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The accuracy of carbon emission data is essential for various disciplines to maintain reasonable expectations and certainty regarding the carbon emission rights trading market. However, the management of carbon emission data quality faces many challenges, especially due to the harmful behavior of enterprises that falsify such data, which seriously disrupts the order and credibility of the carbon market. Currently, few studies focus on the behavior and mechanism of corporate carbon emission data fraud, which requires an in-depth stakeholder analysis to obtain theoretical and empirical support for the formulation of effective regulatory policies. To investigate the influence of government regulation and media monitoring on addressing enterprise carbon emission data falsification, as well as to analyze the game behaviors and equilibrium outcomes among the government, media, and enterprises under different policy combinations and market environments, this study develops an evolutionary game model incorporating the government, media, and enterprises as three key stakeholders. Furthermore, numerical simulations are conducted for empirical validation. The key findings of this research highlight the significant impact of government regulation and media monitoring on deterring enterprise carbon emission data falsification, thus effectively reducing falsification motives and behaviors and enhancing the quality of carbon emission data. Additionally, the game between the government, media, and enterprises reveals the existence of multiple evolutionary stable strategies. Of these, the optimal strategy is the comprehensive implementation of all three elements: government regulation, media monitoring, and corporate integrity disclosure. This paper comprehensively examines the influence of government regulation and media monitoring on enterprise carbon emission data falsification and addresses the gaps in existing research. Moreover, it provides theoretical guidance and policy recommendations for establishing a high-quality carbon market.
Keywords: carbon emission data falsification, government regulation, media monitoring, evolutionary game, numerical simulation

1 INTRODUCTION
With the alarming rise in global carbon dioxide emissions and greenhouse gases, climate change has emerged as a paramount global concern, posing a threat to ecosystems (Solomon et al., 2009; Frona et al., 2021). To address this urgent issue, countries worldwide actively promote energy conservation and emission reduction through a global agreement, emphasizing the objectives of attaining carbon peaking and neutrality (Huang and Zhai, 2021; Wei et al., 2022). Carbon emissions trading serves as a crucial and efficient strategy to realize these goals. It operates as a market-based mechanism that facilitates the exchange of carbon dioxide emission rights as tradable commodities. By fostering market competition and responding to price signals, enterprises with lower costs of emission reduction are incentivized to surpass their reduction targets. They can subsequently trade their surplus quotas or emission reduction credits to enterprises faced with higher emission reduction costs. This trading process facilitates the achievement of emission reduction targets for enterprises encountering greater challenges while effectively reducing compliance costs associated with target attainment (Liu et al., 2015; Wang et al., 2019).
The accuracy of carbon emission data forms the foundation for diverse stakeholders to establish reasonable expectations and achieve a level of certainty within the carbon emissions trading market (Giannarakis et al., 2018). The provision of authentic and comprehensive carbon information plays a vital role in governing the carbon trading market, improving market transparency, and facilitating high-quality carbon emission reduction efforts (Matisoff et al., 2013; Liesen et al., 2015). Developed nations like the United Kingdom, the United States, and Australia have mandated enterprises to disclose carbon information. In December 2017, the China Securities Regulatory Commission (CSRC) explicitly stipulated that listed companies must include key environmental information in their annual or semi-annual reports (Zhang and Liu, 2020). However, managing the quality of carbon emission data encounters several challenges, including the absence of standardized disclosure criteria, incentive and constraint mechanisms, and third-party auditing systems (Chen et al., 2022; Zhu et al., 2023). In an attempt to evade the expenses associated with purchasing carbon emission allowances, some enterprises resort to fraudulent practices such as tampering and falsifying inspection reports, producing deceptive coal samples, and misrepresenting findings and conclusions (Table 1). These deceitful activities severely disrupt the integrity and credibility of the carbon market (Long et al., 2022).
TABLE 1 | Reasons for falsification of carbon emission data by enterprises.
[image: Table listing factors and reasons related to carbon emission issues. Subjective factors include manipulating data to reduce emissions. Objective factors highlight regulatory deficiencies, inconsistent accounting due to varied policies, and challenges in verification resulting in false reports.]Previous studies have examined corporate carbon emission information disclosure using various analytical approaches, including regression analysis (Karim et al., 2021), game theory (Song et al., 2021), and institutional analysis (Ding et al., 2023). These investigations primarily focus on aspects such as the motives behind corporate carbon emission information disclosure (Li et al., 2019), factors influencing disclosure behavior (Motoshita et al., 2015), and the effectiveness of governance measures (He et al., 2023), among others. Some studies adopt a stakeholder perspective, examining multiple actors involved in corporate carbon emission information disclosure, including the government, enterprises, media, and the public (Zhang and Liu, 2020). Many studies highlight the crucial role of government regulations in constraining corporate disclosure behavior, such as the design of incentive-compatible systems and the improvement of laws and regulations (Liu and Li, 2019; Yan et al., 2020). Additionally, some studies emphasize the significance of media oversight, which is believed to enhance transparency, objectivity, public trust, and support for corporate emission reduction actions (Luo et al., 2019; Shao and He, 2022). However, the current research lacks an investigation into the governance of corporate carbon emission information falsification from a government regulation and media monitoring standpoint. The deceptive practice of falsifying corporate carbon emission information is not uncommon. Considering this practical challenge, it is imperative to delve into how governmental and media decision-making behaviors influence enterprise carbon emission information practices. Moreover, it is crucial to optimize the system to effectively address issues related to carbon emission information falsification, ultimately contributing to the establishment of a high-quality carbon market in China.
Evolutionary game theory is a theoretical framework based on biological evolution principles and game theory methods, which is used to analyze the strategy choices and behavior changes of groups in complex environments (Yang et al., 2022; Sun et al., 2023). Evolutionary game theory assumes that groups’ behavior depends not only on their interests, but also on the influence of other groups, and that through constant interaction and learning, groups will gradually form a stable behavior pattern or equilibrium state. Evolutionary game theory can reveal the strategy choices and behavior motives of groups in the carbon emission data falsification problem, and analyze the impact of different factors on group behavior. It can also simulate the behavior changes of groups in different scenarios, examine the impact of different parameters on the equilibrium state, and predict the possible behavior trends and outcomes in the future. Existing studies based on evolutionary game theory have focused on various issues such as carbon emission policies (Song et al., 2021), environmental governance (Sun et al., 2022), and supply chain management (Mahmoudi and Rasti-Barzoki, 2018), which provide good inspiration for this study.
The governance of enterprise carbon emission data falsification plays a pivotal role in fostering the growth of a robust carbon market in China. This research paper focuses on examining the impact of government regulation and media monitoring on the governance of such deceptive practices, and aims to address the following key research questions: How does the occurrence of carbon emission data falsification by enterprises vary when accounting for government regulation and media monitoring? What is the stability status of the evolutionary equilibrium within the three-party game framework? How can the system design be optimized to enhance the accuracy and reliability of carbon emission data?
To answer these questions, an evolutionary game model is constructed, incorporating the government, media, and enterprises. Optimal strategies and equilibrium outcomes for each party are analyzed under various parameter conditions, and numerical simulation methods are used to empirically test the model. The paper makes two main contributions to the literature: (Frona et al., 2021): The paper proposes a novel evolutionary game model that captures the interactions and incentives of enterprises, government, and media in the context of carbon emission data falsification. The paper extends the existing literature by considering both government regulation and media monitoring as key factors that influence the game behavior and equilibrium outcomes of enterprises. (Solomon et al., 2009). The paper provides empirical evidence on how different policy and market conditions affect the stability of the evolutionary equilibrium in the three-party game. The paper offers practical implications for designing optimal governance strategies to combat enterprise carbon emission data falsification in China.
2 REVIEW OF THE LITERATURE
Extensive research has been conducted on the role of businesses in the context of global climate change. It is widely acknowledged that businesses bear the primary responsibility for global climate change (Bebbington et al., 2008) and are also vulnerable to associated risks (Labatt and White, 2011; Zhou and Li, 2019). However, climate change also presents potential business opportunities, particularly in greenhouse gas (GHG) emission reduction projects. Companies can capitalize on these opportunities by developing more efficient alternative energy sources, reducing reliance on oil, and participating in carbon credit trading within energy markets (Southworth, 2009; Martin and Walters, 2013). Nonetheless, it should be noted that such opportunities may also give rise to the risk of climate change fraud (Haque and Islam, 2015). Evidence of media coverage of climate change fraud is growing, with reports of widespread fraudulent activities observed in the European Union’s emissions trading system and the production and sale of carbon credits from carbon reduction projects (Lohmann, 2009). Companies voluntarily reporting their carbon emissions face an even higher risk of data misreporting and associated fraudulent activities due to the absence of standardized reporting standards (Haque and Islam, 2015). To ensure transparency and understand the financial implications of using emissions credits and related contracts, companies should provide comprehensive disclosure of emissions data and accounting policies (Lindquist and Goldberg, 2010). However, some companies dishonestly manipulate their reported emissions due to financial pressures. They engage in under-reporting actual emissions to deflate carbon credits, thus inflating revenues and asset values (Lindquist and Goldberg, 2010; Haque and Islam, 2015). Alternatively, they may raise the baseline for carbon emissions to earn additional credits and emit less than the preset baseline. This allows them to retain unused credits or profit from their sale at a later time.
The government plays a pivotal role as the primary authority responsible for determining the content, format, and requirements of carbon disclosure in environmental regulation (Wang et al., 2020). It combines auditing with supervision and management to enhance relevant policies and regulations, eliminate misinformation, and preserve factual information. However, relying solely on the apparent transparency of information is insufficient to combat fraudulent or deceptive practices (Haque and Islam, 2015). Regulators must have access to a system capable of verifying self-reported data and possess sufficient authority to penalize those who attempt to falsify information (Drew and Drew, 2010). The responsibilities of carbon trading regulators across different countries encompass auditing, ensuring compliance with emission reporting standards, and enforcing legislation. A specific and comprehensive legislative framework for greenhouse gas (GHG) and energy audits is essential (Perdan and Azapagic, 2011; Zhou and Li, 2019). Some argue that while regulators provide detailed information on audit methodologies, it remains unclear how companies subject to liability are selected and the extent of scrutiny applied to their emissions reporting (Yang, 2017). In addition to government-level regulation, the involvement of third parties, such as the media, is necessary in the design of the system. Media participation can effectively promote transparency and fairness in corporate carbon emissions, while the government should incentivize moderate media involvement in monitoring efforts (Yuan et al., 2022).
The media serves as the primary disseminator of information, and its experiences, attitudes, and expectations significantly influence the screening and distribution of carbon disclosure (Li et al., 2021), which can either amplify or diminish the impact of disclosing carbon-related information (White, 1950). Regarding media influence, scholars have identified a positive linear moderating effect of media evaluation on corporate value. As a crucial external monitoring mechanism for corporate carbon disclosure, the media can incentivize companies to engage in more positive environmental management practices (Aerts and Cormier, 2009), stimulate corporate research and development (R&D) innovation, and enhance overall corporate efficiency (Joe et al., 2009). Furthermore, increased media attention towards a company leads to an improvement in the level of corporate information disclosure (Bloomfield and Wilks, 2000) and a reduction in information asymmetry (Bushee et al., 2010). As a result, external investors and the media place higher trust and recognition in the firm, consequently enhancing its value (Liao, 2020). However, Ma et al. (Ma et al., 2023) argued that media evaluation does not follow a linear moderating pattern in the relationship between carbon disclosure and firm value; rather, it follows an “inverted U-shape.” Lyon and Montgomery (Lyon and Montgomery, 2013) discovered that media evaluation places firms under intensified social pressure, leading them to disclose less information regarding their carbon emissions and make suboptimal decisions, ultimately harming firm performance and value.
In conclusion, previous studies have examined the motivations, influencing factors, consequences, and mitigation strategies associated with enterprise carbon emission data falsification, yielding valuable insights. However, there is a dearth of research on the institutional framework for enterprise carbon emission data falsification, specifically regarding institutional design. Given that government regulation and media monitoring are vital institutional arrangements, this paper aims to investigate the impacts and effects of government regulation and media monitoring on enterprise carbon emission data falsification using an evolutionary game model. By uncovering the underlying logic and mechanism behind enterprise carbon emission data falsification, this study offers valuable insights for government authorities and society as a whole.
3 MODEL DESIGN
3.1 Description of the problem
To enhance the supervision and management of carbon emission data quality and ensure the efficient and ethical functioning of the carbon market, collaborative governance actions are necessary (Deegan and Blomquist, 2006). On 14 March 2022, the Ministry of Ecology and Environment of China publicly exposed four cases of carbon emission data falsification by four enterprises. They were accused of tampering with and forging detection reports, making fake coal samples, instructing enterprises to avoid using default values, neglecting their verification duties, and issuing false verification conclusions. The Ministry of Ecology and Environment swiftly investigated and dealt with the illegal and irregular behaviors of data falsification, concealment, and fabrication, and strengthened the supervision and management of technical service institutions. Afterwards, the media widely followed up and reported on the behavior and event of carbon emission data fraud, generating a broad social impact and encouraging these enterprises to reduce data falsification through reputation mechanisms and social supervision. With the participation of multiple forces such as the government and the media, similar situations can be better prevented and deterred. This case inspires the model design.
The government assumes a regulatory role in overseeing both the disclosure of carbon emissions and the operational conduct of enterprises, thus curtailing the dissemination of false or unlawful carbon emission information (Wang et al., 2020). Additionally, the media plays a selective role in reporting on corporate activities, thereby determining the final information conveyed to the public. This selective reporting can either magnify or diminish the influence of carbon-emitting behaviors on corporate value (Yuan et al., 2022). Enterprises, as the subjects of voluntary and mandatory carbon emission disclosure, possess the ability to selectively disclose carbon emission information, often focusing on pro-environmental management details while altering the manner and tone of disclosure (Zhang and Liu, 2020). Figure 1 depicts the mechanism illustrating the impact of relevant government regulation and media oversight on the accurate disclosure of enterprise carbon emission data.
[image: Diagram illustrating relationships between stakeholders, behaviors, payments, and influences. Categories are Government, Medium, and Firm, each with corresponding behaviors and impacts. Government is linked to regulation and political performance; Medium to supervision and reputation; Firm to falsification and speculative gains. Influences include transaction order, credit market, competitive environment, carbon reduction, and sustainable development.]FIGURE 1 | Mechanisms of government regulation and media monitoring on the governance of corporate carbon emission information modelling behaviour.
Based on the aforementioned analysis, this paper constructs a three-dimensional dynamic game system (Figure 2) to depict the evolutionary game system governing enterprise carbon emission data falsification, considering the influence of government regulation and media monitoring. This comprehensive model encompasses three key subjects: the government, the media, and the enterprises, each equipped with multiple strategic options. The decisions made by each subject mutually impact one another, as the regulatory strategies adopted by the government and the monitoring actions taken by the media influence the behavior of enterprises, subsequently prompting reactions from both the government and the media. Due to limited rationality, each subject cannot thoroughly evaluate all potential outcomes and strategies. Instead, decisions are made based on restricted information and knowledge. Adopting an evolutionary game framework proves appropriate for studying this dynamic game process, as it allows for the examination of interactions between subjects and the evolutionary progression of strategic choices. By utilizing evolutionary game theory, this research aims to analyze which strategies yield superior outcomes in long-term competitive scenarios and explore concepts such as evolutionary stable strategies and equilibrium points.
[image: Flowchart illustrating the interaction between government, media, and enterprise. Government provides participation and incentives to media, and feedback and punishment to enterprise. Media exposes enterprise and gives feedback to government. Enterprise provides feedback to the media. Dashed lines enclose the elements.]FIGURE 2 | Evolutionary gaming system.
3.2 Model assumptions
Based on the above analysis, model assumptions were made (Table 2).
TABLE 2 | Parameters and their meanings.
[image: A table with two columns titled "Parameters" and "Meanings." It defines each parameter related to government regulation of carbon emissions, including political performance, administrative costs, penalties for falsification, detection probability, and benefits or costs associated with media involvement and local government action. Each parameter has a corresponding meaning, explaining its role in regulation or monitoring. The table concludes with a reference to a game payment matrix based on these assumptions, directing to see Table 3.]Assumption 1: The government has the option to implement proactive regulation or passive regulation, with a probability of choosing proactive regulation denoted as x, and the probability of choosing passive regulation denoted as 1-x. The media can choose to supervise or not supervise, with a probability of choosing supervision denoted as y, and the probability of not supervising denoted as 1-year. Similarly, businesses can choose to falsify carbon emission data or not, with the probability of falsification denoted as z, and the probability of not engaging in falsification denoted as 1-z.
Assumption 2: It is the fundamental responsibility of the government, as a responsible entity, to actively engage in environmental governance. By doing so, the government can achieve political performance, denoted as Ug. However, this regulatory process incurs administrative costs, represented by Cg. Enterprises resort to deceptive practices, such as manipulating test reports, falsifying coal samples, and distorting report conclusions, to falsify carbon emission data. Such behavior tends to remain concealed, and the government can only detect instances of carbon emission data falsification with a certain probability during active regulation, denoted as a. Again, stricter active supervision by the government tends to enhance this probability. Should the enterprise’s falsification come to light, the government will impose penalties for the falsification of carbon emission data, referred to as P.
Assumption 3: The media’s commitment to fair and unbiased reporting can enhance public trust and support, thereby bolstering its reputation and influence. Consequently, when the media actively engages in exposing enterprise carbon emission data falsification, it stands to gain certain reputation benefits, denoted as Um. However, due to the inherent limitations and opacity surrounding corporate carbon emissions, conducting investigations and monitoring can be exceptionally challenging for the media, resulting in additional costs, referred to as Cm. To encourage the media’s involvement in monitoring efforts, the government may provide incentives, denoted as A, when the media successfully uncovers instances of carbon emission data falsification by businesses. The probability of the media’s monitoring efforts detecting such falsification is represented by b, with a higher likelihood observed during more rigorous monitoring activities.
Assumption 4: In some cases, enterprises may engage in falsifying or concealing carbon emission data to reduce emission-related costs, evading penalties for excessive emissions, or obtaining preferential treatment from the government through misrepresentation or concealment of data. This paper uniformly refers to the benefits or cost reductions resulting from such actions as “carbon emission data falsification benefits,” denoted as Rf. These benefits can be obtained when the government does not regulate or the media does not monitor their activities. However, once detected by the government, the enterprise faces penalties, denoted as P, while exposure by the media leads to reputation losses, denoted as Le. These two factors constitute the key elements that potentially deter future instances of carbon emission data falsification. Furthermore, the degree of industry self-regulation significantly influences their behavior, denoted as d. Higher levels of degree self-regulation often coincide with greater market competition and increased standardization of carbon emission data disclosure, which in turn diminishes the potential benefits derived from carbon emission data falsification.
4 MODEL ANALYSIS
4.1 Analysis of replication dynamics
Based on Table 3, the anticipated profits for various government strategies can be calculated. Specifically, the expected profit when the government selects a positive regulation approach is denoted as E11 and can be expressed as E11 = (1 - y) ((-Cg + Ug) (1 - z) + (-Cg + a P + Ug) z) +y ((-Cg + Ug) (1 - z) + (-A b - Cg + (a - a b + b) P + Ug) z). On the other hand, the expected profit when the government opts for negative regulation is referred to as E12 and is determined as E12 = 0. Consequently, the average expected profit for the government denoted as E1, is calculated as E1 = x E11 + (1-x) E12.
TABLE 3 | Payment matrix.
[image: A table depicting outcomes based on regulation and monitoring factors. It has two main columns: "Active regulation by local governments (x)" and "Negative regulation by local government (1-x)." Each main column is divided into "Monitoring by media (y)" and "No monitoring by media (1-year)." Rows represent "Falsification by enterprises (z)" and "No falsification by enterprises (1-z)." Each cell contains algebraic expressions reflecting different scenarios, considering variables such as \(U_g\), \(C_g\), \(P\), \(A\), and others.]The replication dynamic equation of government can be obtained as Eq. 1.
[image: The equation shows a function F(x) expressed as x times (E_{i1} - E_i). It is further expanded as (-1 + x)x(C_g - U_g + (-aP + A_by + (ab - b)P_y)z).]
Similarly, the equation for the replication dynamics equation of the media can be obtained as Eq. 2 and the replication dynamics equation of the enterprise as Eq. 3.
[image: Mathematical equation depicting F(y) equals gamma times the difference between E_{21} and E_{2}, further expressed as negative one plus gamma times gamma times C_{m} minus U_{m} minus A times b times x times z.]
[image: Mathematical expression labeled (3). It displays a function \( F(z) = z(E_{s_1} - E_s) \). Further expanded as \( (1 + z)z(aP_x + (bL_x - abP_x + bP_x)y + R_f(1 - d)(1 + ax - abxy + bxy)) \).]
4.2 Stable equilibrium analysis
By combining Eqs 1–3, a concise two-dimensional dynamical system (I) can be derived, which corresponds to Eq. 4.
[image: Mathematical equations with three functions.  \( F(x) = (1 + x p_x)(C_g - U_g + (-aD + Aby + (ab - b)p_y)z) \).  \( F(y) = (1 + y p_y)(C_m - U_m - Abxz) \).  \( F(z) = (1 + z p_x)(aPx + (bL - abPx + bPxy)z + R_l(1 - d)(-1 + ax - abxy + bxy)) \).]
When the replicator dynamics equations equal zero, it indicates that the speed and direction of strategic adjustments by the three participating entities in the governance evolutionary game system for falsification of enterprise carbon emission data no longer change. As a result, the system reaches a relatively stable equilibrium state. Thus, by letting F(x) = F(y) = F(z) = 0 in Eq. 4, the equilibrium solutions of the governance evolutionary game system for falsification of enterprise carbon emission data are: (0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1), and (x*, y*, z*). Based on relevant research (Friedman, 1991), it is established that a mixed strategy equilibrium in asymmetric game dynamics cannot be considered as an evolutionary stable equilibrium. Consequently, the asymptotic evolutionary stability of (x*, y*, z*) should not be addressed, and the focus should solely be on the remaining eight pure strategies.
Based on the principles of Lyapunov theory (Friedman, 1991), a Jacobian matrix is deemed asymptotically stable if all its eigenvalues (λ) are less than zero. Conversely, it is classified as unstable when all eigenvalues are greater than zero. Additionally, when the Jacobian matrix exhibits both positive and negative eigenvalues (λ), signifying a saddle point, the equilibrium point is considered unstable. By taking partial derivatives of F(x), F(y), and F(z) with respect to x, y, and z, respectively, the Jacobian matrix can be obtained, as expressed in Eq. 5.
[image: Matrix equation showing a Jacobian matrix J. The left matrix consists of functions \(F_x(x)\), \(F_y(x)\), \(F_z(x)\); \(F_x(y)\), \(F_y(y)\), \(F_z(y)\); \(F_x(z)\), \(F_y(z)\), \(F_z(z)\). It equals the right matrix with partial derivatives \(\frac{\partial F(x)}{\partial x}\), \(\frac{\partial F(x)}{\partial y}\), \(\frac{\partial F(x)}{\partial z}\); \(\frac{\partial F(y)}{\partial x}\), \(\frac{\partial F(y)}{\partial y}\), \(\frac{\partial F(y)}{\partial z}\); \(\frac{\partial F(z)}{\partial x}\), \(\frac{\partial F(z)}{\partial y}\), \(\frac{\partial F(z)}{\partial z}\). The equation is labeled as equation (5).]
By substituting the eight equilibrium points into the Jacobian matrix mentioned above, the corresponding eigenvalues for each of these points can be calculated. The resulting eigenvalues are presented in Table 4.
TABLE 4 | Eigenvalues of game equilibrium points.
[image: A table with four columns labeled Equilibrium, λ₁, λ₂, and λ₃. Rows are labeled E₁ to E₈, with corresponding equations in each column. Equilibrium lists pairs like (0, 0, 0), and equations involve variables such as Cₘ, Uₘ, Rₓ, P, and others with symbols like +, -, and parentheses for calculations.]Based on the aforementioned discriminating criterion (Friedman, 1991), it becomes evident that E1 (0, 0, 0) cannot be considered a stable equilibrium strategy. Conversely, E2 (0, 0, 1), E3 (0, 1, 0), E4 (1, 0, 0), E5 (1, 1, 0), E6 (1, 0, 1), E7 (0, 1, 1), and E8 (1, 1, 1) demonstrate stability as equilibrium strategies, provided they meet specific conditions. In the subsequent analysis, these seven stable equilibrium scenarios will be analyzed individually.
Scenario 1: E2 (0, 0, 1) represents the stable equilibrium strategy when -Cg + a P + Ug < 0, -Cm + Um < 0, and -Rf (1 - d) < 0. In instances where the expense of government regulations exceeds the sum of political achievements and penalty income, the cost of media monitoring is greater than the advantages of media reputation, and the benefits of manipulating enterprise carbon emission data are higher, an equilibrium strategy characterized by negative government regulations, absence of media oversight, and falsification of enterprise carbon emission data forms. Consequently, enterprises possess strong incentives to falsify carbon emissions data because the benefits outweigh the risks of being caught in the absence of regulation. Due to high costs, there is little incentive for both the government and the media to regulate or expose enterprises’ carbon emission information. This situation typically arises in regions or countries with less developed carbon markets, high carbon credit prices, and inadequate regulation of carbon emission data credibility, representing a case of haphazard development. Prompt and effective government regulation and media monitoring are crucial at this stage to restrict enterprise misconduct regarding falsification.
Scenario 2: E3 (0, 1, 0) represents the stable equilibrium strategy when -Cg + Ug < 0, Cm - Um < 0, and -b Le + Rf (1 - d) < 0. This equilibrium strategy entails negative government regulation, media monitoring, and non-falsification of enterprises’ carbon emission data. Such a situation may occur in developing countries or regions where the government prioritizes economic growth over environmental protection, the media exposes instances of carbon emission data falsification to attract public attention, and enterprises refrain from falsifying data due to the fear of penalties and reputation damage. Although the carbon emission data remains untampered, inadequate government supervision may result in excessive emissions or insufficient incentives for emissions reduction among enterprises. To enhance the effectiveness and credibility of carbon emissions reduction, the government should amplify the gap between regulatory costs and political performance, impose stricter penalties for excessive emissions, foster and support the monitoring role of the media, and widen the disparity between the advantages and disadvantages of media oversight.
Scenario 3: E4 (1, 0, 0) represents a stable equilibrium strategy when Cg - Ug < 0, -Cm + Um < 0, and -a P - (−1+a) Rf (1-d) < 0. This equilibrium strategy involves positive government regulation, the absence of media monitoring, and non-falsification of enterprise carbon emission data. Due to robust government regulation, the cost of falsifying carbon emission data is prohibitively high, prompting enterprises to uphold the values of veracity, completeness, and accuracy of their carbon emission data. They abide by relevant laws and regulations and fulfill their social responsibilities dutifully. This scenario is typical of countries or regions with more developed carbon markets and more refined regulations governing the quality of carbon emission data. It exemplifies an instance of effective regulation wherein the cost of enterprise carbon emission data falsification outweighs its benefits, resulting in honest and transparent reporting by enterprises.
Scenario 4: E5 (1, 1, 0) represents a stable equilibrium strategy when Cg - Ug < 0, Cm - Um < 0, and -b Le–a P + a b P–b P - (−1+a-a b + b) Rf (1-d) < 0. This equilibrium strategy entails active government regulation, media monitoring, and non-falsification of enterprise carbon emission data. This scenario arises when the cost of government regulation is lower than the political performance, the cost of media monitoring outweighs its benefit, and the benefit of falsifying enterprise carbon emission data is lower than the associated costs. It occurs in situations where the government prioritizes environmental concerns, the media diligently focuses on enterprise carbon emission information, and businesses are acutely aware of the risks associated with falsifying carbon emission data. For instance, in countries or regions with well-established carbon market systems and regulatory mechanisms, the government can facilitate accurate disclosure of carbon emission information by imposing strict laws, regulations, and effective incentives. The media, driven by social responsibility and external incentives, can exercise oversight over enterprise conduct, fostering a favorable market atmosphere for the transparent disclosure of enterprise carbon emission data.
Scenario 5: E6 (1, 0, 1) represents a stable equilibrium strategy when Cg–a P - Ug < 0, A b - Cm + Um < 0, and a P + (−1+a) Rf (1-d) < 0. This equilibrium strategy emerges when the cost of government regulation is lower than the combined effects of political performance and penalty revenues, the cost of media monitoring outweighs its benefits, and the potential benefits of falsifying enterprise carbon emissions data exceed its associated costs. Under this strategy, positive regulation is established, the media does not engage in monitoring, and enterprises falsify their carbon emissions data. Consequently, the boundaries of carbon emissions data monitoring and regulation in the carbon market become blurred, resulting in widespread data bias and diminished data quality, rendering regulation ineffective. To prevent the carbon market from becoming a hub of counterfeiting, it becomes imperative to regulate the behavior of consulting, verification, and testing services. This entails ensuring that technical services adhere to principles of truthfulness, compliance, and fairness in both process and outcomes. Simultaneously, it is necessary to enhance the political performance and punitive measures associated with government regulation, increase the reputational benefits and social responsibility surrounding media monitoring, and reduce incentives for companies to falsify carbon emission data.
Scenario 6: E7 (0, 1, 1) represents a stable equilibrium strategy when -A b - Cg + a P - (a b - b) P + Ug < 0, Cm - Um < 0, and b Le – Rf (1-d) < 0. This equilibrium strategy arises when the cost of government regulation exceeds political performance, the cost of media monitoring is outweighed by its benefits, and the benefits of falsifying enterprise carbon emission data surpass the associated costs. Such a scenario may be observed in countries or regions grappling with significant environmental pollution and climate change challenges, characterized by inadequate governance and insufficient environmental responsibility. These entities may exhibit a lack of initiative in strengthening laws, regulations, and punishments to curb enterprise disclosure of carbon emission information. However, driven by social responsibility, the media may expose instances of enterprise carbon emission data falsification to enhance public awareness and engagement in environmental protection. Enterprises, motivated by profit maximization or a lack of emission reduction incentives, may resort to falsification, instead prioritizing emissions reduction or profit maximization. To combat enterprise carbon emission data falsification, governments should intensify incentives for emissions reduction among enterprises, widen the gap between the benefits and costs of emission reduction, and bolster support and coordination for media monitoring to enhance its quality and effectiveness.
Scenario 7: E8 (1, 1, 1) represents the stable equilibrium strategy when A b + Cg–a P + (a b - b) P - Ug < 0, -A b + Cm - Um < 0, and b Le + a P–a b P + b P + (−1 + a – a b + b) Rf (1-d) < 0. This equilibrium strategy arises when the cost of government regulation is lower than the political performance, the cost of media monitoring is outweighed by its benefits, and the benefits of falsifying enterprise carbon emission data surpass the associated costs. Such a scenario may occur in countries or regions confronted with severe environmental pollution and climate change pressures. In response, the government may enhance laws, regulations, and penalties to curb the disclosure of enterprise carbon emission information, while the media may expose instances of enterprise carbon emission data falsification to raise public awareness and promote environmental participation. However, in some cases, despite more active government regulation and media monitoring, there remains the possibility of enterprise carbon emission data falsification, a practice that undermines the credibility and effectiveness of the carbon market.
5 SIMULATION
To assess the efficacy of evolutionary game analysis and derive practical managerial insights, this study employs Python for simulation and analysis, emphasizing crucial indicators. The investigation focuses on four cases of falsification in carbon emission reports publicized by China’s Ministry of Ecology and Environment. By collecting and analyzing policy documents, academic articles, media reports, and other relevant literature, it aims to explore the basic characteristics and governance effectiveness involving the government, corporations, and media in these cases. The findings reveal that tampering and falsifying inspection reports, producing fake coal samples, and exploiting findings in reports are prominent issues. The government faces considerable challenges in regulating the falsification of carbon emission data by enterprises and can only monitor non-compliance to a certain extent. In contrast, media investigations play a significant role in promoting compliance with the disclosure of enterprise carbon emissions data, complementing government regulation and also affecting enterprise reputation. Both government regulation and media monitoring form a dual strategy to regulate the falsification of enterprise carbon emission data.
According to prior studies (Sun et al., 2023), the parameters in the evolutionary game model play a crucial role in capturing the underlying structural relationships. It is essential for the simulation model to accurately depict the intrinsic patterns of change (Sterman, 2001; Wu et al., 2010). On one hand, it is important to maintain consistency between the model and the real world, which requires empirical evidence and supporting data. On the other hand, in situations where actual data is lacking or the complexity of the real world makes it difficult to extract relevant information, many similar studies resort to using idealized parameters to establish theoretical models (Yang et al., 2022; Liu et al., 2023). To enhance the model’s explanatory capacity and provide a more accurate representation of real-world scenarios, it is imperative to incorporate empirical data into these parameters. In line with this objective, the researchers have determined the essential parameters through survey data, expert interviews, and analysis of policy documents as follows: Ug = 4, Cg = 3, p = 1, a = 0.6, Rf = 6, d = 0.6, Um = 3, Cm = 2, A = 2, b = 0.6, and Le = 1. Furthermore, considering the current incomplete development of the carbon market in China and the uncertainties regarding the enthusiasm of the government, media, and enterprises, it is generally assumed that the government will actively regulate, and the proportions of media supervision and corporate data falsification (x, y, and z) are all set at 0.5.
5.1 Impact of initial probability change on evolutionary game theory
Firstly, the researchers analyze the impact of changes in initial strategies on both individual entities and all entities involved in the game. The results, depicted in Figure 3A, suggest that when the initial likelihood of active government regulation is low, it may fail to induce complete compliance with data integrity regulations among all enterprises in the final equilibrium state. This indicates that the government’s less proactive intervention in the initial stages exerts limited influence on the management of enterprise carbon emissions data falsification. As depicted in Figure 3B, regardless of the initial probability of media supervision, enterprises ultimately fully comply with data compliance requirements and refrain from fabricating data. Therefore, enterprises face sufficient pressure, irrespective of the intensity of media supervision, to ensure adherence to data authenticity requirements. In Figures 3C, a higher initial probability of data falsification by enterprises may lead to persistent non-compliant behavior in the final equilibrium state. Figure 3D demonstrates Government regulation and media monitoring exhibit a complementary effect. When both mechanisms are present simultaneously, they create a stronger binding force and incentive for promoting enterprise transparency in disclosing carbon emissions data.
[image: Four three-dimensional plots labeled A, B, C, and D. Each graph displays a surface with varying contour lines representing an equation with x, y, and z axes. Plot A shows upward curves, B features a saddle shape, C displays consistent upward slopes, and D presents a wave-like pattern.]FIGURE 3 | Impact of initial probability change on enterprise carbon emissions data falsification behaviour. (A) Impact of x0 on the evolutionary game. (B) Impact of y0 on the evolutionary game. (C) Impact of z0 on the evolutionary game. (D) Impact of x0,y0 and zo on the evolutionary game.
5.2 Impact of government regulation on enterprise carbon data falsification behaviour
As depicted in Figure 4A, a stronger penalty for enterprises engaging in carbon emission data falsification under government regulation exhibits a higher degree of binding on their fraudulent behavior. This highlights the role of legal sanctions imposed by government regulation, which amplify the costs and losses associated with enterprise violations, thereby deterring counterfeiting practices. This finding aligns with previous research (Liu and Li, 2019; Yan et al., 2020), they demonstrated that government regulation addressing spatial heterogeneity in the quality of enterprise carbon disclosure effectively enhances the level of carbon disclosure. Additionally, Figure 4B demonstrates that a higher probability of detecting enterprises’ falsification of carbon emission data under government regulation leads to a more pronounced impact on enterprises’ fraudulent behavior. This underscores the enforcement capability exhibited by government regulation, which increases the likelihood of enterprises being investigated and penalized, subsequently diminishing their inclination to engage in falsification. This finding is consistent with the proposition put forth by Long et al. (Long et al., 2022), advocating for strengthened legal liability and penalty mechanisms to combat carbon emission data falsification by verification agencies.
[image: Graph comparing probability over time for different parameters. Panel A shows six lines representing 'x' and 'y' with varying P values (0.5, 1.0, 1.5) converging towards probability 1. Panel B has lines for 'x' and 'y' with different a values (0.3, 0.6, 0.9), showing similar convergence. Both panels highlight how these parameters affect probability trends over time.]FIGURE 4 | Impact of government regulation on enterprise carbon emissions data falsification behaviour. (A) Impact of P on the player behavior. (B) Impact of a on the player behavior.
5.3 Impact of media monitoring on enterprise carbon data falsification behaviour
Illustrated in Figure 5A, an increased level of reputation losses resulting from enterprise carbon emissions data falsification during media monitoring engenders a stronger restraining effect on enterprise fraudulent behavior. This underscores the influence of social norms as wielded by media monitoring, impacting enterprises’ reputation capital and market competitiveness, thereby incentivizing them to enhance the quality of their carbon emission data. This finding aligns with previous research conducted by Aerts and Cormier (Aerts and Cormier, 2009), who observed that media evaluations catalyze promotion favorable environmental management practices among enterprises. Furthermore, Figure 5B demonstrates that a heightened probability of detecting the falsification of enterprises’ carbon emission data during media monitoring amplifies the impact on enterprises’ fraudulent behavior. This highlights the investigative power exhibited by media monitoring, which increases the risk of enterprises being exposed and penalized, consequently deterring their inclination to engage in falsification.
[image: Two line graphs labeled A and B compare probability over time. Graph A shows lines x and y with different values of parameter \(L\). Graph B illustrates lines x and y with varying values of parameter \(b\). Both graphs indicate changes in probability from zero to ten over time, with multiple colored lines representing different conditions.]FIGURE 5 | Impact of media monitoring on enterprise carbon data falsification behaviour. (A) Impact of Le on the player behavior. (B) Impact of b the player behavior.
5.4 Influence of speculative gains from enterprise carbon emissions data falsification on their behaviour
As depicted in Figure 6A, a greater speculative gain resulting from enterprises’ falsification of carbon emission data corresponds to a heightened motivation for such fraudulent practices. This sheds light on the issues of moral hazard and adverse selection within the realm of carbon emission data disclosure, where enterprises exploit information asymmetry to attain undeserved advantages through misrepresentation and underreporting. This finding aligns with prior research conducted by Haque and Islam (Haque and Islam, 2015), who identified carbon emission data falsification as a form of accounting fraud driven by motives such as evading government regulation, cost reduction, or revenue augmentation. Additionally, Figure 6B demonstrates that an increased level of self-regulation within the carbon emissions trading and carbon accounting industry exerts a stronger influence on enterprises’ inclination to engage in falsification. This underscores the normative role played by industry self-regulation, contributing to enhanced quality and credibility of carbon emissions data disclosure while mitigating information asymmetry and market failure.
[image: Two line graphs, labeled A and B, display probability over time from 0 to 10. Graph A shows probabilities for variables x, y, and z at different rates R. Graph B shows probabilities for x, y, and z with varying parameter d. Both graphs depict multiple colored curves with x, y, and z values. Probability generally increases and stabilizes with time.]FIGURE 6 | Impact of speculative gains from enterprises falsifying carbon emissions data on their behaviour. (A) Impact of Rf on the player behavior. (B) Impact of d the player behavior.
6 DISCUSSION
As mentioned earlier, in March 2022, the Ministry of Ecology and Environment (MEE) in China issued notifications regarding instances of data falsification in carbon emission reporting. These cases involved organizations such as China Carbon Energy Investment (CCEI), resulting in significant public concern. The underlying cause of these issues stems from a lack of awareness and understanding of laws and regulations among certain carbon market technical service institutions. Additionally, some consulting and testing organizations prioritize their interests over compliance, engaging in risky behavior and aiding enterprises in manipulating carbon emission data through fraudulent means. This irresponsible conduct greatly disrupts the normal functioning of the carbon market. Furthermore, deficiencies in quality control systems and chaotic project management within certain technical service organizations make it challenging to ensure compliance and guarantee the authenticity of data. In an attempt to minimize expenses, some verification agencies outsource their verification services, leading to practices such as “signing on behalf of enterprises”, “hanging names”, and other irregularities. Consequently, some verification agencies merely rely on readily available data and information provided by enterprises without conducting thorough evaluations to verify the accuracy, completeness, and authenticity of the documents and data.
Multi-stakeholder participation played a significant role in the governance process of this particular case. Media reports not only exposed instances of intentional data falsification but also highlighted additional issues within emission control enterprises, such as data inaccuracy and flexible interpretation of regulations. These revelations captured the attention of both the government and the market, exerting pressure on carbon emission data falsification enterprises to rectify their practices. Subsequently, government departments conducted thorough investigations, identifying non-compliant behaviors in the initial reports of certain enterprises and consequently strengthening their supervision. By implementing mechanisms such as joint investigations and case transfers in collaboration with relevant departments, they collectively enhanced the daily oversight of technical service providers while increasing information disclosure and credit supervision. These measures effectively facilitated the correction of non-compliant behaviors by the enterprises involved. It is worth noting that government regulation and media monitoring play pivotal roles in uncovering and penalizing instances of carbon emissions data falsification. Moreover, they contribute to the enhancement of data quality and ensure enterprises adhere to established norms.
The aforementioned case underscores the crucial role of co-regulation between the government and media, as evidenced by the findings of this evolutionary game research. This study examines the influential role of government regulation and media monitoring in shaping enterprise behavior in terms of disclosing carbon emissions. These findings align with previous research on government regulation (Liu and Li, 2019; Yan et al., 2020) and media monitoring (Luo et al., 2019; Shao and He, 2022) concerning enterprise carbon information disclosure. Through a literature review, the researchers found that previous research has primarily focused on the impact of carbon information disclosure on firm value, environmental performance, and social responsibility. However, there has been limited attention given to the mechanisms of data falsification in carbon information disclosure and its influencing factors. However, this paper contributes to the existing body of knowledge by examining the impact of government regulation and media monitoring on the governance of enterprise carbon emission data falsification from a stakeholder perspective, addressing this research gap. By employing evolutionary game theory, this study explores the dynamic interactive process among the government, media, and enterprises. It uncovers the internal mechanisms behind behavioral changes within each party, providing valuable insights for enhancing China’s carbon emission information disclosure system, as well as improving the efficiency and credibility of the carbon market. Thus, it offers pertinent recommendations for China to bolster its carbon emission information disclosure system and enhance the overall efficiency and credibility of the carbon market.
The main findings and theoretical contributions of this study provide several valuable management insights. Firstly, the government should oversee the process by developing assessment and supervision mechanisms, implementing monitoring and support management strategies, and introducing preferential policies and incentives for enterprises to increase their carbon emission reduction inputs. Additionally, the government should audit the carbon emissions disclosed by listed companies. Secondly, both the government and media should collaborate in establishing an assessment, monitoring, and management mechanism for enterprise carbon emissions disclosure. This can be achieved by utilizing mainstream and social media platforms to enhance understanding and interpretation of environmental laws, regulations, standards, and major policy documents. Furthermore, advanced cases should be publicized while negative cases should be timely exposed, thereby encouraging enterprises to fulfil their carbon emission disclosure obligations. Lastly, financing policies should embed more reputational mechanisms to prompt private enterprises to pay attention to carbon emission disclosure, encourage financial institutions to innovate green financial products, and develop green credit to address the challenges of financing difficulty and high cost.
7 CONCLUSION
The objective of this paper is to investigate the influence of government regulation and media monitoring on the governance of enterprise carbon emission data falsification. Additionally, it aims to analyze the game behaviors and equilibrium outcomes among the government, media, and enterprises under various policy combinations and market environments. The ultimate goal is to offer theoretical guidance and policy recommendations for the establishment of a robust carbon market in China. Applying the principles of evolutionary game theory, this study builds a dynamic game model that incorporates the interactions between the government, media, and enterprises. Empirical testing of the model is conducted using numerical simulation techniques.
The main findings of this paper are summarized as follows:
	1) Government regulation and media monitoring exert a significant influence on the falsification of enterprise carbon emission data. They effectively deter enterprises from engaging in falsification and enhance the overall quality of carbon emission data.
	2) Government regulation and media monitoring exhibit a complementary effect. When both mechanisms are present simultaneously, they create a stronger binding force and incentive for promoting enterprise transparency in disclosing carbon emissions data.
	3) The game between the government, media, and enterprises reveals the existence of multiple evolutionary stable strategies. Among these strategies, the optimal equilibrium is achieved when all three elements are present: government regulation, media monitoring, and enterprise transparency in disclosure. This equilibrium state maximizes social welfare and aligns with the interests of all parties involved.

This study has shown a certain degree of validity, but also has some limitations. Its validity lies in building a dynamic game model with strong logic and operability, which accurately reflects the real-world situation. However, one of the limitations of this study is that it does not fully consider the multiple reactions and strategic choices of enterprises, such as the flexible measures that enterprises may take to evade regulation and media monitoring. Moreover, this paper focuses on the research point and considers the three parties of government, media and enterprises, resulting in a lack of research on other stakeholders, such as carbon emission data verification agencies, social organizations, etc. In view of these limitations, future research can be expanded and improved from the following aspects:
1) Explore the behavior and strategy of enterprises in depth. This paper assumes that enterprises have only two choices when facing government and media monitoring: honesty or fraud. However, in reality, enterprises may adopt more means to evade or cope with monitoring, such as using technical means to manipulate or conceal the real carbon emission data, and seeking cooperation and collusion with government agencies and media. Future research can consider introducing more enterprise behavior and strategy variables, as well as analyzing their impact on the dynamic game results and social welfare.
2) Include a wider range of stakeholders. This paper mainly focuses on the role and function of government and media monitoring, and lacks analysis of the impact and participation of other actors such as non-governmental organizations and the general public. However, in the process of governing carbon emission data fraud, these actors may also play an important role, such as providing third-party verification services, initiating social movements, raising public awareness, etc. Future research can consider incorporating these actors into the dynamic game model, as well as analyzing their impact on the monitoring effect and social welfare.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary material, further inquiries can be directed to the corresponding author.
AUTHOR CONTRIBUTIONS
YW: Writing–original draft, Writing–review and editing. YS: Writing–review and editing. YM: Writing–review and editing.
FUNDING
The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This research was funded by the National Social Science Funds of China, grant number 22&ZD192, and the Guangdong Provincial Philosophy and Social Science Planning Project, grant number GD23XGL067.
ACKNOWLEDGMENTS
We thank the journal editor and reviewers.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

REFERENCES
	 Aerts, W., and Cormier, D. (2009). Media legitimacy and corporate environmental communication. Account. Organ. Soc. 34 (1), 1–27. doi:10.1016/j.aos.2008.02.005
	 Bebbington, J., Larrinaga, C., and Moneva, J. M. (2008). Corporate social reporting and reputation risk management. Auditing Account. J. 21 (3), 337–361. doi:10.1108/09513570810863932
	 Bloomfield, R. J., and Wilks, T. J. (2000). Disclosure effects in the laboratory: liquidity, depth, and the cost of capital. Account. Rev. 75 (1), 13–41. doi:10.2308/accr.2000.75.1.13
	 Bushee, B. J., Core, J. E., Guay, W., and Hamm, S. J. (2010). The role of the business press as an information intermediary. J. Account. Res. 48 (1), 1–19. doi:10.1111/j.1475-679x.2009.00357.x
	 Chen, G. D., Zou, X. B., Lu, R., Chen, J. J., and Ma, S. Z. (2022). Domestic and international statistical methods and quality control status for carbon emission from fossil-fired power plants. Therm. Power Gener. 51 (10), 54–60. doi:10.19666/j.rlfd.202205075
	 Deegan, C., and Blomquist, C. (2006). Stakeholder influence on corporate reporting: an exploration of the interaction between WWF-Australia and the Australian minerals industry. Account. Organ. Soc. 31 (4-5), 343–372. doi:10.1016/j.aos.2005.04.001
	 Ding, D., Liu, B., and Chang, M. (2023). Carbon emissions and TCFD aligned climate-related information disclosures. J. Bus. Ethics 182 (4), 967–1001. doi:10.1007/s10551-022-05292-x
	 Drew, J. M., and Drew, M. E.Establishing additionality: fraud vulnerabilities in the clean development mechanism. Account. Res. J. (2010) 23(3):243-253. doi:10.1108/10309611011092574
	 Friedman, D. (1991). Evolutionary games in economics. Econometrica 59, 637–666. doi:10.2307/2938222
	 Frona, D., Szenderak, J., and Harangi-Rakos, M. (2021). Economic effects of climate change on global agricultural production. Nat. Conservation-Bulgaria 44 (44), 117–139. doi:10.3897/natureconservation.44.64296
	 Giannarakis, G., Zafeiriou, E., Arabatzis, G., and Partalidou, X. (2018). Determinants of corporate climate change disclosure for European firms. Corp. Soc. Responsib. Environ. Manag. 25 (3), 281–294. doi:10.1002/csr.1461
	 Haque, S., and Islam, M. A. (2015). Carbon emission accounting fraud. Springer. 3319277162. 
	 He, S., Xu, L. L., and Shi, D. Q. (2023). How does environmental information disclosure affect carbon emissions? Evidence from China. Environ. Sci. Pollut. Res. 30, 93998–94014. doi:10.1007/s11356-023-28883-1
	 Huang, M. T., and Zhai, P. M. (2021). Achieving Paris Agreement temperature goals requires carbon neutrality by middle century with far-reaching transitions in the whole society. Adv. Clim. Change Res. 12 (2), 281–286. doi:10.1016/j.accre.2021.03.004
	 Joe, J. R., Louis, H., and Robinson, D. (2009). Managers' and investors' responses to media exposure of board ineffectiveness. J. Financial Quantitative Analysis 44 (3), 579–605. doi:10.1017/s0022109009990044
	 Karim, A. E., Albitar, K., and Elmarzouky, M. (2021). A novel measure of corporate carbon emission disclosure, the effect of capital expenditures and corporate governance. J. Environ. Manag. 290, 112581. doi:10.1016/j.jenvman.2021.112581
	 Labatt, S., and White, R. R. (2011). Carbon finance: the financial implications of climate change. John Wiley and Sons. 1118161157. 
	 Li, H. Y., Fu, S. Y., Chen, Z., Shi, J., Yang, Z. Y., and Li, Z. H. (2019). The motivations of Chinese firms in response to the Carbon Disclosure Project. Environ. Sci. Pollut. Res. 26 (27), 27792–27807. doi:10.1007/s11356-019-05975-5
	 Li, L., Liu, Q. Q., Tang, D. L., and Xiong, J. C. (2021). Media reporting, carbon information disclosure, and the cost of equity financing: evidence from China. Environ. Sci. Pollut. Res. 37 (03), 52–60. doi:10.19520/j.cnki.issn1674-3288.2021.03.008
	 Liao, Z. J. (2020). Is environmental innovation conducive to corporate financing? The moderating role of advertising expenditures. Bus. Strategy Environ. 29 (3), 954–961. doi:10.1002/bse.2409
	 Liesen, A., Hoepner, A. G., Patten, D. M., and Figge, F. (2015). Does stakeholder pressure influence corporate GHG emissions reporting? Empirical evidence from Europe. Account. Auditing Account. J. 28 (7), 1047–1074. doi:10.1108/aaaj-12-2013-1547
	 Lindquist, S. C., and Goldberg, S. R. (2010). Cap-and-trade: accounting fraud and other problems. J. Corp. Account. Finance 21 (4), 61–64. doi:10.1002/jcaf.20595
	 Liu, L. W., Chen, C. X., Zhao, Y. F., and Zhao, E. D. (2015). China's carbon-emissions trading: overview, challenges and future. Renew. Sustain. Energy Rev. 49, 254–266. doi:10.1016/j.rser.2015.04.076
	 Liu, Q. Q., and Li, L. (2019). Spatial heterogeneity of government regulation, spatial distance and enterprise carbon information disclosure: an analysis based on the heavy pollution industry in China. Int. J. Environ. Res. Public Health 16 (23), 4777. doi:10.3390/ijerph16234777
	 Liu, Y., Cui, M. Y., and Gao, X. B. (2023). Building up scrap steel bases for perfecting scrap steel industry chain in China: an evolutionary game perspective. Energy 278, 127742. doi:10.1016/j.energy.2023.127742
	 Lohmann, L. (2009). Regulation as corruption in the carbon offset markets. Upsetting offset political Econ. carbon Mark. , 175–191. 
	 Long, D., Fan, D. T., Slater, H., Tian, D. Y., Xie, R. L., and Yang, P. J. (2022). Carbon emission data quality issues and improvement suggestions. Environ. Prot. 50 (12), 54–56. doi:10.14026/j.cnki.0253-9705.2022.12.016
	 Luo, W. B., Guo, X. X., Zhong, S. H., and Wang, J. Z. (2019). Environmental information disclosure quality, media attention and debt financing costs: evidence from Chinese heavy polluting listed companies. J. Clean. Prod. 231, 268–277. doi:10.1016/j.jclepro.2019.05.237
	 Lyon, T. P., and Montgomery, A. W. (2013). Tweetjacked: the impact of social media on corporate greenwash. J. Bus. ethics 118, 10167–10757. doi:10.5465/ambpp.2013.10167abstract
	 Ma, D. D., Lv, B. F., Liu, Y., Liu, S. Q., and Li, X. T. (2023). Brand premium and carbon information disclosure strategy: evidence from China listed companies. Sustainability 15 (6), 5240. doi:10.3390/su15065240
	 Mahmoudi, R., and Rasti-Barzoki, M. (2018). Sustainable supply chains under government intervention with a real-world case study: an evolutionary game theoretic approach. Comput. Industrial Eng. 116, 130–143. doi:10.1016/j.cie.2017.12.028
	 Martin, P., and Walters, R. (2013). Fraud risk and the visibility of carbon. Int. J. Crime Justice Soc. Democr. 2 (2), 27–42. doi:10.5204/ijcjsd.v2i2.95
	 Matisoff, D. C., Noonan, D. S., and O'Brien, J. J. (2013). Convergence in environmental reporting: assessing the carbon disclosure project. Bus. Strategy Environ. 22 (5), 285–305. doi:10.1002/bse.1741
	 Motoshita, M., Sakagami, M., Kudoh, Y., Tahara, K., and Inaba, A. (2015). Potential impacts of information disclosure designed to motivate Japanese consumers to reduce carbon dioxide emissions on choice of shopping method for daily foods and drinks. J. Clean. Prod. 101, 205–214. doi:10.1016/j.jclepro.2015.04.005
	 Perdan, S., and Azapagic, A. (2011). Carbon trading: current schemes and future developments. Energy Policy 39 (10), 6040–6054. doi:10.1016/j.enpol.2011.07.003
	 Shao, J., and He, Z. W. (2022). How does social media drive corporate carbon disclosure? Evidence from China. Front. Ecol. Evol. 10, 10. doi:10.3389/fevo.2022.971077
	 Solomon, S., Plattner, G. K., Knutti, R., and Friedlingstein, P. (2009). Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. U. S. A. 106 (6), 1704–1709. doi:10.1073/pnas.0812721106
	 Song, X. N., Shen, M., Lu, Y. J., Shen, L. Y., and Zhang, H. Y. (2021). How to effectively guide carbon reduction behavior of building owners under emission trading scheme? An evolutionary game-based study. Environ. Impact Assess. Rev. 90, 106624. doi:10.1016/j.eiar.2021.106624
	 Southworth, K. (2009). Corporate voluntary action: a valuable but incomplete solution to climate change and energy security challenges. Policy Soc. 27 (4), 329–350. doi:10.1016/j.polsoc.2009.01.008
	 Sterman, J. D.System dynamics modeling: tools for learning in a complex world. Calif. Manag. Rev. (2001) 43(4):8-25. doi:10.2307/41166098
	 Sun, Y., Du, H. Y., Liu, B. Y., Kanchanaroek, Y., Zhang, J. F., and Zhang, P. (2022). Evolutionary game analysis for grassland degradation management, considering the livelihood differentiation of herders. Land 11 (10), 1776. doi:10.3390/land11101776
	 Sun, Y., Liu, B. Y., Sun, Z. R., and Yang, R. J. (2023). Inter-regional cooperation in the transfers of energy-intensive industry: an evolutionary game approach. Energy 282, 128313. doi:10.1016/j.energy.2023.128313
	 Wang, H., Chen, Z. P., Wu, X. Y., and Niea, X. (2019). Can a carbon trading system promote the transformation of a low-carbon economy under the framework of the porter hypothesis? -Empirical analysis based on the PSM-DID method. Energy Policy 129, 930–938. doi:10.1016/j.enpol.2019.03.007
	 Wang, H. Y., Huang, D. J., Dong, D. C., and Huang, Y. (2020). The evolution of the role and working strategy of technology journal editors in the era of new media - from the perspective of "gatekeepers" theory. Media Sci. Technol. China (09), 30–32. doi:10.19483/j.cnki.11-4653/n.2020.09.004
	 Wei, Y. M., Chen, K. Y., Kang, J. N., Chen, W. M., Zhang, X. Y., and Wang, X. Y. (2022). Policy and management of carbon peaking and carbon neutrality: a literature review. Engineering 14, 52–63. doi:10.1016/j.eng.2021.12.018
	 White, D. M. (1950). The “gate keeper”: a case study in the selection of news. Journal. Q. 27 (4), 383–390. doi:10.1177/107769905002700403
	 Wu, D. D., Xie, K. F., Hua, L., Shi, Z., and Olson, D. L. (2010). Modeling technological innovation risks of an entrepreneurial team using system dynamics: an agent-based perspective. Technol. Forecast. Soc. Change 77 (6), 857–869. doi:10.1016/j.techfore.2010.01.015
	 Yan, H. H., Li, X. Y., Huang, Y., and Li, Y. H. (2020). The impact of the consistency of carbon performance and carbon information disclosure on enterprise value. Finance Res. Lett. 37, 101680. doi:10.1016/j.frl.2020.101680
	 Yang, B. W. (2017). Construction of the framework of carbon audit and verification system in the view of environment responsibility. J. Nanjing Audit Univ. 14 (06), 75–84. 
	 Yang, W. X., Yang, Y. P., and Chen, H. M. (2022). How to stimulate Chinese energy companies to comply with emission regulations? Evidence from four-party evolutionary game analysis. Energy 258, 124867. doi:10.1016/j.energy.2022.124867
	 Yuan, L., Chen, Y. Y., He, W. J., Kong, Y., Wu, X., Degefu, D. M., et al. (2022). The influence of carbon emission disclosure on enterprise value under ownership heterogeneity: evidence from the heavily polluting corporations. Environ. Sci. Pollut. Res. 29 (46), 69753–69770. doi:10.1007/s11356-022-20705-0
	 Zhang, Y. J., and Liu, J. Y. (2020). Overview of research on carbon information disclosure. Front. Eng. Manag. 7 (1), 47–62. doi:10.1007/s42524-019-0089-1
	 Zhou, K. L., and Li, Y. W. (2019). Carbon finance and carbon market in China: progress and challenges. J. Clean. Prod. 214, 536–549. doi:10.1016/j.jclepro.2018.12.298
	 Zhu, Z. H., Zhang, C., Ding, Z. H., and Zhang, D. (2023). Incorporating data centers into China's national carbon emissions trading system. Proc. CSEE , 1–18. doi:10.13334/j.0258-8013.pcsee.230111

Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2023 Wang, Sun and Miao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 10 November 2023
doi: 10.3389/fenvs.2023.1301091


[image: image2]
Carbon emissions management efficiency evaluation based on indicator information integration and DEA-Malmquist index
Fei-Fei Ye1, Si-Rui Han2* and Hai-Tian Lu2
1School of Cultural Tourism and Public Administration, Fujian Normal University, Fuzhou, China
2School of Accounting and Finance, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
Edited by:
Zhangqi Zhong, Guangdong University of Foreign Studies, China
Reviewed by:
Yantuan Yu, Guangdong University of Foreign Studies, China
Yiqun Ma, Zhejiang University of Finance and Economics, China
Yulong Chen, Henan University, China
* Correspondence: Si-Rui Han, sirui.han@polyu.edu.hk
Received: 24 September 2023
Accepted: 31 October 2023
Published: 10 November 2023
Citation: Ye F-F, Han S-R and Lu H-T (2023) Carbon emissions management efficiency evaluation based on indicator information integration and DEA-Malmquist index. Front. Environ. Sci. 11:1301091. doi: 10.3389/fenvs.2023.1301091

The completeness of indicator information is a critical issue that requires further investigation in the evaluation of carbon emissions management efficiency. However, this problem has not received adequate attention in existing studies, and there is a dearth of analysis using the total factor productivity method, which has proven effective in evaluating efficiency in various domains. Consequently, this study proposes a model for evaluating carbon emissions management efficiency that integrates indicator information and employs the data envelopment analysis (DEA)-Malmquist index. The integration of indicator information is accomplished through the evidential reasoning (ER) approach, which includes the calculation of indicator weights. The DEA-Malmquist index is utilized to assess the efficiency of carbon emissions management and analyze its total factor productivity based on the integrated indicator information. To demonstrate the efficacy of the proposed model, a case study of 17 corporates in China from 2019 to 2021 is provided to illustrate the analysis of three scopes efficiency distribution, efficiency change and improvement strategy of carbon emissions management. Results discussion show that the proposed model can be used to provide a reference for the improvement effectiveness of carbon emissions management.
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1 INTRODUCTION
As the global economy undergoes rapid expansion, society faces a complex balance between reducing carbon emissions and promoting economic growth. When carbon emissions exceed the environmental capacity, it exacerbates the challenges related to environmental remediation and management, putting the sustainability of economic progress at risk. Consequently, optimizing the strategy for carbon emissions management has emerged as a critical priority in our endeavor to mitigate the adverse effects of climate change and environmental degradation, and to achieve sustainable development.
Existing studies shed light on significant regional discrepancies in the efficiency of carbon emissions management within China, influenced by factors such as GDP, level of industrialization, and technological innovation. Ongoing research endeavors strive to refine methodologies, including various DEA models, to enhance their resilience against uncertainties. However, in the selection of DEA carbon emissions management related indicators, careful consideration must be given to determining the appropriate number of indicators. The DEA theory adheres to the rule of thumb, which suggests that the number of decision-making units should be at least 2 to 3 times greater than the number of evaluation indicators. An excessive number of input-output indicators for decision-making units tends to result in efficiencies converging towards 1, thereby diminishing the distinctiveness among decision-making units. Conversely, an inadequate number of indicators renders the decision-making process susceptible to errors and the loss of vital indicator information.
Simultaneously, it becomes apparent that the evaluation of carbon emissions management efficiency is influenced by various indicators to different extents (Ramón et al., 2016; Chen et al., 2017). Inadequate availability and knowledge limitations have resulted in a constrained selection of output indicators for efficiency assessment that is subject to debate as to its sufficiency (Yu et al., 2016; Costa-Campi et al., 2017). One notable limitation of this indicator selection approach is its inherent failure to encompass the comprehensiveness of output indicators in emissions management. For example, Chen et al. (2017) exclusively considered SO2 as an output indicator to represent waste gas emissions, thereby overlooking other pertinent indicators such as O3, smoke, and dust emissions. Furthermore, the majority of studies have ascribed equal significance to diverse input and output indicators within the system modeling of carbon emissions management, despite the evident disparity in their roles. While certain existing research has incorporated weight calculation (Yang et al., 2019), application of these weighting methods within the realm of carbon emissions management has been limited. Consequently, future studies on carbon emissions management must confront numerous challenges that remain unresolved.
Firstly, it is worth noting that the existing body of research on the evaluation of carbon emissions management efficiency has displayed inconsistencies, primarily stemming from variations in the selection of indicators. Different methodologies for indicator selection have yielded divergent outcomes in terms of the chosen indicators. Given that indicator selection plays a pivotal role in the assessment of carbon emissions management efficiency, this inconsistency poses challenges. Notably, previous studies have predominantly relied on experts’ experiences or empirical judgment to guide their indicator selection process (Chen et al., 2017). Consequently, the accuracy and objectivity of the evaluation of carbon emissions management efficiency can be significantly affected by this subjective approach to indicator selection; Secondly, it is worth noting that the previous studies on evaluating the efficiency of carbon emissions management have overlooked the significance of ensuring the integrity of indicator information. This oversight arises from the potential loss of indicator information and its subsequent impact on the evaluation results. Concurrently, it is imperative to consider the thumb rule within the framework of DEA theory, which necessitates the inclusion of two to three times the number of decision-making units (DMUs) compared to the total number of evaluation indicators. Utilizing an excessive number of indicators in a DEA model can lead to a situation where the efficiency of all DMUs approaches unity, thereby reducing the differentiation among DMUs; Finally, it is worth noting that the prevailing body of research on the evaluation of carbon emissions management efficiency has primarily relied on statistical analyses to assess efficiency levels. However, the evolutionary trajectory of these efficiencies, particularly at the industry or corporate level, has been infrequently examined. As highlighted by Sheng et al. (2015), the examination of efficiency changes offers a valuable means of quantifying the rate of change in carbon emissions management efficiency. This approach proves instrumental in comprehensively assessing issues associated with the input-output structure via the lens of efficiency fluctuations.
To address the aforementioned challenges associated with the evaluation of carbon emissions management efficiency, this study introduces a novel efficiency evaluation model. The key components of this model are as follows: 1) the determination of relative weights for different input, undesirable and desirable output indicators pertaining to carbon emissions management; 2) the integration of the set of undesirable output indicators and desirable output indicators, based on the obtained weights, utilizing the evidential reasoning (ER) approach to generate new combined indicators; 3) the utilization of the integrated indicators in conjunction with the DEA model and Malmquist index to assess the efficiency of carbon emissions management. Consequently, the proposed model makes the following contributions to the evaluation of carbon emissions management efficiency:
	1) The Correlation Coefficient and Standard Deviation (CCSD) method is employed to compute the relative weights of diverse input, undesirable, and desirable output indicators that are pertinent to carbon emissions management. This method is specifically designed to allocate appropriate significance to each indicator within the comprehensive evaluation process;
	2) The integration of input, undesirable, and desirable output indicators is achieved through the use of the ER approach, thereby circumventing the loss of pertinent information and adhering to the fundamental principles of the DEA model. This integration mechanism enables the comprehensive analysis of the various indicators, ensuring their collective consideration and evaluation within a unified framework;
	3) The utilization of integrated indicators plays a pivotal role in facilitating the efficiency evaluation of carbon emissions management through the adept application of the DEA model and the Malmquist index. These analytical tools provide a rigorous methodological framework for comprehensively assessing the efficiency of carbon emissions management founded upon the integrated indicators. By addressing the limitations encountered in prior research, this innovative model aims to contribute to a more precise and holistic evaluation of the efficiency of carbon emissions management.

In order to validate the effectiveness of the proposed model, a comprehensive case study is conducted using input, desirable output, and undesirable output indicators as well as data pertaining to carbon emissions management from 17 corporations in China. The dataset encompasses the period spanning from 2019 to 2021. Through this empirical analysis, multiple efficiency-related outcomes are computed, thereby presenting a research framework for the management of carbon emissions in China. Furthermore, the evaluation results of carbon emissions management efficiency highlight significant disparities between comprehensive efficiency and pure technical efficiency during different management periods. Notably, both overall environmental efficiency and pure technical efficiency demonstrate an upward trajectory within these Chinese corporations. This suggests that the positive impact of the existing input-output structure and technical aspects on the comprehensive efficiency of carbon emissions management becomes increasingly pronounced over time.
2 LITERATURE REVIEWS OF CARBON EMISSIONS MANAGEMENT
The escalating issue of carbon emissions necessitates effective scientific management to mitigate its detrimental impact on the global climate and environment. Consequently, an increasing number of scholars have directed their attention towards conducting research on the analysis of influencing factors and addressing the myriad challenges that arise from carbon emissions. Presently, investigations pertaining to carbon emissions predominantly center around exploring the connection between energy consumption and carbon emissions, examining the influencing factors associated with carbon emissions, and developing evaluation model for carbon emissions management.
(1) The connection between energy consumption and carbon emissions. The relationship between energy consumption and carbon dioxide emissions has garnered significant attention in light of the pressing issues of climate change and global warming. Researchers have consistently highlighted that carbon dioxide emissions play a crucial role in environmental hazards (Ali et al., 2022). Several studies have underscored the viability of adopting clean and renewable energy as a viable approach to mitigate carbon dioxide emissions (Zarezade and Mostafaeipour, 2016; Samuel et al., 2019). To empirically analyze the impact of energy consumption on environmental degradation, TailonAlisson et al. (2021) proposed the ARDL bounds testing approach, which was applied to G7 countries. Findings revealed that coal, oil, and natural gas consumption had a positive influence on environmental degradation. Similarly, Samuel and Christian, (2019) noted that renewable energy sources contributed more significantly to environmental degradation than nonrenewable energy sources. In an effort to achieve sustainability and energy efficiency goals in China, Zhang et al. (2021a) evaluated the impact of hydroelectric and renewable electricity generation on carbon dioxide emissions while examining the relationship between renewable energy consumption and carbon dioxide emissions. Furthermore, multiple authors have proposed methods for assessing energy-related carbon dioxide emissions and have conducted analyses to outline dynamic low-carbon energy paths towards 2030 (Lin and Agyeman, 2020).
	(2) Influencing factors associated with carbon emissions. The analysis of influencing factors related to carbon dioxide emissions has been the focus of previous research. For instance, Wen and Shao (2019) conducted a panel data analysis to investigate the drivers of carbon dioxide emissions in the commercial sector in China. Their findings revealed that diverse influencing factors exerted varying nonlinear effects on carbon dioxide emissions. Additionally, Hang et al. (2019) examined the factors impacting economic growth and carbon dioxide emissions in the manufacturing industry, illustrating that the adjustment of carbon dioxide emissions density falls short of achieving the anticipated reduction outcomes. Reducing carbon emissions and fostering a low carbon economy constitute important objectives, as highlighted by Wang and Ma (2018) who employed the Tobit model to examine influencing factors on the efficiency of carbon dioxide emissions. Furthermore, Liang et al. (2019) emphasized energy intensity as a significant factor influencing carbon dioxide emissions, revealing a consistent upward trend in carbon dioxide emissions from high energy consumption sectors in China.
	(3) Efficiency evaluation of carbon emissions management. The examination of carbon emissions management efficiency is a topic that has garnered significant attention within academic circles. An emerging trend in the academic discourse on this subject has been observed in recent years, with the primary focus of research on carbon emissions management being empirical analysis and practical studies (Hong et al., 2016; Makkonen and Repka, 2016; Cheng et al., 2017). Within the specific context of China, the evaluation of carbon emissions management efficiency has been rigorously explored by scholars, with particular emphasis on variances across different sectors and regions. A study by Zhang et al. (2021b) scrutinized the efficiency of carbon emissions in the Chinese construction industry, underlining the substantial impact of factors such as GDP, level of industrialization, and technological innovation. Similarly, Meng et al. (2016) performed an extensive review employing DEA-type models, revealing both stability and regional inconsistencies in energy efficiency and carbon emissions efficiency during the course of China’s Five Year Plan.

Building upon previous research, Yan et al. (2017) conducted an analysis of China’s power industry, which is responsible for approximately 40% of the nation’s carbon emissions. Their findings indicated that the wealthier provinces on the eastern coast demonstrated higher carbon emission efficiency, and that interregional technological collaboration could further enhance this efficiency. In a similar vein, Cheng et al. (2018) employed an enhanced non-radial directional distance function, revealing a substantial opportunity for efficiency improvement across several provinces. Their research underscored the importance of technical advancement in fostering efficiency. Qu et al. (2022) tackled uncertainties related to climate and governmental economic policy through the use of a robust DEA model. They advocated for the adoption of a green and low-carbon lifestyle, a transformation in energy structures, and the promotion of coordinated regional development.
3 ER-BASED INDICATOR INFORMATION INTEGRATION
In this section, Subsection 3.1 presents the methodology for calculating weights for carbon emissions-related indicators, while Subsection 3.2 introduces the ER approach (Wang et al., 2006) for the integration of indicator information.
3.1 Indicator weight calculation
In the domain of carbon emissions management across diverse enterprises, a variety of distinct indicators exists, each holding its unique degree of importance. To ascertain the importance of these disparate indicators, an esteemed weight calculation mechanism known as the Correlation Coefficient and Standard Deviation (CCSD) method (Wang and Luo, 2010) is utilized. This particular technique enables the determination of indicator weights, underpinned by the collected environmental data, thereby bestowing a rigorous and quantifiable measure of each indicator’s contribution to the comprehensive emissions management schema.
Assumes that carbon emissions management contains T related indicators Ct (t = 1,…, T) and each indicator has S collected data vs,t (s = 1,…, S). Since the collected data is a dimensional representation, it needs to be dimensionless standardized. According to the different characteristics of indicators, the specific standardization is as follows:
[image: Equation showing two cases for \( e_{sd} \). The first case is for \( C_{t} \in \Omega_{\text{bestfit}} \) and is calculated as \(\frac{v_{sd} - \min_{i = 1, \ldots, S} \{v_{i, s}\}}{\max_{i = 1, \ldots, S} \{v_{i, s}\} - \min_{i = 1, \ldots, S} \{v_{i, s}\}}\). The second case is for \( C_{t} \in \Omega_{\text{cost}} \) and is calculated as \(\frac{\max_{i = 1, \ldots, S} \{v_{i, s}\} - v_{sd}}{\max_{i = 1, \ldots, S} \{v_{i, s}\} - \min_{i = 1, \ldots, S} \{v_{i, s}\}}\).]
where Ωbenefit denotes the set of benefit indicators, whose values are always the larger the better; Ωcost denotes the set of cost indicators, whose values are always the smaller the better; es,t denotes the tth normalized value of the sth indicator.
Based on the S×T normalized values, the correlation coefficient of the tth indicator, denoted as Rt, can be calculated when assuming that the weights of T indicators are wt (t = 1,…, T). The specific formula of calculating Rt is as follows:
[image: Mathematical formula for \( R_t \): The numerator is the sum from \( s = 1 \) to \( S \) of \((e_{s,t} - \bar{e}_t)(d_{s,t} - \bar{d}_t)\). The denominator is the square root of the sum from \( s = 1 \) to \( S \) of \((e_{s,t} - \bar{e}_t)^2 \times (d_{s,t} - \bar{d}_t)^2\). Labelled equation (2).]
where [image: Mathematical expression with italicized lowercase letter "d" followed by subscripts "s" and "t".] denotes the overall assessment value of the sth data in the tth indicator when the tth indicator do not consider in the overall assessment; [image: Sorry, I cannot see the image you are referring to. Please upload the image or provide a URL, and optionally add a caption for context.] and [image: It seems there is no image attached. Please upload the image or provide a URL for it, and I can help create an alt text.] denote the mean of normalized values and overall assessment values at the tth indicator. The specific formula of calculating [image: Mathematical expression displaying a lowercase letter 'd' with subscripts 's' and 't'.], [image: A mathematical expression with a lowercase "e" and a subscript "t," both underlined with a bar on top.] and [image: It seems there was an issue with your request. Please upload the image or provide a URL for me to give you the alternate text.] is as follows:
[image: The formula depicts an equation for \(d_{u_{\pi}}\), calculated as the sum from \(i = 0\) to \(k\), with \(i\) not equal to \(s\), of \(e_{i_t} w_i\). This is labeled as equation (3).]
[image: Mathematical formula depicting \( \bar{d}_t = \frac{\sum_{s=1}^{S} d_{s,t}}{S} \), labeled as equation four.]
[image: Equation showing \( \tilde{e}_{t} = \frac{\sum_{s=1}^{S} e_{ts}}{S} \), labeled as equation five.]
Here, it is worth noting that if Rt is close to one, then the tth indicator has a little influence on carbon emissions management and it can be assigned a small weight; Otherwise, the weight of the tth indicator should be large. Additionally, the standard deviation of the tth indicator, denoted as [image: The symbol 𝜎 with a subscript t is shown, often representing a variable or function related to time in mathematics or physics.], can be calculated by using the following formula:
[image: Standard deviation formula: \(\sigma_t = \sqrt{\frac{\sum_{s=1}^S (e_{st} - \bar{e}_t)^2}{S}}\).]
According to the T correlation coefficients and T standard deviations, a revised weight for each indicator, symbolized as [image: Italic lowercase letter "w" with a subscript "t" and an overline.], can be derived utilizing the subsequent formula:
[image: Equation showing the allocation weight \( \bar{w}_t \) as \(\frac{\sigma_t \sqrt{1 - R_t}}{\sum_{k=1}^T \sigma_k \sqrt{1 - R_k}}\).]
Ultimately, given that the T initial weights wt are premised on the assumption of equality with the T new weights [image: The image shows a mathematical notation with a variable "w" subscripted by "t" and topped with a bar, representing the average or expected value of the variable over time.], the weight of T indicators can be computed utilizing the following optimization model:
[image: Optimization formula shown as "Min J equals the sum from t equals 1 to T of the quantity w sub t minus w hat sub t squared."]
[image: Mathematical expression showing the summation constraint: sum from t equals one to T of w sub t equals one.]
[image: It appears there may have been an error in providing the image. Please upload the image or provide a correct URL for the alternate text.]
3.2 Indicator information integration
In the context of efficiency evaluation for carbon emissions management, certain numerical conditions must be met pertaining to the counts of inputs, outputs, and DMUs. For instance, the number of DMUs should surpass twice the sum of the quantity of inputs and outputs, as stipulated by Golany and Roll (1989). Consequently, the ER approach (Wang et al., 2006), derived from the Dempster-Shafer theory of evidence and recognized for its robust capabilities in information fusion, is deployed for the integration of indicator information. Thus, in this study, the input related indicators, desirable output related indicators and the three types of carbon emissions are integrated by the proposed ER model for carbon emissions evaluation.
Assuming that carbon emissions management incorporates T related indicators, denoted as Ct (t = 1,…, T), each indicator carries a weight wt (t = 1,…, T) derived from Section 2.1 and shares a set of mutually exclusive and collectively exhaustive evaluation grades, represented as H = {H1,…, HN}. In accordance with the N grades, the distribution assessment of each indicator, symbolized as S(Ct), can be defined as follows:
[image: Mathematical expression showing \( S(C) = \{(H_n, \beta_{nu}), n = 1, \ldots, N\} \) with equation number (9) on the right.]
In the above equations (Eq. 9), [image: The image shows the mathematical expression beta subscript n comma t.] denotes the belief degree assigned to the nth grade for the tth indicator and it satisfies:
[image: Summation from n equals one to N of β sub n, d is less than or equal to one, equation 10.]
[image: A mathematical expression stating that beta sub n is greater than or equal to zero for n equals one to N, marked as equation eleven.]
Based on the distributed assessments and T weights, the basic probability assignments (BPAs) for each indicator can be calculated by:
[image: Mathematical formula for \( m_{nt} = m(H_n) = w_n \beta_{nt} \), where \( n \) ranges from \( 1 \) to \( N \), and \( t \) ranges from \( 1 \) to \( T \). Equation labeled 12.]
[image: Mathematical formula stating: \(\bar{m}_{H_{t}} = \bar{m}_{t}(H) = 1 - w_{t}\), where \(t = 1, \ldots, T\). Equation is labeled as (13).]
[image: Equation displaying \(\dot{m}_{\text{H}_2}\) equal to \(m_d(H)\) which equals \(w_t \left(1 - \sum_{n=1}^{N} \beta_{n,t} \right)\). This formula is valid for \(t = 1, \ldots, T\), denoted as equation (14).]
where [image: The mathematical expression shows the letter "m" with subscripts "n" and "t" in italics.] is the BPA of the nth grade on the tth indicator. [image: Mathematical expression with a tilde over m subscript H, t.] is the uncertain BPA caused by the relative weight of the tth indicator; [image: Mathematical expression with a tilde over \( m \) followed by subscript \( H, t \).] is the uncertain BPA caused by the incompleteness of the distributed assessment.
According to the analytical ER algorithm (Chen et al., 2017), the BPAs of T indicators can be integrated as the BPAs of a new integrated indicator, namely, indicator information integration. The corresponding formulas are as follows:
[image: Mathematical equation: \( m_n = k \left[ \prod_{i=1}^{n-1} (m_{H_i} + \tilde{m}_{H_i} + \hat{m}_{H_i}) - \prod_{i=1}^{n} (\tilde{m}_{H_i} + \hat{m}_{H_i}) \right], n = 1, \ldots, N \). Equation number 15.]
[image: Equation showing mass flow rate: \(\dot{m}_{iH} = k \left[ \prod_{i=1}^{T} (\tilde{m}_{iL} + \tilde{m}_{iH}) - \prod_{i=1}^{T} \tilde{m}_{iH} \right]\).]
[image: Equation showing \( \dot{m}_H = k \left[ \prod_{n=1}^{T} \dot{m}_{H,n} \right] \) with the equation number (17) on the right.]
[image: Equation defining \( k \) as the difference between the summation of product sequences from \( n=1 \) to \( N \) of \( m_{nl} + \tilde{m}_{nH_i} + \tilde{m}_{nH_s} \), and \( (N-1) \) times the product sequence from \( n=1 \) to \( N \) of \( \tilde{m}_{nH_i} + \tilde{m}_{nH_s} \), enclosed in brackets and raised to the power of negative one. Labeled equation 18.]
Thus, the BPAs of the integrated indicator is then transformed into the distributed assessment [image: Mathematical notation displaying a set \( S(C) \) consisting of pairs \( (H_n, \beta_n) \) for \( n = 1, \ldots, N \).], in which the belief degree of the nth grade is calculated by:
[image: The formula shows β subscript n equals m subscript n divided by one minus m subscript H, where n ranges from one to N, and the equation is labeled as number nineteen.]
Meanwhile, the belief degree of uncertainty is calculated by:
[image: β sub H equals ṁ sub H divided by one minus ṁ sub H, equation twenty.]
Finally, efficaciously represent the integrated indicator information, the distributed assessment should be transmuted into a numeric value. Therefore, when u(Hn) denotes the utility of the n-th grade, the utility value of the integrated distributed assessment is computed using the following equation:
[image: Equation depicting a mathematical expression for \( u(S(C)) \). It sums over \( n \) from 1 to \( N \), with each term \( \beta_n u(H_n) \). Additionally, it includes the average of \( u(H_1) \) and \( u(H_N) \), multiplied by \( \beta_H \), and referenced as equation 21.]
4 DEA-MALMQUIST INDEX-BASED EFFICIENCY EVALUATION
In this section, Subsection 4.1 introduces the concept of efficiency evaluation considering undesirable outputs. Subsequently, Subsection4.2 proposes the dynamic efficiency evaluation utilizing the Malmquist index. It is worth noting that the input related indicators, desirable output related indicators and the three types of carbon emissions of each DMU in DEA undesirable output model and DEA-Malmquist index are integrated based on the Section 3.
4.1 Efficiency measure with undesirable outputs
In the realm of carbon emissions management, undesirable outputs, such as varying degrees of CO2 in a corporate’s carbon emissions, are inevitable and significantly influence efficiency evaluation. To approach carbon emissions management in a more scientifically rigorous manner, this section incorporates a DEA undesirable output model (Seiford and Zhu, 2002). This model facilitates the evaluation of carbon emissions management efficiency considering undesirable outputs. The DEA undesirable output model, a variant of the DEA models employed for efficiency evaluation, holds comparative advantages over other DEA models (Wang et al., 2008; Wang and Wu, 2011; Song et al., 2018). These include the capability to evaluate efficiency for multiple inputs and outputs without the necessity for dimensionless data processing and weight assumption.
Within the framework of the DEA undesirable output model, assuming the existence of n DMUs with m input indicators, s desirable output indicators and h undesirable output indicators, then the input data, desirable output data, and undesirable output data of n DMUs can be denoted as X, Y and Z, respectively.
[image: Matrix X is illustrated as an m by n array with elements denoted by subscripts. Elements include \( x_{11} \), \( x_{ij} \), and \( x_{mn} \), representing a generic structure for matrix notation. The matrix is labeled equation 22.]
[image: Matrix equation showing matrix \( Y \) with elements \( y_{11} \) to \( y_{rn} \) in an unspecified rectangular matrix format. The equation is labeled as equation 23.]
[image: Matrix Z is shown with elements \( z_{ij} \) where \( i \) ranges from 1 to k and \( j \) ranges from 1 to n. The matrix size is \( k \times n \). Equation number 24 is shown beside the matrix.]
Next, according to the input data X, desirable output data Y and undesirable output data Z shown in Eqs 22–24, the following optimization model can be used to evaluate the efficiency of each DMU with consideration of undesirable outputs and the condition of constant returns to scale
[image: θ₀* = min θₑ]
[image: Mathematical expression showing a constraint in the form of an inequality: sum from j equals one to n of lambda sub j times x sub i j is less than or equal to theta sub zero times x sub i zero, for i equals one to m.]
[image: Summation notation displaying the inequality: sum from j equals 1 to n of lambda sub j times y sub rj is greater than or equal to y sub r0; r is from 1 to s.]
[image: The expression represents a mathematical inequality involving summation: the sum from j equals 1 to n of lambda sub j times b sub f j is greater than or equal to b sub f 0. The condition is for f equals 1 to h.]
[image: Certainly! However, I am unable to see the image you've referenced. Please upload the image file or provide a direct URL to the image so I can assist you with creating alternate text.]
where
[image: Mathematical expression showing \( b_{ij} = z_{ij} + \max_{j=1,\ldots,n} \{z_{ij}\} + \min_{j=1,\ldots,n} \{z_{ij}\} \), labeled as equation (26).]
Finally, the efficiency value [image: Mathematical notation displaying theta subscript j with an asterisk above it, often representing an optimal or estimated parameter value in mathematical or statistical contexts.] (j = 1,…, n) of n DMUs can be obtained. When [image: Mathematical notation showing theta with a subscript j and a superscript star.] = 1, it means that the input-output structure of the jth DMU is effective. Conversely, if these conditions are not met, it implies that the input-output structure of the jth DMU necessitates further enhancement.
Additionally, in circumstances where an increase or decrease in inputs or outputs leads to a proportional change in the outputs or inputs, i.e., a phenomenon termed variable returns to scale, is also an extra constraint needs to be integrated into the optimization model outlined in Eq. (25). This adjustment enables the evaluation of each DMU’s efficiency considering undesirable outputs under variable returns to scale.
[image: Summation notation representing the equation from j equals one to m of lambda sub j equals one, labeled as equation twenty-seven.]
4.2 DEA-Malmquist index for efficiency evaluation
The efficiencies derived from Section 4.1 are static in nature and often fail to encapsulate the evolution of comprehensive efficiency and technical efficiency. To effectively implement carbon emissions management, it is essential to consider dynamic efficiencies. To this end, the Malmquist index (Fare et al., 1992) is incorporated to enrich the efficiency evaluation of carbon emissions management.
In the course of dynamic efficiency evaluation, let’s assume that the input data, desirable output data, and undesirable output data for the tth period are denoted as X t, Yt and Z t, respectively. The Malmquist index formula, which tracks changes from the tth period to the t+1th period, is defined as follows:
[image: Mathematical formula displaying \( M(X^{n+1}, Y^{n+1}, Z^{n+1}; X, Y, Z) \) equal to the expression inside brackets raised to the power of one over two. The expression involves a division of two products of functions \( D_t \) and \( D_t^c \) evaluated at different variables. The equation is labeled as number twenty-eight.]
In the above equations (Eq. (28)), [image: Mathematical notation depicting the character "D" with a subscript "c" and a superscript symbol resembling a dagger or cross.] and [image: Mathematical expression showing \( D_c^{t+1} \) with \( t+1 \) as a superscript.] denote the distance function estimated with the tth period and the t+1th period under the condition of constant returns to scale, respectively, and their values can be obtained by using the optimization model shown in Eq. 25 to evaluate the efficiency of the DMUs constructed by Xt, Yt and Zt, or Xt+1, Yt+1 and Zt+1. Additionally, M > 1 indicates that the comprehensive efficiency level of carbon emissions management is improved; M = 1 indicates that the comprehensive efficiency level of carbon emissions management remains unchanged; M < 1 indicates that the level of carbon emissions management efficiency decreases. According to (Golany and Roll, 1989), Eq. 28 can be decomposed into the following two components:
[image: Mathematical expression defining the total factor productivity change (TFPC) as a function of input and output variables. The formula involves several ratios of distance functions for inputs and outputs at different time periods, multiplied together and raised to the power of one-half.]
[image: Mathematical expression showing \( E = EC \times TC \), labeled as equation 29.]
In the above equations (Eq. (29)), EC and TC represent the efficiency change and the technical change respectively. An EC value greater than 1 signifies an improvement in the efficiency of carbon emissions management; an EC value equal to 1 indicates that the efficiency of carbon emissions management remains unchanged; and an EC value less than 1 suggests a reduction in the efficiency of carbon emissions management.
When the efficiency evaluation of carbon emissions management is assumed to be variable returns to scale, ECc can be further decomposed into the following two components:
[image: The equation shown is \( EC = \frac{D_\zeta^{\, t+1}(X^{t+1}, Y^{t+1}, Z^{t+1})}{D_\zeta(X^{t}, Y^{t}, Z^{t})} \).]
[image: Mathematical equation showing the ratio of three terms. Numerator of the first term is \(D_i^1(X^{n+1}, Y^{n+1}, Z^{n+1})\) and the denominator is \(D_i^1(X, Y, Z)\). The second term is \(D_i(X, Y, Z)\) divided by \(D_i(X', Y', Z')\). The third term has numerator \(D_i^1(X^{n+1}, Y^{n+1}, Z^{n+1})\) and denominator \(D_i^1(X^{n'}, Y^{n+1}, Z^{n+1})\).]
[image: Please upload the image or provide a URL so I can help create the alt text for it.]
In the above equations (Eq. (30)), PTEC and SEC denote the pure technical efficiency change and the scale efficiency change; [image: Mathematical notation showing \( D^{\dagger \downarrow} \), with the dagger symbol indicating Hermitian conjugate, and the downward arrow as an additional annotation.] and [image: Mathematical expression with the symbol D, a superscript plus one, and a subscript v.] denote the distance function estimated with the tth period and the t+1th period under the variable of constant returns to scale, respectively, and their values can be obtained by using the optimization model shown in Eq. 25 together with Eq. 27 to evaluate the efficiency of the DMUs constructed by Xt, Yt and Zt, or Xt+1, Yt+1 and Zt+1.
5 FRAMEWORK OF EFFICIENCY EVALUATION MODEL FOR CARBON EMISSIONS MANAGEMENT
Building on the ER-based indicator information integration delineated in Section 3, and the DEA-Malmquist index-based efficiency evaluation illustrated in Section 4, this section proposes a framework for a carbon emissions management efficiency evaluation model. The main process of this model is depicted in Figure 1.
[image: Flowchart illustrating carbon emissions management. It starts with three categories: all desirable output indicators and data, input indicators and data, and all undesirable output indicators and data. Desirable and undesirable outputs undergo ER-based indicator information integration. Input data undergoes DEA-Malmquist index-based efficiency evaluation. Outputs are integrated into desirable and undesirable output indicators and data, ultimately evaluating the efficiency value of carbon emissions management.]FIGURE 1 | Framework of carbon emissions management efficiency evaluation.
From Figure 1, the detailed steps for carbon emissions management efficiency evaluation include:
	Step 1: ER-based indicator information integration for desirable and undesirable output indicators. Suppose that there are s desirable output indicators and h undesirable output indicators and their data are collected from n corporates and T years, namely, [image: Mathematical notation displaying the expression "y subscript r, j superscript t".] (t = 1,…, T; j = 1,…, n; r = 1,…, s) and [image: Mathematical notation showing lowercase z with superscript t and subscripts f and j.] (f = 1,…, h). Hence, based on the indicator weight calculation shown in Section 2.1 and the indicator formation integration shown in Section 2.2, all these data of s desirable output indicators and h undesirable output indicators should be integrated into T × n new data [image: Mathematical notation representing \( y_j^t \).] and [image: The image displays a mathematical expression, specifically, the symbol \( z_j^\dagger \).].
	Step 2: DEA-Malmquist index-based efficiency evaluation based on the integrated desirable and undesirable output data. Suppose that there are m input indicators and their data collected from n corporates and T years are [image: Mathematical expression with variables x, i, j, and exponent t, written as x with superscript t and subscript i, j.] (i = 1,…, m). Hence, based on T × n integrated desirable and undesirable output data, the corresponding data matrix used for efficiency evaluation can be generated and denoted as [image: Mathematical notation illustrating a variable \(X^{(t)}\) as a matrix \((x^t_{i,j})\) of dimensions \(m \times n\).], [image: Mathematical expression showing \( Y^{(t)} = (y_j^t)_{1 \times n} \).], and [image: Mathematical expression showing \( Z^{(t)} = (z_j^t)_{1 \times n} \).]. Furthermore, efficiency, TFPC, EC, PTEC, and SEC can be calculated based on the efficiency measure shown in Section 3.1 and the efficiency evaluation shown in Section 3.2.

