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With the increasing integration of renewable energy into the power grid, the traditional roles of the transmission and distribution networks have become less distinct at the operational level. The integration between distribution network planning (DNP) and the transmission and distribution networks operation is crucial to ensure grid stability. Existing research has primarily focused on collaborative operation control between transmission and distribution networks, leaving a gap in integrated DNP, since few works can handle the integer variables. This study proposes a distribution network planning method based on the integration of operation and planning and coordinated with the transmission network. It aims to minimize investment and operational costs while considering local generation units, distributed renewables, and network constraints. Using a heterogeneous decomposition algorithm (HGD), the optimization model alternates between the two networks, assisted by injected parameters for global optimality. A convolutional neural network (CNN) surrogate model is then used to rapidly optimize precise distribution network plans that coordinate with the transmission network. Experimental results on IEEE 30 and IEEE 69 cases demonstrate that the proposed approach offers valuable engineering benefits, reducing iteration counts by up to 20% and improving accuracy compared to other distributed algorithms.
Keywords: integrated operation and planning, coordinated transmission and distribution, distributed generations (DG), distribution network planning (DNP), convolutional neural network (CNN) surrogate model
1 INTRODUCTION
The DNP could ensure the economic and secure operation of power systems. For a long time, DNP has been closely related to developing and evolving generation-transmission-distribution characteristics (Wang et al., 2020). The emergence of distributed renewable energy has brought uncontrollable, stochastic, and fluctuating issues to power flow (Liu et al., 2022; Lotfi, 2022). The uncertainty of their spatial distribution profoundly impacts DNP, which also needs to consider the renewable energy consumption capacity to optimize the allocation of renewable energy output ratios (Wang et al., 2020).
Compared to DNP, the existing research on coordination optimization of transmission and distribution mainly focuses on four problems (Xie et al., 2023): economic dispatch (Li et al., 2016, 2018b; Loukarakis, Dent and Bialek, 2016; Yu et al., 2019), unit commitment (Kargarian and Fu, 2014; Nawaz and Wang, 2021; Zhang et al., 2022; Zhang et al., 2022), optimal power flow (Li et al., 2018a; Mohammadi, Mehrtash and Kargarian, 2019; Lin et al., 2020; Zuo et al., 2020; Tang et al., 2021), and reactive power optimization (Wang, 2015; Lin et al., 2017; Sun, 2019). These model DNP problems as optimization problems with nonlinear constraints, which contain sparse Jacobian matrix due to different transmission and distribution power grid parameters. Some state-of-the-art optimization techniques are introduced due to the feature of problems. The analytical target cascading method (Kargarian and Fu, 2014; Mohammadi, Mehrtash and Kargarian, 2019; Zhang et al., 2022; Zhang et al., 2022) is proposed in the literature. However, its algorithm suffers from slow convergence speed, easy oscillation around the optimal point, or divergence issues when improper penalty multiplier selection and imbalanced weights among subsystems occur. Relatively, the HGD algorithm, which is based on boundary interaction variables (Li et al., 2016; 2018a), is widely applied in heterogeneous system solving (Yu et al., 2019) and can be combined with sensitivity calculation (Li et al., 2018b) or the alternating direction multiplier method (ADMM) to reach the optimum of more complex multi-period (Loukarakis, Dent and Bialek, 2016) and multi-objective (Zuo et al., 2020) problems. Since the HGD composite algorithm above requires optimization in each iteration (Wang, 2015; Lin et al., 2017; Zhao et al., 2019), calculations can be computationally intensive, especially in the case of large-scale data or complex models, less-iterative (Tang et al., 2021) algorithms, non-iterative (Lin et al., 2020) algorithms, mechanism-based algorithms and heuristic algorithms (Lotfi and Shojaei, 2022) are proposed to substitute for iterative algorithms, wherein the convergence performance of the first two and the generality of the latter two cannot be guaranteed.
Although the reported methods show a certain level of effectiveness in the coordination optimization of transmission and distribution, they offer the following inadequacies:
1) The composite distributed solution algorithm requires customization for specific problems; its solution speed becomes uncontrollable as the problem size increases. Moreover, its global optimality and algorithm convergence cannot be adequately demonstrated.
2) The existing academic literature mainly focuses on dealing with continuous optimization problems, but only some studies on mixed-integer optimization problems are represented by DNP. Only one study in the existing literature addresses the transmission network planning problem using Benders Decomposition for DC power flow constraints (Liu et al., 2021). Still, this method cannot be transferred to distribution network planning problems with nonlinear power flow constraints. Consequently, more research should be conducted on mixed-integer optimization problems related explicitly to DNP.
To fill the above gaps, this paper focuses on the DNP method based on integrating operation and planning and coordinated with the transmission network.
1) An integrated optimization mathematical model is proposed for coordinated operation and planning of the distribution and transmission networks. This model aims to minimize the investment and construction cost of the distribution network, along with the generation cost, load shedding cost, and renewable energy curtailment cost of the transmission and distribution networks (Lotfi, 2020; Lotfi, Ghazi and Naghibi-Sistani, 2020; Lotfi and Ghazi, 2021). The model incorporates heterogeneous DC power flow and distflow constraints in the transmission and distribution networks to achieve this optimization.
2) A heterogeneous decomposition of optimization models for both the transmission and distribution networks was performed, using substations as boundaries. A concise HGD algorithm was employed to achieve distributed solving of the optimization models containing continuous variables. This approach allows for efficient convergence within a limited number of steps.
3) For integer variables, due to their association with the distribution network topology, a correlation matrix is introduced to describe the distribution network topology. A convolutional neural network is employed to learn and extract topological features, enabling the efficient fitting of the non-linear relationship between integer variables and optimization objectives. This significantly reduces the overall computational complexity of the process.
The proposed DNP method has been tested on a benchmark power system constructed of IEEE CASE 30 and CASE 69, including the comparative study with a global optimization algorithm, since there are few relevant studies. The results indicate that, within the allowed precision of the DNP problem, the proposed DNP method achieves optimization results consistent with global optimization algorithms and efficiently completes the optimization process.
2 SPECIFIC DNP MODEL IN SYNERGY WITH THE TRANSMISSION NETWORK
As shown in Figure 1, the power grid is divided into three parts: the transmission network, the substation, and the distribution network. The substation nodes serve as the boundaries between the transmission and distribution networks.
[image: Figure 1]FIGURE 1 | Structure diagram of power transmission and distribution network.
2.1 Objective function
A DNP model should be built with objective functions constructed from both planning and operation perspectives to establish a coordinated transmission and distribution model for planning and operation. The aim of the planning function should be based on the investment and construction cost of the distribution grid. In contrast, the operation objective function should consider the operating costs of both the transmission grid and the distribution grid. The operational costs of the transmission and distribution grid should include the cost of power generation, the penalty for load shedding, and the cost of renewable energy curtailment. The objective functions can be expressed as follows:
[image: image]
The symbols in the equation represent the following costs: [image: image] represents the investment and construction cost for the distribution network; [image: image] represents the conventional generation cost for the transmission network; [image: image] represents the loss of load penalty cost for the transmission network; [image: image] represents the curtailment cost of renewable energy for the transmission network; [image: image] represents the conventional generation cost for the distribution network; [image: image] represents the loss of load penalty cost for the distribution network; [image: image] represents the curtailment cost of renewable energy for the distribution network.
1) Investment and construction costs for the distribution network [image: image].
[image: image]
The symbols in the equation are defined as follows: [image: image] is the investment cost for building cable in the distribution network; [image: image] is the decision variable for investing and constructing cables in the distribution network, which is a 0-1 variable and indexed by the index of the cable to be built; [image: image] is the set of lines to be invested and constructed.
2) Conventional generation cost for the transmission network [image: image].
[image: image]
In the equation, [image: image] represents the set of scenarios; [image: image] is the index of the scenario; [image: image] is the weight of the conventional generator scenario; [image: image] represents the set of time sections; [image: image] is the index of the time section; [image: image] represents the set of nodes in the transmission network; [image: image] is the index of the node; [image: image] represents the unit generation cost of the conventional generator at node [image: image] under scenario [image: image]; and [image: image] represents the output of the conventional generator at time [image: image] under scenario [image: image].
3) Loss of load penalty cost for the transmission network [image: image].
[image: image]
In the formula, [image: image] represents the weight of the loss scenario, [image: image] represents the unit loss cost at the node [image: image] under the scenario [image: image], and [image: image] represents the amount of loss at the moment [image: image] under the scenario [image: image].
4) Curtailment cost of renewable energy for the transmission network [image: image].
[image: image]
In the equation, [image: image] represents the scenario weight for renewable energy, [image: image] represents the unit abandonment cost of renewable energy for the node [image: image] in the scenario [image: image], [image: image] represents the maximum output of renewable energy at the node [image: image] during the time period [image: image] in the scenario [image: image], and [image: image] represents the output of renewable energy at the node [image: image] during the time period [image: image] in the scenario [image: image].
5) Conventional generation cost for the distribution network [image: image].
[image: image]
In the equation, [image: image] is the set of distribution network nodes.
6) Loss of load penalty cost for the distribution network [image: image].
[image: image]
7) Curtailment cost of renewable energy for the distribution network [image: image].
[image: image]
2.2 Constraints
The transmission constraints are described below.
1) Power balance equation for transmission network nodes.
[image: image]
In the equation, [image: image] represents the set of lines connected to node [image: image] as the ending point, [image: image] represents the set of lines connected to node [image: image] as the starting point, [image: image] represents the flow on line [image: image], [image: image] represents the load at node [image: image], and the subscript [image: image] represents the index of the line.
2) Power flow equation of transmission network.
[image: image]
In the equation, [image: image] represents the flow of line [image: image], [image: image] is the reciprocal of the reactance of line [image: image], [image: image] and [image: image] are the phase angles of the starting node and the ending node of line [image: image], respectively. [image: image] is the set of transmission lines in the power grid.
3) Transmission network line capacity constraints.
[image: image]
Where: [image: image] and [image: image] are the upper and lower limits of the line transmission power.
4) Generation output constraints in transmission network.
[image: image]
[image: image]
[image: image]
Where: [image: image] and [image: image] are the upper and lower limits of conventional generation output at node; [image: image] and [image: image] are the maximum change ranges of conventional generation output within a time interval, expressed as a percentage of unit capacity; [image: image] and [image: image] are the upper and lower limits of renewable generation output.
5) Transmission network load shedding constraint.
[image: image]
In the equation, [image: image] represents the maximum load shedding capacity at node [image: image].
The distribution constraints are described below.
1) Power balance equation for distribution network nodes.
[image: image]
[image: image]
[image: image]
In the equation: [image: image] and [image: image] are the reactive power output of conventional generators and renewable energy generators, respectively; [image: image] is the reactive power flow on the line; [image: image] and [image: image] are the resistance and reactance of the line, respectively; [image: image] is the current on the line; [image: image] is the set of distribution network lines; [image: image] is the line index.
2) Distribution network node voltage equation.
[image: image]
[image: image]
In the equation, [image: image] and [image: image] represent the squared voltage magnitudes at the starting and ending nodes of line [image: image], respectively.
3) Power flow equation of transmission network.
[image: image]
4) Upper and lower voltage limits for distribution network nodes.
[image: image]
Where: [image: image] and [image: image] are the upper and lower limits of the distribution network node voltage, respectively.
5) Distributed generation output constraints in transmission network.
[image: image]
[image: image]
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6) Distribution network load shedding constraint.
[image: image]
The substation constraints are described below.
1) Power balance equation for substation network nodes.
[image: image]
Where: [image: image] represents the set of substation nodes.
2) Local generation output constraints in substation network.
[image: image]
[image: image]
3 SOLUTION METHOD
3.1 Construction of a collaborative operation model for transmission and distribution
In traditional DNP, the transmission network and substations are treated as infinite power sources. In collaborative planning between the transmission and distribution networks, a network model is established for the transmission network, including line flows, distributed generation units, and renewable energy, to reflect the real-time operating status of the transmission network. To achieve optimized calculation of the collaborative operation between transmission and distribution, variable exchange is required at the transmission-distribution boundary to achieve the optimal dispatch under the given planning scheme. The construction of the collaborative operation optimization model between transmission and distribution is shown in the following equation:
[image: image]
In the equation, [image: image] represents the operational cost of the transmission network, corresponding to Eqs 2–4; [image: image] represents the operational cost of the distribution network, corresponding to Eqs 5–7; [image: image] and [image: image] respectively correspond to inequality constraints and equality constraints; [image: image] and [image: image] correspond to Lagrange multipliers for inequality constraints and equality constraints. [image: image] and [image: image] represents control variables and represents state variables.
Operating model, the “node splitting” concept is used, and auxiliary functions for the injection of power from substations into the distribution network [image: image] , the injection of power from the transmission network region into the substation region [image: image] , and the injection of power from the substation region into the distribution network region [image: image] are introduced. Therefore, Eq. 27 can be decomposed into the power constraint for the injection of power from the transmission network region into the substation region Eq. 32 and the power constraint for the injection of power from the substation region into the distribution network region Eq. 33. The abstract expression of Eq. 27 is shown in Eq. 31.
[image: image]
[image: image]
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The Lagrange function of Eq. 30 can be expressed as
[image: image]
Further, the Karush Kuhn Tucher (KKT) condition can be expressed as.
1) The partial derivative of each variable is equal to 0;
2) Satisfying equality and inequality constraints;
3) The complementary relaxation condition is satisfied.
3.2 Solution for the collaborative operation model for transmission and distribution
The planning model algorithm utilizes the HGD algorithm for solving. The solving approach is as follows:
The coordinated operation model of transmission and distribution (30) can be decomposed into the sub-model of transmission network operation optimization and the sub-model of distribution network operation optimization with the aid of auxiliary functions. The auxiliary functions are used to ensure that the optimization objectives of the two sub-models after decomposition are consistent with the optimization objective of the original model.
Specifically, the sub-model of transmission network operation optimization can be represented by Eq. 35, and the sub-model of distribution network operation optimization can be represented by Eq. 36.
[image: image]
[image: image]
In the equations: [image: image] represents the feasible domain of the sub-model of transmission network operation optimization while [image: image][image: image] represents the feasible domain of the sub-model of distribution network operation optimization while [image: image]; [image: image] and [image: image] are auxiliary functions introduced into the decomposed optimization model to ensure the optimality condition of the original model is satisfied.
To satisfy the optimality condition, the auxiliary function should satisfy the following equation:
[image: image]
Where:
[image: image]
The HGD algorithm solves the operation optimization models of transmission and distribution networks alternately through iterations until the physical quantities related to the boundary region converge. The specific steps for solving the coordinated operation model of transmission and distribution using the HGD algorithm are shown in Figure 2.
[image: Figure 2]FIGURE 2 | HGD algorithm flowchart.
3.3 Construction and optimization of DNP agent model for coordinated operation of transmission and distribution based on convolutional neural network
CNN is one of the classical algorithms in deep learning. Its internal structure uses weight sharing and local connectivity, which enables CNN to effectively extract deep-level features contained in data while reducing algorithm complexity. CNN mainly consists of a convolutional layer that performs convolution calculation on the data and extracts potential features and a pooling layer that downsamples and compresses network parameters. The alternating use of convolutional and pooling layers can effectively extract the potential features of the input data and reduce the errors caused by manual feature extraction. The structure diagram of one-dimensional CNN is shown in Figure 3.
[image: Figure 3]FIGURE 3 | CNN structure diagram.
The construction and solution of the coordinated operation model for the transmission and distribution system described in Section 3.1, Section 3.2 can output the optimal operating cost for a given planning scheme. Combined with the investment and construction cost of the distribution network corresponding to the planning scheme, as shown in Eq. 2, the total cost of the scheme can be obtained. In practical engineering problems, the feasible planning schemes for the stock planning of the distribution network are generated from a planning problem library accumulated over some time. Therefore the number of feasible planning schemes is often limited. In addition, considering the large scale of the distribution network, the introduction of nonlinear constraints in the distribution network power flow, and the growth in the number of operating scenarios, calculating the total cost for each feasible planning scheme and seeking optimization will increase the time and space complexity. However, each planning scheme corresponds to a topological structure of the distribution network, which an adjacency matrix can intuitively represent. Therefore, a convolutional neural network can be introduced to map the topological structure of the distribution network to the total cost, constructing a proxy model for the complex coordinated operation model of the transmission and distribution system and achieving rapid optimization of the total cost for a limited number of planning schemes.
4 CASE STUDY
4.1 Case construction
The IEEE transmission network test case CASE 30 and IEEE distribution network test case CASE 69 are concatenated. Specifically, node 30 of CASE 30 is connected to the root node of CASE 69 via a single substation node. The voltage amplitude upper and lower limits for each node in the distribution network are 1.1 p. u. and 0.9 p. u., respectively. In the transmission network test case CASE 30, nodes 1, 2, 22, 23, and 27 are connected to conventional thermal power generation units, while nodes 3, 4, and 6 are connected to renewable energy generation units. In the distribution network test case CASE 69, some nodes are connected to local conventional power generation units and distributed renewable energy sources, whose parameters are listed in Table 1. The costs are showed in Table 2. The load coefficients and renewable energy unit output coefficients are shown in Figures 4, 5. All calculations are performed by Gurobi 10.0.2 API for Python on an Intel Core I7 11700F 2.5 GHz processor.
TABLE 1 | Distributed renewable energy parameters for distribution network.
[image: Table 1]TABLE 2 | Construction and operation costs.
[image: Table 2][image: Figure 4]FIGURE 4 | Load factor.
[image: Figure 5]FIGURE 5 | Renewable energy output coefficient.
4.2 Example results and analysis
The proposed lines to be built in this case study are (24–50), (24–52), (16–50), (16–65), (16–69), (50–65), (30–52), (28–60), (50–60), and (18–67), which can generate a total of 1024 planning schemes through permutation and combination. The total costs of some planning schemes, calculated by the model described in Chapter 3, are shown in Table 3.
TABLE 3 | Planning schemes and total costs.
[image: Table 3]From Table 3, it can be seen that three planning schemes can be generated by selecting Line (16–35) and Line (24–50), among which the planning scheme that only constructs Line (24–50) has the lowest total cost. The planning scheme that constructs both Line (16–35) and Line (24–50) is the second cheapest, followed by the planning scheme that only constructs Line (16–35). In the four typical scenarios constructed in this paper, operating costs account for a relatively large proportion of the total cost of the planning scheme. As the number of typical scenarios inputted further increases, the proportion of operating costs in the total cost of the planning scheme will also increase. Theoretically, the more typical scenarios are inputted, the more the planning scheme can reflect its impact on the actual operating costs of various levels of power grids.
Considering the number of typical scenarios increases and the granularity of a single scenario in practical engineering applications as the transmission and distribution network scale increases, the time and space complexity of a single operation of the HGD algorithm, which is mainly based on iterative calculations, will increase significantly. Reducing the calls to the HGD algorithm in the solution algorithm is a vital optimization direction. At this point, the transmission and distribution coordinated operation model has a clear input-output relationship with the planning scheme-total cost. Building a convolutional neural network proxy model can simplify the planning model by “making the complicated simple.”
Selecting the planning schemes to form the training and testing sets, the two-dimensional description of the adjacency matrix corresponding to the planning scheme is extracted as the carrier form of the input of the convolutional neural network. The comparison of the computation speed and accuracy between the trained convolutional neural network proxy model and the original model is shown in Table 4. Both the directly solved optimal construction scheme and the optimal construction scheme found by the neural network proxy model are to invest in line (24–50) and (24–52). Furthermore, the computation time for individual optimization is provided, demonstrating an advantage in computation time. However, its results lack reference value.
TABLE 4 | Comparison of solution methods.
[image: Table 4]As seen from Table 4, the DNP model that coordinates with the transmission network for optimization will consume a significant amount of time and computing power, even for small-scale network models. However, training a convolutional neural network proxy model makes it possible to achieve optimal planning solutions that meet the required precision by calling multi-iteration solving algorithms on a small scale. Using a convolutional neural network proxy model can effectively capture the topological characteristics corresponding to the planning solutions, map them to the total cost with high precision, and quickly optimize the exponential number of planning solutions composed of numerous lines to be constructed. The optimal solution corresponds to the boundary node line flow of the substation, as shown in Figure 6.
[image: Figure 6]FIGURE 6 | Boundary substation power flow.
Based on Figure 6, it can be seen that the objective function is constructed with the abandoned energy cost of renewable energy sources. This is reflected in the optimization results by the low power flow values at the boundary nodes of the substation, indicating that the active power injected into the distribution network from the transmission network is relatively low. As a result, the distribution network load is mainly provided by local units and distributed renewable energy output.
In order to validate the applicability of the algorithm, a comparison between centralized and distributed algorithms was conducted in the given case study. The distributed algorithms included the ADMM and the APP (Auxiliary Problem Principle) methods. Additionally, a comparison of optimization results was performed using a collaborative optimization model involving continuous variables in transmission and distribution systems. The iteration counts for algorithms with varying convergence accuracy are depicted in Figure 7, while the optimization results for different algorithms are presented in Figure 8.
[image: Figure 7]FIGURE 7 | Iteration counts for algorithms with varying convergence accuracy.
[image: Figure 8]FIGURE 8 | The optimization results for different algorithms.
From Figures 7, 8 it is evident that the HGD algorithm exhibits a robust convergence performance compared to other commonly used decomposition algorithms. The iteration count of the HGD algorithm is minimally affected by the convergence accuracy. On the other hand, the iteration counts of the ADMM and APP algorithms are significantly influenced by the convergence accuracy; under higher convergence accuracy requirements, their iteration counts are much greater than those of the HGD algorithm employed in this study. When considering the directly solved centralized algorithm as a benchmark, the HGD algorithm demonstrates a more minor computational error by up to 2.34%.
Furthermore, decomposition algorithms like ADMM and APP necessitate the tuning of several constant parameters, the selection of which directly impacts the algorithm’s convergence performance. The optimization and tuning of these parameters also require manual adjustments. In comparison, the HGD algorithm eliminates the need for parameter setting, resulting in stable convergence performance.
5 CONCLUSION
To adapt to the scenario of high-penetration renewable energy integration into the power grid, where the source-load roles in the operational perspective of transmission and distribution networks are blurred, and to conduct DNP with greater precision, this paper proposes a distribution network planning method based on the integration of operation and planning and coordinated with the transmission network. This method constructs operational models for both the transmission and distribution networks and substation, as well as a planning model for the distribution network. The optimization model with continuous variables is decomposed and solved using the HGD algorithm. To overcome the challenges of optimizing models with integer variables, this paper constructs a distribution network correlation matrix to represent its topological connections for the integer part optimization model and employs a CNN surrogate model for global optimization.
Results from case studies constructed using IEEE 30 and IEEE 69 indicate that the proposed solving method reduces computation time by 43.91% compared to direct solving using centralized algorithms, with an error of only 0.18% from the direct solving results. The HGD algorithm used in this study, when compared to other distributed algorithms like ADMM and APP, achieves convergence with significantly fewer iterations while maintaining the same accuracy level. Additionally, the optimization results using HGD algorithm show a reduction in computation error by 2.34% compared to the mentioned distributed algorithms. The proposed method improves solving efficiency and reduces computation errors to a certain extent, demonstrating its value for engineering applications.
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A microgrid is a promising small-scale power generation and distribution system. The selling prices of wind turbine equipment (WT), photovoltaic generation equipment (PV), and battery energy storage equipment (BES) have a significant impact on microgrid profits, which, in turn, affects the planning capacity of renewable energy. However, existing research has not yet conducted in-depth modeling and analysis for different kinds of energy generation electricity prices. This paper proposes an optimal capacity planning method for wind-photovoltaic-storage equipment, considering different energy selling incomes in microgrids. Stochastic characteristics of renewable energy (WT and PV), selling prices of different types of energy, and timing coupling characteristic are considered in the proposed model. In addition, the configuration capacities of WT, PV, and BES are modeled as discrete decision variables, according to the type of specific equipment. The comprehensive life cycle cost (LCC) is considered an objective function. It can be found that the proposed collaborative capacity planning model is a mathematical programming problem with complex nonlinear constraints and integer variables. To solve this problem, a cultural gray wolf optimization algorithm (CGWO) is applied in this paper. The proposed method’s efficiency, convergence, superiority, and effectiveness are verified through a case study. Moreover, the impact of different new energy sales prices on capacity planning results is also revealed in the article.
Keywords: microgrid, wind-photovoltaic-storage capacity planning, collaborative planning, cultural gray wolf optimization algorithm, life cycle cost, selling price
1 INTRODUCTION
1.1 Background
Global climate change has brought severe challenges to human survival. In the face of these challenges, China has put forward the “carbon emissions peak” and “carbon neutrality” policies (Wang Jiayu et al., 2022). The proposed policies insist on green and low-carbon development, tackling climate change actively. In this context, a novel power system with renewable energy is proposed as the main body of future power systems. Nowadays, Chinese clean energies mainly contain wind and photovoltaic power generation, which are the most practical approaches and show great development potential.
In rural areas, industrial parks, or islands, there are often many distributed photovoltaic (PV) panels, wind turbines (WTs), and battery energy storage equipment (BES), which constitute a “microgrid” (Wei et al., 2014). In areas with abundant wind energy and light resources, how to optimize the capacity of different energy equipment in the microgrid, improving the economic profits, enhancing the reliability of the designed microgrid, and increasing the accommodation rate of clean energy, is a crucial but complicated problem (Wang et al., 2022b; Singh and Sharma, 2017).
1.2 Related work
Scholars around the world conducted research on the location and capacity of distributed generation (DG) in microgrids from different perspectives. Recent research studies can be summarized from model formulation and algorithms, as shown in Table 1.
TABLE 1 | Summary of distributed generator planning models.
[image: Table 1]1.2.1 Model formulation
The objective of a microgrid capacity planning model needs to consider economy, reliability, and environment protection (Kiptoo et al., 2023). Economic objectives mainly include costs (annual investment cost, maintenance cost, main grid electricity purchase cost, equipment operation cost, etc.) and profits (main grid electricity selling profits, environmental subsidies, etc.) (Yang et al., 2020a). Reliability objectives include time-based indicators (SAIDI and CAIDI), frequency-based indicators (SAIFI and CAIFI), and energy loss-based indicators (EENS). Environment objectives are related to emissions of greenhouse gases, which depend on the output of traditional thermal power and renewable energy accommodation (Wang et al., 2022c). The constraints of a microgrid capacity planning model should consider the power flow equation and operation mode. It can be found that the capacity configuration of a microgrid is a nonlinear, multi-objective problem with complicated constraints (Singh and Sharma, 2017).
A cost-based formulation was performed to determine the optimal size of BES in the operation cost minimization problem of a MG under various constraints, such as the power capacity of distributed generators (DGs), power and energy capacity of BES, charge/discharge efficiency of BES, operating reserve, and load demand satisfaction (Sharma et al., 2016; Liu et al., 2016), focused on optimization of the power source capacity in the microgrid. In addition, a coordinated planning strategy is proposed with an integrated consideration of the characteristics of DG, ES, and load. Kiptoo et al. (2019) investigated the prospects of interlinking a short-term flexibility value into long-term capacity planning toward achieving a microgrid with a high renewable energy fraction. A pumped storage power station capacity planning method based on the full life cycle cost was proposed to describe a new sizing optimization methodology of a stand-alone hybrid photovoltaic/wind/battery system, minimizing the levelized cost of energy (LCOE), the loss of power supply probability (LPSP), and the equivalent carbon dioxide (CO2-eq) life cycle emission (Xiao et al., 2020). However, few studies have analyzed the impact of price (cost and profit) on the capacity allocation of a microgrid and carried out in-depth sensitivity analysis based on the proposed model, providing effective guidance for microgrid planners.
1.2.2 Algorithm
Existing solving algorithms of capacity configuration in a microgrid mainly include traditional analytical mathematical algorithms and heuristic optimization algorithms (Abou El-Ela et al., 2022). Some researchers tried to reformulate the original problem into a typical mixed-integer linear programming (MILP) with some approximate techniques (Borghei and Ghassemi, 2021; Kiptoo et al., 2023). Although these kinds of methods can obtain the optimal solution to the transformed problem, the obtained solution may have large deviations from practical solutions due to the approximation. Furthermore, these algorithms cannot accommodate to various scenarios, hindering their application in practical engineering. On the other hand, heuristic optimization algorithms can solve these complicated planning problems effectively. However, the selection and improvement of heuristic algorithms based on the variable form and constraint space of the specific problem is an urgent and promising research area (Coelho et al., 2016; Yang et al., 2020b).
1.3 Main purpose
From the aforementioned literature review, it can be found that existing research has not yet conducted in-depth modeling and analysis for different kinds of energy generation electricity prices, given that a significant portion of the revenue from microgrid operators comes from the selling income of renewable energy. In addition, the selling prices of different types of renewable energy are different, while existing research studies have not yet modeled, solved, and analyzed the differences in selling prices of different types of new energy. Microgrid planners or electricity market price setters also require corresponding theoretical basis and guidance when carrying out microgrid planning or setting electricity prices. Thus, it is necessary to model the differences in the selling prices of different types of renewable energy and integrate them into the microgrid planning model.
1.4 Main contribution
To tackle the aforementioned issues, this paper proposes a novel microgrid capacity planning model and an improved cultural gray wolf optimization algorithm. The major contributions of this paper can be summarized as follows:
(1) Novel microgrid capacity planning model. A novel wind-photovoltaic-storage microgrid capacity planning model considering comprehensive cost and profits is put forward. The different selling prices of WT, PV, and BES are considered in the paper, which is essential for the planning model.
(2) Improved cultural gray wolf optimization (CGWO) algorithm. An improved cultural gray wolf optimization algorithm (CGWO) is proposed to solve this problem efficiently. Compared with other heuristic optimization methods, the proposed method outperforms in convergence and calculation time when solving the proposed model.
(3) Impact of different energy sale prices and investment costs. The influence of different selling prices of WT, PV, and BES, and the investment cost of BES on the microgrid planning scheme is analyzed. The proposed model mainly focuses on the impact of the change in the electricity selling price on the planning results, which is conducive to microgrid planners to analyze the feasibility of the planning scheme from a new perspective.
1.5 Structure
The remainder of this paper is organized as follows: In Section 2, the overall architecture of collaborative capacity planning in a microgrid is presented. In Section 3, a capacity planning model of WT, PV, and BES in the microgrid is established. In Section 4, the solution algorithm CGWO is introduced. Subsequently, the testing of the proposed methods and the sensitivity study are presented in Section 5. Finally, conclusions and practical suggestions are summarized in Section 6.
2 OPTIMAL CAPACITY PLANNING MODEL OF WIND-PHOTOVOLTAIC-STORAGE EQUIPMENT IN A MICROGRID
2.1 Architecture of collaborative capacity planning in a microgrid
Future smart DS will include various types of novel loads and DGs, including wind WT, PV, BES, and user load. From the perspective of optimal planning, DS planners should coordinate reliability and DS costs through an optimal design of the equipment capacity to accommodate these loads and DGs. Figure 1 shows the planning task of capacity planning in a microgrid.
[image: Figure 1]FIGURE 1 | Framework of collaborative capacity planning in a microgrid.
The total objective function F of capacity planning of wind and solar storage equipment in the microgrid is formulated as follows.
[image: image]
where F represents the comprehensive cost of the designed microgrid system. The objective function of this paper is to minimize the comprehensive cost of wind-photovoltaic-storage equipment in the microgrid system, which contains cost and profits. The cost of the capacity planning model includes the cost of equipment investment in the microgrid (WT, PV, and BES) CInv, cost of expected energy not supplied (EENS) CEENS, cost of electricity purchased from the main grid CBuy, and cost of equipment maintenance CMain. In addition, the profits of the designed microgrid system are composed of the profits obtained from selling electricity ISell and the scrapping of equipment IDrop.
2.2 Annualized cost of investment
In the process of microgrid planning, the investment and construction cost of each piece of equipment (WT, PV, and BES in this paper) occupies an important part, which is shown as follows:
[image: image]
where [image: image] represents the investment cost of different equipment, including WT, PV, and BES. The investment and construction costs of each piece of equipment are closely related to the capacity of the equipment SEQ. In addition, [image: image] represents the investment and construction costs per unit capacity of WT, PV, and BES.
2.3 Annual cost of outage compensation
If a power outage occurs due to insufficient power supply, the microgrid operator needs to compensate the corresponding users. In the planning and design of a high-reliability microgrid, it is necessary to consider the annual outage compensation cost of the microgrid, which can be written as follows:
[image: image]
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where the annual outage compensation cost of planned equipment CEENS is related to the annual shortage of power supply EENS and power outage cost coefficient kEENS. Based on the power balance equation, the unbalanced power [image: image] is the part that is still insufficient after the wind, solar, and storage power output, as shown in Eq. 4. Then, the power shortage EENSt occurs at the current time t when the maximum power obtained from the main grid is added, which is shown in Eq. 5. Eq. 6 considers the power outage under all operating scenarios.
2.4 Annual cost of electricity purchased from the main grid
If the wind and solar storage resources are insufficient, the microgrid needs to purchase electricity from the main network to meet the load demand of the whole microgrid. The annual cost calculation formula of purchasing electricity from the main network is as follows:
[image: image]
[image: image]
where the annual cost of power purchase of the main grid CBuy is related to the power obtained through the tie line/main grid [image: image] and price coefficient of power purchase from the main grid kbuy. When the unbalanced power [image: image] at time t is less than 0, it means that the current power of the microgrid is enough to be balanced by wind and solar storage in the microgrid. In this situation, there is no need to purchase electricity from main network, and the purchased power is 0 at this time. When the unbalanced power [image: image] at time t is greater than 0, it means that the current wind and solar storage resources of the microgrid cannot meet the load demand in the microgrid. In this situation, it is necessary to purchase electricity from the main network at this time, and the purchased power of this part is [image: image].
2.5 Annual cost of equipment maintenance
The equipment invested and built by the microgrid needs to be operated and maintained in its life cycle. The specific calculation formula of the cost required for this part is as follows:
[image: image]
where [image: image] represents the maintenance cost of WT, PV, and BES. The maintenance cost of each piece of equipment is closely related to the capacity of the equipment, SEQ. In addition, [image: image] represents the maintenance cost per unit capacity of WT, PV, and BES.
2.6 Annual profit of electricity sales
The microgrid can exchange energy with the main grid through the main grid bus, which can gain profits if the microgrid has extra power. The calculation formula of annual electricity sales income ISell of the microgrid, including the wind-photovoltaic-storage, is mainly composed of electricity sales income of wind power, photovoltaic, and battery energy storage.
[image: image]
where [image: image] are the electricity sales prices of WT, PV, and BES, respectively. [image: image] are the sales power of WT, PV, and BES, respectively.
To calculate the wind selling power at each time, it is necessary to calculate the wind power PW t.
[image: image]
where [image: image] is the wind power, related to the wind speed at each time. If the wind speed wt at the current moment is less than the cut-in wind speed wc, the wind power cannot be output. If the current wind speed wt is between the cut-in wind speed wc and the cut-out wind speed wr, the generated power can be calculated from a linear expression related to the wind speed and the capacity of WT. If the current wind speed wt is greater than the cut-out wind speed wr, the rated capacity SW of WT is considered in this paper.
The calculation of solar power PS t is formulated as follows:
[image: image]
where [image: image] is the photovoltaic power generation related to the planned capacity of solar power generation equipment SS and the radiation intensity of current illumination ITt.
The renewable energy modeling in this paper considers the wind speed and irradiance in the planning area, establishes a mathematical relationship between wind or solar resources and power output under a given new energy installation capacity, and combines typical power output curves of wind and solar energy to construct a scenario-based modeling method.
This paper assumes that renewable energy is preferentially consumed in the system. Therefore, the power shortage at the current time ΔPt can be expressed as follows.
[image: image]
It can be found that if ΔPt is greater than or equal to 0, indicating that the current wind power generation power [image: image] and the photovoltaic power generation power [image: image] are sufficient to supply the load Dt, the surplus power at the current time can be provided to the energy storage equipment for charging. If ΔPt is less than 0, the current wind power generation power [image: image] and photovoltaic power generation power [image: image] cannot meet the current load Dt demand and need to be provided by the energy storage system.
SOCt is the remaining capacity of the energy storage equipment at the current time, which is related to the capacity of the energy storage equipment. The minimum value of SOCt is 30% of the planned capacity of BES. The maximum value of SOCt is the value corresponding to the planned capacity of BES. In particular, the remaining capacity of the energy storage device needs to be limited between the maximum and minimum values of the remaining capacity.
[image: image]
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where SOCt at the current time is the SOC at the previous time t-1 plus the charge/discharge power at the previous time. Then, the charge/discharge power of battery energy storage is expressed by the following formula.
[image: image]
If the SOC at the current moment is larger than the SOC at the previous moment, the BES in the microgrid is in discharge and sells power to the main grid. Conversely, if the SOC at the current moment is larger than the SOC at the previous moment, the BES in the microgrid is in charge.
[image: image]
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where [image: image] is the maximum consumable power at time t, [image: image] is the maximum power of the tie line at time t, and [image: image] is the battery energy storage power at time t. It can be found that the maximum consumable power [image: image] at time t is composed of the load Dt, the maximum power of tie line [image: image], and the battery discharge power [image: image] at the current time. [image: image] is the remaining power margin after consuming wind power and photovoltaic, and its value is the surplus of wind power output [image: image] and photovoltaic output [image: image] after deducting the maximum consumable load power [image: image].
Combined with the power margin and the maximum consumable power calculated previously, the actual sales power of WT and PV can be calculated, which are shown as follows:
[image: image]
[image: image]
Therefore, when the residual power margin is less than 0, WT and PV power are the actual output power. If the power margin is greater than 0, WT and PV power can only be consumed proportionally.
2.7 Annual profit of equipment scrapping
Another part of the income of the wind-photovoltaic-storage microgrid comes from the scrapping income of wind-photovoltaic-storage equipment, and the specific calculation formula is as follows:
[image: image]
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where the annual scrapping income of planned equipment consists of the scrapping income of WT [image: image], the scrapping income of PV [image: image], and the scrapping income of BES [image: image]. The coefficient r is the discount rate. TEQ are the life cycles of WT, PV, and BES, respectively. [image: image] represents the scrapping income per unit capacity of WT, PV, and BES.
3 IMPROVEMENT IN THE CULTURAL GRAY WOLF OPTIMIZATION ALGORITHM
The aforementioned problem is a planning model with complicated constraints and variables. It contains a large number of logical judgment constraints, which is intractable to most mathematical solvers. Furthermore, the traditional optimization algorithm has slow convergence speed. In addition, traditional mathematical optimization methods, such as branching-and-cut or cutting plane methods, need to approximate the non-convex and nonlinear parts, transforming the model into a tractable form of MILP. Although the precise solution of the model can be obtained, there is still some deviation between the transformed model and the original model. In this situation, the advantages of the heuristic optimization algorithm are more prominent.
This paper improves the GWO algorithm (Mirjalili and Seyed Mohammad Mirjalilib, 2014) and proposes an improved CGWO algorithm, which is suitable for the capacity planning model of wind-photovoltaic-storage equipment in the microgrid. The proposed CGWO algorithm enhances the gray wolf optimization method to effectively solve the capacity planning problem and optimize the performance of wind-photovoltaic-storage equipment in microgrids.
A traditional GWO algorithm is based on the classification of wolves. The weight of wolves with a high level is higher, and the weight of wolves with a low level is lower. The search range and target of different wolves are different. Finally, the search information on different wolves is summarized and synthesized, and the optimal search mode of the whole wolves is given. The framework of this algorithm is presented in Figure 2. With the iteration, the search range is continuously narrowed to achieve the optimal position. However, the iterative update mode of the traditional gray wolf optimization algorithm in the evolution process adopts the linear decreasing strategy to shrink, and the convergence factor calculation formula of the traditional gray wolf algorithm is as follows:
[image: image]
where a is the convergence factor, l is the current iterative algebra, and T is the total number of evolutionary iterations.
[image: Figure 2]FIGURE 2 | Framework of gray wolf optimization (GWO).
Inspired by particle swarm optimization, slowing down the convergence rate of the convergence factor can enhance its global search ability and prevent the algorithm from falling into the local optimal solution. Therefore, to improve the global performance of algorithm contraction, this paper proposes a new convergence factor updating method based on exponential law change:
[image: image]
The convergence factor a will decrease in the form of a negative exponent, and its decreasing speed is lower than that of the linear decreasing strategy.
Second, to better carry out the global search and consider the performance of local utilization (the basic idea of the greedy algorithm), this paper proposes an adaptive search strategy, which makes the algorithm still attach importance to the role of the first wolf (α wolf), but at the same time, it does not take the average value of the positions of the three wolves. The specific expression is as follows:
[image: image]
where X1 is the position of the α wolf, X2 is the position of the β wolf, and X3 is the position of γ wolf, which indicates the central position of the population after evolving from the previous generation to the next generation.
In addition, a better initial solution can significantly improve the initial search performance. Therefore, this paper is inspired by the cultural gene optimization algorithm to give full play to the global search performance of the genetic algorithm (GA). Before starting iteration, the initial solution is generated blindly and randomly. First, the high-quality initial solution is obtained based on GA, and then, the evolutionary iteration is carried out based on the gray wolf optimization algorithm.
The steps of the improved gray wolf optimization algorithm are summarized, as shown in Figure 3.
[image: Figure 3]FIGURE 3 | Framework of cultural gray wolf optimization (CGWO). (i) Initializing CGWO parameters, including the population number N and total iteration times T. (ii) Giving full play to the global optimization ability of GA, the initial solution is obtained by a genetic principle, and the initial gray wolf population is generated. (iii) Calculating the fitness function of each level of gray wolf in the population. For the calculation of fitness function in this paper, refer to the objective function of the optimal capacity planning model of wind and solar storage equipment in the microgrid, which is presented in Eq. 1. After the calculation, the fitness function of different gray wolves and its corresponding position (the value of decision variables) were recorded. (iv) Judging whether the condition of algorithm termination is met. For example, whether the algebra of convergence iteration is reached or not, the optimal solution does not change in K iterations. If the termination condition is satisfied, the optimal solution of the cycle output is proposed, and the optimal capacity planning scheme of wind-photovoltaic-storage equipment in the microgrid is obtained; otherwise, step (v) is performed. (v) The convergence factor a is calculated according to Eq. 24. (vi) The gray wolf population was sorted, and the gray wolf level was divided into three levels. (vii) The center position of the evolved population is obtained based on Formula 25, and it is checked whether the center position of the new population violates the relevant constraints of the model. If the constraint is violated, it is compressed to the boundary. (viii) The number of iterations plus 1, that is, l = l+1, return to step (iv).
4 CASE STUDY
The following will be combined with the actual solution example for analysis, based on MatlabR 2020a. The processor parameter of the computer is Intel(R) Core(TM) i7-8565U CPU @ 1.80 GHz, 1.99 GHz.
4.1 Model parameter description
This paper takes a microgrid as a simulation example. Then, 8,760 h of the actual load demand in the microgrid, the wind speed, and the light intensity of the microgrid in a year for this area are collected and uploaded in Liang et al. (2023).
4.2 Algorithm parameter setting
Before solving the model based on the heuristic/meta-heuristic optimization algorithm, it is necessary to set the memory of each parameter involved in each algorithm. In order to ensure the comparability of the algorithms, each heuristic optimization algorithm sets the same parameters in the population number and iteration times, and other algorithms determine the optimal parameter settings according to the grid search method (Bergh and Engelbrecht, 2003; Baker and Ayechew, 2003). The specific parameter settings of each algorithm are shown in Table 2; Table 3; Table 4; Table 5; Table 6.
TABLE 2 | Parameter setting of particle swarm optimization (PSO).
[image: Table 2]TABLE 3 | Parameter setting of the genetic algorithm (GA).
[image: Table 3]TABLE 4 | Parameter setting of the whale optimization algorithm (WOA).
[image: Table 4]TABLE 5 | Parameter setting of the gray wolf optimization algorithm (GWO).
[image: Table 5]TABLE 6 | Parameter setting of the improved cultural gray wolf optimization algorithm (CGWO).
[image: Table 6]4.3 Comparison of different optimization algorithms
To verify the convergence and convergence speed of the improved CGWO algorithm proposed in this paper, it is compared with PSO (Prakash et al., 2022), GA (Wang et al., 2022c, WOA (Singh and Sharma, 2017), and GWO algorithms (Ali et al., 2023). The convergence curves and convergence times of different algorithms are shown in Figure 4; Figure 5.
[image: Figure 4]FIGURE 4 | Convergence curves of different optimization algorithms.
[image: Figure 5]FIGURE 5 | Calculation time of different algorithms.
By using MATLAB, CGWO can converge to the optimal value of -1.1908 * 106 yuan at a faster speed. To verify the optimality of the convergence objective, this paper increases the number of population searches and iterations of other heuristic optimization algorithms and finally converges to the same objective function value. Therefore, it can be considered that the convergence value is the optimal objective function value of the wind-photovoltaic-storage microgrid planning model, and the specific decision variables obtained by the convergence of different algorithms are 395.8956, 397.6725, and 864.0066. The calculation time of different algorithms can be completed within 15 s, the solution efficiency can meet the requirements of planners for planning and design, and the efficiency is much higher than that of the manual scheme design and index comparison.
In this case study, the performance of several optimization algorithms to solve the planning model is compared. The key findings are as follows:
(1) PSO produced average initial solutions, eventually converging to a local optimal solution. PSO’s optimization time was moderate, but its performance was sensitive to parameter settings, making it less adaptable and robust.
(2) GA had poor initial solutions and convergence speed, but its diverse and global solutions made it a valuable component of the improved GWO, which combined GA with the stable and powerful optimization performance of GWO.
(3) WOA had better convergence and shorter calculation times compared to PSO. It is a meta-heuristic algorithm that is easier to apply and understand than PSO.
(4) CGWO outperformed all other algorithms in convergence speed and actual calculation time. Its combination of cultural genes enabled high-quality solutions to evolve and converge quickly.
To further verify the convergence of the algorithm, different optimization algorithms were repeated 20 times, and the curves were plotted in a boxplot, as shown in Figure 6. It can be found that CGWO has the best convergence, both in terms of the fluctuation of the boxplot (length of the boxplot) and the mean value of the boxplot, which are superior to other algorithms. Therefore, it can be concluded that the algorithm proposed in this paper has better convergence compared to other optimization algorithms.
[image: Figure 6]FIGURE 6 | Box diagram of convergence values for different optimization algorithms.
4.4 Sensitivity analysis of the model
4.4.1 Electricity price sensitivity analysis of different types of generators
4.4.1.1 Sensitivity analysis of wind power selling prices
The sensitivity analysis of different wind power sales prices is performed and shown in Figure 7. A sensitivity analysis was conducted on wind power sales prices by multiplying the reference price with corresponding electricity price coefficients ranging from 0.5 to 1.5 in increments of 0.05.
[image: Figure 7]FIGURE 7 | Optimal equipment capacity for different wind power selling prices.
Based on the findings presented in Figure 7, it can be inferred that an increase in the selling price of wind power will lead to an increase in the planned capacity of wind power equipment. When the electricity price coefficient exceeds 1 p. u., the planned capacity of wind power equipment increases, while the planned capacity of photovoltaic and energy storage equipment decreases. However, due to the ability of energy storage to smooth fluctuations, a certain capacity of energy storage equipment is still necessary.
4.4.1.2 Sensitivity analysis of solar power selling prices
The sensitivity analysis of different selling prices of photovoltaic power generation is performed, and the results are shown in Figure 8.
[image: Figure 8]FIGURE 8 | Optimal equipment capacity for different solar power sale prices.
When revenue from photovoltaic electricity sales increases, it often leads to an increase in the construction of photovoltaic equipment. However, if the revenue from photovoltaic electricity sales continues to remain high, it may result in a decrease in the construction of wind power equipment and an increase in the construction of energy storage equipment. This is because high revenue from photovoltaic electricity sales may make wind power projects less financially attractive, and energy storage equipment becomes more important to balance the intermittency of renewable energy sources, such as wind and solar energy. Therefore, it is important to consider the overall energy mix and the balance between different renewable energy sources and energy storage technologies to ensure a sustainable and reliable energy system.
4.4.1.3 Sensitivity analysis of storage power selling prices
The sensitivity analysis is conducted on the selling price of different energy storage power generation, and the results are shown in Figure 9.
[image: Figure 9]FIGURE 9 | Optimal equipment capacity for different battery storage power selling prices.
When the revenue generated by selling electricity from energy storage equipment increases, it incentivizes the expansion of the energy storage construction capacity. However, as the cost of selling electricity from energy storage equipment increases to a certain level, it may become more expensive to rely solely on energy storage to meet the load power demand. At this point, there may be an increased incentive to expand the construction capacity of photovoltaic equipment to help supplement the energy supply and lower costs.
4.4.2 Sensitivity analysis of the BES investment cost
The sensitivity analysis of investment and construction costs of different energy storage equipment is performed, and the results are shown in Figure 10.
[image: Figure 10]FIGURE 10 | Optimal equipment capacity of different energy storage equipment investment construction cost.
Figure 10 demonstrates that a decrease in the investment cost of energy storage equipment results in a significant increase in its optimal planning capacity. This is because energy storage plays a vital role in stabilizing power fluctuations within a microgrid. As such, a reduction in the construction cost of energy storage equipment incentivizes its greater utilization and expansion within the system.
4.4.3 Discussion on the costs and benefits
Through sensitivity analysis, the costs and benefits of different types of renewable energy on the planning results can be summarized as follows:
① With the increase in the WT selling price, the WT installation capacity increases. In comparison to PV selling prices, the advantage of WT will squeeze out some of the PV installation capacity. However, due to the greater uncertainty of WT fluctuations compared to PV, the WT installation capacity rapidly decreases when the selling price is below 1 p. u.
② With the increase in the PV selling price, the PV capacity increases to a certain extent, but after reaching a certain point, PV also needs some energy storage support and will not increase further. In comparison to WT selling prices, the advantage of PV will squeeze out some of the WT installation capacity. Since the output of PV is relatively regular (high radiation intensity at noon and low radiation intensity at other times), the PV installation capacity is replaced by the WT installation capacity only when the price is below 0.8 p. u.
③ BES plays an important role in suppressing the volatility and uncertainty of wind and solar energy. Therefore, when the electricity price for energy storage and sales decreases, it is necessary to retain a certain degree of installed energy storage capacity to promote the consumption of wind and solar resources. When the electricity price for energy storage and sales increases, the efficient combination of energy storage and photovoltaic will show “bundled growth.”
5 DISCUSSION AND LIMITATIONS
5.1 Advantages and disadvantages of the proposed method
The advantages of the proposed method for considering the selling income of renewable energy in microgrid capacity planning are summarized as follows:
(1) One of the key advantages of the proposed approach is its ability to capture the impact of varying electricity prices on microgrid capacity. By incorporating dynamic pricing models, different scenarios and the capacity planning solution can be obtained and analyzed. This allows microgrid operators to make more informed decisions and maximize their revenue potential.
(2) Another advantage is that the proposed method considers distributed power generation, which aligns with the growing trend of renewable energy integration in microgrids. By incorporating the revenue from selling excess power back to the grid, the deployment of DGs is incentivized.
(3) The proposed optimization algorithm is stable and has good convergence effect. Compared with traditional mathematical methods, such as branch-and-cut or cutting plane methods, the proposed algorithm can be applied easily to provide several satisfactory solutions for planners to select.
However, certain limitations are summarized as follows.
(1) Real-time volatility of electricity prices has not been considered. The uncertainties associated with price forecasting can indicate potential risks in the process of microgrid capacity planning. In future research, the uncertainty of prices can be accurately characterized through distributionally robust optimization (DRO) and integrated with the optimization model, fully considering the impact of price volatility on capacity planning (Zhou et al., 2021).
(2) Although feasible solutions can be provided, the optimal solution of the model cannot be guaranteed. Due to the non-convex and nonlinear nature of the proposed model, it can only be solved with the meta-heuristic optimization algorithm.
5.2 The potential impact of the communication mechanism
The intensity of communication among components has a significant impact on the microgrid system structure (Górski, 2022; Menniti et al., 2022). It is crucial to consider the area of information exchange, messaging patterns, and technologies employed. The use of messaging patterns in microgrid systems has gained significant attention due to their ability to facilitate efficient communication and coordination among various components. Górski (2022) provided valuable insights into the use of messaging patterns in different domains. By leveraging messaging patterns, microgrid components can exchange information in a standardized and reliable manner, enabling effective coordination and control. Menniti et al. (2022) presented experimental use cases that highlight the potential of enabling technologies in energy communities. These technologies can be leveraged in microgrids to enhance information exchange, such as advanced metering infrastructure, smart sensors, and real-time data analytics.
Therefore, if the communication between different microgrids and the communication range constraints between different types of devices are considered, it may influence the planning result of the microgrid equipment capacity.
6 CONCLUSION
This paper proposes a capacity planning model for wind-photovoltaic-storage equipment in microgrids and solves the model using the CGWO algorithm. The paper presents the following conclusions.
(1) This paper analyzes the whole life cycle costs and profits that need to be considered in the planning of wind-photovoltaic-storage equipment in a microgrid. Then, a capacity planning model of wind, photovoltaic, and storage equipment considering LCC and profits in the microgrid is established. In terms of life cycle cost, annualized investment cost, annual power outage compensation cost, annualized main grid purchase cost, and annualized equipment operation and maintenance cost are considered. In terms of profits of the system, the electricity sales income and scrapping income are considered.
(2) CGWO is applied to solve the proposed model efficiently. From the simulation results, it can be seen that CGWO improves the solution efficiency and convergence characteristics without increasing too much computational complexity. In addition, the robustness and adaptability of the algorithm are obviously improved compared with the traditional heuristic optimization algorithms.
(3) Sensitivity analysis on electricity selling price and energy storage investment and construction cost in the model are conducted to analyze the influence of electricity selling price and energy storage construction cost on the planning scheme. Case studies reveal the impact of the planned capacity of WT, PV, and BES increases in varying degrees when the selling price of different equipment decreases. In addition, microgrid planners will rapidly increase the proportion of BES investment when the investment cost of BES decreases.
Future research can investigate the integration of multiple energy resources, dynamic demand response, multiple microgrid interaction, and digital techniques and their impact on the capacity planning of microgrid equipment. Additionally, uncertainty optimization algorithms that can accurately depict load, renewable energy, and electricity price fluctuations will be further studied and applied in depth (MirjaliliSeyedaliLewis, 2016).
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In the context of energy crisis, the development of low-carbon integrated energy systems has become a prominent research area. This article addresses the challenges posed by high energy consumption and emissions in integrated energy systems by proposing a multi-stage planning method for low-carbon integrated energy that considers load time transfer characteristics. The first step involves examining the time transfer characteristics of demand response and analyzing the economic benefits of integrated energy systems participating in the electricity–carbon market. Subsequently, a multi-stage green low-carbon planning model for the integrated energy system is constructed. To validate the effectiveness of the proposed model, actual calculation results are obtained. These results demonstrate that the demand response, specifically in data centers, can significantly reduce the operational costs of integrated energy systems. Furthermore, the multi-stage low-carbon planning approach is shown to be more reasonable and economically beneficial compared to single-stage planning. Overall, this research article provides insights into the development of low-carbon integrated energy systems within the context of energy crisis. By considering load time transfer characteristics and employing a multi-stage planning method, this article highlights the potential for reducing costs and improving the overall efficiency of integrated energy systems.
Keywords: integrated energy systems, multi-stage planning, low-carbon planning, data center, demand response
1 INTRODUCTION
With the energy crisis becoming increasingly serious (Yang L. et al., 2022), energy conservation and low-carbon development have gradually become the development philosophy of all countries in the world. The integrated energy system can achieve multi-energy coupling, improve the consumption rate of renewable energy through electricity–gas–thermal complementarity, and reduce carbon emissions. It is an important means to achieve carbon emission reduction goals. Therefore, it has received widespread attention from countries around the world (Lv et al., 2021). Therefore, in the context of green and low-carbon development, this article focuses on the planning of integrated energy systems and conducts research on multi-stage green and low-carbon comprehensive energy planning considering carbon emissions, providing theoretical and technical support for relevant researchers and planners.
2 RELATED WORK
At present, there are relatively mature research studies on the planning of integrated energy systems that consider carbon emissions, but the impact of the electricity–carbon market has not been fully considered in the planning. Chen et al. (2021) constructed a multi-stage planning method for the integrated energy system under a tiered carbon trading mechanism. Zhang et al. (2015) proposed a planning scheme that considers reliability, energy efficiency, and carbon emissions for the expansion plan of the electrical thermal coupling integrated energy hub. Xiong et al. (2021) studied the optimal configuration of hydrogen energy storage based on the electrical thermal load characteristics of integrated energy systems and verified its feasibility of reducing energy supply costs and carbon emissions. Li et al. (1608) proposed a low-carbon operation optimization strategy considering the electricity gas thermal hydrogen demand response and stepped carbon emission costs. Yuan et al. (2023) studied the optimization and scheduling method of integrated energy at the park level under the carbon green certificate trading mechanism. Zhang et al. (2020) introduced a reward and punishment tiered carbon trading mechanism to address the collaborative planning problem of integrated energy systems, taking into account the uncertainty of electric heating flexible loads, and proposed an integrated energy system planning model. Luo et al. (2021) constructed an integrated energy optimization scheduling model for the carbon green certificate joint trading mechanism, which can effectively improve the consumption rate of renewable energy. Liu et al. (2023) proposed dual-level optimization scheduling of integrated energy that considers carbon emission flow and demand side response to address the issue of low-carbon scheduling of integrated energy, which can achieve low-carbon economic operation. Qiu et al. (2015a) introduced a carbon trading mechanism and constructed an electricity gas joint expansion planning model that considers both economic and low-carbon aspects. Wang et al. (2019) proposed an optimal-capacity allocation model for the integrated energy system in the park, effectively improving the consumption rate of renewable energy and reducing carbon emissions. Shen et al. (2020) proposed data-driven robust planning for industrial integrated energy systems in response to various uncertainties. Zeng et al. (2023) proposed a double-layer optimization model based on the improved non-dominated sorting genetic algorithm-II (NSGA-II) and mixed-integer linear programming (MILP). Zhang et al. (2023) proposed a low-carbon economic dispatch model for an integrated energy system that considers an LCES and carbon capture system. The aforementioned literature conducted in-depth research on the low-carbon operation planning of integrated energy systems, but did not consider the impact of electricity markets on the power balance of integrated energy systems.
Many scholars have conducted multi-stage planning research on the planning of integrated energy systems. Zhao et al. (2020) constructed a long-term planning method for the integrated energy system of a park that takes into account the uncertainty of wind, light, and load. Wei et al. (2022) proposed a multi-objective extended planning model for the integrated energy system of electricity gas interconnection based on IGDT to address the problem of load fluctuations in the electricity gas system. Cao et al. (2020) proposed a multi-stage integrated energy system planning model to address the shortcomings of single-phase construction issues. Chen et al. (2022) constructed a dual-layer optimization configuration model for PIES that considers optimal construction timing and cloud energy storage. This model can improve the planning economy and equipment utilization efficiency of PIES. Qiu et al. (2015b) considered the uncertainty of load and cost and proposed multi-stage planning for a typical scenario based on an electric pneumatic coupling integrated energy system. Santos et al. (2015) proposed a multi-stage distributed generation planning model considering short-term and medium- and long-term uncertainties. Unsihuay-Vila et al. (2010) proposed an expansion model for a multi-region and multi-stage integrated energy system with electricity and gas coupling. Ding et al. (2018) proposed a multi-stage stochastic programming model for the electricity gas integrated energy system based on “wait-and-see decision-making” in response to load uncertainty. However, the aforementioned literature did not conduct research on how to achieve multi-stage energy structure transformation of the integrated energy system while meeting carbon emission reduction goals.
3 DISCUSSION AND LIMITATIONS
In summary, the current research has not fully considered the impact of the electricity–carbon market, and the constraints of different carbon reduction goals on the planning of the integrated energy system were omitted. The time transfer characteristics of demand response, such as data centers in the integrated energy system, were overlooked. In addition, existing multi-stage planning methods lack consideration for the exchange of information among various components of the integrated energy system, and different components are in a relatively fragmented state, which cannot coordinate planning and operation well to achieve economic optimal results (Zhao Ning et al., 2023; Gorski, 2023).
Therefore, this article considers the time transfer characteristics of data center servers and electric refrigerators, studies the optimal timing of energy equipment construction, and constructs a low-carbon multi-stage planning model of an integrated energy system considering carbon neutrality paths. A low-carbon integrated energy system planning model with the goal of minimizing comprehensive costs is proposed. It is converted into mixed-integer linear programming and solved by Gurobi. Finally, the effectiveness of the proposed model is verified by the results of practical examples.
This article is mainly divided into four parts. The first part constructs the overall framework of the integrated energy system, clarifying the main energy types, energy equipment types, and load types included in the integrated energy system. The second part studies the time transfer characteristic of the demand response and constructs adjustable models for servers and electric refrigerators. The third part constructs the income model of integrated energy in the electricity–carbon market. The electricity market considers the income of the day-ahead electricity market and the day-ahead frequency modulation market, and the carbon market considers the economic income under the stepped carbon trading mechanism. The fourth part is example verification.
4 STRUCTURE OF THE INTEGRATED ENERGY SYSTEM
The structure of the integrated energy system in this article is shown in Figure 1. The energy supply side of the integrated energy system includes the superior power grid, natural gas grid, photovoltaic, and wind turbine. Energy conversion equipment includes cogeneration units, gas boilers, electric refrigerators, absorption chillers, and P2G equipment. Energy storage equipment includes electrical energy storage and heat storage devices. Energy demand includes conventional electricity, thermal, cooling loads, and new loads. The demand response refers to data center servers and electric refrigerators.
[image: Figure 1]FIGURE 1 | Integrated energy system structure.
In the early stage of integrated energy construction, due to factors such as economic efficiency and power grid foundation, a large number of high-emission and high-energy-consumption energy equipment was constructed, resulting in a low penetration rate of renewable energy and high overall carbon emissions in the park. The energy utilization rate needs to be improved. Under the carbon goal, the integrated energy system needs to gradually retire high-emission and high-energy-consumption units, invest in more green and environmentally friendly energy equipment, and develop into a green and low-carbon integrated energy system mainly based on renewable energy.
5 TRANSFER CHARACTERISTIC OF DATA CENTER DEMAND RESPONSE
With the vigorous development of the new generation of information technology, the scale and volume of data centers have also grown rapidly. Due to the unique time migration characteristics of computing resources, the data center has become one of the most potential demand response resources. The new load mentioned previously mainly refers to the data center load, which generally includes servers and electric refrigerators. An adjustable model for the server and electric refrigerator is given in the following section.
5.1 Data center server model
The data center server is the main device for processing task requests. The task requests in data centers can be divided into two types: delay sensitive and delay tolerant. Among them, delay-tolerant task requests have lower execution time requirements and only need to be executed within the delay limit, which has good time transfer potential. The execution order of delay-tolerant task requests can be reasonably arranged based on the current energy supply situation of the integrated energy system.
The total power consumption of data center servers is related to active servers and task requests processed by servers, which can be expressed as (Yang T. et al., 2022)
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Here, Psrv,n,s,t is the total power consumption of the server at time t under scenario s in the nth year; mn,s,t is the number of active servers at time t under scenario s in the nth year; Pn is the idle power consumption of the server; Pp is the full power consumption of the server; vn,s,t is the total number of tasks processed by all active servers at time t under scenario s in the nth year; and F is the maximum number of tasks processed by a single server.
The aforementioned formula is simplified and converted into a linear function of active servers and task requests:
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Here, c1 and c2 are server performance-related parameters.
Some task requests are delay tolerant and can be adjusted in execution time.
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Here, vaj n,s,t is the number of delay-tolerant task requests at time t under scenario s in the nth year. vunaj n,s,t is the number of delay-sensitive task requests at time t under scenario s in the nth year. vaj -,n,s,t is the number of delay-tolerant task requests reduced in execution at time t under scenario s in the nth year. vaj +,n,s,t is the number of delay-tolerant task requests increased in execution at time t under scenario s in the nth year.
The linear relationship between the overall power consumption of data centers and server power consumption can be expressed as
[image: image]
Here, Pdc,n,s,t are the power consumption at time t under scenario s in the nth year of the data center and PUE is the energy efficiency coefficient of the data center.
5.2 Adjustable model of the electric refrigerator
The server generates a certain amount of thermal energy when processing computing tasks. In order to ensure the normal operation of the data center servers, the temperature of the data center computer room needs to be maintained within a certain range, so the data center needs to be equipped with sufficient electric refrigerators. At each moment, the data center server generates a certain amount of thermal energy, while the electric refrigerator provides a certain amount of cooling capacity. Therefore, based on the first-order equivalent thermal parameter model, the temperature variation relationship between the beginning and end of the time period can be obtained as follows (Ding et al., 2018):
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Here, Tin,n,t,s is the indoor temperature of the computer room at time t under scenario s in the nth year. Tout,n,t,s is the outdoor temperature at time t under scenario s in the nth year. R and C are the equivalent thermal resistance and equivalent thermal capacity of the electric refrigerator load, respectively. Qn,s,t is the cooling capacity of the computer room at time t under scenario s in the nth year. Qco,n,s,t is the cooling capacity of the electric refrigerator at time t under scenario s in the nth year. Ϛ is the ratio of server thermal energy to power consumption. Tmax temp and Tmin temp are the upper and lower limits of the computer room temperature, respectively, to ensure the normal operation of the data center. This article stipulates that the temperature of the computer room must be maintained between 18°C and 24°C (ASHRAE, 2021; Wu et al., 2023).
Considering that the electric refrigerator in the computer room is a variable-frequency air conditioner, the relationship between air conditioning power consumption and air conditioning cooling capacity is
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Here, k1, k2, l1, and l2 are a constant coefficient; Pco,n,s,t is the air conditioning power consumption of the computer room at time t under scenario s in the nth year. Pco max is the rated power consumption of the computer room air conditioner.
Therefore, while ensuring the temperature of the data center computer room, the cooling capacity of the air conditioning can be adjusted by adjusting the power consumption of the air conditioning to achieve load time transfer.
6 ECONOMIC BENEFIT IN THE ELECTRICITY–CARBON MARKET
6.1 Economic benefits in the electricity market
The economic benefits of the integrated energy system in the day-ahead electricity market conclude the benefits of the day-ahead electricity market and the day-ahead auxiliary frequency regulation market. In the day-ahead electricity market, integrated energy systems can purchase and sell electricity. In the frequency regulation market, the integrated energy system obtains economic benefits by providing frequency modulation capacity through the demand side response. The integrated energy system reports adjustable capacity, tracks the frequency modulation signal of the dispatching center, and finally, settles the frequency modulation capacity and frequency modulation mileage according to market rules (Liu et al., 2021). The revenue model of the day-ahead electricity market and frequency regulation market can be expressed as
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where C1,n and C2,n represent the economic benefits of the day-ahead electricity market and the frequency regulation market in the nth year, respectively. en,s,t represents the electricity price at time t of the sth typical scenario in the nth year. pe,sell,n,s,t represents the power sold to the superior power grid at time t of the sth typical scenario in the nth year. Pe,buy,n,s,t represents the power purchased from the superior power grid at time t of the sth typical scenario in the nth year. CAPn,s,t represents the bid winning capacity of the frequency regulation market at time t of the sth typical scenario in the nth year. λcp,n,s,t is the capacity price at time t of the sth typical scenario in the nth year. λmp,n,s,t is the mileage price at time t of the sth typical scenario in the nth year. Rmileage is the mileage coefficient. A is the demand side response performance coefficient.
6.2 Economic benefits of the carbon trading market
A certain capacity of P2G equipment has been built in the integrated energy system. On one hand, it can convert carbon dioxide generated into methane, effectively reducing carbon emissions. On the other hand, P2G equipment can play a role in energy storage. During the peak period of renewable energy generation, the energy generated from renewable energy that cannot be consumed is converted into chemical energy for storage, which effectively improves the renewable energy consumption rate of the integrated energy system. The integrated energy system can sell excess carbon quotas in the carbon market for profit (Zhou et al., 2023).
6.2.1 Integrated energy system carbon emission quota calculation
The carbon emission sources in the integrated energy system include electricity purchased from the superior power grid, CHP units, and gas boilers. Moreover, this article assumes that the electricity purchased from the superior power grid is all produced by coal-fired units. Therefore, the carbon emission quota model is (Yuan et al., 2023)
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where EˊIES,n, Eˊbuy,n, EˊCHP,n, and EˊGB,n represent the carbon emission rights quotas obtained by the integrated energy system, purchase of electricity from the superior power grid, CHP units, and gas boilers in the nth year, respectively. δˊe, δˊCHP, e, δˊCHP, h, and δˊGB, h represent the carbon emission rights quotas obtained by the superior power grid for purchasing electricity per unit, coal-fired unit production per unit, CHP unit production per unit of electricity and thermal power, and gas boiler production per unit of thermal power, respectively. Pg,buy,n,s,t is the purchased gas at time t of scenario s in the nth year. PCHP,n,s,t and HCHP,n,s,t are the electricity production and residual thermal of the gas turbine during the time period t of scenario s in the nth year. HGB,n,s,t is the thermal production of the gas boiler during the time period t of scenario s in the nth year. T is the scheduling cycle.
The actual carbon emission model of the integrated energy system can be expressed as
[image: image]
6.2.2 Stepped carbon trading mechanism
The number of carbon emission quotas that can be purchased or sold in the carbon trading market by the integrated energy system can be expressed as
[image: image]
This article adopts a tiered carbon trading mechanism, setting multiple price ranges. When the integrated energy system needs to purchase more carbon emission quotas, the corresponding range prices will also be higher, thereby further limiting carbon emissions (Yang T. et al., 2022).
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where CCO2,n is the economic return of the carbon trading market in the nth year, λ is the carbon trading base price, α is the price growth rate, and d is the length of the unit carbon emission interval.
7 INTEGRATED ENERGY SYSTEM MULTI-STAGE PLANNING
Due to the uncertainty of load growth, for planning over 10 years, single-stage planning easily leads to redundant or insufficient construction capacity due to inaccurate load forecasting. Therefore, for long-term planning, multi-stage planning is generally adopted, which can effectively reduce planning and construction risks.
7.1 Objective function
The equipment for planning in this article includes photovoltaics, wind turbines, CHP units, electrical energy storage, and thermal energy storage. With the goal of minimizing multi-stage integrated costs, a planning model for the integrated energy system is constructed. The integrated cost includes construction cost, operating cost, day-ahead market revenue, and carbon market revenue (Zhou et al., 2023):
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where Cconstr,k is the equipment construction cost for the kth planning stage. Cope,n, CDA,n, and CCO2,n represent the operating cost of the integrated energy system in the nth year, the daily market revenue, and the carbon market revenue, respectively. RAk, Rn, and RN represent the discount coefficients for the Akth planning year, the nth planning year, and the Nth planning year, respectively. Ak is the starting year of the kth planning stage. N is the total planning years. m is the type of equipment. M is the type of equipment, M = {PV, MT, CHP, GB, ESS, HS}. Cm,k is the cost per unit capacity of m equipment construction. Xm,k is a 0–1 variable, representing whether m equipment is constructed. Nm,k is the capacity of m equipment construction. LRV is the residual value of the equipment at the end of the planning period. Mx is the remaining equipment at the end of the planning period. cconstr,j represents the construction cost of j equipment. Tj is the number of years in use of the jth equipment among Mx at the end of the planning period. cdep,j is the annual depreciation cost of the jth equipment.
7.2 Constraints

