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Deciphering cellular components and the spatial interaction network of the tumor immune microenvironment (TIME) of solid tumors is pivotal for understanding biologically relevant cross-talks and, ultimately, advancing therapies. Multiplexed tissue imaging provides a powerful tool to elucidate spatial complexity in a holistic manner. We established and cross-validated a comprehensive immunophenotyping panel comprising over 121 markers for multiplexed tissue imaging using MACSima™ imaging cyclic staining (MICS) alongside an end-to-end analysis workflow. Applying this panel and workflow to primary cancer tissues, we characterized tumor heterogeneity, investigated potential therapeutical targets, conducted in-depth profiling of cell types and states, sub-phenotyped T cells within the TIME, and scrutinized cellular neighborhoods of diverse T cell subsets. Our findings highlight the advantage of spatial profiling, revealing immunosuppressive molecular signatures of tumor-associated myeloid cells interacting with neighboring exhausted, PD1high T cells in the TIME of hepatocellular carcinoma (HCC). This study establishes a robust framework for spatial exploration of TIMEs in solid tumors and underscores the potency of multiplexed tissue imaging and ultra-deep cell phenotyping in unraveling clinically relevant tumor components.




Keywords: multiplexed tissue imaging, tumor microenvironment (TME), tumor immunophenotyping, single-cell analysis, spatial analysis workflow, MACSima™





Introduction

Gaining a deeper understanding of protein expression, cellular compositions, and cell-cell interactions is key to understanding molecular principles in health and disease. Single-cell analyses have significantly enriched our understanding of cellular signatures and dynamics in cancer, analyzing tumor heterogeneity, immune cell infiltration, and immunotherapy-related patient outcomes (1–3). However, spatial investigations using single-cell sequencing approaches are limited due to disrupting tissue structures by homogenization. In contrast, tissue architectures can be explored and pathologically characterized by immunohistochemistry (IHC) and immunofluorescence (IF), both based on a finite set of analyzed markers. While a small set of markers can answer singular questions, a complex tissue composition like the tumor immune microenvironment (TIME) can only be deciphered with more information, meaning more markers.

To overcome this hurdle, IHC and IF were complemented by multiplexed imaging approaches (4–24). Multiplexed imaging techniques remarkably advanced spatial investigations and rely on optical, cytometric, or mass-spectrometry-based readouts. These applications are applied in 20-60-plex experiments by working with iterative cycles or multiparametric combinations of antibodies, labeled with fluorochromes, DNA barcodes, or metal tags. However, multiplexed imaging methods have limitations as well, such as the preservation of sample integrity or spatial resolution. Additionally, most multiplexed imaging approaches are restricted to a certain number (up to 60) of antibodies, due to specific antibody requirements or methodological limitations. Ultimately, the design and validation of new antibody panels can be laborious, complex, and costly, which makes pre-validated panels very useful (25).

We used the MACSima™ imaging cyclic staining (MICS) multiplexed imaging technology to overcome the hurdles of classical IF and other multiplexed imaging techniques. For this study, we generated and validated an antibody panel of more than 121 markers allowing for the precise description of immune cells within the TIME of heterogeneous carcinoma samples. In previous studies, multiplexed tissue analyses were used to characterize different cell subsets in cancerous tissue (26, 27). These investigations are focused on either a thorough description of the tumor or the associated immune cells. When tumor and TIME were described together in previous studies, the analysis depth was constrained by a limited number of markers (28, 29) or the imaging data sets were expanded by multi-omics approaches (30, 31). Yet, being able to stain and characterize tumor, stromal, and immune cells within the TIME together in greater depth by MICS highly multiplexed imaging is a new way of understanding cell compositions and drawing conclusions about the cellular interactome in solid tumors.

Particularly in clinical biomarker discovery, comprehensive spatial multi-omics approaches will gain novel insights into risk scarification and response prediction, e.g. demonstrated for anti-PD1 immune checkpoint blockade (ICB) in cutaneous T cell lymphoma (25, 32). ICB has dramatically changed the therapeutic landscape for multiple cancer entities. In advanced melanoma, combinatorial ICB with anti-CTLA4 plus anti-PD1 or anti-PD1 plus anti-LAG3 resulted in median progression-free survival of  11.5 (33) and 10.1 (34) months, respectively. In contrast, response rates to ICB across all cancer patients, irrespective of cancer type, are anticipated to be below 12.5% (35). Clearly, there is a huge clinical need for rational, biomarker-driven therapy decisions, evaluation and elucidation of therapy failure, and identification of combinatorial strategies (36). It is of utmost importance to investigate the expression landscape of immune-modulating proteins and unravel the complex cellular interaction neighborhoods at a spatial single-cell resolution. Therefore, we designed our panel to describe cellular phenotypes in a holistic manner and in their spatial context within the TIME. To demonstrate general feasibility, we analyzed a broad spectrum of cancer entities, focusing on colorectal cancer (CRC), prostate carcinoma (PCa), and two types of liver cancer: Intrahepatic cholangiocellular carcinoma (CCC) and hepatocellular carcinoma (HCC), representing leading causes of death worldwide (37–39). We describe distinct phenotypic architectures, specific tumor markers of CRCs, PCas, CCCs, and HCCs, and ultra-deep phenotyping of the TIME. This study demonstrates comprehensive multiplexed tissue immunophenotyping, profiling of cellular states, and functional spatial neighborhood analysis in unprecedented depth and complexity. Our study provides researchers with a validated versatile immuno-oncology antibody panel, combined with an easy-to-use analysis workflow. Panel and workflow have been utilized for and can be applied to various cancer entities and immune cell subsets, demonstrating their value as a powerful resource for addressing a multitude of immuno-oncology-related research questions.





Materials and methods




Patients and samples

Patient material was obtained via the biobank of the Institute of Pathology and Neuropathology of the University Hospital Tübingen. Respective tissue sections were considered irrelevant for diagnostic purposes by the responsible pathologist. All patient material included in this study was retrieved from the central biobank of the Comprehensive Cancer Centre Tübingen. All patients gave their written informed consent for biobanking and the use of biomaterials and clinical data for scientific assessment, as approved by the ethics committee of the University Hospital Tübingen (ethics approval No. 508-2016BO1) in accordance with the Declaration of Helsinki. To test our panel on diverse tumor types showing distinct architectures and representing major cancer types, we decided to include CRC, PCa, and different types of liver cancer, namely CCC and HCC. Patient characteristics are listed in Supplementary Table S2. Tissue identity was validated by a board-certified pathologist. Antibody validation was performed on healthy tonsil tissue, received from the Department of General, Visceral, and Transplant Surgery at the University Hospital Tübingen. Fresh or frozen tissue was embedded in Tissue-Tek® O.C.T.™ Compound (Sakura Finetek USA) in cryomolds (25375-500, Polysciences, Inc.). Slow and controlled freezing was performed in an aluminum dish containing viscous ethanol, altogether cooled in liquid nitrogen. Embedded samples were stored at -80°C and equilibrated to the cutting temperature in the cryostat chamber for at least 20 mins before sectioning. Sections of 4-5 µm were cut with a cryostat (Leica CM 1950, Leica Biosystems) and placed onto SuperFrost® plus slides (R. Langenbrinck GmbH). Slides were stored until the experimental procedure at -80°C.





Tissue preparation for MICS

Frozen slides were incubated with 4% paraformaldehyde solution (J19943.K2, Thermo Scientific) for 10 mins at room temperature, washed three times with MACSima™ Running Buffer (130-121-565, Miltenyi Biotec), and immediately mounted onto an appropriate MACSwell™ Imaging Frame (One: 130-124-673, Two: 130-124-675, or Four: 130-124-676, Miltenyi Biotec). Sections were covered with MACSima™ Running Buffer until initial 4′,6-diamidino-2-phenylindole (DAPI) staining. Primary DAPI staining was performed right before the experiment by removing the MACSima™ Running Buffer and adding a 1:10 DAPI (130-111-570, Miltenyi Biotec) dilution in Running Buffer. After 10 mins incubation at room temperature, the samples were washed three times with Running Buffer and covered with the final sample volume. Staining and washing volumes depend on the respective working volumes for the Imaging Frames (One:1000 µl, Two:500 µl, Four: 250). MACSwell™ Imaging Frames were sealed with MACSwell™ Sealing Foil (130-126-866, Miltenyi Biotec) to prevent evaporation and protect the samples from contaminants.





Antibodies and reagents for MICS

Primary fluorochrome-labeled antibodies conjugated to fluorescein isothiocyanate (FITC) or phycoerythrin (PE) were used for MICS. All antibody clones, dilutions, and fluorochrome recommendations are documented as our immune-oncology panel in Table 1. Additionally, we recommend 34 alternative fluorochromes which we tested on diverse tissues and which could be used for precise individual panel design, adding up to a total of 155 validated antibody conjugates (Table 1). Moreover, we provide antibodies that did not fulfill our validation criteria (Supplementary Table S1). Antibodies were prepared in a MACSwell™ Deepwell Plate (130-126-865, Miltenyi Biotec) in the appropriate dilution with MACSima™ Running Buffer for the respective MACSwell™ imaging frame working volumes. Before pipetting the antibodies into the Deepwell Plate, we recommend centrifuging the tubes for 20 sec at 1000 x g to sediment possible precipitates. DAPI was added to the antibody-containing Deepwell Plate in a 1:50 dilution in every eighth antibody cycle. The antibody-containing Deepwell Plates were sealed with MACSwell™ Sealing Foil (130-126-866, Miltenyi Biotec) to prevent evaporation.

Table 1 | Immunophenotyping panel for multiplexed tissue imaging of cancer.
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MICS

The MACSima™ Imaging System provides a fully automated workflow for iterative cycles of immunofluorescence sample staining, multi-field imaging, and fluorochrome removal (photobleaching or enzymatic digest). The sample slides mounted with a MACSwell ™ Imaging Frame as well as the antibody-containing MACSwell™ Deepwell Plate were placed on the xy-stage which moves reagents and samples to the correct needle and microscope positions. Antibody incubation was performed for 10 mins (standard setting), followed by excitation of the fluorochromes by specific laser/filter combinations and detection with a monochromatic scientific CMOS camera. A detailed description of the MACSima™ hardware (liquid handling system, microscope, stage) was published previously (40). We used hardware version 1.5.0 as well as software version 0.13.2 for image acquisition.

Before the iterative cycles were initiated, ROIs were defined and the focus was adjusted. ROIs were defined based on the DAPI signal shown in the overview scan and are based on customized numbers of overlapping fields of view (FoV). Additionally, we performed an H&E staining of a sequential tissue section and used this H&E stain as a reference which ensured optimal region definition. The focus was primarily set using the hardware autofocus option and adjusted manually for each ROI based on the DAPI signal. The MACSima™ captures various raw images of each FoV and each cycle. These images are utilized for subsequent image processing performed in MACS iQ View. One imaging cycle includes the following: DAPI image (used for FoV stitching), as well as bleach and staining images for each channel captured at three different exposure times (used for background subtraction and optimal exposure selection). After the MICS experiment, slides were H&E stained according to pathological standards (41) and imaged with a slide scanner (Panoramic Midi II, 3D Histech).





Image processing

Individual raw FoV images were processed with the automated pipeline on the MACS iQ View software (Version 1.2.2). Detailed information on image processing was described before (40). In brief, different exposure times are combined in a high dynamic range image, normalizing based on multiple exposures when overexposure is detected. Exposure selection was set for “automatic”, validated and, if necessary, adjusted to optimal exposure times. Flatfield and distortion corrections are applied for the calibration data of the individual instrument. Next, neighboring FoV are automatically stitched together based on the DAPI staining of overlapping margins. Finally, the pre-stain bleach images of each cycle, acquired before the subsequent antibody incubation and showing potential residual staining of the previous cycle, are subtracted from the subsequent staining image, resulting in the final processed and stitched images. The images were cropped to DAPI based on experimental values of 200 pixels for top/bottom and 100 pixels for right/left correction.





Analysis workflow using MACS iQ View

Image datasets for each ROI, including all staining and autofluorescence images in TIFF format, were integrated into the MACS iQ View software (Version 1.2.2). Advanced cell segmentation was performed using the MACS iQ View segmentation pipeline. In detail, segmentation is conducted based on nuclear and cytoplasmic markers. We used the “Advanced Morphology for Tissue” nuclear detection option based on the first DAPI staining. Min/Max Diameter, Detection Sensitivity, Separation Force, and Smoothing Filter Sigma were adjusted based on the DAPI staining intensity and the respective tissue, see Supplementary Table S3. Cytoplasmic signal was allocated to single cells by using the “Constrained Donut” option based on automatically chosen constraint channels. Detection Sensitivity and Donut Width were specified for each ROI individually based on signal intensities (Supplementary Table S3). We provide recommended parameters for efficient cell segmentation for densely packed and hard-to-segment tissues, like tonsils, and adapted settings for various cancerous tissues based on tumor morphology. Depending on staining efficiency, exposure time, and tissue composition the recommended parameters need to be adjusted. Therefore, we give guidelines for the optimal usage of segmentation parameters. Segmentation was cross-validated via the visual control in MACS iQ View by displaying nuclear and cytoplasmic markers overlayed by the segmentation mask.

Antibody cross-validation was performed for each antibody, dilution, and experiment. Having the ability to stain several markers for a specific cell type, we compared markers of a single experiment (in-run comparison) and between different experiments. Additionally, we included a reference tissue (tonsil) on each slide for the in-run staining control. As a third reference, we used public databases like the Human Protein Atlas (proteinatlas.org (42)) or classical IHC staining to compare the MACSima™ staining and validate the antibodies.

Marker expression was allocated to the segmented cells and was used for expert-based gating of cell populations and cell type annotation (exemplary gating strategy: Supplementary Figure S2A). Additional markers that were not used for gating were displayed as Color Maps to ascertain the cell type annotation (Supplementary Figure S2B). Gates were directly side-by-side compared with the staining image in the MACS iQ View image control window. Expert-based (sub-)gating of cell populations was adjusted for ROI and cell type-specific cell expression patterns, depicted as Scatter Plots and Histograms in MACS iQ View. Using the “Merge” operator, gated cell populations from different sub-gates were integrated into a combined cell type gate.

Neighborhood analysis of annotated cell types (i.e. PD1low/high T cells) was conducted with the MACS iQ View distance analysis tool, applied for an annotated cell type of interest. Based on the distance histogram, we defined a range of 5 µm (≙ 47,14 pixels) or 25 µm (≙ 235,85 pixels) around the annotated cell type of interest. All cells within the distance range were merged (“Merge” operator, option “AND”) with all pre-defined annotated cell types. Cells present in both an annotated cell type and the range around the cell type of interest resulted in a new intersection population.

An exemplary MACS iQ View workflow script containing advanced segmentation settings, expert-based gating of cell populations, cell type annotation, and distance analysis is deposited at Zenodo: 10.5281/zenodo.10057717.





Bioinformatical analyses

After advanced cell segmentation using the MACS iQ View, data was exported as a CSV file and analyzed with R (version 4.1.0). To limit the effect of potentially spurious outliers, we applied winsorization to the raw expression data, capping values at the 1st and 99th percentiles. We computed percentiles separately for every marker. Next, to reveal patterns in the data that are not apparent in the original, antibody-dependent scale, we applied the inverse hyperbolic sine transformation (arcsinh transformation) to the winsorized data. Replicable code for the analyses is available on Zenodo: 10.5281/zenodo.10057717.





Data visualization

Graphs were produced using GraphPad Prism (Version 9.5.1) and images were exported from MACS iQ View (Version 1.2.2). We created the faceted violin plots using the {ggplot2}-library (43).






Results




Establishment and validation of a comprehensive MICS panel and analysis workflow

Here, we describe the establishment, validation, and application of a comprehensive immunophenotyping panel for MICS, tailored to address immuno-oncology research questions. MICS multiplexed tissue imaging is based on iterative cycles of 1) fluorochrome-labelled antibody staining, 2) epifluorescence imaging, and 3) fluorochrome removal (Figure 1A, top). After image processing, staining accuracy was assessed through cross-validation by co-staining of reference tissues as well as comparing staining patterns with publicly accessible databases and traditional IHC staining (Figure 1A, middle). Following antibody cross-validation, we performed advanced segmentation analysis within the MACS iQ View software and used the ascertained marker expression profiles for expert cell annotation, which serves as a basis for 1) defining cellular composition, heterogeneity, and spatial distribution, 2) performing deep spatial cell phenotyping, 3) analyzing cellular neighborhoods, and 4) utilizing data for external bioinformatic analysis pipelines (Figure 1A, bottom). In detail, image processing, image quality control, antibody cross-validation, advanced segmentation, marker-based cell annotation, and data analysis of all markers were performed within the MACS iQ View software. For optimal advanced cell segmentation and applicability for various tissues, we provide recommended parameters and guidelines (Supplementary Table S3). Utilizing the advantages of the MACS iQ View software, the expert-based gating analysis (exemplary gating strategy in Supplementary Figure S2A) was side-by-side controlled with the staining image and scatter plot gating was complemented by depicting additional marker expressions as Color Maps (Supplementary Figure S2B). For external downstream analyses, segmentation-based expression data as well as annotated cell subtypes were further analyzed in R, thereby combining the strengths of MACS iQ View and R in our analysis workflow. In the current study, we present our immunophenotyping panel comprising 121 antibodies addressing 118 antigen markers (Figure 1B). Detailed information on clones, vendors, tested fluorochromes, and suggested dilution is provided in Table 1. In addition to the core panel used in this study, we tested alternative fluorochrome conjugates across various tissues, resulting in a total of 155 validated antibody conjugates for multiplexed imaging (Table 1). We provide optional fluorochrome recommendations to facilitate further customization and optimization of our immunophenotyping panel. Essentially, we emphasized having more than two markers to distinguish distinct cell types, functioning as an internal staining control and strengthening the analytical power. The immunophenotyping panel is suitable for cell phenotyping of at least 16 different cell populations (lymphocytes: B cells, plasma cells (PCs), natural killer (NK) cells, T cells; myelocytes: Monocytes, myeloid dendritic cells (mDCs), plasmacytoid dendritic cells (pDCs), granulocytes, mast cells, myeloid-derived suppressor cells (MDSCs), macrophages (MΦ); endothelial cells, epithelial cells, fibroblasts, platelets, erythrocytes), as well as for definition of the cellular cytoskeleton and extracellular matrix (ECM) components. To further dissect the cellular landscape, we included 40 markers for ultra-deep sub-phenotyping, resulting in highly defined and diversified cell populations and cellular states including markers for characterizing cellular stress and senescence. Moreover, we integrated markers for possible therapeutic intervention, especially for immunotherapeutic targeting with monoclonal antibodies (mAbs), chimeric antigen receptor (CAR) T cells, or ICB. Representative staining of all markers on tonsil tissue is provided in Supplementary Figure S1. Since panel design is laborious and costly, we additionally provide a list of tested antibodies that did not fulfill our validation criteria (Supplementary Table S1). Taken together, we provide a validated immunophenotyping panel plus an analytic workflow for multiplexed tissue imaging using MICS.

[image: Diagram of a scientific workflow with two main sections labeled A and B. Section A depicts a cyclic process involving staining, imaging, and fluorochrome removal, supported by antibody cross-validation. It includes reference tissue analysis, database access like the Human Protein Atlas, and immunohistochemistry (IHC). Key processes include cellular composition analysis, spatial cell phenotyping, and bioinformatic data analysis in R. Section B outlines cell phenotyping categories, including immune and other cells, therapeutic targets, and markers for sub-phenotyping, cell state, and stress, with auxiliary markers identified.]
Figure 1 | Immunophenotyping panel and analysis workflow for MACSima™ imaging cyclic staining (MICS). (A) In a cyclic fashion, MICS is based on staining a specimen with fluorochrome-labeled antibodies, epifluorescence imaging, and removal of the fluorochrome. Resulting antibody staining were cross-validated using reference tissue, databases, or classical immunohistochemistry (IHC) staining and were subsequently used for a marker-based cell annotation. Based on advanced cell segmentation, cell types can be annotated, cellular composition and heterogeneity analyses as well as deep profiling and neighborhood analyses can be performed. CSV files can be exported for external bioinformatic analyses. (B) Validated antibody panel including 121 antibodies for 118 targets for cell (sub-)phenotyping of immune and tumor cells as well as for identification of therapeutical targets.





Characterization of human tonsil tissue with a comprehensive immunophenotyping panel

To validate our immunophenotyping panel and test the feasibility of the approach, we chose palatine tonsil tissue as a reference. Palatine tonsils are secondary lymphoid organs playing an important role in developing self-tolerance and establishing adaptive immunity (44). A plethora of cells of the innate as well as adaptive immune system in different activation or differentiation states can be found within tonsils, complemented by stromal and vasculature components (45). Therefore, tonsil tissue has been broadly used for antibody panel validation (26, 46, 47). Applying our panel to human tonsil sections enabled a highly detailed mapping of tonsillar immune cells (Figure 2A, middle and Figure 2B) and stromal components (Figure 2A, right). Despite performing 89-92 MICS cycles, including staining, imaging, and fluorochrome removal, which resulted in an experimental duration of more than seven days, the tissue integrity was preserved and used for final post-experimental H&E staining (Figure 2A). Advanced segmentation resulted in a total of 8074, 7379, and 6213 cells for tonsils 1, 2, and 3, respectively. We were able to classify 13 main cell types, namely T cells, B cells, PCs, NK cells, mDCs, pDCs, granulocytes, mast cells, MΦ, fibroblasts, blood, and lymphatic vessels, as well as squamous epithelial cells (Figure 2C). We further sub-characterized the T cells into CD4+ helper T cells (Th) and CD8+ cytotoxic T cells (Tc) (Figure 2C). We could identify B cell subclusters in the germinal center (GC) organization, categorizing them into CD21+ germinal center B cells, CD22+ mantle zone B cells, and CD11b+ B cells (Figure 2D). Additional B cell activation states (CD25+, CD44+, CD69+) and memory phenotypes (CD40+) could be deciphered. In line with previous findings (48–52), we defined different architectural zones of the tonsil based on multiparametric staining (mantle zone: CD27+, CD39+; GC: CD9+, CD10+, CD171+; non-GC: BCL-2+, CD44+) (Supplementary Figure S2C). Expert marker-based gating using our analysis workflow allows definite cell annotation and quantification of immune cell subsets (Figure 2E), consistent with literature (53). Taken together, we validated an antibody panel of 121 markers using palatine tonsil tissue which serves as a platform to be adapted for a plethora of research questions.
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Figure 2 | Deep spatial profiling of human palatine tonsil tissues. (A) Hematoxylin and eosin (H&E) staining after 92 MICS cycles, including the marked epithelium, germinal center (GC), and T cell zone of the lymphoid follicle. MICS DAPI and stroma staining depicting the composition and structure of the tonsil. Markers: Collagen III, collagen IV, fibronectin (all extracellular matrix (ECM), cytokeratin (epithelium), podoplanin (lymphatic vessels), CD105/SM Actin (blood vessels). (B) Immune cell content of a human palatine tonsil comprising T cells (CD3), B cells (CD19/CD20), plasma cells (PCs) (CD38/CD138), NK cells (CD56), granulocytes (CD15/CD66b), mast cells (CD117), macrophages (MΦ) (CD163/CD169/CD206), myeloid dendritic cells (mDCs) (CD11c), and plasmacytoid dendritic cells (pDCs) (CD123). (C) Detailed view on the T cell zone, mainly composed of CD4+ helper T cells (Th) and CD8+ cytotoxic T cells (Tc), mDCs (CD11c), and PCs (CD38/CD138). (D) Detailed view on the GC-mantle zone border, showing different B cells (CD11b, CD21, CD22), mDCs (CD11c), and PCs (CD38/CD138). (E) Cell annotations of three different tonsil samples plus respective bar graphs of gated cell populations, comparing the cell content between the three tonsil samples. Depicted markers and annotated cell types as indicated by the color code. ROI sizes: 976 x 640 µm, zoomed-in subregions in (C, D): 334 µm x 219 µm. Scale bar: 100 µm.





Immuno-oncological profiling of heterogeneous cancer tissues

Next, we validated our antibody panel on samples of three different cancer entities, particularly CRC, PCa, and CCC (Figure 3). The entities were chosen to provide a spectrum of histologically different tumors to demonstrate the broad applicability of the antibody panel. The diverse morphology as well as tissue integrity was preserved over 92 MICS cycles (H&E staining in Supplementary Figure S3A). Samples were cross-validated and analyzed using the presented analysis workflow (Figure 1A). Cytokeratin staining depicted the histological features of glandular CRC and PCa and ductal intrahepatic CCC, all originating from epithelial cells (Figure 3, second row). By using the markers for ECM and structural components, we differentiated the respective tumoral stroma differences of the three entities, consistent with literature (54–56). While we could define a reduced collagenous stroma for juxtaposed glands in CRC (cribriform, back-to-back aspect), (Figure 3A, second row), the PCa and intrahepatic CCC samples were dominated by a dense stroma consisting of collagen III and collagen IV and fibroblastic markers (Figures 3B, C, second row). Quantification of 36 different cancer-associated markers showed the heterogeneity of the different tumor types (Supplementary Figure S3B). We spatially mapped the expression of possible immunotherapeutic targets like EpCAM, uniformly expressed in all samples, and HER2, demonstrating a higher degree of intratumoral heterogeneity, particularly in the CRC sample. On the contrary, CD155 and CD243, e.g., were only detected in intrahepatic CCC, whereas PD-L1 was highly expressed in the CCC and CRC samples (Supplementary Figures S3C–E). Our data clearly demonstrates the feasibility of the applied technology to individually characterize tumor samples in terms of quantitative expression and spatial heterogeneity of druggable immune targets. This detailed tumor phenotyping can serve as a prerequisite for complex precision immunotherapy approaches.
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Figure 3 | Immuno-oncological description and characterization of cancerous tissues. For all three tumor samples, DAPI, stroma- and tumor-characterizing images (collagen III, collagen IV, cytokeratin, fibronectin, podoplanin, CD105/SM Actin), immune cell content in a 15-color image, as well as cell type annotation images and bar graphs are shown. (A) represents a colorectal carcinoma (CRC), (B) a prostate carcinoma (PCa), and (C) an intrahepatic cholangiocellular carcinoma (CCC). Depicted markers and annotated cell types as indicated by the color code. ROI sizes: (A): 975 x 747 µm, (B): 974 x 747 µm, (C): 974 x 769 µm. Scale bar: 100 µm.

In line with our findings in palatine tonsil tissue, we were able to identify different immune cell populations as well as tertiary lymphoid structures (TLS) within the tumor tissues (Figure 3, third row). Segmentation resulted in 7963 cells for the CRC, 5029 cells for the PCa, and 7101 cells for the CCC sample. Cells were annotated marker-based and we quantified the cellular components, including ten different immune cell types (T cells, B cells, PCs, NK cells, mDCs, pDCs, granulocytes, mast cells, MΦ, MDSCs), fibroblasts, vessels, lymphatic vessels, epithelial, and tumor cells. While percentages of total infiltrating immune cells (CRC: 20,24%, PCa: 26,45%, CCC: 23,91%) were similar, cell types and particularly spatial distribution differed dramatically, see Figures 3A–C. In both the CRC and the CCC samples, TLSs were identifiable (Figures 3A, C). In the CRC sample, the TLS presents as a peritumoral primary follicle-like structure with clearly distinguishable B and T cell zones and spotted mDCs. In contrast, the TLS in the CCC sample is located within a dense collagenous stroma and exhibits a more mature secondary follicle-like structure. GC reaction was defined by CD21+ GC B cells and surrounding CD34+/CD54+ high endothelial venules (HEV) (Supplementary Figures S3F, G, HEV highlighted by white arrows). In contrast, B cells were found to be absent in the PCa sample. Taken together, this set of data clearly validates the feasibility of our immunophenotyping panel to comprehensively dissect tissues from various cancer entities at a single-cell level to study functional cellular composition and spatial architecture. Additionally, it underscores the dramatic phenotypical differences between cancer entities and the eminent need for comprehensive spatial analyses to study and understand cancer biology and immunology.





Detailed description of HCC intratumoral sub-regions

To further reveal the potential for spatial ultra-deep functional phenotyping with our established and validated panel, we demonstrate a comprehensive step-by-step analysis of an HCC sample. We chose three different tumor regions of interest (ROIs) from one patient sample and subsequently analyzed and compared the different tumor regions (Figure 4), performed ultra-deep phenotyping of the T cell fraction (Figures 5, 6), and elucidated the T cell neighborhood (Figure 7). Selected tumor regions included peritumoral, immune-rich stroma (Figure 4C), tumor margin (Figure 4D), and tumor core (Figure 4E). We further introduced subarea classifications within the different ROIs to describe spatial relationships: Intratumoral stroma (ITS), defined as areas without malignant cells, and intratumoral malignant cell clusters (ITM), defined as areas with densely packed malignant cells. Again, tissue integrity of the specimen after 92 MICS cycles was verified by H&E staining (Figure 4A). ROIs were selected based on initial DAPI staining (Figure 4B). Advanced cell segmentation resulted in a total of 13006 cells for the stroma, 7552 cells for the tumor margin, and 4917 cells for the tumor core ROI. Tumor stroma was composed of numerous blood and lymphatic vessels, a biliary duct (white arrow, top right corner), and a high percentage of immune cells, particularly T cells, PCs, mDCs, and MΦ, organized in clusters without distinguishable B and T cell zone as seen in canonical TLSs (Figure 4C). Approaching the tumor site, we identified a collagen- and fibronectin-rich stroma layer with a spotted T cell infiltrate (Figure 4D). Interestingly, we found a densely packed immune infiltrate of predominantly myeloid cells at the tumor border region (Figure 4D). These myeloid cell populations, dominated by mDCs and MΦ, form a barrier-like structure surrounding the malignant cells (Figure 4D). We also identified peritumoral T cell clusters further characterized below. mDCs, MΦ, and T cells are clustered not only at the tumor margin but also in the collagen-rich ECM ITS areas within the tumor core (Figure 4E). In contrast, most immune cells are strongly excluded from ITM areas, with only a few T cells and MDSCs being able to infiltrate (Figures 4D, E). Expression profiles of 36 tumor-specific markers were compared for tumor margin and border. Violin plots as well as staining showed uniform expression of HCC-related markers like AFP or Glypican 3, as well as pro-oncogenic CD155 and CD36, which are associated with disease progression and poor prognosis in HCC (57, 58) (Supplementary Figure S3B and Supplementary Figures S4A, B). Quantification of the different cell populations within the three ROIs is provided in Figure 4F. In sum, this set of data demonstrates spatially restricted intratumoral heterogeneity in cellular and ECM composition. We show compartmentation and spatial exclusion of certain immune cell populations, elucidating their functional properties as shown below.
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Figure 4 | Detection of structural, immune, and tumor markers in three different hepatocellular carcinoma (HCC) tumor regions. (A) H&E staining after 92 MICS cycles plus marked regions of interest (ROIs). (B) Pre-run DAPI staining for ROI definition. (C–E) represent tumor-associated stroma area, tumor margin, and tumor core. For each ROI, images for stroma and tumor characterization (collagen III, collagen IV, cytokeratin, fibronectin, podoplanin, CD105/SM Actin), as well as immune cells (T cells, B cells, PCs, mDCs, pDCs, mast cells, MΦ, myeloid-derived suppressor cells (MDSCs)), and the cell type annotation are shown. (F) Quantifications of the annotated cell types by bar graphs are outlined for each ROI. Depicted markers and annotated cell types as indicated by the color code. ROI sizes: Tumor-associated stroma (ROI14): 975 x 770 µm, tumor margin (ROI15): 975 x 769 µm, tumor core (ROI16): 975 x 769 µm. Scale bar: 100 µm.
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Figure 5 | T cell subset classification and spatial distribution in an HCC sample. (A) Bar graph quantifications of gated T cell CD3+ T cells subpopulations (CD4+ Th, CD8+ Tc, FoxP3+/CD25+ Treg) as well as T cell differentiation subsets (TN, TSCM, TCM, TEM, TEMRA, TTE) for HCC tumor margin and tumor core. (B) Subclassification criteria used for T cell differentiation subset gating. Detailed gating scheme see Supplementary Figures S5A–D Spatial distribution of CD3+ T cell subsets as well as CD4+ and CD8+ differentiation subsets for tumor margin (C) and tumor core (D). Arrowheads in (C, D) highlight the spatial distribution of regulatory T cells (Treg). (E) Violin plots demonstrating expression levels of markers used for the definition of T cell differentiation subsets in tumor margin and tumor core: CD25, FoxP3, CD45RA, CD45RO, CD27, CD95, CD11a. Depicted markers and annotated cell types as indicated by the color code. ROI sizes: Tumor margin (ROI15) and tumor core (ROI16): 975 x 769 µm.

[image: Diagram depicting immune cell activation and exhaustion states. Section A shows activation states with color-coded circles and tissue images labeled "Margin" and "Core." Section B includes a bar graph of PD1 expression and tissue images. Section C illustrates exhaustion states with color-coded circles and tissue images. Section D presents violin plots comparing expression levels of various markers, such as CD69 and PD1, in "Margin" and "Core" areas.]
Figure 6 | Spatial profiling of T cell activation and exhaustion states in an HCC sample. All images depict tumor margin (left) and tumor core (right). (A) Activation status of T cells subsets (CD69 = early, CD25 = late, HLA-DR = very late). (B) PD1 marker expression on T cells, categorized as low (0-25%), intermediate (25-75%), and high (75-100%). (C) Exhaustion levels of T cells based on the expression of PD1 (single exhaustion), PD1 plus TIM3 or LAG3 (double exhaustion), or PD1 plus TIM3 and LAG3 (triple exhaustion). Arrowheads in (A–C) highlight the ITM-proximal immune cell cluster in tumor margin and core. (D) Representation of activation/exhaustion markers for T cells (CD69, CD25, HLA-DR, PD1, LAG3, TIM3, CTLA4) as violin plots for T cell activation/exhaustion subsets. Depicted markers and annotated cell types as indicated by the color code. ROI sizes: Tumor margin (ROI15) and tumor core (ROI16): 975 x 769 µm.
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Figure 7 | Cellular neighborhood analysis of PD1high/low T cells in the tumor margin and core. (A–D) Topology of PD1high (left) and PD1low (right) T cells and their cellular neighborhood within a 5 µm range. (A, B) represent tumor margin and (C, D) show tumor core areas. Cell types showing different distribution patterns around PD1high and PD1low T cells (mDCs, M1-like M, M2-like M, MDSCs, Fibroblasts, vessels, tumor cells) are highlighted by arrowheads. (E, F) Quantification of cells in a 5 µm range around of PD1high/low T cells for tumor margin and tumor core, (E) represents immune cells and (F) stroma/tumor cells. (G) Violin plots for expression levels of eight immune-modulating markers (CD112, CD155, CD276, CD39, CD73, IDO, PD-L1, and VISTA) for the most important immune and tumor cells around PD1high/low T cells in the tumor core area. Violin plots for tumor margin are shown in Supplementary Figure S5E. Depicted markers and annotated cell types as indicated by the color code. ROI sizes: Tumor margin (ROI15) and tumor core (ROI16): 975 x 769 µm.





Characterization of T cell subtypes at tumor margin and tumor core

To further demonstrate the potential of the 121 antibody immunophenotyping panel, we next analyzed the T cell compartment within the different HCC tumor ROIs. T cells can be roughly categorized into CD4+ Th and CD8+ Tc. Among CD4+ Th, FoxP3+/CD25+ regulatory T cells (Treg) play a crucial role in orchestrating the immune system, mediating immunosuppressive function within the TIME. We first identified CD45+/CD3+ T cells in two different HCC tumor regions, namely margin and core. Next, cells were categorized as Tc, Th, or Treg based on the expression of CD8, CD4 or CD4, FoxP3, and CD25 (Figure 5A). Additionally, T cells can be phenotypically and functionally described based on their differentiation state. Along this line, we identified six T cell differentiation states based on deep sub-phenotyping using the expression levels of CR45RA, CD45RO, CD27, CD95, and CD11a (Figure 5B): naïve TN cells, stem cell-like memory TSCM cells, central memory TCM cells, effector memory TEM, effector memory cells re-expressing CD45RA TEMRA, and terminally differentiated effector TTE cells (see gating strategy in Supplementary Figures S5A, B). We saw a shift towards more CD4+ Th and less CD8+ Tc in the tumor core compared to the tumor margin. TEM cells, both Th cells and Tc cells, are the dominant T cell differentiation state in the tumor margin and peritumoral stroma. In contrast, TCM cells and particularly CD8+ TCM cells are predominantly found in the core (Figure 5A). Looking at the spatial distribution, TC cells, mainly TCM, were found to be the only T cell subset capable of infiltrating into ITM areas (Figures 5C, D, left). The overall fewer CD4+ Th cells (19,1% CD4+, 80,9% CD8+ of all CD3+ T cells) were generally located more distant to tumor cell clusters compared to the CD8+ Tc cells. Utilizing MICS data for external bioinformatic analyses, we were able to cross-validate T cell phenotyping based on marker expression in an unsupervised way. To demonstrate coherence between methods, we provide expression profiles for decisive markers on pre-gated T cell subtypes in Figure 5E, confirming subset affiliation.





Defining functional T cell states and their spatial distribution

Beyond a phenotypical description of different T cell differentiation states, functional characterization plays an important role in understanding and predicting responses to therapy. ICB has revolutionized the therapy of certain cancer entities, however reliable biomarkers for response prediction remain sparse (59–61). Particularly the functional state, spatial distribution, and cellular neighborhood of T cells are crucial for understanding mechanisms of ICB and other immune modulatory therapies. Dysfunctional, exhausted T cells are characterized by the expression of inhibitory immune checkpoint receptors, including PD1, LAG3, and TIM3. In contrast, activated T cells can be identified by the expression of CD69, CD25, and HLA-DR. We used the strength of MICS and analyzed 16 markers associated with T cell function in tumor margin and core. We identified different activation states of T cells – early (CD69), late (CD25), and very late (HLA-DR) (Figure 6A). The late and very late activated T cells were clustered in regions proximal to the ITM and within ITS areas (Figure 6A, green arrows), while T cells within the tumor core, particularly in ITM areas, showed mostly no activation. Along with activation states, we saw a gradient in the expression of exhaustion markers. In Figure 6B, PD1 expression levels are depicted based on quartiles of normalized PD1 expression (0-25% = low, 25-75% = intermediate, 75-100% = high PD1 expression). Highest PD1 expression levels were present on cells infiltrated into ITM areas and on the previously described ITM-proximal immune cell clusters (Figure 6B, blue arrows). Using MICS, and compared to other technologies, we were able to stain additional immune checkpoints and deep sub-phenotype fractions of T cells which were i) PD1 single positive ii) double positive for PD1 and LAG3 or TIM3, or iii) triple positive T cells expressing PD1, LAG3, and TIM3 (Figure 6C). Highest T cell exhaustion states were found in ITM-proximal immune cell clusters (Figure 6C, pink arrows), while ITM-infiltrating T cells predominantly expressed only PD1. Combining the T cell subset definition (Figure 5) with the T cell activation and exhaustion states, we were able to thoroughly profile a multitude of T cell subsets for their functional marker and potential therapeutic target expression (Figure 6D). In summary, not being limited by markers and having validated antibodies for functional immunophenotyping allows for a stringent and precise T cell classification, which is fundamental for patient-specific therapeutical decisions.





Immunological constituents of the T cell neighborhood

The major advantage of spatial biology applications towards sc/snRNASeq or other technologies is spatial resolution. Physiological or disease-relevant cellular function and interaction are often limited to restricted areas within a tissue. To further highlight the power of MICS in combination with our established and validated panel, we performed neighborhood analysis focusing on PD1high and PD1low T cells, two clinically relevant T cell subsets. In detail, we performed a distance analysis in MACS iQ View of our anchor cells, PD1high and PD1low T cells, and characterized proximal cell populations. To investigate the relevance of distance to anchor cells in the context of cell-cell interactions, we applied different radii for our analysis. We found that in a 5 µm range a very distinct neighborhood can be described, whereas at broader ranges the informative value faded (Supplementary Figure S5C). We therefore focused our downstream analyses on the 5 µm neighborhood (Figures 7A–C). Intriguingly, the immediate cellular neighbors around PD1high T cells in ITS areas were predominantly myeloid cells and among them primarily mDCs, M2-like MΦ, and MDSCs (Figure 7E). We saw a tendency towards a higher percentage of mDCs and M1-like MΦ in the margin and MDSCs in the core area (Figure 7E). As described above, neighborhoods consisting of PD1high T cells and myeloid cells were sited in spatially restricted clusters in close proximity, but strictly excluded from ITM areas (Figures 7A–C). In contrast, PD1high T cells infiltrated into ITM areas were almost exclusively surrounded by malignant or other T cells (Figures 7A–C). Looking at PD1low T cells, we did not only find a different spatial distribution within the ROIs but also different cellular neighborhoods (Figure 7F). PD1low T cells are more often located in perivasculature and fibroblast-rich niches. Furthermore, we found a spatial association of PD1low T cells with plasma cells (Figure 7E). To further understand the functional interaction of neighboring cell populations and to cross-validate findings, we analyzed cell populations in the proximity of PD1high and PD1low T cells for the expression of 12 immune checkpoint or immunomodulatory molecules (Figure 7G and Supplementary Figures S5D, E). Providing intrinsic validation of data, we found relatively higher expression of PD-L1 on cells in PD1high vs. PD1low T cells neighborhoods, particularly expressed by M2-like MΦ, pDCs, plasma cells, endothelial cells, lymphatics vessels, and tumor cells. A similar tendency was found for CD276 on M2-like MΦ, fibroblasts, endothelial, and malignant cells, CD73 on fibroblasts and endothelial cells, CD155 on M1-like and M2-like MΦ, fibroblasts, endothelial and tumor cells, IDO on M2-like MΦ, pDCs, plasma cells, endothelial cells, and lymphatics as well as VISTA on plasma and endothelial cells (Figure 7G). Particularly on vasculature, we found a clear spatial correlation between PD1high T cells and protein expression of IFN-γ regulated genes like PD-L1, CD155, CD276, or IDO, as described individually before (62–65). In contrast, there is a tendency towards higher expression of CD112 on M1-like MΦ and CD155 on pDCs in PD1low T cell neighborhoods (Figure 7G). Cells in the neighborhood of PD1low and PD1high cells in the tumor margin (Figures 7A, B) showed comparable patterns except for higher expression levels of PD-L1 of pDCs, M1-like MΦ, MDSCs, fibroblasts, and tumor cells in PD1low neighborhoods (Supplementary Figure S5E). Together, this set of data demonstrates the capacity of MICS-based spatial biology to functionally dissect tumor tissues at single-cell spatial distribution. We identified multilayered, spatially restricted, and functionally distinct cellular neighborhoods. Comparable to T cells within ITM areas, we found less-activated and less-exhausted cells T cells in perivascular and stromal niches facing inhibitory signals via CD39, CD112, and IDO. We identified areas of dense immune infiltration proximal but strictly excluded from ITM areas. These “battle-grounds” show the highest T cell activation but also exhaustion and are dominated by myeloid cells with a tendency towards, but not restricted to suppressive phenotypes, expressing PD-L1, CD39, IDO, and VISTA. Further, we found a limited number of CD8+, mainly PD1high T cells, infiltrating into ITM areas where they are surrounded by PD-L1, CD73, CD155, and CD276 expressing tumor cells. These findings clearly demonstrate the spatially restricted functional heterogeneity of distinct cell populations within the very same tumor sample and highlight the eminent need for comprehensive spatially resolved context analyses to derive clinically relevant conclusions.






Discussion

Multiplexed tissue imaging is an emerging technology providing new and previously unprecedented insights into cellular architecture, function, and orchestration (21, 22, 24). Analyzing the tumor and its TIME with multiplexed tissue imaging techniques allows unprecedented analysis of tumor composition, intra- and intertumoral heterogeneity, immune cell contributions, and the patient-specific therapeutic landscape (20, 25, 27). Here, we present an immunophenotyping panel for ultra-deep spatial profiling of cancerous tissues and the associated TIME. Moreover, we provide an end-to-end workflow for MICS, covering antibody cross-validation, advanced segmentation, marker-based cell annotation, and cellular neighborhood analysis. Analyses for other multiplexed imaging technologies are often based on complex bioinformatic pipelines (66, 67). Our analysis pipeline combines the benefits of the accompanying software for MICS, MACS iQ View, with user-friendly, yet meaningful bioinformatic evaluation in R. We demonstrate and provide templates for advanced cell segmentation and cell type annotation as well as for expression profiling and neighborhood analyses conducted in MACS iQ View without the need of bioinformatic knowledge, which will be useful for many users. We describe MICS as a novel technology to overcome panel-specific limitations of other multiplexed approaches like 1) panel size, 2) complexity of panel design, or 3) antibody cross-reactivity. The established MICS panel was developed based on the following criteria: First, we chose more than one marker for cell type identification and annotation. Since we were interested in identifying the entirety of cells in our samples in contrast to cellular subsets (68, 69), the panel size amounted to more than 120 markers. A major benefit of having such an encompassing panel for multiplexed imaging is the possibility of cross-validating staining and, thereby, increasing the accuracy and confidence of imaging data and cell type annotation. Second, after identification of a cell type, our goal was to comprehensively characterize the functional cellular states in a holistic manner, as compared to other studies which, e.g., only focused on immunoregulatory proteins (25). Therefore, we included not only cell cycle, activation, or differentiation but also cellular stress, exhaustion, and immune-modulating markers, to be able to spatially resolve the complex state of cell types and not only to describe their presence. Third, panel design is much easier for MICS compared to other techniques and no complicated or costly conjugation steps or antibody preparation steps are needed (12, 24, 47, 70, 71). Despite the flexibility and compatibility of antibodies for MICS, we identified antibodies that in our hands, did not fulfill the validation criteria for MICS and summarized them as a resource for other users. To mitigate the issue of false-positive staining due to spectral overlap of FITC and PE, panel and cycle design should ensure that FITC- and PE-labeled antibodies targeting the same cell type/state are not utilized within the same cycle. Moreover, we recommend refraining from integrating FITC-conjugated antibodies targeting strongly expressed antigens in the same cycle as PE-labeled antibodies targeting weakly expressed antigens. Integrating validated APC-conjugated antibodies provided in Table 1 improves and facilitates individualized panel design. When selecting fluorophores, researchers must consider their varying photostabilities. As MICS relies on photobleaching to allow for the iterative application of the same fluorophores, photo-instable fluorophores have to be used. This can result in acquisition bleaching artifacts, especially for less photostable fluorochromes like FITC and in overlapping regions used for FoV stitching based on DAPI signal (compare Supplementary Figure S1 and Supplementary Figure S3C). Even if these artifacts are present in the individual marker staining images, correct cell type identification was not influenced by these artifacts due to strategic panel design, marker multiplexing for gating, and usage of the visual control in MACS iQ View.

As a proof of concept, we describe the protein expression landscape of the tonsil in an unprecedented way, giving an extensive overview of immune cell subsets and their location. Other studies used tonsils as reference tissues before (26, 72), but with smaller panels or at lower spatial resolution (53). We were able to detect and annotate not only common cell types by using the power of having many lineage-specific markers but also functional subpopulations like CD21+ germinal center B cells or CD11b+ B cells. Next, we used our panel plus the established analytic workflow for the comprehensive immunological characterization of distinct cancer tissues. Tumors can be categorized in distinct “immunotypes”: 1st immune inflamed, 2nd immune excluded, and 3rd immune desert. These immunotypes have, respectively, been defined as tumors highly infiltrated with immune cells, tumors where T cell infiltrate is limited to tumor stroma and excluded from tumor parenchyma, and tumors that do not exhibit any immune infiltrate (73). Following this framework, we analyzed different primary human cancer samples. We could demonstrate the different tumor architectures with multiplexed imaging concordant with literature for CRC and PCa (9, 66) and show for the first time, to the best of our knowledge, for CCC. We were able to identify and spatially map major immune cell populations. While absolute proportions of immune cells were similar, we found dramatic differences in spatial distribution, underscoring the vast differences in the TIME architecture across different tumor types and different areas within the same tumor samples. We found significant T cell content in all three samples. In the PCa sample, T cells are scattered with direct colocalization to malignant cells, representing an “inflamed-like” immunotype. In contrast, T cells in the CCC sample are spatially segregated from malignant cells by collagen-rich stroma, representing an “excluded-like” immunotype. Both inflamed and excluded areas were found in the CRC sample, suggesting an oversimplification of the classical immunotype model and strengthening the argument that intratumoral heterogeneity can also be described spatially for the immune infiltrate, not only for tumors themselves (74). Analyzing the spatial occurrence of immune cells, we detected and phenotyped TLS in the CRC and CCC samples. The presence of TLS has been put into context with positive immunoreactivity and favorable clinical outcomes (75–77). Since TLS are spatially highly organized structures (78), they can only be identified and described in a spatial context, highlighting the superiority of spatially resolved single-cell technologies.

To further push the limits of ultra-deep spatial immune phenotyping and showcase the power of 120+ marker panels, we next focused on comprehensive functional T cell characterization. HCC, a well-studied cancer type (79–81), served as a reference tissue for our end-to-end workflow testing. We characterized and annotated cell types consistent with literature (81) (Figure 4), categorized T cell differentiation, activation, and exhaustion states in ITS and ITM areas (Figures 5, 6), and spatially dissected the cellular neighborhood (Figure 7). A comprehensive understanding of T cell function and dysfunction within the TIME is crucial to predict responses to immunotherapies, particularly ICB, stratify patients, and identify novel target structures (73). To the best of our knowledge, we describe for the first time the in situ characterization of more than 20 differentiation and functional T cell phenotypes (82, 83), including markers for T cell activation (CD69, CD25, HLA-DR) (73, 84, 85) and exhaustion (PD1, LAG3, TIM3, CTLA-4) (86–89). Although this study was not designed to draw general conclusions for a specific tumor entity, our comprehensive data set allowed extensive observations suitable to be transferred to bigger tumor cohorts. The analyzed HCC sample was classified as an “excluded” immunotype. In line with previous studies, we describe a dense deposition of collagen-rich ECM at the tumor margin and ITS area (90). Within these areas, predominantly CD8+ TCM cells, associated with beneficial outcomes in HCC (83), are colocalized with myeloid cells, particularly mDCs and M2-like MΦ. Applying neighborhood analysis, we describe multiple distinct immune ecosystems within the same tumor sample. These organized cellular neighborhoods, composed of various T cell subsets, myeloid, and stromal cells, have been proposed to regulate anti-tumor T cell responses and, consequently, response to therapy and patient survival (73, 91–93). Evidently, a comprehensive understanding of the spatial neighborhoods and cellular crosstalk is indispensable to identify novel biomarkers and therapy targets or combinations thereof. While previous reports focused on specific aspects, either specific cell populations, spatial relations thereof, or distinct immunomodulatory molecules of the HCC TIME (79, 80, 94–96), our 120+ marker panel provides a holistic view. As demonstrated for PD1high T cells, ultra-deep phenotyping identifies not only spatially co-localized cell populations but rather allows for the functional description of immune ecosystems. We show multiple distinct PD1high T cell associated hubs consisting of different PD-L1 positive neighboring cell populations and provide co-expression profiles of a plethora of immune regulatory proteins influencing T cells (79, 81, 96, 97). Together this exemplary analysis, focused on T cell phenotyping and neighborhood analysis, clearly demonstrates the potential of our 120+ marker MICS panel and analytic workflow and could be easily expanded to other relevant cell types and functional subpopulations of the TIME.

With this study, we intend to provide a blueprint for next-generation ultra-deep spatial tissue profiling using MICS technology. MICS allows unlimited flexibility in panel design, both in terms of antibody availability and panel size. To support researchers, we provide lists of validated antibodies applicable for MICS. In our hands, MICS is a user-friendly and reliable technology facilitating easy access to spatial biology applications even for inexperienced users. Further, we describe a validated analytic workflow based on the provided software MACS iQ View and R. While this feasibility study was not powered for clinically relevant discoveries, the presented panel and analytic workflow indeed allow for massive parallel monitoring of highly complex tumor tissues, thereby covering malignant cells, ECM composition, stroma cells, vasculature, and immune cells. Furthermore, cellular states can be defined (e.g., proliferation, activation, stress, or exhaustion), immune targets and immune modulatory molecules can be monitored as well as distinct immune ecosystems. The unprecedented spatial analysis depth using multiplexed tissue imaging can be applied to numerous immuno-oncological research questions, pathing the way to a holistic understanding of the TIME in solid tumors and promoting precision immunotherapy.
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Introduction

In vivo studies of cancer biology and assessment of therapeutic efficacy are critical to advancing cancer research and ultimately improving patient outcomes. Murine cancer models have proven to be an invaluable tool in pre-clinical studies. In this context, multi-parameter flow cytometry is a powerful method for elucidating the profile of immune cells within the tumor microenvironment and/or play a role in hematological diseases. However, designing an appropriate multi-parameter panel to comprehensively profile the increasing diversity of immune cells across different murine tissues can be extremely challenging.





Methods

To address this issue, we designed a panel with 13 fixed markers that define the major immune populations –referred to as the backbone panel– that can be profiled in different tissues but with the option to incorporate up to seven additional fluorochromes, including any marker specific to the study in question.





Results

This backbone panel maintains its resolution across different spectral flow cytometers and organs, both hematopoietic and non-hematopoietic, as well as tumors with complex immune microenvironments.





Discussion

Having a robust backbone that can be easily customized with pre-validated drop-in fluorochromes saves time and resources and brings consistency and standardization, making it a versatile solution for immuno-oncology researchers. In addition, the approach presented here can serve as a guide to develop similar types of customizable backbone panels for different research questions requiring high-parameter flow cytometry panels.
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1 Introduction

Studying murine cancer models is critical for comprehending the biological mechanisms of cancer development and the effectiveness of potential therapies in vivo (1). Despite advances in ex vivo organoid culture research, murine models still provide a more accurate depiction of the natural tumor microenvironment (TME) and aid in untangling the complexities of cancer pathogenesis. Unlike 2-D in vitro cultures, which are too simplistic to mimic the tumor-specific architecture, and 3-D models, which show high variability and lack of a native microenvironment and recruitment of immune cells, murine models offer a natural TME representation (2–7). Particularly, syngeneic models preserve the tumor architecture and the relative proportion of cancer and stromal cells, including in the context of orthotopic transplantation, which leads to a microenvironment more similar to human cancer (1, 8, 9).

The TME is a highly complex and dynamic ecosystem known to regulate tumorigenesis, cancer progression, and drug resistance; and its composition differs depending on tumor type and location. Immune cells are a significant component of the microenvironment in both solid tumors and hematological malignancies and play a fundamental role in determining cancer cell fate, metastatic capacity, and disease progression. Cancer cells can recruit and interact with various immune cells, including macrophages, polymorphonuclear cells, mast cells, natural killer cells, dendritic cells, and T and B lymphocytes (10–13). Therefore, myeloid and lymphoid cells can have both protumor and antitumor effects, making it essential to understand the relative contribution of each immune cell subset to the TME and the infiltrated organs, or the observed phenotype and/or response to immunotherapy (14–18). Yet, studying immune cell populations in the TME can pose challenges due to its dynamic nature, the unique characteristics of the affected organ or tissue, and the tumor-specific recruitment of myeloid and lymphoid populations (11, 19, 20).

At the single-cell level, flow cytometry is an effective tool for characterizing immune cell phenotypes in a variety of situations, including solid tumors, hematological malignancies, minimal residual disease, and metastatic progression (21–25). While polychromatic –also referred to as conventional– flow cytometry is commonly used to assess hematological disease in mice (26–29), single cell sequencing has emerged as an alternative approach for immune cell profiling of solid tumors in the recent years (30, 31). This is due to the challenges of polychromatic flow cytometry experiments, where the number of parameters is limited by the number of detectors in the cytometer. This constraint can also restrict the study of marker co-expression in different cell populations, often requiring different tubes for multiple panels, which may not always be feasible due to sample scarcity (32–35). Spectral flow cytometry addresses these issues by allowing greater flexibility in panel design and facilitating the acquisition of higher dimensional data (32). However, current multispectral flow cytometry techniques still face challenges in analyzing diverse tissue types, even when comparing tumor tissue to its non-tumor counterpart, which may require the assignment of their autofluorescence as a separate fluorochrome and additional spectral unmixing (36, 37).