6 CASE STUDY
This section of the study focuses on the preprocessing of carbon emissions management data obtained from a sample of 17 Chinese corporates, spanning the timeframe of 2019–2021. With the approaching implementation of the “dual-carbon target,” the capital market in China is concurrently experiencing an upsurge in carbon investment. To meet this demand, China has taken preliminary steps to establish a green financial system. Accordingly, this article, taking into account the unique characteristics of the Chinese market and companies, has gathered company-level carbon emission data that aligns with the Chinese investment environment. The data sources utilized encompass revenue breakdown data, carbon emission disclosure data, and pollutant emission data. Revenue breakdown data primarily originates from company annual reports and issuance disclosures, carbon emission disclosure data is derived from corporate social responsibility reports, and pollutant emission data is sourced from the National Pollutant Discharge Permit Management Information Platform. The database coverage encompasses A-shares, Hong Kong stocks, Chinese concept stocks, and bond-issuing enterprises, encompassing the time period from 2019 to 2021. Considering the availability of carbon emission data and the associated indicators, and after employing appropriate techniques to address missing data and indicators, this article ultimately derived a comprehensive dataset and indicator set relating to carbon emissions for the 17 selected corporates.
Detailed information about these corporates is provided in Table 1. Following the specific procedures outlined in Section 4, the efficiency of carbon emissions management and its corresponding technical change efficiency are analyzed, leveraging integrated indicators. Finally, the strategies to enhance carbon emissions management are also proposed.
TABLE 1 | The information of the 17 selected corporates.
[image: Table listing selected corporates and their ticker symbols. Includes China Vanke Co., Ltd. (000002.SZ), GF Securities Co., Ltd. (000776.SZ), CITIC Securities Co., Ltd. (600030.SH), Chongqing Rural Commercial Bank Co., Ltd. (601077.SH), and others. Total of eighteen entries.]6.1 Data resource and variable determination
This study adheres to a well-established framework for corporate carbon emissions indicators, as outlined by Ye et al. (2019a, 2019b). In line with this framework, both undesirable and desirable outputs are considered as significant indicators for carbon emissions management. Building on existing literature, the desirable outputs selected for evaluation include main business income, market capitalization, rate of return on equity, and earnings per share. On the other hand, the evaluation of the efficiency of carbon emissions management focuses on three categories of undesirable outputs, specifically direct carbon emissions, process carbon emissions, and final product carbon emissions.
The input indicators in this study are classified into three distinct categories: labor input, asset investment, and capital input. Labor input is quantified through various metrics, such as the number of employees, average employee salary, rate of salary per share, and salary growth. Asset investment is assessed based on the total assets and net assets per share of the corporations under examination. Capital input, on the other hand, is determined by analyzing the capital expenditure and the ratio of income tax to total profit. It is worth noting that among the 17 corporates selected for analysis, significant disparities exist in terms of both input and output indicators for carbon emission control. Consequently, these variations indirectly imply disparities in carbon emissions and the fiscal advantages of individual corporations.
It is imperative to acknowledge that all the indicators mentioned above, including their historical data, can be derived from various sources. The revenue breakdown data can be primarily obtained from corporate annual reports and issuance disclosures, while carbon emission disclosure data can be acquired from corporate social responsibility reports. As for pollutant emission data, it can be sourced from the National Pollution Discharge License Management Information Platform of China. A comprehensive analysis of the integrated desirable output and undesirable output, derived from the indicator information integration based on the ER approach, alongside the three types of inputs, is presented in Table 2.
TABLE 2 | Statistic analysis of input-output indicators.
[image: Table displaying various indicators with columns for average, standard deviation, minimum, and maximum values. Indicators include integrated desirable and undesirable outputs, labor input, asset investment, and capital input, with respective data provided for each.]To delineate the comprehensive details of both integrated desirable and undesirable outputs, the average values of these outputs across 17 corporations in China for each year are visually presented in Figure 2. Notably, Figure 2 highlights conspicuous disparities in the desirable and undesirable outputs among different corporations in the same year. However, it is observed that annual variations in both desirable and undesirable outputs among these corporations are relatively modest. Analysis of the publicly available data pertaining to these 17 corporations reveals no discernible transformations in their production and energy technologies from 2019 to 2021. Consequently, it becomes challenging to effectively discern short-term changes in carbon emissions for these enterprises at present.
[image: Line chart displaying desirable and undesirable outputs from 2019 to 2021. The orange line represents undesirable output, fluctuating significantly, while the blue line indicates desirable output, also showing notable fluctuations. The y-axes represent different scales for each output, with undesirable output reaching higher values.]FIGURE 2 | Integrated desirable and undesirable output from 2019 to 2021.
Consequently, this article aims to assess the carbon emissions of various corporations through a lens focused on the production process. The research outcomes depicted in Figure 3 demonstrate that, in the case of the majority of corporations, both direct carbon emissions and carbon emissions stemming from the production process far surpass those resulting from final products. Notably, many corporations exhibit the highest carbon emissions during the production process, which underscores the strong correlation between this stage of operations and the prevailing deficiency in the adoption of clean technology innovations within the production technologies employed by Chinese corporations.
[image: Line graph showing carbon emissions values over time with four series: Integrated emissions (blue), S1 emissions (orange), S12 emissions (gray), and S2 emissions (yellow). Dates on the x-axis range from 000001.SZ to 000063.SH, and emission values on the y-axis range from 500,000 to 3,500,000. Integrated and S1 emissions fluctuate similarly, with peaks and dips. S2 emissions appear consistently lower.]FIGURE 3 | Different Scopes of Carbon Emissions of 17 corporates in 2021.
6.2 Analysis of carbon emissions management efficiency
In an effort to examine the variations in carbon emissions management efficiency across different corporations and to identify the underlying factors driving such efficiency fluctuations, this study employs a proposed model to calculate the annual changes in carbon emissions management efficiency for each individual corporation.
By leveraging a comprehensive dataset obtained over a 3-year period encompassing 17 corporations in China, this paper computes the relative efficiency of each corporation’s carbon emissions management. These corresponding efficiencies are visually presented in a clear and comprehensive manner in Figure 4.
[image: Line chart showing stock performance for various companies from 2019 to 2021. The x-axis lists company codes, and the y-axis represents the performance index. Different lines represent each year: blue for 2019, orange for 2020, and gray for 2021, highlighting fluctuations over time.]FIGURE 4 | Comprehensive efficiency of different corporates from 2019 to 2021.
Upon evaluating the efficiency of carbon emissions management from 2019 to 2021, it becomes evident that only one corporation has achieved the optimal level of carbon emissions management, as reflected by an efficiency value of 1. Conversely, the remaining 16 corporations consistently fail to attain the threshold of relative efficiency during any given year. The majority of these corporations exhibit management efficiency scores that persistently fall below 0.8, with some corporations even demonstrating a discernible downward trend in efficiency values across the considered period.
From the standpoint of returns to scale, Figure 5 illustrates that the carbon emissions management income of each corporation exhibited an upward trend from 2019 to 2021. This pattern suggests that there is still significant room for improving management efficiency through increasing input factors. However, a subset of corporations experienced diminishing returns to scale, indicating that excessive investments in carbon emissions management resulted in redundant outputs. For these corporations, optimizing input resources becomes a key concern. Furthermore, on a broader scale, the carbon emissions management efficiency among the 17 examined corporations varies significantly, highlighting disparities in management capabilities. Consequently, the carbon emissions management efficiency of individual corporations has not effectively improved over time. These findings underscore the importance of rational allocation of input-output structures and the development of effective carbon emissions management policies as crucial factors in addressing current challenges in carbon emissions management in China.
[image: Bar chart showing data across three years: 2019, 2020, and 2021. Each year has three categories: Increasing (blue), Decreasing (orange), and Irrelevant (gray). Increasing values are highest each year, followed by Decreasing and Irrelevant.]FIGURE 5 | Number of corporates in different returns to scale from 2019 to 2021.
To highlight the disparities in the efficiency of carbon emissions management, Figure 6 presents the average efficiency across three types of carbon emissions management from 2019 to 2021 for 17 corporates in China. Through an encompassing analysis, it becomes evident that the carbon emissions management efficiency in 2019 surpasses that of subsequent years, with 2021 registering the lowest efficiency.
[image: Bar chart comparing three types of efficiencies—comprehensive, pure technical, and scale—across 2019, 2020, and 2021. Each year shows an increase in efficiency levels, with 2021 having the highest efficiency overall. Comprehensive efficiency starts at 0.829 in 2019, increasing to 0.908 by 2021. Pure technical efficiency begins at 0.819 in 2019, reaching 0.780 in 2021. Scale efficiency grows from 0.921 in 2019 to 0.908 in 2021.]FIGURE 6 | Efficiency distribution of different regions in China.
In addition to the impact of economic and resource endowment shifts over the years, substantial discrepancies are observed in the pure technical efficiency of carbon emissions management across different years for these 17 corporates. This is largely attributable to variations in the level of economic development and policy changes. The pure technical efficiency and scale efficiency in 2019 and 2020 are notably higher than those in 2021 across the 17 corporates. This underscores the significant challenge of balancing economic development with sustainable environmental protection within the industrial production processes in China.
6.3 Time changes of carbon emissions management efficiency
In the subsequent section, this study delves into the temporal dynamics of carbon emissions management efficiency. Figure 6 presents the results obtained from the assessment of efficiency using the DEA-Malmquist index. Subsequently, Figure 7 demonstrates the variables EC, PTEC, EC, and TFPC, all indicating a decline in the efficiency of carbon emissions management.
[image: Bar chart comparing values for years 2019, 2020, and 2021 across five categories: EC, TC, PTEC, SEC, and TPEC. Each category shows bars for each year, with variable heights reflecting differences. EC, TC, PTEC, and TPEC show a general increase across the years, while SEC remains consistent.]FIGURE 7 | Carbon emissions management efficiency change from 2019 to 2021.
A close examination of these figures reveals a discernible downward trajectory in the overall efficiency of carbon emissions management among the 17 included corporations over time. Despite notable fluctuations, the prevailing trend unequivocally points towards a decrease in efficiency. Considering the rapid expansion of these 17 corporations, the issue of carbon emissions necessitates continued attention and heightened significance.
Subsequently, Figure 8 illustrates the variations in carbon emissions management efficiency across different corporates. A perusal of Figure 8 reveals that the efficiency of carbon emissions management in the majority of corporates lacks stability. Despite the numerous shortcomings in China’s current carbon emissions management, there is a conspicuous absence of institutional standardization in the carbon emissions management process. This lack of standardization impedes industrial coordination and the stability of carbon emissions management.
[image: Line graph showing performance trends for SEC, PTEC, and EC over time. SEC is represented by a blue line, PTEC by an orange line, and EC by a gray line. The x-axis lists various codes, while the y-axis ranges from 0 to 1. Data points form a zigzag pattern with varying peaks and troughs.]FIGURE 8 | Carbon emissions management efficiency change in different corporates.
Furthermore, a comparative analysis conducted between the SEC and EC reveals that the integration of Pure Technical Efficiency Change (PTEC) into the framework yields enhanced efficiency and greater stability in the realm of carbon emissions management. In fact, the inclusion of PTEC facilitates a more intricate examination of the technical processes involved in the management of carbon emissions, enabling a more targeted identification of areas for improvement, such as resource optimization or the adoption of innovative technologies. Moreover, this approach not only augments the efficiency value but also imparts increased stability to the carbon emissions management efficiency. Stability, within this context, denotes the ability to consistently maintain high levels of efficiency over time. This aspect is of utmost importance in the realm of carbon emissions management, as a stable efficiency level signifies a corporation’s capacity to consistently and effectively handle its carbon emissions, thereby making noteworthy contributions towards sustainable development objectives.
6.4 Improvement strategy of regional carbon emissions management efficiency
In this section, this paper analyzes the comprehensive efficiency of carbon emissions management of 17 corporates in China from 2019 to 2021, which forms 51 analysis samples, and then analyzes the input and output indicators of the samples that fail to reach the effective efficiency according to these data, and obtains the number of provinces with unreasonable input-output indicators, which provides reference for the design of carbon emissions management efficiency improvement scheme, as shown in Figure 9. From the perspective of input redundancy, the situation of investment redundancy in environmental pollution control is more serious, which indicates that there are unreasonable investment resources and excessive investment in the implementation process of carbon emissions management in these corporates production process. The redundancy degree of the three input indicators is basically similar, and the number of provinces occupied by the three excessive investments is relatively large. However, from the perspective of output from 2019 to 2021, it can be found that the output is not reasonable.
[image: Chart A shows a bar graph comparing labor, asset, and capital inputs in corporations. Redundancy is high in all categories, while insufficiency is minimal. Chart B displays a bar graph of desirable and undesirable outputs in corporations, highlighting higher redundancy in undesirable outputs and higher insufficiency in desirable outputs.]FIGURE 9 | Number of corporates with redundant input and insufficient output.
Simultaneously, to dissect the structural disparities in regional carbon emissions management inputs and outputs, this study uses the carbon emissions management efficiency assessment for each corporate in 2021 as a representative example. Additionally, an adjustment scheme for each region’s input-output structure is proposed, the results of which are outlined in Table 3.
TABLE 3 | Values of input-output adjustments in different corporates.
[image: Table of emissions management showcasing input and output measures for various entities. Columns display labor, asset, capital, desirable output, and undesirable output, with varying numerical values. Some assets and outputs show negative values, indicating deductions or liabilities. Various rows have zeros, denoting no input or output.]Table 3 offers a clear illustration that the crux of enhancing the efficiency of carbon emissions management is addressing the issues of input redundancy and the insufficiency of desirable output. Among the corporates, a scant few do not necessitate any adjustments to their inputs and outputs in 2021. The majority, however, must prioritize reducing input in carbon emissions management and tackle the issue of excessive emission of undesirable output.
With regard to the redundancy of the three input indicators—labor, capital, and environmental pollution control investment—labor input redundancy emerges as the most significant issue. The data suggest that one corporate’s labor input needs to be reduced by a considerable amount, specifically 25,566 units. This startling figure underscores the critical need for corporates to reassess their use of labor in the context of carbon emissions management.
This redundancy can often be attributed to an overabundance of input and the excessive consumption of resources, which is a symptom of sub-optimal planning and execution in the corporates’ production processes. Such an imbalance in the input structure can lead to substantial wastage of resources, both human and material. This is particularly concerning in a world where resource conservation and efficient usage are paramount to sustainable development and environmental protection.
Furthermore, this escalation in input, particularly in relation to environmental pollution control investment, does not correspond to a commensurate decrease in pollution levels. This disconnect implies that despite increased efforts and resources being directed towards managing carbon emissions, the desired results—in this case, reduced pollution—are not being achieved. This situation leads to a serious redundancy of pollution emissions.
In essence, the current state of affairs indicates a pressing need for these corporates to revisit their strategies and operational processes. The goal should be to optimize their use of labor and other resources, and ensure that investments in environmental pollution control are effective in actually reducing pollution. This could involve a range of measures, from implementing more efficient technologies to restructuring labor practices, all aimed at improving the overall efficiency of carbon emissions management.
6.5 Robust analysis
To validate the efficiency of the carbon emission governance evaluation results presented in this article, Figure 10 illustrates the varying ranges of carbon emissions management efficiency. This delineation takes into account the inclusion of carbon emissions at distinct stages as undesirable outputs. By examining the research findings, notable discrepancies in the efficiency values, predicated on different carbon emission measurements, become apparent. This further substantiates the influence of the diverse indicators proposed in this article on the outcomes of efficiency evaluations. As a result, conducting assessments of carbon emission governance based on indicator integration becomes crucial to prevent any potential loss of pertinent information.
[image: Line graph depicting emissions data over a time period with four distinct series: Integration, S1, S12, and S2 emissions, each represented by a different color and symbol. The x-axis shows numerical labels from 0.0 to 48.0, and the y-axis ranges from -2.0 to 2.0. The lines fluctuate, indicating variations in emission levels over time.]FIGURE 10 | Different scopes of carbon emissions management efficiency.
Furthermore, to validate the thumb principle of the DEA model and assess the indispensability of indicator fusion, Figure 11 demonstrates the efficiency evaluation outcomes obtained through indicator integration. The graphic represents that carbon emission efficiency values for all corporations predominantly cluster around 1 without indicator integration. Nonetheless, a distinct divergence in efficiency values emerges after employing indicator integration, leading to a heightened level of differentiation. This enhanced differentiation is advantageous for decision-makers conducting efficiency evaluations and analysis, as it provides a more nuanced understanding of the performance variations among the corporations.
[image: Line graph comparing two datasets: "Integrative Omicscience" in blue and "Without Integration" in orange. The y-axis ranges from 0.00 to 1.20, while the x-axis is labeled with numbers 1 to 51. The blue line shows significant fluctuations between approximately 0.30 and 1.00, whereas the orange line remains constant at 1.00 throughout.]FIGURE 11 | Different scopes of carbon emissions management efficiency.
7 CONCLUSION AND IMPLICATIONS
Based on the carbon emissions management data from 2019 to 2021, the efficiency evaluation of carbon emissions management in 17 corporates of China was performed on the basis of indicator information integration by the ER approach with weight calculation method and DEA-Malmquist index. Additionally, the efficiency of different corporate-level carbon emissions management was further evaluated from the three scopes of efficiency evaluation and dynamic efficiency change. The main conclusions are summarized as follows:
Firstly, the analysis of carbon emissions management in various corporations in China revealed a lower level of comprehensive efficiency in this aspect. The examination of data further indicated that the comprehensive efficiency of carbon emissions management in these corporations has not witnessed significant improvement and remains unstable. The fluctuations in comprehensive efficiency are closely correlated with changes in pure technical efficiency, thereby suggesting a strong relationship between them. Furthermore, the analysis of scale benefits reveals an ongoing existence of an unsustainable input-output structure within each corporation, primarily stemming from inadequate investments in carbon emissions management, resulting in insufficient output.
Secondly, when examining the input-output structure, it becomes evident that redundancy exists within the majority of corporations, particularly in terms of labor input in carbon emissions management. Moreover, an analysis of the output reveals that the structure of desirable output is predominantly reasonable, but there exists significant redundancy in undesirable output. Besides optimizing input allocation, it is crucial to implement measures aimed at effectively reducing the emission of undesirable pollution output while ensuring a reasonable output structure.
Thirdly, in order to accurately assess the changes in comprehensive efficiency and pure technical efficiency of carbon emissions management over various time periods, the findings indicate notable distinctions between these two metrics. However, despite these variations, neither the overall efficiency nor the pure technical efficiency demonstrate a significant upward trend within these corporations in China. In other words, the positive impact of the current input-output structure and technical factors on the comprehensive efficiency of carbon emissions management has not yielded significant results over time.
Drawing upon the aforementioned conclusions, the study’s outcomes constitute a significant asset for scholars, corporations, and policymakers alike, as they strive collectively towards enhancing carbon emissions management, advancing sustainable development, and addressing the challenges posed by climate change. The identified imperative for critically reassessing and adapting current strategies becomes self-evident, with the overarching objective of optimizing efficiency, fostering sustainable growth, and making substantial contributions to broader endeavors aimed at mitigating climate change:
	(1) From an academic standpoint, these findings shed light on the intricate dynamics among the input-output structure, technical efficiency, and comprehensive efficiency in the domain of carbon emissions management. This enriches the existing scholarly knowledge base and enables scholars to enhance their comprehension of carbon emissions management, particularly within the unique economic landscape of China. To deepen this understanding, future research can explore these relationships in greater detail, employing sophisticated econometric techniques or conducting longitudinal studies to track and analyze these patterns over an extended timeframe.
	(2) From the policy perspective, these findings provide corporations and policymakers with valuable insights to identify areas for improvement and formulate more impactful strategies for carbon emissions management. The noticeable absence of a significant upward trend in both overall and pure technical efficiency signifies ample opportunities for enhancement in these domains. Potential avenues to pursue this enhancement could involve leveraging cutting-edge technologies, optimizing operational processes, or allocating resources to capacity development initiatives. By capitalizing on these opportunities, policymakers and corporations can effectively address the challenges posed by carbon emissions and make substantial strides towards achieving sustainability objectives.
	(3) From the corporations perspective, the study also emphasizes the significance of maintaining a balanced input-output structure, presenting explicit guidance in this regard. An overemphasis on investment, particularly in labor, may lead to the inefficient utilization of resources and suboptimal outcomes. Conversely, underinvestment may result in insufficient output. Consequently, corporations must strive for an optimal equilibrium, ensuring the efficient allocation of resources while aligning output with sustainability goals. The identified redundancy in undesirable output serves as a clear indication for the implementation of stricter pollution control measures. This may involve the adoption of more advanced pollution control technologies, improvements in waste management practices, or the enforcement of more stringent internal policies pertaining to pollution control. Such measures would contribute towards achieving greater environmental stewardship and sustainable business practices.

This study is limited by the fact that data on corporate carbon emissions is available only for a relatively short time span. Consequently, the analysis primarily focuses on the efficiency of corporate carbon emissions in the past 3 years. However, future research could expand to encompass long-term assessments of carbon emission efficiency and the exploration of carbon emission prediction studies.
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Clarifying the influencing mechanism of rural revitalization on agricultural carbon emissions is crucial for attaining carbon peaking and carbon neutrality. This study utilized spatial econometric model, mediating effect model and dual fixed effect model to explore the influence and spatial impact of rural revitalization on carbon emissions from agricultural land by using the panel data of prefectural cities in Henan Province. Results indicate that rural revitalization exerts a notable beneficial influence on carbon emissions, as its improvement results in a rise in such emissions. Furthermore, rural revitalization demonstrates a favorable spatial spillover effect on agricultural carbon emissions in neighboring cities. Agricultural GDP and mechanical technological progress act as intermediate factors, as rural revitalization promotes carbon emissions from agriculture by fostering economic development and technological advancements. Heterogeneity analysis indicates that the correlation between rural revitalization and greenhouse gas emissions from agriculture is nonlinear, as moderate and low levels of rural revitalization promote agricultural carbon emissions, while higher levels exhibit a negative effect. Thus, rural revitalization exhibits an inflection point effect on agricultural carbon emissions.
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1 INTRODUCTION
Excessive emissions of carbon dioxide, covering carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions, have had detrimental effects such as global temperature increase, climate crisis, and elevated sea levels. As a result, governments worldwide have placed significant emphasis on addressing this issue (Douglas, 1991). In September 2020, at the UNGA (United Nations General Assembly), China declared its commitment to peaking CO2 discharges before 2030 and pursuing carbon neutrality by 2060. However, achieving these goals requires in-depth research on carbon footprint across different industries. Agriculture, in particular, represents a significant origin of carbon emissions, making up around 14% of global greenhouse gas emissions (Nduagu and Gates, 2015). Global agricultural greenhouse gas emissions have nearly doubled from 2,752 Mt CO2 equivalent in 1961 to 5,294 Mt CO2 equivalent in 2016 (Mondal et al., 2018). Over the period from 1980 to 2020, China’s The overall greenhouse gas emissions from agriculture have risen from 665 million metric tons of CO2 equivalent to 970 million tons, exhibiting a fluctuating growth trend and an overall increase of nearly 46% (Guttikunda et al., 2014). While China’s agricultural sector contributes approximately 17% to the world’s whole agricultural carbon emissions (Liu and Xiao, 2020), it is crucial to note that the proportion of farming emissions in China is relatively lower compared to industrial emissions. Nonetheless, the total emissions remain substantial. Furthermore, given that China’s level of agricultural development is still lower in comparison to developed countries, there is significant potential for reducing carbon emissions agricultural field. Therefore, it is crucial to recognize the key factors contributing to carbon footprint in agriculture and propose effective measures to reduce releases in agricultural production. These efforts will contribute to the fulfillment of the “dual carbon” objective and the high-quality development of China’s modernization.
Early research related to agricultural carbon emissions primarily concentrated on measuring emissions and analyzing their temporal and spatial characteristics (Tristram and West, 2002; Tian et al., 2014; Xiong et al., 2016a; Xiong et al., 2016b; Huang et al., 2019; Chen et al., 2020; Liu et al., 2023). As research progressed, scholars started to explore the factors influencing agricultural carbon emissions from various perspectives. External factors include carbon taxes, economics, renewable energy sources, agricultural technology, urbanization, and policy (Liu et al., 2017; Ismael et al., 2018; Ridzuan et al., 2020; Dumortier and Elobeid, 2021; Liu et al., 2021; Alam et al., 2023; Li et al., 2023; Wojewodzki et al., 2023; Xia et al., 2023). Internal factors mainly revolve around land use (Liu et al., 2023). For instance, Pugh (Pugh et al., 2015) used the LPJ-GUESS model to find that people often underestimate the greenhouse gas emissions during land cover change and the potential carbon absorption from future reforestation. Guo (Guo et al., 2021) concluded that increasing the planting area of certain crops, such as wheat, soybeans, vegetables and sorghum, can reduce carbon emissions built on statistics from three provinces in Northeast China. Hu (Hu et al., 2016) observed that adopting intercropping using conservation agriculture principles for maize and wheat in China’s Hexi Corridor can reduce water usage in arid areas and reduce carbon emissions. While existing research has extensively discussed agricultural greenhouse gas emissions from multiple facets, limited research has examined the effect of rural revitalization, a major innovation in modern rural development theory and practice (Liu et al., 2020), on the carbon footprint of agriculture. As rural revitalization progresses, agricultural production will be optimized, agricultural carbon emissions have the potential to be reduced. Rural revitalization plays a crucial role in promoting the adoption of sustainable agricultural production methods. Traditional farming practices often contribute significantly to greenhouse gas emissions, but rural revitalization policies encourage farmers to embrace environmentally friendly approaches such as organic farming and precision agriculture. These sustainable practices have the potential to make a substantial impact in reducing greenhouse gas emissions. Most existing literature primarily concentrates on the connotation and realization path of rural revitalization strategy (Gao et al., 2023), with only a few exploring agricultural and emission reduction strategies from the perspective of rural revitalization (Zhou et al., 2022). Few studies have utilized econometric models to quantify the influence and spatial consequences of rural revitalization on agricultural greenhouse gas emissions. Given the variations in economic development and natural endowments across different regions, the process of rural revitalization and development may exhibit spatial dependence and spillover effects. As a significant farming province, Henan has 7.51 million hectares arable land, ranking third in China, with low urbanization rate less than 60%. Therefore, this study takes the province of Henan as an example, and employs panel data from 18 cities at the prefecture level within Henan province from 2001 to 2020. The study uses Spatial Moran’s global index to examine the correlation and agglomeration characteristics of agricultural carbon emissions. Additionally, a spatial panel data econometric model is used to empirically examine the influence and spatial impact of rural revitalization on agricultural greenhouse gas emissions. The outcomes of this study aim to offer insights for agricultural carbon reduction policies in Henan province.
2 THEORETICAL ANALYSIS AND RESEARCH HYPOTHESIS
Rural revitalization is tightly linked to agricultural carbon emissions. The 19th Communist Party of China National Congress introduced the rural revitalization strategy, which encompasses the general policy of “flourishing industry, livable ecology, Rural style civilization, efficient governance, and thriving livelihood.” The strategy similarly outlines specific demands for rural revitalization across five dimensions.
	“Flourishing industry” is a driving force behind rural revitalization (Wang et al., 2021), aiming to promote economic growth in rural regions. Nevertheless, the development related to the agricultural sector heavily relies on machinery, leading to a long-term equilibrium connection between the growth in the farming industrial economic system and mechanization (Juhász, 2018). This heavy mechanization results in increased usage of diesel and electricity, thus contributing to higher carbon dioxide emissions in agriculture.
	“Ecological livability” is a fundamental aspect of rural revitalization (Yang et al., 2023). The use of pesticides and fertilizers in rural areas exhibits a direct influence on the natural environment. Excessive usage relating to these chemicals can deteriorate the ecological balance and diminish air quality for local residents. Moreover, it can contribute to increased carbon dioxide emissions from agriculture. Furthermore, the expansion of rural postal routes brings convenience to rural residents, but it also promotes the use of mechanical transportation, leading to a rise in carbon dioxide emissions.
	“Rural style civilization” serves as the essence of the rural revitalization strategy (Ru, 2023). Rural residents’ investments in education, culture, and entertainment reflect their emphasis on cultural and educational values. The improvement of education levels is helpful for the widespread adoption of advanced agricultural cultivation methods and the enhancement of productivity. Ultimately, this has the ability to help curb agricultural carbon emissions.
	“Efficient governance” serves as the organizational backbone for rural revitalization (Leck and Simon, 2013). An increased budget in the urban and rural affairs sector often focuses on rural infrastructure development, such as the construction of farmland and canals. These endeavors invariably require additional manpower, resources, and machinery, thereby contributing to higher agricultural carbon emissions.
	“Thriving livelihood” represents the ultimate objective of the rural revitalization tactic (Zhuo et al., 2021). It could be measured through the disposable income of rural residents. If disposable income increases, it ensures a higher standard of material wellbeing for rural residents. Consequently, people will have more time and energy to engage in various cultural activities. This, in turn, facilitates the widespread adoption of advanced green and low-carbon agricultural technology as well as professional agricultural knowledge. Ultimately, this helps to curb agricultural carbon emissions.

A comprehensive analysis reveals that the effect of rural revitalization concerning agricultural carbon emissions can be uncertain, leading to both positive and negative outcomes. Therefore, we propose Hypothesis 1.
H1. The effect of rural revitalization on farming greenhouse gases is uncertain.
Countryside revitalization will facilitate the enhancement of agricultural infrastructure and production factors, with agricultural production technology being a crucial resource that spreads rapidly through inter-regional exchanges. Technological upgrades and spillover effects will expedite the decrease of farming carbon emissions in nearby areas. Furthermore, the development of countryside revitalization may enhance the competitive advantage of relevant enterprises, serving as benchmarks for other companies to learn from. This will further generate an “imitation result” and “demonstration result,” reinforcing the spatial effect of countryside revitalization regarding farming carbon emissions. Therefore, we propose Hypothesis 2.
H2. Rural revitalization exhibits a notable spatial spillover impact on carbon emissions in agriculture.
Rural revitalization aims to achieve a prosperous life (Stokes and Seto, 2019). During the course of rural revitalization and progress, promoting the expansion of the agricultural economy is crucial. Zang et al. conducted research on Xinjiang Province in China using relevant data from 2002 to 2020 to examine the association between agricultural economy and agricultural greenhouse gas emissions. The consequences revealed that the farming economy had a notable influence on the intensity of agricultural greenhouse gas emissions (Zang et al., 2022). Zhang et al. also discovered a reciprocal cause-and-effect relationship between agricultural carbon emissions and agricultural economic growth in both the short and long term (Zhang et al., 2019).
Furthermore, the level of mechanization plays a crucial role in agricultural production technology. The advancement of rural revitalization is closely linked to agricultural mechanization, which impacts farming scale, agricultural labor productivity, and industrial structure (Wang et al., 2022). Consequently, it also affects agricultural carbon emissions. Drawing from these findings, we propose Hypothesis 3.
H3. Agricultural GDP and the level of mechanical technology progress serve as intermediate factors in the correlation between rural revitalization and the release of carbon emissions from agricultural activities.
3 DATA AND METHODS
3.1 Description of variables
3.1.1 Dependent variables
The dependent factor in this study refers to carbon emissions from agriculture, which encompass CH4 emissions from rice farming and N2O emissions generated by fertilizers as well as soils. Additionally, it includes CO2 emissions produced by fertilizers, insecticides, agricultural plastics, ploughing, agricultural equipment, and agricultural water management (Xing and Yan, 2000; Hu et al., 2010; Min and Hu, 2012). The calculation method for agricultural carbon emissions is provided in Formula (1) as proposed by Tian et al. (Tian et al., 2012).
Regarding N2O emissions from different crops, this study synthesizes the research findings of Wang (Wang, 1997), Yu et al. (Yu et al., 1995), Su et al. (Su et al., 1992), Huang et al. (Huang et al., 1995), and Qiu et al. (Qiu et al., 2010). The N2O emission parameters for corn, rice, winter wheat, soybean, vegetables, in addition to other dry crops were set as 2.532, 0.24, 1.75, 2.29, 4.944, and 0.95 (kg·hm-2) respectively. The emission coefficients for other emission sources are presented in Table 1. N2O and CH4 emissions were converted using the results of the sixth IPCC survey: 1 metric ton of CH4 is equal to 27.2 tons of CO2, and 1 metric ton of N2O is equal to 273 metric tons of CO2. (CO2 emission coefficient = carbon emission coefficient * 44/12).
[image: Equation showing \( E = \sum E_i = \sum T r^2 \), marked as equation (1).]
TABLE 1 | Emission coefficients of agricultural GHG emissions.
[image: Table listing emission sources, coefficients, and data sources. Plowing emits CO2 at 1,146.2 kg hm⁻², source: China Agricultural University. Fertilizer emits CO2 at 3.2840 kg kg⁻¹, source: ORNL, US. Pesticides emit CO2 at 18.0917 kg kg⁻¹, source: ORNL, US. Agriplastic emits CO2 at 18.9933 kg kg⁻¹, source: Nanjing Agricultural University. Farm diesel emits CO2 at 3.1863 kg kg⁻¹, source: IPCC. Field irrigation emits CO2 at 91.667 kg hm⁻², source: Dubey and Lal, 2009. Nitrogen fertilizer application emits N2O at 0.0125 kg kg⁻¹, source: IPCC. Rice farming emits CH4 at 236.7 kg hm⁻², source: Guidelines for provincial greenhouse gas inventories.]Where Ti is in reference to the actual cultivated area of rice, the real utilization of nitrogen fertilizer, the actual use of chemical fertilizer, the actual use of pesticides, the actual utilization of farming film, the real usage of diesel fuel, the actual irrigation zone, and the actual cultivated area of crops. [image: Please upload the image or provide a URL so I can assist you with the alternate text.] indicates coefficients of agricultural GHG emissions.
3.1.2 Key explanatory variable
The Key explanatory variable in the investigation refers to the holistic measure of rural rejuvenation. It is grounded in the new era of rural revival strategy, which focuses on the aim of rural revival: flourishing industry, livable ecology, rural style civilization, efficient governance, and thriving livelihood. The indicator system in favor of rural revitalization was constructed and is presented in Table 2. To avoid subjectivity and uncertainty, the entropy method was employed to assess weights for the relevant indexes. Firstly, these indicators were standardized, and then the information entropy of each indicator was calculated. Finally, the weights for each indicator could be determined according to the information entropy. The detailed steps can be found in references (Zhao et al., 2018).
TABLE 2 | Indicator system of rural revitalization.
[image: Table detailing dimensions, meanings, weights, descriptions, and units for various rural development indicators. Dimensions include Prosperous industry, Livable ecology, Civilized village style, Effective governance, and Prosperous life. Each dimension is further broken down into specific indicators with assigned weights. Descriptions explain how each metric is calculated, and units measure the data, such as percentages, kilometers, or millions of yuan.]3.1.3 Control factors
The selected Controlled factors in this investigation include urbanization, industrial structure, scale of cultivated land, investment intensity of farmers, and investment in the primary industry. The concept of urbanization is multidimensional and encompasses economic, social, land, population, and ecological aspects (Chen et al., 2018). As scholars have deepened their understanding of urbanization, it is widely believed that a single indicator is insufficient to capture its complexity. Therefore, this study adopts a multidimensional urbanization index as a control variable, which includes the commonly used dimensions of economic urbanization, Population growth in urban areas, and Urban land development.
Urban economic growth is defined as the ratio between non-agricultural economy to the combined economy of agriculture, industry, and services. Population urbanization represents the proportion of residents to the total urban population. Land urbanization is assessed by the proportion of urban built-up area to the administrative area. The structure of the industrial sector is captured by the proportion of the GDP of the agriculture sector to the total industrial GDP. The scale of cultivated land is represented through the comparison of the actual sown cultivated area to the quantity of employees in the primary industry. The investment intensity of rural households is indicated by the ratio of fixed investment by farmers to the population working in the agricultural sector. Investment in fixed assets in the agricultural sector is measured by the volume of fixed investment in that sector.
3.2 Data sources
The information utilized in this research includes agricultural carbon emissions data, indicators of rural revitalization at all levels, and controlled variables. The aforementioned information was obtained from the Henan Provincial Statistical Compilation and Rural Statistical Compilation spanning from 2001 to 2020. In instances where there were a few absent data points, they were supplemented using trend analysis and linear fitting methods.
3.3 Methods
3.3.1 Spatial correlation test
The Global Moran’s coefficient model was utilized to examine the geographic autocorrelation of total agricultural carbon footprint. The equation utilized is as follows:
[image: Mathematical formula for the spatial autocorrelation index I. It is expressed as \[ I = \frac{n \sum_{i=1}^n \sum_{j=1}^n W_{ij} (x_i - \bar{x})(x_j - \bar{x})}{\sum_{i=1}^n \sum_{j=1}^n W_{ij} \sum_{i=1}^n (x_i - \bar{x})^2} \], where \( n \) is the number of observations, \( W_{ij} \) represents spatial weights, \( x_i \) and \( x_j \) are variable values, and \( \bar{x} \) is the mean of \( x \).]
where I stands for the Global Moran’s coefficient I, and n denotes the quantity of measured cities.
The variables [image: The image shows the mathematical symbol \( x_i \), where \( x \) is a variable with a subscript \( i \), commonly used to denote the i-th element in a sequence or set.] and [image: Please upload the image or provide a URL for me to generate the alternate text.] represent the carbon emissions from agricultural activities in prefecture-level cities, while [image: Please upload the image or provide a URL so I can help create the alt text.] denotes the average carbon emissions from agricultural activities. The term [image: Mathematical notation of \( W \) with subscripts \( i \) and \( j \).] denotes the spatial weight matrix. The range of possible values for Global Moran’s I is between −1 and 1.0 indicates that agricultural carbon emissions are spatially unrelated and randomly distributed. When the value is negative, it suggests negative spatial correlation, indicating dispersion. Conversely, when the value is positive, it suggests positive spatial correlation, indicating agglomeration.
3.3.2 Spatial Durbin model
Empirical analysis was conducted to examine the influence of rural revitalization regarding carbon emissions from agriculture in the province of Henan, with the objective of testing the hypothesis. The spatial metrology model utilized is described as:
[image: Equation labeled (3) depicts a mathematical expression: \( Y_{it} = cE + cP \sum_{j=1, j \neq i}^{n} w_{ij}y_{it} + cS x + \beta S x_{it} + cY \sum_{j=1, j \neq i}^{n} w_{ij}(x + x_{it}) + \sigma_{f} + \omega_{it} \).]
where c£ represents a constant value; [image: Please upload the image or provide a URL so I can generate the alt text for you.] refers to the spatial autocorrelation coefficient; [image: The mathematical expression "w subscript i j".] refers to the nested weight matrix of economic geography; [image: Certainly! Please upload the image you'd like me to describe.] and [image: It seems like you're referring to a mathematical or chemical symbol rather than an image. Could you please provide an image or clarify your request? If it's an image, you can upload it or provide a URL with additional context.] refer to regression coefficients; [image: Please upload the image or provide a URL so I can create the alternate text for it.] refers to the lag term coefficient; [image: Lowercase Greek letter sigma with a subscript lowercase letter i.] refers to regional fixed effects; [image: It seems there might be an issue with the image link or upload. Please try uploading the image again or ensure the link is correct. If needed, you can also add a caption for additional context.] refers to the random error term.
3.3.3 Intermediary effect model
This study was inspired by the findings of Deng et al. (Deng and Zhang, 2021). It employed a panel data intermediate effect model to analyze the intermediary effect of rural revitalization regarding carbon emissions in agriculture for the purpose of examining the hypothesis.
The initial part of the intermediate effect model, represented by Eq. 6, focused on the main effect of rural revitalization. The second and third stage models, represented by Eqs 4, 5 respectively, were used to examine the mediating effects.
In this study, a parallel intermediate effect analysis was conducted to assess the mediating effects of variables.
[image: Mathematical equation showing \( M_{it} = a + a' x + \sum SG_{it} + \sigma_i + \epsilon_{it} \), labeled as equation 4.]
Where [image: The text "M" with the subscript "it" in italic font.] denotes the intermediate variable; [image: Certainly! Please upload the image you'd like me to provide alt text for.] relates to the intercept value; [image: Please upload the image or provide a URL for the image you want me to describe.] refers to the coefficient of rural revitalization.
[image: Mathematical equation: \(Y_{it} = b + b'X + cM_{it} + \sum SG_{it} + \sigma_t + \epsilon_{it}\) labeled as equation 5.]
Where [image: Please upload the image or provide a link to it, and I will assist you with the alt text.] refers to the intercept term; [image: It seems there was a mistake, as I cannot view images directly. Please upload the image or provide a URL so I can assist you in creating the alt text.] refers to the coefficient of rural revitalization; [image: It seems there was an issue in uploading the image. Please try again, ensuring the file is properly attached, and I'll be glad to help with the alt text.] refers to the coefficient of the intermediate variable.
3.3.4 Dual fixed effect model
To identify the impacts of various levels of rural revitalization on the greenhouse gas emissions from agriculture in Henan Province, a grouping regression approach was employed. The double fixed regression model used is as follows:
[image: Mathematical equation: \( Y_{it} = c + \delta x + \sum SG_{it} + \sigma_{i} + \nu_{t} + \epsilon_{it} \), labeled as equation six.]
where [image: An italic lowercase letter "i" is depicted.] represents to place; [image: Please upload the image or provide a URL, and I will help you create the alternate text.] represents to time; [image: The image displays a mathematical expression with the variable "Y" subscripted by "i" and "t".] represents to for agricultural carbon emissions; [image: It seems there's no image attached. Please try uploading the image again, and I will help create the alternate text for it.] represents to the intercept term; [image: Please upload the image or provide a URL, and I will help you create the alt text.] represents to the rural revitalization coefficient; [image: Please upload the image you'd like me to describe or provide a URL to it. Let me know if you have any additional context or details you'd like included in the description.] refers to rural revitalization; [image: It seems there was an error in uploading the image. Please try uploading the image again or provide a URL. Additionally, you can include a caption for more context if needed.] refers to the coefficient of control variable; [image: The image contains the mathematical notation "G subscript i t", with "G" in uppercase and "i t" in lowercase subscript.] refers to the control variable; [image: Lowercase Greek letter sigma (σ) followed by a subscript letter "i".] refers to regional fixed effects; [image: Mathematical notation displaying a lowercase letter "v" with a subscript "t".] refers to time-fixed effect. [image: Greek letter epsilon subscripted with "it," often representing an error term in statistical models.] refers to the random error term.
4 RESULTS AND DISCUSSION
4.1 Spatio-temporal characteristics
From 2001 to 2020, carbon footprint of agriculture in Henan Province exhibited an overall pattern of initially increasing afterward decreasing, as depicted in Figure 1. These values appear to be higher compared to the findings of Wei et al. (Wei et al., 2023). This disparity can be attributed to two aspects: firstly, the emission factors were converted to carbon dioxide emission factors; secondly, the greenhouse gases (N2O and CH4) were also calculated and converted to an equivalent of carbon dioxide. Specifically, there was an upward trend in emissions from 2001 to 2015, followed by a decline in total carbon emissions between 2015 and 2020. This change in trend can be attributed to the implementation of a series of green development strategies by China, particularly the introduction of green and low-carbon agricultural policies in 2015. As a result, the effective control of pesticides and fertilizers (Lal, 2004) led to a suppression of carbon footprint of agriculture.
[image: Line graph showing agricultural carbon emissions (in million tons) and rural revitalization from 2000 to 2020. Emissions increase steadily, peaking around 2015. Rural revitalization begins lower but gradually rises, slightly overtaking emissions by 2020.]FIGURE 1 | Change trend of agricultural CO2 and rural revitalization from 2001 to 2020.
As shown in Figure 1, the rural revitalization curve in Henan Province exhibited an upward trend. From 2001 to 2004, the curve remained relatively flat. However, from 2004 to 2019, it showed a consistent and rapid growth trend, characterized by stability. In the period of 2019–2020, there was a slight decrease in the rural revitalization curve. This pattern can be attributed to the inclusion of the “Three Agricultural Questions” since 2004. As a result, local cities diligently implemented national policies, which acted as a driving force for the continuous growth of rural revitalization.
Based on Figure 2, Xinyang City, Nanyang City, and Zhoukou City ranked as the top three cities in Henan Province with high carbon footprint of agriculture. Jiyuan City, Hebi City, and Sanmenxia City ranked as the three cities with the lowest agricultural carbon emissions. This disparity can be attributed to the fact that Xinyang City, Nanyang City, and Zhoukou City have larger areas of cultivated land and a greater emphasis on agricultural development. Consequently, they tend to consume more fertilizers and pesticides, resulting in higher agricultural carbon emissions. Conversely, Jiyuan City, Hebi City, and Sanmenxia City may have a different agricultural composition, leading to lower carbon emissions in this sector. Furthermore, by referring to other figures, we observe that some cities exhibited a relatively stable trend, such as Hebi City, Sanmenxia City, and Jiyuan City. Conversely, cities like Zhengzhou City, Luoyang City, and Jiaozuo City exhibited a tendency of initially growing followed by declining. Finally, cities like Nanyang City, Xinyang City, and Zhoukou City experienced a significant initial increase followed by a subsequent decrease in agricultural carbon emissions.
[image: Map of a region divided into several colored areas representing average CO2 levels, ranging from 17.33 to 747.54 tons. Charts are positioned around the map, showing CO2 trends for various locations over time. Each area and graph is labeled with place names like Zhengzhou and Luoyang. A compass rose and scale bar indicate orientation and distance.]FIGURE 2 | Spatial and temporal trend of agricultural carbon emissions.
The Equal Interval method was employed to classify the level of rural revitalization, as illustrated in Figure 3. The rural revitalization level in Henan Province was relatively low in 2001. However, over time, the level of rural revitalization improved. Specifically, by 2005, the eastern part of Henan Province showed an elevated level of rural revitalization. By 2010, the southwestern region of Henan Province exhibited an elevated level of rural revitalization. During the year 2015, the southern and central areas of Henan Province reached a notable extent of rural revitalization. Finally, in the year 2020, the southwestern, eastern, and central cities of Henan Province demonstrated a notable extent of rural revitalization. This shift at the level of rural revitalization can be attributed to the varying levels of importance placed on rural development by local governments. Additionally, different regions possess distinct natural endowments, contributing to the disparities in rural revitalization and development.
[image: Series of five maps labeled A to E showing the level of rural revitalization from 2001 to 2020 in a region. Darker green indicates higher revitalization levels, with progression over years becoming more prominent, particularly by 2020. A scale shows categories ranging from less than 0.10 to over 0.60. A north arrow and scale bar representing 200 kilometers are included.]FIGURE 3 | Spatial pattern of rural revitalization.
According to Figure 4, the worldwide Moran’s I index for total greenhouse gas emissions from agriculture in the region of Henan Province showed a consistently positive trend from 2001 to 2020. The index showed a variable growth pattern, starting at 0.264 in 2001 and reaching 0.275 in 2020. This finding indicates that the spatial dispersion of agricultural carbon footprint located in Henan Province was not random. Instead, it displayed significant spatial agglomeration characteristics. Furthermore, the degree of spatial agglomeration has progressively increased, suggesting a content of carbon footprint of agriculture in specific areas.
[image: Line chart displaying Moran's I and Z values from 2000 to 2020. Moran's I values fluctuate between 0.15 and 0.3, peaking in 2004. Z values remain steady around 2.1, slightly increasing throughout the period.]FIGURE 4 | Global Moran’ I of agricultural carbon emissions 2001–2020.
In accordance with Rangel et al. (Rangel et al., 2010), the Moran diagram is commonly accustomed to explore the spatial association pattern of a specific variable among neighboring cities in a sample region. In this study, agricultural carbon footprint data from cities in Henan Province were selected for the years 2001–2020. A local Moran scatter plot was then created to analyze the spatial agglomeration variations in carbon emissions from agriculture within this group of cities. Then, according to the Moran scatter plot of agricultural carbon emissions, cities were categorized into four quadrants: High-High level, Low-High level, Low-Low level, and High-Low level, displayed in Table 3.
TABLE 3 | Spatial agglomeration of agricultural carbon emissions in cities of Henan Province.
[image: A table compares city classifications for the years 2001 and 2020 across four categories: H-H, L-H, L-L, and H-L. In 2001, H-H includes Zhumadian, Xinyang, Zhoukou, Shangqiu, and Nanyang. L-H lists Luohe, Xuchang, and Pingdingshan. L-L has Sanmenxia, Hebi, Jiyuan, Jiaozuo, Luoyang, Zhengzhou, Puyang, Kaifeng, and Anyang. H-L includes Xinxiang. In 2020, H-H remains the same. L-H includes the same cities plus Zhengzhou, Puyang, and Hebi. L-L lists Jiyuan, Jiaozuo, Luoyang, Sanmenxia, and Kaifeng. H-L includes Anyang and Xinxiang.]Table 3 indicates that, in general, there was a dominant presence of high and low concentration in 2001, accounting for 94.44% of the total. In 2020, the dominance shifted to high agglomeration, low agglomeration, and low agglomeration, accounting for 88.89% of the total. This observation suggests spatial polarization characteristics in urban carbon footprint of farming within the province of Henan.
In the year of 2001, the cities in the first quadrant (H-H) including Zhumadian, Xinyang, Zhoukou, Shangqiu, and Nanyang exhibited heightened carbon footprint from agriculture. Furthermore, he nearby cities had enhanced agricultural greenhouse gas emissions. This indicates that these urban areas contribute to the agricultural carbon footprint of adjacent cities. Luohe, Xuchang, and Pingdingshan were situated in second quadrant (L-H), suggesting that these urban areas had lower agricultural carbon emissions themselves, but the surrounding cities had higher emissions. Additionally, the surrounding cities had spillover effects on the agricultural carbon emissions of Luohe, Xuchang, and Pingdingshan. The urban areas within the third quadrant (L-L), including Sanmenxia, Hebi, Jiyuan, Jiaozuo, Luoyang, Zhengzhou, Puyang, Kaifeng, and Anyang, had lower agricultural carbon emissions both within the cities themselves and in the surrounding cities, with no significant spillover effects. Xinxiang was located in the fourth quadrant (H-L), indicating that Xinxiang had high Carbon footprint of agriculture. Conversely, surrounding cities had lower emissions. Xinxiang Played a crucial role in driving agricultural greenhouse gas emissions in the surrounding cities. Compared to 2001, the high-concentration pattern remained unchanged in 2020. However, in 2020, Zhengzhou, Puyang, and Hebi shifted from the low-low clustering pattern to the low-high agglomeration pattern, indicating a rise in greenhouse gas emissions in the cities encircling them. Anyang shifted from a low-low agglomeration form to a high-low agglomeration form. This indicates an increase in Anyang’s carbon footprint of agriculture, efficiently promoting farming-related carbon emissions locally.
4.2 Overall regression analysis
The analysis of carbon footprint of agriculture revealed significant spatial dependency, leading to the construction of a spatial econometric approach to examine the consequence and spatial effects regarding rural revitalization on carbon footprints in agriculture Several tests, including the Hausmann test, LM test, LR test, Wald test, were conducted to evaluate the methodology. The conclusions indicated that the regional fixed effect model was the most suitable for analysis, and it was not feasible to simplify the spatial Dubin model into a spatial lag model or spatial error model. Therefore, a region-fixed Spatial Durbin model was adopted. The outcomes are shown in Table 4.
TABLE 4 | Results of Durbin model.
[image: Table displaying variables with coefficients for two models, Main and Wx. Variables include rural revitalization, economic urbanization, urbanization of population, land urbanization, industrial structure, cultivated land scale, intensity of fixed asset investment of rural households, and investment in fixed assets in primary industry. Main model shows positive and negative coefficients with significance levels indicated by asterisks. Wx model presents similar variables with varying coefficients. Key metrics below include rho, number of observations, and R-squared. Significance levels are noted with asterisks.]Regarding the main explanatory variable, the coefficient of rural revitalization was found to be significantly favorable at the 1% level. This suggests that countryside revitalization has a significant contribution to carbon emissions. This finding is consistent with the results of Zhou et al. (Zhou et al., 2022), which revealed a rise in emissions per capita in rural areas during the rural revitalization process in China. This may be attributed to the promotion of agricultural mechanization and increased mechanization levels through rural revitalization. Mechanization shows a favorable influence on agricultural carbon footprint (Guo et al., 2022). Furthermore, rural revitalization may lead to increased fertilizer usage, thereby boosting agricultural carbon footprint.
In relation to control variables, urbanization was found to possess a significant effect on reducing carbon footprint from agriculture. This finding contradicts the conclusion of Magazzino et al. (Magazzino et al., 2023), which may be due to differences in the research scope and regional heterogeneity, leading to variations in the results. Economic urban expansion, through the advancement of non-agricultural industrial sectors, has facilitated the advancement of green and low-carbon technologies, thus minimizing carbon footprint from agriculture. Population urbanization has led to rural labor migration to urban areas, resulting in more efficient management of rural land and a reduction in agricultural carbon emissions. Land urbanization, characterized by urban expansion and transforming farmland into urban construction land, has also made a contribution to the overall decrease in carbon footprint of agriculture by reducing the total agricultural land area.
The scale of cultivated land was found to have a substantial positive effect on carbon footprint of agriculture in Henan Province at a significance level of 5%, which aligns with the finding of Wang et al. (Wang et al., 2022). Larger-scale farming operations tend to utilize more agricultural equipment, which positively influences carbon footprint of agriculture. The intensity of fixed asset investment of rural households was substantially negative at 1% level. This result is inconsistent with the finding of Lin (Lin and Xu, 2018), possibly attributed to variations in research scope, resulting in disparities in the outcomes. This suggests that rural households’ fixed asset investment, which often prioritize the use of green production machines, effectively curbs carbon emissions from agriculture. Additionally, fixed investment in the primary industry had a significant positive effect on agricultural carbon footprint at a 1% level. This can be attributed to the increase in fixed investment in the primary industry, which promotes agricultural mechanization, leading to higher agricultural electricity consumption and diesel usage, consequently boosting agricultural carbon emissions.
4.3 Comparative analysis about spatial effects
The direct, indirect, total effects of the core explanatory variable (rural revitalization) and control variables on agricultural carbon footprint are presented within Table 5. Regarding the core explanatory variable, an increase of one unit in the degree of rural revitalization was found to lead to a significant increase of 690.730 units in agricultural carbon footprint within the locality. Additionally, agricultural carbon footprint in nearby regions also increased by 550.450 units, passing the significance analysis at 1% level. The evidence suggests that rural revitalization has a significant impact on spatial spillover effects and hypothesis 2 is confirmed. These findings indicate that rural revitalization has both a direct effect on agricultural carbon footprint in the locality and an indirect effect through spillover effects on neighboring areas. The increase in agricultural carbon footprint can be attributed to the expanded use of fertilizers and agricultural machine in rural revitalization efforts. Fertilizers contribute to the release of N2O emissions into the air, while mechanized operation leads to a greater utilization of diesel and gasoline in agriculture, resulting in increased agricultural greenhouse gas emissions. Furthermore, when the extent of rural revitalization improves in a particular region, it serves as a demonstration effect for neighboring areas, prompting them to also increase their level of rural revitalization and subsequently boosting carbon emissions from agriculture. In summary, rural revitalization has a notable favorable influence on both the region itself and its neighboring areas in terms of agricultural carbon footprint.
TABLE 5 | Decomposition of the influence of explanatory variables on agricultural carbon footprint.
[image: Table displaying variables affecting economic factors with their direct, indirect, and total effects. Significant variables include rural revitalization, economic urbanization, urbanization of population, and others, with statistical significance noted by asterisks. Observations total 360 with an R-squared value of 0.6603.]The control variables in this research have shown interesting effects on agricultural carbon footprint.
4.3.1 Economic urbanization
Increase of one unit in economic urbanization led to a reduction of 5.299 units in local agricultural carbon footprint. However, it also resulted in an increase of 7.375 units in agricultural carbon footprint in adjacent areas. It suggests that when the non-agricultural economy in a region flourishes, the local agricultural sector may weaken, leading to a shift in demand for agricultural products to neighboring areas. This, in turn, promotes agricultural development in the neighboring areas and increases their carbon emissions.
4.3.2 Population urbanization
An increase of one unit in population urbanization resulted in a reduction of 2.685 units in local agricultural carbon emissions. However, it also led to an increase of 11.192 units in agricultural carbon emissions in neighboring areas. This indicates that urbanization can help curb local agricultural carbon footprint, but it holds a promoting influence on agricultural carbon footprint in neighboring areas. The higher level of urbanization in a region attracts labor from neighboring areas, where the rural labor force may still rely on outdated and extensive farming methods, contributing to increased carbon emissions in agriculture.
4.3.3 Land urbanization
The total consequence, direct consequence, and indirect consequence of land urbanization were all significantly negative. This may be influenced by the competition and cooperation among neighboring governments. An increase in land urbanization in the local region also leads to a growth in neighboring areas, thereby further inhibiting carbon emissions in the neighborhood. This exhibits a notable detrimental overflow effect.
4.3.4 Industrial structure
The total consequence, direct consequence, and indirect consequence of industrial structure were all unfavorable, but indirect consequence was significantly higher rather than direct consequence. The development of the agricultural economy stimulates technological progress, which flows into neighboring areas and reduces carbon emissions in agriculture. This suggests that advancements in farming technology can hold a favorable effect on reducing agricultural carbon footprint.
4.3.5 Cultivated land scale
The total consequence, direct consequence, and indirect consequence of cultivated land scale were all positive, but only the direct consequence was statistically significant. This implies that enlarging the magnitude cultivated land in the local vicinity hold a positive effect on reducing agricultural carbon footprint, but the indirect consequence and overall consequence were not significant.
4.3.6 Rural household fixed assets investment intensity
The direct effect of rural household fixed asset investment intensity was significantly negative, indicating that investment behavior in advanced farming concepts among local farmers can help reduce local agricultural carbon footprint. However, the indirect consequence was positive significantly, suggesting that the spread of farming ideas across administrative lines is limited, and neighboring areas are less influenced by changes in farming practices in the studied region.
4.3.7 Fixed asset investment in the first industry
The direct effect of fixed asset investment in the first industry was positive, while the indirect effect was significantly negative. This suggests that increasing fixed asset investment in the first industry promotes energy use in agriculture, potentially contributing to higher carbon emissions. However, neighbors may complement each other in terms of learning and adopting green technologies, leading to a net reduction in agricultural carbon emissions.
Overall, these findings highlight the complex interplay between different factors and their effects on agricultural carbon emissions. It emphasizes the importance of considering various socioeconomic and environmental factors when formulating strategies to mitigate carbon emissions in agriculture.
4.4 Analysis of intermediate effect
According to Wen et al. (Wen et al., 2004), they employed an intermediate effect model to investigate the process and mechanism of rural revitalization on agricultural carbon footprint. Farming GDP and mechanical technological development were chosen as intermediate variables. The findings are summarized in Tables 6, 7.
TABLE 6 | Intermediate effect model (the level of mechanical technological progress as the intermediate variable).
[image: Table comparing two models: Model 1 for mechanical technological progress, and Model 2 for agricultural carbon emission. Variables include rural revitalization (2,293.729 for Model 1, 495.314 for Model 2), mechanical technological progress (0.107 for Model 2), control variables, R-squared values (0.9006 for Model 1, 0.9643 for Model 2), and fixed effects (control for both models). Significance levels are noted, with asterisks denoting p-values.]TABLE 7 | Intermediate effect model (agricultural GDP as the intermediate variable).
[image: Table comparing two models: Model 1 focuses on Agricultural GDP, and Model 2 on Agricultural carbon emission. Both models include Rural revitalization, control variables, and fixed effects. Model 1 shows a significant impact from Rural revitalization with a coefficient of 792.419 at significance level p < 0.01, and an R-squared of 0.8607. Model 2 presents a coefficient of 378.566 for Rural revitalization and 0.458 for Agricultural GDP, with R-squared 0.9811, both significant at p < 0.01.]Table 6 shows the outcomes of the model, including the coefficient estimates and statistical significance of the variables. It shows the direct relationships between rural revitalization, agricultural GDP, mechanical technological progress, and agricultural carbon footprint. The coefficients indicate the magnitude and the path of the relationships.
Model (1) shown in Table 6, rural revitalization has a substantial favorable impact on mechanical technological progress with a parameter of 2,293.729, indicating that rural revitalization promotes advancements in mechanical technology. Model (2) reveals that rural revitalization hold a significant positive influence on agricultural carbon footprint with a coefficient of 495.314. This suggests that rural revitalization contributes significantly to agricultural carbon emissions. Additionally, mechanical technological progress is found to hold a significant favorable influence on agricultural carbon footprint with a parameter of 0.107. This implies that advancements in mechanical technology promote agricultural carbon emissions. Therefore, the action pathway for mechanical technological progress is as follows: Rural revitalization ↑→ Mechanical technological progress ↑→ Agricultural carbon emissions ↑.
As for model (1) of Table 7, rural revitalization holds a favorable influence on agricultural GDP with a coefficient of 792.419, indicating that rural revitalization promotes an increase in agricultural GDP. Model (2) shows that rural revitalization significantly contributes to agricultural carbon footprint with a parameter of 378.566. Furthermore, agricultural GDP hold a positive influence on agricultural carbon footprint with a parameter of 0.458. This indicates that farming GDP significantly promotes agricultural carbon emissions. Hence, the action pathway for agricultural GDP is as follows: Rural revitalization ↑→ Agricultural GDP ↑→ Agricultural carbon emissions ↑.
The study also utilized bootstrap sampling and Sobel analysis to investigate the intermediate effects of mechanical technological progress and agricultural GDP. The results of the Sobel analysis confirmed the findings from Tables 6, 7, showing similar significance levels for the intermediate model. Additionally, the bootstrap sampling results supported the presence of a significant intermediate effect. Therefore, we conclude that the assessment of the intermediate effect model is robust.
4.5 Robustness test
This study followed the approach of He et al. (He et al., 2022) to address the issue of endogeneity in the analysis of rural revitalization. The backward treatment method was applied to test the endogeneity. The Spatial Durbin model was employed, and the residual term was extracted. This residual term was then included as a new independent variable in the Durbin model. The p-values of the residual coefficient were found to be 0.377, 0.382, 0.386, 0.389, and 0.373, indicating that the model did not suffer from endogeneity.
To ensure the reliability of the spatial model findings, the research utilized the replacement space weight matrix method for robustness analysis. The economic geography nested matrix was replaced with the inverse distance square matrix. The results, as shown in Table 8, revealed that the signs of the core explanatory variables remained the same as in Table 4. These findings indicate that the spatial effect analysis conducted in this study exhibited a certain level of robustness.
TABLE 8 | Robustness test of replacing weight matrix.
[image: Statistical table showing effects of various variables on rural revitalization. Columns include Main, Wx, Direct effect, Indirect effect, and Total effect with associated coefficients and t-values. Variables analyzed are rural revitalization, economic urbanization, urbanization of population, land urbanization, industrial structure, cultivated land scale, intensity of fixed asset investment of rural households, and investment in fixed assets in primary industry. Significant p-values marked as *** (p < 0.01), ** (p < 0.05), * (p < 0.1). Observations: 360, R-squared: 0.7020.]4.6 Heterogeneity analysis
The accelerated evolution of the agricultural economy has generated an increasing imbalance in economic development among regions. This imbalance is reflected in various aspects of rural life, including agricultural economy, rural culture, and resources allocation in agricultural production. These factors, in turn, impact agricultural carbon emissions. This study focused on different levels of rural revitalization and divided the sample into low, medium, and high levels of rural revitalization. By regressing the data based on these groups, the study aimed to determine the consequences of rural revitalization regarding agricultural carbon footprint and examine the heterogeneity.
The results, as presented in Table 9, showed that for areas with low-level rural revitalization, there was a positive but insignificant impact on agricultural carbon emissions. This suggests that the impact of rural revitalization on agricultural carbon footprint is minimal when the degree of rural revitalization is insufficient. However, when countryside revitalization reaches a medium level, it notably stimulates the growth of agricultural carbon footprint, which matches with the regression results of the Durbin model mentioned earlier. Interestingly, when the level of rural revitalization further improves, the effect on agricultural carbon emissions shifts to a negative state at the 1% level. It indicates that the association between rural revitalization and agricultural carbon footprint is not straightforward and hold an inflection point effect. Moreover, the study found that with further improvement in rural revitalization, it can effectively curb agricultural carbon emissions.
TABLE 9 | Influence of diverse levels of rural revitalization on agricultural carbon footprint.
[image: Table comparing low, medium, and high-level rural revitalization impacts across various variables. It includes metrics like economic urbanization, land and population urbanization, cultivated land scale, and fixed asset investments. Significance levels are indicated by asterisks, with observations and R-squared values provided for each category.]Overall, these findings demonstrate the complex and nonlinear correlation between rural revitalization and agricultural carbon footprint, emphasizing the criticality of reaching an optimal level of rural revitalization to efficiently manage carbon footprint within the farming sector.
5 CONCLUSIONS AND POLICY SUGGESTIONS
5.1 Conclusion
On the basis of study on panel data for 18 prefecture-level cities in Henan Province from 2001 to 2020, the study examined the correlation between rural revitalization and agricultural carbon footprint. The analysis used systematic calculations to determine agricultural carbon footprint and employed Moran’s index to identify spatial agglomeration patterns in these emissions. Additionally, a Spatial Durbin model was utilized to analyze the process and spatial effects of rural revitalization on agricultural carbon footprint. The analysis demonstrated that the global Moran’s index analysis revealed a significant positive spatial autocorrelation in agricultural carbon footprint of Henan Province, indicating clustering patterns. The initial findings of analysis indicated that rural revitalization has a significant positive influence on agricultural carbon footprint. Intermediate effect model showed that rural revitalization promotes a growth in carbon footprint by stimulating farming GDP and mechanical technological progress. The spatial effect decomposition results demonstrated that rural revitalization has a notable spatial spillover effect. Improvements in the local rural revitalization degree effectively encourage the growth of agricultural carbon footprint in adjacent regions. The analysis about heterogeneity revealed an inflection point influence of rural revitalization on agricultural carbon footprint. Specifically, low and medium-level rural revitalization positively influenced carbon emissions, while further improvements in rural revitalization had a detrimental suppressive impact on these releases. These findings highlight the spatial characteristics and effects of rural revitalization on agricultural carbon footprint. It underscores the importance of considering spatial dynamics and optimizing rural revitalization strategies to efficiently address carbon footprint in agricultural areas.
5.2 Policy suggestions
Drawing from the research results, the subsequent recommendations are proposed.
	(1) Improving farming patterns according to local conditions: Consider economic, social, and environmental factors when implementing the rural revitalization strategy. Guide farmers to optimize farming patterns to mitigate the potential increase in agricultural carbon emissions resulting from rural revitalization. For example, promote the use of organic fertilizers to reduce greenhouse gas emissions, encourage the adoption of biotechnology and biological pest control methods, and provide subsidies for low-carbon agricultural machinery and soil testing formula fertilization.
	(2) Accelerating the advancement and application of eco-friendly agricultural core innovations: Recognize the role about agricultural GDP and mechanical technological progress in the correlation between rural revitalization and agricultural carbon footprint. Invest in exploration and advancement of eco-friendly core innovations to reduce emissions. Promote the adoption of technological advancements to mitigate agricultural carbon emissions.
	(3) Promoting inter-regional exchanges and cooperation: Recognize the spatial spillover effect of rural revitalization about neighboring areas’ agricultural carbon emissions. Facilitate the exchange and cooperation between different regional agricultural departments to share technology and experiences. Accelerate the spread of agricultural technology and promote the adoption of sustainable farming practices to decrease carbon emissions.
	(4) Enhancing the degree of rural revitalization: Understand the inflection point influence of rural revitalization on agricultural carbon footprint. When the rural revitalization’ level reaches a certain threshold, its impact changes from positive promotion to negative inhibition. Therefore, focus on advancing the level of rural revitalization through the Rural Revitalization Strategy, which contributes towards the decrease of agricultural carbon footprint.

By implementing these suggestions, it is possible to effectively address the carbon footprint within the farming industry while promoting rural revitalization and ensuring sustainable development.
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The global economy is undergoing a transformative shift propelled by continuous technological advancements. This digital revolution has ushered in a new era characterized by the pervasive influence of the digital economy. Notably, the inherent “green” attributes of the digital economy, such as reduced marginal costs and diminished environmental impact, have injected fresh momentum into the green transformation of the industrial sector. Using spatial econometric model, we examine the impact of the digital economy on the green transformation of the manufacturing industry using panel data for 283 prefecture-level Chinese cities from 2011 to 2019. We first calculate the level of the manufacturing industry’s green transformation in this paper according to the Slack-Based Measure model. The green transformation of the industrial sector is facilitated by the digital economy in both the eastern and central regions, as revealed by heterogeneity analysis based on geographical areas. The moderating effect analysis reveals a distinct negative moderating impact of industrial structure upgrading and industrial agglomeration. Additionally, the threshold effect tests indicate significant nonlinear features in the influence of industrial structure upgrading on the green transformation of the manufacturing industry.
Keywords: digital economy, manufacturing industry, green transformation, industrial structure upgrading, industrial agglomeration

1 INTRODUCTION
The world’s economy nowadays is in the midst of a new era of digital transformation, representing a burgeoning industrial revolution driven by advanced digital technologies that are rapidly expanding worldwide. Specifically, the average score of the Digital Economy Development Index increased from 45.33 in 2013 to 57.01 in 2021, signifying a gain of 26%1, showing a general upward trend in the global digital economy development since that year. In recent years, China has experienced remarkable development in its digital economy, driven by a combination of favorable government policies, technological innovation, and a large and digitally savvy population. As far as the advantages of the digital economy are concerned, traditional industries may be successfully empowered by the typical characteristics of the digital economy, which include permeability, platformization, and sharing, boosting the effectiveness of resource utilization and promoting sustainable growth. Leveraging the next-generation of information technology innovation and the availability of data resources, the digital economy can deeply integrate with key emission-intensive sectors such as electricity, construction, and transportation, driving industrial structural upgrades and agglomeration, optimizing energy use and costs in traditional industries, reducing the consumption of energy and lowering carbon emissions intensity (Zhang and Zhao, 2023). Digital technologies also enable intelligent risk prediction, decision control management, and demonstrate high efficiency and feasibility for enterprises. The digital economy simultaneously reduces emission reduction costs and enhances environmental protection benefits, driving the transition from extensive to precise, from mechanization to intelligent transformation and reshaping, and serving as a significant driving force for green transition. For instance, in the steel industry, which accounts for the largest carbon emissions in the industrial sector, digital technology enables deep integration of data elements and modern industry, achieving intelligent control throughout the production line in terms of energy efficiency, quality, and environmental protection. And data modeling may be used to optimize processes using digital technologies like AI and big data, which reduces costs (Lo et al., 2022).
The positive externalities of the digital economy on the green transformation of the manufacturing sector have been especially prominent. Compared with the traditional economy, it is characterized by platformization, openness, and networking. In the meantime, the digital economy utilizes information technologies like the Internet and big data. It forms a model called “data, algorithm, and computing power". With the support of this model, it is possible to balance intermittent renewable energy sources, such as solar and wind power, in real-time while also overcoming geographical and temporal constraints. By facilitating the flow of all kinds of resource elements, the digital economy’s evolution has substantially increased the resource utilization rate and production efficiency. And it helps businesses operate intelligently, improves the efficiency of decision-making, and enables better economic returns. Digital technologies can also assist and guide more capital flow towards enterprises using low-carbon technologies, effectively addressing the financing challenges in green industries. With characteristics such as spillovers and sharing, digital technologies allow companies to overcome temporal and spatial barriers to learn new technologies and knowledge globally, driving technological progress (Lo et al., 2022). Digital technologies optimize established industrial supply networks, value chains, and manufacturing processes, enhancing organizational operational effectiveness and thus driving industrial upgrading. And digital technologies play an essential contribution in improving energy and resource utilization efficiency, promoting the utilization of renewable energy sources, increasing the efficiency of production and distribution of society’s goods, or decreasing the energy and raw material demand for human activities and communication by dematerializing them. For instance, they enable key industries such as electricity, transportation, manufacturing, and construction to implement green supply chain management through cloud computing and intelligent networking, reducing energy consumption in production processes while achieving quality enhancement and efficiency improvement. It may be stated that the digitalization and sustainable growth of the digital economy have profoundly empowered conventional sectors. Smart energy Internet of Things platforms, intelligent energy-saving buildings, and green factories have become key directions for digital enterprises to support environmentally friendly growth.
One key departure from existing research lies in our emphasis on the comprehensive flow of resource elements facilitated by the digital economy’s evolution. This, in turn, significantly amplifies resource utilization rates and production efficiency. The transformative power of the digital economy extends beyond operational enhancements; it enables intelligent business operations, improves decision-making efficiency, and yields superior economic returns. A critical contribution of our study is the identification of the role played by digital technologies in guiding capital flow towards enterprises employing low-carbon technologies, effectively addressing financing challenges in green industries. In essence, our study underscores the profound empowerment of conventional sectors through the industrial structure upgrading and industrial agglomeration. This nuanced perspective distinguishes our research and underscores its importance in understanding the multifaceted contributions of the digital economy to the green transformation of the manufacturing sector.
The following three questions are the focus of this study: Firstly, is the manufacturing sector’s transition to a greener economy being driven by the digital economy? Secondly, upon confirmation of the impact, what are the underlying mechanisms? Lastly, what is the heterogeneity of the digital economy’s influence on the green transition in manufacturing? For the manufacturing industry to fully benefit from the digital economy’s contribution to green transformation and to advance sustainable development, it is crucial to conduct research on these issues. The remainder of this paper is organized as follows. Section 2 is Literature Review and Theoretical Hypotheses. Section 3 presents the Model Construction. Section 4 explains the empirical results, including the benchmark regression results, robustness check, and heterogeneity analysis. Section 5 focuses on the mechanism analysis, and Section 6 concludes the paper.
2 LITERATURE REVIEW AND THEORETICAL HYPOTHESES
2.1 Digital economy and the green transformation of the manufacturing industry
The majority of the literature currently available on green manufacturing transformation development and the digital economy focuses on determining the level of green manufacturing transformation development from the perspective of green total factor productivity (GTFP), green innovation as well as green economic growth. On the basis of the theories of ecological modernization and global value chains, Meng and Zhao (2022) conducted research on the impact of the green economy on China’s GTFP in the manufacturing sector. The findings indicate that the digital economy has a favorable spatiotemporal influence on GTFP and that its embeddedness in the GVC positively modifies this relationship. In Chen et al.'s (2023) investigation of the impact of the digital economy on GTFP in the Chinese forestry industry, they employed dynamic panel models, mediation models, and dynamic spatial Durbin models. In their findings, they found that by upgrading the industrial structure and green technology innovation, the digital economy has the ability to enhance the GTFP of forestry. Gaglio et al. (2022) conducted research using data from small enterprises in South Africa and found that the digital economy boosts productivity in the manufacturing industry. In their study of the effects of the digital economy on the green transformation of the manufacturing sector, Ran et al. (2023) concentrated on the mechanism of natural resource utilization. The research demonstrated substantial variability in how the use of natural resources and the potential influence of the digital economy on the move towards environmentally friendly development of various industries. Furthermore, the manufacturing sector’s green productivity, as well as green economic growth, are both significantly impacted by the digital economy. Evidence from China has been demonstrated that the convergence of the Internet and new energy technologies and digital transformation significantly contribute to green economic development (Wang et al., 2022), and via technological innovation, the digital economy may increase the effectiveness of the sustainable economy (Li et al., 2022). The effectiveness of green development was assessed by Luo et al. (2022) using a random nonparametric data envelopment analysis model, and the effect of the digital economy on the effectiveness of green growth was investigated using a mediation model. They found that the most crucial mechanism factors are the upgrading of the industrial structure, the growth of human capital, and technical innovation. Chen et al. (2015) compared the differences in green development between direct digital manufacturing and other traditional manufacturing paradigms. The research indicated that direct digital manufacturing can reduce energy-intensive raw material usage as well as fuel consumption related to transportation, thus enabling a more effective manufacturing green transformation.
In addition, there are several studies have focused on the effect of digital transformation on green transformation in the manufacturing industry, mainly from the perspective of environmental pollution. Firstly, air pollution including smog and SO2 emissions may be greatly reduced thanks to the expansion of the digital economy (Wan and Shi, 2022), and this impact shows significant regional heterogeneity depending on the level of manufacturing industry agglomeration (Wu et al., 2023). Che and Wang (2022) discovered that by encouraging technology innovation and optimizing resource allocation, the growth of the digital economy could substantially mitigate smog pollution. And the effect of the establishment of an integrated experimental zone with big data on atmospheric pollutants and carbon emissions was empirically analyzed using the difference-in-differences method by Hu (2023). Their findings demonstrate that measures related to the digital economy exhibit an ongoing dampening effect on pollution and carbon emissions. Evidence from heavily polluting manufacturing industries in China suggests that there is a notable U-shaped influence of digital transformation on firms' environmental performance, and it is moderated by environmental information disclosure (Zhang and Zhao, 2023). Secondly, digital finance also performs an essential function in industrial pollution in the manufacturing sector. Qiu et al. (2023), using samples of heavily polluting firms, found that digital finance can effectively make improvements in the environmental behavior of these firms. According to a mechanism study, the impacts of innovation and financing greatly moderate the influence of digital finance on industrial performance in the environment. Research by Du and colleagues (2022) demonstrated that as digital finance improves, it increasingly mitigates local environmental pollution. Through fostering technological innovation, driving industrial upgrades, and encouraging rational industrial structuring, digital finance can help alleviate environmental degradation. Moreover, digital finance can stimulate internal capital flow within enterprises and intensify market competition to promote green investments (Ding et al., 2023).
Hypothesis 1: The digital economy growth in the city follows a “U”-shaped curve relationship on the influence of the green transformation of urban manufacturing. Specifically, the initial increase in digital economy development can negatively affect the green transformation of the manufacturing industry, but once it reaches a certain maturity level, it will begin to support the green transformation.
2.2 Digital economy, industrial structure upgrading and the green transformation of manufacturing industry
Promoting green development is one of the main objectives of upgrading industrial structure, which is a crucial component of this process. By adjusting the industrial structure, an industry upgrade can decrease the proportion of heavily polluting industries and increase the proportion of green industries, reducing energy consumption and environmental contamination and promoting sustainable development (Feng and Yuan, 2016; Pan et al., 2022). The Spatial Durbin Model (SDM) was employed by Su and Fan (2022) to investigate the influence of industrial structure upgrading on environmentally friendly development. The findings demonstrated that although industrial structure upgrading exerts a major negative impact on sustainable growth, rationalizing industrial structure has a considerable beneficial impact. Empirical research from China’s agricultural sector suggests that the aggregation of rural industries and upgrading the industrial structure tend to exert a non-linear impact on sustainable agricultural growth, and both exhibit threshold effects (Zhang et al., 2022). According to previous research by Qiu et al. (2023), regional agglomeration and fluctuation tendencies can be seen in both green innovation and industrial structure upgrading. While the indirect and overall impacts of industrial structure overlay are both notably detrimental for green innovation, the direct effect is significantly beneficial.
Digital industrialization and industrial digitalization are two characteristics of the digital economy that support the growth and integration of new and old industries, gradually adjusting the existing industrial structure towards rationalization and sophistication (Carlsson, 2004). The change in the quality of conventional production elements may be facilitated by the digital economy. And conventional sectors often depend on labor as well as capital to be the main production factors, while the digital economy, taking data elements as the primary production factors, incorporates these high-end production factors into various stages of production and consumption, changing and optimizing the input-output structure of the traditional economic system. The new digital information technology significantly promotes information dissemination and innovation, improves the information exchange efficiency of the entire production line, saves production resources, controls innovation costs, facilitates digital management of enterprises, and promotes the transfer of conventional manufacturing elements from the secondary to the tertiary sectors (Teece, 2018). Data from listed manufacturing companies in China demonstrate that the innovation of digital technology contributes to the manufacturing firms' industrial upgrading (Lo et al., 2022). And the digital economy in terms of G7 countries is a vital contributor to technological innovation according to Yuan et al. (2021). The industrial structure upgrading caused by the digital economy is expected to exert a crucial impact on the manufacturing industry’s green transformation through channels such as energy consumption and carbon emissions. In the opinion of Xue et al. (2022), the growth of the digital economy encourages a rise in energy consumption, while concurrently enhancing the structure of its use. In the immediate timeframe, the principal factors impacting carbon emissions are the rise in energy usage and technological advancements that do not prioritize environmental sustainability. However, for the long-term perspective, it is the advancements in green technology and transitions in industrial structure that exert a more pronounced influence on carbon emissions. This shift underlines the importance of prioritizing environmentally friendly technologies and industries for long-term carbon emission reduction and sustainable development (Li and Wang, 2022; Yi et al., 2022). In addition, the green digital economy is steadily becoming a vital driver for low-carbon, sustainable growth, as stated by Zhang et al. (2022), who also stressed this point. They identified three key mechanisms that drive this transformation: industrial structure upgrading, technological innovation, and environmental governance.
Hypothesis 2a: Industrial structure upgrading has a “U-shaped" moderating effect in the relationship between the digital economy and the green transformation of the manufacturing industry.
Hypothesis 2b: On the basis of the industrial structure upgrading, the impact of digital economy development on the green transformation of the manufacturing industry exhibits a threshold effect.
2.3 Digital economy, industry agglomeration and the green transformation of manufacturing industry
Industrial agglomeration represents a crucial strategy for achieving regional green development as it integrates regional factors, achieves economies of scale, and generates agglomeration economies, thereby improving regional economic efficiency and pollution control (Wang et al., 2023). Studies already conducted have shown considerable spatial spillover effects between environmental pollution, ecological productivity, and the concentration of industries. Additionally, there is a notable inverted U-shaped association between industrial agglomeration and pollutant emissions as well as a remarkable U-shaped relationship between industrial agglomeration and ecological efficiency (Chen et al., 2020). In the meantime, industrial agglomeration exhibits a significantly inverted “N" shaped effect on air pollution, where air pollution initially decreases, then increases, and eventually decreases again with the deepening of industrial agglomeration (Hao et al., 2022). Furthermore, different levels and modes of agglomeration are likely to be associated with different environmental benefits. As industrial agglomeration continuously evolves, the balance between scale negative externalities (pollution effects) continues to strengthen (Shen and Peng, 2021). Additionally, by enhancing technical effectiveness and promoting technological change, industrial agglomeration might have an impact on the green growth of the manufacturing sector (Cheng and Jin, 2022; Yang et al., 2022).
The digital economy, facilitated by modern computer networks, exhibits significant innovative characteristics during its development. It can expand knowledge spillovers within and outside industries, drive the progress of technology and optimize the industrial structure, and contribute to the formation of manufacturing industry agglomerations within urban areas (Wang et al., 2022). On one hand, within the agglomeration area, the digital economy may enhance the production scale of large manufacturing enterprises within agglomeration areas, generating significant economies of scale, which in turn attract homogeneous manufacturing enterprises from outside the region to concentrate within the agglomeration area (Cui et al., 2023). The digital economy, on the other hand, also offers new opportunities to small-scale manufacturing enterprises in their initial stages, thus resulting in higher levels of manufacturing agglomeration. As a result, the digital economy growth will further contribute to the manufacturing sector’s spatial agglomeration (Chang et al., 2023). And the concentration of manufacturing undermines the carbon reduction benefits of digital trade, according to research by Wang et al. (2023), while agglomeration of productive service industries, manufacturing-productive service industry synergistic agglomeration, in addition to the carbon emissions trading pilot policies further strengthened the carbon emission reduction effect of digital trade. The research of Yan et al. (2023) pointed out that the growth of the digital economy effectively promotes urban and industrial agglomeration, and through harnessing green elements of the digital economy, it can reduce the intensity of carbon emissions and promote the development of green transformation.
Hypothesis 3a: The level of industrial agglomeration negatively moderates the relationship between digital economy development and manufacturing green transformation, following a “U-shaped" pattern.
Hypothesis 3b: Under the influence of industrial agglomeration, the impact of digital economy development on manufacturing green transformation exhibits a threshold effect.
3 RESEARCH DESIGN
3.1 Model construction
3.1.1 Spatial econometric model
By accounting for the spatial diffusion of undesired output in the dependent variable, the pollutants in an area can be categorized into three components: Pollutionct = Lct + Dit-Dct. In this equation, Pollutionct represents the pollutant observation amount in year t for city c. Lct refers to the actual emissions of pollutants in region c; Dit means the pollutants diffused to the local area from other regions; Dct does not directly contribute to the actual emission of pollution in this region because this part of pollutants has diffused to other areas (Shao et al., 2016). According to spatial econometric theory, Dit and Dct reflect the spatial dependence of pollution in various cities, indicating that neglecting spatial factors in studying pollution issues may lead to biased results (Cole et al., 2020). Furthermore, economic interconnections among cities have become increasingly close with the continuous improvement of unified markets, agglomeration of cities, and metropolitan areas, especially the continuous improvement of transportation conditions. Therefore, urban economic activities may have noticeable correlation effects in space. Moreover, existing studies also show competitive effects between economic decision-making and production activities in different regions of China, implying that geographically adjacent areas can influence local economic activities (Li and Li, 2020). Additionally, the development of inter-industry linkages and commodity trade has facilitated the free movement of production factors and more convenient trade of goods among regions, promoting spatial spillover effects. And the fact is that the digital economy, being the most dynamic area of economic development in China, has strengthened the interconnections among various economic and social domains across regions, indicating a significant spatial correlation in digital economic growth. Thus, this study utilizes spatial econometric models to analyze how the digital economy influences the industrial sector’s transition to a greener economy. Since spatial econometric models can be categorized into spatial Durbin model (SDM), spatial autoregressive model (SAR), and spatial error model (SEM), in this paper, the following spatial econometric models are constructed:
First, this study establishes a spatial error model with spatially correlated error terms:
[image: A mathematical equation for a model is depicted: \( Mg_{ir} = a_0 + a_1Di_{igr} + a_2Di_{ig} + a_3X_{ir} + \epsilon_r + \lambda W_{ir} + \lambda Ir \). This equation outlines the relationships among various variables, parameters, and coefficients.]
Second, we build a spatial autoregressive model that incorporates the dependent variable’s (Mgt) spatial lag term:
[image: Mathematical equation depicting a model: \( Mg_{it} = a_0 + \delta W Mg_{it} + a_1 Diq_{it} + a_5 Diq_{it-4} + a_3 X_{it} + e_{it} \) with the equation number (2).]
Lastly, by integrating both the spatial error term and the spatial lag term, this research creates a spatial Durbin model:
[image: Mathematical equation representing a model: Mg_{it} equals a_0 plus δW Mg_{i,t-1} plus α_1 Dig plus α_2 SDig_{it} plus α_3 X_{i,t-1} plus θ_1 W Dig_{it} plus θ_2 WX_{i,t-1} plus ε_{it}. Equation labeled as (3).]
In the above Eqs 1–3, Mgtit represents the dependent variable, denoting the level of green transformation in the city i’s manufacturing sector in year t. With the aim of evaluating the level of green transformation in the manufacturing sector, this study assesses the efficiency of green production in urban industrial enterprise. The variable “Digit” represents the growth of the city’s digital economy, and the coefficient α1 reflects its marginal impact on the manufacturing sector’s transition to a greener economy. A positive value for α1 means that the green manufacturing sector transition is supported by the growth of the digital economy; sDigit is the squared term of the digital economy; Xit represents a variety of factors under control that might affect how the manufacturing sector becomes green. W signifies the spatial weight matrix, and the disturbance terms μit and εit are thought to have independent and homogeneous distributions.
3.1.2 Moderating effect model
Building on the previous moderating effect analysis of industrial structure upgrading and industrial agglomeration level, this study further examines the role of the two in moderating the relationship between the digital economy and the manufacturing industry’s green transformation. Therefore, in this investigation, we construct a moderated effects model that incorporates the cross terms of the variables of moderation and the core independent variable of the digital economy. The specific construction model is shown below:
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In Eq. 4, M is the moderator variable, including the industrial agglomeration level as well as the degree of industrial structure upgrading; Dig*M and sDigit*M represent the interaction terms of the independent variable digital economy’s primary and quadratic terms of the digital economy and with the moderator variables constructed in this paper, respectively.
3.1.3 Threshold regression model
The digital economy may present a non-linear characteristic on the manufacturing green transformation in China based on the level of upgrading urban industrial structure and industrial agglomeration according to the theoretical analysis in the previous section. In the existing literature, researchers commonly have employed the group model for the purpose of investigating the non-linear association that exists between the two variables. Still, this approach is difficult to identify the process by which the digital economy influences the manufacturing industry’s transformation into a greener one. Given this, referring to the threshold regression model which was established by Hansen (1999), this study investigates if the digital economy will generate varying impacts on the manufacturing industry’s green transformation under the threshold of various degrees of industrial structure upgrading and industrial agglomeration. This study first sets up the traditional single threshold regression model:
[image: Equation showing a model: \(Mg_{it} = \alpha X_{it} + \beta_1 Dig_{it} \times I(T_{it} \leq \delta) + \beta_2 Dig_{it} \times I(T_{it} > \delta) + C + e_{it}\).]
In Equation 5, I(·) states that the indicator function; Mgtit is the status of the manufacturing industry’s green transformation in year t for city i, while X stands for the control variable; Digit characterizes digital economy level, which also serves as the core independent variable in this paper. At the same time, the threshold value is characterized by δ, the control variable coefficient is denoted by α, and T is the threshold variable. In addition, β1 and β2 represent the digital economy’s parameters for the influence of the manufacturing industry’s green transformation under different threshold levels, and εit ∼ (0, σ) is a random disturbance item. Considering the possibility of the double threshold, we construct a double threshold model. This article will not repeat the triple and above multiple threshold models. The double threshold model is shown in the Eq. 6:
[image: Equation showing \( Mg_{it} = \alpha X_{it} + \beta_1 Dig94 \times I(T_{it} \leq \delta) + \beta_2 Dig94 \times I(\delta < T_{it} \leq \overline{\delta}) + \beta_3 Dig94 \times I(T_{it} > \overline{\delta}) + C + \varepsilon_{it} \).]
Where δ1 and δ2 represent the threshold values; β1, β2, and β3 are the regression coefficients. Additionally, additional variables have identical definitions as in model (5).
3.2 Variable description
3.2.1 Dependent variable: manufacturing green transformation (Mgt)
This paper makes reference to existing studies to represent the status of green transformation at the urban manufacturing sector in terms of industrial green production efficiency. Green transformation typically refers to a fundamental and sustainable shift in economic activities, technologies, and practices toward environmental sustainability and the mitigation of climate change. Traditional data envelopment analysis models ignore the environmental costs of processes in which production takes place, resulting in biased assessments of efficiency. The SBM model constructed by Tone (2001) solved the problem of ignoring the input-output slack from traditional radial DEA models. As a result, in this research, we employ the SBM (Slack-Based Measure) model to assess the green transformation status of urban manufacturing. A selection of indicators for the inputs and outputs of the study can be found in Table 1. Among them, the fixed asset investment stock we have selected has been computed by taking into account the method of perpetual inventory. The required original data is the total investment in urban fixed assets.
TABLE 1 | Data selection and description.
[image: Table listing index selection, descriptions, and data sources. Categories include resource consumption, undesired output, and desired output. Descriptions cover investment, employment, water, electricity, emissions, wastewater, and output value. The data source is the China City Statistical Yearbook, EPS database (2012–2020).]3.2.2 Independent variable: digital economy (Dig)
Existing studies frequently utilize individual indicators, such as Internet penetration rate, mobile broadband, telephone usage, and digital financial accounts, to gauge the digital economy level (Asongu and Odhiambo, 2019; Mohd Daud et al., 2021). Nevertheless, the transformation of economic development in the direction of digitalization, being a novel economic form, is characterized by convergence and external economics. This illustrates that the digital economy is capable of influencing various aspects of economic development. Therefore, it is not straightforward to precisely and comprehensively assess the digital economy’s level solely through a single indicator or dimension. In summary, this paper considers both the city-level availability of relevant data and the necessity of ensuring a scientifically sound characterization of the digital economy level. And we measure the comprehensive digital economy level in terms of two aspects: digital financial inclusion and Internet development.
Precisely, drawing inspiration from the research concepts of Zhao et al. (2022) and Luo et al. (2022), the present research quantifies the level of Internet development at the city level through the utilization of four indicators: penetration of mobile phones, the Internet, relevant employment, and relevant output. The Internet penetration rate is measured by the number of broadband access subscribers to the Internet for every 100 people. In comparison, the mobile phone penetration rate is defined as the total amount of mobile phone subscribers for every 100 people. The relevant output situation is characterised by total telecommunication services per capita, and the relevant employment is represented by the percentage of persons employed in the field of software and computer services to the total employment in the city. As for the level of digital financial development, we adopt the “Peking University Digital Inclusive Finance Index” to measure the level of digital financial development. Additionally, the entropy method is employed in this study to establish a comprehensive indicator of digital economic growth. Furthermore, to make sure that the empirical results are robust, the present research also utilizes principal component analysis as a robustness analysis approach to calculate the digital economic development level.
3.2.3 Moderating and threshold variables: industrial development level
Industrial structure upgrading (Isu). The quantitative growth from the primary sector to the secondary and the tertiary sectors is merely one way to illustrate the development of industrial structure to an advanced level (Zhao et al., 2022), but also, more importantly, qualitatively transformed from labor-intensive to capital-intensive and technology-intensive. As a result, measuring the degree of industrial structural upgrading only from the perspective of quantity share would fail to capture the changes in labor productivity. Consequently, it is a “false high-level” (Ren et al., 2023). In view of this, this study comprehensively considers the dynamic changes in the quantitative and qualitative aspects of the process of industrial upgrading. Subsequently, in order to combine the two indications mentioned above into a complete index that measures the industrial structure’s level of upgrading, we choose to use the entropy weight approach. In particular, the industrial structure upgrading (Isu1) has been quantified through the industrial structure level coefficient, calculated as follows:
[image: Formula for calculating Isu1,i1: the summation from m equals 1 to 3 of Y_i1,m multiplied by m. The value of m is 1, 2, or 3. Equation labeled as 7.]
In formula (7), Yi, m, t signifies the percentage of the city i’s GDP that was accounted for by industry m during period t.
Moreover, in this study, the following formula is adopted for the measurement of the quality of industrial structural upgrading (Isu2):
[image: Mathematical equation for \( \text{ISU}_{it} \), where \( \text{ISU}_{it} = \sum_{m=1}^{3} Y_{i,m} \times LP_{n,u1} \). The equation is indexed by \( m = 1, 2, 3 \). Equation number (8).]
Where Yi,m,t represents the same meaning as Equation 7, and Lpi, m, t symbolizes the labor productivity of industry m in the city i in period t.
Industrial agglomeration (Ina). Existing studies mainly use the, E.G., index, spatial Gini coefficient, Herfindahl index, and location entropy to measure the industrial agglomeration level. Since location entropy can objectively reflect industrial agglomeration level, this paper takes reference from the research method of Wei et al. (2023) and then we choose two indicators, namely, the total amount of employees as well as the total employment within the region. And the industrial agglomeration level is measured by location entropy.
3.2.4 Control variable
In an effort to alleviate the endogenous problems due to omitted variables, this study has controlled other factors which may affect the urban manufacturing sector’s green transformation. In accordance with the research conclusions of the existing literature, this paper incorporates six indicators into the model as control variables: technological investment, urbanization, economic development, openness level, government intervention, and environmental regulation.
	(1) Technical investment (Tec). Indeed, technological progress plays a crucial role in enabling cities to implement the manufacturing sector’s green transformation. From the perspective of emission reduction, the increase in urban technology investment contributes to higher levels of technological progress and promote the green transformation of production technology in manufacturing enterprises, thereby reducing energy consumption and pollutant emissions (Omri, 2020; Wei et al., 2023). In the present research, the amount of urban expenditure on science and technology has been adopted as the measurement of the level of technology investment.
	(2) Urbanization level (Urb). Relevant studies have shown that urbanization is accompanied by the concentration of production factors such as labor and capital (Wang et al., 2022), which will facilitate the sharing of pollution control facilities, education, transportation, and other facilities, thereby improving the environmental governance efficiency of manufacturing enterprises. Therefore, we choose night light data to represent the urbanization level.
	(3) Economic development (Eco). The economic development status is an essential reflection of the comprehensive development of a city. Areas with high levels of economic growth may perform a dual useful role in facilitating the green transformation of urban manufacturing. They not only offer capital support for this transformation but also attract talent and gather various resources, further accelerating the process of green transformation. Based on the above, GDP per capita has been selected in this study as an indicator to measure the level of economic development.
	(4) openness level (Open). The degree of openness of a region primarily impacts the urban green transformation of the manufacturing sector through two main channels: the technology diffusion effect and the “pollution paradise” hypothesis. One view is that opening to foreign countries is conducive to the introduction of green technology and environmental protection management concepts from developed countries, thereby promoting the country’s green transformation (Ning et al., 2016). And yet, there are some researchers who suggest that the entry of foreign polluting enterprises may lead to increased local pollution (Taskin and Zaim, 2001), thereby hindering urban green development. This study utilizes FDI to stand for the level of openness.
	(5) Government intervention (Gi). Government intervention indeed has an essential effect on influencing the manufacturing sector’s green transformation. Specifically speaking, providing financial resources to support green R&D activities by means of fiscal policy can positively affect green innovation in enterprises. It encourages businesses to invest in eco-friendly technologies and practices, leading to more sustainable and environmentally responsible innovations in the manufacturing sector (Srivastava and Gupta, 2023). For this reason, the extent of government intervention has been measured passively via the selection of the ratio of local fiscal expenditure to the GDP of the city.
	(6) Environmental regulation (Er). “Porter’s Hypothesis” believes that environmental regulation is an essential means to motivate enterprises to innovate in environmental technology. Higher environmental regulations are going to result in increased costs of corporate pollution behaviors, forcing companies to increase investment in green innovation, which can achieve urban green development (Li et al., 2019). Therefore, we measure the intensity of environmental regulation by employing the ratio of environmental protection expenditure to Gross Domestic Product (GDP).

