 646 47 0.084 452 672 5.365 595 9

320 : 120 0.002 590 651 20 0.057 640 009 5.347 565 5

real Moon, just as found by Valsecchi et al. (1993); a similar
comparison is repeated here.

A good approximation to a MC 200 was realized by the real
Moon on JD 2 371 846.872 (17.372 October 1781, Valsecchi et al.,
1993); according to the JPL ephemeris DE406, the orbit of the
Moon had, at that time, ω = 179◦.0,M = 0◦.0 and 1λ = 0◦.0.

The four panels of Figure 1 show the time evolution of, from
top to bottom, a, e, i, ω of the real Moon, taken from JPL DE406,
in red, and the corresponding quantities for the periodic orbit
passing through MCs 200 and 022, in green. The behaviour of
a and ω of the periodic orbit match very closely that of the real
Moon. For e and i there is a systematic difference, but the short-
period terms affecting these two elements appear to be the same
as those of the real orbit.

Figure 2 contains the last year of the Saros, and shows that the
close matching is preserved for the entire cycle.

4. DISCUSSION

The periodic orbits found in the 3DHP, besidesmimicking closely
the real lunar orbit, are also very similar to those found in
Valsecchi et al. (1993) in the CR3D3BP, as also shown by the
closeness of the values of the geocentric orbital elements reported
by Tables 3, 4. In fact, the principal lunar short-period terms
(Brouwer and Clemence, 1961) are contained in the periodic
orbits in both problems:

• the variation, a term depending on 21λ, an angle that makes
446 revolutions in the periodic orbits associated to the Saros;

• the parallactic inequality, depending on 1λ, that makes 223
revolutions;

• the evection, to which are due a perturbation in e and ω,
depending on 2λ′−2ω̃, that makes 32 revolutions, and another
perturbation in λ, depending on λ − 2λ′ + ω̃, that makes 207
revolutions;

• the principal perturbation in latitude, depending on λ− 2λ′ +
�, that makes 204 revolutions.

On the other hand, these orbits differ substantially from Hill’s
periodic orbit (Hill, 1878). Hill’s periodic orbit lasts for exactly
one synodic month, is planar, and in it all the crossings of the x
and y-axes take place at right angles.

Actually, using the same periodic-orbit-finder software used
to find the orbits of Table 4, we can compute Hill’s orbit. The
MCs in this orbit are of the colinear type (coplanar MCs, in spite
of their name, cannot take place if the motion is planar), and

TABLE 4 | The osculating elements a, e and i of the Moon, in the periodic orbits

associated to the Saros, when at the 16 possible MCs of the 3DHP.

MC a (au) e i (◦)

000 : 002 : 200 : 202 0.002 580 90641 0.083 640 384 5.688 1493

222 : 220 : 022 : 020 0.002 590 74466 0.056 751 303 5.685 4333

100 : 102 : 300 : 302 0.002 580 73050 0.084 224 104 5.362 8667

322 : 320 : 122 : 120 0.002 590 54413 0.057 432 758 5.345 0163
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FIGURE 1 | Time evolution of the elements of the Moon taken from JPL DE406 (in red) and for the periodic orbit passing through MCs 200 and 022 (in green); top to

bottom: semimajor axis a, eccentricity e, inclination i, argument of perigee ω; the time span covered is one year, starting from 17.372 October 1781.
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FIGURE 2 | Same as Figure 1, but for the time span of one year, ending one Saros later, on 28.693 October 1799.
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correspond to the two crossings of the x-axis. At these crossings,
the geocentric distance of the Moon has two identical minima,
and the orbital elements are:

a = 0.002 586 071 80 au

e = 0.013 517 273,

while at the two crossings of the y-axis, where the geocentric
distance has two identical maxima, the orbital elements are:

a = 0.002 540 020 84 au

e = 0.018 894 762.

It is notheworthy that inHill’s orbit there are two perigee passages
of the Moon, at the crossings of the x-axis, and two apogee
passages, at the crossings of the y-axis; this means that during
the single synodic month corresponding to its duration, there are
two full anomalistic months. Moreover, the osculating geocentric
eccentricity never exceeds 0.02, a value much lower than the
mean eccentricity of the real lunar orbit.

Therefore, the time evolution of the elements of the periodic
orbits described in this paper follows the behaviour of the
osculating geocentric elements of the real Moon much more
closely than in the case of Hill’s orbit; on the other hand, the
latter is succesfully used as intermediate orbit in the Hill-Brown
lunar theory (Brown, 1896). Whether these new, longer periodic
orbits are suitable for such a task will be the subject of future
research.

A natural question to ask is whether periodic orbits similar
to those described here do exist, in Hill’s problem, for different
values of the geocentric distance of the Moon, i.e., for different

values of the ratio of the mean motion of Sun and Moon;
in Valsecchi et al. (1993) an example of such an orbit of the
CR3D3BP was given, corresponding to the probable lunar orbit
of the late Precambrian. On the other hand, the Saros-associated
periodic orbits in the two problems are so close to each other, as
can be seen comparing the numbers inTables 3, 4, that very likely
the same orbits should exist in Hill’s problem; also this issue will
be the subject of future research.

5. CONCLUSIONS

Building on the results of Valsecchi et al. (1993) for the CR3D3BP,
it has been shown that also in Hill’s problem it is possible
to find 8 periodic orbits of duration one Saros, in which the
orbital evolution of the Moon closely resembles that of the
real Moon. An important difference from the previous case
is that, at variance from the periodic orbits found in the
CR3D3BP, in Hill’s case only 2 orbits are independent, the
others being obtainable by considering the symmetries of the
problem.
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This paper discusses two alternative models to the Restricted Three Body Problem

(RTBP) for the motion of a massless particle in the Earth-Moon system. These models

are the Bicircular Problem (BCP) and the Quasi-Bicircular Problem (QBCP). While the

RTBP is autonomous, the BCP and the QBCP are periodically time dependent due to

the inclusion of the Sun’s gravitational potential. Each of the two alternative models is

suitable for certain regions of the phase space. More concretely, we show that the BCP

is more adequate to study the dynamics near the triangular points while the QBCP is

more adequate for the dynamics near the collinear points.

Keywords: Restricted Three Body Problem, Bicircular Problem, Quasi-Bicircular Problem, periodic hamiltonian,

stroboscopic map, invariant manifolds

1. INTRODUCTION

During the last years, the scientific community has increased its interest in the natural motions
occurring in the Earth-Moon system. The list of possible applications is vast, for instance: the study
of the far side of Moon and the relation with the translunar point L2; the aim to exploit the cis-lunar
space and the convenience of using the invariant structures related to L1.