(1) Energy equipment quantity constraints
Due to factors such as construction cost, there is an upper limit on the number of energy equipment to be planned for the integrated energy station in the station:
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where Nmax m,k is the maximum capacity of m-type energy equipment in the kth planning stage of the integrated energy system.
(2) Energy purchase constraints
Due to capacity limitations of gas and electricity stations, there are capacity limits for the purchased electricity and gas:
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(3) Energy and heat storage constraints
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where En,s,t is the energy storage capacity at time t of scenario s in the nth year. Pess,n,s,t is the energy storage capacity at time t of scenario s in the nth year. Δt is time interval. Emin and Emax are the lower and upper limits of the energy storage capacity, respectively. Qn,s,t is the heat of heat energy storage at time t of scenario s in the nth year. HHS,n,s,t is the power of thermal energy storage at time t of scenario s in the nth year. Qmin and Qmax are the lower and upper limits of electric energy storage capacity, respectively.
(4) P2G constraints
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where GP2G,n,s,t is the gas generated by the P2G equipment at time t of scenario s in the nth year. ηP2G is the efficiency of P2G. ξ is the low calorific value of gas. PP2G,n,s,t is the electrical power consumed by the P2G equipment at time t of scenario s in the nth year.
(5) Data center demand response constraint Eqs 1–13.
7.3 Model solving
According to the method proposed by Zhang et al., this article linearizes the tiered carbon trading price of Eq. 20. The integrated energy multi-stage planning model is a mixed-integer linear programming problem. This article uses PyCharm 2019.1.1 x 64 to call Gurobi 9.1.2 to solve the aforementioned model.
8 CASE ANALYSIS
The calculation example selects an electric gas thermal coupling integrated energy system with a data center in southern China and selects four typical-day data of spring, summer, autumn, and winter, as shown in Supplementary Figure S1 and Supplementary Figure S2 in the appendix. The electric heating and cooling load curve is shown in Supplementary Figure S3, and the annual load increases by 5% (Zhao X. et al., 2023). It is assumed that the planning period of this article is 30 years; carbon neutrality will be achieved at the end of the planning period, and the planning can be divided into five stages at most (Cao et al., 2020; Chen et al., 2022) for parameter settings such as investment, maintenance costs, and lifespan of each equipment to be built. It is assumed that CHP 1,320 kW and GB 850 kW have existed, the net residual value of equipment is 0.06, and the discount rate of investment is 8%. The parameter settings for demand response are shown in Appendix Table 1. The benchmark value for carbon trading prices in this article is 50 Y/t, with an annual growth rate of 6% (Ding et al., 2022). To compare and verify the superiority of the multi-stage planning method for optimizing construction timing proposed in this article, the following planning schemes are set up:
1) Scheme 1: Single-stage planning without data center demand response
2) Scheme 2: Single-stage planning with data center demand response
3) Scheme 3: Multi-stage planning of equipment to be built in the 1st, 7th, 19th, 25th, and 30th years of the planning period without data center demand response
4) Scheme 4: Multi-stage planning of equipment to be built in the 1st, 7th, 19th, 25th, and 30th years of the planning period with data center demand response
5) Scheme 5: Multi-stage planning with equipment construction year to be determined without data center demand response
6) Scheme 6: Multi-stage planning with equipment construction year to be determined with data center demand response
TABLE 1 | Parameter settings for demand response.
[image: Table 1]The configuration results of the equipment in each scenario are shown in Table 2. The cost composition of each planning scheme is analyzed, as shown in Figure 2:
(1) By analyzing schemes 1 and 2, 3 and 4, and 5 and 6, it can be concluded that the solution considering the response to new load demand has less equipment construction capacity and lower overall cost. Taking scheme 1 and scheme 2 as examples, it can be observed from Figure 2 that the construction cost and operation cost of planning scheme 2 are lower than those of scheme 1. There is no obvious difference in the carbon emission trading market income, but the electricity market income increases. This is because scheme 2 considers the demand response of the new load. On one hand, it can optimize the operation mode of the integrated energy system and reduce the operation cost through the time transfer of the new load. In addition, it can increase the flexible adjustment ability of the integrated energy system and increase the revenue in the day-ahead frequency regulation market. Similarly, scheme 4 considers the demand response, and its overall cost is lower than that of scheme 3. Schemes 5 and 6 also have the same conclusion.
(2) It can be observed that multi-stage planning has lower total costs and is more economical than single-stage planning because multi-stage planning can avoid construction redundancy and unnecessary operating and depreciation costs.
TABLE 2 | Comparison of planning schemes.
[image: Table 2][image: Figure 2]FIGURE 2 | Cost composition of each scheme.
Comparing the aforementioned six schemes, the multi-stage planning scheme considering the demand response is the most economical. Therefore, the following is a specific analysis of the scheduling results and carbon emissions of scheme 6.
8.1 Analysis of integrated energy system operation results
The integrated energy system includes electricity, thermal, and cooling loads. The cooling power balance is relatively simple. Therefore, this article selects scheme 6 to analyze the electricity and thermal power balance for the summer of 25 years.
It can be observed from Figure 3 that the electrical load of the integrated energy system is mainly met by photovoltaic power generation and wind power generation. Among these, photovoltaic power generation has a significant peak valley difference, but it can fill the power generation gap in the morning and evening when there is no light. At the same time, the peak period of photovoltaic power generation is at noon, and the peak period of wind power generation is in the morning and evening. The combination of photovoltaic power generation and wind power generation can reduce the peak valley difference of renewable energy power generation so as to better match the load curve. The power generated by CHP is relatively stable due to the poor regulation performance and high regulation cost of the CHP unit, which generally bears the basic load. The adjustable load of the data center includes electric refrigerators and servers. After the demand response, the difference between the peak and valley of the load power of the data center is significantly reduced. Energy storage provides flexible regulation capabilities for integrated energy systems, charging during periods of high renewable energy generation and discharging during periods of low renewable energy generation, thereby avoiding the phenomenon of wind and light abandonment. The power transmission of the power grid mainly plays a role in suppressing the load and mismatching the power curve. It serves as the main source of power supply during periods when renewable energy is scarce, ensuring the balance of power in the integrated energy system.
[image: Figure 3]FIGURE 3 | Electric power balance diagram.
It can be observed in Figure 4 that the heat load is mainly borne by gas boilers and CHP units, with a bimodal thermal load pattern and peak periods of 7–9 and 17–20. Due to the poor regulation performance of gas boilers and CHP units, the regulation speed and range are limited, and the thermal generation power cannot change rapidly. Heat storage plays a role in suppressing the fluctuation of thermal load and can, to some extent, reduce the peak valley difference of thermal load.
[image: Figure 4]FIGURE 4 | Thermal power balance diagram.
As shown in Figure 5, the difference between the peak and valley of adjusted server power is smaller, and demand response shifts the load from 8–17 and 19–22 to 1–5, 16–18, and 22–24, realizing load peak shaving and valley filling. The electric refrigerator ensures that the temperature of the machine room is between 19°C and 24°C. Data center demand response can effectively improve the load curve of the comprehensive energy system, thereby making the load curve more consistent with the energy supply curve.
[image: Figure 5]FIGURE 5 | Demand response curve of the data center.
Figure 6 shows that scheme 6 is planned in five stages. In the starting year of each stage, renewable energy increases significantly and carbon emissions decrease significantly. This is because photovoltaic and wind power are invested in the starting year of each stage. As the years increase, the load constantly increases, with non-renewable energy sources and carbon emissions slightly increasing. In the 30th year, the carbon emission of the integrated energy system is 0, achieving the goal of carbon neutrality.
[image: Figure 6]FIGURE 6 | Carbon emission of the integrated energy system.
8.2 Analysis of the impact of carbon emission targets
The carbon emissions of the integrated energy system depend on the energy structure and the emission coefficients of various pieces of energy equipment. Carbon emission targets are one of the most important factors that influence the energy structure of integrated energy planning. This article sets different carbon emission targets and analyzes the impact of different carbon emission constraints on the results of integrated energy system planning.
1) Carbon-free emission target: no carbon emission constraints
2) Carbon peaking target: carbon peaking is required before the end of the planning period
3) Carbon-neutrality goal: to achieve carbon neutrality at the end of the planning period
4) Carbon-neutrality goal in advance: carbon neutrality before the end of the planning period
Using scheme 6 for multi-stage planning, the planning results can be obtained (see Table 3):
(1) The carbon emission target affects the total cost. From the scheme of carbon target 1, if carbon emission constraints are not considered, the integrated energy system will greatly reduce the construction capacity of photovoltaic and wind power. Therefore, the power balance mainly relies on CHP units and external power grids. At the same time, the capacity of energy storage and P2G equipment construction in the integrated energy system was also greatly reduced. This is because the capacity of renewable energy decreased, which leads to integrated energy system reduction in the demand for flexible resources to handle load and renewable energy fluctuation.
(2) The stricter the carbon emission constraints, the more the renewable energy needs to be built in the integrated energy system. At the same time, more energy storage and P2G equipment need to be built to suppress fluctuations in renewable energy, resulting in an increase in total costs.
TABLE 3 | Comparison of planning schemes for different carbon emission targets.
[image: Table 3]From Figure 7, it can be observed that without carbon emission constraints, such as carbon target 1, as the load continues to increase, the carbon emissions of the integrated energy system continue to increase, which clearly does not comply with the concept of low-carbon development. For carbon target 2, the carbon peak target is achieved at the beginning of the second stage, and the carbon emissions in the subsequent planning stages are lower than those in carbon target 1. Carbon targets 3 and 4 have both achieved the carbon-neutrality goal, while carbon goal 4 is relatively early, which achieves in the fourth planning stage.
[image: Figure 7]FIGURE 7 | Carbon emissions of different schemes.
9 CONCLUSION
This article focuses on the low-carbon planning of an integrated energy system that includes a data center. It investigates the adjustable characteristics of the data center and analyzes the economic benefits of the integrated energy system participating in the electricity–carbon market. Furthermore, it develops a multi-stage planning model for achieving low-carbon integration, taking into account the time transfer characteristics of the data center in line with carbon neutrality goals. The calculation results reveal the following findings:
(1) The inclusion of demand response in the data center can lead to a reduction in the construction, operation, and depreciation costs of energy equipment. Additionally, demand response contributes to increased income for the integrated energy system in the electricity market, resulting in further cost reduction for the overall planning scheme.
(2) Multi-stage low-carbon planning for the integrated energy system proves to be more reasonable and economically advantageous than single-stage planning. With multi-stage planning, the need for pre-building excessive energy equipment is avoided, thereby reducing unnecessary operating costs and depreciation expenses. Furthermore, multi-stage planning enables adjustments in the capacity of energy equipment construction based on the rate of load growth, ensuring a more consistent alignment between the load curve and energy supply curve.
(3) The carbon emission target significantly impacts the planning scheme of the comprehensive energy system. Stricter requirements for carbon reduction result in higher total planning and construction costs for the integrated energy system. In practical engineering applications, a careful consideration of the economic and low-carbon aspects is necessary, taking into account the specific circumstances.
In summary, this article sheds light on the low-carbon planning of integrated energy systems, specifically focusing on data centers. By examining the adjustable characteristics of the data center, analyzing economic benefits, and presenting a multi-stage planning model, this article highlights the potential for reducing costs and achieving greater efficiency. The findings emphasize the importance of balancing economic considerations and low-carbon objectives in real-world applications.
In future research, the scale of this study can be expanded to regional integrated energy systems, which include multiple integrated energy systems, taking into account the resource characteristics of different integrated energy systems, and achieving overall optimal operation through power exchange. At the same time, in terms of demand response, more different types of flexible resources, such as electric vehicles, can be considered. By coordinating and scheduling various types of flexible resources, the operational economy and environmental protection of multiple integrated energy systems can be optimized, thereby achieving green and low-carbon planning of regional integrated energy systems.
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As a complex dynamically strongly coupled system, DC distribution system often suffers from voltage collapse due to system resonance. In order to suppress distribution network resonance and bus voltage fluctuation, this paper proposes a hybrid control algorithm to suppress DC distribution system resonance to further enhance DC system stability. In this paper, the output voltage of the line regulation converter (LRC) is the target of the study. A current prediction model is introduced in the inner loop of the converter control, which can enhance the dynamic responsiveness of the system and eliminate the PWM modulator and parameter tuning, achieve the unitization of the inner loop of the current. By constructing the inverse model of the controlled object, the outer voltage loop is unitized under the control of two-degree-of-freedom. The hybrid control enables the bus voltage to follow the reference voltage exactly, which suppresses resonance peaks in the voltage transfer function and reduces bus voltage fluctuations. Finally, the proposed hybrid control algorithm is simulated and verified in MATLAB/Simulink platform. The results show that the control strategy can effectively suppress the resonance and bus voltage fluctuation of the DC distribution system and enhance the dynamic characteristics and anti-interference capability of the distribution network.
Keywords: DC distribution system, stability analysis, hybrid control algorithm, model predictive control, resonance suppression
1 INTRODUCTION
In recent years, low-voltage DC power distribution technology (Pan et al., 2020; Prabhakaran and Agarwal, 2020; Zhao et al., 2021) has gradually developed with the wide application of high-voltage DC transmission technology in power systems. Compared with AC distribution systems, DC distribution systems have no problems of system synchronization, frequency regulation and reactive power control, and they also have the advantages of high transmission efficiency and low construction cost (Zhang and Ruan, 2019; Jiang et al., 2020). However, there are various technical challenges to the further utilization of the DC power distribution system, among which the resonance problem is particularly prominent, which may lead to bus voltage collapse and affect the normal operation of the distribution system.
1.1 Previous and related work
The DC power distribution system usually rely on various power electronic converters to access distributed power sources such as photovoltaic cells, fuel cells, and wind turbines (Su et al., 2018). These distributed power sources are influenced by environmental and climatic factors, while the power electronic converters have nonlinear characteristics and the constant power load (CPL) in the system have negative impedance properties (Li et al., 2021), which make the DC distribution system prone to instability. The existing research on the analysis of DC distribution system instability mechanism is mainly divided into two kinds of analysis: small signal stability analysis and large signal stability analysis. Small signal stability analysis includes impedance matching analysis based on frequency domain (Shafiee et al., 2014; Gao et al., 2017) and eigenvalue analysis (Su et al., 2018; Cheng et al., 2020) and uses a linearization method to determine the stability of the system when it is subjected to small disturbances near the operating equilibrium point. The large-signal stability analysis (Martínez-Treviño et al., 2021; Kowsari et al., 2021) focuses on the effects of large disturbances such as sudden load changes and load dumping on system stability, and estimates the asymptotic stability region of the system by combining model construction with stability theorems. According to the study, constant power load (Hamzeh et al., 2016; Kim et al., 2016; Xu et al., 2019) has a large impact on the DC distribution system, and its negative impedance nature amplifies the disturbance signal, which leads to the system instability by failing to satisfy the stability criterion (Tabari and Yazdani, 2014). To address the impact of constant power load, a distributed nonlinear controller based on event-triggered communication is proposed in the literature (Han et al., 2018), which enhances the damping performance of the system while achieving accurate equalization and voltage regulation in the DC distribution system. In addition, using time-stamp technique and network delay compensator to calculate and compensate the time delay can enhance the effectiveness and robustness of the system (Vafamand et al., 2019) and enhance the effect of constant power load effects.
The main concern of the current research on DC distribution system is the overall stability of the system, while the resonance problem of the stability problem, which is the focus of the research on AC system, is often neglected in DC system, so a comprehensive and in-depth study of the resonance problem in the DC area is needed. At this stage, the research methods for DC resonance suppression are mainly active damping methods that do not generate additional losses. Literature (Zhang et al., 2022; He et al., 2020) used the stability enhancement method of virtual impedance to improve the resonance suppression capability of DC system, but this kind of method is easy to cause the output power of the converter to exceed the limit. Literature (Wu et al, 2017) simulates the rotational inertia and damping capacity of a virtual synchronous generator in a DC system to suppress resonance. This kind of method does not require precise acquisition of system parameters, but it tends to lead to uneven power distribution because it needs to be coupled with sag control. Another part of the study found that for the second harmonic on the DC bus and the bandwidth limitation of the voltage control loop, the resonance effects can be eliminated by enhanced trap filters and resonance regulators (Liu et al., 2020), but this method requires the establishment of a high-order system impedance transfer function, which complicates the analysis process. The literature (Ye et al., 2017) modifies the DC converter output terminal characteristics from the perspective of system impedance to eliminate the system resonance path, thus suppress resonance. Although this method uses a reduced-order impedance model, which does not require the establishment of complex impedance transfer function expressions, there are still some errors in the actual model. Based on the existing research on DC distribution system resonance, the reasons for DC distribution system resonance can be summarized into two aspects: the converter itself and the interaction between different converters. The converter itself causes include.
1) The existence of nonlinear switch makes the system often run nonlinear phenomenon.
2) The high order system composed of filter unit and line impedance makes the transfer function prone to resonance peaks.
Reasons for different converter interactions include.
1) The filtering devices and line impedances of different converters interact.
2) The interaction between the power supply and the constant power load generates resonance.
At the same time, micro source output change, load mutation and working mode change are easy to increase the resonant risk, resulting in bus voltage fluctuation.
1.2 Contributions
In view of the above research, this paper proposes a resonance suppression strategy for DC distribution systems based on a hybrid control algorithm. This strategy takes the LRC, which causes the resonance of the DC distribution system, as the research object, and combines two-degree-of-freedom control and current model prediction control to accurately suppress the resonance of the DC bus voltage with known distribution system structure and parameters. According to the author’s knowledge, the innovations of this paper compared with other studies are as follows: 1) The reduced order hybrid control algorithm is proposed in the LRC for the first time. Compared with the conventional voltage-current double closed-loop control and single two-degree-of-freedom control, the completely reduced order hybrid algorithm has great advantages in dynamic response speed, flexibility of processing system constraints, etc. At the same time, it also eliminates the PWM modulator and tuning of control system parameters, which improves the closed-loop characteristics of the system. 2) The proposed method eliminates the resonant peak in the transfer function of the LRC output voltage and the dynamic interaction between converter units, effectively suppressing the resonant problem of the DC distribution system and the bus voltage fluctuation phenomenon, and maintaining the bus voltage stability of the distribution network. 3) The method in this paper realizes the unitization of voltage and current transfer function. The influence of line parameters and distributed capacitance is eliminated in the outer loop, and the prediction of current in the inner loop enhances the robustness of the system and improves the power supply quality of the distribution network.
The rest of this work is structured as follows: Section 2 describes the DC distribution system modeling process including various types of power supplies and loads. Section 3 analyzes the resonant characteristics of the DC distribution system under the conventional voltage and current double closed-loop control. In Section 4, the reduced order hybrid control algorithm is proposed and the resonant characteristics of the distribution network are analyzed. In Section 5, MATLAB/Simulink is used to build the DC distribution system topology, which verifies the superiority of the new control strategy for the resonant suppression of the DC distribution system and the reduction of bus voltage fluctuation. Section 6 summarizes this work and looks forward to future work.
2 DC DISTRIBUTION SYSTEM MODELING
Figure 1 shows the typical structure of a DC distribution system, which consists of an AC power grid, distributed power supply, energy storage device and various loads. For a DC/DC converter where the load is purely resistive, the output power of the converter remains constant as long as the output voltage of the converter is strictly regulated to be constant, and in turn the input power is almost constant, so this converter can simulate a realistic constant power load (Hassan et al., 2019). Both the grid and the distributed power sources are connected to the DC bus through power electronic converters to inject energy into the system and support the stable operation of various loads.
[image: Figure 1]FIGURE 1 | Architecture of the DC distribution system.
Because there are many kinds of power electronic devices involved in the operation process of DC distribution system, it is easy to produce complex interactions. In order to verify the accuracy of the proposed algorithm, a simple DC distribution system model as shown in Figure 2 is built according to the LRC, constant power load model and multiple photovoltaic cell models. The model consists of two LRCs and two CPLs. Due to the instability of the photovoltaic system output, it is used as a constant power micro source to add light at 2 s and cut off light at 4 s, so as to simulate the influence of photovoltaic on the whole system in light and dark conditions. Ceq is the bus support capacitance, Cxi, Rxi is the line distribution capacitance. The specific values of various system parameters in the figure are shown in Table 1, and the control parameters are shown in Table 2. The values of parameters listed in the table are the optimal parameters verified by seveal simulations.
[image: Figure 2]FIGURE 2 | Simple model of DC distribution system.
TABLE 1 | Parameter of DC distribution system.
[image: Table 1]TABLE 2 | Control parameters.
[image: Table 2]3 ANALYSIS OF DC DISTRIBUTION SYSTEM RESONANCE UNDER CONVENTIONAL CONTROL
For DC distribution system, the most important thing is to control bus voltage fluctuation and suppress system resonance. The equivalent impedance analysis can effectively determine the resonance of the system. By studying the LRC output voltage transfer function, we can obtain the bus voltage fluctuation of the DC distribution system, which provides a theoretical basis for suppressing resonance and bus voltage fluctuation.
In this paper, the photovoltaic system controlled by MPPT is connected to the power grid as a micro-source disturbance. Therefore, during the resonance analysis, the small-signal equivalent circuit of the DC distribution system, as shown in Figure 3, is established only according to the small-signal models of LRC and CPL. Where, ZLRCi is the equivalent impedance of LRC. [image: image] is the voltage source obtained by the LRC through the Davinin equivalent transformation. YCPLi is the equivalent admittance of CPL. [image: image] is the current source obtained by the Norton equivalent transformation of the CPL. Yceq is the equivalent admittance corresponding to the bus support capacitance. By further simplifying the small signal equivalent circuit, the distribution network model can be obtained including the power supply subsystem and the load subsystem equivalent, where ZLRC = ZLRC1//ZLRC2, YCPL = YCPL1+YCPL2+YCeq.
[image: Figure 3]FIGURE 3 | DC distribution system small signal equivalence model.
ZLRC and ZCPL can be expressed by Eq. 1, where [image: image] and [image: image] are the phase of the equivalent impedance of LRC and CPL respectively. LLRC and RLRC are the inductive and resistive parts of the equivalent impedance of LRC. CCPL and RCPL are the capacitive and resistive parts of the equivalent impedance of CPL, respectively.
[image: image]
The expression of DC bus voltage can be calculated as follows:
[image: image]
According to the established distribution network equivalent model, the frequency responses of the LRC equivalent impedance ZLRC and the CPL equivalent impedance ZCPL = 1/YCPL are shown in Figure 4. Literature (He et al., 2013) points out that when the equivalent impedance of the power supply and the equivalent impedance of the load cross, the two subsystems may interact. Therefore, at the frequency of 17.9 and 1030 Hz in Figure 4, the amplitude characteristic curves of ZLRC and ZCPL have intersection points A and B, respectively, and the phase difference between ZLRC and ZCPL at point A is much less than 180°, so there is no interaction between them. At point B, the phase difference between the two is close to 180°, which means that the power subsystem interacts with the load subsystem at this frequency point. And at the intersection B, LRC appears capacitive and CPL appears inductive, which forms a resonant loop for the whole system. Observe the DC bus voltage expression of Eq. 2 so that the denominator part is zero, which can be approximated as shown in Eq. 3, which is similar to the second-order system expression 4). Therefore, the damping coefficient of the micromesh at the resonant frequency can be obtained according to the characteristics of the second-order system, as shown in Eq. 5.
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[image: Figure 4]FIGURE 4 | Bode chart for ZLRC and ZCPL.
By substituting [image: image] = -74.4° and [image: image] = 77.1° into the damping coefficient formula, the equivalent damping coefficient is about 0.25, so the system does not have enough damping to suppress the resonance. Therefore, there is a risk of resonace in the DC distribution system under conventional control.
Take LRC1 in simple DC distribution system model as an example. The conventional control of LRC adopts voltage and current double-loop control, and the droop control (Sharma et al., 2023) is adopted between different LRC to ensure power distribution. The control block diagram is shown in Figure 5. Where Rd is the sag coefficient; GLu is the conventional voltage outer-loop transfer function; GLi is the conventional voltage inner-loop transfer function. Gdc is the transfer function expression of duty cycle dL to im obtained from the dynamic mathematical model of the LRC after small signal processing; GCo denotes the frequency domain model of the voltage regulator capacitor and its parasitic resistance; GLL denotes the frequency domain model of the line conductance; GCx represents the frequency domain model of line distributed capacitance.
[image: Figure 5]FIGURE 5 | Conventional control block diagram of simulated energy storage devices.
According to Figure 5, the following control system output voltage transfer function can be found:
[image: image]
Here,
[image: image]
The output voltage transfer function udc/udc_ref shown in Eq. 6 of the control system has complex high order. In MATLAB, the above formula is used to calculate the highest order term of the numerator to the 29th power and the highest order term of the denominator to the 31st power. Based on the analysis of the system structure, it can be seen that the parallel operation of multiple power supply system makes the voltage fluctuation of the distribution network more severe, and the CPL of constant power load has the negative impedance characteristic, which further affects the complexity of the voltage fluctuation of the DC distribution system. According to Eq. 6, the Bode diagram of the LRC output voltage under conventional voltage and current double-loop control can be drawn, as shown in Figure 6. In the figure, the amplitude-frequency characteristic curve of the system appears a resonant peak at a frequency of about 767Hz, with a peak value of −25dB, and the phase-frequency characteristic curve of the system also plummets at this frequency. Therefore, it can be seen that the output voltage of the system is easily affected by interference, which will cause fluctuations and affect the stability of the bus voltage.
[image: Figure 6]FIGURE 6 | Conventional control of the Bode diagram.
4 REDUCED-ORDER HYBRID CONTROL ALGORITHM
In literature (Xiong et al., 2020), the two-degree-of-freedom control of double-loop is adopted to simplify the transfer function and suppress the resonant peak of the multi-inverter system. However, the differential link is introduced into the inner current loop of the control, which is easy to magnify the error. In view of this, a fully reduced-order hybrid control algorithm is proposed in this paper. The algorithm improves the current inner loop of the controller by introducing a current prediction algorithm. And it is used in the DC system to control the output voltage of the LRC. That makes the DC bus voltage follow the reference voltage, enhances the robustness of the system and suppresses resonance and bus voltage fluctuations in the DC distribution system.
4.1 Current prediction model control
Compared to conventional PI control, predictive current control (Cheng et al., 2018; Shan et al., 2019; Restrepo et al., 2020) has great advantages in dynamic responsiveness and the accuracy of processing system constraints. It also eliminates the need for PWM modulators and control system parameter tuning, resulting in enhanced closed-loop characteristics and robust performance of the device (Nguyen and Jung, 2018).
According to the dynamic mathematical model of the LRC established above, we discretize the inductance current of the boost inductor Ls by the first-order Euler method to obtain:
[image: image]
Here, Ts is the sampling period; i1s (k+1) and i2s (k+1) are the boost inductor current values predicted in the second step at different switching states. To ensure that the control system can follow the output signal ins (k+1) accurately, the following value function is defined:
[image: image]
Figure 7 shows the current in-loop predictive control framework of the LRC. Firstly, parameters such as is and udc are collected as the current quantity inputs, and the current predictive model is used to calculate the current values of the boost inductor under different switching states, and finally the optimal group is selected by the objective function to control the on/off of the switching tubes, thus realizing fast current regulation. Figure 8 shows the flowchart of the optimization search. We consider the existence of control delays in digital control systems, the suitable switching signal calculated at time k does not act directly on the system at time k+1, but waits until time k+2 to make the switching tube act. Therefore, a two-step prediction is used to compensate for the delay. The actual current value at time k is sampled to calculate the current value at time k+1, and the predicted current value at time k+2 of the switching tube is obtained from the calculated current value. Finally, the control objective is achieved by seeking the objective function and applying the switching sequence to the switching tube.
[image: Figure 7]FIGURE 7 | Current in-loop predictive control framework.
[image: Figure 8]FIGURE 8 | Evaluation process flow chart.
4.2 Two-degree-of-freedom control
Figure 9 shows the block diagram of the two-degree-of-freedom control. Where M(s) and H(s) are the input and output signals, respectively; J(s) and T(s) are the feedback link and the target object, respectively; B(s) is the feedforward controller; and E(s) is the input and output errors.
[image: Figure 9]FIGURE 9 | Two-degree-of-freedom control block diagram.
According to Figure 9, if B(s) = 1/T(s) is controlled, the following transfer functions between H(s) and M(s), E(s) and M(s) can be obtained:
[image: image]
From Eq. 10, there is a term in the expression of H(s) and E(s) with respect to the perturbation signal I(s). In order to make the error E(s) equal to 0 and H(s) track M(s) completely, the part of the whole block diagram containing the disturbance signal I(s) is adjusted in the control system by adjusting J(s) to minimise the effect on the system. When this part is small enough then H(s) is realised to track M(s) completely and the error E(s) is eliminated. With a single gain from M(s) to H(s) at all frequencies, the system bandwidth limitation is eliminated.
The overall control framework of the reduced order hybrid control algorithm is shown in Figure 10. Among them, the current inner loop part of the algorithm is the current model predictive control with Ls as the control object. The predicted current under different switching states is calculated by using Eq. 8, and the switching sequence of the control switch tubes S1 and S2 is obtained by value function Eq. 9 to ensure that LRC has good dynamic and static performance. At the same time, the PWM modulator and the tuning of the control system parameters are omitted. The converter switching frequency is reduced and no longer fixed, reducing the likelihood of resonance. Since the current prediction model is used as the current inner loop strategy of the control system, the transfer function of the input reference current signal im_ref and the output current im are also unitized (Changliang et al., 2014), that is, im/im_ref = 1. As the control object of the voltage outer loop, in order to achieve the bus voltage udc and its reference value udc_ref equal, that is, udc/udc_ref = 1. According to the two-degree-of-freedom control principle, T(s) is constructed as the inverse model of the controlled object to eliminate the influence of the line impedance in the output voltage transfer function of the converter. Meanwhile, manual adjustment is combined with Matlab automatic adjustment tool to input small step signals into the system to observe the output voltage changes and determine the optimal parameters of PI controller in J(s). Finally, the order of the system can be completely reduced. By combining Figure 9 and Eq. 10, the voltage outer loop unitization is realized.
[image: Figure 10]FIGURE 10 | General control framework of hybrid control algorithm.
J(s), B(s), im_FF and im_FB in Figure 10 are shown in Eq. 11.
[image: image]
4.3 Hybrid control algorithm resonance analysis
In order to analyze the resonance of the DC distribution system under the new control algorithm, the equivalent model of the DC distribution system under the reduced order hybrid control algorithm is established again. At this time, the Bode diagram of ZLRC and ZCPL is shown in Figure 11. According to the overall framework of the reduced order hybrid control algorithm, the overall flow block diagram van be drawn as shown in Figure 12. MPC is the prediction current model, and the other parameters are consistent with the above parameters.
[image: Figure 11]FIGURE 11 | Bode chart for ZLRC and ZCPL under new control.
[image: Figure 12]FIGURE 12 | Block diagram of the overall flow of the hybrid algorithm.
In the Bode diagram under the new control, the amplitude-frequency characteristic curves of ZLRC and ZCPL have no intersection, and there is no interaction between the two, and no resonant path is generated. The resonant risk of the DC distribution system under the conventional control is eliminated.
The presence of the signal iL1 in the external system of Figure 12 and the introduction of an opposite iL1 in the control system causes the two to cancel each other out in the two-degree-of-freedom block diagram. Sag control acts as an additional operation to balance the power distribution between different converters and its effect is negligible in steady state. The current inner loop and voltage outer loop realize the unitization of the LRC transfer function with udc/udc_ref = 1. Comparing the unitized transfer function with the output voltage transfer function under the conventional control of Eq. 6 and the Porter diagram drawn according to Eq. 6, it can be seen that the LRC output voltage transfer function is greatly simplified under the control of the hybrid control algorithm, and the numerator denominator order no longer has a higher order, realizing the transfer function is completely reduced in order. And since udc/udc_ref is always 1 in the full frequency band and the Bode plot gain is a straight line, it can be seen by comparison that the resonant spikes appearing in the conventional control are damped and the system output follows the reference voltage completely and remains in the full frequency band. Therefore, the proposed control strategy can suppress the resonance phenomenon in the DC distribution system and keep the bus voltage stable well.
4.4 Analysis of the effect of inductance mismatch on the stability of DC distribution system
Literature (Kwak et al., 2014; Parvez Akter et al., 2016; Makhamreh et al., 2019) uses Lyapunov stability theorem to analyze the model predictive control in the consistency algorithm proposed by Lyapunov, and proves the stability of the algorithm. However, for the inductor model, the theoretical and actual values may cause some errors, and the parameters usually vary within ±20%. When the inductor model is mismatched, the current prediction effect and switching frequency will be affected. Therefore, the stability of the current prediction model control algorithm needs to be further studied.
Since RsTs/Ls<<1 and the inductor parasitic resistance Rs can be neglected, the inductor current prediction model shown in Eq. 8 is simplified as follows.
[image: image]
When the actual inductance Lsreal does not match the model inductance Ls, the actual current value becomes:
[image: image]
Taking the inductive current when the switch tube is off as an example, the inductive current error can be obtained by calculating the difference between the reference value and the actual value at the time k+1:
[image: image]
Here, e(k) is the current error at time k. Because of the high sampling frequency of the converter, e(k) can be approximately equal to [is_ref (k+1)-is(k)]. δ(k) is the voltage error. φ is the upper bound of the voltage error.
The current prediction control system is considered stable if the predicted current error can converge to the closed set Ω (Cheng et al., 2018).
[image: image]
When Ls < Lsreal, according to Eqs 14, 16 can be obtained:
[image: image]
Combining Eqs 14, 16, it can be seen that the predicted current error decays continuously with time and eventually converges to the closed set Ω1. The system can remain stable, and the current error size can be guaranteed to be within a given range because Ω1 is contained in Ω.
[image: image]
When Lsreal < Ls < 2Lsreal, according to Eqs 14, 18 is obtained:
[image: image]
Similarly, combining Eqs 14, 18, it can be seen that the predicted current error still decays continuously with time, and the final current error also converges to the closed set Ω1. The system still remains stable. In summary, the algorithm proposed in this paper can meet the system stability requirements because the variation of inductance parameters is ±20%.
5 SIMULATION ANALYSIS
In order to verify the effectiveness of the reduced order hybrid control algorithm for resonant suppression of DC distribution system, the DC distribution system modelshown in Figure 2 was built in MATLAB/Simulink. It consists of two analog energy storage units with an output voltage of 200 V, several photovoltaic cells, and two constant power loads with a power of 4 kW. The photovoltaic cell temperature is 25°C, the solar irradiance is 1000 W/m2, the power of a single battery is 352 W, and the photovoltaic array composed of 25 cells is divided into 5 groups, each group of 5 cells in series and 5 groups in parallel. The switching frequency used for the simulation model is 10 kHz. In the control part, the conventional voltage-current double closed loop, single two-degree-of-freedom algorithm and fully reduced order hybrid algorithm are used respectively. The outer loop of the single two-degree-of-freedom algorithm is two-degree-of-freedom control, and the inner loop is PI control. The effectiveness of the new control algorithm is verified by comparison. The device parameters and control parameters of the system are consistent with those in Supplementary Tables S1, S2.
5.1 Simulation of resonance characteristics of DC distribution system
In this paper, the FFT tool in simulink is used to perform Fourier decomposition on the DC distribution system bus voltage udc under three kinds of control, analyze the voltage resonance of the distribution network bus, and obtain the spectrum diagram as shown in Figure 13. Figure 13B is the spectrum diagram of the bus voltage under conventional control. It can be seen from the figure that the amplitude is 185,600% when the frequency is 768.7Hz, indicating that there is a resonance peak of 768.7 Hz in the DC bus voltage, and the amplitude of the resonance is much larger than that generated by other frequencies. Meanwhile, for the frequency band near this frequency, due to the influence of the resonant frequency, a higher resonant amplitude is generated correspondingly, which is consistent with the resonant condition shown in the comprehensive analysis of the bus voltage amplitude-frequency and phase-frequency characteristic curves under conventional control. Figures 13D, F show the bus voltage spectrum under single two-degree-of-freedom control and new control, respectively. As can be seen from the figure, the voltage spectrum under the single two-degree-of-freedom control has been reduced to a certain extent compared with the conventional control, and the maximum amplitude at 763 Hz is only 43,010%, but it still cannot reach the suppression effect of the new control algorithm. After adopting the new control mode, the resonance amplitude of the bus voltage is greatly reduced in the full frequency domain. After magnifying the figure, it can be seen that the amplitude is the largest at 777Hz, which is 18,330%, nearly one-10th of the amplitude under the conventional control, and the resonance phenomenon is well suppressed.
[image: Figure 13]FIGURE 13 | Bus voltage resonance simulation results.
5.2 DC distribution system steady state characterization
Figures 13A, C, E show the steady state waveforms of the bus voltage under the conventional control, single two-degree-of-freedom control and the new control, respectively. During the first 0.2s of operation of the DC distribution system, the closed-loop dynamic quality is sensitive to changes in gain, as the conventional PI control has little margin for dynamic quality. And because the distribution network model built takes into account the influence of line impedance as well as distributed capacitance, the bus voltage overshoot of the conventional control is large and violent oscillations occur. In contrast, the single two-degree-of-freedom control with the new control constructs an inverse model of the line parameters eliminating the influence of the line. As can be seen in Figure 13C, the bus voltage under single two-degree-of-freedom control eliminates the influence of the line, but the overshoot is reduced but not eliminated because the inner loop is still PI controlled, and the oscillations are only slightly reduced. The new control in Figure 13E is robust and not only achieves voltage stabilisation in 0.07s, but also has no overshoot. Looking at the voltage fluctuations under the three controls, it can be seen that the bus voltage fluctuates around 1.5 V under the conventional control, around 0.4 V under the single two-degree-of-freedom control, and around 0.2 V under the new control. From the comparison of the fluctuations in the same coordinate scale, it is clear that the new control has a better control effect.
In addition, in order to further reflect the superiority of the new control strategy, a model with n = 3 was built for simulation experiments and the results are shown in Figure 14. As the power supply and the constant power load increase, the voltage oscillation time of the DC bus voltage under the conventional control increases from 0.2 s to 1.6s due to the influence of the PI link, while for the bus voltage under the new control, it still maintains a good voltage stabilization effect and is able to reach the desired voltage and maintain stability within 0.1 s.
[image: Figure 14]FIGURE 14 | n = 3, DC bus voltage waveform.
In a real distribution network, line parameters are often prone to change due to changes in operating conditions and weather. As can be seen from Figures 13C, E, the difference in voltage fluctuations between the single two-degree-of-freedom and the new control at steady state is not significant, and the corresponding current variations are relatively similar. This paper simulates the effect of the change in line parameters of LRC2 on the input currents of the two LRCs under conventional, single two-degree-of-freedom and new control, as shown in Figure 15. As can be seen from the figure, the current ripple under the single two-degree-of-freedom control and the new control are comparable. When the LRC2 line parameters change, the idc1 current fluctuation is small under all three control strategies. However, the current ripple under the new control and the single two-degree-of-freedom control are still much smaller than under the conventional control. For idc2, as the line impedance and line distribution capacitance decrease, the conventional control current ripple gradually increases, the loss increases. The currents under new control and the single two-degree-of-freedom control can always maintain a small ripple, with high stability and resistance to impedance changes. To verify the effectiveness of the inner-loop predictive current control in the new control, the size of the controlled inductor Ls2 is changed to 4, 5 and 6 mH, respectively, and observe the is2 current as shown in Supplementary Figure S1. a) The current waveform of is2 when Ls2 is 4 mH; b) the current waveform of is2 when Ls2 is 5 mH; c) the current waveform of is2 when Ls2 is 5 mH. From the graphs, it can be seen that the new control is able to maintain good control current capability despite inductance changes due to the robustness of the system enhanced by the inner-loop predicted current; the single two-degree-of-freedom control is also able to achieve stable current control, but with a large current ripple; while the conventional control completely shuts down when the inductance changes to 6 mH and the system collapses without achieving stable control, hence not shown in the graphs below. In summary, the correctness of the new control to achieve unitised output voltage is verified from both the outer and inner loops.
[image: Figure 15]FIGURE 15 | LRC output current comparison when line parameters change.
5.3 DC distribution system dynamic characterization
Supplementary Figures 2A–C show the bus voltage dynamics during load variations under conventional control, single two-degree-of-freedom control and the new control, respectively. Load disturbances of 2, 1 and 0.4 kW are injected into the system at 0.5 s. In the conventional control, when the load changes abruptly, the DC bus undergoes violent voltage resonance, and as the load disturbance increases, the bus voltage oscillations become progressively larger in amplitude and longer in duration. The single two-degree-of-freedom control improves the degree of voltage resonance during sudden load changes and shortens the voltage stabilisation time. The oscillations caused by sudden load changes are well suppressed in the new control, and the time for voltage stabilisation is significantly reduced, maintaining good dynamic characteristics even with a 2 kW load disturbance. The three control voltage waveforms are compared under the same coordinate system for a load variation of 2 kW. As shown in Supplementary Figure S2D, the superiority of the new control in terms of fluctuation suppression and the speed of voltage recovery can be clearly seen.
The two constant power loads are injected and removed respectively, as shown in Supplementary Figure S3. a) is about voltage variation and b) is about power variation. 2kW load disturbance is injected into CPL1 at 0.5 s and removed at 3 s; 2 kW load disturbance is also injected into CPL2 at 1.5 s and removed at 4 s. In the conventional control, due to the unbalanced load, the bus voltage fluctuates with the increase of different CPL load disturbances, and the fluctuation time and amplitude increase. The single two-degree-of-freedom control and the new control always maintain a good voltage recovery performance and do not increase the fluctuation time due to load imbalance. The maximum value of voltage change for the new control is always smaller than the maximum value of fluctuation for the conventional control and the single two-degree-of-freedom control, regardless of whether the load disturbance is injected or removed.
5.4 Analysis of the impact of PV system joining on bus voltage
Unlike LRC modules, photovoltaic systems, which act as a power source with current-source characteristics, are prone to bus voltage fluctuations when connected via DC-DC converters. And due to the uncertainty of PV power generation, it is prone to sudden power failure or sudden turn-on. Supplementary Figure S4 shows the fluctuation of the bus voltage when light is added to the PV system and disappears. 2 s when the PV system is exposed to light and starts to output energy, the power is 8.8 kw and in 4 s when the PV system is exposed to light disappears. As can be seen from the graph, the bus voltage under conventional control fluctuates dramatically due to the addition of the PV system, and after stabilisation the voltage ripple increases; when the light disappears the bus voltage also fluctuates dramatically, and after stabilisation the voltage ripple returns to the situation before the PV is added. With the single two-degree-of-freedom control, the addition of the PV still produces oscillations, but the voltage spikes are reduced and the voltage oscillations are smaller than with the conventional control. Under the new control, the bus voltage rises to around 320 v due to the energy injection, but does not fluctuate dramatically and the bus voltage regains stability around 0.3 s. Although the steady-state voltage ripple increases after the addition of PV, the bus voltage distortion is greatly reduced compared to the conventional control, and the new control algorithm also has good control effect after the light disappears. The bus voltage waveforms for the PV system joining the distribution network in the case of sudden power changes are shown in Supplementary Figure S5. 2 kW of power is injected into the system at 2 s and removed at 3 s. From the figure, it can be seen that the presence of the PV system makes the bus voltage fluctuate as much as 25 V under conventional control when the power changes, which clearly exceeds the permissible range of voltage fluctuation. Whereas, both the single two-degree-of-freedom and the new control are able to keep the steady state voltage fluctuation around 0.5 V. The superiority of the new control over the single two-degree-of-freedom control is that the bus voltage is smaller and the recovery time is faster during sudden power changes. Therefore, it can be seen that the conventional control of PV systems can lead to drastic fluctuations in the bus voltage during sudden power changes, and even destabilization occurs. The new control can improve the system stability in both transient and steady state and suppress the increase of resonance.
From the above analysis of the steady-state and dynamic characteristics of DC bus voltage, it can be concluded that the reduced-order hybrid control algorithm can better suppress the DC distribution system resonance and reduce bus voltage fluctuation, which is consistent with the previous theoretical analysis.
6 CONCLUSION
The DC distribution system is a complex dynamic strongly coupled system and resonance can seriously affect the stable operation of the distribution system. This paper proposes a DC distribution system resonance suppression strategy with a reduced-order hybrid control algorithm, which combines current model predictive control with two-degree-of-freedom algorithm to suppress DC distribution system resonance and bus voltage fluctuations. Through theoretical analysis and simulation experiments, the effectiveness of the reduced order hybrid control algorithm in suppressing resonance and bus voltage fluctuation is verified. Due to the current weak grid situation in the power system, the following work considers applying the hybrid algorithm to the working conditions where the distribution network is connected to the weak grid, so as to improve the power quality of the DC distribution system under the weak current network and improve the system stability.
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The increasingly frequent extreme events pose a serious threat to the resilience of the power system. At the same time, the power grid is transforming into a new type of clean and low-carbon power system due to severe environmental issues. The system shows strong randomness with a high proportion of renewable energy, which has increased the difficulty of maintaining the safe and stable operation of the power system. Therefore, it is urgent to improve the resilience of the new power system. This paper first elaborates on the concept of power system resilience, listing the characteristics of new power systems and their impact on grid resilience. Secondly, the evaluation methods for resilient power grids are classified into two categories, and measures to improve the resilience of the new power system are reviewed from various stages of disasters. Then, the critical technologies for improving the resilience of the new power system are summarized. Finally, the prospective research directions for new power system resilience enhancement are expounded.
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1 INTRODUCTION
Fossil fuel is one of the most important sources of energy for humanity. With the development of the global economy in recent years, the consumption of fossil fuels has also rapidly increased, causing consistently high carbon emissions, the greenhouse effect, and abnormal global climate changes (Pachauri and Meyer, 2014; Michael, 2016; IEA, 2019). To address such issues, vigorously developing renewable energy sources such as wind and solar energy has become a common choice. Countries around the world promulgate energy policies and promote energiewende. The United States, Canada, Japan, and other countries have all carried out relevant engineering applications, attempting to upgrade traditional power systems into green and low-carbon new power systems (Peng et al., 2017). In March 2021, China claimed the goal of “carbon peaking and carbon neutrality” and the development of a new power system (Hu, 2021). The new power system involving a high proportion of renewable energy aims to promote energy production and consumption and construct a low-carbon, safe, and efficient energy system (National Development Reform Commission National Energy Administration, 2021). By March 2023, the total installed capacity of wind and solar power in China is 0.92 billion and it is expected to reach over 1.2 billion kW by 2030, and at least 3 billion kW by 2060 (National Development Reform Commission, 2016).
The new power system can fully utilize various resources and achieve multi-energy complementarity. The improvement of power electronics has also made the system more flexible and intelligent. Non-fossil energy sources such as wind power and photovoltaic will gradually become the main energy sources. However, as the proportion of renewable energy continues to increase, the new power system shows characteristics of large fluctuations and strong randomness. It is increasingly difficult to balance power supply and demand in the system (Zhang et al., 2018). With the frequent occurrence of extreme weather events in recent years, power systems with a high proportion of renewable energy are facing huge challenges in power supply (Wang et al., 2014; Lu et al., 2017). For example, in August 2020, the high-temperature weather in California caused a sharp increase in load. Meanwhile, the output of wind power and hydropower decreased, leading to a large-scale power outage accident ultimately (California ISO, 2020). In February 2021, Texas experienced extremely cold weather, causing a rapid increase in heating load. The wind turbine was shut down with blade icing, and natural gas production decreased as a result of wellhead freezing, resulting in a cumulative load shedding of 20,000 MW (Magness, 2021). In July 2022, because of the continuous high temperature and dry weather, the electricity consumption of State Grid Sichuan increased by 19.79% year-on-year. However, the hydropower decreased from about 900 million kW hours in the same period to about 450 kWh, causing a shortage of power supply and limited usage (Ma and Wu, 2021).
At present, numerous literature has summarized the research on the resilience of the current power system (Gao et al., 2023), but little consideration has been given to the changes in research for improving the resilience of new power systems with a high penetration of renewable energy. Studying the related issues of resilience improvement under the background of the new power systems construction is significant for further enhancing the system’s ability to respond to extreme events and maintaining stable operation. The main contributions of this paper are summarized as the following:
• This paper elaborates on the concept of power system resilience, analyzes the impact of new power systems on grid resilience, and lists methods for evaluating resilient power grids.
• The measures to enhance the resilience of the new power system are reviewed from the perspectives of pre-disaster planning and configuration, disaster management and control, and post-disaster recovery response.
• The key technologies for improving the resilience of the new power system are summarized from the perspectives of planning and operation.
• The further methods for improving the resilience of new power systems are prospected, and corresponding research focuses are given, providing suggestions for the clean and low-carbon energy transformation in China.
2 DEFINITION AND EVALUATION METHOD OF RESILIENT POWER GRID
2.1 Definition of the resilient power grid
The concept of resilience was first proposed by Holling. C. S in the ecological field in 1973 to measure the ability of ecosystems to withstand, absorb disturbance, and maintain system stability (Holling, 1973).
In 2009, the American Department of Energy released the Smart Grid System Report (U.S. Department of Energy, 2009), which for the first time clearly stated that smart grids should be resilient in the face of natural disasters, deliberate attacks, equipment failures, and human errors. The National Committee on Critical Infrastructure of the United States summarized that resilient systems should include four characteristics (National Infrastructure Advisory Council, 2010), namely, robustness (the ability to absorb disturbances and operate continuously), agility (the ability to control losses during the events), recovery (the ability to quickly restore power grid functions, especially the ability to continuously supply power to important loads) and adaptability (the ability to learn from disasters and enhance resilience). The report released by the UK Energy Research Organization in 2018 defined resilience as the ability to withstand and reduce the scale and duration of destructive events, including preparedness, absorption, adaptation, and rapid recovery (The ERP Working Group Members, 2018). In China, Professor Ouyang Min from Huazhong University of Science and Technology introduced the definition of resilience proposed for earthquake disaster management in the power system in 2014. It is proposed that resilience includes four attributes: robustness, redundancy, agility, and rapidity (Ouyang and Dueñas-Osorio, 2014). In 2015, Academician Qiu Aici and Professor Bie Zhaohong from Xi’an Jiaotong University proposed the concept of the “resilient power grid” and recovery ability (Zhaohong et al., 2015; Zhaohong et al., 2020). In 2015, Professor Chen Ying from Tsinghua University put forward the concept of “distribution network resilience,” pointing out that resilience mainly measures the support and recovery ability of the distribution network to critical loads in natural disasters. Distribution network resilience is also defined as whether the distribution network can take proactive measures to ensure the power supply of critical loads and quickly recover the outage load in disasters (Gao et al., 2015).
2.2 The impact of new power systems on the grid resilience enhancement
The characteristics of the new power system are as follows.
2.2.1 Increased system randomness
The large-scale and high proportion of intermittent renewable energy inevitably brings strong stochastic output in various time scales, including seasonal or short-term uncertainty. As a result, it poses significant challenges to the supply guarantee of the power system. Table 1 lists the impacts of various extreme events on the power system.
TABLE 1 | The impact of various extreme events on the power system.
[image: Table 1]2.2.2 Enhanced intelligence
The rising complexity and uncertainty of new power systems increased the difficulty in resilient modeling, analysis, and precise prediction. Currently, emerging cutting-edge information technologies such as artificial intelligence, big data, blockchain, and the Internet of Things are rapidly developing and is gradually being applied in smart grid. Various functions such as monitoring, measurement, control, protection, and scheduling have become more refined and intelligent after the application of these technologies (Gao et al., 2022).
2.2.3 Increased complexity
The application of information and communication technology in new power systems is more widespread. With a large number of automated and information-based communication devices involved, the complexity of the power grid is increasing. The interconnection of power grids in different regions and the coupling of multiple energy sources promote the consumption of renewable energy while also making the system more complex (Hui et al., 2022).
The characteristics of the new power system exacerbate the uncertainty in various stages of the grids (Bie et al., 2017). Considering the damage caused by disasters to intelligent monitoring equipment in the power grid, the system’s ability of real-time situational awareness has decreased. How to clarify the uncertain factors and accurately constructing a model in uncertainty is the key to improving the resilience of new power systems. Meanwhile, for new power systems, the timing of natural disasters has become even more critical. The system shows strong randomness with a high proportion of renewable energy. Each type of renewable power generation resource is affected by disasters to various degrees, resulting in differences in the system’s ability to withstand extreme disasters. How to effectively identify the fault time and location of new power systems in disasters, and analyze the interaction mechanism between specific disasters and new power systems, are the foundation for improving the resilience of new power systems.
2.3 Evaluation methods for power grids resilience
Power system resilience assessment can be divided into two categories: one is the static evaluation based on network topology, component redundancy, and resource adequacy; Another type is the dynamic evaluation, which establishes corresponding indicators based on the multiple processes of the system in response to extreme events.
2.3.1 The static evaluation
Arghandeh et al. (2014) calculated the system connectivity loss and distributed power redundancy, and evaluated the resilience of active distribution networks in the fault response and fault recovery stages; Bajpai et al. (2018) introduced performance indicators such as the number of common branches, switch operations, path redundancy ratio, and device availability. The Choquet integration method was used to quantify the system’s resilience. Peng et al. (2019) used network graph theory to establish a static indicator system for resilience evaluation, taking topological resilience, component failure rate, and load power factor into account. Chanda and Srivastava (2016) proposed an evaluation method combining graph theory and analytic hierarchy process, which used topological characteristics such as Betweenness centrality, graph diameter, and clustering coefficient to measure system resilience.
It should be pointed out that static evaluation mainly evaluates the system’s resilience from a specific aspect, which is difficult to effectively reflect the performance of grids during the fault recovery stage. It can also not quantify the differences under different extreme events. Therefore, it is advisable to use dynamic evaluation which considers different resilient stages including resistance, absorption, adaptation, and recovery.
2.3.2 The dynamic evaluation
The classical dynamic resilience evaluation index is calculated by integrating the system performance curve and time in Figure 1.
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where F(t) represents the changes in the system function at each stage, and F0 represents the system performance under normal operation. This indicator can to some extent reflect the robustness and recovery of the system and is widely used. Reference (Luo et al., 2018) took typhoons as a representative to draw the vulnerability curve of components. The entire process of extreme weather disasters was simulated using the Monte Carlo method. Different weights were assigned based on the importance of the load. The weighted losses of the load in all stages were selected as the evaluation index.
[image: Figure 1]FIGURE 1 | Schematic diagram of power system resilience curve.
He et al. (2021) composed resilience indicators based on robustness, adequacy, and safety, with power sources, power grids, and users as evaluation objects. Literature Gu et al. (2018), Li et al. (2020) divided extreme events into the fault prevention stage, adaptation stage, and recovery stage. Then a resilience evaluation index system was constructed including the defense time of the distribution network, coefficient of restitution, island sustainable time, and average interruption time of important loads. Bessani et al. (2019), Hosseini et al. (2019), Zhang et al. (2020a), Jiang et al. (2021) established resilience indicators for different stages of the resilience trapezoid, including maximum load loss R1, load interruption rate R2, self-healing recovery time R3, and maintenance time R4.
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where Fm represents the system performance during the fault adaptation stage, corresponding to the lowest system performance; S represents the set of fault scenarios; πs represents the probability of failure occurrence. It can be seen that the maximum load loss R1 and load interruption rate R2 represent the robustness and absorption of the system; The self-healing recovery time R3, and maintenance time R4 are used for the system recovery level after the disaster, representing the system’s rapidity and activeness.
Moreover, Paul et al. (2014), Dehghanian et al. (2018), Liu et al. (2021a) considered the dimensions of technology, organization, economy, and society to create a system resilience assessment matrix, wherein the technical dimension corresponds to changes in the system’s power supply capacity; Organizational dimensions correspond to recovery strategies such as executing decisions, arranging the personnel, and coordinating resources during fault recovery; The economic dimension corresponds to the costs caused by power outages; The social dimension corresponds to the social impact caused by the loss of power supply to public institutions such as governments and hospitals.
3 MAIN MEASURES AND KEY TECHNOLOGIES FOR IMPROVING THE RESILIENCE OF THE POWER SYSTEM
3.1 Main measures to improve the resilience of the power system
After extreme events occur, resilience improvement strategies can be divided into pre-disaster prevention strategies, disaster response strategies, and post-disaster recovery strategies. Measures such as strengthening and deploying flexible power generation are taken to maintain components with high failure rates so that resilience is enhanced before disasters (Wang et al., 2019; Bian et al., 2020); During the disaster phase, scheduling flexible resources and equipment such as distributed power sources, energy storage, controllable loads, interconnection switches, and intelligent soft switches to minimize power loss as much as possible (Chen et al., 2016; Chen et al., 2020); In the post-disaster stage, the repair of faulty components and the improvement of system resilience are achieved through collaborative scheduling of operation personnel, and emergency resources (Zhang et al., 2020b; Zhang and Xie, 2021).
The impact of extreme events on power grid infrastructure is uncertain, which needs to be considered in the modeling. The resilience enhancement model is commonly constructed as a three-layer (defense-attack-defense) robust optimization (RO) model, which can be established as follows (Ma et al., 2018).
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where the binary variable [image: image] represents whether the line [image: image] is reinforced. When the line is reinforced, the value is 1, otherwise, it is 0; [image: image] and [image: image] represent the time index and its set, respectively; [image: image] and [image: image] represent the distribution network node index and its set, respectively; [image: image] is the curtailment load of the node [image: image]; r represents the decision vector for line reinforcement composed of [image: image]; a represents the line state vector composed of al; y represents a vector composed of continuous variables related to distribution network power flow optimization; [image: image] indicates the reinforcement cost of the line l; [image: image] represents the penalty coefficient for load curtailment at node j; B1, C1, D1, E1 are constant coefficient matrices; g1 is the coefficient matrix of the corresponding constraints.
In response to the influence caused by extreme event attacks, numerous literature described it using an uncertainty set of damaged distribution network lines.
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where [image: image] represents the uncertainty of line damage; [image: image] is the number of distribution network lines; [image: image] is the maximum number of damaged lines; [image: image] and [image: image] respectively represent the line index and its set; binary variables [image: image] represents the state of the line [image: image], [image: image] = 1 indicates the circuit is closed and 0 otherwise.
Since the above model only considers the operation strategy of power flow optimization for resilience improvement after disasters occur, the vector y of the inner defense layer only contains continuous variables. When distribution network reconstruction and power flow optimization strategies are both considered after a disaster occurs, the RO model established is as follows (BIAN et al., 2020):
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where x and z represent vectors composed of continuous and discrete variables related to network reconstruction, respectively; A2, B2, C2, D2, E2, and G2 are constant coefficient matrices; g2 is the coefficient matrix of the corresponding constraints.
In the recovery stage, operations such as repairing faulty infrastructure and restoring the power supply are carried out to bring the distribution network back to its normal state. The operation of repairing faulty components can be modeled as a maintenance personnel scheduling subproblem (the first stage problem). Then, a power supply restoration subproblem (the second stage problem) can be established considering DG scheduling and network reconstruction. The two-stage optimization problem mentioned above achieves a smaller amount of load curtailment.
3.1.1 Measures in pre-disaster prevention stage
The new power system optimizes the energy structure through various energy combinations, making the system more and more complex. With the high proportion of various distributed energy, it is urgent to configure the location and capacity of these resources. The potential value of various resources should be fully utilized before disasters for improving resilience.
In the prevention stage, a multi-objective optimization model was established considering maintenance costs before the occurrence of faults, which achieved good results in reducing the overall costs (Liang et al., 2021). References (Arizumi et al., 2014; Bie et al., 2017) established disaster databases and prediction models according to historical disaster information. Various events are classified based on disaster scale and losses. At the same time, it is advisable to develop emergency plans before disasters occur. The scope of power outages is reduced by adjusting operation methods, ensuring the continuous power supply of critical loads.
In the disaster prevention phase, physical means are often used to enhance resilience, including increasing the strength of power lines/towers, replacing overhead lines with cables, and tree pruning. These methods can reduce the physical damage caused by extreme events, and reduce the failure rate of power system components (Barnes et al., 2019). However, components replacement in large quantities will bring high investment costs. It is better to replace key components that have a significant impact on system resilience or with a high failure rate. Further research is needed on how to identify these components and make the corresponding protection strategy. (Xia et al. 2021) proposed a method for the identification of vulnerable lines. A comprehensive model based on grid processing of the distribution network is established. Vulnerable lines are selected by information entropy to strengthen and reduce the power failure loss of the system in case of an earthquake disaster. It is indicated that laying cables can enhance the ability of power systems to withstand typhoons. However, in earthquake situations, it will lead to longer repair times for damaged lines.
3.1.2 Measures in response stage in disasters
During the disaster, the corresponding measures include making full use of the diversified and flexible resources (distributed generation, interconnection switch, mobile energy storage, demand response, etc.) to reconstruct the network and optimize the power flow (Yao et al., 2020b; Nazemi et al., 2021).
In the disaster response phase, ensuring the energy supply is the most critical goal. Safe and reliable operation of the system takes priority over minimizing load loss (Zhang et al., 2019). Compared to traditional power grids, large-scale power electronic devices, and intelligent control systems are utilized in new power systems, providing diverse resilient response measures (Zhaohong et al., 2020). At this stage, the propagation of strong disturbances should be suppressed. The lines out of service should be cut off on time to prevent fault propagation and improve system resilience.
Moreover, the short-term resilience of the system can be improved by enhancing the primary equipment of the system, such as introducing fault current limiters. Achieving rapid response of secondary control and protection equipment also has positive significance. (Ton and Wang 2015) improved the system’s situational awareness and response speed by configuring intelligent measurement devices in the power grid. Remote switches and automation switches were considered in (Bian and Bie 2021), which quickly changed the topology of the power grid. The timely operation of backup power sources was enabled and fault response and recovery time were shortened.
Currently, much literature has explored how to utilize the emergency response capabilities of distributed power sources and microgrids to enhance system transient performance (Zhou et al., 2020; Chang et al., 2021). When a serious system failure occurs, both the direct and transfer paths of the superior power supply may be cut off. Multiple islands emerged. The integration of distributed power sources and microgrids can greatly increase system flexibility, provide powerful support for end loads, and ensure a reliable power supply for loads. (Lei et al. 2018) placed mobile emergency generators at a predetermined location to maintain the power supply for important loads.
3.1.3 Measures in post-disaster recovery stage
The post-disaster recovery phase aims to quickly coordinate all recovery resources and restore as much load as possible. After extreme disasters, operators need to dispatch maintenance teams as soon as possible to repair faulty components. Recovery resources such as locally distributed power sources, emergency power generation vehicles, and demand-side management should be scheduled to restore the system to a normal state (Chen et al., 2019a; Chen et al., 2019b). Based on this, a two-stage optimization problem is established. The first stage is a sub-problem for scheduling maintenance teams, and the second stage is for power supply restoration that combines the scheduling of multiple recovery resources and network reconstruction.
After a natural disaster, many electrical infrastructures may be severely damaged, and maintenance personnel needs to be mobilized to repair or replace the faulty road section. Due to the limited availability of resources in the system, how to allocate staff and reasonably arrange the repair sequence of components is an important issue. (Liu et al., 2021a) proposed a fault location, fault isolation, and service recovery method for improving system resilience. Based on the coupling relationship of the above three, differentiated recovery schemes were implemented for different fault conditions.
In the post-disaster recovery stage, operations such as black start, network reconstruction, and component repair are usually involved. Black start and network reconstruction aim to improve the short-term resilience of the power system, while component repair aims to improve the long-term resilience of the system. During the black start process, the system mainly establishes a power supply path by restarting some units. (Qiu et al. 2016) elaborated on the important steps of parallel recovery for multiple units, namely, the partition method and startup sequence. With the objective function of minimizing unit startup costs, a fault recovery strategy was provided. In the later stage of the black start, the system needs to rely on distributed power sources for network reconstruction, readjusting the network topology structure, and restoring important loads (Yao et al., 2020a; Yu et al., 2021). Existing research utilized heuristic algorithms, mathematical programming algorithms, and artificial intelligence algorithms to transform network reconstruction into mixed integer programming problems so that the optimal solution and fault recovery strategies were obtained (Liu et al., 2020). (Gilani et al. 2020) proposed a resource scheduling model based on mixed integer linear programming, and effectively restored the system by using distributed generation, regional communication system, and other resources. Figure 2 shows potential measures to enhance the resilience of the power system, and the implementation methods of certain strategies are shown in Table 2.
[image: Figure 2]FIGURE 2 | Measures to enhance the resilience of the power system.
TABLE 2 | The implementation method of resilience enhancement strategy.
[image: Table 2]3.2 Key technologies for improving the resilience of new power systems
3.2.1 The perspective of grid planning
The probability of extreme events occurring is small and the frequency is low. If a large amount of funds is invested in the resilient resources of the power system to cope with extreme events, it will inevitably reduce the economic efficiency of the system and also hinder the low-carbon development process of the new power system (Huy et al., 2020). Therefore, in the planning mode, it is necessary to consider both economic efficiency and system security. Based on the characteristics of regional resource distribution and natural conditions, a detailed evaluation of resilient resources should be conducted to guarantee the economic benefits of power supply and consumption. This will provide an effective foundation for the new power system in the planning stage.
China has a vast territory and diverse natural resources in different regions. The construction of power grids interconnected with each province can promote the optimal allocation of resources (Huang et al., 2021). Considering that the uncertainty of wind and solar power varies in different regions, the construction of interconnected large power grids can not only achieve a larger spatial balance between power supply and demand but also improve the overall resilience of the system (by offering power support between provinces) (Ding et al., 2022). Meanwhile, mutual support among different regions through inter-regional transmission can enhance the flexibility of each regional power grid, thereby reducing investment in flexible resources and improving economic efficiency (Yang et al., 2020). These flexible resources can also help enhance the system resilience under extreme events.
In the planning stage, it is possible to consider the integration of hybrid energy storage and other energy conversion technologies with the new power system to enhance its resilience (Tao et al., 2020a). In times of power shortage, other forms of energy such as natural gas and hydrogen can be converted into electricity to ensure a stable power supply. Conversely, during periods of power surplus, electricity can be converted into other forms of energy to promote the complementary use of diverse energy sources (Wu et al., 2022a).
3.2.2 The perspective of grid operation
The scenario of new power system scheduling has multiple uncertain factors, and it is necessary to fully utilize the collaborative operation of multiple resources. On the power side, adjustable power sources represented by thermal power and hydropower can provide certain resilience. But their response speed and ability are different, and the flexibility of energy storage is usually constrained by temporal coupling, which affects their operation modeling. On the load side, the characteristics of the fixed load and adjustable load are different in their response potential, response speed, and response time (Cui and Zhou, 2018). Similarly, when providing resilient support for cross-regional interconnected power grids, it is also significant to consider the operational constraints and regulation capabilities of different regional power grids in different regions. So that the stable operation of the entire interconnected system is ensured and can endure extreme events (Hu et al., 2022). Therefore, refining and organizing resources with different resilience abilities to participate in multi-time scale scheduling optimization are important. For example, resilient resources with slower response rates are preferred to participate in the day-ahead scheduling or even monthly/weekly plans, while resilient resources with faster response rates should be utilized in short-term adjustments on a daily plan. In addition, the collaborative scheduling of resilient resources under extreme events also requires special attention. The development trend of disasters can be deduced by analyzing multiple characteristics. And research on grid scheduling strategies with high efficiency and self-adaptation based on machine learning methods can be carried out to enhance the resilience of the system in collaboration with multiple resilient resources under extreme events.
4 PRACTICE AND PROSPECT OF RESILIENT GRID CONSTRUCTION
4.1 Practice of resilient power grid construction
At present, there are many resilient power grid construction practices both domestically and internationally. In terms of policy, the U.S. government promulgated the “21st Century Energy Act” in 2016 to promote the use of renewable energy and the development of smart grids, aiming to improve the resilience and flexibility of the grid. The purpose of this act is to achieve a more reliable, secure, economical, and environmentally friendly electricity system by improving energy efficiency, reducing emissions, and encouraging the use of renewable energy sources (U.S. Department of Energy, 2016). The Japanese government integrated renewable energy with traditional power systems and promotes the construction of smart grids. After the Fukushima nuclear disaster in 2011, the Japanese government invested more resources in the construction of smart grids to enhance their resilience (Cao, 2018). The German government has formulated the “Energy Transition” plan, aiming to make Germany’s electricity completely supplied by renewable energy by 2050. The core of this plan is to combine renewable energy with smart grids to enhance the resilience and flexibility of the grid. The German government also encouraged individuals and businesses to adopt renewable energy and energy-efficient technologies (REN21, 2020). The Chinese government proposed in the 13th Five-Year Plan to accelerate the development of smart grids and improve the resilience of the power system. The Chinese government has also introduced a series of policies and measures to promote the application of renewable energy and energy-saving technologies, and strengthen the coordination and control of the power grid (National Energy Administration of the People’s Republic of China, 2016). The Canadian government improved the resilience of the power system by promoting the construction of smart grids. The Canadian government supported the application of renewable energy and energy-saving technologies and promotes the reduction of energy efficiency and carbon emissions (Board, 2011). The Australian government is promoting the construction of smart grids to enhance the resilience of the power system. The Australian government encourages the application of renewable energy and energy storage technologies, promotes energy diversification, and reduces carbon emissions (Australian Renewable Energy Agency, 2020).
In terms of specific projects, many countries and regions have begun the construction of resilient power grids. Denmark’s “Bornholm Energy Island” project (Early Detection Of Value, 2022) aims to build a highly flexible and resilient power grid. The renewable energy facilities on Bornholm Island were interconnected to achieve intelligent management of the power supply. The “Hornsdale Power Reserve” project (Hornsdale power reserve, 2017) in Australia built a huge energy storage facility that can store a large amount of solar and wind energy. The project also includes intelligent grid control technology to provide a reliable power supply to local communities. The Funeng cogeneration project by China Huaneng Group in Longyan City has constructed a flexible, schedulable, and scalable power system. Renewable energy sources, a large-capacity energy storage system, and a digital control center are involved to improve the resilience of the power grid (Ministry of power, 2022). The resilience microgrid project of Xili Primary School in Shenzhen has built a microgrid that integrates energy storage, intelligent control, and multi-energy complementarity, including PV, energy storage, gas boilers, heat pumps, and ground source heat energy, aiming to improve power supply reliability and sustainability (SZTV, 2022). The resilience power grid construction project in Ya’an City, Sichuan adopts the technology of “energy storage + renewable energy + smart microgrid”. Through the construction of a smart microgrid, effective management and scheduling of various dispersed renewable energy sources such as wind power and photovoltaic have been achieved (People’s Daily, 2020). The Huairou District Urban Resilience Grid Demonstration Project in Beijing has achieved efficient utilization and management of renewable energy by introducing various renewable energy technologies and smart microgrid control strategies, improving the resilience and security of the power grid (Beijing Municipal People’s Government, 2017).
4.2 Challenges and prospects
4.2.1 Enhancing the perception and prediction of extreme events
The construction of the new power system, accompanied by increasing complexity and uncertainty, poses great challenges to the modeling, analysis, and precise prediction of the system resilience under extreme events (Wang et al., 2021). The application of artificial intelligence technology, which has less dependence on mathematical models of physical systems and possesses the ability to self-learn from massive data, enables better perception and prediction of extreme events. Operators rely on the construction of the Electric Internet of Things to store massive environmental data on servers and upload them to the cloud through the Internet. These data are collected by devices such as wide-area monitoring, sensors, and intelligent devices. It achieves reliable distribution of multi-source heterogeneous data which provides a platform for artificial intelligence technology. These are new methods for improving the resilience of new power systems.
4.2.2 Enhancing the resilience of the system through multi-network integration
The Energy Internet, centered around the power grid, connects diversified energy systems such as electricity and natural gas, as well as transportation, information, and other non-energy critical infrastructure systems. It forms a multi-layer coupled network architecture that enables optimal regulation and efficient utilization of energy flows (Tao et al., 2020b). The Internet of things (IoT) is an extension and expansion of the network based on the Internet, which combines various information sensing devices form a huge network. The utilization of Internet of Things technology helps the smart grid better connect and sense each power device. It is necessary to carry out research on the messaging patterns, protocols and technologies in the area of information exchange (Górski, 2022). Considering the existence of diversified coupling nodes in a multi-network system, the traditional resilience assessment methods based on a single network are no longer applicable. Therefore, a unified network topology evolution model needs to be established for the system to effectively characterize the propagation mechanism of faults across spatiotemporal scales in any subsystem. On the other hand, at different stages of disasters, the operational states of each subsystem show complex coupling relationships. It is necessary to reveal the dynamic interaction mechanism of different subsystems for comprehensive analysis. On this basis, combining the research of network topology evolution models and system performance analysis to establish a multi-dimensional system resilience evaluation is an important focus in the research of resilience evaluation for multi-network fusion systems.
In the context of the Energy Internet, different dimensional entities such as the power grid, gas network, transportation network, and information network are coupled, making disturbance infiltration and fault propagation in the multi-dimensional entity fusion system more complex under the influence of extreme events (Wu et al., 2022b). Disturbance and fault in a certain entity (such as line fault in the distribution network, pipeline damage in the natural gas network, road congestion in the transportation network, and communication interruption in the information network) can spread to other subjects through energy flow, traffic flow, and information flow. In serious cases, it may cause in-stability or even paralysis of the overall fusion system. In addition, the significant differences in modeling methods and operating time scales between different networks pose technical challenges to the research on enhancing the resilience of multi-energy fusion systems. Therefore, it is urgent to study resilient improvement measures of the multiple coupling entities.
4.2.3 Fully utilizing user-side resources
The user side has numerous distributed resources and can operate in a flexible way. Fully utilizing the resources with flexible adjustment capabilities on the user side can promote the further consumption of renewable energy. Virtual power plants (VPPs) are currently one of the main means of resource aggregation in distribution networks.
VPPs do not have specific constraints on the geographical location and operational characteristics of distributed energy, providing an emerging and highly flexible distributed energy management approach for power systems. However, the current research on VPPs only simply aggregate all resilient resources, without considering the synergy of these resources under network constraints. In the context of a high proportion of renewable energy, VPPs need to integrate various types of flexible resources to provide a larger adjustable power range. Dealing with the diverse and large-scale distributed energy in VPPs, existing algorithms of adjustable power domains and cost aggregation of regulated power cannot simultaneously balance efficiency and accuracy, so further research is needed. After the occurrence of extreme disasters, the operational goal of VPPs needs to be shifted from ensuring economic efficiency to improving resilience. As disasters cause damage and disturbance on the grids and various resilient resources, it increases the difficulty of aggregating resources for VPPs. Therefore, it is necessary to study post-disaster resource aggregation technology for VPPs to provide support after disasters and ensure the safe and reliable operation of the power grid.
4.2.4 Exploring market mechanisms
A reasonable market mechanism is an important foundation for building a new power system with a high proportion of renewable energy. It is necessary to establish a diversified auxiliary service market with the participation of various entities, which is no longer limited to thermal power and hydropower units. Other diversified flexible resources can be involved (Xiao et al., 2018). In the future, various resources such as energy storage and distributed resource will gradually be included in the auxiliary service market. Specifically, considering the frequent occurrence of extreme events, auxiliary services that enhance resilience, such as emergency power supply and black start services are needed. The compensation mechanism under extreme disasters should be adjusted to incentivize various resilient resources to participate in different resilient auxiliary service markets based on their regulatory capabilities and costs. Their optimal economic benefits can be achieved while enhancing the ability to quickly restore power supply after accidents. Furthermore, the combination of various resilient resources with existing market mechanisms can be explored, and guide resilient resources to actively participate in the market through reasonable price mechanisms under extreme events.
Moreover, blockchain technology can help manage energy systems with different operators (Yan et al., 2022). Based on blockchain technology, new mechanisms and platforms for energy trading can be developed and implemented at various levels between generators, suppliers, traders, end-users, and prosumers (Zhao et al., 2023).
5 CONCLUSION
To achieve the goal of low-carbon and energy transformation in power systems and cope with the impact of extreme events, it is imperative to study methods for improving the resilience of new power systems. The conclusions of this paper can be summarized as follows:
• This paper gives a broad survey of the concept of power system resilience and analyzes the impact of the new power system on grid resilience with the characteristics of high randomness, high intelligence, and high complexity.
• Static and dynamic resilient evaluation methods are summarized.
• Research on resilience improvement measures such as pre-disaster configuration, management and control during disasters, and post-disaster recovery are summed up.
• Key technologies are outlined from the planning and operation levels.
• The prospect of improving the power system resilience is presented from four aspects, i.e., enhancing the perception and prediction of extreme events, enhancing the overall resilience of the system through multi-grid integration, fully utilizing user-side resources, and exploring market mechanisms.
In general, research on the resilience improvement of new power systems is still in its infancy. Further in-depth research is needed. It is recommended that the future work can be focused on Cyber-Physical Power System. Research on its resilience modeling, evaluation and enhancement methods can resist cyber attacks and protect the new power system from the information level. It is hoped that this article can provide a reference for subsequent related research.
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Hydrogen is considered a promising alternative to fossil fuels in an integrated energy system (IES). In order to reduce the cost of hydrogen energy utilization and the carbon emissions of the IES, this paper proposes a low-carbon dispatching strategy for a coordinated integrated energy system using green hydrogen and blue hydrogen. The strategy takes into account the economic and low-carbon complementarity between hydrogen production by water electrolysis and hydrogen production from natural gas. It introduces the green hydrogen production–storage–use module (GH-PSUM) and the blue hydrogen production–storage–use module (BH-PSUM) to facilitate the refined utilization of different types of hydrogen energy. Additionally, the flexibility in hydrogen load supply is analyzed, and the dynamic response mechanism of the hydrogen load supply structure (DRM-HLSS) is proposed to further reduce operating costs and carbon emissions. Furthermore, a carbon trading mechanism (CTM) is introduced to constrain the carbon emissions of the integrated energy system. By comprehensively considering the constraints of each equipment, the proposed model aims to minimize the total economic cost, which includes wind power operation and curtailment penalty costs, energy purchase costs, blue hydrogen purification costs, and carbon transaction costs. The rationality of the established scheduling model is verified through a comparative analysis of the scheduling results across multiple operating scenarios.
Keywords: refined utilization of hydrogen, integrated energy system, dynamic response mechanism of hydrogen load supply structure, carbon trading mechanism, coordination and complementarity
1 INTRODUCTION
In order to cope with the increasingly serious shortage of fossil energy and climate problems, wind power generation, photovoltaic energy generation, and other renewable power generation systems have been widely used (Xu et al., 2023). However, due to the intermittent and uncertain output of renewable sources, a reliable replacement of power supply has not been formed yet, resulting in great challenges in the safe and reliable supply of electricity (Pan G S et al., 2023), and the phenomenon of abandoning wind power and photovoltaic power generation also occurs from time to time. While clean and pollution-free hydrogen energy can be stored on a scale, the storage of hydrogen produced from renewable energy generation provides a new idea to solve the problems of power supply and consumption of renewable energy under the new power system (Zuo et al., 2023).
An integrated energy system (IES) coupled with multiple energy forms for joint supply can meet the demand for multi-energy loads with low-carbon emissions (Li et al., 2023). A hydrogen-containing integrated energy system (HIES) coupled with hydrogen energy based on traditional IES further promotes the consumption of renewable energy and carbon emission reduction (Pan et al., 2020a).
At present, most studies on HIESs mainly focus on green hydrogen production by electrolytic water. For example, based on hydrogen production by electrolytic water, Fang et al. (2022) established an optimal scheduling model of integrated energy microgrids including multiple subsystems of electricity and hydrogen that can be traded with each other. Fang et al. (2023) established a two-stage scheduling model of an IES based on green hydrogen considering the electro-hydrogen hybrid replenishment station. However, under the current background of high cost and low energy conversion efficiency of green hydrogen (Zhang, 2022) and the prominent price and low carbon emission advantage of blue hydrogen (Zhao et al., 2022), the production of blue hydrogen from natural gas has research value. In this regard, Pan et al. (2020b) argued that the current development of the electric hydrogen energy system should be fully combined with the price advantages of traditional fossil energy. Chang (2021) pointed out that currently hydrogen production from natural gas is the most widely used method of hydrogen production in the world. Wu et al. (2022) combined hydrogen production from natural gas and hydrogen energy storage configuration, built an IES model of a park with multi-energy complementation of electricity, heat, and gas, and carried out hydrogen energy storage capacity configuration. The aforementioned studies considered the production and utilization of a single form of hydrogen energy, and some studies also considered the complementary coordination between gray hydrogen production from coal and green hydrogen production from electricity. The carbon emission of blue hydrogen production is much lower than that of gray hydrogen production; however, few studies consider the coordinated utilization of green hydrogen and blue hydrogen production.
In HIES based on green hydrogen, the hydrogen load is completely supplied by green hydrogen. For example, Fang et al. (2023) used green hydrogen to supply hydrogen load of a hydrogenation station. Li et al. (2017) used green hydrogen to supply the overall hydrogen load of a microgrid system. In a gray hydrogen and green hydrogen complementary IES, Pan Z N et al. (2023) established a virtual hydrogen plant model including hydrogen production from coal, hydrogen production from electrolytic water, and hydrogen storage equipment so as to supply hydrogen load required by transportation, industries, and other fields. Li et al. (2023) supplied hydrogen load in chemical parks with complementary gray hydrogen and green hydrogen. However, the hydrogen utilization of different production methods is not precise enough, and the resulting scheduling scheme is prone to the extreme situation that hydrogen load is completely supplied by gray hydrogen with a lower economic cost, leading to a low utilization rate of green hydrogen, and the mass production of gray hydrogen will cause an increase in carbon emissions. The hydrogen load supply of the Beijing Winter Olympics is a typical coordination system of blue hydrogen and green hydrogen (Wen and Tian, 2022). The supply of blue hydrogen and green hydrogen always maintains a 1:1 proportional structure, but this proportional structure ignores the complementary characteristics between blue hydrogen and green hydrogen, reducing the flexibility of system scheduling.
In addition, direct carbon emissions are generated in the production process of blue hydrogen, while indirect carbon emissions are generated in the power grid as a result of the electricity consumption of green hydrogen (Cui et al., 2020). If this is not taken into account, the IES may have a high carbon footprint. Therefore, the carbon emissions of hydrogen production should be included in HIES, and a carbon trading mechanism (CTM) should be introduced. In this regard, Xiao et al. (2022) believed that introducing a CTM into scheduling is a new approach for the research on low-carbon IES. Chen et al. (2021) proved that introducing a CTM into IES containing hydrogen can exert its great potential for carbon emission reduction. However, the aforementioned HIESs ignored carbon emissions in the process of hydrogen production, and the scheduling schemes were not environmentally friendly.
To deal with the aforementioned issues, this paper considers the refined coordination and complementarity of green hydrogen and blue hydrogen and proposes the dynamic response mechanism of hydrogen load supply structure (DRM-HLSS) by optimizing the supply ratio of green and blue hydrogen in hydrogen load. We take the CTM into account and aim to minimize the total cost of the sum of wind power operation and wind abandoning penalty cost, energy purchase cost, blue hydrogen purification cost, and carbon trading cost. The low-carbon scheduling model of HIES with refined and coordinated utilization of green hydrogen and blue hydrogen was constructed, and the economic and low-carbon nature of the proposed scheduling strategy was verified by comparing the day-ahead scheduling results under different scenarios. The main contributions are summarized as follows:
(1) In this work, an HIES is established, including GH-PSUM for electrolytic water hydrogen production and BH-PSUM for natural gas hydrogen production. This allows for refined coordination and complementarity of multiple hydrogen sources, making the energy management mechanism of the system more flexible.
(2) CTM and DRM-HLSS are implemented to restrict the carbon emissions of the system, fully leveraging the flexibility of coordination and complementarity of multiple hydrogen sources in terms of economy and environmental protection. This leads to a reduction in the daily operation cost of the units.
(3) The proposed energy management solution (EMS) is evaluated through a case study in several operational scenarios. The proposed EMS is compared against three benchmark scenarios: no BH-PSUM, no DRM-HLSS, and no CTM. The numerical results confirm the economic and environmental benefits of the proposed EMS.
The remainder of this paper is organized as follows: Section 2 describes the structure of the HIES and the DRM-HLSS. Section 3 presents the low-carbon optimal scheduling model of the system. Section 4 contains the case studies conducted to verify the effectiveness. The conclusions are given in Section 5.
2 HIES STRUCTURE
2.1 Overview of the proposed system
According to the carbon emissions associated with hydrogen production, hydrogen energy can be categorized into three types: gray hydrogen, blue hydrogen, and green hydrogen. Gray hydrogen production has high carbon emissions but low cost. Blue hydrogen production has lower carbon emissions and higher energy conversion efficiency but a slightly higher cost. Green hydrogen production does not result in direct carbon emissions but has a higher cost. Given the goal of promoting the widespread use of hydrogen energy, this research focuses on the coordination between green hydrogen and blue hydrogen. The refined coordinated comprehensive energy system built with these two types of hydrogen includes three main components: energy distribution, energy coupling, and energy consumption. This system integrates various energy sources, energy conversion, and power supply equipment. The energy structure of the system is illustrated in Figure 1.
[image: Figure 1]FIGURE 1 | Energy structure of HIES.
The energy distribution side of HIES consists of the utility grid, wind power, and natural gas sources. The energy coupling side consists of GH-PSUM, BH-PSUM, an electric boiler (EB), and a heat storage system (HSS). The energy consumption side includes electrical, hydrogen, and heat loads. GH-PSUM consists of an electrolyzer (EL), green hydrogen storage (GHS), and green hydrogen fuel cell-based combined heat and power (GHFC-CHP). BH-PSUM includes gas-to-hydrogen (G2H), blue hydrogen storage (BHS), and blue hydrogen fuel cell-based combined heat and power (BHFC-CHP). The configuration of these two modules enables the refined coordination and complementation of green hydrogen and blue hydrogen. The electrical load of HIES is supplied by wind power, the grid, GHFC-CHP, and BHFC-CHP. The hydrogen load is supplied by GHFC-CHP and BHFC-CHP. The heat load is supplied by EB, GHFC-CHP, and BHFC-CHP. The energy storage devices in HIES ensure the balance of supply and demand by implementing time-shifting energy supply.
2.2 Models of hydrogen production–storage–use modules
The setting of GH-PSUM and BH-PSUM in the system makes the production, storage, and utilization of green hydrogen and blue hydrogen completely separate, and the whole chain of hydrogen energy from production to use can be tracked so as to achieve the purpose of refined utilization of hydrogen energy and facilitate the coordination and complementary optimization of green hydrogen and blue hydrogen.
GH-PSUM includes EL, GHS, and GHFC-CHP. EL converts electric energy into hydrogen energy without carbon emission in the whole process but consumes a lot of electric energy and water. The model of EL is shown in (1) and (2).
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where [image: image] represents the green hydrogen production volume of EL in the t period; [image: image] represents the electrical energy to hydrogen energy efficiency of the conversion of EL; [image: image] represents the power consumed by EL in the t period; [image: image] represents the length of each scheduling period; [image: image] represents the low calorific value of hydrogen; [image: image] represents the water consumption mass of EL in the t period; and [image: image] represents the water consumption coefficient of EL.
GHS is used to store green hydrogen, but the storage technology of current high-pressure gaseous hydrogen storage tank has a certain energy loss during the process of hydrogen energy from input to output, which can be measured by storage efficiency. The state of green hydrogen charge (SOGHC) can be described as expressed in (3).
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where [image: image] represents the SOGHC of GHS in the t period; [image: image] and [image: image] represent the efficiency of the hydrogen energy storage and output process, respectively; [image: image] represents the input amount of GHS in the t period; [image: image] represents the output of GHS in the t period; and [image: image] means the maximum hydrogen storage capacity of GHS.
GHFC-CHP uses fuel cells to convert hydrogen into electricity while collecting waste heat for storage or heat load to improve energy efficiency. The model of the GHFC-CHP is shown in (4) and (5).
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where [image: image] and [image: image] are the power generation and heating power of GHFC-CHP in the t period, respectively; [image: image] represents the hydrogen electric conversion efficiency for fuel cells; [image: image] represents the hydrogen heat conversion efficiency for fuel cells; and [image: image] represents the hydrogen consumption of GHFC-CHP in the t period.
BH-PSUM includes G2H, BHS, and BHFC-CHP. This work uses the currently mature hydrogen production method of natural gas steam reforming combined with pressure swing adsorption (PSA) on G2H to produce blue hydrogen through natural gas, and its main process is as follows: after pressure desulfurization, raw natural gas is mixed with steam at high temperature and then cracked and reformed into conversion gas containing H2, CO, and CO2 under catalytic action. After the conversion, gas is absorbed by the waste heat boiler, and CO in it reacts with water vapor to produce the conversion gas mainly containing H2 and CO2. The conversion gas can be purified by PSA to obtain finished blue hydrogen with a purity of 99.99%, and the PSA tail gas is reused as a fuel. In the whole process of hydrogen production, the mixed conversion requires the mixed fuel composed of burning fuel, natural gas, and analytic gas to supply high temperature, so the process involves CO2 emission and electric energy consumption in the operation of the equipment. The model of G2H can be described as follows:
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where [image: image] represents blue hydrogen production in the t period; [image: image] represents gas-to-hydrogen efficiency; [image: image] represents the low calorific value of natural gas; [image: image] represents the gas consumption in the t period; [image: image] represents the G2H power consumption in the t period; [image: image] is the power consumption coefficient of G2H; [image: image] represents the water consumption of G2H in the t period; [image: image] is the G2H water consumption coefficient; [image: image] represents the carbon emissions of G2H in the t period; and [image: image] represents the G2H carbon emission coefficient.
The BHS principle is the same as that of GHS, and (10) represents the state of blue hydrogen charge (SOBHC). Similarly, the principle of BHFC-CHP is the same as that of GHFC-CHP, and its model is shown in (11) and (12).
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where the symbols in (10)–(12) are defined as same as those in (3)–(5).
2.3 Models of other devices
EB converts electric energy into heat energy to supply the heat load in the HIES, which is described in (13).
[image: image]
where [image: image] and [image: image] represent the power consumption and heat production power of EB in the t period, respectively; and [image: image] is the electricity-to-heat conversion efficiency of EB.
HSS is used to store heat energy, and (14) represents its state of green heat charge (SOGHC).
[image: image]
where the symbols in (14) are defined as same as those in (3).
2.4 Dynamic response mechanism of the hydrogen load supply structure
Hydrogen load is the terminal energy directly supplied to the user. In the green hydrogen- and blue hydrogen-coordinated IES, it is supplied by both green hydrogen and blue hydrogen. In this work, the ratio of green hydrogen to blue hydrogen in the hydrogen load supply structure at each time is set as a variable to make the rigid hydrogen load supply structure flexible so that the hydrogen load supply structure can dynamically respond to the changes in hydrogen supply capacity and hydrogen production economy of GH-PSUM and BH-PSUM and further optimize the operation efficiency of the system. The DRM-HLSS is shown in (15)–(19):
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where [image: image] and [image: image] are the supply of green hydrogen and blue hydrogen in the hydrogen load in the t period, respectively; [image: image] and [image: image] are the proportions of green hydrogen and blue hydrogen in the hydrogen load supply structure in the t period, respectively; and [image: image] is the lowest limit of the minimum proportion of green hydrogen, whose setting significance ensures the continuous operation of GH-PSUM, so as to promote the utilization of green hydrogen and the development of related technologies and policies and avoid the extreme of hydrogen supply structure. Here, the extreme of hydrogen supply structure means that the hydrogen load is completely supplied by blue hydrogen, which has a low economic cost but brings more carbon emissions and is not conducive to the realization of the goal of “carbon neutrality.”
After the DRM-HLSS is introduced, because the cost of producing green hydrogen by purchasing electricity is much higher than that of blue hydrogen, the priorities of hydrogen production in the system depend on wind abandonment, natural gas, and purchasing electricity. In the supply of hydrogen load, if the wind abandonment used for hydrogen production cannot meet the minimum supply of green hydrogen, the minimum supply ratio of green hydrogen should be satisfied by purchasing power from the grid and outputting hydrogen from GHS, and the rest of the supply should be produced from natural gas. If this requirement can be met, but the wind abandonment is not enough to supply the whole hydrogen load, green hydrogen is produced by wind abandonment and output by GHS, and the remaining part of the hydrogen load is supplied by blue hydrogen. If wind abandonment is sufficient to supply the whole hydrogen load, the whole hydrogen load is supplied by green hydrogen, and the excess hydrogen produced is stored. The hydrogen supply mechanism of the system is shown in Figure 2.
[image: Figure 2]FIGURE 2 | Hydrogen supply mechanism of HIES.
3 MATHEMATICAL MODEL OF HIES OPERATION
3.1 Scheduling model
This work constructs the objective function to minimize the cost, as shown in (20).
[image: image]
Eq. 20 is the objective function of the total cost, including wind power operation and wind abandon penalty cost, energy purchase cost, blue hydrogen purification cost, and carbon trading cost. Eq. 21 represents wind power operation and wind abandonment penalty cost:
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where T is the total number of scheduling periods; [image: image] is the penalty coefficient for wind curtailment; [image: image] and [image: image] are the maximum output of wind power and the actual output of wind power in the t period, respectively; and [image: image] is the operating cost factor for wind power.
The energy purchase cost includes electricity, water, and gas purchase, as shown in (22).
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where [image: image] represents the time-of-use electricity price; [image: image] represents electricity purchase in the t period; [image: image] represents the price of natural gas; and [image: image] represents the price of water.
The utilization of the PSA technology increases blue hydrogen purity and lowers carbon emissions, but its use is also accompanied by the purification cost, resulting in an increase in the total cost. The purification cost is shown in (23):
[image: image]
where [image: image] represents the cost coefficient of blue hydrogen purification.
Carbon emissions will be generated in the operation of HIES, including carbon emissions generated by power generation from the utility grid and hydrogen production from natural gas. Therefore, it is necessary to quantify the cost of carbon emissions and measure the cost of carbon emissions under CTM. Under CTM, system operators need to purchase corresponding carbon quotas in the carbon trading market according to the actual carbon emissions of HIES so as to carry out reasonable and legal carbon emissions in the process of supplying users’ load demands. Enterprises with large-scale carbon emissions generally have free carbon allowances, but the carbon emissions generated by the system constructed in this paper are not large during operation. Therefore, assuming that the system does not have initial free carbon allowances, all the carbon emissions generated must be purchased in the CTM. The calculation of carbon trading costs is described in (24).
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where [image: image] represents the basic price of carbon trading and [image: image] represents the carbon emission factor of the grid.
3.2 Constraints
To ensure that the supply and demand of energy are always in balance, as well as to avoid energy wastage and shortage of energy supply, the operation of the HIES should always maintain the energy balance, including electric energy, heat energy, and hydrogen energy, as shown in (25)–(28). Among them, green hydrogen and blue hydrogen in the system are independently refined utilization, which are modeled as shown in (27) and (28), respectively, under the constraints of hydrogen energy balance.
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where [image: image] represents the electrical load power in the t period and [image: image] represents the heat load power in the t period. Meanwhile, after considering the DRM-HLSS, corresponding constraints in (15)–(19) should also be satisfied. Equations 3, 10, and 14 show that the models of GHS, BHS, and HSS devices are similar, and the constraints of the three energy storage devices are described uniformly in (29)–(33). The main constraints that energy storage devices should meet include the following: the single charge quantity should not exceed the limit as shown in (29) and (30), the device cannot be charged and discharged at the same time as shown in (31), the limit of an equivalent state of charge should not be exceeded as shown in (32), and the equivalent state of charge in each scheduling cycle should be equal from the beginning till the end as shown in (33).
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where [image: image] and [image: image] are the input and output of the ith energy storage device in the t period, respectively; [image: image] and [image: image] are the input and output states of the ith device in the t time period. Both are 0–1 variables, where 0 means that the device is in the input state and 1 means that the device is in the output state; [image: image] and [image: image] are the capacity and single charge and discharge limit coefficients of the ith equipment, respectively; [image: image] is the equivalent state of charge of the ith device in the t period; [image: image] and [image: image] are the upper and lower limits of the equivalent state of charge of the ith energy storage device, respectively; and [image: image] and [image: image] are the equivalent state of charge of the ith device at the beginning and end of a dispatch cycle, respectively.
The actual output of wind power cannot exceed the maximum output limit, as shown in (34).
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The operation of each device must not exceed the upper limit, as shown in (35)–(39).
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where [image: image] represents the maximum power consumption of EL; [image: image] represents the maximum power generation of GHFC-CHP; [image: image] represents the maximum hydrogen production of G2H; [image: image] represents the maximum power generation of BHFC-CHP; and [image: image] represents the maximum power consumption of EB.
Wind power has significant randomness and volatility. To reduce the pressure of the main network, this paper does not consider the system selling electricity to the main network, but the purchased power must not exceed the port limit, as shown in (40).
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where [image: image] represents the upper limit of the power exchanged with the grid.
4 CASE STUDY
To evaluate the effectiveness of the proposed scheduling strategy considering CTM and DRM-HLSS, cases are set under different operating scenarios for analysis. The problem is implemented in the YALMIP modeling language as linear programming and solved using the CPLEX optimizer. In this work, the i5-1035G7 CPU @1.20 GHz and 8.00 GB RAM are used for computation hardware, and the optimization is performed in MATLAB (version 2022a).
The scheduling period is 24 h, and the simulation step is set to 1 h to optimize the solution. The prediction curves of electrical load, heat load, hydrogen load, and wind power output inside the system are shown in Figure 3, while the prices of electricity, natural gas, and water are shown in Table 1. The energy storage capacities of GHS, BHS, and HSS devices are set to 100 Nm3, 100 Nm3, and 300 kWh, respectively. The maximum operating power of EB and EL is 600 kW and 500 kW, respectively. The maximum hydrogen production rate of G2H is set to 80 Nm3/h. The maximum power of the GHFC-CHP and BHFC-CHP is set to 150 kW and 50 kW, respectively. The upper limit of the switching power with the grid is set to 600 kW. The corresponding parameters of the HIES are shown in Table 2.
[image: Figure 3]FIGURE 3 | Prediction curves of (A) electrical load, heat load, and wind power output; (B) hydrogen load.
TABLE 1 | Purchasing tariffs of the HIES.
[image: Table 1]TABLE 2 | Required parameters for modeling the HIES.
[image: Table 2]4.1 Analysis of considering the refined coordinated utilization of multiple hydrogen sources and the DRM-HLSS
To assess the effectiveness of the coordinated utilization of green hydrogen and blue hydrogen, as well as the DRM-HLSS proposed in this study, three different operating scenarios were set for comparative analysis. HIES1 represents a single green hydrogen scenario focused on GH-PSUM. HIES2 represents a traditional hydrogen supply scenario considering the coordinated utilization of green hydrogen and blue hydrogen, with a hydrogen supply structure set at a 1:1 ratio. HIES3 represents a flexible scheduling scenario that considers the coordinated utilization of green hydrogen and blue hydrogen, as well as the DRM-HLSS. The minimum proportion of green hydrogen is set at 0.4. To ensure comparable scheduling flexibility, the capacities of GHS and GHFC-CHP devices in HIES1 are set to equal the combined capacities of green hydrogen and blue hydrogen devices in HIES2. Furthermore, HIES2 and HIES3 have identical device capacities.
Table 3 presents the scheduling results for the three HIESs. The data reveal that in terms of environmental impact, HIES2 demonstrates a 31.78% decrease in carbon emissions compared to HIES1. Additionally, HIES3 achieves a carbon emission reduction of 39.84% relative to HIES1 and 11.80% relative to HIES2. Concerning renewable energy consumption, the curtailment rate of HIES2 is 2.25% higher than that of HIES1. For HIES3, the curtailment rate increases by 0.48% compared to that of HIES1 but decreases by 1.77% compared to that of HIES2. In relation to the total cost, HIES2 has a lower total cost compared to HIES1. Furthermore, HIES3 exhibits a further cost reduction of $31.2 compared to HIES2 and $80.9 compared to HIES1. These findings indicate that the comprehensive consideration of the coordinated utilization of multiple hydrogen sources and the DRM-HLSS leads to significant carbon emission reduction and a relatively balanced utilization of renewable energy. Although the renewable energy utilization rate is lower than that of a single green hydrogen scenario, it has increased compared to the traditional hydrogen supply scenario with a fixed proportion, while also achieving lower total costs, demonstrating improved economic feasibility.
TABLE 3 | Comparison of scheduling results of HIESs.
[image: Table 3]According to the wind curtailment situation of each HIES in Figure 4 and the analysis of carbon emissions and costs associated with hydrogen production, it can be estimated that the carbon emissions of green hydrogen from electricity purchase are 3.738 kg/Nm3, while the carbon emissions of blue hydrogen from natural gas are 0.889 kg/Nm3, implying that under the current carbon emission factor of the grid, the actual carbon emissions from producing green hydrogen by purchasing power from the grid are higher than those from producing blue hydrogen using natural gas through PSA. Additionally, the cost of producing green hydrogen is also higher than that of producing blue hydrogen. In the scenario of solely relying on green hydrogen, the system can only use electrolytic water to produce green hydrogen for the hydrogen load, as the system’s own wind power cannot meet the demand for hydrogen production. Therefore, electricity needs to be purchased from the grid, resulting in a certain amount of carbon emissions and high hydrogen supply costs. By considering the coordinated utilization of green hydrogen and blue hydrogen, a portion of the hydrogen load is replaced by the supply of blue hydrogen, which has lower carbon emissions and costs. As a result, the electricity purchased from the grid is reduced, leading to a reduction in carbon emissions and costs. However, due to the fixed proportion of hydrogen supply, some of the wind power initially allocated for hydrogen production cannot be consumed during periods of low load at night, leading to an increase in wind curtailment. With the inclusion of the DRM-HLSS, the dispatching scheme is further optimized, allowing the system to fully utilize the internal wind power and reduce external hydrogen production, gas purchases, and grid electricity purchases. For this reason, HIES3 is able to achieve a low wind curtailment rate while maintaining lower carbon emissions and operating costs. However, compared with scenario 1, scenario 3 introduces blue hydrogen, whose production cost is much lower than that of green hydrogen. In order to reduce operating costs, part of green hydrogen in the hydrogen load will be replaced by blue hydrogen, and the wind power used to produce this part of green hydrogen will not be able to be absorbed, so the wind curtailment in scenario 3 is slightly higher than that in scenario 1.
[image: Figure 4]FIGURE 4 | Wind power output in each HIES.
Under the HIES3 model, Figure 5 depicts the operation of each device in a system dispatching cycle, while Figure 6 shows the dynamic supply structure of hydrogen load. During the low-load period from night to morning, wind power is sufficient to meet the demand for electric load and electric boiler heat load. Excess wind power is then used to produce green hydrogen, with the whole hydrogen load being supplied by green hydrogen and any remaining excess being stored. Additionally, a small amount of blue hydrogen is produced using low-cost electricity for storage. During the high-load and flat-load stages from morning to night, wind power alone cannot satisfy the electric heating load. Therefore, electricity purchasing, hydrogen cogeneration operation, and wind power are combined to achieve the electric and heating balance. During this period, green hydrogen generation is absent, so blue hydrogen is primarily used to supply the hydrogen load, while the hydrogen storage tank continuously outputs green hydrogen to meet the minimum demand. It is evident that by considering the DRM-HLSS, the flexibility of system scheduling improves, allowing for dynamic optimization of the hydrogen load supply structure based on wind power output. This approach also reduces wind power output fluctuations and enhances wind power absorption capacity through flexible adjustment of each device’s output.
[image: Figure 5]FIGURE 5 | Results of (A) electricity, (B) heat, and (C) hydrogen balance considering the refined coordinated utilization of multiple hydrogen sources and the DRM-HLSS.
[image: Figure 6]FIGURE 6 | Hydrogen load supply structure in HIES3.
4.2 Analysis of considering the CTM
To analyze the effectiveness of the CTM after careful consideration, HIES4 was configured to include the coordinated utilization of green hydrogen and blue hydrogen, as well as the DRM-HLSS system, excluding the CTM. The scheduling results of HIES4 and HIES3 mentioned previously are presented in Table 4. As shown in the table, the carbon emissions of HIES3 are 113.5 kg lower than those of HIES4, representing a reduction of 11.4%. This demonstrates that considering the carbon trading mechanism can effectively achieve the goal of carbon reduction.
TABLE 4 | Comparison of scheduling results of the HIESs.
[image: Table 4]Further analysis reveals that without considering the carbon trading mechanism, power purchased from the grid has no restrictions on carbon emissions. In such cases, the cost of directly using electric energy is lower than that of hydrogen energy. Due to the anti-peak regulation characteristic of wind power, the load of wind power is low, its output is high during periods of low electricity prices, and, during the remaining periods, the output is small and even insufficient to meet the demand for electric heating load. To address this, the system chooses to increase the purchase of parity electricity during the flat-load stage to supply electricity and heating load, thereby reducing the operation of the hydrogen cogeneration device, which only runs during periods of high load. Additionally, the supply of green hydrogen produced by electricity in the hydrogen load is also increased. When considering the carbon trading mechanism, not only the hydrogen load but also the conversion and utilization of hydrogen energy are increased, resulting in higher costs but lower carbon emissions. The operation of all devices takes into account the requirements of low cost and low carbon emissions, ultimately obtaining a low carbon dispatching scheme with slightly higher costs but less carbon emissions.
Different grid carbon emission factors can affect the operation of the system. In fact, these factors are constantly changing as the proportion of renewable energy increases. Therefore, it is necessary to analyze the system’s operation results as these factors change.
The operation results of HIESs under different grid carbon emission factors are shown in Figure 7. It can be observed that as the grid carbon emission factor decreases, both the total cost and carbon emission of HIES1 and HIES3 show a gradually decreasing trend. The total cost of HIES3 declines more slowly than that of HIES1, but it is always lower. Similarly, the decline in carbon emissions of HIES3 is consistently slower than that of HIES1, with an initial slow trend followed by a faster decrease. At approximately 0.2 kg/kWh grid carbon emission factor, the carbon emission curves of the two HIESs intersect. From that point onward, the carbon emission of HIES1 is consistently lower than that of HIES3. This is because HIES1 relies more on purchasing electricity and is greatly influenced by changes in the grid’s carbon emission factors. However, the production cost of green hydrogen is higher than that of blue hydrogen, resulting in a higher total cost for HIES1. It can be observed that under the continuous reduction in the grid carbon emission factor, a single green hydrogen system will have a lower carbon footprint compared to a coordinated green hydrogen and blue hydrogen system.
[image: Figure 7]FIGURE 7 | Impacts include (A) total cost and (B) carbon emissions of different grid carbon emission factors on two HIESs.
5 CONCLUSION
This study considers the refined coordinated utilization of multiple hydrogen sources, the DRM-HLSS, and the CTM, constructing a low-carbon economic dispatching model for HIES. By solving and analyzing the dispatching scheme, it is found that the refined coordinated utilization of green hydrogen and blue hydrogen, along with the DRM-HLSS, can simultaneously ensure high renewable energy consumption, reduce carbon emissions, and lower operating costs. The DRM-HLSS improves system scheduling flexibility, reduces wind power output fluctuations, and enhances wind power consumption capability. Additionally, the introduction of a CTM restricts carbon emissions in the comprehensive energy system, achieving carbon emission reduction goals and promoting greater utilization of hydrogen energy. It is worth noting that the current coordination system between green hydrogen and blue hydrogen effectively leverages the economic benefits of fossil fuels and the low-carbon nature of carbon capture technology. However, as the carbon emission factor of the power grid continues to decrease in the future, this system will no longer offer advantages in terms of economy and low carbon emissions. Consequently, the operation of HIES should gradually transition toward a single green hydrogen system, aligning with reduced carbon emission factors of the power grid.
For future work, it is recommended to consider flexible load demand response mechanisms, such as electricity and heat, in the optimization scheduling of the system for further research. Additionally, the uncertainty of renewable energy output should be taken into account in subsequent optimization scheduling research to ensure that the scheduling results align more closely with actual conditions.
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The increasing penetration of renewable energy sources (RES) brings volatile stochasticity, which significantly challenge the optimal dispatch of power systems. This paper aims at developing a cost-effective and robust policy for stochastic dynamic optimization of power systems, which improves the economy as well as avoiding the risk of high costs in some critical scenarios with small probability. However, it is hard for existing risk-neutral methods to incorporate risk measure since most samples are normal. For this regard, a novel risk-averse policy learning approach based on deep reinforcement learning with risk-oriented sampling is proposed. Firstly, a generative adversarial network (GAN) with graph convolutional neural network (GCN) is proposed to learn from historical data and achieve risk-oriented sampling. Specifically, system state is modelled as graph data and GCN is employed to capture the underlying correlation of the uncertainty corresponding to the system topology. Risk knowledge is the embedded to encourage more critical scenarios are sampled while aligning with historical data distributions. Secondly, a modified deep reinforcement learning (DRL) with risk-measure under soft actor critic framework is proposed to learn the optimal dispatch policy from sampling data. Compared with the traditional deep reinforcement learning which is risk-neutral, the proposed method is more robust and adaptable to uncertainties. Comparative simulations verify the effectiveness of the proposed method.
Keywords: optimal dispatch, deep reinforcement learning, risk-oriented sampling, risk knowledge embedded, graph convolutional networks
1 INTRODUCTION
With the rapid development of power electronics, it is foreseeable that the proportion of renewable energy sources (RES) in the power system will continue to increase (Mathiesen et al., 2015). On the one hand, utilizing RES in future smart grids can help energy systems cope with energy depletion crisis. On the other hand, the uncertainty brought by RES makes the scheduling decision of the power system a greater security risk (Zhang et al., 2021). These challenges have a profound impact on the reliability and economy of power grid operations. Consequently, finding effective and reliable dispatch decisions has become a critical scientific challenge with direct implications for operational safety. Dynamic economic dispatch (DED) is a dispatch strategy which allows dispatch decision to be given and adapted in response to the realizations of uncertainties evolutions. In this regard, developing the optimal policy (policy is a function about how system operator makes dispatch decision) for stochastic dynamic dispatch is crucial to maintain the supply-demand balance for power system under high renewable energy penetration. However, accurately modeling and solving the DED are required to address the challenges associated with uncertainties which attract substantial interest from both the electricity industry and academia.
Theoretically, stochastic dynamic dispatch of power systems is a typical multistage sequential decision problem. It usually contains enormous state and action space, and complex uncertainty variations, which makes its optimal policy almost intractable. In the past decade, extensive studies have devoted to developing the optimal policy for stochastic dynamic dispatch, mainly including look-ahead dispatch policy (also known as model predictive control), dynamic programming, and reinforcement learning. Among these methodologies, deep reinforcement learning (DRL) (Silver et al., 2016) is regarded as a promising alternative due to its strong nonlinear fitting ability, adaptability, and generalization. Through enough learning from training samples, its decision is adapted to the uncertainties observed overtime. Owing to these advantages, DRL has been widely applied to corresponding dynamic dispatch problems in smart grids. Reference (Hua et al., 2019) adopts a synchronous advantage actor-critic (A3C) to solve the energy management problem of continuous time coupling. Meanwhile Bedoya et al. (2021) solve an MDP problem considering the asynchronous data arrival using deep Q-network (DQN) and (Zhao and Wang, 2021) proposed an approach combining a GCN with a DQN to conduct sequential system restoration.
Although RL has been successfully applied in the optimal dispatch problem, most of them consider a risk-neutral objective. That is, they directly use original historical data as training samples and minimize the expectation of accumulative rewards. Such policy performs well in most scenarios or normal scenarios, however, when encountering some critical scenarios of which the possibility is small but the outcome is severe, e.g., network constraints violation or even supply-demand unbalance. The main difficulties to incorporate risk measurement can be summarized as follows: firstly, the critical scenarios with small possibility may be drown in massive normal scenarios, it is hard for algorithm to distinguish and learn these critical scenarios. Secondly, most RL methods use the average reward of batch samples for learning, risk measure is not considered. Some studies and our previous researches (Pan et al., 2020) have proposed a risk-averse RL for stochastic dynamic dispatch of multi-energy system, however, they directly used original historical data or Monte-Carlo sampling to form large batch of samples to compute risk adjusted objective. Note that the distribution of critical scenarios is quite sparse. Such approach cannot ensure critical scenarios with high cost and small probability are effectively sampled, leading to slow convergence and low sample efficiency. Reference (Liu et al., 2018) employs function approximation to avoid the trouble of stochastic modeling. Some literature simplify the problem by discretization, bringing the dilemma of inaccuracy and dimension disaster (Yu et al., 2015; Chen et al., 2019). Guo et al. deployed a novel policy-based PPO algorithm for a real-time dynamic optimal energy management in microgrids to make optimal scheduling decisions (Guo et al., 2022). Chen et al. developed a DDPG algorithm based on hybrid energy scheduling, which can learn the optimal policies from historical experiences, avoid inadequate exploration by introducing decaying noise (Chen et al., 2022). Reference (GUAN et al., 2020; Lv et al., 2020) has undertaken initial explorations into the utilization of deep reinforcement learning for real-time grid scheduling optimization. While these preliminary forays have delved into the optimization of grid scheduling, they have not yet been extended to address intricacies such as intra-day rolling scheduling, multi-objective grid scheduling, and the dynamic considerations arising from maintenance or minor faults in the system’s topology. The above studies focus on simplified models for training RL and lack analysis and discussion of historical data.
Since RL can be regarded as a data-driven approach, its performance depends on the sampling data. Although a risk-averse or robust objective can be merged into traditional RL, another critical problem is how to ensure the risk scenarios with small probability are effectively sampled during learning? Since power system is mostly in a normal state, critical scenarios, e.g., line overloading, voltage violations, and load shedding unusually occurs. Existing methods directly use historical data as learning samples, however, this leads to slow convergence or invalid learning since critical scenarios are insufficient sampled.
To address the aforementioned key technical challenges, including the lack of risk-directed samples and the low robustness of policy, a novel risk-averse policy learning approach based on DRL with risk-oriented sampling is proposed. Firstly, a graph generative adversarial network (GGAN) that combines GANs (Goodfellow et al., 2014; Arjovsky and Bottou, 2017; Chen et al., 2018; Zhang et al., 2021) and GCNs (Shervashidze et al., 2009) is proposed. This integration allows to leverage historical graph data and capture the underlying correlation of the uncertainty corresponding to the system topology. Notably, GGAN incorporates risk knowledge to ensure that critical scenarios can be sufficiently generated while aligning with the underlying original data distribution. This modification boosts the interaction frequency between the agent and risk scenarios, enabling the identification and learning of crucial embeddings. Secondly, the existing DRL framework, specifically the SAC algorithm, is modified by incorporating risk measure. Consequently, the agent is incentivized to develop a cost-effective and robust policy for stochastic dynamic optimization, resulting in not only enhancement of the economy but also mitigating the risk of high costs in critical scenarios with low probabilities.
The specific contributions of this paper are as follows.
1) Risk-averse stochastic dynamic dispatch scheme: A DRL based risk-averse stochastic dynamic dispatch approach is proposed to enhance the robustness and economy of policy when encountering critical risk scenarios in power systems. To tackle the challenges of existing methods in inadaptability of risk measure and invalid sampling, this paper focuses on two aspects: data expansion and algorithm improvement. Specifically, firstly, risk-oriented sampling is proposed to generate enough critical scenarios. Then, these samples are leaned by a risk measure incorporated DRL algorithms. By such way, the dispatch policy not only improves the economy but also avoid the risk of high costs in some rare but critical scenarios.
2) Risk-oriented sampling: to avoid the critical scenarios with small possibility being drown in massive normal scenarios, a risk-oriented sampling is proposed to generate more critical scenarios while maintaining the original data distribution. To achieve this, KEG_GAN (Knowledge Embedding Graph Generative Adversarial network) is proposed. Firstly, a graph representation is proposed to integrate node features with topology changes, allowing for the incorporation of topology information into the system state while achieving efficient expression of operational state. Secondly, through incorporating regularization terms into the loss function and leveraging topological connection relationship in the graph structure, the knowledge embedding guides data-driven model to generate risk-oriented samples. Thirdly, this paper proposed differentiated weighting method for batch samples with hierarchic stepped thresholds to enhance the utilization efficiency of critical samples.
2 PROBLEM STATEMENT AND PROPOSED METHOD
We first discuss the challenges in applying DRL for grid control under fast-changing power grid operation scenarios with increased uncertainties, which necessitates and highlights the need of risk control capability for DRL-based agents. Then, we introduce the framework of the method we proposed and how they solve the problem of optimal dispatch in power systems.
2.1 Problem statement and formulation
With the increased integration of RES into the power grid, ensuring economic efficiency in power system dispatching operations requires the consideration of operational risks in low-probability scenarios. While these risks may have a low likelihood of occurrence, their potential impact on the safety of the power grid cannot be underestimated.
The optimal dispatch problem entails learning a policy that enhances economic performance while mitigating the risk of incurring high costs in critical scenarios with small probabilities. Consequently, the dispatch problem in power systems, taking risk into account, can be represented by the following equation:
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Where E(x) represents the expectation operator. Ce(x) represents economic costs and Cr(x) represents the cost of risk. hk(x) and Ij(x) represent the physical constraints of the power system.
During power system operation, the primary objective is to guarantee the safety and reliability of the grid. Therefore, in addition to minimizing obj1 (e.g., risk considerations), obj2 (e.g., economic costs) should be taken-into-accounted as a secondary objective. The dispatch policy should prioritize minimizing obj1 while considering obj2 to ensure that the power system operates efficiently while maintaining a high level of safety and reliability.
The process of DRL solving the above problem can be defined as policy search in a Markov Decision Process (MDP) defined by a tuple (S, A, p, r, y), where S is the state space, A is the action space, p:S×A→S is the transition function and p:S×A→R is the reward function. The goal of DRL is to learn a policy πθ(st):S→A, such that it maximizes the expected accumulative reward J (πθ) over time under p:
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Where at∼πθ(st) and st+1∼p (st, at), and [image: image] is the dispatch period. Note that maximizing the cumulative reward is the opposite of minimizing the cost, f(x) achieving the conversion from cost to reward. The policy is parameterized by a neural network with weights θ in DRL. The traditional DRL framework is shown in the upper part of Figure 1.
[image: Figure 1]FIGURE 1 | The framework of DRL with risk-oriented Graph-Gan sampling.
There is a notable discrepancy in sample sizes across various scenarios, such as normal operation scenarios and high-risk operation scenarios or critical scenarios. During the agent’s interaction with the environment, infrequent critical scenarios inundate the buffer, leading to policy updates that prioritize minimizing economic costs without adequately considering the security of power systems.
The uncertainty associated with RES presents a challenge for DRL, often leading to decisions that result in unsafe grid operations. Additionally, the uneven distribution of samples further compounds these issues, making it even more difficult to address the aforementioned challenges. To overcome these challenges, this paper proposes a method to enhance the DRL and effectively tackle these issues.
2.2 The basic framework of our method
The fundamental framework of the proposed risk-oriented Graph-Gan sampling assisted DRL for risk-averse stochastic dynamic dispatch, as well as the comparison with traditional DRL are illustrated in Figure 1.
The following improvements are made.
(1) Risk scenario generation: The sampling process for scenarios from the power system is modified to increase the proportion of risk scenarios while maintaining an appropriate balance with normal operation scenarios. This adjustment leads to a more risk-averse strategy, as depicted by the red circle in Figure 1.
(2) Risk probability sampling: To enhance the decision-making robustness of the intelligent agent, the importance of risk experience sampling is given higher priority during the update process. The policy is updated to ensure that the intelligent agent primarily learns from experiences related to high-risk operation scenarios. This adjustment is visualized by the red circle in Figure 1.
3 RISK SCENARIOS GENERATION
The operation scenario data which is used to train the agent primarily originates from the measurement data of the actual power system. Critical scenarios, which often involve network constraints and can be mathematically described, usually occur very rarely in datasets. To address the issue of sparse data in the training scenario, data augmentation techniques can be employed to enhance the learning ability of the agent. However in the traditional data augmentation techniques such as GAN, only the path represented by the blue arrow in Figure 2 is considered. The model incorporates a deep understanding of the data distribution and is less inclined to generating outputs based on extremely scenarios during the generation process.
[image: Figure 2]FIGURE 2 | The framework of generation of extreme operation scenario sample based on KEG_GAN.
To address these limitations, this paper introduces KEG_GAN, which integrates risk knowledge and equations to effectively guide the training process. This approach leverages data-driven methods while incorporating additional guidance from risk knowledge, as depicted by the blue and green arrows in Figure 2. By combining data-driven learning with the integration of domain-specific knowledge, KEG_GAN aims to overcome the aforementioned challenges.
This framework begins by acquiring the operation scenario dataset and power grid topology information from measurement data and simulation systems within the power system. During the process of embedding knowledge into the model, the operation scenario data incorporates risk constraints. Drawing upon risk knowledge, the mechanism model of power grid operation scenes is formulated and analyzed, leading to the identification and extraction of risk equations present within the operation scenarios. These equations, such as power flow constraints and section constraints, are regularized and integrated into the GAN architecture to guide the model’s learning process. In this paper, the operation scenarios are categorized into two groups: extreme operation scenarios with low safety margins and safe operation scenarios with high safety margins.
3.1 Feature extraction of power grid operation scene based on graph representation
In addition to node attributes and outputs, the power grid topology information plays a crucial role in capturing the key characteristics of operation scenarios. However, many conventional methods for generating scenarios focus solely on node-level data without considering the integration of power grid topology information. This limitation makes it difficult to generate operation scenarios that reflect the inherent coupling relationships between nodes using GAN-based approaches.
To address this limitation, effectively combining power grid topology information with operation scenario data becomes an essential approach to enhance the generation of power grid operation scenarios. In this paper, a graph representation is employed by combining node-level data of operation scenarios with power grid topology information. To effectively capture the information embedded in power grid operation scenarios, GCN are introduced to enhance the traditional GAN framework. This integration allows for the effective exploration and mining of critical information within power grid operation scenarios using GAN-based techniques.
The idea of GCN is to aggregate the information of neighbor nodes and obtain more powerful feature expression, which can dig deeply into the potential distribution of power grid operation scenario data. The calculation formula is shown as follows:
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Where, A' = A + IN is an adjacency matrix with self-connection, [image: image] is the identity matrix. Dii = ∑j Aij’ is the degree matrix of A'. W(l) is the trainable parameter in the convolutional layer of the GCN, and H(l) represents the input characteristics of the l layer. After matrix multiplication of the above formula, forward propagation is carried out through activation functions [image: image] such as [image: image] (Thomas and Max, 2016).
The topological information is constructed and processed by GCN to mine the correlation between neighbor nodes and improve the learning effect of GAN. For this reason, the graph representation of the power grid operation scenario is shown in Figure 3. Firstly, sampling is conducted from the power system to obtain the operation scenario data of load, node voltage, the output of traditional unit and RES, etc. Then, the characteristic matrix H of the power grid operation scenario is constructed. The matrix size is N*T, where T = {load, voltage., renewable energy output}, and the grid topology represents the connection relationship between nodes, which is represented by the adjacency matrix A. Therefore, the grid operation scenario is represented by the adjacency matrix A and the characteristic matrix H of the grid topology.
[image: Figure 3]FIGURE 3 | The graph representation of the power system operation scene.
3.2 Knowledge embedding within agents considering operational risk
As mentioned previously, the data collected from the power system for generating operation scenarios includes various parameters such as active and reactive power of each node, node voltage, generator terminal voltage, and power output. However, when these data are not separated, it becomes challenging to extract the underlying physical constraints through data-driven methods alone. Considering the operational risks involved, it becomes necessary to incorporate human knowledge to uncover the physical mechanisms behind power grid operation scenarios and integrate them into the model to guide its learning process.
To address this, this paper introduces the concept of embedding knowledge into the model, with the goal of leveraging human knowledge to analyze and model the problem. This approach involves constructing mathematical equations that accurately represent the real physical situation. By incorporating a regularization term into the loss function, the mathematical equations derived from human knowledge are embedded into the neural network model, enabling guidance and modification of the data-driven model.
In line with the widespread concern regarding the risk of terminal voltage crossing the lower limit in power grid operation, this paper considers the scenario where the voltage at key nodes in the system approaches the critical lower limit as one of the critical scenarios. The physical constraints of this scenario are represented by Eqs 5–8, with the power flow constraints being expressed using simplified linear power flow equations (Baran and Wu, 1989).
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Where, BI,j,BO,j represent the node set that injects and flows node j along the reference direction. Pij,Qij,Pj,Qj represent active and reactive power of branch lij and node j. Rij and xij are the resistance and reactance of the branch. The voltage of node j needs to meet its upper and lower limit constraints (8). Ukey,min is the lower limit of the voltage of the key node.
Simultaneously, the key section of the power system bears the significant responsibility of power transmission during grid operation. Thus, ensuring the reliability of electric energy delivered through the key section is a crucial task for the system’s safe operation. However, the availability of extreme operation scenario where the power at the critical cross-section approaches the maximum transmission limit is relatively limited. Therefore, determining the critical upper limit for power transmission at the critical section of the power grid becomes a vital aspect of generating extreme operation scenarios. The corresponding constraints can be mathematically expressed through Eqs 9–10.
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Where, Pij,min,Pij,max,Qij,min,Qij,max represent the maximum and minimum values of active power and reactive power that the tidal current section can flow through respectively.
Furthermore, the primary focus of this paper is on critical scenarios where the power flow in certain key branches, denoted as Pkey, exceeds the upper limit threshold, posing a risk. To address this concern, equation constraint (11) is introduced, where Pkey,max represents the power flow upper limit of the key branches. Consequently, in the KEG_GAN framework, it is essential to ensure that the generated operation scenes comply with the aforementioned constraints to the best extent possible. The loss function of KEG_GAN can be formulated as follows:
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Where, Lmodel represents the loss function of Graph-GAN, and Lconstraint,i represents the loss function of the regularization knowledge embedding model with section constraint or voltage constraint. Therefore, in KEG_GAN, according to the training objectives of generator G and discriminator D, the sum of loss functions of the KEG_GAN are shown in Eqs 12, 13, respectively.
[image: image]
[image: image]
Where, E represents the distribution expectation of samples, pdata(x) represents the probability distribution of real sample x, and pz(x) represents the probability distribution of generating sample z. Based on the above equation, the objective function of the adversarial network generated by Eq. 14 can be derived:
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Key section constraints are written into the model by means of loss function regularization, which can be expressed by Equation 15:
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Where, Nl represents the number of key cross sections; MSE represents the mean square error loss function in the neural network model; voltage constraint of key nodes is expressed in Eq. 16:
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Where, Nu represents the number of key nodes; MSE represents the mean square error loss function in the neural network model.
Hence, the objective of the knowledge embedding model is twofold: not only to minimize the loss of the GAN but also to ensure that the operation scenarios generated by the model adheres to the physical constraints of key sections, guided by the incorporation of risk knowledge. Its objective function can be written as:
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Where a represents the hyperparameter.
4 RISK PROBABILITY SAMPLING
In the presence of a significant number of risk scenarios in the environment, the interaction between the DRL agent and the environment results in the accumulation of a substantial amount of experience in the buffer. Effectively utilizing this experience to update the intelligence becomes the second challenge addressed in this paper, as depicted in Figure 4.
[image: Figure 4]FIGURE 4 | The framework of risk probability sampling.
To tackle this challenge, we enhance the Soft Actor-Critic (SAC) algorithm in DRL (Haarnoja Zhou et al., 2018; Christodoulou, 2019). Specifically, when risk scenarios are sampled, they are marked in the buffer. During the sampling process, weights are assigned to these risky scenarios, influencing the update process of the strategy network and value network. By assigning appropriate weights, the agent can be updated more effectively, leveraging the experience gained from risky scenarios.