Since 2022, a few multiparameter panels for spectral cytometers have been introduced to study subtypes of immune cells on murine samples (38–43). Although some of the panels include markers for both myeloid and lymphoid populations, they were optimized for a specific type of organ or for a single instrument (41, 42) and there is no agreement on the gating strategy for essential immune subsets (41, 44). Furthermore, based on the experience of the authors, high dimensional panels such as these including 20-40 markers are difficult to customize and/or optimize. If there is a need to change a few markers to fit a particular study, it most likely requires substantial redesigning, hence limiting the scope of use of this type of panels in different studies. To address these issues and provide a practical and flexible but still reproducible and robust immune cell panel, we created a 13-marker backbone panel that identifies major immune cell subsets, and which can easily accommodate seven drop-in fluorochrome placeholders to allow researchers to add markers according to their specific study goals with minimal impact on the resolution of each immune cell population. With the incorporation of a Live/Dead fluorescent probe, this is a 14-parameter panel (13 markers + viability dye) expandable to at least 21 parameters without any need for redesign. Our panel is organ- and tumor-agnostic and uses standard tissue dissociation methods. The panel can also be employed to study complex TMEs such as that of pancreatic ductal adenocarcinoma and is compatible with analyzing bright fluorescent protein-expressing gene reporters, such as tdTomato, within the hematopoietic system. Finally, our backbone panel performance is consistent across all the major spectral flow cytometer systems currently available (i.e., Cytek Aurora, Sony ID 7000, BD FACSymphony S6 SE), making it a dependable and widely applicable tool for researchers to study immune cell populations in murine cancer models.




2 Materials and methods



2.1 Mice

Mice were maintained under specific pathogen-free conditions, in a controlled environment that maintained a 12-hour light-dark cycle, and food and water were provided ad libitum. The following mice were used: 6-10 weeks-old C57B6/N (purchased from Charles River) and C57BL/6J mice (purchased from the Jackson Laboratories), and in-house tdTomato+ HSC-Scl-Cre-ERT mice carrying Tet2flox/flox alleles (in a C57BL/6J background), and KrasG12C/+;Trp53fl/fl mice (in a C57B6/N background). To induce gene recombination in Cre-ERT2 mice, tamoxifen (100 mg/kg, MCE, HY-13757A), dissolved in corn oil (Sigma-Aldrich, C8267), was administered via oral gavage with a one-day drug holiday between dosing. Mice were randomly selected for each experiment. The veterinary staff provided regular monitoring and husbandry care, which included the appropriate housing, feeding, and cleaning of the animals. The mice were monitored daily for signs of disease or morbidity, such as bleeding, infection, fatigue, or failure to thrive, and any such signs were immediately addressed by sacrificing the animal. Additionally, they had intact immune systems and had not undergone any prior procedures. For the immunophenotyping comparison between wildtype and tdTomato+ HSC-Scl-Cre-ERT Tet2 flox/flox mice, each group consisted of 12-15 subjects, with a nearly equal distribution of male and female mice aged 30 weeks. C57B6/N female mice were specifically used for the generation of the syngeneic lung and pancreatic cancer models as described in the following sub-section (2.2).




2.2 Generation of syngeneic murine cancer models

For pancreatic cancer, pancreatic ductal epithelial cells (PDEC) that harbor an endogenous KrasG12D allele (45, 46) were electroporated with 1 μL Cas9-Cy3 (PNA Bio, CP06-100) and 1 μL 100 μM synthetic guide targeting Trp53 (Synthego, ACCCTGTCACCGAGACCCC). Two days later, Cy3+ cells were sorted on an MA900 (Sony). The sorted cells were cultured in 10 μM Nutlin-3a (Selleck 1061) for 1 week. For orthotopic transplants of the p53 knockout PDEC cells, mice were anesthetized, and a survival surgery was performed to expose the pancreas. 100,000 PDEC cells resuspended in 25 μL of cold 1:1 OptiMEM (Thermo Fisher, 31985062) and Matrigel (Corning, 354230) were injected into the tail region of the pancreas. Mice were monitored for tumor formation by abdominal palpation and euthanized after 5.5 weeks. For lung cancer models, 75,000 cells derived from a lung tumor formed in a C57B6 KrasG12C/+;Trp53fl/fl mouse were resuspended in 200 μL 1X PBS and injected into the tail vein of mice. Mice were assessed daily for distress signs, cachexia, weight loss over 20%, breathing difficulties, or tumors larger than 12 mm (no tumors surpassed this size limit) until 3.5 weeks post-transplant, when they were eventually euthanized. An age- and sex-matched group of mice were used as control (n=3-6) for all the cohorts.




2.3 Preparation of flow cytometry samples

To harvest the organs, mice were euthanized using CO2 asphyxiation. A submandibular bleed was performed to isolate peripheral blood, and 15 μL of whole blood was lysed with RBC lysis buffer (BioLegend, 420302), previously diluted to 1X with distilled water. To isolate the bone marrow, the femur, hip, and tibia were dissected and cleaned before being crushed on ice using a mortar. The harvested cells were spun down in FACS buffer (1X PBS + 2% FBS). After discarding the supernatant, pelleted cells were resuspended and incubated in 1X RBC lysis buffer. Spleens were mechanically disrupted with the back of a 5-mL syringe, filtered through a 70-μM strainer, washed with FACS buffer, and subsequently lysed with 1X RBC lysis buffer.

For the liver, the MACS liver dissociation kit (Miltenyi Biotec, 130-1-5-807) was used for dissociation according to the manufacturer’s protocol, using C tubes (Miltenyi Biotec, 130-096-334) and incubating on the gentle MACS OctoDissociator (program: 37°C m_LDK_1). The resulting cell suspension was filtered through a 70-μm strainer and washed with FACS buffer prior to red blood cell lysis with 1X RBC lysis buffer. Pancreata were cut into small 2- to 4-mm fragments in ice-cold FACS buffer. The fragments were then transferred to a solution of collagenase V (1 mg/ml, Sigma, C9263) for tumors or collagenase D (1 mg/ml, Roche, 11088882001) for normal pancreas with dispase II (2U/ml, Roche, 04942078001), soybean trypsin inhibitor (0.1mg/ml, Gibco, 17075029), and DNase I (0.1 mg/ml Roche, 04716728001) –all in 1X HBSS (Gibco, 14025076). The suspension was transferred to a GentleMACS C-tube and incubated on the OctoDissociator using the program “37°C m_TDK_1”. After incubation, cells were pelleted, resuspended in 0.05% Trypsin-EDTA (Gibco, 15400054), and incubated at 37°C for 5 minutes. Following the trypsin reaction, cells were spun down as above and washed in FACS buffer with DNase (0.1 mg/ml, Roche, 04716728001) and soybean trypsin inhibitor (0.1mg/ml, Gibco, 17075029). Red blood cell lysis was performed with 1X RBC lysis buffer. Cells were finally washed in PBS and resuspended in FACS buffer with DNase (0.1 mg/ml Roche, 04716728001) and soybean trypsin inhibitor (0.1mg/ml, Gibco, 17075029). Normal or cancerous lungs were first flushed with PBS. Next, they were dissociated with the MACS lung dissociation kit (Miltenyi Biotec, 130-095-927) according to the manufacturer’s protocol, using the program “37°C m_LDK_1” on the MACS OctoDissociator. After incubation, the cell pellet was filtered through a 70 μM cell strainer and spun down. The cell pellet was then resuspended in 1X RBC lysis buffer. For all samples, RBC lysis took 5 minutes on ice and was stopped by quenching with FACS buffer (at least doubling the amount of lysis buffer), and cells were subsequently spun down and resuspended in FACS buffer containing Fc Block. Every centrifugation or washing step was performed at 300 rcf for 5 minutes, at 4°C, and prior to Fc blocking, an incubation with Brilliant Stain Buffer (BD Horizon, 563794) took place at 4°C for 15 minutes, followed by a washing step.

To block the Fc receptors, we used the Purified Rat Anti-Mouse CD16/32 Fc Block (BD Biosciences, 553142, at a final dilution of 1:100) at 4°C for 10 minutes. We used fluorochrome-conjugated antibodies with the final concentrations specified in Supplementary Table 1 of the Supplementary Material. This table also includes the antibodies’ manufacturer, catalog number, and purpose in this study. We determined the concentration of each antibody by titrating at least five dilutions per the saturation concentration. Using a sequential approach, we conducted the antibody staining in the dark at 4°C. First, we incubated the cells with the anti-CD3 antibody for 30-40 minutes, followed by incubation with the remaining antibodies for another 30-40 minutes, based on the panel used (i.e., backbone, immune, or TME panel, as indicated in Supplementary Table 1). We washed the cells with PBS and then incubated them with the Live/Dead Near-Infrared cell stain kit (Invitrogen, L10119) in the dark for 30 minutes at 4°C. Finally, we washed the samples twice with FACS buffer before resuspending the pellets in 200-300 μL of FACS buffer at a final concentration of 5,000-10,000 cells/μL. We stained between 1-2 million cells per sample in the same tube for all normal and tumor tissue specimens.




2.4 Flow cytometry single-stained controls

All single-stained controls were prepared using mouse splenocytes except for the drop-in controls where UltraComp eBeads ™ compensation beads (ThermoFisher Scientific, 01-2222-42) were used.




2.5 Flow cytometry acquisition on Cytek Aurora

Samples, including unstained and single-stained controls, were acquired on a five-laser Cytek Aurora spectral analyzer (355 nm, 405 nm, 488 nm, 561 nm, 640 nm) using Cytek Assay Settings (CAS) adjusted automatically for the 64 APD fluorescent detectors after running SpectroFlo® QC Beads (Cytek Biosciences, SKU B7-10001). Only forward- and side-scatter gains were manually adjusted to bring the events of interest in scale. After acquisition, unmixing using ordinary least squares (OLS) method was carefully performed with SpectroFlo® software, version 3.0.1. (Cytek Biosciences).




2.6 Flow cytometry acquisition on BD FACSymphony™ S6 SE

Samples, including unstained and single-stained controls, were acquired on a Spectrally Enabled (SE) five-laser BD FACSymphony™ S6 (355 nm, 405 nm, 488 nm, 561 nm, 637 nm) using optimal voltages determined by the manufacturer recommendation for each of the 48 PMT detectors, as described by Florian Mair and Aaron Tyznik (47). Only forward- and side-scatter gains were manually adjusted to bring the events of interest in scale. After acquisition, unmixing using OLS was carefully performed with BD FACSDiva™ software, version 9.6 (BD Biosciences).




2.7 Flow cytometry acquisition on Sony ID7000™

Unstained and single-stained controls were acquired on a 5-laser Sony ID7000™ spectral analyzer (355 nm, 405 nm, 488 nm, 561 nm, 637 nm) using optimal voltages adjusted automatically with QC Standardization mode for all 147 fluorescent PMT detectors. Only forward- and side-scatter gains were manually adjusted to bring the events of interest in scale. For fully stained samples, voltages were increased synchronously within each laser detection deck to the maximum while ensuring the signal in all channels was not saturated. After acquisition, unmixing using Weighted Least Square Method (WLSM) was performed with ID7000 system software, version 2.0.0.17121 (Sony Biotechnology).




2.8 Unmixing

Although there were different autofluorescence (AF) signatures for different organs, the AF of immune cells remained consistent. Therefore, for experiments involving non-fluorescent spleen, liver, bone marrow, and blood, we used unstained spleen cells as the reference spectral signature for AF. This same unmixing matrix was applied to all these samples. For pancreas tumor samples, we also employed the spleen AF signature, but we noted one population with a distinct signature compared to immune cells, exhibiting very high AF. To account for this, we exported the gated population from the unstained pancreas sample as an FCS file and reimported it as an extra parameter. The unmixing of pancreas tumor samples included both AF spectral signatures, and the same matrix was applied to both tumor and normal pancreas. For the lung tumor samples, we also included the same high AF in the unmixing and used the same unmixing matrix for both tumor and normal lung samples. For the wildtype and tdTomato+ HSC-Scl-Cre-ERT Tet2 flox/flox bone marrow samples, single-stained beads were used for all the markers, and unstained tdTomato+ HSC-Scl-Cre-ERT Tet2 flox/flox cells were used as the single-stained control for tdTomato. Non-fluorescent wildtype bone marrow cells were used as the unstained control.




2.9 Flow cytometry data analysis

Manual analysis was performed using FlowJo software, version 10.9.0, (BD Biosciences) and for unsupervised analysis with Omiq (Dotmatic) was used. Before analysis, data were cleaned by excluding debris, doublets, and dead cells (Supplementary Figure S1).




2.10 Analysis of sorted cells

Macrophages, monocytes, and neutrophils (20,000-50,000 of each cell population) were sorted and spun onto Cytospin slides after being resuspended in warm PBS at 350 g for 5 min. The slides were then air-dried overnight and stained using the Giemsa-Wright method. Pictures of the slides were taken using an Olympus BX53 bright microscope with an oil lens (x100) and x10 eyepiece, resulting in a total magnification of x1000.




2.11 Quantification, statistical analysis, and figure preparation

Data are presented as mean ± s.e.m. The statistical analysis was performed using two-way ANOVA with Geisser-Greenhouse correction to compare the population percentages across the three instruments (overall for instrument factor). The population percentages values were also compared between the two instruments (Aurora vs. ID700, Aurora vs. S6, ID700 vs. S6) using Tukey’s multiple comparisons tests. Two-tailed unpaired Student’s t-tests were used to compare the cell population percentages between WT and PDAC or WT and Tet2flox/flox samples, with the Welch’s correction being applied if the groups showed significantly different variances. Significance was set at p < 0.05, and statistical information can be found in the respective figure legends. GraphPad Prism 9 (GraphPad Software) was used to perform all statistical calculations. Figures were prepared using BioRender.com for scientific illustrations and Microsoft PowerPoint, version 16.54 (Microsoft) or Adobe Illustrator 2021 (Adobe) for the rest of figure panels.





3 Results



3.1 Backbone panel design and gating strategy

To create the backbone panel, we developed a gating strategy to analyze the major lymphoid and myeloid populations, including T cells (CD4+ and CD8+ T cells), T regulatory cells (Tregs), Natural Killer (NK) cells, B cells, plasmacytoid dendritic cells (pDCs), conventional dendritic cells (cDCs), macrophages, monocytes (both Ly6C-low and high subsets), and neutrophils. We chose markers that can broadly define these immune cell populations (Figure 1A), while also leaving room for drop-in markers that could help us narrow down the subpopulations depending on the organ or analysis of interest (Figure 1B). For instance, if one wanted to characterize myeloid cells in the lungs, it would be necessary to add drop-in markers to distinguish between resident and recruited macrophages (48, 49).

[image: Panel A displays a hierarchical chart of immune cell differentiation, starting with Live CD45+ cells branching into various cell types like NK cells, B cells, macrophages, and neutrophils. Panel B is a fluorochrome-antigen chart, aligning antigens MHC II through CD45 with their respective fluorochromes across different light wavelengths, UV to NIR.]
Figure 1 | Backbone panel design and gating strategy. (A) Markers used to define the main immune populations as helper T cells, cytotoxic T cells, T regs, B cells, NK cells, pDCs, cDCs, macrophage, monocytes, and neutrophils. (B) Fluorochrome assignment. Drop-in positions are highlighted and suggested fluorochromes are written in italic. Myeloid markers are in blue, lymphoid markers in red. CD45, and Live/Dead dye are in purple.

Next, we carefully assigned the appropriate fluorochromes to each marker of interest, considering important principles of flow cytometry panel design, such as (I) aligning brightness of the fluorochrome with the level of antigen expression (i.e., brighter fluorochromes for lower expressed markers and vice-versa), and (II) minimizing emission overlap between fluorochromes conjugated to co-expressed markers to reduce spread (37, 50, 51). To ensure smooth performance of the backbone panel, we first selected fluorochromes for the drop-in positions to allow additional markers to be assigned without causing any disruption in panel resolution. We considered several important factors while choosing drop-in fluorochromes, including (I) minimal interference with the backbone fluorochromes and between each other, (II) effortless expansion (i.e., the drop-in fluorochromes must be minimally impacted by the backbone to allow for simple customization), (III) commercial availability of fluorochrome/antibody conjugates, and (IV) brightness.

Based on the criteria outlined above, we chose BV421, FITC or BB515, PE, and APC as our primary fluorochromes for drop-ins and evaluated BUV605, BUV786, and PE-Cy7 (tandem dyes) for their potential use as additional drop-ins. We opted for medium to high brightness fluorochromes for the drop-ins, as they are valuable for secondary or tertiary antigens (e.g., T cell activation and exhaustion markers). When assigning fluorochromes to the backbone markers, we prioritized minimizing the spectral overlap between co-expressed markers over brightness since most markers were primary antigens, and brightness was less of a concern. To minimize the spectral overlap, we alternated the allocation of lymphoid and myeloid markers across laser lines while also considering cross-laser excitation (Figure 1B). Given that CD45 was co-expressed with all other markers, we assigned the fluorochrome APC-Fire 810 with a unique spectral signature to minimize interference with the remaining markers. We then chose the near infrared Live/Dead viability dye with high similarity to APC-Fire 810 to enable us to select the single positive population for live CD45+ cells without the cost of an additional unique dye. To label MHC II expressed by both B cells and various myeloid subtypes, we designated BUV395, a dim dye, to minimize any impact on the other markers. Similarly, we assigned BUV496 to the highly expressed CD8 molecule and BUV563 to CD11c, which is well expressed in DCs, both of which are also dim fluorochromes.

To reduce the spreading effect, we paired BUV661, a moderately bright dye with some potential emission overlap with APC (reserved for a drop-in marker), with CD127, a marker expressed by T cells at low levels. For F4/80, a macrophage marker, we chose the moderately bright fluorochrome BUV737. To avoid any spread on all the T cell markers, we selected BUV805 for CD3 due to its unique spectrum emission and low overlap with other fluorochromes. For CD4, we chose R718, a dye excited by the red laser with minimum spread on the drop-in reserved for APC. We also carefully considered fluorochromes that may introduce or be susceptible to excessive spectral spreading, with markers expressed by cell types less likely to have added drop-ins, or due to their lack of subtypes or co-expression with other backbone markers. For example, we chose BV711 (a potentially problematic dye) for Ly6G, which is expressed only by neutrophils, and similarly BV650 for B220, which is expressed by B cells and pDCs. Finally, instead of using Foxp-3 as the Treg primary marker, we strategically opted for gating Tregs as CD25+, CD127- cells. This allowed compatibility with fluorescent protein-expressing murine models whose fluorescence signal may be impacted by permeabilization and fixation protocols (52). With this approach, we were able to design a meticulous antibody panel for robust and accurate flow cytometry analysis (Supplementary Figure S2).




3.2 Evaluation of the backbone panel and impact on drop-in channels

To evaluate the performance of the backbone panel, we first verified the accuracy of the single-stained controls by visualizing the N x N plots (Supplementary Figure S3). Our evaluation involved a manual gating approach, which enabled us to successfully identify the key target populations. Figure 2A depicts representative plots using splenocytes from wildtype (WT) C57BL/6J mice. In addition, we utilized the T-distributed stochastic neighbor embedding (T-SNE) dimensionality reduction algorithm and overlayed manual gating to the resulting plots. This unsupervised analysis further confirmed the effectiveness of our fluorochrome selection in identifying different immune cell populations (Figures 2B, C).

[image: Panel A shows scatter plots from flow cytometry analysis, identifying immune cell populations like B cells, NK cells, and macrophages. Panel B is a t-SNE plot displaying clustered immune cell populations, each color-coded. Panel C includes multiple heat maps depicting marker expression levels on various cell populations, with color scales indicating expression intensity.]
Figure 2 | The backbone panel efficiently resolves the main murine immune populations. (A) Manual gating strategy applied to spleen cells stained with the backbone panel. (B) t-SNE scatter plot overlayed with the manual gated populations (t-SNE iterations = 1000 and k = 30). (C) Colored t-SNE scatterplots showing the expression level and distribution of the backbone markers.

We then conducted a comprehensive analysis of the samples that were stained with the complete backbone antibody cocktail, in addition to those stained only with each individual antibody. When we added all the antibodies of the backbone panel together, there was no impact on the brightness of the positive signal (Figure 3A). Although there was spreading observed in the fluorochromes of certain myeloid markers, such as CD11c (BUV563), F4/80 (BUV737), and Ly6G (BV711), the distinctively high expression of such markers ensured that the resolution of the cell populations remained unaffected. It is worth mentioning that we specifically chose these fluorochromes to avoid any interference with the drop-ins, which operate at shorter wavelengths and are well separated from the far-red range. As for lymphoid markers, we observed a slight reduction in the negative signal of CD3 (BUV805) due to spreading. To achieve a higher resolution of the CD3+ population, we had to extend the incubation period with the anti-CD3 antibody. This involved a preliminary step where we stained the sample with the anti-CD3 antibody for 30 minutes, followed by the addition of the remaining antibodies and a 30-minute incubation (Supplementary Figure S4). This observation emphasizes the importance of sequential incubation or a longer incubation time to maintain signal intensity and resolution for a specific antibody, as other authors have similarly reported (50, 53).

[image: Flow cytometry histograms displaying stained and unstained cells. Panel A shows single-stained controls in various colors. Panel B presents lymphoid gated cells identified by pink backbone staining. Panel C shows myeloid gated cells with blue backbone staining. Each panel includes comparisons between unstained (gray) and stained cells.]
Figure 3 | Evaluation of the backbone panel and impact on drop-in fluorochromes. (A) Histograms of single-stained spleen cells overlaid with backbone-stained spleen cells. Single-stained samples for each fluorochrome are in grey. A representative sample stained with the complete backbone panel is colored. (B) Histograms showing the impact of the backbone on the drop-in fluorochromes (FITC, PE, PE-Cy7, APC, BV421, BV605 and BV785). Unstained splenocytes (in gray) overlaid with the backbone-stained splenocytes gated on the lymphoid cells (T, B and NK cells –in pink). (C) Unstained splenocytes (in gray) overlaid with the backbone-stained splenocytes gated on the myeloid cells (CD11b+ cells –in blue).

We also evaluated the impact of the backbone panel on the signal from the drop-in fluorochromes. For this purpose, we generated an unmixing matrix using cells that were single-stained with different anti-CD4 antibodies conjugated with seven drop-in fluorochromes (i.e., FITC, PE, PE-Cy7, APC, BV421, BV605, BV785). The overlap between unstained cells and those stained with the backbone panel provided insights into the signal from drop-in fluorochromes separately for lymphoid and myeloid cells. This analysis validated our selection of drop-ins and helped us assess the impact of fluorochrome choices on distinct populations. We found that the lymphoid population had a minimal impact in reducing the resolution of the drop-in fluorochromes (Figure 3B). In contrast, the myeloid population had a more significant effect on PE-Cy7 and BV785 (Figure 3C). This was not surprising because PE-Cy7 has a similar emission spectrum as RB780 (conjugated to Ly6C) and BV785 is akin to BV711 (conjugated to Ly6G). In general, fluorochrome signatures with higher similarity, i.e., a higher emission spectrum overlap, tend to cause spreading errors (47). This finding implied that these fluorochromes may not be suitable in combination with co-expressed markers on myeloid cells. One should avoid PE-Cy7 for neutrophil markers and BV785 for Ly6C-expressing cells. We, therefore, decided to use these drop-in channels for lymphoid co-expression markers or makers of non-immune cell types such as tumor stromal cells or cancer cells in solid tumors.




3.3 The performance of the backbone panel is reproducible across different spectral flow cytometers

As an attempt to evaluate the consistency of our backbone panel, we conducted an experiment to assess its reproducibility in different spectral flow cytometers equipped with the same laser lines but distinct detection platforms. Specifically, we assessed three instruments –Cytek Aurora, Sony ID7000, and BD FACSymphony S6 SE– and analyzed the same sample source (splenocytes isolated from three WT C57BL/6J mice) after staining with the backbone panel. We employed the same single-stained controls to calculate unmixing matrices for each cytometer to ensure consistency and accuracy.

Though the results showed some variations in signal intensity among the instruments, with Cytek Aurora showing the highest intensity and BD FACSymphony S6 SE the lowest, our manual gating approach effectively identified the primary immune cell populations with minimal variation (Figure 4A). This finding underscored the robustness of our backbone panel and its potential use in various spectral flow cytometry systems. To further assess the backbone’s reliability across different spectral platforms, we compared the population frequencies across the three instruments and found no statistically significant differences among the three devices (p = 0.3119) (Figure 4B). This encouraging outcome demonstrated that our backbone panel is a powerful and dependable tool for researchers conducting studies across different spectral flow cytometry systems. Additionally, we tested the backbone panel for sorting different immune cell populations and successfully sorted neutrophils, macrophages, and monocytes (Supplementary Figure S5) that can be used for downstream applications, from cell culture to genomic analyses.

[image: Panel A contains flow cytometry scatter plots comparing cell populations labeled Aurora (pink), ID7000 (blue), and S6 (green). Panels display markers like B220, NK1.1, CD3, CD4, CD25, CD11c, Ly6C, with subpopulations such as B cells, NK cells, Treg cells, and macrophages. Panel B shows a bar graph depicting percentages of CD45+ cells, with categories including B cells, pDCs, NKs, CD3+, CD4+, Treg, CD8+, cDCs, macrophages, Ly6C low mono, Ly6C high mono, and neutrophils across the three labels.]
Figure 4 | The performance of the backbone is reproducible across different spectral flow cytometers. (A) Manual gating strategy showing the main immune populations. Wildtype spleen cells were stained with the backbone panel and acquired on Cytek Aurora (in pink –top), Sony ID 7000 (in blue –middle), and BD S6 SE (in green –bottom). (B) Comparison of the frequency of the main immune populations of live CD45+ cells shows no significant differences across the three instruments (n=3 mice/instrument). Data are ± mean s.e.m. Statistical analysis was performed using two-way ANOVA with Geisser-Greenhouse correction, followed by Tukey’s multiple comparisons tests to compare the mean values of the immune cell population percentages between the two instruments (all p values were > 0.1.).




3.4 Impact of drop-ins on the backbone-defined immune populations

Next, we wanted to ensure the adaptability and resolution of our backbone panel for specific biological contexts, which involved incorporating two separate drop-in panels: (I) the immune cell panel and (II) the TME panel. We specifically designed these panels to study immune checkpoints and stromal cells in the TME, or simply expand the number of immune cell markers, thereby enabling the detection of eosinophils, memory/effector T cells, c-Kit expressing cells (i.e., cancer cells/blasts when examining the peripheral blood, or hematopoietic stem/progenitor cells (HSPCs) in the bone marrow/spleen), and immune checkpoint markers (Figure 5A).

[image: Flow cytometry analysis with panels A and B displaying dot plots for lung tumors and normal spleen, showing various immune cell markers. Panel C is a bar chart comparing percentages of different cell types, such as B cells and neutrophils, in lung tumor and spleen samples with and without drop-ins, indicated by different colors and patterns.]
Figure 5 | The backbone-defined immune populations are unaffected by the addition of drop-in markers. (A) Manual gating strategy applied to cells harvested from KrasG12C/+; Trp53fl/fl lung adenocarcinoma derived from a syngeneic mouse model stained with the backbone panel only and backbone plus drop-ins of the tumor microenvironment (TME) panel (i.e., Epcam, CD31, PDPN, PD-1, and Lag-3). (B) Manual gating strategy applied to wildtype spleen cells stained with the backbone panel only and backbone plus drop-ins of the immune cell panel (i.e., CD62L Siglec-F, c-Kit, CD44, TIM-4, PD-1, and Lag-3). (C) Comparison of the frequency of the backbone-defined immune population within live CD45+ cells in the presence or absence of drop-ins in lung tumor and spleen samples.

For each panel, we used different samples. While we utilized spleen cells pooled from WT C57BL/6J mice for the immune cell panel (Supplementary Figure S6), we analyzed a pooled single-cell suspension of KRAS-driven lung adenocarcinoma for the TME panel (Supplementary Figure S7). For both panels, we compared samples stained with the backbone panel to those co-stained with the backbone panel plus relevant drop-in markers (Figures 5A, B). We found no discernible differences in signal resolution or frequency of the backbone immune cell populations between these two groups of samples (Figure 5C). This result indicated that the drop-in fluorochromes had no negative impact on the performance of the backbone panel. Thus, the backbone design is highly versatile and adaptable, making it well-suited for complex immunophenotyping studies.




3.5 The backbone panel is organ-agnostic and allows for comparison of immune cell populations across different tissue types

Although markers of immune cell subtypes are the same across different tissues, including hematopoietic and non-hematopoietic organs, distribution patterns of immune populations differ significantly depending on the site and the pathological context (54, 55). Thus, we sought to prove that the backbone panel could efficiently resolve the immune cell populations in different tissues. We processed samples from a WT C57BL/6J mouse’s spleen, blood, bone marrow, liver, and lung. We stained all samples with the backbone antibody cocktail and analyzed them on the Cytek Aurora using the same parameters.

Despite different organs having varying expression levels and distributions for various immune cell markers, we could consolidate the data from all into a single uniform manifold approximation and projection for dimension reduction (UMAP) map (Figure 6A). Furthermore, we created independent UMAP plots for each tissue type. All the detected immune cell populations from the concatenated UMAP were represented in each sample with tissue-specific densities (Figure 6B). This proves the backbone panel’s suitability for analyzing immune cell populations in major organs and allows for percentual comparisons of each immune cell population across tissues, as we indicated here (Figure 6C). The backbone panel’s ability to detect all immune cell types across various tissue types is a significant advancement in our field.

[image: Panel A shows a UMAP plot with clusters representing different immune cell types, each color-coded and labeled in the legend. Panel B is a stacked bar chart showing the percentage of live CD45+ cells across different tissues: spleen, blood, bone marrow (BM), liver, and lung, with similar color-coding. Panel C contains separate UMAP plots for spleen, blood, BM, liver, and lung, illustrating distinct cell type distributions in each tissue.]
Figure 6 | The backbone panel is organ-agnostic. (A) The UMAP scatter plot shows concatenated events from six different organs, and the overlay shows the distribution of the manual gated cells. For the UMAP analysis, each organ sample was downsized to 40,000 of manual gated live CD45+ singlet cells. (B) Individual UMAP scatterplot showing the differences between the organs, namely spleen, blood, bone marrow (BM), liver and lung. (C) Distribution of the immune populations frequency within live CD45+ cells, manually gated.




3.6 Scalability of the backbone panel is effective to study a complex tumor immune microenvironment

Once we confirmed the efficacy of the backbone panel in exploring the immune cell populations within different mouse tissues, we assessed its capability in investigating immune cell populations within the TME of pancreatic ductal adenocarcinoma (PDAC). PDAC is known for its intricate immune microenvironment (56). To examine the ability of the backbone panel in profiling the PDAC immune landscape, we utilized syngeneic models implanted with KrasG12D/+; Trp53Cas9-KO pancreatic ductal epithelial cells (PDEC) (45, 46). In total, we profiled 1.5 million cells with an average of 300,000 events per sample using the TME panel. We implemented a thorough gating strategy, as shown in Figure 7A, to identify relevant PDAC cell populations, including (I) immune cell populations and checkpoint markers, (II) epithelial cells (Ep-CAM+), (III) endothelial cells (CD31+), (IV) fibroblastic reticular cells (Podoplanin+ (PDPN)), and (V) lymphatic endothelial cells (CD31 and PDPN-double positive cells). Unsupervised UMAP analysis showed differences in the immune cell distribution between normal (WT) and PDAC pancreata when concatenating and clustering different samples together, allowing us to identify major immune cell populations and separation between normal and PDAC samples (Figure 7B).

[image: Flow cytometry and expression analysis in cancer research. Panel A shows gating strategies for immune cell populations. Panel B presents a UMAP plot comparing cell markers between normal and PDAC samples. Panel C includes bar graphs depicting cell type frequencies in normal and PDAC conditions, with statistical significance indicated.]
Figure 7 | The backbone panel is efficient in analyzing the complex pancreatic ductal adenocarcinoma microenvironment. (A) Manual analysis of cells harvested from pancreatic ductal adenocarcinoma (PDAC), pancreata stained with the backbone and the drop-ins of the TME panel (i.e., Epcam, CD31, PDPN, PD-1, and Lag-3). (B) UMAP scatter plot shows concatenated events from the six samples (three normal and three PDAC pancreata, n=3 mice/group). The overlay shows the distribution of normal and tumor cells. For the UMAP analysis, each sample was downsized to 10,000 manually gated from the live CD45+ singlet cells. The colored scatterplot shows the expression level and distribution of the markers with the most relevant differences. (C) Comparison of the manually gated populations between normal and PDAC samples. Bar graphs showing percentages of different cell populations. Data are ± mean s.e.m.; p values from two-tailed unpaired Student’s t-test (ns, non-significant; *p < 0.05, **p < 0.01, ***p < 0.001, ****p< 0.0001).

In the PDAC pancreata, we observed a predominant myeloid cell infiltration, including monocytes, macrophages, neutrophils, and cDCs, and a concomitant significant decrease in the proportion of B and T cells in comparison to the normal tissue, which reflected a deficient adaptive immune cell response. We also found that CD8+ T cells showed an increasing trend in PDAC, although two-thirds of these expressed the exhaustion marker PD-1 (Figure 7C). Furthermore, PDAC samples contained higher levels of PDPN+ but a decreasing trend in the percentage of CD31+ cells, although the latter was not statistically significant (Figure 7C). These results aligned with previous studies characterizing immune cells and TME in PDAC (57–60) and confirmed the adaptability and effectiveness of our backbone panel in studying cancer types with complex immune cell microenvironments.




3.7 The backbone can be used in combination with a bright fluorescent protein and drop-ins

When conducting flow cytometry, high fluorescence levels, such as that from a fluorescent protein, can pose a significant challenge as it may spread and impact signal resolution. This is especially true for fluorescent proteins that have a broad emission spectrum and can overlap with many fluorochromes (52, 61). Therefore, it was essential to test the efficacy of the backbone panel in combination with a bright, strongly expressed fluorescent reporter to pinpoint immune differences accurately, as many genetically engineered mouse cancer models express fluorescent gene reporters.

For this evaluation, we used C57BL/6J mice with the hematopoietic stem cell (HSC)-specific, tamoxifen-inducible Cre recombinase (HSC-Scl-Cre-ERT) and a Cre-inducible tdTomato (tdT) reporter, which efficiently and specifically targets adult hematopoietic cells at the stem/progenitor cell level, rendering them tdT+ (62). These mice have been extensively used in hematopoietic fate-cell tracing studies and are now being utilized to study clonal hematopoiesis (CH) and leukemia (63–68). Specifically, we sought to characterize Tet2 loss in these models. Loss-of-function somatic mutations in TET2 are associated with various types of hematopoietic cancers in humans, including myeloid and lymphoid cancers as well as several solid cancers (69). These mutations are also often observed in preleukemia conditions such as CH, which is the expansion of hematopoietic stem cell clones related to age (70). As one of the most prevalent mutations affecting hematopoiesis, several research groups –including the Levine Lab– have established murine models of Tet2 loss (64, 71–73).

To immunophenotype Tet2 loss in HSC-Scl-Cre-ERT mice, we previously crossed them to Tet2flox/flox to make a phenotyping comparison between Cre+ (Tet2Knockout (KO)) mice –expressing tdT– and their age-matched Cre- (functionally WT mice) counterparts –lacking tdT. We isolated whole bone marrow and stained with the backbone cocktail antibodies in addition to antibodies for drop-in markers, including Siglec-F for eosinophils, c-Kit for HSCPs, and CD62L, CD44, PD-1, and Lag-3 for T cell activation, and exhaustion. In total, we profiled 1.5 million cells with an average of 100,000 events per sample. Despite the high tdT brightness (105-106), the ability of the backbone panel to identify the different immune cell populations remained unaffected and we were able to detect differences in specific immune populations between the two mouse groups (Figure 8A). Tet2KO mice showed an overall increased frequency of myeloid cells relative to WT, with an increase in the percentage of proinflammatory Ly6C-high monocytes but reduced percentages of Ly6C-low monocytes and macrophages, indicating elevated inflammation at steady state. Additionally, the cDC population was increased in Tet2KO mice, which probably differentiated from Ly6C-high monocytes and was proinflammatory (Figure 8B). Regarding the lymphoid compartment, we detected a significant reduction in the overall CD3+ T cell population and Tregs in Tet2KO mice, as well as a reduction in both effector and central memory CD4+ T cells, indicating impaired differentiation of Tet2KO CD4+ T cells (Figure 8B). The percentages of naïve CD4+ and CD8+ T cells, the expression of exhaustion markers, and percentages of effector/memory CD8+ T cells did not change significantly (Figures 8A, C). However, the percentage of B cells showed a trend towards a reduction in Tet2KO mice (Figure 8B), suggesting there are pleiotropic effects of Tet2 loss in the lymphoid lineage. Finally, by adding the c-kit marker, we could compare total HSPC percentages and found that the bone marrow of Tet2KO mice had a significantly higher percentage of CD45+c-kit+ cells (Figure 8B), after excluding mast cells (FcϵR1+, c-kit+) (Figure 8A), which suggested an increase in HSPC self-renewal in vivo. This practical example showcases the ability of our backbone panel to operate at a high resolution in the presence of a fluorescent reporter, offering great power and capability for experiments.

[image: Flow cytometry panels and graphs analyzing immune cell populations. Panel A shows gating strategies for different cell types using specific markers and fluorophores. Panel B and C present bar graphs comparing percentages of immune cell subsets and T cell populations between wild type (WT) and Tet2 knockout (KO) mice, indicating statistical significance with asterisks.]
Figure 8 | The backbone panel efficiently works in the presence of a tdTomato fluorescent and other drop-in fluorochromes and allows for an immune cell characterization of tdTomato Tet2KO mice relative to WT. (A) Manual analysis of cells harvested from whole bone marrow of WT (non-tdT) and tdT-expressing Tet2KO mice (tdT). To immunophenotype Tet2 loss in HSC-Scl-Cre-ERT mice, we previously crossed them to Tet2flox/flox to make a phenotyping comparison between Cre+ (Tet2Knockout (KO)) mice –expressing tdT– and their age-matched Cre- (functionally WT mice) counterparts –lacking tdT. (B) Comparison of the manually gated bone marrow immune cell populations between WT and Tet2KO mice. Bar graphs showing percentages of myeloid and lymphoid cell populations as percentage of live CD45+ cells. Data are ± mean s.e.m.; p values from two-tailed unpaired Student’s t-test (ns, non-significant; *p < 0.05, **p < 0.01, ***p < 0.001, ****p< 0.0001). (C) Comparison of effector and memory CD4+ and CD8+ T cells in the bone marrow between WT and Tet2KO mice. Data are ± mean s.e.m.; p values from two-tailed unpaired Student’s t-test (ns, non-significant; *p < 0.05, **p < 0.01, ***p < 0.001, ****p< 0.0001).





4 Discussion

In immune profiling studies, developing an effective flow cytometry panel is essential to obtaining reproducibility and avoidance of artifacts. However, designing and validating a high-dimensional flow cytometry panel can be extremely challenging as it requires not only expert knowledge of the biological markers required to define the cellular populations to be interrogated, but also significant technical expertise in flow cytometry and in the principles of panel design and validation. Here, we aimed to design and evaluate a versatile backbone panel for spectral flow cytometry, which allows for robust and customizable immune cell analysis across various tissues and immune microenvironments in mice. While there are already many proposed panels for the profiling of murine immune cells using more than 13 markers (38–41, 74, 75), the combinatorial nature of these high-parameter panels and all the complex rules that need to be adhered can make it as challenging to modify only a few parameters to adapt to the research question as it is to build an entirely new panel. These panels were designed as a whole, and most changes can have a profound effect on the overall panel resolution. Further, most of the current panels were designed for a specific polychromatic flow cytometry experiment, and only a few were tested on a single spectral flow cytometry platform (38–41). To our knowledge, ours is the first murine backbone panel validated across different spectral instruments; thus, this panel is a valuable resource for researchers who have access to any of the current spectral flow cytometer systems.

Our backbone panel includes the most common markers used to define immune cell populations and we do not propose a new gating strategy or marker combination to define immune populations. Instead, the backbone panel is a rigorously validated tool for scientists to expand upon to best suit their research questions and optimized to minimize the impact on relevant fluorochromes by comparing fully stained backbone cells with unstained samples. Noteworthy, the drop-in positions can be filled by similar fluorochromes beyond those suggested, whether they are commercially available or purchased through custom conjugations offered by different reagent companies. Furthermore, the number of drop-in positions can be expanded using some of the emission gaps we indicated in the fluorochrome assignment chart (Figure 1B), and their impact on the backbone panel and vice-versa can be validated using the same approach presented here. For the backbone markers, we were not concerned about fluorochrome brightness because most of the lineage markers were highly expressed. Further, we did not select common fluorochromes since these markers had enough commercial options readily available. Instead, we considered the similarity and possible spreading among them. To overcome this, we intercalated lymphoid markers with myeloid markers on the same laser line while also considering cross-laser excitation (Figure 1B). We strategically selected the most unique fluorochromes for markers present in many subtypes of cells (e.g., CD45, CD3, MHCII) and those fluorochromes that were more likely to cause spread and impact the resolution of others to markers expressed by a sole cell population or distinct population (e.g., Ly6G and B220) (Supplementary Figure S2). Our assessment of the backbone panel for spectral flow cytometry demonstrated its efficacy in the analysis of immune cell populations across various tissue types. This feature enables the comparison of specific immune cell populations in different tissues to assess organ infiltration, metastasis, and residual disease despite distinct organ-specific characteristics. Although our results already show a consistent identification of the expected immune populations in different tissues (Figure 6), these variations can be further minimized by exploring the presence of different autofluorescence signatures within the same tissue to improve resolution. Once these different signatures are identified, the use of autofluorescence extraction tools can remove the noise introduced by cellular autofluorescence and improve separation between negative and positive populations.

We demonstrated the ability of the backbone to profile the immune contexture of complex TMEs, as shown in our practical application of the PDAC immune profiling. We used a syngeneic KrasG12D/+; Trp53Cas9-KO mouse model and were able to detect statistically significant changes in PDAC, such as an increase in the levels of myeloid cells (i.e., cDCs, neutrophils, macrophages, and monocytes) and a decrease in the proportion of B and T cells compared to normal pancreatic tissue (Figures 7B, C). This is consistent with previous immunophenotyping studies of advanced PDAC stages (56, 57). Furthermore, we identified stromal cells using drop-in markers (Figure 7A) and found a rise in the total percentage of PDPN+ cells (Figure 7C), with or without co-expression of CD31 (Figure 7A), indicating active fibroblast expansion and lymphangiogenesis (76). Although it was not statically significant, we also observed a decrease in the percentage of endothelial cells (Figure 7A), which was expected since PDAC is known to be a poorly vascularized tumor, which has been reported to be due to blood vessels being destroyed by cancer cell infiltration (77). Importantly, we found that the backbone panel is compatible with transgenic mouse cells expressing fluorescent proteins such as tdT. Here, we characterized the bone marrow immune environment of tdT+ HSC-Scl-Cre-ERT Tet2flox/flox mice (62). We compared them to age-matched WT control mice lacking tdT expression (Figure 8A). Tet2KO mice had a proinflammatory, myeloid-biased phenotype, predominantly shown by an increased percentage Ly6C-high monocytes (Figure 8B). Remarkably, the percentage of cDCs was also significantly elevated (Figure 8B), supporting the idea that cDCs can contribute to Tet2-driven inflammation (78). However, we also observed defects in the lymphoid lineage, such as a significant Treg deficiency (Figure 8B) and a reduction in the percentages of effector and central memory CD4+ T cells; however undetected for CD8+ T cells (Figure 8C). These findings highlight the deleterious effects of Tet2 loss in both myeloid and lymphoid cells, particularly in effector/memory CD4+ T cells and Tregs, ultimately impacting both innate and adaptive immune responses. These findings are consistent with previous reports, although some have utilized other Tet2KO models with deletion within specific hematopoietic cell subset(s), rather than HSPCs (64, 79). This suggests that Tet2KO defects are passed on to the progeny, which was previously reported for myeloid cells (64, 67, 80) but has yet to be better explored within the different lymphoid compartments. Additionally, the higher percentage of CD45+c-kit+, FcϵR1- cells (Figure 8B) is consistent with the well-documented increase of Tet2KO HSPC self-renewal (64, 72, 73). The inclusion of c-kit+ in this panel (Figure 8A) also allows for the detection of blasts in the peripheral blood to assess leukemia progression –a percentage that should be nonexistent or negligible in the peripheral blood of WT mice. The changes we report here are consistent across mice within each group (Tet2KO and WT) and showcase the maintenance of the resolution of the backbone panel even in the presence of tdT in combination with drop-in markers, making it ideal for transgenic mouse research that incorporates fluorescent proteins.

In summary, our validated murine backbone panel for spectral flow cytometry is exceptionally robust yet adaptable and offers researchers significant benefits in immune cell profiling across different tissues, immune microenvironments, and experimental setups. Subsequent studies will assess the compatibility of the current backbone panel with intracellular markers, expand the number of drop-ins (e.g., to include both lineage-specific and HSPC makers), and adapt the backbone panel to other species to increase robustness and adaptability. We believe that with this approach, high-throughput analysis of immune cells in vivo will become more efficient and facilitate greater integration of datasets that will inform our understanding of the interplay between the immune system, cancer cells, and the heterogeneity of different hematologic subsets in the spectrum of disease states.
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Background

Studies have shown that tumor cell amino acid metabolism is closely associated with lung adenocarcinoma (LUAD) development and progression. However, the comprehensive multi-omics features and clinical impact of the expression of genes associated with amino acid metabolism in the LUAD tumor microenvironment (TME) are yet to be fully understood.





Methods

LUAD patients from The Cancer Genome Atlas (TCGA) database were enrolled in the training cohort. Using least absolute shrinkage and selection operator Cox regression analysis, we developed PTAAMG-Sig, a signature based on the expression of tumor-specific amino acid metabolism genes associated with overall survival (OS) prognosis. We evaluated its predictive performance for OS and thoroughly explored the effects of the PTAAMG-Sig risk score on the TME. The risk score was validated in two Gene Expression Omnibus (GEO) cohorts and further investigated against an original cohort of chemotherapy combined with immune checkpoint inhibitors (ICIs). Somatic mutation, chemotherapy response, immunotherapy response, gene set variation, gene set enrichment, immune infiltration, and plasma-free amino acids (PFAAs) profile analyses were performed to identify the underlying multi-omics features.





Results

TCGA datasets based PTAAMG-Sig model consisting of nine genes, KYNU, PSPH, PPAT, MIF, GCLC, ACAD8, TYRP1, ALDH2, and HDC, could effectively stratify the OS in LUAD patients. The two other GEO-independent datasets validated the robust predictive power of PTAAMG-Sig. Our differential analysis of somatic mutations in the high- and low-risk groups in TCGA cohort showed that the TP53 mutation rate was significantly higher in the high-risk group and negatively correlated with OS. Prediction from transcriptome data raised the possibility that PTAAMG-Sig could predict the response to chemotherapy and ICIs therapy. Our immunotherapy cohort confirmed the predictive ability of PTAAMG-Sig in the clinical response to ICIs therapy, which correlated with the infiltration of immune cells (e.g., T lymphocytes and nature killer cells). Corresponding to the concentrations of PFAAs, we discovered that the high PTAAMG-Sig risk score patients showed a significantly lower concentration of plasma-free α-aminobutyric acid.





Conclusion

In patients with LUAD, the PTAAMG-Sig effectively predicted OS, drug sensitivity, and immunotherapy outcomes. These findings are expected to provide new targets and strategies for personalized treatment of LUAD patients.





Keywords: prognostic gene signature, amino acid metabolism pathway, lung adenocarcinoma, multi-omics analysis, TP53 mutation, plasma-free α-aminobutyric acid




1 Introduction

Amino acid metabolism is crucial for tumor cell development and progression as a nitrogen and energy source in biosynthesis (1–3). Alterations in this metabolism, driven by intrinsic and extrinsic factors, impact both tumor and immune cells and shape cell fate, survival, proliferation, and metastasis (4–7). Tumor cells adapt to amino acid deficiencies in the tumor microenvironment (TME) by enhancing the uptake or synthesis of amino acids and regulating enzymes and transport proteins (8–10). Tumor cells compete to supply these resources to immune cells and inhibit their functions, aiding immune evasion (11). Additionally, catabolic processes play a critical role in the antitumor immune response (12–14). Conversely, immune cells influence tumor cell metabolism by releasing metabolites, including cytokines. For example, the release of interferon (IFN)-γ by activated T and natural killer (NK) cells can inhibit specific amino acid metabolic pathways in tumor cells, ultimately leading to tumor regression (15, 16).

The metabolic reprogramming of immune cells is closely related to the prognosis of patients with tumors and the efficacy of immunotherapy. Our previous clinical study on the metabolomics of approximately 200 cancer patients found significant differences in plasma-free amino acids (PFAAs) profile in patients with five types of cancer, including lung cancer, compared with healthy controls, even in those with asymptomatic early-stage diseases (17). The role of amino acid metabolism in immunotherapy is increasingly recognized, with studies demonstrating its importance in predicting survival in cancer patients treated with immune checkpoint inhibitors (ICIs) by circulating L-arginine, as well as predicting prognosis, immunogenicity, and efficacy of immunotherapy based on glutamine metabolism in lung adenocarcinoma (18, 19). We recently reported that a multivariate model with PFAAs and tryptophan metabolites in plasma might be helpful in stratifying patients who will benefit from PD-1 inhibitors (20). Accurate and direct evaluation of the predictive ability of amino acid metabolism on patient prognosis and exploring related mechanisms requires studying the expression of amino acid metabolism genes in tumor tissues. However, the relationship between the expression of genes in amino acid metabolism and prognosis of lung adenocarcinoma (LUAD) needs to be comprehensively investigated, and further studies are needed to confirm and explore this relationship in depth.

To pave the way for the development of personalized treatment strategies, we developed a novel prognostic signature, PTAAMG-Sig, based on the expression levels of genes involved in amino acid metabolism associated with overall survival (OS) in the LUAD, which could predict OS, drug sensitivity, and immunotherapy outcomes.




2 Materials and methods



2.1 Data collection from public databases

Data from 420 LUAD and 59 non-neoplastic lung tissues, including RNA sequencing, whole exome sequencing (WES), and patient clinical information, were retrieved from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/) in June 2020. The “maftools” R package was used to analyze WES data for somatic variants. Immunohistochemical staining (IHC) corresponding to TCGA-LUAD patients was acquired from the Human Protein Atlas (HPA) database (https://www.proteinatlas.org/) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database (https://proteomics.cancer.gov/programs/cptac/). Microarray profiles of mRNA expression and clinical information of 353 patients were combined from the Gene Expression Omnibus (GEO) datasets GSE31210 and GSE50081. Another database containing data on 443 patients with LUAD was obtained from the GEO dataset GSE68465. We also obtained information from 24 non-small cell lung cancer (NSCLC) patients treated with PD-1 blockade combined with chemotherapy from the GEO GSE207422 dataset.




2.2 Original cohort

A clinical study on patients with advanced or recurrent stage III/IV NSCLC who were treated with cytotoxic chemotherapeutic reagents in combination with ICI therapy (pembrolizumab or atezolizumab) was performed from 2020 to 2022 at Kanagawa Cancer Center (KCC, Yokohama, Japan) and Kurume University Hospital (KU, Fukuoka, Japan). The treatment response of the patients was determined according to the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. From the cohort, 20 patients whose formalin-fixed paraffin-embedded (FFPE) tumor tissues were available for RNA sequencing, were involved in the present study. We named this cohort the KCC-ICI. For these patients, the concentrations of PFAAs in the peripheral venous blood before the start of treatment were examined. OS was defined as the period from the date of treatment to the date of death from any cause.




2.3 Construction of the amino acid metabolism-related genes (AAMGs) gene list

To comprehensively evaluate the role of amino acid metabolism, we identified genes related to amino acid metabolism. Briefly, all human genes related to 14 amino acid metabolic pathways were listed in the Kyoto Encyclopedia of Genes and Genomes (KEGG) (https://www.genome.jp/kegg/). The resultant 293 genes were designated as AAMGs. The entire list of genes by gene symbols is provided in Supplementary Table 1.




2.4 Identification of differentially expressed genes (DEGs) and subsequent pathway analysis

The “DESeq2” Bioconductor R package (v1.28.1) was used to normalize the process and identify the DEGs between the two groups from the RNA sequencing data (fold change > 2, Padj < 0.05). Gene set enrichment analysis (GSEA) was performed based on the Gene Ontology (GO), KEGG, and Reactome Pathway (REACTOME) databases. The R packages “clusterProfiler” and “ReactomePA” were used for enrichment analysis and visualization of the results. Statistical significance was set at a normalized enrichment score |(NES)| > 1 and FDR < 0.05. Gene set variation analysis (GSVA) was performed to identify significantly correlated pathways using a reference gene set “c2.cp.kegg.v7.4. symbols.gmt” was downloaded from the GSEA website (https://www.gsea-msigdb.org/gsea/downloads.jsp), with an FDR < 0.05. The abundance of immune cell infiltration, stroma score, and immune score were determined by the ESTIMATE algorithm using RNA sequencing data.




2.5 Prediction of drug response

Drug response data for cytotoxic drugs in human cancer cell lines and the corresponding genomic markers were downloaded from the Genomics of Drug Sensitivity in Cancer (GDSC) website (http://www.cancerrxgene.org) as the GDSC v2 dataset. To predict the drug response profiles for patients involved in TCGA-LUAD cohort, analysis using the R package “oncoPredict” was applied to the GDSC v2 and RNA sequencing data of each LUAD tumor of the corresponding patient. The half-maximal inhibitory concentration (IC50) values of drugs were calculated for each patient, which were used to speculate how a drug inhibits certain biological or metabolic processes (21). Response to ICIs was predicted using the tumor immune dysfunction and exclusion (TIDE) algorithm based on the gene expression related to T cell dysfunction and exclusion, obtained from the TIDE website (http://tide.dfci.harvard.edu/) (22).




2.6 RNA sequencing of formalin-fixed paraffin-embedded (FFPE) tissues

For total RNA isolation from FFPE tissues of patients, we first marked the area of the tumor on the hematoxylin-eosin-stained section of each tissue block. Then, total RNA was extracted from the corresponding tumor area on the unstained serially sliced sections with macrodissection using RNeasy FFPE Kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions. The amount of RNA was measured using a NanoDrop1000 (Thermo Scientific, Wilmington, DE, USA) and RNA integrity was assessed using the RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA). RNA samples with 30% or greater DV200 values were subjected to RNA sequencing. Construction of cDNA libraries followed by RNA sequencing was performed by Takara Bio Inc. (Shiga, Japan) as a contract analysis using a SMART-Seq Stranded mRNA Kit (Clontech, Palo Alto, CA, USA) and a NovaSeq sequencing system (Illumina, San Diego, CA, USA) according to the manufacturer’s instructions. After confirming the read quality using FastQC, the sequence data were aligned to the human genome GRCh37 using STAR-2.5.2a (https://github.com/alexdobin/STAR/releases/tag/2.5.2a), and the mapped read count of each sample was calculated using Python 2.7. Transcripts per million (TPM) were calculated for transcription quantification using Salmon-1.1.0 (https://combine-lab.github.io/salmon/) with GRCh38.v99 as the reference index. Salmon estimated TPM data were summarized to gene expression levels using the “tximport” package(v1.22.0) for correlation analysis. Mapping to the reference by STAR-2.5.2a and a quality check of reads for each sample were performed using the Genomon 2 analysis pipeline (https://github.com/Genomon-Project).




2.7 Analysis of PFAAs

Peripheral blood samples from the KCC-ICI cohort were collected in the morning in an overnight fasting state from the antecubital vein into tubes containing EDTA-2Na and immediately placed on ice. Plasma was separated via centrifugation at 3000 rpm for 15 min at 4°C and stored at −80°C until analysis. After thawing, plasma samples were deproteinized using acetonitrile at a final concentration of 50% before measuring amino acid concentrations using high-performance liquid chromatography–electrospray ionization mass spectrometry via precolumn derivatization, as described previously (20). Concentrations of the following 21 PFAAs were measured: alanine, arginine, asparagine, citrulline, α-aminobutyric acid (AABA), glutamate, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, ornithine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. The amino acid concentration was determined by summing the concentrations of each of the 21 PFAAs.