We have mentioned a couple which are specifically related to the Lagrangian points but,
obviously, the list goes on covering a wide range of interests. Efficient mission designs depend
ultimately on the understanding of the natural dynamics. To fulfill this goal, it is advisable to use
simplified models. Simple models allow us to understand the underlying mechanisms that lead
to interesting phenomena. From the dynamical systems point of view, the comprehension of the
invariant structures (and their stability) of simple models has helped to shed light on difficult
problems such as the motion of asteroids through the solar system, station keeping of spacecraft
and taking advantage on the natural dynamics to design spacecraft missions. Perhaps the most
illustrative example for the purpose of this work is the existence of the Trojan asteroids that can
be predicted using the effective stability of the triangular points of the Sun-Jupiter Restricted
Three Body Problem (RTBP). This example is convenient for the purposes of this work because
the existence of objects in the triangular points has a counterpart in the Earth-Moon system: the
Kordylewsky clouds. We shall come back to this example during this work (section 4.3)but, for
the moment being, we want to stress that the existence of these clouds cannot be established by
using the same theoretical mechanisms as the Trojan asteroids [1–3]. In fact, the literature related
to the Kordylewsky clouds has been stumbling around the existence or nonexistence of objects
in the Earth-Moon triangular points, mostly because of the lack of observations. Therefore, it is
convenient to analyze whether a simple model is suitable for the problem we want to study.

The Earth-Moon RTBP is the most used simple model for the motion of a small body in the
Earth-Moon system. There is, however, a remarkable number of works that take into account the

141

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2018.00032
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2018.00032&domain=pdf&date_stamp=2018-07-20
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:marc@maia.ub.es
https://doi.org/10.3389/fams.2018.00032
https://www.frontiersin.org/articles/10.3389/fams.2018.00032/full
http://loop.frontiersin.org/people/443433/overview
http://loop.frontiersin.org/people/561429/overview


Jorba-Cuscó et al. Two Periodic Models for the Earth-Moon System

presence of Sun’s gravitation (see, for instance, [4–8]). Indeed,
the most relevant effect ignored by the Earth-Moon RTBP is
the gravitational attraction of Sun. In this respect, a simple
model to study the dynamics near the Earth-Moon system needs
to take into account Solar gravity. The problem has a natural
non-autonomous periodic time dependence formulation. An
advantage of the periodic models is that they can be handled
by means of a stroboscopic map i.e., the map defined by the
evaluation of the flow at the period of the vectorfield. This is
crucial because, while the complexity of the system increases,
the study of maps (even if they are numerically defined) is,
in some aspects, more comfortable than the study of flow. In
periodic time dependent systems, the simplest invariant objects,
the ones the dynamics is organized from, are the periodic
orbits with the same period as the vectorfield. These periodic
orbits appear as fixed points of the stroboscopic maps and their
robustness is assured by the classical Implicit Function Theorem.
We would like to remark that, in quasi-periodic models the
simplest invariant objects are invariant tori. The computation
and study of these objects is more difficult. The discussion in
this paragraph vindicates a closer look to periodic models for the
Earth-Moon system. We have selected two among the literature,
the Bicircular Problem (BCP) and the Quasi-Bicircular Problem
(QBCP). Both models include Sun’s gravity and can be written as
periodic perturbations of the RTBP.

The BCP is a restricted four body problem [9, 10]. There
are three primaries and a fourth, massless, test particle. In our
case, the three primaries are Earth, Moon and Sun. However, this
model has been utilized in other cases [11]. It is assumed that
Earth and Moon move as in the RTBP, that is, along a circular
orbit around its common center of masses. Let us name CEM

this barycenter. Name CSEM the center of masses of the Sun-
CEM system. As Moon and Earth move, it is assumed that Sun
and CEM move in another circular orbit around CSEM . We refer
to Gómez, et al. [12] for a detailed derivation of the equations
of motion. The BCP is a periodic perturbation of the RTBP
that takes into account the direct gravitational effect of a third
primary (in our case, Sun) on the particle. This model captures
the non-stable character of the triangular points. Henceforth, it
is suitable to use it when studying problems related with these
locations (see, for instance, [13, 14]). A remarkable shortcoming
of the BCP is its lack of coherence i.e., the motion assumed
for the primaries does not verify Newton’s laws. Moreover, the
BCP has no translunar dynamical structure. This justifies the
seek for a more complex model for the study of, at least, the L2
point.

The QBCP is a version of the four body problem. It is
conceived to be a coherent counterpart of the BCP. This model
was introduced by C. Simó, and it has been used in several works,
see [15–17] and, more recently, [18]. A characteristic of the BCP
is the lack of coherence of the bicircular solution assumed for
the primaries. However, there exist solutions of the three body
problem which are close to bicircular [19]. To build the QBCP it
is necessary to compute a quasi-bicircular solution of the three
body problem, in this case, for the Earth-Moon-Sun case. There
are several ways to do such a thing. In Andreu [15], Andreu and
Simó [16], and Andreu [17] the authors build a specific algebraic

manipulator and compute directly the Fourier coefficients of the
quasi-bicircular solution. In Gabern [20], Gabern and Jorba [21],
and Gabern et al. [22] the authors use a continuation scheme to
compute the desired solution starting from a solution of the two
body problem. After that, a Fourier transform is applied to get
the Fourier coefficients of the solution. The QBCP is suitable for
the study of the collinear points, especially L1 and L2.

With this paper, we aim to provide a general insight about
the dynamics of these models for a particle in the Earth-
Moon system. We care about (practical) stable motion near
the triangular points and, to do so, we use the BCP. We
also study invariant manifolds related to the collinear points
in the QBCP. We believe that the value of this work is,
precisely, giving a wide perspective and help the interested
reader to choose a suitable simple model to face a first
exploration related to a problem concerning the Earth-Moon
system.

The paper is organized as follows: section 2 is devoted to
a brief description of the RTBP. We explain how the phase
space near the Lagrangian points is organized referencing some
remarkable works and mentioning the techniques used to study
the problem. In section 3 we give some words on the stroboscopic
maps and periodic time-dependent Hamiltonian systems. We
also explain how to compute high order unstable manifolds
related to fixed points using the parameterization method with
single and parallel shooting. Section 4 describes how the BCP
can be used to study the motion near the triangular points.
The advantage of this model with respect to the RTBP is that it
captures the unstable character of the triangular points in the real
system. The results presented aremainly devoted to stablemotion
in an extended vicinity of the triangular points. In section 5 we
describe results concerning the QBCP. We focus on the unstable
manifolds related to the periodic orbits that replace the collinear
points. Finally, section 6 is devoted to conclusions and section 7
to technical details.