3.2.5 Spatial weight matrix
The construction of the spatial weight matrix in spatial econometric analysis is fundamental to capturing and reflecting the spatial interactions among the analyzed units or regions. Meanwhile, geographic proximity and economic linkages are essential factors influencing the digital economy as well as the greening of urban manufacturing. Therefore, this paper simultaneously considers both geographical distance and economic correlation when determining the weight matrix to adequately represent spatial interactions. For this purpose, a geographical distance spatial matrix W1 is constructed on the basis of the geographical distance between cities. Furthermore, for testing the robustness of the empirical results obtained from the spatial distance weighting matrix, this study also constructs a spatial weighting matrix W2 with economic characteristics. Specifically, this article uses the reciprocal of the absolute difference in GDP per capita corresponding to 283 cities in China to construct an economic distance matrix.
3.3 Data sources
In this research, panel data from 283 prefecture-level cities in 2011–2019 are adopted as the research sample to investigate the influence of the digital economy on the urban manufacturing sector’s green transformation. Data sources and descriptions are shown in Table 2.
TABLE 2 | Data Selection and description.
[image: Table displaying various variables used in a study. Columns include Variable Type, Indicator Selection, Indicator Symbol, Indicator Description, and Data Source. Dependent variable is manufacturing green transformation (Mgt), independent variable is digital economy (Dig). Control variables include technical investment (Tec), urbanization level (Urb), economic development (Eco), openness level (Open), government intervention (Gi), and environmental regulation (Er). Moderating variables include industrial structure upgrading (Isu) and industrial agglomeration (Ina). Data sources are from China City Statistical Yearbook and other databases from 2012 to 2020.]4 EMPIRICAL RESEARCH
4.1 Benchmark regression results
On the basis of the setup of the models and testing approaches outlined above, this study sequentially applies OLS, fixed effect model, SAR, SEM, and SDM for regression analysis. The results of the regression under the above model setting ideas have been presented in Table 3. Among them, without considering the spatial correlation, the significance level of M1 and M2 is not satisfactory. This suggests that spatial factors should be included in the model when studying the influence that exists between the growth of the digital economy and the manufacturing sector’s green transformation. Simultaneously, we use the Wald test to judge if the spatial Durbin model (SDM) can be more reasonable in comparison to the spatial autoregressive model (SAR) and the spatial error model (SEM). As a result, it has been demonstrated that the SDM can not be simplified to either the SAR or SEM. In conclusion, this paper will use the SDM to analyze how the growth of the digital economy has affected the city’s manufacturing sector’s green transformation. Taking into account the results of the regression, the significantly positive spatial autoregressive coefficient indicates that urban manufacturing’s green transformation is accompanied by positive spatial spillover effects. This implies that the urban manufacturing sector’s green transformation will contribute dramatically to the manufacturing sector’s green transformation in other regions by means of economic or geographical connections. To be precise, the positive spatial spillover effects of the urban manufacturing sector’s green transformation can be attributed to the fact that the experience and technology adopted in one region’s manufacturing industry act as a catalyst for other regions to learn and adopt advanced practices. Consequently, technology spillovers and information exchanges between regions facilitate the acceleration of the green transformation process, leading to positive outcomes in neighboring areas as well.
TABLE 3 | Benchmark regression results.
[image: Statistical table comparing five models: OLS (M1), OLS-FE (M2), SAR (M3), SEM (M4), and SDM (M5). Variables include Dig, sDig, Tec, Urb, Eco, Open, Gi, Er, Rho, R², F(Wald test), and Obs. Each cell contains coefficients with t-statistics in parentheses. Significance levels are indicated by asterisks: *** for p<0.01, ** for p<0.05, and * for p<0.1. The number of observations is two thousand five hundred forty-seven.]The first-order and square-term coefficients of the digital economy have been found to be both statistically significant at the 5% and 1% levels, respectively, and are negative and positive in turn, indicating a significant U-shaped relationship between the digital economy and the green transformation of urban manufacturing. During the early stages of the digital economy development as a whole, the growth of the digital economy of the city has been found to have significantly impeded urban manufacturing’s green transformation. This observation might be attributed to the fact that during this period, it is still at a nascent stage for the progressive implementation of digital technologies to contribute to the manufacturing sector’s green transformation. In addition, the limited digital infrastructure and the relatively underdeveloped digital scale of the sector over this period might hinder the full manifestation of the positive externalities of the digital economy. At the same time, in the initial stages of the digital economy’s development in terms of scale and technology, there is often a period of rapid economic expansion, which leads to extensive growth and a significant increase in pollution emissions. This could be another factor in acting as an impediment to the urban manufacturing sector’s green transformation during this phase. However, the digital economy might initially have a facilitating influence on the urban manufacturing sector’s green transformation, which is outweighed by the pollution emission effect resulting in economic activity agglomeration. Therefore, there is an inhibitory role for the digital economy in enabling the urban manufacturing sector to achieve a green transition. As the growth level of the digital economy increases, various positive externalities of the digital economy are coming to occupy a prominent position. On the one hand, the digital economy’s emergence and progressive growth has contributed to the diffusion and absorption of technology, which is helpful in enhancing the innovation ability of enterprises. Specifically, digital technology progress in terms of Artificial Intelligence and Big Data along with the development of related industries will notably enhance the efficiency of information collection and integration of enterprises. For this reason, it will be expected to reduce the transmission and sharing costs of information between enterprises, facilitating the accelerated spillover of knowledge and technology, thus offering technological support for manufacturing enterprises to move towards environmentally friendly development. The digital economy, on the other hand, possesses a platform effect. By leveraging digital platforms, enterprises can enhance the matching of supply and demand for production factors and expedite the flow of high-end production factors. This, in turn, guarantees the continuous progress of the digital economy and also allows it to exert positive externalities more effectively.
As far as the control variables are concerned, the estimated coefficient of the technological investment level has a positive and statistically significant coefficient, suggesting that technological progress performs a vital function in contributing to the urban manufacturing sector’s green transformation. Additionally, at the 10% level of significance, urbanization implies a deterrent effect on the manufacturing sector’s transition to green production, which proves that urbanization will generate congestion effects and scale effects, which are not conducive to the manufacturing sector’s transition to green. Moreover, the impact coefficient of economic growth on the manufacturing sector’s transition to green is positive and statistically significant at the 1% level in this research, which demonstrates that an improvement in economic development level can lead to various positive externalities. Furthermore, the coefficient of openness level on the manufacturing green transition is 1.011 and satisfies the significance level test of 1%, implying that foreign direct investment (FDI) in manufacturing is capable of accelerating the spillover of foreign advanced green technologies. In the meantime, the significance and positive value of the coefficient for government intervention suggests that bolstering government intervention can play a role in accelerating the transition towards green manufacturing. In the end, the coefficient for environmental regulation passes the significance level test at the 5% level. A positive coefficient suggests that environmental regulation is conducive to motivating manufacturing firms to engage in technological innovations in a green way, thereby promoting green transformation.
4.2 Robustness check
With the purpose of further guarantee the robustness of the above findings, this study employs the robustness test by adopting the following four approaches.
The first is a test that considers endogeneity issues. Potential missing variables may exist between the digital economy’s development and urban manufacturing’s green transformation. For the purpose of ensuring the reliability of the findings, in this paper, the instrumental variable approach has been introduced to correct for possible bias. On the basis of principles that have implications for the digital economy development but not to the urban manufacturing green transformation, this paper uses urban slope as an instrumental variable. The sizeable urban slope leads to a relatively lagging infrastructure because the large slope increases the difficulty and cost of infrastructure construction. However, good urban infrastructure is essential for developing the digital economy, so the urban slope meets the instrumental variable correlation conditions. Meanwhile, the urban slope as a natural geographical environment, having no direct correlation with the current manufacturing industry’s green transformation. And it satisfies the exogenous conditions required for the instrumental variable. The second method involves substituting the independent variable and utilizing the principal component analysis, an approach that intends to take advantage of the ideology of dimensionality reduction to assess the digital economy’s development level, and the dynamic Spatial Durbin model is again chosen to conduct the regression. Finally, the spatial weight matrix is replaced. Such an approach is chosen for the reason that the spatial weight matrix is crucial for capturing the spatial effects between variables. To address this, we reconstruct the spatial weight matrix W2 with economic characteristics to better represent the spatial interactions in the analysis. Table 4 in the following section presents the results of the robustness estimation. The regression findings show that the digital economy development as the independent variable of this study exhibits a U-shaped relationship with the manufacturing industry’s green transformation, which suggests that there is a first inhibiting and then increasing influence between the two. Therefore, the robustness test results align with the core conclusions of this study, reinforcing Hypothesis 1.
TABLE 4 | Robustness test.
[image: A table presents results from four analytical methods: Instrumental variable, Replace independent variable, Dynamic SDM, and Replace spatial weight. Each row shows a variable and its coefficient with statistical significance levels indicated by asterisks. Acronyms like "W*Mgt_1," "Dig," and "sDig" are included, among others. Variables marked with significance levels (***) denote p-values below 0.01, (**) below 0.05, and (*) below 0.1. Additional information includes time and city fixed effects, R-squared values, and observation counts. The table emphasizes statistical analysis outcomes for each method.]4.3 Heterogeneity test
China’s vast territory contributes to considerable variations in natural resource endowments, technical conditions, economic development levels, and regional development policies among different regions. Thus, it is essential to investigate further whether regional heterogeneity exists in the above conclusions. In this paper, the sample cities are categorized into three main regions based on factors such as economic development status, namely, the East, the center, and the West, and then perform group regression. It can be seen from the regression results in Table 5 that both the eastern and central regions have shown a contribution to the transition to a greener manufacturing sector, regardless of whether it is the primary item or the secondary item of digital economy development. In contrast, the digital economy development has demonstrated a notable adverse influence on the green transition for the manufacturing sector in the western region. The reason for this is that the eastern region, being the pioneer of China’s economic development, has taken the lead in pushing forward the digital economy through fully leveraging the advantages of the agglomeration of resources such as capital, labor, and innovation factors. Therefore, the digital economy at the current time represents the leading position in the country in comparison to other regions. Moreover, in this region, there is a proactive effort towards driving deep integration of digital technologies with traditional manufacturing industries, which, in turn, contributes to manufacturing upgrading and transformation, thereby facilitating its trend to environmentally friendly development. And the manufacturing sector in the central region has greater potential for improvement in green transformation in comparison with the eastern region of the country. As a result, developing the digital economy can bring extraordinary bonuses to manufacturing companies in the central region compared to other regions. Furthermore, the information infrastructure in the Western region remains comparatively weak. These reasons we mentioned above lead to a lack of capacity to influence manufacturing’s green transformation in the Western region. Apart from these factors, the high proportion of traditional industries in this region restricts the manufacturing sector’s green transformation.
TABLE 5 | Heterogeneity regression results.
[image: Table comparing regional and urban density heterogeneity for East, Central, Western regions, and Low, High density cities. Variables include "Dig," "sDig," with statistical significance indicated by asterisks. Controls and fixed effects are applied. Regional R-squared values: 0.2328 to 0.6597; Urban R-squared values: 0.3121 to 0.7169. Observations range from 738 to 1719. T statistics, P values, and F values are detailed.]In the meantime, a reasonable and orderly urban spatial structure is the source of power for the improvement of the urban green economy efficiency. Moreover, urban density is an essential aspect of urban spatial structure. So, in cities with different densities, is there any heterogeneity in terms of the digital economy’s influence on the green transformation with respect to urban manufacturing? For the purpose of exploring the above interesting issues, the present research takes reference from the research results of Fan et al. (2023) to measure urban density. Furthermore, to investigate the heterogeneous impact of the digital economy, the core variable of this research, and its heterogeneous impact on the manufacturing sector’s green transition, the urban sample is divided into low-density and high-density cities in accordance with the median annual density among all cities. This grouping allows for a comparative analysis of the ways in which the digital economy affects green transition outcomes in urban areas with different population densities. The findings suggest that the digital economy development first exerts a non-significant negative influence on the transition to a greener manufacturing sector in low-density cities. With the improvement of the digital economy level, it has played an increasingly prominent position in promoting the manufacturing industry’s green transformation. As far as high-density cities are concerned, the digital economy’s gradual progression has presented an inverted U-shaped relationship with the manufacturing sector’s transition towards greening, where it initially promotes the transformation, but later inhibits it. The reason is that the urban density and scale in the initial stage of urban sprawl have not yet reached the ideal level. And the disorderly spread will weaken the economic agglomeration level and the economies of scale effect, which will not be detrimental to developing the digital economy and suppress its ability to bring about positive externalities, thus impeding the manufacturing sector’s green transition. When the digital economy reaches a certain level of growth, positive external effects such as resource allocation optimization and technological innovation become more prominent. These effects subsequently play a critical function in driving the transition to a greener manufacturing sector. With regard to high-density cities, the monocentric urban development model will promote urban concentration. This will help break market segmentation and improve regional economic efficiency so as to expedite the manufacturing sector’s green transition. Nevertheless, excessive urban clustering may also have adverse effects, such as congestion effects and reduced energy efficiency, which is going to exert a dampening influence on the digital economy development and manufacturing industry’s green transformation.
5 MECHANISM ANALYSIS
5.1 Moderating effects regression results
Table 6 reports the regression findings regarding the moderating effect of the digital economy growth with respect to the manufacturing industry’s green transition. In the table, Columns (3) and (4) draw on the idea of replacing the independent variable to test the regression results' robustness. And principal component analysis proposed in the previous section is utilized to calculate the digital economy level. The regression coefficients of the interaction term between the digital economy’s development as the research’s core explanatory variable and the industrial structure upgrading are −0.038 and −0.001, respectively. Moreover, all of the coefficients have passed the 1% significance level test, which demonstrates a significantly adverse moderating impact that industrial structure upgrading exerts between the digital economy development and the manufacturing industry’s transition to green. Meanwhile, the interaction coefficient obtained from the square term for the digital economy constructed in this study and the industrial structure upgrading are 0.028 and 0.002. Furthermore, the two coefficients have been found to be statistically significant at 1% and 5% levels respectively, which suggests in the first place that industrial structure upgrading undermines the inhibitory influence exerted by the growth of the digital economy on the transition to greening of the manufacturing sector. With the gradual progress of the digital economy and the improvement of its level, the industrial structure upgrading will enhance the positive effect brought about by the digital economy development on the manufacturing sector’s green transition. The reason is that the industrial structure upgrading promotes the evolution of traditional industries to emerging industries such as technology-intensive and capital-intensive industries. Such a process will lead to a rapid concentration of capital, technology, and other factors of production in fields and regions with a new industrial structure. Accordingly, urban industrial structure upgrading can not only provide financial and talent to support the digital economy development but also contribute to the elimination of backward industries, thus pushing the industry to green.
TABLE 6 | Moderating effects regression results.
[image: Table comparing regression results of Entropy Method and Principal Component Analysis for variables Dig, sDig, Isu, and Ina. Each variable's coefficients and statistical significance are shown, with control, time fixed effects, city fixed effects, R-squared values, and observations included. Statistical significance is denoted by asterisks.]The digital economy, as the core explanatory variable in this paper, has an interaction term coefficient of −0.019 and −0.103 for its primary term and the industrial agglomeration level, respectively. Moreover, the coefficients of the squared term of the digital economy and the interaction term with the level of industrial agglomeration are −0.001 and −0.054. And all are significant at the 1% level. The findings mentioned above suggests that the a further increase in industrial agglomeration level weakens the negative impact of the digital economy growth with regard to the manufacturing sector’s transition to greening when the digital economy development is at a relatively low level. As the development level of the digital economy increases, the strengthening of industrial agglomeration is expected to inhibit the facilitating effect of the green transition for the manufacturing sector in the digital economy. This may be because industrial agglomeration can speed up the diffusion to the agglomeration area of technology and knowledge during its initial stage of the digital economy’s development, and it is beneficial to reduce the search cost of innovative information and knowledge for firms, which contributes to the promotion of innovative technological spillovers among firms and the realization of economies of scale. In this process, the digital economy is able to further expedite the spillover and absorption of innovative knowledge and technology, drive digital technological advances, and then realize the sustainable green transformation of manufacturing industries in cities. However, as the industrial agglomeration level continuously keeps increasing, this results in the positive externalities of industrial agglomeration being progressively weakened. And excessive agglomeration, in turn, has been associated with a shortage of resources, rising production costs, and vicious competition among enterprises. These adverse effects will significantly undermine the digital economy’s potential role in promoting the green transition for the manufacturing sector.
5.2 Threshold effect regression results
In order to test the heterogeneous impact of the development of the digital economy on the manufacturing industry’s green transformation under different levels of industrial development, this study selects industrial structure upgrading and industrial agglomeration as proxy variables for the level of industrial development. We refer to Hansen’s (1999) method and use triple threshold regression to judge the existence and number of thresholds. In the meantime, the Bootstrap method is employed to perform 300 samples, enabling the calculation of the threshold value, F value, and p-value for the threshold effect test. We can conclude from the regression results in Table 7 that under the double fixation of time and city, the F value of the double threshold model is the highest when industrial structure upgrading and industrial agglomeration are used as threshold variables. Therefore, this paper chooses the double threshold model for analysis.
TABLE 7 | Threshold model regression.
[image: Statistical table showing threshold test results across four columns labeled Isu (1), Ina (2), Isu (3), and Ina (4). It includes values for single, double, and triple threshold tests, along with threshold estimates. Additional rows cover comparisons using δ values, control presence, time and city fixed effects, constant, R-squared, and observations. T statistics are in parentheses, P values in brackets, and F values are above, with significance indicated by asterisks.]Specifically, under different levels of industrial structure upgrading, the core explanatory variable of the digital economy constructed in this research presents various impacts on the urban manufacturing green transition. When Isu<1.828, the influence coefficient of the further growth of the digital economy in this paper on the green transition of the manufacturing sector is −0.045 as well as has been tested for significance at the 5% level; when 1.828<Isu<1.964, the regression coefficient becomes 0.135, and it is significant at the 10% level; when Isu>1.964, the impact coefficient becomes 0.151 and is statistically significant at the 1% level. To sum up, along with the continuously increasing industrial structure upgrading level, the digital economy has also been steadily developing in high quality at this time, and its impact on the manufacturing industry’s transition to green demonstrates the role of restraint first and then promotion, and the promotion role is gradually enhanced. This shows that the impact of the industrial structure upgrading, which is the moderating variable in this study, on the manufacturing industry’s green transformation has staged characteristics. In the initial stage of industrial structure upgrading, emerging advanced industries have not yet fully developed, while traditional industries remain dominant. Typical characteristics of traditional businesses include high levels of energy use and pollution, causing significant negative consequences for the sustainable transformation of the manufacturing sector. Once the industrial structure upgrading is up to a particular level, it will help coordinate economic development and environmental pollution, and fundamentally promote the manufacturing industry’s green transformation. In practice, industries that have high levels of technological content and value-address, such as new energy and next-generation information technology, have become new engines to promote economic development, thus effectively solving the problem of environmental degradation.
For the other aspect, under the threshold constraints of industrial agglomeration, the digital economy’s contribution to the green transition of the manufacturing sector presents nonlinear characteristics. When the industrial agglomeration level, the moderating variable of this research, is below 0.857, the elasticity coefficient becomes 0.001, which is statistically positive at the 1% level of significance. After crossing this threshold, its elasticity coefficient with respect to the manufacturing green transition is 0.065, and the digital economy, the core explanatory variable, has significantly facilitated the green transition of the manufacturing sector in the city, but such promotion effect has decreased; When the industrial agglomeration level crosses the second threshold, the digital economy’s influence of the present research on the manufacturing sector’s transition to green changes from positive to negative, with a corresponding regression coefficient of −0.004. Therefore, with the continuous increase of industrial agglomeration level, the digital economy’s effects in the study on the transition towards greening of the manufacturing sector show the role of promoting first and then inhibiting. On the one hand, the agglomeration of an industry in a particular region is beneficial for manufacturing enterprises to implement the scale effect of pollution control. This is possible to decrease the pollution control costs for enterprises and enhance the technical level of pollution treatment through information and technology exchanges between enterprises. On the other hand, excessive industrial agglomeration reduces the profit margin of enterprises and hinders the entry and growth of innovative enterprises. Meanwhile, this is not conducive to the region’s attraction of high-quality labor and the entry of new technologies, so the industrial agglomeration’s influence on the manufacturing industry’s transition to green is manifested as an inhibitory effect.
6 DISCUSSION
The findings of this study contribute novel perspectives to the existing literature by providing a comprehensive assessment of the digital economy’s impact on the green transformation of the manufacturing industry. The nuanced regional variations, moderating effects, and nonlinear relationships identified in our research underscore the complexity of these dynamics and emphasize the importance of context-specific analyses in advancing our understanding of the interconnection between the digital economy and sustainability in manufacturing. In contrast to prior research, our empirical framework, tailored to the specific context of this study, substantiates the non-linear influence of the digital economy on driving the manufacturing industry’s transition to green. This finding is different from the research conclusion of Luo et al. (2022), who believe that the digital economy simply promotes green development. According to the theory of technological evolution, digital technology innovation is the driving force for the development of digital technology, and the diffusion and adoption of technology are key links in its evolution. In the early stages of digital economy development, the diffusion method, speed and extent of technological innovation will be restricted by market, policy, social and economic factors (Saviotti, 1996). Therefore, it is difficult for the digital economy to fully exert its positive externality effect at this time. The robustness tests conducted in our study serve to enhance the credibility of our empirical findings, ensuring the reliability of the observed effects. Delving into moderation effects, our study unveils the adverse moderating impact of industrial upgrading and industrial agglomeration on the relationship between digital economy development and green transition in manufacturing. This finding underscores the importance of considering industrial structural dynamics in assessing the efficacy of the digital economy in promoting sustainability within the manufacturing sector. Furthermore, our threshold effect analysis exposes a significant nonlinear relationship between the moderating variable of industry upgrading and manufacturing green transformation. This nonlinear dynamic suggests that the impact of industrial structure upgrading on the green transition is contingent on certain threshold conditions, necessitating a more nuanced understanding of the intricate interplay between these variables.
7 CONCLUSION
Using 283 Chinese prefecture-level cities over the period from 2011 to 2019, this study examines the effect of the digital economy, the explanatory variable of this paper, on the manufacturing industry’s transition to green. In this research paper, we first calculate the level of manufacturing green transformation using the SBM mode and constructs a detailed empirical framework following the research ideas in this paper to evaluate the influence of the digital economy on the manufacturing industry’s transition to green so as to confirm that the digital economy has been able to effectively drive the manufacturing industry’s transition to green. Subsequently, a number of robustness tests have been conducted in the present paper to confirm the accuracy of the empirical results. Based on regional heterogeneity analysis, both the eastern and central regions in China, as delineated in this study, demonstrate the facilitating impact that the digital economy has on the manufacturing industry’s transition to green, while the western region’s digital economy development growth exhibits a notable negative influence on the manufacturing industry’s transition to green. Further exploration of moderation effects reveals that industrial upgrading and industrial agglomeration have remarkable adverse moderating effects on the relationship between the independent variable of the present study, digital economy development, and green transition in manufacturing. Threshold effect analysis indicates a notable nonlinear relationship between the moderating variable of industry upgrading and manufacturing green transformation.
In summary, according to the above research findings, this paper proposes the following policy recommendations. First of all, prioritize digital economy development, including promoting new infrastructure like AI and 5G to enhance the digital economy. Encourage traditional industries to integrate digital technology for improved efficiency, resource optimization, and sustainability. Secondly, address regional disparities in digital economy development. Invest in underdeveloped regions to bridge the “digital division,” fostering connectivity, cooperation, and knowledge exchange among regions to promote catch-up growth. Thirdly, promote digital industrialization by supporting innovation, addressing technology challenges, and encouraging the growth of digital industry clusters in key sectors. Foster emerging digital technologies and global competitiveness. In summary, focus on digital economy growth, reduce regional disparities, and advance digital industrialization for a more robust and inclusive economic landscape.
Finally, due to limitations in data availability, this paper only studies the impact of digital economic policies on the green transformation of manufacturing at the city level in China. Industry-level and firm-level discussions can complement city-level studies. Therefore, further discussion could focus on industry or company data.
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The carbon quota allocation scheme serves as the fundamental backbone for ensuring the smooth and sustainable operation of the carbon market. Despite numerous prior studies, ongoing debates persist regarding the impact of historical emissions, both positive and negative, on carbon quota allocation. Utilizing the four indicators of historical emissions (both positive and negative), egalitarianism, payment capability, and emission efficiency, this paper employs the entropy method to develop 22 distinct carbon quota allocation plans tailored for China’s provincial regions in the year 2030. Subsequently, utilizing the shadow price method, the study calculates the emission reduction costs of each province under each allocation scheme, thereby evaluating the carbon quota plans from the perspective of emission reduction costs. Finally, a comparative analysis is conducted to assess the impact of both positive and negative historical emissions on the carbon quota allocation scheme, and the paper identifies the carbon quota allocation approach that minimizes the overall emission reduction cost for China. The findings suggest that: 1) allocating more allowances to provinces with higher historical emissions can effectively reduce emission reduction costs for each province; 2) the most cost-effective option for carbon quota allocation is a scheme that takes into account both egalitarian and historical emission criteria; 3) in order to further decrease the overall cost of emissions reduction, it is crucial to achieve comprehensive coverage of the carbon market and facilitate inter-provincial carbon quota trading.
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1 INTRODUCTION
Climate change has become a pressing concern for all nations across the globe. In response to this challenge, countries are presenting their carbon neutrality plans. China, too, announced its ambition in September 2020 to reach a “carbon peak” by 2030 and achieve “carbon neutrality” by 2060, reflecting its commitment as a global leader. Carbon markets will play a pivotal role in attaining these objectives, and China has been proactive in this domain, commencing regional carbon trials in 2011. In 2021, the national carbon emission trading market was officially launched, marking steady progress in China’s carbon market development. Consequently, the influence of carbon markets must be taken into account when striving to achieve the dual carbon targets.
Currently, the allocation of carbon quotas occurs primarily in two stages: from the central government to provincial levels and subsequently from provinces to enterprises. The distribution of carbon quotas from the central government to provinces significantly impacts the cost of emission reduction in each province. The reduction costs of provinces are determined by various indicators such as GDP, energy consumption, employment, fixed capital stock, and carbon emissions. The imposition of carbon quota constraints will significantly alter these indicators in each province. Therefore, under different carbon quota allocation schemes, the reduction costs of provinces vary significantly. The reduction cost determines the financial burden each province must bear to fulfill carbon quota constraints. Consequently, a carbon quota allocation scheme that minimizes the reduction cost for provinces naturally attracts greater attention. Among the factors involved in the formulation of carbon quota allocation schemes, historical emissions are the most controversial. Some argue that historical emissions are the responsibility of emitters and thus provinces with higher historical emissions should receive fewer carbon quotas. Others, adhering to the “grandfather law” principle, maintain that provinces with greater historical emissions should be allocated more carbon quotas. It requires further investigation to determine which viewpoint is more conducive to reducing the cost of emission reduction in each province.
Based on the above analysis, this article utilizes four indicators: historical emissions (positive and negative), egalitarianism, payment ability, and emission efficiency, to develop 22 carbon quota allocation scenarios for China’s provinces in 2030 using the entropy method. Subsequently, the shadow price method is employed to calculate the reduction costs of each province under various allocation scenarios, evaluating each carbon quota plan from the perspective of reduction costs. Finally, a comparative analysis is conducted to assess the impact of both positive and negative historical emissions on the carbon quota allocation scheme, and the paper identifies the carbon quota allocation approach that minimizes the overall emission reduction cost for China.
2 LITERATURE REVIEW
During the period from the first Conference of the Parties to the United Nations Climate Change Conference to the signing of the Kyoto Protocol, various countries proposed a total of 16 carbon quota allocation schemes. Among these schemes, indicators such as historical emissions, emission intensity, population, and GDP represented fundamental principles of fairness, equality, and efficiency in CO2 emission reduction allocation from different perspectives. Consequently, they were widely used as the design basis for provincial carbon quota allocation schemes by most researchers. Among these indicators, historical emissions have garnered significant attention from scholars. There exist two contrasting views regarding historical emissions. Some scholars contend that historical carbon emissions have inflicted considerable harm on the environment, and the emitters should be accountable for their actions. Therefore, provinces with higher historical emissions should be allocated fewer carbon allowances (Pan, 2014a; Wei et al., 2014; Meng, 2018; Wang et al., 2018; Kong, 2019). However, other scholars maintain that the principle of the “grandfather law” should serve as the foundation for allocation. According to this view, provinces with larger historical emissions should be awarded a greater carbon quota (Zhou et al., 2023; Ye et al., 2019; Schmidt and Heitzig, 2014; Zhou, 2013; Shi et al., 2012; Goulder et al., 1999; Wang and Chen, 2016). Furthermore, carbon emission intensity, population, and GDP are crucial indicators in the design of carbon quota schemes. The carbon intensity indicator takes into account the cost-effectiveness of emission reduction efforts. Provinces with higher emissions per unit of GDP would be allocated a lower carbon quota, as this is considered a more efficient approach (Wang et al., 2011). Population has also been a key area of scholarly investigation, with the genesis of the scheme traced back to Britain. The right to emit encompasses both the right to survival and the right to development. It is generally acknowledged that universal access to carbon emission rights should be safeguarded, and the allocation of these rights should aim to secure equal per capita emissions across all regions in the future (Janssen, 1995; Rose, 2004; Zhou, 2013; Feng, 2015; Liu, 2016; Liu, 2016; Zhou and Wang, 2016; Zhou, 2021). The distribution of GDP serves as a reflection of regional economic disparities. Typically, regions or industries with a higher proportion of GDP tend to emit greater amounts of carbon dioxide while also benefiting more significantly from carbon emissions. Consequently, they should shoulder a heavier responsibility in reducing emissions (Janssen, 1995; Rose, 2004; Zhou, 2013; Liu, 2016; Zhou and Wang, 2016).
In the evaluation of carbon allocation methods, current research primarily focuses on assessing fairness and efficiency. The effectiveness of implementation hinges heavily on the equitable nature of the distribution scheme. The majority of existing literature pertaining to carbon quotas incorporates discussions surrounding the equity of distribution schemes (Zhou and Wang, 2016). Fairness can be categorized into two distinct types: subjective and objective. Subjective fairness concerns the evaluation of participants’ individual perceptions of whether a given situation is deemed fair or unfair. Objective fairness, on the other hand, involves the establishment of an objective criterion or methodology for assessing fairness. While the objective approach is generally considered more practical, the definition of fairness remains a subject of ongoing debate. Regarding the evaluation of subjective fairness, predecessors have primarily conducted empirical analyses, questionnaire surveys, and fairness measurements that rely on participants’ subjective consciousness to assess the fairness of carbon markets (Hammar, 2007; Liao, 2015; Howard, 2016; Soumis, 2016). And after the completion of carbon allocation, a direct comparison of results is conducted to analyze the equity of each method (Liao, 2015; Liu, 2016). Objective fairness analysis is primarily conducted through the construction of evaluation indices, such as Theil and Gini indices (Pan, 2014a; Feng, 2015). This index evaluation method involves selecting certain parameters, such as population and GDP, and comparing their shares to the carbon quota to determine the index size for each region, thereby ensuring fairness.
In summary, although numerous studies have been conducted on carbon quota allocation schemes, there remains controversy regarding the positive and negative impacts of historical emissions in such allocations. Some studies have evaluated the allocation schemes, primarily from the perspectives of fairness and efficiency. However, in reality, the emission reduction costs incurred by various provinces and regions under the carbon quota allocation scheme are their primary concern. Therefore, this article studies the positive and negative impacts of historical emissions in carbon quota allocation from the perspective of emission reduction costs.
3 METHODS AND DATA
3.1 Research methods
3.1.1 Design of carbon quota allocation scheme
Based on the principles of egalitarianism, historical emissions, ability to pay, and emission efficiency, we selected four indicators: population, carbon emissions over the past decade, per capita GDP, and carbon emission intensity. The core of egalitarianism is the equal right to carbon emission, implying that provinces with larger populations should be allotted larger carbon quotas commensurate with their size (Dong et al., 2024; Chen et al., 2022; Fang et al., 2019). Regarding historical emissions, there are two opposing viewpoints. One school of thought maintains that the higher the level of historical emissions, the greater the responsibility for carbon emission reduction, justifying the allocation of fewer carbon allowances (Wei et al., 2013; Pan, 2014b; Meng, 2018; Wang et al., 2018; Kong, 2019); while another advocates for grandfathering, whereby a larger quantity of historical emissions warrants an increase in carbon allowances (Zhou et al., 2023; Ye et al., 2019; Schmidt and Heitzig, 2014; Zhou, 2013; Shi et al., 2012; Goulder et al., 1999). The economic strength of each province is reflected in its ability to pay, which determines the extent to which emissions can be reduced. Therefore, provinces with stronger financial capabilities are entitled to smaller carbon emission quotas (Gan et al., 2022; He et al., 2021). Emission intensity denotes the amount of carbon emissions produced per unit of GDP. The higher the carbon intensity of GDP, the more emissions should be reduced and the smaller the carbon quota becomes (He and Bin, 2021; Ji et al., 2017).
These indicators are combined to design 11 different carbon quota schemes. Then, taking into account the contentiousness of prior literature regarding the positive and negative impacts of historical emissions on carbon quota allocation, this paper has developed a total of 22 schemes–11 for each category—based on the original 11 carbon quota allocation schemes. The particulars are presented in Table 1.
TABLE 1 | Carbon quota allocation scheme.
[image: A table with four columns titled Egalitarianism (positive), Historical emissions (positive/negative), Ability to pay (negative), and Emission efficiency (negative). Rows labeled A to K display checkmarks for various criteria.]To differentiate between the positive and negative attributes of historical emissions, we have designated the 11 schemes with negative attributes as series 1, denoted by [image: Sequence of subscripted letters from A to J, each followed by the subscript one: A sub one, B sub one, continuing with ellipsis, ending with J sub one.]. Similarly, the 11 schemes with positive historical emissions are classified as series 2 and labeled as [image: Text displaying a sequence: A subscript two, B subscript two, ellipsis, J subscript two.].
3.1.2 Entropy method
Research has revealed that scholars utilize diverse methods for allocating carbon quotas, encompassing techniques such as the entropy method, ZSG-DEA method, scenario analysis, subjective weight + entropy weight approach, and fuzzy optimization model, among others (Mu, 2016; Wang et al., 2016; Yang, 2017; Zhao, 2017). The entropy method, among various other techniques, relies solely on objective data, thereby eliminating subjective biases in the weight assignment process. Consequently, it is frequently employed by scholars to allocate carbon emission reduction targets across diverse industries (Guo et al., 2023; Cheng et al., 2022; Tian et al., 2022). The procedures and algorithms of the entropy weight method for determining index weights are outlined below (Cui et al., 2021).
Firstly, the evaluation indicators for each province are selected based on four perspectives: egalitarianism, historical emissions, ability to pay, and emission efficiency. These indicators include population, historical emissions, per capita GDP, and emission intensity. The decision matrix X is then constructed using information entropy, as shown in Equation (1).
[image: Matrix X representation with elements x_11, x_12, ..., x_1m in the first row; x_21, x_22, ..., x_2m in the second row; and so on, up to x_n1, x_n2, ..., x_nm in the last row, labeled as equation (1).]
Where Xij represents the jth index value of the ith province (where [image: Mathematical expression showing \( i = 1, 2, \ldots, n \), indicating a sequence of integers from one to n.] and [image: Mathematical expression showing \( j = 1, 2, \ldots, m \).]).
Then, each index of the same province needs to be normalized, as shown in Equations (2) and (3).
[image: Positive indicator formula: \( V_{ij} = \frac{x_{ij} - \min(x_{ij})}{\max(x_{ij}) - \min(x_{ij})} \).]
[image: Formula for a negative indicator, denoted as \(V_{ij}\), equals the maximum of \(x_{ij}\) minus \(x_{ij}\) divided by the difference between the maximum and minimum of \(x_{ij}\). Equation labeled as (3).]
The jth characteristic ratio in the ith province is computed as Equation (4):
[image: The image shows a mathematical equation. \( p_{ij} = \frac{V_{ij}}{\sum_{i=1}^{n} V_{ij}} \). It is labeled as equation four.]
After normalizing the data, the decision matrix is transformed from X to P, as shown in Equation (5).
[image: Matrix \( P \) is represented with elements \( p_{ij} \), where \( i \) ranges from one to \( n \) and \( j \) ranges from one to \( m \). The matrix is denoted as Equation (5).]
According to the entropy method, the weight entropy value of index j (ej) can be obtained through the Equation (6).
[image: The formula shown is for calculating entropy: \( e_j = -\frac{\sum_{i=1}^{n} p_{ij} \ln p_{ij}}{\ln n} \).]
The weight of indicator j is then determined, as shown in Equation (7).
[image: The formula depicts omega sub j equals one minus e sub j divided by m minus the summation from j equals one to m of e sub j, labeled as equation seven.]
Comprehensive evaluation value of carbon emission rights of province i, as shown in Equation (8):
[image: Equation for \( V_i \) equals the summation from \( j = 1 \) to \( m \) of the product \( \omega_j V_{ij} \), labeled as equation eight.]
Allocation coefficient of carbon emission reduction for province i, as shown in Equation (9):
[image: Mathematical equation showing \(s_i = \frac{V_i}{\sum_{i=1}^{n} (V_i)}\) with reference number 9.]
3.1.3 Shadow price method
The shadow price is defined as the incremental cost incurred by increasing production of a product by one unit, to achieve optimal resource allocation at a given level (Zhang et al., 2024). In recent years, the issue of carbon emissions has garnered increasing attention from experts and scholars. The shadow price method has also been invoked to the issue of CO2 emissions, to calculate the shadow price of CO2 (Boussemart et al., 2017; Wang et al., 2022). The shadow price of carbon dioxide refers to the reduction in output resulting from a one-unit decrease in carbon dioxide emissions, which is equivalent to the cost of reducing such emissions (Shen et al., 2023; Zhang et al., 2014).
The directional distance function is currently the prevailing model for computing the shadow price of CO2. The directional distance function is defined as the Equation (10):
[image: Mathematical equation displaying: D of x, y, b; g subscript y, g subscript b equals max over beta of y plus beta g subscript y, b minus beta g subscript b belonging to P of x. Equation number ten.]
Where y is the desired output and b is the undesired output, which respectively represent economic benefits and carbon dioxide emissions in the study of this paper. [image: Mathematical notation showing a function \( P(x) \) defined as a set containing the elements \( (y, b) \).] denotes all production feasible sets. If the directional distance function vector [image: Equation showing the vector \(\vec{D}\) equals zero.], it indicates that the output combination lies on the technological production frontier, implying technical efficiency in production. If the directional distance function [image: Equation showing vector D with a bar above it, equal to zero.], it indicates that the output mix deviates from the production frontier and production is technically inefficient. The magnitude of inefficiency increases with higher values of [image: Equation displaying a bold, uppercase letter D with an arrow over it, indicating it represents a vector quantity.]. [image: Mathematical expression showing coordinates: \( (y + \beta g_y, b - \beta g_y) \).] is the optimal output under a certain input.
R represents the maximum revenue when the production possibility is satisfied as Equation (11):
[image: Equation displaying a mathematical expression: \( R(x, y, b) = \max \{ py - qb; D(x, y, b; g_y, g_b) \geq 0 \} \). It is labeled as equation (11).]
Where p is the price of desired output and q is the price of undesired output. Let [image: Graph showing a point labeled \((g_y, -g_b) = (1, -1)\), indicating coordinates where the x-value is 1 and the y-value is -1.], with the implication that the expansion of desirable output and the reduction of undesirable output are symmetric. Using the Lagrange multiplier method to find the maximum value, we can get the Equation (12):
[image: Two equations are shown in curly braces. The first equation: \((p+q) \frac{\partial D(x,y,b,1,-1)}{\partial y} = -p\). The second equation: \((p+q) \frac{\partial D(x,y,b,1,-1)}{\partial b} = q\). The equations are labeled as (12).]
Take the ratio of the two, we can get the Equation (13):
[image: The formula displays a fraction of negative q over p, equal to the partial derivative of D with respect to b divided by the partial derivative of D with respect to y. It is labeled as equation 13.]
The shadow price of carbon dioxide is represented by the Equation (14):
[image: The equation shows \( q = -p \frac{\partial D / \partial b}{\partial D / \partial y} = -p \frac{\gamma_1 + \gamma_2 b + \epsilon_1 x_1 + \epsilon_2 x_2 + \epsilon_3 x_3 + \mu y}{\beta_1 + \beta_2 y + \delta_1 x_1 + \delta_2 x_2 + \delta_3 x_3 + \mu b} \), labeled as equation (14).]
The directional distance function can be decomposed into three approaches: nonparametric data envelopment analysis (DEA), parametric stochastic frontier analysis (SFA), and parametric linear programming (LP). The most commonly utilized nonparametric modeling approach is the data envelopment analysis (DEA) model, which offers the advantage of not requiring a specific form of the distance function to be specified. However, the DEA model cannot ensure the “existence” of shadow prices and the computed shadow prices are not necessarily unique. The parametric SFA approach employs an econometric model to estimate the distance function, which enables the investigation of the impact of random shocks and technical inefficiency factors on the environmental output frontier while ensuring differentiability throughout. The econometric model, however, cannot predefine production technology constraints. Therefore, post-evaluation is necessary to determine whether the shadow price satisfies relevant constraints. The parametric LP model requires the construction of a second-order flexible, continuously differentiable function in advance to approximate the real but unknown production frontier. Subsequently, the parameters of the function are estimated based on data and shadow prices are obtained. The LP model is currently the most extensively employed method as it ensures the existence and uniqueness of shadow prices while also allowing for flexible constraint settings (Lee et al., 2002; Wei et al., 2014; Boussemart et al., 2017).
The parametric LP model can be classified into translog and quadratic functions based on different parameter forms. The translog function typically assumes that desirable and undesirable outputs are equivalent, meaning that output efficiency and shadow prices are determined through simultaneous expansion or contraction. As a result, it fails to meet the requirements of environmental regulation. The quadratic function not only resolves the translog function issue, but also satisfies the transfer property, quadratic differentiability, and directional distance function flexibility. Theoretical studies have demonstrated that the quadratic function outperforms the translog functional form across various conditions (Vardanyan, 2006; Fare, 2010). To conclude, the quadratic function of the parametric LP model has been selected in this paper to compute the shadow price. The specific model functions are presented as Equation (15):
[image: Mathematical equation expressing \(\bar{D}(x, y, b, g)\) as a sum beginning with \(a_0\) plus multiple terms including single, double, and cross products of variables \(x\), \(y\), \(b\), and \(\gamma\) with coefficients \(\alpha\), \(\beta\), \(\gamma\), \(\delta\), and \(\epsilon\). The equation includes summations and nested summations with upper limits of three for \(x_m\) and \(x_n\), and squares of \(b\) and \(y\). Labeled equation number fifteen.]
To determine the shadow price, it is necessary to estimate the parameters in Eq. 14 with precision. In this paper, linear programming is employed to determine the optimal parameters. We assume that each province as close to the production frontier as possible and minimize the sum of quadratic production functions for all provinces as our linear programming objective function, as shown in Equation (16).
[image: Mathematical expression featuring an optimization problem. The objective is to minimize the sum from \( k = 1 \) to 30 of a function \( \tilde{D}(x_k, y_k, b_k, g) \). Constraints include various partial derivatives of \( \tilde{D} \) with respect to \( x \), \( y \), and \( b \) being equal to or greater than zero, less than or equal to zero, or involving other specified conditions over indices \( k = 1, \ldots, 30 \) and \( n = 1, 2, 3 \). It also includes equations involving parameters like \( \beta \), \( \gamma \), \( \mu \), \( \epsilon \), and \( \delta \).]
The significance of each constraint is delineated as follows: Constraint 1 ensures that each DMU is positioned on or within the production technology frontier, thereby satisfying the non-negativity constraint of the directional distance function; Constraints 2 and 3 are designed to ensure the monotonicity of desirable and undesirable outputs with respect to the distance function, guaranteeing their monotonically decreasing and increasing. That is to say, under unchanged conditions, an increase in desirable output will result in a decrease in the distance function value, while an increase in undesirable output will lead to an increase in the distance function. Similarly, Constraint 4 ensures the input is monotonically increasing; Constraints 5 and 6 represent the transformation properties and symmetry of the directional distance function, respectively.
After formulating the model, we utilize Matlab to solve the linear program and derive the parameters.
3.2 Data processing
In the calculation of the entropy method, this paper selects four indicators—population, historical emissions, per capita GDP, and emission intensity—to determine the allocation of carbon quotas among provinces. On 30 December 2016, the China State Council released the National Population Development Plan (2016–2030) (China State Council, 2016), which projected China’s total population to reach approximately 1.45 billion by 2030. This paper adopts this projected number as the estimated total population. Additionally, the research gathers data on the total population of all provinces and regions from 2011 to 2020, sourced from the National Bureau of Statistics, and subsequently calculates the average proportion of each province’s population within the national total during this timeframe. The average ratio serves as an indicator of each province’s population share in the total national population projected for 2030, enabling an estimation of each province’s population in that year. For historical emissions, the cumulative emissions from 2010 to 2019 are chosen, and the data utilized in this study are sourced from the China Carbon Accounting Database (Guan et al., 2021). The GDP growth rate for each province during the 14th Five-Year Plan period is derived from their respective 14th Five-Year Plans. The GDP growth rate of each province in the 15th Five-Year Plan has been adjusted by a downward revision of 20% based on the 14th Five-Year Plan, to estimate the GDP of each province for the year 2030. Emission intensity is calculated as the ratio of carbon emissions to the GDP of each province and region in 2019. The detailed data are shown in Table 2.
TABLE 2 | Data summary of entropy method.
[image: Table displaying data for various regions, including population, historical emissions, per capita GDP, and emission intensity. The regions have varied values, with historical emissions in million tons, per capita GDP in ten thousand yuan per person, and emission intensity in tons per ten thousand yuan.]In the shadow price method calculation, this paper selects fixed capital stock, energy consumption, employed population, GDP, and carbon dioxide emissions as the indicators for computation. The GDP for 2030 has been previously mentioned in the aforementioned section. Data of fixed capital stock in 2030 Based on the previous research (Shan, 2008), the fixed asset investment, price deflator, and price index of fixed asset investment from 2007 to 2019 are collected from the statistical yearbooks of all provinces and regions to calculate the fixed asset stock from 2007 to 2019. The average growth rate of fixed assets in each province and region during the aforementioned years is computed, serving as the growth rate for fixed asset stock in each province and region from 2020 to 2030. Subsequently, the fixed capital stock in 2030 can be determined. The projected energy consumption data for 2030 is based on the Energy Production and Consumption Revolution Strategy (2016–2030) (National Development and Reform Commission, 2017), which stipulates that the total energy consumption in 2030 should be limited to 6 billion tce, a value adopted in this paper as well. The proportion of energy consumption for each province is calculated as the average ratio of its energy consumption to the total energy consumption from 2011 to 2020, based on data extracted from statistical yearbooks of respective provinces. The employed population data for 2030 is derived from the population-to-employment ratio of each province and region in that year. Among them, the population data has been previously expounded upon in the preceding section. The employing-population ratio is calculated as the average of the employing-population ratios for each province and region from 2011 to 2020, using data sourced from the statistical yearbooks of said provinces and regions. The total carbon dioxide emissions are derived from the Action Plan for Carbon Peak before 2030, which proposes a 65% reduction in carbon emission intensity by 2030 compared to that of 2005. The total carbon emissions in 2030 are calculated by 2030 GDP and carbon emission intensity. The emissions proportion in each province is not determined through data collection alone, but rather from the calculation results of the previous entropy weight method. By multiplying the total national carbon emissions in 2030 by the carbon quota proportion of each province, we can estimate the carbon emissions of each province in that year. Carbon dioxide emissions, which belong to the calculation results of entropy method, are not displayed here in this article. Only the four data of GDP, fixed capital stock, energy consumption, and employment are shown. Detailed data are shown in Table 3.
TABLE 3 | Data summary of shadow pricing method.
[image: A table presents data for various regions with columns, including GDP (in 10 billion Yuan), fixed capital stock (in 10 billion Yuan), energy consumption (in 10,000 TCE), and employed population (in 10,000 people). Each row lists the region code followed by its corresponding figures under each column. The table displays information for regions like BJ, TJ, HE, and others, showing economic and energy consumption metrics.]4 RESULTS AND ANALYSIS
This paper’s calculation process comprises two principal segments. In the first segment, the entropy weight method is employed to allocate carbon quotas across various provinces and regions. Subsequently, the second segment utilizes the shadow price method to estimate the emission reduction cost of each province and region under distinct allocation scenarios, drawing upon the emissions data obtained from the first segment. Initially, the first segment is analyzed.
4.1 Allocation of carbon quotas among provinces under various allocation schemes
There are significant variations in carbon allocation among different provinces in China under diverse allocation schemes, as illustrated in Figure 1.
[image: Twelve radar charts labeled A to K and an additional symbol at the bottom right. Each chart features overlapping red and yellow shapes, with various levels of complexity and patterns. The bottom right chart is a green star-like shape, distinct from others. No labels or axis details are visible.]FIGURE 1 | Carbon quota allocation of Series 1 and Series 2.
Within Scheme series 1, Guangdong, Henan, and Sichuan stand out as the provinces with the most significant proportion of carbon quotas, whereas Ningxia, Inner Mongolia, and Shanxi receive the least allocation. Notably, Guangdong holds the largest carbon quota in schemes A1, C1, G1, H1, I1, and J1, and also ranks prominently in other schemes. Henan and Sichuan follow close behind, occupying a relatively large proportion of carbon quotas in various schemes of Series 1. The allocation of a substantial carbon quota to Guangdong is primarily driven by its population size and emission intensity. Since both these metrics rank among the highest in China, Guangdong is able to secure a significant amount of carbon quota. While the GDP per capita and cumulative emissions of Guangdong Province also play a moderate role in the allocation of carbon quotas, their impact is relatively weaker compared to the other two factors. In Henan province, the primary factors determining carbon quota allocation are emission intensity, GDP per capita, and population. In Sichuan province, the key factors are emission intensity, cumulative emissions, and GDP per capita. On the other hand, in Ningxia province, the lower carbon quota allocation is primarily attributed to population size and emission intensity. Similarly, in Inner Mongolia and Shanxi provinces, the main influencing factors include population size, emission intensity levels, and cumulative emissions. Due to the differences in data selection and index selection, the research results cannot be completely consistent with the previous studies in terms of carbon quota allocation. However, the allocation of carbon quotas among provinces is very similar to that of the previous studies. In the previous studies, the research results with historical emissions as negative indicators are similar to the results of Series 1 in this paper. The provinces with high proportion of carbon quota allocation include Shandong, Henan, Guangdong, Sichuan and other places (Tian et al., 2022; Chen et al., 2022).
The difference between Series 2 and Series 1 lies in the treatment of historical emissions as a positive or negative indicator, resulting in disparities in carbon quota allocation outcomes within schemes that incorporate historical emissions metrics. These schemes include A, D, E, I, J, and K. Examine the variations in carbon quota allocation between Series 2 and Series 1 for these schemes. When historical emissions are treated as a positive indicator instead of a negative one, there are some changes in the carbon quota allocation among different provinces. In Series 2, the carbon quotas of provinces with higher historical emissions have increased, while those of provinces with lower historical emissions have decreased. Provinces such as Shandong, Shanxi, and Inner Mongolia have seen the largest increases in carbon quotas, while Qinghai, Hainan, and Beijing have seen the largest decreases. Therefore, in Series 2, Shandong, Guangdong, and Henan are the provinces with the largest proportion of carbon quotas, while Shanghai, Ningxia, and Beijing are the regions with the lowest carbon quotas. Similarly, the research findings are similar to those in previous studies where historical emissions were treated as a positive indicator (Liu, 2016).
4.2 Results and analysis of shadow prices
The shadow price denotes the expense of decreasing one unit of carbon dioxide, and a higher shadow price indicates a greater cost associated with reducing carbon dioxide. The shadow prices for each province and region have been computed under each allocation scheme, and the results have been thoroughly analyzed. It is evident that in the majority of schemes, the shadow price of carbon quota in certain provinces is exceedingly high. This indicates that, under these allocation schemes, the cost of emission reduction in these provinces will be significantly high. Such allocation outcomes are clearly disconnected from the actual demand and lack feasibility. Therefore, we eliminate these schemes from further consideration and focus our analysis on the remaining ones.
After rigorous screening, the outcomes of the remaining schemes are presented in Table 4; Figure 2. Firstly, a comparison between the results of Scheme A1 and A2 reveals that the shadow price of carbon quota in most provinces is lower under Scheme A2 than under Scheme A1. Similarly, the comparative results for other schemes within Series 1 and 2 yield largely consistent outcomes. This demonstrates that under the allocation criteria favoring greater historical emissions and higher carbon allowances, the cost of emission reduction is reduced. A1 and A2 are selected as representative examples for analysis. The primary difference in calculating the shadow prices of A1 and A2 lies in the allocation of carbon quotas. This difference arises from the varying approaches towards historical emissions in the two schemes. As per the previous section’s findings on carbon quota allocation, Scheme A1 adheres to the principle of assigning fewer carbon quotas to provinces with higher historical emissions. Consequently, the carbon quota disparities among provinces in Scheme A1 are narrower. The criterion of Scheme A2 is that provinces with higher historical emissions receive more carbon quotas, resulting in a carbon quota allocation that is more aligned with the actual distribution of carbon emissions. Conversely, the distribution outcomes of Scheme A1 overlook the disparities in the economic and social environments among provinces. This disconnect between the actual situation in some provinces and their emission reduction tasks leads to a sharp increase in the cost of emission reduction. Scheme A2, however, achieves a better balance between the actual situation and the emission reduction tasks of each province, resulting in a lower emission reduction cost compared to Scheme A1.
TABLE 4 | Shadow prices under the six schemes.
[image: A table lists various Chinese regions with numerical data across six categories labeled A1, C1, J1, A2, E2, and I2, in units of ten thousand CNY. Each row represents a different region, identified by its abbreviation, and the columns contain corresponding economic or statistical values.][image: Six radar charts labeled \( A_{t} \), \( C_{t} \), \( J_{t} \), \( A_{z} \), \( E_{t} \), and \( I_{z} \) display data patterns in red lines. Each chart has distinct star-like shapes with varying spikes, suggesting different data distributions. The unit is specified as 10^6 CNY.]FIGURE 2 | Analysis of shadow prices.
The paper examines various schemes within a reasonable range of shadow prices and reveals that the average shadow price in Jiangxi, Guangdong, and Chongqing is the highest among all provinces and regions, indicating relatively high emission reduction costs. The average shadow price in each province of scheme A2 is CNY 10006/ton, which is the most cost-effective option among all schemes. Figure 3 illustrates the shadow prices for each province under A2.
[image: Map of China showing the distribution of GDP per capita across provinces using shades of green. Darker greens indicate higher GDP, with values ranging from four thousand to eighteen thousand CNY. Regions like Beijing, Shanghai, and Guangdong have the highest GDP per capita, while areas such as Tibet and Xinjiang have the lowest.]FIGURE 3 | Shadow price of each province in scheme A2.
Figure 3 reveals that the regions exhibiting higher shadow prices are predominantly concentrated in central and eastern China. Shandong, Jiangsu, and Guangdong are the three regions with the highest shadow prices, exceeding CNY 16,000. The three second-level regions, namely, Shanxi, Henan, and Zhejiang, exhibit shadow prices ranging from CNY 12,000 to 16,000. The third level area is centered around the first and second tier cities, indicating a trend of encirclement. The shadow prices of provinces in western China generally rank in the fourth and fifth level, indicating a relatively low level compared to other regions. In Scheme A2, the shadow prices of Shandong, Jiangsu, Guangdong, Shanxi, Henan, Zhejiang, and other regions exceed the average level. If the emission reduction task is completed according to the allocation of carbon quota, the emission reduction cost is huge. Therefore, these provinces can purchase carbon allowances in the carbon market, while other regions with low emission reduction costs can overachieve carbon emission reduction and sell the excess carbon allowances through the carbon market.
5 CONCLUSION AND SUGGESTIONS
5.1 Conclusion
Utilizing the four indicators of historical emissions (both positive and negative), egalitarianism, payment capability, and emission efficiency, this paper employs the entropy method to develop 22 distinct carbon quota allocation plans tailored for China’s provincial regions in the year 2030. Subsequently, utilizing the shadow price method, the study calculates the emission reduction costs of each province under each allocation scheme, thereby evaluating the carbon quota plans from the perspective of emission reduction costs. Finally, a comparative analysis is conducted to assess the impact of both positive and negative historical emissions on the carbon quota allocation scheme, and the paper identifies the carbon quota allocation approach that minimizes the overall emission reduction cost for China. The conclusions are as follows:
	1. The shadow price of the schemes with negative historical emissions is significantly higher than that of the schemes with positive historical emissions. This shows that in terms of the factor of historical carbon emissions, the carbon quota allocation scheme based on the principle that the more carbon emissions are, the more carbon quotas are, can significantly reduce the shadow price of carbon emissions in each province. Therefore, from the perspective of reducing the emission cost of each province, the principle of allocating more emissions allowances to provinces with higher emissions has greater advantages.
	2. After conducting an analysis and comparison of the shadow prices associated with 22 different carbon allocation schemes, it has been determined that the carbon quota allocation scheme which is based on egalitarian principles and historical emissions results in lower shadow prices for each province when compared to other schemes. The results indicate that the carbon quota allocation scheme which is based on egalitarian principles and historical emissions offers the lowest emission reduction cost for each province, making it a more favorable option for achieving the emission reduction target.
	3. The carbon quota shadow price gap between provinces is significant in each scheme. To minimize the overall cost of emission reduction, it is imperative to establish a nationwide carbon market that facilitates inter-provincial trading of carbon allowances.

5.2 Suggestions
Based on the analysis of carbon emissions shadow prices in all provinces and regions under 22 different carbon quota allocation schemes for 2030, this paper proposes the following recommendations:
1. Provincial carbon quota allocation is a crucial stage in the process of carbon quota allocation, as it determines whether the carbon market can effectively fulfill its role in reducing emissions. The allocation of carbon quotas is significantly influenced by historical emissions. To minimize the cost of emission reduction, it is recommended that the government allocate more carbon quotas to provinces with higher historical emissions.
2. The cost of emissions reduction is a primary concern for provinces when implementing emission reduction measures. For those who aim to reduce emissions, the lower the cost of emission reduction, the greater their motivation for reducing emissions. Therefore, to minimize the cost of emission reduction across all provinces and regions, it is recommended that the government allocate carbon quotas based on principles of egalitarianism and historical emissions.
	3. The shadow prices exhibit significant variations across different provinces. The trading of carbon quota among provinces is an effective means to balance the distribution of carbon quota and reduce the overall cost of emissions reduction. Currently, the carbon market has yet to achieve full coverage across all provinces and industries, necessitating further expansion of its scope to encompass all regions in China. Meanwhile, it is imperative to enhance the carbon quota trading mechanism within the carbon market to facilitate inter-provincial transactions.
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Understanding carbon emissions through the lens of population mobility is crucial for addressing sustainability challenges and fostering economic development. This study aims to investigate the influence of population mobility on carbon emissions in Australia, providing insights for targeted policy interventions. Utilizing panel datasets spanning from 2007 to 2020, encompassing both international and domestic migration in Australia, empirical analyses were conducted. The focus was on assessing the relationship between population mobility and regional carbon emissions. The study reveals distinct effects of domestic and international population mobility on carbon emissions. Domestic mobility demonstrates a negative correlation, whereas international mobility shows a positive association with carbon emissions. Moreover, significant regional heterogeneity in carbon emissions is observed, influenced by economic development and population size variations between eastern and western regions. These findings underscore the importance of tailored emission reduction strategies based on the nature of population mobility. By elucidating the intricate dynamics between mobility patterns and carbon emissions, this study contributes to a nuanced understanding of CO2 emission trends, informing policy decisions amidst the challenges posed by global climate change.
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1 INTRODUCTION
In the face of the significant challenge posed by global climate change, the international community has undertaken ambitious agreements to mitigate carbon dioxide emissions, aiming to constrain the temperature rise to 2°C by the century’s end (Liang et al., 2020). The trajectory from the establishment of the United Nations Framework Convention on Climate Change (UNFCCC) to the enactment of the Kyoto Protocol and, subsequently, the ratification of the Paris Agreement underscores the collective determination of nations and regions to collaborate in addressing global climate change. Nonetheless, these agreements do not fully consider the shifts in population structure and distribution that could potentially alter the CO2 emission patterns within regions. With the ongoing globalization and regional economic integration, the frequency of interregional population mobility has been escalating. Interregional population mobility emerges as a pivotal demographic factor that could influence carbon emissions (de Sherbinin et al., 2008; Han and Deng, 2023), primarily due to its impact on the size and composition of populations both at the origin and destination. The repercussions of population mobility extend beyond mere demographic changes, as they entail shifts in energy consumption and lifestyle patterns, thereby affecting CO2 emissions (Feng and Hubacek, 2016).
However, scant attention has been paid to the ramifications of population mobility on carbon emissions within countries or regions. Population mobility, inherent to human civilization and globalization, has surged in recent decades, with increasingly diverse destinations. The multifaceted impacts of population mobility on host countries encompass political, economic, cultural, and welfare dimensions (Duncan and Waldorf, 2016; Young et al., 2018). Thus, population mobility assumes significance as a crucial component among demographic factors influencing carbon emissions. Nevertheless, extant research pertaining to the influence of demographic factors on carbon emissions predominantly centers on population size and structure (Dietz and Rosa, 1997; Lozano and Gutiérrez, 2008; Wei and Liu, 2022). Against the backdrop of global economic integration and accelerated population mobility, a more precise and comprehensive exploration of the nexus between population mobility and carbon emissions becomes imperative for the realization of national or regional emission reduction objectives. Consequently, the pivotal question arises: What is the impact of population mobility on carbon emissions within each country or region? This study endeavors to bridge this knowledge gap by empirically analyzing the influence of population mobility on carbon dioxide emissions in Australia, thereby addressing this query.
The investigation into factors influencing carbon emissions constitutes a pivotal facet in advancing the green and sustainable growth of the global economy and is an indispensable prerequisite for achieving global greenhouse gas emission reduction targets. Consequently, scholarly attention has long been devoted to unraveling the determinants of regional carbon emissions. In recent years, such endeavors have yielded two systematic strands of research.
Firstly, studies have delved into the impact of non-demographic factors on carbon emissions. On one hand, a burgeoning body of literature has scrutinized the effects of environmental policies and regulations on carbon emissions. Notably, at the provincial level, the carbon emissions trading pilot policy has yielded discernible results, substantially curtailing carbon emissions in pilot areas (Zhang et al., 2021). Likewise, at the municipal level, Zhang (2020) assessed the carbon emission reduction effects of pilot low-carbon city policies and pilot innovative city policies, underscoring the efficacy of environmental policies and regulations in abating urban carbon emissions. On the other hand, a plethora of studies have examined the nexus between economic growth (GDP) (Pao and Tsai, 2011; Wang et al., 2018), Foreign Direct Investment (FDI) (Zhu et al., 2016; Zhang and Zhang, 2018), International Trade (IT) (Khan et al., 2020), Urbanization (Cole and Neumayer, 2004; Fan et al., 2006; Liddle and Lung, 2010; Poumanyvong and Kaneko, 2010), per capita income (GDP per capita) (Martínez-Zarzoso and Maruotti, 2011), fixed asset investment (FCI) (Jin and Han, 2021), technological innovation (R&D) (Zhao et al., 2014; Jiao et al., 2018a; Jiao et al., 2018b), and carbon emissions. Additionally, some scholars have explored the impacts of factors such as trade openness (Shahbaz et al., 2017), industrial structure upgrading (Wu et al., 2021), and regional integration (Li and Lin, 2017) on carbon emissions and carbon emission intensity. In the context of carbon peaking and carbon neutrality, it is imperative to ascertain how non-demographic factors influence carbon emissions and whether they contribute to carbon emission mitigation. Diverging from prior literature, this paper empirically scrutinizes the direction and magnitude of the impact of non-population factors on carbon emissions and conceptualizes the mechanism underpinning the role of technological innovation, thereby elucidating the contribution of non-population factors to carbon emission reduction.
Secondly, research has focused on the influence of population factors on carbon emissions. In recent years, propelled by the relentless expansion of the global population, both direct and indirect energy consumption by the populace has surged, emerging as a pivotal driver of carbon emissions, surpassing even the industrial sector in several developed countries (Lu and Zhao, 2008). Consequently, the examination of the impact of demographic factors on carbon emissions has garnered considerable attention in academic circles. Presently, studies scrutinizing the impact of population factors on carbon emissions predominantly center on the influence of population size. Numerous studies have underscored that population growth constitutes the primary driver of GHG emissions in the past and projected future (Schelling, 1992; Chesnais et al., 2001). Nonetheless, the influence of demographic factors on GHG emissions transcends population size alone, with population mobility intricately linked to carbon emissions, potentially impacting climate change dynamics. While population size serves as a static indicator of regional demographic factors, regional population mobility remains dynamic and fails to fully capture population fluctuations. Typically, regions with higher levels of economic development experience greater inflows of migrants, whereas less developed regions witness outflows. Given the perpetual flux in regional population sizes, exploring the impact of regional population mobility on carbon emissions offers a more rational, precise, and comprehensive assessment of the influence of demographic factors on carbon emissions. Despite the prevailing focus on the impact of population size on carbon emissions within demographic literature, no literature specifically examines the systematic impact of population mobility on carbon emissions, particularly concerning international and domestic population mobility. This lacuna underscores the urgent need to devise effective strategies leveraging the incentivizing effect of population mobility on carbon emission reduction.
Academic investigations have delved into the research on factors influencing carbon emissions from various perspectives. Upon scrutinizing existing literature, we identify limitations in three aspects. Firstly, while prior studies have examined the mechanisms by which technological innovation and industrial structural upgrades affect carbon emissions, there is a paucity of literature elucidating the theoretical mechanisms underlying the impact of population mobility on carbon emissions. Secondly, although certain literature has initiated discussions on the influence of population factors on carbon emissions, it predominantly focuses on population size as a static indicator, overlooking a direct empirical examination of the relationship between population mobility and carbon emissions. Despite Chesnais et al. (2001) examination of the relationship between demographic factors and carbon emissions, their study is unfortunate in its exclusion of dynamic indicators of population mobility and carbon emissions within the same dimension for empirical analysis. Thirdly, existing literature lacks an exploration of the regional heterogeneity in the impact of population mobility on carbon emissions.
In contrast to existing studies, this paper scrutinizes the impact of population mobility on carbon emissions through theoretical elucidations and empirical analyses based on state-level data. By integrating domestic population mobility, international population mobility, and carbon emissions into the same analytical framework, we address the aforementioned gaps in the literature. Leveraging datasets encompassing carbon emissions, international and domestic population mobility, total population, urbanization rate, GDP, innovation index, and fixed asset investment across Australian states from 2007 to 2020, we use cointegration theory, heterogeneity analysis, endogeneity examination, and multiple regression modeling as analytical tools to investigate the relationship between population mobility and carbon emissions. Specifically, utilizing data provided by the Australian Bureau of Statistics (ABS), we use multiple regression models to explore the impacts of international and domestic population mobility on carbon emissions across the eight states of Australia. Through the introduction of an econometric model based on panel data, we unveil the relationship between population mobility and regional carbon emissions, thereby facilitating an understanding of the nexus between population dynamics changes and carbon emissions.
In summary, this paper not only elucidates the mechanisms through which population mobility affects carbon emissions theoretically but also assesses the intensity and direction of population mobility’s impact on carbon emissions. Furthermore, it examines the regional heterogeneity in carbon emissions attributable to population mobility. Thus, this paper furnishes empirical and theoretical evidence to aid Australia in formulating a rational population mobility policy to attain future carbon emission reduction targets. Additionally, it offers new research perspectives and policy focal points for relevant stakeholders in achieving global carbon emission reduction objectives.
Subsequently, the paper is structured as follows: Part II presents the relevant theoretical mechanisms and hypotheses. Part III delineates the detailed research methodology, data sources, etc. The fourth section presents the corresponding analysis and a detailed discussion of the primary findings. Finally, the concluding part summarizes the paper and presents corresponding policy recommendations.
2 THEORETICAL MECHANISMS AND RESEARCH HYPOTHESES
In this paper, by reviewing existing relevant studies, we argue that the mechanisms underlying the impact of population mobility on carbon emissions can be delineated from two perspectives: the scale effect and the innovation effect.
Firstly, the scale effects are notable. Changes in population size resulting from population mobility primarily influence carbon emissions through international and domestic population movements. Initially, the impact of international population mobility on carbon emissions manifests in alterations in consumption patterns. Typically, international population mobility leads to an expansion of the population size in the destination country, thereby fostering increased local consumption demand. This surge in demand encompasses heightened requirements for natural resources (Pan et al., 2007; Oldekop et al., 2018), housing and land (Taylor et al., 2016), and food, thereby elevating carbon emissions (Radel et al., 2010). Secondly, domestic population movements often precipitate urbanization and urban sprawl. The economies of scale and intensified development associated with urbanization enhance energy utilization efficiency (Lv et al., 2020). For instance, larger structures, factories, and facilities can optimize energy usage and minimize wastage, consequently reducing carbon emissions. Furthermore, urbanization typically coincides with denser urban construction and improved transport networks, mitigating road traffic congestion and subsequent carbon emissions (Sun and Huang, 2020). Building upon these analyses, we propose the first research hypothesis of this paper.
Hypothesis 1:. Population mobility affects regional carbon emissions, wherein international population mobility increases carbon emissions within the region, while domestic population mobility decreases carbon emissions within the region.
Secondly, the innovation effect is noteworthy. Many studies overlook the influx of high-quality and skilled human resources facilitated by population mobility. Yet, the arrival of such talents invariably accelerates technological innovation within the region. Technological innovation plays a pivotal role in mitigating carbon emissions (Costa-Campi et al., 2015). Primarily, technological innovation influences carbon emissions by fostering the optimization and upgrading of industrial structures (You and Zhang, 2022). Widely employed in production and daily life, technological innovation facilitates cleaner production processes, enhances energy efficiency, promotes green energy consumption, and reduces resource consumption from both production and consumption perspectives. Moreover, it empowers the optimization and transformation of industrial structures toward low-carbon and eco-friendly industries, thereby curbing carbon emissions at their source. Secondly, technological innovation can also spur carbon emission reduction by reshaping the energy landscape (Shan et al., 2021). The application of technological innovation in the energy sector expedites the development of photovoltaic, wind power, and renewable energy sources, fostering the transition to a green, low-carbon, and clean energy consumption structure, thereby directly mitigating carbon dioxide emissions. However, it is imperative to note the predominant flow of innovative talent. High-end talents typically gravitate toward developed regions (Oliinyk et al., 2021) owing to the plethora of career opportunities, access to superior educational resources, convenient living conditions, vibrant entrepreneurial and innovative ecosystems, and extensive social networks available in such locales. The disparities arising from such population mobility may exacerbate regional discrepancies, thereby engendering heterogeneous impacts on carbon emissions. Building upon these insights, we propose the second research hypothesis of this paper.
Hypothesis 2:. There exists regional heterogeneity in the impact of population mobility on regional carbon emissions, wherein the effect of population mobility on regional carbon emissions varies across regions.
3 MODELS AND DATA
3.1 The econometric model and variables
This paper proposes the adoption of an econometric model based on panel data to investigate the impact of population mobility on carbon emissions in Australia. It is evident from prior empirical research that employing such an econometric analytical model significantly enhances the reliability of estimation results (Azomahou et al., 2006; Baltagi, 2021). Moreover, this model endeavors to incorporate various control variables to mitigate potential inaccuracies arising from the omission of relevant influencing factors (Halicioglu, 2009; Al-mulali and Sheau-Ting, 2014). Furthermore, recognizing the issue of multicollinearity between domestic and international population mobility within the same econometric framework (Zhong et al., 2021), both variables are included in the empirical analyses within the econometric model. Hence, this paper formulates the following econometric model:
[image: Mathematical equation showing a model for carbon dioxide (CO2) expressed as the sum of multiple variables. The equation includes coefficients a_0, a_1, a_2, and a_3, variables mig_inst, mig_damor, and Z_n, along with terms η_n, μ_t, and ξ_nt.]
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where [image: Please upload the image or provide a URL so I can help generate the alt text.] is the state, [image: Please upload the image you would like me to describe.] is the state, [image: Please upload the image or provide the URL, and I can help create the alt text for it.] is the time, [image: It seems there might have been an error or incomplete request. Could you please upload the image or provide a URL so I can help create the alternate text for it?] is a constant term and [image: It seems there was a problem with the image upload. Please try uploading the image again, and I will help you with the alternate text.] is the net CO2 emissions1 for the state of [image: It seems there is no image visible. Please upload the image or provide a URL, and I can help create the alternate text for it.], and [image: The image features mathematical notation "mig_{int,it}, \, mig_{dom,it}" with subscript elements indicating variables or parameters related to migration, possibly differentiating between international and domestic contexts.] is the state’s i’s international population mobility and domestic population mobility2, respectively. The explanatory and explanatory variables are logarithmic in the empirical evidence. [image: No image has been uploaded. Please upload the image or provide a URL for me to generate alt text.] is denoted as error terms, respectively. In addition, the paper controls for time-fixed effects ([image: The Greek lowercase letter eta, represented with a slanted, cursive-like design.]) and sectoral fixed effects ([image: It seems like there was an issue with uploading the image. Please try uploading it again and I will be happy to help with the alt text.]) to mitigate measurement bias arising from omitted variables (deHaan, 2020). [image: It seems there's no image attached. Please upload an image or provide a URL for me to create the alt text.] are control variables.
The influence of population mobility on carbon emissions in Australia is delineated by two variables: international and domestic population mobility. While both domestic and international population mobility can impact changes in population size, consumption structure, and scale across different states of Australia, consequently affecting changes in carbon emissions, international population mobility is more inclined to stimulate technological advancements in sustainable energy innovations and alter consumption structures at migration destinations compared to domestic population mobility. Given Australia’s status as a nation of immigrants, there has been a surge in international inflows over the past two decades, perpetuating the influence of the international population on population growth in each of Australia’s states. Conversely, domestic population mobility influence population growth in receiving states while simultaneously contributing to population decline in the states experiencing out-migration. Therefore, we use both international and domestic population movements to characterize the impact of population mobility on carbon emissions in Australia.
To enhance the reliability of the study’s findings, this paper selects control variables (Z) that accurately reflect the status of each region and may impact regional carbon emissions. Specifically, these include 1) urbanization rate (urban). Urbanization rate serves as a crucial indicator of regional development level, and numerous studies have illustrated a positive correlation between urbanization and carbon emissions, both globally and across countries or regions with varying income levels (Cole and Neumayer, 2004; Fan et al., 2006). However, the drivers behind increased energy consumption and carbon emissions due to population urbanization vary among countries or regions with differing income levels. Notably, population migration from rural to urban areas influences regional carbon emissions by altering economic production and consumption patterns (Zhao et al., 2012; Alola, 2019; Qi and Li, 2020). In this paper, we utilize the urban population as a percentage of the total population in the region to characterize the urbanization rate.
	2) The size of the population ([image: Please upload the image you'd like described, and I'll provide the alt text for you.]). Birdsall (1992) contends that not only does a larger population escalate energy demand, but rapid population growth also precipitates deforestation and degradation of arable land, both contributing to heightened greenhouse gas emissions. Knapp and Mookerjee (1996) conducted a Granger causality test on global CO2 emissions and global population, concluding that while no long-term cointegration exists between the two, the upsurge in global population drives an increase in global CO2 emissions. Hence, this paper employs regional population size to characterize population magnitude.
	3) The level of regional economic development ([image: It seems that there's no image attached. Please upload the image, and I'll be happy to help with the alt text!]). Rapid economic advancement in countries and regions necessitates energy as a core factor of production, with economic activities spanning agriculture, mining, construction, manufacturing, transportation, among others, perpetually accelerating fossil energy consumption. Solarin and Bello (2020) affirm the dominance of fossil fuels in energy consumption and highlight its implications for inter-regional carbon emissions. Notably, Aslam et al. (2021) analyzed the Kuznets Environmental Curve (EKC) hypothesis, positing a strong correlation between GDP per capita and CO2 emissions, assuming a U-shaped relationship between income and environmental degradation processes such as CO2 emissions. Thus, this paper utilizes Gross State Product (GSP) to depict the level of regional economic development. To offer a more comprehensive depiction of the economic development’s impact on CO2 emissions, the paper also introduces GSP per capita.
	4) Investment in fixed assets ([image: It seems like your request contains a mathematical expression instead of an image. If you have an image you'd like me to describe, please upload it or provide a URL.]). Jin and Han (2021) suggest that increased investment in fixed assets can address employment issues, stimulate income growth, and uphold social stability. Nonetheless, an excessive emphasis on scale expansion at the expense of carbon emissions may provoke severe environmental repercussions. Fixed asset investment encompasses expenditures on housing, buildings, machinery, transport, and enterprises’ capital construction, entailing substantial consumption of social resources such as energy, minerals, and forests, thereby impacting inter-regional carbon emissions. Therefore, fixed asset investment quantity is employed to depict investment in fixed assets.
	5) Environmental regulation ([image: If you could upload the image or provide a URL, I’d be happy to help create the alternate text for it.]). The utilization of fossil fuels, predominantly coal, oil, and natural gas, in carbon dioxide-producing product manufacturing invariably yields sulfur dioxide emissions. Qin et al. (2021) posit a robust negative correlation between environmental regulation intensity and sulfur dioxide emissions, suggesting that heightened environmental regulation intensity correlates with decreased SO2 emissions. Dobbie and Green (2015) assert the pivotal role of sulfur dioxide as a key environmental regulation indicator in Australia. Hence, this paper utilizes SO2 emissions to portray environmental regulation intensity.
	6) Technological innovation ([image: Certainly! Please upload the image or provide a URL to it, and I will create the alt text for you.]). A prevalent argument posits that technological innovation effectively curtails carbon emissions. For instance, Chen and Lei (2018) examine the impact of technological innovation on CO2 emissions, indicating that it reduces CO2 emissions in countries with relatively high emissions compared to low-emitting nations. Mensah et al. (2021) utilize a blend of Stochastic Impact Regression of Population Affluence and Technology (STIRPAT) and EKC models to analyze innovation’s impact on CO2 emissions across 28 OECD countries between 1990 and 2014, suggesting that innovation mitigates environmental degradation in most studied nations. Mensah et al. (2019) provide similar findings, empirically demonstrating innovation’s impact on carbon emissions in OECD countries. Consequently, this paper adopts an innovation index to depict technological innovation level.