2.8 Statistical analysis

For all statistical analyses, R version 4.1.0 was used, unless otherwise noted. Heatmaps were drawn by the “ComplexHeatmap” package with Spearman as a distance indicator; for the generation of Kaplan–Meier (KM) curves and calculation of Cox proportional hazard ratios, packages of the “survplot” and the “survminer” were used. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using the “Coxph” function. For the Concordance Index (C-index) and time-dependent AUC of receiver operating characteristic (ROC), the packages of the “dplyr” and the “survivalROC” were used. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were performed by using the “glmnet” package in R. Wilcoxon rank sum test was used for differential significance test between the two groups. Categorical variables between groups were compared using Fisher’s exact chi-square test. A schematic overview of the study design is provided in Supplementary Figure 1.





3 Results



3.1 Landscape of amino acid metabolism pathway-related genes in tumor tissues of LUAD

We compared RNA gene expression between 420 TCGA-LUAD tumor samples and 59 non-neoplastic lung samples, and first identified 4543 significant DEGs (fold change > 2, Padj < 0.05). We further identified 76 DEGs that appeared in the list of AAMGs and designated them as tumor-specific AAMGs (TAAMGs). Among the 76 TAAMGs, 61 genes were upregulated and 15 were downregulated in tumor tissues compared to those in non-neoplastic lung tissues (Supplementary Figure 2A). To gain insight into the function of TAAMGs, enrichment analysis with KEGG pathways was carried out; cysteine and methionine metabolism; arginine and proline metabolism; tyrosine metabolism; glycine, serine, and threonine metabolism; alanine, aspartate, and glutamate metabolism; biosynthesis of amino acids; and tryptophan metabolism were the most enriched terms (Supplementary Figure 2B).




3.2 Identification of prognosis-related TAAMGs and development of PTAAMG-Sig

To identify TAAMGs related to patient prognosis, we first conducted a univariate Cox proportional hazards regression analysis using survival data of TCGA-LUAD patients and identified 16 candidate genes associated with OS with a P < 0.05 (these prognosis-related genes were designated as “PTAAMGs”) (Supplementary Table 2). Next, we established a prognostic signature composed of nine key PTAAMGs (KYNU, PSPH, PPAT, MIF, GCLC, ACAD8, TYRP1, ALDH2, and HDC) by selecting the mostly marked genes with the optimal value of tuning parameter (λ) by ten-time cross-validation using minimum criteria in LASSO Cox regression analysis. In addition, we performed a collinearity test to check the independence of the key PTAAMGs. The results showed that the multicollinearity assumption was not violated when the variance inflation factor (VIF) less than two. We named this novel prognostic signature model as “PTAAMG-Sig”, and the risk score of each patient was calculated using the expression values (EV) of optimized genes and their multivariate Cox regression correlation coefficients. The PTAAMG-Sig formulation was as follows: 0.0717*EV(PPAT) + 0.0649*EV(MIF) + 0.0095*EV(GCLC) + 0.1195*EV(PSPH) + 0.1262EV(KYNU) – 0.1394EV(ALDH2) – 0.0422EV(ACAD8) – 0.1782 EV(HDC) – 0.1274 EV(TYRP1). Multivariate Cox regression analysis of the key PTAAMGs comprising the signature showed that the expression of KYNU, PSPH, PPAT, MIF, and GCLC contributed to poorer OS with HRs > 1, whereas those of ACAD8, TYRP2, ALDH2, and HDC were associated with better OS with HRs < 1. Only KYNU had a P-value less than 0.05 (P = 0.022), indicating that it was a risk factor of this prognosis-predicting model (Figure 1A). The KM curves for each of the nine key PTAAMG expression levels revealed a significant association with OS (Supplementary Figure 3). When PTAAMG-Sig was applied to dichotomize TCGA-LUAD dataset with the risk score, 52 patients were classified into the high-risk group, with a value of −0.366 as the risk score cutoff. The high-risk group had significantly shorter OS than the low-risk group. Thus, PTAAMG-Sig efficiently stratified patient OS (C-index = 0.641, HR = 2.718, 95% CI 1.937–3.815, Log-rank P < 0.0001) (Figure 1B). We evaluated the signature using the ROC curve and calculated the area under the curve (AUC) at different time points (1, 3, and 5 years). The maximum AUC (AUCmax) of PTAAMG-Sig was 0.730 at the 1-year OS time point (Figure 1C). We found that patients who died showed a significantly higher risk score than those who survived (Wilcoxon rank sum test, P < 0.01), indicating the effect of the risk score by PTAAMG-Sig on survival status (Figure 1D). These data suggest that the model efficiently stratifies the OS of LUAD patients. The expression patterns of the key PTAAMGs genes used in PTAAMG-Sig showed that the expression levels of KYNU, PSPH, PPAT, MIF, and GCLC were significantly higher in the high-risk group, whereas those of ACAD8, TYRP2, ALDH2, and HDC were significantly higher in the low-risk group (Wilcoxon rank sum test, P < 0.0001) (Figure 1E).
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Figure 1 | PTAAMG-Sig model was developed from the prognostic AAMGs. (A) Forest plot of the multivariate Cox regression analyses of the key genes in the PTAAMG-Sig model with OS. *P < 0.05; ns, not significant. (B) KM survival curve of the PTAAMG-Sig high- and low-risk patients in TCGA cohort. P-values by log-rank test. (C) The time-dependent ROC curves of the PTAAMG-Sig risk score at 1-, 3-, and 5 years of OS. (D) Violin plot comparing the distribution of risk scores between the alive and dead patients. Wilcoxon rank sum test, **P < 0.01. (E) Differential expressions of the key PTAAMGs in the PTAAMG-Sig high- and low-risk groups are depicted in a boxplot. Wilcoxon rank sum test, ****P < 0.0001. Genes are ordered based on P-values.

Based on the analysis of the HPA and CPTAC databases, we found that the protein expression levels of PPAT, KYNU, PSPH, ALDH2, and MIF evaluated by IHC in LUAD tumor tissues were consistent with the mRNA expression levels of each molecule; that is, high expression of PPAT, KYNU, PSPH, and MIF, as well as low ALDH2 expression, was observed in tumor tissues compared with those in the adjacent non-neoplastic lung tissues (Supplementary Figures 4A, B). In addition, we checked the mutation landscape of the nine genes in TCGA-LUAD tumor tissues. In total, 9.6% of patients had nonsynonymous gene mutations, such as missense, nonsense, frameshift insertion, or splice site mutations (Supplementary Figure 5A). KYNU had the highest mutation rate (3%), followed by HDC (2%). PPAT and MIF showed no mutations in TCGA-LUAD samples. The results of the multi-omics analyses revealed that the nine key genes exhibited consistent expression patterns at the protein and mRNA levels and had low mutation rates.




3.3 Validation of the predictive capability of PTAAMG-Sig in other independent datasets

To validate the predictive capability of PTAAMG-Sig, we investigated two independent lung cancer cohorts 2 public GEO cohorts of 353 patients (GSE31210 and GSE50081) and another GEO cohort of 443 patients (GSE68465). The combined GSE31210 and GSE50081 cohorts did not enroll patients at stage III and more advanced stages, whereas the GSE68465 cohort included stage III and stage IV patients with patients at the earlier stages. Detailed clinical information for TCGA and GEO cohorts is presented in Table 1.

Table 1 | Clinical information of patients providing comprehensive gene expression profiles of tumors.
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After removing the batch effect of the gene expression files, we performed Cox regression survival analysis in each cohort. In the GEO cohorts, PTAAMG-Sig stratified patients into high-risk (N = 95) and low-risk (N = 258) groups with a significant correlation to OS (HR = 2.434, 95% CI 1.176–4.497, Log-rank P = 0.012) (Figure 2A). Time-dependent ROC analysis showed a maximum predictive accuracy of 0.734 at the 2-year time point (Figure 2B). Compared with the alive patients, the dead patients showed significantly higher risk scores (Wilcoxon rank sum test, P < 0.001) (Figure 2C). Further validation of the signature with another GEO cohort, GSE68465, was performed because the cohort included stages I–IV, and the composition of patient stages was closer to that of TCGA patients. PTAAMG-Sig effectively stratified patients in the GSE68465 into high-risk (N = 179) and low-risk (N = 264) groups and revealed a significant association with OS (HR = 1.635, 95% CI 1.261–2.119, log-rank P < 0.001) (Figure 2D). Time-dependent ROC analysis showed a peak predictive accuracy of 0.695 at one year (Figure 2E). Patients who died had significantly higher risk scores than those who survived (Wilcoxon rank sum test, P < 0.0001) (Figure 2F).
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Figure 2 | Validation of the prognostic PTAAMG-Sig model in independent cohorts. (A) KM survival curve of the PTAAMG-Sig high- and low-risk groups in the GEO cohort of 353 patients with LUAD combining the datasets GSE31210 and GSE50081. P-values by log-rank test. (B) The time-dependent ROC curves of the PTAAMG-Sig risk score at 2, 3, and 5 years of OS in the GEO cohort. (C) Violin plot comparing the distribution of risk scores between the alive and dead patients in the GEO cohort. Wilcoxon rank sum test, ***P < 0.001. (D) KM survival curves of the PTAAMG-Sig high-risk and low-risk groups in the GSE68465. P-values by log-rank test. (E) The time-dependent ROC curves of the PTAAMG-Sig risk score at 1, 3, and 5 years of OS in the GSE68465 cohort. (F) Violin plot comparing the distribution of risk scores between alive and dead patients in the GSE68465. Wilcoxon rank sum test, ****P < 0.0001.




3.4 Evaluation of the PTAAMG-Sig in other independent cohorts of ICI including therapy

TCGA cohort, and the GEO cohorts used for the validation of the PTAAMG-Sig patients were those before introduction of ICI to clinics. Therefore, we interrogated the efficacy of the PTAAMG-Sig in our original cohort enrolled 20 patients with NSCLC at advanced stages III/IV or with recurrence who received combined cytotoxic reagents and ICI therapy (KCC-ICI cohort). Univariate Cox regression analysis revealed no significant association between OS and sex, age, or stage (P > 0.05) (Supplementary Table 3). The patients were divided into high-risk (N = 7) and low-risk (N = 13) groups based on PTAAMG-Sig, and a good stratification ability of OS was confirmed in this cohort (HR = 4.976, 95% CI 2.265–13.379, Log-rank P = 0.0087) (Figure 3A). The maximum predictive accuracy of this signature was 0.842 at the 330-day time point (Figure 3B). Surviving patients showed substantially lower risk scores than those who died owing to PTAAMG-Sig (Wilcoxon rank sum test, P < 0.05) (Figure 3C).
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Figure 3 | Ability of PTAAMG-Sig model to predict response to immunotherapy. (A) KM survival curves of the PTAAMG-Sig high-risk and low-risk groups in the KCC-ICI cohort. P-values by log-rank test. (B) The time-dependent ROC curves of the PTAAMG-Sig risk score at 330, 510, and 690 days of OS in the KCC-ICI cohort. (C) Violin plot comparing the distribution of risk scores between alive and dead patients in the KCC-ICI cohort. Wilcoxon rank sum test, *P < 0.05. (D) Boxplot showing the distribution of the PTAAMG-Sig risk scores in patients with different immunotherapeutic responses in a combination cohort of KCC-ICI and GSE207422. R: Responders; NR: Non-responders. Wilcoxon rank sum test, *P < 0.05. (E) The proportion distribution of patients with immunotherapeutic responses in the PTAAMG-Sig high- and low-risk groups in a combination cohort of KCC-ICI and GSE207422. R, Responders; NR, Non-responders. Chi-squared test, *P < 0.05.

To partly strengthen the results obtained from this small cohort, we analyzed the GEO dataset GSE207422, which enrolled 24 patients with NSCLC who received neoadjuvant PD-1 blockade in combination with chemotherapy followed by surgical resection of the tumors (Table 1). This dataset did not include information on OS but considered information on pathological responses to treatment after resection of the tumor. Nine patients were categorized as responders (with a major pathologic response defined as less than or equal to 10% viable tumor cells identified), and 15 were categorized as non-responders (non-major pathologic response). The responders had significantly lower PTAAMG-Sig risk scores than the non-responders (Wilcoxon rank sum test, P < 0.05) (Supplementary Figure 6A). Of patients with the PTAAMG-Sig high-risk scores, 28.6% were responders to ICI treatment, whereas all patients with low-risk scores were responders, and the difference was significant (chi-square test, P < 0.01) (Supplementary Figure 6B). We further combined the KCC_ICI and GSE207422 datasets and analyzed them as a cohort of 44 patients. The responders had significantly lower PTAAMG-Sig risk scores than the non-responders (Wilcoxon rank sum test, P < 0.05) (Figure 3D). Of the patients with PTAAMG-Sig high-risk scores, 51.9% were non-responders to ICI treatment, whereas 17.6% of the patients with low-risk scores were non-responders, and the difference was significant (chi-square test, P < 0.01) (Figure 3E).

Further evaluation of PTAAMG-Sig was performed in subgroups stratified by PD-L1 expression level in tumors. High PD-L1 expression with a tumor proportion score (TPS) ≥ 50% (n = 8) and PD-L1 positive expression with a TPS ≥ 1% (n = 13) were not significantly associated with OS (Supplementary Figure 7A, B). Combined with PTAAMA-Sig, we found that the high-risk patients in the low PD-L1 group had the shortest OS (log-rank P < 0.05) (Supplementary Figure 7C).




3.5 Somatic gene mutation profiles of the PTAAMG-Sig risk groups

The somatic non-synonymous mutation profiles of PTAAMG-Sig high- and low-risk groups in TCGA-LUAD were analyzed. Among the top 20 genes in terms of mutation frequency in each risk group, 13 genes, including TP53, TTN, CSMD3, RYR2, ZFHX4, LRP1B, USH2A, MUC17, MUC16, SPTA1, NAV3, FLG, and XIRP2 were shared between the two risk groups (Figure 4A). The rate of TP53 (71% vs. 47%, P < 0.001), MUC17 (40% vs.18%, P < 0.0001), TTN (69% vs. 43%, P < 0.0001), and PCLO (33% vs. 16%, P < 0.001) mutations were significantly higher in the high-risk group, whereas the difference in mutations of KRAS (23% vs. 26%), TNR (23% vs. 15%), PCDH11X (23% vs. 13%), and ANK2 (23% vs. 18%) were not significant (Figure 4B). We further analyzed the relationship between the significantly differentially mutated genes and OS using univariate Cox regression analysis in the high- and low-risk groups. The results showed that KRAS, MUC17, TTN, TNR, PCDH11X, and PCLO mutations were positively correlated with long OS, whereas TP53 mutation was negatively correlated with long OS in the high-risk group (HR: 3.740, Log-rank P = 0.0046) (Figure 4C). In the low-risk group, ANK2 mutations were markedly associated with OS prognosis, but not with other factors (Supplementary Table 4). Notably, no significant differences occurred between the two groups in the mutation rates of the nine key PTAAMGs genes used in the signature (Supplementary Figure 5B).
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Figure 4 | Differential landscapes of somatic mutations between the PTAAMG-Sig high- and low-risk groups in TCGA cohort. (A) Waterfall plot showing the somatic mutation feature of the top 20 genes in the mutation frequency in the PTAAMG-Sig high- and low-risk groups. (B) Frequencies of OS-associated mutations were compared between the PTAAMG-Sig high- and low-risk groups. P-values by Fisher’s exact test, ns, not significant; ***P < 0.001; ****P < 0.0001. (C) KM survival curve depicting the outcome of OS in the patients with mutant and wild-type TP53 in the PTAAMG-Sig high-risk group. P-values by log-rank test.

Although the tumor mutation burden (TMB) was considered a biomarker for the prognosis of various cancers, TMB did not predict OS prognosis in the TCGA training cohort. That is, the OS of the low- and high TMB groups (divided with a cutoff value of –0.167, calculated as log2TMB/Mb, based on the optimal AUC cutoff) was not significantly different (HR = 2.503, 95% CI 0.061–10.334, log-rank P = 0.190) (Supplementary Figure 7D). However, we found that patients classified as high-risk had a greater TMB than those in the low-risk group (Wilcoxon rank sum test, P < 0.0001) (Supplementary Figure 7E). PTAAMG-Sig and TMB effectively stratified patients into high-risk with high TMB levels (N = 52), low-risk with high TMB levels (N = 323), and low-risk with low TMB levels (N = 41). Compared with low-risk with lower TMB levels, high-risk patients with higher TMB levels had poorer OS rates and showed a significant association with OS (HR = 8.302, 95% CI 1.917–35.952, log-rank P < 0.0001) (Supplementary Figure 7F). These results indicate that TMB levels were one of the factors influencing the differentiation between the high and low PTAAMG-Sig risk groups and that PTAAMA-Sig was useful for stratifying prognosis in the subgroup with higher TMB levels.




3.6 Association of PTAAMG-Sig with the prediction of clinical response to chemotherapy as well as ICI therapy

To explore the relationship between PTAAMG-Sig and clinical information, we combined its signature with common clinical factors from TCGA-LUAD dataset. In the univariate Cox regression analysis, sex, age, and metastasis status (M) were not significantly associated with OS. In contrast, PTAAMG-Sig, clinical stage, T, and N were significantly associated with OS (P < 0.05) (Table 2). Multivariate Cox regression analysis revealed that PTAAMG-Sig (HR: 2.297, 95% CI 1.600–3.296, P < 0.001) and clinical stage (HR: 1.329, 95% CI 1.065–1.659, P = 0.0118) were independent predictors of OS (Figure 5A). Smoking is an important risk factor for lung cancer. We divided the patients into non-smokers (less than 100 cigarettes smoked in their lifetime) and smokers (including current smokers and current reformed smokers). Tobacco smoking history did not predict the OS prognosis. OS was not significantly different between smokers and non-smokers (HR = 0.832, 95% CI: 0.544–1.174, log-rank P = 0.400) (Supplementary Figure 8A). Smokers and non-smokers showed no significant difference in the PTAAMG-Sig risk distribution (chi-square test, NS: P > 0.05) (Supplementary Figure 8B). In combination with PTAAMA-Sig, we found that in smokers, high-risk patients showed a significantly worse OS outcome than low-risk patients (HR = 3.399, 95% CI: 2.278–5.073, log-rank P < 0.0001) but not in non-smokers (HR = 2.893, 95% CI: 0.844–9.920, log-rank P = 0.0771) (Supplementary Figures 8C, D).

Table 2 | Cox regression analysis of PTAAMG-Sig and clinical factors in TCGA cohort.
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Figure 5 | Prediction ability of the PTAAMPG-Sig on OS and response to chemotherapy and ICI therapy in TCGA-LUAD cohort. (A) Forest plot of the multivariate Cox regression analyses of the PTAAMPG-Sig model and important clinical factors with OS. P-values by multivariate Cox regression, ns, not significant; *P < 0.05; *** P < 0.001. (B) Spearman rank correlation analysis between the IC50 values and PTAAMG-Sig risk scores. X-axis: Spearman’s Rho; Y-axis: drugs; Red circle: Positive correlation; Blue circle: Negative correlation; Size of circle: −log10(P). Docetaxela, docetaxelb were docetaxels with different drug IDs in the GDSC2 dataset. (C) Relative log2(IC50) values predicted by OncoPredict between the PTAAMG-Sig low- and high-risk groups. Wilcoxon rank sum test, ****P < 0.0001, ***P < 0.001. Drugs were ordered based on P-values. (D) The proportion distribution of patients with TIDE predicted immunotherapeutic responses in the PTAAMG-Sig high- and low-risk groups. R, Responders; NR, Non-responders. Chi-squared test, *P < 0.05. (E) Boxplot showing the distribution of the PTAAMG-Sig risk scores in patients with different immunotherapeutic responses. R, Responders; NR, Non-responder. Wilcoxon rank sum test, *P < 0.05.

As PTAAMG-Sig could predict the prognosis of the LUAD patients in three independent cohorts with different treatment modalities, we further investigated the relationship between PTAAMG-Sig and the prediction of response to chemotherapy and ICI therapy. The drug sensitivity prediction of TCGA-LUAD patients was performed on the “oncoPredict” algorithm utilizing the data from the GDSC v2 database. Spearman rank correlation analysis demonstrated that the predicted IC50 value of doramapimod (p38 MAPK inhibitor), BMS-754807 (IGF-1R/InsR inhibitor), GSK269962A (ROCK inhibitor), PF-4708671 (cell-permeable S6K1 inhibitor), JQ1 (BET bromodomain inhibitor), SB216763 (ATP-competitive GSK-3 inhibitor), uprosertib (AKT inhibitor), and axitinib (multi-target inhibitor for VEGFR1, VEGFR2, VEGFR3, and PDGFRβ) were positively correlated with the PTAAMG-Sig risk score, indicating that the PTAAMG-Sig high-risk group had a relatively higher resistance to these therapeutics than the low-risk group. Conversely, the PTAAMG-Sig high-risk group showed higher sensitivity to docetaxel (microtubule depolymerization inhibitor, docetaxela and docetaxelb), savolitinib (c-MET inhibitor), BI-2536 (PLK1 and BPD4 inhibitor), paclitaxel (microtubule stabilizer), AZD7762 (ATP-competitive Chk inhibitor), AZD6738 (ATR kinase inhibitor), and MK-1775 (Wee1 inhibitor) than the low-risk group (Figures 5B, C).

Because genomic mutations can alter tumor immune profiles and response to immunotherapy, we further evaluated the predictive capability of PTAAMG-Sig for response to ICI therapy in TCGA-LUAD patients using the TIDE algorithm. TIDE predicted that 84.6% of TCGA-LUAD patients with PTAAMG-Sig high-risk scores were non-responders to ICI treatment, whereas 61.4% of LUAD patients with low-risk scores were non-responders, and the difference was significant (chi-square test, P < 0.01) (Figure 5D). This indicates that immunotherapy was more likely to be successful in patients in the PTAAMG-Sig low-risk group. In fact, TIDE-predicted non-responders showed significantly higher PTAAMG-Sig risk scores than responders (Wilcoxon rank sum test, P < 0.05) (Figure 5E).




3.7 Differences in the gene expression profile between the PTAAMG-Sig high- and low-risk groups

To understand the functional significance of the PTAAMG-Sig signature, stromal and immune scores were analyzed using the ESTIMATE algorithm. The PTAAMG-Sig low-risk group showed significantly higher stromal and immune scores than the high-risk group, indicating that the tumors in the low-risk group had a TME with high stromal and immune activity (Supplementary Figure 9A). The DEGs between the high- and low-risk groups identified using PTAAMG-Sig were subjected to GSEA for the GO dataset. We identified that the “Metabolism of amino acids and derivatives” pathway was positively enriched in the PTAAMG-Sig high-risk group (NES = −1.691, FDR < 0.001) (Supplementary Figure 9B). Furthermore, in the high-risk group, pathways related to “DNA replication”, “cell cycle checkpoints”, and “apoptosis” were significantly positively enriched. In the low-risk group, the “SLC-mediated transmembrane transport” pathway was significantly enriched, which is possibly related to altered amino acid transmembrane transport and metabolism. “PD-1 signaling”, “Phosphorylation of CD3 and TCR zeta chains”, and “Cytokine-cytokine receptor interaction” pathways correlated with immune activity and ICIs treatment process were also significantly highly enriched in the low-risk group (Supplementary Figure 9C, Supplementary Table 5). These results demonstrate the predictive capability of this signature for ICIs therapy.




3.8 The possibility of PTAAMG-Sig to predict clinical response to ICIs therapy

The relationship between the PTAAMG-Sig risk scores and OS in the KCC-ICI cohort treated with combined chemotherapy and ICIs therapy is shown in Figure 3. We further estimated the ability of this signature to predict patient responses to this therapy. The responders in the treatment group had significantly lower PTAAMG-Sig risk scores than non-responders (Wilcoxon rank sum test, P < 0.05) (Figure 6A).
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Figure 6 | Differential landscapes of immune infiltrations between the PTAAMG-Sig high- and low-risk groups and the correlation with the concentration of PFAAs in blood in the KCC-ICI cohort. (A) A boxplot showing the distribution of the PTAAMG-Sig risk scores in patients with different immunotherapeutic responses. R: Responders, including Stable Disease (SD) or Partial Response (PR); NR: Non-responders, Progressive Disease (PD). Wilcoxon rank sum test, *P< 0.05. (B) Boxplots depicting stromal and immune scores using the ESTIMATE algorithm in the PTAAMG-Sig high- and low-risk groups. Wilcoxon rank sum test, ns: not significant; *P< 0.05. (C) Left figure: Heatmap of significantly differentially enriched pathways for signature genes from Biocarta, Kegg, and Reactome databases based on GSVA between the PTAAMG-Sig high- and low-risk groups. Blue: low enriched; Red: high enriched. Right figure: Heatmap of the correlations between significantly enriched pathways and the PTAAMG-Sig risk scores. Spearman’s coefficient analysis, *P < 0.05. Blue: negative correlation. (D) Scatter plots presenting the correlations between the PTAAMG-Sig risk scores with the enrichment scores of the “NO2IL12 pathway,” “T cytotoxic pathway,” and “T helper pathway” from the Biocarta database. Spearman’s correlation analysis. *P < 0.05. (E) Relative abundance of activated CD4 T cells, activated CD8 T cells, central memory CD4 T cells, central memory CD8 T cells, effect memory CD4 T cells, effect memory CD8 T cells, natural killer cells, and natural killer T cells calculated using ESTIMATE in the PTAAMG-Sig high- and low-risk groups. Wilcoxon rank sum test, **P < 0.01, *P < 0.05. (F) Boxplot presenting concentrations of α-ABA in the PTAAMG-Sig high- and low-risk groups. Wilcoxon rank sum test, *P< 0.05.

Transcriptome analysis of the tumor FFPE specimens in this cohort demonstrated that the PTAAMG-Sig low-risk group exhibited a significantly higher immune score than the high-risk group. However, the stromal scores did not differ, indicating elevated immune activity in the low-risk group (Wilcoxon rank sum test, P < 0.05) (Figure 6B). To address the apparent differences in immune function between them, we performed GSVA using the Biocarta, KEGG, and Reactome databases. The PTAAMG-Sig low-risk group showed several significantly enriched pathways related to immune cell regulation, including T cell activation, inflamed status, and some other immune-related pathways, such as “Classic pathway”, “Graft versus host disease”, “Allograft rejection”, and “Diseases associated with surfactant metabolism” (Figure 6C, left). The heatmap exhibits Spearman’s rank correlations between the PTAAMG-Sig risk scores and the enrichment scores of the significantly altered pathways (Figure 6C, right). Among the pathways, the scatter plot analysis identified the “NO2-IL12 pathway” (R = −0.525, P = 0.0175), “T cytotoxic pathway” (R = −0.516, P = 0.0199), and “T helper pathway” (R = −0.478, P = 0.0330) as significantly negatively correlated pathways with the PTAAMG-Sig risk scores (Figures 6C, D). Subsequently, we investigated the differences in T, NK, and NK-T cells between the PTAAMG-Sig low- and high-risk groups by determining the infiltrating immune cell population in the TME, deconvoluted from the results of RNA sequencing. Activated CD8 T, central memory CD4 T, central memory CD8 T, NK, and NK-T cells were significantly increased in the low-risk group (Wilcoxon rank sum test, P < 0.05) (Figure 6E).




3.9 Relationship between concentrations of PFAAs and PTAAMG-Sig

The PTAAMG-Sig model was developed from the expression profiles of genes related to amino acid metabolism pathways, based on their significance in tumor biology and immunity. We examined the relationship between PFAA concentration and PTAAMG-Sig risk scores in a KCC-ICI cohort treated with combined chemotherapy and ICI therapy. AABA was the only amino acid whose concentration differed significantly between the high- and low-risk PTAAG-Sig groups, with a lower concentration in the high-risk group (Wilcoxon rank sum test, P < 0.05) (Figure 6F, Supplementary Figure 10A). To address the target factors, we performed Spearman rank correlation analysis, and the results showed that the concentration of AABA was significantly negatively correlated with MIF gene expression levels in TME (R=-0.459, P=0.0419) (Supplementary Figures 10B, C).





4 Discussion

Prognostic gene sets obtained by screening large datasets of tumors can provide direct and accurate information. Although amino acid metabolism can be estimated directly by mass spectrometry, the expression profiles of genes involved in this metabolic process may provide a comprehensive view of the regulatory mechanisms and pathways involved in amino acid metabolism. Recently, researchers have focused on genes involved in amino acid metabolism pathways and their impact on patient prognosis by using public datasets (23, 24). In LUAD, one study provided a signature derived from RNA sequencing data of amino acid metabolism-related genes to predict prognosis. This signature consisted of CPS1, AZIN2, GNMT, PSPH, RIMKLA, and SMOX (25). Although the signature successfully predicted prognosis in TCGA_LUAD and two other GEO datasets, a comprehensive multi-omics understanding was lacking. In this study, based on transcriptional profiling data from several cohorts, including our original KCC-ICI cohort, we developed and validated a novel signature related to amino acid metabolism to predict cancer prognosis. Furthermore, multi-omics analyses and bioinformatics approaches were applied to explore how somatic mutations, immunological landscapes, and PFAA profiles differed between high- and low-risk groups.

Notably, our study of the KCC-ICI cohort suggested that PTAAMG-Sig has the potential to predict the clinical response of patients to chemotherapy combined with immune checkpoint blockade therapy and also OS with a relatively high AUCmax at 0.842 value. To understand its predictive mechanism, we performed transcriptome analysis of tumor tissues and investigated the correlation between PTAAMG-Sig and deduced immune cell infiltration or gene expression profiles. The PTAAMG-Sig low-risk group had higher infiltration of immune cells, as estimated by the immune score, which included activated and central memory CD8 T cells, central memory CD4 T cells, NK cells, and NK-T cells. Gene expression profiles were significantly enriched in immune regulatory pathways mediated by relevant T cell and NK cell activation. Additionally, we found that the gene expression profile in the low-risk group showed higher enrichment in the PD1 signaling pathway in the reactome, which provided a direct basis for a better response to ICI therapy in this group. These findings provide evidence for the effectiveness of immunotherapy in the low-risk PTAAMG-Sig group.

Recently, we reported the clinical significance of PFAAs profile and their metabolites in NSCLC patients treated with PD-1 inhibitors (20). To know the PFAAs’ alteration associated with PTAAMG-Sig, we screened PFAAs profile in the KCC-ICI cohort to determine PFAAs’ alterations associated with PTAAMG-Sig. The results showed that the pretreatment plasma-free AABA concentration was significantly higher in the PTAAMG-Sig low-risk group than in the high-risk group. AABA is produced through cysteine biosynthesis or metabolism of methionine, threonine, serine, and glycine, as a byproduct (26, 27). AABA is a non-proteinogenic amino acid, and plasma AABA levels are reported to be associated with the progression of sepsis (26, 28). Furthermore, AABA improves the survival of septic mice and reduces disease severity in experimental colitis by inhibiting the polarization and function of M1 pro-inflammatory macrophages (29). Our study found a significant negative correlation between the expression level of MIF and AABA concentration. Previous research has reported that MIF deficiency and treatment with the small-molecule MIF inhibitor 4-IPP contribute to the restoration of immunosuppressive tumor progression of tumor-associated macrophages to M1-like polarization characteristics (30, 31). MIF was one of the key PTAAMGs identified in our study. The present study’s findings suggest that the elevated plasma AABA in the PTAAMG-Sig low-risk group was associated with the M1 polarization-mediated inflammatory TME and prognostic outcome of ICI treatment in LUAD patients.

TP53 mutations are prevalent in tumor development, not only diminishing the tumor suppressive function of the wild-type protein but also conferring pro-tumor activity (32). p53 plays a vital role in regulating metabolic processes both in tumor and non-tumor cells (33). However, its specific regulatory mechanism in amino acid metabolism has not been fully addressed. We observed that the rate of TP53 mutations was significantly higher in the PTAAMG-Sig high-risk group than in low-risk group and that the high-risk group with TP53 mutations had the worst OS prognosis. Therefore, the combined effects of PTAAMG-Sig and TP53 mutation status in predicting the prognosis of LUAD patients should be considered. When we used the GDSC v2 database to predict the efficacy of chemotherapeutic drugs, the high- and low-risk groups showed a robust diversity of sensitive drug groups. For example, high-risk groups associated with a higher frequency of TP53 mutations were predicted to have significant sensitivity to the c-Met inhibitor, savolitinib. Several studies have indicated that specific TP53 mutations can impact downstream signaling pathways, including c-Met signaling (34). These mutations induced c-Met expression or elevated its activity, making cancer cells more dependent on the c-Met pathway for survival and growth (35). Consequently, the possibility occurs that the PTAAMG-Sig high-risk group patients with TP53 mutation, showing the worst prognosis, benefit from c-Met inhibitors. This provides crucial insights into the relationship between PTAAMG-Sig and perturbed p53 function.

The established novel signature, PTAAMG-Sig, comprises nine genes related to amino acid metabolism. Among these nine genes, ALDH2, ACAD8, HDC, and TYRP1 were upregulated in the low-risk group. ALDH2 encodes aldehyde dehydrogenase 2 protein found in mitochondria that is involved in ethanol metabolism (36). In our enrichment analysis, ALDH2 is enriched in three of the four specific pathways related to amino acid metabolism: the histidine metabolic pathway; tryptophan metabolic pathway; and valine, leucine, and isoleucine metabolic pathway. ALDH2 deficiency activates oncogenic pathways via extracellular vesicles enriched in oxidized DNA, promoting alcohol-associated hepatocellular carcinoma (37). ALDH2 also influences the clearance of endogenous aldehyde 4-HNE produced by ROS-mediated peroxidation reactions. 4-HNE frequently causes a hotspot mutation of TP53 at codon 249 in the DNA-binding domain in hepatocellular cancer (38). In LUAD cells, elevated ALDH2 activity with its chemical agonist Alda-1 inhibited the stemness, proliferation, and migration and reduced DNA damage (39). Furthermore, ALDH2 expression in tumor cells is significantly and positively correlated with the infiltration of immune cells, including CD4+ T cells, CD8+ T cells, neutrophils, B cells, and macrophages in various tumor types (40). These tumor suppressive functions of ALDH2 are consistent with the established PTAAMG-Sig, in which ALDH2 is associated with a good patient prognosis. Acyl-CoA dehydrogenase family member 8 (ACAD8) is an isobutyryl-CoA dehydrogenase that plays a role in the catabolism of branched-chain amino acids, including valine. Limited information is available on the role of ACAD8 in the TME, which is regarded as a tumor-associated fibroblast-related gene associated with good survival outcomes (41). Similar to ALDH2, ACAD8 has been reported to be associated with a favorable prognosis in LUAD, which is consistent with the signature that we developed. However, TGF-β1 derived from histidine carboxylase (HDC)-expressing myeloid-derived suppressor cells (MDSC) promotes epithelial-mesenchymal transition in metastatic LUAD (42). Cytokines/chemokines secreted by tumor tissues are responsible for the expansion of HDC+ MDSC and their transport to breast tumors (43), in contrast to our signature.

Conversely, expression of PPAT, MIF, GCLC, PSPH, and KYNU among the nine genes was elevated in the high-risk group of the signature associated with the poor prognosis of the patients. Because KYNU was the only gene whose expression was significantly and independently correlated with prognosis in multiplex Cox regression analysis among the nine genes of the signature, it piqued our interest as a risk factor. KYNU encodes kynureninase, which catalyzes kynurenine (Kyn), a tryptophan (Trp) metabolite. KYNU overexpression has been linked to the development and prognosis of several cancers (44–47). The Kyn-mediated Trp-Kyn-arylhydrocarbon receptor AhR pathway, which promotes immune cell differentiation and apoptosis, is also one of the immune escape mechanisms of cancer cells in inflammatory tumors or so-called hot tumors with lymphocyte infiltration (48). Recent research further linked the mutation-activated NRF2 pathway in LUAD to the upregulation of KYNU in TME, resulting in immunosuppression and poor prognosis of the patients (49). These findings may support that the KYNU was involved in the established PTAAMG-Sig as a poor prognostic parameter. Phosphoribosyl pyrophosphate aminotransferase (PPAT), a de novo purine biosynthetic enzyme, regulates lung cancer cell proliferation and invasion by upregulating pyruvate kinase activity (50). Activated T cells release macrophage migration inhibitory factor to suppress glucocorticoid-mediated production of IL-2 and IFN-γ, which promotes lung cancer cell proliferation and the Warburg effect (51). Enforced expression of the glutamate-cysteine ligase catalytic subunit is an effective way to promote glutathione synthesis. GCLC expression is also related to increased cisplatin resistance in human NSCLC xenografts in vivo (52). Phosphoserine phosphatase (PSPH) is a key factor in the malignant progression of lung cancer cells and cancer drug resistance (53). In addition to KYNU, genes encoding these proteins may play positive roles in cancer development and are associated with poor patient prognosis.

The variation in the purity of TCGA samples was reported to affect the prediction of prognosis signature; therefore, we further calculated the tumor purity score in the TCGA cohort using mathematical algorithms (54). After adjusting for purity, we investigated the association between the PTAAMG-Sig risk scores and OS outcomes. PTAAMG-Sig also had a powerful effect on OS prediction (C-index = 0.673, log-rank P = 1e–08). Given that this tumor purity score has not yet been experimentally validated, this concept requires further investigation.

In conclusion, based on the genes involved in amino acid metabolism, we developed PTAAMG-Sig, which showed promise for the prediction of OS as well as chemotherapy and immunotherapy responses in LUAD patients. Our original cohort and a GEO cohort demonstrated the potential for the signature to be applied in patients treated with ICIs. Multi-omics characterization showed that PTAAMG-Sig was associated with TP53 mutation, immune cell alteration in the TME, and AABA concentration in the blood. Notably, the signature was a significant independent factor for OS prediction compared to existing ones. In addition, PTAAMG-Sig was useful for prognostic stratification in the subgroup with higher TMB or PD-L1 expression and smoking history. Our study provides a strong basis for the development of new therapeutic strategies and personalized treatment options for patients with LUAD. However, this study has some limitations; in particular, our cohort of patients with ICI therapy was small, and we must further validate or refine the established signature with a larger cohort in the future. The data from GEO (GSE31210, GSE50081, GSE68465) used for our validation cohorts were generated using different platforms of comprehensive transcriptome analysis than those used for the TCGA cohort; thus, the GEO cohorts may not be comparable to the TCGA cohort. Transcriptomic profile-based bioinformatic analysis was carried out for estimation of immune cell distribution and activity; hence, the relationship between our signature and immune cell alteration still warrants further experimental validation. The specific causality relationship of our PTAAMG-Sig and other integrated multi-omics factors needs further investigation.
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The tumor microenvironment (TME) is a complex ecosystem where malignant and non-malignant cells cooperate and interact determining cancer progression. Cell abundance, phenotype and localization within the TME vary over tumor development and in response to therapeutic interventions. Therefore, increasing our knowledge of the spatiotemporal changes in the tumor ecosystem architecture is of importance to better understand the etiologic development of the neoplastic diseases. Imaging Mass Cytometry (IMC) represents the elective multiplexed imaging technology enabling the in-situ analysis of up to 43 different protein markers for in-depth phenotypic and spatial investigation of cells in their preserved microenvironment. IMC is currently applied in cancer research to define the composition of the cellular landscape and to identify biomarkers of predictive and prognostic significance with relevance in mechanisms of drug resistance. Herein, we describe the general principles and experimental workflow of IMC raising the informative potential in preclinical and clinical cancer research.
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Introduction

Cancer development and progression are regulated by a complex multistep process involving heterogeneous interacting components (1, 2). The biological and spatial relationship between the diversity of cells composing the tumor microenvironment (TME) plays a pivotal role in tumor progression and in response to therapies (3). Recent technological advances currently support cancer research. In particular, single-cell technologies have largely increased the knowledge on TME landscape, providing detailed proteomic and genomic profiles, and leading to the identification of new potential prognostic and therapeutic biomarkers (4–6). Most of these technologies make use of a suspension of cells collected from tumor specimens, thus lacking the spatial information of cell localization within tumor tissue. On the other hand, conventional tissue analysis technologies, such as IHC and immunofluorescence, lack multiplex capabilities, mainly due to limitations in the number of markers simultaneously visualized on the tissue (7). To overcome these limitations, several in situ imaging multiplex technologies have been applied to the study of TME (8), including fluorescence-based multiplexed techniques (9–13). However, most of these techniques involve multiple cycles of staining, acquisition and stripping, leading to possible modifications to the antibody-epitope affinity, damaging of the tissue architecture and requiring precise image co-registration processes for the analysis (10, 14–18). A different fluorescence-based solution has been recently provided by the Orion platform, who developed a one-shot immunofluorescence high-plex method, followed by Hematoxylin-Eosin imaging on the same tissue slide (19). However, the number of antibodies simultaneously analyzable is limited and a robust image post-processing is required to correct for system aberrations and separate the contribution of overlapping signals. In addition, tissue autofluorescence, especially in formalin-fixed paraffin-embedded (FFPE) tissue, represents a limitation in probe detection (20). Finally, IHC chromogens and fluorophores are often not chemically stable, thus limiting sample long-term storage.

Methods based on detection of elements and ions through mass spectrometry, relying on non-fluorescent signals, represent promising alternative technologies (21, 22). Among these mass spectrometry-based techniques, Imaging Mass Cytometry (IMC) (23), combines the multiplex capacity of mass cytometry (CyTOF, Standard Biotools®) with IHC and is successfully applied in preclinical and clinical cancer studies (24–28).





Imaging combined with mass spectrometry: IMC

Differently from chromogen- and fluorescence-based technologies, IMC relies on the use of metal-tagged antibodies, allowing the simultaneous visualization of up to 43 different markers on the same tissue slide (23, 29–31). The staining protocol is based on conventional immunohistochemistry procedures and can be applied to both frozen and FFPE tissues (28, 32, 33) (Figure 1A). Subsequently, a laser system ablates the stained tissue with a spatial resolution of 1μm2 (Figure 1A). The ablated material is then collected by the CyTOF analyzer, where it is ionized through an inductively coupled plasma (ICP) (Figures 1B, C) and the metal masses are quantified by a time-of-flight (TOF) mass spectrometer (MS) (23, 34) (Figures 1D, E). Metals can be also linked to DNA probes for the detection of mRNA, combining transcriptomic and proteomic approaches (35). To date, 42 metals are commercially available for the antibody conjugation, in addition to a cation nucleic acid intercalator (191-193 Iridium), which is used to identify nuclei (Standard Biotools®) (31, 34). Further signal from other isotopes can be recorded during the acquisition as control channels for contaminants (e.g. Ar, Ba, Pb). Metal tags in the optimal detection range (141-176 A) have less than 4% of signal spillover, avoiding signal overlap (36, 37).

[image: Diagram illustrating the process of Imaging Mass Cytometry. Panel A shows specimen preparation, tissue staining, and the Imaging Mass Cytometry device. Panels B to E detail the steps: an ablation laser generates a plume, a plasma torch ionizes the plume, and a quadrupole discards low atomic mass elements for quantification by TOF-MS. Panels F to I illustrate data processing, with pre-processing, creating a probability map, generating a cell mask, and conducting single cell analysis with a scatter plot of labeled cells.]
Figure 1 | Schematic principle of Imaging Mass Cytometry (IMC) technology and downstream analysis. (A) Antibodies (up to 43) conjugated with metal isotopes are hybridized on tissue slides (FFPE or frozen) as done for conventional immunohistochemistry. Slides are then inserted in the IMC analyzer (Hyperion Imaging System, Standard Biotools®) for data acquisition. (B) Within the IMC analyzer, a UV laser with a 1μm2 beam spot ablates the tissue, generating a plume. (C) The plume is ionized by an inductively coupled plasma. (D) Ions are then filtered by a quadrupole mass spectrometer to discard elements with lower atomic mass. (E) Ions with high atomic mass are finally quantified by a Time-of-Flight (TOF) mass spectrometer (MS). (F) MCD files are converted into multi-channel and single-channel.tiff files. Image pre-processing is required to remove background noise and artifacts, including speckles and hot pixels. (G) Pixel classification is applied to IMC images to generate probability maps and distinguish cell nuclei (red), membrane/cytoplasm (green) and background (blue). Based on probability maps, watershed segmentation generates a cell mask for single-cell identification. The cell mask can then be overlaid on the original IMC signal to assure the accuracy of the segmentation process (inset, Blue: Nuclei; Green: CD45; Magenta: Pan-Cytokeratin). (H) Cell masks generated in the cell segmentation process are combined with raw.tiff files and exported as a single-cell file containing the signal intensity and spatial coordinates of each marker in each cell. (I) These data are then used for cell annotation and downstream analysis.

In addition to IMC, multiplexed ion beam imaging (MIBI) is another technology that takes advantage of metal-tagged antibodies (38, 39). MIBI is based on the principle of secondary ion mass spectrometry: briefly, by applying an O2+ duoplasmotron primary ion beam to the tissue slides, secondary ions are released from the tissue and directly introduced into a TOF-MS systems for the metal detection. A MIBI detection system collects not only metal ions from conjugated antibodies, but quantifies all the elements, including those naturally present in tissues, such as 12C and 31P, which can be used to infer the general structure of the tissue and the nuclei, or 56Fe, which has been correlated with the amount of heme-oxygenase-1 in spleen macrophages (39). Compared to IMC, that is destructive, MIBI has minimal effect on the tissue, allowing multiple rounds of acquisition of the same ROIs. In addition, the image resolution is adjustable by regulating the acquisition time. However, the multiplexing capacity of MIBI technology has often been limited to 7 channels acquired in a single round, with only recent advances improving it to 15-20 and up to 40 channels (40, 41).





IMC images and single-cell profiles

During IMC acquisition, the system records, for each ablated tissue spot, the intensity of the signal (collected as dual counts) coming from metal-tag antibodies and the coordinates of the spot inside the ablated region of interest (ROI). Thus, ROIs can be visualized as multichannel images, where individual ablated spots are identified as a pixel, and the vector of metal-tag dual counts represents the pixel intensity for each channel. In this context, it would be straightforward to analyze IMC data applying traditional multiplexed immunofluorescence pipelines, but various technical issues, such as different signal intensity and spatial resolution, need to be addressed (42). As an example, data normalization and background removal are affected by the mean intensity value of IMC signals, that are often lower than a conventional fluorescence signal. Moreover, approaches based on a general simple analysis of the staining patterns and signal intensity would overlook a large fraction of the data complexity. To properly investigate the biological information provided by IMC acquisitions, it is necessary to set-up a workflow consisting of sequential steps of data pre-processing, cell segmentation (in order to convert pixel-based signal into single-cell data), cell annotation and downstream analysis (42). A variety of open-source libraries, algorithms and commercial software tools have been applied to IMC data: the majority of these tools addresses only a subset of the complete analytical workflow, while others encompass the full range of processes, from raw data extraction to downstream analysis (28, 43, 44).

Herein, we briefly describe the steps related to IMC analyses, highlighting some of the existing methods. A more comprehensive comparison of the analysis methods is reported in the following references (23, 42, 45).




Pre-processing

IMC data are saved in .txt and MiniCAD Design file (MCD) format, which can be easily visualized as false-color multichannel images using the MCDviewer® software (Standard Biotools®). Data from .MCD files are generally converted into multi-channel .tiff/.ome.tiff files, suitable for downstream analyses, using either MCD viewer or dedicated python libraries (mcdparser and napari) (43). Alternatively, .txt files can be converted into multichannel .tiff images using more generic matrix-to-tiff libraries (Figure 1F). Although autofluorescence and signal overlap do not affect IMC images, artifacts and background noise can have an impact on the analysis. Hot pixels and speckles are the most common artifacts in IMC images, generally due to detector abnormalities and non-specific binding of aggregated antibodies or contaminants (46, 47). Artifacts can also arise due to signal spillover, when a channel signal is excessively high and affects the signal detection of neighboring channels. Background noise, mainly derived from the staining procedures and non-specific antibody binding, is often detectable and can be non-negligible for rare or low-expressed markers. Most of these issues can be minimized by a proper titration of the antibodies and an optimization of the staining protocol. In addition, signal amplification methods have been proposed for IMC applications in order to overcome issues related to low signal-to-noise ratio (48, 49). Several pre-processing methods have been generated to remove channel crosstalk, non-specific staining and aggregates, including MAUI, IMC-Denoise and Fiji (ImageJ) plugins (28, 46, 50–52).





Cell segmentation

Cell segmentation is the most challenging and critical step in IMC procedure and hence the correct interpretation of the data directly depends on the accuracy of this process (53–55). In most of the cases, cell segmentation relies on mixed manual/automatic methods for pixel classification, where a model is trained to discriminate between nuclear, cytoplasm/membrane and background pixels, in order to generate a probability map (Figure 1G). Cell boundaries are then automatically identified from the probability map using thresholding-, watershed- or inference- based methods. The combination of Ilastik single-pixel classification (56) and CellProfiler segmentation (57) is a commonly used strategy for IMC data processing (28, 43, 53, 55). This method requires, for each single experiment and panel, the presence of operators with expertise both in histology, for the correct identification of cells and background, and in bioinformatics, to correctly train the models. To reduce the impact of operator-dependent classification, more advanced approaches, based on convolutional neural networks (CNN), have been developed, such as Dice-XMBD and YOUPI. These methods only require a single training on a set of images and can be applied to other experiments, independently from the antibody panel used (47, 58). Regardless of the implemented method, it is crucial to check the reliability of the cell segmentation process by overlaying cell masks with specific nuclear and cytoplasm/membrane staining, in order to assure the accuracy of the downstream analysis (Figure 1H). In densely packed tissues, the relatively low spatial resolution of IMC (1μm2/pixel) can be insufficient to properly discriminate cell boundaries. To overcome this limitation, some approaches combining fluorescence and IMC have been developed: for example, the MATISSE pipeline combines IMC-derived signal for cytoplasm/membrane and nuclear staining, together with fluorescence DAPI staining on the same tissue section (53). By acquiring the same region in fluorescence and IMC modalities, it is possible to overlay DAPI and Iridium signals, taking advantage of the higher resolution of the immunofluorescence signal to better discriminate packed cells, thus obtaining more accurate cell masks (53). Even if the cell segmentation process has been done flawlessly, lateral signal bleed-through can occur between cells in very close proximity, resulting in the generation of marker expression patterns that are biologically implausible, such as CD3/CD20 expressing lymphocytes, or CD3/PanCK expressing epithelial cells (42). A specific compensation algorithm named RedDSEA has been recently developed, to correctly assign IMC signal to the proper cell of origin (54).





Data analysis

The process of cell segmentation results in the generation of a cell mask, where the signal intensity for each acquired channel, morphological parameter and tissue localization are associated to every single cell. Thus, each ROI is generally associated with data files (txt, csv, xls, etc.) containing per-cell information, that can be then used for cell annotation and downstream analysis, using essentially the same strategies developed for scRNA-seq and cytometry (Figure 1I). Cells with incoherent signals, area or debris should be discarded from the analysis at this step. Dimensional reduction strategies, such as t-SNE and UMAP (59, 60), are widely used for the 2D representation of these high-dimensional datasets, preserving as much as possible data structure. Cell annotation is usually performed by unsupervised clustering of cell analysis, allowing the unbiased identification of cell populations and the potential discovery of new cell phenotypes (42, 43, 61). Differently from scRNA-seq, where existing gene-sets can be used for the annotation of new experiments, the cellular subtypes can be defined in IMC experiments only on the base of detected channels, and the level of detail used to characterize the sub-populations depends on the chosen panel of markers. The main advantage of the IMC data is that the information on tissue localization of the cells and their spatial interaction is preserved. Thus, once a specific cell population has been detected, besides relative frequency estimate, it is possible to perform neighborhood analysis to identify preferred cell partnership, recognize spatial enrichment or avoidance between cell clusters, define spatial signatures involving different subtypes and determine a specific cell network (61–63).

For IMC downstream analysis, both packages and software not specifically developed for IMC analysis (such as Seurat, Histocat, QuPath) are currently used, with few precautions and adjustments, as well as more spatial-oriented pipelines such as Imacyte, Simpli or Spicyr, depending on the specific research questions (42, 44, 62–65).

In conclusion, while IMC data processing and analysis are still challenging for users with limited experience in image analysis and computational skills, the wide number of developed pipelines highlights the number of perspectives that can be applied and biological questions that can be addressed by IMC.





Technical considerations

There are several aspects that need to be taken into consideration in the setup of an IMC experimental workflow. First, the selection of the markers included in the panel is crucial, since the information derived from the IMC analysis directly depend on this choice. A good balance between conventional markers able to identify macro-population, and markers selected to investigate specific biological questions is advisable. While the latter subset could be used to describe in detail the specific subpopulation of interest, the macro-population markers are intended to identify, theoretically, all the cellular compartments in the tissue, such as tumor cells, immune cells, stromal cells and endothelial cells, to correctly support the cell segmentation procedures (61). Alternatively, it is possible to use commercially available kits for cell segmentation, which can be combined with conventional IMC antibody panels, as well as broad spectrum membrane and pan-Actin antibodies (27, 31, 66). As the technology relies on the specificity and affinity of antibodies for their targets, antibody validation is strictly required before and after metal conjugation, since metal-tag can induce modifications and affect the antibody performance (36). Antibodies should be tested with conventional histological methods before and after metal-conjugation, to confirm the immunodetection pattern. The use of tissues of different origin, such as tonsils, lymph nodes as well as tumor tissues, could be helpful (31). After metal conjugation, antibodies need to be titrated to get the optimal signal-to-noise ratio. Antibody titration is also necessary to set up the right conditions of antibody saturation for the recognition of its target, and allow a semi-quantitative evaluation of the expression of the different markers within the tissue. Therefore, the optimization of antibody-panel is an expansive and time-consuming process, but necessary to obtain reliable data. Indeed, most of the studies reporting the application of IMC are provided with detailed lists of antibodies included in the validated panels, which is extremely helpful for the IMC community (31, 67, 68). Papers focusing on the different aspects of the antibody validation process have been published and libraries of validated tissue-specific panels have been recently made available to the scientific community (69–71). The selection of the ROIs to acquire represents another crucial step to be considered. Generally, IMC images are small (in the range of 1-1.5mm2) compared to conventional entire tissue sections, so that the acquisition of multiple ROIs within the same tissue slice is mandatory. The number of ROIs to acquire per sample strictly depends on the type of tissue and its heterogeneity: the most rigorous methods for an appropriate sampling strategy is generally based on the acquisition of a matched whole tissue slide, stained with conventional histological methods, that can be used as a reference sample. In addition, several statistical methods have been developed to determine the best sampling strategies, optimizing both the number and the size of the ROIs to acquire, according to the tissue structure and the segregation level of specific cell types (72–74). Alternatively, tissue microarrays (TMAs), in which punches of tumors from different patients are selected and arrayed on the same slide, represent an interesting option to analyze large cohort of patients in a reasonable time and with affordable costs, since they can be processed and imaged together (75, 76).






IMC in preclinical cancer studies

Preclinical mouse models of cancer have been widely used to recapitulate human disease and to investigate the complex biological processes occurring in tumor development and therapeutic responses (77, 78). Although IMC has been largely applied to analyze the TME in humans, only few studies have been published on mouse models of carcinogenesis (Table 1). Among them, Glasson and colleagues, set up a 31-antibody panel for the IMC investigation of FFPE mouse models of cancer (79). By applying IMC analysis, they characterized the tissue architecture and cell composition of B16-K1 melanoma and ApcΔ14+ intestinal models of carcinogenesis. In particular, in the B16-K1 model, IMC analysis showed a preferential localization of T cells at the periphery of the tumor mass, while macrophages were able to infiltrate the tumor core, thus describing a feature that is typical of immune-excluded tumors (79). Similarly, Van Maldegem et al. developed a 27-antibody panel for frozen tissue of K-RAS mutated mouse model of lung tumors (80). They analyzed the TME of mouse lungs, providing quantitative information about the phenotype and spatial relationship of stromal and immune infiltrating cells, and how the inhibition of KRAS G12C promotes remodeling towards an enhanced immune activation state (80).