2. RESTRICTED THREE BODY PROBLEM

The (Circular) RTBP is a simplified model for the motion of a
massless particle under the gravitational attraction of twomassive
bodies, the so-called primaries [23]. The primaries are assumed
to revolve along circular orbits around their common center of
masses. It is usual to take units of masses so the sum of the masses
of the primaries is equal to one. The units of length are taken
so the distance between the primaries is equal to one and the
units of time are taken so the period of the revolution of the
primaries is equal to 2π . It is also standard to take a rotating
frame of reference that fixes the primaries at the horizontal axis.
The RTBP is an autonomous Hamiltonian system with three
degrees of freedom. The Hamiltonian function writes as:

HRTBP =
1

2
(p2x + p2y + p2z)− xpy + ypx −

1− µ

rPE
+

µ

rPM
, (1)

where r2PE = (x − µ)2 + y2 + z2 and r2PM = (x − µ +

1)2 + y2 + z2. The parameter µ is called the mass parameter
and it is the mass of the smallest primary. In the case of the
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Earth-Moon system µ ≈ 0.012. It is well known that the RTBP
has five equilibrium points (see Figure 1). Three of them, the
collinear points, are located in the horizontal axis. The other
two, the triangular points, are located at the third vertex of an
equilateral triangle whose other two vertices are the position of
the primaries.

The only integral of motion of the RTBP is its Hamiltonian. In
many texts, this integral of motion is presented under a slightly
different form as the Jacobi integral. Each surface level of this
integral is a five dimensional manifold. If the velocities are set
to zero, this defines the so-called Zero Velocity Surface. These
surfaces separate the configuration space in different regions. The
trajectories of the system cannot cross the boundary between
two of these regions. The shape of these regions change with
the value of the Jacobi integral. As the Lagrangian equilibrium
points are critical points of the Jacobi integral, the topology of
these regions change when the energy value crosses the value
associated to one of the Lagrangian points (for more details, see
[23]).

The three collinear points are of type saddle×center×center.
This means that, under generic conditions, a 4-dimensional
center manifold emerges from each of these points. These
manifolds are tangent to the elliptic eigendirections at the
points. There exist, as well, one dimensional stable and
unstable directions emerging tangentially to the hyperbolic
eigendirections. Moreover:

• By the Lyapunov Center Theorem [24], two families of
periodic orbits, the Lyapunov families, emanate from the
equilibria. One of the families is born tangent to the (z, pz)
plane so it is called vertical family. The other family is
contained in the (x, y, px, py) plane and it is called horizontal
family. One can parametrize each family by the amplitude of
the orbits. The horizontal families related to L1 and L3 can
be continued up to trajectories which collide with Earth. The
horizontal family related to L2 can be followed up to collisions
with Moon. The vertical families end up in bifurcating planar
orbits [12, 25].

• The Lyapunov families can be regarded as the non-linear
continuation of the harmonic oscillator given by each elliptic
direction of the linearization around the equilibria. When the
amplitude tends to zero, the frequency of the family tends to
the normal modes of the equilibria.

• As the frequency varies, the horizontal family undergo a 1:1
resonance and the Halo [12, 26–28] family are originated (by
means of a pitchfork bifurcation). Secondary families of Halo-
type orbits appear by duplication and triplication of the main
family [29, 30].

The center manifold can be computed by means of normal form
techniques [31–33], with the parametrization method [34–37]
and also numerically [29]. The dynamics restricted to the center
manifold can be described by a Hamiltonian with two degrees
of freedom. By fixing a level of energy and taking a Poincaré
section, one can reduce the problem to the study of a family
of area preserving maps. This methodology suffices to observe
the phase space during the bifurcation that give rise to the Halo
families.

2.1. Motion Near the Triangular Points
The Earth-Moon triangular points of the RTBP are linearly
stable [23]. KAM theory can be used to establish the existence
of a dense set of Lagrangian invariant tori close enough to
the equilibria [38]. This has important consequences on the
nonlinear stability of the triangular points. If we restrict ourselves
to the planar case, these KAM tori (of dimension two) act as
barriers for the dynamics in a fixed level of energy. Therefore,
KAM tori enclose stable motion for initial conditions which
are close enough to the triangular points. This argument
based on KAM theory falls apart in the spatial case. Indeed,
Lagrangian tori have, in that case, dimension three and the
phase space, for a fixed level of energy, is five dimensional.
There is, in general, no way to avoid Arnold diffusion [39].
However, using normal form techniques, it is possible to derive
bounds on the diffusion time [40] (these techniques can be
extended to the periodic [41] and the quasi-periodic case [42]).
These, make us think about regions of practical stability i.e.,
regions in which the motion is non-stable but initial conditions
take a long time, maybe longer than the expected age of
the solar system, to escape. These theoretical results are valid
for a small region near the triangular points and numerical
simulations provide evidences of large regions of practical
stability [43].

It is natural to look for other invariant structures
that play a remarkable role to define the shape of the
(numerically computed) region. In this regard, [43] provides
numerical evidence on the role of the center-unstable and
center-stable manifolds of the collinear point L3. These
manifolds are of dimension five and act as barriers of the
dynamics. Obviously, the motion driven by these manifolds
escape from the vicinity of the triangular points at some
moment, but, again, the required time to do so can be
large.

3. PERIODIC TIME-DEPENDENT
HAMILTONIANS AND STROBOSCOPIC
MAPS

The alternatives to the RTBP presented in this paper, the BCP
and the QBCP are both periodic time dependent Hamiltonian
systems that can be seen as perturbations of the RTBP. Because
of this periodic time-dependence, the Lagrangian points are no
longer equilibria but they are replaced by minimal periodic orbits
i.e., periodic orbits with the same period as the perturbation.
These periodic orbits are known as the dynamical equivalents
of the Lagrangian points. The usual tools to study numerically
the RTBP are the combination of fixing suitable energy levels
and suitable Poincaré sections. We note that, in time dependent
models like the BCP and the QBCP the Hamiltonian is no longer
preserved. A standard tool to deal with these periodic time-
dependent systems is the so called stroboscopic map: Let U ⊂ R

n

be an open set, T the period of the vectorfield and ϕ :[0,T] ×
R× U 7→ R

n, where ϕ(t0, t, x0) stands for the solution which, at
time t0 lies at x0 evaluated at time t, the flow of the differential
equation. We define the stroboscopic map for x ∈ U as f (x) =
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FIGURE 1 | The restricted three body problem.

ϕ(0,T, x). In this work we care about Hamiltonian differential
equations. In this case, the stroboscopic map is symplectic.