3.2 Data
For the assessment of population mobility and regional carbon emissions, data on international and domestic population mobility, total regional population, urbanization rate, gross state product (GSP), and fixed asset investment are primarily obtained from the Australian Bureau of Statistics (ABS). The ABS provides the most comprehensive statistical data on the Australian economy, population, industry, labor, health, and environment for the period 2007–2020. Moreover, for the pertinent control variables in the econometric regressions—namely, urbanization rate, total state population, GSP, GSP per capita, innovation index, and fixed asset investment—these data are also sourced from the Australian Bureau of Statistics. State-level CO2 and SO2 emissions data are retrieved from the Department of Industry, Science, Energy, and Resources (DISER) database. Additionally, to eliminate the influence of price factors on economic data, all economic figures in this study are denoted in Australian dollars. Descriptive statistics for these variables are presented in Table 1 within the Table directory.
TABLE 1 | Descriptive statistics for all variables in the econometric model.
[image: Table presenting descriptive statistics for various variables, including migint, lnurban, lnpop, lngsp, lngsper, lnfci, lnso₂, lnrd, migdom, and CO₂. Each variable has data on the number of observations, unit, mean, standard deviation, minimum, and maximum values. The variables have different units such as percent, thousand, millions of dollars, and 1,000 tonnes Gg. The mean values range from negative 0.040 to 7.366, with standard deviations from 0.071 to 2.426. Minimum and maximum values are also listed for each variable.]4 RESULTS AND DISCUSSIONS
The first step in the econometric analysis was to test the variables’ stationarity. This was achieved by applying the Panel unit root test. The panel unit root test became popular because of its high power. This study utilized the panel unit root tests namely, Levin, Lin and Chu (LLC) (Levin et al., 2002). The results revealed that some of the variables are non-stationary at the level thus the null hypothesis of a panel unit root cannot be rejected. On the other hand, the variables are significant at first difference which rejects the null hypothesis. Therefore, the variables are stationary at the first difference. The stationarity of the variables for each state was also tested by using the Augmented Dickey-Fuller (ADF) and Phillips–Perron (PP) tests and it was found that all the variables for each state were stationary but at different levels.”
4.1 Basic regression results
Using tests such as the F-value (p = 0.00) and LSDV, this paper finds that the above constructed econometric regression model [i.e., Eqs 2, 3)] has individual effects and thus determines that confluent regression should not be used. Further, the Hausman test and the over-identification test were also used to find that the model rejects random effects and that a fixed effects model should be used. On this basis, the results of the baseline econometric regression in this paper are as follows.
The regression results for the effects of international migration, domestic migration, and population size on carbon emissions in Australia are presented in (1)–(3) in Table 2 of Table directory. It can be seen that the estimated coefficients for international migration in Australia are all positive, while the estimated coefficients for domestic migration are all negative, conditional on the inclusion of control variables. There is a positive correlation between international migration and carbon emissions, with an increasing number of international population mobility leading to greater carbon emissions. This phenomenon may be explained by the fact that, on the one hand, since international migration is usually from relatively poorer to richer regions, international migrants usually live in more developed economies with significant changes in lifestyle (Zhao et al., 2012; Qi and Li, 2020). Their increased consumption of necessities (e.g., food and clothing), housing, infrastructure, healthcare, and education leads to higher CO2 emissions (Liebert and Ameringer, 2013; Teixeira, 2013; Larrotta, 2017).
TABLE 2 | Impact of population mobility on regional carbon emissions.
[image: Regression table showing various coefficients and standard errors for three models. Significant variables include lnurban and lngsper in models one and two, lnpop, lngsp, lngsper, lnfc, lfnci, and migdom in model three. Significance levels are denoted by asterisks: *** for 1%, ** for 5%, and * for 10%. Model one has 104 observations, model two has 104, and model three has 112.]On the other hand, population mobility has an impact on carbon emissions, mainly because it affects the size and structure of the population at the source and destination. Not only does population growth due to mobility translate into higher energy consumption, but the process of population mobility brings about changes in lifestyles, which affect consumption patterns and thus CO2 emissions (Feng and Hubacek, 2016). There is a negative correlation between domestic population mobility and carbon emissions, i.e., domestic population mobility leads to reduced carbon emissions. The reason for this phenomenon may be caused by the urbanisation process (Ma and Hofmann, 2019). Domestic population mobility tends to promote the transfer of labour from the agricultural sector to the non-agricultural sector, and the structure of urban employment and industry changes, triggering an industrial structure transformation effect. This means that after a certain degree of economic development, the proportion of primary and secondary industries in the economy will decrease accordingly, and the tertiary industry represented by high value-added services will become the centre of economic development (Tian et al., 2014). According to Wu et al. (2012), the decrease in the proportion of the secondary industry will lead to a decrease in per capita carbon emissions. Meanwhile, Guo (2012) found that there is a negative correlation between the proportion of primary industry and carbon dioxide emissions when studying the impact of industrial structure on carbon emissions.
As expected, urbanisation has a positive impact on carbon emissions. Specifically, an increase in the size of the urban population leads to a rise in carbon emissions, which is related to factors such as energy demand and traffic congestion that may increase during urbanisation. However, population size does not statistically significantly affect carbon emissions, possibly because the effect of population size on carbon emissions may vary by region. In some regions, an increase in population size may be associated with higher carbon emissions, while in other regions it may not be significant. We will verify this in the subsequent heterogeneity analysis. State GDP positively affects carbon emissions, with increased state GDP likely associated with higher levels of industrial production and energy consumption. Meanwhile, state GDP per capita also has a positive effect on carbon emissions, which may imply a non-linear relationship between the effect of state GDP per capita on carbon emissions, i.e., as productivity increases, carbon emissions rise at an accelerated rate. On the other hand, investment in fixed assets has a negative effect on carbon emissions, suggesting that increased investment in fixed assets may help to reduce carbon emissions, possibly due to technological innovations and more efficient resource utilisation. However, sulphur dioxide emissions do not statistically significantly affect carbon emissions, which may indicate that sulphur dioxide is not influential enough to statistically significantly affect carbon emissions in this model. Finally, the lack of significant impact of R&D expenditures on carbon emissions in the current model may be due to the fact that there may be a time lag in the impact of R&D expenditures, i.e., the impact of R&D expenditures on carbon emissions that occurs after a certain period of time. This lagged effect may not be captured if the time horizon is short. It may also be because there may be differences in the industrial structure and R&D priorities of different regions, leading to a significant impact of R&D expenditure on carbon emissions in some regions but not in others. We will also verify this in the subsequent heterogeneity analysis.
4.2 Endogenous treatment
Where endogeneity is overlooked, estimates may suffer from bias and inconsistency (Klette and Griliches, 1996). Endogeneity, in the context of this paper, primarily manifests as reverse causality, omitted variables, and measurement error (Roberts and Whited, 2013). Firstly, population mobility may exert both growth and inhibitory effects on regional carbon emissions. Conversely, regional carbon emissions may also exert a considerable impact on population mobility. Regions with high energy consumption and carbon emissions may be less susceptible to the influence of minor population mobility factors. For instance, a significant influx of population may lead to an increase in carbon emissions in recipient areas to a certain extent, while regions with high carbon emissions may experience population outflows due to deteriorating living conditions and reduced quality of life. Secondly, due to the impossibility of exhaustively listing all explanatory variables in the econometric model, omitted variables may arise. The inclusion of omitted variables in the error term, especially when they are correlated with other explanatory variables, can lead to endogeneity issues. For instance, the quality of incoming population can influence changes in carbon emissions. This quality is often linked to various factors such as the political, cultural, economic, and educational levels of the originating country, making it challenging to incorporate all relevant variables and potentially resulting in variable omissions that could impact regression outcomes. Finally, measurement errors in variables may also contribute to endogeneity problems.
To address potential endogeneity issues in econometric models, this paper employs the following strategies. Firstly, to mitigate the impact of endogeneity, a lagged period instrumental variable strategy is adopted, utilizing lagged CO2 emissions as instrumental variables for the current period’s values. This approach effectively addresses the aforementioned issues. Additionally, considering the inherent inertia of economic factor changes, a dynamic model lag term is introduced to better control for lagging factors. Furthermore, to minimize estimation bias due to the choice of econometric model, this paper introduces the systematic Generalized Method of Moments (GMM) approach. The systematic GMM approach offers several advantages: it eliminates bias in the presence of non-time-varying omitted variables, provides consistent estimates of coefficients in the presence of endogenous variables on the right-hand side of the model, and yields consistent estimates even in the presence of measurement error (Bond et al., 2001). Thus, estimation is conducted using systematic GMM in dynamic panels, effectively addressing measurement error, non-time-varying omitted variables, and endogeneity of explanatory variables (Caselli et al., 1996).
Table 3 in the Appendix presents the results of econometric regressions accounting for endogeneity. The regression outcomes concerning the effects of international population mobility, domestic population mobility, and population size on carbon emissions in Australia, when endogeneity is taken into account, indicate positive estimated coefficients for international population mobility and negative estimated coefficients for domestic population mobility, with control variables included. These findings suggest that both the positive impact of international population mobility on regional carbon emissions and the negative impact of domestic population mobility on inter-regional carbon emissions remain robust, unaffected by potential endogeneity risks.
TABLE 3 | Regression results considering endogeneity measures.
[image: A regression table with two models. Model 1's dependent variable is "mig_int" and Model 2's is "mig_dom". Coefficients and robust standard errors are shown for each independent variable: migint, migdom, L_co2, lngsp, lngspper, lnurban, lnfci, lnpop, lnrd, lnso2, and _cons. Significant levels are indicated by asterisks: one asterisk for 10%, two for 5%, and three for 1%. Observations (N) for both models are 104. Robust standard errors are in parentheses.]Moreover, significant positive effects of international population mobility, and significant negative effects of domestic population mobility are observed in both types of econometric regressions (Tables 2; 3 in the Appendix), reinforcing the reliability of estimated results for core explanatory variables presented earlier.
4.3 Heterogeneity analysis
With the advancement of economic globalization and the evolution of human civilization, the phenomenon of population mobility, driven by meritocratic principles, has influenced the allocation of global resources across various regions and countries. This dynamic has resulted in the migration of people to different destinations, ultimately shaping patterns of population movement that are reflective of varying levels of economic development. Numerous studies have demonstrated that regions or countries with more developed economies often offer attractive employment prospects and living standards, thereby drawing highly skilled individuals, while those with lower to middle-income status struggle to attract such talent. This raises the question: does population mobility exert a varying impact on carbon emissions in regions or countries with differing levels of development? To investigate this, the following section presents an empirical analysis.
The findings are detailed in Tables 4, 5 in the Appendix. Notably, the effect of domestic migration on shifts in regional carbon emissions is consistently negative across both Eastern and Western regions. This suggests that the role of domestic population mobility in reducing carbon emissions remains robust across diverse geographical areas. As human civilization progresses and economic globalization continues to unfold, regional shifts in carbon emissions will undoubtedly influence the distribution of responsibility for emission reduction among different regions. Therefore, it is imperative to encourage the involvement of regions with varying degrees of population mobility in energy conservation and emission reduction efforts. This regression outcome substantiates Hypothesis 2 of this paper, which posits regional heterogeneity in the impact of population mobility on regional carbon emissions. Furthermore, most control variables exhibit directional and significant consistency with previous findings, further bolstering the reliability of prior empirical results.
TABLE 4 | Heterogeneity test for the effect of population mobility on carbon emissions in the eastern region.
[image: Table displaying regression results with variables migint, lnurban, lnpop, lngsp, lngsper, lnfci, lnso₂, lnrd, migdom, and a constant across three models. Coefficients and t-values are provided, with significance levels marked by asterisks: one asterisk for 10%, two for 5%, and three for 1%. Sample sizes are 65 for models (1) and (2), and 70 for model (3).]TABLE 5 | Heterogeneity test for the effect of population mobility on carbon emissions in the western region.
[image: Table displaying regression results with variables, coefficient estimates, and robust standard errors for three models. Variables include migint, lnurban, lnpop, lngsp, lngsper, lnfcj, lnso₂, lnrd, migdom, and a constant. Significance levels are indicated by asterisks, with notes on standard errors and significance at the bottom.]Drawing insights from the estimated results of control variables in both developed Eastern and less developed Western regions, several conclusions can be derived. Firstly, the positive impact of population size is highly significant in both regions. Secondly, the estimated coefficient for the level of economic development in the Eastern region surpasses that of the Western region. Thirdly, notable disparities are observed in the effects of international population mobility on regional carbon emissions. In the developed Eastern region, international population mobility significantly inhibits carbon emissions, whereas in the Western region, international population mobility exhibits distinct regional variations in its impact on carbon emissions. Fourthly, the positive effect of per capita income is more pronounced. Lastly, the impact of GSP per capita is negative for the Western region but positive for the Eastern region.
4.4 Discussions
Firstly, regarding domestic population mobility, the empirical findings of this study reveal a significantly negative regression coefficient for domestic population mobility at the 10 percent level. This finding aligns with Hypothesis 1 outlined in the Theoretical Mechanisms section, which posits that domestic population mobility decreases carbon emissions within the region. Domestic population mobility primarily influences carbon emissions through structural shifts. It often facilitates the transition of labor from the agricultural sector to the non-agricultural sector, prompting changes in employment and industrial structures within urban areas, thus catalyzing industrial transformation. The relocation of labor to urban centers fosters the growth of secondary and tertiary sectors and incentivizes the transition from traditional agriculture to modern methods, consequently reducing the proportion of the primary sector. Guo (2012) observed that a 1 percent reduction in the share of energy-intensive industries within the primary sector could potentially decrease carbon dioxide emissions by 220–290 million tons, which corroborates our regression findings. As a developed nation, Australia’s economy has advanced to a certain degree, leading to a decline in the proportion of primary and secondary industries, with the tertiary sector, epitomized by high value-added services, assuming centrality in economic development. Wu et al. (2012) demonstrated that higher carbon emissions correlate with a larger share of the secondary industry, yet a decrease in the secondary sector’s proportion, under constant per capita GDP, results in reduced per capita carbon emissions. This suggests that the transition of Australia’s domestic workforce from the secondary to the tertiary sector is conducive to carbon emission reduction, consistent with our econometric regression results.
Secondly, concerning international population mobility, the regression outcomes indicate a positive elasticity of the impact of international population mobility on carbon emissions. These findings validate the hypothesis proposed in Hypothesis 1, suggesting that international population movements increase carbon emissions within the region. International mobility influences carbon emissions primarily through the scale effect and technological innovation facilitated by the mobility of skilled individuals. The scale effect induced by international mobility significantly influences population growth, with population size exhibiting a notable positive effect on carbon emissions growth, consistent with both our empirical findings and those of prior researchers.
Moreover, it is noteworthy that the impact of population growth on carbon emissions manifests in two primary ways: firstly, population growth directly precipitates a sharp rise in energy consumption and carbon emissions, and secondly, population growth fosters low-carbon technological innovation, thereby mitigating carbon emissions. The positive elasticity coefficient of the impact of international population mobility on carbon emissions suggests that the promotional effect of international population mobility on low-carbon technological progress and research and development (R&D) is not substantial enough to offset the scale effect’s influence on carbon emissions growth. Consequently, the positive elasticity coefficient of the impact of international population mobility on carbon emissions persists.
5 CONCLUSION AND POLICY IMPLICATIONS
This paper aimed to offer a more comprehensive understanding of the determinants of CO2 emission changes from the perspective of population mobility and empirically examine the impacts of population mobility on CO2 emissions. Building on this foundation, we derived relevant policy conclusions concerning population mobility and carbon emissions. Our primary conclusions and policy implications are outlined below.
Firstly, in the baseline regression analysis, domestic and international population mobility exert different impacts on carbon emissions. A negative correlation typically exists between domestic population mobility and carbon emissions. This phenomenon arises because domestic population mobility often accompanies urbanization, leading to more efficient energy usage and reduced carbon emissions. For instance, urban migration tends to increase population density, thereby enhancing transport efficiency and promoting public transport utilization, consequently mitigating carbon emissions from transportation. Generally, as domestic population mobility rises, carbon emissions tend to decline. Conversely, there exists a positive correlation between international population mobility and carbon emissions. International migration can alter consumption patterns, thereby influencing carbon emissions. For example, an influx of international migrants may drive increased consumption of material goods, consequently raising carbon emissions from logistics. Furthermore, international migration may escalate logistics transportation, further exacerbating carbon emissions. Overall, as international migration increases, carbon emissions tend to rise.
Secondly, concerning heterogeneity, significant disparities in carbon emissions exist between Australia’s eastern and western regions. The eastern region, characterized by a more developed economy, exhibits greater dependence on industrial and urban development, resulting in higher carbon emissions. For instance, major cities like Sydney and Brisbane, being economic hubs, also register high carbon emissions owing to industrial and urban development. Conversely, the western region boasts a less developed economy reliant on agriculture and resource development, thus recording lower carbon emissions. For example, Western Australia’s economy is predominantly based on agriculture and mining, resulting in comparatively lower emissions.
The empirical findings of this paper suggest that with global economic integration and the advancement of human civilization, population mobility can contribute to carbon emissions reduction in Australia.
Firstly, in terms of scale effects, population mobility alters Australia’s population size and composition, consequently affecting consumption patterns and environmental dynamics, thereby influencing changes in carbon emissions. Given Australia’s status as a major migrant destination, this trend in population mobility is likely to persist. Policymakers can implement various measures on both the supply and demand sides to mitigate carbon dioxide emissions associated with population mobility. Destination countries can optimize consumption behaviors and provide incentives for technological advancements, such as imposing carbon taxes on goods and services. Additionally, measures like taxes, support, and subsidies can be employed to reduce the energy intensity of productive sectors, thus offsetting migration-induced greenhouse gas emissions.
Secondly, with regard to the influx of innovative talent, as previously discussed, the migration of highly skilled individuals resulting from population mobility is poised to accelerate technological innovation in Australia, thereby playing a pivotal role in addressing climate change challenges and fostering sustainable development. Consequently, Australian authorities should prioritize technology development, innovation, and research and development by strategically increasing the target for skilled migration in clean energy within migration policy frameworks. However, it is essential to acknowledge the heterogeneous impact of acquiring innovative talent on regional carbon emissions.
While this paper enriches the literature on the relationship between population mobility and the environment, it is not without limitations. Future research could address these limitations by examining the relationship between population mobility and the environment in other countries and regions outside Australia, employing different econometric and statistical methodologies. Furthermore, future studies may utilize alternative indicators such as greenhouse gases, air quality indices, ecological footprints, and deforestation rates to gauge environmental quality. Such endeavors will deepen our understanding of the relationship between population mobility and the environment, guiding the formulation of sustainable development policies.
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FOOTNOTES
1Net CO2 emissions are the amount of carbon dioxide after all emissions released by human activities have been offset by removing carbon from the atmosphere. Net CO2 emissions consist of two main components. Firstly, human-caused CO2 emissions (e.g., from fossil-fuelled cars and factories). Second, carbon removal, which is usually done through natural methods such as absorption by forests, land, and oceans, or through technologies such as direct air capture and storage (DACS), which removes carbon directly from the atmosphere.
2Population mobility in this paper refers to the net inflow of population as a proportion of the total local population, i.e., population inflow minus population outflow divided by the total local population.
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More attention has been paid to environmental regulation of greenhouse gas emissions in the energy industry under the transformation of industrial structure. This paper takes microdata of Chinese energy enterprises from 1998 to 2012 as a sample to build a duty-sharing model, analyzes the effect of environmental regulations on the industrial chain, and explains the “double growth” phenomenon that occurred in China, which is nothing short of miraculous in terms of the environment and economy. In the industrial chain, the environmental obligations and responsibilities will be shared between upstream and downstream enterprises due to trade linkages. This paper finds that environmental responsibilities will move forward through the industrial chain when environmental regulations are strengthened. Downstream companies will loosen “relative” control constraints, thereby expanding output but increasing demand for upstream products. Different from the existing research, we claim that, since environmental regulation has a differential effect on the industrial chain, it will promote the growth of output in the entire chain, in contrast to the theory of “cost compliance”, which claims that environmental regulation will inevitably lead to the output. Based on this research, this paper puts forward some suggestions and insights on how the government implements environmental regulations.
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1 INTRODUCTION
In the early stages of reform and opening up, China’s rapid economic growth was characterized by a extensive development model marked by high energy consumption, high pollution, and low efficiency. As China’s economic growth model transitions from rapid growth to high-quality development, the country has been actively embracing the concept of sustainable development of natural resources, encapsulated in the phrase “clear waters and green mountains are as valuable as mountains of gold and silver.” The negative externalities of environmental pollution and the scarcity of natural endowments have led to societal demand for government environmental regulation. Because enterprises focus too much on private costs and ignore social costs, the production process generates huge negative environmental externalities and causes the market mechanism to fail. Environmental regulation, as an effective public policy and instrument of the government, imposes effective external constraints on enterprises and endogenizes social costs, thus realizing the use of the “visible” hand of the government to correct the effective operation of the market mechanism. To this end, China has enacted and promulgated a large number of laws, regulations, and norms to thoroughly improve the ecological environment and eliminate the serious problems caused by pollution, forming a comprehensive system of environmental regulation policies. “Environmental protection inspectors” have demonstrated China’s determination and confidence in tackling environmental pollution problems (Liu et al., 2022a; Li et al., 2022; Liu and Sun, 2023). The study of the effects of environmental regulation has not only been widely debated in the theoretical community but has also become a focus of attention for the government and practitioners.
Regarding the effects of environmental regulation, academic circles are mainly concentrated on cost effects (Posner and Landes, 1985; Hazilla and Kopp, 1990; Jaffe and Palmer, 1997; Brännlund et al., 1998; Pickman, 1998; Ederington and Minier, 2003; Gray and Shadbegian, 2003). In addition, according to the innovation compensation effect (Porter and Linde, 1995; Hamamoto, 2006; Ashford and Hall, 2011; Kneller and Manderson, 2012; Ford et al., 2014), the “cost follow” and “innovation compensation” are then derived. Specifically, the “cost follow” theory holds that after the internalization of social costs, enterprises cannot digest the burden through production or operation, which in turn causes output and competitiveness to decline. The theory of “innovation compensation” holds that after facing the external impact of the policy, firms can effectively adjust production and operation strategies and then form a loss of effects caused by long-term efficiency improvements and the increase in compensation costs. However, from the perspective of the development of the industry, the industrial sector with the most concentrated environmental regulations has no sign of the so-called output attenuation in the theory of “cost follow”. According to the statistics of the China National Bureau of Statistics in 2020, the profit of industrial enterprises above a designated size was 6451.6 billion yuan, an increase of 4.1% compared with the previous year; and the manufacturing industry achieved a profit of 5579.5 billion yuan, an increase of 7.6%. Environmental regulation had the greatest effect on the energy raw materials and energy products industries, nonmetallic mineral products industries, and black metal smelting and pressure-proclaiming industries, with increases of 3.4%, 2.8%, and 6.7%, respectively. Of the 596 major industrial product statistics, 376 were achieved year-on-year, with a growth surface of 63.1%. From the perspective of environmental regulation, energy conservation, and emission reduction will improve environmental quality and improve overall industrial output (Jin et al., 2016; Chen and Xu, 2021; Wu and Gao, 2021; Chen et al., 2022) but do not form the technical effect proposed by the theory of “innovation compensation" (Dou and Han, 2019; Tian et al., 2021; Wang et al., 2023). It can be seen that the “cost follow” theory and “innovation compensation” doctrine cannot explain the phenomenon of “dual growth” of China’s environment and economy.
Following the proposal of China’s “dual carbon” targets, research related to environmental regulation has been enriched. Many scholars have pointed out that command-and-control environmental regulatory policies, such as the “Two Control Zones,” tend to lead to campaign-style emission reduction activities, such as shutdowns and production halts (Cai et al., 2016). In contrast, market-incentive environmental regulatory policies, such as the pollution rights trading system, carbon emission trading system, and energy use rights trading system, can promote energy conservation, emission reduction, and pollution control through clear property rights delineation (Chen and Lin, 2021; Che and Wang, 2022; Huang et al., 2022). Additionally, public participation environmental regulatory policies, such as the disclosure of environmental information, can effectively complement the top-down government regulation and bottom-up public supervision in the environmental protection domain (Chu et al., 2022).
Therefore, based on the perspective of the industrial chain, this paper analyzes the difference in the policy effect of environmental regulation upstream and downstream of the industrial chain by taking the environmental protection of the energy industry in 2006 as the research sample and then analyzing the “relative” deregulation effect of environmental regulation. Different from the existing studies, the possible innovations and academic contributions of this paper are as follows: 1) Establish an upstream and downstream environmental responsibility-sharing model, analyze enterprises under the industrial chain framework, and then find that environmental regulatory policies have heterogeneous effects on the industrial chain, and put forward theoretical hypotheses. 2) Using micro-data and econometric methods, this paper verifies theoretical hypotheses, proposes hypotheses on the effect of “relative” deregulation of environmental regulations, and explains the phenomenon of “double growth” of China’s environment and economy. 3) The regional heterogeneity of the impact of environmental regulatory policies on firm performance is further explored.
The remainder of this article is organized as follows: The second part explains the implementation strategy of environmental protection regulatory policies in the energy industry in 2006, builds the industrial chain upstream and downstream environmental regulation responsibility-sharing models, and proposes the corresponding assumptions. Based on the inspection and analysis of the double method, the assumptions on the sharing model of environmental regulation responsibility are proposed. The fourth part summarizes the corresponding research conclusions and puts forward targeted policy suggestions.
2 THEORETICAL MODEL AND RESEARCH HYPOTHESIS
First, this article systematically reviews the implementation strategy of environmental inspection in 2006 to refine the corporate-related strategies. Second, based on abstract environmental regulations and corporate strategies, this article draws on the research ideas of Hay and Spier (2005), Helland et al. (2020) to build an enterprise environmental responsibility-sharing model for the industrial chain of the energy industry and introduces environmental regulations to the industry. In the chain research framework, the “relative” relaxation control effect focuses on the implementation of environmental regulations.
2.1 Environmental regulation strategies for implementing the energy industry
The pollution incident in the Songhua River basin in November 2005 sparked national attention. In January 2006, the State Environmental Protection Administration (SEPA) issued “the Notice on Checking the Environmental Risks of New Energy and Petroenergy Projects” (No. 42006) to conduct a nationwide inspection and remediation of the energy industry. Since February 2006, SEPA has dispatched five inspection teams to inspect key energy and petrol energy projects worth more than 450 billion yuan in 127 sensitive areas. The key contents of the investigation mainly include environmental risk and prevention implementation, environmental sensitivity investigation of project site selection, the project’s danger, toxicity, and risk investigation of materials and products, and the risk sources such as project environmental accidents and the risk reduction of enterprises to reduce risk. The environmental investigation organization’s main methods include data review and on-site inspection of the combination of the two ways, local environmental protection administrative departments by the principle of territorial self-inspection, the state Environmental Protection Administration sent by the inspection team by the relevant standards of key energy projects (about 20) for investigation. The handling methods of the investigation results mainly include supplementing and rectifying the environmental risk assessment report within a specified time limit and handing over the original environmental impact assessment report to the approval department for review. If the “three simultaneous " (Three steps of a project are carried out simultaneously) of the construction project fail to pass the acceptance inspection, it is necessary to supplement the corresponding environmental risk emergency plan and update on the implementation of accident prevention measures.
Judging from the implementation of environmental protection investigations organized by the State Environmental Protection Administration of the People’s Republic of China in 2006, environmental protection investigations mainly adopt enterprise reports and inspection team verifications. It can be seen that corporate reports and data verification are particularly important. Therefore, when this article constructs the theoretical model, the corresponding enterprise reports the environmental emissions coefficient and the enterprise reporting strategy and environmental regulation intensity are used as strategic variables for corporate environmental responsibility.
2.2 Economic environment and main body setting
It is assumed that enterprises in the market are divided into upstream and downstream. Upstream enterprises produce goods with negative environmental externalities and sell them to downstream enterprises in different regions. The number of goods sold by the upstream enterprise to the downstream enterprise in region [image: Please upload the image or provide the URL so I can generate the alternate text for it.] is denoted as [image: A lowercase "x" with a subscript "i".], where [image: The text is a mathematical expression: "i equals one to N."]. Downstream enterprises purchase upstream products for secondary processing and the product is directly sold to the end consumers. Its production function is:
[image: Equation representing a function, where y subscript i equals f of x subscript i.]
where [image: Please upload the image or provide a URL for me to generate the alternate text.] represents the final sales volume or output of the downstream enterprise in region [image: It seems like there might have been an issue with the image upload. Please try uploading the image again, and I'll be happy to help with the alt text.]. The production function is assumed to be an increasing concave function of [image: It appears that you might be referring to a mathematical notation. If you have an image, please upload it or provide a URL. If "x sub i" is part of an image, describe the surrounding context for a more accurate description.], as [image: Mathematical expression showing first and second derivatives: f sub x of x sub i is greater than zero; f sub xx of x sub i is less than zero.]. In this paper, the upstream enterprises in the energy industry have certain monopoly characteristics, while the downstream enterprises are in a perfectly competitive market. The government imposes environmental regulations in the [image: Please upload the image so I can help create the alt text for it.] region, and the upstream companies bear [image: The expression shows the function alpha of variables z sub i and gamma, written as \( \alpha(z_i, \gamma) \).] share of punishment [image: Please upload an image or provide a URL so I can help you create the alt text.], denoted as [image: The mathematical expression shows alpha, open parenthesis, z subscript i, comma, gamma, close parenthesis, uppercase A.]. As enterprises produce negative environmental externalities and carry out liability-sharing punishment, the downstream enterprises bear the corresponding responsibilities [image: Expected value of one minus alpha of function z sub i, gamma, given A, conditioned on gamma A.]}, where [image: It seems like you included a symbol or equation, but I cannot see the image you're referring to. Please upload the image or provide a link to it, and I'll help you create the alternate text.] represents the intensity of the environmental supervision implemented by the government in the [image: Please upload the image or provide a URL so I can help create the appropriate alt text.] region, [image: It seems like there was an issue with uploading the image. Please try uploading the image again or provide a URL to the image for assistance.] represents the coefficient of negative environmental externalities reported by upstream enterprises, and its value is [image: Gamma belongs to the closed interval from zero to one.]. At the same time, assuming that the greater the intensity of government environmental regulation, the upstream enterprise will bear a correspondingly greater responsibility or punishment, namely, [image: Partial derivative of the function a with respect to \( z_i \), denoted as \(\partial a(z_i, \gamma) / \partial z_i\), is greater than zero.]. At the same time, it is assumed that the greater the negative externality reported by the enterprise, the greater the liability or punishment borne by the upstream enterprise, namely, [image: Partial derivative of alpha with respect to gamma, evaluated at \(z_i\) and \(\gamma\), is greater than zero.]. Finally, it is assumed that the marginal liability of enterprises reporting negative environmental externalities has a negative relationship with the intensity of environmental regulations, namely, [image: The mathematical expression shows the second partial derivative of alpha, denoted as α, with respect to variables z sub i and y. The inequality indicates that the expression is less than or equal to zero.].
2.3 Strategic behavior and analysis of economic subjects
2.3.1 Upstream enterprises
Since the upstream enterprise implements a multiregional sales strategy and has a certain market pricing power, its objective function is:
[image: Mathematical equation showing the maximization of the sum from \(i = 1\) to \(N\) of \(x_i(y)[k_i(x_i) - c - a(z, y)A]\).]
where [image: Mathematical expression showing the function \( k_i(x_i) \), where \( k_i \) is a function applied to the variable \( x_i \).] in Eq. 1 represents the product pricing of upstream enterprises. Then, the optimal processing of [image: It seems there might have been an error with the image upload. Please try uploading the image again, and I’ll be happy to help with the alt text.] is performed on Eq. 1, and Eq. 2 is obtained:
[image: Mathematical equation displaying a complex sum. It includes derivatives of \(x_i(\gamma)\) with respect to \(\gamma\), functions \(k_i(x_i)\), \(c\), \(\alpha(z, \gamma)\), and \(A\). The equation involves nested summations and derivatives with respect to \(x_i\) and \(\gamma\), set equal to zero, labeled as equation (2).]
From Formula (2), the optimal report of the corresponding upstream enterprise can be found to be the outer part of the environment, which is recorded as [image: Greek letter gamma with a superscript asterisk.]. For further treatment of Formula (2), the relationship between the optimal report of the upstream enterprise’s optimal reporting environment and the change in local environmental supervision changes is:
[image: The equation shows the partial derivative of gamma star with respect to z subscript i. It equals a fraction with a complex numerator and denominator. The numerator has two main parts: the first part involves the partial derivative of x subscript i with respect to y, times the partial derivative of alpha with respect to z subscript i, times matrix A, and the second part is x subscript i in function of gamma, times the partial derivative of alpha with respect to z subscript i, times matrix A. It is divided by the second derivative of x subscript i in function of gamma with respect to y squared.]
where [image: The expression "pi left-parenthesis gamma right-parenthesis" is shown, containing the Greek letters pi and gamma in parentheses.] in Formula (3) represents the target profit function of the upstream enterprise. The production of the corresponding products of the enterprise must be affected by the optimal report of the external part of the environment. The greater the report of the external part of the environment, the greater the corresponding reduction of the output of the product, so [image: The partial derivative of \( x_i(\gamma) \) with respect to \( \gamma \) is less than zero.]. According to the profit function of classic enterprises, corporate profit functions are often a concave function, that is, [image: The mathematical expression shows the second partial derivative of pi with respect to gamma, squared, is less than zero.]. Therefore, for any region, there are [image: Partial derivative of y subscript i with respect to z subscript i is greater than zero.]. This shows that when government environmental supervision is increasing, the better the most optimal report of upstream enterprises. Correspondingly, the function of local environmental regulation and constraints will be less than the effectiveness of the regional environmental regulation, and the corresponding nonequal form (4) will be obtained (4), which is:
[image: Equation displaying a derivative of gamma with respect to variable z sub i, involving partial derivatives, constants A, and a summation term. The equation is labeled as equation four.]
As companies report that the environmental externalities coefficient of [image: The symbol gamma belongs to the interval from zero to one, inclusive.] is bounded, the corresponding [image: Summation of partial derivative of y with respect to z sub j.] must be bounded. Therefore, if guarantee type (4) is set up, then [image: Partial derivative of y with respect to z, denoted as the partial derivative symbol followed by y over the partial derivative symbol with respect to z.] must be less than [image: Summation of partial derivative of y with respect to z sub j.] of the lower bound. When the regional share outside [image: It seems there is an issue with the image upload. Please try uploading the image again or provide a URL if available. You can also include a caption for additional context.] is infinitely large, the region’s environmental regulation effect [image: It seems there was an error with uploading the image. Please try uploading it again or provide a URL or a description if available.] will be null and void, namely, [image: Summation as x approaches infinity of the limit of partial derivative of y-star with respect to z-sub-i equals zero.]. This shows that in a relatively loose market structure, heterogeneity caused by changes in the intensity of local environmental regulation does not have a significant impact on the whole.
2.3.2 Downstream enterprises
For downstream enterprises in a perfectly competitive market, their target profit function is:
[image: Optimization equation seeking to maximize \( p f(x_i) - x_i \{ k_i(x_i) + E[ [1 - a(z_i, y^r) ] A | y^r \Lambda ] \} \), numbered as equation (5).]
After optimization treatment of Eq. 5, the following can be obtained:
[image: Equation showing a partial derivative, \( \frac{\partial J(x)}{\partial x_i} \), equals \( k_i(x_i) + E[(1 - a(z_i, y^*))|A|y^*A] + x_i \frac{\partial k(x_i)}{\partial x_i} \). It is labeled as equation six.]
For Eq. 6, if the upstream enterprise is in a perfectly competitive market with homogeneous environmental regulations, Eq. 6 can be translated into:
[image: Partial derivative of function \( f(x_i) \) with respect to \( x_i \), multiplied by \( p \), equals \( c \) plus the expected value of \( A \) given \( \gamma \) star \( A \), labeled as equation seven.]
It can be seen that in this case, environmental regulation has no effect on the behavior of downstream enterprises. Therefore, when the intensity of environmental regulation is increased, the regulation of upstream enterprises is actually strengthened. Furthermore, this paper carries out a comparative static analysis between the optimal [image: Please upload the image or provide a URL so I can help create the alternate text.] and environmental regulation intensity and obtains the change relationship between environmental regulation and downstream enterprise behavior as follows:
[image: Partial derivative of \(x_i\) with respect to \(z_i\) equals a fraction with numerator one and a complex denominator involving \(p\), second derivatives of \(f\) and \(k\) with respect to \(x_i\), and terms with \(x_i\). This expression is multiplied by a bracketed term involving partial derivatives of \(\alpha(z_i, y^*)\) with respect to \(z_i\) and \(y^*\), and expectations of \(A\) given \(y^*A\), followed by a term with \([1 - \alpha(z_i, y^*)]\).]
As [image: Summation notation with the limit as \( x \to \infty \) of the partial derivative of \( y^* \) with respect to \( z_i \) equals zero.], we simplify Formula (8) and obtain:
[image: Partial derivative of \( x_i \) with respect to \( z_i \) equals the fraction with numerator one and denominator \( \rho \frac{\partial^2 t(x_i)}{\partial x_i^2} - 2 \frac{\partial k(x_i)}{\partial x_i} - x_i \frac{\partial^2 k(x_i)}{\partial x_i^2} \), times the partial derivative of \( a(z_i, r^r) E(A | r^r A) \) with respect to \( z_i \). Equation number nine.]
When the upstream market is a perfectly competitive market, then [image: Partial derivative of function \( k_i(x_i) \) with respect to \( x_i \) is equal to zero.], and Eq. 9 degenerates into:
[image: Partial derivative of x sub i with respect to z sub l equals one over p times the partial derivative squared of f sub i with respect to x sub i, multiplied by the partial derivative of alpha with respect to z sub l, and the expected value of A given gamma times star A, as shown in equation ten.]
At this time, due to [image: Partial derivative of alpha with respect to z sub i, greater than zero.] and [image: Mathematical expression showing the second derivative of a function, denoted as \( f_{xx}(x_i) < 0 \), indicating a point of concavity or a downward curve at \( x_i \).], we obtain [image: A mathematical expression showing the derivative of x sub i with respect to z sub i is greater than zero.]. This shows that when the intensity of environmental regulation is strengthened, its emphasis will be moved forward and the upstream environmental regulation will be strengthened so that the downstream enterprises can obtain the “relative” deregulation effect and, thus, expand the consumption and investment of upstream commodities. It can be seen that an increase in environmental regulation intensity will promote an increase in upstream industry output because the relative deregulation of downstream enterprises will expand downstream output and increase the demand for upstream products. Therefore, the corresponding hypothesis is proposed: when the government strengthens environmental regulation, the demand of downstream enterprises for upstream products will increase, and the output of upstream enterprises will also increase significantly.
3 EMPIRICAL ANALYSIS AND DISCUSSION
3.1 Construction of measurement models
To test environmental regulations in the industrial chain, the upstream and downstream enterprises in the industrial chain can implement the increase in output value before and after environmental protection inspection in 2006 to determine the role of environmental regulation policies on the enterprise in the industrial chain (Liu et al., 2022b). However, this method will not be able to exclude the output value of energy enterprises due to other aspects, and it is impossible to identify environmental regulatory policies to form a heterogeneity effect in upstream and downstream enterprises. Therefore, this article will be evaluated by dual differential methods. On the one hand, the parallel trend can be used to reflect the environmental protection policies of the energy industry in upstream enterprises to judge the heterogeneity of the effects of environmental regulations on the industrial chain. On the other hand, the interference of other policies is excluded through placebo inspection.
Among the 61,000 observation samples in this article from 1998 to 2012, a total of 18,412 basic energy enterprises (upstream enterprises in the energy industry) were influenced by the 2006 environmental supervision policy, which provided us with a good “quasi-natural” opportunity for the experiment. Specifically, of the 61000 samples, we use 18412 basic energy enterprises as a policy processing group and the remaining downstream enterprises as control groups. At the same time, due to the influence of environmental protection inspection policies in the energy industry in 2006, we used a policy comparison period before 2006 and an experimental period after 2006. The corresponding virtual variable is set as follows:
[image: Mathematical expressions showing two conditions: "treat" equals one for the test group and zero for the control group; "period" equals one for after 2006 and zero for before 2006.]
In this way, we will build a dual fixed-effects differential model and test the impact of the 2006 energy environment regulation policy on the output value of the energy industry:
[image: Equation in text: "ln y_it = β_0 + β_1 treat_i × period_t + αX_it + δ_t + γ_i + ε_it" labeled (12).]
Among them, [image: The expression "ln y subscript it" represents the natural logarithm of the variable \( y \) with subscripts \( i \) and \( t \).] is the explanatory variable, that is, the output value of the [image: It seems there was an error with the image upload. Please try uploading the image again, and I will help you with the alt text.] energy enterprise in phase [image: It seems there is no image attached. Please upload the image or provide a URL so I can generate the alt text for you.]. [image: Mathematical expression showing "X" with subscripts "i" and "t" in italic font.] indicates that the corresponding control variables in phases [image: Black lowercase letter "i" with a checkered pattern on a white background.] are in the first [image: Please upload the image or provide a URL for the image you would like described.], including corporate fixed asset investment, corporate liabilities, corporate net profit, whether enterprises are subsidized by the government, and enterprise labor investment. [image: Formula with Greek letter delta followed by a subscript i, commonly used in mathematical or scientific contexts to denote a variable or difference.] and [image: Lowercase letter "y" followed by a subscript "t".] indicate the fixed effects and time-fixing effects of the individual of the enterprise. [image: Please upload the image you would like me to describe.] and [image: It seems you've entered some symbols without attaching an image. Please upload the image or provide a link to it so I can help create the alt text.] represent the hometown in the model. Among them, [image: Greek lowercase letter beta with a subscript one, often used in mathematical or statistical formulas to denote a specific coefficient or parameter.] is the core parameter we are concerned about, which represents the net impact of environmental policies on the output value of energy enterprises. If the theoretical hypothesis is established above, that is, when the government strengthens environmental regulation, the demand for upstream enterprises to increase upstream products will increase, and the output of upstream enterprises will also increase significantly, in which case, [image: The Greek letter beta, subscript one.] should be significantly positive.
3.2 Data, variables, and descriptive statistics
This study analyzes the impact of environmental regulation on energy enterprises from the perspective of the industrial chain and provides a detailed analysis of the difference in this effect between the eastern and western regions of China. In addition, considering that enterprise output value is also affected by other economic factors, other control variables will be introduced in this paper. See Table 1 for the specific variable setting methods.
TABLE 1 | The meaning and calculation method of related variables.
[image: Table listing variables with meanings and calculation methods. Columns include "Variables," "Meaning of variables," and "Calculation method." Variables are \(ln \, y_{it}\), \(treat_i\), \(period_t\), \(lnk_{it}\), \(ldebt_{it}\), \(lnp_{it}\), \(subt_{it}\), and \(lnl_{it}\). Meanings cover output value, treatment groups, dummy variables, investment, debt, net profit, subsidies, and labor input. Calculation methods include natural logarithms and use of virtual variables. Source: Self-formulated.]3.2.1 Explained variables
The explained variable in this paper is mainly the natural logarithm of output value [image: Mathematical expression displaying "ln y subscript i t", representing the natural logarithm of a variable y indexed by i and t.] of energy enterprises, which reflects the overall production capacity of the enterprises. In terms of data processing, this paper refers to the processing suggestions of Zhu et al. (2019). 1) First, the repeated samples of individual enterprises in the same section are eliminated. 2) Enterprise data with missing output values or 0 are eliminated. 3) The enterprises in the state of suspension, construction, or cancellation are eliminated. Finally, a total of 61,000 samples were obtained from 1998 to 2012.
3.2.2 Core explanatory variables
The core explanatory variable of this paper is the dummy variable of environmental protection policy, which is divided according to the energy industry chain, and the upstream enterprises are regarded as the enterprises in the treatment group. This industry is mainly based on basic energy raw material manufacturing, and its three-level national economic industry classification code is 261. Four-level subdivided industries are inorganic acid (2611), inorganic base (2612), inorganic salt manufacturing (2613), organic energy raw material manufacturing (2614), and other basic energy raw material manufacturing (2619). The downstream enterprises are taken as the control group. The three levels of national economic industry classification of these enterprises mainly include fertilizer manufacturing (262), pesticide manufacturing (263), paint, ink, pigment, and similar products (264), synthetic materials manufacturing (265), specialized energy products (266), explosives, pyrotechnics and fireworks products (267), and daily energy products (268). See Figure 1 for details.
[image: Flowchart illustrating the relationship between upstream and downstream enterprises. On the left, the upstream enterprise includes inorganic materials, organic materials, and other chemical materials. On the right, the downstream enterprises comprise textile and apparel, agricultural products, architectural materials, transportation products, and TNT, new energy, and aerospace industries. Arrows indicate the flow from upstream to downstream.]FIGURE 1 | Energy industry chain upstream and downstream enterprise distribution.
3.2.3 Control variables
The control variables selected in this paper mainly reflect three types of enterprise capabilities. The first type of index is the enterprise production factor input capacity, which mainly includes net fixed asset investment ([image: Mathematical expression "ln k sub i t" in italics, where "ln" denotes the natural logarithm, "k sub i" is a variable with subscript "i", and "t" is another variable.]) and enterprise labor force ([image: Mathematical expression showing "ln l it" in a serif font, indicating a natural logarithm of a function or variable labeled "l it."]). The net investment value of fixed assets mainly reflects the expenses incurred by the purchase and construction of an enterprise in the current period, which are directly related to production. In this paper, according to typical practice, the perpetual inventory system method is used to calculate the net investment of fixed assets (Dey-Chowdhury, 2008). The enterprise labor force ([image: The image shows the mathematical expression "ln l it" with the first "l" in italics.]) mainly selects the average number of employees in an enterprise as a variable of labor input, and labor input will significantly affect the output of an enterprise (Zulfiqar and Batool, 2013). The second category of indicators is enterprise operating capacity indicators, mainly including corporate debt and government subsidies. Corporate debt ([image: Italicized word "Indebt" with a subscript "it" in smaller font.]), on the one hand, reflects the financing capacity of an enterprise; on the other hand, it also reflects the degree of business risk of an enterprise (Bendoly et al., 2009). In this paper, the natural logarithm of corporate debt is adopted. In general, local governments tend to subsidize enterprises with a higher output value. Accordingly, enterprises with government subsidies tend to have soft financing constraints (Liu et al., 2020), which makes it easier to expand reproduction. The third category of indicators measures the profitability of enterprises, mainly including enterprise net profit ([image: The image shows the mathematical notation "ln p subscript i t" in an italic serif font.]), reflecting the enterprise’s ability to expand its reproductive potential (Shelenko et al., 2021). In this paper, the natural logarithm method is adopted after deducting taxes from gross profit. The specific meanings and calculation methods of the relevant variables involved in this paper are summarized in Table 1.
In this paper, the data samples are micro panel data of energy enterprises in China from 1998 to 2012. There are two main reasons for determining this interval: first, much data are missing, such as labor input indicators, in the database of Chinese industrial enterprises after 2012, so the data before 2012 are selected. Second, after 2013, a new round of environmental protection supervision measures began due to the increasing haze and other events. To avoid the estimation bias caused by the overlapping interference of policies, this paper did not select microenterprise panel data from 2013 to 2014. Finally, all the original data in this paper are from the China Industrial Enterprise Database, and descriptive statistics of the variables involved are summarized in Table 2.
TABLE 2 | Descriptive statistics of relevant variables.
[image: A statistical table displays variables with corresponding sample amount, average value, standard deviation, minimum, and maximum values. Notes indicate three significant figures are used, and the data is calculated with Stata15.]3.3 Parallel trend test
To ensure that the estimated results of the DID are accurate, the experimental group and the control group need to pass a parallel trend inspection to show that there is no structural difference between the experimental group and the control group before the policy implementation. The development trend is significantly different; otherwise, the estimate will inevitably cause deviation. This article draws on the practice of Beck et al. (2010). Based on calculating energy enterprises’ relative period of environmental protection “supervisory enterprise” policy, the abovementioned benchmark DID model is used for the relative period of processing effects, and the corresponding parameter drawing is shown in Figure 2. It is found that the estimated processing effect of the estimated process is significantly zero in the first seven phases of the implementation of the policy of strict environmental regulation policies, which shows that the experimental group and the control group before the implementation of environmental policies meet the same changes. Correspondingly, in the seventh phase of the implementation of environmental regulation policies, the estimated treatment effects have significantly different structural effects. On the one hand, it shows that the impact of environmental regulation policies on upstream enterprises has significant effects. Policies significantly increase the output value of upstream energy companies.
[image: Line graph showing treatment effects of environmental protection policy over time, with the x-axis indicating the relative period before and after the 2006 regulation implementation, and the y-axis showing the effect magnitude. The graph illustrates fluctuating values before 2006 and a steady upward trend after implementation. Error bars represent data variability.]FIGURE 2 | The parallel trend test.
3.4 Empirical results and the discussion
This paper first estimates the impact of environmental protection supervision in the energy industry on the whole energy industry chain to test the hypotheses removed from the theoretical model above. The regression results of DID (Differences in Differences) in the benchmark simultaneous equation model are shown in Table 3. Models (1)—(3) in Table 3 use high-dimensional regression, fixed effects panel regression, and OLS algorithms to estimate the estimation results of the DID model (Greene, 2003). The results show that regardless of which algorithm and estimation strategy are adopted, the treatment effect of energy environmental protection policy presents a positive relationship at the significance level of 1%. This shows that the output value of the energy industry increased by 4.20% after environmental regulation. This conclusion verifies the hypothesis of the mathematical model above; that is, when the government strengthens environmental regulations, the demand of downstream enterprises for upstream products will increase, so the output of upstream enterprises will also significantly increase. Among the control variables, fixed asset input, labor input, debt, and enterprise profit all show a positive relationship at the confidence level of 1%, indicating that the energy industry enterprise output value and factor input, enterprise operation status, and enterprise financing ability all show a significant positive relationship, which is consistent with previous studies (Bendoly et al., 2009; Kolupaieva et al., 2019; Yuan and Pan, 2022).
TABLE 3 | Estimation results of the DID.
[image: Comparison table of three regression models: High-dimensional regression, Fixed effects panel regression, and OLS. Each model includes coefficients and t-statistics for variables such as `treat_i*period_t`, `lnk_it`, `lndebt_it`, `lnpi_it`, `sub_it`, and `lnl_it`. All models account for individual, time, and regional effects, with respective R-squared values of 0.95, 0.622, and 0.950, and observations numbering 43,870 and 47,921. Significance is indicated by asterisks.]However, from the statistical results of government subsidy variables, energy enterprises show a significant positive relationship at the 10% confidence level in the high-dimensional regression equation, indicating that energy enterprises will significantly expand their reproduction and significantly increase their output value by approximately 1.17% after receiving local government subsidies.
3.5 Placebo test
To avoid the effect of other policies on the purchase restriction policy, a placebo test was used to simulate the effect of the policy under different conditions to exclude the influence of other random factors. In essence, the placebo test estimates whether the estimated results under different fictitious situations are significantly different from the original estimated results by constructing a virtual policy time or treatment group (Abadie et al., 2010). If there are significant differences, it indicates that the changes in the explained variables are only due to the implementation of the policy and are not affected by other policy changes or random factors. The article conducted a placebo inspection because since 2003 the northeast area has been promoting the revitalization of the northeast old industrial base strategy. The energy industry in northeast China will also be affected by the environment, so this article will eliminate the northeast energy industry and downstream enterprises, corresponding to regression analysis.
The test results in Table 4 show that the significance of the treatment effect of environmental regulation policies in the energy industry is significantly consistent with the real situation after the samples in northeast China are excluded. Specifically, excluding the samples from northeast China, the treatment effect of implementing environmental regulation policies is 0.0382 at the 1% confidence level. It can be seen that the output value treatment effect produced by the environmental regulation policy is not affected by the northeast revitalization policy. Therefore, it shows that the DID simultaneous model passes the placebo test; the influence of other policies or random factors is excluded, while the treatment effect level of environmental regulation policies is verified.
TABLE 4 | Placebo test.
[image: Table comparing results from two models. Mode (1), the real model, shows coefficients for variables like treat_i*period_t (0.0420***) and ln_k_it (0.0794***). Mode (2) excludes northeast China with treat_i*period_t (0.0313**) and ln_k_it (0.0795***). Both have R2 values of 0.946. Mode (1) includes 43870 observations; Mode (2) includes 40939. Both models account for individual and time effects. Source: Self-Calculated.]3.6 Heterogeneity analysis: the eastern, central and western regions of China
Considering the significant differences in resource endowments among China’s eastern, central, and western regions, the eastern region is economically developed, with energy supply primarily dependent on energy transportation from the central and western regions and overseas energy imports. The central region, rich in coal resources, serves as a traditional base for energy and raw materials. In contrast, the western region is abundant in renewable energy resources such as hydropower, wind energy, and solar energy. Environmental regulation strategies should be designed and implemented based on local resource endowments, economic development conditions, and environmental issues, aiming to achieve a harmonious and sustainable development of the economy and environment. This paper further analyzes the heterogeneity of the eastern, central, and western regions. First, this paper refers to the classification standard of China’s eastern, central, and western regions by the National Bureau of Statistics in 2003. The eastern regions include the following 12 provinces (municipalities and autonomous regions): Beijing, Tianjin, Shanghai, Zhejiang, Guangdong, Liaoning, Hebei, Shandong, Jiangsu, Fujian, Guangxi and Hainan. The central region includes nine provinces (autonomous regions): Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, and Hunan. The western region includes nine provinces (autonomous regions): Sichuan, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Ningxia, Qinghai and Xinjiang. Second, this paper performs DID model regression (high-dimensional regression strategy) for the eastern, central, and western regions, and the estimated results are shown in Table 5. From the estimated information in Table 5, the core explanatory variables, environmental regulation policies, all show a significant positive relationship, which again verifies the hypothesis put forward by the theoretical model in this paper. However, from the treatment effect of the actual policy, there are obvious differences between the eastern, central, and western regions. Specifically, the environmental regulation policy has the most significant net policy impact in the western region, where the output value of energy industry enterprises increased by 7.49% at the 1% confidence level. This is followed by the eastern region, where the output value of energy industry enterprises increased by 3.4% at the 5% confidence level. Finally, in the central region, the output value of energy industry enterprises increased by 1.75% at the 10% confidence level. This result is mainly because the western region is dominated by the basic energy industries, that is, the upstream enterprises in the industrial chain, so the effect of environmental regulation policies is more pronounced. The eastern region is dominated by downstream enterprises, which are closer to the terminal market, so the effect of “relative” deregulation is stronger. However, the central region does not occupy a dominant position upstream of the energy industry chain; at the same time, it does not form a strong downstream or terminal market, so the effect of environmental regulation policy in the central region is the least. From the control variables in the eastern, central, and western regions, first, their significance and coefficient direction are consistent with the above, which shows the robustness of the model and shows that the selected variables have strong explanatory power.
TABLE 5 | Estimated results of eastern, central and western regions of China.
[image: A data table presenting regression results for three regions: eastern, central, and western. Each region has values for variables such as treat*period, lnkit, lndebtit, lnpiit, subit, and lnlit, along with constant terms. Significant values are denoted with asterisks, indicating varying levels of statistical significance. The table also includes individual and time effects, the number of observations, and R-squared values. The source is self-calculated.]4 CONCLUSION AND POLICY IMPLICATIONS
Haze, water pollution, dust, and other types of pollution seriously affect people’s quality of life, and environmental regulation for environmental protection has become an important starting point for environmental control. However, how to balance environmental quality and economic growth has long been a challenging issue for governments. Regarding the effect of environmental regulation, academic research has been pursuing the “cost compliance” theory and the “innovation compensation” theory. In reality, however, neither of the theories adequately explains the unique phenomenon of “double growth” of the economy and environment in China. On this basis, this paper tries to jump out of the “cost to follow” and “innovation” theory framework and establish an environmental responsibility allocation model in the industrial chain. Using energy enterprise microdata in China from 1998 to 2012 as samples, we analyze the effects of environmental regulation on the industry chain to explain China’s economic and environmental “growth” phenomenon. The research finds that in the industrial chain, upstream and downstream enterprises share environmental obligations and responsibilities due to trade associations. When environmental regulation is strengthened, the environmental responsibility will move forward through the industrial chain, and the regulation on upstream enterprises will be “relatively” strengthened, while the regulation on downstream enterprises will be “relatively” relaxed, thus expanding the output but increasing demand for upstream products. Different from previous studies, this paper argues that environmental regulation will promote output growth of the entire industrial chain due to its differential effect on the industrial chain. This is in contrast with the view of the “cost compliance” theory that environmental regulation will inevitably lead to an output decline. Based on this research, this paper puts forward the following policy implications and suggestions.
First, we should fully acknowledge the heterogeneous effect of environmental regulation on the industrial chain and accept the development goals of both the environment and the economy. There is still a gap in the research on the differential effect of environmental regulation in the industrial chain, so it is beneficial to understand the spillover effect of environmental regulation. Since 2018, a storm of environmental protection inspections has swept the country. Some local governments have used simple administrative measures to shut down enterprises, causing structural economic problems and social instability. This type of unsustainable administrative interference seriously destroys the regulation transmission effect throughout the industrial chain and greatly reduces the policy effect of environmental regulation. Therefore, based on the research conclusions of this paper, it is proposed that the administrative approach of “one size fits all” that ignores enterprise heterogeneity in the industrial chain should be eliminated immediately. In the context of the “three critical battles” determined by the 19th National Congress of the Communist Party of China, the government should guide the transformation of polluting enterprises instead of shutting them down and establish a strict environmental certification and accountability system to correct the chaos of environmental governance, to improve the efficiency and the methods of government supervision.
Secondly, enhancing the disclosure of environmental information and raising public awareness of environmental protection are essential for fostering a conducive atmosphere for social supervision. On one hand, the government should establish and improve the environmental information disclosure system, requiring companies to regularly publish information on their environmental performance, pollution discharge, and environmental protection measures. This would increase the transparency of industrial pollution and enable the public and media to access information about corporate environmental behavior through official channels. On the other hand, the government should strengthen mechanisms for public participation in environmental protection, such as through public hearings and the disclosure of environmental impact assessments. This would allow the public to engage in the decision-making process of environmental protection and effectively supervise enterprises or industries with negative environmental externalities, thereby continuously promoting the output of environmentally friendly products.
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Blue Carbon is increasingly popular worldwide, and it also belongs to circular economy field which would last a long period in academy. To further understand the development and characteristics of Blue Carbon, this study uses CiteSpace software to perform quantitative analysis on literature published on Web of Science and Chinese CNKI database with the main topic of “Blue Carbon.” The results show that: (1) Since 2009, increasing attention has been paid to Blue Carbon research, among which the United States, Australia and China are the leading countries. (2) Keywords such as “Blue Carbon,” “mangrove,” “carbon sequestration” and “carbon neutrality” are the high-frequency keywords appearing both in China and the World in recent years. (3) Spartina alterniflora, soil organic carbon, livestock, trophic cascade, biodiversity and seagrass ecosystem clustering are hot topics related to international Blue Carbon research, while organic carbon, seagrass-conservation, methodology, sustainable development, climate change, carbon neutralization, coastal zone and carbon storage are hot topics related to Chinese Blue Carbon research. In addition, based on the research trends of Blue Carbon, this paper attempts to sort out the research framework from three levels: core characteristics, theoretical basis and research methods, respectively. Facing a series of challenges brought by climate change, Blue Carbon research should strengthen the accurate estimations of Blue Carbon sink and its market potential, and explore the reasonable market mechanism and protection mechanism, to respond to realistic demands, solve major concerns and promote new progress in Blue Carbon theory and practice.
Keywords: Blue Carbon, frontier evolution, analysis framework, knowledge map, double carbon goal, scientific measurement

1 INTRODUCTION
In recent years, the global average temperature has risen by 1.2°C. The harm of global warming involves all aspects of human existence, from natural disasters to biological chain breakage. In this context, the “Double Carbon” goal of carbon peak and carbon neutrality, which was first put forward in China, has become the most important economical means for many countries and regions to control the total greenhouse gas emissions. As a component of global climate change adaptation and mitigation strategy, Blue Carbon has become a new field of carbon sink, which is increasingly popular in China.
In 2009, the definition of “Blue Carbon” was first proposed in “Blue Carbon: Carbon Sequestration in a Healthy Ocean——Rapid Response Assessment Report,” that is, carbon could be captured by marine activities and marine organisms (Nellemann et al., 2009). As the planet’s largest active reservoir, the oceans store 93 percent of the planet’s carbon dioxide. Compared with terrestrial carbon sequestration system, marine carbon sequestration system has a higher return on investments in economic and ecological aspects. Coastal ecosystems covered by vegetation, especially carbon sequestered by mangroves, seagrass beds and salt marshes, play an important role in regulating climate and mitigating global warming (Mcleod et al., 2011). Since the United Nations put forward the concept of “Blue Carbon” in 2009 and pointed out its important role in carbon capture, all countries have accelerated the research on Blue Carbon.
In this study, we would set China as the most important sample to conduct analysis and comparison with other countries. China is one of the few countries with three coastal Blue Carbon ecosystems: mangrove forest, salt marsh and seagrass bed. Therefore, Chinese research on Blue Carbon presents more practical values. However, the current research results of Chinese scholars on carbon sinks mainly focus on forest carbon sinks, and the research attention on ocean carbon sinks (also known as Blue Carbon) needs to be improved. On the one hand, compared with the development trend of quantity and quality of Blue Carbon research abroad, the sorting of Blue Carbon theory in China lags behind. On the other hand, at present China faces a series of challenges, such as ecosystem resource degradation, unclear Blue Carbon resource reserves, carbon sequestration capacity and sink increase potential, and imperfect laws and regulations, which require the guidance of Blue Carbon theory. Overall, Chinese research could give practical implications to more areas.
As some countries including China nearly enter the stage of “carbon neutrality,” it is urgent to clarify the domestic and international Blue Carbon research context, grasp the latest research hotspots, and discover the research cooperation network to provide theoretical guidance for the development of Blue Carbon. Therefore, in this paper, CiteSpace 5.8. R3 software was used, and literature in Web of Science and CNKI of China were used as sources. By drawing visual knowledge maps, the Blue Carbon research was summarized by combining econometric reviews (review width) and systematic reviews (review depth). Firstly, the author, institution, country or region distribution of Blue Carbon research was analyzed. Secondly, the keywords co-occurrence map and area map of Blue Carbon research were drawn to summarize the hot spots and trends in this field and identify important topics in Blue Carbon research. Thirdly, the overall theoretical framework of Blue Carbon research was established by sorting and analyzing the core characteristics, the theoretical basis, the protection and restoration, and the research methods of Blue Carbon. Finally, the future research of Blue Carbon is prospected.
2 RESEARCH DESIGN
2.1 Data sources
This paper focuses on analyzing the evolution process and structure of Blue Carbon research, and the research samples include literature published by Web of Science and Chinese CNKI. Firstly, the Web of Science database was selected and the theme was set as “Blue Carbon.” A total of 962 literature data were retrieved in unlimited time, and the data retrieval time was 2 October 2021. To reflect the integrity, representativeness and academicality of data, irrelevant literature and data such as conference abstracts, letters, data papers, books, news and revisions were removed, and a total of 865 valid literature and data were obtained from 2011 to 2021. Second, the CNKI database of China was selected and the subject was set as “Blue Carbon.” A total of 164 literature were retrieved in unlimited time, and the data retrieval time was 2 October 2021. To reflect the integrity, representativeness and academicality, irrelevant literature was removed. And data of162 valid literature was obtained from 2009 to 2021.
2.2 Methods
This paper adopts the method of bibliometrics and literature review. Firstly, the basic characteristics of Blue Carbon research, such as annual publications, research institutions, authors and countries/regions, were analyzed to discuss the basic trends of Blue Carbon research. Secondly, keyword clustering, keyword co-occurrence and keywords with the strongest citation bursts were carried out to explore the mainstream subdivision fields, research hotspots and frontiers of Blue Carbon. In this paper, CiteSpace software was used for visual analysis of data to show knowledge structure, composition and distribution in Blue Carbon field, and to discuss knowledge development process (Li et al., 2018), research hotspots and frontiers in Blue Carbon field (Chen et al., 2015).
3 ANALYSIS OF BASIC CHARACTERISTICS OF BLUE CARBON RESEARCH LITERATURE
3.1 Analysis of time characteristics and publications
The annual distribution of Blue Carbon research papers in international and domestic journals is shown in Figure 1. It can be seen from Figure 1 that, from 2009 to 2011, rare Blue Carbon studies were published in international journals. The first paper was published in 2011, and only 3 papers were published in 2011. Since 2015, there have been more than 60 articles every year. Especially in recent years (2018–2021), there are more than one hundred of relevant studies every year, and the number of them reached a record high of 205 in 2020. The rise of Blue Carbon research in international journals is closely related to the policies and scientific research of national organizations such as Conservation International (CI), the International Union of Nature (IUCN), the Intergovernmental Oceanographic Commission (IOC) and the United Nations Educational, Scientific and Cultural Organization (UNESCO) that are committed to promoting Blue Carbon worldwide. Secondly, the first paper of Blue Carbon research in China was published in 2009. No relevant literature was published in 2010 and 2011; The number of papers published from 2012 to 2014 was in single digits, and after 2015, more than 10 papers were published. In 2021, 39 articles were published as of the search date. Therefore, domestic and foreign attentions to Blue Carbon research are both increasing, and the number of papers is expected to increase further. This is closely related to the realistic background of Chinese carbon neutrality strategy.
[image: Bar chart showing the number of publications from 2009 to 2021. The blue bars represent WOS publications, and the orange line represents CNKI publications. Both show an upward trend, with WOS peaking in 2021.]FIGURE 1 | Annual distribution of Blue Carbon in international and domestic journals.
3.2 Analysis of research institutions
The top 10 research institutions in the number of Blue Carbon research achievements published in international and domestic journals are shown in Table 1. Among them, the top 10 research institutions in international journals are Deakin Univ (59), Edith Cowan Univ (57), Univ Queensland (52), Chinese Acad Sci (40), Southern Cross Univ (35), Griffith Univ (31), CSIC (30), Natl Univ Singapore (29), Univ Technol Sydney (29). The most published institutions are still developed countries in Europe and the United States. However, the number of Chinese Acad Sci (Chinese Academy of Sciences) published in China has risen to the fourth in the world, occupying a place in Blue Carbon research.
TABLE 1 | TOP10 Blue Carbon research institutions.
[image: Table comparing research institutions by publication count in international and domestic journals. For international journals, Deakin University ranks first with 59 publications. For domestic journals, Guangxi Academy of Sciences ranks first with 40 publications. Other institutions and corresponding publication numbers are listed for both categories.]The top 10 research institutions in domestic journals are Guangxi Academy of Sciences (40), Ministry of Natural Resources (37), Xiamen University (28), Beijing Normal University (18), Sun Yat-sen University (13), Ocean University of China (16), National Marine Information Center (16), Hainan University (16), State Oceanic Administration of China (13), Shanghai Institute of Geological Survey (13). At present, ocean-related research institutes and government departments are the main body of Blue Carbon research in China. From the geographical location, scientific research and education institutions in coastal areas are the main positions of Blue Carbon research in China. While some comprehensive universities, such as Xiamen University, Beijing Normal University and Sun Yat-sen University have also produced many research results. However, it is worth noting that the Blue Carbon research achievements of non-key scientific research and education institutions need to be further increased, especially the newly-established double first-class universities related to the sea, which should increase the amount of Blue Carbon academic output.
3.3 Analysis of authors
Author co-occurrence analysis can identify the cooperation and cross-citation relationship between the core authors and researchers in a research field (Hu et al., 2013). The cooperation network of Blue Carbon research authors in international and domestic journals is shown in Figures 2, 3. The node size represents the number of articles, the line between nodes represents the existence of cooperative relationship between authors, and the thickness of the line represents the strength of cooperation between authors.
[image: Network diagram showing interconnected nodes and lines, representing relationships between various individuals. Prominent names include Catherine E Lovelock and Carlos M Duarte, among others, connected by lines of varying thickness, indicating different levels of interaction.]FIGURE 2 | Cooperative authors network map of Blue Carbon in international journals.
[image: Map with interconnected circles representing countries, visually depicting the scale of their connections. Larger circles like USA, Australia, and Peoples R China show more significant connections, with overlapping and intersecting lines indicating international links.]FIGURE 3 | National/regional network map of Blue Carbon in international journals.
The cooperative authors network of Blue Carbon research in international journals from 2011 to 2021 is shown in Figure 2. High-yielding authors (in order of publications) form a relatively close cooperative relationship, and the top 10 authors in publications include CARLOS M DUARTE (38), CATHERINE E LOVELOCK (34), OSCAR SERRANO (33), PETER I MACREADIE (27), DANIEL A FRIESS (26), CHRISTIAN J SANDERS (20), PAUL S LAVERY (16), DAMIEN T MAHER (15), ISAAC R SANTOS (14), etc. It can be seen that there is a relatively close cooperative relationship among high-producing authors in international journals.
As for the cooperative authors network of Blue Carbon research in Chinese journals, the top 10 authors in terms of number of publications include Zhao Peng (33), Qiu Guanglong (27), Fan Hangqing (27), Zhong Yunxu (26), Su Zhinan (26), He Qinfei (15), He Feng (15), Liu Xiu (15), Liu Chang (13) and Zhou Jun (13). Compared with the cooperative authors network of Blue Carbon research in international journals, the links in Chinese journals are not very close, whose the overall and relatively centralized cooperative network relationship has not been formed now. The research on Blue Carbon in China is still in the initial stage, which needs to be further expanded.
3.4 Analysis of country or region
The number of publications could reflect the research level and contribution of different countries or regions in Blue Carbon. Figure 3 shows the national or regional network map of Blue Carbon research. The United States, with 294 papers, is the strongest country. Australia (260), China (134), Spain (89), England (85), Germany (49), Saudi Arabia (49), Indonesia (47), Brazil (47), Japan (47), Canada (41), France (35), Denmark (33), Singapore (33), Scotland (33), Malaysia (30) and other countries or regions have also made great contributions to Blue Carbon research. Most countries or regions with more than 30 papers usually have unique natural conditions for developing Blue Carbon, promoting the research on Blue Carbon in these countries or regions. In addition, China ranked third in the number of publications, indicating that China plays an important role in Blue Carbon research. However, in terms of amount, there is still a certain gap——less than half of the amount of the United States and about half of Australia.
3.5 Analysis of highly cited references
Cited references can reflect the overall knowledge base of the field, and highly cited references are regarded as the classic of the field. Cluster analysis reveals the knowledge structure of a certain field and reflects important scholars and classical literature. The co-citation analysis results of Blue Carbon research in international journals are shown in Figure 4. Each node represents a citation, the size of the node is proportional to its co-citation frequency, and the link between nodes means that they are co-cited. Overall, the top 10 highly cited literature explores Blue Carbon conservation and restoration, and measures Blue Carbon and its effect.
[image: Network diagram showcasing a cluster of interconnected nodes and lines in yellow and pink. Labels with names and years are attached to various nodes, indicating citations or references within a dataset. The complexity and density of connections vary across the image.]FIGURE 4 | Co-citation network of Blue Carbon in international journals.
4 RESULTS AND ANALYSIS
4.1 Results and analysis of Blue Carbon research in international journals
4.1.1 Identification of theme
Keywords are a high generalization of the topic of literature. Keywords with high frequency usually indicate that more research has been carried out through this keyword, which is more important and is used to determine the hot spot in a research field. To understand the hot spots of Blue Carbon international research from 2011 to 2021, the sorted 865 literature records were imported into CiteSpace software. The network node was selected as “Keyword,” and appropriate thresholds were set. There were 52 keywords with frequency greater than 20 (as shown in Table 2).
TABLE 2 | High frequency keywords of Blue Carbon in international journals.
[image: Table displaying keywords, their frequency, centrality, and rank. Key entries include "Blue Carbon" with highest frequency of 273, "Forest" with frequency 162, and "Sequestration" with frequency 138. Each column lists associated data for 52 keywords.]Firstly, in terms of the top 10 keywords, “Blue Carbon” topped the list 273 times. The second most frequent occurrence is “forest,” which can be seen as a specific component of Blue Carbon. In particular, mangrove forests provide a wide range of ecosystem services. Mangrove forests are known for their extraordinary carbon storage capacity, playing an important role in climate change mitigation. Moreover, organic carbon, sediment and other key elements should also belong to this concept. Secondly, storage and sequestration of Blue Carbon are also the focus of scholars. The Blue Carbon ecosystem and its dynamics are also of interest to scholars. In addition, Climate change is also a high-frequency keyword of Blue Carbon in international journals.
To better explain and analyze the academic significance of keywords transmitted in the above international journals, the key points were extracted by LLR algorithm of CiteSpace. Based on this, a cluster map of high-frequency keywords was generated, forming 16 knowledge clusters (Figure 5). They are Spartina Alterniflora, Soil organic carbon, Matter, Livestock, Trophic cascade, Biodiversity, Seagrass ecosystem, Arabian Gulf, Posidonia Oceanica, Sentinel, GIS, Salt marshes, Rehabilitation, Stable isotopes, Brown algae, etc., Modularity = 0.7746 > 0.3, Mean Silhouette = 0.9044 > 0.5, indicating good clustering and a clear silhouette. Seagrass ecosystem, salt marshes and brown algae are the specific components of Blue Carbon. Arabian qulf and Posidonia oceanica are the most frequently studied objects of Blue Carbon. Spartina Alterniflora and Rehabilitation are currently hot spots in Blue Carbon research.
[image: Colored nodes connected by lines represent a network topology. Labels like "enrichment," "salt marsh," and "photosynthesis" are included within each area. Metrics like clustering coefficient and pruning method are noted on the side.]FIGURE 5 | Keywords clustering map of Blue Carbon in international journals.
4.1.2 Evolution of theme
After more than 10 years of practice and development, the research content of Blue Carbon in international journals has been enriched and expanded. The time-zone diagram for keyword co-occurrence analysis is shown in Figure 6. To further explore the evolution of topics in international journals, the nodes in the same period were collected in the same time zone and arranged in order from far to near. From the perspective of the main line, high-frequency keywords mainly appeared from 2011 to 2016, during which the newly emerged keywords occupied the majority of all keywords. From the perspective of newly emerged keywords in recent years, globally significant (2017) and global pattern (2018) confirm that international scholars gradually call for strengthening global cooperation and enhancing the attention of Blue Carbon in the global carbon sink system.
[image: Network visualization showing interconnected nodes labeled with various terms related to green chemistry and sustainability, such as "innovation" and "carbon." Nodes are connected by lines in varying colors, demonstrating relationships. Upper left corner lists metadata including timespan, selection criteria, and network statistics.]FIGURE 6 | Keyword co-occurrence network time-zone of Blue Carbon in international journals.
4.1.3 Frontier analysis
Citation Burst analysis is one of the most important tools in literature content mining, reflecting active or cutting-edge research nodes. This paper uses “Burst” to predict Blue Carbon research frontier and direction. The top 9 keywords with the strongest citation bursts in Blue Carbon research in international journals are shown in Figure 7.
[image: Chart titled "Top 9 Keywords with the Strongest Citation Bursts" showing keywords like "co2," "conservation," and "productivity" from 2011 to 2021. It includes strength, begin, and end years, with burst periods marked in red on a timeline.]FIGURE 7 | Top 9 keywords with the strongest citation bursts of Blue Carbon in international journals.
In terms of burst intensity, “Productivity” had the highest burst intensity at 4.29. This term reflects that the important development of Blue Carbon research is to explore the productivity of Blue Carbon, which has become a relatively influential research frontier. At the same time, the burst intensity of Conservation, Respiration and CO2 was 3.55, 3.15, and 2.82, respectively, which were important frontiers of Blue Carbon.
In terms of burst time, “CO2” is the theme word with the earliest appearance (2011) and the longest duration (5 years), which has become a frontier issue of continuous research. “Conservation” first appeared in 2012 and lasted for 3 years; “Productivity” first appeared in 2014 and lasts 4 years; “Bed” and “Flow” first appeared in 2015 and lasted for 3 years. They are also frontier studies in the field of Blue Carbon. At the same time, from the keywords with the strongest citation bursts in recent 3 years (2019–2021), “Respiration” is the research frontier in the field of Blue Carbon.
4.2 Results and analysis of Blue Carbon research in domestic journals
4.2.1 Identification of theme
To understand the domestic research hotspots of Blue Carbon from 2009 to 2021, 162 pieces of literature were imported into CiteSpace. The network nodes selected “Keyword,” and appropriate thresholds are set. There were 40 keywords with frequency greater than 3 in total (as shown in Table 3). “Mangrove” is an important ecosystem of marine Blue Carbon sink, and its carbon pool includes vegetation biomass and soil carbon pool. “Blue Carbon” came in second with 45. Blue Carbon sink systems such as seagrass beds, coastal wetlands and coastal zones were also in the top 10.
TABLE 3 | High frequency keywords of Blue Carbon in domestic journals.
[image: Table listing keywords related to environmental topics, ranked by frequency and centrality. Top entries include "Mangrove," "Blue Carbon," and "Carbon neutrality," with respective frequencies of 93, 45, and 44. Centrality scores vary, with "Salt marshes" having the highest at 0.38. The table is divided into two columns for ranks 1-20 and 21-40.]The centrality represents the status of the keyword in the field, and the higher the value is, the more important it is. The centrality of coastal wetland was 0.40, ranking first among all the keywords. Salt marsh appeared only 11 times, but its centrality ranked second, with 0.38. In addition, seagrass appeared 3 times, with 0.37. Then mangrove forests (centrality = 0.36), organic carbon (centrality = 0.26), seagrass beds (centrality = 0.25), etc.
To better explain and analyze the academic significance of Blue Carbon research keywords transmitted from Chinese journals, the LLR, algorithm of CiteSpace was used to extract keywords and generate high-frequency keyword clustering map. Nine knowledge clusters were formed (Figure 8), including organic carbon, seagrass conservation, methodology, sustainable development, climate change, carbon neutrality, coastal zone, carbon storage, etc. Modularity = 0.8461 > 0.3, Mean Silhouette = 0.9578 > 0.5, indicating that the keyword clustering is in good condition and has a clear outline.
[image: Map of network clusters from 2009 to 2021, showing areas such as Organic Carbon, Methodology, Carbon Storage, Land-Marine Coordination, Climate Change, Seaweed Protection, Sustainability, Coastal Zone, and Carbon Neutrality. Clusters are color-coded and labeled numerically.]FIGURE 8 | Keywords clustering map of Blue Carbon in domestic journals. Note: the map is automatically generated by importing Citespace from CNKI database. To better reflect the original state of the data, it is displayed both in Chinese and English characters.
4.2.2 Evolution of theme
Co-occurrence analysis of keywords in Blue Carbon research in domestic journals was conducted through CiteSpace to generate time-zone map. The map sets the keywords that appear for the first time at the same time in the same time-zone in order from far to near (Chen, 2017). It can be seen that keywords with high frequency (large node size) are mainly concentrated in the time zone of 2009. As the central theme, the nodes of “mangrove,” “Blue Carbon” and “carbon neutrality” are the largest, and they have intensive links with other keywords, indicating that the research on Blue Carbon in China CNKI database has been inherited since 2009. From the perspective of the evolution of theme in China, although there were many research topics in 2009, the most core themes were Blue Carbon subsystems such as “seagrass bed,” “mangrove,” “coastal wetland,” “salt marsh,” and other realistic backgrounds such as “carbon neutrality.” These mainly focused on the conceptual and policy. In 2012, the focus was on “organic carbon;” In 2013, “Eelgrass,” “Chiu-lung River Estuary” and other specific objects began to appear. In 2014, the emergence of “World First,” “China Blue,” “Land-sea integration” and others showed that the focus of Blue Carbon in China has shifted from simply focusing on marine regions to land-sea integration, and also began to pay attention to China’s position in the world’s Blue Carbon resources and research. In 2015, it began to focus on nitrogen research. From 2017 to 2018, it began to pay attention to the impact of environmental pollution on Blue Carbon. In 2019, the main focus was on the construction of marine pastures.
5 ANALYSIS FRAMEWORK FOR BLUE CARBON RESEARCH
This paper constructed an overall analysis framework for Blue Carbon research based on the above analysis. As shown in Figure 9, the theoretical framework of Blue Carbon consists of three modules: core characteristics, theoretical basis and research methods.
[image: Flowchart depicting the components of blue carbon research. Central box labeled "Blue Carbon" with arrows pointing to core areas: Theoretical basis, Calculation of Carbon Storage, Research Methods, and Influencing Factors. Each area lists related studies and methods. Studies by Buher et al., Heumann, and others contribute to the theoretical basis. Research methods include Monitoring, Experiment, and Modeling by Dahl, Macreadie, and others. Influencing factors include natural and human factors, with references to various studies. Core characteristics cover definition, distribution, and functions with related authors.]FIGURE 9 | Analysis framework for Blue Carbon research.
5.1 Core characteristics of Blue Carbon
5.1.1 Definition, distribution and classification
5.1.1.1 Definition
Blue Carbon is a process, activity and mechanism that uses marine activities and organisms to absorb carbon dioxide from the atmosphere, fix and store it in the ocean. In a broad sense, coastal Blue Carbon refers to the part of carbon that higher plants in the coastal zone, such as salt marsh wetlands, mangroves and seagrass beds, as well as phytoplankton, algae and shellfish, absorb CO2 from the atmosphere and store it in the sediment of the coastal zone for a long time under the joint action of their growth and microorganisms. Furthermore, part of the organic carbon exported from coastal zone to offshore and ocean (Tang et al., 2018). In a narrow sense, Blue Carbon refers to carbon stored in the soils of mangroves, intertidal salt marshes and seagrass beds, aboveground living biomass (roots) and non-living biomass (such as litter and deadwood). This part of Carbon is also called Coastal Blue Carbon (Nellemann et al., 2009; Mcleod et al., 2011).
5.1.1.2 Distribution
In terms of geographical location, Blue Carbon is mainly distributed along the coastlines of countries or regions. The distribution of Blue Carbon in China is mainly from the mouth of the Yalu River in the north to the mouth of the Beilun River in the south, passing through Liaoning, Hebei, Tianjin, Shandong, Jiangsu, Shanghai, Zhejiang, Fujian, Guangdong, Guangxi, Hainan and other 11 provinces (autonomous regions, municipalities directly under the Central Government). According to wetland types, mangroves are mainly distributed in subtropical and tropical coastal areas in the south. Coastal salt marshes are distributed in temperate to subtropical seas; Seagrass beds are mainly distributed in temperate to tropical seas.
5.1.1.3 Type
Coastal Blue Carbon is an important part of marine carbon sink, and the carbon dioxide (CO2) is fixed by vegetation in coastal wetland ecosystem such as mangroves (small but very important), salt marsh (main) and seagrass bed is the main body of coastal Blue Carbon ecosystem. They maintain the highest carbon sequestration per unit area of any natural system (Rogers et al., 2019). In addition, macroalgae (Ortega et al., 2019; Watanabe et al., 2020; Pedersen et al., 2021), shellfish (Lee et al., 2020) and even micro-organisms (Trevathan-Tackett et al., 2018) can also fix and store carbon efficiently, which are components of Blue Carbon.
5.1.2 Functions of Blue Carbon
Blue Carbon has important ecological service functions, including fish and wildlife habitat, coastal erosion and flood prevention, food resources, water purification, carbon sequestration and storage. Blue Carbon has high ecological and economic development value. Among them, mangroves are special wetland forests growing in the intertidal zone of tropical and subtropical regions, which play an important role in windbreak and field retention, promoting silt deposition, resisting natural disasters such as tsunami and typhoon, and protecting coastlines (Zhang et al., 2013).
However, the main function of Blue Carbon is carbon sequestration and carbon sink. Carbon sequestration refers to measures to increase the carbon content of carbon pools other than the atmosphere. Coastal Blue Carbon ecosystem has efficient carbon sequestration capacity, potentially mitigating the increase of atmospheric CO2 concentration (Zhou et al., 2016). Although the area of mangroves is relatively small, their carbon sequestration capacity per unit area is very strong. Mangroves are tropical ecosystems with high carbon sequestration capacity and high light efficiency, and are important “Blue Carbon” carbon pools. Mangrove organic carbon storage and dynamics have an important impact on global carbon balance (Ray et al., 2011; Zhu et al., 2012; Zhao et al., 2013). In addition, macroalgae may also be an important source of carbon sequestration in marine sediments and deep oceans (Krause-Jensen and Duarte, 2016; Ortega et al., 2019). Carbon sink refers to the unstable state of carbon balance in an ecosystem, in which the carbon input (the sum of plant productivity and external input carbon) is greater than the carbon output (carbon consumed by respiration and external output carbon), namely the state of carbon accumulation. Mangrove is an important carbon sink ecosystem because of its high plant productivity and soil carbon sequestration rate. Therefore, the protection and restoration of mangroves has also become an important means of addressing climate change in the marine field (Zhang et al., 2013; Chen et al., 2021).
5.2 Theoretical basis of Blue Carbon research: schools and issues
5.2.1 Calculation of carbon storage
Studies have estimated the carbon storage. For example, Li et al. (2019) conducted methodological analysis on measuring carbon sinks in mangrove, seagrasses bed and salt marsh based on the recommended methods of carbon sink measurement given by IPCC (Intergovernmental Panel on Climate Change) and clean energy mechanism measurement standards. Phang et al. (2015) evaluated the ecosystem carbon storage of mangroves, seagrass meadows, tidal flats and sandbanks in tropical intertidal zone based on field carbon storage.
Furthermore, most existing scholars are committed to measuring the total amount of carbon stored by mangroves. Currently, the research methods of carbon storage and carbon sink capacity of mangrove wetlands are based on measured methods, including conversion based on biomass (Donato et al., 2011; Peng et al., 2016), soil sampling (Xin et al., 2014), allometric equations (Bulmer et al., 2016), remote sensing inversion (Heumann, 2011), model simulation, field analysis and laboratory determination combined (Li et al., 2014; He et al., 2017), UAV imagery (Jones et al., 2020), LiDAR (Salum et al., 2020), etc.
Seagrass provides many valuable ecosystem services and requires accurate mapping of existing meadows and biomass. For example, Ha et al. (2021) detected and quantified aboveground biomass of seagrass using radar and optical satellite imagery, combined with advanced machine learning and meta-heuristic optimization techniques. Monnier et al. (2021) applied high-resolution seismic reflection technology to estimate the carbon sink of seagrass meadow.
Salt marshes are of unique importance in coastal ecosystems. Van de Broek and Govers (2019) used mid-infrared spectroscopy combined with soil remote sensing to predict the concentration and storage of organic carbon in sediments of tidal marshes. Owers et al. (2020) quantified the change of near-surface carbon storage in salt marshes using stratified sampling method to identify vegetation structure.
Macroalgal communities as donors may contribute ecologically to global Blue Carbon sequestration. However, as the fate of isolated macroalgal biomass remains unclear, some researchers have attempted to quantify the total amount of carbon stored by macroalgae. For example, Hill et al. (2015) used carbon sequestration, macroalgae distribution, abundance and productivity to estimate the total amount of carbon stored by macroalgae.
5.2.2 Influencing factors
5.2.2.1 Natural factors

	(1) Climate. Climate warming and precipitation changes will have a dynamic impact on salt marsh plants and nutrients (Charles and Dukes, 2009). Continued warming will reduce the amount of carbon absorbed and transported by kelp forests, with potential consequences for the coastal carbon cycle (Pessarrodona et al., 2018). Marine heatwaves have caused significant losses of seagrass carbon stocks, the largest in the world (Arias-Ortiz et al., 2018). Sea level rise accelerates coastal zone erosion (Zhou et al., 2016). Sanders et al. (2016) pointed out that the increase of rainfall might increase the carbon storage of mangroves.
	(2) Geography. Soil texture, dominant species of mangrove and biological invasions significantly affect soil organic carbon content and distribution pattern of mangrove in tropical and subtropical China (Gao et al., 2019). The carbon storage of tropical mangroves is larger than that of subtropical and temperate regions (Sanders et al., 2016).
	(3) Time. The carbon storage of mangrove communities tended to increase continuously with the increase of tree age (Gao et al., 2017; Cadiz et al., 2020); There are differences in greenhouse gas emission fluxes in mangrove ecological restoration areas with different forest ages (Li et al., 2020). Tides play an important role in maintaining the carbon sink intensity of salt marsh ecosystems, and their effects on carbon exchange will vary with time scales (Wei et al., 2020a).
	(4) Creatures. Chemical bonding of soil organic carbon may be the main protective mechanism of soil organic carbon stability in mangrove wetlands, which is significant to mangrove carbon sink function (Chen et al., 2017). Spartina alterniflora invasion changes the soil organic carbon pool and weakens the stability of soil organic carbon to a certain extent. Invasive species such as Spartina alterniflora threaten the coastal ecosystem of China, resulting in the disappearance of a large number of mangroves. Although some scholars have studied the effects of spartina alterniflora on Blue Carbon (Feng et al., 2015; 2016; Gao et al., 2019; Su et al., 2020; Zhang et al., 2021), the contribution and influencing mechanism of Spartina alterniflora invasion and abnormal growth of algae to soil carbon pool are not clear.

In addition to the complexity of aboveground forms, the productivity of underground biomass is an important factor affecting organic carbon storage of seagrass grasslands (Tanaya et al., 2018). Sedimentary factors are the key factors for predicting carbon storage in salt marshes (Kelleway et al., 2016). Dahl et al. (2016) believed that sediment properties were an important factor in carbon sink management evaluation of high-priority areas. Low carbon storage of meadow may directly result from sediment disturbance (Rozaimi et al., 2017).
5.2.2.2 Human factors
Due to the lack of protection, marine carbon stocks are vulnerable to human interference, leading to carbon remineralization into carbon dioxide, further exacerbating climate change. For example, the compaction of seawalls (Fan and Wang, 2017); Aquaculture pollution (Gao et al., 2019); Eutrophication (Jiang et al., 2018; Herbeck et al., 2021; Mozdzer et al., 2021); Clam fishing not only erodes historical carbon stocks that have accumulated over decades, but also endangers potential carbon stocks (Baranano et al., 2017); Reclamation of land from the sea (Weston et al., 2014); Land reclamation is the most important driving factor of salt marsh loss (Gu et al., 2018). Urbanization (Friess et al., 2016); Submarine Groundwater Discharge (SGD) (Wang et al., 2020); Ocean acidification will affect seagrass carbon sequestration capacity and integration in the future. Garrard and Beaumont (2014) emphasized that sustainable management of seagrass is crucial to avoid continuous degradation and loss of carbon sequestration capacity of seagrass. Human disturbance changes the structure and function of the ecosystem and limits the carbon sequestration function of the ecosystem (Chen et al., 2021).
5.2.3 Protection and restoration of Blue Carbon
Scholars are devoted to the protection and restoration of Blue Carbon. Mangrove conservation should be a high priority component of climate change mitigation strategies (Murdiyarso et al., 2015). In order to reduce losses, rehabilitation is the top priority of protection work (Duncan et al., 2016). Restoration Projects can sequester large amounts of additional carbon and reduce emissions. At present, the conservation and restoration measures discussed mainly include policy and legislation, restoration of abandoned ponds, positive interaction between species and payment mechanism of ecosystem services.
5.2.3.1 Policy and legislation
Rogers et al. (2016) argues that there is an urgent need to properly value ecosystem services and explicitly recognize them in policy and legislation. Friess et al. (2016) argued that many drivers of mangrove loss operate on a large scale and that policy intervention is the most effective way to solve these problems. Sidik et al. (2018) pointed to the need for legal frameworks and the involvement of stakeholders, particularly local communities, to protect mangroves and mitigate climate change. In addition, Thompson (2018) critically assessed mangrove restoration policies and initiatives from the perspective of political ecology, focusing on institutional arrangements and power dynamics. In order to solve the problems of coral degradation and ocean acidification, Mcleod et al. (2011) discussed how to modify the existing design principles of marine protected areas.
5.2.3.2 Mechanisms of payment for ecosystem services
Payment for ecosystem services (PES) schemes offer a viable approach to large-scale wetland restoration, using economic means and avoiding artificial overdevelopment. Jakovac et al. (2020) believes that the valuation of common benefits and the combination of carbon-based mechanisms and sustainable management may be feasible. Muenzel and Martino (2018) assessed the feasibility of carbon payments and ecosystem services payments to reduce livestock grazing pressure in salt marsh areas. Canning et al. (2021) recommends that wetland-based PES programs use common asset trusts to construct wetland landscape portfolios to restore wetland values and global services.
5.2.3.3 Positive interactions between species
Although positive interspecies interactions play a crucial role in coastal wetland regeneration, only a small number of wetland and mangrove restoration studies have examined their role. For example, Renzi et al. (2019) utilized species interactions, such as trophic facilitation, stress reduction and associational defenses, to facilitate coastal wetland biological reconstruction and promote coastal wetland restoration.
5.2.3.4 Abandoned pond reversion
Fan et al. (2021) explored the ecological co-cultivation of tidal water in the restoration of mangroves in abandoned shrimp ponds. Duncan et al. (2016) points out that due to the large area and suitable site conditions, the targeted restoration of abandoned fish ponds into former mangroves will strengthen ecological environment protection in coastal areas.
5.2.3.5 Community engagement
Gu et al. (2018) pointed out that the restoration, protection and management of salt marshes can be further enhanced by strengthening the participation of local communities. Ranjan (2019) believes that community participation can restore mangrove forests, gain multiple environmental benefits, and help local communities generate income through ecosystem services to increase livelihoods.
5.2.4 Development and trading of Blue Carbon projects
In recent years, Blue Carbon has been involved in carbon trading, finance and other fields, driving the protection and development of Blue Carbon ecosystem through economic leverage. The topic of Blue Carbon sink has been expanded from scientific research to the global economy.
Although Blue Carbon is beginning to be incorporated into the carbon market, it is still a relatively new concept. Blue Carbon research is not enough to understand the research methodology and development process, resulting in the development of Blue Carbon sink project constrained (Chen S. Y. et al., 2021). In order to make Blue Carbon mechanism play a reasonable role, the international mainstream approach is to moderately include Blue Carbon into the international carbon trading market. In 2011, the Blueprint for Sustainable Development of Oceans and Coastal Zones set out the goal of protecting marine ecosystems and establishing a global Blue Carbon market. The report aims to increase carbon sinks by protecting and restoring coastal wetlands for use in trade. At present, there are two types of carbon trading markets: compliance markets and voluntary markets. Compliance markets deal with mandatory emission reductions under regulations. It is driven by the need of regulated greenhouse gas emitters for quotas and offsets (Sapkota and White, 2020). In voluntary markets, compensation prices are mainly determined by supply and demand. In some cases, prices also depend on whether buyers are willing to pay more to promote environmentally sustainable carbon markets (Xia et al., 2020). Mangrove forests, for example, provide many benefits for human welfare, but they are rapidly disappearing. One reason for this disruption is that policymakers and markets have not understandably evaluated the benefits of mangroves (Tanner et al., 2019). Using the value of carbon stored in mangroves on the voluntary carbon market can generate revenue. This helps support and motivate sustainable mangrove management, improve livelihoods and reduce anthropogenic stress (Benson et al., 2017).
Optimizing Blue Carbon sequestration products and developing trading mechanisms are important ways for China and the world to deal with global climate change and achieve carbon neutrality. So far, China has successfully developed and traded its first Blue Carbon sequestration project, the Zhanjiang Mangrove Forest Project. In the future, it will continue to promote the development of Blue Carbon sink projects and the development of trading market (Chen et al., 2021), to promote ecological protection and restoration through market mechanism (Tang et al., 2018).
5.3 Research methods of Blue Carbon
Blue Carbon research mainly adopts quantitative research method. Referring to Tang et al. (2018), quantitative research methods used in Blue Carbon research can be divided into monitoring carbon budget (including carbon flux and carbon pool), simulation experiment and modeling research, etc.
5.3.1 Monitoring
Monitoring can be divided into flux monitoring and carbon pool monitoring. First, the monitoring of carbon flux. It is to observe all kinds of fluxes and calculate the total amount. For example, Dahl et al. (2020) measured total organic carbon (TOC) deposited in seagrass meadows at two Z-dock sites to assess seasonal variations in sediment carbon storage of seagrass meadows. Potouroglou et al. (2017) conducted a multi-site study on sediment surface elevation of seagrass in different environments and species through long-term monitoring. Macklin et al. (2019) explored the driving factors of CO2 along the mangrove seagrass transect through 8 seasonal surveys and 55 h fixed location time series. This method——the monitoring of carbon flux——can understand the mechanism and process of carbon pool changes and provide data basis for modeling. For example, using more than 900 soil carbon measurements data, Jardine and Siikamaeki (2014) established a global prediction model for mangrove soil carbon.
Second, the monitoring of carbon pools. It involves directly observing changes in the carbon pool. This method is relatively simple and can obtain the changes of 1 year or several years, but fails to give seasonal changes and the contribution of each carbon flux. For example, Peng et al. (2016) calculated the vegetation carbon storage of each community by investigating the components of each vegetation carbon pool in four representative mangrove communities.
5.3.2 Experiment
Experiment is to change one or more environmental factors artificially through the comparison with the control group, explore the response of the ecosystem to this kind of factors, and serve the construction of the model. In the existing studies, the simulated factors include temperature, precipitation, nitrogen and phosphorus content, soil oxygen content, etc. For example, in order to further understand how salt marshes respond to warming and precipitation changes, Charles and Dukes (2009) conducted a manipulation experiment in tidal salt marshes through passive open indoor warming, double precipitation and warming, etc. Deegan et al. (2012) conducted a 9-year experiment on nutrient enrichment across the ecosystem in coastal wetlands, which showed that nutrient enrichment is a global problem in coastal ecosystems, and it may be also a driving factor of salt marsh loss. Using nutrient enrichment (N & P) experiments, Armitage and Fourqurean (2016) assessed the effects of long-term and near-term nutrient inputs on aboveground and underground carbon accumulation in seagrass beds. Wei et al. (2020b) explored the effects of tidal flood on CO2 and CH4 fluxes of salt marsh ecosystem through field experiments. Chapman et al. (2019) points out that changes in soil oxygen content may be a vital driving factor for Blue Carbon storage in coastal wetlands in the future by manipulating soil oxygen state in real soil.
5.3.3 Modeling
The purpose of the long-term observation and simulation study of the ecosystem in Blue Carbon research is to build a process-based mathematical model to understand the system process and predict and analyze the future. Most models use input parameters that are easy to measure, such as meteorological factors and vegetation structure, and other data obtained with remote sensing data. For example, Morris et al. (2016) used marsh equilibrium model to predict the carbon sequestration capacity of salt marsh wetlands and their response to sea-level rise. Owers et al. (2018) collects high-resolution three-dimensional point cloud through terrestrial laser scanning and proposes the point cloud elevation histogram model. So, the aboveground biomass of coastal wetland vegetation with complex structures can be quantified. Sohma et al. (2018) established a coastal ecosystem model (Ecosystem Model for Aquatic Integrated Network for Blue Carbon) to estimate climate change mitigation. In addition, Jardine and Siikamaeki (2014) explored several predictive modeling methods using climate and location data for prediction. Based on these models, an estimated global soil carbon concentration and storage dataset was constructed.
6 CONCLUSION AND PROSPECTS
The potential impact of Blue Carbon destruction on greenhouse gas emissions is becoming more significant, which puts forward a new proposition and research space. Based on previous research, this paper tries to put forward some research perspectives, in order to provide some references for scholars to carry out Blue Carbon research.
	(1) Analyze the concept and content of Blue Carbon and clarify the type of Blue Carbon. Although scholars at home and abroad have tentatively proposed and summarized the concept, connotation and types of Blue Carbon, the research on Blue Carbon is still in its infancy, and human cognition of Blue Carbon is still not comprehensive. As natural science advances and theories change, some new ecosystems may be incorporated into the concept of Blue Carbon. For example, the discovery of shale gas has shattered our understanding of the composition of fossil energy. Therefore, the related concepts, connotations and main types of Blue Carbon will be constantly updated with the progress of natural science and the innovation of social science theories.
	(2) Strengthen accurate estimation and prediction of Blue Carbon sink and its potential. Although relevant measurement methods and standards have been preliminarily proposed, they are still incomplete due to the many subsystems involved in Blue Carbon. Therefore, in the next step, we should constantly develop measurement methods and formulate corresponding industry standards to improve the accuracy of Blue Carbon storage measurement and simulation model. Although the carbon storage of Blue Carbon in China has been estimated successively, there is a lack of systematic observation and unified standard for the carbon storage and carbon sink research of coastal wetlands in China. Therefore, there is still a large data gap in existing estimates, and the storage of Blue Carbon sink needs to be further explored.
	(3) Explore the protective mechanism of Blue Carbon system. With the continuous advancement of urbanization and industrialization in China, offshore pollution is becoming more serious. Moreover, maricultural pollution and domestic sewage pollution in the primary industry also aggravate marine pollution in China, which will cause serious damage to the Blue Carbon ecosystem in the long run. Therefore, strengthening the research on the protection mechanism of the Blue Carbon system should also become one of the significant directions.
	(4) Explore the Blue Carbon sink trading market mechanism. For instance, in China Guangdong, Shandong and Shanghai have taken the lead in carrying out multi-agent Blue Carbon trading projects, but the overall benefits of the projects have yet to be tested over time. In the future, the government can effectively integrate the supply and demand of Blue Carbon by developing Blue Carbon fund, exploring Blue Carbon credit certification and constructing Blue Carbon free trading market, to serve China’s carbon neutrality strategy in 2060.
	(5) Explore new research methods and focus on the dynamic change of Blue Carbon. As for the existing quantitative research methods, although specific quantitative process can be understood to a certain extent in terms of monitoring, there will be certain errors. As far as the experiment is concerned, the cost of simulation experiment is relatively high and the effect is not ideal. As far as modeling is concerned, the prediction ability of existing models needs to be further studied. Future research can consider using big data, artificial intelligence, cloud computing and other high-end core technologies to capture marine activities, paying attention to the complex development process of Blue Carbon, and using big data to conduct in-depth research and dig financial markets to explore Blue Carbon and its economic effects more effectively.
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To effectively address climate change, it is necessary to quantify the carbon emissions in high energy-consuming regions, analyze driving factors, and explore effective pathways for achieving green development. Therefore, this paper takes Liaoning Province as research area, using extended Kaya identity and LMDI method to analyze the driving factors of carbon emissions from energy consumption in five major industries and the residential consumption sector from 2011 to 2020 in Liaoning Province. Furthermore, this paper uses the Tapio model to explore the decoupling relationship between carbon emissions and economic development. The results show that: 1) From 2011 to 2020, total carbon emissions from energy consumption in five major industries showed a trend of initially declining and then rising, while carbon emissions from the residential consumption sector exhibited an upward trend. 2) For carbon emissions from the industrial sector, economic output and industrial structure are the primary factors that promote and inhibit carbon emissions respectively. The inhibitory effects of energy structure and energy intensity are not significant. Population scale has a certain promoting effect on carbon emissions. For residential energy consumption carbon emissions, Household consumption expenditure, residential energy structure, and residential population scale are driving factors that promote the growth of carbon emissions, while residential energy intensity restrains the growth of carbon emissions. 3) From 2011 to 2018, carbon emissions from the industrial sector have been decoupled from economic output, and the decoupling state is dominated by weak decoupling. However, carbon emissions are once again correlated with economic development in 2019–2020. Carbon emissions from residential energy consumption have not yet decoupled from consumption expenditure, and its decoupling state is unstable and has no obvious change rule.
Keywords: carbon emissions, LMDI, energy consumption, driving factors, high energy-consuming regions, Liaoning province