Table 1 | Summary of the studies using IMC to investigate the TME.
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In addition to the description of the TME composition, IMC has been used to analyze the response to treatment in preclinical models. In syngenic models of hepatocellular carcinoma, IMC has been used to demonstrate the role of the TME in response to treatment with anti-PD-1 antibodies: interestingly, the infiltration of tumor-associated macrophages (TAMs) with an M2-phenotype and the interaction between T cells and cancer-associated fibroblasts (CAFs) were associated with the resistance to treatment (81). Similarly, in a mouse model of pancreatic cancer, it has been shown that the expression of Cadherin-11 was associated with CAF pro-tumorigenic activity and that the administration of anti-Cadherin-11 antibody was able to inhibit this effect by decreasing the infiltration of FoxP3+ T cells in the tumor (82). Recently, our group validated a 28-marker panel to investigate the TME in orthotopic and genetic models of pancreatic ductal adenocarcinoma (PDAC) (28). We compared the KPC model, expressing mutant isoforms of KRAS and TP53 genes in pancreatic cells (83), and the Panc02-cell orthotopic transplanted model (84). While in the Panc02 model stromal cells surrounded the dense neoplastic mass, in the KPC model the desmoplastic stroma infiltrated the tumor and it is characterized by the presence of cells expressing markers of CAFs, such as αSMA, Vimentin and Desmin. In addition, markers included in the panel allowed to discriminate KPC tumors having different grade of desmoplasia. Distribution of blood vessels was different too: while in the orthotopic model CD31+ blood vessels mainly surround the tumor mass, in the KPC model blood vessels infiltrate the tumors, better resembling the features of human PDAC (28). Moreover, the composition and localization of immune infiltrating cells were different between the models. In the orthotopic model, the tumor core was mainly infiltrated by TAMs and CD8+ T cells. Differently, a spatial association of CD8+ T cells, CD4+ T cells, neutrophils, dendritic cells and TAMs was identified at the tumor-stromal interface and in the KPC model (28). These differences could be due to the diverse nature of the immune response, with the orthotopic model characterized by a more acute inflammatory microenvironment compared to a mild, chronic inflammation in the genetic model.

IMC has also been applied in studies aimed at comparing drug delivery methods and pharmacodynamics. Strittmatter and colleagues applied IMC, in combination with mass spectrometry imaging, to analyze the biodistribution of an aurora kinase B inhibitor (AZD2811) in patient-derived xenograft models of ovarian, lung and colon cancer (85). By using a 27-antibody panel, they described the cell composition and distribution in the TME. Subsequently, they applied mass spectrometry imaging to visualize and quantify the distribution of AZD2811-loaded nanoparticles. Finally, by combining these techniques, they demonstrated an accumulation of the drug in macrophage-rich regions. Similarly, the same group analyzed the distribution and the effect of gemcitabine and its metabolites in the KPC model of pancreatic cancer, revealing that gemcitabine metabolites were able to induce DNA damage in regions characterized by a high proliferation rate (86).

Since IMC detects metal isotopes, it can be used to monitor the biodistribution of platinum-based therapies. In pancreatic cancer patient-derived xenograft models, Chang and colleagues combined the detection of platinum and a 14-antibody panel to evaluate the accumulation of cisplatin in collagen-rich areas of the tumor (87).





IMC in clinical cancer studies

IMC has been widely applied to investigate the composition of TME, the identification of new biomarkers and the effectiveness of therapeutic approaches in several studies on human cancer (25, 88, 89). As previously discussed, IMC allows to visualize up to 43 different markers on the same tissue slide, providing not only qualitative but also quantitative information about the amount of different metal-conjugated antibodies in the corresponding tissue spot. The combination of multiple antibodies is necessary to adequately identify different cellular phenotypes and their state of activation, as well as the spatial relationship of different cell populations within tumor, immune and stromal compartments (Figure 2A).
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Figure 2 | Schematic representation of IMC analysis of the tumor microenvironment (TME). (A) TME is a complex ecosystem where cells of different phenotypes, such as tumor cells, immune cells, stromal cells and endothelial cells, immerse in a reactive extracellular matrix, cooperate to influence tumor progression and response to therapeutic intervention. IMC analysis provide information related to the phenotype of cells, their functional state and their localization in the TME, as well as the composition of the extracellular matrix. (B) These information can be analyzed by single-cell visualization with dimensional reduction strategies, such as t-SNE and UMAP, and cell clustering, as well as by investigating cell localization and their spatial relationship (neighborhood analysis) in the TME. (C) These data can be then correlated with patients’ clinical parameter and used to compare different cohorts of patients to find markers and signatures able to predict patients’ outcome and prognosis.

These aspects make IMC particularly appropriate for the in-depth, single-cell analysis of cancer tissues and for the correlation between imaging data with patients’ clinical and pathological features (Figures 2B, C).




Profiling the cellularity of the tumor microenvironment

Several studies reported the feasibility of IMC to describe the complexity of the TME in different cancer subtypes and for the quantification of specific cellular markers (Table 1) (33, 90, 91). Shen and colleagues applied IMC for the investigation of TME in human hepatocellular carcinoma (HCC): they quantified 36 biomarkers in a cohort of 134 HCC patients and 7 healthy donors and identified three major types of intratumor regions, characterized by a distinct distribution patterns of cancer, stromal and immune cells. In addition, the analysis of the cellular neighborhood showed that different types of cells were spatially associated to form regional functional units, which are relevant to patients’ clinical outcomes (92). Similarly, Ravi et al. provided a detailed description of the TME in glioblastomas, confirming its pivotal role in tumor development (93). In another study on diffuse large B-cell lymphomas (DLBCL), IMC has been used to characterize tumor and immune cell architecture, in correlation with clinicopathological features. The data showed that, instead of being histo-pathologically monotonous, DLBCL displays a complex tumor architecture and that modification in tumor topology can be associated with clinically relevant features (94). More recently, Rigamonti and colleagues combined artificial intelligence (AI)-aided histopathology with IMC to investigate the microenvironment of non-small cell lung carcinoma (NSCLC) (27). Specifically, an AI-based approach was applied to hematoxylin and eosin (H&E) stained NSCLC tissues to identify tumor cells and generate a classifier of neoplastic cell spatial clustering. Then, consecutive sections were used for the IMC analysis of 24 markers related to tumor, stromal and immune cell populations and immune activation, resulting in the identification of 11 macrophage clusters and T cells with different tissue localization. Combining AI-powered histopathology and IMC, the authors provided insights into NSCLC microenvironment and used the data to translate tumor characteristics into a classifier capable to predict patients’ prognosis and response to therapy (27). Still in the context of lung cancer, Sorin and colleagues applied IMC to investigate the tumor and immunological landscape in a large cohort of lung adenocarcinoma patients (75). Using deep learning, the authors were able to predict patients at higher risk of progression after surgery, which could be extremely useful for clinical management after surgical resection (75).

In breast cancer, IMC approach allowed the identification of multiple cellular phenotypes in the TME, providing a refined histopathological classification of tissue samples (76). In addition, single-cell spatial analysis described cellular inter- and intra-tumor heterogeneity, resulting in the identification of novel subtypes of breast cancer associated with distinct clinical outcome (76). The same group applied IMC on tissues from a genetically well-characterized cohort of breast cancer patients from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) (95). They found that genomic diversities correspond to differences in tumor and stromal cell phenotypes, showing how genomes shape the composition and the architecture of TME in breast cancer. Also in this cohort of patients, IMC data revealed that cell phenotype and cellular neighborhood were associated with patients’ prognosis (95). Similarly, Danenberg and colleagues demonstrated the presence of different structures of TME in breast cancer subtypes showing association with somatic alterations and genomic profiles (96). These structures are characterized by enrichment for CASP8 and BRCA1 mutations and are associated with poor prognosis in estrogen-receptor positive breast cancer (96).

Several studies demonstrated the pivotal role of CAFs in shaping the tumor microenvironment (97, 98). CAF-focused IMC panels have been validated in the context of breast cancer and head and neck squamous cell carcinoma (HNSCC), resulting in the identification of distinct CAF subtypes, expressing different levels of αSMA and FAP (Fibroblast Activation Protein) (31, 99). Xiang and colleagues described a specific interaction between CAFs and monocytic myeloid cells in the TME of lung squamous carcinoma, highlighting the role of CAFs in regulating monocyte recruitment and differentiation (100). More recently, Cords and colleagues combined single-cell RNA sequencing and IMC to identify nine CAF subtypes and one pericyte population in human breast cancer (101). In particular, IMC analysis provided information about the spatial distribution of CAFs in the TME and their relationship with tumor and stromal cells, vessels and classes of neighboring cells. Moreover, they proposed a general classification system for CAFs that can be useful for their identification and functional description across different cancer types (101). The same group analyzed the CAF population in a large cohort of NSCLC, identifying 11 CAF phenotypes and demonstrating that CAFs represent an independent prognostic factor for NSCLC patients’ survival. In addition, they showed that the CAF phenotype influenced the TME composition, regulating inflammation and immune cell infiltration (68). In PDAC, CAFs play a pivotal role in shaping TME (102). Although IMC has been applied to study the composition of pancreatic islet in both type 1 and type 2 diabetes (103, 104), only a limited number of studies have employed IMC for this purpose. In PDAC, IMC was used to show the presence of a novel identified CAF subtype, defined as antigen-presenting CAFs (apCAFs), which expresses MHC-II and CD74, but is negative for the classical co-stimulatory molecules (105). They further demonstrated that apCAFs are able to activate CD4+ T cells, confirming their immune-modulatory capabilities. In addition, Sussman and colleagues identified a specific subset of CD68+/CD44+/HLA-DRLow macrophages located within the vascular niche and not spatially associated with T and B cells, suggesting a unique pro-angiogenic activity different from the other, more abundant, antigen-presenting cells in the PDAC microenvironment (106). More recently, our group applied a 31-antibody panel to investigate the cellular composition of TME in 8 PDAC patients (61). We defined 19 different subpopulations of CAFs having distinct phenotype, tissue localization and spatial relationship with other cells in PDAC TME (61). Beside the already described myCAFs and apCAFs, we identified a subpopulation of podoplanin+/cadherin-11+ CAFs, which were associated with higher levels of carbohydrate antigen 19-9 (CA19-9), shorter disease-free survival (DFS) and overall survival (OS). In addition, we found a spatial association of podoplanin-expressing CAFs with CD4+ T cells and CD44+ macrophages, suggesting a role in the modulation of immune response. Moreover, we identified 4 distinct CAF subtypes expressing FAP, that were specifically enriched in regions of tumor-stroma interface and associated with tumor cells and CD44+ macrophages. This observation suggested the presence of an extracellular matrix remodeling niche, that sustains tumor cell invasion and promotes PDAC progression. Of note, FAP+ CAFs were also associated with higher levels of CA19-9 (61). Moreover, we identified 7 different types of tumor cell subtypes, characterized by the differential expression of markers associated with disease progression, invasion and resistance to therapy, including carbonic anhydrase IX (CA-IX), S100A4 and CD44 (61, 107–109). Moreover, we identified a specific subtype of tumor cells expressing PTX3, a molecule already associated with tumor progression in several types of cancer (110–115), in patients having distant metastasis at the time of the diagnosis.

As mentioned earlier, the possibility to combine multiple markers in the same tissue slide provides the identification of new complex cell phenotypes. Oetjen and colleagues described a new population of erythroid cells expressing CD71, CD235a and high levels of the proliferative marker Ki-67 in erythroid islands in normal bone marrow samples and myelodysplastic syndromes (116). In lung squamous cell carcinoma, a new subpopulation of CD3-/CD4+ cells, characterized by the high expression of FoxP3 and TNFα, has been identified, suggesting their proinflammatory role in the tumor immune microenvironment (91). Similarly, in colorectal cancer, IMC allowed the spatial identification of an abnormal EpCAM+/CD4+ T cell population, which also expressed CCR5, CCR6 and increased levels of phospho-p38 MAPK and phospho-MAPKAPK2 (117).

It has been shown that in the metastatic process, the primary tumor can affect the metastatic target organ to form a pre-metastatic niche that supports cancer cell metastasis and growth (118, 119). Bertocchi and colleagues applied IMC to analyze the pre-metastatic microenvironment in colorectal cancer liver metastasis (120). They found that following damage to the gut vascular barrier (121, 122), C17 Escherichia Coli colonizes the liver and generates a microenvironment that is suitable for colorectal cancer cell metastasis. In particular, they combined IMC with fluorescence in situ hybridization (FISH) and RNA sequencing, showing that bacteria preferentially localized close to SOX9+ cancer cells, both in primary and liver metastatic tumors (120). In breast cancer, Fischer and colleagues compared the single-cell phenotypes of primary tumors and matched lymph node metastases (123). They observed a phenotypic diversity between primary tumor and metastatic lymph node and identified single-cell phenotypes of tumor cells, prone to disseminate, that are associated with patients’ prognosis (123). More recently, Kuett and colleagues assembled three different antibody panels (75 markers) to study the tumor and immune cell composition of primary and metastatic breast cancer tissues (124). Interestingly, they found that the proportion of the same tumor cell phenotypes differs between primary tumors and matched metastatic tissues. In addition, immune cell infiltration is generally reduced in the metastatic sites, showing a higher proportion of remodeling myeloid cells, as well as cytotoxic and exhausted T cells (124).

In conclusion, IMC provided the possibility to deeply describe the composition of TME, leading to the identification of phenotypically and spatially distinct new rare cell subpopulations, that can be potentially used as innovative prognostic and therapeutic markers.





Correlating IMC data with disease’s outcome

In addition to the description of the complexity of the tumor microenvironment and the identification of new potential biomarkers, IMC has been successfully applied to evaluate patients’ responses to anti-cancer treatments. Hoch and colleagues demonstrated that, in metastatic melanoma, chemokines CXCL9 and CXCL10 were associated with CXCL13+ exhausted T cells, suggesting their role in recruiting B cells and in the formation of tertiary lymphoid structures (TLS). In addition, TLS showed a spatial enrichment of naïve and naïve-like T cells, which are involved in anti-tumor immunity and are predictive of response to immune checkpoint blockade (125). Similarly, IMC has been applied to correlate the composition of TME and the survival of melanoma patients treated with immunotherapy, pointing out some potential predictive biomarkers, such as beta2-microglobulin (126). In small-lung cancer, Le Noac’h and colleagues used IMC to identify predictive biomarkers to stratify patients who could benefit from the combination of chemotherapy and anti-PD-L1 immunotherapy. They found that higher infiltration of CD4+/CD8+ and regulatory T cells was associated with longer progression-free survival (127). More recently, Hiltbrunner and colleagues investigated the mechanism responsible for the acquired resistance to immune-checkpoint inhibitor (ICI) therapy in patients with NSCLC: IMC analysis revealed that in resistant neoplastic lesions, despite the broadly distributed infiltration, T cells co-expressed a variety of immune checkpoints and immune modulatory enzymes, resulting in an exhausted T cell phenotype having limited effector functions that, in turn, can be responsible for the lack of response to ICI therapy (128). In colorectal cancer (CRC), response to immune checkpoint blockade is variable. Bortolomeazzi and colleagues applied IMC to demonstrate that, in hypermutated CRC, anti-PD1 drugs released the PD1-PD-L1 interaction between macrophages and CD8+ T cells, finally promoting cytotoxic antitumor activity (129). In a recent study on hepatocellular carcinoma, IMC analysis showed that, in patients treated with a combination of cabozantinib and nivolumab, the spatial interaction between CD8+ T cells and Arginase 1-expressing macrophages represents a key feature of the TME in non-responders. In addition, an interaction network between macrophage-enriched and lymphocyte-enriched areas with tumor regions was observed in non-responders (66). Carvajal-Hausdord and colleagues applied IMC to analyze tumor tissues in trastuzumab-treated breast cancer patients: they found that the expression of HER2-extracellular segment (HER2-ECD) was reduced in relapsed patients. Moreover, authors found a correlation between high expression of HER2-ECD and cytotoxic T cell response: this observation could explain the better prognosis of trastuzumab-treated patients showing high tumor-infiltrating lymphocytes (130). More recently, Wang and colleagues analyzed the effect of immune checkpoint blockade (ICB) in patients with triple-negative breast cancer (TNBC) (131). IMC analyses on 42 markers revealed that CD8+ TCF1+ T cells and MHC-II+ cancer cells are predictors of response to ICB treatment. In addition, responsive tumors are highly infiltrated by granzyme B+ T cells, while in resistant tumors cancer cells are CD15-positive (131).

As already described in the preclinical model, IMC can be used to monitor the biodistribution of platinum-based therapies in both tumor and non-tumor tissues. In gastric cancer, it has been shown that platinum was detectable up to 72 days after preoperative chemotherapy in resected surgical samples and its concentration correlated with an increased pathological response. In addition, platinum was strongly associated with collagen-rich regions, thus explaining the variability in platinum concentration in tumor tissues among patients (132). The same group also showed that in colorectal cancer patients treated with FOLFOX, platinum was detectable in skin biopsies more than 60 months after the completion of the therapy, providing a possible explanation for the oxaliplatin-induced peripheral sensory neuropathy, observed as an adverse effect of the treatment (133).

In summary, IMC analysis can provide important information related to the effect of therapeutic interventions on the tumor microenvironment. Due to the heterogeneity of cancer, the selection of the right treatment plans and the assessment of efficacy responsiveness are of primary importance for cancer patients. In this context, IMC provides a deep single-cell analysis of the phenotypes and interactions of cells in TME, promoting the tumor pathological classification, the prediction of the response to therapeutic treatments and the assessment of the risk of patients’ relapse.






Future direction and perspectives

In the last decade, the field of multiplex imaging, and in particular IMC, has grown rapidly and the number of available protocols, designed panels and papers applying IMC to address biological questions is constantly increasing. In this review, we provided several examples of the contribution of IMC in preclinical and clinical studies in the field of oncological research. With the possibility to analyze multiple markers on the same tissue section, avoiding the technical issues associated to fluorescence-based multiplexed methods, IMC allows the identification of cells with different phenotypes, as well as their localization and spatial interaction in the TME, and to correlate this information with the risk of tumor progression, the efficacy of therapeutic interventions and, finally, patients’ prognosis. The technology is still evolving, with the introduction of new features at both hardware and software level, such as the recently introduced possibility to acquired whole slides sections, sampling the tissue with a lower spatial resolution. Although this approach prevents the possibility of a single-cell analysis, it allows a more comprehensive distribution of markers in the tissue section, performing a spatial clustering of the targeted proteins that could serve as the bases for ROI positioning in the subsequent analyses at single-cell levels. In addition, a new methodology based on X-ray fluorescence imaging technology has been recently proposed for the detection of lanthanide metal-conjugated antibodies (134): this approach has the advantage to preserve the integrity of the sample and can be extended to 3D imaging, but it currently shows lower sensitivity compared to IMC and requires the use of a synchrotron (134). Another direction for the development of IMC is represented by its application in 3D, that would dramatically improve the analysis of spatial processes, including tumor angiogenesis and cancer cell invasion (135).

Multi-omics technologies are rapidly developing (136) and the integration of genomic and mass spectrometry imaging data with IMC analysis would allow to obtain and correlate complementary information, to go even deeper in the characterization of the TME and to identify signatures capable to predict tumor progression and response to therapy. In addition, IMC analysis can be used to validate, at proteomic level, data related to the transcriptional regulation of genes in the TME. To this aim, efforts have been made to increase the spatial resolution of spatial transcriptomic and mass spectrometry imaging towards the single-cell (137–139). In addition, computational protocols and algorithms able to integrate different types of datasets derived from multi-omics technology are necessary (140, 141).

In conclusion, IMC-based studies significantly contribute to unveil the complexity of TME and to discover new predictive signatures of tumor progression and mechanisms of resistance to therapy. Currently, IMC is mainly applied for research purposes. To integrate this technology into clinical practice, efforts are needed to standardize staining procedures and data analyses, and to harmonize data, to ensure the generation of reproducible and reliable information that can be used for the development of effective diagnostic and therapeutic approaches for precision medicine.
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Introduction

K-ras mutant lung adenocarcinoma (KM-LUAD) is a difficult-to-treat cancer subtype in which chronic inflammation pervades the tumor immune microenvironment (TIME). Pro-inflammatory pathways dampen the response to treatments, including immune checkpoint inhibitors, necessitating therapies that target this inflammatory signaling network in the TIME. One of the lynchpins of chronic inflammation in KM-LUAD is signal transducer and activator of transcription 3 (STAT3).





Methods

Here, we tested the anti-tumor and early immunotherapeutic efficacy of TTI-101, a selective small-molecule inhibitor of canonical STAT3 signaling, in a K-rasG12D mutant lung cancer mouse model (CC-LR).





Results

Treatment of CC-LR mice with TTI-101 resulted in reduced tumor burden while increasing dendritic cell (DC) and T helper 1 (Th1) infiltration into the TIME.  TTI-101 treatment decreased pY-STAT3 expression in tumors with accompanying increases in several NF-κB anti-tumor target genes including CXCL9, a chemokine for primed T cells. Transcriptional profiling of the TIME revealed improved immune activation and anti-tumor skewing, as well as B cell signaling enrichment. Analysis of human LUAD data demonstrated negative correlations between STAT3 and Th1/DC infiltration, with DC infiltration also conferring improved survival in LUAD patients with low STAT3.





Discussion

Our results highlight the importance of STAT3 in driving early tumorigenesis and offer a preventative treatment window for high-risk individuals and patients with early-stage KM-LUAD.





Keywords: LUAD, K-ras, stat3, DC, Th1, tumor-promoting inflammation




1 Introduction

A quarter of global cancer-related deaths are attributable to lung cancer, of which 40% are histologically classified as lung adenocarcinoma (LUAD) (1–3). A large plurality (25%) of LUAD cases feature a driver mutation in K-ras, earning the moniker K-ras mutant LUAD (KM-LUAD) (3). Patients with KM-LUAD, especially those with a history of cigarette smoking, carry a poor prognosis, with K-ras mutations leading to hyperactive RAF-MEK-ERK signaling and unchecked cellular proliferation (2, 4, 5). While direct inhibition of K-ras has been attempted with some recent success, resistance mechanisms eventually appear, reversing any initial benefits (6, 7). As a result, new therapeutic strategies independent of K-ras signaling are urgently needed to provide better care for an exceedingly large cohort of lung cancer patients.

One promising treatment modality lies in targeting tumor-promoting inflammation. Tumor-promoting inflammation occurs when an initial anti-tumor immune response shifts from acute to chronic, and K-ras is well described as an intrinsic driver of this type of inflammation (8, 9). While the inflammation itself physically damages the lung tissue and promotes tumor proliferation, the flavor of inflammation changes from strongly T helper 1 (Th1) to other non-productive phenotypes such as Th17 and M2-type macrophage polarization (10). We and others have shown the importance of immune cells such as Th17s, myeloid-derived suppressor cells (MDSCs), M2-like macrophages, and neutrophils in lung cancer development via production of cytokines like interleukin 6 (IL-6), IL-17, IL-22, and IL-1β (11–13). In particular, we have shown that targeting IL-6 strongly reduces tumor-promoting inflammation and improves tumor burden in a murine KM-LUAD model (14). The importance of IL-6 signaling has become recognized clinically, with IL-6 neutralizing antibodies currently under study in concert with immune checkpoint inhibitors (NCT04691817).

While targeting IL-6 presents an excellent therapeutic opportunity, this modality is limited to the extracellular space. An alternative strategy to targeting IL-6 is to block key downstream mediators in the pathway, one such being signal transducer and activator of transcription 3 (STAT3). STAT3 plays a key role in pro-tumor machinery across many cell types of the tumor immune microenvironment (TIME). Activated STAT3 within tumor cells has been shown to promote tumor development through transcriptional activation of gene targets that improve cancer survival, stemness, proliferation, and invasiveness (15). In immune cells, STAT3 signaling encourages autocrine production of IL-6 that sustains tumor-promoting inflammation along with immunosuppressive factors such as IL-10 and TGFβ which blunt the anti-tumor response (16). STAT3 activation can occur independently of IL-6 targeting, as it lies downstream to other cytokines including IL-10, IL-22, and IL-27, which are broadly pro-tumor in nature and found in abundance in KM-LUAD (12, 17). Moreover, the use of a small molecule inhibitor enables the targeting of STAT3 in the cytoplasm or nucleus, and such an inhibitor can be upscaled for mass production more easily than a monoclonal antibody (18).

Despite STAT3 representing an attractive therapeutic target, there is disagreement as to the role of STAT3 in early versus late-stage tumors. Most groups have shown that late stage blocking of STAT3 is favorable for tumor clearance (19–28). However, others have shown that targeting STAT3 prior to or during tumorigenesis leads to a loss of epithelial cell identity and a worsening of disease (29, 30). To elucidate the role of STAT3 in early KM-LUAD development, we tested a selective small molecule STAT3 inhibitor, TTI-101, currently in phase II clinical trials, including treatment of idiopathic pulmonary fibrosis and hepatocellular carcinoma (NCT05671835 and NCT05440708, respectively), in a mouse model of KM-LUAD called CC-LR (31). Here, we profile the immune cells, cytokines, chemokines, and transcriptome of the TIME in CC-LR mice to illustrate the effects of STAT3 inhibition across a wide array of cell types. Mice treated during the initial stages of tumorigenesis displayed significant reduction in tumor burden, reprogramming of the TIME chemokine profile, and augmented dendritic cell (DC) and Th1 responses, supporting the hypothesis that STAT3 contributes to early-stage KM-LUAD development.




2 Methods



2.1 Cell culture

MDA-F471 cells, a Gprc5a-/- Kras-mutant LUAD cell line with STAT3 hyperactivation, were developed as previously described (32). Cells were cultured in complete growth medium consisting of DMEM (GenDEPOT) supplemented with 10% fetal bovine serum (FBS) (GenDEPOT) and 1% penicillin-streptomycin (GenDEPOT) and maintained at 37°C in a humidified atmosphere with 5% CO2. Cells were passaged upon reaching 80-90% confluency. Regular mycoplasma testing was provided by the MD Anderson Cytogenetics and Cell Authentication Core.

Cell viability was measured by MTT assay. Cells were seeded in 96-well plates at a density of 5,000 cells per well in 100 µL of complete growth medium and incubated overnight at 37°C in a 5% CO2 atmosphere in serum-free medium containing TTI-101 diluted serially 1:1 from 100-12.5 μM in DMSO; equivalent volumes of DMSO were added to vehicle control wells. After treatment, 10 µL of MTT solution (5 mg/mL in PBS) were added to each well to achieve a final concentration of 0.5 mg/mL. Wells of each concentration were set up in triplicate. Plates were incubated for 4 hours at 37°C to allow for formazan formation. Following incubation, medium was removed and replaced with 100 µL of DMSO to dissolve formazan crystals. The plates were gently shaken for 10–15 minutes to ensure complete dissolution. Absorbance was measured at 570 nm using a microplate reader, with a reference wavelength of 630 nm for background correction. Cell viability was calculated by normalizing absorbance values to untreated control wells.




2.2 Mouse husbandry and treatments

CCSPCre/LSL-K-rasG12D (CC-LR) mice were generated as previously described (14). Briefly, C57BL/6 background mice with the LSL-K-rasG12D allele were crossed with mice with Cre recombinase under the control of the club cell secretory protein (CCSP) locus. The resulting mice gain expression of mutant K-ras in the lung epithelium, leading to spontaneous tumor formation that parallels KM-LUAD pathology. All mice were housed under specific pathogen–free conditions and handled in accordance with the guidelines of the IACUC of MD Anderson Cancer Center. Mice were monitored daily for evidence of disease or distress. Both male and female mice were used in this study, and data were analyzed to check for sex-specific effects, which were not seen.

TTI-101 was provided by Dr. David J Tweardy under an approved material transfer agreement with Tvardi Therapeutics, Inc. Mice receiving TTI-101 intraperitoneally (i.p.) were given 100 mg/kg TTI-101 in DMSO five times weekly from 10-to-14 weeks of age (N = 8 controls, 9 TTI-101-treated). Oral gavage (o.g.) delivery of TTI-101 was formulated at 50 mg/kg in Labrasol: PEG 400 at a ratio of 3:2 and given once daily from 10-to-14 weeks of age (N = 21 controls, 25 TTI-101-treated). Mice were weighed daily to determine drug dose and to monitor for weight loss, a possible sign of toxicity or poor gavage technique. Dosing was performed as previously described (33, 34).




2.3 Mouse necropsy, bronchoalveolar lavage, plasma, and histology preparation

To harvest samples, 14-week-old CC-LR mice were anesthetized by i.p. injection of 0.8 mL of 0.25 mg/mL 2,2,2-tribromoethanol (Avertin, Sigma). Cannulas (Luer) were inserted into the tracheas and sutured into place, and lung surface tumors were then counted.

For bronchoalveolar lavage fluid (BALF) collection, a portion of mice received two sequential instillations of 1 mL of PBS via the cannulas. Blood was collected from the inferior vena cava and centrifuged at 2,370 x G for 5 minutes, and supernatants were collected as plasma. The lungs of these mice later underwent perfusion with 10 mL of PBS injected into the right ventricle. The lung tissue was then snap frozen in liquid nitrogen for downstream RNA and protein analyses. BALF total white blood cell (WBC) count was then obtained on a hemocytometer. Cytocentrifugation and subsequent Wright-Giemsa (Sigma) staining were performed to measure major immune cell lineages.

For histology preparation, a portion of mice had blood drawn and were perfused as described above, after which the lungs were inflated with 10% buffered formalin (Sigma) for 10 minutes via the cannulas. Lungs were removed and stored in formalin for 24 hours, followed by 24 hours in PBS. Lungs were then passed through an automated tissue embedder (Leica Biosystems) to make formalin fixed paraffin embedded (FFPE) blocks.




2.4 Quantification of TTI-101 drug concentrations in plasma

Plasma collected as above was mixed with stabilizer solution containing 20 mg/mL of NaF, 25 mg/mL of Na2SO3, and 25 mg/mL of L-ascorbic acid in ddH2O with 1X PBS at a 1:1 ratio. Aliquots of plasma from mice were spiked with 5ul of deuterated TTI-101(D7) as the internal standard (IS) to a final concentration of 5 μg/mL. Calibration standards and QC samples of TTI-101 were prepared by spiking 5 μL of the relevant working solutions of TTI-101 and SI into 100 μL of blank normal plasma. TTI-101 was extracted through one-step liquid-liquid extraction (LLE) using methyl tert-butyl ether (MTBE). Samples were reconstituted in 100 μL of methanol before analysis. The LC-MS/MS analysis was performed on a QTRAP 5500 Sciex hybrid quadrupole-linear ion trap system with a turbo ion spray source coupled to a Sciex LC Exion liquid chromatography system. Data acquisition and quantification were conducted using Analyst 1.6. (Redwood City, CA, USA). Chromatographic separation was achieved using a Synergi™ 4 µm Fusion-RP 80 Å, LC Column 50 x 2 mm at a temperature of 40°C with a 3 min linear gradient at 500 μL/mL. The aqueous mobile phase (solvent A) was created as follows: 0.1% (vol/vol) formic acid and 5 mM ammonium acetate in ddH2O. The organic phase (solvent B) was 0.1% formic acid and 5 mM ammonium acetate in methanol. MRM monitoring in positive mode (ESI+) was used to detect TTI-101 and the IS, with m/z 472.093 > 301.1 for TTI-101 and m/z 479.200 > 301.1 for IS. The calibration curve for TTI-101 was generated from the peak area ratio of TTI-101 to the peak area of its internal standard TTI-101(d7) using the Linear regression analysis with 1/X weight over the range of 0.03-30uM. All LC-MS/MS reagents including methanol, water, ammonium acetate, and formic acid were obtained from Honeywell Fluka (Morris Plains, NJ). Methyl tert-butyl ether (MTBE) was obtained from Sigma Aldrich. The C18 Synergi™ 4 µm Fusion-RP 80 Å LC column (50 × 2 mm) was purchased from Phenomenex, (Torrance, CA, USA).




2.5 Tissue histology

Hematoxylin and Eosin (H&E) staining was performed on multiple 5 μm-thick cuts from FFPE lungs, with individual sections separated by at least 50 μm. Slides were scanned at 4X magnification and stitched together on a BZ-X810 microscope (Keyence). Normal lung and lesion areas were manually annotated in ImageScope 12.4.3 (Leica Biosystems).

Immunohistochemistry (IHC) for Ki-67 (1:200, ab16667, Abcam) and pY-STAT3 (Tyr705) (1:200, 9145S, Cell Signaling Technology) were performed as previously described (14). Ki-67+ and pY-STAT3+ nuclei within tumors were quantified using ImageJ (NIH) as previously described (35). Additionally, pY-STAT3 staining and lesion type in o.g. CC-LR mice was quantified using HALO Indica Labs image analysis platform (version 3.5.3577.108).

Multiplex immunofluorescence staining (Lunaphore COMET) was performed on FFPE-derived sections as described in Wang et al. (36). Antibodies against major immune markers were sequentially stained, imaged, and inactivated to build multicolor image overlays. Images were imported into Visiopharm for segmentation, gating, and quantification (see Supplementary Table 1 for full antibody panel and cell segmentation logic).




2.6 RNA extraction and qRT-PCR analysis

Mouse lung RNA was extracted by placing cryopreserved lung tissue into tubes containing chrome plated steel beads and QIAzol (Qiagen). Tubes were then shaken on a Mini-BeadBeater 16 (BioSpec) for 10–20 seconds twice, incubating samples on ice between each round. Homogenates were then passed through a QIAshredder (Qiagen) for further cellular lysis. RNA extraction was then performed using the RNeasy Mini kit (Qiagen) following the manufacturer’s instructions. cDNA was made using the qScript cDNA SuperMix (Quanta Biosciences). qRT-PCR was run using SYBR Green FastMix (Quanta Bioscience) on a CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad). Beta-actin (Actb) or CD45 (Ptprc) were used as housekeeping genes, with results presented as fold change using the ΔΔCt method. Primers used are listed in Supplementary Table 2.




2.7 Protein extraction and analysis

Mouse lung protein was extracted by homogenizing cryopreserved lung tissue in tubes containing chrome plated steel beads. For total protein, RIPA buffer (Sigma) with protease + phosphatase inhibitor cocktail (Thermo Fisher Scientific) was used; for nuclear and cytosolic fractionation, buffers from the NE-PER Nuclear Protein Extraction Kit (Pierce) were used. After incubating for 30 minutes on ice, samples were centrifuged at 18,620 x G for 30 minutes at 4°C, with supernatants collected. Protein concentration was determined using a bicinchoninic acid assay (Thermo Fisher Scientific) according to the manufacturer’s instructions.

BALF supernatants were analyzed by Olink Proximity Extension Assay using the Olink Target 48 (Olink Proteomics) panel for mouse immune markers. Samples were run by the Houston Methodist Research Institute Immunoediting Core according to the manufacturer’s instructions. Data were provided as NPX values (normalized protein expression with log2-type transformation) and pg/mL (absolute quantification).

Immunoblotting was performed as previously described (37), with nuclear fractions used for STAT3 detection and total protein used for p65. Primary antibodies were against STAT3 (1:1000; catalog 4904S, Cell Signaling Technology), p-p65 (Ser536) (1:1000, catalog 3033S, Cell Signaling), total p65 (1:1000, catalog ab32536, Abcam), histone H3 (1:1000; catalog 4499S, Cell Signaling Technology), and β-actin (1:1000; catalog 4970S, Cell Signaling Technology).

The NF-κB (p65) binding activity was measured using the NF-κB (p65) Transcription Factor Assay Kit (Cayman Chemical Company) as previously described (13), with 10 μg of nuclear extracts run in duplicate. Optical density (OD) was measured at 450 nm, and fold binding activity was calculated by normalizing to control ODs.




2.8 Flow cytometry

Flow cytometry was performed as previously described (13): Briefly, lungs were harvested as mentioned above but were then manually cut using scissors into a paste and then digested for 30–45 minutes at 37°C in 1 mg/mL collagenase IV (Gibco) in RPMI (GenDEPOT). Digested samples were then mechanically dissociated into single-cell suspensions using 70 μm nylon mesh (Falcon) and subjected to RBC lysis. Cells were then resuspended in FACS buffer (1X PBS, Sigma; 2 mM EDTA, Millipore Sigma; 1% FBS, GenDEPOT) for staining. 3 x 106 cells per sample were allocated to separate myeloid and lymphoid panels (see Supplementary Table 3 for complete antibody list and panel composition). Myeloid samples underwent Fc blocking with anti-CD16/CD32 (clone 2.4G2, Tonbo) concurrent with surface staining for 30 minutes on ice, followed by fixation with 1% formaldehyde. Lymphoid samples underwent intracellular cytokine stimulation: cells were cultured in RPMI (GenDEPOT) containing 50 ng/mL phorbol 12-myristate 13-acetate (PMA, Sigma), 500 ng/mL ionomycin (Sigma), 1 μL/mL GolgiStop (BD Biosciences), and 0.7 μL/mL GolgiPlug (BD Biosciences) for 4–6 hours at 37°C. After surface staining, cells were permeabilized with the FoxP3 Transcription Factor Staining Kit (Invitrogen) for intracellular/intranuclear markers. All data were acquired using an LSRFortessa X-20 (BD) and analyzed with FlowJo software, version 10 (Tree Star). Gating strategies are shown in Supplementary Figure 5.




2.9 Bulk RNA sequencing and GSEA

Following RNA extraction as described above, whole-transcriptome sequencing (RNA-seq), library construction, and gene set enrichment analysis (GSEA) were performed by Novogene (Beijing, China) using standard protocols, including quality control, library preparation with poly(A) selection, and paired-end sequencing on the Illumina platform. Data were processed and analyzed following Novogene’s recommended RNA-seq pipeline. GSEA results were generated by comparison with GO Enrichment gene sets.




2.10 Cellular deconvolution and TCGA analysis

RNA-seq immune profiles were deconvoluted from bulk RNA-seq data using the xCell (38) and CIBERSORT (39) algorithms in R (version 3.5.1; R Project for Statistical Computing). Gene expression data from LUAD patients, including both males and females, were obtained from TCGA (https://portal.gdc.cancer.gov). Linear regression was run to correlate immune cell infiltration with STAT3 expression. Overall survival was calculated for patients compared to B cell infiltration, and overall survival for patients with low STAT3 expression was compared to DC infiltration.




2.11 Statistics

Data are presented as mean ± SEM. Comparisons between control and TTI-101-treated groups were calculated by a 2-tailed t test, with P < 0.05 being statistically significant. All statistical analyses were performed in GraphPad Prism (Version 10.3.1).




2.12 Data availability statement

Data were generated by the authors and are available on request.





3 Results



3.1 TTI-101 reduces growth of tumor cells in KM-LUAD models

To test the effectiveness of TTI-101 on K-ras mutant cancer cells, we first treated a mouse-derived KM-LUAD cell line with increasing concentrations of TTI-101. The MDA-F471 mouse LUAD cell line, which is K-ras mutant and STAT3-addicted (32), demonstrated a dose-dependent decrease in viability upon treatment with TTI-101, with an IC50 of 14.74 μM (Supplementary Figure 1A).

We next examined TTI-101 in vivo using a KM-LUAD mouse model possessing K-rasG12D expression under the control of club cell secretory protein (CC-LR). TTI-101 was formulated in DMSO and delivered intraperitoneally (i.p.) at 100 mg/kg five days per week from 10-to-14 weeks-of-age. This treatment timeline was chosen in order to test for any tumor-preventative effects, since adenoma formation is evident at 14 weeks of age in the CC-LR model (40). Fourteen-week-old TTI-101-treated mice displayed significant reduction in tumor burden as measured by surface tumor number (Supplementary Figure 1B) and the ratio of tumor to healthy lung area by histology (Supplementary Figures 1C, D). Tumors from these mice showed reduced levels of activated STAT3 (STAT3 phosphorylated on Y705; pY-STAT3) using both pY-STAT3 immunohistochemistry (IHC; Supplementary Figures 1E, F) and Luminex bead-based assays (Supplementary Figure 1G).

To facilitate its potential use in patients, we next examined the effect of TTI-101 treatment (50 mg/kg once daily) in CC-LR mice again from 10-to-14 weeks of age using TTI-101 formulated in Labrasol/PEG-400 that allowed for its administration by oral gavage (o.g.) (41). Plasma TTI-101 levels reached 1952 +/- 914.5 ng/mL in treated mice and were below the lower limit of quantitation (LLOQ) for controls (Supplementary Table 4). Importantly, we witnessed a 39% reduction in tumor burden (p = 0.0053; Figures 1A–C). In addition, the number of Ki-67+ tumor cell nuclei was decreased, indicating reduced tumor cell proliferation (Figures 1D, E). As previously demonstrated, TTI-101 was well tolerated with no evidence of toxicity or weight loss observed (Figure 1F).

[image: The image contains a series of figures comparing control and TTI-101 treatments on tumor characteristics in lungs. Panel A shows H&E-stained lung sections, with more visible tumors in the control section. Panel B displays a bar graph of tumor multiplicity, being higher in the control. Panel C shows a bar graph of tumor area percentage, also higher in the control. Panel D illustrates Ki-67 stains, showing more proliferation in the control. Panel E presents a bar graph of Ki-67 positivity, greater in the control. Panel F depicts a line graph of weight changes over days, with similar trends in both groups.]
Figure 1 | STAT3 inhibition reduces development and growth of lung tumors. (A) Representative stitched photomicrographs of H&E-stained sections of 14-week-old CC-LR mouse lungs either untreated or given TTI-101 by oral gavage (o.g.); arrows indicate representative tumor areas; original magnification, 4X; scale bar is 5 mm. (B) Tumor burden as measured by manual counting of lung surface tumors (N = 21-25). (C) Percentage of tumor area over total lung area (N = 6). (D) Representative photomicrographs of Ki-67-stained sections and quantified in (E) (N = 4-12); scale bar is 200 μm. (F) Weight, normalized to initial weight, of CC-LR mice given 50 mg/kg TTI-101 o.g. from 10-to-14 weeks-of-age. Data represent mean ± SEM. ***P < 0.001, **P < 0.01, *P < 0.5 by unpaired t test.




3.2 STAT3 inhibition reduces STAT3 signaling while skewing to an NF-κB-driven chemokine profile

To determine if STAT3 signaling was impacted by TTI-101, we measured STAT3 in CC-LR mice treated with TTI-101 by o.g. Early lesions displayed a lower density of pY-STAT3+ cells (Figures 2A, B), and immunoblotting of nuclear fractions from whole lung protein showed decreased translocation of STAT3 into the nucleus (Figures 2C, D). Since there is known modulation between STAT3 and NF-κB signaling (42), we performed immunoblotting to assess for NF-κB pathway components. However, we saw no changes in protein abundance of the NF-κB nuclear effector subunit p65 (Supplementary Figures 2A, B). To check for possible changes in transcriptional activity, we performed a p65 DNA binding assay, which measures the ability of the NF-κB p65 subunit to bind its transcriptional target sequences. Using this method, we saw a trend for increased p65 DNA binding (Figure 2E).

[image: A composite image displays various analyses between control and TTI-101 treatments. Panel A shows histological images of pY-STAT3 early lesions, with reduced staining in the TTI-101 group. Panel B is a bar graph displaying a significant decrease in pY-STAT3+ cells in the TTI-101 group. Panel C shows a Western blot for STAT3 and Histone H3, with decreased STAT3 in the TTI-101 group. Panel D is a bar graph showing reduced relative density of STAT3/H3 in TTI-101. Panel E illustrates p65 binding activity, slightly increased in TTI-101. Panel F shows cytokine levels in BALF, with significant differences in CXCL1, CCL2, CXCL9, IL-1α, and FGF21.]
Figure 2 | STAT3 inhibition reduces STAT3 signaling intensity while skewing to an NF-κB-driven chemokine profile. (A) Representative photomicrographs of pY-STAT3-stained sections in early lesions in CC-LR mice (N = 3); magnification, 20X; scale bar is 200 μm. (B) Quantification of pY-STAT3+ cells from CC-LR mice by μm2 of lesion area. (C) Immunoblot of STAT3 and histone H3 (HH3; loading control) in nuclear fractionated lung tissue lysates, quantified in (D) as relative density of STAT3 to HH3 (N = 6). (E) p65 DNA binding assay, with fold binding activity calculated based on OD of control samples (N = 5). (F) Olink protein extension assay analytes from bronchoalveolar lavage fluid (BALF) (N = 4). Data represent mean ± SEM. **P < 0.01, *P < 0.5 by unpaired t test.

To assess changes in the TIME and any downstream effects of STAT3 inhibition, we performed an Olink Proximity Extension Assay on bronchoalveolar lavage fluid (BALF) from CC-LR mice. BALF was chosen as a means of biomarker discovery and facilitating clinical translation because cytokine changes in BALF are more reflective of the secretory products of airway immune cells. Olink of BALF revealed upregulation of various soluble mediators (Figure 2F): Three chemokines, CXCL1, CCL2, and CXCL9, were upregulated, which provide chemotactic impetus to neutrophils, monocytes, and primed T cells respectively (43–45). IL-1α, a pro-inflammatory cytokine (46), was also upregulated. These four markers are notable as being transcriptional targets of NF-κB (47), although CXCL9 is also strongly induced by IFNγ (48). Normalized protein expression (NPX) data from Olink showed upregulation of other NF-κB targets: CCL22, CSF1, CSF2, CSF3, CXCL2, and TNFα (Supplementary Figure 2C). We also noted an increase in FGF21, a factor which promotes cholesterol metabolism and is known to cause exhaustion in T cells (49).

Collectively, these results indicate a possible shift in lung tumors from STAT3- to NF-κB-driven inflammation, with the reprogramming of the TIME evidenced primarily by changes in chemokine composition rather than prolific cytokine profile alterations.




3.3 STAT3 inhibition increases DC and Th1 proportion within the TIME

To better understand changes in the immune cell populations within the TIME, we performed flow cytometry of CC-LR mouse lungs treated with TTI-101 by o.g. In the myeloid compartment, the most significant changes were seen in dendritic cells (DCs), with classical type 1 (cDC1), classical type 2 (cDC2), and monocytic DC (Mo-DC) proportions elevated in the lung (Figures 3A, B). It should be noted, however, that our myeloid gating strategy was unable to satisfactorily delineate alveolar macrophages (AMs) and cDC1s, as both are CD11b- CD11c+. Therefore, we treated these cells as a lumped group labeled cDC1/AM. cDC2s displayed trends for increased MHC-II expression (Supplementary Figure 3C), indicating activation and antigen presentation ability. Flow cytometry of BALF indicated a trending increase in cDC2 infiltration and Ly6G low immature granulocytes (Supplementary Figure 3B), which may have migrated in response to elevated CCL2 and CXCL1 respectively (Figure 2F). Immature granulocytes may develop into polymorphonuclear MDSCs (PMN-MDSCs), and these findings will be explored in greater depth later.

[image: Flow cytometry and microscopy analysis of immune cell populations. Panel A shows Ly6C vs. CD11b plots for control and TTI-101 groups. Panel B is a bar graph comparing CD45+ dendritic cell percentages, with significant increases marked by asterisks. Panel C depicts CD4 vs. IFNγ plots. Panel D presents a bar graph illustrating CD4+ percentages, with higher values in the TTI-101 group. Panel E shows fluorescence microscopy images of tissue labeled with DAPI and B220, displaying more green-stained cells in the TTI-101 group.]
Figure 3 | STAT3 inhibition increases DC and Th1 proportion within the TIME. (A) Representative dot plots of myeloid cell flow cytometry analysis pre-gated on CD11c+ cells; expression of Ly6C and CD11b is used to delineate classical type 1 DCs (cDC1s)/alveolar macrophages (AMs), cDC2s, and monocytic DCs (Mo-DCs), and is quantified in (B) as a percentage of CD45+ cells (N = 3-5). (C) Representative dot plots of lymphoid cell flow cytometry analysis with ex vivo restimulation by PMA/Ionomycin, pre-gated on CD3+ cells; expression of CD4 and IFNγ is used to mark T helper 1 (Th1) cells and is quantified in (D) as a percentage of CD4+ cells (N = 3-5). (E) Representative multiplex immunofluorescence (COMET) images for B cells (B220+); original magnification, 20X; scale bar is 100 µm. Data represent mean ± SEM. **P < 0.01, *P < 0.5 by unpaired t test.

Within the lymphoid compartment, we noted an increase in IFNγ-producing CD4+ helper T cells (Th1s) (Figures 3C, D). IFNγ transcripts (Ifng) were significantly elevated as measured by qRT-PCR, and expression of T-bet (Tbx21), the defining Th1 lineage transcription factor, trended higher (Supplementary Figure 3D). However, no significant changes were seen in other T cell subtypes (data not shown). We also noted a trend for increased B cell proportion by flow cytometry (Supplementary Figure 3E), an observation corroborated by immunofluorescence imaging of lung sections showing some heterogeneous increase in B cell infiltration into the lung (Figure 3E, Supplementary Figure 3F). Taken together, our findings suggest that STAT3 inhibition by TTI-101 augments DC infiltration into the TIME and bolsters the Th1 response.




3.4 Transcriptomic profiling indicates STAT3 inhibition broadly increased immune activation, particularly DCs and B cells

To better survey the effects of TTI-101 in our model in an unbiased manner, we performed whole-transcriptome sequencing (RNA-seq) of mRNA from whole lung lysates. Applying a cutoff rate of FDR > 2, we discovered 398 genes that were differentially expressed following STAT3 inhibition (Figure 4A). Gene set enrichment analysis (GSEA) by GO enrichment indicated downregulated pathways related to microtubules and cilia (Supplementary Figure 4A). Additionally, C2cd4b, a marker of acute inflammation (50), and Dlk1, a driver of Wnt signaling, lung repair and stemness, and cancer stemness (51–53), were downregulated (Figure 4A). However, a larger number of pathways related to immune activation were found to be significantly enriched (Figure 4B). Broad T, B, and myeloid cell activation pathways were seen, including cell adhesion, cell migration, B cell receptor (BCR) signaling, immune proliferation, and more. Several transcripts in these pathways were upregulated, including Blk (T cell activation) and Cd79a (mature B cells) (Figure 4A). GSEA also supported our findings of increased Th1/DC activation as well as enrichment of inhibitory gene sets governing Ras and ERK1/2 (Figure 4B), indicating that TTI-101 mitigates hyperactive K-ras signaling.

[image: Graphical representations of various analyses:   A) Volcano plot illustrating differentially expressed genes with log2 fold change and negative log10 p-value, highlighting Cypt1a1 and others.   B) GO enrichment analysis bar chart showing upregulated pathways, including T cell activation.   C) Bar graph for xCell deconvolution, comparing control and TTI-101 treated groups on B cell types, with significant differences marked.   D and E) Scatter plots show associations of STAT3 expression with infiltration levels in CD4+ Th1 and plasmacytoid DCs, respectively.   F and G) Kaplan-Meier survival plots depicting B cells and dendritic cells in LUAD over time, with hazard ratios noted.]
Figure 4 | Transcriptomic profiling indicates STAT3 inhibition broadly increases immune activation. (A) Volcano plot of upregulated (orange) and downregulated (blue) genes following TTI-101 treatment in CC-LR mice (N = 4). (B) Go enrichment GSEA showing the top enriched pathways (N = 4). (C) Cellular deconvolution score of RNA-seq data by xCell. Correlation of STAT3 expression in LUAD patients (adjusted by stage) vs. Th1 (D) and plasmacytoid DC (E) infiltration (N = 515). Survival curves of B cells in LUAD (F) and DCs in LUAD with low STAT3 expression (G). Data represent mean ± SEM. *P < 0.5 by unpaired t test.

We next deconvoluted the bulk RNA-seq data to quantify immune cell infiltration. Using the xCell deconvolution method (38), we saw significant enrichment in B cells, memory B cells, and class-switched memory B cells (Figure 4C). B cell genes were seen to be upregulated, including Ighm (Ig mu heavy chain), Cd19 (B cell lineage), and Cxcr5 (B cell chemotaxis) (Figure 4A). Using xCell, we also noticed a higher score for common lymphoid progenitors (CLPs) (Supplementary Figure 4B). Use of CIBERSORT deconvolution (39) revealed a decrease in M2 score (Supplementary Figure 4C). Deconvolution scores were correlated with LUAD data from The Cancer Genome Atlas (TCGA): Th1s and plasmacytoid DCs negatively correlated with STAT3 expression in LUAD tumors (Figures 4D, E), a pattern we also noticed for CLPs (Supplementary Figure 4D). Owing to the B cell phenotype found in our RNA-seq data, we queried TCGA for LUAD patients and B cell infiltration. Our results showed that higher B cell infiltration led to increased cumulative survival (Figure 4F). Since we were operating in the setting of STAT3 inhibition, we narrowed our analysis to patients with low STAT3 expression. We found that patients with low STAT3 showed improved survival with higher infiltration of DCs (Figure 4G), supporting our finding of increased DC infiltration in CC-LR mice. These data suggest that DC tumor infiltration may serve as a predictor of response to STAT3 inhibition while suggesting a role for B cells in the anti-tumor response engendered by TTI-101.





4 Discussion

In this study, we demonstrated that inhibiting STAT3 with TTI-101 is an efficacious means of targeting a myriad of pro-tumor STAT3 functions across the tumor and immune compartments. In CC-LR mice, STAT3 inhibition attenuated tumor burden and tumor proliferation. Immunologically, we observed substantial reprogramming of the TIME: in addition to decreased STAT3 signaling, we observed upregulation of many NF-κB targets, including monocyte and T cell chemokines (CCL2 and CXCL9). Flow cytometry profiling of the lung revealed changes in both the myeloid and lymphoid compartments: DC proportions were higher following treatment with TTI-101, with a corresponding increase in Th1s. Increased immune activation was reinforced by differential gene analysis, with profiles for T, B, and myeloid cell activation showing significant positive enrichment, particularly for B cells. Comparisons with LUAD data from TCGA data likewise indicated inverse relationships between STAT3 expression and Th1 and DC infiltration. B cell and DC infiltration even correlated with improved survival.

Our results shed light on the temporal nature of STAT3 in lung tumorigenesis. Some studies have reported that early Stat3 ablation is pro-tumorigenic (29, 30). These studies showed that deletion of Stat3 in the lung epithelium concurrent with K-rasG12D induction fostered KM-LUAD development, growth, and lethality. The temporal nature of STAT3 function was illustrated by Zhou et al., who demonstrated that preemptive targeting of STAT3 prior to carcinogen exposure resulted in increased K-ras mutation rate, inflammation, and tumorigenesis. However, once tumors were established, Stat3 deletion proved integral to reducing tumor growth (26). In our hands, we were able to pharmacologically target STAT3 after initial tumor formation but saw decreased tumor growth. Therefore, we conclude that STAT3 inhibition is a viable means of treating KM-LUAD between initial tumor formation and tumor establishment.

Additionally, our results show that targeting STAT3 does not only affect tumor cells but repolarizes the TIME to an anti-tumor phenotype. Skewing from STAT3 to NF-κB signaling may explain the resulting changes in secreted factors. The NF-κB target CCL2, which is a known monocyte chemokine, is also a DC chemotactic factor (54) and may well explain the increased abundance of DCs within the lung. Likewise, CXCL9 is known to recruit primed T cells to sites of inflammation (45) and may correspond with our finding of increased Th1 prevalence.

DCs are well known to play an essential role in priming T cell-mediated anti-tumor immune responses (55, 56), and the trend for cDC2s to upregulate their MHC-II expression is indicative of increased activation and antigen presentation (57). While STAT3 is known to play an important role in DC maturation (58, 59), DC-specific knockouts of STAT3 in mice result in DCs that are fewer in number but greater in anti-tumor function and Th1 priming ability via IL-12 secretion (20, 60). Therefore, we suspect that TTI-101 enhances DC antigen presentation and T cell priming to elicit an anti-tumor response.