3.1. Invariant Structures
The simplest invariant objects of the original system are periodic
orbits with the same period as the vectorfield. These appear
as fixed point of the stroboscopic map. The monodromy
matrix associated to these periodic orbits is the differential
of the stroboscopic map. The eigenvalues of this matrix
determine the linear behavior around the fixed points and, under
generic conditions, give some insight about the local non-lineal
dynamics. In the symplectic case, under generic conditions, each
elliptic direction give rise to a family of invariant curves which
can be parametrized by the frequency ([44]). This frequency
approaches to the normal mode responsible form the birth of
the family at the fixed point. Along the hyperbolic directions,
unstable (stable) manifolds depart (arrive) from the fixed points.
These invariant objects are crucial to understand the dynamics of
the system.

In this paper we focus on the information that can be
extracted from the computation of invariant curves and high
order approximations of unstable invariant manifolds. While
it is quite common, in the literature related astrodynamics, to
find discussions on the computation of invariant tori of maps
[13, 45, 46] it is not so usual for high order approximations of
stable/unstable manifolds.

3.2. High Order Approximation of Unstable
Manifolds Using the Parametrization
Method
Let U ⊂ R

n be an open set and assume that we are given a
map f :U 7→ R

n induced by the evaluation at time T of a flow
of some ordinary differential equation (stroboscopic map). The
following discussion can be done for any Poincaré map as well.

Here we assume that the section is temporal for simplicity of
the exposition and because it is the natural section to chose in a
periodically perturbed autonomous system. Let us suppose also
that x̄ ∈ U is a fixed point i.e., f (x̄) = x̄. Obviously x̄ is an
initial condition for a T-periodic orbit of the original flow. The
linearized normal behavior around the fixed point is given by the
eigenvalues of the differential of the map evaluated at the point.
Assume specDf = {λ, λ2, . . . , λn} with |λ| > 1. Under generic
conditions, we know that there exist a 1-dimensional unstable
invariant manifold related to the fixed point. That is, there exist
an open interval I ⊂ R and a map x : I 7→ U such that x(0) = x̄
and

f (x(s)) = x(λs). (2)

Equation (2) is known as the invariance equation of the invariant
manifold. The parametrizationmethod [47–50] is a powerful tool
to, both, prove the existence of the manifold and compute it.
The idea is to expand the parameterization of the manifold in
Taylor series at s = 0 and solve Equation (2) order by order. This
makes sense in the case when both the map and the manifold
are analytic. This assumption is fulfilled by the applications we
are interested in. Hence, the goal is to compute a semi-analytic
approximation of a parametrization of the invariant manifold.
Let us name

x(s) =

∞
∑

j = 0

ajs
j.

We are interested in numerically compute the coefficients aj for
j = 0, . . . , d for a given degree d. This is achieved by a recurrent
scheme in which we solve Equation (2) order by order:

• Order 0 is given by the coordinates of the fixed point.
• Order 1 is given by the eigenvector related to λ.
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• For k > 0, order k+ 1 is given by the solution of the following
linear system:

(Df (0)− λk+1I)ak+1 = −bk+1.

Here, bk+1 is the k+1-th term of the evaluation of themanifold
up to degree k by the map f , that is:

f≤k+1(x≤k(s)) =

k
∑

j = 0

bjs
j
+ bk+1s

k+1,

where the subindices (·)≤k+1 denote the truncation of the
power expansion of (·) at order k+ 1.

Notice that it is mandatory to have a method to compose power
expansions of themanifold with themap itself. Sometimes, when,
the map is explicit, one is able to find a suitable recurrence
expression to compute the terms of this composition. If a
recurrence is not available one can compute higher order terms
by automatic differentiation1. In the case we are interested,
the map is not given explicitly but comes from a numerical
integration of a differential equation. Here, the only reasonable
strategy seems to use Jet Transport. This technique is based in the
idea of, instead of integrating a single point, integrate a function
given by its expansion in Taylor series. That is, one transports the
jet, the set of derivatives of the function at a given point, up to a
given order. It is straightforward to construct an integrator of jets
from an integrator of numbers. It is only a matter of replacing the
standard floating arithmetic by a polynomial arithmetic [Farrés
et al., to appear].

There is another obstacle that can appear when dealing with
Poincaré maps: if the orbit is very unstable, the hyperbolic
directionmay lead to a huge error propagation. This problem can
be avoided by using parallel shooting. The idea behind parallel
shooting is to enlarge the dimension of the system in order to

decrease the time of integration. Let us denote by ϕ
tf
t0
(x) the

solution of the differential equation with initial condition (t0, x)
evaluated at time tf . Fix k ∈ N, the number of sections, and set
h = T/k. For i = 0, . . . k, we define τi = ih. Ifm = nk, we define
the function F :V 7→ R

m

F :











x1
x2
...
xk











7→











fk(xk)
f1(x1)

...
fk−1(xk−1)











.

Here V = Uk is an open set of Rm, and, for x ∈ U , fj(x) =

ϕ
τj
τj−1 (x). The differential map DF is given by

DF =













0 . . . . . . Dfk

Df1 . . . . . .
...

... . . . . . .
...

0 . . . Dfk−1 0













.

1In principle, one could also use numerical differentiation but it is a bad approach

in terms of efficiency and accuracy.

For x̄ ∈ U , name y = (x1, . . . , xk) where x1 = x̄ and xj = fj(xj−1)
if 1 < j ≤ k. Then:

1. y is a fixed point of F if and only if x̄ is a fixed point of f .
2. The duple (ζ , v = (v1, . . . , vk)), ζ ∈ C and vk ∈ C

n is a pair
eigenvalue/eigenvector of DF(y) if and only if (ζ k, v1) is a pair
eigenvalue/eigenvector of Df (x̄).

3. The projection to the first coordinate of the invariant manifold
of F related to ζ coincides with the invariant manifold of f
related to ζ k

= λ.

4. THE BICIRCULAR PROBLEM AND THE
TRIANGULAR POINTS

The BCP is a perturbation of the RTBP. It is usual to take the
units and the synodic coordinates of the Earth-Moon RTBP
(see Figure 2). The BCP is not coherent, that is, the trajectories
followed by the primaries do not obey Newton’s laws. This is
not an inconvenient since the model has been shown to be
useful to describe the dynamics near the triangular points [51].
As a dynamical system, the BCP is a Hamiltonian system with
three and a half degrees of freedom, i.e., a non-autonomous
periodically time dependent with three degrees of freedom. The
Hamiltonian function, written in the RTBP coordinates and
units, is given by

H =
1

2
(p2x + p2y + p2z)− xpy + ypx −

1− µ

rPE
−

µ

rPM

−
mS

a2S
(y sin θ − x cos θ)−

mS

rPS
. (3)

Here µ, rPE and rPM denote the same quantities as in (1).
Moreover, mS denotes the mass of Sun, aS the averaged semi-
major axis of Sun, θ = ωSt, ωS is the frequency of Sun in this
system of reference, TS =

2π
ωS

is its period and finally, r2PS =

(x−aS cos θ)
2
+ (y−aS sin θ)2+z2. Notice that this Hamiltonian

can be splitted in two parts:

HBCP = HRTBP(X)+HS(θ ,X).