These improvements aim to optimize the utilization of experience stored in the buffer, allowing the DRL agent to learn from and adapt to risk scenarios, ultimately enhancing its performance in handling risk scenarios in power systems.
The traditional SAC algorithm relies on an averaging approach during the updating process, which can overlook risk scenarios stored in the buffer. This limitation hinders the agent’s ability to effectively adapt to reward changes in these scenarios. To address this issue, we propose an enhancement in this paper by introducing labels to identify the risk scenarios encountered by the agent. These labels are used to assign significant weights during the network parameter update of the SAC algorithm. The specific weights are determined to meet the following constraints:
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Where Sbatch represents the size of the batch, n0 represents the number of normal scenarios in the batch, n1 represents the number of risk scenarios in the batch, and W0 and W1 represent the weights of normal and risk scenarios, respectively.
5 CASE STUDY
5.1 The construction of environment
The study in this paper enhances the existing IEEE30-node system by incorporating two wind power stations and two photovoltaic power stations. The power upper limit of the critical branch is set at 100 MW. The specific topology is illustrated in Figure 5.
[image: Figure 5]FIGURE 5 | IEEE30 node system environment.
In this paper, the environment comprising 4,800 operation scenarios spanning a duration of 200 days is generated using Monte Carlo simulation (Rubinstein and Kroese, 2016).
Each time-step agent achieved a maximum reward of 2, which consisted of two components: 1 reward for ensuring grid operational safety and 1 reward for optimizing grid economics. The specific reward value is set as shown in the following equations:
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Where pline represents the transmission power of the key line and pline,max represents the max transmission power of the key line. NGen and Nnew represent the number of thermal and RES units.
The first component, grid operational safety, accounted for 1 reward point. This reward was earned by making decisions that maintained the safety and stability of the grid. If a −2 reward is earned, it will trigger an automatic termination of your policy within the grid, rendering it impossible to earn any subsequent reward.
The second component, grid economics, also contributed 1 reward point. This reward was obtained by making decisions that effectively managed and optimized the economic aspects of the grid such as promoting the rate of RES consumption.
5.2 The details of experiments
The proposed approach in this paper is subjected to three experiments to evaluate its effectiveness. Here are the details of each experiment.
1) Performance of different GAN models:
This experiment aims to assess the capabilities of KEG_GAN in generating critical scenarios while maintaining the invariance of the data distribution.
2) Different training data on the performance of KEG_GAN:
In this experiment, the impact of different training data on the performance of KEG_GAN is investigated. Datasets with different critical scenarios proportions may be used as training data, and the performance of KEG_GAN is measured and compared across these different datasets. This experiment helps determine the robustness and adaptability of KEG_GAN to different training data sources.
3) The influence of different scenarios on DRL:
The last experiment aims to assess and compare the performance of conventional DRL methods with our proposed improved DRL. By conducting a comparative analysis, valuable insights can be gained regarding the applicability and effectiveness of KEG_GAN in enhancing the performance of DRL.
5.3 Case analysis
5.3.1 The model structure of KEG_GAN
In this case, the KEG_GAN model extends the traditional GAN architecture by incorporating two additional layers of graph convolution. The generator component of the model takes a randomly sampled vector from a 200-dimensional standard normal distribution as input. It then passes through two layers of graph convolution to extract node information. Finally, a 30 × 3 matrix is outputted through a multilayer perceptron. The discriminator component of the model takes the 30 × 3 matrix as input and processes it through two layers of graph convolution and a multilayer perceptron. The final output is a scalar value representing the discriminant result. The ReLU function is employed as the activation function between the neural networks of each layer. The KEG_GAN model employs the generative adversarial loss as the loss function for the discriminator and Ltotal for the generator. It utilizes the Adam optimization algorithm to perform gradient descent and update the model parameters. Table 1 provides an overview of the model parameters.
TABLE 1 | The model structure of KEG_GAN.
[image: Table 1]5.3.2 Experiment 1
To assess the performance of KEG_GAN and analyze the disparity in data distribution between the generated samples and the training samples, this paper employs the KL divergence as a metric. The calculation formula of KL divergence is shown in Formula (22):
[image: image]
Where H is the data distribution of the guided samples, and K is the data distribution of the guiding samples. In this paper, H represents the operation scene distribution generated by the generator, and K represents the operation scene training set distribution. Where the smaller KL divergence proves that the samples generated by the model are closer to the real samples.
In contrast, KEG_GAN is designed to address this issue by learning and capturing more diverse data distributions. This enables the model to generate samples that better conform to the distribution of the training data, even in scenarios characterized by higher levels of randomness and uncertainty. By leveraging the capabilities of KEG_GAN, the generated samples exhibit greater variability and better match the diversity present in the training data distribution. This allows for more accurate representation and generation of operation scenarios, particularly in scenarios with increased complexity and uncertainty introduced by the integration of RES.
As shown on Table 2, the results of our study demonstrate the enhanced sample generation capability of KEG_GAN. The incorporation of GCN enhances the information extraction capability of the model, minimizing the distance between the generated operation scenarios and real operation scenarios. Furthermore, knowledge embedding in KE-GAN leads to an increase in the KL divergence of the model. This knowledge embedding step changes the distribution of the generated data.
TABLE 2 | KL divergence of different models.
[image: Table 2]In the distributed network system with RES, the operation scenarios exhibit greater diversity, leading to a more varied data distribution. GAN’s performance is significantly reduced in such scenarios, with the KL divergence of active power sharply increasing. This divergence indicates a significant deviation from the real data distribution, making it challenging for the generated samples to meet the requirements of intelligent algorithms.
However, the proposed KEG_GAN method in this paper addresses these challenges by representing the grid operation scenarios graphically and embedding the neural network model within the physical mechanisms. By maintaining the same data distribution, KEG_GAN achieves the generation of high-quality grid operation scenario samples.
In large-scale power grid operation scenarios, it is common to encounter a significant imbalance in sample distribution, where there are more samples representing normal operation conditions and fewer samples representing risky operation scenarios. In this paper, we address this issue by incorporating knowledge embedding into the neural network model, allowing the generated scenarios to consider the inherent risks in power grid operations. To assess the effectiveness of knowledge embedding in generating extreme operation scenarios, we focus on the power distribution of key branches as an example. To analyze the generated samples, we perform power flow calculations and examine the power distribution of these key branches. Figure 6 illustrates the power distribution of the key branches.
[image: Figure 6]FIGURE 6 | Key branch power distribution of test model.
In particular, we set the maximum allowable transmitting power of the key branch to 100 MW. Any scenario in which the difference between the transmission power of the key branch and the maximum allowable transmission power exceeds 25 MW is considered an extreme operation scenario. By evaluating the power distribution of key branches, we can gauge the capability of knowledge embedding in generating extreme operation scenarios. This analysis provides insights into the effectiveness of our approach in capturing and representing the risks associated with power grid operations.
As depicted in Figure 6, the width of the violin plot illustrates the proportion of different data. Notably, the key branch power generated by G-GAN closely aligns with the distribution of the training data. While G-GAN minimizes KL divergence, it does not yield an improvement in the performance of critical scenarios. On the other hand, KE-GAN enhances the proportion of critical scenarios in the operation scenarios. Although KE-GAN improves the performance of critical scenarios, it leads to a reduction in the performance of data distribution.
As shown on Table 3, the results indicate that KEG_GAN achieves the greatest improvement in the performance of critical scenarios while minimizing the decline in the performance of data distribution. By combining the strengths of G-GAN and KE-GAN, KEG_GAN effectively increases the proportion of extreme operation scenarios in the generated scenarios while preserving the same data distribution. This addresses the challenge of extremely sparse samples in extreme operation scenarios. KEG_GAN achieves this by incorporating basic physical constraints such as power flow and section constraints, which regulate the generated samples according to the power flow section constraint, bringing them closer to the extreme operation scenarios. Consequently, KEG_GAN offers a solution for the highly imbalanced distribution of extensive power grid operation scenarios.
TABLE 3 | The proportion of critical scenarios.
[image: Table 3]5.3.3 Experiment 2
In this paper, we want to explore the effect of different training samples on the model performance so that the extreme scenario percentages of 0, 5, 10 and 20 are set to verify the extreme scenario sample generation capability of the proposed method. The proportion of critical scenarios in the generated sample is shown in Figure 7.
[image: Figure 7]FIGURE 7 | The proportion of critical scenarios generated by GAN and KEG_GAN.
As the proportion of critical scenarios in the operation scenarios increases, the proportion of critical scenarios in the scenarios generated by GAN and KEG_GAN also increases. However, the performance improvement of GAN in generating critical scenarios is not significant. Additionally, the proportion of critical scenarios generated by GAN is consistently lower than the proportion of critical scenarios in the training scenarios.
On the other hand, when the proportion of critical scenarios in the training scenarios varies, KEG_GAN demonstrates an improvement in generating critical scenarios compared to the training scenarios. By leveraging knowledge embedding to incorporate features of critical scenarios, KEG_GAN directs the agent’s focus towards critical scenarios, thereby increasing their proportion in the generated scenarios. In contrast, GAN tends to prioritize the data distribution in the operation scenarios and tends to neglect the extreme operation scenarios, resulting in a decreasing proportion of extreme operation scenarios in the generated scenarios. Consequently, relying solely on increasing the proportion of critical scenarios for GAN to generate critical scenarios often proves ineffective.
Furthermore, when there are no critical scenarios present in the training samples, KEG_GAN exhibits the capability to generate approximately 5% of critical scenarios. This demonstrates that our method possesses few-shot (Sung et al., 2018) or zero-shot (Xian et al., 2018) capabilities, while GAN struggles to generate unseen samples.
5.3.4 Experiment 3
The training data comprised different sets of samples. Following the completion of training, the agents were tested over a period of 10 consecutive days, with decision-making intervals of 15 min for both training and testing phases. The training result is presented in Figure 8.
[image: Figure 8]FIGURE 8 | The training reward for different agents.
During the training process, we observed that the reward of the agent trained solely on real data was not significantly different from the agent trained using data generated by GAN. However, SAC trained with real data contained a small number of infrequent critical scenarios, which were sampled less frequently. As a result, the overall training process exhibited minimal fluctuations. On the other hand, SAC-GAN tended to overlook such critical scenarios, leading to smoother loss curves for the agent. Unfortunately, this smoothness also made it difficult for the agent to adequately account for these critical scenarios.
By incorporating KEG_GAN enhanced data into the training process, we enable the SAC-KEG_GAN to explore a broader range of risk scenarios. As a result, the training reward exhibits oscillations when compared to the traditional SAC algorithm.
This oscillation is challenging to achieve when relying solely on raw data. Consequently, SAC focuses on minimizing the training cost, thereby attaining a stable reward.
To evaluate the performance of various agents, we carried out a comprehensive 10-day testing phase. During this period, the agents actively responded to the changing environmental conditions by making decisions every 15 min. In a single day, there were a total of 96 time sections in which decisions were made. One crucial aspect we assessed was the impact of key branch crossings on grid safety. If an agent’s decision resulted in crossing the safety limit of the grid, it rendered the grid unsafe, and the agent was unable to continue participating in the decision-making process. The test results, presented in Figure 9 and Table 4, provide a clear visualization of the agents’ performance throughout the testing phase.
[image: Figure 9]FIGURE 9 | The successful operation rate for different agents.
TABLE 4 | The Reward of different agents.
[image: Table 4]It becomes evident that as the number of training iterations increases, both SAC and SAC-GAN fail to ensure the safe and stable operation of the grid. The test consistently gets interrupted on certain days due to the key branch surpassing its limit. Consequently, the smart body is unable to receive subsequent rewards. However, SAC-KEG_GAN incorporates a comprehensive consideration of the risk associated with grid operations. It evaluates both the risk and the economic aspects of the grid, enabling it to provide a more robust strategy. After a certain number of training iterations, the decisions made by SAC-KEG_GAN lead to a grid that can operate safely and steadily for a duration of 10 days. In the analysis, the best strategies from the aforementioned testing process were selected and their results are presented in Table 4. The best successful operation rate of SAC is 0.7, SAC-GAN achieves a successful operation rate of 0.5, while SAC-KEG_GAN demonstrates a successful operation rate of 1.
Upon closer examination, it is discovered that SAC fails to obtain subsequent rewards on days 2, 6, and 7 due to the given decision’s critical section crossing its limit. On the contrary, the performance of SAC-GAN is marginally inferior to that of SAC. This can be attributed to SAC-GAN’s tendency to overlook samples from high-risk scenarios during the process of data augmentation. As a consequence, the generated scenarios might lack the critical instances that contribute to the overall performance of the policy learned by the intelligent agent. Although the cumulative reward of the strategy provided by SAC-KEG_GAN may be lower than that of SAC on certain days, it effectively evaluates the risk and economic aspects of grid operation by learning from experiences gained in risky scenarios. As a result, it generates decisions that enable the grid to operate safely and improve the economics of grid operation while ensuring grid safety.
6 CONCLUSION
In the context of high-dimensional uncertainty, this paper addresses the limited adaptability of policies in critical risk scenarios. By adopting a multi-objective modeling approach that incorporates both security and economy, the original problem is formulated as a multi-stage risk-averse stochastic sequential decision-making problem with dynamic risk metrics. To tackle this challenge, Risk-averse stochastic dynamic dispatch of power systems based on deep reinforcement learning with risk-oriented Graph-Gan sampling is proposed. This policy aims to overcome the shortcomings of existing methods in risk sample generation and scenarios identification, enabling the rapid solution of optimal risk-averse intraday dispatch policy. Simulation results demonstrate that proposed approach outperforms other commonly used online dispatch policies, which not only improves the economic efficiency of power system operations but also reduces the potential high costs associated with critical scenarios. This algorithm incorporates risk-averse preferences to avoid unnecessary load shedding, particularly in scenarios involving RESs abandonment. Hence, it is crucial to carefully consider the risk aversion preferences of the algorithm in the specific application. Furthermore, the proposed algorithm achieves high computing efficiency in real-time scheduling through offline learning and does not rely on predictive information for real-time scheduling. Its promising application prospects and scalability extend to addressing other complex online stochastic optimization scheduling problems in future smart grids.
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With the rapid development of flexible DC distribution networks, fault detection and identification have also attracted people’s attention. High-resistance grounding fault poses a great challenge to the distribution network. The fault current is very small and random, which makes its detection and identification difficult. The traditional overcurrent protection device cannot identify and act on the fault current. Therefore, this paper proposes a fault detection method based on variational mode decomposition (VMD) combined with the convolutional neural network (CNN) of the inception module. This method first uses VMD to decompose the positive transient voltage. Second, it inputs the decomposed signal into CNN for training to obtain the optimal parameters of the model. Finally, the model performance is tested based on the PSCAD/EMTDC simulation platform. Experiments show that the detection method is accurate and effective. It can realize the accurate identification of seven different fault types.
Keywords: flexible DC distribution network, variational modal decomposition, fault detection, inception module, convolutional neural network
1 INTRODUCTION
The AC distribution network faces problems such as tight power supply corridor and poor power quality. In recent years, medium-low voltage flexible DC distribution networks are widely used in power systems, which have the advantages of small line loss, large transmission capacity, and flexible operation mode. However, like the AC distribution network, high-resistance grounding faults are prone to occur due to the complex operating environment. The characteristics of faults are weak, thus making their detection impossible using common fault detection techniques (Silva et al., 2018). If they run for a long time, they will damage the wire insulation and pose a great threat to personal safety (Taheri and Razavi, 2018). On the other hand, the other faults and normal disturbances in the distribution network can also cause changes in voltage and current, causing difficulties in detection and identification. Therefore, how to accurately identify the faults is the focus of DC distribution network operation.
1.1 Previous and related work
At present, ground fault detection often uses signal processing methods. The collected signal usually includes voltage, current, magnetic field strength, and impedance. The commonly used signal decomposition methods are Fourier transform (FFT), empirical mode decomposition (EMD), and wavelet transform (WT). The Fourier transform can transform a continuous signal with a non-periodic time domain into a continuous signal with a non-periodic frequency domain. However, this method can only extract the information of the signal in the frequency component and is only applicable to non-stationary signals (Liu, 2022). EMD is a time-frequency processing method, which can reflect the local characteristics of non-stationary signals; however, the phenomenon of modal confusion occurs (Robertas et al., 2017). Adaptive noise-complete ensemble empirical mode decomposition mitigates the phenomenon of modal aliasing by adding Gaussian white noise to the signal to be processed; however, it does not make the phenomenon disappear completely and the added noise causes some interference (Xu et al., 2021). WT has advantages of processing non-stationary signals but requires artificial selection of the mother wavelet (Sarwagya and Ranjan, 2020). Gautam and Brahma (2013) used mathematical morphology-based methods that rely on irregularities in the current waveforms as HIF inception features. Satpathi et al. (2018) used short-time Fourier transform to quantitatively study high-frequency components under transient conditions and were able to distinguish between short-circuit faults and transient cases of sudden load changes. Song et al. (2022) used Minkowski distance measurement to measure the correlation of wave impedance and construct a fault detection scheme. Yao et al. (2019) proposed a feature extraction algorithm to extract scales with the essential fault features and determined the coefficient of the selected scale signal. Routray et al. (2015) presented a novel S-transform-based approach to detect the high-impedance fault in the distribution line. Xiang et al. (2019) extracted the high-frequency components in transient voltages by wavelet transform and proposed a fault identification method based on the difference of square of transient voltages to identify the fault lines for DC grids using overhead lines. Song et al. (2021) used the Hilbert–Huang transform to extract the transient frequency and transient amplitude of the DC voltage. The aforementioned signal extraction methods face some problems, such as the need to construct criteria manually and the lack of effective distinction between other types of faults and normal interference. Reliability needs to be further improved.
With the sudden rise in the scale of power grid data and the significant increase in computing power, the artificial neural network intelligent algorithm shows great superiority. With the enhancement of network depth, data dimension reduction and processing capability are further improved. It can extract useful information for fault identification accurately and effectively under the influence of complex external and internal environments. Chopdar and Koshti (2022) extracted fault feature signals using wavelet transform and trained these signals using the artificial neural network (ANN) to complete the detection and classification; however, the accuracy of this detection method for the normal state is only 90.8%, which still needs further improvement. Zheng et al. (2021) used the mean, standard deviation, information entropy, and kurtosis values of the current to detect different fault locations and used DBNs for training; however, whether the detection method is resistant to noise interference has not been verified yet. Fault detection and identification using the 1D CNN is presented by Kiranyaz et al. (2019) on a four-cell, eight-switch MMC topology (Bagheri et al., 2018). A four-cell is an application of deep CNN for voltage dip classification in general, with results showing the average classification rate as 97% and the false alarm rate as 0.0526. Naidu (2022) described the novel technical results in detecting and identifying all types of AC and DC faults in the HVDC station by using a fully convolutional neural network (FCNN) deep learning algorithm. Most of these models have the problem of too many parameters and too much computation. With the increase in network depth and width, overfitting is easy to occur.
The disadvantages of existing methods are as follows:
The current fault detection methods rely on fixed basis functions to capture various fault signals, which can lead to limitations in the adaptability of the feature extraction process. This limitation can hinder subsequent fault analysis and identification. Existing methods, such as WT, S-transform, multiscale morphology (MM), and Prony, rely heavily on the selection of basic functions, which can significantly impact the quality of the extracted features. Although the traditional Hilbert–Huang transform (HHT) algorithm is self-adaptive, its intrinsic mode function (IMF) components are vulnerable to modal aliasing. This issue can introduce unwanted frequency components in IMF components, which can further complicate the fault diagnosis process.
1.2 Contributions
The contributions of this paper can be summarized as follows:
1) Feature extraction aspect: Aiming at the problems existing in feature extraction of fixed basis functions, we proposed the algorithm: VMD. VMD is used to extract time–frequency features of fault voltage. This method has anti-interference capability and can accurately describe fault features of the original signal in the case of noise.
2) Detection criterion aspect: CNN is used to identify the modal components after VMD. It can distinguish small impedance fault (SIF), middle impedance fault (MIF), high-impedance fault (HIF), pole-to-pole fault (PPF), load switch (LS), AC-side symmetrical fault (symmetrical fault, SF), and AC-side asymmetrical fault (ASF). The validity of this proposed criterion is tested by the flexible DC distribution network.
2 THEORETICAL ANALYSIS
2.1 Variational modal decomposition
VMD is a time–frequency analysis algorithm, which can decompose the original signal into a series of IMFs by redefining a signal that can adjust the amplitude and frequency. It can construct and solve the variational problem and extract the useful components in the frequency domain. The mode overlap and endpoint effect can be overcome. The algorithm has certain anti-interference capability, which can decompose the fault signal comprehensively. It can also obtain the hidden feature information of the signal and obtain the optimal solution to the variational problem (Sharma et al., 2022).
The VMD algorithm has two constraints: 1) the sum of the modes is equal to the input signal f. The central frequency and bandwidth of each decomposition component are obtained by iteratively searching for the optimal solution of the model under this constraint. 2) By constructing and solving the variational problem, the sum of the estimated bandwidths of the center frequencies uk (t) is minimized. The calculation steps are as follows:
(1)For the eigenmode components obtained after the decomposition, the resolved signal of uk (t) is calculated by the Hilbert transform.
[image: image]
(2)By estimating the center frequency [image: image] of each analytic signal, the unilateral spectrum obtained using Eq. 1 is multiplied by an exponential signal. The frequency spectrum of each analytic signal is converted into the base frequency band.
[image: image]
(3)The signal is demodulated by Gaussian smoothing to prevent overfitting. The bandwidth of each mode function is estimated, and the final constraint variational problem can be expressed as follows:
[image: image]
where [image: image] denotes the decomposed k modal functions. [image: image] denotes the center frequency corresponding to each IMF component. f denotes the signal before decomposition.
(4)The solution to this constrained variational problem requires the introduction of a quadratic penalty term [image: image] and the Lagrange multiplicative operator [image: image]. Constrained issues are transformed into unconstrained issues. The specific expression is as follows:
[image: image]
2.2 Convolutional neural network
CNN is a type of supervised machine learning, which has been widely used in image recognition, object detection, and fault recognition. The main learning process is divided into the forward propagation (FP) process and backward propagation (BP) process. FP mainly includes the convolution layer, pooling layer, and dense layer. The basic model structure is shown in Figure 1. This process can realize the extraction and pre-classification of the pre-processed signal. BP can compare the pre-classification results with the expected results and automatically adjust the parameters of the model to achieve accurate classification of fault categories.
[image: Figure 1]FIGURE 1 | Basic model structure of CNN.
2.2.1 Forward propagation process
The convolutional neural network processes the output of the previous layer as the input of the next layer and constructs multiple filters capable of extracting input features. It can achieve the extraction of multi-sensitive features of hidden data. The essence is a mapping relationship between the input and output. The mathematical model is expressed as follows:
[image: image]
where [image: image] is the output of the jth neuron of the layer [image: image]; [image: image] is the input of the ith neuron of the layer [image: image]; [image: image] is the input feature map; [image: image] is the network of the layer [image: image]; [image: image] is the weight matrix; [image: image] is the bias of the jth neuron network of the layer [image: image]; and f is the activation function. In this paper, a non-linear function—ReLU—is used as the activation function. The expression is given as follows:
[image: image]
If the input is greater than 0, return the input value directly. If the output is less than or equal to 0, return 0. In contrast to the activation function tanh and sigmoid, ReLU can speed up the training of the model. It can reduce the difficulty in the calculation and has strong robustness. The gradient disappearance problem is solved to some extent.
The pool sampling layer extracts the local features. It can detect the same features under different locations with better spatial and structural invariance. There are two common sampling methods: maximum pooling and average pooling. This paper adopts the maximum pooling method. The mathematical model of the pool sampling layer is as follows:
[image: image]
where [image: image] is the pool sampling function; [image: image] is the network bias. The features owned by the sampling and convolutional layers remain the same in number but decrease in size by a factor of n after pool sampling.
After several convolution and pooling oparations, a fully connected layer is used to connect the neuron weights. Softmax is used as the activation function to place the probability of each output in [0,1]. Different features are classified.
2.2.2 Backward propagation process
For classification problems, it is important to minimize the loss function of the model and improve the accuracy of the model as much as possible. The selection of the loss function is very important. The common loss functions are the root mean square error function, mean absolute error function, and cross-entropy cost function. In this paper, the cross-entropy function is selected as the loss function with the following expression:
[image: image]
where n is the total number of samples of the input data; t is the predicted value; and y is the actual value. In the backward propagation process, the gradient descent method is commonly used to continuously update the iterative process. The first derivative of Eq. 8 is obtained so that the network parameters can be adjusted specifically as follows:
[image: image]
where [image: image] is the updated weight; [image: image] is the updated bias; [image: image] is the weight before update; [image: image] is the bias before update; and [image: image] is the learning rate parameter to control the step size of the weight update.
2.2.3 Inception module
The increase in network depth or width leads to two problems in the convolutional network: 1) network parameters will increase with the increase in the number of network layers, which inevitably leads to the overfitting problem; 2) with the increase in training parameters, the training speed of the model will decrease, which makes the application of the convolution model challenging in practical engineering.
The inception module is introduced into the convolutional network. The core idea of this module is to combine different convolutional layers by parallel connection, as shown in Figure 2. Inception V1 extensively uses the convolution kernel of [image: image] and [image: image] and introduces the convolution kernels of [image: image]. It can increase the depth and width of the network, reduce the data dimension, transform the fully connected structure into sparse connections, effectively reduce the number of parameters, and significantly improve the accuracy of the model.
[image: Figure 2]FIGURE 2 | Diagram of the inception model.
2.2.4 Fault identification process
The flow of CNN-based distribution network fault identification is shown in Figure 3.
[image: Figure 3]FIGURE 3 | CNN fault identification process.
The steps for fault identification are as follows:
(1) Distribution network simulation data acquisition
Training of CNN models requires a large number of fault samples. In real life, two ways are commonly used to obtain the required data: 1) obtaining the recorded wave data of the actual distribution network according to its operation. 2) Simulating the structure of the actual distribution network and building the simulation model. Since distribution network faults do not occur often and the flexible DC distribution network is still in the demonstration stage, the actual engineering recorded wave data are relatively small. The first way is more difficult to obtain data to meet the required sample size. It is also more difficult to provide comprehensive coverage of various faults due to the different probabilities of occurrence of different faults. The second way can simulate the corresponding operating conditions as needed, which is a strong complement to the first way. The relevant literature proves its reliability and accuracy (de Toledo Silva et al., 2020; Krishna, 2022). The simulation test enables comprehensive multiple simulations for different faults and solves the problem of sample imbalance. PSCAD is a widely used electromagnetic transient simulation software application and has been used in a large number of simulation studies for running simulations in many types of power systems. Therefore, this paper takes the approach of obtaining the required fault waveforms by performing PSCAD simulations on the scenarios.
(2) Sample set classification
CNN training requires a large amount of data. The training samples are generally divided into the training set and test set by means of stratified sampling. All the input data are classified according to the unified division standard. The ratio of the training set to test set is generally 1:4–1:2, and the ratio used in this paper is 3:7.
(3) Time window selection
The power electronic device has limited ability to withstand inrush current. The system converter blocking time is generally 2∼5 ms. The fault time in this paper is set to 1 ms before and after the fault point, and the size of the time window is 2 ms. The fault is set to occur at 2 s, and the system sampling frequency is 20 kHz.
(4) Pre-processing of the sample set
To speed up the model solution and enable the model to converge, the eigenmodal components decomposed by VMD need to be normalized. In this paper, we use min–max normalization to map the input data into [0,1].
[image: image]
Define different fault labels for seven different fault types. Set different fault labels [image: image] for the output of this network. The specific label classification is shown in Supplementary Exhibit S1.
(5)Building and training of the CNN model
Before training the model, the weights and biases of the convolutional kernel need to be set, with the initial value set to 0. Using the feedback from the training set results, parameters such as the number of layers, training times, and learning rate of the network are adjusted. The 1D convolutional neural network structure in this paper includes one input layer, five convolutional layers, seven pooling layers, two inception layers, two dense layers, and one output layer. The step size of convolution is set to 2, the number of training times is 300, the size of the convolutional kernel is 4, and the learning rate is 0.02. Dropout is set to 0.2. The basic idea is to let each layer of neurons randomly discard part of the training, so that these discarded parts are not activated. The next network is used as the target of this update. With each iteration, the sub-networks are updated continuously. The probability of repeated training is greatly reduced, making the model more robust.
The optimizer can calculate the gradient of the loss function in each iteration and update the parameters so that the loss function is minimized. In this paper, the adaptive moment estimation (Adam) optimization function is used, which is suitable for non-smooth objectives and has an intuitive interpretation.
(6)Construction of the confusion matrix and evaluation index
The confusion matrix is a visualization tool in deep networks to compare the predicted data with the real results. The matrix can visually characterize the accuracy of the model. Each column of this matrix characterizes the predicted category of different faults. Each row characterizes the actual fault category represented by the data, as shown in Figure 4.
[image: Figure 4]FIGURE 4 | Diagram of the confusion matrix structure.
In this structure, true positive (TP) indicates that the actual value is positive and the predicted value is also positive, and true negative (TN) indicates that the actual value is negative and the predicted value is also negative. In these cases, the identification is correct. Wrong Positive (WP) indicates that the actual value is negative, but the model prediction is considered positive. False negative (FN) indicates that the actual value is positive, but the model identification is considered negative. In these cases, the identification is incorrect.
The total number of samples of the model = TP + FP + TN + FN, and the correctness (accuracy), precision (precision), recall (Recall), and F1 score of the CNN model recognition results are expressed as follows:
[image: image]
where p denotes precision and R denotes recall.
Accuracy can represent the proportion of the predicted value of all the correct results in the classification model. Precision represents the proportion of correct values in the results where the model prediction is positive. Recall represents the proportion of correct values that the actual value is positive. The F1 score metric combines precision and recall outputs and ranges from 0 to 1. The F1 score index comprehensively considers the result of accuracy and recall rate output, ranging from 0 to 1. The closer the F1 score index is to 1, the better the model output.
3 MODEL BUILDING
The PSCAD/EMTDC simulation platform is used to build the ±10 kV DC distribution network structure (Figure 5). The AC-side voltage is 10 kV. The AC-side transformer adopts the Δ/Yn type via large resistance grounding. The system frequency is 50 Hz. The bridge arm reactance is 10 mH. The sub-module capacitance is 4500 uF. The number of sub-modules is 50. The cable is connected to the AC grid through a multilevel converter (MMC).
[image: Figure 5]FIGURE 5 | Structure of the 10-kV flexible DC distribution network.
The system is a small-current grounding system. When a single-pole ground fault occurs in a DC line, the fault current has no ground circuit. The DC line current is still rated. The system zero potential shift occurs. The grounding pole line voltage drops to 0. Non-grounding pole line voltage rises to twice the original voltage. Inter-pole voltage remains unchanged. The system can still run for 2 hours after a single-pole ground fault.
Compared to the single-pole ground fault, the inter-pole short-circuit fault in the DC distribution network is more serious. This fault will cause the current to rise sharply, and the positive and negative voltage of the ground pole will drop to 0 rapidly. The inter-pole voltage will also drop to 0. After the converter is locked, if the fault cannot be removed in time, the system will remain in this state. It will cause damage to distribution network equipment and pose a threat to personal safety (Zheng et al., 2019).
The zero-sequence voltage component in the asymmetric fault of the AC side will cause the power frequency common mode fluctuation of the positive and negative voltage of the DC side (Baoguo et al., 2021). The transient characteristics are similar to those of the DC high-resistance ground fault.
The fault line selection method based on the transient component can overcome the shortcomings of low sensitivity and poor reliability in the case of an intermittent ground fault. Due to the weak transient fault characteristics, the existence of unstable fault arc, internal and external random factors, and modern signal processing technology is widely used. Signal processing technology can be used to improve the identification and extraction ability of weak features.
Since the process of positive and negative voltage change is similar, only the positive voltage of the grounding pole is used as the characteristic pre-processing quantity in this paper.
4 RESULT ANALYSIS
Build the system simulation as shown in Figure 1, and obtain 200 groups of data for each fault type. For a single-pole ground fault, set the fault type to SIF, MIF, and HIF. The resistance value of SIF is set between 0 and 100 Ω. The resistance value of MIF is set between 100 Ω and 1000 Ω (Wang et al., 2014). When the HIF fault occurs, the fault point will appear as arc extinguishing and re-ignition. The arc current fluctuates at high frequency, and the grounding line pole voltage also oscillates at high frequency. It cannot be simulated by simply increasing the resistance of the grounding resistor to simulate the fault situation. The Emanuel model is widely used to accurately describe the characteristics of the HIF arc (Gautam and Brahma, 2013). This paper uses the Emanuel arc model to simulate the HIF. The specific model structure is shown in Figure 6.
[image: Figure 6]FIGURE 6 | Emanuel arc model circuit diagram.
The model consists of two DC voltage sources Vm and Vn, two diodes Dm and Dn, and two variable resistors Rm and Rn. The model can simulate the characteristics of the arc under HIF. The zero rest time of the arc voltage can be adjusted by changing the value of the DC voltage. The diodes are used to reflect the different cycles of the waveform on and off. Variable resistors are used to simulate the asymmetry of the current under the fault. In this paper, the parameters are set as follows: Vm varies randomly between 0.5 and 0.8 kV, Vn varies randomly between 0.9 and 1.1 kV, Rm and Rn vary randomly between 450 Ω and 1000 Ω, and R is obtained between 800 and 3000 Ω.
For the inter-pole fault, the transition resistance is set to vary from 0 to 5 Ω. Considering that there will be a large load disturbance in the distribution network, it is necessary to take the load switching as one of the conditions. In this paper, the capacity of LS is set from 0 to 10 MW. In addition, the impact of the AC-side fault on the DC-side voltage should be considered, so two types of symmetrical and asymmetrical faults are also required on the AC side.
The seven operating conditions of the ground positive voltage fault waveforms under the selected time window are shown in Figure 7, where the fault occurs at the 0 ms moment.
[image: Figure 7]FIGURE 7 | Positive voltage waveform of the grounding line under different fault conditions.
The line positive voltage drops to 5.63 kV and then slowly decreases when SIF occurs, as shown in Figure 7A. The line positive voltage fluctuates, the high-frequency component appears in the waveform, and then the voltage value slowly decreases when MIF occurs, as shown in Figure 7B. The sudden change is not so drastic when HIF occurs compared with SIF and MIF, as shown in Figure 7C. The line positive voltage under the fault has a more obvious oscillation characteristic, and the fluctuation is small and random. The line positive voltage drops to 0 kV instantaneously, and thereafter it is consistently maintained at 0 kV when PPF occurs, as shown in Figure 7D. The power transfer between converters stops. The voltage value undergoes an abrupt change when LS disturbance occurs, as shown in Figure 7E. Thereafter, it shows a steady-state response state. The voltage and current on the AC side of the converter will have a negative sequence component when the AC asymmetric fault occurs, as shown in Figure 7G, which will cause an even number of non-characteristic harmonics on the DC side, resulting in fluctuations in the voltage at the ground terminal. The simulation results remain consistent with the theoretical analysis.
4.1 VMD algorithm decomposition
To further differentiate the fault categories, VMD is used to decompose the grounding pole positive voltage to obtain the eigenmodal components IMFs. Figure 8 and Figure 9 show the IMF1 and IMF2 waveforms after VMD, respectively.
[image: Figure 8]FIGURE 8 | IMF1 after VMD.
[image: Figure 9]FIGURE 9 | IMF2 after VMD.
As shown in Figure 8, the similarity of waveforms under different working conditions is high, such as SIF and MIF, PPF, and LS. Furthermore, there is a possibility of confusion in the subsequent model training. The decomposed results are fed into the CNN training model, and the accuracy is 90.48%. The recognition accuracy is not high, so it is not suitable to use IMF1 as the input of the training model.
As shown in Figure 9, the difference between the fault waveform and amplitude under IMF2 is high. These differences are suitable for constructing detection criteria, so IMF2 is chosen as the input data for the CNN in this paper.
4.2 CNN model training results
In order to further clarify the effectiveness and superiority of the proposed algorithm, the t-SNE method is used for visualization. The original data, the characteristic modal component IMF2 after VMD, and the CNN model training results are visualized by t-SNE. The experimental results are shown in Figure 10. Categories 0, 1, 2, 3, 4, 5, and 6 represent SIF, MIF, HIF, PPF, LS, SF, and ASF, respectively. Figure 10A shows the distribution of the original data. Due to the redundancy of the original data, various categories are difficult to distinguish and easy to confuse. Figure 10B shows the dimensionality reduction result of the characteristic modal component IMF2 after VMD, which is further distinguished from the original data. However, there is still a large overlap between categories 2, 4, and 5. Figure 10C shows the visualization of classification results after CNN model training. It can be seen that each category is clearly distinguished, which verifies that the proposed algorithm has a high fault recognition rate.
[image: Figure 10]FIGURE 10 | Visualization of feature learning at different stages. (A) Distribution of raw data samples. (B) Sample distribution after VMD feature extraction. (C) Distribution of raw data samples.
The pre-processed data are fed into the network. The parameters of the CNN are adjusted using the network error loss values. The total sample is randomly sampled. Figure 11 shows the CNN recognition results.
[image: Figure 11]FIGURE 11 | CNN recognition results.
From this confusion matrix and Supplementary Exhibit S2, the CNN trained model has 100% correctness, 100% accuracy, 100% recall, and 100% F1 score. The actual and predicted values under different faults remain the same. The probability of the detection error or omission is 0. Using the model training established in this paper, various fault types can be accurately and effectively identified.
5 VALIDATION
5.1 Identification results after EMD
The results of using EMD to extract the characteristic modes for the seven working conditions are shown in Figure 12. The results show that although EMD can also extract the corresponding high-frequency components, the resulting modal components contain more noise components, which has some interference in the subsequent recognition accuracy.
[image: Figure 12]FIGURE 12 | IMF2 after EMD.
The results of EMD were fed into the CNN model for training. The results are shown in Figure 13, with an accuracy of 87.62%. It is not accurate and not suitable for using the eigenmodal components decomposed by EMD as the input to the CNN model.
[image: Figure 13]FIGURE 13 | Training results of IMF2 under EMD.
5.2 Different fault locations
To test the applicability of the algorithm proposed in this paper at different faults, the situation of different faults among SIF, MIF, HIF, LS, PPF, SF, and ASF occurring at 6 km from the cable line is simulated (Figure 11 shows the training results at the fault location of 10 km). The training results at this fault location are shown in Supplementary Exhibit S3. The figure shows the training model at different fault locations. The accuracy of the training model at different fault locations is 100%. It shows that the discrimination method proposed in this paper can be applied to discriminate different fault types at different fault locations.
5.3 Adding strong noise
To verify the applicability of the algorithm proposed in this paper during strong noise, white Gauss noise with a signal-to-noise ratio of 1 db is added to the DC line pole voltage. Taking the single-pole high-resistance grounding fault as an example, the waveform of the positive voltage decomposed by VMD after adding strong noise is examined and shown in Figure 14. The addition of noise causes a certain degree of waveform fluctuation, which has some interference with the training recognition of the model.
[image: Figure 14]FIGURE 14 | Waveform after adding noise.
The feature components after adding noise are fed into the CNN for recognition, and Figure 15 shows the recognition results with 99.76% recognition accuracy. The results show that the CNN discriminative model accuracy is still reliable under the interference of strong noise.
[image: Figure 15]FIGURE 15 | Recognition accuracy under 1 dB noise.
5.4 Change in the time window
The setting of the time window directly affects the amount of data. The more the time windows of the data, the more the test samples contained. Based on the system’s converter blocking time, the selected time window is now changed to 2 ms before and after the fault for testing. Figure 16 shows the results after VMD under the selected time window. The results are input into the CNN for training. The accuracy achieved 100%. It can be seen that the proposed discrimination method in this paper can be applied to discriminate different fault types under different time windows.
[image: Figure 16]FIGURE 16 | Different data window tests.
5.5 Different sampling frequencies
To verify the accuracy of the proposed algorithm, a system sampling frequency of 10 kHz is adopted. The model recognition results are shown in Figure 17. It can be seen that the proposed algorithm is still accurate and reliable under different sampling frequencies.
[image: Figure 17]FIGURE 17 | Recognition accuracy at 10 kHz sampling frequency.
5.6 Comparison with the unimproved CNN
To verify the performance of the CNN model proposed in this paper, each feature modal component decomposed by VMD is now fed into the improved inception–CNN model and the traditional CNN model. The recognition accuracy is shown in Supplementary Exhibit S4.
Supplementary Exhibit shows that the different eigenmodal components as the input of the improved CNN model proposed in this paper have significantly improved the accuracy rate compared with the traditional CNN. Overall, the accuracy rate and recall rate have also been improved. The F1 score is closer to 1 in the improved CNN model. These features indicate that the output effect of the improved inception–CNN model is more effective and is even better than the unimproved CNN performance.
6 CONCLUSION
In this paper, a DC distribution network fault identification scheme based on VMD and inception–CNN is proposed. It is simulated and verified in the PSCAD platform. The following conclusions can be obtained:
(1)The proposed scheme uses variational modal decomposition to process the simulation data. The processed eigenmodal components are used as the input of the training model, which has good generalization capability and anti-interference capability against noise. It also has an excellent reliability performance in different application scenarios.
(2)The proposed training model can not only identify single-pole, double-pole, and AC-side faults but also effectively discriminate the fault types with different resistance changes under single-pole faults. It has high recognition accuracy.
(3)The complex structure of the CNN model makes it possible to abstract the feature signal and effectively identify the weak changes under the high-resistance ground fault.
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The growing scale of electric vehicles (EVs) brings continuous challenges to the energy trading market. In the process of grid-connected charging of EVs, disorderly charging behavior of a large number of EVs will have a substantial impact on the grid load. Aiming to solve the problem of optimal scheduling for charging and discharging of EVs, this paper first establishes a model for the charging and discharging scheduling of EVs involving the grid, charging equipment, and EVs. Then, the established scheduling model is described as a partially observable Markov decision process (POMDP) in the multi-agent environment. This paper proposes an optimization objective that comprehensively considers various factors such as the cost of charging and discharging EVs, grid load stability, and user usage requirements. Finally, this paper introduces the long short-term memory enhanced multi-agent deep deterministic policy gra dient (LEMADDPG) algorithm to obtain the optimal scheduling strategy of EVs. Simulation results prove that the proposed LEMADDPG algorithm can obtain the fastest convergence speed, the smallest fluctuation and the highest cumulative reward compared with traditional deep deterministic policy gradient and DQN algorithms.
Keywords: electric vehicles (EVs), deep reinforcement learning, partially observable markov decision process (PODMP), multi-agent deep deterministic policy gradient (MADDPG), long short-term memory (LSTM)
1 INTRODUCTION
Electric vehicles (EVs), with their outstanding advantages of being clean, environmentally friendly, and low noise, have become the focus of industries around the world. However, as the scale of EVs continues to expand, their high charging demand is gradually increasing its proportion within the power system, posing significant challenges to the stability and safety of the smart grid (Chen et al., 2021; Chen et al., 2023). The behavior of EV owners directly influences the spatiotemporal distribution of charging demand, introducing uncertainties in charging time and power for EVs. These uncertainties could have a significant impact on the normal operation and precise control of the smart grid (Wen et al., 2015; Liu et al., 2022). Simultaneously, EVs can act as an excellent mobile energy storage device and can serve as a distributed power source to supplement the power system when necessary. This capability creates a source-load complementary intelligent power dispatch strategy (Lu et al., 2020). Therefore, it is imperative to manage the charging and discharging of EVs. A rational charging and discharging strategy will not only effectively mitigate the adverse effects of charging behavior on the grid load but also play a positive role in peak shaving, load stabilization, and interaction with the grid (Zhao et al., 2011).
Traditional methods for optimizing the scheduling of EV charging and discharging are divided into three main categories: methods based on dynamic programming, methods based on day-ahead scheduling, and model-based methods (Zhang et al., 2022). However, the application of traditional algorithms to the optimization of EV charging scheduling faces two major challenges: the massive number of EVs results in high-dimensional scheduling optimization variables, often leading to the ’curse of dimensionality’ (Shi et al., 2019); the fluctuations within the energy system and the uncertainty of EV user demand make it difficult to establish accurate models, limiting the control effectiveness and performance of the algorithm.
Reinforcement learning methods, which can obtain optimal solutions to sequential decision-making problems without explicitly constructing a complete environment model, have been widely deployed in addressing the charging scheduling problem of EVs. Deep reinforcement learning-based charging scheduling methods can be divided into two categories: value-based algorithms and policy-based algorithms (Xiong et al., 2021). Regarding value-based algorithms (Liu et al., 2019), developed an incremental update-based flexible EV charging strategy. This approach considers the user experience of EV drivers and aims to minimize their charging costs (Vandael et al., 2015). sought to learn from transitional samples and proposed a batch reinforcement learning algorithm. This method ultimately resulted in the optimal charging strategy for reducing charging costs (Wan et al., 2018). innovatively used a long short-term memory (LSTM) network to extract electricity price features. They described the scheduling of EV charging and discharging as a Markov decision process (MDP) with unknown probabilities, eliminating the need for any system model information.
Value-based algorithms are suitable only for discrete action spaces, while policy-based algorithms can handle continuous action spaces (Nachum et al., 2017; Jin and Xu, 2020) proposed an intelligent charging algorithm based on actor-critic (AC) learning. This method successfully reduced the dimensionality of the state variables for optimization in EVs (Zhao and Hu, 2021). employed the TD3 algorithm for modeling and introduced random noise into the state during the training of the intelligent agent. This approach achieved generalized control capability over the charging behavior of EVs under various states (Ding et al., 2020). established an MDP model to characterize uncertain time series, thereby reducing the system’s uncertainty. They subsequently employed a reinforcement learning technique based on the deep deterministic policy gradient (DDPG) to solve for a charging and discharging scheduling strategy that maximizes profits for the distribution network.
Currently, the main challenge facing reinforcement learning algorithms for optimizing EV charging and discharging is the issue of algorithm non-convergence caused by the high-dimensional variable characteristics in the multi-agent environment (Pan et al., 2020). utilized the approximate dynamic programming (ADP) method to generalize across similar states and actions, reducing the need to explore each possible combination exhaustively. However, the ADP method requires manual design and feature selection, which is less automated compared to deep reinforcement learning (DRL) (Long et al., 2019). formulated the EV clusters charging problem as a bi-level Markov Decision Process, breaking down complex tasks to enhance convergence and manage high dimensions. However, its hierarchical structure can hinder end-to-end learning, potentially leading to suboptimal strategies, unlike DRL which can map states directly to actions. Therefore, this paper proposes a reinforcement learning algorithm specifically for the optimal scheduling of EV charging and discharging. The algorithm integrates LSTM and MADDPG, where LSTM is utilized to extract features from historical electricity prices, and MADDPG is employed to formulate charging and discharging strategies. This algorithm aims to solve the problem of non-convergence in multi-agent environments while also fully utilizing historical time-of-use electricity price data to aid the agent in decision-making. The major contributions of this paper are as follows.
• This paper establishes a model for optimizing the scheduling of EV charging and discharging in a multi-agent environment. The model involves the power grid, charging equipment, and EVs, and the flow of electricity and information is controlled by different entities. Besides, the charging control model is characterized as a partially observable Markov decision process (POMDP).
• This paper sets the optimization objective of the algorithm by considering three main factors: the cost of charging and discharging, the impact of EV charging and discharging on the grid load, and users’ usage requirements. Corresponding constraint conditions of above objectives are also provided.
• This paper introduces the long short-term memory enhanced multi-agent deep deterministic policy gradient (LEMADDPG) algorithm to obtain the optimal scheduling strategy of EVs. The LSTM network is utilized to extract features from the TOU electricity price data in order to guide the EV exploring the optimal charging and discharging action strategy.
• Complete simulation results prove that the proposed LEMADDPG algorithm can obtain the fastest convergence speed, the smallest fluctuation and the highest cumulative reward compared with the DDPG and deep Q-network (DQN) algorithms. In addition, results also indicate that the LSTM network can extract features of time-of-use electricity price data and make reasonable predictions for future prices.
2 SCHEDULING MODEL
The electrical usage scenario in this paper is a smart residential community. This community consists of multiple households that own electric vehicles. Ample charging devices are installed throughout the area for EV usage. In the process of charging and discharging, users can determine the duration themselves. Aside from purchasing electricity to charge their EVs, users can also use their vehicles as home energy storage devices to sell excess electricity back to the grid.
This paper establishes a simple EV charging and discharging optimization scheduling model, as shown in Figure 1. The model involves three primary components: the power grid, charging equipment, and electric vehicles. Specifically, the power grid is responsible for providing electrical supply and real-time time-of-use price information. The charging equipment fulfills the role of purchasing electricity from the grid based on the needs of EVs and then distributing this electricity to the vehicles. It also transfers price information to EVs and the current status of the vehicles to the grid system. Electric vehicles are managed to charge or discharge based on real-time price information and provide feedback to the charging equipment about their current state information. The scheduling process can be divided into three steps: information collection, real-time decision-making, and command sending. First, the decision-making unit collects information on electricity prices provided by the grid, demand information, and the battery status of the EVs. Next, the decision-making unit inputs the collected status information into the decision network and outputs the charging and discharging plans for each EV. Finally, upon receiving the commands, the grid dispatches the corresponding electricity to various charging devices, completing the energy scheduling for that time period.
[image: Figure 1]FIGURE 1 | Diagram of charging and discharging scheduling for EVs.
2.1 Basic assumptions
In the community, there are a total of N EVs. The set of EVs is designated as B = {1, …, i, …, N}. It is assumed that EVs start charging and discharging immediately after being connected to the charging equipment. The scheduling process only considers EVs in the state of charging and discharging. A scheduling period is set as 24 h, with a scheduling step of 1 h. The set of time slots is designated as H = {1, …, t, …, 24}.
In each scheduling step, EVs are divided into online and offline states. The set of online time slots for EV i is denoted as [image: image]. [image: image] is the time slot when the EV connects to the charging equipment to start charging. [image: image] is the time slot when the EV finishes charging and leaves. Assuming that all EVs arrive or leave at the whole hour, the online time slots should be a continuous set of natural numbers. In other time slots, if EV i is not connected to the charging equipment, it is considered as not participating in the current scheduling.
2.2 Optimization objective
The primary objective of the optimized scheduling for EV charging and discharging is to minimize the cost associated with EV charging and discharging. It also takes into account the impact of the total power of the EV cluster’s charging and discharging activities on the stable operation of the power grid, as well as user usage requirements. Based on the previous assumptions, this paper considers the following cost factors.
2.2.1 Cost of charging and discharging [image: image]
Under the time-of-use (TOU) pricing policy, the cost of charging and discharging [image: image] depends on the current electricity price and the amount of charging and discharging. Thus, the cost generated by charging and discharging behavior can be represented as:
[image: image]
where λt is the current electricity price during time slot t. li,t is the total charging and discharging quantity of EV i in time slot t. It can be specifically expressed as follows:
[image: image]
where pi,t is the average charging and discharging power of EV i during time slot t. It is positive during charging and negative during discharging. [image: image] is the set of online time slots.
2.2.2 Cost of state of charge (SOC) [image: image]
The randomness of EV charging behavior mainly manifests as uncertainty in the start time and duration of charging. Furthermore, the state of charge at the start of charging is influenced by the usage and charging habits of the EV user (Kim, 2008). Considering the user’s usage needs for EVs, the state of charge after charging and discharging should meet the user’s upcoming driving needs. To simplify the model, we make the following assumptions:
EVs arrive at the charging equipment to charge at any time within 24 h and leave after several hours of charging. Both the arrival time and departure time follow a uniform distribution, with a probability density function of:
[image: image]
where, a = 0, b = 23.
The initial SOC of EVs follows a normal distribution, with a probability density function of:
[image: image]
where μ = 0.5, σ = 0.16.
While the usage needs of a single user are difficult to predict, extensive data shows that user requirements follow a normal distribution. Thus, the usage requirement SOCideal also follows a normal distribution, with a probability density function of:
[image: image]
where, μ = 0.5, σ = 0.16.
Based on the above description, the cost of state of charge [image: image] incurred to meet user usage needs can be expressed as:
[image: image]
where SOCideal represents the user’s expected SOC for an EV. It describes the user’s usage needs. For example, if the user expects to travel a long distance after charging, this value is higher. [image: image] represents the SOC of EV i when it leaves the equipment after charging. δ is the coefficient of the SOC cost, 0 ≤ δ ≤ 1. E is the maximum capacity of the EV battery, determined by the EV model. According to the above formula, if the SOC after charging [image: image] deviates significantly from the user’s expected value SOCideal, it will result in a higher penalty cost.
2.2.3 Cost of grid load impact [image: image]
During the charging and discharging process, EVs’ behaviors impact the load curve of the power grid (Rawat et al., 2019). Based on previous discussions, the power grid system is expected to operate smoothly. This requires certain restrictions on the total charging and discharging power of the EV cluster. Therefore, this paper introduces the impact cost of the EV cluster’s charging and discharging behavior on the power grid, which is represented as:
[image: image]
where μ denotes the cost coefficient for load impact. λt is the current electricity price. li,t is the total amount of charging and discharging for EV i in period t. lt is the total load generated by the EV cluster in period t, defined as:
[image: image]
The cost of grid load impact is incurred only when the total load of the EV cluster exceeds a certain threshold (Shao et al., 2011). The threshold lth can be defined as:
[image: image]
where kth represents the percentage threshold of the charging and discharging power of the EV cluster in the current grid load. This threshold limit is set by the power grid system based on recent load conditions and is released to all EVs participating in charging and discharging. pmax is the maximum charging power of the EV cluster, defined as follows:
[image: image]
Based on the above assumptions, we propose the optimization objective to minimize the comprehensive cost C generated in the charging and discharging process. The comprehensive cost C can be defined as:
[image: image]
2.3 Constraint condition
The SOC for EV i should satisfy the constraint:
[image: image]
Generally, the SOC of an EV is represented as a percentage, with SOCmin = 0%, SOCmax = 100%.
The charging and discharging power of EV i during time period t is subject to the constraint:
[image: image]
where ω is the charging power limit coefficient. Pmax is the maximum charging power of EV i, depending on the specific EV model. The real-time charging power of EVs is influenced by both the SOC and the maximum charging power. When the SOC is high, to protect the battery, the EV does not charge and discharge at full power. Instead, it operates at a lower power level based on the current SOC.
3 POMDP MODEL
During the charging and discharging process, each EV agent is unable to acquire a complete observation of the system. They are unaware of the states and actions of other agents. The agent must make charging and discharging decisions that can achieve higher benefits based on their current observations and strategies to obtain the optimal scheduling strategy (Dai et al., 2021). Therefore, in contrast to the general Markov decision process model in reinforcement learning, we describe the charging and discharging optimization scheduling problem in this multi-agent environment as a POMDP model (Loisy and Heinonen, 2023).
State Observation: The state information that EV i can observe at time period t is assumed to be:
[image: image]
where λt is the current TOU electricity price. ui,t indicates whether EV i is connected to the charging equipment for charging in period t, i.e., the online status of EV. Specifically, it can be represented as:
[image: image]
where SOCi,t is the SOC of EV i in period t.
The system state includes the current state information of all EVs and the current electricity price information. It can be described as the combination of the EV cluster and the current time-of-use price information, which is:
[image: image]
Action: We select the average charging and discharging power pi,t of EV i in period t as action ai,t of the agent, that is:
[image: image]
where ai,t is positive when the EV is charging and negative when discharging.
The agent can charge the EV during low electricity price periods and sell electricity to the grid through the EV battery during peak price periods to obtain economic benefits. The joint action taken by all EV agents in period t is denoted as at = {a1, a2, …, aN}.
Reward: Reward is an important factor in evaluating the quality of the action strategies adopted by each agent. Based on the above discussion and the optimization objective of the model, we set the reward as follows:
[image: image]
[image: image] is the reward for the charging and discharging behavior of EV i, defined as:
[image: image]
It indicates that high electricity prices and high charging power will reduce the rewards obtained by the agent.
[image: image] is the reward for the total impact on the grid load of the charging and discharging behavior of the EV cluster in time period t, defined as:
[image: image]
where lth is the threshold limit of the grid for the total charging and discharging power of the EV cluster. ρ is the load reward conversion factor.
[image: image] is the reward for EV i meeting the user’s usage requirements at the end of charging, defined as:
[image: image]
where υ is the SOC reward conversion factor. [image: image] is the cost of SOC.
State Transition: After the EV agent cluster executes the joint action at = {a1, a2, …, aN}, the system state transitions from Ot to Ot+1. Each agent receives the corresponding rewards and state observation information for the next stage from the environment. This transition process can be represented as a function:
[image: image]
4 LEMADDPG ALGORITHM DESIGN
Based on the previous discussion, we modeled the problem of optimizing the charging and discharging schedule of the EV cluster as a POMDP in a multi-agent environment. However, reinforcement learning algorithms in multi-agent environments often face the challenge of environmental instability (Wu et al., 2020). This is due to each agent constantly learning and improving their strategy. From the perspective of a single agent, the environment is in a dynamic state of change, and the agent cannot adapt to the changing environment by simply altering its own strategy. To address this challenge, researchers have begun to focus on multi-agent reinforcement learning methods, aiming to resolve the issue of the non-convergence of reinforcement learning algorithms caused by environmental instability.
Furthermore, extracting discriminative features from raw data is a key method to improve reinforcement learning algorithms. In this problem, we expect a good algorithm to fully utilize the trend information of TOU electricity prices to guide the action selection of agents. It should result in an optimal scheduling strategy that minimizes the overall cost (He et al., 2021; Liao et al., 2021). Since TOU electricity prices fluctuate in a quasi-periodic manner and have a natural time sequence, it is suitable to use past prices to infer future price trends.
Therefore, this paper takes the multi-agent deep deterministic policy gradient (MADDPG) (Lowe et al., 2017) algorithm as the main body and uses the long short-term memory (LSTM) network (Shi et al., 2015) to extract features from the input TOU electricity price data. These feature data are used to guide the EV agent to explore the optimal charging and discharging action strategy. Consequently, we propose the long short-term memory enhanced multi-agent deep deterministic policy gradient (LEMADDPG) algorithm.
4.1 Electricity price feature extraction
LSTM (Shi et al., 2015) is a type of recurrent neural network specifically designed to address the long-term dependency problem that is prevalent in regular recurrent neural networks (RNNs). The key characteristic of LSTM is the introduction of a memory cell, also referred to simply as a cell. The memory cell can retain additional information and controls the flow of information via three gate structures: input gate, forget gate, and output gate. The input gate determines whether to accept new input data. The forget gate decides whether to retain the contents of the old memory cell. The output gate decides whether to output the contents of the memory cell as a hidden state. In this way, LSTM can alleviate the vanishing gradient problem and capture long-distance dependencies in sequences, making it highly suitable for processing and predicting time series data. A typical LSTM network structure is shown in Figure 2.
[image: Figure 2]FIGURE 2 | LSTM network structure (Wan et al., 2018).
In this paper, before the algorithm starts training, the real historical TOU electricity price data are input into the LSTM network for pre-training. The trained LSTM network can output the extracted electricity price features. Later, during the training process, the LSTM network outputs the corresponding electricity price features based on the current system state to guide the action selection of the agents.
4.2 LEMADDPG algorithm structure
The algorithm adopts the enhanced actor-critic structure (Konda and Tsitsiklis, 1999) from MADDPG, as shown in Figure 3. Each agent includes two types of networks: the policy network (Actor), responsible for making appropriate decision actions based on the current observation information, and the value network (Critic), which evaluates the quality of the actions output by the policy network.
[image: Figure 3]FIGURE 3 | Structure of LEMADDPG algorithm.
In the policy network section, the algorithm uses the idea of the deterministic policy gradient (DPG) (Silver et al., 2014): it changes from outputting the probability distribution of actions to directly outputting specific actions and updates the network parameters by maximizing the expected cumulative reward of each agent. This is conducive to the agent’s learning in continuous action spaces. The agent first obtains its own observed information o from the environment. Then, it chooses and outputs the current action a according to the current policy π in its own policy network. Notably, the agent uses only its own local information for observation and execution, without needing to know the global state information. After the agent obtains the current observation oi,t in the environment, it selects the current action ai,t through the policy network μi to provide its own current policy selection. Meanwhile, to improve the degree of exploration of the agent during training in a specific environment, a white noise signal Nt is added each time the policy network outputs an action, that is
[image: image]
In the value network section, to solve the non-stationarity problem in the multi-agent environment, the algorithm uses a centralized method to evaluate the policy of each agent. When each agent’s value network Critic evaluates the policy value Q, it not only uses its own Actor information but also considers the information of all agents. In other words, the Critic of each agent is centralized. This is key to implementing centralized training and distributed execution.
The LEMADDPG algorithm uses the experience replay (Mnih et al., 2013) strategy to enhance the stability of the learning process. The experience replay method stores the interaction data of each agent in the environment in a shared replay buffer. During training, a batch of data is randomly sampled for repetitive learning, significantly increasing the learning efficiency of the algorithm. The specific method is as follows: Each time the agent’s policy network generates action ai,t based on the current observation oi,t, the environment returns the current reward value ri and the observation at the next moment oi,t+1 based on the action. At this point, all related information set {o1,t, o2,t, …, oN,t, a1,t, …, aN,t, r1, …, ri, o1,t+1, …, oi,t+1} is stored in the experience replay pool [image: image], waiting to be used as training samples for the neural network. Following this, the system undergoes a state transition.
The target network strategy refers to each agent maintaining a target network that has the same structure as its current network but updates parameters more slowly. The target network is used to calculate the approximation of the expected cumulative reward, thereby reducing the oscillation of the target function and accelerating the convergence speed of the algorithm, as shown in Figure 4. Similar to the original network, the target network contains policy and value networks. The parameters at initialization use the policy network parameters and value network parameters from the original network, but their update methods differ substantially.
[image: Figure 4]FIGURE 4 | Network structure and training process of MADDPG.
The objective of training the original network is to maximize the expected reward of its policy network while minimizing the loss function of the value network (Dai et al., 2021). The specific update procedures are as follows:
The update formula for the policy network is:
[image: image]
where [image: image] is the gradient of the expected reward of the policy network with network parameters θi. [image: image] is the gradient of the action value function output by the network under the current state x and joint action at = {a1, a2, …, aN} with respect to the action. [image: image] is the gradient of the action output of the policy network with respect to network parameter θi.
The update formula for the value network is:
[image: image]
where L(θi) is the loss function of the value network. y is the actual action value function, which can be represented as:
[image: image]
where γ is the discount factor, 0 ≤ γ < 1. [image: image] is the action value function of the target network.
After a complete round of learning, we use α as the update step size to update the parameters of the original network, which can be expressed as:
[image: image]
The target network uses a soft update method to update the network parameters. It assigns a weight τ (0 ≤ τ < 1) to the parameters about to be updated, preserving a portion of the original parameters. This results in smaller changes in the target network’s parameters and smoother updates, which can be expressed as:
[image: image]
4.3 Algorithm overflow
The structure of the LEMADDPG algorithm is shown in Figure 3. The specific flow is shown in Algorithm 1. The system first initializes the EV charging and discharging environment according to the set parameters and then generates the initial observation O0. For each EV agent, it selects the action ai,t according to its current observation oi,t and strategy. Then, the joint action at is performed, each agent obtains its own reward ri,t from the environment and obtains the observation oi,t+1 of the next stage. The system records all information [image: image] at this time and stores the quadruple in the experience replay pool [image: image]. Then, the current system observation Ot is input into the LSTM network, and the electricity price feature ξt output under the current state is obtained. The current time electricity price feature ξt replaces the real electricity price λt for state update, that is:
[image: image]
Next, the system state is transferred. If the experience replay pool [image: image] is full, random sampling is performed for the agent to learn from experience. The agent uses the minimization loss function to update its Critic network and the gradient policy to update its Actor network. Then, all target network parameters are updated using a soft update method. At this point, a round of training is over, and the system returns to the initial state to start the next round of training.
Algorithm 1. LEMADDPG algorithm.
[image: FX 1]
5 EXPERIMENTAL RESULTS
5.1 Environment setup
We consider a smart community with a total of N EVs, and we simulate the process of the fleet plugging into the charging device over a 24-h period, from 0:00 on 1 day to 0:00 the next day, totaling 24 time periods. The relevant parameters of the vehicle are shown in Table 1. The parameters of the EV charging and discharging model are shown in Table 2.
TABLE 1 | EV related parameters.
[image: Table 1]TABLE 2 | EV charging and discharging model parameters.
[image: Table 2]The training process uses TOU electricity price data provided by a power company in a city in the UK. We select the electricity prices from April 2019 as the training dataset and electricity prices from September 2020 as the validation dataset. The TOU electricity price data is shown in Figure 5.
[image: Figure 5]FIGURE 5 | The TOU electricity prices of a city in the UK: (A) Electricity price from April 2019; (B) Electricity price from April 2020.
5.2 MADDPG results analysis
Upon initialization of the environment, we use the Monte Carlo method to simulate and generate the relevant initial variables for each EV. This includes the initial SOC, the desired SOC, and the times when the EV arrives at and leaves the charging station. The initial system observation includes the relevant states of all EVs, which can be represented by a 4N-dimensional vector [image: image]. The algorithm first starts from the initial state and advances according to the scheduling step size. Each agent in the EV cluster sequentially selects charging or discharging actions under its current policy and then receives rewards from the environment. Then, the EV cluster carries out all actions and receives observations for the next period from the environment. The related data are stored in the experience replay pool, and the environment state transitions until the maximum number of scheduling steps is reached or the total reward of all agents in the system reaches a steady state.
To study the effectiveness of the MADDPG algorithm for the EV charging and discharging optimization scheduling problem, we first use the traditional MADDPG algorithm to run this case. The algorithm parameter settings are shown in Table 3.
TABLE 3 | MADDPG algorithm parameters.
[image: Table 3]The total reward curve of the MADDPG-based EV cluster’s charging and discharging is shown in Figure 6, with the following analysis.
[image: Figure 6]FIGURE 6 | Total reward curve of the MADDPG algorithm.
(1) The horizontal axis represents the training round. The vertical axis represents the total reward obtained by the EV agent cluster in the corresponding round. For easy observation, the data have been smoothed with a smoothing factor of 0.95.
(2) The total number of training episodes is 5,000. The experiment runs for 30 min under the given conditions. As shown in the figure, the total reward curve rises rapidly in the initial 800 rounds, after which the reward curve gradually becomes smooth and converges. Finally, it stabilizes around 0.42, indicating that the algorithm has converged.
The converged MADDPG algorithm is validated on the TOU electricity price dataset for September 2020. For ease of observation, we extract the change in TOU electricity price and the corresponding action curve of the EV agents within 50 scheduling steps for comparison. Figure 7 shows the charging and discharging schemes of a certain EV following the TOU electricity price. The analysis is as follows.
[image: Figure 7]FIGURE 7 | Charging and discharging schemes of a certain EV following the TOU electricity price.
(1) The blue curve represents the time-of-use electricity price, the purple curve represents the charging and discharging power of the EV, and the black dashed line marks the observation points.
(2) At each observation point, the agent chooses to charge at a higher power when the electricity price is at a low point and chooses to charge at a lower power when the electricity price is at a peak. This indicates that the converged algorithm can timely adjust the charging and discharging power based on changes in the TOU electricity price.
(3) The Kendall correlation coefficient between the TOU electricity price and the charging and discharging actions of the agent is −0.245. Since the electricity price is one of the factors affecting the charging and discharging of EVs, the two do not show a strong negative correlation but a weak negative correlation. However, this still indicates that to some extent, the agent can follow the changes in electricity prices and make corresponding actions, i.e., tending to reduce charging power when the price is high and increase power when the price is low. This is consistent with the expected results of the experiment.
5.3 LEMADDPG results analysis
To fully utilize the historical data of TOU electricity prices, this paper adopts an LSTM network to extract the temporal features of electricity prices to guide the agent in decision making. We choose the TOU electricity price data from April 2019 as the input for LSTM training, with the output being a price series with temporal features. The learning rate is set to 0.01. Figure 8 shows the results after 2000 rounds of LSTM training. The blue curve in the figure represents the original electricity prices, and the orange curve represents the prices predicted by the LSTM using temporal features. The results indicate that LSTM can extract the features of time-of-use electricity price data and make reasonable predictions for future prices.
[image: Figure 8]FIGURE 8 | Electricity prices predicted by the LSTM network.
During the model training process, we replace the real electricity price information with the electricity price features extracted by the LSTM when updating the system state observation. The total reward curve for charging and discharging of the EV cluster based on the LEMADDPG algorithm is shown in Figure 9, with the following analysis.
[image: Figure 9]FIGURE 9 | Total reward curves of MADDPG before and after the adding LSTM.
(1) The horizontal axis is the number of training rounds. The vertical axis is the total reward obtained by the EV agent cluster in the corresponding round. For ease of observation, the data have been smoothed with a smoothing factor of 0.95.
(2) The total number of training episodes is 5,000. The red curve represents the total reward change of the original MADDPG algorithm. The blue curve represents the total reward change of the MADDPG algorithm after adding the LSTM. Both curves show a rapid rise for the first 600 rounds. After 600 rounds, the reward curve of LEMADDPG has converged, while the reward curve of MADDPG begins to flatten after 800 rounds. After repeating the experiment five times, it can be calculated that the average convergence speed of the improved MADDPG algorithm has increased by 19.72% compared to that of the original MADDPG. After 1,000 rounds, the total rewards of both eventually stabilize around 0.42.
(3) The initial state of the system differs due to the substitution of the input electricity price information with the temporal features extracted by LSTM, resulting in a distinct difference in the initial segments of the two curves.
(4) The above results show that after adding the LSTM network in MADDPG, there is almost no change in the stable value of the total reward after convergence. However, the convergence speed of the algorithm has significantly improved.
5.4 Comparative experiment
To validate the adaptability and superiority of the proposed LEMADDPG algorithm, we conducted two comparative experiments, one involving the performance comparison of different algorithms under the same scale of EVs, and the other involving different algorithms under varying scales of EVs. The parameter settings of the algorithms are the same as those in Table 3.
Figure 10 shows the comparative results of comprehensive costs under the same scale of EVs. The comprehensive cost is calculated as the cumulative value every 24 h. The results indicate that the comprehensive cost of the policy obtained by LEMADDPG is the lowest, at 2.94, which is 2.97% lower than the cost of DDPG, and 6.67% lower than the cost of DQN. The total reward with 3 EVs of the LEMADDPG, DDPG, and DQN algorithms are shown in Table 4. In terms of the speed of reward convergence, compared to LEMADDPG, the benchmark algorithms DQN and DDPG converge even faster at 120 and 500 rounds, respectively. This is because the LEMADDPG algorithm is more complex and its advantages are not obvious when addressing small-scale decision problems. In terms of the steady-state value of the reward, the policy obtained by LEMADDPG achieves higher reward values, converging to 0.42. The above results show that the LEMADDPG algorithm has the best steady-state reward value and a fast response speed.
[image: Figure 10]FIGURE 10 | Composite cost curves of three algorithms.
TABLE 4 | Comparison of rewards and convergence points under different scales of EVs.
[image: Table 4]Table 4 shows the training comparison results for different algorithms with EV quantities of 3, 9, and 27, respectively. It can be observed that compared to the two benchmark algorithms, LEMADDPG has achieved higher convergence reward values with all three scales. This indicates that LEMADDPG can seek better charging and discharging strategies for different scales of EVs. As for convergence speed, larger scales require more resources for the algorithm to find the optimal strategy, leading to a delay in the convergence points for all three algorithms as the scale of EVs increases. However, it can be observed that due to its simple structure, DQN has the fastest convergence speed in scenarios with 3 and 9 EVs, converging in 120 and 1,250 episodes respectively. However, as the number of EVs grows exponentially, the LEMADDPG algorithm demonstrates a clear advantage. When managing 27 EVs, the convergence speed of the LEMADDPG algorithm is 33% faster than DQN. This indicates that the algorithm proposed in this paper is capable of addressing the charging management problem of a large number of EVs.
5.5 Impact of parameters
The MADDPG algorithm is highly sensitive to network parameters. This section focuses on some parameters in MADDPG, demonstrating and comparing the impact of different parameters on the performance of the algorithm.
5.5.1 Soft update frequency
The frequency of soft updates is primarily controlled by the soft update discount factor τ. The smaller the τ value is, the less the target network parameters change, and the more stable the algorithm will be. However, the convergence speed will also be slower. Conversely, the larger the τ value is, the faster the network parameters change, and the algorithm can accelerate convergence. However, it may become unstable during the training process more easily. Therefore, to balance the convergence speed and stability of the algorithm, an appropriate τ value should be chosen. Figure 11 shows the total reward variation curves of the LEMADDPG algorithm with τ = 0.01 and τ = 0.1, respectively, with the following analysis.
[image: Figure 11]FIGURE 11 | LEMADDPG Total Reward Curves with Different Soft Update Discount Factors τ.
(1) The total reward curve for τ = 0.1 gradually stabilizes after 600 rounds, while the total reward curve for τ = 0.01 tends to converge around 500 rounds.
(2) After 2000 episodes, both have converged to fluctuate within a certain area. There is no significant difference in the steady-state values of the total rewards.
(3) The above results indicate that, assuming steady-state convergence is assured, choosing τ = 0.01 can accelerate the convergence of the algorithm without significantly affecting the steady-state value of the total reward.
5.5.2 Learning rate
The learning rate lr represents the update speed of the neural network’s own strategy. If lr is too small, the network tends to converge slowly. If lr is too large, the network loss will exacerbate oscillation or even result in divergence. Therefore, an appropriate network learning rate must be selected to ensure that the network can converge quickly. Figure 12 shows the total reward variation curves of the LEMADDPG algorithm with lr = 0.001 and lr = 0.01. The analysis is as follows.
[image: Figure 12]FIGURE 12 | LEMADDPG Total Reward Curves with Different Learning Rates lr.
(1) The reward curve of lr = 0.001 is close to a logarithmic function. Overall, it shows a steady rise and eventually tends to converge. The reward curve of lr = 0.01 has significant fluctuations, and it diverges in the first 1500 episodes. After 1500 episodes, it starts to rise. It eventually tends to converge near 2000 episodes, but the fluctuations are still large.
(2) In terms of the steady-state value of the total reward, the curve of lr = 0.01 eventually tends to −2.84. The curve of lr = 0.001 tends to 0.42.
(3) The above results show that choosing lr = 0.001 is more beneficial to obtain a stable and higher total reward network. Increasing the learning rate has a clear negative impact on the network, which reduces the steady-state value of the total reward and makes the algorithm unstable.
5.5.3 Expected return rate
To reflect the continuity of decisions, we hope that the policy network of EV agents can consider not only the current action’s income but also the income of several steps after executing the action based on the current observation when selecting actions. That is, we expect agents to perceive the future situation to a certain extent. When the policy network of the agent outputs actions that are given high-value scores by the evaluation network, we use the long-term return discount factor γ to express the consideration degree of the evaluation network for the future. The larger the γ, the more the agent can consider future returns. An excessively small γ will make the evaluation network unable to foresee future events in time, leading to a slower update speed of the policy network. By contrast, an excessively large γ will lead to low prediction accuracy of the future of the agent’s evaluation network, making its prediction results less credible, thereby making the policy network’s updates more frequent, slowing the convergence speed and even causing the algorithm to diverge.
In the problem of optimizing the charging and discharging scheduling of EVs, we hope that the agent can consider future factors such as electricity price changes and environmental information changes to a certain extent. Therefore, it is necessary to select an appropriate return discount factor γ. Figure 13 shows the total reward variation curves of the LEMADDPG algorithm with γ = 0.9 and γ = 0.99. The analysis is as follows:
[image: Figure 13]FIGURE 13 | LEMADDPG Total Reward Curves with Different Long-term Return Discount Factors γ.
(1) The curve of γ = 0.9 tends to converge near 800 episodes, while the curve of γ = 0.99 gradually becomes stable and converges after 1100 episodes.
(2) After 2800 episodes, both have converged. The steady-state value of the γ = 0.9 curve is 0.42, and the steady-state value of the γ = 0.99 curve is 0.38.
(3) The above results show that choosing a lower long-term return discount factor γ = 0.9 is beneficial to algorithm training. If the discount factor is too large, the agent is significantly influenced by future factors when making decisions and cannot find an appropriate improvement direction in the initial exploration stage, leading to relatively slow convergence of the algorithm.
6 CONCLUSION
Aiming at solving the optimization scheduling problem of EV charging and discharging in the smart grid, this paper establishes a grid model involving the grid, charging equipment, and EVs. In this model, EVs can conduct real-time bidirectional communication with the grid through the charging device, exchanging current TOU electricity prices and state information of the EVs. By taking into account factors such as charging and discharging costs, user demands, and grid stability, the model aims to minimize the comprehensive cost during the charging and discharging process. This paper enhances the MADDPG algorithm with LSTM network, which is used to extract time series features from historical electricity price data, thereby guiding the charging and discharging strategies of the agents. The simulation results demonstrate that, the proposed method LEMADDPG algorithm improves the training convergence speed by 19.72% compared to the MADDPG algorithm. More critically, when addressing charging issues of EVs of various scales, the proposed method shows the obvious advantages in formulating strategies for large-scale EVs. Compared to DQN, it converges 33% faster and achieves a superior policy optimization.
Our combined LSTM and MADDPG method demonstrates potential, yet faces challenges in data dependency and interpretability. While we’ve ensured robust training in data-rich environments, practical applications may require strategies like transfer learning. Moreover, addressing model transparency remains a priority, and our future study will explore integrating explainable AI techniques to enhance model clarity and interpretability, aiming to make our contributions even more valuable to the broader scientific community.
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With the large-scale development of electric vehicles, the accuracy of electric vehicle charging load prediction is increasingly important for electric power system. Accurate EV charging load prediction is essential for the efficiency of electric system planning and economic operation of electric system. This paper proposes an electric vehicle charging load predicting method based on variational mode decomposition and Prophet-LSTM. Firstly, the variational mode decomposition algorithm is used to decompose the charging load into several intrinsic mode functions in order to explore the characteristics of EV charging load data. Secondly, in order to make full use of the advantages of various forecasting methods, the intrinsic mode functions are classified into low and high frequency sequences based on their over-zero rates. The high and low frequency sequences are reconstructed to obtain two frequency sequences. Then the LSTM neural network and Prophet model are used to predict the high and low frequency sequences, respectively. Finally, the prediction results obtained from the prediction of high frequency and low frequency sequences are combined to obtain the final prediction result. The assessment of the prediction results shows that the prediction accuracy of the prediction method proposed in this paper is improved compared to the traditional prediction methods, and the average absolute error is lower than that of ARIMA, LSTM and Prophet respectively by 7.57%, 8.73%, and 46.02%. The results show that the prediction method proposed in this paper has higher prediction accuracy than the traditional methods, and is effective in predicting EV charging load.
Keywords: electric vehicles charging load, prophet prediction model, neural network, variational mode decomposition, time series prediction
1 INTRODUCTION
At present, the problems of environmental pollution and energy resource crisis are becoming more and more serious. Oil-fueled automobiles are causing serious environmental pollution and high energy consumption. Electric vehicles (EVs) offer cleaner energy and environmental advantages over petrol vehicles, effectively alleviating problems such as energy resource shortages and severe air pollution (Wu and Zhang, 2017). Consequently, EVs have been widely promoted globally, and in China, the government has vigorously advanced the construction of public and private EV charging stations (Gao and Zhang, 2011). However, a significant number of EVs connecting to the power grid can also have an impact on the power grid. According to (Das et al., 2020), EV charging equipment may cause harmonic pollution to the grid, and the clustering effect of EV charging will have a significant impact on distribution networks. Chen and Huang (2019) demonstrates that the disordered charging of huge numbers of EVs will have impact on the safety and reliability of electric power system. At the same time, since the effective prediction of EV charging load is a prerequisite for the analysis of the impact of EV charging on the power grid, it is of great significance to conduct accurate EV charging load prediction (Yin et al., 2023).
Significant progress has been made in research on EV charging load predicting all over the world. EV charging load predicting can be divided into two categories: statistical model-based predicting methods and deep learning-based predicting methods (Yin et al., 2023). The methods based on statistical models are relatively simple, computationally efficient, and have faster prediction speeds (Luo et al., 2019). Selvi and Mishra (2021) utilizes a functional linear regression model to predict the day-ahead power load. Bahrami et al. (2014) employs a short-term power load prediction model that combines wavelet transform with grey model, and the high frequency component of the load is effectively eliminated, and the prediction accuracy is improved. de Oliveria and Oliveria (2018) forecasts medium-term electricity load using an autoregressive integrated moving average model (ARIMA) with a seasonal trend decomposition model combining weighted regression. Luzia et al. (2023) forecasts Brazilian electricity demand with ARIMA combined with Wavelet Transform and Fourier Transform. Wang (2022) utilities ARIMA combined with BP neural network to predict per capita coal consumption of China. The above-mentioned models can achieve rapid predictions for simple time series with high accuracy. However, these models have poor robustness and perform less effectively in predicting power loads with abrupt variations.
Deep learning-based prediction methods can overcome the limitations of statistical model-based methods in predicting complex sequences. Nikolaev et al. (2019) predicts wind power generation using recurrent neural network (RNN). However, RNN may encounter issues such as vanishing or exploding gradients during the training process, which can affect the prediction accuracy. Bouktif et al. (2018) predicts electricity consumption in a particular city with Long Short-Term Memory (LSTM) neural networks. They further optimized the time lag features of the LSTM network using genetic algorithms (GAs). LSTM networks address the problems of vanishing and exploding gradients that occur in RNNs. Liu et al. (2019) utilizes support vector machines (SVMs) to predict electricity load and employs empirical mode decomposition (EMD) for denoising the power load data. Wang et al. (2021) proposes a short-term electricity load predicting model based on a locally random sensitivity deep autoencoder (D-LiSSA). The model utilizes a nonlinear fully connected feedforward neural network as the regression layer and utilizes the learned hidden representations from D-LiSSA to enhance the generalization ability of the model.
While deep learning-based prediction methods are effective in handling nonlinear problems, their performance is influenced by the quality of input data. In real-world scenarios, EV charging loads are affected by many factors like electricity prices, temperature, date and so on. Forecasting using only a single forecasting method can have an impact on forecasting effectiveness (Luo et al., 2019). Therefore, it is necessary to preprocess the data using appropriate methods and employ ensemble prediction models for forecasting the preprocessed data. To address this, Lu et al. (2019) utilizes convolutional neural networks (CNNs) to extract feature vectors from a massive amount of electricity load data and uses them as inputs to an LSTM neural network to obtain load predictions. However, this approach only utilizes superficial features of the data and does not perform deep analysis. Time series data can be divided into components with different characteristics using certain methods. The effect of disjoint features on prediction can be avoided by predicting the partitioned components. Therefore, Yang et al. (2021) decomposes the photovoltaic power output into components with different frequencies with Variational Mode Decomposition (VMD) and uses LSTM to predict them, then, integrates predicting results to get the final predicting result. In a similar manner, Wang et al. (2020) uses a deep echo state network (DESN) to establish prediction models for each component obtained through VMD, and the predicting results are integrated to get the result. However, these methods do not consider the characteristics of each component during the predicting process and solely used a single model to predict each component. In order to get better predicting result, researchers have divided the components obtained through VMD decomposition of electricity load data into high-frequency and low-frequency sequences (Cai et al., 2022; Yu et al., 2022). Cai et al. (2022) employes gate recurrent units (GRUs) and temporal convolutional networks (TCNs) to predict the high-frequency and low-frequency sequences, respectively. Then reconstructs the final predicting result. Similarly, Yu et al. (2022) utilizes GRUs and ARIMA models to predict the high-frequency and low-frequency sequences separately and combines the predicting results to obtain the result. These ensemble prediction methods consider the characteristics of each component, leveraging the advantages of different prediction models for high and low frequency sequences. Compared to utilizing a single prediction model, these approaches enhance the prediction accuracy. However, the ARIMA algorithm requires more background knowledge and parameter tuning, making it more complex. Moreover, when dealing with missing data, manual imputation and handling are necessary for the ARIMA algorithm. On the other hand, the Prophet algorithm overcomes these drawbacks of the ARIMA algorithm and is better suited for medium-scale time series data forecasting.
Based on the above analysis, an EV charging load predicting method based on VMD and Prophet-LSTM is proposed in this paper to improve the prediction accuracy of EV charging loads. Firstly, for mining the characteristics of EV charging load data, the load data is decomposed into several intrinsic mode functions (IMFs) using VMD algorithm. Secondly, to fully leverage the superiorities of each prediction model, the IMFs are divided into high and low frequency sequences using zero-crossing rates, and each sequence is reconstructed individually. Then the high and low frequency sequences are predicted using LSTM neural networks and the Prophet model, respectively. Finally, the predicting results for high and low frequency sequences are combined to get the final predicting result. Evaluation of the predicting results shows that the predicting method proposed in this paper achieves improved prediction accuracy compared to traditional methods. The average absolute error of the proposed method is lower than ARIMA, LSTM, and Prophet prediction models by 7.57%, 8.73%, and 46.02%, respectively.
2 DECOMPOSITION OF EV CHARGING LOAD
2.1 VMD
The VMD method is a technique for estimating individual signal components by solving a variational optimization problem in frequency domain (Dragomiretskiy and Zosso, 2014). This method can decompose complex unstable sequences into IMFs with finite bandwidths, denoted as [image: image], where [image: image], and the central frequencies [image: image] of each IMF are determined during the decomposition process, the parameter k above denotes the number of IMFs after decomposition.
The principle of the variational problem is that the decomposed sequence is a finite bandwidth modal component with a central frequency. The original sequence is decomposed into k sub-sequences, and the sum of all sub-sequences is guaranteed to be the original sequence, while the sum of the estimated bandwidths of the sub-sequences is minimum. The constrained variational problem is shown as follows:
[image: image]
where k represents the number of desired mode components to be decomposed; [image: image] and [image: image] represent the central frequency of the i-th decomposed mode component and i-th component after decomposition, respectively; [image: image] denotes the Dirac function, and * represents the convolution operator. The selection of k is typically done using optimization algorithms, based on central frequencies, or through specific formulas. In this study, a criterion is used to obtain the value of i (Zhang et al., 2021), and the criterion is expressed as follows:
[image: image]
[image: image]
where [image: image] represents the length of the time series; [image: image] represents the i-th IMF, and [image: image] represents the energy of each intrinsic mode function. When the [image: image] suddenly increases after a certain value of k, it is considered as the optimal value of k for that moment.
The constrained variational problem can be transformed into an unconstrained variational problem by introducing the Lagrange multiplier operator and the augmented Lagrange expression is as:
[image: image]
where [image: image] is the quadratic penalty factor, which is used to decrease the disturbance of Gaussian noise. The optimal modal component and center frequency can be obtained by the alternating direction multiplier (ADMM) iterative algorithm combined with Fourier iso-distance transform and Parseval/Plancherel, and the saddle point of augmented Lagrange function can be obtained. The process of alternating optimization iteration for [image: image], [image: image] and [image: image] is as follows:
[image: image]
[image: image]
[image: image]
where γ represents the noise margin, which meets the fidelity requirement of decomposition of signal; [image: image], [image: image], [image: image], and [image: image] correspond to the Fourier transforms of [image: image], [image: image], [image: image], and [image: image].
2.2 Division of high and low frequency sequences
Sequences with high frequency that possess poor stationarity and complexity are predicted by LSTM neural network. This paper uses the Prophet model to predict sequences with low frequency that are stable and periodic. Therefore, it is necessary to divide the intrinsic mode functions obtained by VMD processing into sequences with high and low frequencies.
This paper primarily utilizes the over zero rate of a sequence to divide the high and low frequency sequences. The over zero rate of a sequence is defined by the following equation:
[image: image]
where [image: image] represents the number of passing zero in the sequence; [image: image] represents the length of the sequence.
3 PREDICTING METHOD OF EV CHARGING LOAD BASED ON PROPHET-LSTM
3.1 Prophet model
The Prophet model is a time series forecasting model developed by the Facebook team (Taylor and Letham, 2018). This model fits the time series by considering trend components, seasonal components, holiday effects, periodic components, and error terms. The prediction results are obtained by combining these fitted components. The Prophet model can be represented by the following equation:
[image: image]
where [image: image] represents the trend term, which captures the non-cyclical trends in the time series; [image: image] represents the holiday term, accounting for the impact of holidays on the time series; [image: image] represents the seasonal term, typically defined at the weekly or yearly level; [image: image] represents the error term, which captures the unexpected fluctuations of the time series.
The trend term can be expressed as:
[image: image]
where [image: image] represents the load capacity; [image: image] represents the rate of increase; [image: image] represents the deviation parameter.
The holiday effect can be represented by the following equation:
[image: image]
where [image: image] represents the set of the past and future dates of holiday [image: image].
The Prophet model is a model-based forecasting method. Currently, another popular model-based forecasting method is the ARIMA model. The Prophet model incorporates the advantages of the ARIMA model while avoiding its disadvantages such as limited robustness and the inability to consider external factors that influence time series changes. Therefore, this paper chooses the Prophet model to predict stationary low-frequency sequences.
3.2 LSTM neural network
LSTM neural networks are a variant of recurrent neural networks (RNNs) that were primarily developed to address the issue of vanishing and exploding gradients that can occur in RNNs during long sequence predictions (Li et al., 2018). Compared to traditional RNNs, LSTM neural networks have improved performance in long sequence predictions.
LSTM networks extend the basic structure of RNNs by introducing additional components such as input gates, forget gates, output gates, and a concept known as the cell state. These additions allow LSTMs to selectively retain and discard information over time, enabling them to capture long-term dependencies more effectively. The architecture of an LSTM network is illustrated in Figure 1.
[image: Figure 1]FIGURE 1 | The structure of LSTM neural network.
LSTM neural network has a more complex structure compared to traditional RNNs, as shown in Figure 1. LSTM introduces the concept of a cell state and utilizes input, output and forget gates to control and retain information. The calculation for LSTM at time step t is as follows:
[image: image]
where [image: image], [image: image], and [image: image] denotes the forget, input, and output gate layer, respectively; [image: image] denotes the cell state; [image: image] denotes the cell state candidate value; [image: image] represents the hidden state; [image: image] and [image: image] denotes the weights and biases.
The forget gate combines the foregoing hidden state with the present input, and utilities the sigmoid function to determine which information to discard. The sigmoid function outputs values between 0 and 1. It discards part of the information when its value is approaching to 0 and keeps the information when its value is nearly 1.
The input gate and the tanh function determine which new information to incorporate from the foregoing hidden state and the present input, resulting in a candidate value [image: image].Then, the forget and input gates are combined to discard or retain information, resulting in the current cell state [image: image].Finally, the output gate combines with the tanh function to determine which information from [image: image], [image: image] and [image: image] to output as the current hidden state [image: image] at the current time step.
The LSTM neural network constructed in this study consists of a 96-dimensional input layer, a 1-dimensional output layer, two LSTM layers, and four fully connected layers. The number of neurons in these layers is 128, 64, 32, and 16, respectively. The activation function chosen for the LSTM layers is the hyperbolic tangent (tanh) function. The Adam optimization algorithm is used to minimize the error during training. This LSTM neural network is utilized for predicting high-frequency sequences with significant variations. Through multiple iterations and training, an effective LSTM prediction model is obtained, which is capable of capturing complex temporal dependencies and making accurate predictions.
3.3 Prophet-LSTM combination model
Since the EV charging load time series is highly influenced by real-world factors, the time series exhibits pronounced variations. Predicting such time series using a single forecasting method without considering the relevant factors often results in poor prediction performance and large errors. Therefore, it is necessary to utilize a combination forecasting model. In this study, a Prophet-LSTM prediction model is established. The proposed model takes the advantages and disadvantages of both the Prophet and LSTM model into account. The Prophet model is employed to predict low-frequency sequences with relatively smooth variations, while the LSTM neural network is used to predict sequences with high frequency with more pronounced variations. By dividing the original complex time series prediction problem into two relatively simpler time series prediction problems, better prediction results can be achieved. The overall prediction process is illustrated in Figure 2.
[image: Figure 2]FIGURE 2 | Forecasting process of Prophet-LSTM prediction model.
3.4 Error evaluation index selection
To assess the prediction performance of the Prophet-LSTM model, this study uses the mean absolute error (MAE) as well as the goodness-of-fit to evaluate(R-squared) the prediction results. The calculation methods for MAE and R-squared are as follows:
[image: image]
[image: image]
where [image: image] represents the length of the sequence; [image: image] denotes the predicted value of the model for the nth data in the sequence; [image: image] denotes the mean of the sample.
4 RESULTS
The hardware environment for the experiments includes an Intel i5 8300H 2.3 GHz CPU and an NVIDIA GTX 1050Ti graphics card, with 16 GB of memory. The model was implemented using Python 3.9 as the programming language, utilizing software architectures such as TensorFlow, Keras, and the Prophet algorithm framework for power load forecasting.
4.1 Data processing
This study utilizes EV charging data from a charging station in Fujian Province, China, spanning from January to April 2022. The sample time of the data is 15 min. The EV charging power curve is depicted in Figure 3.
[image: Figure 3]FIGURE 3 | Charging power diagram of EV charging station.
Each red “☆” in Figure 3 represents 24:00 of the previous day and 0:00 of the next day. The power data between two consecutive “☆” markers is complete data set for each day. From Figure 3, it can be observed that the raw data has a certain periodicity. Given the 15-min data granularity, this study defines 96 time steps as 1 week. However, the daily variation of the charging load is quite volatile, and the sequence is not sufficiently stationary. Using a single forecasting method for prediction would result in poor performance. Therefore, this paper employs the VMD algorithm to partition the time series into components with high and low frequency. The parameters for the VMD algorithm are shown in Table 1.
TABLE 1 | VMD algorithm parameters.
[image: Table 1]First, the value of k in the VMD algorithm needs to be determined using Eqs 2, 3. The variation of [image: image] with the value of k is illustrated in Figure 4.
[image: Figure 4]FIGURE 4 | Changing map of [image: image].
From Figure 4, it can be observed that [image: image] reaches its minimum value during a decreasing process when k is equal to 7. However, when k is equal to 8, [image: image] increases dramatically. Additionally, since the values of [image: image] are close when k equals 6 and k equals 7. Based on the selection rule mentioned above, it can be considered that an appropriate value for k is 6. By applying the VMD algorithm with k = 6, the sequence is divided into six IMFs by the VMD algorithm, and the individual IMFs are illustrated in Figure 5.
[image: Figure 5]FIGURE 5 | Sequence diagram after VMD decomposition.
Based on Figure 5, it can be observed that the magnitude of fluctuations increases from IMF1 to IMF6. In this paper, the zero-crossing rate is used to divide the decomposed IMFs into sequences with high and low frequency. The zero-crossing rates of the obtained intrinsic mode functions are provided in Table 2.
TABLE 2 | Over zero rate of each IMF.
[image: Table 2]4.2 Results analysis
Through the application of the VMD algorithm, the data was processed and divided into the high-frequency sequence with more pronounced variations and the low-frequency sequence with relatively stable variations. The low-frequency sequence was then predicted using the Prophet model, while the sequence with high frequency was predicted using LSTM neural network. The resulting predictions for sequences with high and low frequency are shown in Figures 6, 7, respectively.
[image: Figure 6]FIGURE 6 | Predicting result of low frequency sequence.
[image: Figure 7]FIGURE 7 | Predicting result of high frequency sequence.
Finally, the predicting results for the sequences with high and low frequency are combined to obtain the final prediction result. The comparison between the predicting result of the Prophet-LSTM method and other predicting methods is illustrated in Figure 8.
[image: Figure 8]FIGURE 8 | Comparison of prediction results.
As can be seen from Figure 8, compared with several other predicting methods, the predicting method proposed in this paper has a better performance. The predicting results are better fitted to the real data curve. Additionally, the error values and R-squared values for each model’s predicting results are summarized in Table 3.
TABLE 3 | Evaluation value of different model predicting results.
[image: Table 3]Table 3 presents the assessed values of predicting results of each method. According to Table 3, the VMD-Prophet-LSTM prediction method proposed in this study exhibits the highest accuracy. The average absolute errors of the VMD-Prophet-LSTM model are 7.57% lower than those of the ARIMA model, 8.73% lower than those of the LSTM model, and 46.02% lower than those of the Prophet model. This indicates that the VMD technique utilized in the proposed model enables the Prophet model to be applied for predicting sequences with pronounced variations and improves its performance in predicting sequences with high volatility. Moreover, it ensures the predicting performance of the LSTM model.
Additionally, the coefficient of determination (R-squared) value achieved by the proposed prediction model is 0.8411. Generally, a value of 0.8 or higher indicates a good fit. Therefore, the prediction performance of the proposed method is satisfactory, and it demonstrates improvements compared to current prediction methods.
5 CONCLUSION
This paper proposes a combined forecasting method for EV charging load predicting. The proposed method is based on the VMD technique and integrates the advantages of the Prophet model and LSTM neural network. Through the application of the VMD algorithm, the EV charging load time series is divided into sequences with high and low frequency, allowing the Prophet model and LSTM neural network to leverage their advantages for prediction. The conclusions drawn from the case analysis are as follows:
(1) Compared to using a single method to predict the EV charging load time series, the proposed combined forecasting method demonstrates better prediction performance.
(2) By employing the VMD technique and zero-crossing rate, the EV charging load time series is effectively partitioned into a relatively stable sequence with low frequency and a highly volatile sequence with high frequency. The Prophet model and LSTM neural network are then applied to predict the sequences with low and high sequency, respectively. The case analysis demonstrates that this partitioning approach helps overcome the limitations of the Prophet model in predicting sequences with high volatility, thereby reducing the errors in the combined forecasting results.
Overall, the proposed method proves effective in improving the EV charging load prediction accuracy by leveraging the advantages of both the Prophet model and LSTM neural network, while addressing the challenges posed by highly volatile sequences through the utilization of the VMD technique.
In the future research, the combined prediction method proposed in this paper will be applied to different fields (such as photovoltaic power prediction) to further verify the prediction performance and generalization ability of this method.
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Emergency load shedding (ELS) is a vital measure for power systems to manage extreme events, ensuring the safety, stability, and economic operation of the grid. The integration of distributed energy resources and controllable devices in modern power systems has bolstered grid flexibility. Consequently, developing precise load shedding strategies to balance economic and security goals has emerged as a prominent subject in power system optimization. However, existing methods exhibit inadequacies, including overlooking practical operability, privacy concerns, and a lack of adaptability to response time requirements. To address these gaps, this paper introduces a precise ELS approach for distributed networks with a focus on response time needs. Contributions encompass designing load shedding processes for various response times, integrating demand response, and partitioning networks for optimized load shedding. Through validation using standard test cases, the proposed approach effectively utilizes response time and demand-side resources for precise ELS control in distribution networks. It accommodates different scenarios, offering a robust solution for rapid and accurate load shedding during emergencies.
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1 INTRODUCTION
Precise ELS is an essential measure for power systems to cope with extreme events, playing a crucial role in ensuring the safety, stability, and economic operation of the power grid. In modern power systems, the increasing integration of distributed energy resources and controllable devices has significantly enhanced the flexibility and responsiveness of the grid. Therefore, how to develop accurate load shedding control strategies to achieve a balance between economic and security objectives has become a hot topic in power system optimization and control research.
The approaches can be divided into two categories: optimization-based and AI-based approaches. The optimization-based approach models ELS as an optimization problem with nonlinear constraints or objectives. As to constraints, voltage/frequency deviation security is always considered a nonlinear constraint, which can lead to transient angle stability constraints (Xu et al., 2017), multi-operation modes constraints (Xu et al., 2019), voltage stability constraints (Al-Rubayi and Abd, 2020), stochastic correlation constraints (Jiang et al., 2019), etc. Some methods are used to enhance optimization efficiency, such as the constraint relaxation method (Li et al., 2017) and the parallel methods (Jiang, Wang and Geng, 2014; Gan et al., 2018). These approaches suffer from their slow reaction to the intense system state variation and require a specific to-decide time (Liu et al., 2022).
Artificial intelligence (AI) techniques have been identified as an effective and efficient data-driven tool for ELS problems and other power system applications, which can be divided into economic dispatch (Xu et al., 2017), operation (Mohandes et al., 2019) and planning (Deng and Lv, 2020). Its purpose is to find the approximation form of real electrical phenomena by learning the nonlinear mapping between operation features and targets from the offline or online database, in which the latter can update model parameters in a rolling manner. The neural networks (Zhang et al., 2015; Zhang et al., 2017) and deep learning methods (Yu et al., 2018) are proposed for the fast ELS problem. In (Wang et al., 2021), a load shedding contribution indicator is introduced as a load shedding criterion into the reward value function of dueling deep Q learning. In (Vu et al., 2021), a safe RL-based load shedding of power systems that can enhance the safe voltage recovery of the electric power grid after experiencing faults is proposed. In (Chen et al., 2023), An emergency load shedding method based on data-driven strategies and deep RL which constructs a typical mismatch scenario is proposed. Regarding ELS, the extreme learning machine (ELM) algorithm is applied in (Dai et al., 2012; Li et al., 2021) to maintain the frequency, which is further advanced in (Gomez-Exposito, Conejo and Caizares, 2008).
Although the reported methods show high effectiveness in solving ELS problems, they show the following inadequacies:
(1) The approach subdivides the load to be shed into precise-grained units and ideally treats users in low-voltage distribution areas as fully controllable entities. However, it overlooks the minimum units for load shedding and users’ controllable willingness based on cost, leading to a lack of practical operability.
(2) Using user-controllable cost as all known information for multi-objective optimization neglects the issue of information privacy. Moreover, this centralized solving approach may encounter infeasibility or excessive computation time when dealing with a large number of users, making it challenging to meet the time constraints for emergency load shedding.
(3) The methods lack a design to address the response time requirement of control instructions and apply a uniform direct optimization approach for all scenarios. This may result in situations where control decisions cannot be made within the required response time under high-speed response demands.
To fill the above gaps, this paper focuses on the precise ELS approach for distributed networks considering response time requirements. The main contributions of the proposed methods are as follows:
(1) Designing a precise emergency load shedding optimization process for distribution networks with different response time requirements; clarifying the load shedding control approach under various response time demands to ensure a rapid and effective response to load shedding instructions from the main station.
(2) Developing an emergency load shedding control method for distribution networks with low response time requirements, based on demand response; under high time requirements, giving priority to load shedding in regions with higher load importance to achieve fast load shedding in a short period.
(3) Building an emergency load shedding control method for distribution networks with low response time requirements, considering users’ willingness to respond; Incorporating the users’ winning demand response bid to mitigate the societal impacts of load shedding during emergencies and ensuring precise execution of main station instructions. Incorporate user-initiated response capabilities.
(4) Creating a fast load shedding control optimization method for distribution networks with low response time requirements, based on network partitioning; by equivalently dividing the distribution network into zones, reducing the complexity of load shedding optimization problems based on tie switches and supply switches, and achieving rapid load shedding with a certain level of accuracy.
Through verification with standard test cases, the proposed approach in this study effectively utilizes response time and demand-side resources to achieve precise emergency load shedding (ELS) control in distribution networks. The method is capable of providing fast load shedding with lower precision under high response time requirements, and appropriately balancing speed and accuracy for ELS under low response time requirements. These results demonstrate that the approach can adapt to different scenarios, offering an effective solution for rapid and accurate load shedding in distribution networks during emergencies.
2 PRECISE ELS OPTIMIZATION FORMULATION
In actual load shedding control, to ensure the stability of the power system during extreme events, the most critical aspect is to execute the minimum load shedding commands within the required control time. However, the precise ELS control relies on the optimized consideration of discrete control objects such as power supply switches and tie switches between different branches. The resulting mixed-integer programming problem often requires lengthy optimization calculations and is not well-suited for load shedding commands with high response time requirements. Therefore, it is necessary to execute load shedding control commands differently for different response time requirements.
To address this, this study proposes two distinct methods for load shedding control based on different response time requirements. The first method is a fast ELS control based on the weighted method, suitable for high response time requirements. The second method is an optimal load shedding control considering demand response and network partitioning, specifically designed for low response time requirements. This approach achieves rapid load shedding control with lower accuracy for high response time requirements and appropriately paced load shedding control with higher accuracy for low response time requirements in the distribution network. The basic control logic is illustrated in the following flowchart Figure 1.
[image: Figure 1]FIGURE 1 | Optimization process for precise ELS at substations based on response time requirement differences.
2.1 Fast ELS control without regard to substation network reconfiguration
When the response time requirement issued by the master station is lower than the substation control threshold, the load shedding control process with a high response time requirement is activated. In the fast ELS control phase, to meet the response time requirement, the substation only performs disconnection operations on distribution line closing switches without regard to complex distribution network reconfiguration. Specifically, the substation determines the downstream load nodes that are affected by the resection of each closing switch and screen the switches to disconnect according to the control command and load importance ranking.
The specific process of the precise load shedding control strategy for the power grid without regard to network reconfiguration is shown in Figure 2. In this, offline phase before accepting the command, the substation computes the sets of downstream nodes supplied by different switches. This can usually be accomplished by graph-theoretic methods such as the shortest path method and does not take up command execution time. In the execution phase, the equivalent loss caused by the disconnection of each switch is calculated and sorted. The switches are added to the action switch set from smallest to largest until the control command is satisfied.
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[image: Figure 2]FIGURE 2 | The specific process of the fast ELS control without regard to network reconfiguration.
Where, [image: image] represents the equivalent loss after disconnecting switch s; [image: image] represents the set of downstream loads supplied by switch s; [image: image] represents the importance of the [image: image]-th load (where higher values indicate greater significance); [image: image] represents the active power of the [image: image]-th load; [image: image] represents the load shedding capacity of the substation; [image: image] the set of switches to be disconnected;
2.2 Demand response-based ELS control method at substations under low response time requirement
When the response time requirement issued by the master station falls below the substation control threshold, the load shedding control process with a low response time requirement is activated. The demand response resources on the user side are abundant and can actively participate in the load shedding control process. Considering it can provide effective support for overall load control, this study incorporates the demand response resources that won bids in the ancillary service market and possesses fast response capabilities into the load shedding consideration.
Taking the common day-ahead solicitation type demand response as an example, the trading center collects the response volume and price reported by the user and determines the clearing price and the winning volume of the user. Then, the control substations and execution substations interact with the trading center to identify users’ specific adjustable boundaries. The control substations optimize the formulation of control instructions for adjustable resources at various nodes based on specific distribution network operation information and then proceed with the issuance. During the optimization control process of the controlling substations, the distribution network’s power flow constraints need to be considered, and the solution space for this optimization can be described as follows.
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Where,[image: image] represents the set of all branches in the distribution network, [image: image] and [image: image] represent the active power flow and reactive power flow of the branch, respectively, [image: image] and [image: image] represent the resistance and reactance of the branch, respectively, [image: image], [image: image], [image: image] represent the active and reactive power, and voltage at node [image: image] , respectively, [image: image] represents the reference voltage at the upper-level grid connection point (node 0), in this study, the reference voltage per unit value is set to 1.05, [image: image] and [image: image] represents the upper and lower bounds of the voltage squared at node [image: image], respectively, [image: image], [image: image], [image: image], [image: image] represent the active and reactive power limits of the branch [image: image], respectively, [image: image] represents the apparent power flowing through the branch.
Clearly, this constraint exhibits typical nonlinear non-convex characteristics, and solving it usually requires a considerable amount of time, with difficulty in guaranteeing optimality. This contradicts the requirement for load control to be fast and cost-effective. Therefore, this study considers introducing second-order cone relaxation to convexify the space of the aforementioned power flow constraints, and the results are as follows:
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Where:[image: image] and [image: image] represents the square of the current in branch [image: image] and the square of the voltage at node [image: image], respectively.
For each node, its controllable resources on the load side can be aggregated (Lu et al., 2020), presenting clear controllable boundaries and participating in the demand response bidding market. Therefore, in the specific load shedding control process, the load-side resources can be simplified and considered as upper and lower limit constraints on node load regulation.
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Where:[image: image] and [image: image] represent the pre-ELS reference active and reactive power at node [image: image], respectively, [image: image] and [image: image] represent the total winning bid and corresponding reactive power in demand response for the users located at node j, respectively.
Furthermore, it is necessary to consider the response of substation load control to the master station. However, since even with the complete removal of demand response resources at the substations, it may still be challenging to ensure that the load shedding amount meets the master station’s control requirements. Therefore, it is difficult to include it directly as a constraint in the optimization model. In this regard, the constraint for the minimum response requirement is relaxed and formulated as a soft constraint in the optimization objective. Additionally, considering that the cost of load control under demand response is determined through market clearing, and the importance of load is not considered at this stage, the optimization objective is formulated as follows:
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Where:[image: image] and [image: image] represent the substation demand response compensation cost and penalty cost for instruction response deviation, respectively, [image: image] represents the penalty cost coefficient for instruction response deviation should be chosen as a relatively large constant (considered as 10,000 in this study) to ensure the priority fulfillment of the master station control instruction [image: image], [image: image] represents the total number of nodes in the substation network, where node 0 is the connection point to the upper-level grid, [image: image] represents the negative value of the power supplied by the upper-level grid.
Clearly, in this scenario, when there are sufficient demand response resources at the substations to respond to the master station’s control instructions, the optimization results will prioritize achieving response effectiveness and subsequently minimize the load shedding control. However, when it is not possible to fulfill the master station’s control instructions with the available resources, the optimization results will attempt to utilize all demand response resources as much as possible. Later on, the subsequent partitioned load shedding control model will provide support to compensate for any response shortfall.
2.3 Fast load shedding control optimization method based on substation partitioning under low response time requirement
As mentioned above, when the load shedding optimization at the substation based on demand response cannot fully meet the master station’s load shedding instruction, the load shedding control process described in this section will be activated. In this section, after fully utilizing the continuous adjustable demand-side resources, the focus will shift to consider the operation of tie switches and node supply substation switches in the substation grid. At this point, the problem will exhibit typical characteristics of a mixed-integer programming problem, and solving it will face difficulties due to the large-scale integer variables, making it challenging to fully satisfy the load shedding control time requirement.
In practice, it is often unnecessary to optimize load shedding for all global switch variables, as the control benefits gained from optimizing the entire system may not significantly improve compared to optimizing specific local regions. However, the computational cost required for solving the optimization for all global variables will substantially increase. Therefore, for engineering implementation purposes, this study adopts a partitioned optimization approach for load shedding control at the substations, aiming to narrow down the optimization scope as much as possible and achieve rapid switch actions within a short time. Specifically, by partitioning, the original large-scale problem is approximated into multiple small-scale problems. Each problem focuses on a part of integer variables, resulting in a decrease in time complexity for the problem. The control logic is illustrated in the Figure 3. The upper level optimization optimizes the contact switch state and subarea load-shedding commands to achieve coordination of the lower-level subregions.
[image: Figure 3]FIGURE 3 | Fast load shedding control optimization method based on substation partitioning under low response time requirement.
2.3.1 Substation ELS global optimal control constraint model
After demand response, the controllable objects for ELS are all the controllable switches in the network. At this point, the network structure and the power supply to loads have changed, making it difficult to guarantee radial network constraints and power flow constraints. Therefore, in the optimal control at this stage, comprehensive considerations are necessary.
(1) Radial constraints in the distribution network
The current distribution network generally follows the principle of “closed-loop construction and open-loop operation” to ensure the effective operation of distribution network relay protection devices. Therefore, in reconstruction and other relevant optimization decisions after faults, the constraints of the radial network are usually crucial and cannot be ignored. Currently, many studies have focused on models related to commodity flow, but they have issues such as poor scalability and weak adaptability to large-scale networks. In contrast, the radial constraint method based on graph theory and maximum density has been proven to be a simpler and more general approach. Thus, this study adopts it as the radial network constraint model, and the expression is as follows:
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Where:[image: image] and [image: image] represent the set of internal nodes in the distribution network and the set of supply nodes from the upper-level grid have the number of elements as [image: image] and [image: image], respectively, [image: image] is binary variable that represents the connectivity status of branch [image: image] (0 for disconnected, 1 for connected), [image: image] and [image: image] represents the auxiliary variable, with a value greater than or equal to 0.
(2) Distribution network power flow constraints considering line transfers and load supply constraints
In the previous section, this study has already introduced the second-order cone relaxation results for distribution network power flow constraints, which are applicable only to modeling power flow in a deterministic topology and not suitable for scenarios involving dynamic line transfers and load shedding. Therefore, this study introduces integer variables to describe load transfers and load shedding constraints separately and establishes their correlation with radial network constraints. The expressions Eqs 11–13) are rewritten as Eqs 28–30), and expressions (Eqs 17, 18) are rewritten as (Eqs 31, 32). Additionally, expressions (Eqs 33, 34) are included to implement faulted line constraints and their correlation with radial constraints. The resulting power flow constraints are as follows:
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Where:[image: image] is binary variable which represents the connectivity control status of branch [image: image], where 0 indicates that branch [image: image] is disconnected (open), and 1 indicates that branch [image: image] is connected (closed), [image: image] is binary variable which represents the load shedding instruction for node j, where 0 indicates load shedding (cut-off), and 1 indicates no load shedding (not cut-off), [image: image] represents the set of branches with tie switches.
As can be seen, expression Eq. 30) is a significant logical constraint, which can be linearized as follows:
[image: image]
Where:[image: image] represents continuous auxiliary variable, [image: image] represents a very large constant.
(3) Optimization objective
Different from the load shedding step in demand response where controllable resources are limited, the constraints on the response to the main station control instructions can be relaxed and converted into penalty terms in the optimization objective. This step is the final stage of precise load shedding, and it must strictly satisfy the constraints of the main station control instructions. Therefore, at this stage, load shedding should minimize its impact while meeting the requirements of the control instructions. The corresponding constraints and objectives are shown below.
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2.3.2 Partitioning method for substation distribution network based on Gomory-Hu algorithm
As can be seen, to fully describe the network constraints and load shedding constraints in the distribution network, the load control model introduces a large number of integer variables. The overall optimization problem belongs to a complex mixed-integer problem, and its solution process will require a considerable amount of computation time, making it difficult to meet the requirements of load control speed. Therefore, this study considers partitioning the overall power grid, establishing an equivalent simplified network, determining the optimization results of the equivalent network, and then performing small-scale optimization control. One of the key aspects of partitioning is to ensure the consistency of distribution network constraints before and after partitioning. The distribution of tie switches should be an important basis for partitioning to avoid conflicts in radial network constraints between partitions. Please refer to the Figure 4 for more details.
[image: Figure 4]FIGURE 4 | Partitioning schematic diagram.
As can be seen in the schematic on the left side of the diagram, the partitioning includes branches with tie switches, and the equivalent simplified network with radial topology requires coordination of internal switches. This necessitates the design of an appropriate iterative method to achieve connectivity coordination. On the right side of the partitioning, there are no tie switches in the internal branches, so only ensuring the connectivity constraint of the optimized simplified network is required, making it an ideal partitioning method.
In practice, to achieve the ideal partitioning method mentioned above, the goal is to include tie switches in the cutting planes as much as possible. This problem can be transformed into a classic graph theory partitioning problem. Therefore, this study introduces the Gomory-Hu algorithm to achieve the ideal partitioning of the substation distribution network.
(1) Transformation of the minimum cut problem in an undirected weighted graph
First, transform the substation network into an undirected weighted graph [image: image], where [image: image] is the set of nodes, and [image: image] is the set of edges formed by branches. The weight of each edge can be set based on the presence or absence of tie switches; if there is a tie switch, the weight of the edge is set to 1, and if there is no tie switch, it is set to a large value (determined based on the network size, usually set to 100), as follows:
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Where:[image: image] and [image: image] represent the node [image: image] and node [image: image], respectively, [image: image] and [image: image] represent the edge between nodes [image: image] and [image: image] and their corresponding weight values.
Consequently, the partitioning of the power grid can be viewed as a division of the node set [image: image]. All nodes in graph [image: image] can be divided into two sets, denoted as [image: image] and [image: image]. If nodes [image: image] and [image: image] are involved, this partition is referred to as a cut concerning [image: image] and [image: image]. The edges [image: image] involved in this cut are known as cut edges, and the capacity of the cut is defined as the sum of all cut edges.
Based on this, the minimum cut for nodes [image: image] and [image: image] refers to the cut [image: image] with the smallest capacity. Therefore, solving the problem of the optimal partitioning of the power grid is equivalent to finding the minimum cut of graph [image: image]. Assuming that the power grid is divided into [image: image] disjoint sets [image: image], the minimum cut problem can be represented as follows:
[image: image]
As shown in the above equation, the computational complexity is [image: image], which becomes impractical when the number of network nodes or [image: image] is large. It is almost impossible to find the optimal solution through numerical simulations on a computer. Therefore, this study considers using the Gomory-Hu algorithm to solve the minimum cut problem and divide the power grid into different load shedding control regions.
(2) The Gomory-Hu algorithm
The Gomory-Hu algorithm is an effective method for solving graph partitioning problems, and it has the characteristic of providing the theoretically optimal solution.
The equivalent Gomory-Hu tree (G-H tree) of the graph is constructed by computing the maximum flow minimum cut problem [image: image] times (with a computational complexity of [image: image]). The G-H tree can represent the minimum cut value between any adjacent pair of nodes in an undirected weighted graph and preserves the complete structural information of the original graph, making it easier to map the partitioning results back to the original graph. The steps to construct the equivalent G-H tree are as follows:
1) Initialization: Set the iteration count as the set of regions formed after the partitioning graph [image: image]. Initially, [image: image];
2) Arbitrarily choose one partition to obtain a subregion [image: image], [image: image] from [image: image];
3) Arbitrarily select a pair of nodes [image: image] from the region [image: image];
4) Find the minimum cut between nodes [image: image] and [image: image], and divide [image: image] into two subregions [image: image] and [image: image]; (the complexity of this minimum cut problem is only [image: image]);
5) Translation: Add a new edge [image: image] between regions [image: image] and [image: image], and set its weight to be the capacity of the minimum cut;
6) Update the edge weights between the nodes in regions [image: image] and [image: image], as well as between the nodes and the regions:
[image: image]
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7) Update the set [image: image] to include the new regions [image: image] and [image: image].
8) If [image: image], go back to step 2); otherwise, proceed to step 9);
9) Obtain the equivalent Gomory-Hu tree [image: image], where [image: image], [image: image].
On the equivalent Gomory-Hu tree [image: image], each edge weight represents the minimum cut value between two nodes. Arrange the edge weights in ascending order and select edges with weights less than 100 as the basis for partitioning. Remove these selected edges to obtain the final partitioning result. Map the partitioning result back to the original graph [image: image] to obtain the optimal partitioning of the network.
2.3.3 Fast load shedding control optimization model based on substation partitioning
After completing the partitioning, the next step is to consider how to achieve simplified solutions to the above global optimization problem based on the partitioning. Taking the example of the diagram below, if the internal network structure within each partition is ignored (since the voltage drop in the distribution network sub-area is relatively small, ignoring the small-scale scope is in line with engineering requirements), the original 9-node distribution network topology can be simplified to a 3-node network.
At this point, the original global optimization problem can be approximately simplified into a two-level hierarchical problem. In the upper level, optimization is performed based on the obtained simplified network to determine the status of interconnecting switches and identify the subregions for load shedding tasks. Based on the upper-level optimization results, a precise-grained optimization of node load supply switches is conducted for the designated load shedding areas in the lower level. The optimization models for the upper and lower levels can be expressed as follows.
(1) Upper simplified model
In the upper simplified model, the control substations will optimize the partitioned equivalent network, and the discrete load-shedding commands are relaxed as continuous variables. In addition, the optimization objective is to minimize the impact of load shedding. And the importance of load shedding in each region is determined based on the average importance of unit load shedding within the region, as calculated by the following formula:
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Where:[image: image] represents the total load count in the equivalent node of region [image: image], [image: image] represents the average importance of the equivalent node load.
The overall optimization model can be listed as follows:
[image: image]
Where:[image: image] represents the equivalent network parameters.
The objective is set as the square of the load shedding impact to evenly distribute the load shedding instructions among the subregions as much as possible.
(2) Lower optimization model
At this point, the upper model publishes the obtained results to each subregion, and each subregion performs optimization control based on the received results. At this stage, the internal subregion no longer needs to consider the radial network constraints; it only needs to control the internal node supply switches to meet the control instructions from the upper layer. Here, the power of the corresponding branches is calculated based on the solution obtained from the upper layer model. The interconnection branches between region [image: image] and other regions are abstracted as source nodes, and a certain upward adjustment range (set as 1 in this study) is defined to meet the power balance requirements. The control response constraint can be expressed as follows:
[image: image]
Where:[image: image] represents the set of source nodes in region [image: image].
In summary, the model can be expressed as follows:
[image: image]
By now, the large-scale mixed-integer programming problem has been simplified into several small-scale mixed-integer programming problems within each subregion, significantly improving the overall efficiency of the solution. Taking Figure 5 as an example, the time complexity of the original problem is reduced from [image: image] to [image: image]. The time complexity of both the upper level problem and each lower level problem is [image: image]. It ensures the response to the main station’s instructions and effectively addresses the speed issues related to precise-grained optimization.
[image: Figure 5]FIGURE 5 | Schematic diagram of network topology simplification.
3 CASE STUDY
3.1 Case setup
To validate the effectiveness of the load shedding control algorithm proposed in this study, we selected the IEEE-33 standard test case as the substation network for testing and verification. The network structure of the test case is shown in Figure 6 and Table 1. In this case, the distribution network has controllable telecommunication equipment deployed on the branch with the following numbered set [image: image], and the power supply of each node is determined by the status of a controllable switch. As shown in the diagram below, the first-level load node set is [image: image], and the second-level load node set is [image: image]. The details of each line number and its associated nodes are shown in the table below (with impedance parameters as in the standard test case).
[image: Figure 6]FIGURE 6 | IEEE-33 topology.
TABLE 1 | Network line connection information.
[image: Table 1]Furthermore, the total load at each node in the substation network (normalized with a base voltage of 10 kV and a base capacity of 5.68 MW), the demand response adjustable amount, and their importance (calculated from the previous sections) can be summarized in the following Table 2.
TABLE 2 | Network line connection information.
[image: Table 2]Regarding the scenario settings, to verify the effectiveness of the proposed precise-grained ELS optimization method for different response time requirements, there are three emergency load control scenarios based on varying response time demands and main station load shedding instructions. The scenarios are as follows, with a time response gap threshold set at 5 s:
Scenario 1: The main station issues a control instruction to limit the substation’s power consumption to no more than 0.6 (per unit value) with a response time of 4 s.
Scenario 2: The main station issues a control instruction to limit the substation’s power consumption to no more than 0.6 (per unit value) with a response time of 6 s.
Scenario 3: The main station issues a control instruction to limit the substation’s power consumption to no more than 0.3 (per unit value) with a response time of 8 s.
All the examples in this chapter were simulated on a computer with an Intel(R) Core(TM) i7-7700 CPU, operating at a frequency of 3.60 GHz, and 8 GB of memory. The optimization problems were solved using the Gurobi solver in Python 3.7.
3.2 Simulation results and analysis of numerical examples
Scenario 1, 2, and 3 respectively represent the triggering of different load shedding control links in this project. The specific analysis is as follows.
3.2.1 Scenario 1 simulation result analysis
In scenario one, the response time requirement is 4 s, which is below the time response difference threshold. Therefore, the load shedding control enters the high time response control phase. In this case, the substation is also the executing station. It directly controls the normally closed switches for ELS control. The results are shown in Figure 7 and Figure 8.
[image: Figure 7]FIGURE 7 | Scenario 1 branch 12 contact switch action control result.
[image: Figure 8]FIGURE 8 | Scenario 1 branch 3 contact switch action control result.
In this control phase, the current power supply value from the upper-level grid is 0.6872 (the power injection at node 0, assuming it is obtained from the optimal power flow calculation with minimum line losses). In this control phase, the normally closed switch on branch 12 (between nodes 12 and 13) is opened, and the load at nodes 13 to 17 is shed, resulting in an overall load shedding of 0.0687. The load shedding action at this point is not sufficient to meet the main station’s load control instruction (0.6872–0.0687 > 0.6).
Therefore, the substation will make further decisions and open the interconnection switch at nodes 3 and 4 (branch 3–4), resulting in a total load shedding of 0.3724, which meets the main station’s control instruction requirement. The decision is then issued accordingly.
Overall, under high response time requirements, the decision-making time for fast load shedding actions can be negligible. The resulting unplanned load shedding impact on society is 0.065107 (obtained by multiplying the load shedding amount by its importance). It can be observed that load shedding actions in the distribution network under high time response requirements can effectively achieve load shedding in a short time and reliably execute main station instructions. However, there is a significant over-shedding in the control total, which will result in a certain impact on load control.
3.2.2 Scenario 2 simulation result analysis
In Scenario 2, the total load control from the main station is the same as in Scenario 1, but the response time requirement is 6 s, which is higher than the time response gap threshold. Therefore, the load control enters the low response time requirement phase based on demand response for substation ELS. At this time, the substation completes load shedding control by invoking demand response resources. The load values before and after load shedding for each node are shown in the Figure 9.
[image: Figure 9]FIGURE 9 | Adjustment results of demand response for each node in Scenario 2.
As seen, different nodes have been called to varying degrees in response to demand response resources. Nodes at the end of the power supply are prioritized for adjustment to reduce overall network losses, thereby compressing the total load shedding value under the load control command. The changes in upper-level power supply and user-side response before and after load shedding are further presented in Table 3. It is evident that the substation now closely adheres to the main station’s control instructions. Compared to Scenario 1, which exhibited significant over-shedding, the demand response resources are effectively utilized in this case, achieving precise load control with a solution time of 0.064 s, meeting the power grid’s load shedding response time requirements.
TABLE 3 | Result before and after control in Scenario 2.
[image: Table 3]3.2.3 Scenario 3 simulation result analysis