1 INTRODUCTION
Energy consumption is a basic condition for human economic activities. With the rapid development of the global economy, the scale of energy consumption has significantly increased, leading to an annual increase in CO2 (Zhou and Chen, 2023). This ultimately results in a further deterioration of global warming issues. As the world’s largest carbon emitter, China has experienced high growth in energy consumption over a long period. However, industrialization is still ongoing in China, which requires substantial energy consumption, especially from traditional fossil fuels, leading to increasing carbon emissions (Liu et al., 2023b). To achieve low-carbon development, the Chinese government aims to reach peak carbon emissions by 2030 and achieve carbon neutrality by 2060. With these ambitious goals, high-energy-consumption resource-based cities and old industrial bases face even more severe challenges.
Liaoning Province is an important old industrial base and a resource-based city agglomeration. During its development process, the industrial structure in Liaoning has been dominated by resource-based industries and heavy industry. This development model, characterized by high energy consumption in exchange for rapid economic development, hardly meets the low-carbon economy transformation requirements set by dual carbon goals. In recent years, Liaoning Province has faced sluggish economic growth and a lack of development sustainability. In 2023, Liaoning Province ranked 16th in China by GDP, with a below-average GDP growth rate over the past decade (excluding 2023). Compared to other industrial provinces with a high level of economic development, Liaoning faces more severe challenges in fulfilling the low-carbon economy goals while achieving other objectives such as industrial transformation and economic improvement. Without proper guidance, new carbon emission growth points could easily emerge. Therefore, it is necessary to quantify the carbon emissions in high energy-consuming regions, analyze driving factors, and explore effective pathways for achieving green development.
2 LITERATURE REVIEW
2.1 Research on driving factors of carbon emissions
Currently, in the study of drivers of carbon emissions, researchers commonly adopt two methods: SDA and IDA. The results obtained through SDA are good, but the time span of the required data is longer, which results in limitations for practical applications (Dong et al., 2018; Wang et al., 2023). In practical applications, IDA is more feasible since the data needed for it is more easily accessible (Ye et al., 2019). In 2004, Ang (2004) proposed the LMDI decomposition method. Due to its simplicity, interpretability, wide applicability, and absence of residual decomposition, it has been extensively used in analyzing the carbon emissions driver decomposition model (Shang et al., 2016; Chen et al., 2022).
In national-level researches, Yang et al. (2020), Wang and Yan (2022) all analyzed the driving factors of carbon emissions from energy consumption in China. They found that economic activities and energy intensity are the primary driving factors promoting and inhibiting carbon emissions, respectively. It can effectively restrain the growth of carbon emissions from energy consumption by optimizing industrial structure, improving energy structure, and increasing the development of clean energy. Similar conclusions have been drawn in studies focused on developing countries (Chong et al., 2019; Alajmi, 2021). For developed countries, environmental pressures are comparatively small as economic development is not heavily dependent on energy consumption (Cai et al., 2018; Waheed et al., 2019).
With the continuous growth of the regional economy, there is an increasing amount of research being conducted at regional and provincial levels (Guo et al., 2016; Gu et al., 2019; Qing et al., 2021; Yang et al., 2021; Chen A. et al., 2023; Jiao et al., 2023). Due to the significant spatial heterogeneity in development models, the influence of various driving factors on changes in carbon emissions also varies by region (Zheng et al., 2019). Yu et al. (2021) found that energy efficiency is the primary factor causing significant differences in carbon emission intensity in the Beijing-Tianjin-Hebei region. Jiang et al. (2020) discovered that downstream areas of the Yangtze River Economic Belt have better energy structure and energy efficiency than the midstream and upstream areas, which results in better emission reduction benefits. Meanwhile, the midstream and upstream areas have greater carbon reduction potential in terms of industrial transformation and structural adjustment compared to the downstream areas. Huang and Matsumoto (2021) explored the impact of urbanization levels on carbon emissions in 30 provinces in China from the perspective of residential consumption. They found that provinces with lower levels of urbanization should focus on adjusting regional development methods, while in highly urbanized regions, promoting sustainable development is key to reducing carbon emissions.
Some scholars also focus on research at the industrial level. Li et al. (2022) analyzed the driving factors of carbon emissions from energy consumption in China’s iron and steel industry. It concluded that production capacity and energy efficiency are the main driving factors. Eliminating backward production capacity and upgrading technology are crucial for reducing carbon emissions. Zhou et al. (2023) discovered that carbon emissions in the construction industry increase with the growth of labor productivity, and green production technology is a key factor in restraining carbon emissions in the construction industry. Other industries, such as industry (Wen and Li, 2020), mining (Shao et al., 2016), logistics (Xu et al., 2022), and tourism (Xiong et al., 2022), have also been subjects of relevant studies.
2.2 Research on the decoupling relationship between carbon emissions and economic development
It is also noteworthy to analyze the decoupling of environmental pressures from economic development, as related research also involves different dimensions. Wu et al. (2018) compared the decoupling state in developed and developing countries. They found that developed countries exhibit relatively stable strong decoupling while developing countries show highly fluctuating and irregular weak decoupling. In studies focusing on various provinces in China, researchers found that the decoupling state has gradually improved, shifting from early expansive negative decoupling and expansive decoupling to weak decoupling and strong decoupling. It is noted that most provinces are currently in a weak decoupling state, while some developed provinces, such as Zhejiang, Hebei, Beijing, Jiangsu, and Shanghai, are in a strong decoupling state (Gao et al., 2021; Li et al., 2022; Pan et al., 2022). Meanwhile, some scholars also focus on research at the industrial level, including industry (Song et al., 2021), manufacturing (Lin and Teng, 2022; Liu et al., 2022), construction (Yang and Chen, 2022; Zhang et al., 2022), mining (Chen and Yan, 2022; Li et al., 2022), and transportation (Chen Q. et al., 2023).
In summary, research on the drivers of carbon emissions from energy consumption and the decoupling relationship with economic development is quite mature, but there are still some issues that warrant further investigation. The contribution of this paper to the existing research is mainly in the following two aspects. First, most literature focuses on the industrial sector, with less attention paid to the residential consumption sector. As living standards rise, the residential consumption sector has become the second largest energy-consuming sector after industry (Yu et al., 2023). In China, the direct and indirect CO₂ produced by the residential sector accounts for 40%–50% of total emissions. Globally, it accounts for about two-thirds of the total greenhouse gas emissions related to household energy activities (Xu et al., 2024). The increase in carbon emissions caused by the increase in residential energy consumption has become one of the important factors causing the growth of total carbon emissions in China and even the world, which cannot be ignored (Gao et al., 2023; Dong and Zhang, 2024). Therefore, this paper analyzes the impact of factors such as residential consumption expenditure and residential energy consumption intensity on carbon emissions from urban and rural residential energy consumption, respectively. And this paper explores the decoupling relationship between carbon emissions from residential energy consumption and consumption expenditure. Second, Currently, there are few studies specifically focusing on Liaoning Province, which is characterized by high energy consumption and faces certain development issues. This paper takes Liaoning Province, further enriches the existing research, and can provide some policy references for Liaoning Province and similar areas.
3 METHODOLOGY AND DATA SOURCES
3.1 Carbon emission calculation method
This paper calculates carbon emissions by referring to the total carbon emissions measurement method of provincial-level energy consumption activities proposed by IPCC. The calculation formula is shown in Eq. 1:
[image: C equals C subscript PNF plus C subscript rec, which is the sum from i equals 1 to 5 of the sum from j equals 1 to 5 of E subscript i j multiplied by E F subscript j, plus the sum from k equals 1 to 2 of the sum from j equals 1 to 5 of E subscript k j multiplied by E F subscript j.]
We define [image: Please upload the image or provide a URL so I can help create the alt text for it.] as the total carbon emissions. Parameters [image: Mathematical notation showing the symbol \(C_{pe}\).] and [image: Mathematical expression showing the variable \(C\) with a subscript notation of "re".] represent the total carbon emissions from the industrial sector and residential sector, respectively. [image: Mathematical expression showing the letter "E" with subscripts "i" and "j", indicating a specific element in a matrix or mathematical notation.] is the consumption of the jth type of energy in the ith sector. [image: Mathematical notation displaying the variable \( E_{kj} \), where \( E \) is indexed by the subscripts \( k \) and \( j \).] is the consumption of the jth type of energy in kth residential areas, where k = 1 represents urban areas, and k = 2 represents rural areas. The parameter carbon emission coefficient of energy i is defined as [image: It seems like you've included a snippet of LaTeX code for a mathematical expression rather than an image. The expression "E_{F_j}" is typically used to denote a variable or parameter in equations, with "E" as the main variable and "F_j" as a subscript, possibly indicating specific conditions or constraints. If you need alt text for an image, please upload the image or provide a description.].
3.2 Decomposition model
To comprehensively analyze the driving factors of carbon emissions from energy consumption in various industrial sectors and residential life, this paper extends the Kaya identity to the following formula:
[image: Mathematical equations showing calculations for \( C_P \) and \( P \). The first equation, \( C_P \), includes summations over \( i \) and \( j \) and involves variables \( C_{ij} \), \( E_{ij} \), and ratios \( \frac{E_i}{E_i} \), \( \frac{E_i}{GDP_i} \), \( \frac{GDP_i}{GDP} \), and \( \frac{GDP}{P} \). The second equation for \( P \) is another summation over \( i \) and \( j \), with terms \( C_{ij} \), \( ES_{ij} \), \( IS_j \), \( GPC \), and \( P \).]
[image: Complex mathematical formula with variables and summations. The first equation shows \( C_{rc} = \sum_{k=1}^{2} \sum_{j=1}^{17} \frac{C_{kj} \cdot E_{kj} \cdot E_k \cdot CE_k}{E_{kj} \cdot E_k \cdot CE_k \cdot P_k} \). The second equation shows \( P_k = \sum_{k=1}^{2} \sum_{j=1}^{17} CI_{kj} \cdot RES_{kj} \cdot REI_k \cdot PCE_k \cdot P_k \).]
In Equation 2, [image: Please upload the image or provide a URL so I can generate the alt text for you.] represents the total energy consumption in the ith sector, [image: It seems like you've included a snippet of a mathematical or economic expression (GDP subscript i). If you have an image to upload for alt text creation, please ensure it is attached or provide a URL. If you need further clarification or assistance, let me know!] represents the gross domestic product of the ith sector, P represents population. CI, ES, EI, IS, GPC, P respectively represent carbon emission factors, energy structure, energy intensity, industrial structure, economic output, and population scale. In Equation 3, [image: Mathematical notation showing the symbol E with a subscript k.] represents the total energy consumption in the kth category of residents, [image: It seems like you mentioned an image, but it did not upload correctly. Please try uploading the image again, and I can help create the alternate text for it.] represents the consumption expenditure of the kth category of residents. [image: It seems you're referring to a mathematical expression, not an image. The expression "P sub k" typically denotes a variable or parameter in mathematics, where "P" is a symbol and "k" is the subscript indicating a specific element or index. If you have an image to describe or need further explanation, please upload it or provide more context.] represents the population of the kth category of residents. RES, REI, PCE, P respectively represent residential energy structure, residential energy consumption intensity, household consumption level, and residents’ population scale. For ease of calculation, the 17 major energy sources are combined into 5 categories: coal, petroleum products, natural gas, heat, electricity, and other energy.
Based on the additive decomposition method of the LMDI method, the change in carbon emissions in Liaoning Province over the time interval [0, t] can be decomposed into:
[image: Equation showing the change in heat capacity: ΔCₚ⁰ = Cₚ⁰ᵉ - Cₚ⁰ʳ = ΔC₁ᵀ + ΔCₑₛ + ΔCₑₕ + ΔCᵢₛ + ΔC₉ᶜ + ΔCₚ.]
[image: Mathematical equation showing ΔC_re equals C_n' minus C_n'', expressed as ΔC_cl plus ΔC_res plus ΔC_reh plus ΔC_fcg plus ΔC_p. Labeled as equation five.]
The definition of [image: Delta symbol followed by capital C and lowercase l, representing a change in concentration of a substance, often used in chemistry.] is shown in Eq. 6, and the calculation methods for the other effects are similar.
[image: Mathematical equation showing the change in cost indicator, ΔCCI, as a double summation over i and j. The function L compares C_ij with C0_ij, and is multiplied by the logarithm of the ratio of CI_ij to C0_ij, denoted as equation (6).]
Where [image: Mathematical expression showing the function L applied to C subscript ij superscript t and C subscript ij superscript zero.] are respectively defined as shown in Eq. 7:
[image: Mathematical formula \(L(C_{ij}, C_{ij}^0) = \left\{ \begin{array}{ll} \frac{C_{ij} - C_{ij}^0}{\ln C_{ij} - \ln C_{ij}^0}, & C_{ij} \neq C_{ij}^0 \\ C_{ij}, & C_{ij} = C_{ij}^0 \end{array} \right.\) Equation number 7.]
When calculating the carbon emissions from energy consumption in Liaoning province, [image: Delta C subscript Cl, representing a change in a variable or constant related to chlorine.] in Eqs 4, 5 is always zero, because the carbon emission factors are fixed. In addition, if the consumption of a certain energy source is zero, logarithmic operations cannot be performed. To address this issue, this paper refers to the method proposed by Ang (2004).
3.3 Decoupling model
This paper utilizes the Tapio decoupling model to study the decoupling relationship between carbon emissions from industrial energy consumption and economic development. The Tapio decoupling models are shown in Eqs 8, 9:
[image: The equation for elasticity, \( \varepsilon_1 = \frac{\Delta C_{pe} / C_{pe}}{\Delta \text{GDP} / \text{GDP}} \), is depicted, labeled as equation eight.]
[image: Mathematical equation showing ε₂ equals the ratio of ΔCrₑ over Crₑ to ΔCE over CE. The equation is labeled as equation nine.]
Where [image: Please upload the image or provide a URL, and I will help create alt text for it.] represents the decoupling index between carbon emissions from energy consumption in five major industries and economic output, [image: Lowercase Greek letter epsilon (ε) followed by the subscript numeral two.] represents the decoupling index between carbon emissions from residential energy consumption and consumption expenditure. According to the values of the decoupling index, the decoupling states can be classified into eight types (Table 1).
TABLE 1 | The classification criteria for decoupling states.
[image: Table showing decoupling states with four columns: "Decoupling state," "ΔCₚₑ, ΔCᵣₑ," "ΔGPC, ΔPCE," and "ε₁, ε₂." Rows detail types like strong decoupling, weak decoupling, expansive decoupling, and more, with corresponding values. Values include inequalities indicating less than or greater than zero, and range sets like (−∞, 0) or (0.8, 1.2).]3.4 Data sources
The energy consumption data, conversion coefficient of standard coal, and average lower calorific value come from the China Energy Statistical Yearbook (2011–2021). The necessary parameters for calculating carbon emission coefficients, including the carbon oxidation rate and the carbon content per unit calorific value come from the China Energy Statistical Yearbook and the Guidelines for Provincial Greenhouse Gas Inventory Compilation (Trial). The carbon emission factor for electricity is sourced from the average emission factor of the national power grid in 2022. The economic data and related social data are sourced from the Liaoning Statistical Yearbook.
4 RESULTS
4.1 Analysis of carbon emission from energy consumption in Liaoning province
According to Figure 1A, from 2011 to 2020, the pattern of carbon emissions from five major industries in Liaoning Province can be segmented into two phases. In the first phase (2011–2016), carbon emissions decreased from 292.17 Mt to 272.35 Mt. In the second phase (2016–2020), carbon emissions increased annually, with a total increase of 41.35 Mt. From the perspective of carbon emissions in different industrial sectors, it can be observed that energy consumption carbon emissions in Liaoning Province mainly come from industry, accounting for approximately 72.5%. Carbon emissions from transportation are also relatively high, which accounts for about 18.3%. And carbon emissions of agriculture, construction, and service industry, as percentages of the total emissions are 2.6%, 0.6%, and 6%, respectively. Specifically, with the rapid growth of the service sector, including financial and technology industries, such as financial industry and technology industry, the consumption of high-carbon-emission energy has significantly increased, leading to a corresponding rise in carbon emissions.
[image: Two area charts compare CO2 emissions from 2011 to 2020. Chart A shows emissions by sectors: industry, transportation, construction, agriculture, and service. Chart B displays emissions by urban and rural residences. Both charts indicate an overall upward trend in emissions.]FIGURE 1 | (A) Carbon emissions from different industries. (B) Carbon emissions from the residential consumption sector.
According to Figure 1B, carbon emissions from residential energy consumption show an overall increasing trend from 2011 to 2020, rising from 16.4 Mt to 24.46 Mt, with an average annual growth rate of 4.08%. During the period from 2011 to 2015, carbon emissions showed a stable upward trend, except for a slight decline in 2013. During the period from 2016 to 2020, carbon emissions initially increased rapidly, slowed down after 2018, and then stabilized. The changing trend of urban residents’ carbon emissions is consistent with the trend of changes in residential carbon emissions. Moreover, resident carbon emissions are mainly generated by urban residents, which can be attributed to the long-term high level of urbanization in Liaoning Province. In 2011, the urbanization rate of Liaoning Province had already reached 64%. The urbanization rate increased to 72% in 2020, surpassing the national average level of urbanization. The higher number of urban residents contributes to higher carbon emissions from urban areas. Carbon emissions from rural residents’ daily energy consumption increased from 4.5 Mt to 5.72 Mt from 2011 to 2020. According to the changing trend, carbon emissions from rural residential energy consumption can be divided into three stages. From 2011 to 2015 (except 2012), carbon emissions experienced a gradual decline in the other years, averaging an annual reduction rate of 1.92%. With an observation of a rapid increase in emissions from 2016 to 2018, the period from 2018 to 2019 then experienced a slight decline following a phase of steady growth.
4.2 Decomposition results of carbon emissions from energy consumption in Liaoning province
4.2.1 Analysis of driving factors for carbon emissions from energy consumption in five major industries
According to Equation 4, Carbon emissions from energy consumption in five major industries are decomposed into six effects (Table 2).
	(1) Energy structure effect

TABLE 2 | Decomposition results of carbon emissions in the industry departments (unit: ten thousand tons).
[image: A table displaying data from 2011 to 2020, with columns for Year, ES, EI, IS, GPC, P, and Over effect. Each year lists corresponding numerical values for each category. The totals are shown in the last row: -3002.5 for ES, -2917.58 for EI, -7304.5 for IS, 17383.44 for GPC, 313.45 for P, and 4568.39 for Over effect.]According to Table 2, energy structure effect played a suppressing role in carbon emissions, with a cumulative reduction of 30.025 Mt from 2011 to 2020. According to Figure 2, the energy consumption of the industry departments has long been dominated by coal. This is primarily determined by two aspects: firstly, owing to the abundant natural resources of Liaoning Province, it possesses ample coal reserves. Secondly, the economic development of Liaoning Province has long relied on the secondary industry, especially the heavy industry, leading to a high dependence on coal consumption. From 2011 to 2020, the proportion of coal consumption decreased from 43.31% to 34%, and petroleum products consumption decreased from 28.16% to 23.01%. In contrast, share of relatively cleaner energy sources such as natural gas, electricity, and heat continued to rise, increasing from 3.39%, 14.28%, and 5.6%–4.31%, 15.83%, and 10%, respectively. It indicates that the energy consumption structure of the industry departments is moving towards a more low-carbon and clean direction. Nevertheless, the current energy structure of different sectors in Liaoning is still primarily dominated by coal, and economic development is also more dependent on energy consumption. In addition, in terms of energy use, the conditions for large-scale substitution of coal with high-quality and high-priced energy sources are not yet available. The optimization and upgrading of energy structure will not change significantly in the short term. The demand for coal in heavy chemical industries still exists, suggesting that it is unlikely to achieve substantial emission reductions by optimizing energy structure in the short term. However, it also means that energy structure adjustment has excellent potential to reduce emissions in the future. In the energy structure effect of different sectors (Figure 3), energy structure effect of industry plays a dominant role in carbon emissions. This result can be attributed to the fact that industry is the largest energy-consuming sector, with its energy consumption predominantly reliant on raw coal, coke, and various types of petroleum products. Agriculture, construction, transportation, and service industry all impose a certain inhibitory effect on carbon emissions.
	(2) Energy intensity effect

[image: Stacked bar chart depicting energy consumption proportions from 2011 to 2020. Categories include coal, petroleum products, natural gas, heat, electricity, and other energy. Coal and natural gas dominate, with a slight increase in electricity use.]FIGURE 2 | The energy consumption structure of the industry departments from 2011 to 2020.
[image: Heatmap displaying various industries' annual data from 2011 to 2020, with values ranging from low to high. Industry shows significant variation, with the highest value in 2020. Service industry peaks in 2019. Agriculture, transportation, and construction exhibit lower values. A color scale indicates intensity.]FIGURE 3 | Energy structure effect of different sectors from 2011 to 2020 (unit: ten thousand tons).
Although energy intensity effect has an inhibitory effect on carbon emissions, the effect is weak and characterized by significant overall fluctuations. Analyzing in stages, the contribution values of energy consumption effects in Liaoning Province during the period of “12th Five-Year Plan” (2011–2015) and “13th Five-Year Plan" (2016–2020) are −38.391 Mt and 9.2152 Mt, respectively. It indicates that Liaoning Province achieved good results in improving energy utilization efficiency from 2011 to 2015. However, from 2015 to 2020 various industries showed a rebound in production capacity, which caused weak improvement in energy intensity. In the years 2018–2020, the growth rate of energy consumption exceeded the growth rate of GDP, and energy intensity effect played a promoting role in carbon emissions. Generally, the improvement effect of energy intensity is limited. In the early stages, improvements in energy intensity typically benefit from technological advancements and adjustments in industrial structure. However, with the gradual maturity of technology and the limitations of certain industries, subsequent improvements in energy intensity may become more difficult. Therefore, the positive impact of energy intensity effects on carbon emission reduction is limited. From the perspective of energy intensity effect of different industrial sectors (Figure 4), except for industry, the total contribution values of energy intensity effects for other sectors are all negative. For high-energy consuming industries, the operational management is extremely complex. It requires attention to production capacity while also considering the impact on the external environment. To some extent, it may cause problems such as inadequate organizational management capabilities and outdated production technologies, eventually resulting in low energy utilization efficiency (Wang et al., 2018). From 2005 to 2013, service industry has been restraining the growth of carbon emissions, with the largest cumulative emission reduction of 27.5772 Mt. Energy consumption intensity effects of agriculture, construction, and transportation also inhibit carbon emissions but to a relatively lesser extent.
	(3) Industrial structure effect

[image: Heatmap showing carbon emissions across five sectors from 2011 to 2020, with a total column. Colors range from green (low emissions) to brown (high emissions). Emissions are highest in the industry sector, especially in 2020.]FIGURE 4 | Energy intensity effect of different sectors from 2011 to 2020 (unit: ten thousand tons).
Industrial structure effect consistently has been playing a restraining role in carbon emissions from 2011 to 2020, cumulatively reducing emissions by 73.045 Mt, which is the most significant inhibiting factor. Combining the analysis of the proportion of different industries (Figure 5), since 2011, the share of the service industry in Liaoning Province has increased annually, rising from 36.9% to 52.8% in 2020, and becoming the economic pillar of Liaoning Province for the first time in 2014. Meanwhile, the proportion of the industrial sector decreased from 45.9% in 2011 to 31.6% in 2020. The transformation of the second industry to the third industry made the industrial structure effect on CO2 emissions significantly inhibitory. However, it is noteworthy that the current traditional economic pillar industries in Liaoning Province are still dominated by high-energy-consuming industries such as petrochemicals and metallurgy. The proportion of their gross product to the total industrial product is close to half. Due to the large size of the energy system and its overall low efficiency, the elimination of outdated production capacity and the optimization of the industrial structure are necessary. From the perspective of industrial structure effects in different sectors (Figure 6), the industrial sector has the largest inhibitory effect on carbon emissions, cumulatively reducing emissions by 76.95 Mt. Agriculture also plays a restraining role, while the construction, transportation, and service industry all contribute to an increase in carbon emissions.
	(4) Economic output effect

[image: Bubble chart showing the share of various sectors from 2011 to 2020. Sectors include agriculture, industry, construction, transportation, trade, and other services. Bubble size indicates percentage share, ranging from 5% to 50%. Notable trends include consistent growth in industry and service sectors, while agriculture remains small.]FIGURE 5 | Industrial structure of Liaoning province from 2011 to 2020.
[image: A heatmap showing economic values across various industries from 2011 to 2020. The industries listed are service, transportation, construction, industry, and agriculture. Colors range from high (teal) to low (brown), with numerical data provided for each year and totals. The industry sector shows the highest value in the "Total" column, highlighted in light teal.]FIGURE 6 | Industrial structure effect of different sectors from 2011 to 2020 (unit: ten thousand tons).
Economic output is the most significant factor leading to the increase in carbon emissions, cumulatively adding 1738.345 Mt. According to the Environmental Kuznets Curve, areas with low economic development levels tend to have lower levels of environmental pollution. However, as economic development progresses, the degree of environmental pollution will be more serious. When the economy reaches a certain level, it will hit an “inflection point”, after which, the environmental pollution level will stay to decrease as the economy continues to grow. Compared to other developed regions, the current economic development level of Liaoning Province is still relatively lagging, and it has not yet reached the " inflection point” in economic development. Consequently, the increase in carbon emissions is an inevitable outcome of Liaoning Province’s economic development. Furthermore, economic development in Liaoning will continue to promote carbon emissions for some time in the future. However, as Liaoning transitions from a focus on rapid economic growth to a focus on high-quality development, the increase in carbon emissions resulting from economic development is expected to be offset by the effects of other factors reducing carbon emissions.
	(5) Population scale effect

As indicated by Table 2, from 2011 to 2015 (except for 2012), population scale effect increased carbon emissions by 9.108 million tons. However, from 2016 to 2020, it shifted to reduce carbon emissions, decreasing them by 5.9734 Mt. Throughout the study period, the population of Liaoning Province has consistently decreased, declining from 43.5785 Mt in 2011 to 42.6606 Mt in 2020. In general, the decrease in population size tends to hinder the increase of CO2 emissions, while Liaoning’s carbon emissions increased rather than decreased in the case of continuous population decline. This result could be explained to internal population movements within Liaoning Province, namely, changes in urban and rural population structures. In the early stages, with the continuous increase in urban population, the expansion of urban scale and infrastructure construction accelerated expansion. Alongside, the rapid urbanization process, industries, construction, and the tertiary sector also developed rapidly, leading to an expansion of energy demand and therefore higher carbon emissions. However, as urbanization progresses a certain level, the influence of population-sized on carbon emissions will exceed the impact of urbanization. In summary, the influence of population size on carbon emissions demonstrates a trend of initially promoting and subsequently inhibiting increases in carbon emissions.
4.2.2 Analysis of driving factors for carbon emissions from residential energy consumption
According to Equation 5, carbon emissions from energy consumption in the residential consumption sector are decomposed into four effects (Table 3).
	(1) Residential energy structure Effect

TABLE 3 | Decomposition results of carbon emissions from residential energy consumption (unit: ten thousand tons).
[image: A table displays yearly data from 2011 to 2020, with columns for RES, REI, PCE, P, and Overall effect. Total values are given for each column: RES (219.58), REI (-410), PCE (1298.58), P (-44.77), and Overall Effect (1054.67). Each year shows varying positive and negative values across the columns.]As illustrated in Table 3, from 2011 to 2020, the energy structure effect of residents promoted carbon emissions, cumulatively increasing emissions by 2.1959 Mt cumulatively. The urban residents’ energy structure effect promoted an increase in carbon emissions, accumulating an increase of 2.98 Mt, while the energy structure effect of urban residents inhibited the increase of carbon emissions, accumulating a reduction of 0.7841 million tons. For urban residents (Figure 7A), the share of coal consumption has been consistently decreasing, dropping from 10.85% in 2011 to 2.8% in 2020. Meanwhile, the demand for relatively clean energy sources, like electricity, has increased, but the overall consumption percentage is still quite low. The consumption percentages for natural gas and electricity are 6.06% and 14.5%, respectively. At present, heat and petroleum products continue to be the primary components of urban residents’ energy consumption. However, it is well known that the generation of heat mainly comes from the burning of traditional fossil energy, which significantly increases the indirect carbon emissions of heat consumption. For rural residents (Figure 7B), coal and petroleum products are the main components of energy consumption. The share of coal consumption shows a trend of rising first and then falling, reaching a peak of around 41.28% in 2015 and decreasing to 33.41% by 2020. In contrast, the proportion of petroleum products initially decreases and then increases, reaching a minimum of around 20.22% in 2016 and rising to 26.67% by 2020. The consumption proportions electricity, heat are extremely small. Overall, the energy consumption structure effect of rural residents inhibits carbon emissions, but the effect is relatively small, and this inhibitory effect is mainly due to the “mutual growth and decline” of coal and various oil consumption.
	(2) Residential energy intensity effect

[image: Two stacked bar charts labeled A and B, showing energy source proportions from 2011 to 2020. Chart A shows predominant use of petroleum products and decreases in coal. Chart B displays a varied distribution with increases in electricity and more consistency across energy types. Both charts indicate usage trends over time in different categories including coal, petroleum products, natural gas, heat, and electricity.]FIGURE 7 | (A) Energy consumption structure of urban residents. (B) Energy consumption structure of rural residents.
Residential energy intensity effect represents the amount of energy consumed for one unit increase in residential consumption expenditure. It can be seen from Table 3 that residential energy intensity effect on carbon emissions played a restraining role from 2011 to 2020, with a cumulative reduction of 4.1 Mt. Urban residents’ energy intensity effect cumulatively reduced emissions by 3.67 Mt, while rural residents’ energy intensity effect cumulatively reduced emissions by 0.43 million tons. This indicates that urban and rural residents in Liaoning Province have more efficiently used energy by changing their lifestyles and consumption habits during the study period. Meanwhile, the reciprocal of residential energy intensity effect can be also understood as the price of consuming energy in daily life. Since 2012, Liaoning Province has implemented tiered pricing for certain residential energy sources, such as tiered electricity pricing. The aim is to enhance the impact of energy prices on energy consumption, establish a “pay more for more usage” tiered pricing mechanism, and decrease carbon emissions.
	(3) Household consumption level effect

Household consumption level is the primary driving factor promoting the rise in carbon emissions. From 2011 to 2019, the contribution values of the household consumption level effect on carbon emissions were all positive, but in 2020, the contribution turned negative. During the study period, total emissions increased by 12.9858 million tons, with urban residents contributing 8.306 million tons, and rural resident contributing 4.6798 million tons. The improvement in consumption level will elevate living standards, which will further increase residents’ demand for energy equipment and contribute to a rise to carbon emissions. For instance, a higher proportion of the consumption of high-power household appliances can significantly contribute to a rise to residential electricity consumption. Additionally, the increased proportion of consumption in transportation products consumed can also lead to a higher consumption of oil fuels. With the improvement of the economic level in Liaoning Province, per capita consumption expenditure in urban and rural areas continues to grow. The ability of residents to purchase products such as private cars and high-powered household appliances has increased, which in turn generates more energy consumption and CO2 emissions. Therefore, it is essential to consider energy conservation and environmental protection while material life becomes increasingly abundant.
	(4) Residents’ population scale effect

Residents’ population scale effect has an inhibitory role in carbon emissions from residential energy consumption, leading to a cumulative reduction of 0.4477 Mt. Urban residents’ population scale effect has been rose 1.26 Mt, while rural residents’ population scale effect has been decreased 1.7077 Mt. In the context of a continuous decline in population and an increasing urbanization rate in Liaoning Province, the rural population is decreasing year by year, leading to a corresponding decrease in energy consumption required for rural residents’ living, thereby resulting in a reduction in carbon emissions. As for the urban population, For the urban population, it increased annually from 2011 to 2015. However, from 2016 to 2020, the urban population declined every year except for 2020. The influence of the urban population on carbon emissions gradually shifts from a promoting effect to an inhibiting effect, which is almost consistent with the trend observed in the impact of population scale on carbon emissions from energy consumption in the industry departments, further proving that the increase in carbon emissions from energy consumption in the industry departments caused by the decrease in population may be due to urbanization.
4.3 Analysis of the decoupling effect
This paper measured the decoupling index between carbon emissions from energy consumption in five major industries and economic growth, as well as the decoupling index between carbon emissions from residential energy consumption and consumption expenditure in Liaoning province from 2011 to 2020. The results are shown in Table 4 and Table 5.
TABLE 4 | Decoupling index of carbon emissions by sector.
[image: A table presents data from 2011 to 2020 with columns: change in primary energy consumption per unit of GDP (\( \Delta C_{pe}/C_{pe} \)), change in GDP (\( \Delta GDP/GDP \)), decoupling index, and decoupling state. Key values include: 2013 showing strong decoupling with a decoupling index of \(-0.842\), 2016 with a decoupling index of \(-5.11\), and 2020 showing expansive negative decoupling with an index of 7. The decoupling state shifts between weak, strong, and expansive negative decoupling over the years.]TABLE 5 | Decoupling index of carbon emissions from the residential consumption sector.
[image: A table displaying data from 2011 to 2020 with five columns: "Year", "ΔCₑ/Cᵣₑ", "ΔCE/CE", "Decoupling index", and "Decoupling state". Each row presents values corresponding to those years. The decoupling state varies between expansive decoupling, expansive negative decoupling, strong decoupling, and weak negative decoupling. Specific numerical values illustrate the trends over the years.]4.3.1 Analysis of the decoupling index for carbon emissions by sector
According to Table 4, the decoupling status between carbon emissions from energy consumption in five major industries and its economic growth can be categorized into four types. From 2011 to 2015, carbon emissions achieved decoupling from economic development, with the decoupling status characterized by weak decoupling and strong decoupling. During this period, Liaoning province implemented a series of energy-saving and emission reduction policies, such as optimizing the energy consumption structure, and developing low-energy and low-emission industries. These measures gradually strengthened the decoupling effect, and achieved a shift from weak decoupling to strong decoupling. During the period of 2016–2020, the decoupling effect transitioned into expansive decoupling and expansive negative decoupling, indicating a gradual deterioration in the decoupling status. The continuous expansion of the industrial scale results in a sustained increase in energy consumption, and environmental pressure also increases accordingly. In 2019–2020, the carbon emissions growth rate surpassed the GDP growth rate, indicating that economic development came at the cost of increased carbon emissions. The renewed correlation between carbon emissions and economic development indicates that the decoupling achievements attained in the past are facing new challenges. This may stem from insufficient and stagnant technological innovation or the higher carbon emissions levels of emerging industries. Therefore, to promote the economy of Liaoning Province towards low-carbon development, it is imperative to further implement environmental protection policies, promote clean utilization of traditional energy sources.
4.3.2 Analysis of decoupling index for carbon emissions from the residential consumption sector
As shown in Table 5, the decoupling effects between carbon emissions from residential energy consumption and consumption expenditure can be classified into five types. Overall, decoupling analysis indicates that, except for 2020, the decoupling state was manifested as expansive decoupling or expansive negative decoupling in most years. It indicates that the decoupling between carbon emissions from residential energy consumption and consumption expenditure has not yet been realized. For urban and rural residents, when the consumption level is relatively low, the decoupling state is generally good. But as the consumption level increases, the decoupling state deteriorates. It may be attributed to the combined influence of multiple factors. Firstly, with the development of economy, the living standard of residents has also been improved. In this case, people may prefer a more comfortable lifestyle, which involves more high-carbon goods and services, such as high-energy transportation and high-energy electrical appliances. Secondly, the increase in consumption levels usually leads to changes in production and consumption patterns. For example, market demand for goods and services may significantly increase, resulting in more frequent product updates and shorter product life cycles. In this scenario, more energy will be invested in production, which results in a substantial increase in the indirect carbon emissions of various consumer products during the production and consumption processes. Therefore, to achieve the decoupling of carbon emissions and residential consumption expenditure, it is necessary to adopt a comprehensive strategy, including strengthening innovation in environmental protection technology, promoting the implementation of environmental policies, and enhancing societal awareness of environmental protection.
5 CONCLUSIONS AND RECOMMENDATIONS
5.1 Conclusions
The decomposition effect indicates that economic output is the key factor promoting carbon emission. Energy structure, energy intensity, and industrial structure inhibit the growth of carbon emissions, while population scale promotes carbon emissions. For residential energy consumption carbon emissions, household consumption expenditure is the primary factor causing the increase in carbon emissions. Residential energy structure effect and residential population scale effect have a promoting effect on carbon emissions from urban residents while having a restraining effect on carbon emissions from rural residents. Residential energy intensity effect has an inhibitory effect on carbon emissions for both urban and rural residents. For decoupling results, the decoupling relationship between carbon emissions in five major industries and economic growth shows a weak decoupling in most years. However, since 2019, the decoupling state has gradually deteriorated, transforming into expansive decoupling and expansive negative decoupling, with carbon emissions once again being associated with economic growth. Carbon emissions from residential energy consumption are not yet decoupled from consumption expenditure, and the decoupling status shows no apparent pattern of change.
From the perspective of research results, most conclusions are consistent with previous studies (Ma et al., 2019; Zhang et al., 2019). Meanwhile, we also find some conclusions that differ from previous studies. First, industrial structure effect is the foremost driving force for reducing CO2 emission, while the inhibitory effects of energy structure and energy intensity are not significant. At present, the contradiction between the industrial economy-dominated economic structure and industrial structure is pronounced, and the demand for coal and other fossil fuels exists objectively in various industries. Therefore, it is difficult to achieve substantial emission reductions by optimizing the energy structure in the short term. Energy intensity is largely influenced by technological levels and public policies, thus its inhibiting effect is limited. Second, the reduction in population scale does not necessarily inhibit the increase in carbon emissions, and the impact of population scale effect on carbon emissions is influenced by the level of urbanization. Due to the internal flow of urban and rural population and the rapid development of urbanization process, population scale effect first promoted the growth of carbon emissions and then turned into a restraining effect.
5.2 Recommendations
Based on the research findings, we propose the following recommendations.
1) The carbon emissions from energy consumption in Liaoning Province mainly come from industry, followed by the residential consumption sector and transportation. For the current situation, the Liaoning government should promote the low-carbon transformation of key industries. For example, accelerating the low-carbon process innovation and digital transformation in industrial areas and developing energy-efficient and low-carbon transportation vehicles in transportation industry. 2) The adjustment of energy structure and the improvement of energy intensity are the focus of future energy-saving and emission reduction policies in Liaoning Province. Therefore, the government should focus on advancing renewable energy and strengthen the research and development of clean energy substitution technologies. 3) Encouraging residents to engage in green consumption, save energy, and purchase environmentally friendly products. Meanwhile, the Liaoning government should actively develop ecological agriculture and circular economy in rural areas.
5.3 Limitations and further perspectives
The present study is subject to several limitations that require further research in the future. First, this paper focuses only on Liaoning Province and does not consider the spatial heterogeneity of different regional development models and economic levels within the province. Future research should analyze the influencing factors of carbon emissions at the city scale and discuss potential clustering or other effects of carbon emissions among different cities. Second, this paper only analyzes the direct carbon emissions of residential energy consumption. Future research should analyze indirect emissions and their influencing factors.
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The rapid development of intelligent technology characterized by robots under the fourth scientific and technological revolution provides a favorable opportunity for the accurate decision-making of urban pollution control and the effective achievement of the goal of carbon emission reduction in China. This research uses the robot penetration rate as a representative and characteristic index of industrial intelligence development, based on panel data from 108 cities in the Yangtze River Economic Belt (YEB) from 2006 to 2020. It then uses panel quantile regression, spatial measurement, and threshold effect models to provide a more thorough theoretical and empirical discussion of the impact, mechanism, and spatial effect of industrial intelligence development on urban carbon emission efficiency (CEE). Urban CEE may be greatly increased with the use of industrial intelligence, and this finding remains true even after endogeneity and robustness tests are controlled; From an action mechanism perspective, industrial intelligence advances technology, optimizes industrial structure, and ultimately enhances regional CEE; There is a Matthew effect on the degree of development of carbon emission efficiency, and the impact of industrial intelligence on CEE is more pronounced in non-resource-based cities and the lower portions of YEB; Urban CEE increases positively with the spatial spillover impact of industrial intelligence development. The ability for regional sustainable development will be significantly increased if cross-regional cooperative prevention and control of environmental governance can be successfully achieved. This study verifies the enabling effect of industrial intelligence development on the improvement of urban CEE, and provides enlightenment for China to improve industrial intelligence development strategies and policies to achieve regional high-quality development.
Keywords: industrial intelligence, carbon emission efficiency (CEE), Yangtze River Economic Belt (YEB), the matthew effect, high-quality development

1 INTRODUCTION
China’s economy has expanded at an average annual pace of 9.4% since the reform and opening up, resulting in “The Chinese miracle”. Yangtze River Economic Belt (YEB) is an important economic region in China, it crosses three Chinese regions and contributes more than 50% of China’s annual economic growth, is a key strategic area for China’s economic development. Nevertheless, the ecological environment of the provinces and cities along the Yangtze River is under peril due to the economy’s fast development. Chinese President Xi Jinping has convened three meetings to emphasize the need to achieve high-quality economic development in China, and Chinese government put forward the commitment of independent emission reduction in the Paris Agreement in 2016 in an attempt to control greenhouse gas emissions. In 2020, China’s carbon emissions per unit of GDP decreased by 48% compared with 2005, exceeding the target of 40%–45% promised to the international community, however, there is still a long way to go. Faced with the increasingly challenging situation of carbon dioxide emission reduction in China, YEB, as a pilot Chinese ecological civilization region and a link for the coordinated development of East, Central and West China, needs to shoulder the dual responsibilities of economic development and environmental protection. That is, to find a green growth path that takes into account both ecological environment and economic growth, and to realize the steady economic growth and “carbon peaking and carbon neutrality” goals. The key to achieving the above goals lies in YEB’s ability to obtain maximum output with minimum material resource input and ecological resource cost, i.e., to improve YEB’s urban carbon emission efficiency (CEE), which is directly related to the implementation of the national High-quality economic development and the realization of the future “carbon peaking and carbon neutrality” goals.
At this stage, a significant industrial intelligence development trend has emerged globally, which has a revolutionary effect on the economic activities of enterprises. This trend is brought about by the ongoing breakthroughs in information and communication, new materials, new energy (Graetz and Michaels, 2018). The White Paper on China’s Industrial Intelligence in 2019 points out that industrial intelligence is the output increment brought by the use of artificial intelligence (AI), Internet of Things, Internet and other technologies in the primary, secondary and tertiary industries. It liberates manpower by replacing simple repetitive work, provides a brand-new human-computer interaction mode, and breaks through the limits of human beings to innovate new industrial species. It can be said that industrial intelligence is essentially subverting people’s production and lifestyle. Through the automation of knowledge work, man-machine interaction and collaborative intelligence in product life cycle manufacturing activities, it realizes the optimization of product life cycle manufacturing process, thus promoting the optimization of industry factor endowment conditions and the innovation of production mode, and inevitably having a noticeable impact on urban CEE as the carrier of economic activities and industrial space. As a result, the widespread application of smart technologies in the industry holds great promise for the Chinese region to achieve the sustainable development goals (Vinuesa et al., 2020). It makes sense to bring the realistic background of industrial intelligence development into the policy consideration of improving the path of CEE, deeply reveal the influence effect and internal logic of industrial intelligence development on CEE, and discuss how industrial intelligence development can promote CEE.
2 LITERATURE REVIEW
With the rise of Industry 4.0 Revolution, the impact of industrial intelligence on economy and society has aroused extensive discussion in academic circles (Goralski and Tan, 2022), and related research has produced substantial results on the economic growth effect and environmental impact effect of industrial intelligence respectively. Regarding the impact of industrial intelligence on economic growth, existing studies have come up with consistent and positive findings on the features of industrial intelligence that foster efficiency enhancement, technical innovation, and industrial revolution. For instance, labor can be supplemented and replaced in repetitive tasks and standardized processes by integrating artificial intelligence with manufacturing (Mikalef and Gupta, 2021); Labor productivity may be promoted to support economic growth, and intelligent production and management can be achieved by optimizing production control decisions through independent control (Kromann et al., 2020). Industrial intelligence can contribute to economic development by reshaping innovation processes, increasing the capabilities of R&D organizations and generating spillover effects through the application sector (Ding et al., 2023). Jin et al. (2022) pointed out that the application of artificial intelligence technology in greenhouse planting can predict greenhouse meteorological data, accurately guide agricultural production and reduce unnecessary production costs. Industrial intelligence brings intelligent industrialization innovation and industrial intelligence transformation, and at the same time, it can promote the intelligent reconstruction of industrial structure (Guo, 2019); The deep integration of artificial intelligence and traditional industries promotes the digital and intelligent transformation of traditional industries, accelerates industrial differentiation, and promotes the cross, penetration and integration of different industries (Graetz et al., 2022). However, some scholars have also put forward the adverse effects of industrial intelligence on economic growth, including labor market crowding out (Wang et al., 2022), unemployment (Acemoglu and Restrepo, 2019), blind expansion (Zhao et al., 2022) and so on.
Existing studies mainly used the Divisia index method to decompose carbon dioxide emissions in order to analyze the factors affecting carbon emissions (Raza et al., 2021), or mainly studied the impact of the traditional production factors on carbon emissions (Raza and Lin, 2022; Raza and Li, 2023). The current study on the effects of industrial intelligence on the environment is mainly focused on the industrial sector. It has conducted both theoretical and practical research on the potential avenues through which industrial intelligence could support low-carbon and green development, with a focus on energy efficiency enhancement, innovation in green technologies, and industrial structure optimization. It is believed that industrial intelligence can integrate intra-industry and inter-industry knowledge and cross-enterprise cooperative innovation (Barbieri et al., 2020), and accelerate knowledge spillover and creation; Promote the absorption and creation of knowledge within enterprises, optimize the decision-making of equipment and materials use (Zhang et al., 2023). The application of artificial intelligence in the industrial field helps to improve energy efficiency and reduce related pollutants (Sarkar and Sarkar, 2020). According to Yuan et al. (2022), industrial intelligence has the potential to enhance production processes, provide real-time feedback and optimization of production information, minimize energy waste, shorten equipment response times, and drastically close the gap between companies and the most energy-efficient ones; Neural network and machine learning applications can forecast waste production and encourage waste recycling, increasing energy efficiency and lowering emissions of pollutants (Kopka and Grashof, 2022). Additionally, the use of industrial intelligence can help modernize and restructure the industrial structure, advance the growth of clean industries, and remove outdated production capacity (Shen and Yang, 2023); The energy industry may effectively foster the growth of new energy industries, decrease industrial pollution emissions (Du et al., 2021). Some scholars have reservations about whether industrial intelligence can improve the environment. The reason is that although artificial intelligence technology is developing rapidly, only some regions and a small number of enterprises have matching human capital and corresponding intelligent infrastructure at present. In addition, the lag of technology diffusion and the formation of social group consciousness take a long time, which easily makes the production efficiency improvement brought by artificial intelligence technology not obvious, and even crowds out the investment of other departments and easily causes unnecessary waste of resources (Du and Lin, 2022; Liu et al., 2022). In the long run, these regions with relatively backward basic conditions cannot share the knowledge dividend brought by artificial intelligence technology equally, which hinders the green development of regional economy, and eventually leads to the Matthew effect that the stronger the strong and the weaker the weak. According to Czarnitzki et al. (2023) and Liu et al. (2020), industrial intelligence has a “U-shaped” impact on economic intense transformation. Some experts believe that human conduct has a crucial part in determining the direction of environmental change, and that the application mode of industrial intelligence affects this.
In summary, Research exploring the environmental impact effects of industrial intelligence needs to be fleshed out as the trend towards industrial intelligence increases globally; furthermore, existing research has focused mainly on the environmental impacts of intelligent developments in the industrial sector. However, the problem of carbon emissions from primary and tertiary industries in China is equally serious. For example, from 2011 to 2018, China’s tertiary industry carbon dioxide emissions increased by 51.24%, and total agricultural carbon emissions accounted for 17% of total greenhouse gas emissions, higher than the global average of 11% (Gai and Yang, 2023). Because of the numerous problems caused by the depletion of global resources and the mounting demand on enterprises to reduce carbon emissions, it is therefore not sufficient to examine the effects of industrial intelligence on productivity, economic growth, and carbon emissions in isolation. Therefore, even if the secondary industry, including the industrial sector, is the main source of carbon emissions, the growth of carbon emissions from other industries cannot be ignored. It is imperative to study how industrial intelligence affects carbon emission from the perspective of coordinated development of various industries. The theory and methodology of the green total factor productivity (GTFP) index in environmental economics are based on the TFP. GTFP is a significant indicator of the joint performance of economic growth and environmental optimization, represents the ability of the economic system to generate economic output while maintaining environmental quality and ecological balance through production factors like labor, capital, and energy (Zhan and Li, 2022). Only Tang and Chi (2022), Meng and Zhao (2023), and Qian et al. (2023) have examined the connection between industrial intelligence and green economic efficiency in the literature that is now in existence. This relationship has to be further refined.
For the reasons listed above, the penetration rate of industrial robots is used in this article as a representative and distinctive indicator of the growth of industrial intelligence, and conducts a theoretical and empirical analysis on the impact and mechanism of CEE of cities empowered by industrial intelligence, based on panel data of 108 cities in Chinese YEB from 2006 to 2020. The possible marginal contributions of this research include: Firstly, this research enriches the research on the relationship between industrial intelligence and the coordinated development of economy and environment, and provides theoretical and empirical evidence from China for exploring the path of improving urban CEE from the perspective of digital technology. Secondly, this research analyzes the heterogeneous impact effect of industrial intelligence on CEE in YEB from the perspectives of geographical location, resource endowment and CEE, and provides more detailed empirical conclusions for policy recommendations. Thirdly, this research verifies the spatial spillover effect of industrial intelligence on urban CEE, and provides theoretical support for the implementation of cross-regional pollution control policies. Fourthly, this research discusses the threshold effect of human capital on the impact of industrial intelligence on CEE, which has important policy implications for breaking the “Matthew effect” between regions and giving full play to the role of human capital in environmental governance. Section 2 is literature review. Section 3 elucidates the theoretical analysis and provides research hypotheses. Section 4 details the methodologies and variable descriptions. Section 5 presents the empirical results. Section 6 is the discussion of empirical results. Section 7 provides conclusion, policy implications and limitations.
3 MECHANISM ANALYSIS AND HYPOTHESIS
3.1 Analysis of the direct impact of industrial intelligence on urban CEE
Technologies such as machine learning, intelligent robots, computer vision, and deep learning are important forms of artificial intelligence (Liu et al., 2020). With the free flow of cross-border capital in recent years, the application of artificial intelligence technology in industries in emerging economies has been accelerated (Ma et al., 2023). The application of artificial intelligence in the primary industry can transform the traditional production mode of agriculture into an intelligent production model, realize precision planting and breeding, and achieve the goal of low-carbon agricultural development. The integration of artificial intelligence and manufacturing will help break through the limitations of manual supervision process, realize the digital control of the whole production process, and reduce the greenhouse gas emissions of the entire industrial chain (Wang et al., 2023). Industrial intelligence can also optimize urban industrial production conditions, improve the purification accuracy of waste through robot operation, and provide a more scientific and effective basis for enterprise pollution control decisions through pollution data mining and analysis. The application of artificial intelligence technology in the tertiary industry can reduce the carbon emissions of transportation and life services, and improve the CEE of the tertiary industry. Therefore, the following assumptions are put forward:
H1. Industrial intelligence can promote the improvement of urban CEE.
3.2 Analysis of the indirect impact of industrial intelligence on urban CEE
3.2.1 Analysis of technological progress channel
The endogenous growth theory states that the advancement of technology is the primary driver of steady economic growth, and Grossman and Krueger (1991) confirm the key role of technological effect in improving environmental pollution. In the context of industrial intelligence, the traditional labor force is liberated from tedious process work to focus on innovation as well as more valuable strategic activities (Li, 2023), the use of intelligent equipment often requires a high level of knowledge, prompting enterprises to introduce high-quality talent, and to achieve scientific and technological progress through the human capital effect and technological complementary effect (Yu et al., 2022). In addition, AI technology can reduce the cost of information transfer between enterprises, enable enterprises to learn and imitate advanced production technology, expand the capital stock of public knowledge, and drive the technological innovation of upstream and downstream enterprises (Nishant et al., 2020). The use of intelligent technology enables enterprises to continuously improve the added value of their products and gradually replace low value-added enterprises in the industrial value chain, while other enterprises that have not undergone intelligent transformation will continuously update their production technology and management experience through learning and imitation in order to avoid being eliminated (Bernard et al., 2019). Urban industrial energy efficiency can be effectively increased through technological advancements in the areas of industrial resource recycling efficiency, green technology and equipment product supply, and green transformation level of production process. Therefore, the following assumptions are put forward:
H2. Industrial intelligence promotes urban CEE through the channel of technological progress.
3.2.2 Analysis of industrial structure optimization channel
In the process of the intelligent development of industry, digital technology and digital elements are widely applied in all fields of cities’ economy and society, and the rapid development of modern information technology promotes the deepening of the integration of the digital economy and the real economy, giving rise to a series of new products, new technologies and new forms of business, and promotes the continuous upgrading of the industrial structure in the direction of high-end digitization, greening and low-carbonization (Furman and Seamans, 2019). In addition, industrial intelligence can prompt traditional industrial enterprises to gradually eliminate backward production capacity and carry out transformation and upgrading, which is not only an important path to break the dilemma of high pollution, high energy consumption and high emission in the field of industrial economy, but also a typical feature of the optimization and upgrading of industrial structure (Waltersmann et al., 2021). Industrial structure upgrading in the process of industrial intelligent development can accelerate the development of greening and low-carbonization in the whole field of social economy and realize the improvement of CEE. Therefore, this research proposes the following research hypothesis.
H3. Industrial intelligence promotes urban CEE through the channel of industrial structure optimization.
3.2.3 Spatial effect analysis
According to the theory of economic geography, the flow of production factors can gradually break down interregional market segmentation and change the spatial isolation of individual development. This leads to a certain spatial spillover effect in interregional production activities. Digital technologies such as artificial intelligence and big data carried by industrial intelligence can break the geographical distance barrier of information technology transmission, improve the mobility and accessibility of data, and alleviate the barriers of technical exchange between regions, which makes the regions that actively improve the level of industrial intelligence have certain enlightening and learning effects on neighboring regions after achieving economic growth and environmental protection achievements (Vial, 2019), thus promoting the improvement of CEE in neighboring regions. If the spatial spillover effect is disregarded, the overall benefit of industrial intelligence on CEE may be underestimated. Based on this, this research proposes the following research hypothesis.
H4. Industrial intelligence may have spatial spillover effects on carbon efficiency in neighboring regions.
4 METHODOLOGY AND VARIABLE DEFINITIONS
4.1 Model setting
The empirical research in this paper aims to effectively identify the impact of industrial intelligence on urban CEE, so we set the following benchmark regression model based on the above theoretical mechanism analysis and research hypotheses:
[image: Mathematical equation displaying the formula for CEE subscript i t, which equals beta subscript 0 plus beta subscript 1 times Robot subscript i t plus gamma times C subscript i t plus mu subscript i plus lambda subscript t plus xi subscript i t, in parentheses, labeled as equation 1.]
Where [image: Italicized mathematical notation displaying "CEE" with subscript letters "it."] represents the CEE of city [image: It seems there's an issue with the image upload or link. Please try uploading the image again, and I’ll be happy to help with the alt text.] in the year of [image: Please upload the image you'd like me to describe. You can use the image upload option to attach it here.], and the core explanatory variable [image: Text showing "IRobot" with the letters "it" in a smaller font size.] denotes the robot application degree of city [image: It looks like there was an issue with the image uploading. Please try uploading the image again, and I’ll be happy to help with the alt text.] in the year of [image: It seems there's no image uploaded. Please try uploading the image again or provide a URL. If you have a caption or specific context, feel free to include it.]. The estimated coefficient [image: It seems there's an incorrect image reference or placeholder text. Please provide the actual image or a description of it, and I'll be glad to help with the alt text.] before [image: Text "IRobot.it" in a serif font, with "IRobot" larger and "it" in smaller, superscripted font.] portrays the effect of changes in industrial intelligence on urban CEE, if [image: Greek letter beta, subscript one.] > 0, it indicates that urban industrial intelligence improves urban CEE. Meanwhile, in order to make the empirical results more robust, this research controls as much as possible other factors affecting the urban CEE, which mainly include: the intensity of environmental regulation, the level of urbanization, foreign direct investment, the size of the population, the government intervention, and the level of financial development. In addition, in order to eliminate the possible interference of unobservable and time-varying factors at the city level on the regression results, the city fixed effect [image: Greek letter mu with subscript i in italic font.] and year fixed effect [image: Greek letter lambda with a subscript "t".] are added into the model, [image: Greek letter xi with subscript "it".] is random error terms.
To further discuss the spatial spillover effect of urban industrial intelligence on urban CEE, the spatial interaction terms of the explanatory variables are introduced into Eq. 1 to construct the following spatial measurement model:
[image: Equation representing GEEV dynamics: \( \text{GEEV}_{it} = \beta_0 + \rho W \text{GEEV}_{it} + \beta_1 [\text{Robot}_{it} + \delta W \text{Robot}_{it} + \gamma ] C_{it} + \gamma_1 W \times C_t + \mu_t + \eta_t + (1 - \lambda W)^{-1} \varepsilon_{it} \).]
In Eq. 2, [image: Please upload the image, and I will provide the alternate text for you.] is the spatial weight matrix, which is constructed by the geographical structure difference distance between two cities. On account of the limitation of constructing the weight matrix only by geographical distance, subsequent spatial econometric regressions were performed using the adjacency matrix and the economic distance matrix respectively to ensure the robustness of the results. [image: Sure! Please upload the image or provide a URL for it, and I will create the alt text for you.] is spatial autocorrelation coefficient, [image: If you provide an image or its URL, I can help you create alternate text. Please upload the image or share a link to it.] is the spillover effect of industrial intelligence, [image: Lowercase Greek letter gamma with a subscript two.] is the spillover effect of control variables. According to whether the values of [image: It seems there's no image provided. Please upload the image or provide a URL for me to generate the alt text.], [image: Greek letter delta in lowercase, depicted in a bold, serif font style.], [image: The image contains the Greek letter gamma, subscript one.] and [image: Please upload the image or provide a URL so I can create the alt text for you.] are significantly 0, spatial econometric models can be divided into three categories: if [image: It seems there might be an issue with the image upload. Please try uploading the image again, or provide a URL if it's hosted online. Optionally, you can add a caption for additional context.] = [image: Please upload the image or provide a URL so I can help create the alt text for it.] = [image: The image shows the Greek letter gamma in lowercase with a subscript one.] = 0, the models are spatial error models (SEM); If [image: Please upload the image or provide a URL so I can generate the alt text for you.] = [image: Please upload the image or provide a link to it, and I'll help you create the alt text.] = 0, the model is spatial lag model (SLM). If [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.] = 0, the model is spatial Durbin model (SDM). Later, the above models will be selected through further inspection.
4.2 Variable definitions
4.2.1 Core explanatory variable: urban industrial intelligence level ([image: Text "Inirobot" written in a stylized, italic font.])
Referring to the methods of Acemoglu and Restrepo (2019), Xu and Song (2023), this research construct the robot application index at the city level using the industrial employment structure of the city, the number of working-age laborers in the city and the number of robots at the industry level. This method comprehensively considers the characteristics of urban labor force, the scale characteristics of industrial labor force and the application scale of urban robots, and is more scientific compared with the direct use of the robot data. Specific measurement formula is shown in Eq. 3:
[image: Equation for IRobot index: the sum of a fraction multiplied by a ratio. Fraction: employment (Emp) for industry j at time t divided by total employment at time t. Ratio: robots for industry j at time t divided by labor. Equation labeled (3).]
In Eq. 3, [image: Mathematical expression representing the imaginary unit "i", written in a stylized serif font.] means city, [image: It seems there's an issue with the image upload or link. Please try uploading the image again or provide a URL. If you want, you can also include a caption for additional context.] denotes industry, [image: Please upload the image or provide a URL, and I’ll help create the alt text for it.] means year, [image: Please upload the image or provide a URL so I can create the alt text for you.] represents different sectors among the three industries, and based on data availability, six industries including agriculture, mining, manufacturing, electricity, gas, water and gas supply, construction and education are selected. [image: Text reading "Robots" in italicized font, with "jt" in subscript.] indicates the number of robots used in various industries in China from 2006 to 2020, [image: Text in italic font reads "Labor" with subscripts "i, t".] denotes the total number of people employed in the three industries in year [image: Please upload the image or provide a URL so I can create the alt text for you.] of city [image: Certainly! However, it seems there isn't an image attached. Please upload the image, and I will provide the alternative text for you.], [image: Mathematical notation showing "Emp" with subscripts "s" and "i" followed by "t".] indicates the amount of laborers in the above six industries in year [image: Please upload the image or provide a URL so I can help create the alt text for it.] of city [image: It appears there is an issue rendering the image. Please try re-uploading the image or providing a description, and I will assist you with creating the alt text.], and [image: Summation notation representing the sum over index j of employment variables denoted as Emp subscript j, i, comma t.] denotes the total number of people employed in the three industries in year [image: Please upload the image or provide a URL so I can help create the alt text for it.] of city [image: Lowercase letter "i" with a dot above it, written in a serif font style.]. To facilitate reporting the research results, we multiply [image: Text displaying "IRobot" in italic font.] by 0.1.
4.2.2 Explained variable: [image: Text "CEE" is displayed in italicized, bold font.]
Referring to the existing literature (Sun and Huang, 2020; Yu and Zhang, 2021), this research adopts total factor productivity (TFP) to measuring [image: If you upload the image or provide a URL, I can create the alt text for it.], in which input indicators mainly include resources and factors, expected output indicators mainly include economic and environmental indicators, and non-expected output indicator are carbon dioxide emissions. The specific input-output indicators are shown in Table 1.
TABLE 1 | Input and output variables of CEE measurement.
[image: Table with three columns: Indicators, Composition, and Measurement. Under Indicators, "input" includes Labor input and Capital investment; measured by Number of employees and Capital stock. "Expected output" has GDP, measured by Annual regional real GDP. "Unexpected output" includes Carbon dioxide emissions, measured by Fitting according to night light data.]Due to the lack of detailed urban energy consumption data, this research draws on the methodology of Chen et al. (2020) and uses NPP-VIRS nighttime lighting data to derive carbon emission data for Chinese cities. In recent years, measuring carbon emissions based on NPP-VIIRS night light data has been widely used in economic research (Zhang et al., 2019; Ismael, 2021). The basic logic is that the higher the brightness of lights at night, the more active the city’s night-time economic activities are, and the higher the energy consumption will be. Specifically, considering the accuracy of the downscaling model inversion, a linear model is adopted to fit the carbon emission data, and the results of the correlation test between the carbon emission estimates and the statistical values of each province are shown in Figure 1. There is a linear correlation between carbon emission estimates and statistics, and the goodness of fit [image: It seems there was a mistake in the request; no image was uploaded. Please provide an image by uploading it or adding a URL, and I will be happy to help with the alt text.] is about 0.8, indicating that the method of deduction of carbon emissions by night light data is scientific and effective.
[image: Scatter plot showing the relationship between light (in units of ten thousand) and CO2 emission (in tons). Data points are plotted with a positive correlation, as indicated by a red trend line.]FIGURE 1 | Carbon emission fitting.
4.2.3 Tool variables: U.S. Robot use [image: Text displaying the word "(AMIRobot)" in a stylized font.]
Considering that cities with higher [image: Sure, please upload the image you want me to describe.] often have a higher level of digital infrastructure, which in turn facilitates local industries to undergo smart transformation and enhance industrial intelligence, so there may be a problem of two-way causality. Therefore, this research uses U.S. industry-level robotics data to construct the instrumental variable [image: Text displaying "AMIRobots" in an italic font.] as shown in Eq. 4 for the following reasons: Firstly, although the application level of American robots is ahead of China in the sample period, the stock and penetration of robots are close to that of China in the same period; Secondly, the application level of robots in the United States is in a leading position in the world, and its development trend can reflect the trend of technological progress to a certain extent; Thirdly, the labor market in the United States has a high level of development, which makes it easier to meet exogenous conditions (Huang et al., 2023; Zhao et al., 2024).
[image: Equation for AMIRobots sub i t equals the sum over j of the ratio of Emp sub j i t to the total Emp mu j i t, multiplied by the ratio ARobots sub j t to Labor sub j t. Labeled as equation four.]
4.2.4 Control variables
Referring to relevant studies (Du et al., 2022; Huang et al., 2023), this study includes the following control variables. Environmental regulation [image: The image displays the mathematical notation \((er)\), where "e" is between parentheses, followed by the letter "r" in a stylized, italic font.], referring to the study of Zhang and Chen (2021), measured by the ratio of environmental word frequency in in city government reports to the total word frequency in city government reports. Population size ([image: Please upload the image or provide a URL so I can generate the appropriate alt text for it.]), measured by the natural logarithm of the resident population at the end of the year. Foreign direct investment [image: Text "f di" in italic font enclosed in parentheses.] , expressed as the proportion of foreign capital actually used to GDP. Government intervention [image: Mathematical notation of the expression \(q_v\), where "q" is in regular font and "v" is in subscript.], measured by the proportion of government fiscal expenditure to GDP. Financial development [image: Mathematical expression displaying \( f(\text{in}) \), where "f" is a function and "in" is the input argument within parentheses.], expressed by the proportion of deposit and loan balance of financial institutions to GDP. The level of urbanization [image: Urban street scene with skyscrapers lining both sides of a busy road. People walk along the sidewalks, and several cars are visible on the street. Tall buildings with glass facades dominate the skyline.], measured by the ratio of urban resident population to rural resident population.
4.2.5 Mechanism variables
In accordance with the above analysis, the mechanism effects of this research mainly include technological progress and industrial structure optimization. Technological progress variables are expressed as the number of green innovation [image: Italic lowercase letters "ln" followed by "g" raised in superscript next to "pt", indicating a mathematical notation or function.] and quality of green innovation [image: A mathematical expression in italics displaying \((\ln g p q)\).], measured by the logarithm of the total number of urban green patent applications and the logarithm of the total number of urban green invention patent applications, respectively. Also, to facilitate the reporting of regression results, the final value of the indicators is multiplied by 0.1. Optimization of industrial structure variables are expressed as rationalization and upgrading of industrial structure. The former is measured by the ratio of output of the tertiary industry to that of the secondary industry [image: Italicized lowercase letters "i", "n", "d" enclosed in parentheses.], and the latter is measured by the [image: If you can upload the image or provide a URL to it, I would be happy to help create the alternative text based on its content.], where the smaller the Theil index, the more rational the industrial structure and the greater the coordination between industrial sectors. Tables 2, 3 are variable description and descriptive statistical analysis respectively.
TABLE 2 | Variable descriptions.
[image: Table listing variables with their abbreviations and measures. Categories include dependent, independent, control, instrument, and mediating variables. For example, carbon emission efficiency (CEE) measures total factor productivity, and industrial intelligence (Inirobot) measures robot permeability. Other control variables include environmental regulation (er), population size (pop), and government intervention (gv). Measures include ratios, proportions, and logarithms of various economic and environmental factors.]TABLE 3 | Descriptive statistics.
[image: Table displaying statistical data for various variables including "CEE," "lnirobot," "er," among others, with columns for count (N), mean, standard deviation (S.D.), minimum, and maximum values. Source: International Federation of Robotics (IFR), national intellectual property patent database, the China City Statistical Yearbook.]4.2.6 Data sources
The robot data comes from International Federation of Robotics (IFR), a database that shows the annual increase and inventory of robots in manufacturing, agriculture and certain service industries in 75 countries. Other variables were derived from the National Intellectual property Patent database and the China City Statistical Yearbook.
5 ANALYSES AND EMPIRICAL FINDINGS
5.1 Baseline regression analysis
Table 4 displays the results of the baseline regression. It is evident from columns (1) to (4) that industrial intelligence positively affects urban CEE in YEB, and the effect is significant at the 1% significance level, proving that industrial intelligence can significantly promotes urban CEE, and Hypothesis 1 is confirmed.
TABLE 4 | Baseline regression results.
[image: Regression results table with four models labeled (1) to (4) under "CEE." Coefficients for variables like "lnirobot," "er," "urban," "fdi," "pop," "gv," and "fin" are shown along with standard errors in parentheses. Significance levels at 10%, 5%, and 1% are indicated by *, **, and ***, respectively. All models include "year" and "city." Sample size (N) is 1,620 for all models, with R-squared values ranging from 0.041 to 0.051.]5.2 Robustness test
5.2.1 Endogenous treatment
This research takes the U.S. robotics data measured in Eq. 4 as an instrumental variable for the regression, and the results are shown in Table 5. The Anderson LM test is significant at the 1% level, and the value of Cragg-Donald Wald F statistic is 76.364, which is greater than the critical value of 16.38 corresponding to the maximal IV size at the 10% critical value of the Stock-Yogo test, so it can be considered that this instrumental variable is appropriate. After considering endogeneity, the second-stage regression results show that the regression coefficient of the impact of industrial intelligence on urban CEE is significantly positive at the 1% significance level, which is consistent with the baseline regression results but larger than the baseline regression coefficients, which indicates the robustness of the baseline regression results, and suggests that failing to take into account endogeneity underestimates the effect of industrial intelligence on urban CEE.
TABLE 5 | Regression results of instrumental variables.
[image: Table displaying two-stage least squares (2SLS) regression results for variables "Inirobot" and "CEE." The coefficient for "Inirobot" is 0.504 with a standard error of 0.064, while for "CEE," it is 0.199 with a standard error of 0.070. Both show inclusion of constant, year, and city variables. Other key statistics include \(N = 1,620\), \(R^2\) values, Anderson LM statistic, and Cragg-Donald Wald F statistic. The notes mention standard error notation and critical value.]5.2.2 Alternate explanatory variable
We re-run the regression using the incremental robot data as explanatory variables. Logically, if the stock of robots in the urban industrial subsector can have a positive impact effect on the urban CEE, the incremental robots in the urban industrial subsector can have a positive effect as well. The International Federation of Robotics (IFR) reports both the stock data and incremental data of robot use in China. The regression results are shown in column (1) of Table 6. After regressing with incremental data as an explanatory variable, the coefficient value is still significantly positive, indicating the robustness of the benchmark regression results.
TABLE 6 | Robustness test results.
[image: A table with three columns labeled (1) Alternate explanatory variable, (2) One-stage lag, and (3) Tailing treatment. The rows list variables: "lnirobot" (0.010**, 0.063***, 0.050***), "cons" (0.666***, 0.831***, 0.848***), controls, year, and city, all marked as "Yes". The sample size (N) is 1,620 in each column. \(R^2\) values are 0.042, 0.051, and 0.055. Standard errors are shown in parentheses.]5.2.3 Lagging one-stage regression treatment
Considering that there may be a time lag in the role of industrial intelligence in improving CEE in cities, the following regression is conducted with the core explanatory variables of urban robot application rate lagged by one period, and the results are shown in column (2) of Table 6. The coefficient value in front of the explanatory variables is still significantly positive, which verifies the robustness of the baseline regression results.
5.2.4 Tailing treatment
In order to exclude the influence of extreme outliers, this research shrinks all the extreme outliers of continuous variables at the upper and lower 1%, and then reruns the regression estimation, and the results are shown in column (3) of Table 6, which shows that industrial intelligence positively influences urban CEE at the 1% significance level, verifying the robustness of the baseline regression results.
5.3 Heterogeneity analysis
5.3.1 Regional heterogeneity analysis
The YEB in China is a vast area, and each city has different degrees of economic development and industrial intelligence development level. For example, Zhejiang, Jiangsu, Anhui, Shanghai in the downstream area of the YEB are the largest digital economy regions in China, with the scale of the integrated circuit industry accounting for 58.3% of China, and their AI industry accounting for 33.0% of AI industry in China. Furthermore, the market competition in the downstream area of YEB is better with fewer constraints to the development of industrial intelligence compared with other areas of YEB. Therefore, this research then divides the samples into two sub-samples of upstream and midstream, downstream regions to investigate the regional heterogeneity of the impact of industrial intelligence on urban CEE in YEB, and the results are shown in Columns (1) to (2) of Table 7. The results show that industrial intelligence in the upstream and midstream regions of the YEB does not have a significant effect on urban CEE, but industrial intelligence in the downstream region of the YEB significantly and positively improves urban CEE.
TABLE 7 | Heterogeneity analysis I.
[image: Table comparing variables across different regions, focusing on regional and resource heterogeneity. It includes values for 'lnirobot' and 'cons', control indicators, sample sizes, and R-squared values for four categories: Upstream and Middle region, Lower reaches, Resource-based city, and Non-resource-based cities. Statistical significance is denoted by asterisks.]5.3.2 Resource endowment heterogeneity analysis
We then divide the samples into resource cities and non-resource cities to investigate the differential impact of industrial intelligence on CEE in YEB under the condition of heterogeneity of resource endowment, and the results are shown in Columns (3) to (4) of Table 7 It shows that the impact coefficients of industrial intelligence on the non-resource cities are significantly positive, and the impacts on the resource cities are not significant. The reason may be that, the economic growth of resource cities relies heavily on value-added, low technological level and high energy consumption based on the theory of “resource curse” and “comparative advantage trap”, which restricts the enhancement of CEE of resource cities in the YEB empowered by industrial intelligence.
5.3.3 CEE heterogeneity analysis
We then use panel quantile regression to test the heterogeneous effect of urban industrial intelligent development on CEE at different CEE levels. Table 8 shows that the regression results are not significant only for the samples at the 10% quartile level, which indicates that the development of industry intelligent has a positive effect on the improvement of urban CEE in most cases. Moreover, there is a “marginal increase” in the impact coefficient as the quartile rises, that the estimated coefficient at the 25% quantile is significantly smaller than the estimated coefficient at the 90% quantile, which indicates that the empowering effect of industrial intelligence is more obvious for cities with higher levels of CEE, and there is the “Matthew effect” of carbon reduction in cities.
TABLE 8 | Heterogeneity analysis II.
[image: Table displaying regression results across different quantiles: 10%, 25%, 50%, 75%, and 90%. The variable "lnirobot" has coefficients 0.040, 0.049***, 0.057***, 0.066***, and 0.075*** with standard errors in parentheses. Controls include "controls", "year", and "city", all marked "Yes". Sample size is 1,620 for each quantile.]5.4 Expanded research
5.4.1 Threshold effect analysis
We then take the level of urban digital human capital as a threshold variable to further explore the threshold effect of industrial intelligence on CEE in the YEB. Specifically, the number of employees in the sectors of information transmission, computer services and software are used to measure urban digital human capital. The results in Table 9 show that when the level of digital human capital is lower than the threshold value of 9.135, the CEE effect brought by industrial intelligence is not significant, when the level of digital human capital is greater than the threshold value of 9.135, the regression coefficient is 0.118 and passes the test of 1% significance level. It can be seen that there is a digital human capital threshold for the CEE effect of industrial intelligence in YEB, and industrial intelligence has a significant positive effect on CEE only when it crosses the threshold of digital human capital, and the effect value will show an upward trend with the improvement of the digital human capital level.
TABLE 9 | Threshold effect results.
[image: Table showing F Value, p-Value, and critical values at 10%, 5%, and 1% significance levels for Single, Double, and Triple thresholds. Significant results exist for the Single threshold. Additional data shows threshold intervals for "lnirobot" with control variables and a sample size.]5.4.2 Spatial spillover effect analysis
We further explore whether the effect of industrial intelligence on urban CEE in YEB has spatial spillover effects. We first test the spatial autocorrelation of industrial intelligence and urban CEE variables. The [image: It seems there's a formatting issue in your request for the image. If you could upload the image or provide a URL, I would be able to generate alt text for it.] index was used to verify the spatial autocorrelation of the main variables under the geographic distance matrix. As shown in Table 10 that industrial intelligence and urban CEE are significantly positive at the 1% significance level from 2006 to 2020, indicating that the level of industrial intelligence and urban CEE in YEB have significantly positive spatial autocorrelation. The spatial econometric model is further used to identify whether industrial intelligence has a spatial spillover effect on the urban CEE, and the Hausman test as well as the LR and LM tests show that the Spatial Durbin Model (SDM) should be used for the estimation of the spatial spillover effect. In order to ensure the robustness of the regression results, the neighbor matrix and economic distance matrix are also added for spatial econometric regression. The final results of the spatial econometric regression are shown in columns (1)–(3) of Table 11, that the autoregressive coefficient of the urban CEE is positive at the 1% significance level, and the coefficient of the spatial weighting term W is significantly positive, which indicates that the CEE in YEB is not only affected by the local industrial intelligence level, but also by the industrial intelligence level of the neighboring regions.
TABLE 10 | Moran’s I test.
[image: Table displaying variables CEE and hnirobot from 2006 to 2020, with coefficients and Z statistics. CEE coefficients are between 0.161 and 0.178, with Z values over 4.2. Hnirobot coefficients range from 0.073 to 0.121, with Z values over 2.1. Values marked with three asterisks indicate 1% significance.]TABLE 11 | Regression results of spatial Durbin model.
[image: Table comparing three matrices: inverse distance, adjacency, and economic distance. Each matrix includes coefficients for different variables: \(W \times \text{Inirobot}\), \(\rho\), \(LR\_direct\), \(LR\_Indirect\), and \(LR\_Total\), with their standard errors in parentheses. The results show significance levels, denoted by asterisks, with all matrices controlling for variables like \text{year} and \text{city}. The sample size \(N\) is 1,620, and \(R^2\) values are 0.036, 0.073, and 0.054, respectively.]5.5 Mechanism analysis
Based on the above theoretical analysis and hypothesis, this research examines the mediating mechanisms through which industrial intelligence affects urban CEE from the perspectives of technological progress and industrial structure optimization, respectively. We set up the mediated effect test model as shown in Eqs 5, 6:
[image: Equation labeled (5) shows a mathematical expression: \( Medi_{ij} = g_0 + g_1 IRobot_{i} + g_2 C_{ij} + m_i + l_{j} + x_{ij} \).]
[image: The equation shown is: \( GEEV_{it} = \alpha_0 + \alpha_1 IRobot_{it} + \alpha_2 Mediator_{it} + \alpha_3 C_{it} + \mu_t + \lambda_i + \xi_{it} \).]
[image: Stylized text displaying the word "Medit" with the letter "M" in capital and the rest in lowercase italics.] is the mediator variable, which represents the variables of technological progress and industrial structure optimization respectively. Eq. 5 is used to test the effect of industrial intelligence on the mediator variable, and Eq. 6 is used to test effect of the mediator variable in the process of industrial intelligence affecting urban CEE. In addition, to improve the precision of the mediation effect test, this research uses the Bootstrap method to test the significance of the mediation effect, and the results of the Bootstrap test (500 samples) are also reported in Tables 12, 13
	1. Mechanism test of technological progress. Theoretically, industrial intelligence can not only enhance the technological innovation ability of related industries, but also enhance the green technology efficiency of other industries through the inter-industry “demonstration effect”, thus generating vertical technology spillover effects, which will help to improve the overall scientific and technological level of the city, and ultimately contribute to the enhancement of the efficiency of the city’s carbon emissions. The results in columns (1) and (2) of Table 12 show that industrial intelligence can significantly promote urban green innovation, regardless of whether the explanatory variables are the quantity of green innovation ([image: The image contains the mathematical expression for the logarithm, represented as "ln gpt".]) or the quality of green innovation ([image: Mathematical expression of the natural logarithm of the product of variables p and q, represented as "ln g p q".]). The results in columns (1) and (2) of Table 13 show that the technological progress variables characterized by both dimensions have a significant contribution to urban CEE, and the coefficients of the cross-multiplier terms of the Bootstrap test are all significantly positive, which indicates that industrial intelligence can enhance the urban CEE through the pathway of technological progress, and accordingly, Hypothesis 2 is verified.
	2. Mechanism test of industrial structure optimization. Theoretically, industrial intelligence uses various advanced technologies such as edge computing, digital simulation, artificial intelligence, etc., which can eliminate energy waste in the production and manufacturing system, improve resource utilization efficiency and the degree of inter-industry synergy, and contribute to the improvement of the urban CEE. The results in columns (3) and (4) of Table 12 show that industrial intelligence can significantly promote industrial structure upgrading [image: The text is an italic lowercase "ind" enclosed in parentheses, often used to indicate "individual" in mathematical or statistical contexts.] and industrial structure rationalization [image: Upload the image file or provide a URL so I can help create the alternate text for it.], and the results in columns (3) and (4) of Table 13 show that the industrial structure upgrading [image: A mathematical notation displaying the text "(ind)" in italics within parentheses.] and industrial structure rationalization [image: It seems like you meant to upload an image. Please try uploading the image again, and I will help you with the alternate text.] can significantly improve the urban CEE, that the optimization of industrial structure plays a mediating role in the process of industrial intelligence affecting urban CEE, and Hypothesis 3 is verified.

TABLE 12 | Mechanism analysis I.
[image: Regression table with four columns labeled (1) lngpt, (2) lngpq, (3) ind, and (4) TL. Rows include lnrobot, cons, controls, year, and city with coefficient values and standard errors in parentheses. N equals 1,620. R-squared values are 0.872, 0.598, 0.471, and 0.541. Statistical significance is indicated by asterisks.]TABLE 13 | Mechanism analysis II.
[image: Statistical table showing regression results for four models labeled CEE. Variables include lnirobot, lngpt, lngpq, ind, TL, cons, with significance levels indicated by asterisks. Controls, year, city, number of observations, Bootstrap p-values, and R-squared values are listed for each model.]6 DISCUSSION
In this research, we have verified through theoretical and empirical research that industrial intelligence has a positive effect on improving CEE, and this conclusion remains valid after a series of robustness tests. We now discuss the main findings below.
First of all, this research constructs a linear regression model by taking CEE as an explanatory variable, taking industrial intelligence level as an explanatory variable, and adding a series of control variables. The regression results show that CEE increases significantly as the level of industrial intelligence increases. Among the control variables, only the level of financial development is not significant in the final regression results.
Secondly, this research proves the robustness of the benchmark regression results by a series of robustness testing methods, including instrumental variable method, replacement of explanatory variables, lag of explained variables, tail reduction treatment, etc.
Thirdly, this research carry out heterogeneity analysis from the perspectives of the level of regional economic development, regional resource richness and CEE level. It is found that the carbon emission reduction effect of industrial intelligence only exists in the lower reaches of the Yangtze River and non-resource-based cities (Mao et al., 2023). At the same time, through quantile regression method, it is found that there exists a “Matthew effect” in promoting industrial intelligence to improve CEE (Wang et al., 2024).
Fourthly, this research takes the level of urban digital human capital as a threshold variable to further explore the threshold effect of industrial intelligence on CEE in the YEB, by using the threshold effect model, it is found that only when the level of human capital breaks through a certain threshold value can industrial intelligence significantly promote the improvement of CEE (Tian et al., 2024).
Fifthly, this research also tests the spatial spillover effect of industrial intelligence affecting CEE by building a spatial econometric model and conducting a relevant regression analysis (Lin and Xu, 2024). The results of the application of the inverse distance matrix, the economic distance matrix and the nested matrix all indicate that, the improvement of CEE brought about by industrial intelligence has a certain spatial spillover effect.
7 CONCLUSION AND POLICY IMPLICATIONS
7.1 Conclusion
This research comprehensively uses panel econometric model, mechanism test model, tool variable method, and spatial econometric model to analyze and identify the mechanism and effect of industrial intelligence on CEE in YEB. The results found that: 1. YEB’s CEE improves greatly with the development of industrial intelligence, and this conclusion remains steady during a series of robustness tests; 2. Technological progress and industrial structure optimization are intermediary mechanisms for industrial intelligence to promote CEE growth; 3. The impact of industrial intelligence on reducing carbon emissions is especially noticeable in the downstream region of the YEB, non-resource-based cities, and cities with higher CEE; 4. The growth of urban industrial intelligence has had a substantial beneficial impact on nearby cities’ CEE; in other words, there is a positive spatial spillover effect from the development of industrial intelligence on the enhancement of urban CEE; 5. There is a digital human capital threshold for the CEE effect of industrial intelligence in YEB, promote urban digital human capital will help to enhance the driving effect of industrial intelligence on carbon emission reduction in YEB.
7.2 Policy implications
Firstly, accelerating the development of industrial intelligence in cities in YEB is an important path to realize the green transformation and upgrading of the regional economy, the government should promote the integration of intelligent development models with traditional industries, build green production and service models, and apply policies to create a fair competitive market environment. The government should also increase its investment in the fields of science, technology, engineering and mathematics to train the professionals needed for the smart industry and provide strong talent support for industrial intelligence.
Secondly, the pace of technological innovation should be accelerated to enhance the driving force of industrial intelligence to empower urban CEE. The government should establish a sound innovation ecosystem, including research and development centers and incubators to promote close cooperation and knowledge transfer between academia, industry and the government. The government should also strengthen basic and applied research, encourage enterprises to carry out research in areas such as new materials, biotechnology and information technology, optimize the incentive mechanism for innovation and improve the intellectual property protection system, thereby protecting the interests of innovators and encouraging more technological innovation activities.
The Government should clarify the positioning of urban development and industrial layout in accordance with regional characteristics, so as to avoid disorderly competition and duplicative construction in cities. The government should also liberalize market access, attract foreign investment into advanced industries and services, and promote the development of an export-oriented economy. In addition, the Government should foster strategic emerging industries and accelerate the development of industrial digitalization, networking and intelligence.
Fourthly, attention should be paid to the “spatial spillover effect” of industrial intelligence on the urban CEE. Each region should form a synergistic development idea, and synergize the development of infrastructure interconnection and interoperability, data resource opening and sharing, ecological environment joint prevention and joint treatment, and public services universal sharing, etc. Each region should also give full play to its comparative advantages by clarifying the boundaries of the rights and responsibilities of the cooperating parties, improving the docking implementation mechanism, innovating the market-oriented operation mechanism, and strengthening the integration and linkage of the industrial chain, so as to realize the complementary advantages and synergy of industrial intelligence.
7.3 Limitations and future research
This study also has some limitations, which can be improved in some aspects in the future. Firstly, the time period of this study is from 2006 to 2020 due to the data limit. Considering that the COVID-19 epidemic in China lasted for 3 years from the end of 2019 to the end of 2022, and the digital economy was booming during this period, the sample can be expanded in subsequent studies. Secondly, this research mainly focuses on the macro level of the city, and the discussion on the micro level is insufficient. Considering that artificial intelligence has a significant impact on the production activities of enterprises and the consumption habits of the public, it is necessary to combine macro and micro perspectives. Thirdly, this research investigates the influence mechanism of industrial intelligent development on CEE from perspectives of technological innovation and industrial structure optimization, further research needs to explore other economic and social variables that may be the mechanisms by which industry intelligence acts on CEE.
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China has significantly increased its foreign direct investment (FDI). Although these investments help to boost global development, their impacts on the environment are still controversial and deserve careful investigation. This paper uses the super-efficiency SBM model to measure the green total factor productivity (GTFP) of 123 host countries of China’s FDI. On this basis, we adopt the two-step system GMM and dynamic panel threshold effect model to analyze the impact of China’s FDI on the GTFP of host countries. The research results show that: 1) The impact of China’s FDI on the GTFP of host countries is mainly through green technology efficiency. Its impact is inhibitory, followed by a promotional one, with the latter being significantly larger than the former. 2) There is no evidence of the “pollution haven effect” associated with China’s FDI. In fact, for countries with lower environmental regulations, China’s FDI promotes the growth of GTFP more effectively. 3) The innovation level of host countries moderates the relationship between China’s FDI and GTFP growth. For host countries with stronger innovation level, their GTFP growth can be enhanced to a greater extent by China’s FDI.
Keywords: China’s FDI, GTFP, super-efficiency SBM, two-step system GMM, threshold effect