FIGURE 2 | The bicircular model.
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The time dependent part contains two terms, the Coriolis effect
due to the rotating frame of coordinates and Sun’s gravitational
potential. The Taylor expansion of the potential starts with

1

aS

(

1+
x cos θ − y sin θ

aS

)

.

Therefore, the Hamiltonian, if we truncate the Sun’s potential at
linear order is written as

H<2
BCP = HRTBP −

mS

aS
.

So, the Coriolis term and the truncated Sun’s potential cancel
out and the dynamics is the one of the RTBP. This is to say
that the contribution due to Sun’s potential starts at order two,
that is, the BCP is a periodic time dependent perturbation
with size O(mS

a3S
) ≈ 0.0056. Anyhow, it is large enough to

produce remarkable changes on the dynamics, especially near
the triangular points. In Figures 3 (left), 6 (left) we display
continuations from the RTBP to the BCP. The vertical axis in
these plots represent an artificial parameter ε which multiplies
the mass of Sun. Therefore, when ε = 0 the model corresponds
to the RTBP and, when ε = 1 the model corresponds to the BCP.
We shall comment these figures in detail in the next sections.

FIGURE 3 | Left: Continuation of L4 as a periodic orbit with respect to the mass of Sun. Horizontal axis: x. Vertical axis: ε. The black curve stands for the continuation

to the BCP. The red curve for the truncated version of the BCP. See text for more details. Right: Vertical families of 2D tori for the BCP. The horizontal axis is the pz
coordinate and the vertical axis displays the frequency. See text for more details.

FIGURE 4 | Stroboscopic map near the triangular points: Horizontal axis x. Vertical axis y. See text for more details.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org July 2018 | Volume 4 | Article 32146

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Jorba-Cuscó et al. Two Periodic Models for the Earth-Moon System

4.1. Dynamical Equivalents of the
Triangular Points
First of all let us mention that, due to a symmetry, the dynamics
near L4 is the same as the dynamics near L5 (in fact, this
symmetry maps orbits in the region y > 0 to orbits in the
region y < 0). A feature of the BCP to be stressed is that
the region around the geometrically defined triangular points is
unstable. The influence of Sun’s potential is enough to produce
a bifurcation in the periodic orbit that replaces L4 (i.e., L5). It is
well known [51] that each triangular point is replaced by three
periodic orbits with the same period as Sun. One small and
unstable (the actual replacement of L4) and two which are stable.
We have named these orbits PO1, PO2, and PO3. See Figure 3

(left) a continuation diagram from the RTBP to the BCP. The two
additional periodic orbits are produced by an imperfect pitchfork
bifurcation (i.e., a pitchfork bifurcation broken due to a loss of
symmetry).

One may ask which is the model that displays the perfect
bifurcation and which is the broken symmetry. To address this
question we take a look at the order two of the Taylor expansion
of Sun’s gravitational potential. We have

H2
S (θ , x, y, z) =

1

a3S

(3

2
T(x, y, θ)2 −

1

2
(x2 + y2)

)

.

We have named T(x, y, θ) = −x cos θ + y sin θ . We would like
to stress again that H2

S is the first contributing non-autonomous
term in the model due to the cancellation produced by the
Coriolis acceleration. This term is invariant under the symmetry
(x, y, x, θ) 7→ (x,−y, x,−θ). The order three of the expansion is
given by:

H3
S =

1

aS

((

ρ

aS

)3 5
2T

3
−

3
2T

aSρ

)

.

Here ρ2
= x2 + y2. The polynomial in T is no longer even. This

breaks the symmetry and, hence, the pitchfork bifurcation. The
non-autonomous model that displays the perfect bifurcation is:

H≤2
BCP = HRTBP(X)+H2

S (X, θ).

The perfect (non broken) pitchfork bifurcation in Figure 3 (left,
curve in red) shows the continuation diagram from the RTBP to
this simplified version of the BCP. Due to the symmetry, periodic
orbits PO2 and PO3 only differ on the phase on the orbit.

4.2. Phase Space of the Stroboscopic Map
Near the Triangular Points
The three periodic orbits appear as fixed points of the
stroboscopic map. We recall that their linear normal behavior is
of type saddle×center×center for PO1 and totally elliptic for PO2
and PO3. There are several ways to justify that, from the elliptic
directions of each fixed point, there is a family of invariant curves
whose frequency tends to the normal modes of the fixed points
[44, 52].

Therefore, we have a family of invariant curves for each
elliptic direction, that is, two for PO1 (HF1 in the horizonal
plane and VF1 in the vertical direction), three for PO2 (HF2F1
and HF2F2 are horizontal, and VF2 is vertical) and three for
PO3 (HF3F1 and HF3F2 horizontal, and VF3 vertical). The
remaining eigendirection of PO1 is hyperbolic. There exist stable
and unstable one-dimensional invariant manifolds associated to
these hyperbolic directions. Initial conditions near the triangular
points shadow the unstable manifold which wonder some time
around the periodic orbits PO2 and PO3 and finally abandon the
vicinity of the triangular points. These manifolds are of special
interest if one plans to put or take out objects near L4 and
L5. The stable and unstable manifolds related to PO1 can be
computed up to high order directly on the stroboscopic map
(section 3.2 and [Farrés et al., to appear]). In Figure 4 we observe
a projection of the phase portrait of the map. The three points
displayed with crosses correspond to PO1 (in the middle), PO2
and PO3. It is displayed as well, semianalytical approximations
of the stable and unstable invariant manifolds. We have used an
approximation of order 64. The width curve are the pieces given
by the parameterization. The thin curve correspond to some
iterations of these pieces. It can be observed, also, some invariant
curves growing from PO2 and PO3. These invariant curves are
totally elliptic near the fixed points.