Th1 function is likewise influenced by STAT3 signaling: STAT3-derived IL-6 and TGFβ drive CD4 differentiation away from Th1 towards Th17, a CD4 subtype that is often pro-tumorigenic through IL-17-mediated recruitment of MDSCs (61–64). STAT3 likewise is important for regulatory T cell (Treg) differentiation via TGFβ (65), and deletion of STAT3 in the murine T cell compartment obliterates Treg tumor infiltration (66). In our hands, STAT3 inhibition using TTI-101 in the CC-LR model seems to promote Th1 function.

Evidence of anti-tumor synergy between myeloid and T cells is also mirrored in our RNA-seq results, with numerous anti-tumor immune signaling pathways showing significant enrichment. It is also telling that in LUAD tumors with low STAT3 expression, DC infiltration is predictive of survival. In subsequent studies, we will focus more on the DC:T interaction and the priming process in response to TTI-101.

It is worth noting that while we only saw a trending increase in B cell abundance in the lung, transcriptomic profiling indicated increased BCR signaling and B cell activity, and cellular deconvolution predicted increased B cell enrichment. Humoral immunity and tertiary lymphoid structures (TLSs) are known positive prognostic indicators in KM-LUAD (67, 68); while we saw no evidence of TLSs (data not shown), it is likely that humoral immunity plays a role in the response to TTI-101 and merits further investigation.

We also detected TTI-101-induced gene transcript changes that suggest potential pathways for the emergence of TTI-101 resistance. For example, FGF21, which inhibits CD8 T cells by boosting cholesterol metabolism (49), was upregulated in BALF and may herald blunting of the anti-tumor responses. Similarly, increased CXCL1, a known neutrophil chemokine (43), could lead to recruitment of PMN-MDSCs, which are immunosuppressive and a negative prognostic indicator in KM-LUAD (10).

While this study demonstrated the efficacy of STAT3 inhibition via TTI-101 in reducing tumor burden and in reprogramming inflammation in KM-LUAD, several limitations should be addressed. First, we have studied the role of TTI-101 in a preventative setting in CC-LR mice. Our early treatment regimen is most translatable to high-risk patients who, through improved early screening, may benefit from a prophylactic intervention. However, providing the drug once tumors are established or increasing drug exposure may yield different results, and we plan to study STAT3 inhibition at later timepoints moving forward. Second, although we observed increased immune activation, including DC and Th1 responses, the precise mechanism of immune priming and the durability of this response remain unclear. While we see tumor-intrinsic effects of STAT3 inhibition in terms of reduced tumor cell proliferation, we do not see changes in angiogenesis or apoptosis markers (data not show). This suggests that tumor-extrinsic STAT3 function in DCs and T cells play a marked role. In the same vein, we cannot precisely define if one DC subset or another is playing a greater role, and we cannot rule out a role for AMs, since they were indistinguishable from cDC1s in our gating. Additionally, while transcriptomic analyses suggested increased B cell enrichment and activity, our flow and COMET results are limited and only trending. The functional contribution of humoral immunity and its role in the anti-tumor response in this model warrant further investigation. Moreover, the CCR2/CCL2 pathway recruits mononuclear MDSCs (M-MDSCs) into tumors, in addition to monocytes and DCs (69).

We will focus future studies on longitudinal monitoring of M- and PMN-MDSC recruitment to further dissect the interplay between MDSCs, DCs, T cells, and B cells in shaping anti-tumor immunity. Since the use of TTI-101 alone did not completely abrogate lung tumor burden, and since TTI-101 did not appear to alter CD8 number or their cytokine profiles (data not shown), we plan to combine TTI-101 with anti-PD-1 to see if there are synergistic effects that could boost cytotoxicity. In addition, it will be interesting to test combination therapy with K-ras inhibitors, conventional chemotherapy, and other immunotherapeutic interventions such as DC vaccination to improve DC function and T cell priming. As this study was limited to the early-stage lung tumor setting, we also plan to study the effects of TTI-101 in later-stage tumors alone and in combination with the other therapies mentioned.

In conclusion, our findings establish STAT3 inhibition via TTI-101 as a promising early therapeutic/preventative approach for KM-LUAD that can reduce tumor burden, reprogram the TIME, and enhance anti-tumor immunity.
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Introduction

Immune checkpoint inhibitors (ICIs) have significantly improved survival for patients with metastatic melanoma, yet many experienceresistance due to immunosuppressive mechanisms within the tumor immune microenvironment (TIME). Understanding how the spatial architecture of immune and inflammatory components changes across disease stages may reveal novel prognostic biomarkers and therapeutic targets.





Methods

We performed high-dimensional spatial profiling of two melanoma tissue microarrays (TMAs), representing Stage III (n = 157) and Stage IV (n = 248) metastatic tumors. Using imaging mass cytometry (IMC) and multiplex immunofluorescence (mIF), we characterized the phenotypic, functional, and spatial properties of the TIME. Cellular neighborhoods were defined by inflammatory marker expression, and spatial interactions between immune and tumor cells were quantified using nearest-neighbor functions (G-cross). Associations with survival were assessed using Cox proportional hazards models with robust variance estimation.





Results

Stage IV tumors exhibited a distinct immune landscape, with increased CD74- and MIF-enriched inflammatory neighborhoods and reduced iNOS-associated regions compared to Stage III. Cytotoxic T lymphocytes (CTLs) and tumor cells were more prevalent in Stage IV TIME, while B cells and NK cells were depleted. Spatial analysis revealed that CTL–Th cell, NK–T cell, and B–NK cell interactions were linked to improved survival, whereas macrophage aggregation and excessive B–Th cell clustering in inflammatory regions correlated with worse outcomes. Organ-specific analyses showed that CTL infiltration near tumor cells predicted survival in gastrointestinal metastases, while NK–T cell interactions were prognostic in lymph node and skin metastases.





Discussion

Our results reveal stage-specific shifts in immune composition and spatial organization within the melanoma TIME. In advanced disease, immunosuppressive neighborhoods emerge alongside changes in immune cell localization, with spatial patterns of immune coordination—particularly involving CTLs, NK cells, and B cells—strongly predicting survival. These findings highlight spatial biomarkers that may refine patient stratification and guide combination immunotherapy strategies targeting the inflammatory architecture of the TIME.





Keywords: tumor immune microenvironment (TIME), immune exclusion, spatial immune profiling, inflammatory biomarkers, melanoma progression, prognostic immune signatures, inflammatory signaling pathways, immune cell crosstalk




1 Introduction

Invasive melanoma is the least common but deadliest form of skin cancer. It is estimated that 200,340 new cases of melanoma will be diagnosed in 2024 (1). In the United States, melanoma is the fifth most common cancer in both men and women across all age groups and the third most common cancer among individuals aged 20–39 (2). Over the past decade, there has been a significant increase in the overall five-year survival rate for patients with metastatic melanoma. Between 2014 and 2018, the melanoma mortality rate declined by approximately 7% per year in adults younger than 50 and by about 5% per year in older adults (3). This improvement is largely attributed to earlier diagnosis, advancements in surgical techniques, and the development of novel therapeutic approaches. In particular, molecularly targeted therapies, vaccines, adoptive T-cell therapy, and immune checkpoint inhibitors (ICIs) have revolutionized melanoma treatment (4).

Among these, ICIs have had the most significant impact by inducing durable responses and conferring long-term survival benefits through enhanced tumor immunity (5–7). However, despite their efficacy, a subset of patients experiences either primary resistance, where they fail to respond initially, or acquired resistance, where tumors progress after an initial response to ICIs (8). These resistance mechanisms are primarily driven by immune evasion strategies that alter tumor-immune interactions, including T cell exhaustion, regulatory T cell activation, recruitment of myeloid-derived suppressor cells and macrophage polarization toward the immunosuppressive M2 phenotype (9–11). To develop more effective therapeutic strategies that enhance immunotherapy outcomes, it is critical to first gain a comprehensive understanding of both the phenotypic and functional spatial organization of the tumor immune microenvironment (TIME).

The complexity and heterogeneity of the TIME pose significant challenges in identifying molecular biomarkers in metastatic melanoma and understanding how the TIME influences responses to ICI therapy. Tumor cells, as major constituents of the TIME, play a pivotal role in shaping the immune landscape by secreting tumor antigens and modulating immune cell function, often creating an unfavorable microenvironment that hinders immune responses. Previous studies by our group have demonstrated that inflammatory marker expression in metastatic melanoma is associated with prognostic indicators such as recurrence-free survival (RFS) and overall survival (OS) (12–16).

The present study aims to provide an extensive analysis of the TIME in advanced melanoma, with a particular focus on the TIME’s cellular components and their spatial organization in relation to inflammatory marker expression within the immediate cellular neighborhood.




2 Materials and methods



2.1 Patient samples and datasets

Two independent tissue microarrays (TMAs) were utilized, representing non-primary metastatic melanoma lesions: Stage III (regional metastases) and Stage IV (distant metastases). Under IRB-approved protocols, cases with available archival material and clinical follow-up exceeding five years were included. Clinical records were reviewed for key events, including local recurrence, distant metastasis patterns, and overall survival (OS).

	the Stage III TMA, developed at the Saint John’s Cancer Institute (SJCI), was prepared from formalin- fixed paraffin-embedded (FFPE) lymph node tumors. It contained two core samples per patient from 157 Stage III patients, with annotated clinical outcomes and follow-up data.

	the Stage IV TMA, also developed at SJCI, comprised 393 core samples from 248 Stage IV patients. These samples, derived from FFPE melanoma tissues obtained from Saint John’s Health Center (SJHC), represented a range of distant metastatic sites. Clinical outcomes and follow-up data were sourced from the SJCI melanoma database. A hematoxylin and eosin (H&E) slide was prepared for each sample, and all specimens were reviewed by a dedicated dermatopathologist to ensure tumor viability. Tumor regions of interest were mapped to FFPE blocks before TMA construction.



To enable simultaneous staining and data acquisition across the cohort, the Stage IV TMA was constructed using 1 mm cylindrical cores, distributed in duplicate and randomized to minimize spatial bias. After accounting for core loss during sectioning, 393 evaluable samples remained, representing metastatic sites such as lung, gastrointestinal tract, lymph nodes, skin, and other distant locations.

Staging for both TMAs followed AJCC guidelines at the time of melanoma diagnosis (17). Clinicopathological characteristics are summarized in Tables 1, 2. A diagram of our analysis pipeline is shown in Figure 1.

Table 1 | Summary of key clinical and demographic characteristics for stage III TMA patients.


[image: Patient characteristics table for Stage III, N equals one hundred fifty-seven. Median age is fifty-two years. Gender: sixty-one females, eighty-six males. Mean Breslow thickness is 2.20mm, thirty-one percent with ulceration. Observation period lasts one hundred months. Immunotherapy: thirty-two percent no treatment. Chemotherapy: seventy-six percent no treatment. Radiation: sixty-five percent no treatment. Missing data noted.]
Table 2 | Summary of key clinical and demographic characteristics for stage IV TMA patients.


[image: Stage IV patient characteristics chart for 248 individuals. Median age is fifty-six years, with seventy-nine females (thirty-two percent) and one hundred sixty-nine males (sixty-eight percent). Metastatic sites include gastrointestinal (seventeen percent), skin (twenty percent), lymph node (twelve percent), lung (sixteen percent), and other sites (thirty-five percent). Median Breslow thickness is 1.90 millimeters. Sixty patients have ulceration. Observation period median is fifty-six months. Median lymph nodes positive is 1.00. Missing data reported for Breslow thickness, ulceration, and observation period.]
[image: Diagram illustrating a three-step process for automated cell identification and quantification. The first section shows image acquisition with circular samples. The second section displays tumor and stroma region detection with annotated histological images. The third section illustrates automatic cell segmentation, highlighting cells with color-coded overlays: blue for negative, yellow for 1+ positive, orange for 2+ positive, and red for 3+ positive. The H-score is provided as a formula for quantifying positivity. Data visualizations for Stage III and Stage IV samples are displayed, showing color intensity variations for analysis.]
Figure 1 | Analysis pipeline to characterize the spatial immune landscape of Stage III and IV melanomas. Schematic of the IMC data acquisition of two consecutive slices of two TMAs containing 2 biopsy cores from a total of 157 patients with stage III and 393 samples from 248 patients with stage IV metastatic melanoma. Samples were stained with a protein panel, segmented for tumor/stroma regions detection, followed by cellular identification and quantifications. t-distributed stochastic neighbor embedding (t-SNE) of data was derived from CyTOF of tumor samples, labeled by cell type and the signal intensities of individual markers.




2.2 Imaging mass cytometry by time-of-flight

Imaging Mass Cytometry (IMC) data were acquired using the Hyperion Imaging System (Fluidigm) coupled to a Helios mass cytometer (Fluidigm). All imaging acquisitions followed the manufacturer’s protocols. Briefly, the TMA tissue slide underwent laser ablation at a resolution of approximately 1 µm and a frequency of 200 Hz. A 1 × 1 mm region of interest (ROI) was selected from each TMA core, and data acquisition was performed in three batches. IMC data were stored as MCD and text files, with each individual MCD file manually reviewed to confirm staining presence across all channels. Poor-quality TMA cores were excluded from further analysis.

CyTOF-based IMC profiling utilized TMA slides containing multiple samples stained with a cocktail of 35 antibodies labeled with unique metal isotopes (Supplementary Table S2). A high-energy laser ablated the slides, converting the tissue into ionized trails to generate isotope counts for each ablated spot. These data were then reconstructed into image stacks, capturing the staining patterns for each antibody. The antibody panel for melanoma TIME characterization was designed based on prior studies and commonly used clones in immunohistochemistry. The selected antibodies targeted phenotypic markers to define immune infiltrates (e.g., CD3, CD4, CD8, CD20, and CD68), melanoma markers (SOX10 and S100), structural markers (e.g., CD31), and functional markers (e.g., GzmB, Ki67). Additionally, antibodies against key inflammatory pathways, including CD74, MIF, iNOS, and mPGES1, were incorporated. To ensure specificity and affinity, the panel was validated in spleen, thymus, and melanoma tissue samples.

Following tumor and stromal segmentation, individual cells were identified and classified based on staining intensity, quantified using the H-score:

[image: H-score formula: (% of 1+ multiplied by 1) plus (% of 2+ multiplied by 2) plus (% of 3+ multiplied by 3).]	

The H-score ranges from 0 to 300, where 0 indicates no staining (negative) and 300 represents maximum staining (100% of cells stained at 3+ intensity).

The heterogeneity and distribution of various cell types are determined and visualized using t-distributed stochastic neighbor embedding (t-SNE) across Stages III and IV. This enables visualization of high- dimensional data in 2 or 3 dimensions, while preserving the innate structure and variance of the data. For the study, t-SNE plots were generated using CyTOF-derived tumor data, with cells labeled by type and individual marker signal intensities (Figure 2).

[image: Tissue microarray images depicting protein expression in cancer stages III and IV with markers for iNOS, CD74, mPGES1, MIF, NT, and CD44. The upper panels show stained tissue sections, while the lower panels provide merged fluorescence images highlighting the expression patterns and cellular localization of each marker in different samples.]
Figure 2 | Representative multiplex immunostaining of Stage III and Stage IV melanoma TMA cores showing inflammatory markers (iNOS, mPGES1, MIF, NT, CD44, and CD74; scale bars=20 µm). Top part of the figure shows their expression in sample cores combined and bottom part shows their individual expression characteristics.




2.3 Multiplex immunofluorescence staining and image acquisition

Multiplex immunofluorescence (mIF) staining was performed using the Akoya Biosciences Opal 7-Color Manual IHC Kit (catalog number NEL811001KT) following the manufacturer’s specifications. Briefly, slides were deparaffinized, rehydrated, and subjected to melanin bleaching according to the protocol described by (18). Antigen retrieval was carried out using the EZ-Retriever V.3 system (BioGenex, Fremont, CA, USA) with AR6 buffer (Akoya Biosciences) at 95°C for 15 minutes between antibody staining cycles, followed by a 15-minute cooling period at room temperature.

The antibody panel and corresponding fluorophores were applied at the following concentrations: CD74 (clone PIN.1, 1:100; Opal 620), CD44 (clone 156-3C11, 1:100; Opal 690), polyclonal MIF (1:100; Opal 570), mPGES1 (1:100; Opal 520), iNOS (1:100; Opal 480), and NT (1:100; Opal 780). DAPI was used for nuclear staining, and slides were mounted with Shandon Immu-Mount (Thermo Fisher Scientific, catalog number 28-600-42).

Image acquisition was performed using the Akoya Biosciences Vectra Polaris automated quantitative pathology imaging system. Cell segmentation and downstream phenotyping analysis were conducted using Visiopharm. A representative example of multiplex immunostaining of Stage III and Stage IV melanoma TMA cores, showing inflammatory markers (iNOS, mPGES1, MIF, NT, CD44, and CD74), is displayed in Figure 2.




2.4 Multiplex imaging alignment and cellular neighborhood analysis

mIF and IMC images were aligned using the TissueAlign co-registration workflow in Visiopharm (19). Following alignment, cellular neighborhoods were defined using a structured workflow.

First, in each TMA sample, AI-driven nuclear segmentation in Visiopharm identified individual nuclei based on DAPI signal in the mIF image. To approximate cellular boundaries, each nuclear object was expanded by 3 microns. Cells were then classified as positive for specific biomarkers or biomarker combinations using intensity thresholding. Once specific phenotypic cell populations were identified, their surrounding neighborhoods (20–80 microns) were defined as Regions of Interest (ROIs). These neighborhood ROIs were then transferred to the co-registered IMC image for further analysis.

For IMC-based cellular characterization, an AI-driven algorithm was applied to the DNA channel (iridium signal) to detect nuclei. Similar to mIF processing, nuclear boundaries were expanded by 3 microns to approximate cellular objects. Cells were then classified based on marker expression, with phenotype assignments determined through intensity thresholding. To ensure accuracy, phenotypic classifications were validated via visual inspection, and manual adjustments were made as needed.




2.5 Statistical analysis

To compare the proportions of cell types and inflammatory neighborhoods between Stage III and Stage IV melanoma, we used beta regression models with false discovery rate (FDR) correction for multiple comparisons. Beta regression was chosen as it appropriately models proportion data constrained between 0 and 1. Groups with zero variance were excluded from analysis to ensure valid model estimation. For each comparison, the beta regression model included stage as the independent variable and the proportion of the respective feature as the dependent variable. Beta regression models were fit using the betareg R package (20). P-values were adjusted using the Benjamini-Hochberg method (21), and statistical significance was defined as p < 0.05. Boxplots and heatmaps were used to visualize the distributions of proportions, with significance markers displayed where appropriate. Cox proportional hazards models were fitted using the R package survival (22), and Kaplan-Meier plots were generated using the R package survminer (23). To account for intra-patient correlation when patients contributed more than one sample, as in the Stage IV TMA, Cox regression models were fitted with robust standard errors using the cluster argument in the coxph function. This approach adjusts variance estimates to account for the non-independence of observations within the same patient. Other plots were created using the tidyverse packages in R (24). All statistical analyses performed on the Stage IV TMA were performed on samples from all organs pooled together, unless indicated otherwise (such as in Section 3.9). All samples from the Stage III and Stage IV TMA were used for all statistical analyses.



2.5.1 Spatial analysis

For the analysis of spatial dispersion and clustering between different pairs of cell types, we estimated the G-cross nearest neighbor distance function Gi,j(r), which is a function of the distance r, with i and j indicating the two types of cells (25, 26). Briefly, Gi,j(r) represents the cumulative distribution function of the distance from a typical point of type i to the nearest point of type j. Mathematically, this can be expressed as:

[image: Mathematical equation: \( G_{i,j}(r) = 1 - \exp(-\alpha_j \pi r^2) \).]	

where the subscripts i and j indicate that the spatial distribution of cell type j relative to cell type i is being computed, r refers to the distance from the reference cell type, and αj is the overall density of cell type j on the slide.

We estimated Gi,j(r) using the Gcross function in the R package spatstat (27). To assess the clinical significance of the estimated Gi,j(r) across Stages III and IV, we extracted the Gi,j(r) estimates at various radii for each cell type pair and used them as independent variables in a univariate Cox proportional hazards (CoxPH) model. For the Stage IV organ-wise metastases survival analyses, we used the area under the curve (AUC) of the estimated Gi,j(r) values at various radii as the independent variable in our CoxPH model. These models were fitted using the coxph function in the R package survival (22).






3 Results



3.1 Summary of stage III patient characteristics

The Stage III TMA cohort included 157 patients with a median age of 52 years (IQR: 24 years) (Table 1). The cohort was 59% male and 41% female. Median Breslow thickness was 2.20 mm (IQR: 2.65 mm), though data were missing for a substantial number of patients (n = 50). Ulceration was reported in 31% of cases, while 57 patients had unknown ulceration status. The median observation period was 100 months (IQR: 145 months). Most patients (76%) did not receive chemotherapy, while 35% received radiation therapy. Immunotherapy use was variable, with 41% receiving adjuvant treatment, 20% receiving neoadjuvant treatment, and 18% receiving both.

The median overall survival for Stage III TMA patients was 20.2 months (95% CI: 15.3–61.7) (Supplementary Table S3). The estimated 5-year survival probability was 41.5%, while the 10-year survival probability was 27.9%.




3.2 Clinical and demographic characteristics of stage IV TMA patients

The Stage IV TMA cohort included 248 patients with a median age of 56 years (IQR: 18 years) (Table 2). The cohort was 68% male and 32% female. Metastatic sites varied, with 35% of patients having metastases at other locations, followed by skin (20%), gastrointestinal (GI) tract (17%), lung (16%), and lymph nodes (12%). Median Breslow thickness was 1.90 mm (IQR: 1.70 mm), though data were missing for 67 patients. Ulceration was present in 39% of cases, with ulceration status unknown for 95 patients. The median observation period was 56 months (IQR: 80 months), though 44 patients had missing data. The median number of positive lymph nodes was 1.00 (IQR: 1.00), with lymph node status unavailable for 48 patients.

The median overall survival (OS) for Stage IV melanoma patients was 10.2 months (95% CI: 8.6–12.4), with a 5-year survival probability of 6.8% and a 10-year survival probability of 2.6% (Supplementary Table S4). Median disease-free survival (DFS) was 18.7 months (95% CI: 15.0–29.2). The 5-year DFS probability was 31.8%, decreasing to 20.2% at 10 years (Supplementary Table S5). Kaplan-Meier curves showing the empirical overall survival probabilities for patients from both the Stage III and IV TMA are shown in Figure 3.

[image: Kaplan-Meier survival curves showing survival probability over time in months for Stage III and Stage IV patients, with distinct red and blue lines representing each stage. Stage III shows higher survival rates than Stage IV. Shaded areas represent confidence intervals. The p-value is less than 0.0001, indicating statistical significance. A table below indicates the number at risk over time for each stage.]
Figure 3 | Kaplan-Meier survival curves comparing overall survival (OS) probability between Stage III and Stage IV patients. The shaded regions represent 95% confidence intervals. The p-value indicates the statistical significance of the difference between the survival distributions (log-rank test). The risk table below the plot shows the number of patients at risk at each time point.




3.3 Differences in immune cell composition between stages

To characterize changes in the tumor immune microenvironment between Stage III and IV melanoma, we quantified the relative proportions of immune and tumor cells in tumor core biopsies. Beta regression analysis identified significant shifts in cell type distributions (Figure 4), where the beta coefficient (β) represents the change in log-odds of a cell type’s proportion in Stage IV relative to Stage III.

[image: Box plot comparing the proportion of different cell types between stages III and IV. Cell types include CTL, TAM, B cells, M2 macrophages, NK cells, T cells, Th cells, and tumor cells. Significant differences are marked above certain plots with asterisks. Stage III is indicated in blue and stage IV in red.]
Figure 4 | Distribution of cell type proportions across Stage III and Stage IV melanoma. Each boxplot represents the proportion of a given cell type per image, grouped by stage. Statistical significance of difference in mean proportion was assessed using a beta regression model, with significance markers (*,**, ***) indicating significant differences between stages after false discovery rate correction. Significance levels are denoted as follows: ∗ ∗ ∗ (p < 0.001), ∗ ∗ (p < 0.01), and ∗ (p < 0.05).

Stage IV tumors exhibited significantly higher proportions of cytotoxic T lymphocytes (CTL, β = 0.474, p < 0.001) and tumor cells (β = 0.487, p < 0.001), while B cells (β = −0.365, p = 0.007), NK cells (β = −0.541, p < 0.0001), and overall T cell populations (β = −0.188, p = 0.044) were reduced. Differences in tumor-associated macrophages (TAM, p = 0.109), M2 macrophages (p = 0.192), and T helper (Th) cells (p = 0.153) were not statistically significant. These results indicate an immune shift in Stage IV, characterized by increased CTL infiltration and decreased adaptive immune populations.




3.4 Shifts in inflammatory neighborhoods

To examine immune spatial organization, we analyzed seven inflammatory neighborhoods based on prior studies (14, 15, 28–31). Beta regression analysis identified significant differences in their prevalence between Stage III and IV melanoma (Figure 5).

[image: Boxplot comparing the proportion of cells per neighborhood across different inflammatory neighborhoods for cancer stages III and IV. Red boxes represent stage III and blue boxes represent stage IV. Significant differences are indicated with asterisks above the plots. The x-axis labels include markers like CD74 CD44 and MIF CD44. The y-axis displays the proportion of cells per neighborhood.]
Figure 5 | Distribution of neighborhood proportions across Stage III and Stage IV melanoma. Each boxplot represents the proportion of a given inflammatory neighborhood per image, grouped by stage. Statistical significance of difference in mean proportion was assessed using a beta regression model, with significance markers (*, **, ***) indicating significant differences between stages after false discovery rate correction. Significance levels are denoted as follows: ∗ ∗ ∗ (p < 0.001), ∗ ∗ (p < 0.01), and ∗ (p < 0.05).

Stage IV tumors had a higher prevalence of CD74 CD44 (β = 0.0841, p = 0.015), CD74 MIF (β = 0.306, p < 0.0001), and MIF CD44 neighborhoods (β = 0.320, p < 0.0001), while iNOS mPGES (β = −0.772, p < 0.0001), iNOS mPGES-NT (β = −0.773, p < 0.0001), and iNOS NT neighborhoods (β = −0.455, p < 0.0001) were significantly less frequent. A modest but significant reduction was also observed for CD74 CD44 MIF (β = −0.121, p = 0.015). These findings indicate a shift toward CD74- and MIF-enriched neighborhoods in Stage IV, accompanied by a loss of iNOS-associated regions.




3.5 Immune cell distribution within inflammatory neighborhoods

We next examined the distribution of immune cells as a fraction of all cells in each inflammatory neighborhood in Stage III and IV melanoma (Figure 6). CTLs and tumor cells were significantly more abundant in all neighborhoods in Stage IV, suggesting a broader restructuring of the tumor microenvironment.

[image: Heatmap showing mean proportions of various cell types across different stages and protein conditions: CD74 CD44, CD74 CD44 MIF, CD74 MIF, iNOS mPGES, iNOS mPGES-NT, iNOS NT, and MIF CD44. Cell types include tumor cells, Th cells, T cells, NK cells, M2 macrophages, B cells, TAM, and CTL. The color gradient represents mean proportions ranging from 0.1 (light yellow) to 0.3 (dark purple). Statistical significance is indicated by asterisks: one for significant (*), two for very significant (**), and three for highly significant (***).]
Figure 6 | Mean proportions of different cell types within inflammatory neighborhoods in Stage III and Stage IV melanoma. Each tile is annotated with the mean proportion of the corresponding cell type among cells in that neighborhood. In the Stage IV column, a forward slash (“/”) separates the mean proportion from statistical significance markers (*, **, ***), indicating significant differences in mean proportion between stages based on a beta regression model with false discovery rate correction. Significance levels are denoted as follows: ∗ ∗ ∗ (p < 0.001), ∗ ∗ (p < 0.01), and ∗ (p < 0.05). Text color is adjusted for readability.

B cells and NK cells were generally reduced in Stage IV, particularly as a proportion of CD74- and MIF-enriched neighborhoods. B cells were significantly lower in CD74 CD44 (β = −0.393, p = 0.014) and CD74 MIF (β = −0.426, p = 0.012), while NK cells were depleted in CD74 CD44 (β = −0.367, p = 0.0018) and MIF CD44 (β = −0.463, p < 0.0001). T cells were also significantly reduced as a fraction of multiple neighborhoods, including CD74 MIF (β = −0.292, p < 0.0001) and MIF CD44 (β = −0.359, p < 0.0001), despite the overall increase in CTLs. M2 macrophages and Th cells did not show significant enrichment or depletion in any neighborhood.




3.6 Neighborhood representation within immune cell populations

To assess how immune and tumor cells partition across neighborhoods, we analyzed the fraction of each cell type residing in different inflammatory neighborhoods (Figure 7). A positive estimate indicates a greater fraction of the overall population of a given cell type was located within a specific neighborhood in Stage IV.

[image: Heatmap showing the mean proportions of various cellular interactions across different cell types and stages. Cell types include CTL, TAM, B cells, M2 macrophages, NK cells, T cells, Th cells, and tumor cells. Interactions are categorized under neighborhoods such as MIF CD44, iNOS NT, and others. The color gradient from yellow to purple indicates low to high mean proportions. Statistical significance is marked with asterisks.]
Figure 7 | Mean proportions of inflammatory neighborhoods as fractions of cells within each cell type in Stage III and Stage IV melanoma. Each tile is annotated with the mean proportion of the corresponding neighborhood among cells within that cell type. In the Stage IV column, a forward slash (“/”) separates the mean proportion from statistical significance markers (*, **, ***), indicating significant differences in mean proportion between stages based on a beta regression model with false discovery rate correction. Significance levels are denoted as follows: ∗ ∗ ∗ (p < 0.001), ∗ ∗ (p < 0.01), and ∗ (p < 0.05). Text color is adjusted for readability.

CTLs were more frequently found in CD74 MIF (β = 0.286, p < 0.0001) and MIF CD44 (β = 0.241, p < 0.0001), suggesting an increased presence of cytotoxic immune responses in these neighborhoods. B cells were more localized within CD74 MIF (β = 0.249, p < 0.0001) and MIF CD44 (β = 0.231, p = 0.0016). Tumor cells followed a similar trend, increasing in CD74 MIF (β = 0.219, p = 0.005) and MIF CD44 (β = 0.190, p < 0.0001), further supporting their role as hubs of immune activation and tumor presence in advanced disease (32).

Conversely, iNOS- and mPGES-enriched neighborhoods accounted for a smaller fraction of CTLs and T cells in Stage IV. The proportion of CTLs was significantly lower in iNOS mPGES (β = −0.804, p < 0.0001) and iNOS mPGES-NT (β = −0.750, p < 0.0001). T cells showed a similar reduction in iNOS mPGES (β = −0.684, p < 0.0001) and iNOS mPGES-NT (β = −0.642, p < 0.0001), suggesting a diminished adaptive immune presence in these regions.

MIF CD44 neighborhoods encompassed a greater fraction of NK cells in Stage IV (β = 0.251, p < 0.0001), while iNOS NT neighborhoods accounted for a smaller proportion of NK cells (β = −0.266, p = 0.016). Th cells were more frequently found in MIF CD44 (β = 0.234, p = 0.0035) and CD74 MIF (β = 0.424, p < 0.0001). M2 macrophages in CD74 MIF made up a larger proportion of their overall cell populations in Stage IV than in Stage III (β = 0.360, p < 0.0001; β = 0.478, p = 0.0037).

These findings suggest that in Stage IV melanoma, immune and tumor cells preferentially localize within CD74- and MIF-enriched neighborhoods, while iNOS-associated neighborhoods see a reduced presence of CTLs, T cells, and tumor cells. This redistribution may reflect altered immune engagement and inflammatory signaling in advanced disease.




3.7 Spatial immune interactions and their association with patient survival



3.7.1 Spatial interactions in stage III patients

We examined spatial immune interactions at 40 µm (as measured by the G-cross function) in Stage III melanoma and their association with survival (Figure 8). Several interactions were linked to improved outcomes, suggesting that coordinated adaptive and innate immune responses enhance tumor control (33). These included CTLs attracting M2 macrophages (log-HR = -6.20, p = 0.022) and M2 macrophages attracting B cells (log-HR = -2.68, p = 0.023), potentially reflecting M1 polarization that promotes anti-tumor immunity (34).

[image: A heatmap showing interactions between focal cells and neighboring cells, with a color scale indicating log-hazard ratios (log-HR) for survival impact. Dark blue signifies better survival (lower log-HR), while dark orange indicates worse survival (higher log-HR). Asterisks highlight significant interactions, such as tumor cells with CTL and M2 macrophages with B cells. The color gradient ranges from blue to orange.]
Figure 8 | Heatmap of log-hazard ratios estimated using Cox regression, where the G-cross function at 40 µm between each pair of cell types in Stage III patients serves as a predictor of survival time. Significance levels of hazard ratios are denoted as follows: ∗ ∗ ∗ (p < 0.001), ∗ ∗ (p < 0.01), and ∗ (p < 0.05).

Conversely, interactions linked to worse survival included tumor cells attracting TAMs (log-HR = 1.15, p = 0.036), suggesting that macrophage clustering contributes to an immunosuppressive environment. Additionally, CTLs (log-HR = 1.41, p = 0.0077), NK cells (log-HR = 1.02, p = 0.015), and Th cells (log-HR = 1.72, p = 0.0011) attracting tumor cells were associated with poorer outcomes, possibly reflecting ineffective immune surveillance or tumor-driven immune evasion (35).




3.7.2 Spatial interactions in stage IV patients

In Stage IV patients, distinct spatial immune interactions correlated with survival (Figure 9). Th cells attracting M2 macrophages (log-HR = 3.43, p = 0.0029) and tumor cells (log-HR = 1.10, p = 0.0034) were associated with worse outcomes, suggesting that Th cells in these contexts contribute to a pro-tumor immune environment.

[image: Heatmap illustrating the interaction between neighboring and focal cell types, with color indicating log-HR values linked to survival outcomes. Red shades denote worse survival, blue indicates better survival. Significant interactions are marked by asterisks.]
Figure 9 | Heatmap of log-hazard ratios estimated using Cox regression, where the G-cross function at 40 µm between each pair of cell types in Stage IV patients serves as a predictor of survival time. Significance levels of hazard ratios are denoted as follows: ∗ ∗ ∗ (p < 0.001), ∗ ∗ (p < 0.01), and ∗ (p < 0.05).

Conversely, several interactions were linked to better survival, highlighting the role of immune coordination. These included B cells attracting T cells (log-HR = -1.19, p = 0.0005), T cells attracting B cells (log-HR = -0.995, p = 0.014), and NK cells attracting B cells (log-HR = -0.888, p = 0.045), suggesting that reciprocal interactions among adaptive and innate immune populations support anti-tumor immunity. TAMs attracting NK cells (log-HR = -0.616, p = 0.020) was also associated with improved survival, potentially indicating that macrophage-NK cell interactions facilitate tumor clearance (36).

T cells attracting CTLs (log-HR = -0.532, p = 0.0035) and CTLs attracting T cells (log-HR = -0.473, p = 0.0078) reinforced the role of T cell cross-talk in effective tumor control. Additionally, CTLs attracting Th cells (log-HR = -0.814, p = 0.044) was linked to improved outcomes, suggesting a coordinated cytotoxic-helper T cell response (37).

The findings from both TMAs underscore the complexity of immune interactions in the tumor microenvironment. While certain immune clusters, such as TAM aggregation and NK cell-tumor cell proximity, were linked to poor survival, interactions among T cells, CTLs, NK cells, and B cells were associated with improved outcomes, highlighting the importance of spatial immune organization in melanoma progression.





3.8 Architectural features and cellular neighborhoods associated with inflammatory nodes

We further assessed the spatial clustering and dispersion patterns of immune cell pairs within inflammatory neighborhoods at distances of 20, 40, and 60 µm, using G-cross nearest neighbor estimates and Cox proportional hazards models. These analyses revealed distinct patterns of immune coordination and dysfunction across melanoma progression.



3.8.1 Spatial Inflammatory interactions in stage III patients

In Stage III, B cell clustering in iNOS mPGES-NT neighborhoods at 60 µm was associated with better survival (log-HR = -1.69, p = 0.016) (Figure 10). Similarly, CTLs (log-HR = -1.37, p = 0.037) and NK cells (log-HR = -0.867, p = 0.027) clustering at 60 µm correlated with improved outcomes, suggesting that cytotoxic immune cells forming structured aggregates enhance anti-tumor responses.
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Figure 10 | Plots illustrating the significance of hazard ratios (p < 0.05) estimated from Cox proportional hazards models, where the G-cross function between each pair of cell types serves as a predictor of survival in stage III patients. Significant associations with worse outcomes are shown in red, while those with better outcomes are shown in blue. Within each subplot, estimates are presented relative to a focal cell type located within a specific inflammatory neighborhood, at radii of 20, 40, and 60 µm.

Conversely, interactions associated with poor survival included Th cells attracting T cells (log-HR = 4.73, p = 0.0055) and TAMs (log-HR = 2.60, p < 0.001) at 40 µm, suggesting that these interactions contribute to an immunosuppressive environment. T cells attracting TAMs at 20 µm (log-HR = 2.78, p = 0.0005) were also associated with worse survival, possibly reflecting immune dysfunction or tumor-driven inflammation.

Macrophage interactions in CD74 CD44 MIF neighborhoods exhibited mixed survival associations. Increased clustering of TAMs around T cells at 20 µm (log-HR = 1.94, p = 0.0005) was associated with worse survival, consistent with macrophage-mediated suppression of T cell activity (38). Similarly, tumor cells clustering around NK cells at 20 µm (log-HR = 1.10, p = 0.0038) and 40 µm (log-HR = 1.11, p = 0.022) correlated with worse outcomes, suggesting potential immune evasion mechanisms (39). Th cells clustering with tumor cells at 40 µm (log-HR = 2.22, p = 0.0036) and 60 µm (log-HR = 1.78, p = 0.013) further supported a role for these interactions in immune escape or chronic inflammation.




3.8.2 Spatial inflammatory interactions in stage IV patients

In Stage IV melanoma, spatial immune interactions within inflammatory neighborhoods showed significant associations with survival (Figure 11). Several interactions were associated with improved outcomes, suggesting that coordinated immune activity plays a role in tumor suppression.
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Figure 11 | Plots illustrating the significance of hazard ratios (p < 0.05) estimated from Cox proportional hazards models, where the G-cross function between each pair of cell types serves as a predictor of survival in stage IV patients. Significant associations with worse outcomes are shown in red, while those with better outcomes are shown in blue. Within each subplot, estimates are presented relative to a focal cell type located within a specific inflammatory neighborhood, at radii of 20, 40, and 60 µm.

B cells attracting NK cells in CD74 CD44 MIF neighborhoods was linked to better survival at 20 µm (log-HR = -1.48, p = 0.033) and 60 µm (log-HR = -1.73, p = 0.0018), indicating that NK cell presence close to B cells in these regions may contribute to an effective anti-tumor response. Similarly, NK cells attracting T cells at 40 µm (log-HR = -0.958, p = 0.0001) and 60 µm (log-HR = -1.16, p < 0.0001) suggests that NK-T cell interactions may play a role in immune surveillance (40, 41).

Additional immune interactions in CD74 CD44 MIF neighborhoods were also linked to better survival. CTLs attracting T cells at 20 µm (log-HR = -0.587, p = 0.011) and 40 µm (log-HR = -0.436, p = 0.023) suggests that cytotoxic and helper T cell coordination contributes to positive outcomes (37). M2 macrophages attracting NK cells at 40 µm (log-HR = -2.97, p = 0.020) and TAMs attracting NK cells at 20 µm (log-HR = -1.18, p = 0.050) and 60 µm (log-HR = -0.919, p = 0.027) suggests that macrophages in these neighborhoods may recruit NK cells to mediate tumor suppression (42).

In iNOS mPGES-NT neighborhoods, additional immune interactions correlated with improved survival. Th cells attracting Th cells at 60 µm (log-HR = -3.58, p = 0.012) and CTLs at 60 µm (log-HR = -3.41, p = 0.033) suggests a coordinated immune response rather than immune dysfunction. Additionally, CTLs attracting NK cells at 20 µm (log-HR = -0.939, p = 0.024) and B cells attracting NK cells at 60 µm (log-HR = -5.30, p < 0.0001) further support the role of cytotoxic cell recruitment in tumor control (36).

Several immune interactions were associated with worse survival, particularly those involving excessive clustering of immune cells within inflammatory neighborhoods. In iNOS mPGES-NT neighborhoods, Th cells attracting B cells at 20 µm (log-HR = 7.53, p = 0.028) and 40 µm (log-HR = 2.04, p = 0.0007) was linked to poor prognosis, suggesting that excessive B cell clustering around Th cells in these regions may contribute to immune dysregulation rather than an effective anti-tumor response. Similarly, TAMs attracting B cells at 20 µm (log-HR = 5.71, p = 0.048) and tumor cells attracting TAMs at 20 µm (log-HR = 4.03, p = 0.0006) were associated with poor survival, reinforcing the idea that macrophages in these settings may promote tumor progression rather than restrict it (43, 44).

Th cells had several interactions in CD74 CD44 MIF neighborhoods that were associated with poor patient outcomes. Specifically, Th cells attracting B cells at 60 µm (log-HR = 1.39, p = 0.03) suggests that B cell clustering around Th cells in this neighborhood may not contribute to an effective anti-tumor response. Similarly, Th cells attracting tumor cells at 40 µm (log-HR = 0.973, p = 0.023) indicates that these interactions may facilitate immune evasion or chronic inflammation.

These findings underscore the role of spatial immune organization in shaping patient outcomes. While interactions involving NK cells, CTLs, and macrophages were linked to improved survival, excessive B cell and T cell clustering within pro-inflammatory neighborhoods, as well as macrophage recruitment, were associated with immune dysfunction and worse prognosis in advanced melanoma.





3.9 Spatial immune infiltration across metastatic sites and its impact on patient survival

In our final analysis, we examined how the spatial infiltration patterns of immune and tumor cells within different subsets of melanoma metastases influence patient survival. We analyzed infiltration behavior in five metastatic sites: lung, gastrointestinal tract (GI), skin, lymph nodes, and a combined “other” category, which included organs with insufficient sample sizes for individual analysis. Using survival models at infiltration radii of 20, 40, 60, and 80 µm, we distinguished between nearest-cell-neighbor interactions at smaller distances and broader immune neighborhood effects at larger scales.



3.9.1 GI metastases: CTL-tumor interactions predict survival

In GI metastases (Supplementary Figure S2), most significant survival correlations exhibited a positive trend, indicating that greater immune cell infiltration around focal cell populations generally corresponded to improved patient outcomes. Notably, increased CTL-CTL clustering was strongly associated with better survival across multiple distances (p(20) = 0.0179, p(40) < 0.001, p(60) = 0.0048, p(80) < 0.001). Similarly, higher tumor-CTL infiltration at 20 µm (p < 0.001) was linked to improved outcomes, suggesting that direct tumor engagement by cytotoxic T cells enhances anti-tumor responses (45–47). However, when the focal cell type was reversed (i.e., tumor cells clustering near T cells instead of T cells clustering near tumor cells), this interaction at 20 µm was significantly associated with worse survival (p = 0.0309). This suggests that tumor-driven immune evasion mechanisms, such as immune checkpoint upregulation or T cell exhaustion, may be at play in poor prognosis patients.




3.9.2 Lung, skin, and lymph node metastases: NK and T cell interactions favor survival

For lung, skin, and lymph node (LN) metastases (Supplementary Figures S3, S4, S5, respectively), most hazard ratio trends indicated that increased immune cell infiltration correlated with better survival. A key finding in LN metastases was the increased infiltration of NK cells around T cells, which was significantly linked to improved survival across all distances (p(20) < 0.001, p(40) < 0.001, p(60) < 0.001, p(80) < 0.001). This may reflect an enhanced immunosurveillance role of NK cells in the lymph node microenvironment, where they can activate T cells and promote cytotoxic responses (48, 49). Additionally, greater tumor cell infiltration near CTLs at larger distances (40–80 µm) was associated with improved survival (p(40) < 0.001, p(60) < 0.001, p(80) < 0.001), suggesting that CTL-mediated tumor clearance may still be effective in these microenvironments (50).




3.9.3 Other metastatic sites: tumor clustering and immune surveillance

In metastases from other sites (Supplementary Figure S6), increased infiltration of several immune-tumor cell pairs correlated with better survival. This included tumor-T cell interactions (p(40) = 0.0093, p(60) = 0.0305), NK cell-CTL clustering (p(20) = 0.0153, p(40) < 0.001, p(60) = 0.0317, p(80) = 0.0356), and B cell-tumor interactions at larger distances (p(60) < 0.001, p(80) < 0.001). However, increased tumor- tumor clustering at higher distances was associated with worse outcomes (p(40) = 0.046, p(60) = 0.0305, p(80) = 0.0308), potentially reflecting an immunosuppressive niche that limits immune cell infiltration (51).






4 Discussion

The tumor immune microenvironment (TIME) plays a crucial role in melanoma progression and treatment response. Understanding the spatial organization of immune cells within inflammatory neighborhoods can reveal mechanisms of immune suppression, evasion, and activation that influence patient outcomes. This study provides a comprehensive analysis of immune spatial architecture in metastatic melanoma, highlighting key differences between Stage III and Stage IV disease and identifying immune interactions linked to survival.



4.1 Spatial immune reorganization in stage IV melanoma

Our results indicate a significant reorganization of immune cell distributions in Stage IV melanoma compared to Stage III. CD74- and MIF-enriched inflammatory neighborhoods were more prevalent in Stage IV, while iNOS-associated neighborhoods were significantly reduced. These findings suggest a shift from oxidative stress-driven inflammation in Stage III toward CD74-MIF-associated immune modulation in advanced disease. Previous studies have implicated CD74-MIF signaling in promoting tumor progression by suppressing cytotoxic immune responses and enhancing macrophage-mediated immune evasion (30, 31).

Stage IV tumors exhibited a depletion of B cells and NK cells across multiple inflammatory neighborhoods, while cytotoxic T lymphocytes (CTLs) were more frequently found in CD74-MIF regions. This suggests that despite increased CTL presence, their effectiveness may be diminished in an environment enriched for immune-modulatory signals (16). Tumor cells were also significantly more localized within CD74 MIF and MIF CD44 neighborhoods, reinforcing the role of these regions as hubs of immune suppression.




4.2 Immune interactions and survival outcomes

We identified distinct immune interactions that correlated with patient survival. In Stage III melanoma, interactions involving B cells, macrophages, and CTLs were linked to improved outcomes. Specifically, CTLs attracting M2 macrophages and M2 macrophages attracting B cells were associated with better survival, suggesting that coordinated innate and adaptive immune responses contribute to tumor control (33, 34). Conversely, interactions where tumor cells attracted TAMs, and macrophages clustered within tumors, were associated with worse prognosis, supporting prior evidence that macrophage accumulation can promote immune evasion and tumor progression (35).

In Stage IV melanoma, cytotoxic immune interactions remained important for survival. B cells attracting NK cells and NK cells attracting T cells were associated with improved outcomes, suggesting that NK cells play a role in sustaining immune surveillance. Similarly, CTLs attracting Th cells were linked to better survival, reinforcing the importance of coordinated adaptive immune responses (37). These findings align with recent work demonstrating that effective tumor control relies on dynamic crosstalk between cytotoxic and helper T cell populations.

Conversely, several immune interactions were associated with worse survival, particularly those involving excessive clustering of immune cells within inflammatory neighborhoods. In iNOS mPGES-NT neighborhoods, Th cells attracting B cells at short distances correlated with poor prognosis, suggesting that excessive B cell clustering in these regions may contribute to immune dysfunction rather than anti-tumor immunity. Similarly, TAMs attracting B cells and tumor cells attracting TAMs were linked to worse survival, reinforcing the idea that macrophages in these contexts may promote tumor progression rather than restrict it (43, 44).




4.3 TAM and CTL dynamics in the TIME

Our spatial analysis of G-cross nearest neighbor interactions provided additional insights into the complex roles of macrophages and CTLs in melanoma. While some TAM-CTL interactions were linked to better survival, excessive TAM accumulation was associated with poorer outcomes. This asymmetry suggests that TAMs can either support or suppress anti-tumor responses depending on their activation state and spatial organization within the tumor bed. Previous work has shown that TAMs can adopt both pro- and anti-inflammatory phenotypes depending on local signaling cues (42). Our findings further emphasize the need to functionally characterize macrophage subsets in melanoma tumors to determine their precise role in immune regulation.

Another key observation was the differential immune cell composition between Stage III and Stage IV tumors. Stage III tumors exhibited a higher proportion of naive T cells, helper T cells, NK cells, and B cells, whereas Stage IV tumors were dominated by CTLs and TAMs. While increased CTL infiltration is often associated with improved prognosis, our data suggest that not all CTLs in Stage IV tumors exhibit effective cytotoxic function. Emerging studies indicate that tumor-infiltrating CTLs can become dysfunctional or exhausted in immunosuppressive microenvironments, reducing their efficacy (47). The prolonged interactions observed between CTLs and TAMs in Stage IV may further contribute to T cell dysfunction.




4.4 Clinical and therapeutic implications

These findings have important implications for immunotherapy strategies. Given the enrichment of CTLs in CD74- and MIF-associated neighborhoods in Stage IV tumors, interventions targeting these pathways may help restore CTL function and improve therapeutic outcomes. Previous studies have shown that blocking CD74-MIF signaling can enhance T cell infiltration and reduce tumor growth (30). Similarly, targeting mPGES1, which we identified as a key player in immune evasion of melanoma, may enhance responses to immune checkpoint inhibitors (12).

The spatial organization of immune cells may also inform patient stratification for immunotherapy. Our results suggest that patients with increased NK cell-B cell interactions or structured CTL-Th cell clustering may have better responses to immune-based treatments. Conversely, patients with excessive macrophage clustering or high B cell accumulation in inflammatory regions may require combination therapies that target these immunosuppressive niches.




4.5 Study strengths and limitations

The strengths of this study lie in the size of our cohort and the high-resolution spatial analysis of immune interactions. By integrating multiplex imaging with computational modeling, we were able to identify key differences in immune cell organization between Stage III and IV melanoma. However, several limitations should be noted. First, the retrospective nature of this study introduces potential biases related to treatment variability. Due to the specifics of these TMA cohorts’ establishment, we were limited in the clinical information available, and, as a result, our conclusions carefully refrain from making any statements on treatment outcomes or responses to therapy. Therefore, our focus remains on the differences in TIME immunobiology between stages, which may inform future decisions regarding IO approaches in clinical trials. Additionally, while our analyses reveal associations between spatial immune patterns and survival, they do not establish causal relationships. Further functional validation is required to determine how specific immune interactions influence tumor progression and response to therapy.




4.6 Conclusions and future directions

Our findings underscore the importance of spatial immune organization in melanoma progression and treatment response. We identified distinct immune interactions that correlate with survival, highlighting the roles of cytotoxic immune coordination and macrophage-driven immune suppression in shaping patient outcomes. Future studies should focus on validating these findings in independent cohorts and exploring therapeutic strategies that modulate immune cell spatial organization to improve clinical responses.
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Introduction

Tumor angiogenesis is a critical biological hallmark of cancer, which involves multiple molecularly regulated signaling pathways, including the angiopoietin (ANGPT)-Tie2 and the vascular endothelial growth factor (VEGF) signaling pathways. Despite initial optimism, targeting tumor angiogenesis in the treatment of lung adenocarcinoma (LUAD) has been unsatisfactory. Currently, monotherapy with PD-1/PD-L1 inhibitors, or their combination with bevacizumab, is considered the standard therapeutic approach for LUAD. Recent studies have shown that immunotherapy suppresses tumor angiogenesis and facilitates vascular normalization. However, whether and how anti-PD-L1 therapy influences tumor vasculature remains unclear.





Methods

To investigate the impact of immunotherapy on the vasculature of LUAD, a mouse model of lung adenocarcinoma was established by subcutaneous implantation of Lewis lung carcinoma cells in vivo. The effects of different treatments on microvessel density and pericyte coverage were explored, and the expression of angiogenesis-related factors was analyzed. Furthermore, to explore the molecular mechanisms through which IFN-γ regulates tumor blood vessels during immunotherapy, we elucidated the specific mechanisms in vitro by means of techniques such as siRNA, ChIP, RT-qPCR, Western blot, and immunofluorescence. Finally, the effects of IFN-γ on the proliferation, migration, and angiogenic function of endothelial cells (ECs) were evaluated through CCK-8, Transwell, and HUVEC tube formation assays.





Results

Employing a mouse model of LUAD, we demonstrated that PD-L1 blockade therapy inhibits tumor angiogenesis and normalizes vasculature in an IFN-γ-signaling-dependent manner. Notably, anti-PD-L1 therapy reduced Tie2 and ANGPT2 expression, and these effects were reversed by the JAK1/2 inhibitor. Mechanistically, we demonstrated that IFN-γ inhibited Tie2 and ANGPT2 expression in ECs, and suppressed ANGPT2 gene transcription through the AKT-FOXO1 signaling pathway. Interestingly, IFN-γ-mediated activation of STAT1 exerts negative regulation by directly binding to the promoter regions of the ANGPT2 and TEK genes. Functionally, IFN-γ limits the migration, proliferation, and tube formation of ECs.





Discussion

In conclusion, our results revealed a novel mechanism wherein IFN-γ-mediated inhibition of ANGPT2-Tie2 facilitates vascular normalization during immunotherapy in LUAD, which performs an essential function in the antitumor efficacy of immunotherapy.
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1 Introduction

Lung cancer has long been the primary malignant tumor worldwide (1). Tumor angiogenesis in lung adenocarcinoma (LUAD), the most prevalent type of lung cancer, is widely acknowledged to play a pivotal role in tumor progression and immune evasion (2). Tumor angiogenesis is a multifaceted process characterized by the intricate interactions among various cell types, with endothelial cells (ECs) playing the most critical role (3, 4). The functions of ECs include proliferation, migration, and tube formation, which are modulated via complicated signal transduction pathways (5). The angiopoietin (ANGPT)-Tie2 signaling pathway plays a vital role in both angiogenesis and the remodeling and maturation of vascular structures (6, 7). ANGPT1 and ANGPT2, in conjunction with their receptor Tie2, are integral for the maturation and modification processes following angiogenesis. Specifically, ANGPT1 interacts with Tie2 to facilitate vascular stabilization, whereas ANGPT2 engages with Tie2 to induce vascular destabilization (8, 9). Therefore, targeting ANGPT2 can promote vascular normalization and improve the tumor microenvironment (10–12).

Over recent years, immune checkpoint inhibitors (ICIs) have emerged as pivotal modalities in cancer therapy. Nevertheless, the use of ICIs is limited. Hence, for clinical application, researchers have proposed integrating antiangiogenic therapy to mitigate the limitations of ICIs (13, 14). However, the effectiveness of this treatment remains suboptimal (15, 16), which has led researchers to investigate the interaction between ICIs and the tumor vasculature (17). The combination blockade of programmed death-protein 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 promotes vascular normalization upon the activation of CD4+ T lymphocytes (18). Furthermore, anti-PD-1/programmed death-ligand 1 (PD-L1) antibodies regulate angiogenesis by CD8+ T cells or tumor-derived CXCL10/11 (19, 20). Moreover, anti-PD-L1 therapy can suppress the nuclear expression of PD-L1 in cancer cells, ultimately attenuating tumor angiogenesis (21). The continuous research on ICIs has highlighted the pivotal role of CD8+ T cell-secreted IFN-γ in regulating the tumor microenvironment, demonstrating a broader range of effects (22). To date, some researches have demonstrated that IFN-γ can inhibit tumor angiogenesis by downregulating integrin αVβ3, Dll4, Dll1, and vascular endothelial growth factor A (VEGF-A) (23–28).

In this research, we reported that anti-PD-L1 therapy restrains angiogenesis and boosts vascular standardization in LUAD in an IFN-γ signaling-dependent manner. Mechanistically, IFN-γ, an important cytokine, directly inhibits the expression of the ANGPT2 and TEK (the Tie2 gene name) genes via the JAK1/2-STAT1 signal transduction pathway and indirectly restrains the expression of the ANGPT2 gene through the AKT–FOXO1 signal transduction pathway in human pulmonary microvascular endothelial cells (HPMECs) and human umbilical vein endothelial cells (HUVECs). The migration, proliferation, and tube formation of ECs are subsequently suppressed by IFN-γ. Our research identified an innovative mechanism by which IFN-γ suppresses tumor angiogenesis and facilitates vascular normalization during PD-L1 blockade therapy. More importantly, these findings may establish a new theoretical foundation for integrating antiangiogenic therapy with ICIs in clinical practice and provide innovative perspectives to reconsider the suboptimal effects, guiding the exploration of new combination therapeutic strategies to enhance anticancer efficacy.