1 INTRODUCTION
In the era of globalization, China’s rapidly growing FDI has emerged as a dominant force in international investment. According to the World Investment Report 2023, issued by the United Nations Conference on Trade and Development, China’s outward FDI flow reached US$1.5 trillion, with its year-end stock of US$39.9 trillion in 2022, ranking second and third respectively in the world. China’s FDI spans a wide range of regions and economic environments, exerting far-reaching influence on the world. Meanwhile, increasing attention has been paid to the impact of China’s FDI on global environment in the context of the current challenges posed by climate and environmental issues.
China’s FDI is characterized not only by its rapidly growing scale, but also by the diverse investment fields. As illustrated in Figure 1, a significant portion of China’s FDI has flowed into industries of energy, transport, and mining. The construction and operation of these projects tend to consume large quantities of iron, steel, cement as well as fossil energy, generating substantial carbon dioxide and pollutant emissions (Lu et al., 2010; Danish et al., 2018). All these problems mentioned have raised concerns about carbon emissions and environmental degradation in China’s FDI host countries (Oladipupo and Ajide, 2023). Some critics argue that China’s FDI activities, particularly those directed toward less developed countries, aim to seek “pollution havens,” whereby domestic pollution is transferred to other countries (Mahadevan and Sun, 2020; Gallagher and Qi, 2021). Nevertheless, Chinese authorities have stated that China remains committed to fortifying international collaboration on environmental protection and carbon emission reduction, with the aim of actively promoting the green and sustainable development of FDI host countries. Consequently, it is of paramount importance to study the impact of China’s FDI on the green total factor productivity (GTFP) of host countries and to investigate whether there is a “pollution haven effect” associated with China’s FDI.
[image: Line graph illustrating the revenue growth of various industries from 2005 to 2021. Technology shows the highest increase, followed by Health, while other sectors like Transportation and Real estate display moderate growth.]FIGURE 1 | Scatterplot of GTFP and capital per capital.
GTFP is an enhanced measure based on Total Factor Productivity (TFP), integrating resource consumption and environmental impacts into the overall productivity analysis (Xie et al., 2021). In the context of advancing carbon neutrality goals, GTFP has become a crucial metric for policymakers and scholars to assess the green and sustainable development of economies. Consequently, study on relationship between China’s FDI and the host country’s GTFP can not only provide valuable insights into the environmental impact of China’s outward FDI activities but also plays a vital role in fostering the green and low-carbon development of China’s international economic and trade cooperation.
Recent studies have focused extensively on the impact of FDI on GTFP, yielding various conclusions. Some research has verified that FDI can enhance GTFP in host countries through mechanisms such as technology transfer and spillover effects (Zhou et al., 2019a; Tian, 2022), human capital development (Zhu and Ye, 2018), stimulation of local competition (Zhou et al., 2019b), as well as improvements of regulatory and policy frameworks (Qiu et al., 2021; Luo et al., 2023). Conversely, other researchers have identified potential negative impacts of FDI on green development and GTFP in host countries. Walter (1979) introduced the “pollution haven” hypothesis, suggesting that multinational corporations might transfer pollution-intensive production activities to countries with less stringent environmental regulations through FDI, thereby increasing pollution in host countries (Copeland and Taylor, 2004). Qiu et al. (2021) found evidence of “pollution haven effect” in FDI towards Eastern and Central China, exerting adverse effects on local GTFP. Similarly, Benzaim et al. (2023) observed that U.S. FDI negatively impacted GTFP in OECD countries. Zhao et al. (2022) found, in their study of 284 prefecture-level cities in China, that FDI inflows primarily hindered local GTFP by suppressing green technological advancement, with these adverse effects being more pronounced in resource-dependent and non-coastal cities.
Institutional factors and innovation levels in host countries are recognized as critical moderators in the relationship between FDI and GTFP (Hu et al., 2021; Li et al., 2021; Ma and Cao, 2022; Luo et al., 2023). From the perspective of institution, several key elements contribute to this dynamic. First, the establishment and enforcement of robust legal frameworks can be conducive to a more effective management of FDI, ensuring that investments are directed towards green, sustainable development and mitigating the pollution haven effect (Yu et al., 2021). Second, higher institutional quality provides stable expectations for FDI projects, facilitating the transfer of green technologies to the host country (Xie and Zhang, 2021). Third, companies are compelled by stringent environmental regulations to adopt cleaner technologies, thereby enhancing the positive impact of FDI on the host country’s GTFP (Xiaofei et al., 2021). Regarding the innovation level of host countries, higher innovation capacity enables better absorption of advanced technologies introduced by foreign investors (Desbordes and Franssen, 2019) and facilitates the dissemination and diffusion of these technologies within host countries (Hu et al., 2021). Additionally, FDI enterprises investing in host countries with higher levels of innovation often encounter greater competitive pressures, motivating them to improve their green production efficiency (Xiao et al., 2022).
In recent years, there has been an increasing attention paid to China’s rapidly growing FDI from scholars. Relevant studies on China’s FDI reveal that it is insensitive to the political stability and governance levels of host countries (Chen et al., 2018), but it tends to target these countries with abundant natural resources or advanced technology (Ramasamy et al., 2012; Yao et al., 2017). Research on the outward FDI behavior of listed companies in China demonstrate that China’s FDI exhibits reverse technology spillovers, significantly enhancing domestic GTFP. However, this enhancement is influenced by the heterogeneity of investment sectors, countries, and entities (Zhu and Ye, 2018; Liu and Xin, 2019; Pan et al., 2020; Xu and Zhou, 2023). Based on China’s Belt and Road Initiative, Haiyue and Manzoor (2020) discovered that it helps improve the GTFP of both participating investment enterprises and host countries.
Despite extensive research on the relationship between FDI and GTFP, several critical gaps remain that warrant further exploration. 1) The impact of China’s FDI on the world: as the world’s second-largest in FDI flow and third-largest in FDI stock, China’s FDI has a significant impact globally, especially on the environment. However, existing research primarily examines the reverse effects of China’s FDI on its domestic environment, neglecting the broader environmental impact on host countries and the external environmental impacts of China’s international investment are overlooked against this backdrop. 2) The distinct characteristics of China’s FDI: despite substantial evidence indicating China’s preference for investing in specific regions and sectors, there is a lack of studies on different impacts of China’s FDI across various host countries. This oversight impedes a nuanced understanding of the specific impacts of China’s FDI, including critical investigations into whether China’s investment strategies align with pursuing “pollution havens,” potentially providing vital insights for policy considerations. 3) The dynamics of FDI’s impact on GTFP: most existing research relies on static data to assess FDI’s impact on GTFP, which raises concerns about endogeneity and fails to account for the evolving nature of FDI’s impact on GTFP over time. This static analysis limits the understanding of the interactions between FDI and the environment.
This paper aims to analyze the dynamic impact of China’s FDI on the GTFP of host countries. On this basis, it examines the threshold effects of environmental regulation and innovation levels in the relationship between China’s FDI and the GTFP of host countries. This investigation explores whether China’s FDI exhibits a “pollution haven effect” and seeks to understand the role of host countries’ innovation levels in FDI’s impact on GTFP. Compared to existing literature, the novelty of this study lies in three aspects. 1) Comprehensive data utilization: the study employs extensive datasets from the International Energy Agency, Environmental Performance Index, Penn World Table, World Bank, and the National Bureau of Statistics of China, compiling matched panel data for 123 countries from 2007 to 2019. The extensive sample size and rich dataset ensure high reliability for our research. 2) Refined GTFP calculation: adopting a super-efficiency SBM model that incorporates undesirable outputs, this study calculates GTFP with greater accuracy. This method not only provides a more precise measurement of GTFP but also allows for a detailed decomposition of GTFP changes into technological and scale efficiency components, offering a deeper understanding of the factors driving GTFP changes. 3) Advanced methodologies: employing a two-step system GMM and a dynamic panel threshold effects model, this paper delivers a more detailed analysis of the dynamic impacts of China’s FDI on environment in host countries. It also examines how environmental regulations and innovation levels in host countries modulate the effects of China’s FDI.
The possible contributions of this paper include three main aspects. 1) Research Expansion. This research enriches the discussion on the environmental impacts of China’s FDI and broadens the understanding of its global effects, particularly in relation to the green development of host countries. 2) Research methodology. By adopting innovative methods and models, this study reveals the mechanism and dynamic characteristic of FDI’s impact on the GTFP of host countries, providing new empirical insights. 3) Research objects. Our finding highlights the conditional factors in host countries that moderate the effects of FDI, offering a foundation for policies aimed at promoting green and sustainable development.
2 THEORETICAL ANALYSIS AND RESEARCH HYPOTHESIS
2.1 The impact of China’s FDI in host countries over different periods
FDI plays a crucial role in the economic development of a host country by providing capital, technology, and management expertise. However, the environmental impact of FDI, particularly on GTFP), can vary over time. Initially, host countries need time to assimilate the new technologies and management practices introduced by China’s FDI (Cui and Jiang, 2010). Concurrently, Chinese enterprises must adapt to the regulatory and institutional frameworks of the host countries (Lo et al., 2016). The influx of new investments can also transform the market environment and resource allocation within the host country, forcing local businesses to adjust to changes in the economic landscape and new competitive pressures (Kokko et al., 1996). This adaptation and adjustment process may initially lead to a decline in the host country’s GTFP. Moreover, the Chinese government encourages enterprises to undertake large-scale projects as part of their FDI activities (Yang and Stoltenberg, 2014), often involving significant infrastructure construction such as roads, bridges, and factories (Wang and Gao, 2019). Such construction typically demands large quantities of cement, steel, and fossil fuels, resulting in substantial increases in greenhouse gas emissions and other pollutants (Naboureh et al., 2021).
As China’s FDI progresses beyond the initial adjustment period and construction phases, its positive effects on the GTFP of host countries become apparent in the medium to long term, manifesting in four key aspects. First, China’s FDI facilitates green technology transfer and innovation in host countries through technology transfer and spillover effects (Qin et al., 2022). Supported by preferential policies, Chinese enterprises introduce advanced technologies and expertise via FDI, enabling local enterprises to enhance their production processes and efficiency. Interactions and collaborations with technologically advanced Chinese companies further promote the dissemination and innovation of green production technologies, thereby enhancing the green production efficiency of host countries (Khachoo and Sharma, 2016; Deng et al., 2023). For instance, Chinese renewable energy investments in Pakistan have introduced cutting-edge solar and wind technologies, fostering the local spread and adoption of renewable energy technologies (Doytch and Narayan, 2016). Second, China’s FDI contributes to the advancement and diffusion of local green technologies in the medium to long term through education and training related to green technologies and practices (Sun et al., 2024). Collaborations with local companies, governments, and institutions in technology promotion enhance the progress and adoption of local green technologies (Chou et al., 2014). For example, Chinese investments in Africa’s agriculture sector include sustainable agricultural technologies and water-saving training programs, aiding local farmers in adopting greener production methods. Third, China’s FDI brings demonstrative and competitive effects to host country enterprises. Technologically advanced Chinese companies illustrate the benefits of green technologies and practices through their investments, and their market entry often intensifies competition in host countries, spurring local enterprises to innovate and improve their green production efficiency (Cheung and Ping, 2004). Fourth, high-quality China’s FDI aids in enhancing environmental policies and regulations in host countries. Recent China’s FDI frequently targets sectors such as renewable energy and electric vehicles, which necessitate adherence to high environmental standards. These practices introduce higher environmental benchmarks in host countries, promoting green and sustainable development (Adeel-Farooq et al., 2021). Furthermore, through collaboration with local governments, these investments help improve environmental regulations (Jin et al., 2019). Over the long term, improvements in environmental laws and policies can enhance the GTFP of host countries (Ren et al., 2022; Sun H. et al., 2023).
Derived from the above analysis, our paper proposes the Hypothesis 1a and 1b:
Hypothesis 1a. (H1a):. China’s FDI has a negative impact on the GTFP of host countries in the short term.
Hypothesis 1b. (H1b):. China’s FDI promotes the growth of GTFP in host countries in the medium to long term.
2.2 Environmental regulation, FDI, and GTFP
Previous studies have suggested that FDI can create a pollution haven effect in countries with weak environmental regulations, exacerbating local pollution and suppressing GTFP (Marques and Caetano, 2020). However, China’s FDI, influenced by China’s relevant policies and strategic priorities, does not necessarily lead to a pollution haven effect. Even in countries with lower environmental regulations, China’s FDI can effectively promote the growth of the host country’s GTFP. This is due, firstly, to China’s proactive national strategy on climate change, its active participation in green initiatives including the Paris Agreement, and its consistent emphasis on sustainable development in both domestic and foreign investments (Li et al., 2011; Guo et al., 2013). In 2021, China’s Ministry of Commerce and Ministry of Ecology and Environment jointly issued the “Guidelines for Green Development in Foreign Investment and Cooperation,” guiding Chinese enterprises to promote green development in their foreign investment and cooperation activities. Within China’s Belt and Road Initiative (BRI), green, low-carbon, and sustainable development are prioritized (Yin, 2019). In advancing the BRI, China has adopted a series of measures including green infrastructure, green energy, green transportation, and green finance (Coenen et al., 2021; Harlan, 2021), and has initiated the BRI Green Development International Coalition with more than 150 partners from 43 countries, sharing its successful experiences in green and sustainable development with other nations, particularly developing countries, to enhance their GTFP.
Secondly, China holds a leading position in renewable energy technologies such as solar and wind energy and is a major exporter of green technologies (Urban, 2015). China’s FDI often includes the deployment of these green technologies, especially in infrastructure applications, which supports the host countries in obtaining infrastructure that sustains environmental sustainability (Gu and Zhou, 2020; An et al., 2021), such as energy-saving transportation systems, waste management systems, and green urban planning, helping the host countries reduce dependence on fossil fuels and enhance GTFP(Ren et al., 2024). Additionally, China’s FDI typically involves training programs for local workers and managers to ensure that the host countries can effectively utilize and develop green technologies for long-term GTFP growth (Tawiah et al., 2021). The uniqueness of China’s FDI, coupled with its robust policy framework and commitment to sustainable development, ensures that it does not advocate a pollution haven effect. On the contrary, through the construction of green infrastructure and the export of green technologies, China’s FDI can help countries with weak environmental regulations in the long-term development and enhancement of GTFP.
Based on the above analysis, this paper proposes the second hypothesis:
Hypothesis 2. (H2):. China’s FDI does not create a pollution haven effect in countries with weak environmental regulations.
2.3 Innovation level, FDI, and GTFP
Research and development (R&D) and innovation are pivotal drivers of environmental efficiency in an economy, involving the creation and implementation of new technologies, processes, and practices. The R&D and innovation capabilities of host countries significantly influence the impact of FDI on GTFP. On one hand, the benefits a host country derives from FDI largely depend on its absorptive capacity—the ability to recognize, assimilate, and apply new knowledge and technologies (Sultana and Turkina, 2020). Countries with robust innovation capacities are more adept at integrating and utilizing advanced technologies introduced by FDI, enabling investment projects to quickly adapt and optimize foreign technologies to local conditions, thereby maximizing productivity and minimizing environmental impact. On the other hand, FDI can generate spillover effects in the host country, where advanced technologies and practices diffuse to local businesses through labor mobility, inter-firm cooperation, and supplier relationships (Jordaan, 2017). Host countries with strong innovation capabilities typically possess advanced R&D infrastructure and skilled labor forces, which can more effectively assimilate and leverage the technologies and practices brought by foreign investors. By integrating foreign technologies, these countries can produce synergistic effects and undertake complementary innovations (Fu, 2008). Therefore, host countries with high levels of innovation can amplify the positive spillover effects of FDI, significantly enhancing its impact on GTFP. Based on the above, we propose the following hypothesis:
Hypothesis 3. (H3):. The level of innovation in host countries enhances the positive impact of FDI on GTFP.
3 ECONOMETRIC METHODOLOGY AND DATA
3.1 Measurement of GTFP
3.1.1 SBM-DEA method
To account for the impact of energy consumption and greenhouse gas emissions on the green development of host countries, and to facilitate efficiency analysis, we use the Directional Distance Function based on the Slacks-Based Measure (SBM) model, as proposed by Tone (2001). This method uses a non-radial and non-oriented approach to measure the GTFP of host countries receiving China’s FDI. The formula for calculating GTFP is as follows:
[image: Mathematical formula for minimizing technical efficiency, minTE, expressed as a ratio of input and output sums. It includes constraints such as non-negativity and summation indices, represented with variables like \(x_i\), \(y_q^g\), \(y_q^b\), and \(\lambda_j\). The constraints ensure non-negativity and proper proportioning of variables in the optimization model.]
In Eq. 1, each country is posited as a decision-making unit (DMU), with each DMU consisting of [image: It seems like there was an issue with uploading the image. Please try uploading the image again or provide a URL if available. Optionally, you can add a caption for more context.] input variables, [image: Please upload the image or provide a URL, and I will help you create the alt text for it.] desirable outputs, and [image: It seems there was an issue with displaying the image. Please try uploading the image again, or provide a URL or description for me to assist you better.] undesirable outputs. The elements x, [image: It seems like you mentioned a mathematical expression and not an image. If you have an image to describe, please upload it or provide a URL.], and [image: Please upload the image or provide a URL, and I will help you with the alternate text.] stand for the input, desirable output, and undesirable output matrices, respectively. The slack variables for the inputs, desirable outputs, and undesirable outputs are denoted by [image: It seems like there is an issue with the image upload. Please upload the image again, or provide a URL if the image is online. You can also add a caption for context if needed.], [image: Mathematical expression showing the variable "y" raised to the power of "g".], and [image: The mathematical expression shows the letter "y" with a superscript "b".], respectively. The weight vector for inputs and outputs is represented by [image: Unfortunately, I cannot see the image directly. Could you please provide a description or a link to the image?]. The structural variable [image: Summation notation displaying the sum from j equals one to n of lambda sub j.] is not constrained in Eq. 1, therefore, the optimal solution TE is the efficiency value under constant returns to scale (CRS). A larger value of TE indicates a higher GTFP for the country.
To further investigate the factors influencing changes in GTFP, we introduce the constraint [image: Summation from j equals one to n of lambda sub j equals one.] into the constraints of Eq. 1, resulting in Eq. 2. This modification accounts for the impact of production scale on efficiency by employing a Variable Returns to Scale (VRS) model. Consequently, the optimal solution, PTE, reflects the influence of technological level changes on green production efficiency across different countries. Furthermore, by utilizing TE and PTE, we derive Eq. 3 to assess the impact of Scale Efficiency (SE) on overall efficiency. Scale efficiency represents the discrepancy between the current production scale and the optimal scale under a given technological level, indicating the degree to which a country’s resource allocation in green production is optimal.
[image: Equation illustrating a mathematical optimization problem for minimizing PTE (presumably production or performance efficiency). It contains complex expressions involving summations, indices, and constraints. The objective function is a fraction with summations of input and output terms in the numerator and denominator. Constraints involve inequalities covering summations of values across indices, with specific conditions for non-negativity and relationships among variables \( \bar{x} \), \( \bar{y}^o \), and \( \bar{y}^b \). The equation is labeled with a reference number \( (2) \).]
[image: Mathematical expression showing "SE equals TE divided by PTE" with the equation number three beside it.]
For the desirable output variable, we use the Gross National Product (GNP) of each country, and for the undesirable output, we use each country’s greenhouse gas emissions. The input variables include the total labor force, capital stock, and total energy supply measured in heat units. Based on Eqs 1–3, and employing the SBM-DEA method, we calculate the GTFP of host countries receiving China’s FDI. The data for the labor force and greenhouse gas emissions are sourced from the World Bank, the energy supply data measured in heat units is obtained from the International Energy Agency, and the capital stock data comes from the Penn World Table (Feenstra et al., 2015).
3.2 Model specification
3.2.1 Dynamic panel model
Previous research indicates that GTFP is influenced by various persistent drivers (Zhou et al., 2019b; Zhang et al., 2021). Additionally, the impact of FDI on host countries exhibits lag effects (Durham, 2004; Mustafa and Santhirasegaram, 2013). Therefore, we incorporate lagged terms of GTFP and China’s FDI into our baseline model. We utilize the following dynamic panel model to examine the influence of China’s FDI on the GTFP of host countries:
[image: Equation 4 represents a model where GTFP is a function of its lagged values, FDI's logarithm, control variables, and error terms.]
In Eq. 4, [image: It seems there was an error with the image upload. Please try uploading the image again.] represents the country, [image: The text shows "GTFP" with a subscript of "i,t".] is the GTFP value for each country, [image: It looks like there might have been an attempt to reference an image or mathematical text, but it did not appear correctly. Please upload the image file or check the formatting for proper assistance.] represents the stock of China’s FDI in each country, [image: Please upload the image or provide a URL, and I will create the alt text for you.] and [image: Please upload the image you would like described, and I can create the alt text for it.] are the maximum lags for GTFP and FDI, respectively, [image: The word "Control" with "it" written in a smaller, italicized font next to it.] includes control variables, [image: Greek letter mu with a subscript i.] denotes country-specific effects, and [image: Mathematical expression showing the Greek letter epsilon followed by the subscript "it."] is the disturbance error term.
3.2.2 Panel threshold model
To examine the moderating effects of environmental regulations and innovation levels on the impact of China’s FDI on the GTFP of host countries, considering the lagged influence of China’s FDI, we adopt an approach inspired by Hansen (1999). We introduce a modified dynamic panel threshold model, using the host country’s environmental regulations and innovation levels as threshold variables and the lagged terms of China’s FDI as explanatory variables, to construct a dynamic panel threshold regression model:
[image: Equation showing a model for logarithm of GTFP with terms including logarithm of OFDI, a function of ER and various parameters and controls, plus error term.]
[image: Mathematical equation showing the relationship between the natural logarithm of GTFP (Green Total Factor Productivity) and other variables. It includes terms with logarithms of OFDI (Outward Foreign Direct Investment) interacted with indicator functions D representing thresholds, control variables, and error terms. The equation is marked as equation six.]
In Eqs 5, 6, [image: Please upload the image or provide a URL so I can create the alt text for you.] represents the lag order of China’s FDI, [image: It seems like there is a misunderstanding. The text you provided appears to be a mathematical formula rather than an image. Could you please upload the image or provide more context?] and [image: It seems there was a formatting error in your request. Please upload the image or provide additional context or a URL so I can help create the alt text for it.] represent the environmental regulation and innovation levels of the host country, respectively. [image: Mathematical expression showing a sequence of variables: theta sub 1, theta sub 2, continuing to theta sub n.] are the n different threshold levels. [image: The image shows the word "Control" with the letters "it" in italic and smaller size.] includes control variables, [image: It seems there was an error in providing the image. Please upload the image again, and I will create the alt text for you.] is a dummy variable that takes the value of 1 if the condition in the parentheses is satisfied and 0 otherwise. [image: Lowercase Greek letter "mu" followed by a subscript lowercase letter "i".] denotes country-specific effects, and [image: Mathematical notation showing a lower case epsilon, subscript "i t."] is the disturbance error term.
3.3 Variable selection
3.3.1 Dependent variables: GTFP, PTE, SE
The values of GTFP, Pure Technical Efficiency (PTE), and Scale Efficiency (SE) for 123 countries are measured using the SBM-DEA method and serve as the dependent variables.
3.3.2 Explanatory variable: China’s FDI
China’s outward FDI includes both stock and flow data. Due to significant reverse investment activities by China, measuring the flow of China’s direct investment in other countries can lead to substantial bias. Therefore, we use the stock of China’s FDI in host countries as the explanatory variable.
3.3.3 Threshold variables
Environmental Regulation (ER): Previous studies emphasize that the level of pollutant management can effectively reflect a country’s commitment to environmental protection (Zorpas, 2020; Li and Shi, 2021). Therefore, we use the mean of three scores related to environmental protection and pollutant management from the Environmental Performance Index (EPI) (Wolf et al., 2022) as proxy variables for environmental regulation. These scores are: Controlled Solid Waste (MSW), Wastewater Treatment (WWT), and Ocean Plastic Pollution (OCP). The EPI is published biennially, and missing data are calculated using interpolation methods.
Innovation Level (IL): Following the approach of O’Neale and Hendy (2012) and Mussaiyib and Pradhan (2023), we use the number of patent applications per thousand residents as a proxy variable for measuring a country’s innovation levels. This variable is calculated by dividing the number of patent applications filed by residents of each country by the total population, with patent application data and population data sourced from the World Bank database.
3.3.4 Control variables
To account for potential economic and social factors that could influence GTFP, this study incorporates the following control variables into the GMM model and panel threshold model:
Technological Progress (lnTP): Technological advancement is widely recognized as a decisive driver of GTFP growth (Wang et al., 2018; Yang X. et al., 2021). Following Yang X. et al. (2021), the total number of resident patent applications is used as a proxy for technological progress, with a logarithmic transformation applied to enhance data stability.
Environmental Regulation (ER): Beyond legislative frameworks, environmental regulation plays a crucial role in promoting economic efficiency, environmental sustainability, encouraging green technological innovation, and ensuring the effective use of resources (Yuan and Xiang, 2018; Zhang and Vigne, 2021). Given its profound impact on GTFP dynamics, ER is included in our analysis both as a key threshold variable and as a control variable. This dual inclusion allows us to dissect the nuanced impacts of environmental policies on GTFP adjustments.
Level of Economic Growth (RGDP): Economic growth is a key factor driving changes in a country’s GTFP (Sun Y. et al., 2023; Wang et al., 2023), represented by the GDP growth rate.
Industrial Structure (IS): The optimization and adjustment of industrial structure can reduce carbon emissions and enhance overall productivity, significantly impacting GTFP (Yang et al., 2022). Following Wang et al. (2021), the percentage of the secondary industry’s output to GDP is used to represent this variable.
Descriptions of each variable are presented in Table 1.
TABLE 1 | Variable description.
[image: Table listing variables, their codes, and descriptions include: Green Total Factor Productivity (GTFP), Technological Progress Index (PTE), Technological Efficiency Index (SE), Direct Investment from China (lnFDI), Environmental Regulation (ER), Innovation Level (IL), Technological Progress (lnTP), Economic Growth Indicator (RGDP), and Industrial Structure (IS). Each variable is explained with specific metrics like indexes, investment stocks, patent applications, and GDP growth.]This study constructed a panel dataset comprising data from 123 countries spanning from 2007 to 2019. Data on China’s foreign direct investment (FDI) in other countries was sourced from the annual Statistical Bulletin of China’s Outward Foreign Direct Investment published by the National Bureau of Statistics of China. Environmental regulation scores, derived from three metrics, were obtained from the biennially published Environmental Performance Index. Additional data were sourced from the World Bank database. To mitigate heteroscedasticity and standardize the magnitude of variables, logarithmic transformations were applied to the stock of China’s FDI and the total number of resident patent applications. The GTFP index, technological progress index, and technical efficiency index, as well as the GDP growth rate, labor participation rate, and industrialization rate, were all multiplied by 100 to convert these values into percentages. Table 2 presents the descriptive statistics of each variable.
TABLE 2 | Descriptive statistics of variables.
[image: Table displaying descriptive statistics for various variables: GTFP, PTE, SE, Infdi, ER, IL, LNTP, RGDP, and IS. Each variable has a sample size of 1161. Means range from 0.130 (IL) to 90.43 (SE). Standard deviations vary, with SE having the highest at 13.75. Minimum values range from negative 15.14 (RGDP) to 0 (IL and LNTP), and maximum values range from 0.74 (ER) to 105.2 (PTE).]4 EMPIRICAL RESULTS AND DISCUSSION
4.1 Dynamic panel model
Using Stata 17 software, a series of tests were conducted on Eq. 4 to select the appropriate econometric model. The estimation results are presented in Table 3. Models I, II, and III represent the estimation results of random effects, fixed effects, and Ordinary Least Squares (OLS), respectively. Model IV represents the estimation results of the two-step system GMM.
TABLE 3 | Analysis of China’s FDI impact on host country GTFP.
[image: Statistical table showing regression results for different models: Random Effects (RE), Fixed Effects (FE), Ordinary Least Squares (OLS), and Two-step System Generalized Method of Moments (GMM) with variables like InFDI, LGTFP, ER, InTP, RGDP, IS, and others. Coefficients and T-statistics are provided, with significance levels denoted by asterisks. AR and Hansen test results are included at the bottom.]In estimating Eq. 4, the inclusion of lagged dependent variables on the right side of the equation introduces endogeneity issues, leading to potential biases in estimations using random effects (RE), fixed effects (FE), and pooled Ordinary Least Squares (OLS). However, the Generalized Method of Moments (GMM) estimation technique mitigates these endogeneity problems through instrumental variables, with the system GMM further addressing issues of weak instruments (Blundell and Bond, 1998). The two-step system GMM requires the absence of second-order autocorrelation in the error terms and the exogeneity of the instruments. Models IV to VI all perform well in this regard; the Arellano-Bond test for autocorrelation does not reject the null hypothesis of no second-order serial correlation, and the Hansen test indicates no overidentification issues. As shown in Model IV of Table 3, the estimates from the two-step system GMM are more significant than those from Models I, II, III. Therefore, we refer to the two-step system GMM estimates in our analysis.
The estimation results reveal that China’s FDI has a significant impact on the host country’s GTFP index, as well as on the Pure Technical Efficiency (PTE) and Scale Efficiency (SE) derived from GTFP changes. Furthermore, the effect varies between the current and lagged periods, with the impact in the lagged period being greater than in the current period, highlighting the lagged nature of the effects of China’s FDI on the GTFP of host countries.
From the coefficients of current-period China’s FDI in the System GMM model, it is observed that a 1% increase in China’s FDI results in a 0.087% decrease in the host country’s current-period GTFP, a 0.044% decrease in Pure Technical Efficiency (PTE), and a 0.009% increase in Scale Efficiency (SE). This suggests that China’s FDI initially suppresses the host country’s GTFP and green technology level but positively impacts scale efficiency. This effect can be attributed to several factors: primarily, during the current period of China’s FDI, the influence is largely due to the construction process of the projects, which might be inefficient and result in significant greenhouse gas emissions, thus reducing the host country’s GTFP and technical efficiency. However, the construction process also contributes to increased production scale and market expansion in the host country, which in turn can enhance scale efficiency. Furthermore, host country enterprises may face challenges in absorbing and integrating new management experiences and technologies. In the initial phase of project introduction, new investments and operational practices might not fully align with the existing environment of the host country. Host country enterprises need time to learn and adapt to the newly introduced managerial expertise and technologies, a process that can temporarily decrease GTFP and technical efficiency.
The coefficients of lagged China’s FDI in the System GMM regression model indicate that a 1% growth in China’s FDI leads to a 0.222% increase in the host country’s GTFP in the following year, a 0.141% increase in PTE, and a 0.034% decrease in Scale Efficiency (SE). This demonstrates that as projects begin operation, China’s FDI effectively promotes growth in the host country’s GTFP and green technology levels, albeit with a slight negative impact on scale efficiency. The reasons for these impacts include the gradual absorption by host country enterprises of the management experience and technology brought by China’s FDI, which significantly enhances their technological levels and operational efficiency. Additionally, Chinese investment introduces more intense market competition and environmental awareness to the host country’s market, which, in the long run, encourages host country enterprises to optimize operations and reduce waste, thereby improving their technological levels and increasing GTFP. On the other hand, as projects are completed and move into the operational phase, the host country faces changes in resource and product demand structures, which might lead to overcapacity in some industries, thus reducing scale efficiency.
Through the analysis using the GMM model, it is found that in the current period of FDI, due to inefficient construction processes and challenges in technology absorption faced by the host country, China’s FDI slightly and temporarily reduces the host country’s GTFP and technical levels. However, over time, as host country enterprises absorb and integrate management experiences and technologies, along with the market competition and environmental awareness brought by Chinese investments, they can effectively promote green technology and enhance GTFP in the host country, far outweighing the initial suppressive effects, although scale efficiency may decline slightly with changes in production and demand structures.
4.2 Robustness rests
4.2.1 Variable replacement
To mitigate potential biases arising from single-variable measurements, we replaced both the independent and dependent variables and re-estimated the models accordingly. Specifically, we replaced the independent variable with the flow of China’s FDI. Since the FDI flow data released by the Chinese National Bureau of Statistics include reverse FDI, which cannot accurately measure the changes in China’s FDI flow to different countries, we processed the FDI stock data through differencing to derive the flow data of China’s FDI for use as the independent variable.
For the dependent variable, we employed Carbon Emission Intensity (CEI), defined as the amount of carbon dioxide emissions per unit of Gross Domestic Product (GDP) for a given country. A reduction in CEI indicates a transition to more efficient production processes, emphasizing the enhancement of green production practices. According to Zhang et al. (2020), CEI is a critical indicator for assessing the level of environmentally sustainable production. Furthermore, empirical evidence provided by Wang and Yan (2022) shows a negative correlation between CEI and GTFP, reinforcing the suitability of CEI as a converse indicator for GTFP. Consequently, CEI (measured in grams per Purchasing Power Parity (PPP) dollar of GDP) is used as an inverse proxy for GTFP. The data on carbon emission intensity are sourced from the World Bank database.
Upon replacing the variables and re-estimating, all models passed the Arellano-Bond test for serial correlation and the Hansen test, and the coefficients of China’s FDI in each model were statistically significant at the 1% level. The empirical results are presented in Table 4.
TABLE 4 | Robustness test results: regression analysis with variable replacements.
[image: A table presents regression coefficients for different models: GTFTP, PTE, SE, and CEI. Each column replaces independent or dependent variables, showing coefficients and T-statistics in parentheses. Significance is marked with asterisks for 1%, 5%, and 10% levels. Hansen and AR tests are included below the main data.]In Table 4, Models I, II, and III display the estimation results of the system GMM after replacing the independent variable. The coefficients between current-period China’s FDI and both GTFP and PTE are significantly negative, while the coefficients with SE are significantly positive. The coefficients between lagged China’s FDI and both GTFP and PTE are significantly positive, whereas those with SE are significantly negative, indicating that the impact of lagged China’s FDI on GTFP is greater than that of current-period FDI.
Model IV shows the system GMM estimation results after replacing the dependent variable. The coefficient between current-period China’s FDI and the host country’s carbon emission intensity is significantly positive, suggesting that current China’s FDI increases the carbon emissions per unit of GDP in the host country, thereby reducing the host country’s GTFP. However, the coefficient between lagged China’s FDI and the host country’s carbon emission intensity is significantly negative, and its absolute value is greater than that of the coefficient for current-period FDI, indicating that over time, China’s FDI can reduce carbon emissions per unit of GDP in the host country, thereby increasing its GTFP. Overall, the estimation results after replacing both the independent and dependent variables are consistent with the aforementioned test outcomes.
4.2.2 Sample adjustment
In 2017, the Chinese government implemented a series of policies that significantly tightened restrictions on FDI, resulting in a 36% year-on-year decline in the scale of China’s FDI, marking the first negative growth since China started publishing FDI statistics in 2003. To mitigate the anomalous impact of changes in the Chinese government’s FDI management policies on the estimation results, we excluded the observational data for 2017 and re-estimated using the two-step system GMM. All models passed the Arellano-Bond test for serial correlation and the Hansen test, and the coefficients of China’s FDI in each model were statistically significant at the 1% level, as shown in Table 5.
TABLE 5 | Robustness test results: adjust sample.
[image: A regression table with three models: I (GTFP), II (PTE), and III (SE). Variables include lnFDI, LlnFDI, LGTFP, L2.GTFP, L.PTE, L2.PTE, L.SE, L2.SE, ER, lnTP, RGDP, IS, and Constant. Each model shows coefficients with T-statistics in parentheses. Statistical significance is indicated by asterisks: *** for 1%, ** for 5%, * for 10%. AR (1) and AR (2) test values and Hansen test are also reported.]In Table 5, Models I, II, and III list the two-step system GMM estimation results based on the adjusted sample. The coefficients between current-period China’s FDI and both GTFP and PTE are negative, whereas those with SE are positive. The coefficients between lagged China’s FDI and both GTFP and PTE are positive, whereas those with SE are negative, with all coefficients being statistically significant at the 1% level. The coefficients between lagged FDI and both GTFP and PTE are higher than those for current-period FDI. After adjusting the sample, the estimation results remain robust.
4.2.2.1 Removing control variables
To further ensure the robustness of the model, we removed all control variables and re-estimated using the two-step system GMM. All models passed the Arellano-Bond test for serial correlation and the Hansen test, and the coefficients of China’s FDI in each model were statistically significant at the 1% level. The estimation results are presented in Table 6.
TABLE 6 | Robustness test results: removing control variables.
[image: Regression table with three models: GTFP, PTE, and SE. Variables include lnFDI, LlnFDI, L.GTFP, L2.GTFP, L.PTE, L2.PTE, L.SE, L2.SE. Coefficients are significant at 1%, 5%, and 10%, with corresponding T-statistics in parentheses. The table includes constants and results for AR (1) test, AR (2) test, and Hansen test.]In Table 6, the size and signs of the coefficients between both current and lagged China’s FDI and GTFP and PTE remain consistent with previous research findings. The coefficient between current China’s FDI and SE turned negative; however, its absolute value is only 0.005, indicating a minimal potential reduction effect of current China’s FDI on the host country’s scale efficiency. Nevertheless, the coefficient between lagged China’s FDI and SE remains significantly negative, with an absolute value of 0.05. Overall, in the absence of control variables, the estimation results of the model are broadly consistent with previous results.
4.3 Threshold effects analysis
Previous analysis based on linear models confirmed that China’s FDI have a significant positive effect on the GTFP of host countries, with this impact exhibiting a lagged nature. Consequently, we use lagged China’s FDI as the explanatory variable and the environmental regulations and innovation levels of host countries as threshold variables to further explore the nonlinear impact of China’s FDI on host countries’ GTFP.
4.3.1 Threshold effect test
We obtained the asymptotic values of the F-statistics and corresponding p-values through threshold effect bootstrap testing, followed by tests for threshold values. The results of the threshold effect test for environmental regulations in the host country are presented in Table 7 and Figure 2. The three-threshold test yielded an F-statistic of 34.82, which did not pass the significance test, indicating the absence of a triple threshold. The double threshold test’s F-statistic was 39.67, significant at the 5% level, indicating a double threshold effect. The first and second threshold values are 0.5000 and 0.5629, respectively, with confidence intervals as shown in Table 8 and Figure 2.
TABLE 7 | Outcomes of the test for the threshold effects.
[image: Table displaying threshold variable tests for ER and IL with statistical significance. For ER, single, double, and triple thresholds have F-values and p-values of 53.00 (0.003), 39.67 (0.047), and 34.82 (0.300) respectively. For IL, values are 283.78 (0.000), 81.08 (0.000), and 43.44 (0.617). Each test uses 300 bootstraps with thresholds at 1%, 5%, and 10% significance, showing respective values. Statistical significance is denoted by asterisks for 1%, 5%, and 10% levels.][image: Two line graphs display LR statistics against thresholds. The top graph is titled "First Threshold" and the bottom "Second Threshold," both featuring a blue line with noticeable declines and a red dashed line across the lower section.]FIGURE 2 | ER threshold estimates and their confidence intervals.
TABLE 8 | Threshold estimation results.
[image: Table displaying threshold variables with estimates and confidence intervals. For ER: estimates are 0.427 and 0.4337 with confidence intervals 0.4329-0.4633 and 0.4258-0.4342. For IL: estimates are 0.0053 and 0.1481 with confidence intervals 0.0052-0.0054 and 0.1472-0.1498.]The threshold effect test results for the innovation level of the host country are shown in Table 7 and Figure 3 The three-threshold test resulted in an F-statistic of 8.31, which did not pass the significance test, indicating the absence of a triple threshold. The double threshold test’s F-statistic was 28.68, significant at the 1% level, revealing a double threshold effect. The first and second threshold values are 20.9542 and 50.9190, respectively, with confidence intervals as detailed in Table 8 and Figure 3.
[image: Two line graphs display LR statistics against thresholds. The top graph shows the statistic quickly dropping and stabilizing above 300. The bottom graph follows a similar pattern, stabilizing above 50. Both graphs include dashed red lines as reference points.]FIGURE 3 | TL threshold estimates and their confidence intervals.
The test results for threshold effects indicate that the impact of China’s FDI on GTFP in host countries with different levels of environmental regulation and innovation displays nonlinear characteristics, suggesting the feasibility of establishing a threshold panel model.
4.3.2 Analysis of threshold effects model estimation results
Based on the estimation of parameters using Eqs 5, 6, the results of the dynamic panel threshold effects model are presented in Table 9.
TABLE 9 | Regression results of the threshold effects.
[image: Regression table displaying variables ER, lnTP, RGDP, IS, and L.lnFDI with two models, I and II. Coefficients, significance levels, and T-statistics are presented. Notable coefficients include RGDP with 0.116 in Model I and 0.112 in Model II, both highly significant. Significance levels are denoted by asterisks, with T-statistics in parentheses.]Model I in Table 9 illustrates the nonlinear characteristics of the impact of China’s FDI on the GTFP of host countries, taking into account environmental regulations (ER). Contrary to many existing studies on environmental regulation, the impact of China’s FDI on the GTFP of host countries decreases as their ER increases. When examining the coefficients of L.lnFDI, we observe that when the ER of the host country is low (ER ≤ 0.052), the growth effect of China’s FDI on GTFP is most pronounced. Specifically, a 1% increase in investment stock results in a 0.621% rise in the host country’s GTFP in the following year. As ER increases to a medium level (0.427 < ER ≤ 0.4337), the coefficient of L.lnFDI decreases to 0.413. At higher levels of ER (ER > 0.4337), the coefficient further declines to 0.249. Despite these variations, the coefficients of L.lnFDI remain significant at the 1% level across all ER levels. These findings indicate that China’s FDI promotes GTFP growth in host countries regardless of their ER levels, challenging the pollution haven hypothesis. Notably, the results reveal that in host countries with lower levels of environmental regulation, the positive effect of China’s FDI on GTFP not only persists but also intensifies. This suggests that China is actively introducing clean and efficient technologies through FDI, thereby enhancing green productivity in these countries. In contrast, countries with higher levels of environmental regulation typically already possess advanced green production capabilities (Yang L. et al., 2021). As a result, the potential for further improvements in green production through China’s FDI diminishes as ER becomes more stringent. Consequently, the growth benefits of China’s FDI on GTFP in these countries gradually weaken.
Model II in Table 9 demonstrates the nonlinear impact characteristics of China’s FDI on the GTFP of host countries under different innovation levels (IL). Specifically, when the IL of the host country is low (IL ≤ 0.053), China’s FDI has a significant positive effect on the host country’s GTFP, with each 1% increase in investment increasing the host country’s GTFP by 0.224%. As the innovation level of the host country increases (0.053<IL ≤ 0.1481), the regression coefficient of FDI on GTFP rises to 0.235%, and when the innovation level increases further (IL > 50.9190), the regression coefficient significantly increases to 0.372% and is significant at the 1% level. This indicates that China’s FDI leads to the transfer and spillover of green technology and management expertise, but the growth effect it brings to the host country’s GTFP is influenced by the host country’s innovation level: the higher the innovation level, the quicker and more efficiently the host country can accept and learn the technology transferred from China, and implement its diffusion domestically (Qin et al., 2022), thereby increasing the growth effect of China’s FDI on the host country’s GTFP.
4.3.3 Robustness rest of threshold effects
To ensure the robustness of the threshold effects model, we replaced the threshold variables and re-estimated the model. According to Gaballah and Kanari (2001), the recycling rate (REC) of countries is largely influenced by environmental regulations and sustainable development policies. Thus, we utilized REC as a new threshold variable for measuring environmental regulation, with the recycling rate data sourced from the EPI database. Similarly, Research and Development (R&D) intensity (the percentage of R&D expenditure in GDP) is widely used to measure a country’s innovation level (Bointner, 2014; Khayyat and Lee, 2015). Therefore, we used R&D/GDP as the new threshold variable for measuring innovation level, with the R&D/GDP data obtained from the World Bank database. The threshold effect tests for the new threshold variables showed double threshold effects at a 1% significance level. The estimation results of the dynamic panel threshold effects are displayed in Table 10.
TABLE 10 | Regression results of threshold effect robustness test.
[image: Regression results table with two models, columns I and II, for various variables like ER, lnTP, RGDP, IS, among others. Each variable has coefficients and corresponding T-statistics in parentheses. Significance is denoted by asterisks: three for 1 percent, two for 5 percent, and one for 10 percent.]Model I in Table 10 shows the nonlinear impact of China’s FDI on the GTFP of host countries under the new environmental regulation variable. It is observed that when the host country’s environmental regulation level is low (REC≤0.6584), the growth effect of China’s FDI on the host country’s GTFP is highest. As the level of environmental regulation in the host country exceeds the first threshold (0.6584<REC≤0.9471), the growth benefits of China’s FDI weaken. When the host country’s environmental regulation surpasses the second threshold, the impact of China’s FDI on the host country’s GTFP becomes insignificant.
Model II in Table 10 illustrates the nonlinear impact of China’s FDI on the GTFP of host countries when R&D intensity is used as the measure of innovation level. When R&D intensity is below the first threshold (R&D/GDP≤1.1097) and between the first and second thresholds (1.1097 < R&D/GDP≤2.5976), the impact of China’s FDI on the host country’s GTFP is very close, with coefficients of 0.239 and 0.231 respectively. When R&D intensity is above the second threshold (R&D/GDP>2.5967), the impact of China’s FDI on the host country’s GTFP significantly increases to 0.442.
The estimation results after replacing the threshold variables are largely consistent with previous regression results, reflecting the robustness of the threshold effects model. Specifically, first, China’s FDI does not exhibit a ‘pollution haven effect.’ For countries with lower environmental regulation levels, China’s FDI can more effectively enhance their GTFP. However, as the environmental regulation level of the host country increases, the potential for GTFP improvement gradually diminishes, and the promotional effect of China’s FDI on the host country’s GTFP weakens. Second, China’s FDI facilitates the transfer and diffusion of green technologies, and its impact on the host country’s GTFP is influenced by the host country’s innovation level—the stronger the innovation level, the greater the extent to which China’s FDI can promote GTFP growth in the host country.
5 CONCLUSION AND POLICY IMPLICATIONS
5.1 Conclusion
This study evaluates the GTFP of 123 host countries of China’s FDI from 2007 to 2019 using the super-efficiency SBM model. It then empirically assesses the impact of China’s FDI on the GTFP of these host countries utilizing a two-step system GMM model and a dynamic panel threshold effect model. The findings reveal three key insights:
The findings reveal that China’s FDI significantly enhances the GTFP of host countries, particularly over the medium to long term. Importantly, the data do not support the existence of a “pollution haven effect.” Instead, China’s FDI tends to boost GTFP more effectively in countries with less stringent environmental regulations, underscoring the role of such investments in promoting green growth.
First, China’s FDI significantly enhances the GTFP of host countries. While China’s FDI may initially have a negative impact on GTFP in the short term, it effectively promotes GTFP growth in the medium to long term, primarily through improvements in technological efficiency.
Second, China’s FDI does not induce a “pollution haven effect.” Contrary to findings in other related studies, our results indicate that China’s FDI can more substantially boost GTFP in countries with lower levels of environmental regulation.
Third, the positive impact of China’s FDI on the GTFP of host countries is amplified by higher levels of innovation. As the innovation levels of host countries improve, the beneficial effects of China’s FDI on GTFP increase correspondingly.
5.2 Policy implications
Based on the research results, this paper proposes the following policy implications:
First, host countries should strengthen their environmental regulations and innovation systems to maximize the benefits derived from China’s green FDI. This approach not only leverages FDI for environmental gains but also enhances the local economic and technological landscape.
Second, China should continue to integrate sustainability into its FDI strategies, aiming to reduce adverse environmental impacts during project construction and operation. This commitment will help mitigate the initial negative impacts on GTFP while supporting global green development goals.
5.3 Limitations and future research
This study empirically identifies the mechanisms and patterns through which China’s FDI affects the GTFP of host countries and examines the heterogeneity of this impact based on the levels of environmental regulation and innovation in host countries, providing persuasive conclusions. However, there are limitations to this research. Due to the lack of relevant data, the calculation of GTFP only considered undesired environmental outputs from the perspective of greenhouse gas emissions, omitting the impact of other types of pollution on GTFP. Furthermore, the analysis did not disaggregate China’s FDI by industry type. A comparative analysis of different types of FDI on host countries’ GTFP could better elucidate the mechanisms by which FDI influences GTFP. Future studies should consider a broader array of pollution types in the calculation of GTFP and analyze the impact of FDI based on the characteristics of different industries.
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Emerging economies and ecosystems are critically dependent on fossil fuels, and a country’s energy dependence is a significant measure of its reliance on foreign suppliers. This study evaluates the impact of energy reliance on energy intensity, CO2 emission intensity, and the utilization of renewable resources in 35 developing and 20 developed nations, as well as the connection between renewable energy (REN), GDP growth, and CO2 emissions. This study employs the generalized linear model (GLM) and the robust least squares (RLS) method to assess the inverse association between renewable energy and developed and developing economy policymakers, utilizing unique linear panel estimate approaches (1970–2022). The impact of renewable energy as a response variable on economic growth, energy consumption, and CO2 emissions across four continents is investigated in this study. The findings indicate that developing countries experience a rise in per capita CO2 emissions if their renewable energy use exceeds their capacity. This finding remains significant even when other proxies for renewable energy use are introduced using modified approaches. Furthermore, it is particularly relevant to industrialized nations that possess more developed institutions. Even more surprisingly, in terms of the energy and emission intensity required for growth, energy dependence has accelerated all components. The regional analysis revealed a spillover impact in most areas, suggesting that the consequences of energy dependence are essentially the same in neighboring countries. The growth of the renewable energy sector and the decrease in greenhouse gas emissions depend critically on the ability of regional energy exchange unions to mitigate the negative environmental and economic impacts of energy dependency. These underdeveloped countries need to spend more on research and development to catch up technologically.
Keywords: renewable energy, economic growth, CO2 emissions, generalized linear model, developing and developed countries