FIGURE 5 | Stability regions with initial conditions on the tori of the VF3 identified by pz = 0.5 and pz = 0.8. Horizontal axis: α. Vertical axis r. See text for more details.
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4.3. Regions of Effective Stability Near the
Triangular Points
As we have observed, the triangular points are replaced by
three periodic orbits, one of them unstable. This is the reason
why the BCP is an interesting model [12]. Indeed, the unstable
manifold of the triangular periodic orbit takes initial conditions
away from the vicinity of the triangular points. However, we can
pursue on the seek for regions of (effective) stability out of the
plane of motion of the primaries. The mechanism that suggest
the existence of regions of effective stability is the stickiness of
normally elliptic low dimensional invariant tori. See [41, 52]. As
we discussed before, there are families of invariant tori emanating
from the periodic orbits PO2 and PO3. These families are elliptic
close enough to the fixed points. This results on two small regions
of effective stability in the plane ofmotion of the primaries related
to the totally elliptic orbits.

We put our attention on the vertical families (one for each
orbit) of invariant tori. In Figure 3, Right, we display how
these families vary when they grow out of the plane of motion
of the primaries. We observe that the three families display a
broken pitchfork symmetry, analogous to the one of the periodic
orbits. The linear normal behavior of the tori is the same as the
periodic orbit near the plane. As a consequence of the pitchfork
bifurcation, at some some distance of the plane, the surviving
family is totally elliptic. Therefore, the tori are sticky and regions
of effective stability are to be expected. We label these families
VF1, VF2 and VF3 after the corresponding periodic orbits. The
families VF1 and VF2 are connected, as it happens with PO1
and PO2. On the other hand VF3 reaches high amplitudes in
the (z, pz) plane. It is known that, skipping resonances, the three
families have the same stability as the corresponding periodic
orbits. Therefore, the tori ofVF1 have hyperbolic directions while
the ones ofVF2 are normally elliptic (except for small intervals of
instability produced by resonances involving internal and normal
frequencies). Recall that both families are connected and the
change of stability takes place at a turning point. The tori of VF3
are normally elliptic up to very high values (again, except for
resonances).

Normally elliptic lower dimensional tori induce regions of
effective stability. Numerical estimations of the shape and the
size of these regions show that, in the case of VF2, the regions
are small and narrow while in the case of VF3 large regions exist
for sufficiently high values of the vertical amplitude. In Figure 5

we show two stability regions out of the horizontal plane. These
regions seem to persist in the real model for time spans of 1,000
years [14, 53]. The effect of Solar Radiation Pressure on the
effective stability regions of the BCP is discussed in Jorba-Cuscó
et al.[54].

Let us explain how Figure 5 is obtained. Each of the vertical
family of invariant tori can be identified by the value of the
coordinate pz when z = 0 and pz > 0. Denote by a(pz) ∈ R

6

the coordinates of the point that identifies a torus. We have to
select a set of initial conditions near a(pz) and integrate them for
a long time span. Let us be more precise on how to select the
initial conditions.We use a two dimensional grid, the coordinates
z, px, py and pz will be fixed by the corresponding values of a(pz).
To adapt to the shape of the regions, we use a polar-like grid,
centered at Earth:

{

xij = ri cosαj + µ, ri = 1+ ihr ,

yij = ri sinαj, αj = 2π jhα ,

where hr and hα are used to control the density of the grid.
The computation goes as follows. Take a point of the grid
and integrate the vector field 15000 Moon revolutions. At each
integration step, we test if there is a collision with Earth or Moon.
If there is a collision, or the coordinate y becomes negative, we
stop the integration (Recall that we are interested in the points
that remain close to L4). We have used hr = 0.001 and hα =

0.0002. The difference on the sizes of these small quantities is
aimed to produce a nearly squared grid.

4.4. A Weakness of the BCP
The translunar point is one of the most interesting locations at
the Earth-Moon system. The reason is that L2 seems suitable
to observe the far side at Moon. Taking into account that, a

FIGURE 6 | Left: Continuation of L2 as a periodic orbit with respect to the mass of the Sun. Horizontal axis: x. Vertical axis: ε. See text for more details. Right:

Periodic orbit near L2 in the BCP. Horizontal axis: x. Vertical axis: y.
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natural criticism to the BCP is that it does not have a dynamical
replacement of L2. In Figure 6 (left) it is displayed a continuation
of L2 as a periodic orbit from the RTBP to the BCP. The
periodic orbits are identified by their coordinates as fixed points
of the Stroboscopic map. These orbits have been computed by
means of the parallel shooting method. Again, the vertical axis
is an additional parameter, ε, multiplying the mass of Sun. The
point L2 is the middle crossing of the characteristic curve with
the homotopy level corresponding to the RTBP, at the bottom.
The other two points of the RTBP correspond to the same 1:2
resonant planar Lyapunov orbit but with different initial times.
We observe that the continuation of L2 reaches a turning point
and it never reaches the homotopy level of the BCP. The result
is that the translunar dynamical structure is lost in the BCP. This
suggest that a more complex model needs to be used to analyze
the natural behavior near the translunar point. The resonant
Lyapunov orbit can be continued to the BCP. The result is a large
orbit that remains away from the translunar point, see Figure 6
(right).

5. THE QUASI-BICIRCULAR PROBLEM
AND THE COLLINEAR POINTS

The quasi-bicircular solution of the Earth-Moon-Sun system is
planar i.e., the three bodies move in the same plane. After the
quasi-bicircular solution is computed one can write the equations
of motion of the test particle, prescribing the quasi-bicircular
solution as motion for the primaries. It is usual to compute
the quasi-bicircular solution in the Jacobi frame, however, if
one has the purpose of describing the dynamics in the Earth-
Moon vicinity, it is suitable to use the frame of coordinates
corresponding to the Earth-Moon RTBP. To do so, one has to
perform three different transformations. First, one has to use
a translation to move the origin from the global barycenter to

Earth’s and Moon’s center of masses. Second, one has to use a
rotating (synodic) frame to keep Earth and Moon fixed on the
horizontal axis. Third, the unit of length is scaled so the distance
between Earth and Moon is equal to one. The units of mass and
time which are usually selected in the Earth-Moon RTBP can
be imposed already in the Jacobi formulation of the Three Body
Problem.

The resulting model is a Hamiltonian system with three and a
half degrees of freedom. TheHamiltonian function can be written
as

H =
1

2
α1(p

2
x + p2y + p2z)+ α2(pxx+ pyy+ pzz)+ α3(pxy− pyx)

+α4x+ α5y− α6

(

1− µ

rpe
+

µ

rpm
+

mS

rps

)

, (4)

TABLE 2 | Continuation of the low order resonant orbits from the RTBP to the

QBCP.