2 Materials and methods



2.1 Animals

C57BL/6 male mice, aged 6 to 8 weeks, were provided by GemPharmatech Co., Ltd. (Nanjing, China). Mice received a subcutaneous injection of 1×106 Lewis lung cancer (LLC) cells. Mice were randomly allocated into three groups and administered the following treatments: negative control, PD-L1 blockade antibody (on days 0, 3, and 6), or a combination of PD-L1 blockade antibody and ruxolitinib (a JAK1/2 inhibitor) (on days 1 to 5) (n = 5 mice per group). The dosage of the drugs was identical to that described in the previous research (29). The formula for calculating tumor volume is as follows: 0.5 × length × width2.




2.2 Cell culture

The cell lines HCC827 (KCLB, Cat# 70827, RRID: CVCL_2063) and A549 (ATCC, Cat# CRL-7900, RRID: CVCL_0023) were sourced from Cobioer (Nanjing, China). HCC827 cells were propagated in RPMI 1640 medium (HyClone, Omaha, NE, USA) supplemented with 10% fetal bovine serum (FBS) (Gibco, Grand Island, NY, USA) and 1% penicillin/streptomycin (P/S) (HyClone, Logan, UT, USA). A549 cells were cultured in F12K medium (Boster, Wuhan, China) alongside 10% FBS, 1% P/S. The LLC cells (ATCC Cat# CRL-1642, RRID: CVCL_4358) were propagated in DMEM (HyClone) alongside 10% FBS. Primary HUVECs were purchased from Meisen (Hangzhou, China). HUVECs and HPMECs (Science Cell, Cat# 3000, USA) were grown in endothelial cell medium (ECM) (Science Cell, Cat# 1001, USA) mixed with 10% FBS (Science Cell), 1% ECGS (Science Cell), and 1% P/S (Science Cell). Cells were cultured in a humidified atmosphere with 5% CO2 at 37°C.




2.3 Cell viability assay

CCK-8 assay kit (Abbkine, Wuhan, China) was used to evaluate cell viability. As previously mentioned (29), cells were plated in 96-well plates at a density of 3,000 cells per well and grown for 12 hours. After the various treatments, a microplate reader (Tecan, USA) was used to determine the absorbance at 450 nm.




2.4 Tube formation assay

Primary HUVECs were cultured with ECM for 1 day and subsequently analyzed in a tube formation assay. Matrigel (Corning, Cat# 356237, USA) was allowed to thaw overnight at 4°C. Subsequently, each well of the 96-well plate received 50 μL of Matrigel solution, which was then incubated at 37°C for 60 minutes to promote polymerization. Following that, 2 × 104 HUVECs suspended in ECM were distributed into 96-well plates and then photographed and recorded under a microscope after an incubation period of at least 4 hours.




2.5 Transwell assay

ECs were resuspended in ECM without serum and then plated into the upper chamber (1 × 105 cells/100 µL/well). The migration ability of cells was in accordance with the previous protocol (30).




2.6 Western blot

According to a previously reported method (29), Western blot analyses were conducted. After cells were lysed by RIPA solution (Beyotime, Shanghai, China), the protein samples were quantified and separated based on their molecular weight via SDS-PAGE gel electrophoresis. Following membrane transfer, the target proteins were visualized by an antigen-antibody reaction and using a chemiluminescence detection system (Tanon, Shanghai, China). Supplementary Table 2 provides a list of all the antibodies.




2.7 Immunofluorescence

In line with a previous protocol (29), immunocytochemistry was performed. Multiplex immunofluorescence (mIF) was conducted utilizing a tyramide signal amplification kit (Servicebio, Cat# G1226, Wuhan, China) following the manufacturer’s guidelines. Supplementary Table 2 provides a list of all the primary antibodies.




2.8 Immunohistochemical staining and quantification

The IHC staining was in accordance with the previous protocol (29). The DAB technique (Genetech, Inc., Cat# GK600705, Shanghai, China) was employed to visualize immunoreactivity. The antibodies utilized are provided in Supplementary Table 2. Microvessel density (MVD) was calculated using a modified version of Weidner’s method (31). Each 200× section was examined under 400× magnification, and three distinct regions with the densest microvascular presence were chosen to measure the number of blood vessels.




2.9 Real-time quantitative PCR

As our previous protocol (29), RNA isolation and RT-qPCR were conducted. Supplementary Table 3 lists the primer sequences. The 2-ΔΔCt method was used to assess the relative expression levels, which were normalized to Actin levels.




2.10 siRNA transfection

siRNAs designed to target STAT1 were bought from RiboBio (Guangzhou, China). In accordance with the manufacturer’s descriptions, Lipofectamine RNAiMAX (Invitrogen) and siRNAs (50 nmol/L) were gently combined in a serum-free ECM. The transfection solution was introduced into a culture dish, followed by the addition of cell suspensions, which were then incubated for 48 hours. The sequence of the siRNA used for STAT1 was GGAGGAATTGGAACAGAAA.




2.11 Chromatin immunoprecipitation

In line with the manufacturer’s descriptions, the Ch-IP assay was conducted by an enzymatic Ch-IP Kit (Cell Signaling Technology, Cat# 9003). The putative binding sites of the STAT1 motif in the TEK and ANGPT2 promoters were predicted via the JASPAR database. Supplementary Tables 2 and 3 offer comprehensive details about the primers and antibodies utilized. The fragments of the human TEK and ANGPT2 promoters in the immunoprecipitates were identified via RT-qPCR.




2.12 Statistical analysis

GraphPad Prism 8.0 performs all statistical analyses. In order to compare the p values between the two groups, a two-tailed independent t-test was conducted. In order to compare multiple groups, one-way or two-way ANOVA was employed. Data in the bar charts are displayed as means ± SDs. All p values are reported verbatim. p < 0.05 is regarded as statistically significant.





3 Results



3.1 Anti-PD-L1 therapy normalizes tumor vasculature by decreasing the expression of Tie2 and ANGPT2 in a JAK1/2-dependent manner

Owing to the rich vascular structure of lung tissue, the progression of lung cancer is intricately linked with tumor neovascularization. To examine the impact of anti-PD-L1 treatment on the vascularization in LUAD, we established the LLC mouse model. Given the essential role of the JAK1/2 pathway in the efficacy of PD-L1 blockade therapy, we conducted further investigations to explore its potential influence on how PD-L1 blockade therapy affects the tumor vascular structures. The experimental mice were selected into different groups: the control group, the anti-PD-L1 antibody group, and the combination group with anti-PD-L1 antibody and ruxolitinib (a JAK1/2 inhibitor). Then, changes in tumor volume were monitored (Figure 1A). First, we performed an IHC assay to evaluate the MVD of CD31+ cells in mouse tumor tissues on day 5 (Figure 1B). Our results indicate that anti-PD-L1 treatment has the potential to decrease the CD31+ MVD, whereas ruxolitinib can reverse this effect. Given that CD105 is a reliable marker for actively proliferating ECs (32), we observed the CD105+ MVD in tumors and consistently found that anti-PD-L1 treatment reduced the CD105+ MVD on day 5 (Figure 1C). Similarly, ruxolitinib was able to reverse this inhibitory effect. Moreover, we noted alterations in the MVD of CD31+ and CD105+ cells, consistent with our findings on days 2 and 8 (Supplementary Figures S1A-D). In addition, we performed mIF for CD31 and αSMA to evaluate pericyte coverage of tumor vasculature on day 5 (Figure 1D). Our results show that PD-L1 blockade therapy accelerates tumor vascular maturation in LUAD by reducing the MVD of proliferating vessels, whereas ruxolitinib can reverse this effect.

[image: A series of images and graphs depicting experimental results on tumor volume and microvessel density in mice treated with anti-PD-L1 and JAK inhibitors. Panel A shows a timeline with treatment days and a tumor growth chart with three lines indicating different treatments. Panels B and C display immunohistochemistry images and corresponding bar graphs showing microvessel density on day five. Panel D includes fluorescent imaging of CD31, αSMA, and DAPI, with a bar graph showing pericyte coverage. Panel E shows western blot results for various proteins, with bar graphs for protein expression levels. Panels F and G present bar graphs for gene expression of Tie2 and Angpt2 over three days.]
Figure 1 | Anti-PD-L1 therapy normalizes tumor vasculature by decreasing the expression of Tie2 and ANGPT2 in a JAK1/2-dependent manner. (A) Diagrammatic representation of the research design used to explore the influences of anti-PD-L1 therapy on tumor blood vessels. The red arrows indicate PD-L1 blockade therapy. The blue arrows indicate a cotreatment with anti-PD-L1 antibody in combination with ruxolitinib (JAKi, a JAK1/2 inhibitor). The orange arrows indicate the time point of sacrifice. The volumes of the three different groups of tumors are presented. This p values were analyzed via two-way ANOVA. (B, C) Representative images showing CD31+ vessels (B) and CD105+ vessels (C) in LLC tumor tissues on day 5 as described in (A). The CD31+ or CD105+ MVD was analyzed separately by one-way ANOVA. Scale bar: 100 μm. (D) LLC tumor tissues on day 5 were stained for CD31 (red) and αSMA (green) to determine the percentage of pericyte coverage. Scale bar: 100 μm. The p values were evaluated by one-way ANOVA. (E) LLC tumor tissue lysates on day 5 were subjected to immunoblotting to assess the expression of specific proteins associated with angiogenesis. And the gray-scale value comparison of the relative expression levels of Tie2 and ANGPT2 proteins is attached. (F, G) mRNA from LLC tumor tissues was examined for the expression levels of Tek (F) and Angpt2 (G) via RT-qPCR. The p values were analyzed via one-way ANOVA.

Given the pivotal roles of the VEGF-A/VEGFR2 and ANGPT-Tie2 signaling pathways in regulating vascular development and maturation, we performed an extensive analysis of the protein expression levels of pertinent molecules in murine tumors (Figure 1E). Our results demonstrate that PD-L1 blockade treatment effectively suppresses the expression of Tie2, ANGPT2, and VEGF-A through a JAK1/2-dependent mechanism but has no effect on the protein expression of ANGPT1. Notably, compared with no treatment, anti-PD-L1 therapy increased IFN-γ expression and the phosphorylation of STAT1 in tumors. The addition of a JAK1/2 inhibitor abrogated the phosphorylation of STAT1 in anti-PD-L1-treated tumors (Supplementary Figures S1E, F). Earlier research has established the inhibitory influence of IFN-γ on VEGF-A expression (25), thus prompting our investigation into the potential of PD-L1 blockade therapy to suppress the expression levels of ANGPT2 and Tie2. The experimental findings uncovered that anti-PD-L1 therapy significantly suppressed Tek expression on days 2, 5, and 8 (Figure 1F) and Angpt2 expression on day 5 (Figure 1G) upon further investigation in the LLC model. Moreover, the JAK1/2 inhibitor ruxolitinib reversed the suppressive effect of anti-PD-L1 therapy on the expression of Tek and ANGPT2. Taken together, these outcomes indicate that PD-L1 blockade treatment normalizes tumor vasculature and inhibits neovascularization by decreasing the expression of Tie2 and ANGPT2 through a JAK1/2-dependent mechanism.




3.2 IFN-γ primarily inhibits the expression of Tie2 and ANGPT2 in ECs

Due to the complex cellular elements within the tumor, the expression of ANGPT2, Tie2, and VEGF-A are not limited to a specific type of cell. ANGPT2 and Tie2 are predominantly expressed in ECs (33), whereas VEGF-A is primarily expressed in tumor cells (34). Additionally, IFN-γ is widely acknowledged as the predominant cytokine utilized in anti-PD-L1 therapy (22). Given that tumor cells constitute the majority, we compared their expression in HUVECs, HPMECs, LLCs, A549 cells, and HCC827 cells. Our results uncovered the predominant expression of ANGPT2 and TEK in HUVECs and HPMECs (Figures 2A, B), whereas VEGF-A was expressed primarily in tumor cells (Figure 2C). Notably, IFN-γ was shown to suppress the mRNA expression of ANGPT2 and TEK in HUVECs and HPMECs and to inhibit the mRNA expression of VEGF-A in tumor cells. Moreover, we found that the suppression of Tie2 and ANGPT2 protein expression by IFN-γ was most prominent at the 24-hour time point in HUVECs and HPMECs (Figure 2D). Intriguingly, the mRNA expression levels of TEK and ANGPT2 were reduced by IFN-γ within approximately 6 hours in both HUVECs and HPMECs (Figures 2E, F). In summary, IFN-γ restrains the expression of Tie2 and ANGPT2 in ECs but not in tumor cells.

[image: Graphs and Western blot analyses illustrate the effects of IFN-γ on gene expression. Panels A, B, and C show relative expression levels of TEK, ANGPT2, and VEGFA with control and IFN-γ treatment across various cell types. Panel D displays Western blots of Tie2, ANGPT2, and β-actin in HUVEC and HPMEC over time post IFN-γ exposure. Panels E and F detail changes in TEK and ANGPT2 expression in HUVEC and HPMEC over varying IFN-γ exposure times, with statistical significance denoted by p-values.]
Figure 2 | IFN-γ primarily inhibits the expression of Tie2 and ANGPT2 in ECs. (A–C) The expression levels of TEK (A), ANGPT2 (B), and VEGF-A (C) were evaluated in HUVECs, HPMECs, LLC, HCC827, and A549 cells with or without the treatment of IFN-γ (1000 IU/mL) via RT-qPCR. (D–F) HUVECs and HPMECs were stimulated with IFN-γ (1000 IU/mL) for 0, 6, 12, or 24 h. (D) Protein expression levels of ANGPT2, total FOXO1, phosphorylated FOXO1 (S256), total AKT, and phosphorylated AKT (S473) were measured using immunoblotting techniques. mRNA levels of TEK (E) and ANGPT2 (F) were measured via RT–qPCR. The p values were analyzed via one-way ANOVA.




3.3 IFN-γ-mediated activation of STAT1 is required for the reduction in Tie2-ANGPT2 expression

To further elucidate the specific mechanism through which IFN-γ suppresses ANGPT2 and Tie2, in conjunction with the previous finding that anti-PD-L1 treatment suppresses ANGPT2 and Tie2 via the JAK1/2 signaling pathway, we investigated the role of the JAK1/2 signaling pathway in mediating the inhibition of ANGPT2 and Tie2 by IFN-γ. To this end, we continued to employ ruxolitinib to determine whether IFN-γ regulates ANGPT2 and Tie2 in a JAK1/2-dependent manner. Then, we utilized RT-qPCR and protein immunoblotting to confirm that the suppressive effect of IFN-γ on the protein and mRNA expression levels of ANGPT2 and Tie2 can be counteracted by ruxolitinib (Figures 3A–C).

[image: Graphs and immunoblot images analyze TEK and ANGPT2 expression in HUVEC and HPMEC cells. Panels A and B show bar graphs of gene expression with and without IFN-γ and JAKi treatment. Panel C presents immunoblot results for protein expression affected by these treatments. Panels D and E depict gene expression after si-STAT1 treatment. Panel F shows protein expression with si-STAT1. Panels G and H illustrate promoter regions of TEK and ANGPT2, with adjacent bar graphs displaying fold enrichment of TEK and ANGPT2 promoters under different conditions, highlighting statistical significance.]
Figure 3 | IFN-γ-mediated activation of STAT1 is required for the reduction in Tie2-ANGPT2 expression. (A–C) HUVECs and HPMECs were pretreated with a JAKi (ruxolitinib) for 24 h before being stimulated with IFN-γ (1000 IU/mL) for an additional 24 hours. mRNA levels of TEK (A) and ANGPT2 (B) were assessed by RT-qPCR. (C) Protein expression levels of Tie2, ANGPT2, and JAK1 were assessed using immunoblotting techniques. (D–F) HUVECs and HPMECs were transfected with siSTAT1 or siNC and subsequently stimulated with IFN-γ for 24 hours. mRNA expression levels of TEK (D) and ANGPT2 (E) were measured via RT-qPCR. The p values were analyzed via one-way ANOVA. (F) Protein levels of Tie2, ANGPT2, phosphorylated STAT1 (Y701), and total STAT1 were assessed using immunoblotting techniques. (G, H) The putative binding sites of the STAT1 binding motif in the −2 kb TEK promoter (G) or ANGPT2 promoter (H) were predicted via the JASPAR database. ChIP-qPCR confirmed the binding sites of STAT1 in the promoters of the TEK and ANGPT2 genes.

IFN-γ, a key cytokine in response to anti-PD-L1 therapy, primarily exerts its biological effects through the JAK1/2-STAT1 signaling pathway (35). Whether STAT1 plays a pivotal role in the regulatory effect of IFN-γ on ANGPT2 and Tie2 in ECs should be further investigated. We subsequently investigated the involvement of STAT1 in the regulation of ANGPT2 and Tie2 by IFN-γ. Similarly, siRNA was used to silence STAT1 in ECs, confirming the indispensable role of STAT1 in mediating the suppressive effect of IFN-γ on ANGPT2 and Tie2 (Figures 3D–F). Collectively, our findings indicate that IFN-γ suppresses the expression of ANGPT2 and Tie2 via the JAK1/2-STAT1 pathway.

Previous research has revealed the role of STAT1 as a repressive transcription factor that can directly bind to the promoter region of SOX9 and subsequently inhibit its gene expression (36). STAT1 is also considered a negative transcription factor that suppresses tumor angiogenesis (37). These findings prompted us to explore the relationships between STAT1 and the ANGPT2 and TEK genes. Therefore, we utilized the JASPAR database to predict binding sites of STAT1 within the promoter areas of the TEK (Figure 3G) and ANGPT2 (Figure 3H) genes, selecting those with the highest predicted probability for experimental validation. The putative STAT1 binding sites were validated via ChIP-qPCR assays in the promoter regions of the TEK and ANGPT2 genes. In summary, our results confirm that IFN-γ activates the JAK1/2-STAT1 signaling pathway, leading to the direct interaction of STAT1 with specific sites in the promoter regions of the ANGPT2 and TEK genes.




3.4 IFN-γ-mediated activation of the AKT–FOXO1 signaling pathway contributes to the regulation of ANGPT2 but not Tie2 expression

Previous research has demonstrated positive regulation of ANGPT2 mRNA expression by the transcription factor FOXO1 (38). An increase in nuclear FOXO1 leads to a corresponding increase in ANGPT2 mRNA expression. The upstream AKT signaling pathway regulates FOXO1 by facilitating its phosphorylation and consequent relocation from the nucleus upon pathway activation. Furthermore, our group revealed that IFN-γ is capable of motivating the PI3K-AKT signaling pathway in LUAD cells (39). Therefore, our objective was to investigate whether the PI3K-AKT signal transduction pathway participates in regulating the suppressive effect of IFN-γ on ANGPT2 expression.

To examine the influence of IFN-γ on the PI3K-AKT signaling pathway in ECs, we established a short-term group (within 1 hour) for IFN-γ stimulation. Our findings indicate that IFN-γ increases AKT and FOXO1 phosphorylation at the 1-hour time point (Figure 4A). Additionally, the IFN-γ-mediated suppression of ANGPT2 protein expression gradually intensified with prolonged exposure to IFN-γ over the 24-hour period (Figure 2D). Similarly, within this same timeframe, the inhibitory effect of IFN-γ on ANGPT2 mRNA expression gradually increased in ECs (Figures 2E, F). We hypothesized that following stimulation by IFN-γ, AKT phosphorylation is initially activated, leading to FOXO1 phosphorylation and its nuclear exclusion, which contributes to the downregulation of ANGPT2 expression in ECs. To examine this hypothesis, we employed a PI3K inhibitor LY294002, which effectively suppresses AKT phosphorylation in cells. We subsequently observed the IFN-γ-mediated inhibition of FOXO1 in HUVECs by immunocytochemistry (Figure 4B). Our findings revealed that IFN-γ decreased the proportion of cells with nuclear FOXO1 localization, and this effect was reversed when IFN-γ was combined with LY294002. Under the same conditions, LY294002 reversed the suppressive effect of IFN-γ on ANGPT2 at both the protein (Figure 4E) and mRNA levels at 24 hours (Figure 4C). Notably, the AKT–FOXO1 signaling pathway does not have an impact on the modulation of Tie2 by IFN-γ (Figure 4D). In summary, we identified an additional regulatory mechanism through which IFN-γ restrains the expression of ANGPT2 via the AKT-FOXO1 signaling pathway.

[image: Panel A shows Western blot analyses of HUVEC and HPMEC cells treated with IFN-γ for various times, examining Foxo-1, phosphorylated Foxo-1, AKT, and phosphorylated AKT levels. Panel B displays fluorescence microscopy images of HUVEC cells stained for FOXO1 and DAPI under different treatments, with a bar graph illustrating cytosolic and nuclear fluorescence percentages. Panels C and D present bar graphs of relative expression levels of ANGPT2 and TET2 in HUVEC and HPMEC cells. Panel E displays Western blot results for AKT, phosphorylated AKT, and ANGPT2 levels after treatments.]
Figure 4 | IFN-γ-mediated activation of the AKT–FOXO1 signaling pathway contributes to the regulation of ANGPT2 but not Tie2 expression. (A) HUVECs and HPMECs were stimulated with IFN-γ (1000 IU/mL) for 0, 15, 30, or 60 minutes. Protein levels as shown in Figure 2D were measured by immunoblotting. (B) HUVECs were stimulated with IFN-γ for 24 h or with LY294002 (a PI3K inhibitor) alone or in combination. HUVECs were dual-stained with DAPI (nucleus, blue) and FOXO1 (red). Scale bar: 50 μm. The right chart presents the quantified results of fluorescence digital imaging analysis, showing the percentage expression levels of FOXO1 in both the cytosol and the nucleus. (n = 3). (C–E) HUVECs and HPMECs were processed as detailed in (B). mRNA expression levels of ANGPT2 (C) and TEK (D) were assessed by RT-qPCR. The p values were analyzed by one-way ANOVA. (E) The specified proteins were assessed using immunoblotting.




3.5 IFN-γ inhibits the angiogenic properties of HUVECs

Angiogenesis is often characterized by the intricate interplay of various cell types (4). The biological functions of ECs, the main components of the vascular structure, merit particular attention during angiogenesis. The angiogenic properties of ECs mainly include migration, proliferation, and tube formation. Consequently, we investigated the biological effects of IFN-γ on the migration, proliferation, and tube formation of ECs.

Herein, we validated the suppressive influence of IFN-γ on endothelial proliferation through cell viability assays (Figure 5A). Next, we conducted Transwell assays to assess that IFN-γ suppresses the migratory capacity of HUVECs and HPMECs (Figure 5B). Furthermore, IFN-γ inhibited tube formation in primary HUVECs, reducing the total length, number of branches, number of junctions, and number of meshes. Notably, both a STAT1 inhibitor (F-ara-A, fludarabine) (Figures 5C, D) and LY294002 (Figures 5E, F) reversed the IFN-γ-induced suppression of HUVEC tube formation.

[image: Graphs and images illustrate the effect of IFN-γ on cell proliferation and network formation. Panel A shows line graphs of HUVEC and HPMEC proliferation, with IFN-γ reducing proliferation compared to controls. Panel B displays microscopy images and bar graphs, indicating fewer cells with IFN-γ treatment. Panel C and E depict tubular networks under various conditions. Panel D and F present bar graphs with statistical data detailing changes in branches, junctions, meshes, and total length under IFN-γ, F-ara-A, and LY294002 treatments. Statistical significance is noted with \( p < 0.0001 \) in several comparisons.]
Figure 5 | IFN-γ inhibits the angiogenic properties of HUVECs. (A) The proliferation of HUVECs and HPMECs treated with IFN-γ (1000 IU/mL) was assessed employing a CCK-8 assay at 24, 48, and 72 hours post-culture. (B) Migration assays were conducted on HUVECs and HPMECs after stimulation with IFN-γ (1000 IU/mL) for 24 h. Scale bar: 50 μm. (C–F) Tube formation assays of HUVECs and HPMECs. Primary HUVECs were seeded in ECM and matrixgel. Photographs taken 10 h post-seeding were analyzed. HUVECs exhibited a tubular morphology after treatment with IFN-γ (1000 IU/mL) or F-ara-A (fludarabine, a STAT1 inhibitor) alone (C) or LY294002 alone (E) or in combination. Scale bar: 400 μm. (D, F) Quantification of tube formation, encompassing total length, number of branches, number of junctions, and number of meshes, is presented. The p values were determined via one-way ANOVA.

In summary, the findings of this research suggest that IFN-γ stimulates the JAK1/2-STAT1 pathway in ECs during anti-PD-L1 therapy. Accordingly, phosphorylated STAT1 directly binds to the promoter regions of the ANGPT2 and TEK genes, contributing to the inhibition of mRNA transcription and protein synthesis. Additionally, IFN-γ can activate the AKT-FOXO1 signaling pathway in ECs, thereby indirectly suppressing the mRNA expression of ANGPT2. Finally, PD-L1 blockade therapy effectively restrains tumor angiogenesis and vascular destabilization in LUAD (Figure 6).
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Figure 6 | IFN-γ-mediated suppression of ANGPT2-Tie2 in endothelial cells facilitates tumor vascular normalization during immunotherapy. Diagrammatic representation of the mechanism by which PD-L1 blockade therapy modulates IFN-γ to influence the tumor vasculature in ECs through the ANGPT2-Tie2 signaling pathway. IFN-γ motivates the JAK1/2-STAT1 signaling pathway, thereby inhibiting the expression of ANGPT2 and Tie2. Following this process, phosphorylated STAT1 binds to the promoter regions of the TEK and ANGPT2 genes, thereby suppressing their gene expression. Furthermore, IFN-γ phosphorylates FOXO1 through activating the PI3K-AKT pathway, thereby reducing the nuclear activation of FOXO1 on the ANGPT2 gene. Consequently, the synthesis of the Tie2 and ANGPT2 proteins is diminished, contributing to the suppression of the ANGPT2-Tie2 signaling pathway. This effect subsequently suppresses the migration, proliferation, and tube formation of ECs, ultimately contributing to the suppression of tumor angiogenesis and vascular destabilization.





4 Discussion

This study represents the first demonstration that PD-L1 blockade therapy inhibits tumor angiogenesis and normalizes tumor vessels via IFN-γ-mediated suppression of ANGPT2 and Tie2. We illustrated that anti-PD-L1 treatment can suppress the expression of Tie2, ANGPT2, and VEGF-A, contributing to a reduction in the MVD and an increase in pericyte coverage in LLC model mice. Furthermore, we compared the expression levels of ANGPT2, Tie2, and VEGF-A in various ECs and LUAD cells, demonstrating higher expression of ANGPT2 and Tie2 in ECs compared to LUAD cells. Given that IFN-γ is a widely distributed cytokine produced in response to anti-PD-L1 therapy (22), we validated its capability to inhibit the expression of ANGPT2 and Tie2 in ECs and reduce the expression of VEGF-A in tumor cells. Based on prior research reporting IFN-γ regulation of VEGF-A (25, 40), we concentrated on examining the impact of IFN-γ regulation on ANGPT2 and Tie2. To further investigate and confirm our findings in vitro, we found that the expression of ANGPT2 and Tie2 was modulated by the IFN-γ-activated JAK1/2-STAT1 pathway. Given previous reports that STAT1 can negatively modulate gene expression (36), we aimed to confirm that STAT1 exerts negative regulation by binding to the promoter regions of the ANGPT2 and TEK genes. On the basis of the role of FOXO1 in promoting the expression of ANGPT2 in ECs and our previous study demonstrating that IFN-γ induces AKT protein phosphorylation in LUAD cells (38, 39), we showed that IFN-γ facilitates the nuclear export of FOXO1 by promoting AKT protein phosphorylation in ECs, thereby suppressing the positive regulatory effect of FOXO1 on the ANGPT2 gene. Finally, we also directly observed the suppressive effect of IFN-γ on the biological functions of proliferation and migration in ECs. Additionally, both PI3K inhibitors and STAT1 inhibitors reversed the inhibitory impacts of IFN-γ on HUVEC tube formation.

The VEGF-A/VEGFR2 signaling pathway primarily regulates tumor angiogenesis (34). Previous studies have shown that IFN-γ inhibits VEGF-A expression in various cell types, including macrophages and tumor cells, through both indirect and direct mechanisms (4, 18, 23, 25, 41). VEGF-A is one of the primary target genes of HIF-1α (42). In human glioma cells, STAT1 can abolish HIF-1a activity, thereby reducing VEGF-A expression (43). In IFN-γ-activated monocytic cells, VEGF-A is suppressed through a post-transcriptional pathway. Ray and colleagues reported that although IFN-γ induced persistent VEGF-A mRNA expression, translation was suppressed by the delayed binding of the IFN-γ-activated inhibitor of translation (GAIT) complex to a specific element in the 3’UTR. This binding leads to translational silencing and decreased VEGF-A synthesis (44). Our study revealed that anti-PD-L1 therapy reduced VEGF-A expression in LLC tumors in a JAK1/2-dependent manner. Consistent with previous reports, we showed that IFN-γ inhibits VEGF-A expression in LLC, A549, and HCC827 cell lines in vitro. In addition to promoting angiogenesis, VEGF-A plays a critical role in regulating tumor vasculature normalization (45). By suppressing VEGF-A expression, the abnormal proliferation and leakiness of immature blood vessels in tumor tissues can be mitigated, ultimately promoting vascular normalization (46, 47). In brief, those findings further elucidate the molecular mechanisms underpinning the integration of anti-angiogenic therapies with ICIs, such as atezolizumab and bevacizumab.

The ANGPT-Tie2 signaling pathway primarily modulates tumor vascular normalization (6). Notably, an increase in Tie2 phosphorylation can facilitate tumor vessel normalization (48). In contrast, this investigation revealed that inhibiting Tie2 promotes tumor vascular normalization. Additionally, the inhibition of ANGPT2 further restrains the malignant progression of tumor blood vessels. However, PD-L1 blockade treatment exerted a negligible influence on the expression of ANGPT1. Furthermore, although STAT1 acts as a positive regulatory transcription factor involved in various biological activities, it also functions as a negative transcription factor. In this study, STAT1 exerts negative regulation by binding to the promoter regions of the ANGPT2 and TEK genes. This finding provides further evidence for the bidirectional regulatory role of STAT1 as a transcription factor.

IFN-γ is not the sole efficacious antitumor cytokine generated by ICIs. TNF-α also functions as a crucial antitumor factor (49–51). IFN-γ induces tumor vascular regression, while TNF-α bursts them (23). The drawback is that this article did not to investigate how anti-PD-L1 therapy regulates tumor blood vessels via TNF-α. Indeed, the mechanisms of action of IFN-γ on tumor blood vessels are multifaceted and intricate (4, 40). IFN-γ can hinder tumor angiogenesis through targeting the Notch-Dll4/Dll1 pathways or integrins (24, 26–28, 52, 53). More critically, this paper, for the initial time, elaborates that IFN-γ modulates the expression of ANGPT2 and Tie2 via the AKT-FOXO1 and JAK1/2-STAT1 pathways, thereby providing direct evidence for the normalization of tumor vascular structures regulated by IFN-γ in immunotherapy.

The findings of this research, in conjunction with those from prior studies, demonstrate that immunotherapy exerts an inhibitory effect on tumor angiogenesis and normalizes the tumor vascular system (18–20). By elucidating novel mechanisms, we have provided additional evidence for the clinical integration of immunotherapy with antiangiogenic therapy, thereby prompting further exploration of optimized combination treatment strategies. First, based on the suppression of ANGPT2, Tie2, and VEGF-A expression by anti-PD-L1 treatment, we can enhance antitumor effects by combining targeted therapies against ANGPT2, Tie2, and VEGF-A with anti-PD-L1 treatment. Second, due to the lack of an effect of PD-L1 blockade treatment on ANGPT1, the upregulation of ANGPT1 in combination with ICIs may enhance antitumor effects by facilitating tumor vascular normalization. However, the implementation, therapeutic efficacy, and adverse reactions of these strategies still require further exploration. Additionally, this study lacked direct validation of its findings in human LUAD tissue samples before and after immunotherapy.

In conclusion, this study innovatively illustrates that IFN-γ-mediated inhibition of ANGPT2-Tie2 in ECs inhibits angiogenesis and normalizes tumor vasculature during immunotherapy. Specifically, IFN-γ exerts a direct dual-inhibitory effect on the expression of ANGPT2 and Tie2 by activating the AKT-FOXO1 and JAK1/2-STAT1 signaling pathways. Our experimental findings reveal a novel mechanism underlying the mutual regulation between the immune system and tumor vasculature within the tumor microenvironment, guiding the design of treatments that integrate ICIs with antiangiogenic therapy in clinical practice.
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Over the past years, cancer research has transitioned from a ‘cancer cell-centered’ focus to a more integrative view of tumors as dynamic ecosystems. This paradigm shift emphasizes the tumor microenvironment (TME) as a complex network of interacting cellular and acellular components, where tumor cells orchestrate a supportive environment that facilitates progression, metastasis, and immune evasion. Understanding the spatial organization of these components within the TME is crucial, as the positioning and interactions between cancerous and non-cancerous cells significantly influence tumor behavior and therapy response. Spatial proteomics has emerged as a powerful tool for TME analysis, enabling the detection and quantification of proteins within intact tissue architecture at subcellular resolution. This approach provides insights into cellular interactions, signaling pathways, and functional states, facilitating the discovery of novel biomarkers and therapeutic targets linked to specific tissue regions and cellular contexts. Translating spatial proteomics into clinical practice requires overcoming challenges related to technology refinement, standardization of workflows, and adaptation to routine pathology settings. Melanoma is an aggressive, highly immunogenic malignancy with variable response rates to existing immunotherapies. Given that over half of patients treated with immune checkpoint inhibitors (ICIs) fail to respond or experience disease progression, the identification of novel biomarkers and therapeutic targets to enhance current therapies is urgently required. Spatial imaging technologies are increasingly being utilized to dissect the complex interplay between stroma, melanoma, and immune cell types within the TME to address this need. This review examines key spatial proteomics methods, their applications in melanoma biology, and associated image analysis pipelines. We highlight the current limitations, and future directions, emphasizing the potential for clinical translation to guide personalized treatment strategies, inform prognosis, and predict therapeutic response.
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Introduction

Over the last few decades, cancer research has undergone a significant paradigm shift: from a ‘cancer-centered’ view, primarily focused on the genomic aberrations of neoplastic cells, to a more comprehensive understanding of tumors as complex ecosystems. In this new framework, tumors are seen as dynamic entities where both cellular and acellular components form an intricate network of co-evolving interactions—the tumor microenvironment (TME) (1). This holistic perspective recognizes that tumor cells act not in isolation but as central orchestrators of a tumor-supportive environment, actively recruiting and reprogramming non-immune and immune cells, remodeling the vasculature, and altering the extracellular matrix to support progression and metastasis.

Mapping the spatial location of the different cellular components is crucial as the TME is a highly organized, structured environment where the positioning of different cell types is essential for their function. For this reason, the spatial relationships between tumor cells, immune cells, stromal cells, and blood vessels are fundamental to tumor progression, immune evasion, and therapy resistance.

While tissue studies remain crucial for cancer diagnosis, patient stratification, and treatment recommendations, the techniques routinely used for these investigations (e.i. immunohistochemistry) are limited to the low number of markers that can be simultaneously visualized. In the past few years, more studies have been focused on the development of new multiplexed technologies and analysis methods aimed at preserving tissue architecture by spatially resolving the complexity of the TME, mapping different cell types, and understanding their reciprocal interactions and their function.

Among them, spatial proteomics, which allows the detection and quantification of proteins within the context of tissue architecture, has been recognized as one of the most promising methods for TME analysis (2). By mapping protein expression patterns at subcellular resolution, spatial proteomics provides insights into cellular interactions, signaling pathways, and functional states of cells within the TME. This new set of information could be used for the discovery of novel biomarkers and therapeutic targets that are tightly linked to specific tissue regions and cellular contexts. It also opens the door to identifying novel therapeutic combinations, as spatial proteomics can reveal how different treatment modalities may alter the spatial dynamics of the TME. However, while spatial proteomics offers immense potential for understanding cancer biology, its translation into clinical practice remains a challenge. It is critical to develop methods and platforms that can be easily adapted to routine pathology labs and clinical settings. This requires not only refining technologies for better sensitivity and resolution but also developing standardized workflows and protocols that can be widely adopted in clinical practice. The goal is to provide pathologists and clinicians with actionable approaches that can guide personalized treatment strategies, inform prognosis, and predict response to therapies.

Over the past few years, spatial proteomics has significantly advanced our understanding of the melanoma TME. Although melanoma is highly immunogenic and several immunotherapy-based treatments are available, a significant proportion of patients, particularly those with late-stage disease, still fail to achieve durable responses or experience disease progression (3–6). This clinical challenge underscores the urgent need to identify novel biomarkers for predicting treatment outcomes and to discover new therapeutic targets that can improve the effectiveness of current immunotherapies. To address this critical knowledge gap, spatial imaging technologies have shown critical potential.

In this review, we examine the key methods used in spatial proteomics, their applications in melanoma biology, and the image processing and analysis pipelines associated with these technologies. We also address the current limitations and outline future directions for advancing spatial proteomics.





Spatial proteomics methods

While the core principle of antibody-staining remains consistent across most spatial proteomic approaches, they differ in detection methods. Different moieties attached to the (primary/secondary) antibodies used for protein target detection act as signal amplifiers or identifiers, and are based on enzymes, fluorescence, or mass spectrometry (Figure 1, Table 1).

[image: Diagram illustrating various proteomic methods. Conventional methods include Immunohistochemistry (IHC) and Immunofluorescence (IF). Iterative methods entail Cyclic Immunofluorescence (CycIF) and Co-detection by indexing (CODEX), both involve cycles of labeling, imaging, and removal. Mass-spectrometry methods include Imaging Mass Cytometry (IMC) and Multiplex Ion Beam Imaging (MiBi), featuring metal-tagged antibody staining and laser ablation. Combined proteomics-transcriptomics methods involve Digital Spatial Profiling (DSP) and Spatial Molecular Imager (SMI) with steps for staining, segmentation, library preparation, and imaging.]
Figure 1 | Experimental workflow of the available spatial proteomics technologies: conventional [IHC (immunohistochemistry), IF (immunofluorescence)], iterative [CyCIF/HIFI (cyclic immunofluorescence, hyperplexed immunofluorescence imaging), CODEX (Co-detection by indexing)], mass spectrometry based [IMC (imaging mass cytometry), MiBi (multiplex ion beam imaging)], and methods that combine proteomics and transcriptomics [DSP (digital spatial profiling-GeoMX) and SMI (spatial molecular imager-CosMX)]. Created in https://BioRender.com.

Table 1 | Summary of methods applied in spatial proteomics.
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Conventional immunohistochemistry (IHC) is widely used in routine pathology for tumor diagnosis and classification. It is based on the simultaneous use of up to two antibodies directed against specific markers, and an enzyme-based detection through horseradish peroxidase or alkaline phosphatase (7). This approach has high sensitivity and is well-established, but it is limited in the number of proteins simultaneously detected. To overcome this limitation multiplex IHC (mIHC) protocols, based on multiplexing sequential staining strategies, have been optimized. mIHC can be based on two main approaches: (i) same-slide iterative labeling, digital scanning, and antibody stripping; (ii) sequential tissue slices staining with one/two antibodies simultaneously (8), digital scanning, and images overlapping (9).

These techniques expand the number of detected markers but, as chromogenic amplification provides a non-linear correlation with protein expression levels, they lack a direct correlation between protein expression level and signal intensity. Additionally, the use of sequential tissue slice staining introduces challenges in maintaining cell identity and consistency across slices.

Multiplex immunofluorescence (MxIF) allows the simultaneous detection of different protein targets at the cellular level. Fluorescence spectral overlap limits detection to a maximum of 4 or 5 markers, or up to 6 if using maximum laser number coupled with deconvolution algorithms.

The number of detectable markers can be increased using Cyclic Immunofluorescence (CyCIF), which is based on the same antibody staining cycle principle employed in mIHC (10). Signal removal between staining cycles can be achieved by either stripping the antibody or its label, or through fluorophore photobleaching, such as Iterative Bleaching Extends Multiplexity (IBEX) (11). While these methods enable the detection of a greater number of markers compared to conventional immunofluorescence (IF), they require careful optimization of the antibody staining sequence. Additionally, they often depend on specialized automated systems that minimize handling time and improve efficiency, although at high costs.

Recent studies have introduced a new pipeline for cyCIF, called hyperplexed immunofluorescence imaging (HIFI), which employs a manual, cost-effective, and instrument-free approach (12, 13). This method enables high-throughput data acquisition using standard benchtop reagents and conventional slide-scanning microscopes, facilitating the democratization of high-throughput spatial proteomics. However, despite their accessibility and whole-slide imaging capabilities, manual HIFI methods are time-consuming compared to platform-dependent proteomic techniques. They require continuous operator presence, optimization of antibody panels (to avoid antigen damage during elution), and protocol durations that vary with the number of staining rounds. Additionally, the analysis pipelines for these methods are not yet fully standardized.

Co-detection by indexing (CODEX) is another cyclic imaging technique that involves staining with antibodies conjugated to oligonucleotide tags with 5’ overhangs of varying lengths. This is followed by multiple imaging cycles, enabling the detection of up to 100 markers (14). The signal from DNA-labeled antibodies can be further amplified using sequential hybridization reactions, such as Immuno-SABER. While these methods enable maximal multiplexing and offer a powerful tool for spatial proteomics, they come with certain limitations. One of the challenges is the need for additional antibody validation after the conjugation step to ensure that the conjugated oligonucleotide tags do not interfere with antibody binding. Moreover, the absence of an amplification system for the antibody tags themselves means that lowly or diffusely expressed markers are difficult to detect, as the signal from these markers may not be strong enough to distinguish from background noise.

Currently, CODEX-based imaging has been used in numerous studies to achieve high-plex imaging of whole tissue samples. However, the costs associated with this technology present a challenge to its widespread application. Other multiplex approaches are based on the use of metal-tagged antibodies, which provide unmatched protein identification capabilities and can quantify more than 40 proteins simultaneously. They are based on Time-of-flight (TOF) mass spectrometry and differ in how metals are extracted from the tissue: using either secondary ionization [MiBi-Multiplexed ion beam imaging (15)] or laser ablation [IMC-imaging mass cytometry (16)].

While these approaches do not require multiple tissue slices or cycles of antibody staining/stripping, they do not have an amplification system and require long time for image acquisition. Moreover, secondary ionization and laser ablation cause tissue destruction, and samples cannot be used for downstream applications (e.g. digital spatial profiling).

Other methods combine the simultaneous detection of spatial proteome and transcriptome to achieve a more detailed tissue resolution. The Digital Spatial Profiler (DSP) GeoMX employs fluorochrome-tagged antibodies (morphology markers) for cell identification, alongside DSP antibody tagged with unique barcoded photocleavable oligonucleotide linkers. Fluorescence-based imaging is used for the segmentation of the cell types of interest with morphology markers. Tissues are then exposed to UV light which releases the photocleavable linkers. Subsequent library construction and sequencing allow for digital readout and spatial mapping of the protein targets. Notably, DSP also includes RNA probes, offering in situ transcriptomic mapping (17). Compared to other spatial proteomics approaches, DSP increases the number and variety of spatially resolved targets, however it does not achieve single-cell resolution.

In contrast, the Spatial molecular imager (SMI) CosMx utilizes a high-plex in situ fluorescence-based imaging approach for the concurrent detection of both RNA and protein. Tissues are incubated with oligonucleotide-tagged antibodies (for proteins) and probes (for RNA). Fluorescent reporters with unique barcodes are sequentially hybridized and imaged, with the signal quenched after each round. This cyclic process builds a unique fluorescent signature for each protein and RNA target, allowing for its identification and quantification at a precise location (18).

Despite its high throughput and resolution capabilities, CosMX experiments can be considerably expensive, potentially restricting its accessibility for some research groups or larger-scale studies.





Application of spatial proteomics to melanoma tumor microenvironment

Characterizing the melanoma TME, its cellular composition, and the spatial relationships between its cellular components is increasingly vital, especially in the era of immunotherapy. Understanding cell phenotypes, their precise location, and interactions within the TME can provide critical insights into how tumors evade immune surveillance and respond to treatment (Table 2).

Table 2 | Application of spatial proteomics for the study of melanoma TME.


[image: A detailed table compares various studies related to melanoma, focusing on reference, model, technology, sample type, multiplexed targets, sample size, and clinical findings. The studies explore different aspects of melanoma using technologies such as MxIF, CyCIF, CODEX, IMC, and DSP in human and murine models. Clinical findings include immune response, survival rates, infiltration of lymphocytes, expression of specific markers, and progressions influenced by various cells and treatments.]
Gide et al. (19) used MxIF to quantify densities and spatial locations of T cells and PD-L1 in the TME of melanoma patients treated with immunotherapy (both single agent and combination ICIs). They used the Opal technology coupled to the Vectra 3.0 slide scanner to obtain a 5 colors whole slide image of FFPE primary tumors and to identify area of interest (tumoral and peritumoral) that were then imaged at higher resolution (20x), and analyzed using the scanner proprietary software. They found that patients responding to ICIs had increased numbers of intratumoral and peritumoral CD8+ T cells together with higher numbers of PD-L1+ cells, both before therapy and in tumor biopsies collected early after therapy, thus confirming data obtained with IHC (20, 21). They also observed an increase of CD8+ expressing granzyme B, EOMES (Eomesodermin), and TBET (T-box expressed in T cells) in responder patients at early stages of treatment, indicating that effector T cells are needed for an optimal anti-tumor immune response.

However, there were some limitations in the methodology that may have restricted the depth of analysis. The study did not use multiplex immunofluorescence to differentiate between cells expressing multiple markers. Instead, authors quantified cells expressing a single marker, potentially overlooking important cell subpopulations, such as exhausted T cells which could have been characterized by co-expression of inhibitory receptors (e.g., PD-1, TIM-3). Therefore, the lack of multi-marker analysis limited the potential for identifying more immune cell phenotypes. Furthermore, the study did not incorporate spatial analysis of the immune microenvironment.

A 6plex MxIF was used to define the immune landscape of melanoma metastasis (22). Interestingly, immune cell neighborhoods were defined using an unsupervised flow cytometry-like workflow which identified spatial immune signatures associated with prognosis.

In brain melanoma metastasis, MxIF was used to confirm digital spatial transcriptomic data and to map the neural-immune architecture of the TME. The data confirmed that patients with tumor brain metastasis infiltrated with higher number of CD3+ and CD20+ lymphocytes (presumably corresponding to tertiary lymphoid structures) experienced longer overall survival, suggesting that more organized immune infiltrates can foster active anti-tumor immune responses or restrict tumor expansion (23).

These studies only partially leveraged the potential of MxIF, limiting the number of markers analyzed and thus hindering the exploration of cellular heterogeneity within the TME.

CycIF with the MILAN (multiple iterative labelling by antibody neodeposition) method (which uses a combination of a detergent and a reducing agent to remove antibodies) has been used to dissect TME cell phenotypes in a small cohort of primary cutaneous melanoma (24). Authors identified 47 functional cell populations (corresponding to tumor, epithelial, and immune cells) and different cellular neighborhoods characterized by interactions between activated and/or exhausted immune cells. These interactions were linked to traditional pathological classifications (e.g. brisk/non-brisk immune infiltrate, early/late regression), offering functional insights into classical pathological features commonly used in melanoma staging.

A recent study employing 20–30 plex CyCIF provided a more detailed characterization of primary melanoma, examining its cellular composition and structural organization (25). Through spatial analysis, the authors identified the presence of recurrent cellular neighborhoods (RCNs), spatial clusters of different cell types that change during disease progression. Specifically, the study uncovered how initial anti-tumor immune responses were progressively hindered as myeloid niches formed, leading to T cell exhaustion and eventually immune suppression. As melanoma acquires invasive properties, these changes in cellular microenvironments facilitate tumor progression. Furthermore, by integrating spatial proteomics with spatial transcriptomics, the researchers were able to identify distinct molecular programs tied to disease progression, thereby advancing our understanding of melanoma biology. This integrative approach also uncovered potential therapeutic targets that could be leveraged for future immunotherapy strategies.

CyCIF has also been used to assess melanoma evolution in longitudinal samples collected across 9 years from a single patient initially responding to ICIs and subsequently experiencing late recurrence and death (26). These studies allowed the spatial characterization of tumor-immune interactions occurring during response vs late ICIs resistance and at different metastatic sites, allowing a deeper understanding of the evolution of resistance and tumor microenvironmental heterogeneity, offering a rationale to improve combination therapies and to identify new targets.

Additional studies have utilized CODEX to investigate TME evolution during adoptive T cell therapy in mouse models of melanoma. A 42-plex antibody panel targeting immune, tumor, and stromal cells, along with functional markers (primarily checkpoints), was employed to examine immune cell infiltration and tumor inflammation dynamics in a syngeneic B16F10 model of antigen-specific T cell therapy (27). The authors reconstructed the timeline of the anti-tumor immune response, visualizing different cell neighborhoods at various stages of inflammation and tumor attack. Their findings revealed that therapeutic T cells not only target tumor cells but can also induce a shift in tumor cell phenotypes, converting them into an inflamed, anti-proliferative state. Moreover, T cells were shown to mediate the formation of both productive and unproductive tumor-immune neighborhoods, which affect therapy responses. A similar evolution of cellular neighborhoods was observed in human melanoma samples stained with a 58-plex panel, comparing responder vs non-responder patients to ICIs. Results show that greater abundance of PD-1+ CD8 T cells and TCF1/7+ CD8 T cells pre and post ICIs was associated with response to treatment. Responders also showed spatial reorganization of the TME after ICIs treatment, with the formation of tumor-immune neighborhoods highly enriched in Immune Infiltrate cellular neighbourhoods (27). These data underscore the importance of considering T cells influence on the structural reprogramming of the TME, as this process can significantly impact the magnitude and effectiveness of anti-tumor immune responses and tumor eradication. Therefore, these findings suggest that immunotherapy strategies should incorporate factors capable of restructuring the TME to enhance therapeutic outcomes.

More recently, CODEX was employed in a multi-omics study to define and functionally assess the transition from in situ to invasive acral melanoma. By integrating genomic sequencing with various transcriptomic approaches and a 22-plex CODEX panel, the authors identified molecular tumor subtypes characterized by increased epithelial-mesenchymal transition and spatial enrichment of APOE+ CD163+ macrophages as markers of invasive acral melanoma, with a worse prognosis (28). A recent study has also shown the applicability of the CODEX technology to study TME changes in animal models treated with novel combination therapies (29).

In addition to CODEX, IMC has also been used to stratify patient responses to immunotherapy. In a study using a 26-plex panel on 60 melanoma samples from ICI-treated patients, the application of the AQUA software, which calculates the cumulative signal intensity per unit compartment area, identified beta-2-microglobulin expression as a predictor of ICI response (30). In addition, Xiao and colleagues used a 35-plex and identified 6 different patient archetypes (spatial cellular neighborhoods) predictive of anti-PD-1 responses. In line with other spatial proteomics studies (25, 27), they observed that immune-hot TMEs are formed by CD8+ T cells surrounded by CD4+ and B lymphocytes, and correlate to response to ICIs and better overall survival. On the other hand, immune-cold archetypes are characterized by myeloid cells in close contact with CD8+ T cells and are predictive of poor clinical outcomes (31). Another IMC study quantifying the expression of 35 protein markers in 67 pre-treatment melanomas, demonstrated that the abundance of proliferating antigen-experienced cytotoxic T cells (CD8+CD45RO+Ki67+) and their proximity to melanoma cells were associated with positive response to ICIs (32).

Other IMC-based studies have employed modified protocols to simultaneously detect protein markers and mRNA targets for chemokines, enabling a more comprehensive analysis of T lymphocytes activation and/or dysfunction and their patterns of interaction in the TME (33).

Digital Spatial Profiling (DSP) GeoMX has been applied in melanoma biology to discover predictive markers for immunotherapy response in metastatic patients. Two independent studies identified PD-L1 expression in macrophages, but not tumor cells, as the strongest predictor of response to ICIs, while CD95 expression in immune cells was associated with immunotherapy resistance (34, 35). In a phase I study of metastatic melanoma patients treated with adoptive cellular therapy with tumor-infiltrating lymphocytes (TIL-ACT), DSP analysis revealed distinct immune profiles in responders. At baseline, responder patients exhibited CD8+ TILs with increased cytotoxicity, exhaustion, and costimulation markers, while myeloid cells showed elevated type I interferon signaling (36). DSP has also been used to identify and characterize tertiary lymphoid structures (TLS) within the melanoma TME. Two separate studies revealed differential expression of various activation and response markers in T lymphocytes residing within TLS compared to those outside, which exhibited a dysfunctional phenotype (37, 38).

DSP studies in melanoma have also been extended to the characterization of sentinel lymph nodes (SLNs). Beasley et al. demonstrated an association between dendritic cell (DC) activation markers (CD86, HLA-DR, OX40L) within the SLN tumor and overall survival (OS), with lowest expression in patients with OS < 1 year and highest in those with OS > 8 years (39). Another study utilizing a 68-antibody DSP panel to analyze B cell follicles in melanoma SLNs revealed significantly higher expression of multiple activation markers, including Ki-67, within B cell regions of metastatic SLNs compared to non-metastatic SLNs. These findings suggest that B cell follicles within SLNs could be involved in orchestrating effective adaptive immune responses in melanoma even at early stages of lymph node involvement, characterized by low tumor cell infiltration (40).

In summary, spatial proteomics has significantly advanced our understanding of the melanoma TME, shedding light on its heterogeneity in relation to prognosis, its evolution during immunotherapy response or resistance, and its distinct organization across different metastatic sites. However, additional work is required to translate these insights into clinical applications and diagnostic tools.





Image analysis workflow for spatial proteomics

Extracting meaningful biological insights from the complex amount of data obtained with the different spatial proteomics methods requires a well-defined analytical workflow which involves four key pillars: (i) image pre-processing to correct variation in image quality, (ii) cell segmentation to identify individual cells, (iii) cell phenotyping to classify cells and reveal their functional states, and (iv) spatial neighborhood analysis to delve into the intricate communication networks between cell populations. To streamline this complex workflow and empower researchers, a series of software tools have been developed (Figure 2, Table 3).

[image: Diagram illustrating a multi-step analysis workflow. It includes preprocessing with stained tissue sections, cell segmentation, and analysis of cell phenotypes using TSNE and heatmaps. Spatial analysis panels display cellular neighborhoods, spatial communities, and a cell interaction graph. Labels indicate key markers like DAPI, CD20, and CD3. The workflow is divided into sections: preprocessing, cell segmentation, cell phenotyping, and spatial analysis.]
Figure 2 | Workflow of spatial proteomics analysis applied to a multiplexed image of a metastasis-free melanoma sentinel lymph node. The pipeline includes key analytical steps, each illustrated with representative outputs. Preprocessing: image registration using the VALIS algorithm ensures alignment across imaging channels. Cell segmentation: nuclei and cytoplasmic boundaries are segmented using Cellpose. Cell phenotyping: t-SNE plot and heatmap display the results of phenotypic clustering performed with PhenoGraph. Spatial analysis: cellular neighborhood analysis, spatial community detection, and cell–cell interaction inference were carried out using the imcRtools package. Created in https://BioRender.com.