1 INTRODUCTION
Today, more than ever, climate change represents a serious threat to humanity’s very survival. Historically rising GHG emissions from expanding fossil fuel consumption and industrialization are widely recognized as major contributors to our warming planet (Le, 2022; Jiang et al., 2022). Natural resource extraction and high-value manufacturing use a lot of energy, which is good for the economy (Rahman et al., 2022), but it also creates a lot of trash, which can have a detrimental impact on the environment (Sheraz et al., 2022). Theoretically, the expansion of industries is a major factor in the allocation of scarce resources, the dynamics of economic development, the distribution of energy consumption, and the rate of environmental deterioration (Hu et al., 2020; Hussain et al., 2020). Using dirty energy in production and the increasing industrialization of developing continents have boosted environmental CO2 emissions and eroded natural capital (Wang X. et al., 2022). With its current rate of expansion, it is seen as a significant energy consumer. Sure enough, several sectors of the industry—notably manufacturing—are consuming a lot of power at high frequencies, which is negatively affecting CO2 emissions (Muhammad and Long, 2021; Schulhof et al., 2022). The causes of CO2 emissions and strategies for reducing them in order to lessen their impact on global warming have been the subject of a large body of research (Anwar et al., 2021; Deng and Du, 2020). Nonrenewable energy consumption was determined to be a large source of CO2 emissions, as fossil fuels account for around 80% of global energy consumption (Wang et al., 2023). It has been established that using nonrenewable energy sources is a major cause of CO2 emissions (Yang Y. et al., 2022). However, between 2019 and 2024, the global capacity for renewable energy sources is expected to increase by 50 percent, which could mitigate the negative effects of greenhouse gas emissions on the environment and human health (Li et al., 2019; Somoza-Tornos et al., 2021). Regarding this, one body of research has discovered that the use of renewable energy (REN) sources leads to a global reduction in CO2 emissions (Deng and Du, 2020; Saidi and Omri, 2020).
Various concepts about CO2 emissions have been investigated by the environmental Kuznets curve (EKC). Developing nations are better off following a growth path different from the EKC, which advocates for rapid economic expansion at the expense of environmental protection (Balsalobre-Lorente et al., 2021; Awan et al., 2022; Beyene, 2022). Growth is both the source and remedy of air pollution, as seen by the US shape link between income and environmental deterioration (EKC) (Liu and Lai, 2021). The EKC rises with rising income due to increased agricultural output. However, there are repercussions associated with tying economic growth and industrial policy to the energy sector. The alignment of economic growth and industrial policy with the energy industry, however, has consequences. Since accelerating economic expansion is incompatible with safeguarding the natural world, we must slow it down (Leal and Marques, 2020). According to the most up-to-date interpretation of the EKC, economic development is linked to deterioration in environmental performance (Liu et al., 2022; Bradley, 2021). Since this is the case, people worry more about things like air pollution, global warming, and the holy vapors that emanate from machines and factories than they do about the severe depletion of energy used per capita (Kaika and Zervas, 2013; Rashid Gill et al., 2018; Khan S. U. et al., 2022). Economic expansion, according to the so-called EKC concept, causes environmental damage at first, followed by improvement later on (Shittu et al., 2021). Studies assessing the link between economic growth and CO2 emissions have investigated the EKC theory at length, with conflicting results. There is evidence in the literature supporting the EKC theory that shows a negative correlation between per capita CO2 emissions and GDP (Muhammad and Long, 2021; Tenaw and Beyene, 2021; Cui et al., 2022). The latter piece of work suggests that once high-income countries reach a certain threshold, their per capita CO2 emissions begin to grow again (Jiang et al., 2022; Li et al., 2022; Fakher et al., 2023). The latter literature suggests that after high-income countries hit a certain threshold, the rate of CO2 emissions per capita begins to rise once more. Therefore, the mitigation of environmental harm resulting from CO2 emissions can be facilitated through the adoption of renewable energy sources and the enhancement of energy efficiency. Environmental risk can be mitigated by the implementation and refinement of an effective energy efficiency management program for a firm. Energy management can presently be executed utilizing the same technological expertise that has been applied to manage other, more valuable aspects of the expansion of developing and developed economies, including the value added by industries, per capita energy consumption, and fossil fuel energy (FFE) consumption. This study offers practical recommendations for strategies based on the aforementioned factors.
The causes of CO2 emissions and strategies for reducing them to lessen their impact on global warming have been the subject of a large body of research (Deng and Du, 2020; Anwar et al., 2021). Nonrenewable energy consumption was determined to be a major source of CO2 emissions as fossil fuels account for approximately 80% of global energy consumption (Wang et al., 2023). It has been established that using nonrenewable energy sources is a major cause of CO2 emissions (Yang Y. et al., 2022). Numerous research studies at various continents and temporal scales investigate the causes and distribution of CO2 emissions in the atmosphere (Dong et al., 2019; Jiao et al., 2020). Tracing the spatial gravity centers of the effects of the drivers revealed that energy intensity was the primary contributor to global CO2 emissions, while economic growth and population expansion were the most important variables in accelerating CO2 emissions on a per-country basis (Chang et al., 2019). The study’s key contribution is based on two parts: the use of renewable energy and CO2 emissions in 55 industrialized and developing nations. First, there is the deliberate movement toward renewable energy sources, which demonstrates that industrialized nations are making a concerted effort to lessen their dependency on fossil fuels and reduce CO2 emissions (Işık et al., 2024). To further reduce their growing CO2 emissions and achieve sustainable development, businesses are also investigating renewable energy sources. Second, there is a growing movement toward renewable energy sources as a result of governments’ growing awareness of the connection between CO2 emissions and climate change (Adu et al., 2023). This trend is true in both developed and developing nations (Bergougui, 2024). Renewable energy sources are quickly becoming the preferred energy source for many nations as they become more conscious of the environmental impacts and CO₂ emissions caused by fossil fuels (Sufyanullah et al., 2022; Dehghan Shabani, 2024). Thus, this work makes a fourfold contribution. This study’s insights are valuable additions to the literature because of them. Strong evidence from this study supports the idea that rapid economic growth affects the green economy. While conclusive research is lacking, it is safe to assume that national market mechanisms are impacted by the structure of economic growth. There was a positive correlation between energy’s role, economic growth, and the influence of CO2 emissions, as well as rapid changes in national structures.
Although these studies employ a wide variety of methodologies and datasets to investigate this impact, the vast majority of them rely on a linear relationship between REN consumption, nonrenewable energy consumption, GDP per capita, and CO2 emissions per capita (see Section 2 for a more detailed account of the literature) (Karaaslan and Çamkaya, 2022; Rahman et al., 2022). Despite renewable energy’s potential to fight climate change, this study reveals that major obstacles persist, particularly in both wealthy and developing nations. Widespread adoption is impeded, especially in poorer nations, by the cost, infrastructure limits, and the necessity for enabling regulations. In addition, it is crucial to transition away from fossil fuels quickly since the climate crisis is worsening. This will need international collaboration and a fair transition so that poor nations can afford to switch to renewable energy. This study distinguishes itself by focusing on economic growth; similarly, previous research studies have examined the dynamic relationship between energy use in developing countries and economic growth (Wang and Yan, 2022; Fakher et al., 2023). In this study, we use recently established panel threshold models to analyze panel data for 97 countries, spanning 1970–2022, for figuring out whether there is a nonlinear relationship between these three variables and CO2 emissions (Abbasi et al., 2021). Once a country reaches a particular level of REN consumption, we find no negative correlation between REN consumption and the growth of per capita CO2 emissions (Bekhet and Othman, 2018). In other words, only countries whose REN consumption exceeds a certain threshold would see a decline in their per capita CO2 emissions as their REN consumption increases (Mendonça et al., 2020; Mei et al., 2023).
A nonlinear relationship between an individual’s share of REN in their total energy use and their CO2 emissions is supported by theoretical considerations. The initial cost of REN is high, and its ongoing cost is higher than the cost of using conventional energy sources. Since the capacity to store REN is lower than that of nonrenewable energy sources, there can be supply problems during periods of high energy demand (Ocal and Aslan, 2013; Chen et al., 2022). For instance, a study conducted between 1984 and 2007 that examined REN use in 19 developed and developing countries found that it did not result in a reduction of CO2 emissions (Apergis et al., 2010). However, improvements in technologies (Rubin et al., 2015) used to utilize REN have been made recently. Furthermore, the cost of utilizing REN sources has decreased over the past few years, and the quality of REN technology has considerably improved due to substantial investments in R&D (Schilling and Esmundo, 2009; Chen et al., 2019a). Therefore, we expect that if countries achieve a specific threshold of REN consumption, it will significantly influence the reduction of CO2 emissions, lower industrial emissions, and decrease fossil fuel energy consumption. This is owing to the fact that high investment costs and storage problems may render the impact of REN usage on CO2 emissions negligible at lower levels of consumption. The most important takeaway from this research is the discovery of REN behavior as a dependent variable in the context of growth and CO2 emissions and the influence that this has on the listing of developing and developed countries by continent.
There are a few areas in which our paper adds to the existing body of research. To begin, a quadratic term of GDP per capita is typically utilized in the existing literature on EKC to represent REN impacts (see, for example, Jiang et al. (2022); Chang et al. (2023)). Although earlier research has examined the effects of GDP per capita on CO2 emissions, it has paid less attention to the inverse relationship between REN, economic growth, energy consumption, and the nexus of CO2 emissions. This work employs a panel dataset to predict the relationship between CO2 emissions, energy use per capita, industries, construction, and fossil fuel energy consumption, allowing us to test for all conceivable associations with the generalized linear model (GLM) and robust least squares (RLS) method. Second, this study employs the GLM and RLS method to measure the inverse relationship of REN as the dependent variable and to emphasize the influence of policymakers in both developing and wealthy countries on a continental scale. Consider the role that CO2 and other gases emitted into the atmosphere by burning fossil fuels, such as coal and petroleum gas, play in increasing the frequency and severity of devastating storms. Finally, the cross-sectional dependence was ignored in favor of the first-generation unit root test in the majority of the available literature. After checking for cross-sectional dependence, we employ second-generation unit root tests in this paper. The variables used in the regression model are decided based on the unit root results.
The remainder of this paper is structured as follows. The causes of REN and CO2 emissions are examined in Section 2 of this paper. The specifics of the empirical estimating strategies are presented in Section 3. The specifics of the dataset utilized for this analysis are provided in Section 4. Finally, Section 5 provides the results of the dynamic linear and threshold estimations, the robustness analysis, and the cross-sectional dependence and panel unit root tests. Section 6 concludes the report and provides policy suggestions.
2 GROWTH IN THE ECONOMY, CO2 EMISSIONS, AND RENEWABLE ENERGY
Large-scale construction projects and infrastructure—including roads, bridges, power plants, dams, cement, and steel—have been shown to contribute significantly to global warming (Deng and Du, 2020; Wu et al., 2021; Sheraz et al., 2022; Wang Z. et al., 2022; Yang Y. et al., 2022). Consequently, environmental quality will increase, and creating substitutes is widely recognized as a practical way to cut down on CO2 emissions. As a result, there will be a marked improvement in environmental quality, and the creation of substitutes is widely recognized as a viable strategy for reducing CO2 emissions.
It is important to note that the energy development levels of emerging and industrialized countries are vastly different (Su et al., 2022) and that some poor countries have tremendous renewable resources. Therefore, there is a significant difference in energy development between emerging and developed countries, while some developing countries have plentiful renewable resources (Chen et al., 2020; Schulhof et al., 2022). The ambitious goals, despite rigorous academic research on the foundation and contribution exploring to fulfill these strategic objectives, are still scarce and dangerous (Isik et al., 2019; Nwaka et al., 2020; Ren et al., 2021). Therefore, this study contributes fourfold. Insights like these from this study are useful contributions to the canon of written work. The findings of this research lend credence to the theory that brisk economic expansion has an impact on the green economy (Jiang et al., 2022). There has not been a definitive study demonstrating this, but the structure of economic growth does have an effect on the market mechanisms of individual nations. Rapid changes in national structures were found to be positively correlated with factors including energy’s role, economic growth, and the impact of CO2 emissions (Muhammad et al., 2020).
According to recent research, an assortment of effects that economic expansion has on CO2 emissions in industrialized and developing nations demonstrate the statistical relevance of the correlation between economic growth and CO2 emissions (Chang et al., 2023; Baajike et al., 2024). On the contrary, certain perspectives have highlighted that numerous developed and developing nations have mitigated their CO2 emissions by incorporating CO2 into the items they import via international commerce (Foster et al., 2023). More precisely, the country of production is held accountable for these emissions. Regarding the association between CO2 emissions and economic growth, a study employing the GLM and the RLS methods identified an inverse relationship between the two variables in industrialized nations (Alam and Hossain, 2024; Li et al., 2024). Comparatively, the utilization of renewable energy has been found to significantly decrease CO2 emissions, while sustainable economic expansion has been found to increase CO2 emissions (Lin and Ullah, 2024). Additionally, this research unveiled a reciprocal causal relationship that extends in all directions: from REN to CO2 emissions, technological innovation to CO2 emissions, GDP to REN, and REN to technological innovation (González-Álvarez and Montañés, 2023). Furthermore, economic diversification and the investment of natural resource extraction proceeds in innovative technologies can contribute to the advancement of sustainable development (Alvarado et al., 2023). Although technical advancement and ecological security are not the only significant metrics, limited attention is paid to the double-edged influence on CO2 emission reduction (Khan R., 2021; Ongan et al., 2022).
Changes in infrastructure and development, including urbanization and lifestyle changes, have outpaced efficiency expansion as CO2 emissions have increased (Işık et al., 2021; Khan R., 2021; Khan et al., 2022b; Khan, 2023). Environmental sustainability and economic growth are both important, yet many believe they are incompatible since economic growth threatens the environment (Jahanger et al., 2022). Similarly, the use of wind power has prevented the release of at least 600 million tons of CO2 into the atmosphere in 2017. Energy transition faces structural threats, yet REN’s potential to support long-term sustainable development is promising (Mi et al., 2021; Raihan et al., 2022). There are several severe drawbacks to REN, including high investment prices, insufficient scientific and technological developments, onerous infrastructural needs, and limited information accessibility. Although REN has been demonstrated to provide environmental benefits, these advantages are still contested in practice (Apergis et al., 2010). There has been a shift in focus toward REN sources due to their lower environmental impact. In terms of CO2 emissions, REN sources like solar photovoltaics (PV) and wind power are among the most promising (Yousefi, 2019; Wang and Sun, 2012).
By examining the interconnections between developing and developed nations in terms of CO2 emissions, economic growth, renewable energy utilization, industries, and trade, this study reveals substantial ramifications for these sectors and environmental policy (Wu et al., 2018; Yang X. et al., 2022). Given the origins of excessive pollution in recent years, greater emphasis has been placed on the interconnectedness of energy waste, energy transitions, and environmental sustainability. Both developed and emerging nations have robust technological capabilities and adhere to stringent environmental policies (Abbasi et al., 2022; Jahanger et al., 2023). Despite possessing a substantial ability to absorb environmental risks, the industrialized world continues to face challenges in regulating and mitigating the ongoing emissions. Developed and emerging nations alike have adopted rigorous environmental rules and are equipped with cutting-edge technologies, which confers upon them a considerable ability to assimilate environmental risks (Kaika and Zervas, 2013; Bashir et al., 2024). As a result, however, industrialized nations’ efforts to regulate and mitigate ongoing emissions continue to be hindered. In addition, Nathaniel and Iheonu (2019) used the augmented panel mean group (APMG) estimator to analyze the impact of REN on CO2 emissions in 19 sub-Saharan nations and concluded that this type of energy had a negligible effect on global emissions. Recent research has suggested that REN will not significantly reduce CO2 emissions until it reaches a certain level of development; at that point, the focus will shift from lowering the cost of energy transition to increasing energy efficiency.
First, REN sources are becoming increasingly popular as the global economy becomes more integrated. REN sources benefit from economic globalization because of the money and expertise they may get from around the world (Doytch and Narayan, 2016; Liu et al., 2016). Its secondary effects improve environmental quality (You and Lv, 2018). Through liberalized trade, for instance, developing countries can acquire items and technologies that are green and save energy from developed countries with established renewable energy companies (Koengkan and Fuinhas, 2020). Additionally, when nations work together to develop a robust market for REN, the price of switching to this energy source can be brought down significantly. Second, political globalization encourages nations to adopt policies that protect the environment and collaborate to reduce CO2 emissions output. In 2015, for instance, 196 UNFCCC parties adopted the Paris Agreement, which was proposed to deal with climate change. The Paris Accord laid up a system via which countries might receive aid in the form of both money and expertise (Jiang et al., 2021). Third, the societal norm of using REN and conserving the environment is being encouraged by cultural globalization, and because of the dissemination of information, the need to protect the environment is now recognized on every continent. As a result, the ability of REN to reduce CO2 emissions should increase as the world becomes more interconnected. Globalization may alter the nexus between REN and emission levels of CO2 emissions from OECD nations; however, this point is still up for debate.
Unlike previous research, which has used external variables like globalization to examine the link between REN and CO2 emissions, the current study takes into account endogenous factors like REN and CO2 emissions themselves (Adebayo and Acheampong, 2022; Nan et al., 2022). To determine whether the correlation between REN and CO2 emissions has shifted as a result of globalization, this article uses the PSTR model, with globalization as the transition variable. Since this is a nexus between REN and CO2 emissions, one of our goals is to investigate globalization’s part in this relationship. The aforementioned studies not only advance their respective fields of study but also give us a chance to dig deeper into the connection between REN and CO2 emissions. Our research is distinct from the aforementioned in that we aim to investigate the dynamic benefits of REN in reducing CO2 emissions when globalization levels shift.
3 METHODOLOGY
3.1 Data and variables
The data period covers 1970–2022 for a panel consisting of 55 developing and developed countries (Supplementary Appendix S1). The countries are spread across all continents. In this study, we examine these 55 countries based on the availability of the panel dataset. In East Asia (EAS), South Asian countries (SES), Europe and Central Asia (ECA), and the Middle East and North Africa (MENA), there are 25, 6, 35, and 18 countries listed, respectively, but we only examine 12, 4, 26, and 13 countries from these regions. Furthermore, all four continents have been categorized on the basis of developing and developed countries. In the EAS, SES, ECA, and MENA categories, there are 8, 4, 16, and 7 developing and 4, 10, and 6 developed countries, respectively. Continents of developing countries were analyzed for measuring the amount of green economic growth attributable to investments in economic growth, CO2 emissions, R&D, and REN. The results of an econometric estimating procedure were obtained using a two-stage GLM and RLS approach. This procedure reveals not only advantageous statistical influences but also the compositional and technical effects. In the domains of economic expansion and environmental degradation, both approaches provide significant advantages (Ilyas et al., 2024; Zhao et al., 2024). Panel datasets offer greater flexibility, resilience, and interpretability, as well as the ability to handle a broad spectrum of data distributions, including continuous data (Mohammad Husain et al., 2024; Van Poecke et al., 2024). Moreover, this facilitates comprehension of the connections between the predictors and the response variable. The RLS resistance to outliers is superior to ordinary least squares resistance and increases precision by reducing the impact of outliers (Dada and Al-Faryan, 2024; Kwilinski et al., 2024). Ultimately, it furnishes resilient, adaptable, and comprehensible instruments for shaping and enhancing the dependability and precision of statistical deductions (Meygoonpoury et al., 2024). The composition impact was found to be much more influential than the technical effect during the investigation (Yu et al., 2023). This study also examines the impact of the most potent prospective public spending channels on green economic growth in terms of REN. The results indicate that increased government expenditure on education will help human capital-reliant industries. Similarly, government investment in R&D can speed up technological advancement.
Data sources and definitions for the explanatory variables used in the analysis are listed in Supplementary Appendix S2; these are abbreviated in Table 1. There are three categories of factors to consider while discussing REN, GDP growth, and CO2 emissions: the first category conceptually depicts the connection between REN, CO2 emissions, and CMIC; the second category presents REN, CMIC, EPC, and GDPC; and the third category presents REN and IVA. Each of the three subgroups also provides additional evidence of its relationship with developing and developed nations throughout the various continents. Therefore, the pragmatic study draws on annual data from 55 developing and developed nations between 1970 and 2022. Primary energy equivalents from hydro (excluding pumped storage), solar, geothermal, tidal, and wave sources contribute to the total primary energy consumption (TPES) as part of REN. REN not only originates from renewable municipal waste but also includes bio-gasoline, bio-diesel, bio-fuels, bio-fuel liquid, biogases, and other related sources. Biomass, which comes from creatures that were once alive or have just died, is the source of bio-fuels. Waste from businesses, households, and government agencies is collected by municipal authorities. Therefore, it does not release CO2 emissions when created, and a higher value of REN is linked to advances in technology and large investments in infrastructure. Emissions of CO2 are produced when fossil fuels are burned or when cement is manufactured using a combination of solid, liquid, and gaseous fuels; these emissions are the result of flaring gas and gas fuels. The EPC measures the amount of energy produced locally plus the amount of energy imported and changed in stock minus the amount exported with fuel subsidies. As a percentage of GDP, manufacturing, construction, water, electricity, and gas all contribute to what is known as “industry value added” (IVA). The origin value is indicated by the International Standard Industrial Classification (ISIC), versions 3 and 4. GDP per capita (GDPC) is calculated as the domestic product divided by midyear population, and it reflects the degradation of natural resources. CO2 emissions from manufacturing industries and construction (CMIC) include emissions from manufacturing industries and those resulting from the combustion of fuel in these industries. Fossil fuel energy consumption comprises oil, natural gas, and petroleum products.
TABLE 1 | Variable descriptions.
[image: Table listing variables, descriptions, and data definitions. Variables include REN, CO₂, CMIC, EPC, GDPC, IVA, and FFE, with their respective descriptions and definitions. Data sources are the World Bank and International Energy Organization.]High manufacturing and export development have a detrimental impact on the environment due to the release of CO2 emissions, while CMIC and FFE affect the infrastructure of this mega project. At first, increasing incomes lead to higher CO2 emissions across all stages of economic development. However, analysis of panel causality data found that REN also has had a major impact on CO2 emissions, IVA, and GDPC but not created effects on CMIC. In the SES, CO2 emissions have significantly affected EPC, GDPC, and FFE, except for other variables; similarly, in ECA, CO2 emissions have affected EPC. We begin by testing all potential explanatory variables in a panel data set, using GLM if the data are non-stationary, and doing maximum likelihood estimation using a variety of different distributions (Khan, 2024). The QML estimators are reliable because they consistently estimate the conditional mean of the parameters. The so-called second-generation test relies on applying the panel unit root test independently to each variable, hence enabling serial correlation across cross-sections (Khan S. Z. R., 2021). Estimating the stationary of each explanatory variable is crucial for this reason. Various unit root tests, such as the IPS augmented test and Pesaran’s (2007) cross-sectional panel unit root test, confirm the validity of the data.
3.2 Specification of the model
The identification approach of panel data encompasses a broad and empirically useful range of specifications that include the Poisson model with a negative binomial. The data processes are stationary in the GLM. Therefore, the unit root test examines each variable and indicates the stationary level, which also ensures the reliability of the result, including, according to the first generation test, the unit root has been computed individually. Subsequently, we computed the robust estimation with the least squares. Similar conclusions were drawn by Ben Jebli et al. (2020); they used the GLM and RLS estimate methods and the Granger causality test for 102 different nations over the time period of 1990–2015 (Chen et al., 2019b). It was discovered that the three areas of China—each—had a unique effect on the CO2 emissions caused by REN. The central area of China was largely unaffected by the detrimental effects that REN had on the eastern and western regions of the country (Najmuddin et al., 2022). They speculated that the disparity could be attributed to a geological element in the environment. According Eq. 1 the GLM assumption imply that the first two moments of [image: Please upload the image you would like described, or provide a URL where I can view it.] are a function of the linear predictor, where the Poisson count is [image: Log transformation formula, where \( g(\mu) = \log(\mu) \).].
[image: Equation displaying \( u = g^{-1}(\eta) \).]
[image: Mathematical expression displaying \( V_{i} = (\partial / \partial w) Y_{\mu} (g^{-1} (\eta)) \).]
where [image: Mathematical notation displaying V subscript mu of mu, represented as \( V_{\mu}(\mu) \).] is the mean–variance relationship, [image: Mathematical expression showing delta greater than zero, represented as \( \delta > 0 \).] is a possibly known scale factor, and [image: It seems there is an issue displaying the image. Please upload the image file or provide a URL so I can generate appropriate alt text for you.] is the weight that modifies scaling between observation (Eq. 2). For GLM’s likelihood estimator, the mean and link assumption are needed to provide an estimate; the distribution controls the mean–variance relationship. In order to estimate GLM-like models incorporating the mean–variance specification of individual variables with an exponential family distribution that does not satisfy the distribution criteria, the quasi-maximum likelihood (QML) is a useful estimator tool of the GLM. The exponential family distribution of Poisson and negative binomial is given by (Eqs 3, 4).
[image: The equation shows the function \( f(y_n, \mu) = (\mu^{y_n} \cdot \exp(-\mu)) / y_n! \). This equation represents the probability mass function of the Poisson distribution.]
[image: The mathematical expression for \( f(y_t, \mu_t, k_t) \) includes nested and multiplied functions: \( \left( T \left( y_t + \frac{1}{k_t} \right) \right) \left( T(y_t + 1) T \left( \frac{1}{k_t} \right) \right)^{\frac{y_t}{(1 + k_t \mu_t)^{1/k_t}}} \).]
The dispersion is restricted to 1, and prior weighting is not permitted. We follow the approach that includes, CO2 emissions, average annual energy use, GDP, and industry value CO2 emissions from manufacturing and building, as well as fossil fuel energy usage. These factors are detailed below.
[image: Mathematical equation representing a relationship: \( REN_{it} = \alpha_1 + \beta_2 CO_{2it} + \beta_3 CMIC_{it} + \beta_4 EPC_{it} + \beta_5 GDPC_{it} + \beta_6 IVA_{it} + \beta_7 FFE_{it} + \sigma_{it} \). Equation number (5).]
where REN represents renewable energy and i = 1,., 53 and t = 1970,…., 2022 indicate the location and time period (Eq. 5). REN is calculated using data on per-capita energy use, industrial value added, GDP growth rate, manufacturing sectors, and fossil fuel usage. It specifies the nation αit as a fixed effect, with [image: Please upload the image or provide a URL so I can help create the alt text for it.]1i– [image: Please upload the image or provide a URL so I can help create the alt text for it.]7i representing the parameters of elasticities for each explanatory variable in this panel data and [image: It seems like there was an error in your request as no image was provided. Please upload the image or provide a URL, and I will assist you with the alt text.]it specifying the country fixed effect.
[image: Summation from i equals 1 to n minus 1 of gamma sub i multiplied by r beta over sigma pi, where x sub i is divided by pi, equals zero. This equation holds for j equals 1 to k.]
Eq. 6 represents the second model for the robust least squares using M-estimation. If the scale [image: It seems like you've included some symbols and text, but no image was attached. Please upload the image or provide a link, and I can help create the alt text for it.] is known, then the k-vector of coefficient estimates [image: Mathematical expression featuring the Greek letter beta with a subscript M.] is obtained by solving the K nonlinear first-order equations. [image: It looks like there is no image uploaded. Please provide the image by uploading it, and I will be happy to help create the alt text for you.], where [image: Equation with gamma sub c of dot equals rho sub c of dot.], denotes the derivative of the [image: Greek letter rho with subscript c followed by a dot in parentheses, representing a mathematical function or notation.] function, and [image: It seems like text is intended to be described, but there doesn't appear to be an actual image provided here. Please upload the image or provide the URL, and I can help create the alternate text for it.] specifies the jth regressor for [image: Please upload the image or provide the URL so I can help create the alt text for it.]th observation. In this model, we first compute the S-estimates of the coefficient and scale before performing MM-estimation. The scale is then used as a fixed value with the bisquare function (4.684), which gives 95% relative efficiency for the normal error. The coefficient’s importance in the equation specifies the direction of causation.
[image: Equation showing a linear relationship: \( \text{REN}_t = \alpha_1 + \alpha_2 \text{CO}_2 + \alpha_3 \text{CMC} + \alpha_4 \text{EPC} + \alpha_5 \text{GDPC}_t + \alpha_6 \text{IV}_t + \alpha_7 \text{FEE}_t + \sigma_t \).]
The REN is the same as that in Eq. 7 with “i” countries and “t” time period, with [image: It looks like there was a mistake. Please upload the image or provide a URL, and I will help create the alt text.]1i−[image: Please upload the image or provide a URL so I can help you create the appropriate alternate text.]7i representing the parameters of each variable and [image: It seems there was an error with your request since no image was provided. Please upload the image or provide a URL so I can create the alternate text for you.]it specifying the fixed effect of country.
4 RESULTS
4.1 Descriptive statistics and unit root
Using linear panel estimate approaches, we analyzed data from developing and developed economies from 1970 to 2022 in order to examine the impact of renewable energy as a response variable on economic growth, energy consumption, and CO2 emissions across four continents, with each country’s renewable energy sector elaborated upon (Table 2). In relation to the value of the boxplot element examined in Figure 1, the median is represented by a 95% confidence interval with specified widths for upper and lower whiskers.
TABLE 2 | Descriptive statistics.
[image: A table displaying statistical data for seven variables: REN, CO₂, CMIC, EPC, GDPC, IVA, and FFE. Columns include Mean, Median, Maximum, Minimum, Standard deviation, Skewness, Kurtosis, and Jarque Bera. For example, REN has a mean of 0.914, a median of 0.312, a maximum of 1.952, and other statistics provided. The table notes that variable definitions are available in Table 1.][image: Box plot displaying BMI data from various countries, categorized by regions: East Asia (blue), Europe and Central Asia (red), Middle East and North Africa (orange), South Asian countries (green). The x-axis shows BMI values, and the y-axis lists countries, with notable high data points in Yemen and Uzbekistan.]FIGURE 1 | Continent distribution of countries. Sources: authors’ compiling by the continents (EAS, SES, ECA, and MENA).
All predictors with REN are integrated with the countries, as indicated by the fact that the lower whisker of REN shows the fewest outliers relative to FFE, EPC, and GDPC. The residual, actual, and fitted values of renewable energy and CO2 emissions are illustrated in Figure 2. The residual (blue line) results indicate a positive attitude if the actual percentage of renewable energy consumption in a developing country exceeds the fitted value predicted by the line for its factor impacting adoption in comparison to developed countries. This implies that developing countries, such as EAS, SES, and, more likely, MENA countries, have a higher percentage of renewable energy use than anticipated, as indicated by the identified factor. The MENA region will require an investment of over $200 billion in a substantial undertaking to support the region’s socio-economic development and develop REN, as dispersion in REN has been meticulously calculated. Second, if the fitted value is greater than the actual (red line) percentage, the residual indicates a negative attitude (Khan, 2023). This suggests that the developing countries have a lower percentage of renewable energy use than anticipated, as indicated by the factor. Third, the zero residual value indicates that a perfect fit would be achieved if the actual and fitted values were identical, resulting in a zero residual. Additionally, the fitted line is the light green line traced through the data points. This line is produced by the regression analysis and denotes the anticipated relationship between the independent and dependent variables in accordance with the selected model. In conclusion, the actual values demonstrate that, despite the absence of explicit individual values on the graph, the data points accurately represent the values of both the X and Y variables for each case study. The actual data point is represented by the position of each point (e.g., the specific factor value and corresponding percentage of renewable energy consumption of a developing and developed country) (Rabnawaz Khan and Kong, 2020).
[image: Line graph comparing expected, actual, and fitted data for different regions over two panels. The x-axis lists regions like Australia, Japan, and the United States. The y-axis represents numerical values. Rehearsal data is in blue, actual in black, and fitted in red. Spikes and fluctuations are visible across regions, with the highest variations observed in certain areas.]FIGURE 2 | Renewable energy and CO2 emissions.
The LLC, IPS, ADF, PP, and Hadri panel unit root tests, as well as the individual and trend intercept tests, along with the stationary test rendering to cross-sectional in first-generation unit root tests with a common root, the primary variables IVA, per capita GDP (Constant 2010 US dollar), and CMIC, and the other explanatory variables—in for both level and first difference—in order to eliminate inconvenience, are included in Supplementary Appendix S3. Following this, the co-integration test developed by Pedroni and Kao was executed prior to the empirical evaluation of the GLM and RLS approaches (Supplementary Appendix S4). These methods have become mainstream dynamic approaches of relevant studies (Işık et al., 2022; Rehman et al., 2023; Rothenberg, 2023). It is imperative to consider the dynamic interrelation of variables when doing analyses on distinct individual variables. The initial variation of time is a crucial variable when examining Granger causality between variables. The changes in variables are also directly influenced by the lagging effects of the policy or historical data. Third, the nature of the interaction between variables varies in the long and short terms, necessitating dynamic calculations for both time periods.
The short-run coefficient is significant, suggesting that there will be a decline in the short run (Koengkan et al., 2023). This conclusion is drawn from the fact that the logarithm of the coefficient does not account for major order relationships or transepts. Furthermore, the variance decomposition illustrates the proportion of focus arrow variance that can be accounted for by a particular variable indicator over a five-year period in the short run and long run. The long-run influence of REN on itself diminishes further into future, while the influence of predictor variables increases over time. This indicates that predictor variables exhibit a strong endogenous influence on REN as time progresses, while REN exhibits a weak endogenous influence on itself (Rothenberg, 2023; Bashir et al., 2024). For instance, in the short run, REN alone accounts for 100% of the variance in the focus arrow during the first period.
The residual indication of REN in different countries by region is elucidated in Figures 3A, B. The null hypothesis cannot be rejected in the level case, with the exception of CO2 emissions, IVA, and GDPC. Energy intensity, CO2 emission intensity, and renewable energy utilization are some of the important variables that are investigated in the study. There can be substantial cross-national and temporal variation in the operationalization, or the process of defining and measuring, of these variables (Shah et al., 2022). As an illustration, one way to quantify energy intensity may be by comparing energy use per capita in different countries or per unit of GDPC. It is also possible to use alternative metrics to measure the intensity of CO2 emissions and the utilization of renewable energy sources (Borelli et al., 2023).
[image: Four scatter plots show regional energy statistics. The x-axes represent the renewable energy share (REN) and y-axes show figures like CO2 emissions, commodity prices, and energy indicators for East Asia, South Asia, Europe and Central Asia, and the Middle East and North Africa. Patterns differ across regions, indicating varying energy dynamics and emissions.]FIGURE 3 | (A) Individual regression in East and South Asia. (B) Individual regression in Central Europe and the Middle East.
Afterward, we computed the GLM with Poisson quasi-likelihood, followed by the Wald test; the value was assessed using a negative binomial (k) with a family parameter; and panel least squares (PLS) regression was then performed before conducting the empirical valuation of RLS estimations.
4.2 Analysis of panel regression
A notable aspect of this study is the examination of the dynamic connections between REN, CO2 emissions, energy consumption, economic expansion, the industrial revolution, fossil fuel energy consumption, and energy consumption per capita. Accordingly, in applied economics, it is important to distinguish between static and unrealistic approaches: the line between dynamic and statistics is not a division between realism and abstraction but rather a distinction that appears in economic history as a realistic field of study. Therefore, this distinction should be acknowledged as a form of confirmation. The concept of equilibriumis fundamental in static and dynamic. While statistical equilibrium is fundamental, in dynamic contexts, equilibrium can be unstable if not handled carefully, potentially leading to significant changes in equilibrium levels.
Since the static model’s endogenous explanatory variables do not include any information about the variables’ historical values and the error term is serially and mutually independent, a dynamic model in the form of lagged endogenous variables and serially correlated errors must be constructed. As a result, GLM and RLS estimations include the lag of dependent variables as explanatory variables in the regression equation, indicating the dynamic link and permitting the construction of a dynamic model for the endogenous variables. These strategies are now commonly used in the dynamic techniques of many related investigations. It is critical to consider the dynamic relationship between variables while conducting independent analyses. Investigating the mean-variance relationship requires careful consideration of the first-time variation. Second, the lagged impacts of the policy or historical information have a direct impact on changes in variables. The dynamic lagging should be considered when analyzing developing countries as they are founded on the economic basis of the past and the process achieved by an economic corridor. As for the third, RLS necessitates M, S, and MM estimates in various locations because of dissimilarity in the relationship between variables.
4.3 Covariance of the generalized linear model
Table 3 shows the covariance computed by QML z-statistics in negative binominal log-likelihood with ordinary, Huber–White, and HAC (Newley–West) for different regions. We use a Poisson regression to determine the values that the dependent variable should take. The z-statistics of the coefficient are significantly positive, including overdispersion in the residuals of individuals. The presence of overdispersion is k = 0.536 in EAS, 0.047 in South Asia, 0.819 in ECA Central, and 0.0001 in the MENA.
TABLE 3 | Covariance by the generalized linear model.
[image: Table displaying regression results for different regions (EAS, SES, ECA, MENA) under three methods: Ordinary, Huber–White, and HAC. Variables include REN, CO₂, CMIC, EPC, GDPC, IVA, FEE, with values marked by significance levels (*** 1%, ** 5%, * 10%). Definitions provided in Table 1.]4.4 Estimation by robust regression
Figures 4A, B indicate the robust regression by M-estimation, S-estimation, and MM-estimation, which employ the REN of the panel dataset with explanatory variables. Before the estimation of robust regression, the ordinary least squares were computed in the work file and confirmed findings using diagnostic influence statistics to examine leverages for the second model. The bisquare function with a default tuning parameter value of 4.685 was utilized in each estimation performed using the median absolute deviation approach, and z-statistics were calculated using the estimated covariance matrix from the Huber distribution. The impact of switching from least squares to M-estimation on the estimated coefficients is significant (Table 4).
[image: Several scatter plots depict the relationship between GDP per capita (GDPC) and CO2 emissions for various regions: EAS, SES, MENA, and ECA countries. Each plot uses different colored markers to represent individual countries, with axes labeled accordingly. There are linear trend lines included in each graph.]FIGURE 4 | A) East and South Asia of GDPC and CO2 emissions. (B) Europe and Central Asia’s GDPC and CO2 emissions.
TABLE 4 | Estimation by robust regression.
[image: A table displays statistical estimations for various covariates and regions labeled as EAS, SES, ECA, and MENA. Columns are divided into M-estimation, S-estimation, and MM-estimation. Each cell contains numerical values with markings indicating significance levels: three asterisks for one percent, two for five percent, and one for ten percent. The definition of variables is provided in Table 1.]In the EAS, the results of robust estimates show statistically more CO2 emissions, IVA, CMIC, and FFE on REN than those of ordinary panel least squares and strongly reject the null hypothesis, where the robust estimation indicated a lower coefficient value compared to least squares. Consequently, Eq. 7 suggests the observation of high leverage for the relationship between them, and EPC and GDPC do not show any change in robust estimation. Furthermore, R2 (24.65), R2 (81.26) adjusted, and goodness-of-fit measures indicate that the model explains approximately 60%–90% of the variation in the constant-only model. Likewise, in the SES, CO2 emissions, EPC, and IVA strongly reject the null hypothesis, suggesting a high-leverage relationship among them. GDPC, CMIC, and FFE did not reject null hypotheses. In ECA central CO2 emissions, IVA and FFE on REN strongly reject the null hypothesis, where the robust estimation indicated a lower value relative to panel least squares. CMIC has not rejected the null hypothesis, and EPC and GDPC showed no effect in robust estimation. In the MENA, the results of robust estimates show a statistically negative impact of CMIC and FFE on REN compared to ordinary least squares, strongly rejecting the null hypothesis. This suggests a high leverage in the observed relationship between REN, CMIC, and FFE. The least squares of CO2 emissions and IVA indicate that the null hypothesis is not rejected, and EPC and GDPC do not show any change in robust estimation. The results across countries or over time can be difficult to compare due to these inconsistencies. While one nation may appear to have a lower energy intensity than another depending on the meter it uses, in reality (Yu et al., 2022), it may be consuming more energy overall. In order to make more accurate comparisons, researchers in the future should focus on standardizing data or use methods to account for possible measurement differences (Hao et al., 2022). Furthermore, the M-estimation reported a 4.684 turning parameter, and the result from M-estimation and MM-estimation are generally quite similar in all region robust estimations.
Table 5 provides the values of correlation of coefficient “r” measured by likewise deletion with an ordinary method, indicating the strength and direction of the linear relationship between variables in different regions. In addition, a correlation coefficient of 0.138 indicates a weak uphill (positive) linear relationship between CO2 emissions to REN in ECA central, while a correlation coefficient of 0.442 suggests a moderate uphill positive relationship in EAS. Similarly, the highest positive uphill linear relationship is observed between EPC and CO2 emissions, with an r-value of 0.922 in ECA. In addition, the correlation between economic growth and CO2 emissions is statistically significant in this study. In order to achieve robust economic growth, industrial expansion is crucial. Concurrently, one of the main causes of environmental degradation is unplanned industrialization. The results from this study are consistent with those from You et al. (2024). The goal of REN is to help achieve environmental sustainability by reducing ecological damage. Therefore, improving environmental conditions is an outcome of investing in REN. Consistent with our findings, previous research has shown a negative correlation between REN and CO2 emissions (Perone, 2024; Yadav et al., 2024).
TABLE 5 | Correlation of continents.
[image: Correlation table displaying relationships between variables across continents: REN, CO2, CMIC, EPC, GDPC, IVA, and FFE. Variables are analyzed for EAS, SES, ECA, and MENA. Correlations include significance levels denoted by asterisks: *** for 1%, ** for 5%, and * for 10%. Definitions are in Table 1.]5 DISCUSSION
(Figures 4A, B) There was a positive benefit in a high economic growth regime but a negative effect on CO2 emissions for all EAS countries except Australia, Japan, and New Zealand. Using a panel autoregressive distributed lag (PARDL) model (Koengkan and Fuinhas, 2020; Khan, 2022; Khan et al., 2022c; Khan, 2023), researchers analyzed the impact of switching to REN on CO2 emissions in LAC nations (Shahbaz et al., 2018), which is suitable for analyzing alterations in parameters over time. In order to better understand these energy challenges, this research employs the GLM and RLS model. For example, Aydin and Cetintas (2022) observed that when using REN as the transition variable, there is an inverted US-shaped link between economic progress and environmental degradation. Chiu and Lee (2020); Rabnawaz Khan and Kong (2020); Khan S. Z. R. (2021); Aydin and Cetintas (2022) used a number of transition variables to examine the impact of country risks on the energy-finance nexus. Both the short- and long-term analyses revealed that transitioning to REN decreased CO2 emissions. Bilgili et al. (2016) drew their conclusions from studies conducted in 17 OECD countries and found that CO2 emissions were reduced while economic growth was increased because of the use of REN.
Furthermore, developing countries are expected to be the source of climate catastrophe in Asia in the coming decades (Yu et al., 2023). However, their weak infrastructure and lack of resources will make it difficult for them to adapt to and sustain economic growth in the face of a changing climate. This is evidenced by Singapore’s high economic growth with relatively low CO2 emissions and Brunei’s emissions being above the median line. On the other hand, a developing nation that is short on grid infrastructure and in need of investment in smaller, distributed renewable energy solutions would not benefit from the same program (Ali et al., 2023). To encourage renewable energy and decrease CO2 emissions, it is essential to understand these intricacies and craft successful policies. Due to their distinct situations and problems, industrialized and developing nations call for distinct strategies (Wolde-Rufael and Weldemeskel, 2020; Raihan et al., 2022). Extensive studies in the economies of Brazil, Russia, India, Indonesia, China, Turkey, and South Africa (BRIICS) revealed that REN helps improve environmental quality (Khan, 2023; Li et al., 2024). They all agreed that increasing the use of REN sources and addressing problems with energy demand should be at the forefront of any environmentally friendly industrial plan. Despite the strong will behind transitioning to renewable energy and reaching net-zero emissions, there are still substantial legislative hurdles to overcome, especially when contrasting the realities of developed and developing countries. Public support and political will for ambitious climate policies are two factors that can be challenging to translate into action in developing nations, even if environmental issues are likely to be high on the public agenda (Abbasi et al., 2021). Rigid environmental restrictions can be thwarted by powerful lobbying efforts by special interests in the fossil fuel sector. The second part is financial factors; political and public opposition may arise from the perceived short-term economic costs of abandoning the fossil fuel infrastructure that has been in place for a long time (Saba, 2023). In order to achieve both short-term economic success and longer-term environmental sustainability, thoughtful policymaking is required. In the case of developed countries, reducing poverty and boosting the economy are typically seen as two opposing goals. There may be competition for scarce government resources and attention from environmental concerns, even as they are gaining recognition (AlNemer et al., 2023). Second, funding, technical knowledge, and physical infrastructure in poor nations may be insufficient to establish and uphold thorough environmental regulations. Because of this, it may be difficult to implement and sustain renewable energy solutions (Perone, 2024). However, these policy problems can be addressed through international cooperation. Financial aid from developed nations can encourage developing nations to engage in renewable energy infrastructure, scientific research, and capacity-building programs. Innovations in renewable energy technology can be shared to hasten its implementation in underdeveloped nations (Yadav et al., 2024).
Many studies have examined the environmental impact of REN, but their findings have been inconsistent. In general, two themes emerge from the empirical data (Sung et al., 2018). The first group of studies shows that decreasing CO2 emissions and boosting the use of REN sources help the environment. The increasing use of REN sources has a negative impact on the environment, consumes valuable green space, and exacerbates pollution, all of which make it harder to cut down on CO2 emissions. (Tran et al., 2022) As a result, it is important to discuss the impact that REN has on CO2 emissions. The second line of thought proposed that there was no real impact of REN on the environment, and some academics offered proof for this claim. Dong et al. (2020) suggested that countries with lower per capita income did not benefit from the CO2 emission reduction benefits of REN. In contrast, reduction impacts are sizable in both nations with low and high per capita income. They said that countries with greater incomes already have the capital to invest, state-of-the-art scientific knowledge, and the required infrastructure to reduce CO2 emissions (Algieri et al., 2022). We have discussed the intricacies and difficulties in relation to renewable energy and CO2 emissions. First, from a socioeconomic perspective, emerging nations have the necessary infrastructure in place and access to larger sums of money to invest in renewable energy. Integration with the grid and efficiency gains can be their primary goals (Elstad, 2022). Renewable energy sources, such as solar and wind power, may be plentiful in developing nations despite their lack of investment and energy infrastructure (Ali et al., 2023). The provision of initial financial support and the construction of new infrastructure may be their top goals. Second, developed nations have set clean energy targets or carbon pricing mechanisms to encourage the use of renewable energy sources. In terms of environmental policy enforcement, poor nations either do not have the necessary resources or have less robust regulatory frameworks (Kartal et al., 2023). Third, when it comes to energy infrastructure, industrialized nations have advanced grids that can accommodate renewable power generation on a massive scale (Ali et al., 2023; László, 2023). Renewable energy integration is more difficult in developing countries due to low-quality infrastructures or high reliance on energy sources derived from fossil fuels. Fourth, policies that work in rich nations with well-developed infrastructure and carbon pricing may not have the same impact in poor nations with fewer resources (Jahanger et al., 2023). An industrialized nation with a robust infrastructure might benefit from a program that encourages large-scale solar installations through feed-in tariffs.
Additionally, the United Arab Emirates and Qatar (countries with the second-highest ecological footprint globally) are contributing to increasing CO2 emissions in the MENA region; Romania’s fossil fuel combustion decreased by 14.6% in 2012; in Turkmenistan, CO2 emissions increased from 19 million to 100 million, at an annual rate of 10%–20% from 1997 to 2016; and CO2 emissions in Hungary and Ukraine are decreasing slightly. Using the generalized spatial two-stage least squares (GS2SLS) method, Radmehr et al. (2021) investigated the immediate triggers of the CO2 emission increase during 1995–2014 in the context of ECA. They identified a unidirectional causal relationship between REN and CO2 emissions, recommending that CO2 mitigation techniques should be included in investment plans for REN. Furthermore, the results showed a weak negative correlation, which may be because educational opportunities are underfunded despite the fact that they would improve both technological competence and environmental literacy (Barnea et al., 2022). One competing theory holds that the high levels of CO₂ emissions seen in both developing and wealthy nations show that the investments made in the human sector through industrialization so far are not enough to significantly reduce these emissions (Bergougui, 2024). Further environmental harm is increased by using non-REN sources. Energy sources that cannot be replenished increase opportunities for business, transportation, agriculture, and job creation. In response to increasing CO2 emissions, the demand for alternative REN sources has surged in the last several decades (AlNouss et al., 2022).
The contribution of CO2 emissions, EPC, IVA, GDPC, CMIC, and FFE is largely exogenous, implying that regions are subject to varying influences. CMIC and FFE exert a considerable influence on predictor factors on the EAS and MENA continents but a limited influence on the prediction of REN on the SES and ECA continents. In addition, a predator exhibits a strong endogenous influence on REN removal in the future, whereas REN demonstrates a weak endogenous influence on itself (Chiu and Chang, 2009). The effect of reducing CO2 emissions would not be visible until the share of REN supply in total energy supply for the 20 OECD countries reached 8.39 percent between 1996 and 2005, according to one analysis. Attempts to demonstrate a causal relationship between REN and CO2 emissions have yielded varied results, which may be related to a number of factors. When analyzing the relationship between REN and CO2 emissions, it is critical to remember that globalization may have a significant effect. The numerous environmental benefits of globalization include the promotion of renewable energy sources and the decrease of pollution. Global environmental policy differs greatly between developed and developing countries (Kwilinski et al., 2024). Harsher environmental laws are typically implemented by developed nations in response to public pressure and harsher legislation. Investments in clean technology, emission reduction goals, and carbon pricing schemes are all examples of what could fall into this category (Grodzicki and Jankiewicz, 2022). Policy changes like these, however, are not always cheap or simple to implement. However, reducing poverty and boosting economic growth are frequently the top priorities of developing nations (AlNemer et al., 2023). Despite growing awareness of environmental issues, comprehensive environmental policies may be challenging to establish and uphold due to a lack of funding and other competing demands (Perone, 2024). In order to help developing nations build strong environmental rules and implement sustainable development practices, developed countries can provide financial aid and work together internationally to close this gap.
6 CONCLUSION AND POLICY IMPLICATION
The goal of this study is to investigate the nexus between renewable energy consumption and CO2 emissions and economic growth by using a panel estimate approach in developing and developed countries over the period 1970–2022. Our strong motivation is to fill the gap related to the absence of studies discussing this subject in developing and developed countries. Developing and developed countries are an exact representative example of a continent’s economic corporation, and it is a plan based around two cores with low to high income. Analysis of the data shows a correlation between CO2 consumption, renewable energy, manufacturing industries, construction value added, and GDP per capita, as well as regional growth and cooperation potential for energy consumption among countries. The major findings can be summarized as follows: there is a feedback relationship between economic growth and renewable energy consumption in the case of whole, developing, and developed countries. The countries on the same continent tend to behave differently in terms of their economic contributions; hence, policy recommendations for energy are broken down by region. Positive and rapid economic growth was seen in East Asian countries, and a correlation was found between GDP per capita, industry value added, and renewable energy.
The primary suggestions emerging from our study can be introduced as follows. First, the emergence of a feedback relationship between the renewable energy category and income explains the strong association between them. Inside the groups of countries analyzed, the mentioned association proposes energy strategies intended to expand the utilization of renewable energy, producing a positive effect on output. Policymakers should encourage renewable energy projects to beat the limitations on nonrenewable energy consumption and ameliorate economic growth. Second, we discover a bi-directional causality between trade and economic growth. It implies that trade plays a vital role in enhancing the growth of developing and developed countries. It involves that policy that accelerates economic growth will prompt the trade. In addition, it implies that policymakers should prompt trade to facilitate the creation of a competitive advantage, accelerate the transfer of technical knowledge, and attract foreign direct investment. Third, we show a feedback connection between trade and renewable energy consumption. This implies that trade openness needs to outlay more renewable energy consumption. In addition, it involves that renewable energy helps the integration of developing and developed countries in international trade. Openness is an important vehicle serving the transfer of renewable energy technology. Policymakers ought to take distinctive measures to develop the renewable energy division, for example, giving fiscal incentives for renewable energy and promoting investing in renewable energy projects. Energy preferences can also be influenced by societal norms on sustainability and the severity of environmental laws in a given nation. Another disclaimer is that “spillover effects”—the phenomenon whereby a change in energy policy or technology in one country influences the energy dynamics in neighboring countries—may have been disregarded in the study. Furthermore, recent technological developments—adoption of renewable energy sources and energy intensity could be profoundly affected by innovations in energy efficiency and battery storage. Energy usage and emissions can be influenced by policy interventions such as carbon pricing schemes or subsidies for renewable energy. Furthermore, the degree of government bureaucracy and the rigor of environmental rules are examples of institutional factors that could influence energy consumption decisions. Public sentiments toward sustainability and energy conservation are examples of socio-cultural factors that can impact energy usage habits. In addition, policymakers may be able to gain a deeper understanding of the topic and make more comprehensive changes to relevant policies in the future if they analyze the link between the empirical study and a theoretical framework.
The implications of these results for policies and initiatives aimed at accomplishing a transition to renewable energy and net-zero emissions are substantial. Our research emphasized that by addressing income inequality via income redistribution, there would be a substantial increase in the utilization of renewable energy sources, accompanied by a reduction in energy intensity and nonrenewable energy consumption. According to the results of the study, the introduction of feed-in tariffs, the lowering of barriers, and the provision of financial aid are all examples of financial incentives that are necessary for the implementation of renewable energy sources. The economy may reduce its impact on the environment by using less fossil fuels. We must support environmentally conscious businesses, encourage the usage of green bonds, and set standards for environmentally conscious responsible financial operations. Planning for sustainable urban environments, including walkability, compactness, and energy efficiency, must be a top priority.
Despite providing a moderate empirical contribution to policy concerns regarding the attainment of energy transition and net zero, this study is not without its constraints. We utilized a global sample of 55 nations for our research. Although utilizing a sizable sample size enhances the validity of generalizations and conclusions, it is likely that the policy recommendations it generates do not pertain to specific countries. This constraint enables further research endeavors to examine the correlation between renewable energy, economic growth, energy consumption, and the interplay of CO2 emissions in industrialized and developing countries through the implementation of country-specific analytical methodologies. This would substantially aid policymakers in comprehending the political and economic obstacles that impede the attainment of carbon neutrality and energy transition by 2050. However, our research has policy implications that could potentially inform worldwide energy transition and net-zero strategies.
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Introduction: By constructing a computable general equilibrium model of "carbon trading" and "carbon trade-carbon tax", this study aims to deeply explore the combined impact of these two policies on China's economic development and carbon emission reduction, so as to provide scientific decision support for policy makers.Methods: In order to accurately simulate the economic effects of carbon trading policies, the carbon trading module was introduced in detail in the "carbon trading" model, and the carbon trading cost was incorporated into the elastic substitution function production module. At the same time, in order to comprehensively evaluate the effect of the combination policy of "carbon trade-carbon tax", the cost of carbon tax is included in the constant elastic substitution function of production in the model.Results and Discussion: Through in-depth data analysis and model calculation, it is found that although a single carbon trading policy can effectively promote the reduction of carbon emissions, its impact on the economy is relatively moderate, especially in promoting the technological upgrading of the power industry. The "carbon trade-carbon tax" combination policy has further strengthened the emission reduction action, in a number of industrial sectors, such as coal, power, heavy industry and light industry, by significantly increasing the cost of carbon emissions to promote emission reduction. The above results show that carbon tax policies play an important role in balancing carbon emission reduction and economic development. Compared with the single carbon trading policy, the introduction of carbon tax makes the emission reduction efforts of various departments more comprehensive, and also contributes to the stable development of the economy.Keywords: carbon trade, carbon tax, policy, economy, carbon emission reduction, CBE modelling, combined impacts
1 INTRODUCTION
With the increasingly serious global climate change, reducing greenhouse gas emissions and promoting environmental protection have become the consensus of the international community (Harker-Schuch et al., 2021; Ramsey et al., 2022). Carbon trading and carbon tax policies have received widespread attention as the main economic means to address this challenge (Zhang and Ma, 2022). However, how to minimize the impact on the economy and society while ensuring the realization of emission reduction targets is a major problem for policymakers (Wang TS. et al., 2020; Heydari and Mirzajani, 2021). Although the current research has discussed the individual effects of carbon trading and carbon tax policies, the research on the impact and optimal combination of the two is still insufficient (Hardadi et al., 2020; Du et al., 2022). In particular, when macroeconomic indicators such as economic growth, unemployment rate and carbon emission reduction effect are taken into account, the existing literature lacks systematic analysis and empirical support (Long et al., 2021; Yadav et al., 2021). In order to fill this knowledge gap, this study explores the impact of different policy combinations on macro-economy and carbon emission reduction by constructing a “carbon trade-carbon tax” policy simulation framework based on a computable general equilibrium (CGE) model. As a mature economic analysis tool, CGE model can comprehensively simulate the complex interaction of economic system and evaluate the chain reaction brought by policy changes (Wang C. et al., 2020; Gu et al., 2022). It is expected that by utilizing the unique advantages of CGE model, this study can more accurately predict and compare the economic costs and emission reduction effects under different policy combinations, so as to provide scientific basis and decision support for policymakers. The first section of the paper focuses on the CGE-based “C-Trade-C-Tax” policy simulation model, the second section analyses the impacts of a single “C-Trade” policy on Macro-E and Carbon emission reduction (CER), and the third section analyses the impacts of a single “C-Trade” policy on Macro-E and CER. Section 2 analyses the impact of a single “C-Trade” policy on Macro-E and CER, while Section 3 analyses the combined impact of a “C-Trade-C-Tax” policy combination on Macro-E and CER; and Section 4 concludes.
2 LITERATURE REVIEW
With the increasing importance of sustainable development, many scholars have done a lot of research on it. To explore the role of information and communication technologies (ICTs) in environmental sustainability, Shobande and Ogbeifun conducted panel data analysis for 24 OECD countries using standard fixed effects and dynamic panel methods. It is found that ICT plays an important role in promoting environmental sustainability and influences the environment through various mechanisms such as education and transportation (Shobande and Ogbeifun, 2022a). In addition, to explore the impact of financial development and energy consumption on environmental sustainability in OECD countries, Shobande and Ogbeifun used the standard fixed effects and Arellano-Bover/Bundell Bond dynamic panel approach. The results show that the financial development index and energy efficiency are crucial to reducing carbon emissions and promoting sustainability in OECD countries, and it is recommended to prioritize the development of finance and investment in energy efficiency to promote environmental sustainability (Shobande and Ogbeifun, 2022b). Addressing the complexity of the climate change challenge, Shobande and Asongu explore the role of education and ICT in promoting environmental sustainability in East and South Africa. Using the third-generation panel unit root and co-integration test, combined with Granger causality analysis, the results show that education and clean technology investment can complement each other to reduce carbon emissions and promote environmental sustainability (Shobande OA. and Asongu SA., 2022). In addition, Shobande and Shodipe explored the impact of energy policies on curbing carbon emissions in the United States, China, and Nigeria, using a dynamic stochastic general equilibrium (DSGE) model (Shobande and Shodipe, 2019). The results show that properly guided carbon-free environmental policies have a positive impact on carbon reduction, pollution is highly correlated with macroeconomic fluctuations, and environmental policies can only be effective by considering both variables under the DSGE framework. Shobande discusses the role of monetary policy with a time series approach to climate change in the East African Community. The results show that monetary policy can help smooth the transition to a low-carbon economy through credit and interest rate channels, but also bring financial uncertainty (Shobande, 2022). In response to the natural resource curse in Nigeria and Ghana, Shobande and Enemona explored the importance of sustainable finance through the Bayer and Hanck joint cointegration test and the vector autoregressive/vector error-corrected Granger causality test. The results show that sustainable finance is crucial to natural resource management, and the phenomenon of financial resource curse exists in both countries, in which the human development index is the medium through which sustainable finance affects the curse of natural resources (Shobande and Enemona, 2021). Shobande’s team examined the role of information technology infrastructure (ITI) in promoting climate resilience and environmental quality in OECD countries, using advanced econometric methods for empirical analysis. The results show that ITI and renewable energy significantly reduce carbon emissions and contribute to achieving net zero emissions targets, while economic growth and non-renewable energy use are harmful to the environment. It is recommended that policymakers use ITI to drive innovation and the energy transition to improve the environment (Shobande et al., 2024).
Shobande and Asongu used six advanced panel technologies to analyze the financial, human development and climate change issues facing eastern and southern Africa. The results show that the development of financial and human capital is critical to reducing CO2 emissions and promoting environmental sustainability (Shobande and Asongu, 2021). In order to reduce carbon emissions in 24 countries of the Organization for Economic Cooperation and Development, Shobande and Ogbeifun et al. used the generalized moment dynamic panel method to analyze carbon emissions in 24 countries. The results show that green innovation and economic growth increase carbon emissions, while renewable energy and social inclusion help reduce carbon emissions (Shobande et al., 2023). Aiming at the impact of information and communication technology on environmental sustainability, Shobande and Asongu combined STIRPAT framework and time series method of VAR/VEC Granger causality for analysis. Results show that ICTs contribute positively to environmental sustainability in South Africa (Shobande and Asongu, 2023). To test the energy-carbon Kuznets curve hypothesis, Shobande and Asongu used second-generation panel analysis to explore whether energy consumption, natural resources, and governance could explain the CKC proposition. The results show that these mechanisms play a key role in reducing carbon emissions in Africa, suggesting that the CKC hypothesis that does not take these factors into account is incomplete (Shobande O. and Asongu S., 2022). Aiming at the role of technological innovation in economic development and carbon emission, Shobande and Ogbeifun adopted standard panel fixed effect, Arellano-Bover/Blundell-Bond dynamic panel analysis and Hausman-Taylor method for empirical analysis. The results show that technological innovation has a significant impact on reducing carbon emissions, which can not only predict and identify carbon emissions, but also be used to monitor and mitigate their impact (Shobande and Ogbeifun, 2023).
According to the above related literature, it can be found that although the above research has deeply discussed the influencing factors and coping strategies of environmental sustainability in many aspects, there are still some shortcomings. First, most of these studies focus on the impact of a single policy or factor on the environment, lacking consideration of different policy combinations. Secondly, the existing research on the impact of policies on the environment and economy often ignores the internal connection and dynamic feedback mechanism between the two. Therefore, it is particularly important to construct a simulation framework that can comprehensively consider a variety of policies and their interactions, and deeply explore the combined impact of different policy combinations on macroeconomic and carbon emission reduction. This study aims to make up for this deficiency by constructing a “carbon trade-carbon tax” policy simulation framework based on CGE model, systematically analyzing the dynamic relationship between economy and environment under different policy combinations, and providing more comprehensive and scientific decision-making basis for policymakers.
3 CGE-BASED “C-TRADE-C-TAX” POLICY SIMULATION MODEL CONSTRUCTION
CGE is an economic analysis tool whose model was initially invented and developed to simulate market behaviour and assess policy effects (Veitia, 2021). With the passage of time, CGE models have been improved and refined, and their scope of application has been expanded, gradually becoming an important economics tool (Descartes et al., 2021). A “C-Trade-C-Tax” policy model based on CGE is suggested in the study in order to examine the impact of various external factors on China’s CER task under the “C-Trade” and “C-Trade-Carbon Tax” policy systems. C-Trade-C-Tax policy simulation model based on CGE, which is constructed with Math CAD 15 and Excel 2007.
3.1 CGE theory and its development
CGE model is an economic model based on the general equilibrium theory, which simulates the operation of the economic system by establishing specific mathematical equations and databases, and can reflect the changes in the quantity and price of commodities and factors in the economic system to achieve the balance of supply and demand (Ghesh et al., 2021). CGE model is characterized by its comprehensiveness and computability. It considers the equilibrium state of the entire economic system, not just the equilibrium of local markets or specific industries (Xavier et al., 2021). This allows CGE models to more accurately simulate the combined effects of economic policies on the entire economic system, including trade policies, tax policies, environmental policies, etc. The basic structure of the CGE model is shown in Figure 1.
[image: Diagram illustrating a Computable General Equilibrium (CGE) model. Central circle labeled "CGE" connects to nodes representing production function, taxation, income, market function, macroeconomics, and their variables. Icons of enterprise, government, and family are depicted at the top.]FIGURE 1 | Basic structure of CGE model.
As shown in Figure 1, CGE is mainly composed of market function, production function, Macro-economics, taxation and income distribution. Among them, the market function is the most basic part of the CGE model, which can connect the economic subjects on the market behaviour and economic structure on this basis. Macro-economics is the most complex part of the CGE model, which simulates the impacts of Macro-economics behaviour on the Macro-economics structure while linking the Macro-economics variables with the Micro-economic variables. structure and trend changes (Eyries et al., 2021; Kaygusuz et al., 2021). Taxation and income distribution is the most important part of the CGE model, which links government taxation and other income distribution methods and simulates the impact of different policies on, among other things, the structure of income distribution (Berkman et al., 2021; Liang et al., 2021). Under the background of macroeconomics, CGE theory integrates the basic principles of macroeconomics and the idea of general equilibrium, and simulates and analyzes the operation of the entire economic system by constructing mathematical models (An et al., 2023). In the context of macroeconomics, CGE theory emphasizes the overall equilibrium of the economic system and the interdependence between various sectors. It assumes that there are complex interactions between the various sectors of the economy, and that changes in one sector will have an impact on other sectors and ultimately affect the equilibrium state of the entire economic system (Connolly, 2020). CGE theory establishes a model involving multiple economic sectors to describe the supply and demand relationship among these sectors, the price formation mechanism, and the allocation of resources. The model usually includes production function, consumption function, trade function, etc., to reflect all aspects of economic activities (Fomin et al., 2020). By solving this set of equations, we can get the equilibrium relationship and change trend of each economic variable. In macroeconomic policy analysis, CGE theory has significant advantages. It can be used to assess the full impact of various economic policies on the economic system (Zhou et al., 2022). Through the simulation of the economic equilibrium state after the implementation of the policy, it can provide a scientific basis for policymakers to make decisions, and help to achieve stable economic growth and sustainable social development (Jha et al., 2020).
3.2 Material and method
Social Accounting Matrix (SAM) is the most important basic database for building the CGE, SAM multiplier analysis model. SAM includes the System of National Accounts (SNA) and the Input-Output (IO) tables, including accounts, taxes, expenditures, savings and investments. CGE model through the general equilibrium theory, the construction of the project relationship between the joint non-linear system of equations. For the CGE model, SAM can offer a complete and balanced data collection, as well as the sequence of compilation for the macro and micro SAM tables.Generally speaking, the IO table represents the value of China’s output volume for each sector of the composite for a given year. China’s Bureau of Statistics compiles IO tables every 5 years, and the study uses the 2022 IO table. The macro SAM table used for the study is shown in Table 1.
TABLE 1 | China Macro SAM (100 million).
[image: A table displaying various categories including Events, Commodity, Labour, Capital, Residents, Enterprise, Government, Abroad, and Capital Account, with corresponding numerical values. The Summary column shows totals for each category. Some cells contain slashes indicating no data. Key values include Commodity with a total of eight hundred ninety-four thousand three hundred thirteen, and Residents with one hundred fifty-three thousand three hundred fifty-three.]The sectors of our IO table for 2022 are divided or merged to finally get the IO table based on 10 sectors.The correspondence of the sectors in our IO table for 2022 is shown in Table 2.
TABLE 2 | Sectors of model correspond to input-output table.
[image: Table listing departments by number, name, and code. Numbers range from 01 to 10. Departments include Coal, Petroleum, Natural Gas, Electric Power, Agriculture, Heavy Industry, Light Industry, Transportation, Construction Industry, Transportation again, and Service. Corresponding department codes are given, with some entries marked by an asterisk to indicate decomposed departments.]In a CGE model, variables are quantities that can vary in an economic system and represent different aspects of economic activity. These variables can be divided into endogenous variables and exogenous variables. Endogenous variables are determined inside the model, and their changes are affected by the economic mechanism and equilibrium conditions inside the model. Exogenous variables are externally given, and their changes are not affected by the internal mechanisms of the model, but have an impact on the results of the model. In the combination of the SAM table and the CGE model, some of the key variables include the prices of goods and services, the supply and demand of factors of production, taxes and government spending, and international trade. These variables are represented in the SAM table and are correlated and calculated by the equations in the CGE model. The endogenous parameters required by CGE are obtained by combining the 2022 SAM table with the CGE model equation. Firstly, the coal price needs to be standardised and then the relative price relationship is calculated based on the actual price relationship, and the price relationship between coal price and other energy sources is shown in Table 3.
TABLE 3 | Energy prices and standardized price comparison relationships.
[image: Table comparing various energy prices in Yuan. Purchase price of raw coal is 376.1 Yuan per ton. No. 93 gasoline is 6473 Yuan per ton. No. 0 diesel is 5548 Yuan per ton. Industrial natural gas is 2.1 Yuan per cubic meter. Retail electricity price is 0.53 Yuan per kilowatt-hour. Industrial electricity price is 0.52 Yuan per kilowatt-hour. EUA price is 225.1 Yuan. Coal to oil to natural gas to electricity to carbon quota price ratio is 1:7.3:3.8:1:0.05.]To reveal the influence and induction of each industry in the national economy focus, the study quantitatively analyses each industry through the influence coefficient, which is calculated as shown in Eq. 1.
[image: Summation of \(b_{i,j}\) over \(i\) divided by the whole summation of \(b_{i,j}\) over \(j\) and \(i\), with \(i, j = 1, 2, 3, \ldots, 10\), labeled as equation (1).]
In Eq. 1, [image: Please upload the image or provide a URL so I can create the alt text for you.] is the inverse matrix coefficient; [image: Summation notation with the Greek letter sigma. The expression shows the sum of \( b_{i,j} \) over the index \( i \).] is the influence. [image: It seems there is no image uploaded. Please try uploading the image again or provide a URL.] and [image: Please upload the image or provide a URL to generate the appropriate alt text.] represent indexes of industries, used to identify specific industries. [image: It seems there might be an issue with the image upload or description. Please try uploading the image again or provide more context or a URL.] represents the total number of industries in the national economy. Subsequently, each industry is quantitatively analysed through the inductance coefficient, which is calculated as shown in Eq. 2.
[image: Mathematical expression showing the ratio of the sum of \(b_{ij}\) over \(j\) to the product of \(1/n\) and the sum of \(b_{ij}\) over both \(i\) and \(j\), where \(i, j = 1, 2, 3, \ldots, 10\).]
In Eq. 2, [image: Mathematical notation showing the variable \(b\) with subscripts \(i\) and \(j\), typically indicating an element in a matrix or array.] is the inverse matrix coefficient; [image: Summation notation with the symbol sigma and subscript j, summing over variables \( b_{i,j} \).] is the inductive force. The study calculated the Influence, Influence coefficient (IC), Induction force and Sensitivity coefficient (SC) of each industry sector in 2022 through IO table. Table 4 demonstrated the results.
TABLE 4 | Influence and induction parameters of each department.
[image: A table displays data for various departments, including Coal, Petroleum, Natural Gas, Electric Power, Agriculture, Heavy Industry, Light Industry, Construction Industry, Transportation, and Service. Columns show Influence, IC, Sensitivity, and SC values. Electric Power has the highest Influence at 2.98, while Heavy Industry shows the highest Sensitivity at 7.78. SC values range from 0.42 to 3.07 across departments.]An efficient way to gauge the effects of changes in economic indicators is using the multiplier analysis method. The study decomposed the account multipliers into three categories of net effects by extracting the initial inputs, namely, transfer multiplier matrix, open-loop multiplier matrix and closed-loop multiplier matrix. The results of the three types of net effects are shown in Table 5.
TABLE 5 | Three types of net benefit results.
[image: A table comparing endogenous accounts with columns labeled as total net effect, transfer net benefit, open loop net benefit, and closed loop net benefit. The accounts include coal, petroleum, natural gas, electric power, agriculture, heavy and light industries, construction, transportation, service, labor force, capital, and resident. Numbers represent various benefits, highlighting the highest total net effect for agriculture at 5.88 and the lowest for capital at 0.35. Closed loop net benefits are highest for agriculture at 2.92 and lowest for capital at 0.14.]The certification of the data used in this study is mainly reflected in the authority of its source, the scientific nature of data preparation, the rigor of data processing and the calibration of model parameters. First of all, the data source is China’s SAM, which includes the system of national accounts and the IO table. These data are compiled by the National Bureau of Statistics once every 5 years and are official and authoritative, ensuring the accuracy and reliability of the data (Timilsina et al., 2024). Second, SAM tables provide a comprehensive and balanced data set for CGE models, and the compilation process strictly follows the order of macro to micro. At the same time, the IO table is calculated by value, reflecting the synthesis of the output of various departments in China in 1 year, which further enhances the scientific and practical data (Tanaka et al., 2022). Then, before applying the data to the CGE model, operations such as the division or consolidation of sectors and price standardization are carried out, all of which are based on rigorous economic theory and statistical methods aimed at ensuring the consistency and availability of the data. Finally, the endogenous parameters required for the CGE model were obtained by combining the 2022 SAM table with the CGE model equations for calibration, a process that also ensures the model parameters match and are consistent with the underlying data.
The CGE model can describe the relationship between different variables in an economic system through a series of nonlinear equations. These equations are based on general equilibrium theory and take into account various aspects of economic activity such as market supply and demand balance, price formation, production structure, income distribution and consumption (Atanassov, 2022; Guo and Qin, 2023). In the model, different economic agents achieve their goals by optimizing their own behavior, which in turn is influenced by market prices, policies, and other economic factors. Therefore, this study can analyze the impact of macro-economy and carbon emission reduction through CGE model. The construction of CGE model includes production function, utility function, market equilibrium condition and so on. The production function describes how an enterprise combines production factors to produce goods and services, and the substitution relationship between production factors. The utility function describes how residents choose to consume different goods and services according to their preferences and income levels. The market equilibrium condition ensures that the supply and demand of goods and services are balanced in the market. When constructing CGE model, it is necessary to select appropriate function forms and parameters to describe the characteristics of economic system. These parameters can be obtained by calibrating the SAM table and the CGE model equations to ensure that the model reflects the operation of the real economy. The availability of data, the complexity of the model and the rationality of the simulation results should be considered in the calibration process.
By combining general equilibrium theory and CGE to construct a “C-Trade-C-Tax” policy simulation model, the study classifies each industry into Electric Sector (ES), Coal sector (CS), Petroleum sector (PS), Natural gas sector (NGS), Light Industry Department (LID), Heavy Industry Department (HID), Agriculture sector (AS), Building Sector (BS), Transportation Sector (TS), and Service Sector, (SS), and each sector is assumed to correspond to only one good or service. The production module, the environment module, and the C-Trade module make up the “C-Trade-C-Tax” policy simulation model. The structure of the production module of the “C-Trade-C-Tax” policy simulation model is shown in Figure 2.
[image: Flowchart illustrating the production process. It starts with "Total output," then branches into "Intermediate investment" and "KEL synthetic." "KEL synthetic" splits into "Labour force" and "KE synthetic." "KE synthetic" and "Capital" lead to "Energy synthetic," which branches into "Coal," "Oil," "Gas," and "Electricity." The chart includes "Leontief" and "Constant Elasticity of Substitution" as inputs.]FIGURE 2 | Production module structure of the “Carbon trade Carbon Tax” policy simulation model.
As can be seen in Figure 2, in the “C-Trade-C-Tax” policy simulation model proposed in the study, each industry sector uses energy, capital, labour and intermediate inputs for production. Capital is defined as [image: Please upload the image or provide a URL so I can generate the alt text for you.], labour as [image: It seems there was an error in uploading the image. Please try uploading the image again or provide a URL if it's hosted online.], and energy as [image: Please upload the image or provide a URL for which you need the alternate text.], where energy is only included in coal, oil, natural gas, and electricity. In the first layer of the production function, non-energy intermediate inputs are calculated as shown in Eq. 3.
[image: Mathematical equation displaying \( Z_{i,j} = \alpha_{ij} \cdot X_i \) with equation number three in parentheses.]
In Eq. 3, [image: Please upload the image or provide a URL so I can assist you with creating the alt text.] denotes total expenditure in each sector; [image: It seems the image information is not fully visible. Please upload the image or provide a URL for detailed alt text creation.] denotes the direct consumption of sector [image: It looks like you tried to provide an image, but it did not come through successfully. Please try uploading the image again, and I will help you create the alternative text.] products by sector [image: It seems like there was an issue with the image upload. Please try uploading the image again or provide a URL. You can also add a caption to give additional context.] products. The equation for calculating total output by sector is shown in Eq. 4.
[image: Xi is defined as the minimum of four ratios: \( \frac{Z_{1,i}}{\alpha_{1,i}} \), \( \frac{Z_{2,i}}{\alpha_{2,i}} \), \( \frac{Z_{nd,i}}{\alpha_{nd,i}} \), and \( \frac{KEL_i}{\alpha_{KEL,i}} \). Equation labeled as (4).]
In Eq. 4, [image: It seems there is no actual image or URL provided. Please upload an image or provide a URL so I can create the alternate text for you.] denotes capital-energy-labour composites; [image: Mathematical symbol \( Z_{n,j} \) representing a variable or element, with subscript \( n,j \) indicating specific indices or parameters.] denotes non-energy intermediate inputs; and [image: Greek letter alpha with subscript indices i and j.] denotes the direct consumption of sector [image: It seems there was an error with the image upload. Could you try uploading the image again?] products on sector [image: Please upload an image or provide a URL for me to generate the alternate text.] products. In the second level of the production function, the relationship between capital, energy and labour is analysed using the factor synthesis approach. The equation for the capital-energy-labour composite is shown in Eq. 5.
[image: Equation representing a mathematical formula: KEL subscript l equals lambda subscript l times open parenthesis alpha subscript KEL subscript l times KE subscript l raised to the power of open parenthesis negative one over sigma subscript KEL close parenthesis plus open parenthesis one minus alpha subscript KEL subscript l close parenthesis times L subscript l raised to the power of open parenthesis negative one over sigma subscript KEL close parenthesis close parenthesis raised to the power of open parenthesis sigma subscript KEL over open parenthesis sigma subscript KEL minus one close parenthesis close parenthesis. It is equation number 5.]
In Eq. 5, [image: Unfortunately, I can't view the image directly. Please upload the image or provide more information about it so I can help create an alt text.] represents the conversion efficiency of labour in [image: Please upload an image or provide a URL for the image you want described.]; [image: Mathematical expression with the Greek letter alpha, followed by subscript letters k, E, and i.] represents the output elasticity of capital-energy composites in [image: Please upload the image or provide a URL to it, and I will create the alternate text for you.] B; and [image: Mathematical expression: sigma subscript \text{kEL}.] represents the coefficient of elasticity of substitution between energy-capital composites and labour. The equation for calculating capital-energy synthetic goods is shown in Eq. 6.
[image: Mathematical equation showing KE sub i equals lambda sub i, t raised to the power of sigma KEL i minus one, multiplied by alpha KEL i, raised to the power of sigma KEL i, multiplied by the fraction P sub KEL i over P KEL i sub t, raised to the power of sigma KEL i, multiplied by KEL sub i. The equation is labeled as equation six.]
In Eq. 6, the conversion efficiency of labour in [image: Please upload the image or provide a URL, and I will create the alternate text for it. If you have a caption or context, feel free to include that as well.]; [image: Mathematical expression with alpha subscript k E, i.] denotes the output elasticity of the capital-energy synthetic good in [image: It seems there might be a mistake with the input. If you meant to upload an image, please try again. If you have any questions or need assistance, feel free to ask.]. The labour product equation is shown in Eq. 7.
[image: Mathematical equation displaying variables and parameters in an algebraic expression: \(L_i = \gamma x_i^{KE_i - 1} \alpha KE_i^{\gamma KE_i} \left(\frac{P_{KEL_i}}{W_i}\right)^{\alpha KE_i} \cdot KEL_i\).]
In Eq. 7, [image: The image displays the Greek letter lambda subscripted by 1 and i, which may represent a variable or parameter in a mathematical or scientific context.] denotes the conversion efficiency of labour in [image: It seems like there was an error with uploading the image. Please upload the image file directly, and I'll be happy to help you create alt text for it.]; [image: The expression shows the Greek letter alpha subscripted with k and E, comma i.] denotes the output elasticity of capital-energy composites in [image: Please upload the image or provide a URL so I can generate the alt text for you.]; and [image: The expression shows a Greek letter sigma followed by the subscript KEL.] denotes the coefficient of elasticity of substitution between energy-capital composites and labour. As for the third level of the production function, capital-energy composites are obtained from a combination of capital inputs and energy and finished goods inputs, and the equation is consistent with the second level. In the environmental module, the equation for calculating carbon emissions by sector is shown in Eq. 8.
[image: The equation displayed is "CO2,n equals coef_n times X_e,n," labeled as equation 8.]
In Eq. 8, [image: Chemical formula \(CO_{2n_i}\) likely represents a repeated polymeric unit of carbon dioxide.] represents the actual carbon emissions from sector [image: It seems there is no image provided. Please upload the image or provide a URL, and I will assist you with the alternate text.]; [image: The image shows the mathematical expression "c o e f subscript n".] represents the [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] primary energy emission factor for each sector. In the C-Trade module, the carbon market calculation equation is shown in Eq. 9.
[image: Expressions show three scenarios: First, \(\sum_{i} \sum_{t} \text{CO}_{2,j} - \sum_{t} \text{CO}_{2,j} > 0\) indicates failure to meet emission targets. Second, equal expression equals zero, indicating achievement. Third, less than zero indicates exceeding targets.]
In Eq. 9, [image: It seems like you've entered something resembling a mathematical or chemical formula instead of an image or a URL. Please upload an image file or provide a URL for the image you'd like described.] represents the free carbon emission allowances specified in sector [image: It seems there is no image provided. Please upload the image or provide a URL, and I'll help you create the alt text.]; [image: Chemical formula "CO" with a subscript "2n" and subscript "i" following the "n".] represents the actual carbon emissions in sector [image: It seems there's no image attached. Please try uploading the image again or provide a URL, along with any context you'd like to include.]. The price of the minimised carbon-containing synthetic energy is calculated as shown in Eq. 10. The equation for calculating the price of minimised carbon-containing synthetic energy is shown in Eq. 10.
[image: The formula describes the minimization of \( P_{e_i} \) as the sum of products of \( X_{en_i} \) and \( P_{en_i} \), plus the sum of the difference between \( CO_{2n_i} \) and the average \( \overline{CO_2}_i \) multiplied by \( P_c \), all divided by \( E_i \).]
In Eq. 10, [image: It seems there was an error in uploading the image. Please try uploading the image again and I'll be happy to help with the alternate text.] represents the price of carbon emission allowances; [image: The image shows the mathematical expression "P" subscripted with "E" and "i", indicating a variable or parameter typically used in equations or scientific contexts.] represents the price of carbonaceous synthetic energy in sector [image: It seems you didn't upload an image. Please upload the image or provide a URL for it so I can help create the alternate text.]. When constructing and calibrating a CGE model, there are some important methods that should be used to ensure the accuracy and reliability of the model. First, it is crucial to choose the appropriate functional forms and parameters to describe the characteristics of the economic system. These parameters can be obtained by calibrating the SAM and CGE model equations, taking into account the availability of data, the complexity of the model, and the rationality of the simulation results. Secondly, the use of nested constant elasticity of substitution (CES) production functions in CGE models is an important approach. This type of function can analyze the substitution relationships between different factors of production, such as capital, labor, and energy. By setting different levels of nesting, the model is able to capture the complex relationships between these elements and provide insights into how they interact. In addition, calibrating the model using economic data is a key step in ensuring that the model reflects real-world economic conditions. This involves adjusting the model’s parameters to match observed economic data, such as production, consumption, and trade flows. The calibrated models can then be used to simulate the impact of policy changes, such as the introduction of a carbon tax or carbon trading scheme. In addition, integrating environment modules into the CGE model is another important approach. This allows assessment of the impact of economic activities on the environment, such as carbon emissions. By incorporating emission factors and carbon pricing mechanisms, models can assess the effectiveness of different policies aimed at reducing greenhouse gas emissions.
3.3 Model portrayal of C-Trade and C-Tax
The difference between the “C-Trade” and “C-Trade-C-Tax” models lies in level 4 of the production function. The sectoral cost of energy consumption in the “C-Trade” model covers the cost of energy procurement as well as the cost of carbon emissions. The equation for calculating the cost of energy use is shown in Eq. 11.
[image: Equation showing PEC subscript i equals PE subscript i plus PC subscript i, equal to one over E, multiplied by the sum over n of X subscript en,i,j multiplied by P subscript en,i,j plus P subscript c, multiplied by the sum over n of CO2 subscript n,i,j minus average CO2 subscript i, with equation label eleven.]
In Eq. 11, [image: Please upload the image you would like me to provide alt text for.] denotes the sectoral synthetic energy price; [image: Please upload the image or provide a URL, and I'll help you create the alt text for it.] denotes the sectoral synthetic energy carbon emission cost. In the energy consumption demand function, the actual sectoral carbon emissions, energy consumption, carbon emission free quota and energy carbon emission factor need to be considered. The equation for calculating sectoral synthetic energy consumption is shown in Eq. 12.
[image: Mathematical formula for \(E_i\) equals \(\lambda_{e,i}\) times the sum over \(n\) of \(\alpha_{n,j}\) multiplied by \(X_{e,n,j}^{1 / \sigma_e}\), raised to the power of \(\sigma_e / (\sigma_e - 1)\). Equation number 12.]
In Eq. 12, [image: It appears there is no image uploaded or URL provided. Please upload the image or provide a link for alternate text creation.] represents the coefficient of elasticity of substitution between energy sources; [image: Lambda subscript e, i.] represents the conversion efficiency of various energy sources in the total energy synthesis variety; and [image: Greek letter lambda with subscripts e and i in italics.] represents the consumption of energy source [image: Please upload the image or provide a URL so I can help create the alt text for it.]. The equation for calculating the consumption of each energy source in the sector is shown in Eq. 13.
[image: Mathematical equation expressing a complex function: \( X_{C_{e,j}} = X_{S_{e,j}}^{\gamma} \cdot \alpha_{C_{e,j}}^{\gamma_1} \cdot \left( \frac{PEC_{j}}{Pe_{nl} + Pc \cdot coef_{nl}} \right)^{\gamma_{n}} \cdot E_{i} \). It is labeled as equation 13.]
In Eq. 13, [image: It seems like there was an issue with uploading the image. Please try uploading the image again or provide a URL, and I can help you with the alt text.] represents the coefficient of elasticity of substitution between energy sources; [image: It appears that you provided text resembling a mathematical expression. If you have an image you'd like to describe, please upload it or share the image URL, and I can help create the alt text for it.] represents the coefficient of carbon emissions from energy sources; and [image: Mathematical notation depicting the Greek letter lambda with subscripts e and i.] represents the conversion efficiency of the various energy sources in the total energy product. In the “C-Trade-C-Tax” model, the production function in the fourth layer to consider the C-Trade price and C-Tax tax rate factors on energy consumption. In this case, the total cost of energy use is calculated as shown in Eq. 14.
[image: Equation 14 defines PECT as the sum of P_EL, P_CL, and P_TL. It equals one over E_i times a summation over n, including X_en,j times p_en,j, plus P_c, times the summation over n of CO_2n,j minus CO_2j, plus t_i times the summation over n of CO_2n,j.]
In Eq. 14, [image: It seems there's an issue with the image or the way it was uploaded. Please try uploading the image file again or provide a URL. You can also include a caption for context if needed.] represents the price of synthetic energy in the sector; [image: It seems there is no image uploaded. Please try uploading the image again or provide a URL. You can also add a caption for additional context if needed.] represents the cost of carbon emissions from synthetic energy in the sector; [image: It seems there is an issue with the image upload or link. Please ensure you upload the image file correctly or provide a URL. If there's anything else you'd like to describe or ask, feel free to provide more details.] represents the carbon tax on synthetic energy in the sector; [image: It seems there might be a mistake or confusion, as the input does not appear to be an image. If you have an image file, please upload it here, and I can help create alt text for it. If you intended to describe an image or need assistance with something else, let me know how I can assist you!] represents the free carbon emission quota stipulated in Sector [image: Image shows the lowercase letter "i" with a dot above it. The letter is stylized in a classic serif font and rendered in black.]; [image: Sure, please upload the image, and I can help create alternative text for it.] represents the actual carbon emissions in Sector [image: It seems you've included a small icon or character, likely representing the letter "i" with a tilde above it. If this is not correct, please provide additional details or upload a clear image for precise alt text creation.]; and BBB represents the consumption of energy in Sector [image: It appears there was no image provided. Please upload the image or provide a URL for me to generate the alternate text.]. The equation for calculating the energy consumption of each sector is shown in Eq. 15.
[image: The formula depicts a mathematical expression for \( X_{ \text{c, e, i} } \), involving terms such as \( \lambda e_{i, t} \), \( a_{i, t}^{c, e} \), and \( \sigma_{E} \). It calculates \( X_{ \text{c, e, i} } \) using parameters including PEC, Pen, Pc, coefs, \( f_{n} \), \( t \), and \( E_{i} \), labeled as Equation 15.]
In Eq. 15, [image: Mathematical symbol representing the Greek letter sigma, followed by the uppercase letter E in italics.] represents the energy intergenerational elasticity coefficient; [image: It appears that the content provided is a mathematical expression, not an image. The expression "coef sub n" likely represents a coefficient indexed by "n". If you need help with creating an image or providing more context, please upload the image or provide additional details.] represents the energy carbon emission coefficient; and [image: It seems you attempted to include an image, but only text is displayed. Please upload the image file directly or provide a URL for it.] represents the conversion efficiency of various energy sources of the total energy synthesis variety.
4 ANALYSIS OF THE IMPACT OF A SINGLE “C-TRADE” POLICY ON MACRO-E AND CERS
C-Trade policy is an important policy instrument aimed at limiting GHG emissions through market mechanisms. However, the impact of a single C-Trade policy on Macro-E and CER remains controversial. The study will explore the effects of a single C-Trade policy on Macro-E and CER from several aspects.
4.1 Scenario settings for different C-Trade
The study is conducted to better analyse the actual impact of C-Trade policies on Macro-E and CERs. The study sets up three C-Trade sub-policies, namely, total carbon emissions, subsidy policy and carbon emission permit, for different scenarios. The main determinant of the total amount of carbon emissions is the average yearly emission reduction rate, followed by the subsidy rate in the subsidy policy and the free allocation ratio in the carbon emission permit. Based on the main variables of the three C-Trade sub-policies, the study proposes a typical C-Trade scenario in which the average annual emission reduction rate is 2.8%, the penalty price is 2.0 PC and the free allocation ratio is 80%. Based on the typical C-Trade scenario, the study varies the values of the main variables of the three C-Trade sub-policies, which are used to compare and analyse the actual effects of each C-Trade sub-policy on Macro-E and CER. The specifics of the different C-Trade scenarios are shown in Table 6.
TABLE 6 | Specific Situation of Different Carbon trade Scenarios.
[image: A table displaying various carbon trade sub-policies with details. Columns include policy type, annual emission reduction rate (%), free distribution ratio (%), penalty prices, and an identifier number. Sub-policies listed are Standard Scenarios, Carbon Quota, Carbon Emission Permits, and Subsidy Policy, with specified rates, ratios, and penalties for each.]4.2 C-trade market core variables analysis
Changes in the volume of C-Trade between sectors and in real GDP and its growth rate are the core variables of C-Trade market research. In order to better analyse changes in the C-Trade market, the study simulates the changes in the volume of C-Trade between sectors and in real GDP and its growth rate in typical C-Trade scenarios as an indicator to analyse the actual effects of C-Trade policies. Trade policy in practice. The linear relationship between the C-Trade volume between sectors in 2022 and the trade volume and carbon intensity of each sector under the typical C-Trade scenario is shown in Figure 3.
[image: Chart A is a bar graph showing the factory trade volume of CO2 for various industries, with categories labeled IS, CS, FS, KS, NGS, LHD, HLD, FS, AS, BS, SS. Chart B is a scatter plot comparing industry net carbon license sales to industry carbon intensity. Data points show an upward trend.]FIGURE 3 | Carbon trade volume between different departments and the linear relationship between trade volume and carbon intensity in various industries. (A) Trade volume of major industries in the carbon market under carbon trading policies, (B) The linear relationship between industry trade volume and carbon intensity.
Figure 3A shows the C-Trade volume data between sectors in 2022 under the typical scenario. From the simulation results in Figure 3A, different sectors have different C-Trade volumes. The main C-Trade buyers are the power sector, coal sector, and oil sector. The C-Trade volumes of these industries are 40.5%, 23.33%, and 15.26%, respectively. And the C-Trade sellers are construction industry, agriculture, light industry. The C-Trade volume of these industries is 41.23%, 14.56%, 5.37% respectively. Figure 3B shows the scatter plot between industry trade volume and industry carbon intensity for carbon permits. The association between industrial carbon intensity and industry trade volume in the C-Trade market is positive, as seen in Figure 3B. Additionally, Figure 3B demonstrates that C-Trade sellers like the construction, agricultural, and light industries have low carbon intensity whereas C-Trade purchasers like the electricity, coal, and oil industries have high carbon intensity. Figure 4 displays the changes in the simulated real GDP and its growth rate from 2018 to 2022 as well as the impact of the C-Trade mechanism on the real GDP, overall carbon emissions, and carbon intensity.
[image: Panel A shows a bar chart comparing real GDP in billion RMB and growth rate from 2018 to 2022. Real GDP bars increase over time, with growth rate plotted as a line, peaking in 2021. Panel B features a bar chart displaying real GDP, total carbon emissions, and carbon intensity from 2018 to 2022. Total carbon emissions and real GDP show an increasing trend, while carbon intensity decreases.]FIGURE 4 | The impact of Carbon trade mechanism on actual GDP, GDP growth rate, carbon intensity, and total carbon emissions under typical scenarios. (A) Real GDP and its growth rate under typical scenarios, (B) Real GDP, total carbon emissions, and changes in carbon intensity.
Figure 4A shows the changes of real GDP and its growth rate in a typical scenario. From Figure 4A, China’s real GDP value grows with time during 2018–2022, and its average annual growth rate is 7.50%. Figure 4B shows the impact of C-Trade policy on real GDP, carbon intensity, and carbon emissions in a typical scenario. As can be observed from Figure 4B, the C-Trade policy’s implementation will hurt the Chinese economy in terms of its economic effects. As an illustration, in the average scenario, real GDP drops by 3.52 percent and 3.99 percent, respectively, in 2021 and 2022 compared to the base period, but is still on the rise overall. Additionally, when it comes to the benefits of emission reduction, it has been discovered that the C-Trade policy’s implementation can dramatically lower both total and carbon intensity emissions. For instance, in 2022, the overall amount of carbon emissions and the intensity of those emissions both declined by 7.32% and 4.86%, respectively. In summary, the C-Trade policy may reduce carbon dioxide emissions effectively, and the degree of influence on the economy is minimal.
4.3 Impact of a single “C-Trade” policy on sectors of the economy
The study offers a thorough analysis of the findings of the sectoral industry linkage analysis and the SAM multiplier analysis to investigate the effects of a single “C-Trade” policy on the sectoral economy. The sectoral industrial links under a typical scenario are shown in Table 7.
TABLE 7 | Industry linkages of various departments under typical scenarios.
[image: Table showing various departments with their corresponding Influence, IC, Sensitivity, and SC values. Coal has values 2.83, 0.94, 1.61, 0.52; Petroleum: 3.61, 1.18, 2.03, 0.69; Natural Gas: 2.33, 0.79, 1.04, 0.34; Electric Power: 3.29, 1.10, 2.89, 0.99; Agriculture: 2.23, 0.75, 1.98, 0.70; Heavy Industry: 3.74, 1.22, 10.36, 3.45; Light Industry: 3.43, 1.12, 3.95, 1.32; Building: 3.66, 1.19, 1.04, 0.36; Transportation: 2.72, 0.88, 1.83, 0.63; Service: 2.33, 0.80, 3.37, 1.14.]The influence and inductance of all industrial sectors grew after the C-Trade policy was put in place, according to a comparison of the data in Table 7 with the data in Table 4. The oil sector shows the largest increase in influence, from 2.61 to 3.61, and the heavy industry sector shows the largest increase in inductance, from 7.78 to 10.36. The comparison also reveals that the coefficients of inductance increase only in the light and heavy industry sectors, while decreasing in the other sectors, and that the coefficients of influence increase only in the oil sector, the light and heavy industry sectors. For the usual scenario, Table 8 shows the findings of the gross effects of the accounts as well as the net effects of the three decomposition multipliers.
TABLE 8 | Total effect of accounts and net effect of three decomposition multipliers under typical scenarios.
[image: Table showing net benefits for different sectors. Categories include Coal, Petroleum, Natural Gas, Electric Power, Agriculture, Heavy and Light Industry, Transportation, Service, Labor Force, Capital, and Resident. Columns list Total Net Effect, Transfer Net Benefit, Open Loop Net Benefit, and Closed Loop Net Benefit. Values vary across each category, illustrating sector-specific impacts.]When the C-Trade policy was put into action, the coal sector experienced the highest shift in the overall SAM multiplier impact, changing from 4.68 to 4.59, according to a comparison of the data in Tables 5, 8. In addition, it is also found that the transfer effect of the coal sector rises from 1.70 to 1.85, whereas the open-loop net effect and closed-loop path effect fall from 1.29 to 1.23 and from 1.69 to 1.49, respectively. 1.23 and from 1.69 to 1.49 respectively.This result suggests that the implementation of the C-Trade policy induces an increase in the technological level of the coal sector and transfers labour to other sectors. The comparison of Tables 5, 8 also reveals that, while there has been no discernible change in the oil and gas sectors, the gross account effect and net effect of the three decomposition multipliers in the electricity sector have generally changed in a direction that is similar to that of the coal sector, albeit to a lesser extent. This result suggests that the implementation of the C-Trade policy also promotes technological upgrading and turnover in the electricity sector, but at a lower magnitude, and that its effect on the oil and gas sectors is lower.
4.4 Analysis of the sub-policies of the C-Trade facility
To examine the effects of each C-Trade mechanism sub-policy on overall carbon emissions and real GDP. In Table 6, where the numerical findings of overall carbon emissions and real GDP under scenarios A1–A6 are displayed, the study simulates the values of overall carbon emissions and real GDP under several scenarios.
As can be seen from Table 9, both the real GDP decline rate and the total carbon emissions decline rate are the lowest under the A1 scenario in both 2021 and 2022, with a real GDP decline rate of −6.62 per cent and a total carbon emissions decline rate of −3.32 per cent in 2022. The real GDP fall rate and total carbon emissions drop rate both grow as the annual abatement rate rises, with the A6 scenario having the highest real GDP decline rate and total carbon emissions decrease rate in each year. Among them, the real GDP decline rate in 2022 is −9.69% and the total carbon emissions decline rate is −4.87%. The above results show that the C-Trade policy causes some economic losses but has a good emission reduction effect as the annual emission reduction rate rises. Table 10 displays the data for real GDP and overall carbon emissions for scenarios B1 through B6.
TABLE 9 | Changes in total carbon emissions and actual GDP under different total carbon quota settings.
[image: Table showing GDP decline and total carbon emission reduction rates for 2021 and 2022 across various scenarios labeled A1 to A6. In 2021, GDP decline rates range from minus 6.31 percent to minus 9.38 percent, with carbon reduction rates from minus 3.19 percent to minus 4.72 percent. In 2022, GDP decline rates range from minus 6.62 percent to minus 9.69 percent, with carbon reduction rates from minus 3.32 percent to minus 4.87 percent.]TABLE 10 | Simulation results of actual GDP and total carbon emissions under different free allocation ratios.
[image: Table showing GDP decline and carbon emission reduction rates for specific scenarios in 2021 and 2022. In 2021, GDP decline ranges from -3.41% to -2.51% and carbon reduction from -6.82% to -5.87%. In 2022, GDP decline ranges from -3.62% to -2.66% and carbon reduction from -7.21% to -5.42%.]As can be seen in Table 10, the rate of decline in real GDP and the rate of decline in total carbon emissions are both highest under scenario B1 in all years, with a rate of decline in real GDP of −3.41 per cent and a rate of decline in total carbon emissions of −6.41 per cent in 2022. As the free allocation ratio rises, the real GDP decline rate and total carbon emissions decline rate decrease in each year, with the lowest real GDP decline rate and total carbon emissions decline rate under the A6 scenario in both 2021 and 2022. The real GDP decline rate in 2022 is −2.66% and the total carbon emissions decline rate is −5.42%. According to the aforementioned findings, China’s real GDP drop rate and overall carbon emissions would gradually slow down as the free allocation ratio rises. Table 11 displays the data for real GDP and overall carbon emissions in the C1–C6 scenarios.
TABLE 11 | Simulation results of actual GDP and total carbon emissions under different penalty prices.
[image: Table showing GDP decline and carbon emission reduction rates for scenarios C1 to C6 in 2021 and 2022. In 2021, GDP decline rates range from -1.98% to -6.94%, and carbon emission reduction rates from -4.76% to -10.04%. In 2022, GDP decline rates range from -2.13% to -7.31%, and carbon emission reduction rates from -5.18% to -10.87%.]As can be seen from Table 11, the real GDP decline rate and the total carbon emissions decline rate are the lowest under scenario C1 in each year, with a real GDP decline rate of −2.13 per cent and a total carbon emissions decline rate of −5.18 per cent in 2022. As the annual abatement rate rises, the real GDP decline rate and total carbon emissions decline rate increase for each scenario, with the A6 scenario having the highest real GDP decline rate and total carbon emissions decline rate in each year. The real GDP decline rate in 2022 is −7.31% and the total carbon emissions decline rate is −10.87%. The above results show that the C-Trade policy also causes some economic losses but has a good emission reduction effect as the penalty price increases. To sum up, a lower penalty price and annual emission reduction rate as well as a higher free allocation ratio can be set at the initial stage of the implementation of the C-Trade policy, so as to reduce the impact on the economy, and at the later stage of the implementation of the policy, the penalty price and annual emission reduction rate can be increased as well as the free allocation ratio can be lowered to achieve better emission reduction effects.
5 ANALYSIS OF THE IMPACT OF THE “C-TRADE-C-TAX” POLICY PACKAGE ON MACRO-E AND CERS
In order to analyse the combined impact of the “C-Trade-C-Tax” policy mix on China’s Macro-E and CERs, the study examines the imposition of a C-Tax on a typical C-Trade scenario, which is assumed to be levied at a rate of 10¥/tc and 30¥/tc, with a uniform rate of 10¥/tc and 30¥/tc. It keeps the tax rate uniform. Scenario 1 is the typical C-Trade scenario + C-Tax of 10¥/tc; Scenario 2 is the typical C-Trade scenario + C-Tax of 30¥/tc.
5.1 Analysis of the impact of the “C-Trade-C-Tax” policy on Macro-E
Figure 5 displays the changes in real GDP and its growth rate under Scenarios 1 and 2 as well as the changes in real GDP, overall carbon emissions, and carbon intensity under various scenarios.
[image: Panel A shows a bar and line graph of real GDP and growth rate from 2018 to 2022. Panel B presents a bar graph comparing real GDP, total carbon emissions, and carbon intensity. Panel C repeats the format of A with slight variations, and Panel D mirrors B. Each panel tracks changes over the same period.]FIGURE 5 | Changes in Real GDP and Its Growth Rate, as well as Changes in Real GDP, Total Carbon Emissions, and Carbon Intensity under Different Scenarios. (A) Real GDP and its growth rate under scenario 1, (B) Real GDP, total carbon emissions, and changes in carbon intensity under scenario 1, (C) Real GDP and its growth rate under scenario 2, (D) Real GDP, total carbon emissions, and changes in carbon intensity under scenario 2.
Figures 5A,C show the changes in real GDP and its growth rate under scenarios 1 and 2, respectively. Comparing Figures 5A,C with Figure 4A, it can be seen that the real GDP and its growth rate under the combination policy of “C-Trade-C-Tax” are lower than that under the single C-Trade policy, and the real GDP and its growth rate are the lowest when the C-Tax is 30 ¥/tc, which is 63.8 trillion RMB and 7.491%, respectively. 63.8 trillion yuan and 7.491 per cent, respectively. Figures 5B,D show the impacts of the “C-Trade-C-Tax” combination policy on total carbon emissions, real GDP and carbon intensity under scenarios 1 and 2, respectively. In contrast to the single C-Trade policy, the “C-Trade-C-Tax” combination policy has a stronger negative impact on the economy and a lesser negative impact on the overall amount of carbon emissions and the carbon intensity. This can be seen by comparing Figures 5B,D with Figure 4B. With a C-Tax of 30¥/tc, total carbon emissions, real GDP and carbon intensity in 2022 decrease by 3.99%, 6.97%, and 4.38% respectively. In conclusion, the combination of “C-Trade-C-Tax” policy has better emission reduction efficiency than single C-Tax policy, and its negative impact on the economy increases to a lower degree. The cost of energy will alter in each sector with the introduction of the “C-Trade-C-Tax” combination policy, with the key changes being the price of synthetic energy, the cost of the C-Tax, and the cost of the C-Trade. Therefore, the study also analyses the impact of the “C-Trade-C-Tax” policy on Macro-E by comparing the effect of price changes in sectoral synthetic energy itself, the direct contribution of C-Trade costs and the direct contribution of C-Tax costs in each industrial sector. Table 12 presents the outcomes.
TABLE 12 | Changes in the Price Change Effect of Sectoral Synthetic Energy, Direct Contribution of Carbon trade Costs, and Direct Contribution of Carbon Tax Costs(%).
[image: Table showing the effects of synthetic energy, carbon trade costs, and carbon tax costs on various industrial sectors under two scenarios. Sectors include coal, petroleum, natural gas, electric power, agriculture, heavy industry, light industry, transportation, and service. Each sector's fluctuation effect and costs are listed, showing differing impacts in scenarios one and two.]Gas, transportation, oil, construction, and agriculture are the sectors with a positive direct contribution to C-Trade costs in Scenario 1, as shown in Table 12. These sectors’ direct contributions to C-Trade costs are 0.28 percent, 0.23 percent, 0.14 percent, 0.06 percent, and 0.02 percent, respectively. The natural gas, transportation, oil, and construction sectors in Scenario 2 all have positive direct C-Trade cost contributions, which translate to direct C-Trade cost contributions of 0.44 percent, 0.41 percent, 0.22 percent, and 0.05 percent, respectively. The coal and electricity sectors have the lowest C-Trade costs in both scenarios. The above results show that the natural gas, transport, oil and construction sectors sell carbon allowances under the “C-Trade-C-Tax” combination policy, and that the coal and electricity sectors have low marginal abatement costs and huge abatement potential. In addition, in terms of the direct contribution of C-Tax costs, the top four sectors in the two scenarios are coal, heavy industry, electricity, and light industry, which is consistent with the ranking of the carbon emissions of the sectors, and this result indicates that increasing the carbon emission costs of the sectors with high carbon emissions in the process of levying C-Tax can effectively reduce their carbon emissions. By comparing the price change effect of synthetic energy itself in each sector in Table 12, it is found that the contribution of the price change effect of energy itself is small in all cases. According to the results above, the “C-Trade-C-Tax” strategy can enhance the CER effect in the majority of industries.
5.2 Analysis of the impact of the “C-Trade-C-Tax” policy on various sectors of industry
The study thoroughly examines the findings of the sectoral industry linkage analysis and the SAM multiplier analysis for scenarios 1 and 2 in order to investigate how the “C-Trade-C-Tax” policy will affect the economies of different industrial sectors. Table 13 shows the sectoral industrial linkages under the two “C-Trade-C-Tax” scenarios.
TABLE 13 | Three types of net benefit results.
[image: Table comparing industrial sectors across two scenarios with metrics: Influence, IC, Sensitivity, and SC. Sectors include Coal, Petroleum, Natural Gas, Electric, Agriculture, Heavy Industry, Light Industry, Construction, Transportation, and Service. Each sector's metrics are provided for both scenarios, showing various numerical values.]Table 13 shows the industry linkages by sector under scenarios 1 and 2. By comparing Tables 4, 7, 13, it can be seen that the changes in the influence and coefficients of influence of the sectors after the implementation of the “C-Trade-C-Tax” combination policy follow the same trend as in the case of the implementation of the C-Trade policy only. It is still the oil sector that shows the most significant increase in influence and influence coefficients after the implementation of the “C-Trade-C-Tax” combination policy, with 2.73 and 2.72 under Scenario 1 and Scenario 2. Additionally, it has been discovered that the majority of the sectors’ impact, influence coefficient, induction, and induction coefficient have all increased since the C-Tax policy was put into place. Sensibility and prudence Less of a rise in coefficient values is observed. The aforementioned findings imply that the application of the “C-Trade-C-Tax” policy combination can boost each industrial sector’s output and so enhance the CER effect. Table 14 shows the industry linkages by sector under the two “C-Trade-C-Tax” scenarios. The results of the gross effects of the accounts and the net effects of the three decomposition multipliers under scenarios 1 and 2 are shown in Table 14.
TABLE 14 | Total account effects and net effects of three decomposition multipliers under Scenario 1 and Scenario 2.
[image: Table showing net effects and benefits for various sectors under two scenarios. Sectors include coal, petroleum, natural gas, and more. Metrics are total net effect, transfer net benefit, open loop net benefit, and closed loop net benefit for each scenario. Numbers vary across sectors and scenarios, illustrating differences in economic impacts.]Table 14 presents the results of the gross effects of the accounts and the net effects of the three decomposition multipliers under scenarios 1 and 2. A comparison of Tables 8, 14 shows that the implementation of the “C-Trade-C-Tax” combination policy increases the total net effect of the coal sector compared to the implementation of the C-Trade policy alone, mainly due to an increase in both the open- and closed-loop path effects and a decrease in the net transfer effect of the coal sector. This result suggests that the “C-Trade-C-Tax” policy mix results in a relatively strong overall driving force of the coal sector on other industrial sectors, but with a relatively limited increase in the level of technology. It is also found that the effect of the C-Trade-C-Tax policy on the oil sector is not significant. In conclusion, the implementation of the “C-Trade-C-Tax” policy can promote the ability of the coal sector to lead other industrial sectors, thus improving the CER effect in China.
6 CONCLUSION
In order to promote the development of China’s carbon emission reduction, based on the CGE model, the impact of single carbon trading policy and “carbon trade-carbon tax” combination policy on China’s economy and various industrial sectors is deeply analyzed.
At the same time, this study also discussed the carbon emission reduction effect of each sub-policy of carbon trading policy in detail, and reached the following three conclusions. First, although the single “carbon trading” policy has a certain negative impact on economic growth, it can effectively reduce carbon dioxide emissions, showing that the policy has a positive role in environmental protection. Through the introduction of market mechanisms, carbon trading policies encourage high-carbon emission industries to bear their emissions costs, thus incentivizing them to reduce carbon emissions. Second, there are significant differences in the impact of carbon trading policies on different industries. For example, the coal sector has improved its technological level and transferred its labor force to other sectors after the implementation of the carbon trading policy, showing the far-reaching impact of the policy on the industry structure and labor market. Third, the synergies of the “carbon trade-carbon tax” policy combination: compared with a single policy, the “carbon trade-carbon tax” policy combination shows a stronger effect in reducing carbon emissions. This policy combination promotes the reduction of carbon emissions by various industries through multiple channels and angles, and achieves better environmental benefits. In order to reduce the impact on the economy and achieve better emission reduction effect, it is suggested to set a lower penalty price and annual emission reduction rate and a higher proportion of free distribution at the initial stage of the implementation of carbon trading policy. With the gradual advancement of the policy and the adaptation of the market, the penalty price and the annual emission reduction rate can be gradually increased, and the proportion of free distribution can be reduced. Although this research has achieved satisfactory results, there are still many problems. Based on this research, the future expansion can be further discussed from the following three aspects. The first aspect is regional differences. This study mainly focuses on the impact of carbon trading and carbon tax policies nationwide. However, China has a vast territory, and there are significant differences in the level of economic development, industrial structure and resource endowment among different regions. Future studies can further explore the implementation effects of these policies in different regions, with a view to providing more refined policy recommendations for local governments. The second aspect is the dynamic adjustment mechanism of policies. Current research is mainly based on static policy Settings. In fact, with the development of economy and society and the change of environmental protection needs, carbon trading and carbon tax policies may need to be dynamically adjusted. Future research could explore how to construct a flexible and efficient policy adjustment mechanism to adapt to the changing environment and economic situation. The third aspect is the quantity of environmental factors. This study mainly focuses on carbon emission reduction, but environmental issues are not limited to carbon emissions. Future studies may consider including other environmental factors (such as air pollution, water use, etc.) in the analytical framework to fully assess the combined environmental impacts of carbon trading and carbon tax policies.
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Clarifying the spatial correlation characteristics and influencing factors of coupling coordination between Foreign Direct Investment (FDI) flow networks and carbon transfer networks in countries along the Belt and Road Initiative is of utmost importance for the formulation of regional carbon governance strategies and the establishment of a high-quality Green Silk Road. This study used a comprehensive approach combining social network analysis and coupling coordination model to measure the coupling coordination degree of FDI flow networks and carbon transfer networks of 67 Belt and Road countries from 2010 to 2016. In addition, a modified gravity model is used to characterize the spatial correlation network structure of coupling coordination between the two networks, and the QAP regression analysis method is applied to investigate the factors influencing the spatial association network. The results are as follows: 1) The spatial correlation network of coupling coordination between the two networks has good accessibility and relatively high overall network stability. 2) Countries such as Qatar and the United Arab Emirates occupy central positions in the network, while Bahrain and Jordan are positioned on the periphery of the network. 3) The spatial correlation network can be divided into three sectors: net outflow, net inflow, and bidirectional overflow sectors. 4) Spatial adjacency, bilateral investment treaties, economic development, and institutional quality have significant positive effects on the spatial association network, while the industrial structure and the level of infrastructure development have a significant negative impact. This study proposes an indicator system for the coupling coordination between FDI flow networks and carbon transfer networks. The aim is to investigate the coupling coordination relationship between FDI flow networks and carbon emission transfer networks in countries along the Belt and Road Initiative, providing important guidance for the formulation of regional cooperative carbon emission reduction strategies in other regions.
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1 INTRODUCTION
Global warming poses a significant threat to human habitats, and carbon transfer in international trade has emerged as a key (Ning et al., 2019). In the past 10 years since the “Belt and Road” initiative transformed from a proposal into action, the development of trade has further strengthened intra-regional economic ties while accelerating carbon transfer between countries along the route (Zhang and Chen, 2022). Although most Belt and Road countries have established explicit goals for self-sufficient carbon reduction (Fan et al., 2019), their carbon dioxide emissions still make up more than half of the world’s emissions (Figure 1). Promoting the construction of a green Belt and Road is an inevitable choice in line with the global trend of green development. The Belt and Road countries account for 54% of the world’s primary energy supply (Xie et al., 2023), which has a decisive impact on global efforts to reduce carbon emissions. However, the joint construction of a green Silk Road still faces major challenges in the face of stricter climate change regulations and carbon inequality between nations (Lin et al., 2023).
[image: Bar chart displaying the percentage trends from 2010 to 2016 for GDP, CO2, IFDI, and OFDI. Each year features four colored bars: GDP (orange), CO2 (green), IFDI (blue), and OFDI (red). GDP and IFDI consistently appear higher than CO2 and OFDI.]FIGURE 1 | The CO2 emissions, GDP, foreign direct investment (FDI) inflow, and outward foreign direct investment (OFDI) as a percentage of the global total in countries along the Belt and Road Initiative.
Carbon transfer is the result of the flow of goods and services between the supply and demand sides involved in economic activities and reflects the close interaction between countries’ different industries (Chen et al., 2022; Zhu et al., 2022; Lin et al., 2023). The transfer flows of carbon emissions are more dynamic and complex than direct physical transfers of carbon emissions, making carbon emissions more difficult to manage (Hertwich, 2021; Song et al., 2023). Against this background, scientists have suggested that understanding the coupling relationship between economic activities and carbon transfer is a necessary prerequisite for promoting regional collaborative carbon governance and a key aspect of formulating carbon management policies (Ji et al., 2023). Failure to consider the connection between economic activities and carbon transfer might cause policymakers to have a biased assessment of the socio-economic costs of carbon governance, This, in turn, can increase economic risks and vulnerabilities (Yan and Li, 2023). In line with the principle of “common but differentiated responsibilities"," promoting coordinated carbon emission reduction therefore requires not only a fair delineation of carbon emission reduction responsibilities and emission quotas between countries, but also the uncovering of the coupling relationship and evolving trends between economic activities and carbon transfer. Such insights can provide policymakers with a holistic framework for designing effective governance measures that balance economic development and environmental sustainability (Chen et al., 2018; Chen et al., 2022).
Foreign Direct Investment (FDI), as one of the most significant forms of cross-border capital influencing a country’s economic activities (Lu et al., 2024), has a profound impact on industrial and trade linkages between nations through regional production networks and is seen as a conduit for “pollution industry transfer” (Ma et al., 2023). Relevant studies indicate that foreign direct investment forms a network of capital flows through economic linkages dominated by multinational enterprises (MNEs) (Ballor and Yildirim, 2020; Li and Du, 2023). At this point, developed countries use their core positions in investment networks to relocate their environmentally intensive industries, which are restricted by environmental regulations, to other countries through direct or indirect channels (Lu et al., 2020). Conversely, developing countries with a high dependence on international capital may engage in a “race to the bottom” to attract environmentally intensive industries, leading to interregional carbon transfers (Li et al., 2020; Zhang and Chen, 2022). The countries along the Belt and Road Initiative are important hubs in the global investment network. However, as countries along the Belt and Road Initiative become increasingly active in the global investment network, some of them may suffer economic losses due to an unequal sharing of responsibility for carbon emissions when they undertake carbon transfers from other countries (Meng et al., 2019; Lu et al., 2020; Lin et al., 2023).
The relationship between Foreign Direct Investment (FDI) and carbon emissions has significant implications for regional economic development and environmental governance. Understanding the link between investment and carbon transfer and promoting coordination between carbon reduction and economic flows are critical issues for policymakers. While earlier research has examined the relationship between foreign direct investment (FDI) and carbon transfer, the majority of these studies have not developed a complete model to statistically quantify the specific characteristics of their interaction (Jorgenson et al., 2022; Ma et al., 2023). In addition, many studies have focused on “attribute data”, neglecting the characteristics of the “relationship system” that has emerged between FDI and carbon transfer (Xu and Cheng, 2016), so that the multi-level coupling relationships and evolutionary processes between the network of FDI flows and the network of carbon transfer have not been fully elucidated. This limitation hinders the development of transnational carbon governance strategies to address carbon inequality between countries under stricter climate change mitigation requirements (Lin et al., 2023). Therefore, this study is based on the core concept of sustainable development, which is characterized by a continuous, coordinated development of economy, society and ecological environment (Huang et al., 2021). By introducing a complex network model, the study combines multi-regional input-output analysis, complex network methods and linkage coordination models to quantitatively analyze the relationship between foreign direct investment and carbon transfer. These models are used to empirically analyze the characteristics of the spatial correlation network structure and the factors influencing the coupling coordination between FDI flow networks and carbon transfer networks in 67 countries along the Belt and Road Initiative.
Different from the previous literature, this paper has the following innovations and contributions: 1) conducting a comprehensive quantitative analysis of the coupling relationship between FDI flow networks and carbon transfer networks by integrating social network analysis, multi-regional input-output methods, and coupling coordination models. It explores the interaction mechanisms between them from a coupling perspective, providing scientific evidence for the coordinated development of carbon reduction and investment; 2) constructing a spatial correlation network for the coupling coordination of FDI flow networks and carbon transfer networks based on a modified gravity model. Utilizing social network analysis methods, it evaluates the structural characteristics of the coupling coordination and spatial correlation networks of the two systems, identifying the positions and roles of countries in the network of coordinated development between economic flow and carbon emissions. This offers new insights and quantitative tools for policymakers to clarify central regions that may play a key role in future cross-regional coordinated carbon governance; 3) identifying the influencing factors of the coupling coordination between the two networks through QAP network regression analysis, enriching the research content on coupling coordination between FDI flow networks and carbon transfer networks. QAP regression analysis, based on relational data and matrix permutation, effectively avoids common multicollinearity among independent variables, making the research conclusions more scientifically sound.
The rest of this paper is organized as follows. The literature review is provided in section 2. The methods and data are described in section 3. Section 4 presents our results. Section 5 concludes the study and discusses the policy implications of our results.
2 LITERATURE REVIEW
In recent years, as the process of economic globalization has accelerated and international trade has grown rapidly, the issue of carbon transfer associated with trade has raised new challenges for the environmental sustainability of countries along the Belt and Road Initiative (Arif et al., 2021). More and more scientists have begun to investigate the relationship between foreign direct investment and carbon emissions, as well as the factors influencing them.
Current research on the relationship between foreign direct investment and carbon emissions can be broadly divided into two perspectives: attributive and relational. From an attribute perspective, these studies focus on green infrastructure investment (Zhao et al., 2022), renewable energy investment (Gu and Zhou, 2020), and China’s foreign direct investment in the energy sector (Liu H. et al., 2020), leading to the conclusion that investment under the Belt and Road Initiative either increases or decreases host countries’ carbon emissions (Liu C. et al., 2020). However, due to the diversity of investment types, there is still no definitive statement on the impact of these investment changes on the environment. This situation is partly due to the fact that scholars look at the relationship between foreign direct investment and carbon emissions from angles, such as scale effects (Quaye et al., 2023), structural effects (Wei et al., 2023), technological effects (Zhang et al., 2023), and regulatory effects (Marques and Caetano, 2020), and using methods such as the IPAT model (population, affluence, and technology) and its extensions models (Miao et al., 2019), the factor decomposition model (Wang and Feng, 2021), the Environmental Kuznets Curve (EKC) (Xu et al., 2018), and spatial econometric models (Li et al., 2021), leading to the formation of two opposing viewpoints: the “pollution haven hypothesis” and the “pollution halo hypothesis."
From the perspective of network relations, some scholars have extended the analysis from the local to the global level and expanded the study of bilateral trade-induced carbon transfers to the realm of spatial correlation analysis. They use the methods of social network analysis to explore the relationships between network flows, changes in network size and network structure issues related to trade-induced carbon transfers, offering new insights into carbon transfer research (Duan and Jiang, 2018; Lv et al., 2019). Social networks represent stable social relationship systems that arise through interactions between individuals. The actors within a social network can use their position within the network to gain access to social resources, as mutual cooperation and collaboration within the network becomes social capital for the actors (Wellman et al., 1996). Arthur (1999) notes that in the real economy there are complex relationships such as division of labor, cooperation and transactions between numerous dispersed heterogeneous units, which lead to global phenomena through interactions between heterogeneous units. Economic systems in the real world thus inherently exhibit characteristics of social networks, with the entire economic system achieving continuous adaptation through information exchange and coordination (Arthur, 1999). Since social network analysis enables the quantitative study of relationships between individuals in networks from a global and multilateral perspective (He et al., 2020), some scholars argue that the relationship between FDI and carbon emissions involves multiple relationship characteristics. Traditional econometric methods focus primarily on “attributive” characteristics and overlook the “relational” characteristics between systems (Arif et al., 2021). In fact, the relationship between foreign direct investment and carbon emissions is not unidirectional, but can be seen as a relationship between carbon emissions and foreign direct investment. Therefore, it should be examined from the perspective of complex network theory. Unlike traditional econometric methods, which do not reflect the interaction between subjects and its impact on FDI inflows (carbon emissions of multinational enterprises), network analysis can identify the centrality of networks to carbon emissions and other resource flows and thus determine regional differences in the role of FDI. For example, studies by Jorgenson et al. (2022) indicate that countries that occupy a central position in the global network of foreign direct investment and those with large inflows of foreign direct investment, regardless of their actual nature, tend to have negative environmental impacts (Jorgenson et al., 2022); Ma et al. (2023), using QAP network analysis, found a strong correlation between FDI networks and the carbon emissions networks of multinational companies, with investment patterns from high-income areas more likely to lead to significant carbon emissions in low-income areas (Ma et al., 2023).
The relationship between economic activities and carbon transfer forms a complex system of relationships that requires the use of coupling coordination mechanisms to uncover their internal connections. As a result, many scientists have gradually moved from individual network to studies of the coupling and coordinated evolution of different networks (Xu et al., 2021; Liu et al., 2023). The coupling coordination theory is one of the most important theories of sustainable development. It emphasizes the continuous coordinated development of the economy, society and the ecological environment (Huang et al., 2021). The term “coupling” originates from physics and primarily refers to dynamic correlations between different systems that can interact with and influence each other. “System coupling” refers to the process in which two or more closely linked subsystems ultimately form a tightly structured functional unit through the circulation and complex changes of various elements such as energy, matter and information (Luo et al., 2022). Throughout the process of system coupling, the properties of the various systems change, the elements evolve from disorder to order and from a lower to a higher level of development, deficiencies are corrected, contradictions are reconciled and joint efforts are made to achieve a “coordinated” state (Wang et al., 2020; Shun, 2022). However, solely assessing the strength of coupling relationships using indicators such as carbon emission intensity and carbon efficiency, as well as tracking the direction of carbon transfer from a carbon footprint perspective does not adequately reflect the extent of economic activity and carbon transfer between different sectors or regions (Lin and Teng, 2022; Liu et al., 2022). Furthermore, it also fails to comprehensively demonstrate the intrinsic links between carbon transfer and potential economic value streams (Mi et al., 2020; Hertwich, 2021). Consequently, researchers have also turned their attention to studying the coupling of economic networks and carbon transfer networks, as network structures can deconstruct global carbon transfer relationships and their network status from a multidimensional perspective, supporting the progress of global carbon reduction efforts from a “relationship” standpoint (Ji et al., 2023).
While previous research has laid the foundation for understanding the coupling relationship between foreign direct investment networks and carbon transfer networks, there are still shortcomings. Firstly, current studies focus primarily on isolated network analyzes, lacking a quantitative description of the relationships between the two networks. Secondly, existing research focuses mainly on the global level or on specific countries. There are few studies on the synergistic effects of FDI flow networks and carbon transfer networks in countries along the Belt and Road Initiative. Finally, current research examines the relationship between FDI and carbon emissions predominantly from the perspective of attribute data, while the coupling relationship between the two networks is insufficiently quantitatively examined from the perspective of relational data. Therefore, this study comprehensively applied social network analysis, multi-regional input-output analysis, coupling coordination model, and modified gravity model to analyze the coupling coordination spatial correlation networks of FDI flow network and carbon transfer network in countries along the Belt and Road Initiative. It aims to reveal the coupling characteristics, spatial structural evolution trends, and influencing factors between the two networks, thus theoretically supporting the formulation of comprehensive and effective regional carbon governance strategies and the construction of a high-quality green Silk Road.
3 DATA AND METHODS
The logic of this research is shown in Figure 2. The specifics of the method for each step are listed below. 1) Initially, this study employed the SNA method to construct the FDI flow networks and carbon transfer networks of 67 countries along the Belt and Road Initiative from 2010 to 2016, and individual network characteristic indicators for both networks were computed. 2) The individual network characteristic indicators were then dimensionlessized using a standardization method, and the entropy weight method was applied to determine the comprehensive weights of each indicator in the index system, measuring their respective development levels. Additionally, the coupling coordination degree model was utilized to measure the coupling coordination levels of the two networks. 3) Subsequently, a spatial correlation network of coupling coordination was constructed using a modified gravity model, followed by social network analysis to analyze the structural features of the spatial correlation network. Finally, the QAP method was employed to analyze the influencing factors.
[image: Flowchart depicting the analysis of spatial correlation network structure characteristics between FDI Flow Network and Carbon Transfer Network. It includes sections on network metrics, coupling coordination degree, modified gravity model, and analysis of influencing factors. Key metrics such as degree centrality, closeness centrality, and betweenness centrality are shown. Steps include calculating weights, gravity metrics, and correlation coefficients. The analysis considers economic development, industrial structure, and more. Descriptors like spatial adjacency, network density, and QAP analysis are used.]FIGURE 2 | Research logic diagram.
3.1 Mechanism analysis
According to the four mechanisms proposed by Grossman and Krueger (1995) in relation to the environmental effects of trade, namely, scale effects, structural effects, technological effects and regulatory effects (Grossman and Krueger, 1995), this paper integrates the topological characteristics of FDI networks and the status of network nodes to systematically elucidate the specific impact mechanisms of international investment networks on carbon transfer networks. The mechanism of coupling and coordination between FDI flow networks and carbon transfer networks is illustrated in Figure 3. Here is the specific analysis:
	(1) The establishment and formation of the international investment network is the result of various mechanisms that multinational corporations use to spread their organizational capabilities to other economies, thus promoting network connectivity (Ernst and Kim, 2002). Multinationals not only link existing local clusters together through the international investment network, but also strategically form new local industrial agglomerations and linkages, further enhancing their network dominance. However, excessive clustering inevitably increases the economic dimension of the host countries, as the considerable resource and energy requirements of corporate production lead to a sharp increase in energy consumption and a worsening of environmental pollution. Nevertheless, industrial agglomeration within the international investment network can also generate positive externalities through economies of scale or scope and highly specialized division of labor, thus mitigating pollution (Zeng and Zhao, 2009).
	(2) Industries with comparative advantage in developed countries are mainly concentrated in capital-intensive sectors, and their use of national investment networks for foreign investment can steer their industrial structure toward light industry and labor-intensive sectors, minimizing the cost of environmental protection (Cole and Elliott, 2005). In this process, multinational companies from developed countries can use their high dependence on network nodes to strengthen their investment relationships with other countries, so that segments of the value chain that consume a lot of energy and pollute heavily can be transferred to developing countries through investment networks. As the comparative advantage of polluting industries in host countries gradually weakens, foreign-funded enterprises will relocate some or all polluting industries to other underdeveloped regions, resulting in a shift of pollution from one region to another. The relocation of industries by multinational companies will therefore lead to an interregional spread of pollution externalities (Ma et al., 2023).
	(3) The technology transfer and technological spillover effects under the international investment network significantly reduce pollution in host countries, and the spillover effects of technology can overcome geographical limitations and achieve cross-regional diffusion (Deng, 2016). Görg and Greenaway (2004) and Girma et al. (2008) argue that the technology transfer and spillover effects of foreign direct investment not only promote the technological upgrading of firms in host countries, but can also transfer outdated but relatively advanced technologies from home to host countries. This helps companies in the host countries to improve their technological efficiency and produce more value with less resource consumption and pollution (Görg and Greenaway, 2004; Girma et al., 2008).
	(4) The main bodies of FDI flow networks can also influence the direction and intensity of the interregional transfer of pollution industries by influencing the environmental regulatory efforts of investment partner countries. Developed countries with a higher nodal position can effectively utilize extensive investment links in the network to actively seek low-cost resource elements around the world and transfer domestically high-polluting industries affected by strict environmental regulations to developing countries with relatively lax environmental regulations (Shahbaz et al., 2018). Meanwhile, developing countries on the periphery of the network, driven by economic growth or employment pressures, proactively lower environmental standards or relax environmental regulations to attract foreign investment, becoming “pollution havens” for industrialized countries (Nejati and Taleghani, 2022).

[image: Diagram illustrating the relationship between multinational enterprises, FDI networks, and carbon transfer networks. It shows scale, structure, technological, and regulation effects linking developed and developing countries, highlighting economic, resource, and environmental impacts.]FIGURE 3 | Coupling coordination mechanism of FDI network and Carbon transfer network.
3.2 Data sources and study area
The FDI data for this study is sourced from the International Monetary Fund’s Coordinated Portfolio Investment Survey database (http://data.imf.org), which provides more comprehensive bilateral investment data for countries along the Belt and Road Initiative compared to other databases (Table 1), such as FDI Markets, the bilateral direct investment database of the United Nations Conference on Trade and Development (UNCTAD) and the Investment Map database of the International Trade Center (ITC). The carbon transfer data is obtained from the Eora database (http://www.worldmrio.com/countrywise/), which collects input-output data for 189 countries, including 26 sectors and six final demand categories for each country (Zhang and Chen, 2022). Further data comes from the World Bank’s development indicators (https://databank.worldbank.org/source/world-development-indicators) and the CEPII database (http://www.cepii.fr/cepii/en/bdd_modele/bdd_modele.asp).
TABLE 1 | FDI data sources.
[image: Table listing databases for Foreign Direct Investment (FDI) data, including FDI Markets, UNCTAD, International Trade Center, OECD, and IMF. Details shown are reporter countries, year range, type of FDI data, and data source links.]Since the research focus of this paper is on China and the countries along the Belt and Road Initiative, the Eora database is the only one that covers 67 countries along the Belt and Road Initiative with continuous input-output tables. In addition, the data in the Eora database is the most up-to-date among the five global databases mentioned (Table 2). As the IMF’s Coordinated Direct Investment Survey (CDIS) database lacks comprehensive data on bilateral investments for 2009, only data from 2010 to 2016 is used for the analysis in this study. After ensuring the integrity of the data matching, the final research sample for this study consists of 67 countries along the Belt and Road Initiative, covering the period from 2010 to 2016. Their approximate geographical location is shown in Figure 4. Detailed regional and sectoral information can be found in the Supplementary Appendix.
TABLE 2 | MRIO databases.
[image: Table comparing economic databases: GTAP, OECD, WIOD, EXIOBASE, and Eora. Columns include edition, reporter countries and sectors, years covered, and data source links. GTAP covers 141 countries and 65 sectors. OECD covers 76 countries and 45 sectors. WIOD reports two editions, 41 countries and 35 sectors for 2013, and 44 countries and 56 sectors for 2016. EXIOBASE covers 48 countries and 163 sectors. Eora covers 189 countries and up to 511 sectors. Each database has a corresponding URL for data access.][image: World map highlighting the seven continents in different shades. Some regions like Asia and South America are tinted lighter. Labels for countries and major water bodies are visible, with a distance scale at the bottom.]FIGURE 4 | Study area.
3.3 Data preprocessing
3.3.1 Construction of the FDI flow network
This paper selects the OFDI (Outward Foreign Direct Investment) and IFDI (Inward Foreign Direct Investment) data of 67 countries along the “Belt and Road” to construct the FDI flow network. It used mirror data to fill the gaps in unilateral investment, that is, using the outward direct investment data of country i to country j as the inward foreign direct investment data of country j from country i. For example, if the investment amount Wij from country i to country j exists in the Outward Foreign Direct Investment database (OFDI), Wij is used. If Wij does not exist, but the amount of investment Wji from country j to country i exists in the inward foreign direct investment database (IFDI), Wij = Wji is used. Negative data is processed as zero to ensure sufficient sample size (Aller et al., 2015; Cheng and Shun, 2022). After processing, a weighted undirected FDI flow network matrix Wfdi (67X67) is obtained, where the element wij represents the FDI flow between country i and country j. The specific approach is as follows:
if bilateral investment data exists and values are different, their average is used. If only one side has investment data in the bilateral investment, the investment data of that side is used; if both sides have no investment data, the investment amount is zero (Wei et al., 2018; Liu et al., 2019). Taking into account the differences in statistical calibers, all values in each weighted matrix are divided by the maximum value in the matrix Wfdi to obtain a normalized weighted undirected FDI flow matrix W*fdi in which all elements w*ij∈ [0,1]. Since the FDI flow matrix of this work is symmetric, the maximum value method of Ucinet software is used to correct the weighted undirected matrix Wfdi symmetrically, that is, for all elements of the weighted undirected matrix W*fdi, w*fdi (i,j) = w*fdi (j,i). Finally, in this paper, network density (ND) is used as a threshold to construct a relational network W**fdi (Duan and Jiang, 2018), where the threshold is set as follows:
[image: Equation displaying a piecewise function defining \( W_{fdi}^{**} \). It equals \( 1 \) if \( w_{fdi}^i \) is greater than or equal to \( D_{fdi} \), and \( 0 \) if \( w_{fdi}^i \) is less than \( D_{fdi} \).]
In Eq. 1, Dfdi is the ND of the weighted undirected FDI flow matrix W∗fdi.
3.3.2 Construction of the carbon transfer network
Multi-regional input-output models are widely used to reflect the cross-trade relationship between input and output of different sectors in different regions (Zhang and Chen, 2022). In this paper, we construct a global multi-regional input-output model to calculate carbon transfer in countries along the “Belt and Road”. The structure of the multi-regional input-output table is shown in Table 3.
TABLE 3 | Multi regional input-output table.
[image: A table displaying the flow of inputs and outputs between sectors and countries. Sections are divided into Intermediate Input, Intermediate Demand, Final Demand, Export, and Total Output. Rows include sectors and countries, imports, added value, CO2 emissions, and total input data, indicated by variables such as \(Z\), \(F\), \(EX\), and \(IM\).]In the table, Zijrs (r, s = 1, …, m; i, j = 1, 2, …, n) represents the production and demand countries, with the first subscript denoting the producing country r, and the second subscript the demanding country s. This means that the products of sector i in country r are used as intermediate input for sector j in country s. The sub-matrices of the matrix Z on the diagonal, Zijrs (r = 1, …, m; s = 1, …, m; r = s), describe the input and use of products from different sectors within the same economy. The sub-matrices off the diagonal, Zijrs (r = 1, …, m; s = 1, …, m; r ≠ s), illustrate the intermediate input (use) of products from different sectors from different economies in the industries of other economies. The final demand matrix F captures the use of the products of different sectors in the final demand of different economies, where Firs represents the products or services of sector i in country r that are supplied to the final demand in country s, and Xir is the total output of sector i in country r.
Assuming that there are m countries and n sectors, F is the final demand matrix for all countries, A is the direct consumption coefficient matrix, (I-A)−1 is the total demand matrix, and E is the matrix of direct carbon emission coefficients for sector i in country r. The matrix of carbon emission transfer network between regional industries is then shown as in Eq. 2:
[image: Matrix equation showing \([c_{ij}^{rs}] = E(I - A)^{-1}F\), equal to a large matrix with elements \(c_{11}^{11}, c_{12}^{12}, \ldots, c_{1m}^{1m}\) in the first row, and elements continuing similarly in subsequent rows, indexed from \(m\) to \(n\).]
The elements of the carbon emission transfer matrix between regional industries, cijrs (r, s = 1, …, m; i, j = 1, 2, …, n), describe the amount of carbon that is transferred from the products of sector i in country r to sector j in country s.
The data on carbon emission transfer between different industries of the countries are aggregated by ‘country-industry’ to obtain the carbon transfer matrix C between the countries. In this matrix C, the diagonal elements Crs (r = s) represent the implied carbon of each country for the consumption of the products it produces. The off-diagonal elements Crs (r ≠ s) represent the carbon transfer quantity between the producing country r and the demanding country s. Following the approach of Yu Juanjuan (Yu and Gong, 2020), the diagonal elements are set to 0, resulting in the final carbon transfer matrix Wemiss (67X67) for this work, as shown in Eq. 3:
[image: Matrix \( W_{\text{cross}} \) is shown with dimensions unspecified. The matrix features diagonal blocks of zeros and submatrices \( C^{12}, C^{1m}, C^{21}, C^{2m}, C^{m1}, \) and \( C^{m2} \) in off-diagonal positions, with dots indicating continuation. Equation labeled as (3).]
The matrix of the carbon transfer network is directional. Therefore, the only operation performed without symmetric correction is standardization. To create the standardized weighted directed carbon transfer matrix W*emiss in this work, all values in the Wemiss (67X67) matrix are divided by the maximum value in the matrix Wemiss. This ensures that all the elements in the matrix wemiss∈[0, 1]. ND is used as the threshold value when building a carbon transfer relationship network W**emiss. The threshold is set as follows:
[image: Equation showing \( W^{***}_{\text{emiss}} \) equals one if \( w_{\text{emiss}} \) is greater than or equal to \( D_{\text{emiss}} \), or zero if \( w_{\text{emiss}} \) is less than \( D_{\text{emiss}} \). Labeled as equation four.]
In Eq. 4, Demiss is the ND of the carbon transfer matrix W∗emiss.
This study measures the network density values of the FDI flow networks and the carbon transfer networks using UCINET software and sets the network density as the threshold. Furthermore, the matrices W∗fdi and W∗emiss are converted into binary matrices W∗∗fdi and W∗∗emiss, respectively. Subsequently, the individual network centrality characteristics of W∗∗fdi and W∗∗emiss are analyzed using social network analysis methods. The network densities of the FDI flow networks and the carbon transfer networks are shown in Table 4. The FDI flow networks and carbon transfer networks along the Belt and Road Initiative (BRI) countries in 2010 and 2016 are shown in Figure 5.
TABLE 4 | The network density value of FDI flow networks and carbon transfer networks.
[image: Table showing comparison of values from 2010 to 2016 for "FDI flow network" and "Carbon transfer network." Values for FDI flow network range from 0.0562 in 2010 to 0.0591 in 2016. Values for Carbon transfer network range from 0.0454 in 2010 to 0.0474 in 2016.][image: Twelve panels labeled A to L display network diagrams. Panels A to H feature clusters of red nodes with connecting lines, and some have highlighted connections. Panels D and H show blue connections, indicating more complexities. Panels I to L display clusters with green nodes, transitioning to orange in K and L, suggesting a different network structure or focus. Each diagram illustrates various network configurations and connectivity patterns.]FIGURE 5 | The evolution of outward foreign direct investment (OFDI), inward foreign direct investment (IFDI), total FDI flow networks and carbon transfer networks along the Belt and Road Initiative (BRI) countries in 2010 and 2016. The directed weighted network of outward foreign direct investment (OFDI) in 2010 (A). The directed weighted network of inward foreign direct investment (IFDI) in 2010 (B). The undirected weighted network of the sum of outward foreign direct investment (OFDI) and inward foreign direct investment (IFDI) in 2010 (C). The Binary undirected network of the sum of outward foreign direct investment (OFDI) and inward foreign direct investment (IFDI) in 2010 (D). The directed weighted network of outward foreign direct investment (OFDI) in 2016 (E). The directed weighted network of inward foreign direct investment (IFDI) in 2016 (F). The undirected weighted network of the sum of outward foreign direct investment (OFDI) and inward foreign direct investment (IFDI) in 2016 (G). The Binary undirected network of the sum of outward foreign direct investment (OFDI) and inward foreign direct investment (IFDI) in 2016 (H). The directed weighted network of carbon transfer in 2010 (I). The directed weighted network of carbon transfer in 2016 (J). The Binary directed network of carbon transfer in 2010 (K). The Binary directed network of carbon transfer in 2016 (L).
3.4 Method
3.4.1 The SNA method
Social Network Analysis (SNA) is a systematic method for evaluating the structural characteristics of complex associative networks based on relational data. Compared to traditional spatial econometric models, SNA uniquely examines both “quantitative” and “relational” effects, allowing analysis of the spatial association characteristics and the interplay between FDI flow networks and carbon transfer networks (Jorgenson et al., 2022; Ma et al., 2023). A important aspect of SNA is the identification of the most influential nodes within a network and the measurement of their centrality (He et al., 2020). Following the approach of Bai et al. (Bai et al., 2020), in this study, Ucinet software is used to analyze the spatial association network structure of the coupling coordination between the FDI flow networks and carbon transfer networks of 67 countries along the “Belt and Road.” The analysis focuses on the overall network structure, individual network characteristics, and clustering characteristics.
	(1) Overall network characteristics

The overall network structural characteristics primarily include four indicators: network density (ND), network correlation (NC), network hierarchy (NH), and network efficiency (NE). These indicators respectively describe the closeness, the vulnerability and robustness, the asymmetric accessibility and the correlation efficiency in the network (Dong and Li, 2022; Huo et al., 2022). The formulas for calculation are as shown in Eq. 5, (6), (7), and (8).
[image: Formula showing normalized difference (ND) as the sum of ratios: ND equals the double summation from \(i=1\) to \(k\) and \(j=1\) to \(k\) of \(r_{ij}\) over \(N\) times \( (N-1) \), where \(k\) and \(N\) are constants.]
[image: The formula shown is: \( NC = 1 - \left( \frac{2V}{N(N-1)} \right) \). Equation number six is indicated on the right.]
[image: Formula displaying \( NH = 1 - \frac{S}{\text{MAX}(S)} \), labeled as equation 7.]
[image: Mathematical formula for Normalized Error (NE): \( NE = 1 - \frac{R}{\text{MAX}(R)} \). Equation number eight is shown on the right.]
where rij is the number of effective connections between node i and node j; N denotes the number of nodes in the network; V represents the number of mutually inaccessible point pairs in the network; S denotes the number of symmetrically reachable point pairs in the network; MAX (S) denotes the maximum number of symmetrically reachable point pairs in the network; R is the number of redundant lines; and MAX (R) is the largest number of redundant lines.
	(2) Centrality

The individual network structure characteristics mainly include four dimensions, degree centrality (DC), betweenness centrality (BC), closeness centrality (CC), and eigenvector centrality (EC), which respectively describe the centrality of each node, the degree of control over the correlation between other nodes, the direct correlation with other nodes, and the centrality with the neighboring nodes of a node (Bali Swain and Ranganathan, 2021; Vanli and Akan, 2023). The calculation formulas are shown as follows in Eqs 9, 10, 11, and 12:
[image: Mathematical equation showing DC equals the sum from j equals 1 to n of r subscript ij, labeled as equation nine.]
[image: Equation showing the betweenness centrality calculation: BC = (2 / [(n - 1)(n - 2)]) * Σ(j, k) (σ(j, k | i) / σ(j, k)), where n is the number of nodes.]
[image: Centrality measure formula \( CC = \left[ \sum_{j=1, j \neq i}^{n} d_{ij} \right]^{-1} \), marked as equation (11).]
[image: The equation shows \( EC = \lambda^{-1} \sum_{j} A_{i} e_{j} \) with the number \( (12) \) on the right side.]
where n is the number of other nodes that are connected to node i; Rij denotes the effective number of connections between node i and other nodes; σ (j, k) represents the number of shortest paths from node j to node k; σ (j, k |i) represents the minimum number of paths connecting node j to node k that traverse node i; dij denotes the length of the shortcut from node i to node j; and λ represents the maximum eigenvalue of the adjacency matrix, where ej is the eigenvector of the adjacency matrix.
	(3) Spatial clustering analysis

Block modeling is the main method of spatial clustering in the SNA and was used here to better analyze the role and status of each country in the spatial association network (Wasserman and Faust, 1994). The spatial network was divided into four attribute categories: “main inflow”, “main outflow”, “bidirectional spillover” and “agent”. The “main inflow” plate receives more contacts from outside the plate, and its proportion of actual internal relationships is greater than that of expected internal relationships. The “main outflow” plate sends more contacts to outside plates than it receives. “Bidirectional spillover” receives fewer contacts but sends more contacts to plates both internally and externally, and the proportion of its actual internal relationships is greater than that of its expected internal relationships. The “agent” plate receives fewer contacts but sends more contacts to plates both internally and externally, and its proportion of actual internal relationships is less than that of its expected internal relationships. It plays an intermediary role, sending relationships to other plates and receiving contacts from outside members. Relying on the method of Liu et al. (2015) (Liu et al., 2015), This study conducts spatial cluster analysis on the spatial correlation network of coupling coordination between FDI flow networks and carbon transfer networks using a convergent correlations (CONCOR) method.
3.4.2 Entropy weight comprehensive evaluation method
By using the principle of information entropy to determine the weights of indicators, the entropy weight method provides an objective way of weighting indicators that reflects the relative value of each indicator (Chen et al., 2023b). Using SNA, this study creates an evaluation index for the CCDM between the FDI flow network and the carbon transfer network. The weights of each index are subsequently determined via the entropy weight method. The steps are as follows in Eqs 13–18.
	Data standardization

	• The normalization formula for positive indicators is as follows:

[image: The image depicts a mathematical formula: \( X_{ij} = \frac{(Z_{ij} - \min Z_{ij})}{(\max Z_{ij} - \min Z_{ij})} + \alpha \), labeled as equation (13).]
	• The normalization formula for negative indicators is as follows:

[image: The formula \(X_{ij} = \frac{(\text{max } Z_{ij} - Z_{ij})}{(\text{max } Z_{ij} - \text{min } Z_{ij})} + \alpha\) labeled as equation 14.]
Since the meaning of the indicators in this article is the importance of nodes (countries) in the network, the indicators are all positive, and the standardized range of Xij values is [0,1]. Due to the occurrence of a 0 value after standardization, the standardized data are shifted, resulting in a = 0.00001.
	Calculate the weight pij of the jth indicator in the ith evaluation object for each year during the sample period:

[image: Formula for \( p_{ij} = \frac{X_{ij}}{\sum_{i=1}^{n} X_{ij}} \). Equation number (15) on the right.]
	Calculate the information entropy value ek of the indicator:

[image: Mathematical equation depicting the calculation of entropy, denoted as \( e_k \), which is equal to negative one divided by the natural logarithm of \( n \), multiplied by the double summation over indices \( i \) and \( j \) of \( p_{ij} \) times the natural logarithm of \( p_{ij} \), followed by equation number sixteen in parentheses.]
	Calculate the coefficient of variation dk for information entropy:

[image: A mathematical equation is shown: \( d_k = 1 - e_k \), labeled as equation 17.]
	Calculate the weight of indicators λij.

[image: The formula shows \(\lambda_{ij} = \frac{d_k}{\sum_k d_k}\), labeled as equation (18).]
	Calculate the comprehensive evaluation value.