RTBP RES BIF QBCP

012 1 : 2 2 12, 13

014 1 : 1 4 14, 15, 16, 17

018 1 : 1 4 18, 19, 1A, 1B

01C 1 : 3 2 1C, 1D

01E 1 : 3 2 1E, 1F

022 1 : 2 4 22, 23, 24, 25

026 1 : 6 4 26, 27, 28, 29

02A 1 : 2 4 2A, 2B, 2C, 2D

02E 1 : 3 2 2E, 2F

026 1 : 4 2 2G, 2H

The first column contains the label of the orbits corresponding to the RTBP. The second
column contains the order of the resonance. The third columns contains number of
bifurcating orbits. The fourth column contains the label of the orbits corresponding to
the QBCP. See [15] for more details. See text for the color code.

FIGURE 7 | Dynamical equivalents of the collinear points. Left: L1. Center: L2. Right: L3. Horizontal axis: x. Vertical axis: y. See text for more details.

TABLE 1 | Eigenvalues of the three dynamical equivalents of L1, L2 and L3.

L1 (real) (imag) L2 (real) (imag) L3 (real) (imag)

1 460182151.57 0 2397196.84 0 3.370855 0

2 −0.987151 0.159784 0.995818 0.0913562 0.863840 −0.503764

3 −0.963639 0.267205 0.917527 0.3976716 0.841148 0.5408042

We only put three for each orbit. The rest are given by their inverses due to the symplectic character of the stroboscopic map.
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where, r2pe = (x − µ)2 + y2 + z2, r2pm = (x − µ + 1)2 + y2 + z2,

r2ps = (x− α7)
2
+ (y− α8)

2
+ z2, and for i = 1, . . . , 8 αi :T 7→ R

are periodic functions. That is,

αi(θ) = ai0 +
∑

k≥0

aik cos kθ +

∑

k≥0

bik sin kθ . (5)

Here, θ = ωSt andωS is the frequency of Sun.Moreover, αi is odd
for i = 1, 3, 4, 6, 7 and even for i = 2, 5, 8. Obviously one can only
have a numerical approximation of these functions. In this case,
we take advantage on the computations done in [15] and take the
same values for the Fourier coefficients of the periodic functions
αi’s. To end, and taking into account the properties of the
functions αi’s, it is easy to see that the Hamiltonian function (4)
has the symmetry (θ , x, y, z, ẋ, ẏ, ż) 7→ (−θ , x,−y, z,−ẋ, ẏ,−ż),
ẋ = px + y, ẏ = py − x, ż = pz .

The meaning of these periodic functions is the following:

1. (α7,α8, 0) is the position of Sun in the plane of motion of the
primaries.

2. α1, α2, α3 and α6 capture the fact that the distance between
Earth and Moon is not constant.

3. α4 and α5 take into account the Coriolis effect due to the
rotating frame of reference.

5.1. Dynamical Equivalents of the Collinear
Points
In this section we give some words about the minimal
periodic orbits that replace the collinear points in the QBCP.
In Figure 7 we display the dynamical equivalents, from left
to right, of L1, L2 and L3. We observe that the orbits
replacing L1 and L2 are small, their maximal distance to the
corresponding equilibrium point is of order O(10−6). As the
original equilibrium points, the linear normal behavior of these
orbits is of type saddle×center×center. In Table 1 we display the
eigenvalues of each orbit. We notice that the unstable direction
of L1 (of order 108) and the unstable direction of L2 (of order
106) are large and this implies huge propagation of error near
these orbits. On the other hand, the dynamical equivalent of

FIGURE 8 | Approximation of order 64 of the stable (dashed) unstable (solid) manifolds of L1, L2 and L3. Horizontal axis x. Vertical y.

FIGURE 9 | Left: Resonant orbit 2G. Right: Approximation of order 64 of the stable (dashed) unstable (solid) manifolds of the ressonant orbit 2G. Horizontal axis y.
Vertical z.

TABLE 3 | Values of the parametres used in this paper.

µ aS mS ωS

0.012150581623433623 388.81114302335106 328900.54999999906 0.92519598551829646
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L3 has a very weak unstable direction, at least compared to the
other two.

5.2. Resonant Orbits of Low Order
As the QBCP is a TS-periodic system, the simplest invariant
objects are TS-periodic orbits. We already have mentioned that
the equilibrium points are replaced by these periodic orbits of
minimal period. Periodic orbits of the RTBP whose frequency
is resonant with the one of Sun also persist as TS-periodic
orbits in the QBCP. The Lyapunov and Halo families of periodic
orbits related to the equilibrium points L1 and L2, are a source
for these kind of resonant orbits. In contrast with the families
related with L3, the families of the two first libration points
are nourished with low order resonant orbits. A relation of low
order resonant periodic orbits of the RTBP can be found in
[15]. In [29] the authors show the ranges for the admissible
periods for each family. The families related to L3 are of relatively
large period and there are not many periodic orbits whose
frequency are in low order rational relation with the frequency
of Sun. There is, however, a 1:1 resonant periodic orbit near the
end of the vertical family. This orbit is enormous in size and
cannot be considered in the vicinity of L3. In Table 2 details
of the continuations of low order resonant orbits from the
RTBP to the QBCP are given: The first column corresponds
to resonant periodic orbits of the RTBP. The label in this
first column consist in three numbers that encode each orbit.
The first is a zero and indicates that the orbit belongs to the
RTBP (this is intended to distinguish them from the orbits

in the last column corresponding to the QBCP). The second
number refers to the libration point related to each orbit (all
of them belong to Lyapunov and Halo families related to L1
and L2). The third number is just an enumeration. The second
column indicates the order of the resonance. We stress that
the influence of Sun is relevant enough to produce bifurcating
orbits in each of the continuations. The third column shows
how many orbits bifurcate from the original ones when they
are continued to the QBCP. Finally the last column contains
the labels of the resulting orbits in the QBCP. Table 2 can
be found originally in Andreu [15]. We have added the order
of the resonance and the color code to indicate the linear
normal behavior of each orbit. Labels in blue stand for orbits
of type saddle×center×center. Labels in green denote linear
character of the kind saddle×saddle×center. Names in cyan
denote totally hyperbolic orbits. The color yellow denotes totally
elliptic orbits. The continuation for the orbits in red do not
reach the homotopy level of the QBCP and, therefore, are not
considered.

5.3. High Order Approximation of the
Unstable Manifolds of the Collinear
Periodic Orbits
This section is devoted to the results of implementing the
algorithm explained in section 3.2 to the dynamical equivalents
of the collinear points. Figure 8 shows pieces of the stable
(dashed) and unstable (solid) manifolds related to the three

TABLE 4 | Coefficients of the functions αj , j = 1, . . . , 8, in (5).