Table 3 | Tools and software commonly used in spatial proteomics analysis workflow.
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Preprocessing

Multiplex imaging techniques produce rich datasets that require rigorous preprocessing to ensure data quality, consistency, and accurate downstream analysis. This step involves addressing artifacts, aligning multi-tile or multi-round images, and optimizing overall image quality to overcome the technical challenges inherent in spatial proteomic methods. For tiled imaging techniques, stitching and registration play a crucial role in ensuring accurate and comprehensive datasets. Stitching assembles individual image tiles into a cohesive dataset, while registration aligns images across different cycles for the same tissue slide and between sequential slides to a common spatial framework. Tools like ASHLAR (Alignment by Simultaneous Harmonization of Layer/Adjacency Registration) (41) excel in both tasks by leveraging iterative optimization algorithms to achieve subpixel accuracy. Designed specifically for cyclic imaging workflows, ASHLAR addresses common issues like misalignment between imaging cycles or shifts in tissue position, ensuring a seamless composite that faithfully represents the original tissue. Similarly, VALIS (Virtual Alignment of Pathology Image Series) (42) offers a flexible and scalable approach to aligning multi-gigapixel whole-slide images and provides a modality-agnostic solution, supporting both immunofluorescence and brightfield datasets. Its unique groupwise registration method is particularly beneficial for datasets with high variability in staining or tissue distortion, as VALIS can integrate both rigid and non-rigid transformations to accommodate stretching, folding, or other deformations.

Beyond alignment, preprocessing tackles artifacts that compromise image quality. These include folding, air bubbles, dust, lint, out-of-focus areas, and uneven illumination, all of which can distort quantitative results. Automated tools such as QUAL-IF-AI (Quality Control of ImmunoFluorescence Images using Artificial Intelligence) (43) leverage deep learning to detect and correct these issues efficiently, offering a reproducible alternative to labor-intensive manual corrections​​. For IMC datasets, hot pixels—high intensity signals uncorrelated to any biological structures — are removed using intensity thresholding or spatial filters (median, Gaussian filter) or some specific pipeline such as IMC-Denoise (44).

In immunofluorescence workflows, background subtraction and illumination correction are essential to minimize signal interference and standardize intensity across the image. Techniques such as BaSiC algorithm (45) provide robust solutions for correcting uneven illumination patterns, improving the consistency of fluorescence signals across tiles and within imaging cycles​. Autofluorescence, a persistent challenge in older or archival tissues, can be mitigated using spectral unmixing or model-based approaches.

Ultimately, preprocessing pipelines like MCMICRO (Multiple-choice microscopy pipeline) (46) or RAPID (a Real-time, GPU-Accelerated Parallelized Image processing software for large-scale multiplexed fluorescence microscopy Data) (47) are indispensable for high-throughput multiplex imaging. They streamline workflows by automating quality control, stitching, and registration, while facilitating reproducibility and scalability. For instance, the MCMICRO pipeline has been successfully applied to investigate the spatial landscape of progression and immunoediting in primary melanoma (25). By addressing both general and modality-specific challenges, preprocessing enables accurate feature extraction and sets the stage for robust spatial and molecular analyses.





Segmentation

Following image processing and alignment, cell segmentation emerges as a crucial step in analyzing cellular features. During segmentation, individual cell boundaries are computationally identified, generating binary masks that represent single cells within the image. The accuracy of cell segmentation significantly impacts the quantification of multicellular properties, such as protein expression and cell morphology. An ideal cell segmentation algorithm should effectively segment cells of different sizes and shapes within various tissue types, regardless of cell density. Additionally, it should accurately delineate both the membrane and internal compartments like the nucleus and cytoplasm. Techniques like watershed segmentation (48), are effective for isolating individual cells, however they show some limitations in accurately segmenting overlapping cells or cells with complex morphologies, which can lead to cell’s over-segmentation (49). Therefore, more advanced segmentation algorithms, such as machine learning and deep learning models, are often necessary to achieve accurate cell segmentation in complex tissues.

Machine learning-based approaches, such as random forest classifiers, have gained traction for segmentation tasks. A common workflow, IMCSegmentation Pipeline (16), involves tools like Ilastik (50), which enables pixel-based classification to distinguish between nuclei, membranes, and background regions, generating probability maps. These maps can then be processed in CellProfiler (51) to produce segmentation masks. However, these methods require extensive manual effort and parameter optimization, and their accuracy relies heavily on the quality and volume of the training dataset.

In contrast, deep learning-based models represent a transformative advance, offering superior accuracy and robustness with minimal user intervention. Models like StarDist (52), Mesmer (53), and Cellpose (54) have redefined cell segmentation, particularly in challenging tissue contexts. StarDist leverages a star-convex polygonal representation (55) to segment individual cells, particularly excelling in identifying nuclei of various shapes and sizes. Its unique approach models each nucleus as a star-shaped object, which enables robust segmentation even in dense tissues or images with overlapping cells. StarDist’s adaptability to both 2D and 3D data makes it highly versatile for a range of imaging modalities. Mesmer incorporates pre-trained convolutional neural networks (CNNs) optimized for multiplexed tissue images. It seamlessly segments both nuclei and cytoplasmic compartments, ensuring robust performance across diverse tissue types without the need for manual annotations. Mesmer’s pre-training on extensive datasets allows it to generalize effectively, reducing the need for user intervention and overcoming limitations posed by traditional algorithms. Similarly, Cellpose introduces a generalist deep learning framework capable of segmenting cells with varied shapes, sizes, and densities. Unlike many task-specific algorithms, Cellpose employs a flow-based representation to predict directional flows of pixels toward cell centers, enabling accurate boundary delineation. Its ability to handle highly heterogeneous datasets, including images from fluorescent, brightfield, and phase contrast microscopy, makes it particularly powerful for real-world applications where cell morphology is highly variable.

The adoption of these deep learning models has significantly improved segmentation accuracy in challenging tissue microenvironments, surpassing traditional and machine learning-based methods. By automating feature extraction and learning complex relationships in image data, these models not only streamline the segmentation workflow but also enhance the precision of downstream analyses, such as cell phenotyping and spatial analysis. These advances are crucial for extracting biologically relevant insights from high-dimensional imaging datasets in biomedical research.





Cell phenotyping

Advancements in computational methods have significantly refined cell phenotyping. Clustering techniques, for instance, have become essential tools for grouping cells based on molecular profiles. One prominent method, PhenoGraph (56), constructs a weighted graph of cellular neighborhoods by identifying k-nearest neighbors in expression space and quantifying overlap using the Jaccard similarity coefficient (57). The graph is then partitioned into clusters, enabling the detection of subtle subpopulations in tissues. This approach has been widely applied to imaging datasets such as IMC, offering a robust framework for clustering. Another impactful technique, FlowSOM (58), utilizes self-organizing maps (SOMs) (59) for dimensionality reduction and clustering. It incorporates meta-clustering via minimal spanning trees, achieving results that are not only highly accurate but also orders of magnitude faster than traditional algorithms like SPADE (Sequential PAttern Discovery using Equivalence classes) (60). These methods provide scalable alternatives to manual gating, especially for high-dimensional dataset. Notably, several studies on melanoma (24, 33) have leveraged PhenoGraph, either alone or in combination with FlowSOM, for cell type identification, highlighting the power of these algorithms in unraveling tumor heterogeneity.

Machine learning further enhances phenotyping by incorporating prior biological knowledge and leveraging spatial context. Garnett (61), for example, is an interpretable framework that enables the rapid annotation of cells across tissues and species, even supporting hierarchical classification of subtypes. Garnett does not require prior clustering, making it adaptable to various datasets. CELESTA (62) expands on this approach by integrating spatial information into the classification process. It assigns cell types to “anchor cells” based on marker profiles and refines the phenotyping of ambiguous “non-anchor cells” using spatial relationships with neighboring cells. By employing probabilistic models and spatial scoring functions, CELESTA excels in classifying cells with uncertain identities. Astir (63), instead, takes a complementary approach by using deep recognition neural networks to assign probabilistic cell type identities from predefined marker sets. It is especially effective in scaling to massive datasets, delivering results with remarkable speed and precision.

Deep learning methods have revolutionized phenotyping by exploiting the detailed spatial and molecular features of multiplexed imaging data. For example, DeepCellTypes (64) combines visual encoders, language encoders, and channel-wise transformers to generalize across diverse datasets, seamlessly adapting to different imaging modalities and marker panels. CellSighter (65), another deep-learning-based pipeline, employs convolutional neural networks to classify cells probabilistically across imaging platforms, achieving inter-observer-level concordance in accuracy. Going further, STELLAR (SpaTial cELl LeARning) (66) utilizes geometric deep learning to analyze spatially resolved single-cell datasets. It integrates spatial and molecular features through graph convolutional neural networks, identifying known cell types from annotated reference datasets and discovering novel phenotypes in unannotated datasets. By leveraging spatial proximity and molecular expression, STELLAR provides a powerful tool for cell-type discovery and tissue structure analysis.

Collectively, these advanced methods have propelled cell phenotyping to new levels of accuracy and efficiency. They enable researchers to unravel the complexity of tissue organization and cellular interactions, seamlessly integrating phenotyping with spatial analysis to uncover deeper biological insights.





Spatial analysis

Spatial analysis plays a pivotal role in uncovering the intricate organization of tissues and the dynamics of cellular interactions in multiplex imaging datasets. Building upon the foundational steps of preprocessing, segmentation, and cell phenotyping, it provides profound insights into tissue architecture and intercellular communication. Techniques such as neighborhood analysis, cellular community detection, and interaction modeling are particularly valuable in this context.

Neighborhood analysis focuses on understanding how different cell types are spatially distributed and interact within the tissue microenvironment. By evaluating spatial proximity, this approach can reveal critical insights into phenomena like immune infiltrates in tumors or the relationships between stromal and epithelial cells (67). Tools like HistoCAT (Histology Topography Cytometry Analysis Toolbox) (68) provide an accessible interface for exploring these spatial relationships in IMC data, allowing researchers to visualize cell phenotypes and compute interaction maps. The practical feasibility of HistoCAT has been demonstrated in clinical research: for instance, it was used by Xiao et al. (31) to identify spatially defined tumor-immune microenvironments associated with response to anti-PD-1 therapy in melanoma patients, and to classify distinct TME archetypes predictive of treatment outcome. Similarly, Martinez-Morilla et al. (30) employed IMC for biomarker discovery in metastatic melanoma, complementing spatial data analysis with quantitative methods to identify predictive markers such as beta2-microglobulin (B2M), supporting the potential of spatial proteomics for clinical stratification. Furthermore, Cytomapper (69), an R/Bioconductor package, offers powerful visualization capabilities for highly multiplexed imaging data, enabling researchers to generate informative spatial maps and explore cellular neighborhoods in detail, complementing the analytical strengths of HistoCAT. Meanwhile, R-based tools such as imcRtools (16) offer deeper statistical capabilities for calculating interaction probabilities and visualizing spatial patterns. This framework can be extended to analyze more general spatial patterns using packages like Spatstat (70) for advanced statistical assessments of spatial clustering and randomness.

Detecting cellular communities adds another layer of complexity by identifying clusters of cells that form functional units, such as immune niches or tumor microenvironments. Leveraging the same robust framework provided by imcRtools, researchers can cluster and characterize cellular communities in IMC data, integrating spatial metrics with phenotypic profiles. Additionally, software like Squidpy (71), which utilizes spatial neighborhood graphs, enables classification of cells into communities while incorporating multi-omic data such as gene or protein expression. These analyses can highlight patterns like immune deserts or coordinated interactions between stromal and immune cells, with Squidpy’s visualization tools offering an intuitive way to explore these relationships. The feasibility of Squidpy-based pipelines in clinical research is illustrated by Coullomb et al. (72), who developed MOSNA, a spatial omics analysis framework compatible with Squidpy, to uncover spatial features predictive of immunotherapy response and survival across cancer cohorts. By integrating spatial proteomics data with clinical metadata, their study demonstrates how cell interaction patterns and tissue architecture can inform patient stratification and treatment outcomes.

Interaction analysis delves deeper into the mechanisms of cell-cell communication by quantifying and modeling direct or indirect interactions. This is crucial for understanding how cells influence each other’s functions within their spatial context. imcRtools facilitates the computation of interaction frequencies and enrichment scores to identify preferential or avoided interactions between cell types (73). Advanced tools like Giotto (74) complement these efforts by detecting spatial dependencies that extend beyond mere proximity, helping to elucidate the spatial organization of functional phenotypes.

An important resource for the scientific community is Aquila (75), a spatial omics database and analysis platform that aims to centralize data, analysis tools, and visualizations, facilitating sharing and discovery in this rapidly growing field. This database could be invaluable for melanoma researchers seeking publicly available spatial proteomics datasets and tools for comparative analyses.

As spatial analysis techniques continue to evolve, integrative approaches are emerging that bridge spatial organization with molecular communication. Tools such as CellChat (76) and SpaOTsc (Spatial Optimal Transport for single-cell transcriptomics data) (77) model ligand-receptor signaling networks, offering a functional perspective on cell-cell interactions (78) These advancements not only enhance our understanding of tissue architecture but also open new avenues for exploring pathological processes.

Looking ahead, the field is poised for innovations that will improve scalability and interoperability across platforms, enabling researchers to tackle increasingly large and complex datasets. By synthesizing spatial metrics with molecular data, future studies promise to unveil deeper insights into the interplay between spatial organization and tissue functionality.






Data integration for spatial analysis




Integration of spatial proteomics with other tissue imaging approaches

While single imaging modalities can yield valuable information, integrating data across multiple platforms enables a more holistic view of the tissue microenvironment. This approach introduces challenges such as spatial misalignment (79) due to differences in platform resolution, data normalization, and the choice of integration methodologies.

Among integrative approaches, combining IF with hematoxylin and eosin (H&E) staining represents a straightforward but effective strategy (80). While H&E provides fundamental morphological information such as cell shapes, sizes, and tissue organization, IF enables visualization of multiple fluorescent markers within individual cells, offering molecular and structural insights. Tools like the Orion (81) or HIPI (H&E Image Interpretation and Protein Expression Inference) platform (82) take this integration further by seamlessly combining multiplex fluorescence with histological data, facilitating a comprehensive understanding of both cellular and tissue-level features.

The integration of IF with IMC (83, 84) exemplifies a more advanced approach, leveraging the strengths of both modalities while mitigating their individual limitations. By integrating IF and IMC, researchers can align high-resolution imaging capabilities with comprehensive molecular profiling, creating a synergistic workflow. This integration addresses the limitations of each technique: IF compensates for IMC lower resolution, while IMC extends IF multiplexing capacity. Computational advances, including multimodal image co-registration and machine learning, now enable pixel-level alignment of IF and IMC datasets, linking cellular phenotypes with molecular signatures in unprecedented details.

These integrative strategies have been transformative in practical applications. In tumor microenvironment studies, IF provides precise mapping of immune-tumor boundaries and structural features like vascular networks, while IMC captures phenotypic diversity and functional pathways in immune subsets and stromal compartments. This dual-layer analysis not only enhances our understanding of spatially resolved phenotypes but also identifies potential therapeutic targets by linking molecular mechanisms to tissue architecture.

Despite their transformative potential, integrating multiplex platforms introduces challenges, including data complexity, the need for standardized workflows, and alignment of modalities with varying spatial resolutions. However, ongoing advancements in computational tools and reproducibility standards are addressing these hurdles, ensuring that integrative approaches are both scalable and reproducible. As a result, the integration of multiplex imaging technologies is becoming a cornerstone of spatial biology, unlocking unprecedented insights into tissue architecture, cellular interactions, and functional diversity.





Integration of spatial proteomics with other multi-omic approaches

Multi-omic data integration leverages computational advancements to analyze individual biomolecules within single cells. Each omics technique, such as RNA-seq, DNA methylation, and metabolite profiling, provides deeper insights into cellular interactions within their environment. However, each omics approach focuses on different aspects of cellular identity, with distinct strengths and weaknesses. Multi-omics integration offers a powerful method for robust and sensitive cell type/state identification, enhancing our understanding of cellular differentiation, gene regulatory networks, cell-cell interactions, microenvironmental organization, cellular lineages, and clonal dynamics. Meaningful integration of high-dimensional data, however, requires the development of computational and statistical models that account for the technical and biological complexities of these technologies (85). Argelaguet et al. (86), recently categorized data integration strategies into three main categories based on the anchors used to link different data modalities. Horizontal integration relies on common data features measured across different datasets, such as integrating across batches or technologies measuring the same analyte. Vertical integration involves parallel measurements of non-overlapping data features within the same cells, while diagonal integration is used when neither cells nor common features are available to serve as anchors. Although multimodal integration is advancing biomedical research, its clinical application is still in the early stages. Challenges include the high costs of multi-omics technologies, the need for specialized computational tools, and the requirement for rigorous clinical validation, which can be time-consuming and expensive. Despite these obstacles, multimodal integration holds great promise for enhancing our understanding of complex diseases and improving patient care in the future (87).






Spatial proteomics: limitations and future outlook

Spatial proteomics has significantly advanced our understanding of melanoma TME by providing detailed, spatially resolved maps of the complex interactions between tumor cells, immune cells, and stromal components. These approaches have illuminated how cell-to-cell interactions influence key aspects of cancer biology, including disease progression, metastatization, and therapeutic response.

In melanoma, spatial proteomics has refined our understanding of the relationship between ICIs responses and the conventional pathology assessments of PD-1/PD-L1 expression, as well as the prognostic significance of “brisk” versus “non-brisk” immune infiltration. By identifying spatial patterns within the TME and characterizing specific cellular functional states, these techniques have elucidated the TME evolution during disease progression and identified elements associated with increased invasiveness and response to immunotherapies. Furthermore, mapping the spatial context of tumor-infiltrating immune cells, their interactions with tumor cells, and the expression of key immune checkpoint markers has advanced the concept of precision oncology.

As spatial proteomics continues to evolve, it is gradually emerging as new tool to be integrated into clinical practice, holding transformative potential for pathology and its application in cancer diagnosis, prognostication, and treatment.

Studies in melanoma have demonstrated the potential of spatial proteomics to inform clinical decision-making across various aspects of melanoma management, including: identifying prognostic biomarkers of survival (22, 23, 28, 31, 34, 37, 39); predicting response to immunotherapy (19, 27, 30, 32, 35, 36), characterizing patterns of disease progression (24, 25, 28); and uncovering novel mechanisms to optimize future immunotherapies (29, 33, 38).

Despite the recent advances, spatial proteomics has several limitations, and further improvements are still needed (88).

All the multiplex approaches developed so far offer cellular maps of the TME, however, they often overlook key factors such as the extracellular matrix (ECM) and soluble molecules (e.g. cytokines, chemokines, and metabolites) that directly influence the formation of specific cellular neighborhoods within the TME. New technologies, such as Deep Visual Proteomics (DVP), are addressing these limitations by combining the strengths of digital pathology with high-sensitivity mass spectrometry (MS). DVP enables the selective capture of cells for in-depth analysis, facilitating a more comprehensive comparison of relevant cellular states at higher throughput. Unlike traditional methods, DVP is not limited by antibody availability, allowing for the quantification of up to 10,000 proteins. Additionally, super-resolution protein imaging in DVP allows for detailed examination of protein localization at the subcellular level, providing insights into how proteins function in both health and disease. In melanoma, the application of DVP to classify cell states based on proteomic profiles has uncovered spatial proteome changes that occur during melanoma progression (89). This capability could uncover new therapeutic targets, advancing drug discovery and treatment strategies (90).

Tissues are inherently heterogeneous, and most of the spatial proteomic approaches have largely relied on the analysis of 2D specimens from single tissue slices. To better capture the complexity and diversity of tissues, various research groups are working to develop 3D spatial proteomic workflows. Most of them are based on sequential slide staining coupled with tissue reconstruction (91) or on tissue clearing protocols combined with multiplex staining (92, 93).

Another limitation of spatial proteomics is the large volume of data it generates, which often requires several days for thorough analysis. The development of rapid, automated data storage platforms and more efficient analysis pipelines could greatly accelerate data processing, enabling faster insights and enhancing the overall utility of spatial proteomics in research and clinical applications. This advancement would not only accelerate results but also pave the way for the clinical application of spatial proteomics, potentially revolutionizing pathology.

The integration of artificial intelligence (AI) with multiplex imaging, traditional digital pathology approaches (94), and spatial analysis represents a transformative opportunity for spatial proteomics.

AI-driven approaches, particularly in computer vision, could revolutionize how we analyze complex datasets, enabling real-time pattern recognition and spatial mapping that surpass human capabilities. These techniques could also refine traditional digital pathology by enhancing the consistency and resolution of image analysis, enabling more detailed tissue characterization. AI could interpret the intricate spatial relationships within the tumor microenvironment, identifying biomarkers and predicting responses to immunotherapies with unparalleled precision (95). Emerging tools (46), promise to unify tasks like segmentation, classification, and phenotyping into streamlined pipelines, significantly enhancing both the accuracy and efficiency of spatial data analysis (96). Looking forward, AI-powered platforms could offer intuitive, query-based interfaces for integrating imaging data with clinical and molecular profiles, paving the way for new biological insights and personalized treatment strategies. Such innovations would not only accelerate data processing but also address the inherent limitations of human subjectivity, unlocking the full potential of multiplexed spatial proteomics in research and clinical practice.

There is a significant global effort to create comprehensive human atlases of cell networks and neighborhoods, spanning a wide range of tissue types and disease states. These atlases aim to map the intricate cellular interactions and spatial organization within different tissues, providing a rich resource for understanding human biology in health and disease (97–99).

In addition, recognizing the systemic nature of cancer, where tumor-induced perturbations extend beyond the local TME, future spatial proteomic studies should be integrated with analyses of cancer-mediated changes occurring at the systemic level, such as those observed in peripheral blood. This integrated approach could help to identify soluble factor signatures (e.g. metabolites, proteins) indicative of the TME that are amenable to detection in liquid biopsies.

To conclude, the integration of spatial multi-omics represents a frontier in biomedical research, offering unprecedented opportunities to uncover the spatial and functional complexity of biological systems. Future efforts will likely focus on refining computational frameworks, reducing technological costs, and bridging the gap toward clinical applications. By addressing these challenges, spatial multi-omics could transform our understanding of tissue organization and disease mechanisms, paving the way for personalized diagnostics and therapeutics.
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The tumor microenvironment is heterogeneous, structurally complex, and continually evolving, making it difficult to fully capture. Common dissociative techniques thoroughly characterize the heterogeneity of cellular populations but lack structural context. The recent boom in spatial analyses has exponentially accelerated our understanding of the structural complexity of these cellular populations. However, to understand the dynamics of cancer pathogenesis, we must assess this heterogeneity across space and time. In this review, we provide an overview of current dissociative, spatial, and temporal analysis strategies in addition to existing and prospective spatiotemporal techniques to illustrate how understanding the tumor microenvironment, focusing on dynamic immune-cancer cell interactions, across four dimensions will advance cancer research and its diagnostic and therapeutic applications.
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Introduction

A common storytelling technique comes from the Latin phrase in medias res, meaning “in the middle of things.” This tool captures the audience’s attention by starting in the middle or climax of the narrative then backing up to explain how the story reached that point. Similarly, a scientist’s attention is often captured by an interesting phenotype, causing them to wonder, “how did that end up there.” Just as flashbacks reveal plot while describing characters, setting, and conflict to catch the audience up with the story, experiments reveal important cell types, cell states, and signaling pathways to help scientists piece together their own narrative. Dissociative techniques, such as flow cytometry and single cell transcriptomics, have enabled the identification of the array of characters in these stories and sometimes their function at the point of analysis. The rapid expansion of spatial biology and spatial multi-omics has helped describe setting and neighborhoods, which could influence the character’s function. However, to understand the full plot of a research narrative, we need to study the changes and effects of those conditions over time, not only in the middle of things, in the moment of the assay. This is especially important in complex, heterogeneous systems like tumor microenvironments (TME).

TME have been profiled across cancer types and are each uniquely challenging to treat. Some prove more challenging than others due to heterogeneity in TME composition, stromal barriers, and enhanced immunosuppression. TME have been extensively studied across the cancer biology field, but these studies largely assay TME components in isolation. By studying TME in the context of space and time (four dimensions), a more complete narrative of each cancer can be written. Patients could be better classified into responders and non-responders for specific therapies. Scientists could identify when and where a target is most vulnerable to manipulation and which cells are nearby to assist in the targeting. Understanding the spatiotemporal changes of a TME would improve biopsy analysis to advance patient therapy and outcome.

Accordingly, recent advances in bench methodology have expanded TME analysis to include spatial and temporal methods. The spatial platforms we will discuss have helped characterize cell localization within the TME, but many of these modalities fail to demonstrate how these cell types, especially immune cells, and the tumor change over time. Temporal strategies like Zman-seq and pulse-chase enabled by computational approaches such as TDEseq and PseudotimeDE have shown the dynamics of molecule secretion and cellular infiltration in the TME (1, 117). Although these temporal tools were developed in isolation of space, their integration with spatial methodologies cannot be dismissed. In this review, we discuss how temporal dimensions can be incorporated into existing methods through longitudinal sampling, computational extrapolation and modeling, and longitudinal labeling. Longitudinal sampling provides insights into developmental processes and tumor progression based on the assumption that chances of particular cellular dynamics are consistent between samples while longitudinal labeling identifies specific molecules or cells at one time point and assesses the changes at later time points. Real-time imaging already combines longitudinal sampling and longitudinal tracing to record biological processes as they occur, and clinical imaging allows clinicians to monitor temporal changes within the TME (Figure 1). Nevertheless, spatiotemporal analysis represents the next frontier in TME research. The innovations we propose are initial steps towards transitioning from in medias res perspective to a more complete narrative of biological phenomena.

[image: Diagram illustrating a process for real-time imaging that combines assessing space and time. On the left are tools for spatial analysis, such as a monitor and microscope, while the right features time-based assessments with scatter plots and cell diagrams. Arrows point to a central process involving longitudinal sampling and computational modeling, leading to imaging of a mouse within a scanner. The bottom highlights the integration of spatial and temporal data.]
Figure 1 | Integrating space and time in the study of the tumor microenvironment. Assessment of time is performed using four overlapping techniques: (1) longitudinal sampling, (2) longitudinal labeling, (3) computational extrapolation, and (4) live imaging. Incorporating spatial quantifications with the temporal assessments can inform tumor evolution and dynamics. Portions of this figure were created in BioRender.com. Mandloi, A (2025). https://BioRender.com/f77v802.





Assessing identity

A cell's identity is determined by its distinct transcriptional profiles and corresponding proteomic outputs, which collectively govern its functional characteristics and phenotypic behavior within a given tissue or organism (1). One such method that enables researchers to explore the transcriptome at the level of individual cells is single-cell RNA sequencing (scRNA-seq), providing a high-resolution view of cellular identity, serving as a valuable tool to characterize cellular heterogeneity (2, 3). It is routinely used to capture the transcriptome of a single cell; however, ongoing advances have enabled nuclear transcriptome profiling using single-nuclear RNA-seq (snRNA-seq), which profiles transcriptomes in cells that are hard to dissociate. A study by Liu et al. used snRNA-seq to reveal distinct temporal shifts in the cervical cancer TME from stage-I to stage-II, showing an immune-active environment with proinflammatory macrophages and activated CD8+ T cells in stage-I, versus an immunosuppressive, growth-focused TME with fewer immune cells, more collagen, and increased mitochondrial activity in stage-II. This study indicates how changes in TME fuel cancer progression and point to stage-specific treatment possibilities (195). Another multi-omics technique called single-cell Assay for Transposase-Accessible Chromatin sequencing (scATAC-seq) is employed to study chromatin accessibility and characterization of regulatory elements. It is often used in combination with scRNA-seq to explore cancer-specific traits, linking chromatin accessibility changes to gene expression (5). scATAC-seq profiling of the TME in basal cell carcinoma revealed regulatory networks in immune, stromal, and cancer cells, identifying mechanisms behind T cell exhaustion in tumor-infiltrating lymphocytes (6). Among other innovations, tools like Perturb-seq track responses to genetic changes while PROFIT-seq studies other RNA molecules, enhancing our understanding of the TME (4, 7–12). Overall, advances in distinguishing cellular identities and functions have significantly improved our understanding of the characters in the tumor progression narrative, but these methods are only single dimension assessments.





Assessing space

Space serves as a foundational concept for understanding the structure and location of biology. At its core, spatial data preserve the x, y (2D) and, sometimes, z (3D) dimensions and provide details of cellular components and structural organization, enabling a comprehensive view into the spatial relationships within complex systems. Cellular neighborhoods and spatial organization can impact clinical outcomes and can even serve as prognostic markers (13–17). This spatial assessment ranges from simple chromogenic microscopy of digital pathology to the rapidly progressing field of spatial multiplexing and omics, which has been extensively reviewed elsewhere and only briefly discussed here (18–23).

Popular spatial proteomics techniques often involve the hyper-plexing of many antibodies to detect protein targets, but they can also use mass spectrometry imaging for many molecules, including proteins, metabolites, sugars, and metals (24–26). Various academic and commercially available platforms have been used to map the protein and cellular localizations within tissues, providing insights into the complex organization and dynamics of proteins in cancerous tissues (18). Clinically, Carstens and Correa de Sampaio et al. were the first to demonstrate the prognostic potential of spatial quantifications of T cells in proximity to cancer cells (15). Mass Spectrometry imaging has also been used to localize molecules of various sizes and proteins. The field continues to expand, now applying metabolic and functional markers in addition to sub-cellular localization to access inter-tumoral heterogeneity, co-localization, and therapeutic response (27–31).

Spatial transcriptomics profiles gene expression within tissue sections, connecting molecular details with histological context. Untargeted spatial transcriptomics is an approach designed to capture and analyze the expression of all mRNA transcripts within a tissue while preserving their spatial context. Unlike targeted methods that focus on predefined gene panels, untargeted techniques leverage next-generation sequencing (NGS), similar to scRNA-seq, to comprehensively profile the entire transcriptome. A key feature of this approach is the incorporation of spatial barcodes, which enable the assignment of each transcript to its original tissue coordinates, allowing for mapping of gene expression patterns across spatially distinct regions (32–34). These methods aide in developing spatial tissue atlases and the characterization of distinct tumor microenvironments, including tumor interfaces and tertiary lymphoid structures (35–38). These techniques can be variations of laser capture microdissection and use UV-photo-cleavable spatial targeting or barcoding (24, 39–41). Furthermore, these spatial transcriptomics and scRNA-seq are complementary approaches that, when integrated, provide a comprehensive view of cellular identity within the spatial architecture of tissues, providing insights into cancer progression and therapeutic targets (42–44). While scRNA-seq offers high-resolution transcriptomic data and the ability to identify novel cell subtypes, spatial transcriptomics retains the positional information of cells within their native microenvironment (45). Integration of these techniques is commonly achieved through two main strategies: deconvolution and mapping. Deconvolution aims to resolve distinct cellular subpopulations within each spatial transcriptomics capture spot by leveraging scRNA-seq data. Mapping involves two key components: assigning scRNA-seq defined cell subtypes to individual cells within high-plex RNA imaging maps and localizing each scRNA-seq cell to a specific anatomical region within the tissue. Such analyses offer spatial resolution to help predict ligand–receptor interactions inferred from scRNA-seq data, enabling insights into cell–cell communication within the tissue microenvironment (46–54). Continuing innovations in these areas have increased the imaging resolution to sub-cellular levels to allow single-cell resolution within the native tissue structure (55, 56).

Targeted spatial transcriptomics often uses fluorescence in situ hybridization (FISH) to identify single RNA molecules (57–60). Its benefits include sub-cellular resolution and the ability to enhance the capture of desired transcripts and isoforms that could be lost to dropout from unbiased techniques. Spatial Perturb-Seq combines untargeted whole transcriptomics with targeted CRISPR barcodes to assess the CRISPR screening and enables single-cell resolution analysis of genetic perturbations within intact tissue architecture. As a result, this method reveals both cell-autonomous and non-cell-autonomous effects while providing key insights into cellular crosstalk that are often missed by conventional dissociated single-cell sequencing (61). These methods effectively map tissue architecture and cellular clonality, serving as valuable tools to study TME heterogeneity (62).

Spatial omics platforms have recently integrated the evaluation of various molecule types, termed multi omics. These techniques enable protein confirmation of transcriptional signatures and assess tissue architecture’s influence on protein translation and cell signaling (63). Other multiomic techniques combine 3D structural rendering of serial sections with spatial targeted whole exome sequences, mass spectrometry imaging, spatial proteomics, and spatial transcriptomics (64, 65). The recent advancement of statistically principled and artificial intelligence based computational tools in spatial omics enabled the study of tissue organization by integrating spatial information with molecular profiling, allowing researchers to explore how the spatial arrangement of cells and molecular markers contributes to cancer biological functions in TME. One of the principle tools is focused on spatially variable gene analysis to identify genes that exhibit spatial heterogeneity in their expression in spatial domain, which is essential for understanding the functionality within tissues (66–68). In the next step, spatially varying network estimation focuses on regulation pattern at a molecular level and identification of transcription factors or key biomarkers which are potential targets for immunotherapy (69–71). Cell-type annotation and cluster analysis based spatial region identification help to decipher the complex cellular architecture of tissues by associating molecular profiles with specific cell types and spatial regions within TME (48, 72–74). The integration of scRNA-seq and spatial omics data will harness information from multiple omics layers to achieve higher precision in inferring clinical biomarkers in TME for immunotherapy based therapy intervention (75, 76). These innovations are being applied to understanding the TME and have identified structural and expressional heterogeneity far outside what has been previously understood. Overall, spatial assessments of the TME have contributed to discovering new biomarkers, predictors of clinical and therapeutic outcomes, novel phenotypes, and standards for tumor grading (21, 77–81). These modalities reveal the locations and triggers of phenotypes but not their onset or later progression. To fully grasp spatial TME biology and optimize its clinical applications, it is crucial to determine the specific timing and duration of these changes.





Assessing time

Cross-sectional studies analyze gene expression in multiple samples at a singular time point across different conditions, treatments, disease stages, or patient cohorts. They are snapshots of molecular and cellular activity, making them valuable for identifying differentially expressed genes, discovering biomarkers, and understanding disease mechanisms (82). Longitudinal sampling expands cross-sectional analysis by tracking cellular states and gene expression changes in the same individuals or samples across different time points. It involves repeated sampling and profiling of experimental systems at multiple time points to capture temporal changes. Longitudinal labeling, on the other hand, labels cells or molecules at distinct time points but collects the data in a single snapshot. By integrating temporal data, longitudinal studies can identify the onset of genetic expression as well as trace the expression trajectory of dynamic biological systems, including tumor evolution, immune responses, and disease progression (83).




Computational extrapolation of single cell multi-omics

While longitudinal sampling offers direct insight into temporal dynamics, computational approaches have emerged as effective alternatives or complements, enabling the inference of cellular trajectories and gene expression changes over time using static or limited time-point single-cell datasets. These methods have been adapted to appreciate cellular dynamics through computational extrapolations with or without longitudinal sampling.

Purely computational approaches of scRNA-seq datasets include monocle3 and wishbone used for “pseudotime trajectory analysis” which extrapolates the relationship of the transcriptional profiles of each cell as if one cell evolved from another using a single starting point (84, 85). These tools have been used in many publications to suggest clonal evolution and differentiation patterns of tumors (86–88). They have also been combined with longitudinal samples to confirm trajectory outputs (89).

Computational approaches are strengthened by incorporating longitudinal samples as time-point ground-truth within the analysis. TDEseq utilizes non-parametric statistical models to account for batch effects and confounding factors to enhance the detection of gene expression changes across multiple time-points (90). Additionally, Ramazzotti et al. introduced a Longitudinal Analysis of Cancer Evolution (LACE) for reconstructing longitudinal clonal trees that depict tumor evolution. This approach employed longitudinal single-cell somatic mutation profiles from tumor samples to monitor cancer evolution and intra-tumor heterogeneity over time and was used to evaluate therapeutic effectiveness and resistant sub-clone detection (91). The Time Series Analysis (TiSA) pipeline is another computational tool focusing on integrating data from multiple time-points to capture the temporal progression of cellular states, trajectories, and interactions. Its significance lies in its ability to address common challenges in biological data analysis, such as handling few replicates and uneven sampling within experimental groups. It employs a novel clustering method called PART, which identifies small genomic clusters for independent analysis, enhancing the biological interpretation of data through functional enrichment analysis (83, 92, 93). Its ability to investigate individual time points without requiring additional analyses highlights its robustness and flexibility, making it accessible to both clinicians and biological researchers. Taken together, the computational methods integrating longitudinal sampling are feasible tools for understanding the temporal progression of disease. While the aforementioned techniques help study temporal shifts in the TME, innovative strategies are required to definitively track TME cells and their dynamic evolution over time.





Tracking cell dynamics

Longitudinal sampling has proven a powerful tool to extrapolate cellular dynamics; however, it does not study the same cells overtime. To overcome this limitation, the field has developed methods to label cells across time in a way that can be separated out at a common endpoint.




Lineage tracing

Lineage tracing is a technique for understanding cell differentiation and development by tracking the progeny of specific cells over time. This method involves labeling cells with fluorescent markers, such as conditional tracing with genetically controlled recombinases, or molecular barcodes, like CRISPR-Cas9, to follow the lineage and fate of these cells as they divide and differentiate (3, 94). Flow cytometry and multi-omics approaches can be used to detect and quantify these fluorescent markers and barcodes, respectively, providing a high-throughput means of analyzing cell populations (95). For example, in the study of minimal residual disease (MRD) in B-lineage acute lymphoblastic leukemia, flow cytometric analysis to track lineage tracing of leukemic cells predicted relapse and survival outcomes (96). A multicolor lineage tracing approach in colon cancer revealed clonal architecture and dynamics, showing a differentiation gradient from the tumor margin (marked by nuclear β-catenin and FRA1) to the center (marked by CK20 and GLUT1), where clonal competition indicated stable driver mutation profiles, suggesting spatial rather than genetic influences (89). Advances in lineage tracing have also incorporated CRISPR-based technologies, which augment the integration of unique genetic barcodes into cells to enable detailed reconstruction of cell lineages and developmental hierarchies. This approach, exemplified by the GESTALT method, enables the generation of thousands of unique barcodes, allowing us to appreciate tissue development and disease progression (97). Yang et al. combined lineage tracing with scRNA-seq to demonstrate that tumor evolution follows distinct phylogenetic trajectories, driven by genetic mutations, leading to enhanced cellular plasticity, correlating to more aggressive tumor states (98). Another study by Nadalin et al. used a similar method to highlight that tumor-initiating clones share a common chromatin priming state associated with specific transcriptional and epigenetic profiles using a Perturb-Seq guide barcode library (99).

Lineage tracing offers key strengths, like selectively and precisely labeling cells with genetic tools to track their progeny, helping us understand cell fate and tissue homeostasis, including how clonal expansion drives cancer progression. However, it can be limited by the need for specific markers, off-target effects and multiple double stranded breaks resulting in genotoxicity, limited targetable tissues, and single time point tracing (100).





Reporters

Reporter systems are molecular tools that reveal a cell’s functional state by linking a reporter gene to a regulatory sequence of interest, allowing quantification of active biological events. The reporter gene encodes a measurable product, such as a fluorescent protein (e.g., GFP, RFP), enzyme (e.g., luciferase), or chromogenic marker (e.g., X-gal staining), producing a detectable signal under specific conditions (101). Reporter systems can be classified as constitutive or inducible based on gene expression regulation. Constitutive reporters are often used to ensure successful transduction/transfection of cells while inducible reporters can be turned on and/or off and are usually used to study expression of a specific gene under specific conditions (102). Jun-Seo et al. developed a HeLa-Mx2 reporter cell line, containing a luciferase gene under the Mx2 promoter, an expression target of IFN-α, allowing precise quantification of IFN-α activity via luminescence (103). Massara et al. used a dual fluorescent reporter system with GFP to trace cancer cells and a modified, secreted mCherry protein (sLP-mCherry) endocytosed by CD206+ macrophages to track tumor-to-host communication in brain metastasis (104). Reporters can be combined with lineage tracers to capture both past and active expression of target molecules. For example, Perelli et al. developed a novel combined Cre- and Flipase-responsive reporter to trace the evolution of epithelial to mesenchymal transition in a model of pancreatic cancer. The cancer cells expressed tdTomato only if both the transforming Cre-expressing adenovirus and vimentin have been expressed. A FLEX-GFP Vimentin reporter also recorded cells actively expressing vimentin, so cells that have ever expressed vimentin were red while cells that actively expressed vimentin were both red and green (105). The authors also used VimentinFLEX mice to enable Cre-dependent, tumor-specific ablation of proliferating mesenchymal-state cancer cells upon ganciclovir treatment. This system permitted precise, time- and tissue-restricted elimination of mesenchymal cancer cells, revealing their essential role in sustaining both primary and metastatic tumor growth (105). Reporter systems enable real-time, non-invasive detection with high sensitivity and quantitative analysis while being easily adaptable to various animal models. However, challenges can come from the requirement of genetic engineering and the limitations of fluorescent tracers, such as endogenous cellular autofluorescence interfering with reporter signal and photobleaching/signal decay during prolonged light exposure.





Longitudinal labeling

Another means of tracking cell fate across time is adding a tag to cells at specific time points via longitudinal labeling. Common techniques use genetic approaches similar to lineage tracing and reporters but with an inducible genetic event as well as fluorescent or isotope additives that can be incorporated within specific time windows.

The classic pulse-chase experiments are versions of longitudinal radio-labeling of RNA and proteins that measure synthesis and degradation by tracking the incorporation (pulse) and subsequent decay (chase) of labeled nucleotides/amino acids. This technique has been widely used in cancer biology to study concepts ranging from degradation of tumor suppressors, protein folding and trafficking, and cellular metabolism (106–109). For example, CD36, a scavenger receptor, facilitates metabolic crosstalk between macrophages and cancer cells by uptaking tumor cell-derived extracellular vesicles enriched in long-chain fatty acids, which enhances their tumor-promoting potential and contributes to a pro-metastatic environment (109). In another study, a pulse-chase experiment with EU-labeled RNA revealed key effects of MYC in breast cancer cells. It showed that MYC boosts both RNA synthesis and decay rates. This increased RNA turnover induces oncogenic stress leading to cell death, highlighting its role as a potential therapeutic target (108).

Computationally, the open source pulseR package provides tools for analyzing RNA turnover from the experiments, supporting various experimental designs and addressing potential labeling biases (110). This method allows researchers to study physiology without overexpressing molecules, offering an efficient way to explore multi-step signaling pathways while accurately reflecting natural conditions due to minimal cell disturbances. However, pulse-chase struggles with molecules that have long half-lives (80, 90, 91). Another critical factor is the pulse duration, as longer pulses can disrupt RNAs and proteins (92).

Stable Isotope Labeling by Amino acid in Culture (SILAC) is another method to examine metabolic changes across the proteome. It monitors protein synthesis, degradation, and turnover using stable, non-radiolabeled isotopes detected by mass spectrometry (111). This technique is increasingly used in cancer research to investigate tumor development, progression, and therapy resistance. For example, Kim et al. found that oxaliplatin-resistant pancreatic cancer cell lines had higher levels of MARCKS and pAKT proteins than parental cells. Since MARCKS activates the PI3K/AKT pathway, it might contribute to resistance (112). Standard SILAC is limited to dividing cells in culture, but new advances have shown in vivo SILAC mouse models (113, 114).

A parallel in vivo strategy is the KikGR (Kikume green -red) mouse model used to map cell fate, track cell lineage, and live image cell dynamics. KikGR is a photoconvertible green-to-red fluorescent protein which converts from green to red upon exposure to violet light, allowing researchers to track the movement of labeled cells. It is expressed in a variety of cell types, including dendritic cells, osteoclast precursors, and tumor-infiltrating monocytes (115). Moriya et al. used KikGR photoconvertible reporter mice to demonstrate that immunogenic tumor cell death promotes the migration of tumor-infiltrating dendritic cells (Ti-DCs) to draining lymph nodes where they initiate effective CD8+ T cell responses. By photoconverting Ti-DCs in situ, they showed that phagocytosis of dying tumor cells triggered DC emigration through HMGB1-TLR4 and ATP-P2X7 signaling, ultimately enhancing memory precursor CD8+ T cell formation and suppressing secondary tumor growth in a dendritic cell-dependent manner (116).

Zman-seq is another iteration of longitudinal labeling that uses fluorescent antibodies. Named after the Hebrew word for time, Zman-seq applies both fluorescence-activated cell sorting (FACS) and scRNA-seq to resolve cell-state transitions and molecular signaling networks over time. To do this, antibodies for CD45 are injected intravenously into mice every 12 hours beginning 60 hours before endpoint. Each time point and antibody is associated with its own fluorophore to mark when specific cells were in circulation. Upon tumor collection, CD45+ cells are sorted by tumor exposure time according to the fluorophores they expressed. The sorted immune cells are then analyzed via scRNA-seq to extrapolate how long they were in the tumor and how that continuous tumor exposure time influences gene expression, transcription factor levels, ligand interactions, and signal senders and receivers. All these data can be used to resolve the moment immune cells become dysfunctional or immunosuppressive in the tumor. For example, its initial use revealed the temporal dynamics of immune cells in the glioblastoma TME. They found that monocyte to TAM transition correlates with tumor exposure time and NK cells became dysfunctional the longer they were in the tumor. Trem2 was also identified as a good immunotherapeutic target for redirecting TAM differentiation towards an anti-tumor phenotype. As a new method, Zman-seq has not yet been applied to many studies, but its implementation would capture single immune cell dynamics in real-time to inform how TME shape immune cell function. If paired with spatial transcriptomics and imaging, it could show which adjacent cells specifically contributed to these changes. Limitations such as limited fluorophores, fading signals, and recyclable epitopes can constrain its applications; however, Zman-seq proves a feasible modality for identifying the specific identity trajectories immune cells experience upon entering the TME (117).

Overall, these temporal techniques serve as potent tools for studying infiltration, cell fate, and function. They can be limited by label efficiency and stability, computational limitations, downstream data analysis, and heterogeneity in large populations. Still, temporal analysis remains vital for elucidating the changes in the TME. Moreover, by incorporating these temporal analyses with a spatial dimension, researchers can achieve a thorough perspective of how time and space collectively influence cell fate and function.







Assessing time and space

The previously mentioned methods are useful for assessing temporal or the spatial context of a change, but they do not provide both. To assess tissue dynamics, spatial methods should be paired with real-time assays. This would create a more complete picture of the complexity of biology that single time point and non-spatial methods cannot attain. The following section discusses methods of real-time investigation that incorporate space and their future applications in cancer biology.




Single-molecule/cell real-time imaging

Real-time imaging can assess the secretion of single molecules. One method, the interferometric detection of scattered light (iSCAT), tracks single particle release from single cells. In iSCAT, a cell secretes a protein within a detection field of view that appears as diffraction-limited shadows. The darkness of the shadow indicates the amplitude of the electromagnetic field that was scattered by the protein, thereby quantifying the presence and spread of protein secreted with single-cell resolution (118). iSCAT has already assessed secretion of IgG from Laz388 cells derived from B lymphocytes immortalized by Epstein-Barr Virus (118) and could be similarly used to assess the secretion of IgG and cytotoxic granules from TME-exposed B, NK, and T cells to assess lymphocyte exhaustion.

Another label-free high-throughput method uses hyperspectral photonic crystal resonant technology (PCRT) to map a gradient of protein secreted from single cells and assesses binding capacity of molecules. In PCRT, capture molecules, like antibodies, bind the target protein to cause a refractive index change and create the mapped gradient of protein secretions. These maps can be from single or multiple cells if run in parallel in a large field of view, providing the ability to image protein secretion from multiple single cells at once in real-time. This method has been applied to understanding the effects of cancer cell secretions on other populations by mapping platelet-mediated regulation and secretion of thrombopoietin from a human hepatocyte carcinoma cell line (119) and could be applied in TME research. However, PCRT has low throughput, does not specifically quantify the amount of secreted protein, can be influenced by non-specific binding, and has low spatial resolution (119).

Instead, similar secretion range analyses done via a label-free nanoplasmonic microwell array imaging system can create 4D (x, y, intensity, time) quantifiable spatiotemporal secretion maps from single-cells. This modality uses machine-learning cell tracking to capture cellular morphology and motility as it maps secretion. It has already been used to characterize antibody secretion from human hybridoma cells (120). Despite a small imaging window, future directions of this technique aim to add multiplexing capabilities to detect multiple secreted biomolecules at a time in addition to monitoring more than one cell type at a time. Such innovations would contribute to studies on cancer and immune cell interactions, such as analyzing how one immune-cell based cytokine could influence the morphology of cancer cell lines from epithelial to mesenchymal and tracing the changed cytokines the cancer cell releases upon morphological changes. If adapted to track more than one cell type at a time, label-free nanoplasmonic microwell array imaging system could record immune cells in conjunction with the surrounding cancer cells, improving the ability of capturing cell-cell signaling interactions and their consequential influence on the TME in real-time (120).

Another imaging method, total internal reflection fluorescence microscopy (TIRFM), does require a label and specialized equipment but can provide real-time and high throughput imaging of specific protein secretion. In this case, the fluorophore on the target is only excited if it is a specific distance from the cell (121). TIRFM has been used to assess immune cell secretion such as IL-1β from non-classical monocytes and revealed the order in which monocytes lost their cell membranes and secreted IL-1β (196). F-actin patches have been analyzed with TIRFM (121), and it has also been applied to studying the levels of apoptotic and necrotic death that Campthothecin and Cisplatin induces in breast cancer cells (122). As TIRFM can observe cell secretion and other activities near cell membrane surfaces, it would be a strong candidate for capturing cytotoxic immune cell activity in TME such as CD8+ T cell or NK cell release of Granzyme B to kill cancer cells or even record immune escape interactions such as conjunction of PD-1 and PD-L1.

These in situ tools provide means to assess signaling and secretion patterns of cells in the TME. Each method has its own limitations depending on label-need, downstream analysis, and required equipment, but all are robust ways of capturing cell secretion in real-time. For a detailed analysis of these methods with other TME models, see this review (123). Combining these single-cell based signaling assays with more robust TME models would provide improved translational capabilities to current standard lab practices.





Multi-cell real-time imaging and biosensors




Fluorescent biosensors

Fluorescent biosensors track cellular processes as they occur by measuring the presence of a specific molecule in a mixture in real-time. When this ligand binds to the sensor, the signal induces a quantifiable physical change corresponding to the amount of the target in a sample (urine, saliva, blood, plasma, etc.) (124). Fluorescence-based, genetically encodable biosensors provide information for events such as protein phosphorylation, metabolism, neurotransmission, hormone analysis, DNA and toxin detection, medical diagnoses, and drug delivery and discovery; they are also used in multiple research fields, including tumor biology (124–131). Fluorescence resonance energy transfer (FRET) is a biosensor with a fluorophore/quencher pair that conjugate to any target in the vicinity and trigger a fluorescent signal that can be imaged (123). Using FRET, cancer studies have highlighted specific peptide interactions, spatiotemporally visualized signaling activity, and tested therapies involving apoptosis and immune checkpoint inhibitors (132–137). FRET has detected the amount of lactate in a single cancer cell (130) and visualized kinase signaling activity and how specific drugs induce apoptosis in cancer cells (132–135). Time resolved FRET tested small molecule inhibition of LAG-3 on T cells in relation to FGL1 on human cancers (137) while nanosensors identified specific exosomes to try to diagnose cancer earlier (136). As with most fluorescent modalities, signal overlap and tissue penetrance can pose problems with analysis, but there are workarounds. Even so, as customizable, quantifiable, non-invasive, and high-resolution ways to analyze live-cell signaling and biomolecule presence in real-time, biosensors prove to be a useful tool in studying dynamics within the TME. When combined with spatial and transcriptomic data, these analyses could characterize the heterogeneity of TMEs across time.





Bioluminescence imaging

Bioluminescence imaging (BLI) is another non-invasive direct imaging technique designed to measure luminescence in genetically modified cells to trace their activity (138). BLI works by genetically engineering cells to express a luciferase enzyme reporter which, when bound to a specific added substrate, emits recordable light (139). Originally, the firefly luciferase gene, luc, was added into a virus’ genome and used to detect infected cells in culture and in mouse tissue, creating a method for tracking the spread of viral infection (140). Since then, luciferase reporters have expanded to include other insect species, marine organisms, whole body cancer progression models, immune infiltration, and immunotherapy efficacy assays; they even have multiplexing ability (139, 141–143). For example, a dual color luciferase reporter mouse identified “hot” vs “cold” pancreatic cancer tumors based on T cell infiltration and activation states (142). Dual luciferase reporters tracked tumor cells and T cells with and without chimeric antigen receptors (CAR) to see how CAR addition increases tumor killing capacity of T cells in vitro and in vivo (143). Other applications of BLI in the TME could include longitudinal tumor growth, attempts at capturing circulating cancer cells in the blood stream, or immune cell secretion of cytotoxic granules in a tumor as seen done by Chen et al. to help track checkpoint inhibitor efficacy (144). BLI’s effectiveness can be limited by tissue penetration, spectral overlap, spatial resolution, luciferase kinetics, and its dependency on substrate (145). While BLI is applied in longitudinal studies, these snapshots of luciferase activity are captured in real-time, allowing the collection of biologically relevant data that can be followed in the same specimen. BLI is commonly used in TME analysis already, and it is often used in conjunction with real-time imaging practices as we will discuss. By providing a relatively simple yet specific way of seeing more than one cell population interact at a time, BLI applications in the TME allow researchers to watch cell dynamics in environments of varying size.





Tumor on a chip

Recent advances in organoid and microfluidics have created tumor-on-a-chip (TOC) to model the three-dimensional complexity of TME in vitro. TOC has captured components of TME including cancer cells, vasculature, stromal cells, immune cells, and ECM in addition to heterogeneous metabolic factors like oxygen, pH, nutrient gradients, and growth factors (123). These features can self-organize or be designed to mimic the specific TME of humans or mice, improving upon standard in vitro cell cultures and 3D spheroids/organoids (123, 146, 147). For instance, vascularizing TOC with microfluidics successfully models drug delivery, biochemical diffusion, and metastatic dynamics (148–151). The benefits of being an in vitro system allow for fine-tuned control of the environmental conditions and gene expression of the constituent members as well as the use of standard cell proliferation, viability, apoptosis, migration, and secretory assays. TOC captures spatiotemporal heterogeneity of tumors more than a cell line and has plenty of potential integration with omics. Therefore, TOC has high translatability to in vivo studies while providing clear applications to personalized medicine. It has been used to mimic bone marrow structure to compare healthy and leukemic TME (146) and model breast cancer cell metastasis (151). One study used TOC to model the TME of glioblastoma including immunosuppressive tumor associated macrophage modulation and cytotoxic T cell response to anti-PD-1 therapy (147). While TOC cannot capture the systemic influences seen in vivo and has a simplified heterogeneity, it remains a model in which applying the above real-time and single-cell assays to TOC could provide higher resolution in current TME in vitro studies. Other uses for TOC could be tracking immune cell homing ligands secreted by the tumor to get a three-dimensional map of chemokine concentrations over time or even immune cell movement through the TOC itself. It could potentially be used to highlight heterogeneity and minimal amount of MHC-I presentation by cancer cells to immune cells more robustly than standard cell lines. TOC creates an opportunity to study tumor heterogeneity in vitro; however, nothing is more translatable than being able to record cellular activity in the animal as it is happening. Intravital imaging allows for exactly that.






Intravital imaging

Intravital imaging (IVI), also called intravital microscopy, incorporates many of the modalities we have discussed including BLI and lineage tracing to record cell movement and interactions inside the live animal as they occur. IVI can be used to measure acute or chronic changes with repeated imaging of the same animal, gaining a comprehensive depiction of live cell processes (152). For acute studies, IVI focuses on thinner tissues that light can pass through for direct imaging such as the ear, cremaster muscle, or salivary gland of a mouse. However, for chronic studies, the entire organ or its surface can be externalized for imaging. Alternatively, an imaging window or chamber is installed directly into the mouse for up to a month of imaging (152). These windows have been used to study a wide array of organs including the brain, skin vasculature, lymph nodes, liver, spleen, pancreas, small intestine, kidneys, lungs, ovaries, and long bone (152–162). The cranial imaging window can be used for long-term brain imaging though open-skull or thinned skull windows. One study used this model to record glioblastoma tumor cell migration into the tumor core, border, or invasive front (155). Abdominal imaging windows capture any organ in the abdominal cavity and can image for up to a month. Using these windows, scientists have tracked mouse colorectal cancer metastasis to the liver and recorded pre-micro and micro-metastases (154). Another study quantified pancreatic tumor cell hypoxia and its spatial relationship with collagen and microvasculature architecture (163). Lung imaging windows have visualized single tumor cells interacting with macrophages and monocytes in lung vasculature (157). Other applications recorded all steps of tumor metastasis and seeding to the lung and even tracked neutrophils in pulmonary capillaries working as defenders against pathogens (158, 159). Dorsal skinfold chambers allow for imaging access of muscle cells and mouse skin and have assessed solid tumor interactions with bone in a miniaturized tissue-engineered bone construct (160). Other methods of IVI include through the body cavity or by externalizing the organ. This strategy has visualized resident macrophage cloaking in response to cell injury to prevent neutrophil-mediated inflammatory damage (161). It has also been used to assess granulocyte monocyte progenitor populations in the spleen of cancer bearing mice, finding that the spleen serves as a source of tumor associated macrophages and neutrophils (162). When these organ visualization methods are used with cell-tracking such as BLI, lineage tracing, or reporters, IVI easily captures real-time cellular activity of cancer, stromal, and immune components of the TME in a live animal (163, 164).