(1) Partition result
In this scenario, the main station’s response command is set to 0.3, which is lower than the adjustable capacity of the load-side demand response resources. Therefore, after fully utilizing the demand response resources, it will further enter the fast zone partition load shedding action stage. The connection relationships of the Gomory-Hu tree for the current substation network can be obtained through offline calculations, as shown in Table 4. The weight of branches with controllable tie switches is set to 1, while branches without controllable tie switches weight 100.
TABLE 4 | G-H tree connection relationships and weights.
[image: Table 4]Clearly, among the branches, the ones with weights lower than 100 are (1,0), (5,1), and (14,8). Resolving them visually, the partition is divided into 4 regions as follows:
1. Region 1: [image: image] 2. Region 2: [image: image] 3. Region 3: [image: image] 4. Region 4: [image: image]
After mapping it back to the original substation network, the specific partition is shown in the Figure 10 and Figure 11. The branches with controllable tie switches are all included in the cut set.
[image: Figure 10]FIGURE 10 | G-H characterization result.
[image: Figure 11]FIGURE 11 | Substation network partition result. (2) Analysis of load control execution based on demand response
Based on the obtained partitioning results, rapid load control is executed. At this point, since the load control response time requirement is greater than the threshold, it enters the demand response load control stage first. The results are shown in the Table 5 and Figure 12. It can be seen that the demand response resources are fully activated, but the response results do not meet the requirements of the main station control instructions. Therefore, it will further enter the rapid partitioning load control stage.
[image: Figure 12]FIGURE 12 | Adjustment results of demand response for each node in Scenario 3. (3) Analysis of load control execution based on fast partition action
TABLE 5 | Result before and after demand response control in Scenario 3.
[image: Table 5]Based on the results obtained from the load control response, the power grid status is updated, and the obtained results are fed into the optimization calculation of the upper simplified network. The equivalent simplified network, derived from the obtained partitioning results, is shown in Figure 13.
[image: Figure 13]FIGURE 13 | Equivalent simplified network topology.
By summing up the loads within each partition and considering each partition’s load as a continuous adjustable variable, we can obtain the model given in equations Eqs 32–34). With this, we complete the optimization calculation for the upper level. At this point, the upper-level problem needs to deal with integer variables for the status of the interlocking switches, with a total of 8 variables. The problem size is small, and the solution time is only 0.0788 s. The results are shown in Table 6 and Table 7.
TABLE 6 | Partition control upper layer contact switch branch results in Scenario 3.
[image: Table 6]TABLE 7 | Status before and after controlling each subregion in Scenario 3.
[image: Table 7]It can be observed that the upper-level optimization results distribute the load shedding branches as evenly as possible among the different regions, and the allocated results are consistent with the importance of each region’s load. Subregion 2 has low importance, and its control amount is the largest, which is 0.0101. On the other hand, Subregion 4 has the highest load importance, with a load shedding control amount of 0.0075, which is the smallest within the region. Subregion 3 has a load shedding instruction of 0.099.
After obtaining their respective control instructions, each region updates its network parameters and obtains the model Eqs 35–37) for solving independently. At this stage, the decision variables for each region are the states of the node supply switches, determining whether the load points are supplied or not. Compared to the global solution, the number of integer variables is greatly reduced. The load shedding results and solving time for each region are shown below.
Considering that the optimization of each subregion can be conducted in parallel, the overall optimization time for load control is the sum of the maximum computation time in the subregions and the solution time for the upper-level problem. It can be observed that the maximum optimization computation time for each subregion is 0.0598 s. When combined with the upper-level problem’s solution time of 0.0788 s, the overall computation time required is 0.1386 s. To demonstrate the necessity of subregion partitioning in this study, a comparison is made with the centralized optimization results without subregion partitioning. This refers to the optimization results obtained from the global optimal control model Eqs 14–27). The comparison between the optimization results of the centralized model and the subregion-based control model proposed in this study is shown in the Figure 14. The Tables 8, 9 illustrate the connection between upper-level instructions and lower-level decision outcomes. It shows the subregions’ accurate execution of the upper-level instructions.
[image: Figure 14]FIGURE 14 | Global optimal control model results. Fast partition optimal control model results.
TABLE 8 | Internal control actions in each subregion (subregion 1 as the upper-level grid injection node) in Scenario 3.
[image: Table 8]TABLE 9 | Internal control actions in each subregion (subregion 1 as the upper-level grid injection node) in Scenario 3.
[image: Table 9]As observed, the subregion-based control optimization exhibits some degree of over-shedding. However, the overall over-shedding is not significant and primarily occurs in less critical load nodes. Meanwhile, the corresponding computational time has significantly improved. The time it takes to solve the problem after partitioning is only 1/38th of the global control. This meets the requirement for rapid load shedding control effectively.
4 CONCLUSION
To achieve precise-grained ELS control in extreme events and ensure the safety, stability, and economy of the power system, avoiding excessive over-shedding which increases control costs, as well as issues related to unstable limits in under-shedding, overloaded tie lines, and bus voltage problems, this study focuses on effectively utilizing the adjustable capacity of distributed resources and formulating precise load shedding control strategies to achieve a balance between economic and safety objectives. In this section, the specific work of this study is as follows:
(1) A precise ELS approach for distributed networks considering response time requirements is proposed. For the differences in control instruction response time requirements, this study devised a fast load shedding control method based on the weight method for high response time requirements, and an optimal load shedding control method considering demand response and controllable switches for low response time requirements. Under high response time requirements, the main station’s instructions are rapidly responded to by controlling the tie-line switches simply and quickly. Under low response time requirements, the demand response resources are fully utilized for load shedding control, and for the portion exceeding the demand response adjustability, a hierarchical and partitioned control method is employed to achieve rapid response to the main station’s instructions.
(2) Through validation with standard test cases, the proposed method in this study effectively utilizes response time and demand-side resources, achieving fast ELS with lower precision under high response time requirements, and appropriate ELS with higher precision under low response time requirements for the distribution network.
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The increasing growth in installed capacity for renewable energy sources has progressively replaced traditional thermal power units as synchronous power contributors. This transition has led to a reduction in system inertia and resources for frequency regulation, creating a need for renewable energy and energy storage to participate in system frequency modulation. Empirical studies indicate that the current market mechanism for frequency modulation auxiliary services, which predominantly rely on thermal power, is suboptimal for leveraging the unique capabilities of diverse frequency modulation resources. This inadequacy hinders the power industry’s pursuit of the “dual carbon” goals—carbon neutrality and carbon peak. Hence, this paper proposes a joint clearing model for the involvement of renewable energy and energy storage in the frequency modulation auxiliary service market. It considers performance differences and employs the Analytic hierarchy process (AHP) to guide the optimization of the weights of frequency modulation performance indicators for various frequency modulation resources. This approach allows renewable energy, energy storage, and thermal power to maximize the benefits of their own differentiated advantages in various frequency modulation performance indicators. Consequently, this fosters an increased share of renewable energy within the system while ensuring frequency stability, thereby expediting the achievement of the power industry’s “dual carbon” goals. Finally, computational analyses substantiate that the proposed joint clearing model, accounting for performance differentials, can enhance the renewable energy share in the system and simultaneously reduce the societal costs associated with frequency modulation services.
Keywords: renewable energy frequency modulation, energy storage frequency modulation, frequency modulation performance indicators, frequency modulation auxiliary services, AHP—analytic hierarchy process
1 INTRODUCTION
The development of the electricity market in China, particularly in the area of ancillary services, has been relatively nascent compared to its Western counterparts, such as the United States and Northern Europe, where the frequency modulation ancillary service market has seen matured more rapidly (PJM manual energy & ancillary services market operations, 2017). Currently, China predominantly operates under a “dual-detailed rules” system for frequency modulation services (Santos et al., 2021). However, this framework suffers from inefficiencies, including an incomplete service price compensation mechanism and an inequitable cost distribution. The market’s inherent ability to efficiently allocate resources through supply-demand dynamics has led to the emergence of the frequency modulation ancillary service market as a timely necessity. In the current market structure, synchronous machines serve as the principal providers of frequency modulation services. As the share of renewable energy sources continues to grow, renewable energy and energy storage systems are poised to play a more significant role in frequency modulation (Peng et al., 2019). Unlike traditional thermal power units, these emerging resources offer advantages such as reduced start-up times and faster frequency adjustments (Hu et al., 2019). Nevertheless, the current market design, which relies heavily on the dominant role of thermal power units in frequency modulation, fails to capitalize on the unique attributes of renewable energy and energy storage systems (Liao and Dai, 2005). Consequently, there is an imperative need to reevaluate the market mechanisms. Future research in the electricity market must focus on accounting for the performance differentials among traditional thermal units, renewable energy, and energy storage systems. This involves developing nuanced bidding mechanisms and clearing strategies that can fully leverage the distinct characteristics of diverse frequency modulation resources, thereby promoting a more synergistic approach to system frequency modulation tasks (Yuan and Xi, 2020).
The inherent intermittency and unpredictability of renewable energy generation, as seen in wind and photovoltaic power systems, presents unique challenges for grid stability. Initially, these energy sources operate solely in maximum power tracking mode, refraining from participating in system frequency modulation (Iliana and Torjus, et al., 2014). However, as their scale expands, there is an imperative growing for these renewable sources to assume the roles previously held by synchronous generators within the power grid. Consequently, integrating renewable energy into the frequency modulation ancillary services market is becoming an undeniable trend. European initiatives have already begun incorporating wind and photovoltaic power into frequency modulation services (Meeus et al., 2005).
Traditionally, renewable energy systems have operated in maximum power tracking mode, lacking the capability for frequency modulation. Existing literature (De Paola et al., 2017) developed a demand model for frequency modulation within the ancillary service market and introduced a novel distributed control scheme, accompanied by an iterative control algorithm, to optimize customer satisfaction while minimizing energy costs. However, this model does not take into account the incorporation of a large number of new energy units, which is one-sided and does not adapt to the existing new energy grid connection situation. For wind farms, adjustments such as rotor over speeding or blade pitch angle control are requisite to participate in frequency modulation effectively (Cui et al., 2016). Similarly, photovoltaic systems must transition from maximum power tracking to incorporate frequency modulation capabilities, which can be achieved through load shedding or DC capacitance controls (Zhao et al., 2020). Energy storage systems, characterized by their flexible charging and discharging capabilities and rapid response times (Zhong et al., 2006), are also well-suited for frequency modulation tasks. In the broader context of the power market, the energy market and the frequency modulation ancillary services market have traditionally operated as separate entities. However, empirical studies (Csereklyei et al., 2019) have demonstrated that joint market clearing can yield optimized comprehensive interests, reducing overall electricity costs and enhancing societal welfare. Therefore, integrating renewable energy and energy storage systems into a unified frequency modulation ancillary service market is feasible and economically advantageous. But at present, the existing research is only limited to taking new energy units into the joint market, ignoring the evaluation of a series of their performance, and can not guarantee the fairness of the market.
In the existing regulatory framework for frequency modulation ancillary services in China, unit quotations are typically revised based on historical performance metrics, which subsequently lead to a hierarchical sorting of the units according to these revised quotations. Although this approach effectively incentivizes superior frequency modulation performance among thermal power plants, it falls short in harmonizing the interplay between thermal power, renewable energy, and energy storage systems. Hence, this paper introduces a comprehensive joint clearing model for frequency modulation ancillary services to address this limitation. This model allows for the participation of thermal power, renewable energy, and energy storage systems in the grid while considering the distinct frequency modulation performance attributes of each type of power plant. Utilizing the Analytic Hierarchy Process (AHP) (Deng, 2019), the model assigns weights to frequency modulation performance indicators across various types of frequency modulation plants. This methodological innovation enables the maximization of the unique advantages inherent in each type of frequency modulation plant, ultimately fostering a more coordinated and efficient approach to system-wide frequency modulation tasks. Compared with the traditional joint market clearing model, this model can make the power system obtain more superior frequency modulation performance, ensure the stability of the power system and better power quality on the basis of ensuring the economy.
2 THE JOINT CLEARING MODEL OF ELECTRICITY MARKET AND ANCILLARY SERVICE MARKET
2.1 Objective function
Given the multifaceted participation of wind power, photovoltaic power generation, thermal power, and energy storage systems in both of the ancillary service market and the broader energy market, this study develops a joint clearing optimization model. The total social electricity cost encompasses various components, including the energy market quotation, primary frequency modulation quotation, and secondary frequency modulation quotation.
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where [image: image] offers total time period, [image: image] offers number of units, [image: image] offers price of the producer in the energy market in hour t, [image: image] indicates the price of a participant in the reserve market in hour t, [image: image] denotes frequency modulation mileage quotation in the primary frequency modulation market in hour t, [image: image] represents capacity price in the secondary frequency modulation market in hour t, and [image: image] signifies frequency modulation mileage quotation in the secondary frequency modulation market in hour t. In addition, [image: image] symbolizes the bid power of producer in the energy market in hour t, [image: image] defines the bid capacity of producer in the reserve market in hour t, and [image: image] represents bid capacity of the producer in the secondary frequency modulation in hour t. Finally, [image: image] and [image: image] are power plant comprehensive frequency modulation performance index parameters.
2.2 Constraints
The premise of safe system operating frequency lies in the necessity for a balance between the electric energy supply and demand. Therefore, the clearing results must adhere the power balance constraints as follows:
[image: image]
where [image: image] represents system load forecast value in hour t, [image: image] indicates bid power of thermal power unit i the in the energy market in hour t, [image: image] signifies bid power of wind farm unit i the in the energy market in hour t, and [image: image] denotes bid power of photovoltaic unit i in the energy market in hour t, [image: image] symbolizes charging power of energy storage in hour t, and [image: image] defines discharging power of energy storage in hour t.
Conventional unit operation constraints include output upper and lower limit constraints, climbing constraints, and minimum start and stop time constraints:
[image: image]
where [image: image] indicates the on-off state of the unit i at time t, [image: image]/[image: image] indicates the maximum/minimum output power of unit i, [image: image]/[image: image] represents the upward/downward ramping capability of unit i, [image: image] denotes the continuous operation time of unit i to time t-1, [image: image]/[image: image] represents the minimum start/stop time of unit i, and [image: image] defines the continuous outage time of the out-of-service unit i to time t-1.
Frequency modulation capacity constraints of thermal power units are as follows:
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The load-shedding rate of wind power involved in frequency modulation complies with the reserved maximum load-shedding rate requirements.
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where [image: image] represents the maximum load-shedding rate reserved for wind farms. Wind farm frequency modulation capacity constraints are as follows:
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where [image: image] is the predicted available output power of wind in hour t.
The quotation limit for wind farms in the electricity market is given below.
[image: image]
Operational constraints on photovoltaic participation in the electricity market can be presented below.
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Constraints on energy storage participation in electricity market and ancillary services market bidding are:
[image: image]
where [image: image] indicates bid power of energy storage in the energy market in hour t, and [image: image]/[image: image] denotes the charging/discharging power of energy storage in hour t.
Operational constraints of energy storage:
[image: image]
where [image: image]/[image: image] indicates the charging efficiency of energy storage, and [image: image]/[image: image] represents the binary variable of charging/discharging status.
System backup constraints:
[image: image]
where [image: image] indicates the capacity of thermal power unit in hour t, [image: image] indicates the lower standby capacity provided by thermal power units in hour t, [image: image] represent the prediction error value of new energy units in hour t, [image: image] represent the required value of the standby power of the system in hour t, [image: image] represent the required value of the standby power of the system in hour t.
3 OPTIMIZATION OF FREQUENCY MODULATION PERFORMANCE INDICATOR WEIGHTS FOR DIFFERENT FREQUENCY MODULATION RESOURCES CONSIDERING PERFORMANCE DIFFERENCES
The frequency modulation ancillary service market is typically structured and cleared through a multi-faceted evaluation framework considering variables, including frequency modulation demand, quotations submitted by service providers, and historical frequency modulation performance metrics. The primary objective of this market mechanism is to minimize the procurement cost associated with frequency modulation services. To assess the capabilities of power plants in providing frequency modulation, a historical frequency modulation performance index is employed, which serves as a quantifiable metric calculated based on a power plant’s past contributions to frequency modulation and acts as a quality assessment tool that gauges the efficacy of a given power plant’s frequency modulation capabilities. Subsequently, this index adjusts the initial quotations submitted by each frequency modulation service provider, thereby establishing a prioritized queue for market clearing.
3.1 Calculation of frequency modulation performance indicators
Historical frequency modulation performance indicators are pivotal metrics for evaluating the service quality of frequency modulation service providers. These indicators directly influence on the clearing eligibility of each service provider, thereby shaping the revenue streams of individual suppliers (Li, 2014). Generally, the composite frequency modulation performance index comprises three constituent components as follows: the adjustment rate, the adjustment deviation, and the response time.
The computational methodology for deriving these performance indices is expressed in Eqs. 15–17.
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where [image: image] represents the extent to which the adjustment rate of resource i during its jth adjustment process compares to the standard adjustment rate it is expected to achieve, [image: image] indicates the degree of actual adjustment deviation compared with the allowed deviation amount during the jth adjustment process of adjustment resource i, and [image: image] denotes the degree to which the actual response time of the jth adjustment process of resource i compared with the standard response time. Moreover, [image: image] symbolizes the adjustment rate of the jth adjustment process of frequency modulation resource i, [image: image] signifies the standard modulation rate, [image: image] represents the actual response power of the jth adjustment of resource i, and [image: image] indicates the adjustment command demand response amount. Finally, [image: image] and [image: image] are the response time of the jth adjustment of resource i, and standard response time, respectively.
The comprehensive frequency modulation performance index [image: image] after normalization is shown in (Eq. 18).
[image: image]
As derived for each power plant, the synthesized frequency modulation performance index serves as a mechanism for revising the plant’s initial bid quotation. This revised bid price is subsequently integrated into a unified sorting algorithm, forming the basis for organizing the market clearing process.
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where [image: image] represents the power plant initial quotation, [image: image] denotes the power plant frequency modulation quotation for clearing sorting after correction of frequency modulation performance indicators, and [image: image] indicates historical frequency modulation performance index adjustment value.
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where [image: image] indicates the minimum market access indicator, and [image: image] denotes the maximum performance index.
3.2 Performance index weight optimization considering the difference infrequency modulation performance of different types of power plants
The prevailing methodologies for calculating frequency modulation indices across diverse types of frequency modulation power plants have conventionally assigned equal weights to the adjustment rate, adjustment deviation, and response time indicators. However, this uniform weighting scheme falls short of adequately capturing the unique advantages inherent to different categories of frequency modulation power plants. For instance, renewable energy and energy storage systems exhibit markedly shorter frequency modulation response times compared to traditional thermal power units. This characteristic is of paramount importance for maintaining frequency stability, especially in systems with reduced synchronous inertia. Unlikely, this intrinsic advantage is not sufficiently leveraged in the current competitive market landscape. To address this shortcoming, this study introduces an index weight optimization methodology that considers the performance differentials among various types of power plants. This approach aims to provide a more accurate representation of the distinct advantages in frequency modulation capabilities across different categories of power plants, ultimately promoting a more equitable and efficient market mechanism.
The AHP is a robust quantitative tool that converts perceptual judgments into evaluative metrics. By scrutinizing the interrelationships among various indicators within the system under assessment, AHP facilitates the determination of the relative importance of elements at a given hierarchical level with respect to the established criteria at a higher level. This method constructs a judgment matrix using a comparative analysis of these characteristics, thereby providing a structured framework for multi-criteria decision-making (U-Dominic et al., 2021).
The judgment matrix A is shown in (Eq. 22).
[image: image]
The element in the judgment matrix represents the importance of indicator i compared with indicator j, as shown in Table 1.
TABLE 1 | Meaning of scale in AHP.
[image: Table 1]All elements in the judgment matrix satisfy the two following points.
1) The diagonal elements are all 1, that is, [image: image];
2) All elements that are symmetrical along the main diagonal are the same, that is, [image: image];
To avoid contradictions in the judgment matrix constructed from experiential data, it must undergo a consistency test before practical application. The initially constructed matrix can be used as a judgment matrix only after successfully passing the consistency test.
The initial weight distribution for the adjustment rate, adjustment deviation, and response time index weights within the frequency modulation performance indicators is presented in Table 2.
TABLE 2 | Initial weight configuration.
[image: Table 2]The first-level judgment matrix is derived by considering the proportion of the frequency modulation capacity of each type of unit within the total system’s frequency modulation capacity. According to the differences in frequency modulation performance across different types of power plants, the secondary judgment matrix for modulation rates, modulation deviations and response time indicators of different types of power plants is established based on the frequency modulation performance. Specifically, energy storage units exhibit a shorter adjustment response time compared to conventional and renewable energy units. Renewable energy units have significantly lower requirements for absorbing task adjustment deviations and are lower than other units to avoid high frequency modulation performance indicators that will cause renewable energy to lose the scalar.
Following the consistency test, the weights of the frequency modulation performance indicators for renewable energy, energy storage, and thermal power units, considering performance differences, are shown in Table 3 below.
TABLE 3 | Post-optimized weight configuration.
[image: Table 3]The weighting coefficients for each frequency modulation index concerning various types of generating units are computed utilizing the AHP. In practical applications, operators within the ancillary service market can flexibly allocate these weight values to adjustment rates, adjustment deviations, and response time indicators based on the real-time operational conditions of the respective units. This nuanced approach ensures cost-effective and operationally efficient execution of the system’s frequency modulation tasks.
4 EXAMPLE
The case study comprises ten thermal power units, two wind farms, one photovoltaic power station, and four independent energy storage devices. Detailed parameter settings can be found in Tables 5–7, while the load curve and renewable energy output curve are illustrated in Figure 1.
[image: Figure 1]FIGURE 1 | Load forecasting curve and new energy out put curve.
According to China’s regulations on the frequency limit of power systems, the frequency fluctuation range is ±0.2 Hz. The parameters of the thermal power units are shown in Table 4.
TABLE 4 | Parameters of thermal power unit.
[image: Table 4]The parameters of the wind farms and photovoltaic power stations are shown in Table 5.
TABLE 5 | Parameters of wind farm and photovoltaic power station.
[image: Table 5]The parameters of the independent energy storage devices are listed in Table 6.
TABLE 6 | Parameters of independent energy storage device.
[image: Table 6]4.1 The influence of renewable energy penetration rate on the clearing result of frequency modulation market
With the construction of new power systems, the penetration rate of new energy has been increasing. The following two scenarios are set for analysis to verify the model’s applicability for different new energy penetration rates.
Scenario 1: New energy permeability and low penetration scenario: wind power capacity installed at 150MW, along with photovoltaic capacity at150 MW.
Scenario 2: New energy permeability and high penetration scenario: wind power capacity installed at 200MWand photovoltaic capacity at 200 MW.
In the above two new energy penetration scenarios, the model conducts joint clearance procedures. The clearance results under low permeability of new energy are shown in Figure 2, while Figure 3 illustrates the clearance results under high permeability of new energy.
[image: Figure 2]FIGURE 2 | Bid capacity of low permeability (A) power market bidding results, (B) primary frequency modulation market up-modulation bid capacity, (C) primary frequency modulation market low-modulation bid capacity, (D) secondary frequency modulation market up-modulation bid capacity, (E) secondary frequency modulation market low-modulation bid capacity.
[image: Figure 3]FIGURE 3 | Bid capacity of high permeability (A) power market bidding results, (B) primary frequency modulation market up-modulation bid capacity, (C) primary frequency modulation market low-modulation bid capacity, (D) secondary frequency modulation market up-modulation bid capacity, (E) secondary frequency modulation market low-modulation bid capacity.
As seen in Figure 2, the system fluctuation is small in the scenario of low penetration of new energy, and the frequency modulation demand is relatively small. Thus, the total revenue of the frequency modulation service provider is also small. At this time, thermal power units contribute significantly to the energy and frequency modulation market. Due to the consistent total load demand, the quotation of new energy in the electricity energy market remains relatively low. However, as the penetration rate of new energy increases, the bid capacity of new energy rises, leading to an overall decrease in revenue of the electricity energy market. The joint market income under the penetration scenario of the two new energy sources is listed in Table 7.
TABLE 7 | The influence of renewable energy penetration rate change on market income.
[image: Table 7]As shown in Table 7, the overall market revenue increases after the proportion of new energy rises, with a significant boost in revenue from the frequency modulation market. The introduction of a high proportion of new energy contributes more frequency modulation reserve capacity to the power system, consequently reducing the frequency modulation contribution rate of conventional thermal power units.
4.2 The influence of independent energy storage devices on the clearing results of frequency modulation market
The frequency modulation contribution after energy storage participation is shown in Figures 4, 5.
[image: Figure 4]FIGURE 4 | Up-modulation contribution rate.
[image: Figure 5]FIGURE 5 | Low-modulation contribution rate.
Compared to the electricity energy market, energy storage plays a more significant role in the frequency modulation auxiliary service market, which has an unparalleled advantage in the frequency modulation market due to the higher adjustment accuracy and faster response time of the energy storage device. The winning result shows that other units win the bid successively after the scalar in the energy storage reaches the technical boundary of its operation. Therefore, the extra energy storage relieves the frequency modulation pressure of conventional units, in which conventional units can have more ability to bid in the energy market. In addition, comparing the bid capacity of the frequency modulation market before and after introducing energy storage reveals that due to the increase in the output of photovoltaic power stations at noon, a higher proportion of photovoltaic power stations participate in primary frequency modulation at this time compared to wind farms. With the introduction of the energy storage device, more photovoltaic power plant output in the larger period of photovoltaic output is used for the frequency modulation.
To investigate the impact of energy storage on the stability of the system’s operating frequency, the maximum power disturbance is applied to the simulation of the system under two conditions: with or without energy storage. Then, the maximum frequency deviation is calculated. The results are shown in Figure 6.
[image: Figure 6]FIGURE 6 | Changes of frequency stable before and after energy storage’s participation.
Figure 6 illustrates that the operating frequency of the energy storage system remains within the safety limit, indicating that the system frequency is very safe. The analysis of the maximum frequency deviation of the system before and after adding energy storage shows a reduction in the maximum frequency deviation of the system after the configuration of energy storage compared with that without energy storage. Furthermore, energy storage effectively improves the frequency security of the system operation. In addition, the participation of energy storage devices makes more thermal power units with low declared frequency modulation capacity and relatively poor frequency modulation performance bid compared with the participation of energy storage in the frequency modulation market. Thus, the overall share of wind power in the frequency modulation market has been reduced, making wind power more capable of participating in the electricity energy market and enhancing the absorption of wind power. The FM market settlement price has changed as shown in Figure 7.
[image: Figure 7]FIGURE 7 | Changes of cost of FM before and after energy storage’s participation.
Table 8 compares the total costs with and without energy storage participating in primary frequency modulation. The total cost of primary frequency modulation with energy storage is generally lower than without energy storage because energy storage devices replace thermal power units to perform frequency modulation tasks during periods of high-frequency modulation demand, thereby reducing the total cost. Table 8 shows the revenue from the electricity market and frequency modulation ancillary services for energy storage devices under the two participation scenarios.
TABLE 8 | Market revenue comparison before and after energy storage participation.
[image: Table 8]As seen in Table 8, energy storage can benefit from the energy market and the frequency modulation market to improve its earnings with excellent charge and discharge performance, which can increase the enthusiasm of energy storage to participate in the energy and auxiliary services markets, thereby improving the flexibility of system operation to enhance the frequency safety of system operation.
4.3 Frequency modulation performance index weight modification considering unit performance difference
Considering the difference infrequency modulation performance between new energy, energy storage, and conventional units, the weights of frequency modulation performance indicators of various frequency modulation resources are corrected. Therefore, different frequency modulation resources can better play their own performance advantages. The winning result of the frequency modulation market after the index weight correction is shown in Figure 8.
[image: Figure 8]FIGURE 8 | First FM market bid capacity after AHP.
As shown in Figure 8, when considering the difference in frequency modulation performance of different frequency modulation resources, the clearance results show a significant decrease in the frequency modulation bid-winning capacity of thermal power units from 0:00 to 8:30. The reason is that the frequency modulation performance of this part of the thermal power unit is poor. Figure 9 displays the up-down contribution of different frequency modulation resources before and after considering the difference in frequency modulation performance. Meanwhile, the winning capacity of up-down frequency modulation is shown in Figure 10.
[image: Figure 9]FIGURE 9 | Contribution rate of (A) up modulation and (B) low modulation of modulation before and after AHP.
[image: Figure 10]FIGURE 10 | Bid capacity of (A) up modulation and (B) low modulation of modulation before and after AHP.
As can be seen, the frequency modulation capacity and contribution of new energy and energy storage are significantly improved by considering the performance differences. This enhancement is precisely attributed to the ability of the proposed method to purchase more frequency modulation resources with good performance and make them undertake more frequency modulation tasks, improving the overall frequency modulation performance of the system’s frequency modulation resources and the frequency security of the system.
The price of the frequency modulation market before and after considering the difference in frequency modulation performance of various frequency modulation resources is shown in Figure 11. Additionally, the final settlement cost of the frequency modulation market can be found in Table 9.
[image: Figure 11]FIGURE 11 | Changes of settlement price before and after AHP.
TABLE 9 | Purchasing tariffs of the HIES.
[image: Table 9]As can be seen in the figure and table, considering the variations in frequency modulation performance of different frequency modulation resources results in a reduction in the total frequency modulation cost of the system.
Incorporating the difference in frequency modulation performance of various frequency modulation resources, the clearing model leads to a minor reduction in the bid capacity of conventional thermal power units in the primary frequency modulation market while slightly increasing the bid capacity of new energy and energy storage. This is due to considering both the load-shedding constraint of wind power and the improved frequency modulation performance of the modified independent energy storage device. Consequently, the lower frequency modulation scalar of wind power and the medium scalar of independent energy storage have been significantly improved. Furthermore, the fluctuation amplitude of the State of charge (SOC) in energy storage is reduced compared with the frequency before, which is conducive to enhancing the service life of the energy storage, thus further decreasing the frequency modulation cost of the system.
The clearing model, considering the difference infrequency modulation performance of diverse frequency modulation resources, reveals that the clearing sorting order changes due to the change of frequency modulation performance index for the secondary frequency modulation market. Within the existing rules, thermal power units struggle to prioritize winning bids and complete clearance, whereas new energy units can achieve complete clearance of frequency modulation capacity. This is because new energy and energy storage are adjusted faster than thermal power units. However, it is worth noting that the frequency modulation accuracy of new energy is poor. In light of the difference infrequency modulation performance among various frequency modulation resources, thermal power units can basically achieve full clearance of bid capacity in each period. In contrast with primary frequency modulation, secondary frequency modulation should pay more attention to the precision and accuracy of frequency regulation. Therefore, the weight of the adjustment accuracy part is further increased compared with the primary frequency modulation market when the AHP judgment matrix is written in the clearing model column considering the difference in frequency modulation performance of various frequency modulation resources. Thus, the comprehensive frequency modulation performance index can better reflect the frequency modulation accuracy performance of each unit.
The clearing model, considering the difference infrequency modulation performance among different frequency modulation resources, demonstrates that there are no significant changes in the overall clearing result for the electricity energy market. The majority of capacity storage is involved in frequency modulation auxiliary services. Additionally, the charging behavior of energy storage devices in the main energy market has increased relative to discharging. This allows the storage device to charge and apply the power profitably to the frequency modulation market when the main energy market has more energy than required.
5 CONCLUSION
The development of China’s auxiliary service power market is still in its infancy, and various rules and systems are gradually being improved. According to the existing frequency modulation auxiliary service market rules in China, this paper proposed a joint clearing model of new energy and the participation of energy storage in frequency modulation auxiliary service market considering performance differences. The following conclusions are drawn:
1) The integration of new energy and energy storage enriches the frequency modulation resources of the power system. Thus, the power system has more adjustment flexibility in dealing with the new energy with strong uncertainty. Moreover, this integration can alleviate the tight supply and demand of frequency modulation resources in the power system, leading to a reduction in the overall frequency modulation costs for the system.
2) Integrating energy storage with superior regulatory performance can optimize the overall frequency modulation capability of the system and alleviate the frequency modulation burden on thermal power units with less efficient performance. Participating in both the energy market and auxiliary service market simultaneously can boost the revenue of independent energy storage, thus improving the enthusiasm of energy storage to participate in system scheduling.
3) The comprehensive frequency modulation performance index quantifies the frequency modulation capabilities of each power unit type. AHP adjusts the weight of the three indicators, namely, adjustment speed, adjustment precision, and response time, according to the frequency modulation characteristics of different power unit types, which is conducive to giving full play to the characteristics of different frequency modulation resources to serve the system better and enhance the frequency security of the new power system.
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The widespread application of electric vehicles (EVs) is a positive force driving green development. However, their widespread penetration also poses significant challenges and threats to the security and stable operation of the power grid. To address this urgent issue, this article constructs a bi-level optimal dispatching model fostering collaboration between electric vehicle aggregators and the distribution network. The upper-level optimization targets the minimization of peak-valley differences in the distribution network via considerably arranging power outputs of gas turbines, while the lower-level one focuses on reducing the charging expense of EV aggregators via efficient charging transfer. Note that the charging expense is not only composed of electric cost but also a dynamic carbon emission factor-based cost, which contributes to the electricity economy and carbon reduction concurrently. A geometric mean optimizer (GMO) is introduced to solve the mode. Its efficiency is evaluated against three typical algorithms, i.e., genetic algorithm, great-wall construction algorithm, and optimization algorithm based on an extended IEEE 33-bus system with different charging behaviors of EVs on both a typical weekday and weekend. Simulation results demonstrate that the GMO outperforms other competitive algorithms in accuracy and stability. The peak-valley difference between the distribution network and the total cost of EV aggregators can be decreased by over 98% and 76%, respectively.
Keywords: distribution network, economic dispatching, electric vehicle, geometric mean optimizer, dynamic carbon emission factor
1 INTRODUCTION
With the increasingly prominent issue of climate change, reducing carbon emissions has become the common goal of the international community (Hu and Man, 2023). The power industry is widely regarded as one of the key areas to reducing carbon footprint because of its important position in global carbon emissions (Xu et al., 2020a). Meanwhile, the rapid popularization of electric vehicles (EVs) is considered to be a powerful means to reduce road traffic carbon emissions and improve urban air quality (Tan et al., 2023). However, large-scale electric vehicles connected to the power grid for disorderly charging will bring problems such as the increase in power loss (Manzolli et al., 2022), the decline of power quality, and the difficulty of optimal control of power grid operation (Xu et al., 2020b).
To address these tricky problems, extensive studies have been undertaken regarding vehicle-to-grid (V2G) in the past few years, which can be classified into two aspects, i.e., economic optimization (Ahmadpour et al., 2022) and safety enhancement (Sperstad et al., 2020). For instance, reference (Gan et al., 2020) proposed a probabilistic evaluation method to investigate household EVs’ dispatching potential when considering users’ multiple h2h travel needs, which gave a significant foundation for EVs to participate in power grid regulation. Literature (Chen et al., 2017) constructed an EV aggregation model to participate in auxiliary services to achieve effective scheduling management and improve the economy of the system. Literature (Long et al., 2021) presented an ordinal optimization-based real-time scheduling method for large-scale EV charging stations, which reduced 6% of operation cost. In reference (Liu et al., 2019), a two-stage economic charging framework for EV aggregators was developed. Reference (Manzolli et al., 2022) developed a charging schedule optimization model of battery electric buses considering the aging of the batteries, which pointed out that the charging cost is expected to reduce by 38% in 2030. Besides, extensive studies focused on the time-of-use (ToU) electricity price mechanism-guided charging schedule (Manzolli et al., 2022; Yan et al., 2021). References (Mathioudaki et al., 2021; Ghosh and Aggarwal, 2018) designed a price-based service menu for EV charging to maximize profits. A deep reinforcement learning based approach was constructed to address optimal charging scheduling under uncertain electric prices (Wan et al., 2019). Li Z. et al. (2023) established a price-based transfer model to avoid charging congestion.
Nevertheless, the above-mentioned studies mainly concentrated on economic scheduling, which unfortunately ignored the effects of carbon emission. Recently, calls have come for carbon assessment to reflect the nature of the grid generation mix via dynamic approaches (Khan et al., 2018). The research on the carbon reduction of electric vehicle cooperative power grid dispatch has gradually emerged (Wu et al., 2023). Daneshzand et al. (2023) developed a scheduling framework for EVs and assessed the power grid carbon emissions under various tariff designs and multiple vehicle adoption levels. In Wang et al. (2023), the park EV agent participates in the carbon market by selling carbon emission allowances to increase profits. In Zhang G. et al. (2023), source-load coordinated carbon reduction based bi-layer economic scheduling models were established when EVs were considered as controllable loads and mobile energy storage. However, these current studies only calculated the total carbon emission on the source side. The real-time carbon emission on the load side was ignored, which resulted in an unideal emission reduction on EVs.
In this context, this paper proposes a dynamic carbon emission-factor-based bi-level optimal dispatching of the distribution network considering friendly interaction with electric vehicles. Its main contributions are summarized as follows:
➢ A bi-level friendly interaction model between the EV aggregator and distribution network is established, upon which the upper-level optimization attempts to reduce the peak-valley difference of the distribution network and the lower-level one aims to minimize the operation cost of the EV aggregator;
➢ Dynamic carbon emission-factor-based emission cost is combined with electric cost to guide the charging behaviors of EV aggregator effectively, thus reducing combined charging cost;
➢ A novel meta-heuristic algorithm, namely, geometric mean optimizer (GMO) (Rezaei et al., 2023), is induced to solve the upper-level model, while three typical competitive algorithms are used to validate the outperformance of GMO under an extended IEEE 33-bus system, i.e., genetic algorithm (GA), great-wall construction algorithm (GWCA), optimization algorithm (WOA).
The rest of this paper is organized as follows: Section 2 models the distribution network; Bi-level optimization framework is introduced in Section 3; Two case studies are executed in Section 4; Section 5 summarizes this paper.
2 MODELING OF DISTRIBUTION NETWORK
A common distribution network with different distributed power sources and loads can be depicted in Figure 1, which includes power flow and carbon emission flow.
[image: Figure 1]FIGURE 1 | A common distribution network with power and carbon emission flows.
2.1 Charging model of electric vehicle
When the EV aggregator optimizes the scheduling of the single electric vehicle in the area, its charging time characteristics determine whether the single electric vehicle can participate in the scheduling task in this period of time. For electric vehicles in a charging station, the charging time characteristics mainly include plug-in time [image: image] (h), plug-out time [image: image] (h) and schedulable time [image: image] (h), which can be described as Eq. (1)
[image: image]
where n represents the nth EV.
Besides, the charging demand of each EV is determined by Eq. (2)
[image: image]
where [image: image] (kWh) means the charging demand of the nth EV; [image: image] (kWh) is the capacity of the nth EV. [image: image] and [image: image] stand for the excepted and initial SoC of the nth EV, respectively. Assuming that the charging demand of every EV can be met, the [image: image] can be calculated by Eq. (3)
[image: image]
where [image: image] (kW) and [image: image] (kWh) are individually defined as charging power and battery capacity of the nth EV; t, [image: image] (h), and T denote the current period, scheduling interval, and the maximum number of intervals, respectively. The maximum number of interval T is determined by Eq. (4)
[image: image]
2.2 Dynamic carbon emission factor
According to the proportional sharing principle, the electric carbon factor of the node is carbon emission per unit of electricity of the power flow out of it, which yields Eq. (5)
[image: image]
where [image: image] (kgCO2/kWh), [image: image] (kgCO2/kWh) and [image: image] (kgCO2/kWh) represent the ECFs of the ith node, the jth node, and the generator connected with the ith node, respectively; [image: image] (kW) is the active power flow from the ith node to the jth one; [image: image] (kW) denotes the load power of the ith node (Zhang XS. et al., 2023).
3 BI-LEVEL OPTIMIZATION FRAMEWORK OF DISTRIBUTION NETWORK
3.1 Upper-level optimization
Upper-level optimization aims to reduce the regulation burden of grid operators. Thus its objective function is designed to minimize the difference of peak-valley power in slack bus, which can be expressed by Eq. (6), as follows:
[image: image]
where [image: image] represents injected active power of slack bus; [image: image] stands for decision-making variables, which can be set as the controllable elements in the distribution network.
The constraints of upper-level optimization composed of power balance, the voltage of nodes, the power output of generators, and the capacity of transformation lines, which can be mathematized as Eq. (7)
[image: image]
where [image: image] (kW) and [image: image] (kVar) stand for the active power and reactive power of the generator connected with the ith node, respectively; [image: image] (kW) and [image: image] (kVar) are individually active and reactive power demands; [image: image] (kW) and [image: image] (kW) are upper and lower bounds of the active power of the generator, respectively; [image: image] (kVar) and [image: image] (kVar) are upper and lower bounds of the reactive power of the generator, individually; [image: image] (kV) and [image: image] (kV) represent the lower limitation and upper limitation of the voltage of the ith node, respectively; [image: image] (kVA) and [image: image] (kVA) are respectively defined as the current value and maximum value of capacity of the ith line; [image: image], [image: image], and [image: image] denote the number of generators, PQ nodes, and branches, respectively.
3.2 Lower-level optimization
Unlike upper-level optimization, the lower one attempts to protect the interests of the EV aggregator by optimizing EVs’ charging strategies. Thus its objective is the cost minimization of the EV aggregator, expressed by Eq. (8)
[image: image]
where [image: image] ($) represents electricity charging cost; [image: image] ($) denotes carbon emission cost, which can be measured by Eq. (9)
[image: image]
where [image: image] ($/kgCO2) means the unit price of carbon emission; [image: image] (kgCO2/kWh) is the carbon emission factor of the node connecting EV aggregators at time t; [image: image] (kW) represents the charging power of the EV aggregator, which is determined by Eq. (10)
[image: image]
where [image: image] and [image: image] denote the clth EV cluster and the total number of EV clusters, respectively; [image: image] is the total number of EVs in the clth cluster.
Additionally, the electricity charging cost [image: image] ($) of EV aggregators is given by Eq. (11)
[image: image]
where [image: image] ($/kWh) stands for the unit cost of charging.
The solution of the lower-level optimization consists of charging strategies of different EV aggregators, which yields Eqs (12), (13)
[image: image]
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where [image: image] denotes the charging and discharging strategy clth EV cluster.
To ensure the charging demand of each EV, lower-level scheduling satisfies the following power balance constraint:
[image: image]
In Eq. (14), [image: image] (kW) represents the total charging power of the clth EV cluster.
3.3 Design of GMO-based bi-level optimal scheduling
3.3.1 Principle of basic GMO
GMO is a meta-heuristic algorithm that uses the behavior of multiple search agents in social interaction to search for the best results, and its optimization performance has been effectively verified in various test problems (Rezaei et al., 2023).
In GMO, the position [image: image] and velocity [image: image] of the ith agent are defined as Eqs (15), (16)
[image: image]
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where [image: image] and [image: image] stand for the dth dimension variables of the position and velocity, respectively; D is the maximum dimension of the problem to be solved.
Unlike traditional mate-heuristic algorithms, GMO adopts a dual-fitness index (DFI) to evaluate current solutions, which can be calculated by Eq. (17)
[image: image]
where [image: image] represents the DFI value of the ith agent at the kth iteration; [image: image] denotes the population size; [image: image] means membership function value of the jth personal agent, which can be measured by Eq. (18)
[image: image]
where [image: image] stands for the fitness value of the jth personal best agent at the kth iteration; [image: image] and [image: image] are the standard deviation and mean of fitness values of all personal best-so-far agents, respectively; [image: image] represents the Napier’s constant.
A weighted average of all opposite personal best-so-far agents is designed to make full use of the advantages of these best agents, as follows:
[image: image]
In Eq. (19), [image: image] denotes the global guide vector for the agent i; [image: image] is the personal best position of the jth search agent; [image: image] is a small constant to void singularity. Besides, a Gaussian mutation mechanism of global guide vector is introduced to preserve the diversity of the guide agents, which yields Eq. (20)
[image: image]
where [image: image] is the mutated global guide vector; RV is a random vector generated from the standard normal distribution; [image: image] and [image: image] stand for a vector composed of the maximum standard deviation values of the personal best agents’ dimensions and the standard deviation vector, respectively; w is an adaptive parameter, which is determined by Eq. (21)
[image: image]
The updating equations of position and velocity are defined as Eqs (22), (23)
[image: image]
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where [image: image] represents a scaling parameter vector to delineate the steps between the agent i and its guide, which can be formulated by Eq. (24)
[image: image]
where [image: image] is a random parameter distributed in [0,1].
The specific process of GMO solving optimization problems can be referred to (Rezaei et al., 2023).
3.3.2 Execution framework of GMO-based bi-level optimal scheduling
Above all, the execution framework of GMO-based bi-level optimal scheduling is illustrated in Figure 2. GMO is utilized to find the most considerable power outputs of controllable resources (CS) in the distribution network. The interior point method (IPM) is applied to solve the lower-level model for the best charging strategies. Peak-valley difference of the slack bus and DECFs of EV access points obtained by power flow calculation are the interactive information optimized for upper and lower levels, respectively.
[image: Figure 2]FIGURE 2 | The flowchart of GMO-based bi-level optimal scheduling.
4 CASE STUDIES
In this section, an extended IEEE 33-bus system is introduced to verify the validation of the proposed method, as depicted in Figure 3, which mainly attaches two same gas turbines (GTs), a wind turbine (WT), a PV unit, and three types of EV clusters on the basis of the standard system. The slack bus is connected to a main grid to ensure the power balance of the distribution network. Its time-of-use (ToU) electricity prices and DCEF are employed to guide economic low-carbon operations, illustrated in Figure 4A. The price of carbon emission is 0.0068 $/kg.
[image: Figure 3]FIGURE 3 | Extended IEEE 33-bus system.
[image: Figure 4]FIGURE 4 | Initial conditions of IEEE 33-bus system: (A) ToU price and DCEF of the slack bus; and (B) initial SoC of EVs.
In addition, the power outputs of two GTs and the charging strategies of EV aggregators are set as decision-making variables for upper-level and lower-level optimizations. The upper and lower bounds of power outputs of GTs are set as 1,240 and 0 kW, and their unit generation cost is both 0.0822 $/kWh (Cao et al., 2022). For EV aggregators, charging behaviors of EV users on a weekday and weekends are taken into account. The initial state of charge (SoC) of EVs can be characterized by a normal distribution from 20% to 50% (Li YP. et al., 2023), as shown in Figure 4B. Their other critical parameters are offered in Table 1. Note that the dwell time of EVs are individually increased by an hour at night and decreased by two hours by day on weekend against weekday (Zheng et al., 2023). The scheduling time and interval are 24 and 1 h, respectively.
TABLE 1 | Main parameters of different clusters of EVs (Cao et al., 2022; Li YP. et al., 2023).
[image: Table 1]GMO and three competitive algorithms, i.e., GA (Wang et al., 2022), GWCA (Guan et al., 2023), and WOA (Mirjalili and Lewis, 2016), are adopted to solve the bi-level optimization model. For fair and objective comparisons, the population size and iteration number of each algorithm are identically set to 30 and 100, respectively. Results obtained by different approaches in 10 independent runs are recorded, upon which the best result of each method is selected and compared. Additionally, the main parameters of competitive algorithms are tabularized in Table 2.
TABLE 2 | Main parameters of different competitive algorithms.
[image: Table 2]4.1 Interactive scheduling test on a weekday
Here, an interactive scheduling test on a weekday is executed to evaluate the performance of various algorithms. Figure 5A depicts the convergence curve of upper-level optimization obtained by various algorithms, which indicates GMO outperform others. Specifically, while GA enjoys the fastest convergence speed, its final fitness value is the largest, which means it traps in the local optimum. After around 30 additional iterations, GMO searches for the smallest fitness value, which validates the high accuracy of GMO. Furthermore, a boxplot comparison based on 20 independent runs of different algorithms is given in Figure 5B. One can observe the boxplot of GMO exhibits the smallest distribution, upper bound, and lower bound, which demonstrates GMO also wins other competitive algorithms in stability performance.
[image: Figure 5]FIGURE 5 | Comparisons of various algorithms for upper-level optimization on a weekday: (A) Convergence curve; and (B) Boxplot.
Table 3 statistics the optimum results and mean computation time of various algorithms, including the fitness value of upper-level optimization, electricity cost, carbon emission cost, and total cost of lower-level optimization, upon which the best indicator is highlighted in bold. WO means without optimization: the power outputs of two GTs only depend on ToU price and each EV is charged via average power. When the generation cost of GTs is lower than the ToU price, its power output is set to the rated value, otherwise, it is equal to zero. GMO obtains the best indicators in the upper-level optimization task. Its fitness value is only 6.018 [image: image] 10–4 times that obtained by WO, which indicates GMO significantly helps minimize power fluctuation of the distribution network. Under lower-level optimization, various algorithms acquire slightly different results. Based on satisfactory optimization results of GMO, the total cost of the EV aggregator is decreased by 76.18% (from 108.9666 $ to 25.9558 $) a day.
TABLE 3 | Statistic results of various algorithms on a weekday.
[image: Table 3]Figure 6 provides the optimal solutions on a weekday. The power outputs of GTs are obviously decreased from 5:00 to 16:00 and increased at night to minimize the peak-valley difference of the distribution network, as shown in Figure 6A. As illustrated in Figure 6B, the charging power of EVs is significantly transferred from 18:00–24:00 and 0:00–2:00 to 3:00–5:00, which is mainly because the electric price is the lowest at 3:00–5:00.
[image: Figure 6]FIGURE 6 | Optimal scheduling solutions on a weekday: (A) Upper-level; and (B) Lower-level.
Figure 7A gives the cost comparison of various algorithms on a weekday. Figure 7B illustrates the CEFs of each EV cluster obtained by WO and GMO, in which the CEF of EV cluster #2 is significantly reduced from 7:00 to 17:00 after optimization via GMO. The CEF of EV cluster #3 is always equal to zero because it is only charged by WT.
[image: Figure 7]FIGURE 7 | Result comparison of lower-level optimization on a weekday: (A) Costs; and (B) CEFs.
4.2 Interactive scheduling test on weekend
In addition, the interactive scheduling test on weekends is designed to further validate the feasibility of the proposed method. Similar to the upper optimization on a weekday, GMO acquires the smallest fitness value with the most powerful stability compared with other algorithms, as shown in Figure 8.
[image: Figure 8]FIGURE 8 | Comparisons of various algorithms for upper-level optimization on weekend: (A) Convergence curve; and (B) Boxplot.
Statistic results of various algorithms on weekends are tabulated in Table 4. The lowest total cost and carbon emission cost are simultaneously acquired by GMO. There are only slight differences between the smallest fitness value and shortest mean computation time and those obtained by GMO. In particular, the fitness value of upper-level optimization and total cost of the EV aggregator is decreased by 99.82% and 77.27%, respectively.
TABLE 4 | Statistic results of various algorithms on weekend.
[image: Table 4]Besides, the optimal solutions on a weekend are illustrated in Figure 9, in which the power outputs of GTs are obviously transferred from daytime to night duration. Similarly, EVs are assigned to charge with maximum power from 3:00 to 5:00 to maximize total cost. Figures 10A, B offer the cost comparison of various algorithms and the CEFs of each EV cluster obtained by WO and GMO on weekends, respectively. One can easily observe that similar optimization results are acquired compared with those on the weekdays.
[image: Figure 9]FIGURE 9 | Optimal scheduling solutions on a weekend: (A) Upper-level; and (B) Lower-level.
[image: Figure 10]FIGURE 10 | Result comparison of lower-level optimization on weekend: (A) Costs; and (B) CEFs.
5 CONCLUSION
This paper develops a bi-level optimal dispatching of distribution network considering friendly interaction with electric vehicles, in which a dynamic electrical carbon emission factor is introduced to precisely calculate the carbon emission of each node. According to two typical case studies based on an extended IEEE 33 bus system, three conclusions can be summarized as follows:
➢ The proposed bi-level optimal dispatching framework significantly contributes to the security and stability of the distribution network and the cost decrease of EV aggregators by considerable planning in power outputs of GTs and charging transformation of EVs. Peak-valley difference of the distribution network and the total cost of the EV aggregator can be decreased by over 98% and 76%, respectively;
➢ Compared with competitive algorithms, GMO acquires more satisfactory optimization indicators both in interactive scheduling tests on the weekday and weekend, which especially outperform others in convergence accuracy and stability;
➢ Due to the small cost of carbon emissions compared to electricity consumption, the reduction in electricity prices is dominant in the lower-level optimization, and the effect of electric vehicles participating in carbon reduction is not obvious. Higher carbon emission prices or multi-objective optimization may achieve more carbon reduction.
Notably, meta-heuristic algorithms used in this paper may be limited in accuracy and speed when various complex constraints are taken into consideration, such as start-stop constraint and climbing constraint of gas turbines, discharge constraint of electric vehicles, etc.
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The intermittent renewable energy in a virtual power plant (VPP) brings generation uncertainties, which prevents the VPP from providing a reliable and user-friendly power supply. To address this issue, this paper proposes a gated recurrent unit proximal policy optimization (GRUPPO)-based optimal VPP economic dispatch method. First, electrical generation, storage, and consumption are established to form a VPP framework by considering the accessibility of VPP state information. The optimal VPP economic dispatch can then be expressed as a partially observable Markov decision process (POMDP) problem. A novel deep reinforcement learning method called GRUPPO is further developed based on VPP time series characteristics. Finally, case studies are conducted over a 24-h period based on the actual historical data. The test results illustrate that the proposed economic dispatch can achieve a maximum operation cost reduction of 6.5% and effectively smooth the supply–demand uncertainties.
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1 INTRODUCTION
1.1 Background and motivation
With the global energy shortage and environmental deterioration becoming increasingly prominent, distributed renewable energy resources have gained popularity in the power system and developed rapidly (Naveen et al., 2020; Huang et al., 2021; Liu et al., 2023). Although the renewable energy implementation can generally reduce the dependence on fossil generation, the low unit capacity and high fluctuation hinder its reliable supply. As a result of inherent temporal–spatial complementarities, virtual power plants (VPPs) integrated with cooperative and transactive energy management can effectively cope with the core issues and enhance the overall economy (Koraki and Strunz, 2017).
The VPP is defined as an aggregator of distributed supply–demand resources, which would independently perform a transactive behavior with the market or operator (Etherden et al., 2015; Lin et al., 2020; Gough et al., 2022). However, due to its lower capacity and inherent sporadic nature, its integration into the current power system is complicated (Xu et al., 2021). Although VPPs have developed rapidly, the high penetration of renewable energy and the proactive end users make VPPs more uncertain. These uncertainties cause disturbances in the optimal VPP economic dispatch and prevent VPPs from providing a reliable and user-friendly power supply. Therefore, it is essential to design an effective VPP economic dispatch method to enhance economic benefits and smooth the supply–demand uncertainties.
1.2 Literature review
In order to handle the uncertainties in the VPP dispatch, various optimization methods have been proposed, including stochastic optimization and robust optimization. Liu et al. (2018) proposed an interval-deterministic combined optimization method to maximize the deterministic profits and profit intervals of VPPs (Liu et al., 2018). A data-adaptive robust optimization method was proposed by Zhang et al. (2018) to optimize the dispatch scheme with adjustable robustness parameters. A deterministic price-based unit commitment was proposed by Mashhour and Moghaddas-Tafreshi (2010), and a genetic algorithm was used to solve the uncertainties. Chen et al. (2018) presented a fully distributed method for VPP economic dispatch using the alternating direction multiplier method (ADMM) and the consensus algorithm (Chen et al., 2018). Yang et al. (2013) proposed a consensus-based distributed economic dispatch algorithm through the iterative coordination of local agents.
When faced with the supply–demand uncertainties, these traditional optimization-based methods usually rely on accurate system models and a priori knowledge, which are difficult to obtain in practice (Xu et al., 2019). Although robust optimization methods can deal with uncertainties to some extent, these methods are very conservative. Meanwhile, these methods cannot deal with dynamic and random changes, due to which real-time information and interactions with various energy sources may not be able to capture. Traditional optimization-based methods also rely on reliable solvers or heuristic algorithms (Xu et al., 2020), which is time-consuming and cannot meet the real-time requirements of practical VPP problems.
Reinforcement learning has become a highly effective approach for addressing optimization problems in various domains (Książek et al., 2019). Unlike traditional optimization methods that often rely on extensive domain knowledge or problem-specific heuristics, reinforcement learning allows agents to discover effective strategies through trial-and-error processes (Bui et al., 2020). Reinforcement learning is well suited for sequential decision-making. In many optimization problems, decisions must be made in a sequential manner with each decision influencing future decisions. Reinforcement learning algorithms, such as Q-learning and policy gradient methods, explicitly model this sequential aspect of decision-making by updating the agent’s policy based on the outcomes of previous actions. This allows the agent to learn optimal sequences of decisions that lead to desired outcomes (Huang et al., 2021). In many real-world optimization problems, the agent may not have complete information about the state of the system. Reinforcement learning agents learn to make decisions based on partial information, effectively reasoning about the most likely state of the system and taking actions accordingly. This ability to handle incomplete information makes reinforcement learning suitable for a wide range of real-world optimization problems with uncertainties.
Deep reinforcement learning integrates deep learning and reinforcement learning, which has been widely adopted for solving VPP problems in the Internet of Energy (IoE) domain. For instance, Sun et al. (Hua et al., 2019) mainly studied IoE management, and reinforcement learning was adopted to formulate the best operating strategies. Du et al. (2018) studied the IoE architecture design and adopted reinforcement learning to optimize electric vehicle charging. Liu et al. (2018) combined deep learning with reinforcement learning for improving the generating unit tripping strategy. Combining reinforcement learning and deep neural network, Lu et al. (2019) presented a demand response algorithm for the IoE system based on real-time execution. However, the reinforcement learning methods in the above studies are all based on Q-learning or deep Q-learning methods, which are limited to discrete action spaces. To address this problem, Zhao et al. (2022) adopted a proximal policy optimization (PPO)-based reinforcement learning method, which contains both continuous and discrete action spaces. Zhao et al. (2022) proved that the system cost is reduced by 12.17% compared to the Q-learning method.
However, two problems still remain to be addressed in the existing reinforcement learning-based VPP economic dispatch method. The first problem is that the historical VPP information is not considered in the above studies. Actually, the VPP economic dispatch cannot follow the Markov decision process (MDP) since the integration of renewable energy sources makes it a sequential decision process problem. As a type of artificial neural network, the recurrent neural network (RNN) is commonly used to address these ordinal or temporal problems, which can extract the time series information effectively. The gated recurrent unit (GRU), which optimizes the update and reset gates, is another type of the long short-term memory network. Compared to RNN, GRU offers computational efficiency, superior long-term dependency capture, effective vanishing gradient solution, and remarkable generalization capabilities (Canizo et al., 2019). These key advantages make the GRU an excellent choice for various sequential learning tasks, particularly in domains where capturing long-term dependencies is of paramount importance (Thanh et al., 2022).
The second problem is that the above methods all need a central agent to coordinate the VPP supply–demand balance. Actually, the VPP would not be managed with a single operator, and this centralized management would give rise to various disadvantages, including intensive information transmission and low-efficiency operation. It is a foreseeable trend that the VPP would gradually form a distributed manner, which could potentially satisfy geographical end users. Various decomposition techniques, including ADMM (Chen et al., 2018; Xu et al., 2019) and consensus algorithm (Yang et al., 2013), have been successfully applied for decentralized/distributed decision-making. Compared with the central method based on the single agent, the multi-agent optimization method can assign dispatch tasks to multiple agents for processing, which improves the processing capacities and solution efficiency. In addition, even if one agent fails or another agent is added, the entire system can still maintain a stable operation. In other words, the multi-agent approach will be more scalable, adaptive, and robust (Gronauer et al., 2023).
1.3 Contribution
To sum up the above discussion, this paper proposes a gated recurrent unit proximal policy optimization (GRUPPO)-based optimal VPP economic dispatch method. The contributions of this article are as follows:
(1) The PPO-based deep reinforcement learning method is developed to handle both continuous and discrete action spaces. Compared with the traditional method, including the deterministic optimization and robust optimization in Mashhour and Moghaddas-Tafreshi (2010), Yang et al. (2013), Chen et al. (2018), Liu et al. (2018), and Zhang et al. (2018), the proposed approach can better deal with the supply–demand uncertainties and meet the real-time economic dispatch requirement for the VPP.
(2) The GRU network is equipped into the PPO-based deep reinforcement learning method to form the GRUPPO approach. Different from the reinforcement learning approaches in Sun et al. (2017), Du et al. (2018), Liu et al. (2018), and Lu et al. (2019), the proposed GRUPPO scheme can fully consider the historical time series information for economic decision-making, effectively reducing the VPP operation cost.
(3) A multi-agent optimization framework is developed to capture the distributed characteristics in the VPP. The optimization framework adopts centralized training and distributed execution, thereby performing higher flexibility and scalability against complex situations.
The remainder of this paper is organized as follows: in Section 2, the modeling of the VPP economic dispatch is established, and its objective function is designed. In Section 3, the GRUPPO strategy and its multi-agent framework are proposed for the optimal VPP economic dispatch. In Section 4, case studies are conducted based on the actual historical data. Conclusions are drawn in Section 5.
2 VPP ECONOMIC DISPATCH
2.1 Framework and assumptions
The VPP leverages advanced information communication technology to aggregate and coordinate multiple distributed energy resources. The core concept of a VPP is aggregation and coordination. The following assumptions and simplifications are considered:
1) The VPP is assumed to have access to real-time data on generation, demand, and grid conditions. These data are necessary for the VPP to make decisions about power generation and distribution.
2) The VPP is assumed to have efficient and reliable control and communication systems to coordinate multiple distributed energy resources.
3) Thermal properties of heating, ventilation, and air-conditioning (HVAC), including heat generation, storage, and transfer, are assumed to happen only in thermal nodes.
Though raising concerns over the inaccuracy issues, reasonable assumptions and simplifications here could render the model a more computationally tractable and more practically meaningful analysis.
2.2 VPP supply–demand model
The VPP components comprise thermal power generation, photovoltaic generation, battery energy storage, the basic load, the power flexible load, and the temperature-adjustable load.
1) Thermal power generation unit
The VPP relies on small-scale thermal power units to maintain the flexibility and stability. The operation of thermal power generation unit in the VPP meets the output constraints and the ramp constraints:
[image: image]
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where PTH,t and PTH,t-1 are the thermal power output at moments t and t−1, respectively; PTH,min, PTH,max, RTH,min, and RTH,max are minimum output power, maximum output power, ramp-down power, and ramp-up power of the thermal unit, respectively.
2) Power flexible loads
The power flexible loads, including LED lights with adjustable brightness or electric fans with adjustable speed, can participate in the VPP economic dispatch as a flexible load. In general, these loads can be adjusted within the rated capacity range. Their total power needs to meet the following constraints:
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where Ppf,min and Ppf,max are minimum power and maximum power of these loads, respectively; Ppf,exp,t, Ppf,exp,T, and Ppf,exp are total power of the previous moment t, the total power of the whole time period T, and the minimum power to meet user needs, respectively.
3) Temperature flexible loads
Heating loads, including pitch heating, water heating, and HVAC, are taken as temperature-adjustable loads. The common feature of these heating loads is that the operating temperature t can be adjusted according to artificial settings. The working temperature t should be enforced to ensure the safe and reliable operation of the equipment:
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where Tmin and Tmax are the lower and upper temperatures, respectively; a1 and a2 are the physical parameters which is jointly calculated via thermal capacities and resistances; THVAC,t-1 is the temperature of the last time moment t−1; Tout,t represents the current outside temperature; PHVAC,heat,t and PHVAC,cool,t denote the heating and cooling power of the air-conditioner, respectively; and aHVAC is the running state of the air-conditioner, where aHVAC = 1 and 0 indicate that the air-conditioner is in a state of heating and cooling, respectively.
4) Battery energy storage
Battery energy storage is an important energy storage, which has the advantages of strong environmental adaptability, short construction period, and convenient small-scale configuration. The charge and discharge states of the battery energy storage system must be limited to a certain range so as to avoid overcharge or discharge:
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where SOCt and SOCt-1 are the current charge of the battery energy storage and the charge of the last time t−1, respectively; ηch, ηdis, PSOC,ch,t-1, and PSOC,dis,t-1 are charge efficiency, discharge efficiency, charge power, and discharge power, respectively; [image: image]t is the unit time; and aSOC,t is the status of the battery charge and discharge, where aSOC,t = 1 indicates that the battery is being charged and aSOC,t = 0 indicates that the battery is being discharged.
In addition, the operation of the battery energy storage needs to meet the battery capacity limit:
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where SOCmin and SOCmax represent the minimum and maximum battery capacities, respectively; PSOC,ch,max and PSOC,dis,max are the maximum charging and discharge power, respectively.
5) Power balance
With the regulation from energy storage and market buying/selling, power generation can be used to fulfill the power demand:
[image: image]
where Pbuy,t, PPV,t, and Psell,t are the purchased electricity power, photovoltaic power, and electricity sold, respectively.
2.3 Objective function
The objective function in the VPP economic dispatch consists of the coal consumption cost, battery degradation cost, air-conditioning discomfort cost, and buying/selling electricity cost.
1) Coal consumption cost
The coal consumption cost function of the thermal power unit can use the quadratic function related to the unit output:
[image: image]
where a, b, and c are the coefficients of the quadratic function; PTH,t is the power of thermal power. Through the linearization of the quadratic function, the cost function of the coal consumption is divided into M parts and denoted by
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[image: image]
where Km,t is the slope of section m at time t of the coal consumption function after piecewise linearization; Ct is the coal consumption caused by starting up the thermal power unit and running at the minimum output PTH,min; and PTH,m,t represents the output power of the thermal power unit in the m section at the t period.
2) Battery degradation cost
The battery degradation cost can be represented by
[image: image]
where T, [image: image]t, PSOC,ch,t, and PSOC,dis,t are dispatch cycle, unit time, charging power, and discharge power, respectively; [image: image] is the unit average/amortized degradation cost of charging/discharging over the whole service time, which can be calculated with its capital cost, cycling numbers, capacity, and reference state of charge (Xu et al., 2021).
3) Air-conditioning discomfort cost
While the constraints (Eqs 6–8) enforce the physical operation of air-conditioning, the discomfort level is introduced to measure the degree of satisfaction. The air-conditioning discomfort cost is related to the set temperature and current temperature.
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where Tset and THVAC,t are set temperature and current time period temperature, respectively; [image: image] is the discomfort cost coefficient, which is used to measure the discomfort level.
4) Buying and selling electricity costs
The buying and selling electricity costs are calculated as follows:
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where abuy,t denotes the status of buying and selling electricity in the VPP, where abuy = 1 means that the VPP buys electricity from the market and abuy = 0 means that the VPP sells electricity to the market; λbuy,t and λsell,t are electricity buying price and electricity selling price, respectively.
The objective function is defined as
[image: image]
where λTH, λSOC, λHVAC, and λbuy represent the cost coefficients of the coal consumption, battery degradation, air-conditioning discomfort, and buying and selling electricity, respectively.
3 THE GRUPPO-BASED OPTIMAL VPP ECONOMIC DISPATCH
In this section, the designed GRUPPO-based optimal VPP economic dispatch will be presented. First, the VPP economic dispatch is expressed as a partially observable Markov decision process (POMDP). Then, a GRUPPO-based deep reinforcement learning approach is introduced to optimize the VPP economic dispatch.
3.1 POMDP for the VPP economic dispatch
When using the reinforcement learning method to solve problems, MDP is usually used to describe the environment. MDP is characterized by the environment that is completely observable, and the current state can fully represent the process. That is, according to the current state, the next state can be deduced, the current state captures all relevant information from history, and the current state is a sufficient statistic for the future. However, for the VPP economic dispatch problem, the model contains random renewable energy. In the dispatch process, the next state of the VPP is not only completely determined by the current state but also depends on external random factors. The model state is not completely observable, and it is reasonable to express the VPP economic dispatch problem as a POMDP. Its structure diagram is shown in Figure 1. Generally, POMDP can be realized as a 7-tuple model {S, A, s, a, T, R, λ} (Wang et al., 2023).
[image: Figure 1]FIGURE 1 | POMDP of the VPP economic dispatch.
The VPP model shown in Figure 1 represents the environment, and the agent is a hypothetical entity responsible for the VPP economic dispatch. The agent makes a corresponding decision based on the state of the environment, where the state and decision represent the observations and actions of the agent, respectively. The environment accepts the action of the agent and produces the corresponding change, which depends on the state transfer function T(st, at, χ). The environment gives the corresponding reward according to the agent action, and the reward received by the agent is related to the objective function of the VPP economic dispatch.
1) Environment
Considering the supply–demand uncertainties, the reinforcement learning environment operates according to the individual device models in Chapter 2 and also needs to satisfy their physical constraints in Chapter 2. These devices include thermal power generation, photovoltaic power generation, battery storage, base load, flexible load, and temperature-adjustable load.
2) Agent
The VPP dispatch agent is a deep neural network, which obtains the reward by constantly interacting with the environment and then updates the neural network parameters according to the reward. The interaction process between the agent and environment is to output the VPP dispatch instructions through the neural network and calculate the corresponding objective function value. The construction process of the specific agent will be described in detail in the next section.
3) State and observation
The agent needs to implement the corresponding action according to the environment state, which is the state space. For the VPP economic dispatch, the state observation space st [image: image] S of the agent is shown as follows:
[image: image]
4) Action space
The action carried out by the agent according to the environment state is the action space. Lower-dimensional actions help the agent learn faster. Since battery charging and discharging cannot take place simultaneously, the charging and discharging of the battery are combined into a single action (instead of positive and negative). The same applies to the air-conditioner. For the economic dispatch task, the action space is expressed as follows:
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5) State transition
Based on a policy π(at|st), the agent could calculate and perform an action after its current observation st. Afterward, based on the state transition function st+1 = T(st, at, χ), the environment proceeds to st+1, which is impacted by state st, actions at, and the environmental randomness χt.
Here, χt = [λbuy,t, λsell,t, THVAC,t, PPV,t, Pbase,t] indicates the exogenous states, which are unrelated to the agent’s actions and show model variability. In general, reinforcement learning could cope with such variabilities in a data-driven way. It does not rely on precise probability uncertainty distributions and updates state characteristics from the dataset. The state of χ′t = [PTH,t, SOCt, THVAC,t, Ppf,exp,t] has no association with the external environment but is associated only with the policy π(at|st). The state update is required to satisfy the system constraints.
6) Reward
The reward function is to drive the agent’s decision-making, and reward signals can be of any value (Canizo et al., 2019). The reward function is generally set in the range of 0–1 to enhance and ensure the convergence and optimality. Since the goal is to minimize the dispatch cost, the establishment function of each time step is designed as follows:
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7) Objective
Each episode is divided into discrete time nodes t∈{0,1,2, … ,T}. The agent starts from an initial state s0. At each time point t, the agent moves to the next state st+1 based on the observation of the environment state st, action at, and an immediate reward rt. Based on this, the agent creates its trajectories of observations, actions, and rewards: τ = s0, a0, r0, s1, a1, r1 … , rT. In the POMDP, the agent seeks an optimal policy π(at|st) for the maximization of the discounted reward:
[image: image]
where γ∈[0,1] is the discount factor to decide the importance of immediate and future rewards.
3.2 GRUPPO-based deep reinforcement learning
In this subsection, a reinforcement learning method called GRUPPO is used for optimizing the VPP economic dispatch based on the POMDP. The GRUPPO approach includes the following three crucial steps:
1) Update the dispatch policy via a standard PPO algorithm
PPO, as a policy gradient algorithm, has been employed in a multitude of optimization models. Generally, PPO is featured by an actor–critic network and is able to handle high-dimensional continuous spaces. Through the Gaussian distribution, a stochastic policy πθ (at|st) of the actor network could be developed to feature the continuous action spaces in (24). It gives the standard deviation σ and mean μ, sampling the action at on st for all VPP economic dispatch agents. The PPO renews the policy πθ (at|st), maximizing the following clipped surrogate.
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where the product of ζt and Ât is the policy gradient; ζt is the probability ratio clipped by clip(.). ε∈[0,1] is used to limit the policy gradient update against its old version, if ζt is beyond [1−ε, 1+ε]. This technique ensures that the policy gradient is updated to a stable area.
ζt in the PPO clipped policy (29) is expressed as follows:
[image: image]
where πθ (at|st) and πθold (at|st) are the current and old policies, respectively. The advantage function [image: image] is expressed as follows:
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where Vϕ(s) denotes the state-value function approximated by a critic network parameterized by ϕ; γ ∈ [0,1] and λ ∈ [0,1].
2) Introduce GRU into PPO to consider the time characteristics
Since the proposed VPP economic dispatch model is partially observable, the Markov property is not valid. Compared with MDP, the next state in a POMDP is not completely determined by the present observations and actions (Ma et al., 2023). Conversely, the complete history of the observation sequences ought to be taken into account. By adding a GRU layer before the multi-layer perceptron (MLP) to concisely capture the history, recursion is introduced to deal with the non-Markovian nature of the POMDP.
GRUs are well suited for capturing and modeling time series characteristics due to their ability to control information flow using gates and adapt to long-term dependencies. GRUs comprise two gates: the reset gate (r) and the update gate (z). The reset gate controls how much of the previous hidden state is passed on to the next time step, while the update gate determines how much of the new input information is incorporated into the updated hidden state. The reset gate effectively “forgets” or disregards part of the previous state, allowing the network to focus on relevant information and adapt to changing patterns in the time series. By using gates to control the flow of information, GRUs can handle long sequences more effectively than traditional RNNs. They are less likely to suffer from exploding or vanishing gradients, which can be a problem for long sequences. GRUs also have fewer parameters than some other RNN variants, making them more efficient and less prone to overfitting. When applied to a time series analysis, GRUs can capture dependencies across time steps and generate meaningful representations of the sequence data. GRUs can also be combined with other techniques, such as attention mechanisms, to further improve their performance in specific tasks.
The GRU and actor–critic networks are given in Figures 2, 3.
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where rt is the reset gate; zt is the update gate; Wr, Ur, Wz, Uz, Wc, and Uc are neural network weight matrices; σ is the sigmoid activation function; and [image: image] is the hyperbolic tangent activation function.
[image: Figure 2]FIGURE 2 | GRU network.
[image: Figure 3]FIGURE 3 | Actor–critic network.
The leveraged GRUPPO method is used to apply the PPO algorithm together with the recurrent neural network. The actor and critic networks include GRU and MLP layers. The network structure is regulated via tuning the amounts of network layers and neurons. For the activation function, tanh is chosen in the GRU layer and the output layer of MLP. In other layers of MLP, ReLU is used due to its fast convergence and low computational complexity. However, the phenomenon of gradient disappearance and gradient explosion will occur when the ReLU is used directly in the experiment. In order to solve the problem of gradient disappearance and gradient explosion caused by the ReLU activation function, the layer is standardized to the neural network. In the actual experiment, this operation can effectively alleviate the phenomenon of gradient disappearance and gradient explosion so that the neural network can be trained normally.
The VPP dispatch problem using the PPO algorithm is realized through the neural network. The actor network uses the Gaussian strategy to output mean and variance. [image: image] obeys the following Gaussian distribution:
[image: image]
where a represents the action taken in state s; θ represents the policy function parameters; μθ(s) represents the average value of action a in state s; and σθ(s) represents the standard deviation of action a in state s. The real action is randomly sampled according to the mean and standard deviation of the actor network output. The other network is the critic network, which outputs the value of the state according to the current state of the VPP.
3) Construct the safety layer to meet the VPP model constraints
The training reinforcement learning algorithm is an unconstrained optimization algorithm via deep neural networks, which disregards model constraints. Deploying the reinforcement learning actions to the VPP would violate the constraints, and thus a safety layer is introduced. It shows that the calculated reinforcement learning actions would be slightly updated (only when facing system safety).
Safe operation is the premise of VPP economic dispatch tasks. For the VPP economic dispatch, the physical constraints are to ensure the normal operation, while the illegal actions will violate the constraints. In general, there are two ways to ensure the constraint satisfaction of the action output. The first method is to add the penalty terms for the constraint violations to the reward so that the agent can avoid making illegal action. The other method is to set the agent to take action within the allowable range. The first step is to calculate the boundary between the current state and the constraint. The action lower boundary a− and upper boundary a+ are calculated based on the current state st and constraints as follows:
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The second step is to cut the action according to the clip function. a is a constant value when the action meets the above range. When action a exceeds the boundary, the clip function is used to limit the action a within its boundary.
[image: image]
For the GRUPPO training process, the agent is equipped with πθ (a|s) to interact with the environment. Then, the trajectory τ is collected and utilized to evaluate the discounted reward [image: image]. The goal of πθ (a|s) is to find actions that are potentially more rewarding so that they correspond to greater probabilities, and thus the strategy is more probable to choose them. For this purpose, the maximization objective function can be defined as follows:
[image: image]
According to the PPO algorithm, the corresponding gradient formula can be derived. Ât can also be computed with the state-value function Vϕ(s) and trajectory τ. The actor network can be trained while maximizing
[image: image]
Accordingly, the critic network of GRUPPO can be trained by minimizing the following loss function of the mean-squared error:
[image: image]
A weighting update for the actor and critic networks is
[image: image]
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where αθ and αϕ are the learning rates of actor and critic networks, respectively.
Finally, the pseudo-code of GRUPPO is given in Algorithm 1. First of all, GRUPPO initializes the agent’s policy network and value function network. The agent collects empirical data by interacting with the environment and stores these data for subsequent training. Then, the value function network is used to compute the advantage function of the agent. Finally, the agent’s strategy network is updated until a satisfactory level of performance is reached.
Algorithm 1. GRUPPO for the agent.
1: Initialize θ, ϕ for the actor–critic network
2: Set learning rates αθ, αϕ
3: For episode (i.e., an operating day) [image: image] to [image: image]
4: Initialize VPP state s0
5: For the VPP agent, create a new trajectory τ = []
6: For each time step (e.g., 1 hour) [image: image] to [image: image]
7: Chooses PPO action at according to observation st via the policyπθ (a|s)
8: Correct action at values based on the security layer
9: Observes reward rts and the next observation st+1
10: Stores the sample experience into trajectory τ + = [st, ats, rts]
11: Updates observation st → st+1 for the VPP agent
12: End for
13: Approximates discounted reward-to-go [image: image] r and advantage function Ât utilizing trajectory τ
14: Updates the parameters θ, ϕ of networks in (44)–(45)
15: End for
3.3 Multi-agent framework for GRUPPO
When using a single agent for the VPP economic dispatch, the stable operation can be drastically affected by agent failure or a new plug-and-play framework. The motivation behind the multi-agent framework is to harness the power of autonomous agents and enable collaborative problem-solving in VPP systems. By distributing tasks among multiple agents, the multi-agent framework enhances scalability, robustness, adaptability, and coordination. They allow for parallel processing, fault-tolerance, and efficient utilization of resources, making them suitable for various domains and dynamic environments. The multi-agent-based GRUPPO strategy can be developed based on the above GRUPPO approach. In the multi-agent GRUPPO method, each agent is directly responsible for its own device or area, which makes it easy to expand. Here, the detailed implementation method of the multi-agent GRUPPO is given as follows:
[image: image]
where st represents the overall observation value of the agent at time t; si,t represents the observation value of the i agent at time t.
The training steps for the multi-agent framework differ from those of the single-agent framework, specifically in the computation of gradients and rewards. The reward function needs to compute the overall value since multiple agents are included. During training, the actor and critic network update of each agent i is
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where ζt, Ât, and Vϕ(s) represent probability ratio, advantage function, and state-value function, respectively; αθ and αϕ denote the learning rates of actor and critic networks of the ith device, respectively.
Finally, the pseudo-code of multi-agent GRUPPO is given in Algorithm 2. First of all, multi-agent GRUPPO initializes the policy network and the value function network of each agent. The agents collect experience data by interacting with the environment and store these data in a shared experience pool so that other agents can access and learn from it. Then, centralized-distributed training is performed, where agents perform training locally but share global information to facilitate better collaborative learning. A value function network is utilized to compute the advantage function for each agent. Finally, the policy network is updated for each agent until a satisfactory level of performance is reached.
Algorithm 2. Multi-agent GRUPPO for agents.
Initialize θi, ϕi for the actor–critic network
Set learning rates αθ, αϕ
For episode (i.e., an operating day) [image: image] to [image: image]
Initialize both the local observation si,0 and global state s0
For each time step (e.g., 1 hour) [image: image] to [image: image]
For VPP agents, i = 1 to N [image: image]
Chooses PPO action ai,t according to observation si,t via the policy πθi (a|s)
Correct action ai,t of all agent values based on the security layer
Observes reward rts and the next observation si,t+1
Stores the sample experience into trajectory τi + = [si,t, ai,ts, rts]
End for
Updates observation si,t → si,t+1 for the VPP agent i
End for
For VPP agents, i = 1 to N
Approximates discounted reward-to-go [image: image] r and advantage function Âi,t utilizing trajectory τi
Updates the parameters θi, ϕi of networks in (49)–(50)
End for
End for
4 CASE STUDIES
In this section, case studies are conducted to show the effectiveness and advantages of the proposed GRUPPO approach for the VPP economic dispatch. The simulation tests are undertaken based on the actual historical data, which are compared with the other two schemes: the PPO scheme and the non-economic dispatch scheme. The detailed parameters of electrical generation, storage, and consumption can be found in Xu et al. (2020), Wang et al. (2023), and Xu et al. (2023).
4.1 Comparison of the convergence and stability performance
In order to compare the stability and convergence, the GRUPPO and PPO algorithms are implemented to optimize the VPP economic dispatch. In order to avoid the randomness of the test results, 10 different random seeds are used to conduct 1,000 rounds. In order to capture the uncertainties of PV power and base load, the Monte Carlo method is implemented to obtain 1,000 scenarios for simulation, where forecasting errors were assumed to follow a normal distribution function. Subsequently, the optimization results of 10 groups of economic dispatch are recorded and depicted in Figure 4. The mean variances of the corresponding 1,000 rounds are also calculated to further explain the differences in stability and convergence performance.
[image: Figure 4]FIGURE 4 | Performance comparison of PPO and GRUPPO.
It can be seen in Figure 4 that both methods can achieve almost stable rewards after approximately 30 rounds. However, the reward in the PPO scheme shows a significant increase after 420 rounds in the test, i.e., from approximately −4,600 to −4,900. In contrast, the reward of the proposed GRUPPO still fluctuates up and down near −4,600. Thus, it can be concluded that the GRUPPO approach has better convergence and is more stable to optimize the VPP economic dispatch. These results also illustrate that the introduction of the GRU network into PPO can fully consider the historical time series information and effectively improve the performance of the PPO algorithm.
4.2 Comparison of the VPP economic dispatch
Based on the actual data, the VPP economic dispatch results are tested using GRUPPO and PPO approaches. The general supply–demand results under three schemes are shown in Figures 5–7, and Figures 8–11 depict the detailed operational results of VPP components. Compared with other two schemes, the battery energy storage under the GRUPPO approach can appropriately store the excess photovoltaic power for later release. It can be observed that the flexible load of the VPP can increase its demand as the PV generation increases. In contrast, in the non-economic dispatch scenario, these loads are evenly distributed over the 24-h period. Although the PPO method can also dispatch all components, the flexible loads do not exhibit higher demand during the high PV generation for 10–15 h. This would increase the pressure on the thermal power units and the power purchase cost.
[image: Figure 5]FIGURE 5 | Results of the economic dispatch of the VPP under the GRUPPO approach.
[image: Figure 6]FIGURE 6 | Results of the economic dispatch of the VPP under the PPO approach.
[image: Figure 7]FIGURE 7 | Results of the non-economic dispatch.
[image: Figure 8]FIGURE 8 | Operational results of the battery energy storage.
[image: Figure 9]FIGURE 9 | Operational results of the flexible adjustable load power.
It can be seen in Figure 10 that the power generation of the thermal power units in the GRUPPO method shows more intense fluctuations compared to that in the other two methods. This indicates that the proposed method can better adjust the thermal power generation to follow the changes in PV power, thereby reducing the VPP operating costs. Moreover, it can be observed from Figure 11 that the HVAC power increases with the increase in PV power. In contrast, in the absence of the economic dispatch, the HVAC power changes with the daytime temperature. Although PPO can also dispatch the HVAC power to follow the power fluctuation, its sensitivity is lower than that of the GRUPPO method.
[image: Figure 10]FIGURE 10 | Operational results of the thermal power unit.
[image: Figure 11]FIGURE 11 | Operational results of the HVAC power.
The overall operating costs of three schemes are 4,322$, 4,431$, and 4,620$, respectively. It is evident that the operating cost of the GRUPPO method is the lowest. Specifically, compared to the PPO method and non-economic dispatch scheme, the proposed GRUPPO method reduces the operating costs by 2.4% and 6.5%, respectively. Overall, these results demonstrate the effectiveness and superiority of the proposed GRUPPO method in reducing the VPP economic dispatch costs.
5 CONCLUSION
This paper proposed a deep reinforcement learning-based VPP economic dispatch framework. The VPP economic dispatch is captured via a POMDP, which is then solved using a novel GRUPPO approach. The findings of this paper are summarized as follows:
(1) Compared with PPO, the proposed GRUPPO approach can make full use of the time series characteristics, improving its convergence and stability performance.
(2) Based on the POMDP, GRUPPO learns to make decisions based on partial information, which is suitable to handle real-world optimization problems with uncertainty.
(3) Both continuous and discrete actions can be effectively handled using the proposed GRUPPO approach, thereby achieving a maximum cost reduction of 6.5%.
(4) The GRUPPO strategy can outperform other methods in higher economy and scalability, exhibiting huge development and application potentialities in the high-renewable modern power system.
Electrical market development has become an inevitable trend under the background of economic globalization and industrial revolution. Further research would focus on strategic offering of the VPP in the electrical market.
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As the penetration rate of renewable energy in modern power grids continues to increase, the assessment of renewable energy absorption capacity plays an increasingly important role in the planning and operation of power and energy systems. However, traditional methods for assessing renewable energy absorption capacity rely on complex mathematical modeling, resulting in low assessment efficiency. Assessment in a single scenario determined by the source-load curve is difficult because it fails to reflect the random fluctuation characteristics of the source-load, resulting in inaccurate assessment results. To address and solve the above challenges, this paper proposes a multi-scenario renewable energy absorption capacity assessment method based on an attention-enhanced time convolutional network (ATCN). First, a source-load scene set is generated based on a generative adversarial network (GAN) to accurately characterize the uncertainty on both sides of the source and load. Then, the dependence of historical time series information in multiple scenarios is fully mined using the attention mechanism and temporal convolution network (TCN). Finally, simulation and experimental verification are carried out using a provincial power grid located in southwest China. The results show that the method proposed in this article has higher evaluation accuracy and speed than the traditional model.
Keywords: renewable energy absorption capacity, attention-enhanced, time convolutional network, uncertainty, multi-scenario
1 INTRODUCTION
Mitigating global warming, preventing climate damage, and achieving net-zero emissions of greenhouse gases have become a global consensus. As an important way to solve the global energy and environmental crisis, renewable energy power generation has become a hot issue of concern for countries worldwide. Many countries are vigorously developing renewable energy sources. As of the end of 2022, global renewable energy installed capacity reached 3,372 GW, accounting for 83% of newly installed capacity with a growth rate of 9.6%. The rapid development of a high proportion of renewable energy has gradually transformed the power system into a new power system dominated by renewable energy. However, the intermittency, volatility, and uncertainty of renewable energy output also pose serious challenges to power system planning and operation. On the one hand, insufficient long-distance transmission capacity and limited energy storage capacity prevent the high proportion of renewable energy from being fully absorbed by the power system, which will cause grid security problems such as overloading of transmission lines, unstable static voltage, and increased voltage deviation. In order to reduce grid security risks, renewable energy power curtailment often occurs. On the other hand, if the renewable energy accommodation capacity of the main grid is not considered, the integration of distributed renewable energy that exceeds the penetration limit will inevitably lead to insufficient peak shaving capacity of the main grid or transmission congestion, which will further aggravate the phenomenon of power abandonment in centralized renewable energy stations (Cui et al., 2022). Therefore, an accurate assessment of renewable energy absorption capacity is conducive to medium- and long-term planning of the power system and adjustments to the power system dispatch plan so as to improve the renewable energy absorption level of the new power system.
Specifically, the current research methods on renewable energy absorption capacity assessment are mainly divided into two categories: model-based methods and machine learning-based methods. The model-based method is mainly the typical day method and time series production simulation method. The typical day method only considers renewable energy absorption in typical or extreme scenarios. The calculation time is fast, but the calculation results are too conservative to accurately describe the random fluctuation characteristics on both sides of the source-load. Zhou et al. (2022) and Yan et al. (2022) put forward a renewable energy absorption capacity evaluation model and a power grid aggregation model based on time series production simulation. Taking the annual maximum capacity of renewable energy as the goal, the quantitative analysis of renewable energy absorption capacity can be realized. Su et al. (2021) adopted the method of zoning the power grid, divided the power grid according to the congestion of renewable energy transmission, and aggregated the load model, tie line model, and power supply model in each zone so as to evaluate the renewable energy consumption capacity of the entire power grid. Suo et al. (2022) proposed a time series production simulation method for multi-energy power systems, considering section constraints based on the equivalent energy function method, and the calculation results are closer to the true values of system operation. Li et al. (2019) proposed a renewable energy absorption capacity calculation model that considers the utilization level of inter-provincial tie lines, making full use of inter-provincial and inter-regional tie lines to effectively improve the level of renewable energy utilization across provinces and regions. Li et al. (2023) proposed a multi-objective probabilistic optimal power flow (MOPOPF) model, which aims to absorb renewable energy by minimizing its curtailment while supporting security and economic objectives. Ma et al. (2022) proposed a medium- and long-term optimization model considering cross-regional power trading and renewable energy absorption interval, and the penalty term of renewable energy absorption interval is added to the objective function. Yu et al. (2023) proposed a renewable energy absorption capacity assessment method that considers peak regulation and frequency response requirements. The original complex peak regulation mechanism and frequency response are equivalent to several mixed integer linear equations to reduce the computational complexity. Li et al. (2021) established a functional analysis model for wind power absorption capacity assessment, taking the singular parameters of wind power as independent variables, which effectively simplifies the calculation process of wind power absorption capacity assessment and helps dispatchers make reasonable decisions. Khalkho et al. (2022) developed a general model to represent solar radiation based on Weibull distribution and used smart grid discrete production simulation (SGDPS) to evaluate the uncertainty of solar power generation. The above model-based method carries out simulation calculations for each time period; the solution is accurate, and the calculation results are relatively reliable. However, the disadvantages are complex modeling, a large amount of calculation, and limited applicable scenarios (Li et al., 2018). The uncertainty on both sides of the source and load leads to the complexity and diversity of power system operation scenarios (Wang et al., 2023). On the source side, large-scale access to renewable energy with strong randomness makes the operation of power systems significantly uncertain.
On the load side, with the extensive access to new loads such as electric vehicles, microgrids, and energy storage, the interaction between supply and demand is becoming increasingly frequent, and the load composition is becoming increasingly complex, showing the characteristics of initiative and complexity, bringing multi-source uncertainty to the operation of the power system (Wu et al., 2020). It is difficult to truly reflect the random fluctuation characteristics of the source and load when evaluating renewable energy absorption capacity under a single scenario determined by the source-load curve. Second, the model-based method is used to evaluate a large number of renewable energy absorption scenarios, which will consume a lot of computing time.
With the rapid development of artificial intelligence technology, the renewable energy absorption capacity assessment method based on machine learning provides a new way to improve the renewable energy absorption level of new power systems. The key problem solved by machine learning is to automatically extract complex and abstract feature information from simple original features. It also has powerful nonlinear expression and model recognition capabilities. Chen et al. (2018) proposed using generative adversarial network (GAN) to learn the time-space correlation of renewable energy output and used the Wasserstein distance as a discriminator loss function to improve network training quality. Generative adversarial networks automatically learn the potential distribution patterns of data samples through an end-to-end working method, thereby generating data samples that are consistent with the distribution patterns of real samples. Therefore, it provides an effective solution for the complex modeling of uncertain scenes with source-load. The evaluation of renewable energy absorption capacity based on machine learning can be seen as constructing a nonlinear mapping relationship between key variables of grid operation and the actual power generation of renewable energy. Using the nonlinear mapping relationship learned by the machine learning model, renewable energy absorption capabilities can be quickly evaluated under different operating scenarios. Lahouar and Slama (2015) proposed a short-term prediction model based on random forest, which is mainly applied to short-term load prediction. The model shows high accuracy and effectiveness on typical days such as four seasons, weekends, and holidays. However, the use of multiple decision trees lead to a high computational complexity of random forest, which often faces the problem of overfitting when there is large noise in the data. Jia et al. (2012), Liu et al. (2014), Li et al. (2016), and Varganova et al. (2022) used principal component analysis to screen and reduce the dimensionality of multivariate time series and then proposed a renewable energy absorption capacity assessment model based on long short-term memory (LSTM), establishing the key influencing factors of renewable energy absorption and the actual absorption of renewable energy. The dynamic correlation between them can accurately assess the renewable energy absorption capacity under future scenarios (Zhang et al., 2017). However, recurrent neural networks such as LSTM need to wait for the forward pass of the previous time step to complete before proceeding to the forward pass of the next time step, which has the problem of slow training. The gradient backpropagation process will accumulate along the time dimension, and there is a gradient diffusion problem (Chen et al., 2017). Second, due to the lack of convolution, the feature extraction capability of LSTM and other recurrent neural networks for long time series needs to be improved. At the same time, it is difficult to give more attention to the key feature information that affects the prediction results. In recent years, the time convolutional network (TCN) model has been widely used in power grid business scenarios such as load forecasting (Wang et al., 2020), renewable energy forecasting (Zhang et al., 2023), and transient voltage stability assessment (Chen and Xie, 2022), but it is relatively rarely used in the task of renewable energy absorption capability assessment. Because of the integration of parallel feature processing in the CNN and time domain modeling capability of RNN, TCN has advantages in extracting long-term time series features (Song et al., 2020).