α1 α2 α3 α4
k ak k ak k bk k ak
0 1.001841608924835e+00 0 0.e0 0 9.999999999999983e-01 0 −9.755242327484885e-04

1 5.767517726198399e-04 1 −2.644376028499938e-04 1 5.634125997553694e-04 1 2.154764362707107e+00

2 1.438777025507630e-02 2 −1.328686903400173e-02 2 1.889687440172882e-02 2 3.657484468968697e-04

3 −2.630362974972015e-06 3 9.386093208089751e-06 3 −9.911758802567132e-06 3 3.295673376166588e-03

4 1.176278356118933e-04 4 −1.218509057517414e-04 4 1.568708136031134e-04 4 3.301031400812427e-07

5 −38.068581391005552e-08 5 1.522127598557008e-07 5 −1.707762576173484e-07 5 1.278840687376320e-05

6 9.843249766501285e-07 6 −1.072102664277996e-06 6 1.319613679707437e-06 6 −2.623797952127926e-09

7 −1.172054394418197e-09 7 1.889371261374048e-09 7 −2.136550041985646e-09 7 6.533805514561511e-08

8 8.311905970879588e-09 8 −9.324985038927486e-09 8 1.117168916673893e-08 8 −3.891720707783511e-11

9 −1.408584238695393e-11 9 2.114490981280258e-11 9 −2.387253631031108e-11 9 3.812275838944432e-10

10 7.050713786466840e-11 10 −8.071111743144353e-11 10 9.490879622095902e-11 10 −3.907906049834876e-13

11 −1.494259634910463e-13 11 2.218118050420168e-13 11 −2.462732581558427e-13 11 2.407471187576443e-12

12 5.982418979451232e-13 12 −7.036155161882012e-13 12 8.101067708009743e-13

α5 α6 α7 α8
k bk k ak k ak k bk
0 0.e0 0 1.000907457708158e+00 0 −6.314069568006227e-02 0 0.e0

1 −2.192570751040067e+00 1 2.870921750053134e-04 1 3.885638623098048e+02 1 −3.897437256237654e+02

2 −3.337210485472868e-04 2 7.187177998612875e-03 2 1.736910203345558e-01 2 −1.734279166322518e-01

3 −3.295001430200974e-03 3 −2.351183147213254e-06 3 3.382908071669699e+00 3 −3.385696486642120e+00

4 −3.100635053052634e-07 4 4.585758971122060e-05 4 1.574837565380491e-04 4 −1.555886632413398e-04

5 −1.277777336854128e-05 5 −3.848683620107037e-08 5 2.936360489004438e-02 5 −2.937582671967532e-02

6 2.652806405498111e-09 6 3.270677504935666e-07 6 −1.224434550116014e-05 6 1.225851213107933e-05

7 −6.528479245085066e-08 7 −4.406966481041876e-10 7 2.538935434262443e-04 7 −2.539596887692642e-04

8 3.891720707783511e-11 8 2.452600662570259e-09 8 −2.278929040007574e-07 8 2.280029220202363e-07

9 −3.812275838944432e-10 9 −4.542938800673444e-12 9 2.190432706181655e-06 9 −2.190834624429040e-06

10 3.907906049834876e-13 10 1.892348855112616e-11 10 −3.033311961234353e-09 10 3.036109035120856e-09

11 −2.407471187576443e-12 11 −4.178420101480123e-14 11 1.886971545290216e-08 11 −1.887457647579322e-08

12 1.480048946961583e-13 12 −3.432375106898453e-11 12 3.432375106898453e-11

13 1.611513703999101e-10 13 −1.631723641506449e-10

Due to the symmetries of the model, each αj only contains either sin or cos terms, so we only list either the ak or bk coefficients.
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collinear periodic orbits (the other branches can be obtained
by symmetry). From left to right: the one related to L1, the
one related to L2 and the one related to L3. We would like
to remark that these pieces are obtained directly from the
evaluation of the approximation (of order 64) of the manifolds.
The error is controlled by checking that the contribution of
the last term of the approximating polynomial is small. It
is also checked that all the points in the pieces verify the
invariance equation with high accuracy. We can observe that
these approximations already give large excursions far away
from the collinear points. Especially in the case of L3, where
the piece of the manifold passes very close to the triangular
points. The axes of Figure 8 show the x and y values. These
pieces can be mapped through the stroboscopic map to obtain
larger pieces of the manifolds if it is necessary. The point of
giving high order approximations of the manifold is that, just
a fewer number of iterates are necessary. For the computation
of the manifold related to L3, a simple shooting method has
been used. Indeed, the instability associated to this libration orbit
is very weak. For the computation of the manifold related to
L2, multiple shooting is required. We have used two sections.
For the computation of the manifold related to L1, the most
unstable one, we have used a single shooting strategy but
with an extended precision arithmetic of 128 bits. This last
approach makes the program far slower but very simple to
code. In Figure 9 (left) we show the resonant orbit 2G of
Table 2. We display also (right) the stable (dashed) and unstable
(manifolds).

6. CONCLUSIONS

We have presented two alternatives to the RTBP for the study
of the motion of a test particle in the Earth-Moon system. Both
models, the BCP and the QBCP, depend periodically on the time.
We use the so-called stroboscopic map to study the minimal
periodic orbits of the systems and the invariant manifolds related
to them.

The BCP is as useful model for the study of the triangular
points. The simplicity of the vectorfield is a strong point,
especially in problems related to effective stability where massive
integrations are mandatory. We have also stressed its weakness:
it is not suitable to understand the dynamics around the collinear
points. The BCP is useless to describe the vicinity of the
translunar point.

We have used the parametrization method to obtain high
order approximations of the unstable manifolds related to the
minimal periodic orbits that replace the collinear points in the
QBCP. This is helpful to design long excursions between the two
primaries and the collinear points. The main novelty is that we
have computed the manifolds directly on the stroboscopic map.
The QBCP is a complicated model with a numerically computed
vectorfield. This makes it a bad candidate (in front of the BCP)
to be the model used to face the problems involving massive
simulations related to the triangular points.

We would like to stress that the BCP should be used to
face problems related to the triangular points. Especially if this
problems involve large time integrations to seek for regions of
practical stability. The QBCP should be used when dealing with
problems involving the collinear points.

7. TECHNICAL DETAILS

All the computations appearing in the Figures of this paper, also
the ones which appear in the literature, have been performed
by the authors. The integrations for the RTBP, the BCP and
the QBCP have used a Taylor method with variable order
and stepsize. The demanded accuracy for the standard double
precision has been 10−16. The computations in multiple accuracy
have been done using the library mpfr. The LAPACK library has
also been used for some computations related to linear algebra.
The rest of the programs have been written by the authors in
C and C++ languages from the scratch. Table 3 and Table 4

contains the values of the parametres used for the computations.
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