Limitations of IVI include imaging depth penetration dependent on the type of microscopy used, light scattering properties of the imaged tissue, and limited number of fluorophores the camera can simultaneously capture (152). Immobilization could induce shear force on tissue, and many IVI models have to use immunodeficient mice to avoid reactions to the cameras. Imaging time frame can also be a limiting factor, but downstream fixing, sectioning, and staining of the tissue in the imaging area can be correlated with the videos taken with IVI for confirmation and deeper analysis of the end-point recording (156). Image analysis itself can also be a bottleneck due to the densely associated cells in tissues and large data files. Machine learning algorithms have become more common to assist with IVI analysis, especially time-lapse recordings (156). Despite these limitations, IVI remains a comprehensive method of understanding the dynamics of cancer cells and the TME in their natural environment, expanding our knowledge of tumor development and treatment response. More details about intravital imaging methods and applications can be found in these reviews (152, 153, 156, 164, 165).

IVI lets researchers look into a live animal and record biological processes as they happen, so events like cell movement and cytokine release can be visualized in real-time. This advancement in biological research will expand translatability to cancer diagnostics and treatment. With biomedical imaging becoming a major tool for cancer identification and therapy, increasing IVI studies for potential incorporation with diagnostic and therapeutic imaging would provide an efficient axis for elevating research from mice to humans.





Diagnostic and translational imaging

Biomedical imaging is of prime importance in comprehensive cancer care. It offers numerous benefits like real time surveillance, non-invasive access to the tissue, and the ability to operate over a wide spectrum of spatial and temporal levels involved in the biological system (166). Ultrasound, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI), and radiotheranostics are major techniques for biomedical imaging, each offering unique advantages and information (Table 1). These methodologies are also available in the pre-clinical setting, thereby allowing mechanistic studies in model systems that can be translated into the clinic.


Table 1 | Strengths, limitations, and TME applications of diagnostic and translational imaging.
	Method
	Strengths
	Limitations
	Applications in TME



	Ultrasound
		• Utilizes sound waves to create images of internal body structures

	• Non-invasive

	• Real-time imaging

	• Safe, does not use ionizing radiations

	• Cost effective




		• Sound waves do not pass through bones and air

	• Might not capture deep tissues in the body




		• Routine cancer screenings and lesion characterization in organs like the liver, urogenital tract, and soft tissues (167)

	• Early breast cancer detection (168, 169)

	• Used microbubbles linked to molecularly-targeted ligands that bind to specific tumor markers, enhancing contrast and facilitating the identification of cancerous tissues (170)






	Magnetic Resonance Imaging (MRI)
		• Non-invasive imaging to produce 3-D anatomical images using magnets and radio waves

	• Contrast agents enhance ability to detect specific cellular/subcellular events

	• Non-invasive

	• No ionizing radiations




		• Uses very strong magnetic field, thereby excluding people with any form of implants, especially those containing iron

	• Expensive and more time consuming than CT




		• Agents can be targeted to specific receptors or molecules, allowing for detailed imaging of tissues like myocardium, atherosclerotic plaques, or tumors (171–173)

	• Dynamically monitors changes in tumor vascular structures and immune responses (174)

	• Integrates with photoacoustic imaging (MR/PA), enhancing its utility in assessing therapeutic responses (174)






	Computed Tomography (CT)
		• Utilizes x-rays to produce high-resolution cross-sectional images of the body

	• CT can create 2D or 3D images, which can be rotated to detect the issue

	• Quick scans (less than 1 minute)




		• Exposes patients to more radiation than x-rays

	• Less proficient than MRI to detect soft tissues

	• Contrast agents can cause allergic reactions and lethargy in patients

	• Transplants and metal objects can produce artifacts

	• Not suitable for pregnant women




		• Evaluates, stages, and monitors cancer with intravenous and oral contrast agents enhancing assessment accuracy (175, 176)

	• Screening for lung cancer using low-dose CT in individuals with smoking history (177)

	• Colonoscopy combined with CT (virtual colonoscopy) to detect large colorectal polyps and tumors (178)






	Positron Emission Tomography (PET)
		• Generates 3D functional images of the body by detecting gamma rays emitted from positron-emitting radiotracers (fluorodeoxyglucose, FDG).

	• Non-invasive

	• Often combined with CT or MRI to enhance spatial resolution and provide anatomical context




		• Low signal to noise ratio can lead to noisy images and/or inaccurate detection of very small lesions and subtle changes in tracer uptake

	• Spatial resolution of 4.5mm can lead to artifacts and issues in detecting small lesions




		• Diagnoses tumors, assesses metastases, and evaluates treatment responses (179)

	• Measures molecular properties of diseases crucial for prognosis, therapy selection, and monitoring early and long-term responses to treatment (180)






	Radiotheranostics
		• Detects the presence of a target in patients before giving them treatment, separating responders from non-responders.

	• Consists of a radionuclide for diagnosis or therapy, a ligand or probe for a cancer-specific molecular target, and a chelator to link them

	• Real-time

	• Diagnostic and therapeutic functions

	• Precision targeting to minimize side effects




		• Limited availability of suited radioisotopes

	• Discrepancy between optimal imaging and therapeutic ability of the agent

	• Requires precise calculation of the dose to be delivered to the target tissue using complex theranostic agents




		• Targeted prostate specific membrane antigen in prostate cancer and NaI symporter in differentiated thyroid cancer (181)

	• Fibroblast activation protein has been targeted in multiple cancers (182)

	• CD20 has been a target for B cell non-Hodgkin lymphoma as well as CD45 in acute myeloid leukemia (182)











Biomedical imaging performed in the context of longitudinal imaging can inform the evolution and progression of disease. A study by Javadi et al. found that 80% of patients with pancreatic cancer experienced locoregional or distant recurrence within two years post-resection. Using imaging modalities like multi-detector CT (MDCT), PET/CT, and MRI, they determined that baseline MDCT is effective in detecting early lesions after resection (183). Another study indicates that FDG PET-CT provides better diagnostic accuracy than CT alone for detecting recurrent PDAC. However, evidence supporting routine radiologic surveillance post-resection is limited, requiring further research to optimize follow-up strategies (184). These longitudinal imaging studies are further enhanced by the collection of biological samples at the time of the longitudinal imaging, acting to confirm the tissue, cellular, and molecular components of the lower resolution imaging data.





Computational tools for spatiotemporal omics

High-throughput sequencing techniques combine high-resolution spatial and temporal profiling to study the dynamic organization and biological processes within TME. Spatial alignment tools like MOSCOT and SLAT align the heterogeneous tissues across multiple time points (185, 186). MOSCOT was used to overcome the limitations in spatial transcriptomic data by integrating gene expression, protein abundance, and single-cell annotations to accurately characterize liver zonation and align large-scale tissue sections. This enabled the identification of central and portal veins, mapping of Kupffer cells, and construction of a consensus tissue view. On the other hand, SLAT accounts for non-rigid structural changes without manual annotations and offers scalability, adaptability, and real-time performance, making it a robust tool for diverse biological applications such as developmental mapping, in silico data enhancement, and cross-species comparisons. Spateo and stLearn integrate spatial and temporal expression for lineage tracing and cell fate inference during a biological process (187, 188). The joint integration of spatial and temporal dimension of omics layers is challenging from several perspectives such as alignment, tractability and resolution (189). Explainable AI (XAI) is also achieving broader recognition because of its ability to make complex machine learning models, especially deep learning, more transparent and interpretable—an essential step in understanding hidden patterns in spatiotemporal omics data (190). Among XAI tools, SHAP (Shapley Additive exPlanations) provides detailed information into how individual features influence a model’s prediction, offering both global and local interpretability (191). Grad-CAM (Gradient-weighted Class Activation Mapping), on the other hand, is a visual approach that highlights the regions of input images that drive convolutional neural network predictions, making it useful in spatial analyses (192). Though XAI is in its infancy in biomedical discipline, such methods help researchers build trust in AI models and better understand the underlying biology. Even though the tool development for spatiotemporal omics is in its early phase, it holds immense potential to revolutionize our understanding of complex biological processes by providing insights into the spatial and temporal dynamics of molecular interactions within tissues, paving the path for a new era of precision medicine (193, 194).






Discussion

Tumor microenvironments and the specific dynamics of their components are highly complex, necessitating equally complex methods for their study. The components of the microenvironment are regulated by both space and time, and understanding both of those dimensions would allow for finely tuned windows of intervention in personalized care. Standard tissue sampling across longitudinal studies can extrapolate general TME evolution over time, but each sample is an isolated incident unable to track the lives of each cell across tumor progression. These methods can be enhanced with lineage tracing, barcoding, and active reporters to identify specific cell types undergoing fate changes. Spatiotemporal imaging of live cells in vitro and in vivo are ideal methods for recording cell activity in real-time and have the potential to be integrated with standard pre-clinical and clinical image technologies to translate these assessments to clinical practice. Overall, the addition of space and time to high-dimensional cellular analyses is becoming increasingly feasible for cancer biology and clinical translation.




Future directions

The integration of spatiotemporal strategies, AI technology, and infrastructure readiness will shape the future of precision medicine to better capture the dynamic and contextual nature of cancer biology. Emerging tools that enable high-resolution, multiplexed, and real-time profiling of gene, protein, and metabolite expression across space and time will provide a deeper and better understanding into tissue architecture, cellular interactions, and disease progression. These advances will require robust, user-friendly computational platforms capable of handling high-dimensional, multimodal data. AI and machine learning modalities are powerful tools for interpreting these complex spatiotemporal dataset. Such analysis could help personalize clinical decision making once these technologies are supported by rigorous validation and standardized protocols. As spatiotemporal datasets continue to grow, comparison between diverse cohorts will enhance clinical relevance and reproducibility. Additionally, achieving spatiotemporal readiness—coordinating where and when therapies are manufactured, processed, and delivered—will be vital to ensure timely, cost-effective, and equitable access. Together, these strategies demand interdisciplinary collaboration and thoughtful infrastructure planning to realize the full promise of spatiotemporal precision medicine.






Conclusion

To move beyond an in medias res understanding of tumor microenvironments, we must incorporate both spatial and temporal perspectives into our research frameworks. While spatial biology has delivered critical details into cellular localization and interactions, and temporal strategies have revealed dynamic changes in molecular activity, their integration offers a more complete and actionable picture of disease progression. By capturing how cell states, signaling pathways, and microenvironmental contexts evolve over time and space, spatiotemporal analysis enhances our ability to identify therapeutic windows, track disease trajectories, and inform precision interventions. As tools and methodologies continue to advance, embracing this four-dimensional approach will be essential to fully unfold the complexities of biology and improve patient outcomes.
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Uterine fibroids are benign tumors that occur in a large proportion of women and interfere with the proper functioning of this organ. One of the factors leading to these proliferative changes appears to be the appearance of extracellular matrix (ECM) fibrosis at the site of local inflammatory foci. Due to the potential impact of cytokines in this process, it is interesting to determine their expression levels in fibroids and surrounding tissues, which may contribute to a better understanding of the mechanisms leading to the formation of these tumors. In tissue material from 50 women with uterine fibroids who underwent hysterectomy and 45 women operated on for other reasons (most often prolapse of the reproductive organ), the concentration of inflammatory cytokines IL-1β and IL-6 and the concentration of the transcription nuclear factor NF-κβ were determined. The tissue from the fibroid, the peripheral myometrium, and the unchanged myometrium were examined in women who underwent surgery for reasons other than uterine fibroids. A significant decrease in IL-1β levels was observed in the center of the fibroid compared to both peripheral and control muscle tissue (p=0.001). The concentrations of IL-6 were found to be similar across all three locations examined. The NF-κβ levels were significantly lower in the fibroid and peripheral tissues (p<0.001) compared to the control group. The concentration of IL-1β was found to be significantly and positively correlated with the concentration of NF-κβ in uterine fibroids.




Keywords: uterine fibroids, IL-1β (Interleukin-1 beta), IL-6 (Interleukin 6), Nf-κβ, myoma





Introduction

Uterine fibroids are the most common benign tumors of the uterus, primarily composed of smooth muscle and extracellular matrix. These conditions affect about 50-70% of women of reproductive age (1–3). This varied frequency depends on several factors, including detection methods, the studied population (fibroids are found in approximately 80% of Black women), women’s age, ovarian steroid hormone status -estrogens and progesterone - genetic aberrations, and lifestyle choices (1–5).

More than 50% of women with fibroids do not experience any symptoms, and these growths are often discovered by chance. However, for some women, fibroids can lead to issues such as heavy menstrual periods, uterine bleeding, pelvic pain, infertility, complications during pregnancy and childbirth, and urinary problems. These symptoms require medical attention and can significantly impact a woman’s quality of life (1, 2, 6, 7).

The development of fibroids is influenced by various factors, including chromosomal aberrations, ovarian steroid hormones, inflammatory cytokines, growth factors, microRNA, the extracellular matrix (ECM), and stem cells (3, 8–11).

Genetic changes are an established factor in the development of fibroids. The most common mutations occur in the MED12 gene in 50% to 80% of fibroids. This mutation is linked to a positive hormonal response to selective progesterone receptor modulators (SPRM) treatment. Other less common genetic alterations include overexpression of HMGA2 (high mobility group protein), which is seen in 10% to 20% of fibroids, deficiencies in fumarate hydratase (FH), and deletions in COL4A5/A6 that are associated with collagen formation (1, 5, 9).

Studies indicate that inflammation significantly contributes to the development of uterine fibroids (8, 12–14). In uterine fibroids, proinflammatory cytokines are overexpressed (3, 12–14). Proinflammatory cytokines include: IL-1, IL-6, IL-10, TNFα and TNFβ. Cytokines are small proteins released by various cell types that serve as intercellular messengers. They bind to specific receptors on target cells, transmitting signals that activate numerous genes with the involvement of transcription factors from the nuclear factor family, such as NF-κβ. This process regulates cell proliferation, survival, and apoptosis. Additionally, cytokines play a significant role in the interactions between growth factors and the extracellular matrix (ECM). This interaction may lead to excessive ECM production, a characteristic feature of fibroids crucial for their growth (9, 13, 15, 16).

Interleukin 1β (IL-1β) is a pro-inflammatory cytokine primarily secreted by macrophages; its overexpression is associated with various inflammatory diseases, such as osteomyelitis. Its presence has been detected in uterine fibroids, which play a role in the accumulation of ECM, a characteristic feature of fibroids. Additionally, IL-1β activates mesenchymal stem cells and the NF-κβ pathway, which are linked to the development of fibroids (12, 14, 17, 18). Interleukin 6 (IL-6) is a pleiotropic cytokine of key biological importance for regulating inflammatory processes and the immune response in various physiological states (19). Monocytes and macrophages primarily secrete it, although other cells, such as fibroblasts, produce it. IL-6 functions by binding to specific receptors. Its role can be either pro-inflammatory or anti-inflammatory, demonstrating bidirectional activity. For instance, the liver’s metabolism has shown both anti-inflammatory and carcinogenic effects. Additionally, research has highlighted its involvement in various pathways, including STAT3 (20, 21). Compared to healthy individuals, an extensive meta-analysis of 22 studies involving over 5,200 patients with various diseases demonstrated that serum IL-6 concentrations are significantly higher in sick individuals than in the control group (22).

Nuclear factor kappa Beta (NF-κβ) is a transcription factor primarily found in the cytoplasm of cells. Upon activation, it translocates to the nucleus and regulates the expression of numerous genes. NF-κβ plays a crucial role in regulating the inflammatory response involved in the development of uterine fibroids, as well as many malignancies and chronic diseases (11, 14, 23, 24). Its activity has also been demonstrated in uterine fibroids. The NF-κβ pathway can be triggered by various stimuli, including proinflammatory cytokines involved in ECM accumulation, angiogenesis, and modulation of stem cell expression. In vivo studies have demonstrated that inhibiting the canonical NF-κβ pathway reduces the expression of pro-inflammatory cytokines, such as IL-6 and IL-1β, leading to a decrease in fibroid size (14, 22).

The decreased tissue expression of SERPINA3 protein in uterine fibrosis is contrary to the increase in its level observed in solid cancer tumors in previous studies (25). It can be assumed that there is a mechanism responsible for inhibiting the expression of SERPINA3 in the development of fibroids dependent on the NF-kb pathway and the cytokines IL1-βand IL-6, which may cause stimulation of tumor growth. Its precise description may enable the development of fibroid therapy.

Given the global statistics indicating a constantly increasing incidence of fibroids worldwide (26), further studies are essential and may be helpful in the prevention or therapy of these benign tumors. For this reason, we undertook studies on the differences in the levels of IL-1β, IL-6, and NF-κβ proteins in fibroids and the tissue surrounding them, compared to uterine tissue, in which such changes were not found.





Materials and methods




Study group

The study was conducted in accordance with the Declaration of Helsinki guidelines and received approval from the Bioethics Committee of Karol Marcinkowski University of Medical Sciences in Poznań. According to a statement from the Bioethics Committee dated January 16, 2020, the study does not meet the criteria for a medical experiment. Therefore, under Polish law and Good Clinical Practice (GCP), it is not required to undergo assessment by the Bioethics Committee. Informed consent was obtained from all participants involved in the study.

The study group comprised tissue samples from patients diagnosed with uterine fibroids through histopathological examination. It included 50 women aged between 24 and 82, with an average age of 50. The fibroids varied in diameter from 1 cm to 10 cm, with an average largest dimension of 4.3 cm.

The control group comprised tissue samples that appeared morphologically unchanged, taken from 45 women who did not have fibroids, as confirmed by histopathological examination. These women underwent surgery for genital prolapse and were aged between 56 and 69 years, with an average age of 61 years.

The patients included in our study comprised two groups: those diagnosed with fibroids and a control group consisting of individuals with genital prolapse. Importantly, none of the participants had any chronic diseases. Each patient was evaluated and qualified for surgery by an internist and an anesthesiologist. Additionally, we did not identify any diseases that would serve as risk factors, such as obesity related to endometrial cancer. As a result, we did not include a table with clinical data or perform a correlation analysis with the expression of the proteins we studied. Consequently, only the age of the patients was considered in our analysis.





Antibodies

Protein detection was performed using the following antibodies against IL1β (Biobryt Ltd. #orb97387), IL6 (Biobryt Ltd. #orb499747), NF-κβ (Cell Signaling Technology #8242).





Preparation of microscopic slides

The study was conducted on tissue samples arranged in Tissue Micro Array (TMA) blocks, prepared according to the previously described procedure (27), using 50 uterine fibroids and 50 adjacent uterine tissues (tumor margin) identified by a pathologist. Each fragment contained elongated smooth muscle cells without atypia and exhibited a low mitotic rate of less than 1 mitosis per 10 high-power fields (HPF). Upon microscopic examination, all analyzed tissue fragments revealed smooth muscle cells that showed no atypical characteristics and did not display significant morphological changes compared to normal myometrium, peripheral tumor tissue, and tumor cells. There was no evidence of necrosis or other degenerative changes. The only notable microscopic alteration was the distorted architecture of the tumor tissue. TMAs were assembled using the UNITMA Quick-Ray® Manual Tissue Microarrayer. Each TMA contained 14 patient tissue fragments and 2 control fragments. The tissue cores were 5.0 mm in diameter. Sections intended for histopathological diagnosis preceding the described study were stained with hematoxylin and eosin. Each microarray also contained a fragment of normal uterine tissue from the control group.





Immunohistochemical examination

Immunohistochemical examination was conducted following the procedure outlined by the manufacturer, Vector Laboratories. Tissue microarrays were deparaffinized and then rehydrated with xylene and an alcohol series. Antigens were exposed at 96°C for 20 minutes in Vector® citrate-based antigen unmasking solution, pH 6.0 (H-3300). Endogenous peroxidase activity was quenched in BLOXALL blocking solution for 10 minutes.

Nonspecific binding was blocked using 2.5% normal horse serum from the ImmPRESS® Horse Anti-Rabbit IgG PLUS Polymer Kit Peroxidase (Vector Laboratories, CA, USA, MP-7801) for 20 minutes. After this, the excess serum was removed from the sections. Next, the slides were incubated at 37°C for 30 minutes with antibodies targeting the proteins of interest. Following this incubation, the slides were washed in PBS buffer for 5 minutes and then treated for 30 minutes with the ImmPRESS reagent. The sections were then washed twice for 5 min in PBS buffer. After removing the buffer from the sections, they were incubated in the ImmPACT DAB EqV working solution until the desired color was obtained. They were washed twice for 5 minutes in PBS buffer. The slides were then stained with hematoxylin. Finally, the sections were dehydrated in alcohol solutions and xylene before being covered with coverslips.

In the immunohistochemical reactions, tissue samples from typical uterine fragments were used as positive controls. The tissue material underwent the same staining procedure for negative controls but without the original antibody. Additionally, utilizing a tissue microarray (TMA) containing various biological samples and control tissues allowed for observing diverse immunohistochemical images within each tissue set. This created a control system that evaluated the accuracy of the immunohistochemical reactions.

A specialist pathologist assessed the differences between the myoma at its center and periphery and the surrounding normal uterine tissue. According to the pathologist’s evaluation, no necrosis features were observed in the analyzed samples.





Semi-quantitative assessment of IL1β, IL6 and NF-κβ proteins expression

For each patient, 10 images of the field of view were captured at a total magnification of 400x using an Olympus Grundium Ocus 40 microscopic scanner (Olympus, Tokyo, Japan). A semi-quantitative assessment of the immunohistochemical reactions was conducted based on the photographic documentation, utilizing the commercial Olympus cellSens dimensional program. This program performed a phase analysis of the stained preparation by automatically detecting objects based on their color (using the brown chromogen DAB-3.3) (27).

Threshold values were established, allowing the software to classify the data automatically. During the preparation stage, both the number of cells and the area of the immunohistochemical reactions were evaluated, with the area values expressed in square micrometers (μm²). The measurement results were automatically exported to MS Excel sheets for further statistical analysis. Analyses were conducted using R version 4.2.1 (R Core Team, 2022). The software, developed by the R Foundation for Statistical Computing in Vienna, Austria, facilitated the analysis process. The mean protein level was determined for each sample as the median derived from the immunohistochemistry (IHC) signal area analysis across 10 acquired images.

To assess the normality of the distribution, the Shapiro-Wilk test was employed, which involved evaluating skewness and kurtosis values and visually inspecting the histograms. For comparisons between dependent groups, the Wilcoxon test was used, while the Mann-Whitney U test was applied for independent groups. Additionally, median differences and their 95% confidence intervals were calculated. Correlation analysis utilized the Spearman coefficient, and the significance level was established at α = 0.05.






Results

IL-1β level was significantly lower in the center of the myoma than in controls (morphologically unchanged uterine tissue), MD = -1044.49 CI95 [-1345.02; -269.91], p = 0.001 (Table 1). No significant differences were confirmed for IL-1β in the periphery (uterine tissue adjacent to the myoma) vs. the center or in the periphery vs. controls. These observations mean that the level of IL-1β in healthy tissues (controls) is higher than in tissues where myomas occur, while in the myomas themselves, it is lower than in the surrounding tissue (Figure 1).

Table 1 | Groups’ comparison.


[image: Table showing group medians for IL1β, IL6, and NF-κβ in periphery, center, and control groups. Intervals and p-values indicate statistical significance, with bold values highlighting significant differences. Comparisons involve periphery versus center, periphery versus controls, and center versus controls.]
[image: Three microscopic images labeled IL-1β Periphery, IL-1β Myoma, and IL-1β Control, showing tissue samples. Below, a box plot compares expression levels of periphery, myoma, and control samples, indicating variability and outliers in each group.]
Figure 1 | Immunohistochemical expression of IL-1β in the patient’s uterus without myoma (control) and with myoma (myoma and periphery). Magnification 400X. Boxplot of IL-1β in periphery, center, and controls. Circles indicate outlier values.

In the case of IL-6, no significant differences were found between both locations or in comparison with the control group (Figure 2).

[image: Three micrographs show IL-6 staining in periphery, myoma, and control tissues. Below, a box plot with three categories—Periphery, Myoma, Control—displays data distribution, highlighting median values and outliers.]
Figure 2 | Immunohistochemical expression of IL-6 in the patient’s uterus without myoma (control) and with myoma (myoma and periphery). Magnification 400X. Boxplot of IL-6 in periphery, center, and controls. Circles indicate outlier values.

In the case of NF-κβ, no significant difference was observed between the tissue of the periphery and myomas (Figure 3). However, the level of NF-κβ in tissues where myomas were present, both in the center and in the periphery, was significantly lower than in the control group, MD = -1628.54 CI95 [-2408.79; -818.07], p < 0.001 and MD = -1687.58 CI95 [-2473.93; -955.65], p < 0.001, (Table 1).

[image: Three histological images show NF-kβ staining in periphery, myoma, and control tissues. Below, a box plot compares expression levels, with three groups: Periphery, Myoma, and Control. The Control group shows higher variability and median expression. Scale bar reads 32 micrometers.]
Figure 3 | Immunohistochemical expression of NF-κβ in the patient’s uterus without myoma (control) and with myoma (myoma and periphery).Magnification 400X. Boxplot of NF-κβ in periphery, center, and controls. Circles indicate outlier values.

No significant correlation was found between SERPINA3 and all analyzed proteins: IL-1β, IL-6, NF-κβ (p > 0.05 in all cases, both for the periphery and the center), (Supplementary Figure 1).

IL-1β exhibited a significant positive correlation with NF-κβ in myomas (r = 0.32, p = 0.022), although the strength of this correlation was weak. No significant correlation was found between IL-1β and NF-κβ in the periphery.

IL-6 was not correlated with NF-κβ (p > 0.05 for both locations), Table 2.

Table 2 | Correlation between IL-1β, IL6 and NF-κβ.


[image: Table showing correlation of NF-κβ with IL-1β and IL6 in periphery and center regions. For IL-1β: Periphery (R: 0.21, p: 0.144), Centre (r: 0.32, p: 0.022). For IL6: Periphery (R: 0.09, p: 0.513), Centre (r: 0.15, p: 0.308).]




Discussion

We measured the concentrations of the cytokines IL-1β and IL-6 and NF-κβ in uterine fibroids since many authors suggest these levels change in these tumors (3, 7, 12, 22). The focus of our earlier studies on uterine fibroids was the expression of the SERPINA3 protein, which is linked to both the transcription factor NF-κβ and the cytokines we identified (28). In the review by Ishikawa et al. (12), the expression of pro-inflammatory cytokines, including IL-1β and IL-6, was assessed in the endometrium of women with uterine fibroids, as well as in the tissue surrounding the fibroid, but not within the fibroid tissue itself. A significant decrease in IL-1β and IL-6 was observed in the endometrium of women with fibroids, alongside a notable increase in cyclooxygenases COX1, COX2, and VEGF. According to the authors, these changes may impair the receptivity of the endometrium during pregnancy implantation. However, it was also noted that the uterine muscle surrounding the myomas exhibited increased macrophages and heightened IL-6 activity. Therefore, the findings from these studies cannot be directly compared to ours due to the different locations of the studied factors within the uterus.

Our research found that the level of IL-1β was significantly lower in the center of the myoma compared to the surrounding tissue and the healthy control uterine muscle. Furthermore, there was a significant positive correlation between the concentration of IL-1β and reduced NF-κβ levels in the center of the myoma.

Controversial findings regarding IL-1β levels in uterine fibroids were reported by Plewka et al. (29). They observed an increase in IL-1β and NF-κβ levels in uterine fibroid tissue compared to the control myometrium in women of reproductive age and those in perimenopause. In women of reproductive age, the highest IL-1β levels were associated with larger fibroids. However, no correlation was found between NF-κβ levels and the size of the fibroids; these levels were also lower in perimenopausal women than in those of reproductive age. These somewhat conflicting results suggest that further studies are needed.

The biological function of IL-6 is multifaceted. Although it has pro-inflammatory properties, it can also inhibit inflammation (20). In our study, the IL-6 levels measured in fibroid tissue, its periphery, and in the healthy uterine muscle of control women did not differ significantly. Additionally, we found no correlation with SERPINA3 levels in the specific areas examined. Therefore, according to the results of our studies, IL-6 does not appear to play a role in the development of uterine fibroids.

The studies by Konenkov et al. (30) concerned the level of IL-6 in the serum of women with uterine fibroids. They also did not differ from the serum IL-6 concentrations in the control group. According to the review by Ishikawa et al. (12), inflammatory cytokines play a role in uterine fibroids, and it was noted that the level of IL-6 is decreased in the endometrial tissue of women with uterine fibroids. The concentration of this cytokine in the fibroid tissue was not studied.

Our study’s results indicated that the level of NF-κβ, the primary regulator of the inflammatory response, was lower in the myoma tissue and the surrounding myometrium compared to the healthy myometrium in the control group of women. Chuang and Khorram (31) investigated the expression miR-29 in the myomas of women who underwent hysterectomies. They found that miR-29 levels were reduced in myoma tissue, which correlated inversely with the expression of genes such as COL3A1, responsible for collagen production, a key component of the ECM. The authors noted that this reduction in miR-29 is associated with a significant increase in phosphorylated NF-κβ expression in uterine myomas. To further explore this connection, the researchers applied a preparation called Bay11-708L-phenylvinylsulfane to myoma xenografts in vivo. This treatment effectively decreased NF-κβ concentration and positively influenced the reduction of growth and progression of human myomas in a mouse xenograft model.

Kali and Cagiran (23) also studied NF-κβ concentrations in uterine fibroids. However, they measured this factor in endometrial tissue collected from women before and after myomectomy. They found that NF-κβ levels were significantly higher before myomectomy than after myomectomy. This procedure concerned fibroids of FIGO type 3 and 4 (intramural fibroids). In light of the reports presented by other authors and their comparison with our results, which precisely determine the NF-κβ concentration in clinically significant locations, further observational studies or studies combining many factors initiated by, among others, Liu et al. (32) would be indicated. They concerned the NF-κβ receptor (RANKL), progesterone receptor (PR), DNA methylation, the influence of MED12 mutation, and stem cell expression in uterine fibroids.





Conclusions

Results of our studies indicate a role for IL-1β and NF-κβ in the development of myomas. We are the first researchers to determine the levels of proinflammatory cytokines IL-1β and IL-6 and the transcription factor NF-κβ, as well as the protein SERPINA3 (28), in three locations, including one control site, who found changes in the levels of three of them involved in modulating the development of myomas. The lower level of SERPINA3 protein in fibroids (28) and the lower level of IL-1β shown in these studies confirm the inhibition of inflammatory processes in developing this type of change. However, the increased amount of the NF-κβ factor indicates that these are rather processes associated with the stimulation of cell division and the inhibition of cell death. Based on the results presented in this and previous studies (28, 33), we can propose a mechanism in which the silencing of inflammation inside the fibroid promotes its growth (Figure 4). Lowering IL-1β levels can inhibit the action of the transcription factor STAT3, resulting in lower SERPINA3 levels. Interestingly, IL-6 does not seem to be involved in this regulation, after which we observed no change in its level. On the other hand, a lower amount of SERPINA3 protein should lead to a decrease in the amount of NF-κβ and cell apoptosis, thus inhibiting tumor growth. However, our observation of increased expression of NF-κβ indicates that it nevertheless acts by inhibiting processes leading to cell death and enabling further tumor growth. In regulating the level of NF-κβ, another factor must be involved that remains to be identified. It should also not be forgotten that the decrease in SERPINA3 levels due to the lack of IL-1β results in an increase in serine protease activity, which increases ECM remodeling. In addition, it reduces the inhibition of matrix metalloproteinases (MMPs), which may facilitate angiogenesis (33). Therefore, further research is needed to help identify the factors that induce the development of fibroids and thus indicate possible therapeutic pathways.

[image: Diagram showing the role of SERPINA3 in tumor growth. IL-1β activates SERPINA3 via STAT3, impacting NF-κβ, angiogenesis, and MMPs. IL-6's involvement is uncertain. Downstream effects include inhibition of serine proteases, ECM modulation, reduced apoptosis, and tumor growth.]
Figure 4 | Mechanism of promotion of myoma growth by silencing inflammation inside the fibroid.
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Clinical findings
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etal (19)

Giraldo NA
etal (22)

Mendoza-
Valderrey A
et al (23)

Bosisio FM
etal (24)

Nirmal A]
et al (25)

Liu D
et al (26)

Hickey
JW (27)

Liu H (28)

Surwase SS
et al (29)

Martinez-
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Xiao X
etal (31)

Moldoveanu
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Hoch T
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et al (34)
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24

Patients responding to ICIs have increase numbers of intratumoral
and peritumoral CD8" T cells together with higher numbers of
PD-L1* cells

Long-term survivor patients: "inflamed" TME. Tumor cells near
high densities of CD8" or PD-1" cells.

Non-survivors: high densities of CD163" cells lacking PD-L1, often
close to other macrophages.

Higher infiltration of CD3* and CD20" lymphocytes in tumor
brain metastasis associated with longer overall survival

Cellular neighborhoods associated to traditional pathological
classifications (e.g. brisk/non-brisk immune infiltrate, early/
late regression)

Histological progression associated with formation of myeloid
niches and T cell exhaustion

Increase of NGFR™ tumor cells and decreased numbers of CD8",
CD4" FoxP3™ lymphocytes over time (during progression, ICIs
treatment and resistance)

Responder patients show higher PD-1* CD8 T cells and TCF1/7*
CD8 T cells pre and post ICIs

Increased spatial enrichment of APOE" CD163" macrophages
associated to invasive acral melanoma (worse prognosis)

Increased intratumoral immune activity after immunotherapy
delivery with nanoparticles

High B2-microgluobulin, MHC-I, and LAGS3 associated to
improved progression-free survival and overall survival in ICIs-
treated melanoma patients

Immune-hot TMEs formed by B lymphocytes and CD8" and CD4*
T lymphocytes correlate to response to ICIs and better overall
survival. Immune-cold TMEs are formed by myeloid cells in close
contact with CD8* T cells and are predictive of poor

clinical outcomes

Proliferating antigen-experienced cytotoxic T cells
(CD8'CD45RO'Ki67") close to melanoma cells associated with
response to ICIs

CXCL9 and CXCL10 localized in patches associated with
dysfunctional T cells, while CXCL13 strongly associated with B cell
patches and follicles, indicating that chemokines are associated to
different cellular milieu

PD-L1 expression in macrophages associated with better
progression free survival and overall survival

High stroma expression of CD95 associated with resistance to
ICIs treatment

Patients responding to adoptive cellular therapy with tumor-
infiltrating lymphocytes (TIL-ACT) exhibit CD8" TILs with
increased cytotoxicity, exhaustion, and co-stimulation markers

Co-occurrence of CD8" T cells and CD20" B cells in the TME is
associated with improved survival and tertiary lymphoid
structures formation

TLSs are associated with markers of T cell activation and response
and B cell proliferation

High expression of dendritic cell (DC) activation markers (CD86,
HLA-DR, OX40L) within the SLN tumor associated with greater
overall survival

Activation markers, including Ki67-associated to B cells follicles,
are increased in metastatic sentinel lymph nodes
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Antig: Clone Dilution  Order No. Fluorochrome (+ tested alternatives) = Company
Actin (smooth muscle) REAL650 50 130-123-363 FITC Miltenyi Biotec
AFP c3 50 5¢-8399PE PE Santa Cruz Biotechnology
B7-H4 MIH43 100 358104 PE BioLegend
Bdl-2 REA872 50 130-114-230 FITC Miltenyi Biotec
Bcl-xL H-5 200 Sc-8392PE PE Santa Cruz Biotechnology
CCL18 REA487 50 130-107-608 PE Miltenyi Biotec
CD10 REAL318 50 130-118-368 FITC Miltenyi Biotec
CD105 REA794 50 130-112-169 FITC Miltenyi Biotec
CD107a REA792 50 130-111-620 FITC Miltenyi Biotec
CD112 REA1195 50 130-122-770 PE Miltenyi Biotec
CD117 REA787 50 130-111-592 PE (APC) Miltenyi Biotec
CDlla REA378 50 130-124-886 FITC Miltenyi Biotec
CD11b REA713 50 130-110-552 FITC Miltenyi Biotec
CDllc REA618 50 130-113-587 PE Miltenyi Biotec
CD123 REA918 50 130-115-263 FITC (APC) Miltenyi Biotec
CD133 REA820 50 130-112-195 PE Miltenyi Biotec
CD138 REA929 50 130-115-479 PE (APC) Miltenyi Biotec
CD146 REA773 50 130-111-322 PE Miltenyi Biotec
CD15 VIMCé 50 130-113-484 FITC Miltenyi Biotec
CD155 REA1081 50 130-118-998 PE Miltenyi Biotec
CD163 REA812 50 130-112-132 FITC Miltenyi Biotec
CD169 REA1176 50 130-121-106 PE Miltenyi Biotec
CD171 L1-0V198.5 200 371604 PE BioLegend
CD183 REA232 50 130-120-452 PE Miltenyi Biotec
CD184 REA649 50 130-117-504 PE Miltenyi Biotec
CD19 LT19 50 130-113-168 FITC Miltenyi Biotec
CD196 REA190 50 130-120-458 PE Miltenyi Biotec
CDlc AD5-8E7 50 130-113-301 FITC Miltenyi Biotec
CD2 REA1130 50 130-119-508 PE Miltenyi Biotec
CD20 REA1087 50 130-118-292 FITC (PE) Miltenyi Biotec
CD200 REA1067 50 130-118-128 FITC Miltenyi Biotec
CD206 DCN228 50 130-123-671 FITC (PE) Miltenyi Biotec
CD21 REA940 50 130-115-609 FITC Miltenyi Biotec
CD22 REA340 50 130-124-223 FITC Miltenyi Biotec
CD24 REAS832 50 130-112-656 PE Miltenyi Biotec
CD243 REA495 50 130-124-440 PE (APC) Miltenyi Biotec
CD25 REA945 50 130-115-534 PE (APC) Miltenyi Biotec
CD25 M-A251 50 356104 PE BioLegend
CD26 FR10-11G9 50 130-126-362 PE Miltenyi Biotec
CD27 REA499 50 130-113-639 FITC (PE) Miltenyi Biotec
CD276 REA1094 50 130-118-570 PE (FITC) Miltenyi Biotec
CD3 REA1151 50 130-120-267 FITC (APC) Miltenyi Biotec
CD31 REA1028 50 130-117-224 FITC Miltenyi Biotec
CD314 REA1228 50 130-124-341 PE Miltenyi Biotec
CD34 REA1164 50 130-120-515 PE Miltenyi Biotec
CD36 REA760 50 130-110-739 FITC Miltenyi Biotec
CD38 REA671 50 130-117-717 PE (APC) Miltenyi Biotec
CD39 REA739 50 130-110-650 PE Miltenyi Biotec
CD4 REA623 50 130-114-531 FITC (PE) Miltenyi Biotec
CD40 REA733 50 130-110-946 PE Miltenyi Biotec
CD44 REA690 50 130-113-342 PE (FITC) Miltenyi Biotec
CD45 REA747 50 130-110-632 PE Miltenyi Biotec
CD45RA T6D11 50 130-113-355 FITC Miltenyi Biotec
CD45RO UCHL1 50 130-113-549 FITC Miltenyi Biotec
CD47 REA220 50 130-123-754 PE Miltenyi Biotec
CD48 REA426 50 130-106-516 PE Miltenyi Biotec
CD490. REA1106 11 130-119-305 FITC Miltenyi Biotec
CD49f REA188 11 130-100-337 FITC Miltenyi Biotec
CD54 REA266 50 130-120-711 PE Miltenyi Biotec
CD56 AF12-7H3 50 130-113-307 PE (APC) Miltenyi Biotec
CD57 REA769 50 130-111-810 PE Miltenyi Biotec
CD61 REA761 50 130-110-748 FITC Miltenyi Biotec
CD64 REA987 50 130-116-195 FITC Miltenyi Biotec
CD66b REA306 50 130-123-694 FITC Miltenyi Biotec
CD69 EN50 50 130-113-524 FITC (PE) Miltenyi Biotec
CD70 REA292 100 130-104-307 FITC Miltenyi Biotec
CD71 REA902 50 130-115-028 FITC (PE) Miltenyi Biotec
CD73 REA804 50 130-111-908 PE (APC) Miltenyi Biotec
CD74 REA1103 50 130-119-026 PE Miltenyi Biotec
CD8 REA734 50 130-110-677 FITC Miltenyi Biotec
CDY REA1071 50 130-118-806 FITC Miltenyi Biotec
CD90 REA897 50 130-114-859 FITC Miltenyi Biotec
CD95 REA738 50 130-113-004 PE (FITC) Miltenyi Biotec
CD96 REA195 100 130-101-032 PE Miltenyi Biotec
CD99 REA1174 50 130-121-078 PE Miltenyi Biotec
Collagen 111 REAL912 50 130-127-357 PE Miltenyi Biotec
Collagen IV REALS567 50 130-122-866 PE Miltenyi Biotec
CSFIR 12-3A3-1B10 100 NBP1-43362PE PE Novus Biologicals
CTLA-4 BNI3 200 369604 PE BioLegend
Desmin REA1134 50 130-119-489 FITC (APC, PE) Miltenyi Biotec
EpCAM REA764 50 130-110-998 FITC Miltenyi Biotec
Fibronectin REAL555 50 130-122-864 PE Miltenyi Biotec
FOLR2 NBP2-99741 100 NBP2-99741F FITC Novus Biologicals
FoxP3 236A/E7 50 12-4777-42 PE Thermo Fisher Scientific
FSP-1 NBP2-36431 200 NBP2-36431F FITC Novus Biologicals
Galectin 9 REA435 50 130-124-237 PE (APC) Miltenyi Biotec
GD2 14.G2a 50 562100 PE (FITC) BD

GFAP REA335 50 130-118-351 PE Miltenyi Biotec
Glypican 3 307801 200 FAB2119G FITC RnD Systems
H2AX REA502 50 130-125-883 PE Miltenyi Biotec
HER2 REA1232 50 130-124-466 PE Miltenyi Biotec
HIF-1 EP1215Y 200 ab190197 FITC Abcam
HLA-ABC REA230 50 130-120-055 PE (APC, FITC) Miltenyi Biotec
HLA-DR REA805 50 130-111-789 PE (APC, FITC) Miltenyi Biotec
HLA-DR/DP/DQ REA332 50 130-120-715 PE Miltenyi Biotec
HNF-40. H-1 50 s5¢-374229PE PE Santa Cruz Biotechnology
Hsp70 REA349 50 130-124-694 FITC Miltenyi Biotec
DO D5J4E 100 103125 PE Cell Signaling Technology
Ki-67 REA183 50 130-117-691 FITC Miltenyi Biotec
LAG3 REA351 25 130-120-470 PE Miltenyi Biotec
MUC1 16A 50 355604 PE BioLegend
Myosin REA1107 100 130-119-313 FITC Miltenyi Biotec
NANOG REA314 50 130-117-377 PE Miltenyi Biotec
ple F-12 50 sc-1661PE PE Santa Cruz Biotechnology
p21 E-8 50 sc-271610PE PE Santa Cruz Biotechnology
p53 REA1132 50 130-119-502 PE Miltenyi Biotec
Pan-Cytokeratin REA831 50 130-112-743 FITC (APC, PE) Miltenyi Biotec
PD-1 REA1165 50 130-120-382 PE Miltenyi Biotec
PDGFR B MABI1263 200 FABI1263T-100UG FITC RnD Systems
PD-L1 1 REA1197 50 130-122-809 PE Miltenyi Biotec
PD-L1 2 MIH2 50 393608 PE BioLegend
Podoplanin REAL468 50 130-125-009 FITC Miltenyi Biotec
PSMA GCP-04 100 NBP1-45057AF488 FITC Novus Biologicals
S100A8 REA917 50 130-115-253 FITC (APC, PE) Miltenyi Biotec
S100A9 REA859 50 130-114-515 FITC Miltenyi Biotec
SSEA-1 (CD15) REA321 50 130-117-689 PE Miltenyi Biotec
TIM3 REAL818 50 130-125-682 PE Miltenyi Biotec
Vimentin REA409 50 130-123-774 PE (APC, FITC) Miltenyi Biotec
VISTA DIL2G 200 18946 PE Cell Signaling Technology
B-Actin REA1148 50 130-120-276 FITC Miltenyi Biotec

B-Catenin REA480 50 130-123-546 FITC (APC, PE) Miltenyi Biotec
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Image
Analysis Step

Specific Task

Software/Tools

PREPROCESSING

SEGMENTATION

CELL PHENOTYPING

SPATIAL ANALYSIS

Stitching

Registration

Artifacts Removal

Background and
Tllumination correction

Hot Pixel corrections

Machine
Learning Approaches

Ashlar;
RAPID

HiFiAlignmentTool;
Ashlar; Valis;
RAPID;

Qual-IF-Al,
BaSiC

IMC-Denoise

IMC segmentation pipeline
(Tlastik+ CellProfiler)

(41, 47)

(13, 41, 42, 47)

(43)

(45)

(44)

(16, 50, 51)

https://github.com/labsyspharm/ashlar
https://github.com/nolanlab/RAPID

https://github.com/jhausserlab/HiFiAlignmentTool
https://github.com/labsyspharm/ashlar
https://github.com/MathOnco/valis
https://github.com/nolanlab/RAPID

https://github.com/TCW O/QuallFAT

https://github.com/marrlab/BaSiC

https:/github.com/PENGLU-WashU/IMC_Denoise

hitps://github.com/BodenmillerGroup/
ImcSegmentationPipeline
https://github.com/ilastik/ilastik
https://github.com/CellProfiler

STARDIST;

https://github.com/stardist/stardist
https://github.com/vanvalenlab/intro-to-deepcell/tree/

Deep Learning Approaches | 1oy er: CELLPOSE. (52-54) master/pretrained_models
https://github.com/MouseLand/cellpose
. . https://github.com/i-cyto/Rphenograph
Clustering Phenograph; FlowSOM. ) hitps://github.com/saeyslab/FlowSOM
iadine htps://github.com/cole-trapnell-lab/garnett
s e—— Garnett; CELESTA; Astir. (61-63) https://github.com/plevritis-lab/ CELESTA
8PP https://github.com/camlab-bioml/astir
§ https://github.com/vanvalenlab/deepcell-types
Deep Learning Approaches g:]?;,(;lg,yze’;ﬂ‘[‘ AR (64-66) https://github.com/KerenLab/CellSighter
2 : https://github.com/snap-stanford/stellar
) ) ) - hitps://github.com/BodenmillerGroup/imcRtools
Neighborhood analysis imcRtools; Histocat. (16, 68) https://github.com/SchapiroLabor/histoCAT
s communifes | meRioosSqudpy. | 16,70 e
Interaction analysis imcRtools; Giotto. (16, 74) :;::zfxg:::::§:$;::j:&:}g::ﬁ;wphmcmmﬂs
Ligand-receptor CellChat; SpaOTsc. 76,77 https://github.com/sqjin/CellChat

signaling networks

hitps://github.com/zcang/SpaOTsc
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Spatial

Proteomic
Method

THC

MxIF

CyCIF/HiFI
CODEX

ImmunoSABER

MiBI
IMC

DSP (GeoMX)

SMI (CosMX)

Number
of targets

Antibody
detection
method

Upto3 Chromogenic

amplification
Conjugated
Upto6
B0 fluorochrome
Conjugated
40
3 fluorochrome
Upto100 | DNA barcode
>40 Metal
Upto3 Fluorochrome-
(fluorescence) tagged +
>100 barcode oligo-tagged

Fluorochrome-

acquisition

method

Optical

Fluorescence

Fluorescence

Fluorescence

Mass

Spectrometry

Fluorescence

Fluorescence

100
> tagged probes

Yes

Yes

Yes

Yes

No

No

Resolution

FFPE Subcellular
FFPE
FE Subcellular
FFPE
FE Subcellular
FFPE
- Subcellular
FEPE 0.4-0.7um
lum
FFPE
FE Subcellular
FFPE
- Subcellular

coupled to RNA

Low throughput, no direct

Hi
lgh correlation between protein
sensitivity, .
i expression and
reproducibility . . -+
signal intensity
High sensitivity Low throughput
Antibody stripping
Multiple op(i{niz:atiom need fo.r
specific instruments (if
markers .
automated), time
consuming (if manual)
High Antibody optimization
throughput and availability
High PRV
Long acquisition time, no
throughput, s
s amplification system,
tissue disruption
autofluorescence
High
throughput, Limited markers selection,
coupled to difficult single cell analysis
RNA analysis
High
throughput,

Costs, low scalability

analysis, single
cell detection

IHC, immunohistochemistry; MxIF, multiplex immunofluorescence; CyCIF, cyclic immunofluorescence; HiFI, hyperplexed immunofluoresce imaging; CODEX, co-detection by indexing; MiBI,
multiplexed ion beam imaging; IMC, imaging mass cytometry; DSP, digital spatial transcriptomic; SMI, spatial molecular imager; FFPE, Formalin-Fix Paraffin Embedded; FF, fresh frozen.
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Patient Characteristics

Age (years) 52 (24)
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Gender
Female 61 (41%)
Male 86 (59%)
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Breslow Thickness (mm) 2.20 (2.65)
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! Median (IQR); n (%).
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Patient Characteristics
Age (years) 56 (18)
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Skin 50 (20%)
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(Missing) 48

! Median (IQR); n (%).
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Patient Training series Validation series ICI therapy series
characteristics

TCGA GSE31210, GSE68465 KCC_ICI GSE207422

GSE50081

Platform Tllumina HiSeq HG-U133_ HG-U133A Tlumina HiSeq Tlumina NovaSeq
Plus_2

Patients, N 420 353 443 20 24

Age (years) 65.4 (9.93) 62.9 (9.39) ‘ 64.4 (10.1) 64.7 (8.27) 60.9 (10.7)

Sex:

Female 221 (52.60%) 183(51.80%) 220 (49.7%) 4 (20.00%) 5 (20.80%)

Male 199 (47.40%) 170(48.20%) 223 (50.3%) 16(80.00) 19 (79.20%)

Status:

Alive 266 (63.30%) 267(75.60%) 207 (46.7%) 17 (85.0%) -

Dead 154 (36.70%) 86 (24.40%) 236 (53.3%) 3 (15.0%) -

Stage:

1 226 (53.80%) 260(73.60%) 150(33.86%) 0 (0%) 2 (8.33%)

I 102 (24.30%) 93 (26.40%) 251(56.66%) 0 (0%) 8 (33.33%)

i 70 (16.70%) 0 (0%) 28 (6.32%) 2 (10.0%) 14 (58.33%)

v 22 (5.20%) 0 (0%) 12 (2.71%) 15 (75.0%) 0 (0%)

Recurrence 0 (0%) 0 (0%) 0 (0%) 3 (15.0%) 0 (0%)

I NE 0 (0%) 0 (0%) ‘ 2 (0.45%) [ 0 (0%) 0 (0%)

The clinical characteristics of patients for comprehensive transcriptome analysis are demonstrated.
Continuous variables are described with mean and standard deviation. Categorical variables are summarized as sample numbers and percentages.
Platform: Gene expression files of TCGA and KCC-ICI cohorts were obtained via RNA sequencing, and those of GEO cohorts were obtained using a microarray.
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Variables Univariate Cox regression

P-value HR (95% Cl)
Sex* 0.995 1.001 (0.729-1.375)
Age 0.477 1.006 (0.989-1.023)
M 0.056 1.625 (1.334-1.980)
T 1.38E-06 1.677 (1.396-2.015)
N 3.25E-08 1.792 (0.985-3.260)
Stage 1.99E-10 1.625 (1.399-1.887)
PTAAMG-Sig 7.42E-09 2718 (1.937-3.815)

Stage All stage data were scored using the American Joint Commission on Cancer staging
system. *Sex: univariate Cox regression analysis was used as a categorical variable. Ref.
group: female.
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Genes Hazard ratio (95% CI) P-value
KYNU 1.135 (1.019-1.263) —— 0.022*
PSPH 1.127 (0.919-1.383) — ns
PPAT 1.074 (0.824-1.401) —_— - ns
MIF 1.067 (0.892-1.277) —_— ns
GCLC 1.010 (0.909-1.125) —— ns
ACAD8 0.959 (0.774-1.188) —_— - ns
TYRP1 0.880 (0.743-1.043) — ns
ALDH2 0.870 (0.728-1.039) —_—- ns
HDC 0.837 (0.675-1.037) ns
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Image Acquisition Tumor/Stroma Regions Detection

Stage lll

Stage IV

Automated Cell Identification & Quantification

Cells are segmented and labeled using the following colors

The H-score is calculated based on the percentages of 1+,
2+ and 3+ cells and is given as:

H-score=(% of 1+x1) + (% of 2+x2)+ (% of 3+x3),

which results in a number between 0 and 300 where 0 is
negative and 300 is maximum positive (100% 3+).
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Author Research Target Tumor

Glasson et al Preclinical Melanoma and ApcA“‘ intestinal model (79)
Van Maldegem et al Preclinical Lung cancer (80)
Zabransky et al Preclinical Hepatocellular carcinoma (81)
Peran et al Preclinical Pancreatic cancer (82)
Erreni et al Preclinical Pancreatic cancer (28)
Strittmatter et al Preclinical Ovarian, lung and colon cancer (85)
Strittmatter et al Preclinical Pancreatic cancer (86)
Chang et al Preclinical Pancreatic cancer (87)
Shen et al Clinical Hepatocellular carcinoma (92)
Ravi et al Clinical Glioblastomas (93)
Colombo et al Clinical B-cell lymphomas (94)
Rigamonti et al Clinical Non-small cell lung carcinoma (27)
Sorin et al Clinical Lung cancer (75)
Jackson et al Clinical ' Breast cancer (76)
Alietal Clinical Breast cancer (95)
Danenberg et al Clinical Breast cancer (96)
Rogenes et al Clinical Breast cancer (31)
Tornaas Clinical Head and neck squamous cell carcinoma (99)
Xiang et al Clinical | Lung squamous cell carcinoma (100)
Cords et al Clinical Breast cancer (101)
Cords et al Clinical Non-small cell lung cancer (68)
Elyada et al Clinical Pancreatic cancer (105)
Sussman et al Clinical Pancreatic cancer (106)
Erreni et al Clinical Pancreatic cancer (61)
Oetjen et al Clinical Myelodysplastic syndrome (116)
Lietal Clinical Lung squamous cell carcinoma (1)
Zhang et al Clinical Colorectal cancer 117)
Bertocchi et al Clinical Colorectal cancer; liver metastasis (120)
Fischer et al Clinical Breast cancer; lymph node metastasis (123)
Kuett et al Clinical Breast cancer; bone, soft tissue, liver and brain metastasis (124)
Hoch et al Clinical Metastatic melanoma (125)
Martinez-Morilla et al Clinical Melanoma (126)
Le Noach et al Clinical Small cell lung cancer (127)
Hiltbrunner et al Clinical Non-small cell lung cancer (128)
Bortolomeazzi et al Clinical Colorectal cancer (129)
Mi et al Clinical Hepatocellular carcinoma (66)
Carvajal-Hausdorf et al Clinical Breast cancer (130)
‘Wang et al Clinical Breast cancer (131)
Cao et al Clinical Gastric cancer (132)

Cao et al Clinical Colorectal cancer (133)
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IMC Analysis of the Tumor Microenvironment Cell phenotype Cell functional state
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