In view of the above research status, we propose a multi-scenario renewable energy absorption capacity evaluation method based on an attention-enhanced time convolutional network (ATCN). The main contributions of our work are threefold, as discussed below.
(1) Generative adversarial networks are used to generate source-load scenario sets for multi-scenario renewable energy absorption capacity assessment, which avoids the problem that a single scenario assessment cannot truly reflect various uncertain factors in actual operation.
(2) The long-term dependence of renewable energy absorption historical data is more efficiently captured through the temporal convolution network and attention mechanism, and the overall evaluation accuracy of the model is improved.
(3) The temporal convolutional network does not use cyclic connections and can input time series data in parallel so that it can achieve faster model training speed and has more advantages in long-term series training.
The remainder of this paper is organized as follows: Section 2 introduces the mechanism model of renewable energy absorption capacity. Section 3 introduces the scenario generation method for renewable energy absorption capacity assessment. Section 4 introduces the attention-enhanced time convolutional network. In Section 5, a comprehensive numerical study is performed, and the superiority of the proposed method is demonstrated. Finally, a conclusion is drawn in Section 6.
2 MECHANISM MODEL OF RENEWABLE ENERGY ABSORPTION CAPACITY
Renewable energy absorption capacity is affected by the following factors: power supply structure of the power grid, grid topology, load demand, delivery market, and system peak shaving. The mechanism model of renewable energy absorption capacity is shown in Figure 1. The difference between load and external power and the minimum technical output of conventional units is the theoretical maximum absorption capacity of renewable energy. When the output of renewable energy is less than the maximum absorption capacity of renewable energy, the renewable energy power generation can be fully absorbed. When the output of renewable energy is greater than the maximum absorption capacity of renewable energy, the excess power cannot be absorbed by the system, resulting in the phenomenon of renewable energy abandonment.
[image: Figure 1]FIGURE 1 | Schematic diagram of renewable energy absorption capacity.
From Figure 1, we can intuitively analyze the main factors that affect the absorption capacity of renewable energy, including electricity load, external power, system backup, the minimum technical output of conventional units, and the output level of renewable energy. In order to explore the complex temporal dependencies between renewable energy absorption capacity and its main influencing factors, a data-driven approach can be used to learn historical renewable energy absorption data.
The overall framework of the multi-scenario renewable energy absorption capacity evaluation model is shown in Figure 2. According to the input historical load data and historical renewable energy data, the scene is generated using the Wasserstein generative adversarial network–gradient penalty (WGAN-GP) algorithm, and the scene is reduced using the K-medoids algorithm so that the wind power, photovoltaic, and load scenes that conform to the real distribution of historical data are obtained, respectively. The generated source-load scene set is divided into datasets, and the attention-enhancing time convolution network is trained based on massive historical data from multiple scenes. The trained multi-scenario renewable energy absorption capacity evaluation model can quickly and accurately output the evaluation results of renewable energy absorption capacity in a given scenario.
[image: Figure 2]FIGURE 2 | Schematic diagram of the multi-scenario renewable energy absorption capacity evaluation model.
3 RENEWABLE ENERGY ABSORPTION CAPACITY ASSESSMENT SCENARIO GENERATION
A generative adversarial network is an adversarial learning framework. Its core idea comes from the two-person zero-sum game in game theory. It consists of a generator and a discriminator, as shown in Figure 3. The entire game process requires the generator and discriminator to find the Nash equilibrium between the two through continuous learning and optimization, thereby learning the potential distribution of real data to simulate and generate complex laws that are difficult to describe in the real world. It is suitable for the description of source-load uncertainty scenarios. Compared with traditional probabilistic modeling methods, the scene generation method based on generative adversarial networks does not rely on statistical assumptions about the data, avoids the process of scene sampling, and can accurately capture the true distribution of historical data.
[image: Figure 3]FIGURE 3 | Structural diagram of the generative adversarial network.
The input of the generator is a set of random noise data z to represent the probability distribution of [image: image], and the output [image: image] is the generated data sample. The input of the discriminator is historical scene data [image: image] and data [image: image] generated by the generator, and the output is a probability value to determine whether the data comes from real data samples. The training of a generative adversarial network can be regarded as a minimax game model, which is defined as follows:
[image: image]
where [image: image] represents the expected value, [image: image] represents the probability that the real data are judged to be true in the discriminator, and [image: image] represents the probability that the input data follow the historical data distribution [image: image].
Based on the original generative adversarial network, WGAN-GP adopts the observable Wasserstein distance as the training target of the model and introduces the gradient penalty term, which is conducive to measuring the distribution difference of different data and can effectively solve problems such as gradient explosion, training instability, and convergence difficulties in the training process of the traditional generative adversarial network.
Wasserstein distance is defined as
[image: image]
where [image: image] represents the Wasserstein distance between the distribution of real and generated data, [image: image] represents the Lipschitz constant of [image: image], [image: image] represents the function [image: image] satisfying A-Lipschitz continuity, L represents the Lipschitz, and [image: image] represents the least upper bound.
The gradient penalty term is defined as
[image: image]
where λ represents the penalty coefficient, [image: image] represents the random interpolation sampling between the generated and real samples, and [image: image] represents the gradient of the discriminator.
The objective function of WGAN-GP training is defined as follows:
[image: image]
After the scene generation based on WGAN-GP, it is necessary to reduce the massive scenes using the K-medoids algorithm to get the typical source-load scene set (Yu et al., 2018). Compared with the traditional K-means clustering algorithm, the K-medoids algorithm chooses the object closest to the cluster mean as the cluster center, which reduces the influence of abnormal data on the clustering effect and is more robust to noise and outliers. Therefore, using the K-medoids algorithm, we select the source-load scene with obvious characteristics and high probability from the original source-load scene. The K-medoids algorithm is mainly divided into three steps. First, the number of clustering centers in the k-medoids algorithm is preset, and the optimized clustering center is obtained in the clustering process. Then, according to the principle of being closest to the cluster center, the remaining points are assigned to the class represented by the current best cluster center. Finally, when all the clustering centers no longer change, it means that the scene reduction is completed.
4 ATTENTION-ENHANCED TIME CONVOLUTIONAL NETWORK
4.1 Attention mechanism
In reality, time series information usually contains a lot of redundant information. If the redundant information is treated as important information, it will interfere with the performance of the model to extract information. The introduction of the attention mechanism in the first layer of each residual module of the TCN is helpful to improve the model’s focus on key information in data features and reduce the risk of overfitting.
In essence, the attention mechanism is a method of weight allocation of input features. By calculating the weight coefficient of input features on output results, features with a high weight coefficient are given more attention so as to highlight the influence of key features and improve the accuracy of the prediction model. For an input sequence [image: image] of length T, the attention weight [image: image] of the hidden state of the historical input to the current input state is calculated using the following formula:
[image: image]
[image: image]
where [image: image] represents the energy value of the hidden layer state [image: image] at the time t, [image: image] represents the input value, [image: image] and [image: image] are the weight coefficient matrices, and [image: image] is an offset item.
By multiplying and summing the hidden layer state of the history node of the input sequence, the feature vector is obtained, which is expressed as follows:
[image: image]
where [image: image] represents the calculated eigenvector of the input sequence and [image: image] represents the attention weight of the hidden state corresponding to the history input when transitioning to the current input state.
The state value of the last node is output, which is expressed as follows:
[image: image]
where [image: image] represents the status value of the last output node and [image: image] represents the output at the time t-1.
4.2 Temporal convolutional network
A TCN is a neural network model that integrates dilated causal convolution (DCC) and residual connection (RC). Its network architecture is shown in Figure 4, which is stacked by an input layer, multiple residual blocks, and an output layer.
[image: Figure 4]FIGURE 4 | Structural diagram of the temporal convolutional network.
4.2.1 Dilated causal convolution
Causal convolution can effectively avoid future information leakage problems caused by convolution operations in traditional convolutional neural networks, but it is difficult to capture the characteristics of long-term historical information. On the basis of causal convolution, dilated causal convolution can obtain a larger receptive field by increasing the convolution kernel size K and expansion coefficient d. It is more suitable for processing historical data with a long time span and a large amount of data. The structure of dilated causal convolution is shown in Figure 5.
[image: Figure 5]FIGURE 5 | Structural diagram of dilated causal convolution.
Multi-layer stacking combined with dilated causal convolutions can enable deep learning networks to achieve very large receptive fields with fewer network layers. In addition, since each layer of the network uses filters of the same size, it is conducive to parallel computing processing and improving computing efficiency. Therefore, in view of the characteristics of historical renewable energy absorption data with a large data scale and a long time span, dilated causal convolution and residual modules are used to construct a TCN to capture the long-term dependence between renewable energy absorption capacity and its main influencing factors in parallel. It can effectively improve the efficiency of model evaluation. The expression of dilated causal convolution is
[image: image]
where d represents the expansion coefficient, K represents the size of the convolution kernel, [image: image] represents the ith piece of data in the convolution kernel, and [image: image] indicates that the convolution operation is performed only on data from time T past time [image: image].
4.2.2 Residual module
With the increase in the depth of the TCN, its ability to mine complex correlation features between time series information is enhanced, but it also brings about gradient explosion, gradient disappearance, and other problems. In order to solve the degradation problem of deep learning networks, the residual module is introduced for error correction, which is defined as follows:
[image: image]
where [image: image] represents the input sequence of the residual module, [image: image] represents the residual term, and [image: image] represents the activation function.
Each residual module is composed of two nonlinear, dilated causal convolution layers. After each dilated causal convolution layer, a batch standardization layer is added so that the input of each layer network can be normalized. After the standardization layer, the ReLU activation function is used to improve the model’s ability to fit nonlinear data, and Dropout is introduced to mitigate the risk of overfitting the model.
5 NUMERICAL STUDY
5.1 Experiment data description
In order to verify the feasibility and superiority of the proposed attention-enhanced time convolutional network in renewable energy absorption assessment, this paper carries out a case simulation and analysis using the real SCADA data of a provincial power grid in southwest China. The complete dataset contains historical data on the province’s renewable energy absorption from 2018 to 2022, and the data sampling frequency is every 15 min. Daily data with renewable energy power missing values or outliers were screened and eliminated, resulting in a total of 143,191 valid datasets. The example dataset is divided into a training set, verification set, and test set in the ratio of 6:2:2. The zero-mean normalization method is adopted for data standardization preprocessing, and its conversion function is as follows:
[image: image]
where [image: image] represents the mean of all sample sequences and [image: image] represents the standard deviation of all sample sequences.
5.2 Evaluation indicators
In order to verify the accuracy of the proposed method to evaluate the renewable energy absorption capacity, this paper uses the mean absolute percentage error [image: image] and root mean square error [image: image], which are widely used in statistics as error evaluation indicators. The smaller the value of the above evaluation index, the higher the evaluation accuracy. In addition, using the determination coefficient [image: image] to evaluate the effectiveness of the model, the larger the value, the more significant the fitting effect of the evaluation model to the data. The specific calculation formulas for different performance indicators are as follows:
[image: image]
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where [image: image] and [image: image], respectively, represent the predicted and real values of the absorption capacity of renewable energy under the t time section, [image: image] represents the average consumption capacity of renewable energy, and [image: image] represents the number of samples.
5.3 Model parameter setting
The proposed ATCN model is verified on a PC platform featuring an Intel Core i7-11700F 2.5 GHz CPU, 16 GB RAM, and GTX 1660 SUPER GPU, and the operation environment is Torch 1.8.0 based on Python. The ATCN model parameters are shown in Table 1.
TABLE 1 | ATCN model parameter.
[image: Table 1]5.4 Experimental results and analysis
5.4.1 Scene generation results
Using historical load data and historical renewable energy data, the scene is generated through the use WGAN-GP and reduced using the K-medoids algorithm. The source-load scene generation based on WGAN-GP has been carried out for 250 iterations. With the continuous updating of the data, the Wasserstein distance decreases and finally fluctuates at approximately 0.03, as shown in Figure 6. WGAN-GP uses the Wasserstein distance as the loss function, and there is always gradient guidance, which can ensure that the generated distribution is close to the real data distribution. By increasing the gradient penalty term, the gradient distribution is more uniform, and the training process is more stable.
[image: Figure 6]FIGURE 6 | Change in the Wasserstein distance.
The load, wind power, and photovoltaic scenarios conforming to the true distribution of historical data are obtained, respectively, as shown in Figure 7.
[image: Figure 7]FIGURE 7 | Scene generation results: (A) Load; (B) Wind power; (C) Photovoltaic.
The probability of each typical scenario in the source-load scenario set is shown in Table 2. The generated source-load scenario set can effectively describe the random fluctuation characteristics on both sides of the source and load, provide scenario support for the evaluation of renewable energy absorption capacity, and reflect the influence of various uncertain factors on renewable energy absorption in the actual operation of power systems. The time convolution network of the multi-scenario renewable energy absorption capacity evaluation model has the characteristics of a parallel input of time series data. In the training process of the renewable energy absorption capacity evaluation model, the long-term dependence between renewable energy absorption capacity and its main influencing factors can be captured in parallel by inputting each typical scenario in the source-load scenario set. Finally, the output results are weighted and summed according to the probability of typical scenarios, which realizes an accurate capture of the uncertain characteristics on both sides of the source and load considering multiple scenarios.
TABLE 2 | Results of scene reduction.
[image: Table 2]5.4.2 Comparison of evaluation indexes in different seasons
In order to verify the superiority of the proposed evaluation method of renewable energy absorption capacity, this paper selects the typical daily method and time series production simulation based on the model, the long short-term memory neural network, and the random forest based on machine learning as the benchmark prediction methods. The accuracy of renewable energy consumption capacity evaluation is compared and analyzed between the ATCN model and the above methods. Table 3 gives the average performance evaluation index results of different methods in all scenarios in four seasons in detail. From the comparative analysis in Table 3, it can be seen that the ATCN model has achieved the best evaluation accuracy in three evaluation indexes: MAPE, RMSE, and R2. That is, compared with all benchmark evaluation methods, the ATCN model has different degrees of accuracy improvement in three different performance evaluation indexes. Compared with the model-based time series production simulation, the proposed method in this paper has a decrease of 3.11% in MAPE, a relative decrease of 51.58% in RMSE, and an increase of 0.59% in R2. Compared with the long short-term memory neural network based on machine learning, the proposed method in this paper has a decrease of 6.12% in MAPE, a relative decrease of 54.80% in RMSE, and an increase of 0.71% in R2. The typical day method only considers the operation of the system in typical or extreme scenarios and cannot accurately characterize the time series fluctuation characteristics on both sides of the source and load of the system. The time series production simulation method relies on complex mathematical modeling and time series deduction and simplifies the model in the modeling process. Therefore, it is difficult to understand the real operation of the system. The LSTM method cannot extract the feature information of different time scales by stacking multiple convolution layers, and it is difficult to effectively capture the local dependencies in sequence data. The random forest method will have overfitting problems when modeling datasets with specific noise, and it is difficult to make predictions beyond the data range of the training set, so it will not perform well when the scene changes greatly. The attention mechanism and time convolution network of the ATCN model can extract features of different scales from the historical data of massive renewable energy absorption in different scenarios by stacking convolution layers and increasing the receptive field of the convolution kernel, effectively capture the long-term dependence between sequence data, and fully explore the implicit correlation between key variables of power grid operation and the actual absorption of renewable energy.
TABLE 3 | Accuracy of different assessment methods.
[image: Table 3]5.4.3 Comparison of the results of 1 week selected in different seasons
In order to verify the evaluation effect of the model proposed in this paper on the absorption capacity of renewable energy in different seasons, 1 week in each of the four seasons is selected for comparative analysis. The spring period is from 21 March to 27 March 2021. The summer period is from 21 June to 27 June 2021. The autumn period is from 21 September to 27 September 2021. The winter period is from 21 December to 27 December 2021. The comparison of the evaluation results of different methods is shown in Figure 8.
[image: Figure 8]FIGURE 8 | Comparison of evaluation results of renewable energy absorption capacity: (A) Spring; (B) Summer; (C) Autumn; (D) Winter.
It can be seen from Figure 8 that the fluctuation range of renewable energy absorption capacity in spring is larger, while the fluctuation range of renewable energy absorption capacity in autumn is smaller. Under different seasonal conditions, the model proposed in this paper has the smallest error and the highest evaluation accuracy in evaluating renewable energy absorption capacity, showing good robustness and adaptability. This is because the ATCN model proposed in this paper can effectively learn the random fluctuation characteristics of both sides of the source and the load after training based on the source-load scenario set and achieve accurate capture of the fluctuation characteristics of renewable energy absorption capacity.
5.4.4 Comparison of the results of different hyperparameters
In order to further verify the effectiveness of the model, we consider changing the network structure hyperparameters of the model and verifying the influence of different hyperparameters on the model. Four kinds of hyperparameters that affect the evaluation accuracy of renewable energy absorption capacity are considered: sequence input length, time window length, convolution kernel size, and expansion coefficient. The experimental results are shown in Table 4. During the experiment, except for the corresponding hyperparameters, other hyperparameters remain unchanged, and the experimental results are averaged 10 times.
TABLE 4 | ATCN hyperparametric analysis.
[image: Table 4]With the gradual increase in the sequence input length, time window length, and expansion coefficient, the accuracy of the model shows an increasing trend first and then decreasing. In a certain range, with an increase in the sequence input length or time window length, the model can make full use of more input data, and the increase in extracted features is beneficial to improving the performance of the model. However, when the length exceeds a certain range, the model cannot fully capture the long-term time dependence of time series, which leads to the gradual decline of model’s performance. In a certain range, the increase in the expansion coefficient will lead to the enlargement of the receptive field, which will help the network capture the dependence of longer time series. However, with the increase in the expansion coefficient, the number of network layers gradually deepens, and the amount and complexity of calculations increase, which makes the model more difficult to train, so the accuracy of the model decreases. The performance of the model decreases with the increase in the convolution kernel size, which is due to the loss of too much detailed information transmitted to the high-level convolution kernel when using a large-size convolution kernel. Finally, when the sequence input length is 96, the time window length is 12, the convolution kernel size is 3, and the expansion coefficient is 4, the ATCN model obtains the best evaluation effect.
5.4.5 Comparison of the calculation efficiency of different methods
Table 5 shows the comparison of the average training time and average evaluation time in the source-load scenario set between the renewable energy absorption capacity evaluation method proposed in this article and other methods.
TABLE 5 | Calculation time of different assessment methods.
[image: Table 5]As can be seen from the table, the method proposed in this paper avoids the complex mathematical modeling and model solving of the model-driven method and has fast solving speed and high prediction accuracy. By avoiding the use of circular connections and inputting time series data in parallel for training, the training time and evaluation time are significantly shortened. The typical day method takes the absorption of renewable energy in typical scenes as a reference and does not need complicated training. It only needs to analyze and calculate the data of typical scenes in the source-load scene set, which is fast in calculation time. The time series production simulation method needs to comprehensively consider the constraints of various types of units and large-scale power grids to realize time-by-time simulation of power grid dispatching operation conditions. Complex mechanism modeling leads to the time-consuming problem of finding the optimal solution in multiple scenarios. Because of the internal structural characteristics of LSTM, its training process is processed sequentially with the passage of time, and it is impossible to realize the parallel processing of time series data, which leads to the time-consuming training and evaluation in the source-load scene set. Because each decision tree can be trained independently, the random forest can be processed in parallel, but with the increase in the number of decision trees, its computational complexity is greatly improved, especially when facing multi-scene source and load data. Therefore, it is necessary to train multiple decision trees at the same time, which further increases the training time and evaluation time of the random forest algorithm.
6 CONCLUSION
In this paper, aiming at problems such as the low evaluation efficiency of the traditional renewable energy absorption capacity evaluation method and the inaccurate evaluation results caused by the evaluation in a single scene determined by the source-load curve, a multi-scenario renewable energy absorption capacity evaluation method based on an attention-enhanced time convolution network is proposed. The simulation analysis is carried out using the real renewable energy historical absorption data of a provincial power grid in southwest China. The main results are as follows:
(1) The trained generator network can fully mine the implicit association of massive historical data, generate the source-load scene set in line with the actual operation law of the system, and provide scene support for the evaluation of renewable energy absorption capacity.
(2) The attention mechanism and time convolution network help in fully mining the long-term dependence of historical time series information in multiple scenarios so as to effectively improve the evaluation accuracy of the model. In addition, the training speed of the model is effectively improved through parallel training.
(3) The ATCN model is trained based on massive historical data of multiple scenarios, which can fully learn the random fluctuation characteristics of both sides of the source-load under different scenarios and realize an accurate capture of the fluctuation characteristics of the absorption capacity of renewable energy so as to effectively improve the robustness and adaptability of the model.
It is worth noting that the training of the neural network is highly dependent on the quality of the data. The follow-up work will integrate a data-driven and knowledge-driven model and further improve the performance and interpretability of renewable energy absorption capacity evaluation by embedding prior knowledge in the model training process.
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The household energy management system (HEMS) has become an important system for energy conservation and emission reduction. In this study, home energy management considering carbon quota has been established. Firstly, the household photovoltaic output model, load model of various electrical appliances, battery load model, and charging and discharging of electric vehicles (EVs) model are established. Secondly, the carbon emission and carbon quota of household appliances and EVs are considered in these models. Thirdly, the energy optimization model of minimum the household user’s total comprehensive operation cost with the minimum total electricity consumption, carbon trading cost, battery degradation cost, and carbon quota income are proposed, taking into account constraints such as the comfort of users’ energy use time. Subsequently, the improved particle swarm optimization (IPSO) algorithm is used to tackle the problem. Compared to the standard particle swarm optimization (PSO), the IPSO has significantly improved the optimization effect. By comparing the optimization results in different scenarios, the effectiveness of the strategy is verified, and the influence of different carbon trading prices on optimal energy scheduling has been analyzed. The result shows that the comprehensive consideration of carbon trading cost and total electricity cost can reduce the household carbon emissions and the total electricity cost of the household user. By increasing the carbon trading price, the user’s carbon trading income and the EV carbon quota income increase, and the overall operating cost decreases; the guidance and regulation of carbon trading price can make a valuable contribution to HEMS optimization. Compared to the original situation, the household carbon emissions are reduced by 14.58 kg, a decrease of over 21.47%, while the total comprehensive operation cost are reduced by 14.12%. Carbon quota trading can guide household users to use electricity reasonably, reducing household carbon emissions and the total cost of household electricity.
Keywords: home energy management, comfort, carbon quota, the battery degradation, IPSO
1 INTRODUCTION
With the economy increasing and society developing, carbon emission reduction has become a hot research topic. The proportion of household electricity in economic and social development is gradually increasing, and household energy management is becoming more important. Analyzing users’ electricity consumption habits, adjusting their electricity consumption mode, and realizing energy-saving and low-carbon operation will help to improve power system operation. It is effective in achieving the dual carbon goal on the end user by reducing their electricity consumption cost and carbon emissions.
The studies using home energy management systems (HEMSs) essentially pursue the optimal energy consumption scheme for energy users.
Researchers have focused the optimization problem on various objectives. The objective of many studies is to minimize operation cost (Javadi M S et al., 2020; Lu Q et al., 2020; Sarker E et al., 2020; Thabo G et al., 2021; Ubaid ur Rehman et al., 2022). Sarker E et al. (2020) studied a model of household load management, aiming to minimize the total electricity cost. The response effects of different types of households to price demand with the goal of minimizing cost were analyzed. Javadi M S et al. (2020) proposed an effective HEMS for the self-scheduling of users, and this model considered a dynamic pricing scheme. Lu Q et al. (2020) proposed a model aiming to minimize the peak load and electricity cost to better coordinate household appliances. Thabo G et al. (2021) studied the impact of user’s price and incentive demand response on dynamic economic dispatch and established a multi-objective model considering operating costs and renewable energy penetration. Meanwhile, Marcos Tostado-Véliz et al. (2022) developed a HEMS that incorporates three different strategies of demand response; it also used a novel scenario-based approach. Marcos Tostado-V´eliz et al. (2023) proposed a fully robust model and used it to solve the inherent uncertainties which may arise in home energy management. H. Merdanoglu et al. (2020) focused on optimal appliance power to minimize energy cost. The uncertainties from renewable energy, the end user, and the Real-time Transport Protocol were incorporated into the mixed integer linear programming problem through simple stochastic models. Based on the purpose of reducing electricity charges, the above documents considered the guidance of price and incentive on household energy scheduling, but the user’s comfort requirements and other aspects were not considered.
As mentioned above, these studies ineluctably require users to compromise between electricity costs and comfort. This would inherently change user’s energy comfort. Some researchers have studied the end user’s comfort/discomfort from a multi-objective optimization perspective. A.H. Sharififi et al. (2019) proposed a method that can reduce electricity cost while taking into account the residents’ comfort, and it can improve the peak-to-average ratio. Pamulapati T et al. (2020) established a multi-objective optimization model for intelligent electrical equipment based on economy and comfort. ALIC O et al. (2021) considered the compromise between user cost and comfort goal and analyzed the impact of various electricity prices on user energy management. The above studies considered the comfort of electricity, but the carbon emission cost and carbon trading mechanism of the user were ignored. Li ZK et al. (2020) established a bi-layer optimization model which mainly considered the power station and fully participating householders. Lu Q et al. (2020) aimed to minimize the energy consumption cost and comfort deviation, and it built six modeled by comfort deviation for different kinds of uncertain behaviors.
Optimizing the charging/discharging behaviors of both EVs and energy storage in HEMSs has been widely discussed. Wang S et al. (2020) and Marcos Tostado-V´eliz et al. (2023) studied the cost of battery degradation. Sun C et al. (2016) focused on the economics between lithium-ion battery aging and economic performance in energy management. The battery degradation cost will affect the EVs and energy storage participating in home energy management. To encourage the users to participate in home energy management, a main method is to design a reasonable method for battery degradation costs’ compensation. Wang Y et al. (2020) and Nie Q et al. (2022) thought the carbon trading mechanism is an important way to compensate for the battery degradation cost. Lu Q et al. (2021) proposed a two-level community integrated energy service system optimization model. Gao JW et al. (2021) proposed a comprehensive energy multi-objective scheduling model, which considered the utility of decision makers. The communities’ carbon emissions are taken into account. Tan QL et al. (2019) proposed a model with multiple hybrid energy scheduling for an integrated power system, and it considered five different scheduling modes and a dynamic carbon trading system. Cheng X et al. (2021) built a carbon emission flow model and used it to reduce carbon emissions by carbon trading. These studies on carbon emissions pay close attention to the energy sector, production enterprises, and the community integrated energy, but the end-users in HEMSs are often ignored. This paper will focus on the optimization of the HEMS considering user’s satisfaction and carbon emission.
Ali Abdelrahman O. Ali et al. (2022) have reviewed some optimization schedule methods, which include the mathematical, metaheuristic, and artificial intelligence optimization techniques. Mathematical techniques contain two main groups: linear programming and non-linear programming. Rahima S et al. (2016) conducted a study verifying that the mathematical methods cannot deal with large number of different domestic appliances having unpredictable, non-linear, and complicated energy consumption models. H. Merdanoglu et al. (2020) and El Sayed F. Tantawy et al. (2022) thought heuristic optimization is a strategy intended to solve any problem more efficiently when mathematical approaches are too slow to solve complex problems. Many heuristics optimization scheduling methods are available for HEMS, such as Genetic Algorithm (GA) (Li S et al., 2019; J. Zupan cic et al., 2020; A.H. Sharififi et al., 2019), PSO (Rahima S et al., 2016), and hybrid algorithm A (Ahmad et al., 2017; Z. A. Khan et al., 2019). To avoid the local optimal phenomenon in the solution, improved algorithms are used to quickly solve the model (Rezaee Jordehi A et al., 2019; Zhu J et al., 2019). Shintaro Ikeda et al. (2019) used differential evolution (DE) to apply district energy optimization, and it was proved the method has high potential to provide comprehensive district energy optimization within a realistic computational time. Ima O et al. (2019) proposed an improved enhanced DE for implementing demand response between aggregator and consumer. Its results show that the algorithm is able to optimize energy usage by balancing load scheduling and the contribution of renewable sources while maximizing user comfort and minimizing the peak-to-average ratio. It is clearly justified that heuristic optimization is suitable for HEMSs. The IPSO has been proven to have good performance in terms of computational speed and solution accuracy.
The main contributions of this paper are as follows:
(1) This paper classifies the loads and establishes models for different loads, and the charging/discharging of household batteries (BT) and electric vehicles (EV) are considered. The load working characteristics and power demand are taken as constraints, and the energy consumption time of time-transferable loads is used to represent user satisfaction.
(2) The household user carbon trading cost model and carbon quota income model for EVs are established, and the battery degradation cost is considered. The optimal scheduling model of the HEMS is formed which aims to minimize the total electricity cost and carbon trading cost, while obtaining the EV carbon quota income of household users. It explores the allocation of household energy and EV carbon.
(3) The IPSO algorithm is used; several scenarios are designed in the calculation examples and the sensitiveness of carbon trading price is analyzed. When carbon trading is considered, the system obtains the carbon quota income, the comprehensive total cost is reduced without carbon trading, and its carbon emissions are also reduced.
The rest of the paper is as follows: Section 2 introduces the HEMS framework; Section 3 constructs the load model; Section 4 establishes the household energy scheduling model considering electricity price, user’s energy consumption time, carbon quota mechanism, and battery degradation; in Section 5, the IPSO is used to solve the problem. In Section 6, examples are given. The household user’s energy management objective under fixed carbon trading price and changing carbon trading price on dispatching are analyzed. Section 7 gives some conclusions.
2 THE HEMS FRAMEWORK
The HEMS is supported by advanced measurement monitoring and control technology, a bidirectional communication network, and artificial intelligence technology. The composition for the HEMS is shown in Figure 1. It shows the proposed HEMS integrates the photovoltaic power, household electricity load, and BT.
[image: Figure 1]FIGURE 1 | HEMS structure.
For the effective dispatch of the household electricity load, this study has classified the load into two categories: uncontrollable load and controllable load. The uncontrollable load covers all necessary appliances (e.g., light, television (TV), computer, and refrigerator). Because of the user’s habits with these appliances, these devices can acquire power at any time without interruption.
The other category is controllable load, including time-transferable load and power-adjustable load. The power-adjustable loads (e.g., EV, water heater, and air conditioner) are scheduled with the user’s preferences. For the time-transferable load, it includes the electric cooker, washing machine, dishwasher, etc. Based on the reasonable electricity price and corresponding constraints, the HEMS can execute the optimal scheduling for the time-transferable loads.
This model contains the time of use pricing, photovoltaic power, and the demand of household electricity loads considering consumer personal preferences. This paper mainly focuses on the energy management and carbon trading of the HEMS, the HEMS structure is shown in Figure 1. The purpose of the HEMS is to reduce the electricity cost, satisfy the electricity needs, and reduce the carbon emissions for household users, and it can also assist in peak load shifting.
3 LOAD MODELING
The usage status of the uncontrollable load has a huge impact on normal life. The time-transferable load will not be interrupted during the whole operation time, the power consumption of such loads generally accounts for a large proportion, and consumers can transfer such loads from peak hours to other periods based on electricity price or the users’ preference. The power-adjustable load can be switched on and off under the condition of meeting the basic working hours, and the power can be adjusted according to the demand.
3.1 Power-adjustable load model
[image: image]
As shown in Eq. 1, where [image: image] denotes power-adjustable load, [image: image] is the power consumed by power-adjustable load [image: image] at time [image: image], and [image: image] is the nominal power of power-adjustable load [image: image]. The [image: image] is the status of load [image: image] at time [image: image], where 0 is off and 1 is on; [image: image] and [image: image] are the working time range for power-adjustable load [image: image]; and [image: image] is the duration time of load [image: image].
Air conditioners, water heaters, household batteries, and EVs are power-adjustable loads. Air conditioners have two states, cooling and heating, and its load models are as follows Eqs 2–6:
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The relationship between the indoor temperature change and operating power of air condition can be expressed as Eq. 7:
[image: image]
where [image: image] and [image: image] are the temperature set in the cooling and heating state of the air conditioner at time t, respectively; [image: image] and [image: image] are the room temperature range set in the cooling and heating state of air conditioners, respectively; [image: image] is the indoor temperature at time [image: image]; [image: image] is the outdoor temperature at time [image: image]; [image: image] is the influence coefficient of outdoor temperature on indoor temperature; [image: image] is the operating coefficient of the air conditioner, where [image: image] means that the air conditioner operates in the cooling state and [image: image] means the air conditioner operates in the heating state; and [image: image] and [image: image] are the start-stop variable of the air conditioner at time [image: image] period, where 0 is stopping and 1 is starting.
The water heater load model is shown in Eq. 8:
[image: image]
where [image: image] is the water temperature set by the water heater; [image: image] is the set range of water temperature; [image: image] is the water temperature at time [image: image]; and [image: image] is the start-stop variable of the water heater at time [image: image], where 0 is stopping and 1 is starting.
The output model of the BT is shown in Eq. 9:
[image: image]
Output model of an EV shown in Eq. 10:
[image: image]
where [image: image] and [image: image] are the BT and EV state of charging (SOC) at time [image: image], respectively; [image: image] and [image: image] are the remaining battery capacity of the BT and EV at time [image: image], respectively; [image: image] and [image: image] are the charging and discharging power of the BT at time [image: image], respectively; [image: image] and [image: image] are the EV charging and discharging power at time [image: image], respectively; [image: image] and [image: image] are the BT charging and discharging efficiency, respectively; [image: image] and [image: image] are the EV charging and discharging efficiency, respectively; [image: image] and [image: image] are the maximum charging and discharging power of the BT, respectively; [image: image] and [image: image] are the maximum charging and discharging power of the EV, respectively; [image: image] and [image: image] are the maximum and minimum charge state value of the BT, respectively; [image: image] and [image: image] are the maximum and minimum SOC value of the EV, respectively; [image: image] and [image: image] are the charging and discharging variables of the BT and EV at time [image: image], where the value is 0 or 1; and [image: image] and [image: image] are limit of charging and discharging times of the BT and EV, respectively.
3.2 Time-transferable load
The time-transferable load has the delayed start function, which can transfer the working interval but cannot reduce the load. The startup and running time can be flexibly set according to the needs of users.
[image: image]
As shown in Eq. 11, where [image: image] denotes the time-transferable load; [image: image] is the electricity power of the time-transferable load [image: image] at time [image: image]; [image: image] is the rated power of time-transferable load [image: image]; [image: image] is start-variable 0–1, where 1 represents the operation of time-transferable load [image: image] and 0 indicates the time-transferable load is off; [image: image] and [image: image] are the time-transferable load [image: image] allowable start and stop time of operation, respectively; [image: image] and [image: image] are the time-transferable load [image: image] start and end time of actual operation, respectively; and [image: image] is duration over which time-transferable load [image: image] needs to work.
3.3 Uncontrollable load
The uncontrollable load scheduling model is shown in Eq. 12:
[image: image]
where [image: image] is the start-stop variable of uncontrollable load k at time [image: image], where 0 indicates off; [image: image] and [image: image] are the allowable start and end time of uncontrollable load [image: image], respectively.
4 HOUSEHOLD ENERGY SCHEDULING MODEL BASED ON TIME-OF-USE TARIFF AND CARBON QUOTA MECHANISM
An energy scheduling model is proposed considering the power consumption cost, carbon trading cost, EV carbon quota income, and battery degradation cost.
4.1 Household user electricity cost model
For household users, the electricity purchase cost [image: image] includes the electricity consumption cost of the uncontrollable load, time-transferable load, and power-adjustable load. A complete dispatching cycle can be divided into [image: image] periods, and the household user’s electricity purchase cost [image: image] can be expressed as Eq. 13:
[image: image]
where [image: image] is the time-of-use electricity price at time [image: image]; [image: image] is the photovoltaic power consumed by household appliances at time [image: image]; and [image: image] is the total energy consumption of all appliances at time [image: image].
[image: image]
[image: image]
[image: image]
[image: image]
As shown in Eqs 14–17, where [image: image], [image: image], and [image: image] are the power of the power-adjustable load, time-transferable load, and uncontrollable load at time [image: image], respectively; [image: image], [image: image], and [image: image] are the number of the corresponding load; [image: image], [image: image], and [image: image] are the power consumption of power-adjustable load, time-transferable load and uncontrollable load at time [image: image], respectively.
Household user’s profit [image: image] from selling electricity is shown in Eqs 18–20:
[image: image]
[image: image]
[image: image]
where [image: image] is the photovoltaic supply power at time [image: image] and [image: image] is the photovoltaic power sold to the grid at time [image: image]. The [image: image] is the power that household users sell electricity to the grid at time [image: image]; [image: image] is the price that users sell electricity at to the grid at time [image: image]; and [image: image] is the discharge power of EV at time [image: image].
The total electricity cost [image: image] includes electricity purchase cost [image: image] and profit from selling electricity, as shown in Eq. 21:
[image: image]
4.2 Household user carbon trading cost model
The carbon dioxide emission generated by the household user is shown in Eq. 22:
[image: image]
where [image: image] is the carbon dioxide emission generated by the household user’s electricity usage at time [image: image], and [image: image] is the carbon emission coefficient.
The amount of carbon emission quota [image: image] obtained by household users from external electricity purchase at time [image: image] is shown as Eq. 23:
[image: image]
where [image: image] is the carbon emissions quota allocation coefficient.
When the free carbon quota received by households is greater than their actual carbon emissions, household users can sell their excess carbon emissions to gain profits. If the free carbon quota received by household users is less than their actual carbon emissions, household users need to buy the required carbon emissions from the carbon trading market. Therefore, the carbon trading cost of household users at time [image: image] is shown as Eq. 24:
[image: image]
where [image: image] is the carbon trading cost of households at time [image: image]. When [image: image] is positive, it means households need to spend extra money to buy the required carbon quota; when [image: image] is negative, it means the income of households that can sell carbon quota. [image: image] is the carbon trading price.
4.3 Carbon quota income model for EV
The carbon quota [image: image] obtained by the discharge of an EV at time [image: image] is as follows Eqs 25, 26:
[image: image]
[image: image]
where [image: image] is the time step; [image: image] is the carbon quota owned by the EV at time [image: image]; [image: image] is the distance that 1 kwh EV can travel; [image: image] is the carbon emission of the fuel-using car driving 1 km; [image: image] is the carbon emission of per output power of thermal power; and [image: image] is the proportion of thermal power capacity in EV charging quantity at time [image: image], with the proportion of the total thermal power output in the total system output at time [image: image] used for calculation.
The carbon quota income [image: image] that the EV can sell at time [image: image] is shown in Eq. 27:
[image: image]
where [image: image] is the EV carbon quota price.
4.4 System objective function
Considering the total electricity cost of the household, household user’s carbon trading cost, battery degradation cost, and EV carbon quota income comprehensively, the objective of the HEMS is to minimize the total comprehensive operation cost:
[image: image]
As shown in Eq. 28, where [image: image] represents the cost of battery degradation in both the EV and the BT.
[image: image]
As shown in Eq. 29, where [image: image] is the battery cost (which includes the EV battery and BT); [image: image] is the labor cost for battery replacement; [image: image] represents the battery capacity; [image: image] is the cycle life of batteries; and [image: image] is the discharge depth at [image: image].
The expected operation time represents the user’s comfort of energy use. Therefore, the energy consumption time of the time-transferable load is used to represent user satisfaction, and its satisfaction constraint is shown in Eq. 30:
[image: image]
During the scheduling process, users need to comply with the following power balance constraints:
[image: image]
As shown in Eq. 31, where the [image: image] is the user’s purchased power at time [image: image].
In summary, the objective function is Eq. 28, and the power balance equality constraint is Eq. 31. Other relevant constraints have been given in the corresponding load models above.
5 OPTIMIZATION OF HMES BASED ON IPSO ALGORITHM
For the optimization of the HEMS, it requires a large amount of calculation. Because there are too many variables in the HEMS, heuristic algorithms can tackle these problems efficiently. At present, heuristic algorithms are widely used in related fields such as community and household energy scheduling. Although heuristic algorithms may not ultimately obtain the ideal value, the IPSO algorithms can obtain the optimal solutions that are extremely close to the ideal value.
5.1 IPSO algorithm
During the parameter initialization phase, the standard PSO algorithm initializes particle positions and velocities with random numbers, resulting in suboptimal exploration of the solution space and limited global search capabilities, particularly in constraint optimization scenarios. Furthermore, the standard PSO algorithm is susceptible to premature convergence and loss of diversity, ultimately hindering its ability to attain highly accurate optimal solutions in HEMS optimization contexts.
The IPSO retains the population diversity, and the initial population is within the feasible domain of particles, which improves the quality of the initial population particle solution. The initial moment the particle swarm population is generated as shown in Eq. 32:
[image: image]
where [image: image] is the initial particle population of the IPSO; [image: image] are uniform random numbers for the IPSO; [image: image] is the lower limit of the [image: image] th particle solution in the IPSO; and [image: image] is the upper limit of the [image: image] th particle solution in the IPSO algorithm.
After the improvement, the PSO algorithm first compares the fitness value [image: image] of each particle with the individual extreme [image: image], and if [image: image], [image: image] is replaced with [image: image]. [image: image] is then compared with the global extremum [image: image], and if [image: image], [image: image] is replaced with [image: image].
At the same time, in order to alleviate the shortcomings of premature convergence and diversity loss in the standard PSO and improve the solvability of the algorithm in constrained optimization problems, the IPSO improves the update of the standard PSO, and the update formula is shown in Eq. 33:
[image: image]
where n is the current iteration number, [image: image] is the position of the [image: image] th population in the IPSO; [image: image] is adaptive coefficient; [image: image] is convergence factor [image: image] is Individual extremum.
The IPSO algorithm using Eq. 33 can update and be solved during the optimization process, effectively improving the algorithm’s constraint solving ability and enhancing the PSO algorithm’s ability to find the global optimal solution. However, after updating the position of particles in the population, there may be situations where some particles exceed the population constraint boundary, which greatly reduces the efficiency of the algorithm in searching for particles in the feasible domain. The IPSO algorithm improves the above situation by applying a boundary function to the updated particle population, thereby enhancing the efficiency of the algorithm in searching for feasible solutions. The boundary function of the IPSO algorithm is as follows Eq. 34:
[image: image]
5.2 DE algorithm
DE has fewer parameters and is relatively simple to calculate, making it widely used in power scheduling problems. The main process of DE can be shown as five parts (Initialization, Mutation, Crossing, Selection, and Termination):
(1) Initialization:
[image: image]
As shown in Eq. 35, where [image: image] (d = 1, 2, … , D) is the dth component of [image: image], which satisfies the constraint condition [image: image] ∈ [image: image]. The [image: image] and [image: image] represent the lower and upper limits of the search range, respectively.
(2) Mutation: The most common mutation strategies are as follows Eqs 36–38:
DE/rand1
[image: image]
DE/current-to-rand/1
[image: image]
DE/best/1
[image: image]
where [image: image], [image: image], [image: image] ∈[1,NP], NP is a random number that is not identical to each other. The [image: image] and [image: image] is the difference of randomly selecting two vectors. The [image: image] is the optimal individual in the G generation population. The scaling factor is [image: image].
(3) Crossing:
[image: image]
As shown in Eq. 39, where [image: image] represents the probability of crossing, with values ranging from 0 to 1, and [image: image] is a random integer on [image: image].
(4) Selection:
[image: image]
As shown in Eq. 40, where [image: image] refers to the parent individual who successfully enters the next-generation after comparison.
(5) Termination: When G reaches Gmax, the requirement is met.
5.3 Algorithm comparison
This study assesses the performance of the algorithm by employing the Sphere, Ackley, Rastrigin, and Griewank functions, with an optimal value of 0 for these functions. The pertinent parameters of the test functions are presented in Table 1. Additionally, the DE, PSO, and IPSO methods are concurrently selected for comparison. Figure 3 illustrates the convergence trajectories of these algorithms, each independently solving the functions 500 times in a 100-dimensional space.
TABLE 1 | Function for comparison.
[image: Table 1]Figure 2 verifies the effectiveness of the IPSO. The IPSO has the best convergence effect compared to PSO and DE, while its final convergence value is closest to the optimal extreme value. The PSO optimization effect is the worst. By adjusting with the introduction of random learning factors, the convergence of the algorithm has been improved.
[image: Figure 2]FIGURE 2 | Function value convergence curve.
From Table 2, comparing the algorithms in solving complex functions, the IPSO has a faster convergence time than the DE. For the optimization process of the HEMS, a large amount of computing resources is necessary. After comparing the above algorithms, this study selects the IPSO for optimization.
TABLE 2 | Comparison of results.
[image: Table 2]5.4 The IPSO algorithm process of HEMS
In summary, the IPSO algorithm can enhance computational efficiency and global search capability. The flow chart of the HEMS can be seen in Figure 3. The steps and procedures of the HEMS optimization based on the IPSO algorithm are as follows:
[image: Figure 3]FIGURE 3 | The flow chart of the HEMS.
Step 1:. Initialize the EV charging power, wind power generation, etc., as well as the initial parameters of the PSO algorithm such as attenuation coefficient [image: image], [image: image], individual extremum [image: image], global extremum [image: image], etc.
Step 2:. Determine whether the time condition and the number of iterations conditions are met. If the conditions are met, proceed to Step 3, otherwise exit the program.
Step 3:. Calculate the medium and inequality constraints of the household energy management system and their penalty functions.
Step 4:. Obtain the objective function value.
Step 5:. If the individual extremum [image: image] is less than or equal to the global extremum [image: image], the value of the global optimization solution is updated, otherwise Step 4 is returned at the same time.
Step 6:. Update particle swarm attenuation coefficient alpha, beta.
Step 7:. Update the position of the particle according to Eq. 33.
Step 8:. Determine whether the end condition is met, and if so, exit (error reaches set accuracy or reaches the maximum number of cycles), otherwise return to Step 3 to continue the calculation.
6 CASE STUDIES
Simulations are given in some cases for the performance of the proposed HEMS model. The scheduling time horizon is 24 h and the scheduling slot is 1 h. The load curve is divided into three different parts: the valley period (from 22:00 to 06:00), when the electricity price is 0.3 CNY/kWh (China yuan/kWh); the off-peak period (from 13:00 to 17:00), when the electricity price is 0.45 CNY/kWh; and the peak period (from 06:00 to 13:00 and from 17:00 to 22:00), when the electricity price is 0.6 CNY/kWh. The discharging of EVd and PV grid price is 0.45 CNY/kWh. The EV battery capacity is 16 kWh, the maximum power of charging/discharging is 1.5 kW, and the charging/discharging efficiencies are 90%. The BT capacity is 10 kWh, the maximum power of charging and discharging is 1 kW, the charge and discharge efficiencies are 90%, and the maximum/minimum state of charge of the EV and BT are 0.9/0.2. When the indoor temperature is higher than 26°C, the air conditioner is turned on; when the temperature is lower than 24°C, it is off. The water heater starts heating while the water temperature is lower than 46°C, and stops heating while the water temperature is higher than 52°C. The electricity consumption of different appliances can be seen in Tables 3, 4. The start-end time of the appliances shows the users’ preferable timings. Other simulation parameters [17] are listed in Table 5. This article uses an IPSO algorithm to solve the problem.
TABLE 3 | Description of time-transferable appliances.
[image: Table 3]TABLE 4 | Description of uncontrollable appliances.
[image: Table 4]TABLE 5 | The related parameters of carbon trading.
[image: Table 5]6.1 Optimization analysis of household energy under fixed carbon trading price
The following scenarios are set for the comparison of several different schemes:
Scenario 1:. Initial household electricity cost and carbon emissions do not consider optimal scheduling;
Scenario 2:. Optimal scheduling of household energy does not consider carbon trading and time satisfaction;
Scenario 3:. Optimal scheduling of household energy only considers time satisfaction and does not consider carbon trading;
Scenario 4:. Optimal scheduling of household energy only considers carbon trading and does not consider time satisfaction;
Scenario 5:. Optimal scheduling of household energy considering carbon trading and time satisfaction.
Scenario 2, Scenario 3 show that the carbon trading cost of household users and the carbon quota income of EVs are not considered. Scenario 4, Scenario 5 show that the carbon trading cost of household users and the carbon quota income of EVs are considered. Scenario 1 is the initial electricity cost and carbon emissions of households without considering optimal scheduling; in Scenario 2, time satisfaction constraints, user carbon trading costs, and the carbon quota income of EVs are not considered, and the goal is minimizing the total electricity cost; in Scenario 3, carbon trading is not considered, but the time satisfaction constraint is considered, and the total electricity cost is minimized; Scenario 4 considers the user’s carbon trading cost, EV carbon trading income, and the user’s total electricity cost, and the objective is minimizing the user’s comprehensive operation cost, but the time satisfaction constraint is ignored; Scenario 5 considers the user’s total electricity cost, carbon trading cost, and EV carbon trading income, with the objective being minimizing the household user’s comprehensive operating cost with time satisfaction constraints. During the optimization process, the user’s typical daily load in summer is selected as the optimization data.
Figure 4 shows the typical outdoor temperature, the optimized indoor temperature, and the water heater temperature. Figures 5–10 show the power in Scenario 1, Scenario 2, Scenario 3, Scenario 4, Scenario 5.
As shown in Figure 4, the air conditioner remains on, the indoor temperature decreases significantly, and the user’s room can reach the required temperature range. After the water heater is turned on, the water temperature rises to meet the user’s needs.
Figure 5 shows the load comparison between different scenarios. The load increased sharply from 3:00 to 6:00, and the load also increased between 22:00 and 24:00. From 8:00 to 16:00, the load of users decreased sharply. The reason for this was that some of the load was transferred to other periods to reduce the costs.
In Figure 6, the air conditioner has been turned on and the user does not consider the influence of the electricity price on the total household appliances’ cost. When the electricity price is high, the cost of electricity consumption increases accordingly. Discharge of the EV is not used and the charging/discharging behavior of the BT is relatively random. In Figure 7, all electrical appliances run at the lowest electricity price within the allowable time period. Meanwhile, EVs and batteries charge when at low electricity prices and discharge when at high electricity prices. When the photovoltaic output and BT discharge exceed the electricity used by electrical appliances, the user will sell the excess electricity at noon.
In Scenario 1, the electricity cost of the air conditioner is 13.8 CNY; in Scenario 2, the operation time of the air conditioner is significantly reduced, and its electricity cost is 3 CNY and 21.7% less than Scenario 1, and the indoor temperature meets the requirements of the user. The total electricity consumption of the water heater remains unchanged; in Scenario 1, its running time is 19:00 to 22:00 and the electricity cost is 2.7 CNY; in Scenario 2, the running time is 19:00 to 21:00 and 23:00 to 24:00 and the electricity cost is 2.25 CNY and 0.45 CNY, respectively, and 16.7% less than Scenario 1. The user’s water demand is met.
In Scenario 1, the EV is charged between 21:00 and 05:00, and the battery is charged. In Scenario 2, the EV and battery are charged between 23:00 and 07:00, and the electricity cost is 2.25 CNY less than in Scenario 1. In Scenario 1, the EV does not discharge and the BT discharges randomly. In Scenario 2, the discharge of the EV is at 19:00 to 23:00, the BT discharges at 10:00–15:00 and 20:00–23:00, and the electricity cost of the EV and BT is 3.91 CNY less than Scenario 1. The washing machine, rice cooker, dishwasher, vacuum cleaner, and electric kettle all operate during the valley period, when the electricity price is lowest, which significantly cuts the total household electricity cost compared with Scenario 1. However, in Scenario 2, the use of vacuum cleaners is advanced to 5:00, and the use of washing machine and dishwashers is delayed to 23:00, but the user’s usage habits are not considered, resulting in low satisfaction. Compared with Figure 6, considering the time satisfaction of the user with electricity consumption in Scenario 3 of Figure 8, the usage time distribution of the electrical appliances is more reasonable. The vacuum cleaner is transferred from 05:00 to 09:00, the dishwasher changes working time from 23:00 to 21:00, the washing machine changes working time from 23:00 to 17:00, and the electric kettle from 22:00 to 19:00. When the users’ time satisfaction constraint is met, the electricity cost of the time-transferable load is 1.32 CNY more than Scenario 2. In Figures 9, 10, the running conditions of most appliances do not change greatly when carbon trading is considered. In Scenario 4, Scenario 5, carbon trading is considered. The reduction in EV mileage is no less than the increase in the discharge of the EV. Figure 11 gives a comparison of the cost and emissions in each scenario, and the battery degradation cost in each scenario is shown in Table 6.
As shown in Figure 11, compared with Scenario 1, the total comprehensive operation cost and carbon emissions of Scenario 2, Scenario 3, Scenario 4, Scenario 5 have significantly decreased. After considering the time satisfaction constraint in Scenario 3, Scenario 5, compared with Scenario 2, Scenario 4, the electricity purchase cost increases by 1.13 CNY and 0.63 CNY, respectively. In Scenario 4, Scenario 5, when the carbon trading is considered, the system obtains carbon quota income, and the comprehensive total cost is reduced without carbon trading, and its carbon emissions are also reduced. As shown in Table 6, the battery degradation cost in Scenario 1 is much less than it in other scenarios, because EVs do not participate in scheduling, there is no battery degradation cost for EVs, and the overall battery degradation cost for households is lower than in other scenarios.
[image: Figure 4]FIGURE 4 | Indoor/outdoor temperature and water heater temperature.
[image: Figure 5]FIGURE 5 | Load in different scenarios.
[image: Figure 6]FIGURE 6 | Power consumption in Scenario 1.
[image: Figure 7]FIGURE 7 | Power consumption in Scenario 2.
[image: Figure 8]FIGURE 8 | Power consumption in Scenario 3.
[image: Figure 9]FIGURE 9 | Power consumption in Scenario 4.
[image: Figure 10]FIGURE 10 | Power consumption in Scenario 5.
[image: Figure 11]FIGURE 11 | Cost and carbon emissions.
TABLE 6 | Battery degradation cost.
[image: Table 6]6.2 Influence of carbon trading price on dispatching
This paper discusses the influence of carbon trading price on dispatching and adjusts the carbon trading price to 0.39 CNY/kg, 0.49 CNY/kg, 0.59 CNY/kg, and 0.69 CNY/kg, respectively. Table 7 shows the impact of carbon trading prices on the HEMS.
TABLE 7 | Impact of carbon trading price on the HEMS.
[image: Table 7]With the increase in carbon trading price in Table 7, the negative carbon trading cost of users is increasing, the EV carbon quota income is also increasing, and the overall operating cost is decreasing. Therefore, the guidance and regulation of carbon trading prices can play a guiding role in the HEMS.
7 CONCLUSION
In this paper, the household users’ electricity consumption behavior and carbon quota are considered, and the optimization model of the HEMS which uses price incentives to encourage the users to participate in the carbon interaction is established. A comprehensive total operating cost considering carbon quota and time satisfaction constraints is used to find the solution. The constraints of the user’s load and consumption habits are considered, while considering the cost of battery degradation in both the EV and BT. Then the IPSO algorithm is used to optimize the HEMS, and the effectiveness of IPSO has been demonstrated by a comparison.
Five scenarios were designed based on the optimization model. By the analysis and comparison, it is proved that the comprehensive consideration of carbon trading cost, the battery degradation cost, and total electricity cost can reduce the household carbon emissions and the total electricity cost of the household user better, giving consideration to the user’s electricity habit, operation economy, and battery lifespan. It encourages the end-users to allocate electrical power reasonably. Compared to Scenario 1, the household carbon emissions have been reduced 14.58 kg in Scenario 5, a decrease of over 21.47%, while the total comprehensive operation cost has been reduced by 14.12%. After considering the time satisfaction constraint in Scenario 3, Scenario 5, compared with Scenario 2, Scenario 4, the comprehensive operation cost of the system increases by 1.27 CNY and 1.2 CNY, respectively.
On this basis, the guiding and regulating influences of the carbon trading price on home energy management are analyzed. By the increasing of carbon trading price from 0.39 CNY to 0.69 CNY, the user’s carbon trading income and the EV carbon quota income are increasing from 0.36 CNY to 0.64 CNY, and the overall operating cost is decreasing from 26.03 CNY to 24.79 CNY. The next research direction is to deeply analyze the user’s comfort and load structure utilizing price incentives and carbon trade. Lu and Zhang, 2020.
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As the scale of the power grid expands and distributed energy sources are integrated, along with the emergence of random loads, topological control of distribution networks has become a novel means of control. Therefore, data-driven power flow calculations must be capable of rapidly and accurately computing power flow results even when there are changes in the network’s topology. In this paper, a data-driven power flow calculation method is proposed to take topological changes into account. Based on initial loop data, we employ an undirected-graph delooping-backtracking method to generate a set of feasible topological samples. Using the Monte Carlo method on this basis, we generate feasible samples for the network’s topology and power injection, thereby establishing a training dataset. By training a deep neural network on these samples and adjusting network parameters, we effectively address power flow calculations in the presence of topological changes. Case study results demonstrate that the data-driven power flow calculation method, considering topological changes, can rapidly and accurately compute power flow results when topology alterations occur.
Keywords: data-driven, distributed energy sources, power flow calculation, delooping-backtracking, deep neural network
1 INTRODUCTION
Power flow calculation in electric power systems is the process of determining voltage, current, and power distribution throughout the entire system based on given operational conditions and network structure. It is a fundamental technique that underpins various aspects of electric power systems, including system planning, dispatch, stability analysis, and power market operations, playing a crucial role in ensuring the stability, reliability, and efficient operation of the power grid.
Traditional power flow calculation methods, including the Gauss-Seidel method, Newton’s method, and the Fast Decoupled method, are widely used. However, these methods are all model-based approaches. On the one hand, these methods rely on complex mathematical models and detailed network parameter information, which can be difficult to obtain and prone to errors. On the other hand, these methods require iterative calculation for solving nonlinear power equations, posing challenges to computational speed in large-scale systems.
With the advancement of machine learning technology, data-driven power flow calculation has garnered significant attention from scholars. In comparison to traditional power flow calculation methods, data-driven approaches offer notable advantages. On one hand, data-driven power flow calculation does not require an in-depth understanding of network parameters, thus improving its applicability and accuracy. On the other hand, it does not necessitate complex iterative computations and can rapidly provide results using pre-trained models, making it more suitable for real-time scheduling and emergency response in power systems.
In recent years, scholars have conducted extensive research around data-driven power flow calculation.
In reference (Tan et al., 2020), a hybrid physical model-driven and data-driven approach for linearizing power flow model is proposed. It can retain the useful inherent information from the physical model and utilize the ability of data analysis to extract the inexplicit linear relationship. A data-driven linearization approach of PF equations is proposed in (Liu et al., 2019). Both partial least squares and Bayesian linear regression based algorithms are introduced to address the collinearity. In (Cui et al., 2020), a data-driven slow dynamic characteristic extraction and state estimation method are proposed to overcome the shortcomings of the computational burden caused by the Jacobian matrix inversion of the traditional method. A data-driven chance-constrained optimal gas-power flow (OGPF) calculation method without any prior assumption on the distribution of uncertainties of wind power generation is proposed in reference (Wang et al., 2021). Chen J et al. (2022) proposes a data-driven power flow (PF) linearization approach for three-phase SPF calculation. An approach with high adaptability to the nonlinearity of power flow is proposed in 6, which can significantly improve the calculation accuracy. Reference (Xing et al., 2022; Xing et al., 2022) respectively introduce a single bus data-driven power estimation based on modified linear power flow model and a modified data-driven power flow model for power estimation with incomplete bus data. The models proposed in these references exhibit higher accuracy compared to the linear power flow model. In (Crozier and Baker, 2022), a data-driven method for determining constraints that may be excluded from the formulation is proposed. A novel machine learning (ML) based data-driven risk assessment model for early-warning of power system transmission congestion is proposed in (Zhang et al., 2022). Chen Y et al. (2022) presents a novel data-driven power flow (DDPF)calculation method based on exact linear regression equations (ELREs), which offers higher computation efficiency. Liu et al. (2022a) and Chen et al. (2020) introduce a data-driven-aided linear three-phase power flow model for distribution power systems (DPSs), which offers higher accuracy and robustness. In (Liu et al., 2022b), a robust data-driven linear power flow (RD-LPF) model is constructed, which can significantly reduce average errors and unacceptable worst-case linearization errors. Reference (Li et al., 2023) introduces a data-driven linear power flow calculation model that incorporates the Kirchhoff’s Current Law(KCL). This model can be embedded in optimal power flow for distribution networks. A regression approach combining the principal component analysis (PCA), support vector regression (SVR) and ridge regression (RR) is developed, which improves the accuracy of PF calculation especially in the presence of bad data. A novel multi energy flow analysis method for integrated energy systems is proposed in (Zhu and Zhou, 2023) to learn the mapping relationship between the given variable and the demanded variable from the historical operation data. In (Shao et al., 2023), a physical-model-aided data-driven linear power flow (PD-LPF) model is proposed as a solution for addressing the issue of insufficient training data. It introduces physical model parameters to assist the data-driven training process, demonstrating excellent accuracy and robustness under severe missing-data conditions.
However, the data-driven power flow calculation problems addressed in the aforementioned studies assume that the topology of the electrical grid remains fixed. This allows for accurate power flow calculations in networks with a static structure. However, for distribution networks where topology changes due to network reconfiguration operations are possible, this can result in inaccurate power flow calculation results. This paper focuses on data-driven power flow calculations that take into account topological changes. To obtain a set of topological samples for training, we employ an undirected-graph delooping-backtracking method. To establish a more accurate relationship between topology and voltage/power, we utilize deep neural networks to learn from these samples, effectively addressing power flow calculation challenges posed by topological changes. The overall framework of the proposed data-driven power flow calculation method is presented in Figure 1.
[image: Figure 1]FIGURE 1 | The overall framework of the proposed data-driven power flow calculation method.
The contributions of this paper are as follows:
1) A feasible topological sample generation method based on undirected-graph delooping-backtracking is proposed, and feasible topological samples are established through loop data initialization, loop breaking and loop backtracking operations.
2) A data-driven power flow calculation method considering topological changes is proposed, and a power flow calculation model considering topological changes is obtained by encoding the topological data and integrating it into the input of the data-driven model, and using DBN for training.
The structure of this paper is as follows: Section 2 introduces the method for generating topological samples based on undirected-graph delooping-backtracking. Section 3 presents the data-driven power flow calculation model. Section 4 provides the case studies conducted in this paper. Finally, Section 5 offers the conclusions drawn from the research.
2 TOPOLOGICAL SAMPLES GENERATING BASED ON UNDIRECTED-GRAPH DELOOPING-BACKTRACKING
Radiation constraints are fundamental constraints in the operation of distribution networks. Neglecting radiation constraints during the process of generating topological samples can result in a large number of infeasible topological samples being incorporated into the data-driven model. This section employs the undirected-graph delooping-backtracking method to generate a feasible set of network topologies. Based on this, topological samples for training neural networks are generated through Monte Carlo simulations, ensuring that each topological sample satisfies radiation constraints.
The undirected-graph delooping-backtracking method involves obtaining a feasible set of topologies by breaking loops and backtracking on the complete network graph. The specific process includes three main steps: loop data initialization, loop breaking, and loop backtracking.
2.1 Loop data initialization
The first step is loop data initialization, and the algorithm is given in Algorithm 1. Initially, identify all fundamental loops in the network, denoted as Li, and find a total of NL fundamental loops. Assuming that the network branches are represented as [image: image], the algorithm involves determining which branches are included in each fundamental loop Li. If a branch bm belongs to Li, it is added to the fundamental loop Li. Additionally, shared branches among the fundamental loops should be identified, and be denoted as Cij. If bm belongs to both Li and Lj, then it is added to the shared branches set Cij. In the end, the loop data for the network can be obtained as [image: image], and [image: image]. Here, Nli represents the number of branches in Li, and Ncij represents the number of branches in Cij.
Algorithm 1. Loop Data Initialization.
Input: Branch data of the network [image: image]
Output: Loop data of the network [image: image], [image: image]
Find NL fundamental loops of the network
For m from 1 to NB
 For i from 1 to NL
  If bm belongs to Li (bm∈Li)
   Add bm into Li:
  End if
  For j from i+1 to Nli
   If bm belongs to Cij (bm∈Li & bm∈Lj)
    Add bm into Cij:
   End if
  End for
 End for
End for
Output loop data [image: image], [image: image]
2.2 Loop breaking
After obtaining the set of branches for each fundamental loop, the next step is to break the loops, and the algorithm is presented in Algorithm 2. For each fundamental loop, we iteratively disconnect one branch at a time. Assuming that the branches disconnected from each fundamental loop are respectively [image: image], the set [image: image] represents a potential loop-breaking strategy. By identifying all potential loop-breaking strategies, denoted as sap={s1, s2, …, sNs}, sap can be used to represent potential topological sets.
Algorithm 2. Loop Breaking.
Input: Loop data of the network [image: image]
Output: Potential open branches sap
n=1
For k1 from 1 to Nl1
 For k2 from 1 to Nl2
  …
   For kNL from 1 to NlNL
    [image: image]
    n=n+1
   End for
  …
 End for
End for
Output sap={s1, s2, …, sNs}
2.3 Loop backtracking
The potential topological sets obtained through loop breaking may still contain islands that need to be further eliminated using loop backtracking, as given in Algorithm 3. Assuming sap*represents the final feasible topology, start by initializing s*to be equal to sap. Then, iterate through each element sn in sap*. If sn contains more than two elements from Cij, it inevitably indicates the presence of islands, so sn needs to be removed from sap* (Condition 1). Additionally, if sn contains elements from Cij, Cik, and Cjk simultaneously, and the fundamental loops Li, Lj and Lk share nodes, their shared nodes will become islands as well, and sn should also be removed from sap* (Condition 2). After backtracking and eliminating infeasible topologies, sap* represents the final set of feasible topologies obtained.
To illustrate the undirected-graph delooping-backtracking method proposed in this paper, a simple 5-node example system is considered. First, the fundamental loops and the shared branch sets between loops are determined, as shown in Figure 2. The network contains a total of 3 fundamental loops and 3 shared branch sets between loops, of which details are given in Table 1.
[image: Figure 2]FIGURE 2 | 5 Node example system.
TABLE 1 | The fundamental loops and shared branch sets for the 5-node system.
[image: Table 1]Algorithm 3. Loop Backtrack.
Input: Potential open branches sap, Loop data of the network [image: image], [image: image]
Output: Reduced potential open branches sap*
Initialize sap*=sap
For n from 1 to Ns
 For i from 1 to NL
  For j from i+1 to NL
   If sn satisfies Condition 1
    Delete sn from sap*
   End if
   For k from j+1 to NL
    If sn satisfies Condition 2
     Delete sn from sap*
    End if
   End for
  End for
 End for
End for
Output sap*
Condition 1: sn contain more than one elements of Cij.
Condition 2: sn contain element in Cij, Cik and Cjk and Li Lj and Lk share common nodes.
By breaking loops in the network as shown in Figure 2, all potential topological sets, denoted as sap, can be obtain. Through loop backtracking, the final feasible topological set can be established, and denoted as sap*. During the loop backtracking process, an example of feasible topology (that satisfy neither Condition 1 nor Condition 2) is illustrated in Figure 3A. Infeasible topologies satisfying Condition 1 are depicted in Figure 3B, and those satisfying Condition 2 are shown in Figure 3C. From Figure 3B, it is apparent that due to the simultaneous disconnection of two branches in the shared branch set C12, Node 2 becomes an island, rendering the topology infeasible. From Figure 3C, it can be seen that the simultaneous disconnection of branches in the shared branch sets C12, C13, and C23 results in Node 3, a common node among L1, L2, and L3, becoming an island, making the topology infeasible. However, topologies that exclude both Condition 1 and Condition 2 can satisfy radiation constraints and prevent islands from forming.
[image: Figure 3]FIGURE 3 | The three possible scenarios of feasible topologies obtained by loop breaking. (A) Feasible topology that satisfy neither Condition 1 nor Condition 2. (B) Infeasible topologies satisfying Condition 1. (C) Infeasible topologies satisfying Condition 2.
3 DATA-DRIVEN POWER FLOW CALCULATION MODEL INCORPORATING TOPOLOGICAL CHANGES
This section develops the entire data-driven power flow calculation model based on the feasible topological set sap* established in the previous section.
3.1 The establishment of the overall model
A typical power flow calculation problem involves computing the voltage magnitudes and phase angles at various nodes under the condition of known injected power at each node. Assuming the set of active power injections at each node is denoted as P={P1, P2, …, PN}, the set of reactive power injections as Q = {Q1, Q2, …, QN}, the topological vector as S, the set of voltage magnitudes as U = {U1, U2, …, UN}, and the set of voltage phase angles as δ = {δ1, δ2, …, δN} (where N is the number of nodes in the network), the inputs and outputs of the data-driven power flow calculation model can be defined as Eqs (1) and (2):
[image: image]
[image: image]
where I represents the set of input vectors for the data-driven model, O represents the set of output vectors for the data-driven model.
Unlike the potential loop-breaking strategy sn, the topological vector S records the switch states of each branch using a 0–1 representation, providing a more accurate reflection of the impact of branch switch states on power flow. Since the dimensions of the sets P, Q, U, and δ are all N, while the dimension of S is NB, the dimensions of the input vectors I and output vectors O are 2N + NB and 2N, respectively.
Based upon the definition of input and output variables, the entire data-driven power flow calculation model is further constructed using Deep Belief Networks (DBN) (Zhang et al., 2018). DBN, as a form of deep learning, consists of multiple layers of Restricted Boltzmann Machines (RBM) (Zhang et al., 2018; Tao et al., 2020; Wang et al., 2022). In this network architecture, there are connections between layers, but units within each layer are not interconnected. After training the neural network parameters layer by layer, DBNs are effective in fitting a large number of data samples, enabling estimation and prediction tasks (Wang et al., 2022).
The data-driven power flow calculation model based on DBN is shown in Figure 4. It can be seen that the input variables (I) pass through the Input Layer, hidden layers, and output layer to ultimately yield the required power flow calculation results (O).
[image: Figure 4]FIGURE 4 | DBN-based data-driven power flow calculation model.
3.2 The training of the model
The data-driven power flow calculation model depicted in Figure 4 requires training before it can conduct rapid power flow calculations. Training samples play a crucial role in the accuracy of the power flow calculation model. In practical applications, training samples for the data-driven power flow calculation model can be sourced from actual measurements of power and voltage data in the electrical grid. However, on one hand, measured data samples are limited in quantity and may lack diversity, making it challenging to cover fewer common scenarios. On the other hand, from a model validation perspective, it is not easy to design a comprehensive validation method to verify the effectiveness of the model for various scenarios. In this paper, Monte Carlo simulations are employed to generate training samples.
Assuming that the rated active and reactive powers of the nodes in the network are represented as Pr = {Pr,1, Pr,2, …,Pr,N} and Qr = {Qr,1, Qr,2, …, Qr,N}, respectively, the active and reactive power values for the kth node in the ith training sample can be obtained by adding noise to Pr,k and Qr,k as follows:
[image: image]
[image: image]
where εP,k and εQ,k represent the noise added to the active and reactive powers, respectively, and they follow a normal distribution:
[image: image]
[image: image]
where σP,k and σQ,k are the standard deviations of the noise. Through Eqs 3, 4, the sets of active and reactive powers for the ith training sample can be obtained as Ptrain,i = {Ptrain,i,1, Ptrain,i,2, …, Ptrain,i,N} and Qtrain,i = {Qtrain,i,1, Qtrain,i,2, …, Qtrain,i,N}.
Topology set Strain,i is obtained by sampling from the feasible topological set sap* and can be represented by the formula:
[image: image]
Thus, the input variables for the ith training sample can be obtained as follows:
[image: image]
Using Itrain,i and the network’s own parameters, traditional power flow calculations can be performed. In this case, the Newton-Raphson method is adopted to calculate the power flow for Itrain,i, resulting in: Utrain,i = {Utrain,i,1, Utrain,i,2, …, Utrain,i,N}, δtrain,i = {δtrain,i,1, δtrain,i,2, …, δtrain,i,N}, which can be served as the output variables for the ith training sample in the data-driven power flow calculation model:
[image: image]
By repeatedly perform Formulas 3ormulas –Formulas 9, a large number of training samples can be generated. Eventually, a training sample set can be obtained as: Itrain = {Itrain,1, Itrain,2, …, Itrain,Ntr}, Otrain = {Otrain,1, Otrain,2, …, Otrain,Ntr}. Where Ntr is the number of training samples.
Using these training samples, the DBN can be trained, ultimately creating a data-driven power flow calculation model that takes into account topological changes and can rapidly compute power flow results.
4 CASE STUDY
The case study involves an IEEE 33-node distribution network system, as shown in Figure 5. This system comprises 33 nodes, 37 normally closed branches, and 10 branches equipped with controllable switches, denoted as b4, b7, b18, b23, b27, b33, b34, b35, b36, b37. The controllable branches allow for changes in the network topology while ensuring that the entire distribution network adheres to radiation constraints.
[image: Figure 5]FIGURE 5 | IEEE 33-node system.
4.1 Topology sample set generation
From Figure 5, it can be observed that the IEEE 33-node system consists of a total of 5 fundamental loops. Since normally closed branches do not affect the network topology, only the branches equipped with controllable switches are listed in the loop data initialization. The results of loop data initialization are as shown in Table 2. Performing loop-breaking operations on the loop data yields a set of potential topologies, denoted as sap, which contains a total of 1024 potential topologies. Based on this set, loop backtracking operations are conducted to obtain the feasible topology set, denoted as sap*, which includes a total of 63 feasible topologies.
TABLE 2 | The basic loops and shared branches in the IEEE 33-node system (only listing branches equipped with controllable switches).
[image: Table 2]4.2 The power-flow calculation in the IEEE 33-node system with topology changes
The case study involves the validation of the data-driven power flow calculation method proposed in this paper for four different topological scenarios, as shown in the left column of Figure 6. To facilitate comparative analysis, the case study considers the following four methods:
1) Regression Method
[image: Figure 6]FIGURE 6 | The results of power flow calculations using various methods in multiple topology scenarios.
Without considering the network’s topology, a linear regression model is employed to establish the relationship between active power, reactive power, voltage magnitude, and phase angles.
2) Traditional DRB Method
Without considering the network’s topology, a Deep Belief Network (DBN) is used to establish the relationship between active power, reactive power, voltage magnitude, and phase angles.
3) Topology-based Regression Method
Considering the network’s topology, a linear regression model is employed to establish the relationship between active power, reactive power, voltage magnitude, and phase angles while accounting for the network’s topology.
4) Topology-based DRB Method (The proposed method)
The feasible topological sample set is generated using the undirected-graph delooping-backtracking method, and the DBN is used to establish the relationships between active power, reactive power, voltage magnitude, and phase angles while considering the network’s topology. Due to the IEEE 33-node system comprising a total of 33 nodes and 10 controllable switches, according to the model described in Section 3.1, the dimensions of the input and output layers for the DBN are 76 and 66, respectively. In addition to the input and output layers, the DBN includes two hidden layers, each containing 500 neurons and the activation function chosen is the sigmoid function.
The comparison between the node voltages obtained from the four data-driven power flow calculation methods and the actual node voltages is shown in the right column of Figure 6. It can be seen that the Regression Method and the Traditional DRB Method do not consider the impact of topology changes on power flow, resulting in significant errors in the power flow calculation results. Topology-based Regression Method takes topology into account in its input variables, leading to a noticeable reduction in node voltage errors compared to the regression method. However, due to limitations in fitting nonlinear power equations, errors are still non-negligible. The Topology-based DRB Method (The proposed method), which combines variable topology and deep learning, output node voltage calculation results that are very close to the actual node voltages.
To further numerically compare the effectiveness of different data-driven power flow calculation methods, the Mean Absolute Error (MAE) is used to calculate the errors. The formula for calculating MAE is as Eq. (10):
[image: image]
The bar chart in Figure 7 and the statistical results in Table 3 depict the MAE for power flow calculation results using different methods across various topological scenarios. It is evident from Figure 7 and Table 3 that the MAE for node voltages obtained using the Topology-Based DRB Method (the proposed method) is significantly lower than that of the other three methods. This demonstrates that the proposed data-driven power flow calculation method proposed offers higher precision and is more suitable for scenarios involving network topology changes.
[image: Figure 7]FIGURE 7 | MAE statistical results of different methods in multiple topology scenarios.
TABLE 3 | MAE statistics table with different methods.
[image: Table 3]5 CONCLUSION
This paper introduces a data-driven power flow calculation method based on undirected-graph delooping-backtracking. It utilizes the undirected-graph delooping-backtracking technique to generate a feasible set of topological samples based on the initialization of loop data. Furthermore, it establishes a data-driven power flow calculation model based on Deep Belief Networks (DBN). This approach enables accurate power flow calculations even in scenarios with changing network topologies. From the analysis results of the test case, we draw the following conclusions:
1) Through operations such as loop data initialization, loop-breaking, and loop backtracking, it is possible to effectively eliminate infeasible topologies and obtain feasible topologies on the basis of generating all potential topologies for the distribution network. For the 33-node testing system, by screening out infeasible topologies, the number of potential topologies is reduced from 1024 to 63, significantly reducing the computational complexity for training the data-driven power calculation model.
2) By incorporating topology information into the DBN-based numerical-driven power flow calculation model, it becomes possible to consider changes in the topology during the power flow calculation process. This allows the data-driven power flow calculation model to have an advantage over models that do not take topology information into account. Moreover, due to its excellent ability to learn complex features and handle large amounts of training data, the DBN achieves more accurate power flow calculation results compared to traditional neural networks.
The future work will focus on applying the proposed data-driven power flow calculation method to various aspects of power grid operations, including economic dispatch, topology optimization, and operational control, etc.
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To improve automatic generation control (AGC) performance and reduce the wastage of regulation resources in interconnected grids including high-proportion renewable energy, a multi-area integrated AGC (MAI-AGC) framework is proposed to solve the coordination problem of secondary frequency regulation between different areas. In addition, a cocktail exploration multi-agent deep deterministic policy gradient (CE-MADDPG) algorithm is proposed as the framework algorithm. In this algorithm, the controller and power distributor of an area are combined into a single agent which can directly output the power generation command of different units. Moreover, the cocktail exploration strategy as well as various other techniques are introduced to improve the robustness of the framework. Through centralized training and decentralized execution, the proposed method can nonlinearly and adaptively derive the optimal coordinated control strategies for multiple agents and is verified on the two-area LFC model of southwest China and the four-area LFC model of the China Southern Grid (CSG).
Keywords: automatic generation control, multi-agent deep deterministic policy gradient algorithm, optimal coordinated control, frequency regulation mileage payment, China Southern Grid
1 INTRODUCTION
The development of interconnected power systems (Li et al., 2021; Li et al., 2022) and the increasing application of large-scale renewable energy and generating units with multiple energy coupling characteristics have led to more frequent random disturbances in power systems, which generate significant coordination problems with regard to frequency control within such power systems (Qu et al., 2023). Nowadays, the two major coordination problems affecting secondary frequency regulation in multi-area power systems (hereinafter referred to as the “two coordination problems”) are as follows: (1) there is a coordination problem between the automatic generation control (AGC) controller and distributor, which reduces the frequency regulation efficiency of the system and reduces the adjustment resources of the system; (2) the coordination problems of AGC in various areas will affect each other, resulting in frequency oscillation and regulation waste and reduced control performance. In this situation, conventional AGC (Qu et al., 2022) cannot meet the network demand due to its failure to allow for the above problems (Huan et al., 2023).
In the AGC controller and distributor, the existing AGC-related algorithms can be divided into two categories. One is the control algorithm of AGC, which consists of the PID-based algorithm (Li et al., 2023a), neural network (Li et al., 2023b), sliding mode control, and (Yu et al., 2011a) learning (Yu et al., 2011b). The purpose of these control algorithms is to minimize deviations in the control frequency.
The other category is the optimization algorithm for the distributor, which consists of the intelligent optimization algorithm (Yu et al., 2015), the fixed pattern dispatch (Yu et al., 2012), group optimization algorithm (Xi et al., 2020), and traditional optimization algorithm (Mirjalili et al., 2014). The optimization algorithm is used to send commands to each unit in order to minimize the regulation payment.
The payment calculated dynamically based on regulation mileage has replaced the original fixed regulation payment in the AGC, which aggravates the coordination problem between the controller and the distributor. Thus, the combination of these two categories of algorithms (hereafter termed “combinatorial algorithm”) increases the frequency deviation and the regulation payment, which will lead to poor AGC performance.
Regarding the coordination problem affecting secondary frequency regulation between different areas, the independent supplier operator (ISO) of each area has a certain interest independence, whereby the ISO of each area wants to restore the frequency but has no intention to pay too much frequency regulation payment during mutual support (Bahrami et al., 2014; Mirjalili, 2016; Xi et al., 2016).
An increasing number of researchers have opined that a data-driven control scheme based on multi-agent deep reinforcement learning (MA-DRL) holds significant potential. For example, Yu et al. have demonstrated a novel MA-DRL algorithm, which is designed for solving the coordinated control problem (Yu et al., 2016). However, an increase in the number of agents leads to a lower convergence probability of the algorithm; this property limits its application in real-world systems. Moreover, Xi et al. have developed a “wolf climbing” MA-DRL algorithm (Xi et al., 2015) and solved the problem of multi-area control. However, because the action space of the algorithm is discrete, there arises the problem of the dimensionality curse, which makes it difficult to realize continuous control. Xi et al. have proposed a multi-agent coordination method for inter-area AGC (Xi et al., 2020); however, continuous control of inter-area AGC cannot be realized for the discrete action space (Li et al., 2023c; Li and Zhou, 2023). However, the current MA-DRL-based data-driven control method still has the following problems: the comprehensive coordination of multi-agent was not achieved; low robustness. In order to solve the “two coordination problems” and further improve the AGC performance and reduce wastage of regulation resources in a multi-area power system, a multi-area integrated AGC (MAI-AGC) framework is proposed. In this framework, a novel deep reinforcement learning algorithm, known as cocktail exploration multi-agent deep deterministic policy gradient (CE-MADDPG), has been proposed, which uses the cocktail exploring strategy and other techniques to improve the robustness of the MADDPG. Based on this algorithm, the controller and distributor are combined into a single agent which can output the commands of the various units. Due to the employment of centralized training and decentralized execution, each agent only needs local information in its control area for delivering optimal control signals. The simulation of the LFC model shows that the method achieves the comprehensive optimization of performance and economy.
The innovations demonstrated in this paper are as follows:
(1) An MAI-AGC framework based on multi-area coordination is proposed to achieve coordination between the controller and distributor, which reduces the cost and fluctuation of frequency regulation, and enables each agent to make optimal decisions based on local information without relying on the global status of the whole power grid (Yu et al., 2011a; Yu et al., 2011b; Yu et al., 2012; Bahrami et al., 2014; Mirjalili et al., 2014; Yu et al., 2015; Mirjalili, 2016; Xi et al., 2016; Yu et al., 2016; Xi et al., 2020).
(2) A CE-MADDPG algorithm is introduced to improve the robustness of the MAI-AGC framework, which employs cocktail exploration and other techniques to overcome the problem of sparse rewards of conventional deep reinforcement learning methods and to achieve multi-objective optimization of control performance and regulation mileage payment (Xi et al., 2015; Xi et al., 2020; Li et al., 2023c).
The MAI-AGC model is elaborated in in Section 2, CE-MADDPG is introduced in Section 3; in Section 4, a new approach was used throughout the event, and the conclusion is given in Section 5.
2 MAI-AGC FRAMEWORK
2.1 Performance-based frequency regulation market
Frequency regulation mileage is a novel technical indicator for identifying the actual regulating variable of each unit (Li et al., 2021). According to the calculation rules of China Southern Grid (CSG) in China, the frequency regulation mileage payment of each unit is as Eqs (1)–(10) (Li et al., 2021):
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where [image: image], [image: image], and [image: image] are 0.50, 0.25, and 0.25, respectively.
2.2 Frequency operating standards
CPS1 can best represent the performance of AGC (Qu et al., 2023). The calculation method of the area control error (eACE) is as follows:
[image: image]
The CPS1 indicator is as follows:
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where
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2.3 Control framework of MAI-AGC
As shown in Figure 1, in the MAI-AGC framework, the AGC controller and power distributor of each area are replaced by a centralized agent, which can output the power generation commands of multiple units in the area simultaneously and obtain the optimal coordinated strategy via training so that during online application, the coordination with agents in other areas can be realized while reducing the frequency deviation and payment in different areas.
[image: Figure 1]FIGURE 1 | MAI-AGC framework.
2.4 Objective function
The aim was to achieve the optimum performance of AGC and its economic efficiency. The objective of the agent in the ith area is expressed as follows:
[image: image]
2.5 Constraint conditions
The constraint conditions for the coal-fired unit, LNG units, oil-fired unit, hydro unit, and DERs in the SVPP are represented as Eq. 12. The constraint of DERs in the FVPP, which employs DC/DC convert to control the energy, excludes the generation climbing speed constraint.
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3 PRINCIPLE OF THE MAI-AGC-BASED CE-MADDPG ALGORITHM
3.1 Design of MAI-AGC based on the EE-MAPDDG algorithm
There are n agents in this MA-DRL framework of one area, with agenti corresponding to the agent of the ith area. The method comprises offline centralized training and online application.
The global optimal coordinated control strategy can be obtained by fully off-line training agents. In online applications, the policy function πϕi (s) of agenti is responsible for outputting the actions under that particular state, i.e., the generation factor for each unit in the ith area. The control interval of agenti is set to 4 s. The control objective is to eliminate the ACE and reduce the mileage payment of each area. The control framework is shown in Figure 2.
[image: Figure 2]FIGURE 2 | MAI-AGC system based on the CE-MADDPG algorithm.
3.1.1 Action space
For any time t, in the ith area, the AGC generation factor of n units and VPP are selected as action, and there are a total of n actions, as shown in the following equation:
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3.1.2 State space
A state refers to an ordered collection of the smallest number of variables that can determine the state of the system in the system, and the state space of the agent of area i is shown as Figure 3:
[image: image]
[image: Figure 3]FIGURE 3 | Training flow of CE-MADDPG.
3.1.3 State space of the EIE-MATD3 algorithm
By referring to Eq. 11, the reward of the agent in the ith area is expressed as follows:
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3.2 Deep reinforcement learning
3.2.1 MA-DDPG
The MADDPG algorithm (Lowe et al., 2017) is an algorithm that extends the DDPG algorithm into a multi-agent environment. In training, each agent can obtain the state and actions of all agents. The loss of agents is calculated as Eq. (13) and Eq. (14):
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The policy gradient is as follows:
[image: image]
3.3 Training framework of CE-MADDPG
CE-MADDPG is an MA-DRL algorithm, which is a modification of MA-DDPG. CE-MADDPG adopts the cocktail exploration distributed MA-DRL training framework, and this algorithm improves the efficiency of MADDPG. The training framework adopts centralized training and decentralized execution for parallel optimization. According to Figure 4, taking the four-area LFC model as an example, the framework includes several explorers, integrators, and four leaders.
[image: Figure 4]FIGURE 4 | Training framework of the CE-MADDPG algorithm.
The purpose of this novel scheme is to improve the detection capability and robust performance of the proposed method, in which there are 10 parallel systems, and each of them is associated with a different power disturbance. In the case of an LFC model having four areas, each of the parallel systems 1–6 is provided with four explorers, which serve as an AGC integration agent for four areas, to output a command for the respective unit in the area. These four explorers adopt the same exploration principle. Each of the parallel systems 7–12 has four integrators, and each integrator contains a combination of different control algorithms and optimization algorithms. During training, the explorers in different areas simultaneously explore the environment in parallel, and each explorer generates a sample. Each integrator generates an integration sample. Different parallel spaces are shown in Eq. 15.
3.3.1 Explorer
The explorer in different systems employs different exploration actions. The action of the explorer in parallel systems 1–2 is shown as Eq. (15):
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where l refers to the lth agent.
The action of the explorer in parallel systems 3–4 is as Eq. (16):
[image: image]
where j refers to the jth agent.
The action of the explorer in two parallel systems is as Eq. (17):
[image: image]
An SAC explorer is set in parallel systems 9–12 to create the samples in collaboration with three demonstrators.
In this paper, the demonstrator adopts various controllers on different principles. PSO-fuzzy-PI is used in parallel systems 5 and 9; GA-fuzzy-PI is used in parallel systems 6 and 10; TS-fuzzy-PI is used in parallel systems 7 and 11; type-II fuzzy-PI is used in parallel systems 8 and 12. The target function of the controllers is as Eq. (18):
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3.3.2 Integrators
The design of the CE-MADDPG incorporates imitation learning. The integrator includes a controller and a distributor. The controllers and power distributors among different integrators employ different principles. During training, every integrator gives a reasonable result according to its own controller and power distributor, converts it into a sample, and puts it into the experience pool, which makes the public experience pool to make valuable samples.
In the integrators, PI, PSO-PI, FOPI, PSO-tuned fuzzy-PI, and fuzzy-PI algorithm are adopted in the controller. Due to the frequent occurrence of big amplitude disturbances in area A, when PSO-PI and PSO-fuzzy-PI factors in area A are optimized, the other control parameters are adjusted manually. The objective of the integrators for the controller is shown as Eq. (19):
[image: image]
The principles of the power distributor for generation power command dispatch corresponding to each integrator are as follows: PROP, GA, and PSO. Various learning samples are provided for the public experience pool through the integrator interacting with the environment.
In the integrator, only ACE is taken into account in the control algorithm, and the regulation payment is considered in the dispatch algorithm for the distributor. In optimization, the fitness function for the distributor is shown in Eq. 20. The fitness function is as Eq. (20):
[image: image]
3.3.3 Classified prioritized replay
Classified prioritized replay is adopted in the experience replay mechanism. In CE-MADDPG, two experience pools are employed. The samples obtained by the explorers are put into pool 1, and those collected by the integrators are put into pool 2.
The probability ξ is shown in Eq. 21:
[image: image]
3.3.4 Training flow
The training flow of the CE-MADDPG algorithm is shown as follows:
3.4 Case studies
In case studies, the performance of the CE-MADDPG algorithm is compared with that of other MA-DRL algorithms (Ape-x-MADDPG, MATD3, and MADDPG) and combinatorial algorithms, which include controllers with power distributors (PI + PROP, PI + PSO, PI + GA) in the two cases.
3.4.1 Case 1: stochastic step disturbance
In case 1, three random step perturbations were introduced to test the effectiveness of the method.
1) Performance of MA-DRL algorithms. From Table 2, it can be known that the CPS1 indexes of CE-MADDPG in areas A and B are 199.199 and 200.075, respectively, which are the largest among these algorithms. In addition, |∆f |avg and |EACE| avg of CE-MADDPG are the smallest in MA-DRL algorithms. In addition, the payments of CE-MADDPG in the two areas are $1,210 and $389, respectively, which are much lower than those of other MA-DRL algorithms.
Based on the above results, it can be argued that CE-MADDPG uses more techniques for improving its exploration capability and training efficiency, and thus a better coordinated control strategy can be obtained. Therefore, when confronted with different disturbances, the CE-MADDPG algorithm exhibits better performance; conversely, due to the lack of corresponding techniques, in each case, a suboptimal coordinated control strategy is obtained by other MA-DRL algorithms, thereby leading to suboptimal coordinated control performance. According to Figures 5A, B and Figure 5G, the coordinated control strategy adopted by the CE-MADDPG algorithm calls more rapid-regulating units for frequency regulation. In addition, other MA-DRL algorithms are subjected to larger overshoot, which leads to serious frequency regulation resource wastage and increases the payment. As shown in Figures 5C, E, the CE-MADDPG achieves more stable frequency deviation and ACE.
[image: Figure 5]FIGURE 5 | Case 1 results.
2) Performance of combinatorial algorithms. According to Table 1, in area A, for combinatorial algorithms, the CE-MADDPG algorithm can reduce |∆f |avg by 26.4%–29.5%, |EACE| avg by 20.58%–25.6%, and the regulation mileage payment by 22.8%–24.82%; it also has the largest CPS1 index value. In area B, the CE-MADDPG algorithm can reduce |∆f |avg by 36.03%–42.6%,| EACE | avg by 27.4%–39.6%, and the regulation mileage payment by 17.46%–29.05%.
TABLE 1 | Result of case 1.
[image: Table 1]Based on the above results, it can be argued that as shown in Figure 6B, the other combinatorial algorithms are also subjected to larger overshoot due to the PI controller being contained in these combinatorial algorithms. When the parameters are not set properly, there will arise instability in terms of total generation power command and overshoot, which will lead to degradation of performance and increased payment (Figures 5D, F, G, H). By contrast, the CE-MADDPG algorithm can significantly improve the response capability of AGC, which, in turn, reduces the occurrence of “overshoot,” thereby reducing its payment.
[image: Figure 6]FIGURE 6 | Results of case 2.
3.4.2 Case 2: four-area LFC model under disturbance with large-scale DERs
In case 2, WT disturbance, PV disturbance, and stochastic disturbance occur across the four areas.
As shown in Table 2, in area A, CE-MADDPG reduces |∆f |avg by 16.79%–39.69%, |EACE| avg by 29.14%–48.56%, and the payment by 11.33%–146.21%; it also attains the largest CPS1 index value. In addition, CE-MADDPG exhibits the minimum |∆f |avg and payment in other areas. However, since other areas will give emergency support when a disturbance occurs in one of the areas, the |EACE| avg of the CE-MADDPG algorithm is not the lowest in areas B and C (which provide more support). However, the CPS1 index of the CE-MADDPG algorithm across the different areas is the largest.
TABLE 2 | Statistical results of case 2.
[image: Table 2]According to Figures 6A, B, for the CE-MADDPG algorithm, when a disturbance occurs in an area, the AGC of that area can respond rapidly, and the influence of coordination among controllers in multiple areas is considered while at the same time avoiding the degradation of performance caused by the combinatorial algorithm. Therefore, the CPS1 of AGC in all the areas is better; also, the peak value of its frequency is smaller, which reduces unnecessary load shedding caused by the operation of the emergency control device due to frequency fluctuation.
It can, therefore, be argued that in the event of a disturbance, and with large-scale DERs, compared with the MA-DRL algorithms and combinatorial algorithms, the CE-MADDPG algorithm is advantageously characterized by better performance and can realize multi-area secondary frequency regulation coordination.
4 CONCLUSION
Based on the study, we can draw the following conclusions:
1) In this paper, an MAI-AGC framework is designed in the performance-based frequency regulation market. The controller and the distributor are integrated into a single agent, which can resolve the cooperative problem of the controller and distributor.
2) A CE-MADDPG algorithm is proposed as the framework algorithm from the perspective of AGC. This algorithm uses multiple groups of explorers with different exploration strategies combined with integrators to improve training efficiency. It introduces a variety of techniques to guide the strategy objectives in striking a balance between exploration and utilization and then realizing the optimal coordinated control of AGC with greater robustness. Moreover, the utilization framework of decentralized execution is adopted to realize the coordination control of different areas.
3) The results of two cases show that, compared with the three MA-DRL and three combinatorial algorithms, the proposed algorithm exhibits enhanced performance and economic efficiency.
4) Future work: We will conduct research based on practical examples in the future.
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Distributed photovoltaic systems can actively contribute to the primary frequency regulation of the power grid by reserving capacity. Traditional power reduction methods often employ fixed load reduction ratios, potentially resulting in inadequate frequency regulation capacity and unnecessary reserve power. This paper centers on optimizing power reserve control, starting with the construction of a two-stage model for a photovoltaic grid-connected inverter power generation system. It includes the design of a maximum power estimation method and the implementation of photovoltaic power reduction operation. The article proposes a strategy to utilize photovoltaic backup capacity for achieving primary frequency modulation effects in a short time scale. Additionally, it adopts a variable power reserve ratio operation strategy over the long term, aiming to enhance photovoltaic power generation and optimize solar energy utilization without compromising the grid’s frequency and quality. Finally, a MATLAB/Simulink model is developed to validate the effectiveness of the control strategy. Simulation results indicate that the proposed strategy satisfies frequency regulation requirements, enhances power generation efficiency, and improves the economic viability of photovoltaic operations.
Keywords: distributed photovoltaics, power reserve control, grid frequency, primary frequency modulation, optimize power reserve
1 INTRODUCTION
In recent years, amid the pursuit of the “dual carbon” goal, the rapid development of new energy generation, particularly wind and photovoltaic power, has unfolded. As these sources become increasingly integrated into the power grid, they play a pivotal role in diminishing reliance on fossil fuels and fostering environmental conservation. However, the rise of new energy sources coincides with a decline in the share of traditional energy derived from hydroelectric and thermal power generation units. This shift results in a reduction of rotating reserve capacity and moment of inertia within the power system (Lv et al., 2014). Nevertheless, the integration of new energy units into the grid typically involves the use of power electronic devices, such as inverters, which are unable to provide the traditional inertia characteristic. Consequently, the emerging power system exhibits the attribute of “low inertia,” posing new challenges and issues for the secure and stable operation of the power grid (Zhao et al., 2011). Simultaneously, since photovoltaic units often operate in Maximum Power Point Tracking (MPPT) mode to enhance energy utilization (Wang et al., 2018), there is a lack of excess frequency regulation resources. In instances of frequency fluctuations, photovoltaics cannot partake in primary frequency regulation and must rely on the gradual reduction of output from traditional units. This dependence inevitably leads to heightened frequency fluctuations, posing a threat to the safety of the system’s frequency.
To address the aforementioned challenges, enabling photovoltaics to actively engage in the primary frequency regulation of the power grid is imperative. This involves allocating a specific backup capacity for photovoltaics. Currently, there are two predominant approaches in the global academic community to achieve this objective. One method involves the incorporation of energy storage components for photovoltaics, creating a Virtual Synchronous Generator (VSG). This setup emulates traditional rotary synchronous generators by leveraging the external characteristics of photovoltaics (National Energy Administration, 2018). The resulting VSG exhibits high inertia and robust damping characteristics, allowing photovoltaics to autonomously contribute inertial support to the system without relying on frequency controllers. The alternative approach is the implementation of photovoltaic power reserve operation. This method enables the photovoltaic system to output power based on a predetermined ratio of reserved fixed capacity or maximum power (Xie et al., 2021). Given the relatively high cost and suboptimal economic efficiency of energy storage equipment (Zhang et al., 2021), coupled with the widespread occurrence of “light curtailment” in photovoltaic power stations (Guo et al., 2020), photovoltaic power reserve operation strategically utilizes the generated electricity from this “abandoned light.” Therefore, this article primarily focuses on the involvement of photovoltaic power reserve operation in the primary frequency regulation of the power grid.
In the context of primary frequency regulation, reference (Zhang et al., 2019) conducted an analysis of the photovoltaic grid-connected power generation system utilizing DC voltage sag control through the electrical torque method. The study demonstrated that the energy storage effect of capacitors on medium and short time scales could confer certain inertia characteristics to the system. Notably, the photovoltaic modules operated in MPPT mode, without accounting for reserving spare capacity for participation in primary frequency regulation. Reference (Wu et al., 2022) suggests augmenting frequency control through the addition of an integral loop to the traditional primary frequency modulation droop control. While this approach enhances the support of photovoltaics for grid frequency, it necessitates parameter readjustment in response to changing environmental conditions, limiting its universality. In contrast, reference (Li, 2022) introduces an adaptive droop control based on quantized minimum error entropy and an improved universal gravity search algorithm. This method aims to enhance the primary frequency modulation effect of the system and mitigate frequency deviations induced by disturbances. By optimizing the droop control coefficient in real-time, it improves the system’s frequency response. Reference (Zhang et al., 2020) proposes a function with irradiance as the independent variable and the droop coefficient as the dependent variable, allowing the droop coefficient to adapt to external irradiance conditions. However, the provided example only considers working conditions with irradiance exceeding 1,000.
In the realm of optimizing power reserve, a majority of pertinent literature has predominantly concentrated on the domain of wind power. Reference (Wang and Yuvan, 2024) introduced an evaluation function grounded in power generation and frequency regulation capability, ultimately deriving the optimal power reserve ratio curve under full wind speed conditions. By integrating wind speed predictions, a dynamically adjustable power reserve ratio was achieved. Similarly, reference (Xu et al., 2021) established a power reserve benefit function, employing the particle swarm optimization algorithm to determine the optimal power reserve ratio across diverse scenarios. The ratio was dynamically adjusted based on varying load levels. Currently, there is a dearth of an evaluation system for determining the optimal power reserve level specifically for photovoltaics. This is intricately linked to various environmental factors such as irradiance and temperature. Consequently, fixed power reserve ratios or static power reserve powers are often employed for photovoltaic power reserve operations, but this approach sacrifices adaptability to changing environmental conditions.
The initial segment of this paper discusses the implementation of photovoltaic power reserve operation, as introduced in reference (Zhou, 2021). This method empowers photovoltaic modules to modify the power reserve level using a predefined numerical curve for the power reserve ratio. The subsequent section elucidates the primary frequency regulation strategy outlined in this article. It integrates droop control and virtual inertial control to enhance the system’s frequency response during short-term load fluctuations. The third section introduces an optimization function for the power reserve ratio, influenced by light intensity and load level. This aims to refine frequency characteristics, augment total photovoltaic power generation, and conserve synchronous machine output over an extended duration. Finally, the fourth segment constructs a synchronous machine photovoltaic microgrid model using Matlab/Simulink. It validates the effectiveness of the proposed control strategies in this paper across both short-term and long-term scales.
2 PV LOAD REDUCTION CONTROL STRATEGY
2.1 Maximum photovoltaic power estimation
The crux of photovoltaic power reduction operation lies in the real-time estimation of its maximum power. Accurate control of photovoltaic power reduction operations, contingent upon load reduction levels, hinges upon the prior estimation of the photovoltaic system’s maximum power. The following elucidates the principles and steps involved in implementing photovoltaic power reserve operation in this article.
2.1.1 Offline model of photovoltaic array
The photovoltaic array model employed in this study adopts the widely used five-parameter single diode model. The equivalent circuit principle is illustrated in Figure 1, and the corresponding mathematical expressions are presented in Eqs 1–5.
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[image: Figure 1]FIGURE 1 | Equivalent circuit of the solar cell.
In these equations, Ipv is the PV output current; Iph is the photogenic current; I0 is the diode reverse saturation current; q is the electron charge, q = 1.6 × 10−19°C; k is Boltzmann’s constant; Vpv is the PV output voltage; RS is the series resistance; Rsh is the parallel resistance; A is the ideal diode factor; S is the irradiance; Voc and Isc are the PV array open-circuit voltage and short-circuit current; SSTC = 1,000 W/m2 and TSTC = 25°C are the standard test conditions; Isc,STC and Voc,STC are the short-circuited current and the open-circuit voltage under standard test conditions, respectively; and α and β are the thermal correlation coefficients.
2.1.2 Linear expression for maximum power short-circuit current
Reference (Kato T et al., 2018) suggests the existence of an approximately linear functional relationship between the maximum power Pmap of photovoltaics under specific conditions and the short-circuit current Isc under these conditions, as illustrated in Eq. 6:
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where km is the fitting coefficient.
The photovoltaic cell model utilized in this example is the SunPower SPR-305E-WHT-D, featuring 66 parallel cells, 5 series cells, and a rated power of 100725 W. For the purpose of analysis, the parameters of the photovoltaic cell are detailed in Table 1. Maintaining a constant temperature of T = 25°C, the irradiance gradually increases from 50 W/m2 to 1,200 W/m2 at intervals of 50 W/m2. Offline data for short-circuit current and maximum power under various irradiance conditions are measured. Through the use of curve-fitting tools for linear regression on the acquired data, a value of km = 253.5 is obtained. Throughout the fitting process, the maximum fitting error is 0.020355, and the root mean square error is 0.00207482, indicating a robust linear relationship between the maximum photovoltaic power and short-circuit current.
TABLE 1 | Photovoltaic cell parameters.
[image: Table 1]2.1.3 Maximum power estimation expression
To reserve a certain amount of active power, photovoltaic power generation should operate at a deviation from the maximum power point. This article employs a proportional power reserve method and defines the target power reserve ratio as r*%, expressed as Eq. 7:
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where Pmap represents the maximum power of a photovoltaic array, and its magnitude is influenced by external irradiance and temperature; Pr*% denotes the target power reserve point power.
To estimate the short-circuit current, we introduce a new intermediate variable Ir*%/Isc and explore its relationship with the target power reserve ratio r*%. Here, Ir*% represents the current corresponding to the specified power reserve ratio r*%, i.e., the target power reserve point current.
Here is the segmented fitting relationship for Ir*%/Isc as follows in Eq. 8:
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In the above equation, when r*%>1, the Ir*%/Isc-r*% curve is a linear function. The value of Ir*%/Isc-r*%, at r*% = 0.1, can be determined through offline experimental testing. Subsequently, in conjunction with another data point r*%<=1, Ir*%/Isc = 1, the values of a4 and a5 can be derived. For the nonlinear curve with r*%<=1 in the functional relationship, measure the Ir*%/Isc values corresponding to the target load reduction ratios r*% of 0, 0.025, 0.05, 0.075, and 0.1, respectively, to construct an offline data table. Employ curve-fitting tools to perform linear regression on the data in the table to obtain the coefficients a0∼a3. Throughout the fitting process, the maximum fitting error is 0.00161, and the root mean square error is 0.000894. Therefore, it can be considered that the piecewise function in Eq. 8 exhibits a favorable fitting effect.
After modifying Eq. 8, the resultant expression for short-circuit current estimation is as follows in Eq. 9:
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The expression for maximum power estimation derived from simultaneous Eqs 6, 9 is as follows in Eq. 10:
[image: image]
The specific values of each parameter in Eq. 10 are presented in Table 2. When applying this relationship in practice, estimate the sampling point current Ipv by substituting it into Eq. 10.
TABLE 2 | The specific values of each parameter in Eq. 10.
[image: Table 2]2.2 Power reserve control and voltage tracking
Upon obtaining the estimated maximum power Pest following Eq. 10, power reserve control is applied to achieve the targeted power reserve ratio for the photovoltaic system. Reference (Zhou, 2018) details an enhanced mountain climbing method for real-time voltage tracking; however, it utilizes a fixed step size, potentially leading to voltage fluctuations. To mitigate such fluctuations, this paper introduces a variable-step voltage tracking strategy with real-time iteration capability. The procedural steps of the flowchart are outlined in Figure 2.
[image: Figure 2]FIGURE 2 | The control flow chart of the power reserve control.
After the photovoltaic system is initiated, the current output voltage Vpv, output current Ipv, and the pre-set target power reserve ratio r*% are collected. In this procedure, the maximum power estimation value Pest at the current moment is determined according to Eq. 10. When combined with the calculated photovoltaic array output power Ppv, the current power reserve ratio rest% can be obtained. This is given in Eq. 11.
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There still exists a deviation between the current power reserve rate rest% and the target power reserve ratio r*%, expressed as in Eq. 12:
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This article employs a voltage controller to achieve tracking of the target operating point. Eq. 12 is utilized as the deviation for voltage tracking, and a variable step voltage tracking control strategy is adopted to mitigate power fluctuations. The design is outlined as follows in Eqs 13, 14:
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where Vpvref is the voltage reference value of the controller; γ is the proportion coefficient for the variable step size; Vcons is a fixed voltage control step size. In the model presented in this article, the initial value of Vpvref is set to 150 V, γ is taken as 100, and Vcons is set to 0.01 V.
3 PRIMARY FREQUENCY MODULATION CONTROL STRATEGY BASED ON POWER RESERVE CONTROL
This article employs a two-stage photovoltaic power generation system as an illustrative example to elucidate the proposed control strategy. The topology structure and overall control diagram are depicted in Figure 3. In Figure 3, S represents ambient light intensity, T signifies ambient temperature, Cpv denotes the photovoltaic-side capacitor, Cdc is the DC-side capacitor, Lg stands for the filtering inductance, Cf represents the filtering capacitor, ugabc is the grid-connected voltage, igabc is the grid-connected current, and f is the grid frequency measured through a phase-locked loop (PLL). In this example, Cdc = 2.5 mF, Cf = 8 μF, Lg = 5 mH.
[image: Figure 3]FIGURE 3 | Structure block diagram of the proposed control strategy.
The control strategy presented in this article is primarily divided into three components: frequency control, power reserve control, and inverter control. In the inverter control segment, the collected ugabc and igabc are decoupled using Park transformation. The traditional voltage and current dual closed-loop control strategy is then employed for the decoupled signals, ensuring the stability of DC voltage and inverter current.
The role of the frequency control section is to relay the target power reserve ratio r*% received from the power reserve control section based on changes in the grid frequency measured by the phase-locked loop. This allows the photovoltaic power generation system to exhibit a primary frequency modulation response akin to that of traditional power generation units. To endow photovoltaic systems with droop and inertia characteristics resembling synchronous machines, this paper adopts the frequency control strategy diagram depicted in Figure 4. The control block diagram encompasses both droop control and inertial control, with the expression for the target power reserve ratio r*% as follows in Eq. 15:
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[image: Figure 4]FIGURE 4 | Primary frequency regulation control strategy for PV.
In Figure 4, f0 denotes the rated frequency of the power grid, set at 50 Hz; kd represents the sag coefficient, which is set to 1.3 in this article; ki is the inertia coefficient, established as 0.08 in this article; r0% denotes the given initial power reserve ratio, set at 10% in this article; r1% and r2% are the deviation values of the load reduction ratio caused by droop control and inertia link, respectively. The r*% is derived by adding the initial power reserve ratio r0% to the deviation values r1% and r2% of the power reserve ratio. It serves as the reference value for the power reserve ratio and acts as the input for the power reserve control section. When the grid frequency f deviates from the rated frequency f0, a frequency deviation occurs, leading to a droop power reference power reserve ratio r1% and an inertia power reference power reserve ratio r2%. This results in the generation of a new reference power reserve ratio r*% enabling the photovoltaic system to track this new reference power reserve ratio.
The power reserve control segment employs the iterative process illustrated in the flowchart in Figure 2. Through the close coordination of the frequency control and power reserve control components, the ultimate objective of having photovoltaic modules output power reserve power towards the target is achieved.
4 VARIABLE POWER RESERVE RATIO SETTING
4.1 National standard
To advance the development of photovoltaic virtual synchronous generators, the State Grid of China issued the “Technical Guidelines for Virtual Synchronous Generators” (State Grid Corporation of China, 2016a) and the “Technical Requirements and Test Methods for Unitary Photovoltaic Virtual Synchronous Generators” (State Grid Corporation of China, 2016b). These regulations hold guiding significance for the photovoltaic units operating under power reserve in this article. In the specifications concerning the primary frequency regulation function, it is stipulated that assuming the rated power of the photovoltaic system is Pn, when the system frequency decreases, the virtual synchronous generator should increase the active output in response to the system frequency change. The maximum adjustable amount of active output should be at least 10% of Pn. Conversely, when the frequency increases, the virtual synchronous generator should reduce the active power output, with the maximum reduction amount being at least 20% of Pn. Once it reaches 20% of Pn, it can no longer continue to adjust downwards.
While photovoltaic power reduction and load reduction operations maintain active power reserve similar to traditional synchronous machines, they also result in the wastage of photovoltaic energy and a reduction in the overall power generation of the photovoltaic system. Essentially, this entails trading a portion of sunlight for the frequency regulation capability of the photovoltaic system. In light of this, the National Energy Administration has laid out specific requirements for wind and solar power curtailment: in the pursuit of advancing clean energy development, the consumption of clean energy should decrease annually, and the proportion of wind and solar power curtailment and power rationing should be minimized. Specifically, the curtailment rates for wind, solar, and hydropower in the Three North regions should be kept below 10%, while in other regions, the curtailment rates should be below 5%. This aims to fundamentally address the issue of wind and solar power curtailment.
The determination of backup power size should consider both frequency regulation capability and light curtailment factors. Regarding the stipulations for primary frequency regulation of virtual synchronous generators, it is emphasized that active power regulation should be at least 10% of Pn, with a maximum curtailment limit of 10% in the Three North region and 5% in other regions for wind and light curtailment. In summary, this article establishes a benchmark power reserve ratio of 10%, satisfying both the minimum requirements for active power output in primary frequency regulation and the limits for abandoned light.
4.2 Variable power reserve ratio function based on light intensity and load level
To enhance the long-term power generation efficiency of photovoltaics and address the power redundancy issue associated with fixed power reserve ratios, this section proposes a variable power reserve ratio function based on light intensity and load level. Light intensity plays a decisive role in the output of photovoltaic power plants due to its correlation with environmental factors. Hence, the establishment of power reserve ratios needs to account for the impact of variations in light intensity. When light intensity increases, photovoltaic output rises. Consequently, the power reserve ratio should be increased to curtail photovoltaic power generation in the prevailing environment, mitigating the frequency elevation resulting from the augmented power. Conversely, when light intensity decreases, photovoltaic output diminishes. In such instances, the power reserve ratio should be reduced to augment photovoltaic power generation, addressing the frequency reduction induced by power curtailment. Based on this analysis, defining a variable power reserve ratio curve over an extended time scale can alleviate frequency fluctuations stemming from changes in irradiance conditions.
In contrast, traditional power reserve control does not account for the system load situation, leading to poor flexibility and reduced power generation efficiency. This section incorporates considerations for load levels. When the system load is low, a higher power reserve ratio can be implemented to curtail the output of photovoltaic units, augmenting additional active power reserves. Conversely, when the system load is high, a lower power reserve ratio can be adopted to boost active power output and achieve a balance in success ratio. Based on this analysis, it is imperative to comprehensively consider the impact of changes in load levels when defining the power reserve ratio curve for variations over an extended period.
Considering the analyses above, this article proposes the variable power reserve ratio function for photovoltaic power stations as follows in Eq. 16:
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In Eq. 16, S represents the predicted future illumination intensity based on the illumination intensity at a specific time, PL is the instantaneous load of the system at the same future time in the daily load curve predicted by load forecasting, and Pav is the average load of that day. By configuring the variable load reduction rate in Eq. 16, the frequency regulation performance of the photovoltaic unit is maintained without compromise, while simultaneously improving power generation efficiency and economic performance. Essentially, it involves striking a balance between photovoltaic output and the output of traditional units.
5 CASE STUDY
5.1 Case description
This article relies on MATLAB/Simulink simulation software and constructs a simulation system illustrated in Figure 5. The system comprises a photovoltaic power plant with a rated power of 100 kW, a synchronous generator set with a rated power of 200 kW (comprising a synchronous generator, turbine, and speed control system), and a load PL. The efficacy of the power reserve control, primary frequency modulation, and variable power reserve ratio strategies proposed in this article will be validated through three simulation scenarios.
[image: Figure 5]FIGURE 5 | Structure diagram of simulation.
5.2 Sudden load changes on a short-term scale
The simulation scenario maintains the light intensity S at a constant level of 1000 W/m2 and the temperature T at 25°C. The initial power reserve ratio r0% is set to 10%. At the 8th second of system operation, the load PL undergoes a sudden increase of 8 kW. Before this abrupt change, the steady-state frequency of the power grid was 50 Hz. The simulation results are presented in Figure 6.
[image: Figure 6]FIGURE 6 | Simulation result chart for sudden increase in load.
Figure 6 compares the simulation results of three control strategies employed by the system in response to frequency reduction caused by a sudden increase in load. From Figure 6A, it can be observed that when the photovoltaic system does not engage in frequency regulation, the lowest point of the grid frequency drop is 49.916 Hz, and the steady-state frequency is 49.928 Hz. When the photovoltaic system participates in frequency regulation and employs a fixed power reserve ratio, the lowest point of the grid frequency drop is 49.924 Hz, and the steady-state frequency is 49.953 Hz. When the photovoltaic system participates in frequency regulation and adopts a variable power reserve ratio, the lowest point of the grid frequency drop is 49.931 Hz, and the steady-state frequency is 49.957 Hz. As shown in Figure 6B, when the photovoltaic system does not partake in frequency regulation, its output power remains nearly constant at the given power reserve power, and the power stabilizes around 90 kW. When the photovoltaic system engages in frequency modulation and adopts a fixed power reserve ratio, due to the frequency decrease, the reference power reserve ratio correspondingly decreases in the primary frequency modulation stage, leading to an increase in photovoltaic output power, which stabilizes around 94.5 kW. When the photovoltaic system engages in frequency regulation and adopts a variable power reserve ratio, the photovoltaic output power stabilizes around 95.1 kW.
Similarly, by maintaining the light intensity S at a constant level of 1000 W/m2, keeping the temperature T at 25°C, and leaving the initial power reserve ratio r0% unchanged at 10%, the system experiences a sudden decrease of 8 kW in load PL at the 8th second of operation. Prior to this sudden change, the steady-state frequency of the power grid was 50 Hz. The simulation results are depicted in Figure 7.
[image: Figure 7]FIGURE 7 | Simulation result chart during sudden load reduction.
Figure 7 compares the simulation results of three control strategies implemented by the system in response to frequency increase caused by a sudden reduction in load. As illustrated in Figure 7A, when the photovoltaic system does not engage in frequency regulation, the highest point of frequency increase in the power grid is 50.095 Hz, and the steady-state frequency is 50.08 Hz. When the photovoltaic system engages in frequency regulation and employs a fixed power reserve ratio, the highest point of frequency increase in the power grid is 50.075 Hz, and the steady-state frequency is 50.51 Hz. When the photovoltaic system engages in frequency regulation and adopts a variable power reserve ratio, the highest point of frequency increase in the power grid is 50.072 Hz, and the steady-state frequency is 50.48 Hz. As shown in Figure 7B, when the photovoltaic system does not partake in frequency regulation, its output power remains nearly constant at the given power reserve power, and the power stabilizes around 90 kW. When the photovoltaic system engages in frequency modulation and employs a fixed power reserve ratio, due to the increase in frequency, the reference power reserve ratio increases correspondingly in the primary frequency modulation stage, resulting in a reduction in photovoltaic output power that stabilizes around 85.7 kW. When the photovoltaic system engages in frequency regulation and adopts a variable power reserve ratio, the photovoltaic output power stabilizes around 85.1 kW.
In summary, by implementing the primary frequency regulation strategy proposed in this article, the system promptly adjusted its output to engage in frequency regulation when confronted with frequency changes resulting from sudden load variations. This adjustment improved frequency fluctuations and laid the groundwork for subsequent secondary frequency regulation, thereby validating the feasibility of the proposed strategy in the short time scale.
5.3 Fluctuations in irradiance and load on a long-term scale
In this scenario, the effectiveness of the variable power reserve ratio strategy is tested by considering long-term fluctuations in irradiance and load. Due to the memory constraints of the simulation software, the total simulation duration is limited to 60 s. For the first 10 s of the simulation, light intensity, temperature, load, and synchronous machine output are maintained at constant levels, allowing the system to operate stably at the rated frequency of 50 Hz. Starting from the 10th second, fluctuations in light intensity and load are introduced for a total duration of 50 s. The planned output of the synchronous machine is adjusted based on offline experimental data, and the irradiance curve and load curve are proportionally reduced according to actual measurement data from the photovoltaic power station and the daily load curve provided by the power grid company. The simulated time period from 10 s to 60 s corresponds to a specific day from 8:00 to 16:20 in real time. This time period is selected because only when the photovoltaic output exceeds 20% of the rated power, primary frequency regulation capability is required. During the rest of the time periods, the system operates in Maximum Power Point Tracking (MPPT) mode, and the photovoltaic output is higher between 8:00 and 16:20, meeting the conditions for having primary frequency regulation capability. The irradiance and load fluctuations introduced in the simulation are illustrated in Figure 8.
[image: Figure 8]FIGURE 8 | The variation curve of irradiance and load.
The simulation results are shown in Figure 9.
[image: Figure 9]FIGURE 9 | Simulation results on a long-term scale.
In Figure 9A, it is observed that in the scenario of long-term load and irradiance fluctuations, the frequency response curves of the photovoltaic system participating in frequency regulation using fixed and variable power reserve ratio strategies almost overlap. The maximum frequency deviation between the two curves is only 0.008163 Hz. Therefore, it can be generally inferred that the fixed power reserve ratio strategy does not significantly compromise the primary frequency regulation performance of the system when compared to traditional fixed power reserve ratio strategies. Figure 9B illustrates the comparison of photovoltaic power generation using different power reserve strategies in the system. The simulation results statistics for the two strategies are presented in Table 3. It can be observed that the adoption of the variable power reserve ratio strategy has led to an improvement in photovoltaic power generation compared to the traditional strategy, with an increase of approximately 4.26%.
TABLE 3 | Frequency and power Generation.
[image: Table 3]In summary, the variable power reserve ratio strategy has effectively achieved the intended objectives by enhancing the utilization of light energy and improving the system’s overall economic efficiency without compromising its frequency modulation performance.
6 CONCLUSION
This article introduces a primary frequency modulation strategy that combines droop control and inertial control on a short time scale. This approach enables the photovoltaic system to adjust its output in response to real-time reference power reserve ratios, effectively managing frequency changes caused by power imbalances. Additionally, a variable power reserve ratio function based on light intensity and load level has been proposed on a long-term scale. Compared to traditional strategies, this strategy has stronger primary frequency regulation capability and overall photovoltaic power generation has also been improved. It maximizes the use of clean energy, relieves the output pressure of traditional units, and improves the economic benefits of long-term operating scenarios.
Future research in this field could explore the impact of energy storage and supercapacitors on short-term frequency modulation effects. Additionally, efforts can be made to enhance and refine the elements considered in the variable power reserve ratio function. This may involve proposing clearer and quantifiable numerical indicators to further determine the optimal real-time power reserve ratio.
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To address the challenges posed by the fast-charging demand of electric vehicles, causing feeder load and voltage imbalances during operation, this paper introduces a spatio-temporal pricing strategy tailored to enhance feeder operation equilibrium. This approach facilitates the spatio-temporal guidance of fast-charging loads for electric vehicles in operation. This paper begins by formulating a spatio-temporal distribution model for electric vehicle fast-charging loads, considering owners’ preferences. It further develops a behavioral model for the travel choices of electric vehicles, illustrating the impact of spatio-temporal electricity pricing at fast-charging stations on load distribution. Next, it proposes a multi-objective spatio-temporal pricing model and its solution method specifically designed for feeder-balance-oriented fast-charging stations. This model targets the minimization of the spatio-temporal imbalance in feeder voltage and load. It takes a comprehensive approach, considering the constraints of the spatio-temporal load distribution model and optimal power flow model. The resulting spatio-temporal pricing model for fast-charging stations is effectively solved using the extended Pareto evolutionary algorithm. To validate the effectiveness of the proposed method in achieving feeder balancing, this paper analyzes two examples: a self-built 29-node road network and a 9-node distribution network, as well as a 66-node road network and a 33-node distribution network in the Xinjiang region. The results show that the proposed method can effectively guide the charging of electric vehicles and make the load distribution more balanced.
Keywords: electric vehicles, spatio-temporal pricing, load balancing, multi-objective optimization, improved Strength Pareto Evolutionary Algorithm
1 INTRODUCTION
With the advancement of low-carbon economy construction, electric vehicles (EVs) are rapidly replacing gasoline vehicles. According to the statistics of the Ministry of Industry and Information Technology of China, the number of pure EVs in China has exceeded 1,310 units by the end of 2022 (The Central People’s Government of the People’s Republic of China, 2023). Large-scale EV appear to the distribution network has become an inevitable trend that can be predicted in the short term. The huge charging demand of EVs will lead to a rapid and unbalanced growth of regional loads in a short period, which will have a significant impact on the safe and economic operation of the distribution network (Chen et al., 2018; Lei et al., 2020; Mei et al., 2020). Under the uncontrolled access of EVs, the distribution network often needs to carry out super-redundant capacity expansion and reconstruction of some distribution substations to ensure the peak charging demand of EVs. However, due to urban road construction and other reasons, the distribution of EV charging loads shows serious uneven characteristics, which results in the inefficient phenomenon of redundant construction of some stations and incomplete capacity utilization of some stations (Liu et al., 2012; Cao et al., 2021; CUI et al., 2021).
Therefore, the optimization of EV charging loads has become a hot topic in the current distribution network research. Many studies have obtained information such as the start and end time of charging, state of charging, and expected power of EVs through the statistical analysis of the historical travel pattern of EVs (Kang et al., 2004; Yao et al., 2007; WANG et al., 2019). Then, the adjustable boundaries of EVs were determined and used as constraints to optimize the EV charging power (ChenPan and Yu, 2019; Pan et al., 2019). These studies have considered only the temporal tunability of EV charging loads and neglected their spatial flexibility. In addition, these works require the EV dwell time to be longer than the minimum charging time for charging to the desired power level, which is more suitable for slow-charging scenarios such as homes or commercial buildings. In fact, the impact of EV charging loads on the distribution network comes more from operating vehicles, which frequently have fast-charging needs. Operational vehicles are usually expected to complete charging in a short period, and their charging options are highly autonomous, with large power impacts and little adjustable space. However, due to its profitability, this type of vehicle usually considers the charging price and geographical location when choosing a charging station, which is highly flexible in both time and space dimensions. Therefore, knowing how to rationally consider the spatial location of fast-charging stations and the temporal characteristics of grid loads to effectively set price and realize the guidance of temporal and spatial flexibility of operating vehicles is important to reduce the load imbalance phenomenon in the transformer stations.
Among them, time flexibility has been discussed by the engineering and academic communities for a long time. In engineering, the current charging price composition of mainstream service providers such as “Special Calls” and “XiaoJu Charging” is composed of time-of-use electricity prices and service fees, and the time guidance for EV access is realized through the electricity price setting of three periods of peaks and valleys. However, in the actual research, it is found that these service providers have greater autonomy in setting the price and have not been effectively regulated. The service charge depends on the price of urban lots, which, to some extent, realizes the guidance of EV spatial flexibility, but it fails to consider the load distribution of the grid and may instead exacerbate phenomena such as the imbalance of the transformer stations. In the academic community, a wide range of scholars have discussed the development of time-of-use charging price for various scenarios (LI et al., 2022; WANG Jun et al., 2023; WANG Yifei et al., 2023). LI et al. (2022) used time-of-use electricity prices to guide EV charging in residential areas for a long time to reduce the peak-to-valley difference. WANG Jun et al. (2023) took the carbon price into account and designed the transfer response function of EV charging load, to optimize the EV charging cost and the carbon emission cost of power generation at the same time. On the other hand, WANG Yifei et al. (2023) designed a game model for distribution network operators and charging service aggregators to simplify the EV charging selection process using virtual energy storage for time-of-use price development. It can be seen that the above studies are generally for EV charging loads with long access times, and the simplified expression of the EV charging load transfer process as a supply and demand function is only applicable to non-fast-charging demand scenarios such as home-based charging piles.
Spatial flexibility has gradually become a hot topic of academic discussion in recent years with the deepening of the coupling of the transportation network and the power grid. The current research can be further divided into two directions: marginal pricing (Li et al., 2013; Liu et al., 2016; Xie et al., 2021) and integrated pricing. The former uses the distribution locational marginal power price (DLMP) as the basis price (Li et al., 2013), which solves the distribution optimal power flow (DOPF) to determine the constraint multipliers and serves as the shadow price to realize spatial pricing (ALIZADEH et al., 2016; Wei et al., 2018). This approach is a good representation of the marginal cost of node charging when blockage occurs in the distribution network (ALIZADEH et al., 2016). Furthermore, at the present stage when the distribution network is operated in a radial shape and the phenomenon of large-scale current reversal does not appear widely, the blockage phenomenon of the distribution network can usually be solved by the expansion and reconstruction project. At this time, the method can only reflect the marginal network loss cost brought by each node and cannot play a role in promoting regional load balance. As for integrated pricing (Cai et al., 2022; XIE et al., 2022), pricing is discussed to be achieved through an interactive and iterative pricing approach of traffic and power simulation systems, led by integrated grid demands such as peak–valley differentials and economic dispatch. Unlike slow-charging scenarios for EVs in households or commercial buildings, the charging behavior of operating vehicles with fast-charging loads is influenced by a combination of factors such as the current location of the EV, charging station fees, EV user charging preferences, and road congestion. Therefore, the prediction of the EV charging behavior needs to be based on the coupling of distribution network–road network–EVs (Shao et al., 2017). On the one hand, the travel and charging behavior of EVs are influenced by road traffic flow and charging costs. On the other hand, the travel and charging behavior of EVs also have a reverse effect on changes in road traffic flow and distribution network trends. Reasonable guidance methods can improve the trend of road and distribution grids (Li et al., 2023). Therefore, it is crucial to accurately characterize EV travel behavior, predict changes in road traffic flow, and propose reasonable guidance methods. In existing studies, the elasticity matrix (Cai et al., 2022), static traffic equilibrium model (XIE et al., 2022), and semi-dynamic traffic equilibrium model have been used to portray the EV charging load-shifting process under the guidance of price, achieve the evaluation of price, and carry out iterative optimization. Most of these studies still focus on simulating the interaction of non-dynamic traffic flows in fixed scenarios, which, to some extent, ignores the stochastic nature of EV traveling. In addition, these studies usually take the traditional distribution system as the object of discussion, ignoring the active support capability of distributed resources in distribution networks.
Therefore, in Section 2, this article first constructs a spatio-temporal pricing framework based on the interaction process between the transportation system and the power system. In Section 3, the EV driving path and its fast-charging station selection process are simulated dynamically by constructing a spatio-temporal distribution model for fast-charging loads considering the owner’s preference. Then, in Section 4, the distribution optimal power flow model considering the energy resource is introduced to realize the calculation of the voltage and load ratio imbalance under the price-guided EV charging. Furthermore, a fast-charging station pricing method oriented to the load balance is further proposed to realize the spatio-temporal power pricing and reduce the load ratio imbalance of transformer stations. Specifically, it is based on the improved Strength Pareto Evolutionary Algorithm (SPEA2) (Shao et al., 2017), which accomplishes the interaction between the spatio-temporal distribution model for fast-charging loads and the optimal power flow model to realize the iterative search of spatio-temporal prices. Finally, in Section 5, the validity and laudability of the proposed methodology are verified on a self-built small-scale test case and a real road network case in a region of Xinjiang.
2 A SPATIO-TEMPORAL PRICING FRAMEWORK FOR FAST-CHARGING STATIONS
The spatio-temporal pricing problem for fast-charging stations, which is essentially a power system optimization problem based on dynamic traffic flow, can be decomposed into the power system pricing optimization problem at the upper level and the traffic flow solving problem considering the impact of electricity price at the lower level, whose relationship is shown in Figure 1. At the lower layer, the traffic flow model is introduced to portray the EV traveling path cost. The subjectivity of EV traveling path selection is described by the owner’s preference model, to incorporate the pricing strategy into the traffic flow solving problem. Furthermore, the randomness of EV traveling choice is ensured using the stochastic Monte Carlo probability sampling method, and the shortest circuit method is used to solve the traveling paths of the final EV monoliths, which form the spatio-temporal fast-charging loads of EV in the day ahead. In the upper layer, the distribution network operator relies on the SPEA2 to generate the spatio-temporal pricing population to be sent down to the lower layer of the problem. After obtaining the corresponding charging loads, the optimal power flow is solved by using the second-order conical planning, and the overall spatio-temporal imbalance of the voltage and load for the transformer station is then calculated. The price population is updated according to the obtained results. The above process is repeated until acceptable spatio-temporal price results are obtained.
[image: Figure 1]FIGURE 1 | Spatio-temporal pricing framework.
3 THE SPATIO-TEMPORAL DISTRIBUTION MODEL FOR FAST-CHARGING LOADS CONSIDERING EV OWNERS’ PREFERENCES
To reflect the dynamic impact of different prices on the spatio-temporal distribution of EV loads, the preference of vehicle owners for road access time and price is modeled to simulate the driving behavior choices of EV owners. Thus, it indirectly reacts to the influence of price on road flow and power grid currents and assists in accomplishing the spatio-temporal pricing for charging stations. The road network is a typical graph structure, which can be represented as [image: image], where [image: image] is the set of road segments and [image: image] is the set of road network nodes. In addition, a road weight matrix [image: image] of size [image: image] is set to describe the length of each road segment and the connection relationship between nodes. When there is no road segment in road network nodes i, j, [image: image] takes the value of infinity. Otherwise, [image: image] takes the value to indicate the length of road segments i, j.
3.1 EV travel patterns and speed modeling methods
In the urban road network, there are mainly two types of vehicles: private vehicles and operating vehicles. First, to simulate the traveling pattern and dynamic driving process of EVs, EV travel-return probability distribution, EV destination dynamic selection, and EV dynamic speed calculation models are constructed.
In terms of the probability distribution of EV travel-return trip, according to the statistical fitting of the traveling pattern, the EV driving traveling time approximately obeys the normal distribution, and its return time approximately obeys the Cauchy distribution. The corresponding distribution of the probability density function is shown as Eqs (1)–(3):
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where the demand for commuting trips by a private vehicle is obtained from the probability distribution of [image: image]. The operation start time and operation end time of the operating vehicle are obtained from the probability distribution of [image: image], respectively. In addition, according to the 2011 Beijing Transportation Development Annual Report, the fitting of data on the commuting time of Beijing citizens on weekdays could be obtained.
In addition, for the dynamic selection of EV destinations, it is necessary to determine the origin–destination (O–D) of EVs at different moments (Zhang et al., 2017). In fact, there are significant functional differences between different areas of the urban road network. According to the functional classification in the government control plan, urban areas can be roughly divided into three types: residential areas, work areas, and commercial areas. Different EV traveling directions are closely related to the functions of the areas. Private cars usually travel in the direction of “residential area–work area” during commuting time. Operational vehicles are more flexible as they usually undertake multiple consecutive trips, but their choice of traveling area also has a typical temporal distribution. In order to realize the simulation of EV trips and charging loads of operating vehicles, it is necessary to determine the function of the area to which the nodes belong. Therefore, the residential area node set [image: image], the work area node set [image: image], and the commercial area node set [image: image] are set. Specifically, the operating vehicle needs to select the next destination according to the passenger demand after the execution of the O–D pair. To reflect the time distribution characteristics of regional function selection and the randomness of passenger selection, the weight [image: image] of node i being selected as the new destination at moment t is described as the sum of the discrete probability values of node function attributes and white noise. Then, the probability [image: image] of node i being selected according to the obtained weight is calculated, as shown in Eqs (4)–(9).
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where [image: image] represent the discrete probabilities of nodes with different functional attributes, and their sum is 1. [image: image] is the white noise with values from 0 to 1, which represents the randomness of node i being selected. [image: image] is the probability that node i is selected as the new starting point, which is equal to the ratio of the selected weight of node i to the total weight of all nodes.
After specifying the EV travel options, the speed of road network traveling also needs to be considered to dynamically simulate the EV travel. The EV traveling speed is affected by the road class and traffic volume of the road section, which can be portrayed using the speed-flow utility model (Shao et al., 2017) as follows:
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where [image: image] represents the zero flow velocity of the EV in the directly connected road section [image: image]; [image: image] represents the traffic capacity of road section [image: image], which depends on the road grade; [image: image] represents the traffic rate of road section [image: image] at time [image: image]; the ratio of [image: image] to [image: image] represents the saturation of road section at time [image: image]; and [image: image] represent the adaptive coefficients at different road grades.
3.2 EV owner path selection preference model
The path selection of operational EVs is usually affected by several aspects, which can be divided into the following: 1) when the power is sufficient, the path communication time is usually the most concerned factor for operational vehicles; 2) when the power is insufficient, the vehicle owner needs to recharge the vehicle as quickly as possible to continue the operation at the lowest possible price, in which case the access time and the cost of recharging together become the most important factors affecting their decision.
It can be seen that for the simulation of operating vehicle path selection, the influencing factors can be summarized into two aspects: path travel time and charging cost. The path traveling time is decomposed into the traveling time of the multiple road sections passed through, which, in turn, depends on the length of the road sections and the traveling speed of the road sections. The length of the road section is characterized by [image: image], and the road section traveling speed can be calculated by (4). Therefore, the road section passage delay matrix [image: image] can be formed at any moment t, and the passage time of its road section [image: image] is calculated as follows:
[image: image]
For each fully charged EV owner, the route selection is dynamically adjusted at each moment according to the real-time traffic flow and roadway passing time. At this point, the O–D pair and delay matrix [image: image] are known to any EV owner. Therefore, EV traffic path selection can be abstracted into the global shortest path problem of the weighted graph [image: image], and its travel time [image: image] is characterized as follows:
[image: image]
where [image: image] represents the starting point of the EV owner at time t (or the end point of the road section if it is in the road section); [image: image] represents the end point of the EV owner at time t; and [image: image] represents the path selection of the EV owner at time t, which is the 0–1 variable, and when the car owner selects the road section from i to j, its value is 1; otherwise, it is 0. At the same time, the path selection of the owner’s EV needs to satisfy the following constraints:
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where Eqs 14–15 indicate the radial constraint of the path; i.e., any node can only be used as a starting and ending point once. Equation 16 indicates the connectivity of the intermediate segment selection of a non-starting node. Equations 17–18 indicate that the starting node must be passed once as the starting and ending points.
Notably, this problem belongs to the integer programming problem, which will be difficult to solve under larger road networks. Therefore, Dijkstra’s algorithm, which is widely used in graph theory (Zhang et al., 2017), is used here to solve it, and the path selection with sufficient power can be obtained.
As for EVs with charging needs, they need to target several nearby fast-charging stations for destination selection. In this case, the EV’s path selection needs to solve the globally shortest path problem for several O–D pairs and calculate its traveling time and charging cost. An example of a fast-charging station c located at node [image: image] is illustrated.
First, according to Eqs 13–18, the traveling time [image: image] can be calculated as follows:
[image: image]
Based on the results obtained, the cost of its charging is further calculated as follows:
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where [image: image] represents the charging cost of the EV at the fast-charging station c; [image: image] is the charging time at the fast-charging station c at this time; and [image: image] represent the charging price at the node and the charging power of EV at time [image: image], respectively. [image: image] is the time when the EV arrives at the fast-charging station c; [image: image] is the charging end time at the fast-charging station c; [image: image] is the expected charging power of the EV after it reaches c; [image: image] is the charging power per unit time of the fast-charging station c; [image: image] are the expected state of charge of the EV and the state of charge when it reaches c, respectively; [image: image] is the state of charge of the EV at time t; [image: image] is the EV capacity; [image: image] is the power consumption per unit time of EV driving; [image: image] is the simulation time interval; and [image: image] is an upward rounding operation.
Considering the different sensitivities of different EV owners to time and electricity price, this paper sets the distance loss weight [image: image] and charging electricity price weight [image: image] to measure the willingness of different EV owners in charging station selection. At this time, the fast-charging station choices of each EV owner are as follows:
[image: image]
where [image: image] represents the set of fast-charging stations to be selected; [image: image] is the node where the selected fast-charging station is located.
3.3 Simulation of the spatio-temporal distribution of fast-charging loads based on the Monte Carlo method
After completing the construction of the relevant model for the dynamic simulation of EV travel, the stochastic simulation of the electricity price’s guidance on the spatio-temporal distribution of regional fast-charging loads is realized based on the Monte Carlo method, the steps of which can be summarized as follows:
Step 1: The time is initialized to 0, and each EV is assigned an initial location [image: image], an initial travel-return time [image: image], an initial state of charge [image: image], a spatio-temporal price, and other relevant parameters based on the type of car using random sampling.
Step 2: The state of each EV is iterated at time t, and O–D pairs are formed according to the EV type. For the private car, it has a fixed O–D pair and only needs to determine whether its time is [image: image] to be clear; for the operating car, on the basis of the private car, it also needs to determine whether it completes the current order trip, i.e., whether it arrives at the end point of the current O–D pair, and if it does, then the current node is taken as the starting point, and according to the results obtained from (9), random sampling generates the destination of its trip in order to update the O–D pairs.
Step 3: If the O–D pair of the EV is confirmed, its path selection is dynamically updated at the moment t. Equations 13–18 and 19–26 are solved to develop optimal traveling paths for different EVs with sufficient power and charging demand for EVs, respectively.
Step 4: At the same time, we iterate over all EVs and combine the velocity-flow model (10–11) to calculate and update the state of each EV at moment t.
Step 5: We determine whether the moment t reaches the simulation maximum moment. If not, we update t = t+1 and re-enter Step 2; if yes, we end the computation and output the driving behavior of each EV at the simulation moment, as well as output the spatio-temporal distribution of fast-charging loads according to each fast-charging station accessing the distribution network node.
4 THE SPATIO-TEMPORAL PRICING MODEL OF FAST-CHARGING STATIONS FOR LOAD BALANCE
4.1 Spatio-temporal pricing model construction
Large-scale demand for fast-charging loads will exacerbate the degree of load imbalance among transformer stations and consequently bring about serious redundancy in grid investment and construction. Distribution network operators should endeavor to set reasonable spatio-temporal price for fast-charging stations to effectively guide the orderly access of fast-charging loads by stimulating vehicle owners’ preferences. The necessity of spatio-temporal guidance is illustrated in the previous section. In a single time section under the effect of time-guided signaling such as time-of-day price, the load balance of each station is difficult to be taken into account. The charging price is generally determined by combining the time-of-use electricity price and charging service fee, which is determined by the location of the charging station. To a certain extent, it is possible to guide the selection of charging sites for EVs, but in the pricing mechanism of spatial service fees, time is directly decoupled, and insufficient consideration is given to the short-term impact of distribution system loads. Therefore, the article simultaneously calculates the price from two perspectives, time and space, to achieve balanced operation of transformer stations in the spatio-temporal dimension.
The power distribution system can be represented as a strong connection graph [image: image], where [image: image] is the set of nodes of the distribution system and [image: image] is the branch [image: image] between the two nodes. In fact, the spatio-temporal price will affect the spatio-temporal distribution of the load, which is reflected in the spatio-temporal voltage balance [image: image] and the spatio-temporal load balance [image: image], which can be expressed as shown in the following equation:
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where H represents the number of scheduling intervals; [image: image] and [image: image] are the injection power and the voltage of node i at time t, respectively, where [image: image] is a positive number that represents the node as a load node, and a negative number represents a power generation node; and [image: image] represents the power supply node of the upper power grid, and it is mostly a radial network in the distribution system, so [image: image]. In addition, considering that the upper power supply node bears the load demand of the whole area, the power supply node is ignored when calculating the imbalance of the station area. For the possible bidirectional power flow problem, the absolute value [image: image] is used to analyze the calculation process, and [image: image] and [image: image] represent the average absolute values of all node voltages and node power during the scheduling time, respectively.
In fact, the spatio-temporal tariff will affect the load spatio-temporal distribution. Representing the spatio-temporal tariff vector by a matrix [image: image] of size [image: image], the spatio-temporal distribution of fast-charging loads will be obtained by the stochastic simulation of the model developed in Section 3, and then, [image: image] can be expressed as a function of the tariff and stochastic parameters.
[image: image]
In the formula, the parameters determined by random sampling, such as the starting point of EVs in the charging load distribution model, are defined as vector [image: image]; [image: image] represents the distribution space of random parameter [image: image]; [image: image] represents the spatio-temporal distribution of the fast-charging load under electricity price [image: image] and random parameter [image: image] (a simplified expression of the Monte Carlo calculation in Section 3); and [image: image] is used for the basic node load of a non-EV. In fact, the distribution of the spatio-temporal price at the nodes also affects the load of the customers, but this is not the focus of the discussion here, so this part is treated as a constant only.
The spatio-temporal tariff affects the loads and then changes the current distribution, causing a change in the voltage spatio-temporal distribution. Among them, considering the economic requirements of the distribution system operation, the node voltage is formulated to rely on the DOPF calculation. The DistFlow model (DIJKSTRA, 1959), which is the most widely used model in distribution systems, is used here, and based on the second-order cone to achieve convexity, the DOPF can be expressed as follows as the solution to the following optimization problem:
[image: image]
[image: image]
[image: image]
[image: image]
[image: image]
[image: image]
[image: image]
[image: image]
[image: image]
where [image: image] and [image: image] represent the active power and reactive power of the branches between nodes i and j at time t, respectively; [image: image] and [image: image] are defined as resistance and reactance of branch ij ; [image: image], [image: image], [image: image], and [image: image] are defined as the active power, reactive power, voltage of node j and the square of the current of branch ij at time t, respectively; [image: image] represents the square of the reference voltage at the upper grid access point, and the reference voltage is set to 1.05 in this paper; [image: image] and [image: image] represent the upper and lower bounds of the square of the voltage of node i, respectively; and [image: image], [image: image], [image: image], and [image: image] represent the active and reactive power boundaries of the branch ij. [image: image] are the vector expressions of related variables.
Combining Eqs 27–32, the optimization problem for the spatio-temporal price can be formulated as the solution process of the following equation:
[image: image]
4.2 Spatio-temporal pricing model solution
Notably, Eq. 31 couples the EV travel simulation model in Section 3, possessing stochasticity and non-linearity. There are many recent studies that have thoroughly discussed the EV travel simulation model and tried to equate it to a mathematical planning model. However, due to its nature being the same as the traveler problem, which belongs to the same NP-hard problem, the computational efficiency of these studies cannot be effectively guaranteed when the network size becomes larger. Therefore, in order to obtain an acceptable suboptimal solution in an efficient time, this article still uses a heuristic algorithm in conjunction with the simulation model in Section 3.
At the same time, considering that the voltage balance is not equivalent to the balance of loads, problem 41 cannot be simply transformed into a single-objective problem to be solved. Therefore, the classical multi-objective optimization algorithm SPEA2 is chosen here to solve the problem iteratively. The solution process is shown below (mainly for the determination of the day-ahead spatio-temporal price).
The road network information and topology information of the power system of the regional transportation system before the day is imported, and the spatio-temporal electricity price population before the day is initialized.
This step involves entering the traffic system simulation link. The start and end points and state of charge of EVs are randomly generated according to the probability, and the spatio-temporal electricity price information in the population is imported into the spatio-temporal distribution simulation model of EV load considering the preference of vehicle owners so as to obtain the nodal load distribution under the current spatio-temporal electricity price.
This step involves entering the optimal power flow solution of the power system. The nodal load corresponding to each spatio-temporal electricity price in the current population is taken as the input of DOPF in Eq. 32, and the power flow distribution of each electricity price is calculated separately.
This step involves entering the calculation of the imbalance in the station area. Based on the power flow results of each spatio-temporal price, Eqs 27–30 are used to obtain the voltage balance degree and the spatio-temporal load balance degree under each electricity price.
The Pareto surface is updated according to the obtained results, and it is determined whether the maximum number of iterations has been reached. If so, the spatio-temporal electricity price with the smallest sum of the two targets in the current Pareto surface is selected as the output, and if not, the SPEA2 will update the population and enter a new iteration, repeating Step 2–Step 5.
It should be noted that the solution of the proposed framework can be based on similar multi-objective heuristic optimization algorithms, and only SPEA2, which performs consistently in the example, is chosen for the analysis.
5 CASE STUDIES
5.1 Experimental environment
All the algorithms in this article were written in Python 3.9 on a personal computer with a CPU configuration of Intel® Core (TM) i7-10700F CPU@ 2.90 GHz and 16 GB of RAM and were simulated using the Spyder compilation platform. The mathematical optimization problems involved in the algorithms are all solved based on the Gurobi 9.5.2 solver.
5.2 Case settings
To verify the effectiveness of the proposed fast-charging station spatio-temporal price on the load and voltage balance aspects of the station, simulation cases are set up as follows:
Case 1: Based on the proposed method and DLMP method, the spatio-temporal pricing results of fast-charging stations are calculated in the self-built 9-node distribution power network and 29-node road network, and the total load, load voltage distribution, and electricity price distribution are compared and analyzed.
Case 2: Based on the proposed method and DLMP method, the spatio-temporal pricing results of fast-charging stations are calculated in the self-built 33-node distribution network and the real 66-node road network system in a certain region of Xinjiang, and the total load, load voltage distribution, and electricity price distribution are compared and analyzed.
5.3 Case analysis
5.3.1 Analysis results in case 1
Case 1 compares the proposed pricing algorithm with the DLMP algorithm. It consists of a 29 node road network and a 9 node power network, as shown in Figure 2. The area type of each road node is shown in Table 1. Road nodes 5, 14, and 28 are equipped with fast-charging stations, which are connected to nodes 2, 6, and 8 of the power network, respectively.
[image: Figure 2]FIGURE 2 | Test case 1: 9-node distribution network topology and 29-node road network.
TABLE 1 | Area type of each road network node in the self-constructed example.
[image: Table 1]Considering the power purchase cost of the grid-connected nodes considered in the DLMP follows the setting of the time-of-use (TOU) tariff of the upper grid, TOU prices are set here as shown in Table 2.
TABLE 2 | Peak, normal, and valley tariff settings.
[image: Table 2]5.3.1.1 Comparative analysis of EV with different charging preferences for case 1
To verify the different sensitivities of different EV users to charging costs and time costs, which lead to changes in the road network traffic flow, we now simulate the changes in the traffic flow under different charging strategies for two types of charging users. Two roads near the charging station in the commercial area are randomly selected for display. Assuming that all charging users are time-sensitive, the changes in the road traffic flow are shown in Figure 3A. Assuming that all charging users are price-sensitive, the changes in the road traffic flow are shown in Figure 3B. Comparing the difference in the traffic flow between the two charging strategies, it can be seen that compared to price-sensitive users, time-sensitive users have a significant reduction in their traffic flow curves. During the period from 17:00 to 20:00, there is a significant peak in the traffic flow. For time-sensitive charging users, they will choose to avoid this section of the road and choose charging stations that are far away but require less time for charging, resulting in a reduction in the traffic flow on that road.
[image: Figure 3]FIGURE 3 | Traffic flow for different charging users. (A) Traffic flow for time-sensitive users. (B) Traffic flow for time price users.
5.3.1.2 Comparative analysis of the total distribution network load for case 1
The total loads of the proposed method with DLMP and uncontrolled charging are demonstrated in Figure 4. It can be seen that both tariff setting methods have limited effects on peak shaving and valley filling of the fast-charging load for EVs. The reason is that the distance between different fast-charging stations on the mini road network is small, and EVs with fast-charging needs do not have a huge difference in access time when choosing different fast-charging stations, so their overall time-adjustable margin is small.
[image: Figure 4]FIGURE 4 | Total distribution network load under different methods (case 1).
5.3.1.3 Comparative analysis of load and voltage distribution in the distribution network of case 1
The load distribution of each node of the DLMP algorithm and the method proposed in this paper is calculated as shown in Figure 5. It can be seen that, compared with the DLMP method, the method proposed in this paper can reduce the heavy-load problem at end node 8 to a certain extent and transfer the fast-charging load of EVs to node 6, which has a lower load, so as to achieve a certain degree of balancing the uneven spatial distribution of the load of the power grid.
[image: Figure 5]FIGURE 5 | Load distribution in distribution networks under different pricing methods (case 1). (A) Load distribution in distribution networks under the DLMP. (B) Load distribution in distribution networks under the proposed method.
In terms of voltage, the voltage distribution at each node of the DLMP algorithm and the proposed method is shown in Figure 6. It can be seen that the proposed method is slightly better than the DLMP method in improving the voltage at the end node (node 8) and the overall voltage spatio-temporal average. However, due to the small topology of the distribution network in case 1, the overall solution space is limited, and there is no significant difference in the voltage distribution under the two methods, and the advantage of the proposed method is not reflected. In fact, this advantage will be exploited on a larger-scale network, which is also proven by the subsequent analyses in case 2.
[image: Figure 6]FIGURE 6 | Distribution network voltage distribution under different pricing methods (case 1). (A) Distribution network voltage distribution under the DLMP. (B) Distribution network voltage distribution under the proposed method.
Furthermore, end nodes 6–8 of the network during the peak load hours 7:30–15:00 are selected to be analyzed to compare the voltage distribution of the proposed spatio-temporal tariff method with the DLMP, and the results are shown in Figure 7. It can be seen that although voltage security can be ensured under both methods, the proposed method enhances the voltage magnitude when the load is heaviest and is able to attenuate the voltage fluctuation over a short period of time. This shows the effectiveness of the proposed method in the spatial balancing of voltage in the station area.
[image: Figure 7]FIGURE 7 | Voltage distribution at end nodes under different pricing methods (case 1, 7:30–15:00). (A) Voltage distribution at end nodes under the DLMP. (B) Voltage distribution at end nodes under the proposed methodology.
5.3.1.4 Comparative analysis of the spatio-temporal price in the distribution network for case 1
The finalized prices of cases 1 and 2 are displayed in the form of heat maps, as shown in Figures 8, 9. As shown in Figure 8, the proposed method can effectively achieve differential pricing in terms of spatio-temporal pricing. In terms of time, the pricing during the peak load period is generally higher than the tariff performance during the load valley period. In terms of space, there is a significant difference in the price of electricity at different fast-charging stations within the same time period. Combined with Figure 5 and its analysis results, it can be seen that the spatio-temporal pricing results of the proposed method have a significant positive correlation with the spatial loads, and the results obtained by the proposed method can effectively realize the guidance of EVs. Specifically, the load of fast-charging station 1 located at node 2 is generally lower, and its tariff results are significantly lower than those of fast-charging stations located at nodes 6 and 8. In addition, the tariff of node 5, where a new energy generator set is deployed, is significantly lower than that of the other nodes. This suggests that the proposed pricing methodology, in the medium-to-long-term application, can guide the siting of new fast-charging stations toward the nodes with new energy generating sets to a certain extent.
[image: Figure 8]FIGURE 8 | Spatio-temporal pricing results of the proposed method (case 1).
[image: Figure 9]FIGURE 9 | DLMP pricing results (case 1).
In contrast, the pricing of DLMP shown in Figure 9 relies on the time-of-day pricing setting for temporal flexibility, while the spatial aspect is largely ineffective. In fact, the DLMP algorithm is composed of a marginal power purchase cost and a network loss cost when there is no network congestion. Of these, the network loss cost is usually small. Therefore, in the absence of network congestion, there is usually no significant difference in the spatial pricing differences of the DLMP. On the other hand, in time, the DLMP relies on time-of-day tariff settings (the marginal cost of purchasing and selling electricity from the upper grid). Specifically, time-of-day pricing is usually set based on the trend of the unified load, which makes it difficult to provide good peak shaving and valley filling in local distribution network areas. As a result, the price obtained by the DLMP has a significant gap in spatial and temporal guidance compared to the proposed methodology and is difficult to be used to guide the work of balancing in the station area.
5.3.2 Analysis results in case 2
In order to verify the scalability and applicability of the proposed method in the actual system, a larger scale of the arithmetic example is selected for verification. In this case, the traffic road network is modeled according to the 66-node actual road network in a region of Xinjiang shown in Figure 10 and associated with the IEEE 33-node network, as shown in Figure 11. Among them, the whole system is set up with eight fast-charging stations, whose road network and power grid locations are detailed in Figure 11.
[image: Figure 10]FIGURE 10 | Map display of a region in Xinjiang.
[image: Figure 11]FIGURE 11 | Test case 2: 33-node distribution network and 66-node road network.
5.3.2.1 Comparative analysis of the total distribution network load in case 2
The results of the total load of the distribution network under different pricing methods are shown in Figure 12. The results show that the proposed spatio-temporal tariff method is significantly better than the DLMP pricing method in smoothing out the peak-to-valley difference of the total load in a larger-scale system. The spatio-temporal tariff developed using the proposed methodology enables the steering of EV charging loads in terms of timing flexibility and effectively shifts the loads from peak distribution network loads to off-peak hours.
[image: Figure 12]FIGURE 12 | Total distribution network load under different methods (case 2).
5.3.2.2 Comparative analysis of load and voltage distribution in the distribution network in case 2
As shown in Figure 13, the load profile of each node of the distribution network is analyzed. It can be found that compared to the original DLMP algorithm, the proposed method cuts the three load spikes present in the most heavily loaded grid node into one and allocates the load to another charging station with a lighter load, while there is a time lag in this part of the shifted load due to the fact that the charging station chosen by the EV after responding to the spatio-temporal tariff will be farther away from the charging station than the charging station chosen in case of non-response. This again explains the source of the temporal flexibility of the fast-charging load.
[image: Figure 13]FIGURE 13 | Load distribution in distribution networks under different pricing methods (case 2). (A) Load distribution in distribution networks under the DLMP. (B) Load distribution in distribution networks under the proposed method.
Furthermore, the nodal voltage distribution on the trunk lines (nodes 0–17) in the distribution network is calculated, and the results are shown in Figure 14. As in the case of experiment 1, the voltage drops and is more pronounced in experiment 2 during peak loads. Compared with the notable voltage drop at the end nodes (nodes 15–17) in the DLMP algorithm, the proposed method is still able to effectively reduce the degree of low voltage at peak load, which fully reflects the ability of the proposed method to guarantee the voltage support.
[image: Figure 14]FIGURE 14 | Trunk node voltage distribution under different pricing methods (case 2). (A) Trunk node voltage distribution under the DLMP. (B) Trunk node voltage distribution under the proposed methodology.
5.3.2.3 Comparative analysis of the road traffic flow of case 2
Figures 15A, B illustrates the traffic flow on selected roads, comparing the outcomes between the DLMP and the proposed method. Notably, these selected roads represent the highest traffic volumes in the Case 2. It can be seen that during the peak electricity consumption period, road 150 presents a peak, and road 150 happens to be the road leading to fast-charging station 3. The power grid node connected to fast-charging station 3 is node 20, and the branch node where node 20 is located has fewer branch nodes, resulting in lower energy supply demand. By guiding EVs to charge toward fast-charging station 3, the power supply pressure of other branches can be reduced, thereby increasing the voltage at the end nodes of other branches in order to achieve the goal of balancing the voltage in the substation area. Therefore, the spatio-temporal electricity pricing method proposed in this article can effectively balance the substation voltage of the power grid by guiding the selection of charging stations for EVs.
[image: Figure 15]FIGURE 15 | Traffic flow under different pricing methods (case 2). (A) Traffic flow under the DLMP. (B) Traffic flow under the proposed methodology.
5.3.3 Results of station balance analyses for cases 1 and 2
To further quantitatively compare the effectiveness of the proposed method and DLMP in terms of a station balancing degree, the node power and voltage variance under experiments 1 and 2 are calculated according to Eqs 27–28, as shown in Table 3. The results show that the proposed methods all achieve effective improvement in the balance degree, and the improvement effect is more notable on larger-scale arithmetic cases. In summary, the spatio-temporal pricing approach described in this paper well takes into account the spatial sensitivity of fast-charging loads, effectively optimizes the peak-to-valley difference of the grid by guiding the selection of EV charging stations, attenuates the problem of notable voltage reduction at the end grid nodes during the peak loads, and effectively brings into play the voltage-supporting capability of fast-charging EVs.
TABLE 3 | Nodal voltage and power variance under the proposed method with the DLMP.
[image: Table 3]Furthermore, a comprehensive comparison of different algorithms, including SPEA2, NSGA-II (Deb et al., 2002), R-NSGA-II (Kalyanmoy and Sundar, 2006), U-NSGA-III (Seada and Deb, 2016), and AGE-MOEA (Panichella, 2019), is performed using case 1 as the target. Specifically, we chose as the optimal outcome the individual with the largest average value of each objective on the Pareto surface. As shown in Table 4, the SPEA2 outperforms the other algorithms and shows its superiority in our problem setting.
TABLE 4 | Nodal voltage and power variance under the different methods in case 1.
[image: Table 4]It is crucial to highlight that, while SPEA2 exhibited better performance, the differences in the results’ order of magnitude among algorithms were not substantial. This underscores our work does not hinge on the intricacies of complex algorithms.
6 CONCLUSION
In this paper, a fast-charging pricing strategy considering load spatio-temporal equilibrium and elastic response is proposed, and the conclusions obtained are as follows:
(1) A spatio-temporal distribution model of EV fast-charging load considering the vehicle owner’s preference is designed. The EV travel law and speed modeling method and EV owner path selection preference model are constructed to form a mapping of the dynamic impact of electricity price on EV charging loads.
(2) A multi-objective spatio-temporal pricing model for fast-charging stations oriented toward station balancing is proposed. The two objectives of voltage balance and load balance are considered comprehensively, and the impact of price on the dynamics of EV charging loads is mapped in the form of constraints so that the obtained tariff results have a guiding effect on EV fast-charging loads.
(3) An enhanced Pareto evolutionary algorithm is used to solve the model efficiently, and the results show that the proposed method has stronger spatio-temporal guidance compared to the DLMP pricing method and is more effective when applied to large-scale systems.
However, it should be noted that the larger the system scale, the longer the simulation time of the spatio-temporal distribution model of the fast-charging load of EVs, and the cost of solving will increase. Therefore, how to simplify the fast-charging load distribution model and realize the fast calculation of large-scale applications in the future is an important extension of this research in the future. Indeed, we hold the conviction that adopting a data-driven approach serves as a crucial method to strike a balance between the accuracy and speed of traffic flow simulation. This represents one of our key priorities moving forward.
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The intermittence and unpredictability of large-scale renewable integration poses significant challenges to the operation of the electricity market. New paradigms of the joint electricity spot market (EM) and ancillary service market (ASM) incorporating frequency regulation (FR) and flexible ramping product (FRP) are considered as potential solutions, addressing the challenge of limited compatibility in the electricity market with the widespread integration of renewable sources. This work focuses on three critical technical obstacles: optimizing the joint market mechanisms, constructing bidding models, and exploring algorithmic solutions. This paper presents a brief review of recent research on bidding mechanisms, models, and strategies for the electricity joint market with high-penetration renewable integration. Furthermore, challenges and future research prospects of these issues are also discussed.
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1 INTRODUCTION
Global climate change problem has become increasingly serious in recent years, and reducing greenhouse gas emissions is one of the main challenges facing the industry. Burning fossil fuels at thermal power plants play a significant role in greenhouse emissions, accounting for over 60% of the European Union’s total emissions (Andersson and Börjesson, 2021). Therefore, decarbonizing power sector, i.e., promoting wide-scale penetration of renewable generation to replace thermal generators, has drawn considerable attention from academia and industry (Bistline and Blanford, 2021). Nevertheless, the uncertainty and intermittence of renewable generations also threaten the security of power grid operation.
Facing these new challenges, the electricity market is considered the macro-level approach to achieving power system operation security, economic efficiency, and environmental friendliness. In order to accommodate the vast amount of renewable generation resources, the emerging features of the worldwide electricity market can be summarized as follows: (1) High penetration distributed resources such as photovoltaics and wind power are more inclined to generate and participate in the electricity market as stakeholders. (2) The demand for balancing products in the ancillary service market (ASM) has increased due to the necessity of hedging uncertainties caused by high penetrations of renewable generations (Nelson and Johnson, 2020; Wang and Hobbs, 2015). For instance, the flexible ramping product (FRP) proposed by California ISO (CAISO) facilitates real-time (RT) balancing in a time slot of 5–15 min (Wang et al., 2020). Therefore, the joint energy spot market (EM) and ASM will become a dominant force in the global power industry, making it necessary to extensively study the joint market mechanism. This paper reviews the market mechanism optimization, the construction of the bidding models, and the algorithmic solutions.
2 LITERATURE REVIEW
2.1 Current research on market mechanism optimization theory for large-scale penetration of renewable energy
Optimizing market mechanisms, typically grounded in microeconomic theory, involves the proposal of bidding or pricing mechanisms, which are then validated through equilibrium analysis. This process often models the market as an Equilibrium Problem with Equilibrium Constraints (EPEC). Worldwide research has explored the strategic bidding behaviors of large-scale renewable energy suppliers in electricity markets, such as wind farms, electric vehicle integrators, and energy storage facilities (Morales et al., 2010; Pousinho et al., 2013; Zugno et al., 2013; Alabdulwahab et al., 2016; Zou et al., 2016; Xiao et al., 2023). Some research has considered the collaborative operational bidding strategies of various renewable energy sources (Mohammadi et al., 2011; Vagropoulos et al., 2013; Agustin et al., 2016; Cao et al., 2024), while others have proposed short-term bidding strategies for virtual power plants that incorporate various flexibility resources (Rahimiyan and Baringo, 2016). Countries like Denmarkanticipate a complete transition to renewable energy for power supply by 2050, particularly in Northern Europe. However, China faces the challenge of being unable to replace fully traditional power plants with renewable energy sources in the short term (Jacobson et al., 2017). Consequently, when investigating the strategic bidding of large-scale renewable energy suppliers in the market, the presence of traditional power plants should not be overlooked alongside flexible resources like wind, solar, and energy storage. Furthermore, integrating carbon markets into the power market has prompted studies on the effects of European Union carbon emission trading rights and carbon emission costs on power market dynamics and generator bidding strategies (Weigt et al., 2013; Anke et al., 2020). With the spot market overlooking the carbon market’s impact on power market transactions, electricity-carbon market mechanisms operate relatively independently in regions such as Guangdong Province.
Research on market mechanisms varies depending on the type of market. Some focus on the bidding and settlement mechanisms of the energy quantity market from the generation side (Ela et al., 2016; Mozdawar et al., 2022; Silva-Rodriguez et al., 2022), while others concentrate on the pricing and deployment strategies of ancillary services, primarily frequency regulation (Arteaga and Zareipour, 2019; Maria Luisa et al., 2019; Godoy et al., 2020; Stavros et al., 2020; Luis et al., 2022). These studies explore various market clearing methods (deterministic or stochastic) and compensation mechanisms (pay-as-bid or opportunity cost payment). In the United States, markets such as CAISO and MISO independently trade, optimize, and price ramp capabilities, introducing a new ancillary service product, FRP (Casio, 2015; Navid and Rosenwald, 2024). This addition mitigates the uncertainty of system load and renewable energy variations, ensuring sufficient ramping capability to match net load changes and maintain system real-time balance. Although the introduction of FRP for joint market clearing can enhance the regulatory capacity of the system, research in this area is still in its nascent stages. Various studies have examined the market mechanisms of Energy Markets (EM) and Ancillary Service Markets (ASM) from different perspectives, including market time frames, equilibrium models based on non-strategic bidding (actual cost functions), incentive-compatible clearing mechanisms, and the formulation of Locational Marginal Pricing (LMP) (Sorourifar et al., 2018; Zhou et al., 2018; Wu et al., 2020; Zhang et al., 2020; Hu et al., 2021). In the joint optimization of the Energy Market (EM) and Ancillary Services Market (ASM), FPR does not possess the autonomy to bid independently.
The ultimate objective of optimizing market mechanisms is to maximize the overall social welfare of the integrated market. The mechanisms across different markets must be harmonized to gradually steer the bidding strategies of market participants towards Pareto optimality while preventing cross-market collusion arbitrage and market power abuse. For example, the compensation that market participants receive is tied to the difference between Day Ahead (DA) and real-time EM prices. If there are flaws in the market mechanisms, speculators can manipulate DA and real-time prices to reap substantial profits. However, the current evaluation of market mechanisms lacks quantitative indicators, making it challenging to verify their effectiveness. Indeed, existing market mechanisms, primarily established based on domestic and international experience and theoretical knowledge, are constrained by computational limitations. The efficiency and security of the market largely hinge on the bidding strategies of participants, but assessing the impact of market mechanisms on participants’ bidding strategy preferences remains a formidable challenge. Thus, optimizing market efficiency and stability through empirical market mechanisms is not feasible.
2.2 Current research on the multi-agent bidding model of the electricity market
In the Multi-agent bidding model, human candidates with varying degrees of expertise in electricity markets will participate in the trading with a virtual market environment, representing different generation companies to submit their bids to maximize potential profits. After repeated bids submission, the game may gradually converge to the equilibrium, allowing for the detection of potential abuses of market power through the convergence procedure. The aforementioned process can be simulated as a two-layer bidding game model of GENCOs, and the solutions for this model are typically obtained through mathematical methods based on equilibrium models (Dou et al., 2016) and Agent-based Models (ABM) (Guevara C et al., 2012). A significant number of research on equilibrium models using mathematical programming focused on optimizing bidding strategies, including chance-constrained stochastic optimization (Zhao et al., 2018; Hosseini et al., 2020), robust optimization (Pousinho et al., 2015; Baringo and Sánchez Amaro, 2017), and distributional robust optimization (Han and Hug, 2020; Hajebrahimi et al., 2020). However, the diverse operational characteristics (such as on-and-off or up-and-down constraints for switches and generators) and the immense scale of expanded power networks render these problems highly dimensional, non-convex, and subject to non-observable uncertainty. Consequently, using traditional optimization tools in these contexts becomes exceedingly complex and imposes a substantial computational load. The existing research regarding scale and market rules is overly simplified compared to real-world electricity markets. ABM is typically more flexible, as it allows us to model all market participants individually and treat them as distinct agents. Each agent continuously updates its data through repeated interactions with the simulated market environment. After repeated bidding, the game may gradually converge to an equilibrium state. It should be noted that potential market power abuse phenomena can be discovered through the convergence process, resembling a real electricity market (Azadeh et al., 2012). In the ABM model, heuristic algorithm models are commonly used (Boonchuay and Ongsakul, 2011a; Elsakaan et al., 2018; Kong et al., 2019a; Hematabadi and Foroud, 2019; Du et al., 2021; Qiu et al., 2023), including genetic algorithms (GA) (Boonchuay and Ongsakul, 2011a), particle swarm optimization (PSO) (Kong et al., 2019a), artificial immune system algorithms (AIS) (Qiu et al., 2023), bacterial foraging optimization (BFO) (Elsakaan et al., 2018), krill herd algorithms (KHA) (Hematabadi and Foroud, 2019), and water wave optimization (WWO) (Du et al., 2021). These algorithms are inspired by the cooperative behaviors of gregarious animals, evolution, and heredity and have exhibited superior computational performance compared to conventional mathematical programming techniques. Model-based intuitive learning and applying genetic algorithms are utilized separately to determine the optimal bidding curves, as demonstrated in (Zhang et al., 2014; Weidlich and Veit, 2008). However, these algorithms are designed to formulate the bidding strategy of individual agents, where each agent makes decisions independently without considering the actions of the competitors. Although numerous studies (Boonchuay and Ongsakul, 2011b; Javaid et al., 2017; Kong et al., 2019b) have utilized group optimization algorithms to model the dynamic bidding process, these methods yield the optimal Pareto frontier in a cooperative setting, where agents can freely exchange search strategies. Nevertheless, this study aims to find the Nash Equilibrium within a competitive bidding environment. This necessitates fully distributed training that precludes any communication among the participating GENCOs. This strategy ensures privacy and mitigates the risk of collusion, thereby preserving the competitive integrity of the bidding process. Consequently, these methods prove unsuitable for a competitive market where each agent seeks to achieve its objectives by adjusting its behavior in response to other agents. As the model-free characteristic of reinforcement learning techniques, they eliminate the need for intricate mathematical modeling, empowering the agent to pursue the optimal decision more conveniently through direct interaction with the environment. The comparison of various electricity market bidding models is presented in Table 1.
TABLE 1 | Comparison of different bidding model of the electricity market.
[image: Table 1]2.3 Current research on bidding strategy algorithms of multi-agent market participant
This section comprehensively reviews the Reinforcement Learning (RL) fundamentals, encompassing all necessary concepts and algorithms that will be further utilized in elaborating the RL applications on marketized power systems presented in the subsequent sections. An RL algorithm comprises a model-based RL such as dynamic programming and model-free RL, further extending to value-based RL (including Q-learning, DQN and WoLF-PHC) and policy-search-based RL (including stochastic and deterministic policy gradient, Actor-critic (AC), Trust Region/Proximal Policy Optimization (TRPO/PPO), Deep Deterministic Policy Gradient (DDPG) methods). As a set of RL algorithms, numerous Q-learning algorithms have found broad application in the multi-agent electricity market for exploring bidding strategies. Najafi et al. (2019) present the development of a decentralized multi-agent model for bidding by Electric Vehicle (EV) owners, which is based on a Q-learning algorithm and crafted without the necessity for environmental modeling. For instance, Liu et al. (2021) introduced a quarter-hourly dynamic pricing strategy, leveraging the DDPG algorithm, to address the discretization issue encountered in traditional time-division pricing models. Lee et al. (2021) present an innovative energy trading system among Microgrids (MGs), incorporating a DDQN algorithm and a double Kelly strategy. Although these techniques have explored the dynamic interaction of numerous agents, the optimality search process relies on cooperation and communication among individual agents, which is inconsistent with competitive market bidding in the absence of knowledge about other rivals.
Qiu et al. (2023) and Elsakaan et al. (2018) employ the Multi-Agent-Based Models (MABM) for simulating market participant bidding models and consider the game issues of updating the multi-agent bidding strategies of energy suppliers in large power systems and regional integrated energy systems, respectively. However, in the process of making bidding decisions, multi-agents require historical bidding information of competitors. Although this model offers certain advantages compared to models with fully disclosed information, the real market is an incomplete information market. Indeed, in a real market, each participant only knows their own cost function and bidding strategy, lacking any information about other competitors (Hematabadi and Foroud, 2019). Moreover, market participants are unwilling to share their historical bidding information with competitors, rendering this algorithm still impractical for real-world market scenarios.
Zhao et al. (2022) list several Multi-agent Reinforcement Learning (MARL) methods and developed a time-varying model with an updating strategy to simulate bidding games with incomplete information. Gao et al. (2021) employ the WoLF-PHC method to ascertain the Nash Equilibrium (NE) in a pool-based energy market comprised of large-scaled wind turbines and EV aggregators. However, the computational performance is unstable with the increase of variables. Fang et al. (2021) introduce a market mechanism for double auctions in regional microgrids (MGs), utilizing a Multi-Agent Deep Q-Network (MADQN) algorithm to identify the optimal bidding strategy for these MGs. Furthermore, an Optimal Equilibrium Selection (OES) is proposed to guarantee benefit fairness, execution efficiency, and privacy protection during the interactive learning process of MADQN. Ye et al. (2023) introduced a generalized strategic bidding model for energy producers and solved it using the Deep Deterministic Policy Gradient (DDPG) method, which uses a neural network to estimate the optimal Q function. However, this algorithm based on policy gradient descent is constrained by the instability of the learning environment and the interaction of multiple agents, rendering it unsuitable for multi-agent environments. In Xu et al. (2018), Qiu et al. (2021), Li et al. (2022), and Mehdipourpicha et al. (2023), the Multi-agent Deep Deterministic Policy Gradient (MADDPG) algorithm and its modified versions were used to simulate the bidding game in competitive electricity markets taking into account privacy protection. Overall, the computational performance of existing RL algorithms is highly sensitive to hyperparameters. Therefore, for the bidding simulation of large-scale electricity markets, adjusting hyperparameters significantly impacts them and affects simulation convergence’s stability. Moreover, pressure on storage space can also make equilibrium point calculations time-consuming and challenging. The applicability of these MARL algorithms in bidding strategy is compared as shown in Table 1. The bidding model with corresponding algorithms is summarized as Figure 1.
[image: Figure 1]FIGURE 1 | Various algorithm of the bidding model.
3 CHALLENGES AND FUTURE TRENDS
Although the research mentioned above has played a significant role in integrating renewable energy into the optimal mechanism of the emerging joint energy and ancillary service market, this paper proposes three major technical challenges and future trends:
(1) Integrating large-scale renewable energy entities into the combined electricity spot and ancillary services markets has rendered the research into power market mechanisms increasingly complex. The inherent intermittency of renewable energy sources poses substantial threats to the reliability and safety of the power system, consequently impacting the dispatching, investment, and operation of the electricity market. Inadequate market mechanisms may lead to some renewable energy participants engaging in detrimental price competition or exploiting market power to establish monopolies, thereby affecting overall societal welfare and market efficiency. Furthermore, there has been little research on how to optimize the market mechanisms and improve market operational efficiency. With the penetration of large-scale renewable energy, future research could focus on investigating integrated electricity market mechanisms to address the aforementioned challenges. Integrated market encompasses the Energy Market (EM) and the Ancillary Services Market (ASM), which includes components such as Frequency Regulation (FR) and Flexible Ramping Product (FRP). It would be beneficial to develop pertinent evaluation metrics to optimize these market mechanisms effectively.
(2) The bidding model utilized in the current electricity market trading mechanisms is overly simplified, particularly in the market scale, the simulation of participant bidding strategies, and market rules. Compared to the real electricity market, this excessive simplification leads to a lack of reliability and credibility in the simulated results of the model. In response to the issues outlined above, future research should focus on MABM to simulate the bidding behavior of market participants in a competitive market environment. The model will explore the relationship among factors such as bidding, profitability, and market settlement conditions to validate and iteratively optimize the market mechanisms.
(3) Existing methodologies employed to solve bidding models of multi-agent market participants encounter limitations in computational performance. This is particularly evident in the bidding simulations of large-scale electricity markets, where adjusting hyperparameters in reinforcement learning methods can significantly impact the algorithm’s convergence performance. Further research should explore a multi-agent deep reinforcement learning algorithm for the bidding model of market participants. The method safeguards agents’ privacy, allowing them to fully exert their autonomy in bidding without any information exchange among them. Moreover, this approach successfully mitigates the influence of hyperparameters and exhibits excellent convergence properties.
4 CONCLUSION
In a carbon-constrained environment, the fundamental purpose of market mechanisms, with the electricity market as the primary tool, is to promote the development of the electricity industry towards cleaner, more efficient, and lower-carbon directions. It also aims to facilitate the large-scale penetration of renewable energy generation replacing fossil-fuel-based power generation. The intermittent and uncertain nature of large-scale renewable energy grid-integrated generation poses significant challenges to the operation of electricity markets. To address the issue of suboptimal compatibility in electricity markets, this paper reviews three aspects: the optimization of mechanisms in the integrated market of electricity spot and ancillary services, the construction of bidding models, and the resolution of associated algorithms. In addition, the challenges and potential future developments in the field are also discussed.
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This paper introduces a post-disaster load restoration approach for the distribution grid, utilizing network reconfiguration (NR) and dispatching of repair crews (RCs) to significantly enhance grid resilience. We propose an RC–NR coordinated model that leverages diverse flexible resources within the active distribution network (ADN), aimed at not only enhancing the grid’s resilience level but also efficiently mending the fault lines. The model introduces fault repairing and sequential NR coupled constraints to devise an optimal resilience strategy within temporal domain cooperation, focusing on minimizing repair and penalty costs associated with the restoration process. To tackle the challenge of computational complexity, the nonlinear model is reformulated into a mixed-integer second-order cone programming model. The efficacy of the approach is validated through case studies on an IEEE 33-bus system, in which simulation results demonstrate a considerable improvement in grid resilience, achieving optimal load recovery with reduced restoration time and costs. The proposed approach outperforms traditional methods with optimal repair sequence and RC scheduling, aligned with NR efforts, and contributes to an improved system resilience level.
Keywords: resilience, active distribution network, repair crews, restoration, load recovery
1 INTRODUCTION
In recent decades, a series of frequent and severe extreme events, exemplified by incidents like the 2021 Texas power blackouts (Zhang et al., 2022), the Zhengzhou flood blackouts, and the Taiwan rolling blackouts in 2022, have had a profound impact on grid resilience (Perera et al., 2020). These occurrences have resulted in energy deficiencies and prolonged power interruptions, posing a severe challenge to the power system operation. Concurrently, the power distribution network is undergoing a significant transition from the traditional network to the active distribution network (ADN). Explicitly highlighted during the 2008 International Large Power Grid Conference, the ADN possesses the capability to autonomously control and manage locally distributed energy resources (DERs), adjusting the network topology in real time based on the system operational status to precisely regulate the power flow (Li et al., 2017). This concept has been consistently embraced within the academic community. It is crucial to emphasize that unlike the autonomy of microgrids, under normal circumstances, the ADN, as a public distribution network managed by power companies, does not permit islanded operation. However, in emergency situations, a judicious configuration of switching points can enable specific areas of the ADN to function as isolated microgrids in an unconventional manner to support the ADN operation (Konakalla et al., 2019). Therefore, leveraging the resources within the ADN to enhance its resilience against extreme natural disasters is of paramount significance, aiming to mitigate economic losses caused by power outages.
As the foundation for the resilience operation of the ADN, it is crucial to model and evaluate the fault scenarios caused by extreme disasters. Typhoons are one of the most frequently occurring extreme disasters. Mu et al. (2022), using the classic Batts typhoon model, obtained time-varying wind speed curves at various points of the lines. Combining the vulnerability model of distribution network components, they generated fault scenarios using a non-time-series Monte Carlo simulation method. Hussain et al. (2019) considered the spatial distribution characteristics of faulty and outage equipment under typhoon disasters, categorizing them into centralized, decentralized, and centralized–decentralized distributions. They generated a set of fault scenarios for the ADN based on the fault rate distribution functions of different typhoon grades. Hou et al. (2021), starting from historical data on typhoon damage, established a prediction and evaluation model for user power outage grids under typhoon disasters using data mining and grid partitioning methods. Building upon classical models, Hou et al. (2023) made uncertainty improvements to the typhoon wind field and line fault models, considering the effects of diverse wind speeds. They proposed an improved model for line stress interference. In summary, the existing models describe the time and space characteristics of typhoons, analyze the impact mechanism of extreme disasters on distribution networks, and ultimately determine damaged scenarios by establishing component vulnerability models. These above research studies provide the fundamental models and methods for evaluating the potential faults of extreme disasters, which contributes to further investigation of the resilience operation methods.
To deal with the extreme disasters, the main measures adopted include network reconfiguration (NR) and emergency islanding. The ADNs are generally designed as closed-loop systems but operate in an open-loop manner to improve the reliability of the system. This characteristic provides a prerequisite for the implementation of network reconstruction and islanding. The NR involves the rational configuration of tie points, remotely activating or deactivating the corresponding circuit breakers, allowing specific local areas of the distribution network to operate as microgrids in an abnormal state. By this measure, the critical loads can be supplied to avoid economic losses. Demetriou et al. (2016) and Liu et al. (2019a) formulated the islanding division and power output adjustment problem as a mixed-integer linear programming model. They determined optimal islanding strategies by first obtaining a DC-feasible solution and then determining the operating point for AC steady-state islanding. Hafez et al. (2018) proposed a novel method for radial network constraints suitable for the flexible reconstruction of distribution networks. This method significantly enhances the flexibility of the network topology, thereby improving the feasibility and optimality of optimization problems related to reconstruction. Liu et al. (2019b) comprehensively considered proactive fault islanding and restoration. Lei et al. (2020) proposed a novel approach for radiality constraints, which fully enables the topological and some other related flexibilities of systems. However, only adjusting the grid structure is insufficient. The faults caused by the restoration should be inspected and repaired timely to reduce the duration of the faults and power outage. Hence, it is of great significance to consider the dispatching of the repair crews (RCs) to repair and restore the ADN against extreme disasters.
The RCs stand out as crucial resilience enhancement forces that find wide applications in distribution networks. Specifically, RCs play a vital role in facilitating coupling repair and restoration processes. Efficiently dispatching RCs to repair specific damaged components is essential for fully restoring a power grid following disasters, thereby supporting the network restoration of distribution networks (Van Hentenryck et al., 2011; Zhang et al., 2020). Bian et al. (2021) proposed a RC deployment model for fault repair and system restoration by solving a two-stage stochastic optimization problem. Arif et al. (2017) delved into the co-optimization of RC routing and reconfiguration for distribution network restoration. Considering the resource capacity limits, the fault repair and restoration model was proposed by Shi et al. (2022) to optimize the scheduling for RCs to repair faulted lines. Notably, recent studies have explored strategies such as coordinating energy scheduling with dynamic microgrid formation to reduce post-disaster recovery costs and co-optimizing RC routing with ADN reconfiguration for efficient restoration (Yao et al., 2019; Yao et al., 2020). However, existing research often addresses NR and RCs in isolation. Nevertheless, RC dispatching in the aftermath of extreme disasters poses a significant challenge as it involves addressing the combinatorial optimization issues related to depot location, equipment transportation, allocation, and crew assignment (Golshani et al., 2019; Inanlouganji et al., 2022). Thus, how to tackle the coordination between RC dispatching and NR is still a remaining key issue.
However, these works mentioned above still have two challenges to overcome: one challenge is how to enhance the resilience level of the ADN with accurate fault scenarios. The other challenge is how to solve and obtain the NR and RC repair and restoration scheduling for the ADN against extreme disaster scenarios. Based on the above, the contributions of this paper are concluded as follows:
1) The RC dispatching and fault repair sequence model is proposed to reduce the fault time period and the corresponding economic losses under extreme disasters. RC numbers and material capacity limits are modeled as constraints to describe the repair decision, while the fault repair sequence constraints are also integrated in the model to obtain optimal repair scheduling.
2) The RC and NR coordinated ADN operation method is devised to support critical loads and reduce the economic loss during the fault periods. Compared with conventional methods, the proposed method can effectively achieve optimal repair routing and load recovery scheduling for a fast and secure restoration.
2 RESILIENCE-ORIENTED ADN RESTORATION FRAMEWORK
The conceptual resilience curve is illustrated in Figure 1. The ADN’s resilience level is measured by the ratio of the supplied load. Before and after the extreme event, the ADN typically encompasses five states: pre-event ([image: image]−[image: image]), event unfolding ([image: image]), post-event ([image: image]−[image: image]), restoration ([image: image]−[image: image]), and post-restoration states ([image: image]). These states commonly represent the total energy supplied to the critical loads. In this concept, progression of the MDS during a natural disaster can be explained as follows: in the pre-event state, the ADN can operate in a normal state. When the disaster occurs at [image: image], the power supply to loads is disrupted, leading to a decrease in the load supply level (event unfolding state). After the event, the ADN reaches the post-event state at [image: image], representing the worst system condition and load recovery initiation in the ADN. As critical loads are gradually restored, the system state progresses toward the next state until the faults are repaired at [image: image]. After all the faults are repaired, it is ensured that the loads of the ADN recover to the pre-event level. Thus, the ADN gradually returns to the normal state, and the whole process ends.
[image: Figure 1]FIGURE 1 | Resilience curve and ADN restoration framework.
In this study, we propose a resilience-oriented ADN restoration approach where fault scenarios are generated before extreme events by the proposed fault possibility model. Then, the RC and NR coordinated load restoration problem is solved to obtain the optimal ADN restoration scheduling during the post-event, restoration, and post-restoration states until all the faults are repaired. Hence, the proposed resilience-oriented ADN restoration framework can leverage all the resources, including the power supply, system topology adjustment measures, and RCs, to effectively enhance the resilience level against a disaster.
3 RESILIENCE-ORIENTED ADN RESTORATION MODEL
In this study, in order to supply critical loads, the ADN makes use of strategies such as topology reconfiguration and island partition through the deployment of flexible resources. Furthermore, in the resilience-oriented ADN restoration model, local flexible resources, including controllable diesel generators (DGs), and energy storage systems (ESSs) are utilized with the distributed generation systems, such as photovoltaic (PV) systems and wind turbine (WT) systems, to provide energy to the loads in the ADN. Furthermore, line switches are operated by the DSO for NR by considering the DistFlow power flow model. Additionally, RCs are dispatched to repair the faults with limitations of the numbers and material resources.
3.1 Local flexible resources
Regarding flexible resources, both DGs and ESSs possess flexible capabilities. These are designated as the power source within the isolated islands to provide electricity for shed loads.
3.1.1 Model of the DGs
Distribution grids often rely on controllable distributed power sources, primarily utilizing DGs. DGs are commonly employed in isolated grids that are not connected to the upstream network or used as emergency power sources during grid failures. They can even be utilized in more complex scenarios such as peak shaving and power support. The model of the DGs is given in Eqs. (1)–(3) as follows:
[image: image]
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where [image: image] and [image: image] are the active and reactive power generation of the DG at node [image: image] at time [image: image], respectively; [image: image] is the power factor of the DG; [image: image] denotes the DG capacity at node [image: image]; and [image: image] and [image: image] are the lower and upper limits of the output power generation of the DG, respectively.
3.1.2 Model of the ESSs
ESSs provide possibility and solutions for post-disaster emergency dispatch in distribution networks. They can act as a fast reserve to effectively support regional control, scheduled dispatch, frequency regulation, and peak shaving. In the distribution phase, the introduction of energy storage devices can effectively mitigate the fluctuation between uncontrollable distributed power generation and load demand. ESSs interact with the grid by controlling the charging and discharging of batteries based on received control commands. Additionally, the inverters of the ESSs have a certain reactive power support capability, providing voltage support to blackout nodes according to the operational requirements of the grid. Detailed model of the ESSs are given in Eqs. (4)–(9).
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where [image: image] represents the SOC of the ESS at time [image: image] at node [image: image]; [image: image] is the loss coefficient of the ESS; [image: image], [image: image], and [image: image] are the charging, discharging, and the net ESS power injection into node [image: image] at time [image: image], respectively; [image: image] and [image: image] are the charging and discharging efficiencies of the ESS, respectively; [image: image] and [image: image] denote the charging and discharging binary status, respectively; [image: image]​ is the upper limit of the ESS charging and discharging power limit; [image: image] and [image: image] are the SOC limits of the ESS; [image: image] is the capacity of the ESS; and [image: image] is the reactive power of the ESS.
3.1.3 Model of the RES
Distributed RES can also be utilized to support the ADN resilience level. The corresponding model of the RES generation are represented in Eqs. (10)–(12) as follows:
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where [image: image] and [image: image] are the active and reactive power generation of the PVs and WTs at time [image: image] at node [image: image], respectively; [image: image] is the power factor of PVs and WTs; [image: image] denotes the RES capacity at node [image: image]; and [image: image] is the maximal power limit of the PVs and WTs.
3.2 DistFlow model of the ADN
The DistFlow model (Baran and Wu, 1989a) is typically used in the literature for simplifying the power flow equations to make them more tractable for analysis. This simplification, while enabling easier computation, can lead to inaccuracies in modeling the real behavior of the electrical distribution network, particularly under heavy loading conditions or when dealing with complex network topologies. Furthermore, the DistFlow model is primarily designed for radial distribution networks, which can be formulated as Eqs. (13)–(16):
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where [image: image] and [image: image] are the active and reactive power on branch [image: image] in the branch set [image: image] over a time period [image: image], respectively; [image: image]and [image: image] are the resistance and reactance parameters of branch [image: image], respectively; [image: image] is the current through branch [image: image]; [image: image] is the set of ancestor nodes; [image: image] is the set of child nodes; and [image: image] is the voltage of node [image: image] at time [image: image], which is within the range of the minimal limit [image: image] and the maximal limit [image: image].
In addition, [image: image] and [image: image] represent the active and reactive power injections, respectively, which can be formulated as in the Eq. (17).
[image: image]
where [image: image] denotes the binary load state of node [image: image]; [image: image] and [image: image] are the active and reactive power loads, respectively.
3.3 Model of RC dispatching and fault repair
In response to natural disasters and power line faults, the power grid needs to sequentially repair each affected line to shorten the damage period. It is crucial to find the optimal maintenance sequence within the fault period. The method for optimizing the fault repair strategy involves the introduction of a series of constraints to the switch status variables during network restructuring and island partitioning. These constraints are integrated into a unified model for fault recovery during the restructuring and islanding process. When faults occur, it ensures that the lines remain disconnected. At the same time, it is restricted to restoring a maximum of [image: image] faulty lines. The constraints on the open/close status of the faulty lines in the model represent the maintenance strategy given in Eqs. (18), (19) as follows:
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where [image: image] is the line switch status of branch [image: image] in the fault branch set [image: image]; [image: image] represents the maximum number limit of the power lines that can be simultaneously repaired at a time period; and [image: image] denotes the fault repair time. Equation 18 describes the initial state when faults occur; all fault lines are in the open state. Equation 19 represents that the fault line should be repaired only once. Equation 20 ensures that during the fault recovery process, a maximum of ℎ faulty lines can be repaired at each time period.
Resource availability is ensured by Eq. (21), which stipulates that the resource capacity of each crew should be sufficient to meet the total resource demand of the damaged components in its assigned route:
[image: image]
where [image: image] denotes the binary variable, which equals 1 if the fault line [image: image] is fixed by the crew team [image: image] in the RC team set [image: image]; [image: image] represents the required [image: image]th kind of material to repair the fault line [image: image]; and [image: image] represents the capacity limit of the crew team [image: image] with the [image: image]th kind of material.
3.4 Radial operation constraints of the ADN
The ADN must satisfy the following radial constraints which can be formulated as Eqs. (22)–(25):
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where [image: image] and [image: image] are the binary variables representing the virtual power flow directions of branch [image: image], with [image: image] = 1 indicating the default power flow direction and [image: image] = 1 indicating the inverse power flow direction; [image: image] is the set of normal nodes; [image: image] is the set of alternative island source nodes; [image: image] is the set of branches with [image: image] as the ancestor node; and [image: image] is the set of branches with [image: image] as the child node.
4 RESILIENCE-ORIENTED RC AND NR COORDINATED OPERATIONAL SCHEDULING METHOD
4.1 Model reformulation
4.1.1 Big M method
With the Big M method, the Eq. 14 can beeformulated into the following constraints in Eqs. (26)–(30):
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where [image: image] is a big enough positive number.
4.1.2 SOCP relaxation of the DistFlow power flow model
A new set of variables [image: image] and [image: image] are presented to replace the voltage and current as Eqs. (31)–(33):
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Based on above, the relaxation gap of the DistFlow model can be defined as Eq. (34).
[image: image]
4.1.3 SOCP relaxation of the DG and ESS
Similar to the relaxation of the DistFlow model, the SOCP relaxation of the DG and ESS are given as Eqs. (35), (36).
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4.2 Objective function
The objective function of RCs repair and system restoration is formulated as Eq. (37).
[image: image]
where [image: image] is the importance coefficient of the load at node [image: image], which can be evaluated by the value of the lost load (Kariuki and Allan, 1996); [image: image], [image: image], [image: image], and [image: image] are the operational costs of DG, PV, WT, and ESS, respectively.
4.3 RC and NR coordinated ADN restoration method
After the above steps, the overall RC and NR coordinated ADN restoration model can be solved using a commercial solver. Figure 2 shows the flowchart of the proposed method.
[image: Figure 2]FIGURE 2 | Flowchart of the RC and NR coordinated ADN restoration method.
5 CASE STUDIES
To evaluate the proposed method, the IEEE 33 bus active distribution system is used (Baran and Wu, 1989b). System configuration is shown in Figure 3. Five WTs, three PVs, one set of DGs, and one ESS are integrated into the ADN. Time duration and equipment configuration parameters for the fault scenario are listed in Table 1 and Table 2, respectively. Figure 4 shows the predicted power generation curve of the PVs and WTs. The problem is solved using the MATLAB R2018b platform with Gurobi 10.0.0 (Gurobi Optimization and LLC, 2023). The results demonstrate that our approach can achieve optimal load recovery strategies within 226 s, which is computationally feasible in real-world applications.
[image: Figure 3]FIGURE 3 | System configuration of the case study.
TABLE 1 | Fault scenario parameters.
[image: Table 1]TABLE 2 | Energy equipment configuration parameters.
[image: Table 2][image: Figure 4]FIGURE 4 | Predicted power generation of the WTs and PVs in p.u.
5.1 Network reconfiguration and fault repair scheduling results
To show the importance of NR and RC coordinated resilience dispatching, the ADN topologies during the fault duration are established, as illustrated in Figures 5A–F. As mentioned in Table 1, initially, at 8:00, there are six faults in branches 6, 12, 18, 21, 24, and 32, which are marked in red in Figure 5A.
[image: Figure 5]FIGURE 5 | Network reconfiguration and the fault repair scheduling results of the ADN.
During the first fault duration period 8:00–9:00, the ADN is reconfigured into three islands as the temporary status for resilience operation. Nodes 1–6, 23–24, and 26 are in the first island that is connected to the upstream network and the DG to supply the demand. Nodes 7–8 and 19–21 are in the second island to support the local power demand using PVs in node 7. Nodes 9–18, 22, 25, and 27–33 are divided into the third island, with five WTs and the BESS in node 31 for resilience operation. In addition to the normal power line branches, four power-tie lines are all deployed to further improve the power exchange ability in the ADN to enhance the resilience level. Meanwhile, RCs are all scheduled to start the repair process of the fault lines between nodes 6–7 and nodes 12–13, which can be illustrated in the next fault duration.
During the second fault duration period 9:00–10:00, in Figure 5B, the fault in the branches between nodes 6–7 and nodes 12–13 are repaired, respectively. Then, the ADN is reconfigured into two islands for resilience enhancement. Nodes 1–11, 19–21, and 23–33 in the first island are meant to support critical loads supplied by the main grid, the DG, five WTs, two PVs, and the BESS. The second island includes nodes 12–14 and 22 to support the local power demand using the PV in node 13. Similar to the situation during the fault duration period 8:00–9:00, the four power tie line branches are all still kept closed to enhance the resilience level. Meanwhile, the RCs are all scheduled to start the fault line repair process between nodes 24 and 25.
For the third fault duration period 10:00–11:00 (Figure 5C), the fault in the branches between nodes 24 and 25 is repaired by the RCs. Hence, the ADN is mitigated into a radial network topology with all the energy units engaged. Different from the situation before, the power tie line between nodes 25 and 29 is kept open to avoid the loop circuit in the ADN.
Figure 5D shows the ADN topology during the fourth fault duration period 11:00–12:00. The RCs repaired the fault line between nodes 2 and 19, which contributes to the improvement in the ADN resilience level by increasing the power exchange ability in the network. It should be noted that constrained by the radial network topology, the power tie line between nodes 9 and 15 is opened. RCs are scheduled to start the fault line repair process between nodes 21 and 22.
Finally, as shown in Figures 5E, F, in the last duration period 12:00–14:00, the RCs repaired the last fault line between nodes 32 and 33, and after the repair process, the ADN is restored to the normal mode topology, ensuring that the system resilience level achieves a 100% recovery. Hence, the proposed NR and RC coordinated operation model can effectively improve the system resilience level by repairing the faults and operating the power line switches using the optimal strategy.
5.2 Load recovery and voltage management results
Regarding the improvement in the resilience level of the ADN, Figure 6 illustrates the resilience level and the lost load, the preserved load, and total load demands. It can be concluded that the resilience level of the ADN is improved from 37% at 8:00 to 100% at 14:00, which indicates that the NR and RC can effectively reduce load shedding. Furthermore, by repairing faults lines, the resilience level is improved by 30%, 23%, 7%, 2%, and 1%. This indicates that the optimal RC scheduling strategy can effectively obtain the maximal resilience level improvement during every repair process. Meanwhile, the decline in the lost load demand and the increase in the preserved load also prove that the proposed NR and RC coordinated operation method can effectively improve the system resilience level and eventually restore the ADN to the normal status.
[image: Figure 6]FIGURE 6 | Resilience level and load preserve in the ADN (in p.u.).
Figure 7 shows the nodal voltages of the ADN at each time slot. The nodal voltages are measured by the per-unit value by setting the voltage base values to 12.66 kV. The maximum and the minimum voltages are 1.05 and 0.95, respectively. The nodal voltage is acceptable in practice, considering that the voltage limits are 0.9–1.1 p.u. It should be noted that after the repair of fault lines in each duration period, the nodal voltages in the ADN are improved to be closer to the base value, which illustrates that the proposed method can effectively secure ADN operation with the optimal repair strategy.
[image: Figure 7]FIGURE 7 | Voltage management in the ADN (in p.u.).
5.3 Result comparison
To further evaluate the proposed model and method, three methods are compared as follows:
Method #1—NR method: Only NR is considered in this method to support the load demand, and all faults are repaired at the end of the fault duration.
Method #2—NR operation method with a fixed repair sequence: The ADN resilience level is enhanced using the NR operation method, and the fault lines are repaired using a fixed sequence with the distance measured between the fault lines and node 1 in the ADN.
Method #3—NR and RC scheduling coordinated operation method: Three groups of RCs are scheduled to repair the fault lines simultaneously with NR of the ADN.
From Table 3, it can be concluded that the load shedding loss of Method #1 is larger than those of Method #2 and Method #3 with gaps of $16,140.12 and $5,963.67, respectively. This is because in Method #1, the RC repair capability is not considered. All the faults are repaired until the end of the fault duration, which weakens the power supply capacity of the ADN. In Method #2, the RCs only repair the fault lines by following the geographical distance sequence, which may lead to suboptimal scheduling routing and the increase in economic losses. Among the three approaches, Method #3 can obtain the minimal load shedding loss.
TABLE 3 | Result comparison.
[image: Table 3]The operational cost to reduce carbon emissions increases from $1,198.92 in Method #1 to $2,332.54 and $3,791.08 in Method #2 and Method #3, respectively. This is tenable since with NR and RC coordination, more nodes in the ADN and in the same island are connected with the DG, which leads to an increase in the fuel cost of the DG.
Meanwhile, despite the increase in the operational cost of Method #3, the total costs of the three methods are $34,037.09, $19,030.59, and $14,525.46, respectively. Therefore, the proposed Method #3 achieves the best performance in reducing the total cost of load shedding and system operation. Thus, the resilience of the ADN is effectively enhanced, and the proposed NR and RC coordinated method can reduce the economic loss caused by disasters.
6 CONCLUSION
In this paper, a resilience-oriented operational scheduling method is proposed by coordinating RCs and NR within an ADN to effectively counteract faults. Compared to traditional methods, this method not only establishes power supply islands but also ensures continuous power delivery to critical loads during blackouts by strategically deploying local and external resilience resources and RCs. The synergy between NR and RCs is meticulously orchestrated to simultaneously determine the repair sequence of fault lines and the reconfiguration of the ADN topology. The effectiveness of our approach is demonstrated through numerical simulations, highlighting its superiority in enhancing system resilience and minimizing economic losses when compared to traditional grid recovery methods. Our findings affirm that the coordinated optimization of RC scheduling and NR actions significantly improves the system’s resilience. Furthermore, the integration of renewable energy sources and storage systems within the proposed framework could offer benefits to optimize system resilience. Future investigations can be conducted to explore the AI techniques, such as deep reinforcement learning, for further reducing the computation time, which is critical for NR following disasters.
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The low carbon park islanded microgrid faces operational challenges due to the high variability and uncertainty of distributed renewable energy sources. These sources cause severe random disturbances that impair the frequency control performance and increase the regulation cost of the islanded microgrid, jeopardizing its safety and stability. This paper presents a data-driven intelligent load frequency control (DDI-LFC) method to address this problem. The method replaces the conventional LFC controller with an intelligent agent based on a deep reinforcement learning algorithm. To adapt to the complex islanded microgrid environment and achieve adaptive multi-objective optimal frequency control, this paper proposes the quantum-inspired maximum entropy actor-critic (QIS-MEAC) algorithm, which incorporates the quantum-inspired principle and the maximum entropy exploration strategy into the actor-critic algorithm. The algorithm transforms the experience into a quantum state and leverages the quantum features to improve the deep reinforcement learning’s experience replay mechanism, enhancing the data efficiency and robustness of the algorithm and thus the quality of DDI-LFC. The validation on the Yongxing Island isolated microgrid model of China Southern Grid (CSG) demonstrates that the proposed method utilizes the frequency regulation potential of distributed generation, and reduces the frequency deviation and generation cost.
Keywords: load frequency control, deep meta-reinforcement learning, islanded microgrid, maximum entropy exploration, quantum-inspired
1 INTRODUCTION
Distributed power supply has strong randomness and weak controllability, and its output mode is highly intermittent. Moreover, the load demand-side response is uncertain and the grid interconnection factors are sudden. These all affect the balance of supply and demand and the quality of power in the power system, leading to various problems for industrial and agricultural production and daily life. They cause economic losses and may even endanger the safe operation of the power grid. Frequency is an important measure of power quality. As one of the key indicators of power quality, frequency can directly reflect the balance between the load power on the demand side and the generator’s power generation in the power system. Therefore, maintaining the frequency stability is a feasible way to ensure the dynamic stability of the system under strong random disturbances. LFC 1 is a kind of ultra-short-term frequency regulation technology. The LFC controller uses closed-loop feedback control to adjust the output power of the LFC unit according to a certain control strategy. It senses a series of state indicators such as frequency, area control error (ACE), contact line exchange power, and output power of the unit. This achieves the dynamic balance of the power generation and the load power, and then keeps the grid frequency at the specified value and the contact line exchange power at the planned value. Thus, LFC control technology has been widely used in power system operation control. However, the traditional centralised LFC system (Li et al., 2020; Sun et al., 2023) always prioritises the optimal control performance of its own region, and the information synergy between regions is low. It is hard to meet the control performance demand of a high proportion of large-capacity new energy grid-connected mode with the traditional centralised AGC as a vital means of grid scheduling. Moreover, the control performance of LFC largely depends on the control strategy 4, while the traditional LFC control strategy 5 is no longer adequate to cope with the regulation and control tasks under the trend of large-scale new energy grid-connectedness and the stochastic fluctuation of uncertain loads on the customer side (Ferrario et al., 2021; Li et al., 2022). Therefore, from the perspective of distributed LFC, it is of great significance to seek a class of optimal LFC control strategies for large-scale grid integration of new energy sources based on modern control theory and intelligent optimization methods. These strategies can meet the control performance and operation requirements of power grids under strong stochastic perturbations in the new type of power systems. The traditional methods include two types: the centralised hierarchical LFC strategy and the fully distributed LFC strategy.
1.1 Centralized hierarchical LFC strategy
Some notable examples of this strategy include Model Predictive Control (MPC) (Zheng et al., 2012), Adaptive Control (AC) (Wen et al., 2015), Learning-Based Control (LBC) (Qadrdan et al., 2017), and Adaptive Proportional-Integral (PI) Control (El-Fergany and El-Hameed, 2017). Zheng et al. (Zheng et al., 2012) introduced a Distributed Model Predictive Control (DMPC) strategy that relies on the mutual coordination of global performance optimization metrics. Wen et al. (Wen et al., 2015) proposed a Composite Adaptive Centralized Load Frequency Control (CALFC) strategy for regulating the frequency of source-net-load systems, addressing the challenge of source-load cooperative frequency regulation. Qu et al. (Qadrdan et al., 2017) developed a Data-Driven Centralized Load Frequency Control (DLCFC) method, treating load frequency control as a stochastic dynamic decision-making problem for source-load cooperative frequency regulation. Qadrdan et al. (El-Fergany and El-Hameed, 2017) designed an LFC method based on the “Social Spider” Genetic Optimization Algorithm to tackle the tuning of PI parameters in microgrids.
However, these methods do not adequately consider load modeling or the time series dependence of random disturbances from sources like wind power and photovoltaic systems. Furthermore, their impact on the system’s frequency control performance is relatively limited.
Centralized LFC control offers the advantage of reflecting the entire network’s state, but it also comes with drawbacks. Firstly, the controller and power distributor employ distinct algorithms for control and optimization, resulting in independence and differing objectives, potentially compromising frequency control performance. Secondly, concentrated communication within the microgrid dispatch center can lead to inconsistencies and delays in frequency control due to communication overload, and may even trigger frequency collapse in some instances. Lastly, centralized LFC control makes it challenging to consider the consistent performance of regulation service providers in the performance-based regulation market across different regions, potentially leading to providers prioritizing local units over those in other areas and grid operators.
1.2 Fully distributed LFC strategy
Research on fully distributed Load Frequency Control (LFC) structures primarily centers on the multi-agent control framework. This framework comprises agent layers that analyze and process received information, determine suitable control strategies, and cooperate with other agent layers to ensure seamless LFC operation. The prevailing methods in this context are multi-agent collaborative consistency and stochastic consistency methods.
Li et al. (Qing et al., 2015) introduced a Collaborative Consistent Q-Learning (CCQL) algorithm that leverages a distributed power dispatch model to swiftly and optimally dispatch power commands for distributed LFC control, even in scenarios with high communication demands among units. Xi et al. (Xi et al., 2016b) proposed a Wolf-Pack Hunting Strategy (WPHS) to handle topological changes arising from power constraints. Wang et al. (Wang and Wang, 2019) devised a discrete-time robust frequency controller for islanded microgrids, capable of achieving frequency restoration and precise active power dispatch through an iterative learning mechanism. Lou et al. (Lou et al., 2020) aimed to reduce the operational costs of isolated microgrids by considering the active output costs. They implemented a distributed LFC control strategy based on the consistency approach, leading to an optimal LFC strategy that benefits both global and self-reliance aspects through effective communication among various units. This approach facilitates coordination between controllers and distributors, akin to centralized LFC, while ensuring smooth frequency control and minimizing conflicts of interest among different units. However, it relies heavily on communication among units and areas, making it less suitable for multi-area islanded microgrids.
Reinforcement Learning (RL) is a machine learning technique (Yu et al., 2011; Wiering and Otterlo, 2012) that operates without precise knowledge of the model. It offers the advantages of self-learning and dynamic stochastic optimization. RL does not rely on predefined systematic knowledge but continually adapts and optimizes strategies by interacting with the environment and learning through trial and error. This allows RL to find optimal solutions for sequential problems. RL-based control algorithms excel in decision-making, self-learning, and self-optimization, primarily due to the relatively straightforward design of reward functions. As the Load Frequency Control (LFC) process follows a Markov Decision Process (MDP), RL based on MDP can enhance LFC control strategies by crafting suitable reward functions to translate contextual information into appropriate control signals. It also aids in selecting control signals for optimal sequential decision-making iterations, improving aspects such as data processing, feature expression, model generalization, intelligence, and sensitivity of the LFC controller.
This paper explores optimal LFC control strategies for new energy grid integration using RL algorithms, focusing on multi-region collaboration and addressing issues arising from the high proportion of large-capacity new energy sources, which introduce strong random disturbances. This approach aims to enhance the compatibility between new energy sources and the power system, ultimately promoting the development of the new power system. RL is a pivotal topic in Artificial Intelligence, with Imthias et al. (Ahamed et al., 2002) being among the first to apply it to power system LFC. RL is favored for its high control real-time capabilities and robustness, as it responds primarily to the evaluation of the current control effect. It has found extensive use in ensuring the safe and stable control of power systems.
In addition to RL, classical machine learning algorithms have been widely adopted in Automatic Generation Control (AGC) strategies. Yinsha et al. (Yinsha et al., 2019) introduced a multi-agent RL game model based on MDP, capable of handling single-task multi-decision game problems, which enhances agent intelligence and system robustness. Sause et al. (Sause, 2013) proposed an algorithm combining Q-learning and SARSA time variance within the collaborative reinforcement learning framework of “Next Available Agent,” effectively addressing resource competition among multiple agents in a virtual environment. This improves agents’ exploration abilities in both static and dynamic environments. An algorithm integrating deep deterministic policy gradients and preferred experience replay is presented in (Ye et al., 2019), rapidly acquiring environmental feedback in a multi-dimensional continuous state-action space. Yin et al. (Yin et al., 2018) introduced an algorithm based on Double Q Learning (DQL) to mitigate the positive Q bias issue in Q learning algorithms through underestimation of the maximum expected value.
Ensemble learning, a specialized type of machine learning algorithm that enhances decision-making accuracy through collective decision-making, is less commonly applied in AGC. However, Munos et al. (Munos et al., 2016) introduced an Ensemble Bootstrapping for Q-Learning algorithm, which combines Q-learning within ensemble learning to correct the positive Q-value bias problem in Q-learning algorithms. This algorithm addresses high variance and Q-value deviation in the Q-learning iteration process, achieving effective control.
The methodologies employed for value function estimation in reinforcement learning algorithms are fundamentally divided into two distinct categories, predicated on the alignment between the target policy (the policy under evaluation) and the behavior policy (the policy enacted by the intelligent agent during environmental interaction). These categories are identified as in-policy and off-policy algorithms. In-policy algorithms undertake the evaluation of the target policy through the utilization of sample data directly derived from the target policy itself, a process typically exemplified by the Sarsa algorithm. Conversely, off-policy algorithms engage in the assessment of the target policy via sample data procured from the behavior policy, a method commonly exemplified by the Q-learning algorithm. Within the context of real-world engineering applications, in-policy algorithms may encounter challenges in efficiently generating requisite sample data or may incur elevated operational costs, which can severely restrict their applicability in complex decision-making scenarios. Off-policy algorithms emerge as a solution to these constraints, offering broad utility in practical Load Frequency Control (LFC) engineering projects. Nevertheless, these algorithms are not without their limitations, primarily due to their reduced robustness and the discrepancies in data distribution between the sample data utilized for target policy evaluation and that required for the off-policy algorithm’s evaluation process. Such disparities can lead to phenomena known as “overestimation” or “underestimation” of action values, which adversely affect the decision-making precision and convergence efficiency of off-policy algorithms. This issue represents a substantial impediment to the broader application of off-policy reinforcement learning algorithms, especially in the domain of frequency control for islanded microgrids.
In the contemporary landscape of science and technology, where interdisciplinary integration is increasingly becoming a norm, the borrowing and application of concepts from the natural world to information processing technologies are gaining momentum. Among these integrations, the incorporation of quantum physics principles into information processing technologies stands out, promising substantial performance improvements. The amalgamation of quantum physics with artificial intelligence algorithms, in particular, has shown to yield significant enhancement effects. The introduction of quantum characteristics into the frameworks of reinforcement learning algorithms, especially within the deep reinforcement learning experience replay mechanism, has attracted considerable academic interest. By integrating quantum features, the robustness of reinforcement learning algorithms can be significantly improved, offering a promising avenue for enhancing algorithmic performance in complex applications such as LFC in islanded microgrids. This innovative approach demonstrates the potential to mitigate the challenges posed by traditional off-policy algorithms, thereby advancing the field of reinforcement learning and its application in critical engineering solutions.
This paper introduces the Quantum-Inspired Maximum Entropy Actor-Critic (QIS-MEAC) algorithm, which incorporates quantum-inspired principles and the maximum entropy exploration strategy into the original actor-critic algorithm. It transforms experiences into a quantum state and utilizes quantum properties to enhance the experience replay mechanism in deep reinforcement learning. Consequently, this enhancement improves the algorithm’s data efficiency and robustness, leading to an overall enhancement in the quality of Data-Driven Intelligent Load Frequency Control (DDI-LFC).
Building upon this algorithm, we have developed a Data-Driven Intelligent Load Frequency Control (DDI-LFC) method. This method replaces the conventional LFC controller with an intelligent agent based on a deep reinforcement learning algorithm. This agent is capable of handling the complex environment of isolated island microgrids and achieving adaptive multi-objective optimal frequency control.
Verification using the South Grid Yongxing Island isolated island microgrid model demonstrates the effectiveness of the proposed method. It fully leverages the frequency regulation capabilities of distributed power sources and energy storage, resulting in minimized frequency deviation and generation costs.
The innovations in this paper can be summarized as follows:
1) This paper introduces a novel approach known as Data-Driven Intelligent Load Frequency Control (DDI-LFC) to tackle the problem at hand. Instead of the traditional LFC controller, this method employs an intelligent agent built upon a deep reinforcement learning algorithm.
2) Furthermore, this paper puts forward the Quantum-Inspired Maximum Entropy Actor-Critic (QIS-MEAC) algorithm, which seamlessly integrates quantum-inspired principles and the maximum entropy exploration strategy into the actor-critic algorithm.
Section 2 provides an in-depth description of the islanded microgrid system model. In Section 3, we present a novel method, presenting its comprehensive framework. Section 4 is dedicated to conducting case studies that assess the effectiveness of the proposed approach. Finally, in Section 5, we conclude the paper by summarizing key insights and discussing the primary research findings.
2 MODEL FOR ISLAND MICROGRID
2.1 Microgrids and distributed power sources
An islanded microgrid is a small-scale system that generates and distributes power using various distributed sources, storage devices, converters, loads, and monitoring and protection devices. Microgrids can operate autonomously and independently, with self-control, protection and management functions. The purpose of microgrid is to enable the flexible and efficient use of distributed sources and to address the challenge of connecting a large number and variety of distributed sources to the grid. Microgrid can utilize renewable energy and cogeneration, among other forms of energy, to enhance energy efficiency and power reliability, to lower grid losses and pollution emissions, and to facilitate the transition to smart grid. Photovoltaic, wind, internal combustion engines, fuel cells, and storage devices are some of the common distributed sources in microgrids. A quick and effective control strategy is needed to ensure the safe and stable operation of the microgrid, by maintaining the balance of voltage, frequency and power. The transfer function of an islanded microgrid is shown in Figure 1.
[image: Figure 1]FIGURE 1 | Model for Island microgrid.
2.2.1 Photovoltaic systems
To model the electrical behavior and power production of the PV power generation system, the mathematical model incorporates the PV array, the MPPT controller, the DC-DC converter, and other components. The following equations express the mathematical model of the PV array: Details as Eq. 1.
[image: image]
where I is the PV array output current, V is the PV array output voltage, Iph is the photogenerated current, IS is the reverse saturation current, q is the electron charge, A is the diode quality factor, k is the Boltzmann’s constant, T is the cell temperature, RS is the series resistor, Rp is the parallel resistor.
2.2.2 Wind power systems
The mathematical model of the wind power system includes wind turbine, wind wheel, generator, inverter etc. to simulate the mechanical and electrical characteristics of the wind power system. The mathematical model of the wind turbine can be represented by the following equations. Details as Eq. 2.
[image: image]
where Pw is the wind turbine output power, ρ is the air density, A is the swept area of the wind turbine, Cp is the wind turbine power coefficient, λ is the wind turbine rotational speed ratio, β is the wind turbine blade inclination angle, vw is the wind speed.
2.2.3 Fuel cells
The mathematical model of a fuel cell includes electrochemical reactions, thermodynamics, hydrodynamics, mass transfer, heat transfer, etc. to simulate variables such as voltage, current, temperature, concentration, etc. of the fuel cell. The mathematical model of a fuel cell can be represented by the following equations. Details as Eq. 3.
[image: image]
Where Vfc is the fuel cell output voltage, E0 is the fuel cell open circuit voltage, ηa is the anode polarisation loss, ηc is the cathode polarization loss and ηohm is the ohmic loss.
2.2.4 Micro gas turbine modelling
Conventional power generators used in microgrids are generally microfuel generators. Compared with diesel generators, these generators have cleaner emissions and lower operation and maintenance costs, so they are mostly used for daily power supply. According to the analysis of (Xi et al., 2016b), the frequency control model of microfuel generator can be represented by the model in Figure 1 Details as Eqs. 4, 5.
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where CMT is the maintenance cost of the power consumption, the value of CMT,fuel is the unit price of MT fuel gas, LHV is the low calorific value of natural gas, and PMT is the operating efficiency of MT.
2.2.5 Diesel generators
Sag control is a technique that enables diesel generators to keep their frequency and voltage output stable. With sag control, each unit can adjust its power output to the voltage sag, without requiring any communication or coordination with other units. With sag control, each unit can adjust its power output to the voltage sag, without requiring any communication or coordination with other units. This enhances the reliability and flexibility of the distributed generation system. Details as Eqs. 6, 7.
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where CDG,OM is the cost of the DG, kDG,OM is the DG maintenance factor; PDG is the fuel cost of the DG, and α, β, and γ are the fuel cost coefficients.
2.2.6 Electrochemical energy storage devices
Energy storage device: the mathematical model of the energy storage device includes charge/discharge characteristics, energy management system, voltage control, etc. to simulate the charge/discharge process and power output of the energy storage device. The mathematical model of the energy storage device can be represented by the following equations. Details as Eqs. 8–10.
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where E is the energy change rate of the energy storage device, Pch is the charging power of the energy storage device, Pdis is the discharging power of the energy storage device, SOC is the state of charge of the energy storage device, Emax is the maximum energy of the energy storage device, Vbat is the output voltage of the energy storage device, Eoc is the open-circuit voltage of the energy storage device, Rint is the internal resistance of the energy storage device, Ibat is the output current of the energy storage device.
2.2 Objective functions and constraints
The traditional LFC method for microgrids only focuses on reducing the frequency error of the isolated microgrid, without taking the cost into account. This paper presents a DD-LFC method that achieves both objectives: minimising the frequency variation and the power generation cost of the units. The DD- LFC method employs an integrated multi-objective optimization, such that the frequency error of the isolated microgrid is reduced to a minimum. LFC method employs an integrated multi-objective optimization, such that the sum of the absolute values of the frequency variation and the power generation cost is minimized. The constraints are shown below. Details as Eqs. 11, 12.
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where ΔPorder-∑ is the total command, ΔPimax and ΔPimin are the limits of the ith unit, ΔPirate is the ramp rate of the ith unit, and ΔPiin is the command of the ith unit.
3 TRAINING FOR PROPOSED METHOD
3.1 MDP modelling of DDI-LFCs
RL aims to determine the optimal policy for a Markov Decision Process (MDP) where an agent engages in continuous exploration. The policy function, denoted as π, maps the state space (S) to the action space (A). The optimal policy is the one that maximizes the cumulative reward.
In the context of microgrid Load Frequency Control (LFC), Markov Decision Process modeling involves the utilization of MDP, a mathematical framework, to characterize and optimize load dispatch and frequency stabilization problems within microgrids. MDP serves as a discrete-time stochastic control process that models decision-making in situations with uncertainty and partial control. It comprises four key components: the state space, action space, state transition probability, and reward function.
The primary objective of modeling using MDP is to identify an optimal strategy for the microgrid. This strategy is essentially a mapping function from the state space to the action space, designed to maximize or minimize the cumulative rewards over the long term for the microgrid. The cumulative reward Gt from time t is defined as. Details as Eq. 13.
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where λ is the discount factor, which value lower than 1 is typically used to avoid the endless accumulation of expected rewards that causes the learning process to diverge. The distributor employs the PROP allocation method to guarantee the reasonableness of the power distribution for each unit.
3.1.1 Action space
The agent generates the total command that determines the unit’s output. The only variable that the agent can control is its action, which accounts for 10% of this command. The only variable that the agent can control is its action, which accounts for 10% of this command. Details as Eq. 14.
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where [image: image] is the total command.
3.1.2 State space
The microgrid system has two state variables: the frequency error and its integral. The frequency error measures the difference between the actual and the target frequency of the microgrid, while the integral accumulates the error over time. The frequency error measures the difference between the actual and the target frequency of the microgrid, while the integral accumulates the error over time. The output variable is the total power generated by the distributed energy sources in the microgrid. Details as Eq. 15.
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where [image: image] is the total output.
3.1.3 Reward functions
The controller aims to reduce both the frequency variation and the production cost. To encourage the agent to find the best policy, a penalty for control actions is included in the reward function. The reward function is defined as follows. Details as Eqs. 16, 17.
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where r is the reward and A is the punishment function.
3.2 Quantum-inspired QIS-MEAC algorithm framework
3.2.1 QIS-MEAC foundation framework
This paper proposes a novel experience replay mechanism for quantum-inspired deep reinforcement learning algorithms, which leverages some quantum properties and applies them to reinforcement learning. The aim of this improvement is to offer a natural and user-friendly experience replay method that transforms experiences into quantized representations that correspond to their importance and sampling priority, thereby altering their likelihood of being sampled.
Current deep reinforcement learning algorithms still have some room for improvement in terms of data utilization efficiency, reference adjustment complexity, and computational cost, especially as the reinforcement learning application scenarios become more complex and dynamic, making the interaction with the environment very expensive. Therefore, the demand for data utilization efficiency and robustness of the algorithms is also increasing. By incorporating quantum properties into the experience replay mechanism of deep reinforcement learning, we can achieve better results with less effort in practical control tasks. The DDI-LFC method proposed in this paper improves the experience replay mechanism of deep reinforcement learning by using quantum properties, which enables it to effectively learn more samples and prior knowledge, thus enhancing its robustness and allowing the LFC to perform better under various complex load disturbances and achieve multi-objective optimal control.
Figure 2 above illustrates the experience replay process of the quantum-inspired deep reinforcement learning algorithm, and Figure 2 shows its overall structure. In each training iteration cycle, the agent interacts with the environment and reads the required state and reward information at step t, and then generates a state transition et based on its chosen actions. This state transition is first transformed into a quantum state representation, or more precisely, a mathematical expression of the kth qubit in the quantum integrated system, where k is the index of the qubit in the cache pool. Next, the qubit undergoes a quantum preparation operation and becomes a quantum in a superposed state. Then, by observation, the quantum state representation of the experience collapses into either an acceptance or a rejection state, with a probability that reflects its importance, and a small data batch is drawn from the accepted experience and fed into the neural network for training. Moreover, after each training, the extracted experience is returned to the experience pool and converted back into the quantized representation of the experience. This conversion process involves a combination of two kinds of western operations: quantum preparation operation and quantum depreciation operation. The quantum preparation operation adjusts the probability amplitude of the quantized representation of the experience to match its TD-error, and the quantum depreciation operation considers the number of times the experience is replayed, and adding the replay frequency of the experience will diversify the sampled experience, so as to make the experience replay more balanced. The whole process repeats until the algorithm stops, and the following sections will explain the operations in more detail.
[image: Figure 2]FIGURE 2 | Experience pool quantum operations.
The QIS-MEAC algorithm aims to maximize both the cumulative reward and the entropy. Entropy quantifies the uncertainty of stochastic strategies, and in deep reinforcement learning, higher entropy implies more diverse and exploratory strategies. Therefore, the QIS-MEAC algorithm has a greater ability to explore. The following is the optimal policy function of the QIS-MEAC algorithm with entropy. Details as Eq. 18.
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where [image: image] denotes the optimal policy function, st denotes the t momentary state, at denotes the t momentary action, [image: image] denotes the distributional trajectory under the policy π, r is the reward, γ denotes the discount factor, H denotes the entropy, and α is the parameter used to determine the degree of importance of the entropy.
3.2.2 Quantitative representation of experience
In quantum theory, a quantum can be realised by a two-level electron, a rotating system or a photon. For a two-level electron, |0> can represent the ground state and, in contrast, |1> the excited state. For a rotating system, |0> can represent accelerated rotation, while |1> represents decelerated rotation. For a photon, |0> is considered as a quantum system, and its two eigenstates |0> and |1> represent the acceptance or rejection of the empirical quantum bit, respectively. In order to better demonstrate the empirical quantum bit and its eigenstates, their details are shown in Figure 3.
[image: Figure 3]FIGURE 3 | Experience pool quantum operations.
Throughout the learning process, the agent continuously tries to interact with the environment, and this learning process can be modelled as a Markov decision process. For each time step t, the state of the agent can be written as st, at which the agent chooses an action at according to the action strategy and a specific exploration strategy, and after the action, it moves to the next state st+1, and obtains a reward rt from the environment. Eventually, the four elements together make up a state transfer, and are put into the experience cache pool after being assigned with the new index k. The state transfer process is converted into a state transfer process by converting it into an experience cache. By converting this state transfer process into a quantum representation, we define acceptance and rejection of a state transfer as two eigenstates. The state transfer is then considered as a quantum bit.
Since the quantised expression of the kth experience in the experience pool is of the form [image: image] , the state of the experience cache pool consisting of M experience quantum bits can be expressed as a tensor product of M quantum subsystems of the form. Details as Eq. 19.
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3.3.3 Replay mechanisms for quantized experiences
The following page shows the pseudo-code for an integrated quantum-inspired deep reinforcement learning algorithm. At each time step, the agent produces a state transition by interacting with the environment. Since a new state transition does not have associated TD-errors, we assign it the TD-error with the highest priority in the experience pool, which means giving it a higher replay priority. This ensures that every new experience will be sampled at least once with the highest priority. This experience is then transformed into a quantum bit. A quantum preparation operation that uses Grover iteration as the fundamental operation is applied to the quantum representation of the experience in the uniform state until it reaches the final state. When the experience pool is full, the state transition is sampled with a probability amplitude that is proportional to the probability amplitude of its quantum representation, and the chosen experiences form a small data batch that is fed into the neural network for training. For those chosen experiences, when they are returned to the experience pool and prepared as uniform states again, their corresponding quantum representations are also subject to a quantum preparation operation to adjust to the new priority of the experience, and a quantum depreciation operation to adapt to the change in the number of times the experience is replayed. This operation is repeated until the algorithm converges.
An experience pool is established in deep reinforcement learning to store the experience data that are utilized to train and adjust the neural network parameters of an agent. The agent interacts with the environment once more under the direction of the neural network with the new parameters after training it with a small amount of data, and simultaneously produces new empirical data. Hence, the data in the experience pool have to be renewed and replaced periodically to attain better training outcomes. For this purpose, the experience pool has a fixed size, and when the pool is full (as shown by k>M in the algorithm’s pseudo-code) and new experience data are created, the oldest experience is removed to accommodate the new experience (as shown by k reset to 1 in the pseudo-code of the algorithm). Moreover, the neural network parameters are only updated after the experience pool is full, which corresponds to after LF is set to True in the pseudo-code.
4 EXPERIMENT AND CASE STUDIES
This paper validates the proposed algorithm in the LFC model of an isolated island microgrid on Yongxing Island. This refers to a smart energy system consisting of diesel power generation, photovoltaic power generation, and energy storage, built on Yongxing Island, the largest island among the South China Sea islands. This system can be connected to or disconnected from the main power grid as needed. The size and parameters of the microgrid on Yongxing Island are as follows. The microgrid has a total installed capacity of 1.5 MW, including 1 MW from the diesel generator, 500 kW from the photovoltaic power generation, and 200 kWh from the energy storage system. The microgrid can achieve 100 per cent priority use of clean energy sources such as photovoltaic, and it can also flexibly access a variety of energy sources in the future, such as wave energy and portable power. The completion of this microgrid increases the power supply capacity of Yongxing Island by eight times, making the power supply stability of the isolated island comparable to that of a city. In this paper, we also perform simulations and tests on the DDI-LFC that employs the QIS-MEAC algorithm and compare it with other control algorithms, such as DDI-LFC based on SQL algorithm (Li et al., 2021), DDI-LFC based on SAC algorithm (Xi et al., 2016), DDI-LFC based on PPO algorithm (Xi et al., 2016b), DDI-LFC based on TRPO algorithm (Xi et al., 2021), DDI-LFC based on MPC algorithm Xi et al., 2021), DDI-LFC based on Fuzzy-FOPI algorithm (Xi et al., 2021), TS-fuzzy-PI (Xi et al., 2022), PSO-PI (Li and Zhou, 2024), and GA-PI (Li and Zhou, 2023). To run the simulation models and methods that we present in this paper, we use a computer with 2 CPUs of 2.10 GHz Intel Xeon Platinum processor and 16 GB of RAM. The simulation software package that we use is MATALB/Simulink version 9.8.0 (R2020 a).
4.1 Case 1: step disturbance
As displayed in Table 1, the Quantum-Inspired Maximum Entropy Actor-Critic (QIS-MEAC) algorithm outperforms the other algorithms significantly, resulting in a substantial reduction in frequency deviation ranging from 9.65% to 75.55% and a decrease in generation cost ranging from 0.0004% to 0.012%. The microgrid’s frequency response and diesel generator’s output power are both affected by various control methods.
TABLE 1 | Statistical results for Case 1.
[image: Table 1]The simulation outcomes unequivocally highlight QIS-MEAC as the leading performer among the four intelligent algorithms, with soft Q-learning following closely. This can be attributed to the fact that both QIS-MEAC and soft Q-learning possess the capability of maximum entropy exploration. This enables them to dynamically adjust the learning pace, continuously update the function table through shared experiences, and determine the relative weight of each region. Consequently, each control region can adapt its control strategy effectively, enhancing control flexibility.
Unlike soft Q-learning, QIS-MEAC doesn't require averaging strategy evaluations. Instead, it can directly make decisions based on dynamic joint trajectories and historical state-action pairs. Additionally, it exhibits strong adaptability to the learner’s instantaneous learning rate, leading to improved coordinated Load Frequency Control (LFC). QIS-MEAC demonstrates remarkable adaptability and superior control performance under varying system operating conditions, thereby confirming the algorithm’s effectiveness and scalability.
RL offers advantages over many methods due to its straightforward and universally applicable parameter settings. Nevertheless, the application of RL theory encounters new challenges. Firstly, for large-scale tasks, determining an optimal common exploration goal for the reinforcement learning of multiple individual intelligences becomes complex. Secondly, each intelligence must record the behaviors of other intelligences (leading to reduced stability) to interact with them and attain joint behaviors, consequently slowing down the convergence speed of various methods. In light of these issues, multi-intelligence reinforcement learning techniques with collective characteristics have emerged and gained widespread adoption. The core concern of reinforcement learning is how to solve dynamic tasks in real-time using intelligent entities’ exploration techniques in dynamic planning and temporal difference methods. The Quantum-Inspired Maximum Entropy Actor-Critic (QIS-MEAC) proposed in this paper is innovative and efficient, thanks to its precise independent self-optimization capabilities.
In Figure 4A below, the illustration demonstrates how the total power output of the unit effectively manages load variations, including scenic and square wave fluctuations. The active output curve of the LFC unit exhibits overshooting to counteract the effects of random power fluctuations. Figure 4B presents the output regulation curves for different LFC unit types. As shown in the figure, when the load increases, smaller hydro and micro-gas units with lower regulation costs are preferred for increasing output. Conversely, when the load decreases, biomass and diesel units with higher regulation costs are prioritized to reduce output, leading to improved frequency control. The LFC output allocation adheres to the equal micro-increment rate principle, ensuring that the final active output of each unit aligns with the economic allocation principle. Other Deep Reinforcement Learning (DRL) algorithms face challenges in producing satisfactory curves due to the lack of performance enhancement techniques. Furthermore, model-based control algorithms encounter difficulties in demonstrating effective control capabilities due to their heavy reliance on models.
[image: Figure 4]FIGURE 4 | Results for case 1. (A) Frequency deviation. (B) Total regulated output.
New energy units offer distinct advantages, including rapid start and stop capabilities, high climb rates, and extensive regulation ranges compared to diesel units. They play a pivotal role in the system, taking on most of the output tasks to address power grid load fluctuations. The controller’s online optimization results highlight the smoother and more stable regulation process achieved by the proposed method. This ensures that unit outputs quickly stabilize under new operational conditions, enabling optimal collaboration in response to sudden load changes in the power system.
4.2 Case 2: step disturbance and renewable disturbance
This study presents a smart distribution network model that integrates various new energy sources, including Electric Vehicles (EVs), Wind Power (WP), Small Hydro (SH), Micro-Gas Turbines (MGTs), Fuel Cells (FCs), Solar Power (SP), and Biomass Power (BP). The model is employed to assess the control effectiveness of Quantum-Inspired Maximum Entropy Actor-Critic (QIS-MEAC) in a highly stochastic environment.
Electric vehicles, wind power, and solar power are considered as stochastic load disturbances due to their significant uncertainty in output. Consequently, they are excluded from the Load-Frequency Control (LFC) analysis. The output of the wind turbine is determined by simulating stochastic wind speed, using finite bandwidth white noise as input. The solar power model derives its output from the simulated variations in sunlight intensity throughout the day.
To comprehensively investigate the intricate effects of random load variations within a power system experiencing uncertain large-scale integration of new energy sources, we introduce random white noise load disturbances into the smart distribution network model. Our objective is to evaluate the performance of Quantum-Inspired Maximum Entropy Actor-Critic (QIS-MEAC) under challenging random perturbations.
We utilize 24 h of random white noise disturbance as the evaluation criterion to gauge QIS-MEAC’s long-term performance in the face of significant random load disturbances. QIS-MEAC demonstrates remarkable accuracy and rapid responsiveness in tracking these random disturbances. The statistical results of the simulation experiments are presented in Table 2, where the generation cost represents the total regulation cost of all generating units over 24 h.
TABLE 2 | Data of case 2.
[image: Table 2]The distribution network data reveals that the frequency deviation in other algorithms is 1.12–1.71 times higher than that in the QIS-MEAC algorithm, while the QIS-MEAC algorithm reduces the generation cost by 0.067%–0.085%. Analysis of control performance metrics underscores QIS-MEAC’s superior economy, adaptability, coordination, and optimization control performance compared to other intelligent algorithms.
Furthermore, we conducted tests involving various disturbance types, including step waves, square waves, and random waves. The experimental outcomes demonstrate that Multi-Intelligence Actor-Critic exhibits strong convergence performance and high learning efficiency. Notably, in a random environment, it displays exceptional adaptability by effectively suppressing random disturbances and enhancing dynamic control performance in interconnected grid environments. It establishes a balanced relationship between the output power of different unit types and the load demand across a 24-h period. Consequently, it ensures that the total power output of the units accurately tracks load variations, achieving complementary and synergistic optimal operation among multiple energy sources in each time period.
5 CONCLUSION
The manuscript delineates the development and implementation of a Data-Driven Intelligent Load Frequency Control (DDI-LFC) strategy, aimed at facilitating adaptive, multi-objective optimal frequency regulation through the application of a Quantum-Inspired Maximum Entropy Actor-Critic (QIS-MEAC) algorithm. The salient contributions of this research are articulated as follows:
1) Integration Challenges of Distributed Energy Resources: The manuscript identifies the complexity introduced into islanded microgrid operations by the large-scale integration of distributed, renewable energy sources. These sources exhibit high degrees of randomness and intermittency, resulting in severe random perturbations that compromise the frequency control performance and elevate regulation costs, thereby posing significant challenges to the system’s safety and stability. In response, the DDI-LFC method is introduced, replacing traditional Load Frequency Control (LFC) mechanisms with a deep reinforcement learning algorithm-based agent, aimed at enhancing frequency regulation amidst these challenges.
2) Quantum-Inspired Algorithmic Enhancement: To navigate the intricate environment of the islanded microgrid and achieve adaptive, multi-objective optimal frequency control, the research proposes the Quantum-Inspired Maximum Entropy Actor-Critic (QIS-MEAC) algorithm. This innovative algorithm integrates quantum-inspired principles and a maximum entropy exploration strategy with the conventional actor-critic algorithm framework. By transforming experiences into quantum states and exploiting quantum properties, the algorithm significantly enhances the efficiency and robustness of data utilization within the deep reinforcement learning experience replay mechanism, thereby augmenting the effectiveness of the DDI-LFC approach.
3) Empirical Validation and Impact: The efficacy of the proposed DDI-LFC method is empirically validated using the Yongxing Island isolated microgrid model within the South China Grid. Results demonstrate the method’s proficiency in leveraging the frequency regulation capabilities of distributed power sources and energy storage systems. Consequently, it substantially mitigates frequency deviations and reduces generation costs, underscoring the potential of the DDI-LFC strategy to improve the operational reliability and economic efficiency of islanded microgrids.
Through these contributions, the manuscript not only addresses critical challenges associated with the integration of renewable energy sources into microgrids but also showcases the potential of quantum-inspired algorithms in enhancing the landscape of intelligent load frequency control.
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The precise fault localization holds significant importance in reducing power outage duration and frequency in power systems. The widespread application of synchrophasor measurement technology (PMU) has laid the foundation for achieving accurate fault localization in distribution networks. However, fault localization methods based on PMU often suffer from a significant decrease in accuracy due to topological reconstruction and inaccurate parameters. To address these challenges, this paper proposes a fault location method for distribution networks based on Multi-head Graph Attention Networks (GATs). The proposed method begins by modeling the distribution network as a graph, where nodes represent network components and edges represent the connections between these components. GATs have been employed to learn the underlying relationships between topological structure and electrical characteristics of the distribution network. The results demonstrate that our approach outperforms traditional fault location methods in terms of accuracy and speed. The proposed method achieves high precision which reducing the time required for fault location and enabling faster response times for network maintenance personnel.
Keywords: fault location, distribution networks, graph attention networks, graph convolutional networks, smart grids
1 INTRODUCTION
The reliable operation of distribution networks is of paramount importance for ensuring uninterrupted power supply to consumers. However, faults in distribution networks are inevitable and can lead to power outages and disruptions. Therefore, efficient fault location methods are crucial for minimizing downtime and improving the overall reliability of distribution networks. For highly urbanized distribution networks, precise fault localization techniques can reduce the workload of fault restoration and shorten the outage duration for end-users. On the other hand, the techniques can narrow down the patrol range and improve patrol efficiency in rural and remote areas with harsh deployment conditions. However, the current development of precise fault localization in distribution networks faces several challenges, including: 1) Complex line structure. 2) Widespread asymmetry in line parameters. 3) Incomplete measurement systems and lack of clock synchronization mechanisms to support precise fault localization technology.
In recent years, synchrophasor measurement units (PMUs) (Dashtdar et al., 2023) have been successfully applied in transmission systems (Swetapadma et al., 2022). The development of distribution network synchrophasor measurement units (D-PMUs) has achieved goals such as miniaturization, cost reduction, easy installation, and maintenance-free operation. The application and development of D-PMUs provide more clock synchronization information for fault localization in distribution networks. This advancement has led to significant developments in both traditional methods and artificial intelligence approaches.
Traditional fault location has relied on manual inspection and laborious calculations based on measurements. These methods are often time-consuming and prone to errors and they will result in delays in identifying and repairing faults. Moreover, the increasing complexity and scale of distribution networks pose additional challenges for traditional fault location approaches. Traditional fault location methods include impedance method (Ishnathevar and Ngue, 2011), traveling wave method (Tang et al., 2013) and matrix method (Wu et al., 2011; Majidi and Etezadi-Amoli, 2018). All of the aforementioned techniques assess the characteristics of distribution networks during fault occurrences, encountering issues related to reliability due to challenges in establishing thresholds and relying on single characteristics. In Dai and Xu (2017), an enhancement to the impedance method is introduced by integrating it with the phase analysis method. This approach enables the analysis of power characteristics for various fault types at the specific fault location. Zhu (2006) leverages the direct proportionality between the reactance of the faulty circuit and the fault’s distance to determine the line distance from the measurement point to the fault location. Xing et al. (2017) constructs a topological correlation matrix for each network element, offering adaptability to changes in network topology. However, it still struggles to handle complex network configurations. The methods discussed above in the distribution network domain frequently necessitate the establishment of fixed thresholds through empirical or simulation-based means to create fault diagnosis and localization criteria. This poses difficulties in adapting to structural changes in intricate distribution networks. And it presents challenges in maintaining applicability during network reconfigurations and various scenarios.
With the recent advancements in multi-source data fusion and artificial intelligence, there is a technical foundation for precise fault localization techniques based on multiple sources of information, including D-PMU data. This is expected to revolutionize fault diagnosis and localization techniques (Phadke et al., 1983). In Sapountzoglou et al. (2020), a fault diagnosis model for low-voltage smart distribution networks is developed using gradient boosting trees. It used a fixed number of interpolations are employed to replace specific branch measurements. While the aforementioned literature can to some extent adapt to changes in network topology, it falls short of accurately pinpointing fault segments.
The development of graph neural networks (GNN) has provided a solution for fault localization based on D-PMUs. Leveraging complex graph theory analysis and the feature extraction capabilities of neural networks, it can address fault localization problems in scenarios with complex topological changes. By representing a distribution network as a graph, GNN becomes possible to exploit the inherent structure and connectivity of the network for fault location purposes. Currently, the most widely used GNN include Graph Convolutional Networks (GCN) (Shervashidze et al., 2009; Kipf and Welling, 2016) and Graph Attention Networks (GAT) (Velickovic et al., 2022). Compared to GCN, GAT incorporates attention mechanisms from computer vision, allowing it to focus more on neighboring nodes, thereby better meeting the requirements of inductive learning tasks. As a result, GAT is more suitable for tasks with frequent topological changes. GATs are designed to capture the relationships between different nodes in a graph by assigning attention weights to neighboring nodes, enabling the network to focus on the most relevant information for a given task. Choi et al. (2017) suggests a novel approach that merges Long Short-Term Memory (LSTM) with an attention mechanism, employing it for the task of node classification in graph data. Meanwhile a distinct technique is introduced which effectively utilizes the graph attention mechanism for node embedding purposes (Lee et al., 2018). All of the mentioned articles have successfully applied GAT to a variety of graph tasks. However, the application of GAT in the field of fault localization in power systems is still in its nascent stages (Chen et al., 2020).
Motivated by the potential of GATs for graph-based applications, this paper proposes a fault location method based on GAT. The method aims to leverage the advantages of GATs in capturing the complex relationships between network components and improve the accuracy and efficiency of fault location. Moreover, this paper proposes the mechanism of multi-head attention on top of GAT. By employing mutually independent multi-head attention mechanisms, the allocation of attention weights among nodes becomes more explicit. This enhances the model’s learning capability while mitigating the risk of overfitting. Finally, this paper demonstrates its effectiveness through experimental evaluation. The historical fault data containing the current, voltage and topology of distribution network is used to train the GAT model. Through the training process on this dataset, the GAT model acquires the capability to discern various fault types and locations.
The subsequent sections of this paper are structured as follows: Section 2 elucidates the framework of the fault localization technique for distribution networks, which is grounded in GAT. Section 3 expounds upon the methodology which encompassing the graphical representation of the distribution network and the design of the GAT architecture. Section 4 outlines the experimental configuration and provides an assessment of the obtained results. Section 5 engages in a discussion of the outcomes and offers a concise summary of the proposed approach.
2 THE FRAMEWORK OF FAULT LOCALIZATION ALGORITHM BASED ON GATS USING D-PMU
2.1 Acquisition of distribution network measurement data
D-PMU can provide synchronized phasor and waveform data with time stamps. It is a crucial source of information for fault localization in medium-voltage distribution networks. Additionally, it can serve as an important pathway for synchronizing and transmitting information from other new types of sensors. However, due to the characteristics of medium-voltage distribution network structures and economic considerations, it is not feasible to fully deploy D-PMUs throughout the distribution network. Therefore, the deployment of D-PMUs must ensure that the voltage and current at both ends of any line within the localization area can be calculated based on D-PMU data. In other words, the configuration of D-PMUs should meet the calculation requirements for the voltage at any bus and the current in any branch within the area. The installation positions of D-PMUs in a distribution network are illustrated in Figure 1.
[image: Figure 1]FIGURE 1 | The installation position of D-PMU.
The measurement data obtained from D-PMU can provide synchronized data for distribution networks through the principle of double-end measurement fault localization. This enables data-driven fault localization techniques to be fully supported by comprehensive data.
2.2 Fault localization methods based on GAT
Traditional fault localization methods for distribution networks primarily rely on fault characterization. These algorithms often face challenges when dealing with intricate scenarios, such as fault reconstruction in distribution networks. In our study, this paper proposes a novel fault localization approach that integrates the topology of the distribution network which offering solutions to the aforementioned issues. Figure 2 showcases the deployment of the GAT model for fault localization in distribution networks. The model’s implementation proceeds through the following steps.
1) Step1: Acquisition of datasets. We begin by obtaining the real topology of a distribution network. Subsequently, we combine this topology with its operational data to create a comprehensive simulation environment for the purpose of fault localization in distribution networks. The distribution network fault data and labels are gathered by introducing various fault types into the network, allowing us to construct a dataset that represents different fault scenarios.
2) Step2: The construction and training of GAT. We visually represent the distribution network fault data as a graph, enabling us to partition the fault dataset efficiently. With this partitioned dataset, we proceed to build a GAT model designed specifically for fault localization within distribution networks. The training process employs end-to-end supervised learning techniques to renew the model’s parameters.
3) Step3: Applications and Testing. In the final step, we evaluate the practicality and effectiveness of our GAT model. To do so, we conduct extensive testing and application scenarios, including situations where the distribution network’s topology undergoes changes. Our model takes as input various features such as three-phase currents, voltages, and the topological information of network nodes. The model’s output consists of the identification of faulty lines and the classification of fault types, making it a valuable tool for real-world fault detection and localization in distribution networks.
[image: Figure 2]FIGURE 2 | The process of fault localization based on graph attention networks.
3 METHODOLOGY
3.1 The graph representation of distribution network fault
Apart from considering voltage and current values at nodes in distribution network fault data, it is essential to acknowledge that changes in network topology significantly influence fault characteristics. Conventional fault localization methods solely rely on fault characteristics for diagnosis. When the distribution network’s topology shifts, these methods necessitate recalculations and adjustments, leading to computational complexity and limited applicability. Hence, it becomes imperative to seamlessly incorporate both distribution network topology and fault characteristics. By effectively integrating these factors and transforming them into inputs for AI algorithms, we enhance our ability to adapt to alterations in distribution network topology. This integration not only simplifies fault localization but also enhances its performance, particularly in scenarios involving distribution network reconfiguration.
Therefore, this paper integrates three-phase current and voltage data with the topological information of the distribution network to create a graphical representation. This combined dataset is then inputted into the model in the form of a fault graph representing the distribution network. The detailed process is elucidated in Figure 3. Specifically, the three-phase currents and voltages of the network nodes are represented as feature matrices of dimensions N*T, where N signifies the number of nodes, and T denotes the feature dimension. The network’s topology is conveyed through an N*N adjacency matrix.
[image: Figure 3]FIGURE 3 | The graph representation of distribution network fault.
A precise topological model serves as the foundation for fault localization, and the number of nodes and branches in the distribution network may change under network reconfiguration. Distribution network reconfiguration is typically a means of altering the topological structure of the grid to enhance system economic and security aspects. Economical reconfigurations maintain the same number of nodes before and after without any faulty lines, whereas fault-driven reconfigurations may involve the removal of certain lines and nodes. Reconfiguration scenarios result in changes to the adjacency matrix, as illustrated in Figure 4 for a simple distribution network reconfiguration.
[image: Figure 4]FIGURE 4 | A sample of distribution network reconfiguration.
The distribution network depicted in the figure comprises 13 vertices and 12 edges. In the event of circumstances such as load transfer, the connections between node one and node seven are severed and linked to node six instead, resulting in a transformation of its adjacency matrix from A to A’ as shown on Eq. 1.
[image: image]
Both GCN and GAT can handle topological changes in the aforementioned scenarios, albeit in different manners. Subsequent Sections 3.2, 3.3 will elaborate on this matter.
3.2 The model of GCN
GCN utilizes the convolutional kernel derivation operation from convolutional neural networks, enabling convolutional operations on data incorporating the connectivity of the distribution network. Defining the Laplacian matrix of a graph as L = D-A, where D is the degree matrix and A is the adjacency matrix. Its normalized Laplacian matrix as △, the eigenvalue decomposition is performed on it as shown in the following Eqs 2, 3.
[image: image]
[image: image]
Where I is the identity matrix. [image: image] and [image: image] are the eigenvectors and eigenvalues after eigenvalue decomposition, respectively.
Using U as the basis for the Fourier transform on the graph, the Fourier transform on the spectral domain graph and its matrix form can be obtained as shown on Eq. 4.
[image: image]
Where f(i) is the signal at the ith vertex of the graph. [image: image] represents the conjugate of the eigenvector [image: image]. F(x) denotes the matrix form of the Fourier transform. Because convolution can be expressed as the inverse transform of the product of the Fourier transforms of the signal functions, the convolution formula on the graph can be obtained as shown on Eq. 5.
[image: image]
Where g is the convolutional kernel function. f represents the signal vector on the graph.
By utilizing this, GCN achieves convolutional operations on graphs. And it can enable feature extraction from data incorporating the topological structure of the distribution network. However, due to parameter sharing of GCN convolutional kernels within the same layer, each update requires access to the original connectivity information of the distribution network. Consequently, GCN is relatively limited in the scenarios of topology changing.
3.3 The model of GAT
GAT is a concept that leverages the attention mechanism within GNN. It operates by dynamically adjusting the weights associated with neighboring nodes based on their relative importance through the connections in the graph. This adaptation facilitates the aggregation of information from neighboring nodes in a highly effective and context-aware manner. The core component of GAT is the Graph Attention Layer (GAL). It represents the fusion of attention mechanisms with GNN. GAL takes as input the feature vectors of each node and these feature vectors are derived after GAL has performed the aggregation of information from neighboring nodes. The input and output feature vectors of GAL can be mathematically expressed using the following Eq. 6:
[image: image]
Where h and hʹ are the input and output feature vectors of the GAL with different dimensions respectively. n is the number of nodes. F and Fʹ are the input and output node features.
In Figure 5, the aggregated node is assumed to be Vi, which has three first-order neighboring nodes. The correlation degree eij between the nodes can be obtained through the calculation. In order to better assign weights, the correlation degrees calculated for all neighboring nodes are softmax normalized. The attention coefficient aij is obtained as shown in the following Eq. 7:
[image: image]
[image: Figure 5]FIGURE 5 | Graph attention layer.
Where L denotes the activation function LeakyReLU. α denotes the function that calculates the correlation between two nodes and W corresponds to the weight parameter matrix used for the transformation of node features from the input feature dimension to the output feature dimension.
Following the formula (5) for obtaining the attention coefficients and adhering to the weighted summation concept of the attention mechanism, the output feature can be computed, denoted as hi’, for the node Vi which is shown on Eq. 8:
[image: image]
Where σ represents the activation function which is typically implemented using the eLU function.
To enhance the expressive capabilities of the GAL, it is common practice to use the multi-head attention mechanism. This mechanism involves the independent computation of attention coefficients by M distinct groups. For example, with M = 2, the multi-head attention mechanism is illustrated in Figure 6.
[image: Figure 6]FIGURE 6 | Multi-head attention mechanism, M = 2.
The aim is to amalgamate these independently computed attention coefficients to capture a more comprehensive set of features. In practical implementations, either a concatenation (splicing) operation or an averaging operation is typically employed to combine the outputs of multiple attention heads, as illustrated by the following Eq. 9:
[image: image]
where || denotes the splicing operation. aijm and Wm denote the weight coefficients and learning parameters, which are associated with the mth ensemble of attention mechanisms.
4 CASE STUDY
4.1 The construction of environment
The fault localization task is built based on nodes for GAT, with all downstream nodes of the faulty line considered as fault nodes. While GCN is built based on graphs, requiring the entire graph to be updated for each calculation. Consequently, the GAT model faces issues of data sample imbalance, whereas GCN does not encounter such issues. The imbalance between fault and non-fault data may lead the model to learn an excessive amount of non-fault sample data. The accuracy of the model is more focused on the discrimination results of fault data. This can result in the model’s final performance not accurately representing its actual application performance. To address this, random under sampling is employed, where a subset of data is randomly selected from the class with a larger volume and combined with the class with a smaller volume. Thus, this paper randomly removes a portion of non-fault data to form a new dataset together with the fault data.
Additionally, to mitigate the adverse effects of outlier data, the data is scaled proportionally using the method of min-max normalization as shown in the following equation, constraining the input features within the range of [0, 1] as shown on Eq. 10.
[image: image]
Where x represents the feature vector in the input samples. x′ represents the standardized feature vector. max(x) is the maximum value in the samples. min(x) is the minimum value in the samples.
In order to verify the feasibility of the proposed method, this paper applies the method in 125 nodes of the distribution network, the specific topology is shown in Figure 7.
[image: Figure 7]FIGURE 7 | The topology of 125 node Distribution network.
Among them, three-phase short circuits, inter-phase short circuits and single-phase short circuits are set up to verify the effectiveness of the method in this paper. In the above fault samples, considering the reality that there are more normal samples and fewer fault samples, as well as the fact that the faults are dominated by single-phase ground faults, the ratio of normal samples to fault samples is 1:1, where the fault samples are single-phase faults: inter-phase faults: three-phase faults = 3:1:1. In this paper, a total of 3,000 samples of three types of faults are simulated.
For the above samples were input to the graph attention network for training respectively. The graph convolutional neural network (GCN) [ (ABU-EL-HAIJA et al., 2022; Shervashidze et al., 2009)] and multilayer perceptron (MLP) were used for comparison. The specific network structure is shown in Table 1 and Figure 8.
[image: image]
TABLE 1 | The specific network structure of Multi-head GAT.
[image: Table 1][image: Figure 8]FIGURE 8 | The specific network structure of Multi-head GAT.
T1 represents true positives, where actual positive samples are correctly predicted as positive. T2 represents false positives, where actual negative samples are wrongly predicted as positive. T3 represents false negatives, where actual positive samples are incorrectly predicted as negative. The F1-score metric which is shown on Eq. 11 is the harmonic mean of precision p and recall r. A higher F1-score indicates better fault discrimination accuracy and better model performance.
4.2 Case analysis
Utilizing the constructed fault feature graph, the GAT model undergoes training. The dataset is partitioned into training and test sets with a ratio of 8:2. Training proceeds through 200 rounds, with a test conducted every 10 rounds. The specific training and testing results are illustrated in the following figure.
From Figures 9, 10, it is evident that the fault localization accuracy and classification accuracy of both GAT and GCN improve with the increase of training rounds. Specifically, the fault localization accuracy of GCN stabilizes at around 60%, while MLP achieves approximately 45%. In contrast, GAT maintains a stable fault localization accuracy of over 80%. Additionally, the fault classification accuracy of GAT surpasses that of GCN. These observations highlight GAT’s superior capability in extracting key information from feature maps, resulting in more accurate fault localization and precise sample classification. This trend underscores GAT’s effectiveness as a graph neural network model, particularly in extracting features from complex graph data such as fault feature graphs.
[image: Figure 9]FIGURE 9 | Accuracy of fault localization and classification for different models in training process.
[image: Figure 10]FIGURE 10 | Accuracy of fault localization and classification for different models in testing process.
During the testing process, the range of fault resistance is set from 0.01 to 1,000 to examine its impact on fault localization accuracy and fault classification accuracy, as illustrated in Figure 11.
[image: Figure 11]FIGURE 11 | Accuracy of fault localization and classification for different fault resistance.
Analysis of Figure 11 reveals that the localization and classification accuracy of the method outlined in this paper consistently exceeds 90%, indicating minimal impact from variations in fault resistance. Simultaneously, to investigate the effect of fault initial phase angle on the proposed method, the initial phase angles are set at 0, 90, and 180°, as detailed in the table below.
Examination of Table 2 reveals that variations in the fault initial phase angle lead to a slight decrease in fault localization accuracy, albeit with minimal overall change. This is because GAT is able to effectively capture characteristic changes in the fault initial phase angle and maintain stable learning. Due to the diverse and complex topology patterns of distribution networks, it is challenging to directly apply fault localization algorithms from one distribution network to another. To explore the impact of topology changes on fault localization accuracy and classification accuracy, we conducted experiments and present the specific results in Table 3.
TABLE 2 | Impact of fault resistance on fault localization models.
[image: Table 2]TABLE 3 | Impact of topology changes on fault localization models.
[image: Table 3]Where case1 represents a scenario with no change in topology, case2 represents the reduction of a line (125, 122), case3 represents the addition of a line (117, 118), and case4 represents the reduction of a line (125, 122) with the addition of a line (117, 118).
Based on the data provided in the table, it is evident that fault localization accuracy and classification accuracy decrease when there is a change in the topology of the distribution network, regardless of whether it is GCN, MLP, or GAT. However, it is noteworthy that GAT demonstrates better adaptability to topology changes, showing a relatively minor decrease in accuracy compared to GCN and MLP. Both GCN and MLP exhibit a decreasing trend in fault localization accuracy and classification accuracy when topology changes occur, with MLP experiencing a particularly pronounced decrease in accuracy. This suggests that GAT possesses stronger robustness and adaptability in handling topology changes, allowing it to better maintain its model performance. In contrast, GCN displays some sensitivity to topology changes and may require more tuning and adaptation to maintain stable performance levels. Overall, this underscores the superior performance of GAT in addressing complex topology change scenarios.
5 CONCLUSION
The paper proposes a fault localization method based on GAT to address the limitations of traditional distribution network fault localization methods, particularly in scenarios involving fault reconfiguration of the distribution network. Firstly, the proposed method models the distribution network as a graph. And then GATs have been employed to learn the underlying relationships between topological structure and electrical characteristics of the distribution network. The GAT learning process enables the accurate extraction of potential fault features which facilitating precise fault localization. The results demonstrate that the proposed method achieves higher fault localization accuracy and classification accuracy compared to traditional artificial intelligence methods. Furthermore, even when the network topology changes, the proposed method maintains a higher accuracy rate, enabling more precise fault localization. This evidence underscores the greater potential of our proposed method in the domain of fault localization and it offer robust support for ensuring the reliable operation and maintenance of power systems. We will involve integrating fault recovery mechanisms and exploring the potential of accurate fault localization techniques based on GAT in facilitating fault recovery processes in future research.
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In the case of resistance-inductance lines in PV station area, the problem of voltage overstep is easy to occur. This article proposes a reactive power compensation control method to improve the voltage stability in the photovoltaic power plant area, which addresses the problem of voltage at the point of common coupling (PCC) exceeding the upper limit due to resistance circuits and exceeding the lower limit due to relatively insufficient reactive power output when the output active power is high. The idea is to achieve dynamic adjustment of PCC voltage by paralleling a static reactive power generator (SVG) at the grid connection point and using a variable droop control method. In addition, a reactive power optimization method based on improved particle swarm optimization (IPSO) algorithm is proposed to address the changes in power flow caused by photovoltaic integration in the distribution network system. The proposed improvement method not only effectively reduces network losses but also significantly improves voltage stability.
Keywords: distributed network, droop control, particle swarm optimization, photovoltaic generation, reactive power compensation, voltage beyond limits
1 INTRODUCTION
With the increasingly serious problems of energy shortage and environmental pollution, photovoltaic power generation has become a representative new energy generation technology. (Gunannan et al., 2016). Due to the uncertainty and intermittency of photovoltaic output, when photovoltaic is connected to the grid, it will have a certain impact on the power quality of the distribution network, such as voltage beyond limits, voltage imbalance, flicker, and harmonic overload. In the case of resistor-inductance circuits, the problem of voltage beyond limits is more serious. When the capacity of photovoltaic power supply is large, it may change the direction of the system’s power flow, which has a significant impact on the voltage deviation and network loss of the distribution network.
To maintain the voltage stability of the power grid, reactive power compensation devices are usually installed in renewable energy station. Traditional reactive power equipment mainly includes on load tap changer (OLTC), parallel capacitor (SC), parallel reactor (SR), and SVG. As the most widely used reactive power regulation device, SVG has advantages such as wide compensation space, fast response speed, and low harmonic content. In recent years, SVG has become the mainstream equipment for future reactive power compensation devices. (Woei-Luen et al., 2010). It is necessary to use SVG reasonably to improve the transmission stability and capacity of the new power system, avoid voltage fluctuations, which can also ensure low harmonic content, fast response speed, and high reliability in the output of PV station. (Ruiling et al., 2023).
The existing reactive power and voltage regulation strategies are mainly studied from two aspects. One is local voltage control, which only considers the impact of photovoltaic integration into the grid on the PCC voltage. The other, from a system perspective, aims at ensuring that the voltage deviation and network losses of each node in the distribution network are maintained within a reliable operating range.
For local control, Xiaohu et al. (2012), Young-Jin et al. (2013) propose a coordinated control method for active/reactive power, which adjusts the voltage by controlling the output power of the photovoltaic grid inverter. However, this method limits the capacity of photovoltaic power generation and reduce efficiency. Yan et al. (2017) proposes a method to compensate uncertain voltage fluctuations and maintain a safe voltage level under random load demands by changing the power of grid connected reactive power equipment and transformer joints. However, this method only focuses on voltage fluctuations at grid nodes and does not consider the impact of active power loss. Hiroo et al. (2012) uses a three-layer allocation strategy to coordinate the allocation of reactive power shortage in large photovoltaic power stations among SVG, photovoltaic power generation units, and photovoltaic inverters. This strategy adopts voltage reactive power sensitivity method to improve the accuracy of reactive power control in photovoltaic power stations. Huimin et al. (2022) presents a multi-layer coarse-to-fine grid searching approach for calibrating SVG dynamic model parameters using particle swarm optimization to address the known issues of low identification accuracy and long computation time faced by the traditional SVG parameter identification methods.
When considering the voltage of each node in the distribution network, Chao and Luis (2016) studies the combined effect of photovoltaic power sources and loads on the voltage fluctuations of each node. The result indicates that photovoltaic integration poses a risk of instability in node voltage. Puyu et al. (2022) study the impact of the PV location on the network power losses and voltage fluctuations under the premise of considering line impedance. A PSO algorithm is used to synthesize an optimal compromised solution so as to determine the PV location. Te-Tien et al. (2016) points out that the voltage of each node on the feeder line increases after the photovoltaic power sources connected, which is significantly different from the traditional trend of node voltage gradually decreasing from the first node to the end on the feeder line. Voltage sensitivity matrices are fundamental for the model-based control of the distribution networks. Maharjan et al. (2020) proposes an enhanced method, which comprises of analytical expressions for direct estimation of the voltage sensitivity to tap-position and active/reactive power injections for any strength of the external grid. A new virtual power/voltage sensitivity method is derived in Saurabh et al. (2019), Wenshu et al. (2021), and based on this, an optimal constraint method for wind farm group voltage is proposed. In Mendoza et al. (2018), a new method for optimal reactive power planning considering photovoltaic output fluctuations is proposed to minimize the annual equivalent operating cost. The reactive power allocation of SVG is based on the cumulative probability curve of annual power fluctuations. In Chenyu et al. (2022), a reactive power compensation model that combined reactive power compensation devices as a regulation method to reduce system line loss and voltage deviation was proposed. In Yu and Shan (2015), parallel capacitors and SVG are set as controllable variables, and particle swarm optimization (PSO) using Latin hypercube sampling is explored to minimize the annual equivalent operating cost.
In summary, the above local voltage control methods mainly focus on the voltage exceeding the lower limit at PCC when the line impedance is inductive and neglects the adverse effects of resistance in low-voltage distribution lines. In addition, traditional particle swarm control cannot balance optimization speed and accuracy. During the iteration process, the inertia factor and learning factor should be reasonably configured with the number of iterations.
Therefore, this paper mainly focuses on solving the three problems brought about by photovoltaic grid connection: PV access point voltage exceeding limits, distribution network voltage deviation, and distribution network loss. Firstly, the resistance and inductance lines of photovoltaic power plants will cause the voltage the upper limit at PCC. And when the output active power is relatively high, the relatively insufficient reactive power will cause the voltage to exceed the lower limit at PCC. Therefore, the method of parallel connection of a static reactive power generator at PCC was adopted, and an improved reactive voltage droop control method was proposed. This method is simple to implement, greatly improves voltage stability. For distribution network voltage deviation and distribution network loss, an improved particle swarm optimization algorithm is proposed to ensure the minimum voltage deviation and network active power loss under photovoltaic integration. Figure 1 gives the research route.
[image: Figure 1]FIGURE 1 | Research route.
2 SYSTEM MODEL
2.1 Photovoltaic station topology
Figure 2 is a structure chart of photovoltaic platform area, including PV inverter, AC bus, SVG, transmission line impedance Rs + jXs, load and grid. The photovoltaic inverter outlet is collected to the AC bus, and the AC bus is connected to the grid through the boost transformer and line impedance. The photovoltaic power generation cluster and the grid jointly supply power to the load. SVG is connected to the low voltage side of the transformer to compensate the reactive power and dynamically adjust the grid-connected voltage to improve static stability.
[image: Figure 2]FIGURE 2 | Structure chart of photovoltaic platform area.
2.2 Basic SVG control strategy
SVG is essentially a grid following inverter that can achieve flexible reactive power compensation. It is possible to control reactive power by controlling the output current of SVG. The traditional control block diagram of SVG is shown in Figure 3.
[image: Figure 3]FIGURE 3 | Traditional control block diagram of SVG.
DC outer loop of SVG generates the d-axis reference current of inner loop through a PI controller after differential comparison between DC capacitor voltage and DC voltage reference value. The d-axis current reference can be obtained according to Equation 1.
[image: image]
where Udcref and Udc are the reference values of DC voltage and DC voltage respectively. kpv and kiv are proportional gain and integral gain of voltage regulator respectively.
The reactive power loop of SVG generates the q-axis reference current of the inner loop through a PI controller after comparing Qref and QSVG. The q-axis current reference can be obtained according to Equation 2.
[image: image]
where Qref and QSVG are the reactive power reference value and the reactive power provided by SVG respectively. kpq and kiq are the proportional gain and integral gain of the reactive power regulator respectively.
In the current inner loop, a PI controller is used to control the output reactive current of SVG. As shown in Figure 3, idref is the active current reference output by the DC outer loop, and iqref is the reactive current reference generated by the reactive outer loop. id and iq are the active and reactive components of the current output by SVG respectively. The ωL is decoupling of the current inner loop, ud and uq are voltage feedforward control to speed up the response, iCd and iCq are capacitive current proportional feedback to damp LCL resonance.
3 SVG CONTROL METHOD BASED ON VARIABLE DROOP COEFFICIENT
3.1 Mechanism of voltage exceeding limit at PCC
Figure 4 gives the photovoltaic grid connection diagram. The output active power and reactive power of the photovoltaic source are PPV and QPV, and the impedance value of transmission line is Rs + jXs.
[image: Figure 4]FIGURE 4 | Photovoltaic grid connection diagram.
Phasor of grid voltage is [image: image]. SVG is connected to the photovoltaic source outlet, and the compensated reactive power value is set to QSVG. Suppose [image: image] is the current sent out of the line by the photovoltaic source, [image: image]. The PCC point voltage can be obtained according to Equation 3.
[image: image]
The complex power injected into the grid by the photovoltaic power station and SVG can be expressed as Equation 4.
[image: image]
Then, the PCC voltage can be derived as Equation 5.
[image: image]
where
[image: image]
The expression of the PCC voltage contains two different solutions according to Equations 5–6, a high voltage value and a low voltage value, corresponding to the stable and unstable points of the voltage respectively. When both the photovoltaic inverter and SVG do not emit reactive power, the above voltage expression can be simplified as
[image: image]
Figure 5 shows the relationship curve between photovoltaic output active power and PCC voltage. Equation. 7 corresponds to the situation Q = 0 in Figure 5A. When SVG provides reactive power output, P-U curve corresponds to the situation Q = −0.1p.u.and Q = 0.1p.u. which are also shown in Figure 5B. Due to line containing resistance and inductance, the voltage of PCC of rises first then decreases and finally reaches the critical stable point with the increase of active power. Therefore, if the reactive power capacity is insufficient, there is a risk of exceeding the lower voltage limit when the photovoltaic active power is large; The reactive power can support the voltage of PCC, but the fluctuation of output active power may cause the PCC voltage to exceed the upper limit.
[image: Figure 5]FIGURE 5 | P-U curve of grid-connected point. (A) Different reactive power conditions. (B) Different line conditions.
P-U curves under different line impedances can also be obtained from the above formulas, as shown in Figure 5B. When the line is pure inductive, the voltage gradually decreases with the increase of the output active power. In this case, the problem of voltage beyond the lower limit caused by insufficient reactive power is more likely to occur. When the line is pure resistance, with the increase of output active power, the voltage gradually increases, in this case, the voltage will exceed the upper limit; When the line is resistance-inductance, both situations can occur.
3.2 Improved local control strategy
Suppose that Uset is the target value of voltage, when the voltage exceeds the limit, SVG can adjust the voltage to the target value. When the photovoltaic inverter operates in unit power factor mode, the value of Uset is
[image: image]
According to the Equation 8, the reactive power required by SVG can be calculated as
[image: image]
From Equation 9, it can be seen that the SVG output reactive power QSVG is a function of PPV. The reactive power that SVG needs to emit can be obtained based on the active power output from the photovoltaic source. According to the above equation, a reactive power voltage droop control can be proposed, and the droop coefficient is set to a function of PPV, as shown in Figure 6. Then the droop coefficient multiplied by the difference between the Uref and Ud is reactive power reference of SVG. The droop coefficient of SVG can be derived as Equation 10.
[image: image]
[image: Figure 6]FIGURE 6 | Variable droop coefficient control of SVG.
4 REACTIVE POWER OPTIMIZATION OF DISTRIBUTION NETWORK UNDER PV CONNECTION
4.1 The impact of PV output active power on PCC voltage
Figure 7 shows a diagram of photovoltaic connection to distribution network, assuming that the line has n nodes and PV is connected at k point. The following analysis will be conducted according to different situations.
A. Before photovoltaic connection
[image: Figure 7]FIGURE 7 | Diagram of photovoltaic connection to distribution network.
Before photovoltaic integration into the distribution network, the voltage Um at any point on the feeder line is
[image: image]
where PL,i is the active load at point i. Due to the majority of load power factor being above 0.9, when analysing the impact of active power, the reactive power of the load can be ignored first. Equation 11 can be transformed into
[image: image]
Due to the constant positive power consumption of the load, it can be seen from Equation 12 that Um is always less than UN. Therefore, the voltage always decreases from the beginning to the end of the feeder line.
B. After photovoltaic connection
Considering that photovoltaic inverters generally operate at a unit power factor when connected to the grid, Qpv is temporarily assumed to be 0. The node voltage Um at the front end of the photovoltaic connection point is
[image: image]
According to Equation 13, the voltage difference between the two points before the photovoltaic connection point can be expressed as
[image: image]
According to Equation 14, it can be concluded that:
When [image: image], that is, the sum of the load power behind point m is greater than the active output of the photovoltaic system, Um-Um-1<0. The feeder voltage decreases before the photovoltaic connection point.
When [image: image], that is, the sum of the load power behind point m is less than the photovoltaic active output, Um-Um-1>0. The feeder voltage increases before the photovoltaic connection point.
As mentioned above, the output reactive power and load consumption reactive power of photovoltaic source will not be considered temporarily. The voltage Um at any point at the front end of the photovoltaic connection point is:
[image: image]
According to Equation 15, the voltage difference between the two points after the photovoltaic connection point is:
[image: image]
According to Equation 16, it can be concluded that due to the constant value of Um- Um-1 being less than 0, the voltage of the nodes at the back end of the photovoltaic connection point gradually decrease as the length of the feeder line.
C. Summary
By analysing the above derivation results, it can be seen that the voltage of the distribution network is related to the photovoltaic output power and load. Assuming that the system power supply voltage remains constant, as the photovoltaic output changes, the feeder voltage will have the following situations.
(1) When the photovoltaic output is low, the line voltage gradually decreases along the feeder line.
(2) As the photovoltaic output increases, the line voltage may show a trend of first decreasing, then increasing, and finally decreasing again.
(3) As the photovoltaic output exceeds the line load by a large amount, it may first increase and then decrease.
In cases (2) and (3) above, the photovoltaic connection point is the highest local voltage, and the voltage value can be expressed as Equation 17.
[image: image]
4.2 The impact of photovoltaic output reactive power on grid voltage
The widely used photovoltaic inverters currently have power scheduling functions, allowing them to operate at non unit power factors and send reactive power to regulate voltage. If only considering the reactive power output of the inverter, the impact on voltage can be expressed as:
[image: image]
According to Equation 18, when the inverter outputs inductive reactive power (with a specified direction of positive), the voltage can be reduced. When the inverter outputs capacitive reactive power (with a specified direction of negative), the voltage can be increased. In addition, the larger the reactive power output of distributed photovoltaic sources, the closer the installation position is to the end of the line, and the stronger the regulation effect on the feeder voltage. Photovoltaic integration has changed the original power flow of the distribution network and increased the risk of node voltage exceeding the limit.
4.3 Reactive power optimization model for distribution network
The mathematical model of the reactive power optimization including photovoltaic power and SVG considering local control is expressed as follows.
A. The Objective Function
In this paper, the objective function of reactive power optimization is expressed as Equations 19–21.
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Pl,total is the total active power loss; Vl,total is the accumulated voltage deviation; [image: image], [image: image] is weight coefficient; Vi, Vj are the voltage of nodes i and j; Gij, θij are the conductivity and phase angle between nodes i and j; [image: image] is the expected value of node voltage; Vi,max, Vi,min are the constraints of the node voltage.
B. The Equality Constraint of Power Flow
The power flow constraint condition is the power constraint balance equation for each node in the distribution network with photovoltaic power sources, which can be expressed as Equation 22.
[image: image]
PGi, QGi refer to the active and reactive power injected by node i. PDi, QDi refer to the active and reactive power of the load at node i; QCi represents the reactive power of compensation device for node i; N is the total number of distribution network nodes.
C. Node voltage constraint
[image: image]
In Equation 23, Vi,max, Vi,min are the upper and lower limits of the node voltage.
D. Reactive output constraint.
To prevent reactive power backflow caused by excessive reactive power compensation capacity, it is necessary to constrain the reactive power compensation capacity which can be expressed as Equation 24.
[image: image]
QCi,max, QCi,min refer to the upper and lower limits of reactive power compensation capacity.
4.4 Proposed particle swarm optimization algorithm
The particle swarm optimizer (PSO) is a stochastic, population-based optimization technique that can be applied to a wide range of problems, including reactive power optimization. (Xiaofang et al., 2020). Reactive power optimization is a complex nonlinear optimization problem, which holds a large number of local minimum, multi discontinuous variables and constraints. On the premise of meeting all constraints, the reactive power optimization improves the quality of voltage, reduces the network loss of system operation and ensures stability of the system voltage, which are got by the existing optimization method to adjust controlled variables reasonable and utilize grid equipment resources. (Kennedy and Eberhart, 1995).
The speed and accuracy of particle iteration updates are directly affected by inertia weight factor and learning factor. Considering that standard particle swarm optimization algorithms cannot balance optimization speed and accuracy, it is necessary to improve the inertia weight coefficients and learning factors. Generally speaking, in the initial stage of algorithm iteration, it should meet the requirements of global search, and in the middle and later stages, it should meet the requirements of local optimization until it converges to the global optimal solution. The biggest problem with PSO is getting stuck in local optima. Therefore, improved PSO enhances the quality of the initialized population, and improving the search efficiency to enable the algorithm to escape local optima and seek global optimum solutions more effectively.
The probability density function of the standard normal distribution has good properties and can be used to improve the inertia factor and learning factor. The probability density function of the standard normal distribution can be expressed as Equation 25.
[image: image]
Based on the characteristics of the density function of a normal distribution, the probability of the numerical distribution in (u-3σ, u-3σ) is 0.9973. It can be considered that the values of x are almost entirely concentrated in (u-3σ, u-3σ). Therefore, the maximum number of iterations is applied to a normal distribution, which can be expressed as Equation 26.
[image: image]
According to a large number of experimental conclusions, the optimization effect of the algorithm is the best when w varies between 0.4 and 0.9. In addition, considering the possibility of the algorithm falling into local optima in the later stage, a random number part can be added to the formula, and the numerical characteristics of trigonometric functions can be used to limit the value of the random number to prevent the algorithm from converging. In summary, the improved inertia coefficient w can be expressed as Equation 27.
[image: image]
where, k is the number of iterations, kmax is the maximum number of iterations, and r is a random number in the range of [0,1].
The learning factor represents the self-learning and collective learning abilities of particles in the population. The learning factors c1 and c2 generally take values of 2. In order to ensure the efficiency of the algorithm, the learning factor can be obtained through Equation 28.
[image: image]
The range of values for learning factors c1 and c2 is [1,2], which is beneficial for global particle traversal in the early stage and convergence of the algorithm in the later stage.
Using the improved particle swarm optimization algorithm to solve the optimization model, the flowchart is shown in Figure 8.
[image: Figure 8]FIGURE 8 | Particle swarm optimization algorithm flowchart.
5 SIMULATION RESULTS
In order to verify the effectiveness of the theoretical analysis and design mentioned above, a simulation model was built in the Matlab/Simulink environment for verification. First is the verification of local control. Figure 9 is structure of photovoltaic grid connected system, which includes DC side PV system, SVG, line impedance and grid. SVG is connected to the PCC. Figure 10 is control structure of SVG. It can be seen that the d-axis current reference is generated by DC voltage loop, and the q-axis current reference is generated by the variable droop coefficient control mentioned above. Under local control, SVG detects the voltage at the PCC to determine if the voltage is beyond the limit. When the voltage exceeds the limit, SVG adopts the reactive voltage droop control to output the corresponding reactive power and adjust voltage at the PCC. Set the upper and lower limits of voltage at 390 V and 375 V respectively, which satisfies the grid connection standards. The line impedance contains the resistive and inductive, and the voltage beyond limits occurs as the photovoltaic output active power increases. Add the control strategy of SVG mentioned above at 1 s, and the d-axis voltage reference value of SVG is set to 311 V, which corresponds to the rated voltage of 380 V. The simulation results are shown in the following figures. Figures 11, 12 show the waveform of the PCC voltage exceeding the upper and lower limits under the local control. It can be seen that the SVG adjusts the PCC voltage to set value at approximately 1.05 s. Figure 13 shows the line voltage at PCC, it can be seen that the addition of the above control enables SVG to quickly adjust the PCC voltage to 380 V.
[image: Figure 9]FIGURE 9 | System structure.
[image: Figure 10]FIGURE 10 | SVG control structure.
[image: Figure 11]FIGURE 11 | Voltage waveform exceeding the lower limit.
[image: Figure 12]FIGURE 12 | Voltage waveform exceeding the upper limit.
[image: Figure 13]FIGURE 13 | PCC voltage adjustment process for local control.
The next is verification of the reactive power optimization method based on improved particle swarm optimization. Taking a 33 node distribution network as an example, the photovoltaic system is connected to the 15th node. Through sensitivity analysis, SVG access points are selected as the 18th node and 33rd node. The simulation results for voltage deviation and power loss in the distribution network are shown as follows. The comparison of node voltages before and after optimization is shown in Figure 14. It can be seen that the average voltage of distribution network nodes is significantly improved and the voltage deviation is reduced after reactive power compensation. The comparison of network power loss before and after optimization is shown in Figure 15. It can be seen that the power loss of each node in the system has been reduced after optimization.
[image: Figure 14]FIGURE 14 | Node voltage variation diagram.
[image: Figure 15]FIGURE 15 | Network loss variation diagram.
6 CONCLUSION
This paper mainly conducts research from two aspects. First is the problem of exceeding the voltage limits of photovoltaic grid connection points under resistive and inductive lines. It is revealed that when the line is pure inductive, the voltage gradually decreases with the increase of the output active power, the problem of voltage beyond the lower limit caused by insufficient reactive power may occur. When the line is pure resistance, the voltage gradually increases with the increase of output active power, the voltage will exceed the upper limit problem; When the line is resistance-inductance, with the increase of the output active power, the PCC voltage increases first, and then decreases, finally reaches the critical stable point, in which case the voltage beyond the upper and lower limits may occur. In order to ensure the voltage stability of photovoltaic station area, a variable droop control method for SVG is proposed. The effectiveness of this method in regulating the voltage of photovoltaic grid connection points is verified through simulation.
Next is voltage deviation and network loss issues caused by photovoltaic integration into the distribution network. Photovoltaic integration has changed the power flow distribution of the distribution network, making voltage deviation related to photovoltaic injection power. When the output active power of photovoltaic source is large, it is not only possible to cause the voltage of photovoltaic grid connection to exceed the limits, but also increase the voltage deviation. At the same time, the active power loss of the distribution network also increases. To address these issues, this paper establishes a mathematical model for reactive power optimization with the objectives of minimizing active power loss and node voltage deviation in the distribution network. On this basis, an improved particle swarm optimization algorithm is proposed to optimize the scheduling of reactive power in distribution network. The validation is conducted using a 33 nodes distribution network as an example. The results show that the reactive power optimization method based on IPSO algorithm can effectively reduce voltage deviation and network loss, and improve voltage stability.
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Appliances Rated Working Operating time Best run time

power (W) hours (h) interval
Washing machine 750 1 16:00-24:00 17:00-22:00 -
Electric cooker 800 1 10:00-14:00 17:00-21:00 10:00-13:00 -
17:00-19:00
Dish washer 700 2 800-11:00 13:00-1800 19:  8:00-11:00 13:00-1600  —
00-24:00 19:00-22:00
Smoke exhaust 25 1 10:00-14:00 17:00-21:00 11:00-13:00 17:00-2000 | —
ventilator
Vacuum cleaner 1,200 1 14:00-22:00 5:00-11:00 17:00-21:00 6:00-1000 | —
Electric kettle 1,500 05 8:00-13:00 16:00-23:00 11:00-13:00 17:00-2000 | —
Water heater 1,500 - 19:00-24:00 - ‘Temperature deviation shall not
exceed 2'C
Air conditioner 2,000 - 10:00-15:00 18:00-4:00 - ‘Temperature deviation shall not
exceed 2°C
EV 1,500 - 18:00-9:00 - Emergency power: 15%, Leaving home
power: 290%
BT 1,000 - - Emergency power: 15%, Leaving home
power: 290%
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240 7 17:00-24:00

Working time range
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Carbon trading

Carbon quota

User carbon

Total electricity

Total comprehensive

price (CNY/kg) income (CNY) transaction cost (CNY)  cost (CNY) operation cost (CNY)
0.3 0.36 -1.54 2603 3262

‘ 0.49 0.46 -1.94 2532 3182

‘ 0.59 0.61 -2.36 2531 3166

‘ 0. 69 0. 64 -2.72 2479 | 3110
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Parameter Meaning

Ley 1 kWh EV can travel distance (km/kWh)
ey Carbon trading price and the EV carbon quota price (CNY/kg)
Egas Carbon emissions of fuel-using vehicles running 1 km (kg/km)

Ey Carbon emission per power of thermal unit (kg/kW)
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Symbol Quantity Numerical values

g Energy storage device body power supply 200V
ColRoi Voltage regulator capacitors and their parasitic resistors 100 pE/0.10
LRy Boost inductors and their parasitic resistance 5mH/0.10
Ry Sagging coefficient 05

CuifRint Input capacitors and their parasitic resistance 100 pE/0.10Q
Riadi Resistive loads 250

LilRui Output inductors and their parasitic resistance 5mH/0.10
G/ Load regulator capacitors and their parasitic resistance 1000 pF/0.10
Li/Ry; Line impedance 05 mH/0.10
CulRy Line distributed capacitance 100 uf/0.10
Ca Busbar support capacitor I mE

e DC busbar voltage 300V

G Photovoltaic array output filter capacitor 100 pF
LplRy, Boost converter energy storage inductance 5mH/0.10
CJR. Boost converter output filter capacitance 100 pE/0.10)
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