The comprehensive evaluation values of the FDI flow network and the carbon transfer network are calculated based on the steps above, and the comprehensive evaluation function is shown in Eq. 19:
[image: Equation showing \( U_{i=1,2} = \sum_{j=1}^{n} \lambda_{ij} X_{ij} \) with a constraint \( \sum_{j=1}^{n} \lambda_{ij} = 1 \), labeled as equation (19).]
where Xij is the standardized value of two individual feature indicators in the network in the range of [0,1]. λij is the individual feature indicator weight of the two networks calculated using the entropy weight method; the specific weights are listed in Table 5. The entropy weight method is used to determine the full evaluation values U1 and U2, which indicate the relative relevance of the carbon transfer network nodes and the FDI flow network nodes in the network, respectively.
TABLE 5 | Coupling coordination model evaluation index.
[image: A table lists two networks: "FDI Flow Network (Undirected)" and "Carbon Transfer Network (Directed)." Each network includes indicator symbols Y1 to Y11, corresponding indicator names, and weights. The FDI network includes degree, closeness, eigenvector, and betweenness centralities with weights from 0.070 to 0.616. The Carbon Transfer Network includes out-degree, in-degree, out-closeness, in-closeness, out-eigenvector, in-eigenvector, and betweenness centralities, with weights from 0.021 to 0.389.]3.4.3 Coupling coordination degree model
In this article, the degree of coupling and the degree of coordination of the carbon transfer network and the FDI flow network are calculated using the degree of coupling model and the degree of coordination model, respectively (Luo et al., 2022; Shun and Huang, 2022; An et al., 2023). The formulas are shown as follows in Eqs. 20, 21, and 22:
[image: The equation shows \( C = \sqrt{\frac{U_1 U_2}{\left(\frac{U_1 + U_2}{2}\right)^2}} = 2 \frac{\sqrt{U_1 U_2}}{U_1 + U_2} \). It is labeled as equation (20).]
[image: Equation showing T equals a times U sub 1 plus b times U sub 2, labeled as equation 21.]
[image: Mathematical equation showing \( D = (C \times T)^{\frac{1}{2}} \), labeled as equation 22.]
where D is the coupling coordination degree and C is the coupling index, both of which have values between 0 and 1. T is the comprehensive evaluation index of the FDI flow network and carbon transfer network, and the values of α and b are set to be equal, i.e., 0.5. To illustrate the difference in the CCD of the FDI flow network and carbon transfer network, the CCD is divided into six grades using the equal interval division method in this article (Table 6).
TABLE 6 | Classification of the coupling coordination degree.
[image: Table showing CCD values and corresponding coordination levels. CCD from zero to point two indicates extreme non-coordination. Point two to point four is mild, point four to point five is basic, point five to point six is primary, point six to point eight is intermediate, and point eight to one is excellent coordination.]3.4.4 Modified gravity model
In the field of research into complex spatial network research, the Moran’s Index (Zheng et al., 2022), Granger causality (Wang, 2022) and the gravity model (Huo et al., 2022) are primary used to measure spatial correlation. However, these methods have their limitations. For example, the Moran’s Index can measure the overall correlation within a region, but cannot describe the spatial correlation between individuals within that region (Li and Li, 2022). The Granger causality test can determine correlations between individuals, but it relies primarily on time-series data of the sample and assumes that the correlation remains constant over the study period. This overlooks external factors that could influence changes in the relationship, potentially leading to biased results (Jiang et al., 2022). In contrast, the gravity model can measure the spatial correlation of an entire region and also show the spatial propagation paths between individuals within a region (He et al., 2020). However, with the increasing economic interdependence of regions, the spatial connections between them become complex network structures (Chen et al., 2023a), The traditional gravity model needs to consider the bidirectionality and asymmetry of the correlation between carbon emissions and economic factors to adapt to the research needs of carbon emission spatial correlation networks (Dong and Li, 2022). For example, Chen et al. (2023) analyzed the mechanism of coupling coordination between pollution, carbon reduction, and high-quality economic development and constructed gravity matrices and spatial association networks for the two systems based on an improved gravity model. They then evaluated the structural characteristics and centrality of the coupling coordination and spatial association networks (Chen et al., 2023a). Therefore, a modified gravity model is use in this study to construct the spatial association network for coupling coordination between countries (He et al., 2020; Chen et al., 2023a). The model is as follows:
[image: The image shows a mathematical formula labeled as equation twenty-three. The formula is for \(Z_{ij}\), calculated as \(\frac{D_i}{D_i + D_j}\) times the square root of \(\frac{D_i \text{pop}_i \text{GDP}_j}{D_j \text{pop}_j \text{GDP}_i}\), divided by \(\frac{\text{distance}_{ij}}{\sqrt{\text{GDP}_i^2 \text{GDP}_j^2}}\).]
In Eq. 23, Zij represents the association strength between region i and region j, where D, pop, and GDP represent the coupling coordination degree of the networks, total population of the region, and Gross Domestic Product of the region, respectively. Distanceij is the distance between the capitals of each country, and pGDP is the per capita GDP, [image: Equation showing the fraction \(\frac{D_i}{D_i + D_j}\), where \(D_i\) is the numerator and the sum of \(D_i\) and \(D_j\) is the denominator.] indicating the contribution rate of region i in the association between region i and region j. Zij is the sum of the spatial connections of country i with all other countries within the basin. The larger the value, the tighter the coupling coordination spatial connection of country i with other countries. Based on the calculation results, using the average value of each row in the gravity value matrix as a reference, results higher than this average are assigned a value of 1, indicating the presence of a coupling effect. Results lower than the average are assigned a value of 0, indicating a weaker association effect (Bai et al., 2020; He et al., 2020).
3.4.5 The QAP method
The Quadratic Assignment Procedure (QAP) is an analytical method that focuses on relational data. It is based on the permutation of matrix, the calculation of correlation coefficients by repeated sampling and the performance of non-parametric tests to compare the numerical values of two relational matrices. This method is not affected by multicollinearity between independent variables, so the estimated results are more reliable than those obtained by parametric methods (Bai et al., 2020). Therefore, the QAP method is used in this study to investigate the influencing factors of the spatial correlation network of coupling coordination. The QAP model is as follows:
[image: Mathematical expression displaying a function: Y equals f of X, X sub 1, X sub 2, up to X sub n, enclosed in parentheses, equation number twenty-four.]
In Eq. 24, Y represents the spatial correlation network matrix of the coupling coordination between the FDI flow network and the carbon transfer network. Xi denotes the difference matrices of the respective independent variables. The dependent variable Y is defined as a relational matrix by taking the average values of the gravity scores for each year and using the method described in section 3.4.4. The independent variables Xi are derived from existing literature, with specific definitions, reference sources, and data origins detailed in Table 7. Among the independent variables, except for geographical adjacency and bilateral investment treaties that do not require normalization, other independent variables are based on the average values for the sample period. The difference matrices are then established through the absolute differences between countries. The Z-score method is used to normalize these relational matrices, ensuring that their averages and standard deviations are 0 and 1, respectively.
TABLE 7 | The indicators of influencing factors and their sources.
[image: Table listing variables and their definitions, data sources, and references. Variables include Economic Development Level, Industrial Structure, Institutional Quality, Energy Intensity, Energy Structure, Labor Rate, Urbanization Level, Infrastructure Development Level, Geographical Adjacency, and Bilateral Investment Treaties. Definitions explain how these metrics are derived. Data sources include WDI, WGI, EIA, CEPII, and UNCTAD, with corresponding references to academic studies. A footnote explains Institutional Quality and Infrastructure Development assessment methods.]4 RESULTS ANALYSIS
4.1 Time evolution characteristics of the CCD
The evolution trend of the average annual CCD of countries along the “Belt and Road” countries from 2010 to 2016 is shown in Figure 6. Overall, the coupling degree of the FDI flow network and carbon transfer network in the “Belt and Road” countries ranged between 0.9387 and 0.95, indicating a relatively high level of coupling, suggesting a strong association between FDI flows and the excessive consumption of material resources or negative environmental impacts. However, the overall level of coupling coordination between the Belt and Road countries is relatively low, with a coupling coordination of 0.3699 in 2010 and 0.3830 in 2016, indicating that the Belt and Road countries were generally in a state of disequilibrium from 2010 to 2016, suggesting that the FDI flows and carbon transfer systems of most Belt and Road countries have not yet reached a benign interactive mechanism. The reasons for this lie in the different advantages of the countries along the “Belt and Road” in attracting foreign direct investment and the associated opportunities for investment by multinational companies. However, the different levels of environmental regulation in these countries have led to late and lenient carbon emission regulations, making them havens for polluting companies. According to the report “Business Pathways to Carbon Neutrality - Implementing the Paris Agreement and UN Sustainable Development Goals” issued by the United Nations Global Compact, by 2021, less than half of the 33 countries along the “Belt and Road” have addressed climate change through legislation or administrative measures (CHANG et al., 2022).
[image: Line graph showing coupling degree and coupling coordination degree from 2010 to 2016. Coupling degree (black squares) is relatively stable, with a noticeable rise in 2016. Coupling coordination degree (red triangles) fluctuates, peaking between 2013-2014 and significantly dropping in 2015 before recovering in 2016.]FIGURE 6 | The trend of coupling degree and coordination degree.
The coupling coordination of Foreign Direct Investment (FDI) flow networks and carbon transfer networks among countries along the Belt and Road Initiative (BRI) exhibits a fluctuating upward trend towards favorable coordination, as illustrated in Table 8. From 2010 to 2016, China, Singapore and the United Arab Emirates were at the forefront of tying coordination. Due to their unique geographical location, these countries are often considered as bridges and important hubs connecting other countries along the “Belt and Road” They have attracted a large number of green infrastructure projects and renewable energy technologies. In addition, the “Belt and Road” Initiative has facilitated investment and promoted deep economic integration between these countries and their neighbors. This has created a new environment and perspective for Outward Foreign Direct Investment (OFDI) and Inward Overseas Direct Investment (IFDI).
TABLE 8 | CCD changes of FDI flow network and carbon transfer network.
[image: A table displays data for various countries from 2010 to 2016, showing "Coupling degree" and "Coupling coordination degree" for each year. The table includes countries such as Afghanistan, Albania, China, and Yemen, listing numerical values for each category across the specified years.]4.2 Spatial association network structure of CCD
4.2.1 Overall network structure
Based on the calculations of Eq. 23, the spatial association network of coupling coordination was visualized in this paper using UCINET software, as shown in Figure 7. These network diagrams show the connections between countries and their variations. For reasons of space, the results of the study are presented at 2-year intervals. Red squares indicate countries that both send to and receive connections from other countries, while blue squares represent countries that only send connections to other countries without receiving any in return. The size of the squares denotes the centrality of the countries in the network and reflects the strength of its connections with other countries. Larger squares indicate a higher degree of association with other countries. For example, Qatar and the United Arab Emirates occupy central positions in the network, which indicates indicating their close relations with other countries. In terms of the network connectivity, i only ten countries sent connections to other countries between 2010 and 2016 without receiving anything in return. In 2012 and 2014, this number rose to eleven countries. Overall, there was a good level of spatial association between the Belt and Road countries from 2010 to 2016. On the one hand, the Belt and Road Initiative has promoted cooperation between countries on investment flows and the reduction of carbon emissions. On the other hand, the countries along the “Belt and Road” are areas where production and consumption of energy resources are concentrated, as well as areas with high carbon emissions. In the face of the increasingly evident problem of climate change, effective measures to change the comprehensive economic development model and promote low-carbon development have become imperative for the countries along the “Belt and Road” to achieve sustainable development.
[image: Four network diagrams from 2010, 2012, 2014, and 2016 show nodes labeled with codes and connected by lines. Larger red nodes indicate prominent connections in each year, with the number of connections generally increasing over time.]FIGURE 7 | The evolution of the spatial association network structure.
4.2.2 Network connectedness, hierarchy and efficiency analysis
Based on Eqs. 5–8, this paper has calculated the overall network indicators of the spatial association network of coupling coordination from 2010 to 2016, as shown in Figure 8. The number of network associations decreased from 710 to 688, with network density fluctuating slightly, decreasing from 0.161 in 2010 to 0.154 in 2011. Since 2013, there has been little change in the number of network associations and network density, indicating a stable trend in the spatial correlation.
[image: Line graph showing network metrics from 2010 to 2016, including density, hierarchy, connectedness, efficiency, and contacts. Network density and hierarchy drop sharply in 2011, while connectedness, efficiency, and contacts remain stable.]FIGURE 8 | Spatial association network structural indices (2010–2016).
Between 2010 and 2016, the connectivity of the network remained at 1, indicating that the spatial association network of coupling coordination between the countries along the Belt and Road Initiative maintained good accessibility. There were relatively few redundant links between the node associations, allowing any two nodes to reach each other, ensuring high network flow efficiency. This also suggests the presence of spatial spillover effects in the coordination of FDI flows and carbon emission transfers between the Belt and Road countries that extend beyond neighboring countries. And it also indirectly shows that countries along the “Belt and Road” should consider the spatial correlation effect of FDI flows and carbon transfer and implement cross-regional coordinated strategies to reduce carbon emissions.
After 2012, there was a significant decrease in network degree centrality, indicating a gradual strengthening of spatial links between countries. The gradient transmission of the FDI flows and carbon transfer between countries has broken the previous rigid hierarchical pattern. From 2013 onwards, the network structure became more stable. Although the efficiency of the network increased only slightly during this period (from 0.7683 in 2010 to 0.7776 in 2016), the overall stability of the network remained high. This indicates that with the implementation of the Belt and Road Initiative, cooperation between China and countries in Asia, Africa and Europe has intensified, resulting in an increased frequency and intensity of investment activity and carbon emission transfers between Belt and Road countries.
4.2.3 Centrality analysis
Based on Eqs 9–12, this paper has calculated the centrality indicator characteristics of the nodes in the spatial association network of coupling coordination between FDI flows and carbon emission transfers among the “Belt and Road” countries from 2010 to 2016. For space reasons, only the top 10 rankings for 2010 and 2016 are shown in Table 9 and Table 10.
TABLE 9 | Ranking of individual centrality within the spatial association network in 2010 (top ten).
[image: A table displaying various countries with associated metrics. Columns include ISO codes, degree, Out-DC, In-DC, Out-CC, In-CC, Out-EC, In-EC, and BC. Each column lists numerical values correlating to specific countries, showing rankings and measurements across different categories. The top row features data for countries such as QAT, ISR, and ARE, with QAT having the highest degree and BC values.]TABLE 10 | Ranking of individual centrality within the spatial association network in 2016 (top ten).
[image: Table listing countries with columns labeled ISO, Degree, Out-DC, In-DC, Out-CC, In-CC, Out-EC, In-EC, and BC. Each column contains corresponding values for various countries, used to compare metrics like degrees, counts, and scores across different international standards.]From a degree centrality perspective, countries such as Portugal, the Czech Republic, Slovakia, and Ukraine consistently ranked at the top of out-degree centrality between 2000 and 2016, as shown in Figure 9A. During this period, the scores for Portugal and Greece increased from 23 to 15 to 26 and 16 respectively, indicating stronger spatial correlation and spillover effects in the coordination of FDI flows and carbon transfer. Greece saw a slight drop in its ranking in 2016, possibly due to adjustments in its diplomatic strategy following the economic crisis. The centrality of the United Arab Emirates increased significantly in 2016, likely due to country’s economic growth and increased international investment activities. Countries such as Qatar, the United Arab Emirates, and Israel ranked high in terms of in-degree centrality, as can be seen in Figure 9B. Although Qatar’s in-degree centrality slightly decreased from 59 in 2010 to 58 in 2016, the country maintained a relatively high position. The high in-degree centrality of Qatar and the United Arab Emirates could be related their economic strength and energy exports, which strategically position these countries in the global energy market. Conversely, countries such as Lebanon, Jordan, and Brunei had lower centrality, possibly due to their smaller economic scale and geographical location, which limits their ability to cooperate on FDI flows and carbon reduction.
[image: Line graphs labeled A to G show data trends from 2012 to 2014, with varying peaks and troughs across graphs. Each graph has a color-coded key for each year, highlighting patterns and differences in data trends over time.]FIGURE 9 | The individual network structural characteristics of spatially correlated networks. Out-degree centrality (A), In-degree centrality (B), Out-Closeness centrality degree (C), In-Closeness centrality degree (D), Out-Eigenvector centrality degree (E), In-Eigenvector centrality degree (F), Betweenness centrality degree (G).
In terms of closeness centrality, countries such as Jordan, Malaysia, Bahrain and Syria showed remarkable performance in out-closeness centrality in 2010, as shown in Figure 9C. In 2016, the ranking of out-closeness centrality changed, with India, Malaysia, Jordan, and Singapore coming out on top. Notably, Singapore’s out-closeness centrality has risen from seventh place in 2010 to fourth place in 2016. This shift is due to its status as a major maritime hub and the location of Middle Eastern countries such as Jordan, Bahrain, and Syria at key transit points that intersect multiple routes, improving their accessibility in the global transportation network. In addition, the open economic policies of these countries, such as the Regional Comprehensive Economic Partnership Agreement, have encouraged international economic activities and strengthened their economic ties with other nations. Thus, Regional cooperation has promoted the flow of foreign direct investment and the reduction of carbon emissions, which has improved their outbound Closeness centrality. In terms of in-closeness centrality, countries like São Tomé and Príncipe, the Maldives, and Bhutan were well-positioned in 2016, as shown in Figure 9D. However, by 2016, these countries experienced a decline in in-closeness centrality, indicating a decline in their influence within the global network. This situation is usually related to factors such as national foreign policies, the amount of international aid, geographical location, cultural and historical factors, as well as economic and trade relations.
In terms of eigenvector centrality, Slovakia, the Czech Republic, Hungary, and Slovenia stand out in terms of out-eigenvector centrality, as shown in Figure 9E. Notably, Slovenia in particular saw an increase in its out-eigenvector centrality from 0.702 in 2010 to 0.893 in 2016. These countries have competitive advantages in sectors in manufacturing, services and other sectors and have taken proactive measures in environmental policies, such as participation in carbon emission trading systems like the European Union Emissions Trading System (EU ETS). In addition, Central and Eastern European countries often play an important role in trade and political relations within the European Union and other regions, which contributes to their high ranking in the Out-Eigenvector Centrality. Furthermore, countries such as Qatar, the United Arab Emirates, Israel, Saudi Arabia, and Kuwait also rank high in in-eigenvector centrality, as shown in Figure 9F. These countries have abundant resources, a strategic position in global energy markets, are located on major transportation routes and are leaders in high-tech and innovation. As a result, they attract substantial high-value foreign direct investment.
In terms of betweenness centrality, there were significant changes in the ranking within the spatial association network from 2010 to 2016, with the nodal countries changing continuously, as shown in Figure 9G. In 2010, the leading countries in terms of betweenness centrality were primarily Greece, Qatar, Oman, China and the UAE with intermediate centrality scores of 597.965, 441.811, 424.596, 325.749, and 251.337. In 2016, the top spots shifted to the UAE, Russia, China, Qatar and Turkey with betweenness centralities of 960.925, 413.189, 309.897, 302.780, and 291.915 respectively. These countries exert significant influence and act as bridges within geographically connected networks. Particularly, noteworthy are the UAE, Russia and China, whose betweenness centrality far exceeds that of other countries or regions. China and Russia, for example, exert a major influence on global trade, politics and security and often serve as intermediaries in multilateral relations. Resource-rich countries such as Qatar and Kuwait, which are heavily dependent on oil and gas, occupy central positions in the global energy network. In contrast, countries with less intermediary centrality, such as Laos, Armenia and Turkmenistan, are often on the periphery of the networks due to their remote geographical location, weak economic foundations and technological backwardness and are therefore influenced by dominant countries.
4.2.4 Spatial clustering analysis
The CONCOR method was used in this study to further investigate the clustering characteristics of the spatial association network. Using the 2016 clustering results as an example, a maximum split depth set at two and a convergence criterion of 0.2 were selected, resulting in the division of the 67 countries along the “Belt and Road” initiative were divided into four blocks (Table 11).
TABLE 11 | The spatial clustering results.
[image: A table with three columns: "Plate," "Number of countries," and "ISO." Plate I has 33 countries, including AFG, LAO, AGO, etc. Plate II has 9 countries, such as CHN, SGP, SAU. Plate III has 15 countries, including BLR, SVN, EGY. Plate IV lists 10 countries like PRT, GRC, CZE.]The calculation results are presented in Table 12. In the spatial association network, there are a total of 688 associative relationships, of which 182 are internal relations within the blocks and 506 are external relations between the blocks, indicating a significant spatial correlation and overflow of linkage coordination between the blocks. Block I includes developing countries in Asia and Africa such as Afghanistan, Angola, and Armenia, where the share of internal relations is 11.62%, lower than the expected 48.49%, showing a net spillover effect. The industrial structure of these countries is relatively backward, relying on carbon-intensive industries mostly located at the periphery of the network, and they tend to attract investment in the energy industry, resulting in an overabundance of carbon emissions.
TABLE 12 | Spillover effect of spatial correlation plate.
[image: Table listing data for plates I to IV. Columns show the number of countries, external and overflow sector correlation coefficients, expected and actual internal relationships percentages, and plate roles. Plate I has 33 countries, external coefficient 77%, overflow 251%, expected internal 48.485%, actual 11.620%, role is main outflow. Plate II has 9 countries, external 152%, overflow 42%, expected 12.121%, actual 33.333%, role is main inflow. Plate III has 15 countries, external 74%, overflow 98%, expected 21.212%, actual 51.724%, role is bidirectional spillover. Plate IV has 10 countries, external 203%, overflow 115%, expected 13.636%, actual 16.667%, role is main inflow. Notes on relationship calculations are provided.]The proportion of internal relations within Block II is 33.33%, compared to the expected proportion of 12.121%, and the proportion of internal relations within Block IV is 16.67%, compared to the expected proportion of 13.64%. The actual internal share of both blocks is significantly different from the expected internal share, and the share of accepted relationships is higher than the share of spillover relationships between the blocks, so both belong to the net beneficiary blocks. Block II includes nine countries such as China and Singapore, while Block IV includes 10 countries such as Qatar and the United Arab Emirates, which have abundant energy resources, making them very attractive for investment in the international economy. To improve energy efficiency and reduce carbon dioxide emissions, these countries could cooperate more internationally with other countries to reduce carbon dioxide emissions across countries, so that they have net benefits in the network.
Block III, which includes countries such as Albania and Russia, has an actual share of relations of 51.72%, which is higher than the expected share of 21.21%, making it as a bidirectional spillover block. These countries have a diversified industrial structure that benefit from both carbon-intensive industries and emission reduction from low-carbon industries, making them important suppliers of labor and energy in the global production network.
In this study, taking 2016 as an example, the density matrices and image matrices of each block were calculated to reflect the spillover relationships and the direction of coupling coordination between the blocks (He et al., 2020; Dong and Li, 2022). The overall network density in 2016 was 0.156. If a block’s density exceeded this value, indicating a significant clustering trend, it was assigned a value of 1, otherwise 0. Based on this criterion, the image matrix was created (Table 13). Regarding the extent of the spillover effect within blocks, Block I showed a significant net spillover effect towards Blocks II and IV, but showed no internal association, indicating untapped regional potential. Blocks II, III, and IV had diagonal values of 1, indicating high reflexivity and distinct clustering characteristics. It is noteworthy that block III, as a bidirectional spillover block, exhibited mutual spillover effects with block IV.
TABLE 13 | The density matrix and image matrices.
[image: Table displaying data for plates I to IV. It includes two sections: Density matrix with values like 0.031 under Plate I and 0.5 under Plate III, and Image matrix with binary values such as 0 and 1.]4.3 Discussions on the factors influencing the spatial association network of CCD
4.3.1 QAP correlation analysis
Table 14 depicts the QAP correlation analysis between the spatial correlation matrix and the driving factors. The differences in the energy structure, labor rate and urbanization rate do not pass the significance test, indicating no significant correlation between these three variables and the spatial association., all other factors were significant at least at the 5% level.
TABLE 14 | QAP correlation analysis results of spatial correlation matrix T and influencing factors.
[image: Table displaying data for various variables with columns: Variable, Obs value, Significance, Average, Std Dev, Minimum, Maximum, \(p \geq 0\), \(p \leq 0\). Variables include PGDP, IS, IQ, EI, ES, LR, UR, IDL, GA, and BITs. Values range across different parameters, with minimal and maximum values noted.]Table 15 presents the correlations between different variables. As can be seen from the table, there is a significant correlation between the influencing factors at the 1% level, which indicates the presence of multicollinearity between the variables. To address this issue, the QAP regression method is used for analysis in this study.
TABLE 15 | QAP correlation analysis results of each influencing factor.
[image: Correlation matrix table displaying relationships between variables: PGDP, IS, IQ, EI, ES, LR, UR, IDL, GA, and BITs. Values indicate correlation coefficients with significance levels denoted by asterisks: * for ten percent, ** for five percent, and *** for one percent.]4.3.2 QAP regression analysis
Based on the results of the QAP correlation analysis (Table 16), three variables that were not significant in the correlation test were eliminated in this study (Bai et al., 2020), and factors with significant correlation coefficients were selected as independent variables for the QAP regression analysis. The analysis was based on a selection of 5,000 random permutations, with a total of 10,000 random swaps. The results, presented in, show an adjusted R2 value of 0.102. This means that the explanatory variables account for 10.2% of the variance in the spatial association relationship of coupling coordination between the two networks, and the model passed the test at the 1% significance level.
TABLE 16 | QAP regression analysis results.
[image: Regression analysis table showing variables with unstandardized and standardized coefficients, significance, and proportions. Key values include: PGDP with a significance of 0, IS at 0.001, IQ at 0.045, IDL at 0.033. Adjusted R-squared is 0.102, with 4422 observations.]Per capita GDP has a positive effect on spatial correlation matrices at the 1% significance level, suggesting that regions with higher levels of economic development can attract talent from other regions, leading to population migration from economically underdeveloped areas to economically advanced areas, thus reducing energy consumption and carbon emissions (Mahadevan and Sun, 2020). In addition, higher incomes often attract capital inflows from other regions, countries with a higher per capita GDP can afford better energy-saving technologies. Conversely, economically weak but resource-rich countries can export their resources to technologically advanced countries for further processing, leading to closer spatial linkages between FDI flows and carbon transfers between economies (Liu Q. et al., 2020). The standardized coefficient of the geographical adjacency matrix is positive, indicating that the closer the geographical location of the countries, the stronger the correlation in the spatial network. This can be attributed to the shorter distances between neighboring countries, which allow for an easier flow of resources and thus increase the spatial correlation of FDI flows and carbon emissions. Bilateral investment agreements are significantly positively correlated at the 1% level, suggesting that these agreements improve the convenience of FDI flows (Kox and Rojas-Romagosa, 2020) and thereby promote a closer spatial correlation in the coupling of FDI flows and carbon transfers between countries. At the 1% significance level, industrial structure is significantly negative, suggesting that countries with similar industrial structure are more likely to strengthen their associative relationships. Regions with similar industrial structure tend to increase the inflow of products from other areas, thereby intensifying economic ties (Huo et al., 2022). At the 5% significance level, institutional quality shows a significant positive correlation, indicating that countries with greater differences in the institutional environment tend to strengthen associative relationships. Countries with poorer institutional environments tend to have relatively lower barriers to entry for foreign firms, which facilitates the exchange of resources and capital (Wang et al., 2022). The level of infrastructure development shows a significant negative correlation at the 5% level, indicating that the similarity of infrastructure development level positively influences the spatial correlation of FDI and carbon transfer. The improvement of infrastructure development level leads to more frequent resource transportation, funds, and population mobility, which strengthens the spatial correlations. For example, as transportation infrastructure gradually improves, the temporal distance between two countries decreases, transportation costs gradually decrease, and convenient transportation networks and freight transportation lead to an increase in carbon emissions (Wang et al., 2023). Energy intensity has no significant effect on spatial correlation, which is mainly due to the impact of the Belt and Road Initiative on energy efficiency convergence through trade integration and regional cooperation, reducing its effect on the spatial correlation of coupling coordination between FDI and carbon transfer (Han et al., 2018).
5 CONCLUSION AND POLICY IMPLICATIONS
This study used social network analysis and a coupling coordination model to analyze the coupling coordination of FDI flow networks and carbon transfer networks between 67 countries along the “Belt and Road” initiative. A modified gravity model and the QAP method are used to empirically investigate the spatial correlation characteristics and influencing factors of coupling coordination between the two networks. The following conclusions are drawn:
	(1) From the perspective of the general characteristics of the network structure, the network density and the number of network connections show an “M" trend, which means that the coupling coordination between the two networks has hardly changed. A network connectivity of one indicates good accessibility within the network. However, the network degree centrality has decreased significantly since 2012, indicating a dispersed flow of FDI and carbon transfer between countries. Despite the limited and declining trend in network efficiency growth, the network remains relatively stable overall. This result suggests that although many countries along the Belt and Road Initiative have implemented a series of measures to reduce carbon emissions, some local governments may lack strong motivation to enforce environmental regulations as economic and trade activities in the region develop (Cao et al., 2019), leading to a certain strengthening of the spatial correlation effects of FDI flows and carbon transfers, while the synergistic governance effects of regional investment and carbon emissions show a decreasing trend.
	(2) Looking at the individual structural characteristics of the network, countries such as Qatar and the United Arab Emirates occupy a central position within the network, while Bahrain, Jordan and Lebanon are located on the periphery. The countries at the center of the network not only have closer ties, but also serve as a bridge between the two networks, while the countries on the periphery of the network have weaker ties. This result suggests that effective coordination of investment and carbon transfer development requires the implementation of regional cooperative governance mechanisms. Individual governance approaches that ignore spatial correlation effects cannot effectively reduce carbon emissions from economic activities. This result is also consistent with the concept of regional integration and coordinated development advocated by neorealism (Su and Yu, 2019). Therefore, in the cross-regional coordinated governance of investment and carbon emissions between countries along the Belt and Road Initiative, countries such as Qatar and the United Arab Emirates should be at the center of regionally coordinated carbon governance.
	(3) In terms of spatial clustering, Block I has a “net outflow” and includes developing countries in Asia and Africa such as Afghanistan, Angola and Armenia. Blocks II and IV are “net recipients"," with Block II comprising nine countries, including China and Singapore, and Block IV ten countries, including Qatar and the United Arab Emirates. Block III represents a “two-way outflow"," which includes countries such as Albania and Russia. Looking at the individual linkage coordination of FDI and carbon transfer, the inflow block consists mainly of countries with high linkage coordination between the two networks, which are at the center of the network. Conversely, the outflow block consists mainly of countries at the periphery of the network with lower linkage coordination. More specifically, the main inflow block consists mainly of economically developed countries, while the main outflow block consists mainly of countries that are rich in resources and geographically remote (Huo et al., 2022).
	(4) From the perspective of QAP regression analysis, factors such as economic development level, geographical proximity, bilateral investment agreements and institutional quality have a positive impact on the spatial correlation of FDI and carbon transfer coordination. Conversely, the industrial structure and the level of infrastructure development have a negative influence on the spatial correlation. Differences in energy intensity, differences in energy structure, urbanization rate and employment rate have no significant impact on spatial correlation. Factors such as geographical proximity, the signing of bilateral investment agreements, significant differences in economic development, significant differences in the institutional environment, similar industrial structures and a similar level of infrastructure development significantly promote the emergence of a spatial correlation. The research results provide a theoretical basis for “Belt and Road” countries to formulate reasonable policies for cross-regional investment and coordination of CO2 emission reduction. Governments should focus on promoting cross-regional coordinated carbon policies, especially in areas with short geographical distances, large differences in economic development and signed bilateral investment agreements.

This study introduces the coupling coordination model and social network analysis to the relationship between investment activities and carbon emissions in countries along the Belt and Road Initiative (BRI). It provides a new perspective for studying the relationship between investment and carbon emissions, addressing the current lack of integrated research on investment and carbon transfer. By using the modified gravity model to construct a spatial correlation network of the two networks, it also assesses the structural characteristics of the spatial correlation network and identifies the positions and roles of different countries in the network of coordinated economic flows and carbon emissions. This provides a basis and reference for formulating comprehensive and effective regional carbon emission management strategies and promoting rational use of investment and optimization of allocation. In the future, the combination of multi-regional input-output tables and complex network models to construct multi-regional associated networks can analyze the flow characteristics of resources between different economies or industries. In addition, by using coupling coordination model, the characteristics of coupling multi-system networks can be further explored (Liu et al., 2023).
Based on our research findings, several important policy implications can be proposed:
(1) Differentiated, cross-regional mechanisms for cooperation on carbon management should be created, promoting tailored approaches according to local conditions. Countries with strong producer-oriented linkages should emphasize supply-side instruments such as resource taxes, while countries with weak consumer-oriented linkages should consider introducing demand-side measures such as carbon pricing, trading and taxation to encourage companies to reduce their carbon emissions and engage in domestic carbon trading, thus reducing the dispersion of carbon transfer flows. In addition, it is recommended that countries along the Belt and Road Initiative (BRI) promote investment facilitation through measures such as simplifying investment procedures, tax incentives, signing bilateral investment treaties and reducing trade barriers to increase investment efficiency and enhance efforts to promote the development of low-carbon technologies, innovative green technologies and more efficient use of resources to reduce pollutant emissions. At the same time, it is important to establish a sound evaluation and accountability mechanism for coordinated carbon policies to regularly assess the effectiveness of regional coordinated carbon policies.
(2) Given the obvious spatial network correlations between FDI flows and carbon transfers, a trans-regionally coordinated carbon policy can capitalize on the leading role of economies in spatially connected networks. Based on the comprehensive platform of the Belt and Road Initiative (BRI), international cooperation can be fostered by designing mechanisms with countries that are in core positions with high linkage characteristics (such as Qatar and the United Arab Emirates). By fully utilizing the facilitation and bridging role of these core countries in the spatially coupled coordination network, joint efforts can be made to regulate carbon emissions in other regions and encourage countries in the periphery to improve carbon use efficiency and avoid excessive emissions.
	(3) Countries that play a similar role in spatial clustering can implement cross-regional coordinated strategies to manage carbon emissions. Due to their analogous characteristics, emission reduction strategies are highly applicable. As “net beneficiaries"," they should make joint efforts to develop the new energy industry, raise entry barriers for high-polluting industries, and provide technical and financial support to other countries to ensure successful transformation of “net emitters.” China, as the initiator of the Belt and Road Initiative, should continue to play a leading role in the two sectors of “spillover in both directions” and “net beneficiaries” by establishing regional carbon reduction cooperation mechanisms and integrating them with international carbon reduction mechanisms. The Belt and Road countries can work with the European and American countries in market cooperation to transfer low-carbon technologies to the relatively lagging “net beneficiary” countries and train experts in carbon reduction technologies. In addition, support can be provided to facilitate low-carbon policy formulation and infrastructure construction.

Despite the contribution of this work, it has inevitably some limitations. First, the input-output data used in this study comes from the Eora database. However, due to the time lag, the data results of this study cannot reflect the latest developments in China and the Belt and Road region. In addition, due to data availability, not all Belt and Road countries were included in this study, leading to possible omissions in the research scope. As input-output databases continue to evolve and improve globally, the data lag issue encountered in this study will no longer be a challenge. Future research should promptly utilize newly released input-output data to capture recent changes in FDI flows and carbon emission transfers. Second, as a complex network system, the spatial correlation network of coupling coordination between FDI flow networks and carbon transfer networks is also influenced by various factors. Due to space limitations, only selected key factors are examined in this paper, so that their mechanisms of action cannot be comprehensively explored. Future research should investigate the network characteristics such as node degree centrality (DC), betweenness centrality (BC), closeness centrality (CC), and eigenvector centrality (EC) to understand their mechanisms. Third, future research can build a multi-layered coupling network from the industry level of different countries to further study the FDI flow and carbon transfer to provide better theoretical support and forward-looking suggestions for the coupling coordination study of FDI flow and carbon transfer in countries along the “Belt and Road".
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Agricultural activities constitute the second-largest contributor to greenhouse gas emissions. Proactively mitigating agricultural carbon emissions is crucial for safeguarding the ecological en-vironment, improving agricultural productivity, and fostering long-term ecological sustainability. This paper employs bibliometric analysis to examine the research status, hot topics, and devel-opment trends of agricultural carbon emissions in China over the past 2 decades. Based on Citespace software, the study primarily conducts visual analysis on 660 academic articles on ag-ricultural carbon emissions collected from the China National Knowledge Infrastructure (CNKI) between 2001 and May 2023, including publications indexed in Peking University Chinese Core Journals (PKU Core), Chinese Social Sciences Citation Index and Chinese Science Citation Database. The analysis covers publication quantity, author cooperation, institution cooperation, keyword co-occurrence, keyword clustering, keyword burst, keyword timeline, and keyword timezone. Research results indicate: (1) From the annual publication volume changes perspective, research on China’s agricultural carbon emissions demonstrates a rapid upward trend in the new era, with increasing research interest. (2) The core net-work of research authors has been established, primarily concentrated in agricultural and forestry universities, and the core network of institutions in this field is gradually forming. However, collaboration networks between authors and research institutions are relatively dispersed, necessitating strengthened collaboration among institutions. (3) Current research on agricultural carbon emissions predominantly focuses on the challenges of reducing agricultural carbon emissions in China under the “dual carbon” goals, measures, and pathways to achieve agricultural carbon emission reductions; performance evaluation of agricultural carbon emissions, factors affecting these emissions, and their reduction potential; as well as the relationship between agricultural carbon emissions and agricultural economic growth. Future research should delve deeper into the precise accounting of agricultural carbon emissions under the “dual carbon” goals, their underlying mechanisms, and issues related to precise and differentiated agricultural carbon reduction strategies. (4) The development trajectory of domestic agricultural carbon emissions research shows a period of germination from 2001 to 2009, a development stage from 2010 to 2015, and a deepening stage from 2016 to 2023, with a notable increase in publications in 2021, signifying a new upward phase in research output.
Keywords: agricultural carbon emissions, low-carbon agriculture, bibliometric analysis, Citespase, development trends

1 INTRODUCTION
Related research indicates that excessive carbon emissions in the sectors of agriculture, livestock, and industry adversely affect the development of climate, ecology, and human society. The processes of emission reduction associated with agricultural production, livestock, and industrial production are receiving significant attention (Abbas et al., 2023; Elahi et al., 2024; Elahi and Khalid, 2022; Odhiambo et al., 2020; Abbas et al., 2022; Waseem et al., 2022). Excessive carbon emissions can adversely impact climate, ecology, and human society (Kabir et al., 2023). The rise in carbon emissions leads to extreme and adverse weather conditions, further depleting the ozone layer, causing global climate warming, inducing the greenhouse effect, affecting the stability of the ecological environment, ultimately posing a threat to agricultural production, impacting global food yields, and endangering human survival (Huisingh et al., 2015). Currently, on a global scale, China is the largest carbon emitter. According to data from the “2023 China Agricultural and Rural Low-Carbon Development Report,” the total carbon emissions from agricultural production in China amount to 828 million tons of carbon dioxide, representing 6.7% of the nation’s total carbon emissions. While the overall proportion of agricultural carbon emissions may not be high, challenges persist, particularly concerning the significant release of harmful greenhouse gases from livestock farming and the increased carbon emissions due to excessive fertilizer use in agriculture (Raihan et al., 2023). Greenhouse gases generated from agricultural production mainly stem from livestock farming, fertilizer usage, agricultural land use, crop burning, and deforestation (Stavi and Lal, 2013). Therefore, improving agricultural production methods and land use practices is crucial to reducing carbon dioxide emissions.
In recent years, in response to the national “dual-carbon” goals, scholars have actively engaged in extensive research on agricultural carbon emissions, achieving fruitful outcomes. The academic community has made significant contributions in areas such as the estimation of agricultural carbon emissions, identification of influencing factors, and strategies for carbon reduction in agriculture (Huang et al., 2019; Litskas et al., 2007). Moreover, systematic reviews and analyses of research hotspots and trends in the field of agricultural carbon emissions in China have been further enriched. Currently, there is a limited number of comprehensive review articles on agricultural carbon emissions in China, primarily addressing topics such as the analysis of agricultural carbon effects, estimation of agricultural carbon emissions, low-carbon agriculture, and agricultural carbon emissions (Han et al., 2018; Zhu and Huo, 2022; Yun et al., 2014). Existing literature can be categorized into two main aspects: first, analyzing the current status and issues of agricultural carbon emissions through content and logical analysis (Zhao et al., 2021; Liu et al., 2020); second, visualizing the research hotspots and trends using Citespace software (Yu et al., 2023). However, there is currently limited research analyzing the research trajectory of agricultural carbon emissions, and there is a lack of in-depth analysis of research hotspots in this field.
To address this gap, this paper will employ CiteSpace software to visually analyze the historical evolution, research hotspots, and developmental trends of agricultural carbon emissions in China. The analysis will include examining collaboration relationships among the literature, research hotspots, and the evolution of research themes. While this study’s reliance on Citespace software and its focus solely on the CNKI database may introduce some limitations in generalizability, it is beneficial for highlighting China’s stance on carbon emission research. This approach allows for an in-depth exploration and analysis of China’s agricultural carbon emissions, offering new perspectives for researchers in the field, serving as a reference for subsequent studies, and promoting more systematic and comprehensive research on agricultural carbon emissions.
2 LITERATURE BACKGROUND
The trend of agricultural carbon emissions in China shows an initial increase fol-lowed by a subsequent decrease, with varying growth rates evident in different stages (Liu et al., 2023; Chen et al., 2020a). Numerous scholars have systematically researched the issue of Chinese agri-cultural carbon emissions, which can be summarized in four main aspects: First, the estimation, spatiotemporal characteristics, and driving mechanisms of agricultural carbon emissions have been investigated (Dai et al., 2023). Second, scholars have analyzed the performance and assessed the reduction potential of agricultural carbon emissions (Li et al., 2023; Chen et al., 2023). In recent years, although agricultural production performance has improved, regional imbalances and spatial clustering effects have been prominent. Third, theoretical exploration and empirical testing of low-carbon agriculture have been conducted (Yang et al., 2023; Hao, 2022). Theoretical research has focused on the concepts, challenges, and development paths of low-carbon agriculture. Fourth, the relationship between agricultural industrialization and agricultural carbon emissions has been studied (Prastiyo et al., 2020; Dong et al., 2020). These studies contribute valuable insights into understanding and addressing the issue of agricultural carbon emissions in China.
3 RESEARCH METHODOLOGY AND DATA SOURCES
3.1 Research methodology
Bibliometrics involves the statistical analysis of literature data to study the distribution structure, quantity relationships, and patterns of change in literature. It is a method used to predict the frontiers and trends in developing a discipline based on this analysis. CiteSpace, a widely used bibliometric software, was developed by a team led by Professor Chaomei Chen at Drexel University in the United States (Chen, 2006). It is based on co-citation analysis theory and pathfinding network algorithms. CiteSpace extracts and reconstructs information such as authors, institutions, and keywords, enabling tracking hotspots and development trends in research areas (Chen et al., 2012). Therefore, CiteSpace analysis can be used to study the trends and dynamics of the development of a discipline or knowledge domain over a certain period, such as research progress, frontiers, and knowledge foundations. It can also clarify complex relationships in citation networks, such as collaborative authors, institutions, journals, etc. CiteSpace helps answer questions such as: which literature is groundbreaking and landmark? What research topics dominate the field? How does the research frontier evolve? CiteSpace software has been applied in information science, education, economics, and management. This paper will use CiteSpace version 6.2. R3 to organize, analyze, and visualize literature information. The time interval is set from 2001 to 2023, with a time slice set to 1. Node types are selected as authors, institutions, and keywords, retaining the top 20 data for each time slice. The network graph is pruned using pathfinding, and other parameters are set to default values.
3.2 Data source
The China National Knowledge Infrastructure (CNKI) serves as a comprehensive full-text database, providing domestic and international readers with access to a wide array of resources including academic literature, Chinese scholarly documents, foreign language materials, and theses among others. As such, CNKI is frequently regarded as one of the primary sources for data collection in bibliometric analysis. The primary data source utilized in this study comprises the Chinese core journals list (as recognized by Peking University), the Chinese Social Sciences Citation Index (CSSCI), and the Chinese Science Citation Database (CSCD), all of which are accessible through the CBKI database.
The data was acquired on 12 June 2023, from the online database of Guangdong University of Finance Library. The search keywords were as follows: “agricultural carbon emissions” or “agricultural carbon reduction” or “crop production carbon emissions” or “livestock carbon emissions” or “agropastoral carbon emissions” or “agricultural energy carbon emissions,” covering the period from January 2001 to June 2023. A total of 834 original documents were initially retrieved. After eliminating duplicates, publications irrelevant to the topic, conference reviews, and non-academic documents such as news articles, a final set of 660 valid documents dated from 2001 to May 2023 was compiled. These documents form the foundational dataset for this research.
4 BIBLIOMETRIC AND ANALYTICAL APPROACH
4.1 Characteristics of temporal variation in publication volume
To understand the development trends in the field of agricultural carbon emissions in China, this study analyzed the changing trends in publication volume over time. As depicted in Figure 1, the overall research output in this field from 2001 to 2022 exhibits a linear upward trend. Additionally, the publication volume in this field shows distinct phased characteristics.
[image: Line chart illustrating the number of publications and their citations per year from 2002 to 2020. Publications steadily increased from 2 in 2002 to a peak of 106 in 2019, declining to 70 in 2020. Citations per publication peaked at 108 in 2019, showing a fluctuating trend before 2012, then consistently rising.]FIGURE 1 | The number of publications versus 2001-2023.
Between 2001 and 2023, the literature on agricultural carbon emissions in China can be broadly categorized into four stages: 2001–2009, 2010–2011, 2012–2020, and 2021–2023. From 2001 to 2009, the first stage represented the nascent phase of agricultural carbon emission research, characterized by an average publication output of 2 articles. During this period, China, in 2005, introduced the concept of “energy conservation and emissions reduction” in the 11th Five-Year Plan. Academic understanding of agricultural carbon emissions was limited, focusing primarily on soil respiration. During this phase, both the government and the general public had a relatively low awareness of energy conservation, with the primary focus being on promoting economic production extensively. The second stage, covering 2010–2011, witnessed a rapid increase in publication output. The second phase, spanning 2010–2011, is characterized by a rapid increase in the volume of publications. During this period, there was a noticeable rise in the number of articles related to agricultural carbon emissions, marking the first inflection point in the publication trend: the year 2010. The emergence of this inflection point can be attributed to the influence of the contemporary historical context of the time period: The notable surge was attributed to the “National Program for Addressing Climate Change in China” re-lease in 2007. Simultaneously, the 12th 5-year plan set targets for increasing low-carbon energy usage and reducing fossil energy consumption, prompting agricultural experts to delve into research on agricultural carbon effects. At the same time, the goals set forth in the “12th Five-Year Plan” significantly heightened the government and public’s attention to “low-carbon” initiatives and “energy conservation and emission reduction.” Within this historical context, there emerged a growing awareness that environmental protection should be considered alongside the promotion of production. The third stage, spanning 2012–2020, marked a period of stability in agricultural carbon emission re-search. The average publication output in this phase was 42 articles, indicating a significant increase. Additionally, the second critical period regarding agricultural carbon emissions emerged in 2012. The substantial increase in publication volume during this period can primarily be attributed to the Ministry of Agriculture issued opinions on further strengthening energy conservation and emission reduction in agriculture and rural areas in 2011. During this period, the “Dual Control Targets” were proposed under the “13th Five-Year Plan for Comprehensive Energy Conservation and Emission Reduction,” gradually drawing attention to agricultural carbon emissions. Simultaneously, the Paris Agreement, adopted in November 2016, has spurred Chinese scholars to intensify their research in the field of carbon emissions. By 2020, there was a 15% decrease in energy consumption per unit of GDP compared to 2015, with total energy consumption controlled within 5 billion tons of standard coal. This further heightened the focus on agricultural carbon emissions. As environmental issues have begun to impact the living conditions of the general public, attention to agricultural carbon emissions has significantly increased. The fourth stage, spanning 2021–2023, witnessed a secondary increase in publication output, This brings us to the third key point in the agricultural carbon issue: 2021. The renewed attention was associ-ated with the introduction of green and sustainable development in the 14th Five-Year Plan in 2020 and China’s formal commitment, at the 75th United Nations General Assembly, to achieve peak carbon emissions by 2030 and carbon neutrality by 2060–the “Dual Carbon” goals. From this analysis, it is evident that across these four stages, several inflection points have emerged, with particular emphasis on the years 2012 and 2021. During these 2 years, the volume of publications on the topic of agricultural carbon emissions experienced significant increases. The occurrence of these inflection points also reflects the specific historical context of those times, underscoring the increasing attention that the nation has been paying to environmental issues.
4.2 Co-citation analysis of literature
The citation frequency of referenced documents can elucidate their referential significance to the studied theme, with insights for research likewise stemming from these citations, literature with higher citation frequencies often indicates greater research value and significance. In the CNKI database, the top 10 journal articles on agricultural carbon emission research by citation frequency from 2001 to 2023 are presented in Table 1.
TABLE 1 | Highly cited documents on agricultural carbon emissions research from 2001 to 2019 in CNKI database.
[image: A table listing the top ten publications on carbon emissions in agriculture. Columns include rank, citation frequency, title of publication, authors, and year of publication. The top-ranked paper, with one thousand fifty-four citations, is titled “Spatiotemporal Characteristics and Influencing Factors of Carbon Emissions from Agriculture in China” by Li Bo et al. from 2011. The tenth-ranked paper, with two hundred nine citations, is titled “Driving Green Transformation in Agriculture with Low Carbon” by Jin Shu tai et al. from 2021.]Within these documents, it is highlighted that the development of the agricultural economy is the primary factor leading to an increase in agricultural carbon emissions (Li et al., 2011), aligning with the findings of some scholars who have tested the Environmental Kuznets Curve (EKC) in relation to economic development and the agricultural resource environment. Currently, literature has discussed how both environmental quality and economic development in China’s central and western regions are positioned on the left side of the inverted U-shaped Environmental Kuznets Curve (Sun and Lin, 2018), further indicating that economic development will persist in degrading environmental quality (Chen et al., 2020b; Wang et al., 2019). It is also mentioned that as China’s agricultural economy develops, agricultural carbon emissions are expected to increase. In the foreseeable future, the main factors affecting the increase in China’s agricultural carbon emissions will continue to be the development of the agricultural and rural economy (Ran et al., 2011). Therefore, under rapid economic growth, there is a need for in-depth research on emission reduction technologies for agricultural carbon emissions and the associated policy guidelines.
4.3 Collaboration author co-occurrence analysis
The collaboration relationships among authors in the field can be intuitively understood through the co-authorship network diagram (Figure 2), The connections and colors between nodes represent the collaboration among authors, and the thickness of these lines indicates the degree of cooperation. The diagram consists of 458 nodes and 376 edges, with a network density of 0.0036, indicating relatively limited collaboration among authors, and the overall distribution of authors is relatively scattered.
[image: Network graph depicting relationships among individuals, represented as nodes. Larger nodes, like Tian Yun and He Yanqiu, indicate central figures with many connections. Lines show relationships, with tighter clusters suggesting closely connected groups. Legend in the bottom left demonstrates a color gradient.]FIGURE 2 | The corresponding knowledge graph by Tian Yun from 2001 to 2023.
From Figure 2, the co-authorship network, and Table 2, listing the top 20 authors by publication frequency, it is observed that Tian Yun has the highest publication output (36 articles), followed by Zhang Junbiao (35 articles), and He Yanqiu (13 articles). Subsequently, there are Wu Xianrong, Li Bo, and Dai Xiaowen. Eight authors, each with at least 6 publications, are identified, indicating a scarcity of highly productive authors.
TABLE 2 | Top 20 authors in terms of posting frequency.
[image: A table with five columns: Serial Number, Frequency, Centrality, Vintages, and Author. The table lists twenty entries. Frequencies range from thirty-six to four, centrality values are zero, vintages span from 2005 to 2023, and authors are listed with "et al." after their surnames.]The co-authorship network is notably evident in five pairs: Tian Yun and Zhang Junbiao, Wu Xianrong, Li Bo, etc.; Zhang Junbiao and Li Bo, Cheng Linlin, etc.; He Yan qiu and Dai Xiaowen, etc.; Pan Genxing and Zhang Xuhui, etc.; Su Yang and Ma Huilan, etc. The co-authorship networks suggest the formation of small-sized teams in the re-search of agricultural carbon emissions. According to Figure 2, it is evident that highly productive authors tend to collaborate more frequently.
In summary, the authors of publications on the agricultural carbon effect in China exhibit a state of “generally dispersed with localized concentration.” There are relatively few collaborative author groups. Moreover, the more common scenario is individual authors publishing independently.
4.4 Co-occurrence analysis of cooperating institutions
Utilizing CiteSpace to investigate the co-occurrence network of publishing institutions facilitates the exploration of collaborative relationships among various institutions within the field. The co-occurrence network diagram for institutions involved in agricultural carbon emissions research in China (Figure 3) encompasses 361 nodes and 242 edges, with a network density of 0.0037, The lines and colors between nodes represent the collaboration among institutions, and the density of these lines indicates the level of cooperation. This density indicates minimal collaboration among publishing institutions, reflecting an overall decentralized pattern of collaboration.
[image: Network diagram illustrating the collaboration between various research entities. Nodes represent institutions, color-coded from light yellow to dark red for collaboration intensity. Lines indicate partnerships, with thicker lines showing stronger collaborations. The layout displays complex interconnections among multiple nodes.]FIGURE 3 | The cooccurrence network diagram for institutions involved in agricultural carbon emissions research in China.
Analysis of Figure 3; Table 3 reveals that the institution with the highest publication output is the School of Economics and Management at Huazhong Agricultural University, followed by the Business School at Zhongnan University of Economics and Law. Moreover, 13 institutions are contributing eight or more publications, primarily consisting of agricultural universities and, to a lesser extent, agricultural research institutes. In summary, two major collaboration networks have emerged within this re-search domain, led by the School of Economics and Management at Huazhong Agri-cultural University and the School of Economics and Management at China Agricultural University, respectively.
TABLE 3 | Top 20 organizations in terms of frequency of issuance.
[image: Table listing institutions, frequency, centrality, and vintages. Top entries: Huazhong Agricultural University (46, 0.01, 2011), Zhongnan University (23, 0, 2012), Hubei Rural Development (20, 0, 2011). Additional institutions include Sichuan Agricultural University, Chinese Academy of Sciences, with varying frequencies and vintages ranging from 2009 to 2021.]The Business School at Zhongnan University of Economics and Law, ranking second in publication output, collaborates solely with the School of Economics and Management at Huazhong Agricultural University without forming an extensive collaboration network. Additionally, two smaller collaboration networks have formed, led by the School of Economics and Management at Nanjing Agricultural University and the School of Economics and Management at Northeast Forestry University.
4.5 Co-occurrence analysis of keywords
Keywords serve as a concrete representation and refined summary of research topics. Analyzing high-frequency keywords allows for identifying research hotspots within a specific field. The frequency of keywords correlates positively with the quantity of research outcomes. The keyword co-occurrence network diagram (Figure 4) comprises 375 nodes and 644 edges, with a network density of 0.0092. In keyword co-occurrence network maps, there are two important metrics: “keyword frequency” and “keyword centrality.” Keywords are represented as nodes, where the size of a node indicates the frequency of the keyword’s occurrence. The larger the node, the more frequently the keyword appears in the dataset. Centrality reflects the status or importance of the keyword within the network of all keywords. To explore the status and relationships among keywords, the table presents the top 20 keywords by frequency and centrality (Table 4). The keyword co-occurrence knowledge graph and keyword intermediary centrality are shown in Figure 4; Table 3.
[image: Network graph visualization displaying various interconnected nodes and clusters. Larger nodes represent keywords like "China" and "Xinjiang," indicating central themes. Smaller nodes and lines demonstrate connectivity among topics. A color gradient from yellow to red indicates relevance or frequency, with a corresponding legend.]FIGURE 4 | The keyword cooccurrence knowledge graph and keyword intermediary centrality.
TABLE 4 | Top 20 keyword co-occurrence frequency.
[image: Table displaying data with columns for serial number, frequency, centrality, vintages, and institutions. It includes entries like "Carbon emission" with a frequency of one hundred forty-eight and centrality of 0.62 from 2009, "Low carbon agriculture" with a frequency of eighty-one and centrality of 0.4 from 2010, and others related to climate and agriculture topics. Data spans 2009 to 2021 across twenty entries.]As indicated by Figure 4; Table 4, the most frequently occurring keyword is “carbon emissions,” followed by “low-carbon agriculture,” “carbon reduction,” “China,” “influencing factors,” “carbon neutrality,” “agriculture,” “planting industry,” “carbon peak,” and “greenhouse gas.” Table 3 reveals that “carbon emissions” has the highest intermediary centrality, followed by “China” and “influencing factors,” and then “carbon neutrality.” This suggests that the primary focus in agricultural carbon emissions lies in measuring agricultural carbon emissions, carbon reduction in agriculture, influencing factors, and carbon emissions from the planting industry.
5 RESEARCH HOTSPOT AND EVOLUTION TREND
5.1 Research hotspot
Keyword cluster analysis involves categorizing all extracted keywords using CiteSpace, cluster analysis can be used to delineate related research fields. Previous research has suggested that a clustering module value exceeding 0.3 indicates a significant clustering structure and an average silhouette value exceeding 0.7 is considered an efficient clustering. Moreover, clustering is deemed reasonable when the average silhouette is 0.5 or higher. The keyword clustering graph (Figure 5) was obtained by adjusting parameters, resulting in a module value of 0.663, indicating a significant clustering structure, and an average silhouette value of 0.900, suggesting reasonable clustering results. There are eight clusters: carbon emissions, low-carbon agriculture, carbon reduction, carbon peak, greenhouse gases, influencing factors, emission reduction, agriculture, and carbon sequestration. The order ranges from 0 to 8, with smaller numbers indicating more keywords in the cluster. Each cluster comprises closely related words. Globally, the research directions concerning agricultural carbon emissions are divided into three main areas: measurement of agricultural carbon emissions, methods and policies related to agricultural carbon reduction, and the interrelationship between economic development and agricultural carbon emissions. As illustrated in Figure 5, the current research hotspots in China’s agricultural carbon emissions include topics such as carbon emissions, low-carbon agriculture, and carbon reduction strategies. By conducting cluster analysis on the keywords of relevant literature, the key research hotspots in China’s agricultural carbon emissions have been summarized as follows:
[image: Cluster diagram of sustainability topics with different color-coded themes. Clusters include "Greenhouse gases and carbon emission," "Carbon reduction," "Agriculture," "Environmental legislation," and other labeled areas. Each cluster contains varying sizes of colored dots representing data points, with a color key on the left identifying clusters from red (#1) to brown (#9).]FIGURE 5 | The current research hotspots in China’s agricultural carbon emissions in recent years.
Under the “dual carbon” goals, China’s agricultural carbon emission reduction dilemmas, measures to achieve carbon reduction, and pathways for reduction are identified, including topics such as #2 low-carbon reduction, #3 carbon peaking, #6 emission reduction, and #8 carbon sequestration and reduction tags. For instance, the challenges faced by China in regulating agricultural carbon emissions are analyzed, and based on summarizing the advanced regulatory experiences of the European Union, Canada, Australia, Israel, and other countries, recommendations are proposed for establishing China’s top-level design for agricultural carbon emissions, perfecting agricultural carbon trading, constructing a comprehensive agricultural carbon system, and establishing a green finance support system (Jiang et al., 2021). Scholars have also proposed pathways for emission reduction by driving agricultural green transformation through low-carbon approaches (Jin et al., 2021); moreover, discussions have covered the greenhouse gas emission reduction pathways for northern agricultural ecosystems following the principles of stabilizing energy consumption and increasing both carbon sequestration and reduction, as well as four models of carbon sequestration and reduction including low-carbon cycling, capacity expansion and carbon increase, carbon-optimized breeding with nitrogen saving and carbon preservation (Cai and Wang, 2022).
The performance evaluation of agricultural carbon emissions, influencing factors, and the study of reduction potential, such as #0 carbon emissions and #5 influencing factors cluster tags. Scholars have analyzed the driving factors and mechanisms of cropland carbon emissions in the Northeast region (Zhou et al., 2021); meanwhile, the agricultural carbon emissions of the planting industry and livestock breeding in Jiangsu Province have been measured, and their emission performance and reduction potential evaluated (Chen et al., 2021); scholars have also studied the efficiency changes and influencing factors of provincial agricultural carbon emissions in China (Wu et al., 2014). Additionally, the efficiency and reduction potential of China’s agricultural carbon emissions have been analyzed (He et al., 2021), exploring the spatial spillover effects and influencing factors of agricultural carbon emission efficiency from industrial, elemental, and environmental perspectives, and analyzing the impact of policies in major grain-producing areas on agricultural carbon emissions (Wu et al., 2021).
The relationship between agricultural carbon emissions and agricultural economic growth, as identified by #1 low-carbon agriculture and #7 agriculture cluster tags. Scholars have measured the overall agricultural carbon emissions in Hubei Province using corresponding formulas, identifying the main factors affecting agricultural carbon emissions through factor decomposition, where the growth of the agricultural economy is found to continuously increase agricultural carbon emissions (Tian et al., 2012); similarly, an analysis of carbon emissions from agricultural energy consumption between 1981 and 2007 has revealed that economic growth leads to a significant increase in carbon increments, and the extensive use of pesticides and fertilizers exacerbates carbon emission issues (Li et al., 2011).
5.2 Evolution trend
Keyword burst analysis allows for the statistical tracking of the increased frequency of a specific keyword within a certain period, enabling the identification of development trends and research hotspots. Using CiteSpace software for burst detection in agricultural carbon emissions research, it is beneficial to understand the temporal evolution of hotspot keywords, providing insights into future trends. Burst detection was conducted on 660 documents, presenting a statistical graph of keyword bursts in agricultural carbon emissions research, as shown in Figure 6 for CNKI. In the graph, red indicates keywords that have burst during that specific year, and the length of the red segment represents the duration of the keyword’s sustained high frequency.
[image: Bar chart titled "Top 20 Keywords with Strongest Citation Bursts 2001-2023" lists keywords with corresponding strength, start, and end years. Keywords include "Emission Reduction," "Climate Change Energy," and "China." Bars represent burst periods, with varying lengths and intensities. The years range from 2009 to 2023.]FIGURE 6 | Top 20 Keywords with Strongest Citation Bursts.
Based on the burst detection results shown in Figure 6, the keywords “factor de-composition,” “land use,” and “influencing factors” have long durations of 7 years, 6 years, and 6 years, respectively. The burst intensity of the keyword “carbon peak” is the highest, with a value of 8.98, occurring between 2001 and 2023. The burst analysis results indicate that early research focused mainly on analyzing emission reduction methods and factors influencing carbon emissions. In 2018, carbon footprint studies became a new hotspot in China, with a burst intensity of 3.50. Since 2019, keywords such as “planting industry” and “rural revitalization” have been continuously bursting. Starting in 2021, keywords like “carbon peak,” “industrial agglomeration,” and “mediation effect” may become future research hotspots.
Additionally, the co-occurrence time zone view of keywords can illustrate the co-occurrence relationships between keyword nodes, further identifying the evolutionary trajectory of the research subjects and enhancing the analysis of research trends. As shown in Figure 7, by retaining nodes with higher frequency and centrality based on the annual literature frequency chart, keyword co-linearity graph, and time zone atlas, this paper divides the research on agricultural carbon emissions into three stages: nascent phase, development phase, and in-depth phase. The period from 2001 to 2009 marks the nascent phase, where early research primarily focused on carbon emissions from agricultural soils. The development phase spans from 2010 to 2015, during which research on agricultural carbon emissions recognized regional and temporal differences. Studies concentrated on low-carbon economy, emission reduction technologies, and factors affecting agricultural carbon emissions in rural areas, with a significant emphasis on developing a low-carbon economy through land use, technology, and identifying impacting factors. The in-depth phase, from 2016 to 2023, saw an emergence of a wider array of keywords. Scholars have included industrial aggregation, rural revitalization, green agriculture, agricultural efficiency, mediating effects, digital agriculture, smart agriculture, and rural development in their analyses. Research on agricultural carbon emissions in China is currently in an in-depth phase, further exploring the impact of digital and smart agriculture on agricultural carbon emissions and their underlying mechanisms.
[image: Graphical chart depicting the future growth potential for various industries over time. Vertical columns represent years, while bubble sizes indicate growth potential. Larger bubbles suggest higher potential.]FIGURE 7 | The knowledge graph of carbon emissions into three stages: nascent phase, development phase, and in-depth phase.
Moreover, future research should focus on cutting-edge trends and extensively explore the aforementioned three areas using advanced scientific methodologies. Efforts should include refining existing economic accounting mechanisms such as the input-output method and life cycle assessment, aiming to identify key methods for emission reduction. The development of smart agriculture and the improvement of current economic models are also crucial in finding effective carbon reduction strategies. Additionally, the implementation of a series of improved policies by the government and the establishment of interdisciplinary conferences and exchanges should be prioritized to foster collaboration and innovation in this field.
6 CONCLUSION AND FUTURE TRENDS
6.1 Research conclusion
This paper employs the Citespace bibliometric method to analyze 660 Chinese documents sourced from the CNKI database, focusing on the research trajectories, hotspots, and future trends in agricultural carbon emissions in China. The findings reveal:
Firstly, the annual publication volume trend indicates a rapid development in the research of agricultural carbon emissions in the new era, with increasing research popularity and influence. Since 2001, research on agricultural carbon emissions has gradually increased, with a stable development between 2012–2020. The year 2020 marks a watershed moment, integrating green sustainable development with agricultural carbon emissions into a common analytical framework. Secondly, the core network of research authors is well-established; conversely, the cooperation among research institutions is loose, indicating a need for strengthened scientific collaboration. Tian Yun is the most published author, followed by Zhang Junbiao and He Yanqiu. Research institutions are mostly concentrated in agricultural and forestry universities, with the College of Economics and Management of Huazhong Agricultural University being the most prolific. The primary reasons for the relatively loose structure of the research may stem from factors such as regional variations and limited relevance of research directions. In the future, it is crucial to strengthen connections between research institutions at major Chinese universities. Researchers should engage in exchanges and collaborations based on their respective research directions, and initiate academic exchanges and cooperative activities. This approach will not only increase the quantity of research outputs but also enhance their quality. Thirdly, according to the keyword co-occurrence knowledge map and keyword clustering knowledge map, research on agricultural carbon emissions mainly focuses on the challenges, measures, and pathways for reducing carbon emissions under the “dual carbon” goals; performance evaluation of agricultural carbon emissions, influencing factors, and research on reduction potential, and the relationship between agricultural carbon emissions and agricultural economic growth. Fourth, the keyword timeline map reveals an increase in publications on agricultural carbon emissions around 2010, reaching a new phase of increase in 2021. The keyword time zone map divides domestic research on agricultural carbon emissions into three phases: 2001–2009 as the nascent phase, 2010–2015 as the development phase, and 2016–2023 as the in-depth phase. The emergence of keywords such as “industrial agglomeration,” “digital agriculture,” “green agriculture,” and “smart agriculture” indicates that frontier research hotspots have shifted to technological innovation for emission reduction, green low-carbon agricultural development, and green finance supporting agricultural carbon reduction.
6.2 Policy implications
Utilizing big data technology to share agricultural, industrial, energy data, and carbon emission platforms can make agricultural carbon emission accounting more detailed and accurate. Integrating agricultural IoT and big data technologies into agricultural carbon reduction promotes differentiated and precise reduction while advancing agricultural economic development, leveraging digital technology’s role, and utilizing smart agriculture to provide technical support for agricultural environmental monitoring, improving agricultural development quality and efficiency, and accelerating agricultural green transformation and low-carbon development.
Promoting agricultural structural adjustment, encouraging agricultural technology innovation, optimizing land spatial layout, and improving land use efficiency, while coordinating agricultural carbon reduction with the treatment of agricultural non-point source pollution. In promoting agricultural carbon reduction measures, Some scholars emphasize targeted economic policies to mitigate these differences and enhance the positive effects of environmental decentralization. (Zhang et al., 2023). continuous subsidies for low-carbon behaviors such as film recycling, straw utilization, manure biogasification, and reduced use of fertilizers and pesticides through economic policies like taxes and subsidies are essential, encouraging agricultural enterprises to actively adopt low-carbon technologies. Additionally, accelerating the development of rural green finance, providing credit support to those involved in agricultural carbon reduction through green agricultural bonds, insurance, PPP projects, and other measures is vital.
Regions need to promote low-carbon agricultural development and optimize reduction pathways through scientific, feasible, refined, and differentiated strategies tailored to their resource endowments and development stages, leveraging the roles of government, market, and social organizations. Guiding farmers to adopt green low-carbon technologies such as drip irrigation, biogas fermentation, and soil testing and fertilization through agricultural extension and training, to facilitate the implementation of agricultural carbon reduction policies.
6.3 Research trends and outlook
Based on the current state and frontier trends of agricultural carbon emissions research, further in-depth studies should focus on the following aspects:
Agriculture serves as both a carbon source and sink. Under the “dual carbon” goals, it is crucial to systematically consider agricultural carbon sequestration and emission reduction within the green transformation of agriculture, establish a scientific and comprehensive agricultural carbon emission accounting system tailored to China’s context, and enhance research on the decoupling effect and mechanisms between agricultural carbon emissions and the economy, balancing “carbon neutrality” with food security, farmers’ income increase, social benefits, and ecological benefits.
For the performance evaluation and effect assessment of agricultural carbon emission reduction, it is essential to fully consider the concept of green development and “dual carbon” goals, balancing fairness and efficiency, and continuously study a systematic and scientific assessment system to scientifically evaluate the reduction costs and potential of different regions from social, economic, and ecological dimensions. For example, conducted a study on the impact of the government’s economic growth target on urban carbon emission, which is an example of a good combination of agricultural carbon emission and economy (Chen et al., 2023). Future studies can be further developed in this regard.
Further research is needed on the application boundaries of restrictive and incentive policies for agricultural carbon reduction, explore the influencing factors of farmers’ acceptance of low-carbon agricultural technologies, continue to focus on how to apply agricultural IoT and big data technologies to aid agricultural carbon reduction, and deepen the attention to agricultural technological innovation promoting carbon reduction.
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The New Development Paradigm will result in the significant development of domestic production networks and the accelerated growth of carbon transfers among provinces in China. However, the existing value chain or the trade of intermediate goods decomposition method cannot completely account for the carbon content of intermediate goods. So the paper developed a accounting model for inter-regional intermediate goods trade based on input-output model. The most significant advantage of this accounting model is that by further decomposing final output into three components—final consumption within the region, final consumption flowing to other regions, and final output flowing to other regions as intermediate goods that are not returned to the region—it achieves a more comprehensive decomposition of the value chain in comparison to the established models. This approach allows for the tracking of longer value chains and the accounting for intermediate goods inflows and outflows simultaneously. Furthermore, the accounting of trade in intermediate goods can be conducted for any number of countries, regions, and sectors within the input-output system, thereby providing a foundation for the comprehensive accounting of inter-regional carbon transfers within production networks. With the input-output tables and carbon emission inventories from the CEADs (the China Carbon Emissions Accounting Database), the paper has calculated the changes of the carbon transfer among provinces in the China’s domestic production network from 2012 to 2017 and find that the inter-provincial intermediate goods trade and carbon transfer among provinces is increasing significantly. Each province has a strong incentive to overuse the carbon embodied in the intermediate goods from others, but lacks the motivation to reduce their own carbon emission. In the inter-provincial transfer of the carbon content of intermediate goods in China’s domestic production network, the difference between the average value of the ratio of the carbon content of intermediate goods from other provinces used by each province and that supplied for use by other provinces to the ratio of the carbon content of intermediate goods produced by itself increased by 13.6% between 2012 and 2017. Only a few provinces are evolving towards a win-win between economic and environmental benefits, while most are still facing the evolutionary dilemma in choosing between economic and environmental benefits. In the future, we should comprehensively explore the cooperative governance of carbon emission reduction in the domestic production network, including establishing a national standard for calculating the carbon transfer in domestic production network, improving the carbon emission responsibility sharing mechanism and carbon emission reduction compensation systems.
Keywords: China, domestic production network, carbon transfer, inter-province, carbon content of the intermediate goods trade

1 INTRODUCTION
In order to achieve the goal of carbon peaking and carbon neutrality, every region and key emitting enterprise in China has formulated a carbon emission reduction strategy. In addition, a number of local carbon emissions trading markets have also been established (GUO-Song and DUAN, 2024). By the end of 2023, a total of 440 million tonnes of carbon credits had been traded, resulting in approximately RMB 2.49 billion in trade value (Pan, 2024). Furthermore, the recently revised Interim Regulations on the Administration of Carbon Emissions Trading had been implemented on 1 May 2024. In the future, the accurate calculation of inter-regional carbon transfers and the fair distribution of carbon allowances will be of paramount importance in advancing the construction of a unified national carbon emissions trading market. However, all of this is predicated on an accurate accounting of inter-regional, inter-sector and inter-company carbon emission responsibilities.
The initial calculation for carbon emission responsibility was conducted either from the consumer principle or the producer principle and mostly based on input-output models. First, in the context of multilateral trade, Peters et al. (2011) found that in the majority of developed countries, consumption-based emissions have increased at a faster rate than territorial emissions, the transfer of emissions is largely attributed to non-energy-intensive manufacturing, the role of international trade in explaining changes in emissions in many countries is significant, both in terms of production and consumption. Davis and Caldeira (2010) presented a global consumption-based CO2 emissions inventory and calculations of associated consumption-based energy and carbon intensities. Their findings indicate that wealthy countries are net importers of carbon emissions while developing and emerging market countries are generally net exporters of carbon emissions. An environmentally extended multi-region input-output model was employed by Wang et al. (2018) to track India’s CO2 emission streams through international supply chains from primary emitters to final producers to final consumers, and found that both production-based and consumption-based emissions have exhibited a constant growth trajectory from 2000 to 2014. However, production-based emissions demonstrated higher growth rates. The principal recipients of India’s export emissions are developed countries, whereas the principal sources of India’s import emissions are developing countries. Furthermore, intermediate goods are the primary contributors to both export and import emissions. The evolution of CO2 emissions embodied in international trade in Poland was analyzed by Tsagkari et al. (2018) using the Input-Output method, specifically by constructing a multi-regional input-output model and found that Poland is a net importer of carbon emissions from other European countries with less strict environmental policies. Weber and Matthews (2007) employed a multi-country input-output model of the United States and its seven largest trading partners to analyse the environmental impacts of changes in the structure and volume of U.S. trade from 1997 to 2004, and found that augmented imports and shifts in trade patterns have resulted in considerable increases in U.S. embodied emissions of carbon dioxide, sulfur dioxide, and nitrogen oxides from trade. Second, in the context of bilateral trade, Wang et al. (2015) has also made a significant contribution. They have extended the decomposition of a country’s total trade flows proposed by Koopman et al. (2014) to studies at the sector, bilateral, and bi-sector levels, the international trade flows at all levels are decomposed into the components of value-added exports, returned domestic value-added, foreign value-added, and purely double-counted trade in intermediates, and are further distinguished into 16 different paths according to the source of the value of the traded goods, the final place of absorption, and the channels of absorption, thus a systematic correspondence between international trade statistics and the System of National Economic Accounts (SNA) has been established. The study also made a further contribution to methodological changes in the separation of carbon content of trade in intermediate goods from that of aggregate trade. Other authors who have made scholarly contributions to the field include: Du et al. (2011) employed an input-output analysis based on the energy/dollar ratio (EDR) to estimate the embodied carbon emissions from U.S.-China trade. Additionally, a structural decomposition analysis (SDA) is utilised to examine the underlying drivers of changes in China’s embodied carbon emissions from exports to the U.S. over the period 2002–2007. Yu and Chen (2017) employed an input-output model to calculate and decompose the embodied carbon emissions associated with trade between China and South Korea from 2000 to 2010, and to identify the underlying causes of observed changes. Long et al. (2018) utilized a multi-region input-output model and incorporated the rest of the world as a benchmark to analyse the difference of the direct and complete carbon dioxide emissions intensity and economic activities of China and Japan. Yu et al. (2023) established inter-sector linkages based on the global value chain framework and utilized the Asian Development Bank’s International Input-Output Database (IIOD) to investigate the influence of supply and demand dynamics and wealth accumulation on China’s carbon emissions within the context of inter-regional trade between China and the Association of Southeast Asian Nations (ASEAN). Wang et al. (2022) empirically analyzed the relationship between the GVC embedded position and the environmental dividend under the construction of “Belt and Road” trade corridors in China. Based on the WIOD database, Yue and Yun-long, 2019 presented an empirical investigation of the impact of China’s global value chains on carbon emissions. Based on the input-output data and carbon emission data released by China’s Carbon Accounting Databases (CEADs), Wang (2022) presented innovatively a carbon emission responsibility sharing mechanism under the “beneficiary principle” and a carbon emission reduction technology compensation mechanism under the “counterfactual condition”.
It is worth noting that some of the existing studies on accounting for carbon responsibility with input-output model shows a significant difference between the results of accounting following the consumer principle and that of accounting following the producer principle (Peng et al., 2015; Li et al., 2020). As a result, they have been heavily critiqued. (Peters, 2008; Peters et al., 2011; Peng et al., 2015; 2016). This difference can be attributed to the fact that embedded carbon transfers from trade in intermediate goods in production networks are not accounted for separately. Instead, they are either simply allocated to the first producer (producer principle) or to the last consumer (consumer principle). It is essential to distinguish the accounting of the transfer of carbon content of intermediate goods trade from that of volume trade in production networks (Peng et al., 2016).
In addition to this, there are two other types of literature that provide valuable references for research on accounting for carbon emissions responsibilities. The first is the evaluation of embedded carbon over the entire life cycle, such as Du et al. (2024), Tian et al. (2024), Wang et al. (2023), Hong-ran et al. (2024), Lu and Wang (2024). The second is the investigation of the structural characteristics of multi-regional carbon emission networks and their evolution, such as Song et al. (2024), Jie et al. (2024), Yang (2022), Xiao-Yu et al. (2024), Ji et al. (2023), Gan and Wang (2022), and Yang et al. (2024). However, these two strands of literature still do not consider the issue of inter-regional, inter-sector, and inter-firm transfers of carbon content of intermediate goods trade.
In summary, the accounting of embedded carbon transfers in intermediate goods in production networks necessitates the utilization of intermediate goods trade model. The degree of completeness of the decomposition of intermediate goods flows by the intermediate goods trade model determines the degree of accuracy in accounting for the carbon content of intermediate goods trade in the production network. Up to now, there are two mathematically equivalent models of trade in intermediate goods (Wu, 2019), they are Koopman et al. (2014) and Wang et al. (2015), respectively. Those two models completely decompose the international or inter-regional flows of intermediate goods and their embedded factors on the basis of destination and use and then already form the theoretical basis of the methodology for accounting for carbon content of intermediate goods trade. Specifically, Koopman et al. (2014) developed a three-country model that can decompose a country’s total exports into 9 indicators based on the flow of value added from the country, presenting one of the earliest methods of completely decomposing a country’s exports. Subsequently, Wang et al. (2015) further proposed a three-country model that can decompose a country’s exports into 16 indicators based on Koopman et al. (2014). Later, Los et al. (2016) further simplified the decomposition result of Koopman et al. (2014) using hypothetical extraction. Muradow (2016) further refined the decomposition result of Wang et al. (2015) into 8 indicators. However, the shortcomings of these two models are as follows: first, the models are unsuitable for tracking intermediate goods trade in longer value chains. Second, they cannot calculate the carbon content of the intermediate goods trade from both import and export directions simultaneously. Third, their decomposition items are too complex to analyse.
So this paper will apply the block matrix to the Leontief inverse matrix to establish a comprehensive decomposition model for national or regional exports that can be applied to any number of regions, any length of the value chain, and can simultaneously account for the real value of imports (inflows) and exports (outflows) of intermediate goods for a given region. The innovation of this paper with respect to the decomposition model of trade in intermediate goods will provide a theoretical basis for completely accounting for the carbon content of inter-provincial intermediate goods trade in China. The most significant advantage of the accounting model is that by further decomposing final output of a given region into three components—final consumption within the region, final consumption flowing to other regions, and final output flowing to other regions as intermediate goods that are not returned to the region—it could achieve a more comprehensive decomposition of the value chain in comparison to these established models. The possible marginal contribution of this article is shown in the following: first, exploring the accounting model of complete (i.e., not merely direct) carbon transfer among regions within a domestic production network. Second, research on inter-provincial transfer of carbon content of inter-provincial intermediate goods trade from a domestic production network perspective has not been found in the literature as far as the authors’ reading is concerned. Third, the analysis also encompasses the carbon demand and supply behaviour, as well as the net carbon supply, of the 31 provinces within the aforementioned domestic production network. Fourth, the model built in the paper can facilitate a comprehensive understanding of the carbon reduction strategies employed by each of these provinces in their domestic production networks.
2 METHODS AND DATA
2.1 Accounting for inter-provincial intermediate goods trade in domestic production networks
Conventionally, the matrix of input-output coefficients is represented as A, the vector of total output as X, and the vector of final consumption as Y. According to input-output theory, the following Equation 1 holds true in multi-regional input-output model (MRIO):
[image: It seems like the message was incomplete. Could you please upload the image or provide more details about it?]
The multi-regional input-output table includes 31 provinces and 42 industries, set [image: It seems there's a misunderstanding. Please upload the image or provide a URL for me to create the alt text. If you have any additional context or a caption, that would also be helpful.], [image: It seems like there was an error with the image upload. Please try uploading the image again, and I will help you with the alt text. Make sure to attach the image file or provide a URL.]. Thus, 961 block matrices are included in [image: Please upload the image or provide a URL so I can help create the alt text for it.], and each block matrix has another 1764 elements [image: The formula shows a prime notation: lowercase "a" with a prime symbol above and subscript "m n m".]. Namely Equation 2:
[image: Matrix equation transformation showing \(A_{mn}\) as a matrix with elements \(A_{11}\) to \(A_{mn}\), changing to another matrix with elements \(a_{11}\) to \(a_{mn}\). Equation number (2) is shown beside it.]
The total output vector [image: It seems you've referred to an image, but it wasn't uploaded. Please upload the image or provide a URL, and I'll assist with creating alt text for it.] consists of 31 block column vectors [image: Please upload the image or provide a URL so I can help create the alt text for it.], and each block column vector contains the total output vector of 42 industries [image: Please upload the image or provide a URL so I can create the alt text for you.]. Namely Equation 3:
[image: Matrix notation illustrating a transformation from matrix \(X_n\), composed of elements \(X_1\) to \(X_n\), to vector \(x_n\), composed of elements \(x_1\) to \(x_m\), represented by a rightward arrow.]
The final consumption matrix [image: It seems there is no image provided. Please upload the image or include a URL, and I will help create the alternate text for it.] consists of 961 block matrices [image: Mathematical notation showing the spherical harmonic function, denoted by an uppercase Y with subscript n and m.], each [image: Please upload the image or provide the URL so I can create the alt text for you.] containing 1764 elements. Namely:
[image: Matrix equation transformation is shown. Initial matrix \(Y_m\) with elements \(Y_{11}\) to \(Y_{nm}\) transforms into a smaller matrix \(y_{mn}\) with elements \(y_{11}\) to \(y_{mn}\). Equation is labeled as \(4\).]
The final consumption matrix [image: Mathematical notation showing the symbol \( Y_{nm} \), typically used to represent spherical harmonics in physics or mathematics.] and its block matrix [image: It appears that you've provided a snippet of LaTeX code for a mathematical symbol rather than an image. This LaTeX code represents the symbol "Y" with subscripts "m" and "n". If you intended to upload an image, please try uploading it again.] can be divided into two parts: (1) the final output for final consumption in this province, denoted as [image: Sorry, I cannot provide a description for the image based on the text you've provided. Please upload the image or provide a URL, and I will help you with the alt text.]; (2) the final output for final consumption in other provinces, denoted as [image: Mathematical expression showing the symbol "Y" with a subscript "mn" and a tilde accent above the "mn".] ([image: Mathematical equation: \( n + \overline{n} = 31 \).]). In Equation 4, the elements on the main diagonal of [image: I cannot view or analyze the image directly. Please upload the image or provide a URL, and then I can help create the alt text for it.], and its block matrix [image: To provide the alternate text for an image, please upload the image or provide a URL. If you have a specific caption or context, feel free to add it for a more accurate description.] represent the final output produced in the region for its own consumption, and the other elements off the main diagonal represent the final output produced in the region for consumption in other regions. Furthermore, the final output of the region is not only used by the final consumption of the region and other regions, but also a part can be used by other regions as intermediate goods in the production of final consumption goods, and will not return to the region in the form of intermediate goods, denoted as [image: Mathematical expression showing "Int" with a subscript of "min."]. Therefore, the final output of a given province [image: Please provide the image by uploading it, or share a URL if it's online. Additionally, you can include a caption for context if you wish.] can be expressed as:
[image: Mathematical equation showing \( FO_n = [Y_{mn} - Y_{nm} + 1nt_{nm}] \) with a reference number (5) on the right.]
Furthermore, in the context of the inter-provincial intermediate goods trade, the sum of final goods consumption, the sum of final goods output and the sum of total output of each province satisfy the following relationship: [image: Summation of Y sub n is less than summation of F sub O sub n, which is less than summation of X sub n.]. This provides a basis for expanding the accounting scope of the existing intermediate goods trade.
We will focus on the derivation of the accounting methods of the three target variables: (1) the complete demand of the province [image: It seems there is no image provided. Please upload an image or provide a URL, and I will help you create the alt text.] for intermediate goods from any other province [image: It appears there was an issue with the image upload. Please try uploading the image again, or provide a URL if it is hosted online. If you would like, you can also include a caption for additional context.], denoted as [image: The mathematical expression shows "ITZ" subscript "n bar right arrow n," emphasizing transformations of variable "n."]; (2) The complete demand of intermediate goods for its own in the province [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is denoted as [image: Mathematical notation displaying "DTZ" with a subscript indicating a sequence from \( n \) to \( n \).] ; (3) The complete demand of any other province [image: It seems there might be an issue with the image upload. Please try again, ensuring the file is attached correctly. If you want to provide any specific details or context about the image, that can help too.] for intermediate goods in that province [image: Please upload the image or provide a URL so I can generate the alt text for you.] is denoted as [image: Mathematical expression with the letters "ETZ" followed by a subscript "n" and an arrow pointing towards "n-bar".].
(1) accounting [image: Mathematical notation displaying "ITZ" with a subscript that transitions from n̅ (n-bar) to n.], that is, the demand of province [image: Please upload the image or provide a URL so I can help you create the alternate text.] for intermediate goods from all other provinces [image: It appears there was an issue with your image upload. Please try uploading the image again, and I'll be happy to help with the alt text.]. Obviously, [image: The image shows the expression "ITZ" with a subscript containing an arrow pointing from \(\bar{n}_{i}\) to \(n\).] is derived from the need of the province [image: It looks like there was an issue with the image or URL you tried to share. Please upload the image directly or provide a valid URL to the image for assistance.] to produce the final output [image: It appears there was a text input intended to be an image. If you have an image to upload, please do so for an accurate description.]. According to Equation 5, to further completely compute [image: It seems there was an error in providing an image. Please upload the image file or share a URL. You can also provide a caption for additional context.], it is necessary to solve the quantity of intermediate goods that flow to all other provinces [image: Please upload the image or provide a URL, and I'll help create the alt text for you.] and no longer flow back to the province [image: Please upload the image or provide a link to it, and I will be able to generate the alt text for you.] as intermediate goods, namely [image: Italicized mathematical notation displaying "Int" with a subscript of "mi".]. For the same reason, the demand for intermediate goods of [image: Please upload the image or provide a URL so I can create an appropriate alt text for it.] in all other provinces [image: It seems there is no image attached. Please upload the image or provide a URL for me to generate the alternate text.] is derived from the output level of final goods [image: Mathematical notation showing an uppercase italic letter Y, subscript n with the superscript bar.], and it also has two purposes: one is for final consumption in the province [image: It looks like there's an issue with the image upload. Please try uploading the image again, or provide a link to it, and I will help create the alt text for you.], and the other is for final consumption in other provinces [image: Please upload the image or provide a URL for me to generate the alt text.], that is [image: Mathematical expression showing Y subscript nn equals the matrix with elements Y subscript mm and Y subscript mn.], the demand for intermediate goods in other provinces is derived from the output level of final goods in other provinces. According to the input-output theory, the primary direct demand of provinces for intermediate products of other provinces is [image: Mathematical expression with three variables: uppercase A with subscript m and n, uppercase Y with subscript n and i, both having bars indicating a specific function or operation.], the secondary indirect demand can be [image: Mathematical expression with three variables: \( A_{m i} \), \( A_{m i} \), and \( Y_{n i} \), each with a horizontal line above them.], and the third indirect demand is [image: Mathematical expression showing the product of terms \(A_{m\bar{i}}\), \(A_{m\tilde{i}}^2\), and \(Y_{\tilde{n}\bar{i}}\).], and the fourth indirect demand is [image: Mathematical expression showing three variables: \(A_{nm}\) with a bar over both subscripts, \(A_{mn}\) cubed with bars over subscripts, and \(Y_n\) with a bar over the subscript.], and the nth indirect demand is [image: Mathematical expression showing a sequence of terms: \( A_{\tilde{m}\tilde{i}} A_{\tilde{m}\tilde{i}\tilde{i}}^{n-1} Y_{\tilde{n}\tilde{i}} \).]. The complete demand of any other province [image: It seems like there might be a mistake or missing input with the image. Could you please upload the image or provide a URL for it? Then I can help craft the alternate text for you.] for intermediate goods of the province [image: Please upload the image or provide a URL so I can create the alt text for you.] can be expressed as:
[image: The image displays a mathematical expression for Int subscript n to negative n. It equals A sub nn times the sum of Y sub nn and Y sub nn, plus A sub nn squared times the sum, plus additional similar terms. Finally, it simplifies to A sub nn times the inverse of the matrix I minus A sub nn, times the sum of Y sub nn and Y sub nn.]
Where, [image: It seems there is an issue with the image upload. Please try uploading the image again or provide a URL for the image if possible. Let me know if you need further assistance!] represents the identity matrix. Finally, [image: Mathematical expression of an integral with limits "m" and "n" at the bottom and top respectively, represented as "Int" with the limits "m" and "n" written below and above it.] is substituted into Equation 5, and the complete expression of the final output of provinces [image: Please upload the image or provide a URL so I can help create the alt text for it.] is the following Equation 6:
[image: Mathematical equation: \( FO_m = [Y_{nn} \, Y_{nm} + A_{nm} (I - A_{mm})^{-1} (Y_{mn} + Y_{m})] \). It is labeled as equation (6).]
Next, we can use the final output [image: It seems there's an issue with the image upload. Please try uploading the image again or provide a URL. If you have any additional context or captions, feel free to include them as well.] of the province [image: Please upload the image or provide a URL, and I’ll help you create the alternate text.] to derive its actual demand [image: Mathematical notation showing \( Z \) with a subscript of \( n \to m \).] for intermediate goods from all other provinces [image: It seems that you are referring to a mathematical notation rather than providing an image. The notation \( \overline{n} \) usually represents a vector or an average value in mathematics. If you have a specific image, please upload it or provide more details for an accurate description.]. It is worth noting that the calculation results [image: Stylized text reads "Int subscript n right arrow n bar".] derived above are based on the final output [image: Mathematical notation showing a capital letter Y with a subscript n and a line over the n.] of the provinces [image: Please upload the image or provide a URL so I can assist with creating the alt text.] and only include two types of intermediate goods flowing from the provinces [image: Please upload the image or provide a URL for the image you want described.] to the provinces [image: Please upload the image or provide a URL so I can help create the alt text for it.]: (1) the intermediate goods of the provinces [image: Please upload the image or provide a URL so that I can generate the appropriate alt text for you.] needed to meet the production of the final goods used by the provinces [image: Please provide an image or a URL so that I can create the alt text for you.] themselves, and (2) the intermediate goods of the provinces [image: It seems there is no image uploaded. Please try uploading the image again or provide a URL.] needed to meet the production of the final goods of any other province [image: Please upload the image you would like described, and I will help create alternate text for it.]. In other words, [image: Mathematical expression showing an integral with subscript \( n \rightarrow \bar{n} \).] does not include the quantity of intermediate goods needed to satisfy the production of intermediate goods in any other province [image: Please provide the image or a URL for me to give you the alternate text.]. Therefore, the actual demand of any province for intermediate goods from other provinces should be derived on the basis of the final output [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL if possible. If you want, you can add a caption for additional context.] of the province [image: Please upload the image or provide a URL so I can generate the alt text for you.], because it includes the final output of the province formed for the demand of intermediate goods from other regions to produce final output, and includes the flow of intermediate goods not included in [image: Mathematical expression showing the limit of an integral as n approaches infinity.]. According to the input-output principle, the primary direct demand of the final output [image: It seems like there was an error in uploading the image. Please try uploading the image file again, ensuring the upload process is complete. You can also add a caption for additional context if needed.] of a province [image: A lowercase "n" in a serif font style on a white background. The letter appears bold and distinctly styled with thick, contrasting lines.] for intermediate goods of any other province is denoted as [image: Mathematical expression A subscript m FO subscript n.], the secondary indirect demand is denoted as [image: Mathematical expression showing \( \overline{A_{in}} \, \overline{A_{in}} F O_n \).], and the third indirect demand is denoted as [image: Mathematical expression: A subscript i n, A squared subscript i tilde n tilde, F O subscript n.], and the forth indirect demand is denoted as [image: Mathematical expression with subscript and superscript notations: \( A_{\overline{im}} A_{\overline{nm}}^3 F O_{n} \).], and the nth indirect demand is denoted as [image: Mathematical expression: \(A_{\overline{im}} A_{\overline{mi}}^{n-1} FO_n\).]. The actual demand of the intermediate goods of all other provinces derived from the final output [image: It seems there was an error in the request, possibly missing an actual image or a proper description. Please upload the image or provide a correct URL for me to generate alt text.] of a province [image: Please upload the image or provide a URL for me to create the alt text.] can be expressed as the following Equation 7:
[image: Mathematical expression showing two equations. The first equation is \( Z_{n+1} = A_{nm}F_0^n + A_{nm}A_{nm}F_0^n + A_{nm}^2F_0^n + \ldots \). The second equation is \( = A_{nm}(I - A_{nm})^{-1}F_0^n \), labeled as equation (7).]
Next, on the basis of [image: Mathematical notation showing the limit of a sequence as \( n \) approaches infinity, represented as \( \overline{Z}_{n \rightarrow \infty} \).], we need to further derive the complete demand of the intermediate goods by province [image: It seems you intended to upload an image or provide a link, but it is missing. Please upload the image or provide the URL for me to create the alt text.] for the all other provinces, marked as [image: Mathematical expression displaying "ITZ" with a subscript "n̄₁→ₙ".]. According to the input-output principle, the inverse Leontief matrix is [image: Mathematical formula: L equals the inverse of the matrix (I minus A), where I is the identity matrix and A is another matrix.], after shifting terms, we can obtain: [image: Mathematical equation displayed: \(L \times (I - A) = I\).]. The minimalist block matrix is used to list the equivalence relation as follows:
[image: Matrix equation showing block operations: \(\begin{bmatrix} L_{mn} & L_{mn} \\ L_{nm} & L_{nm} \end{bmatrix} \left( \begin{bmatrix} I_n & 0 \\ 0 & I_n \end{bmatrix} - \begin{bmatrix} A_{mn} & A_{mn} \\ A_{nm} & A_{nm} \end{bmatrix} \right) = \begin{bmatrix} I_n & 0 \\ 0 & I_n \end{bmatrix}\), numbered (8).]
According to the relationship between these block matrices in the second row and the first column of Equation 8, it can be seen that: [image: Mathematical equation: \( L_{\text{in}} - (L_{\text{in}}A_{\text{m}} + L_{\text{in}}A_{\text{in}}) = 0 \).]. Through algebraic shift and necessary transformation, we can obtain: [image: Equation showing \( L_{im} = L_{ii} A_{im} (I - A_{mm})^{-1} \), where \( L_{im} \), \( L_{ii} \), and \( A_{im} \) are matrices, \( I \) is the identity matrix, and \( A_{mm} \) is a matrix in the expression.]. This is the coefficient matrix of the complete demand of one province for the intermediate goods of all other provinces, and then multiply [image: I'm sorry, I can't see the image you're referring to. Could you please upload it or provide more context?] both sides by each other to obtain [image: Mathematical expression showing "ETZ" with a subscript of "n bar right arrow n".] which is the expression for the complete demand of the province [image: Please upload the image you would like me to describe, and I will provide the alt text for you.] for all intermediate goods of any other province:
[image: Equation showing \( ITZ_{n-n} = L_{nn} FO_n = L_{nn} A_{nn} (I - A_{nn})^{-1} FO_n \rightarrow ITZ_{n-n} = L_{nn} Z_{n-n} \). Labeled as equation nine.]
At this point, we have obtained the accounting method of the actual demand [image: Mathematical expression showing capital Z with a subscript, n minus m, and an arrow pointing right.] and complete demand [image: Mathematical notation showing "ITZ" with a subscript "n̅_i to n".] of the intermediate goods for all other provinces [image: It seems there's no image attached. Please upload the image, and I'll provide the alternate text for it.] from the province [image: Please upload the image or provide a URL for me to generate the alt text.].
(2) accounting [image: Mathematical notation showing "DTZ" with a subscript "n→n".], that is the provincial demand for its own intermediate goods. Since there is no flow of intermediate goods between provinces, according to the basic input-output principle, the complete demand of the final output of a province for its own intermediate goods will be reflected as the total output of the region, which is similar to Equation 9, namely the following Equation 10:
[image: Equation showing \( DTZ_{n+1} = L_{n+1}FO_{n} = X_{n} \).]
(3) accounting [image: Mathematical expression showing "ETZ" with a subscript "n to n bar".], that is the complete demand of any other province [image: It seems there is no image attached. Please upload the image or provide a URL for me to assist you with alt text creation.] for the intermediate goods of the province [image: Please upload the image you would like me to describe.]. Similarly, according to the relationship of the block matrix in the first row and the second column in Equation 8, it can be known that: [image: Equation displaying \( L_{ni} - (L_{mi}A_{ni} + L_{ni}A_{mi}) = 0 \).]. Through algebraic shift and necessary transformation, we can obtain: [image: Equation showing \( L_{mi} = L_{m} A_{mi} (I - A_{mi})^{-1} \), representing a mathematical relationship involving matrices and inverses.]. By multiplying [image: Mathematical expression showing the sequence "F subscript O subscript n", with a horizontal line over the "n".] both sides of this equation, we can obtain the expression [image: Mathematical expression showing "ETZ" with a subscript indicating "n approaches n-bar".] of the complete supply of intermediate goods by the province [image: It seems that you tried to upload an image, but it did not come through. Please try uploading the image again, and I will create the alternate text for you.] to all other provinces [image: It looks like you've provided some text or a symbol related to a mathematical vector, but I need more context or an actual image to generate accurate alt text. Please upload the image or provide additional details.], namely the Equation 11:
[image: Equation displaying \(ETZ_{t+m} = L_{m} FO_{t} = L_{m} A_{m} (I - A_{m})^{-1} FO_{t}\), labeled as equation 11.]
where [image: Mathematical formula for \( FO_{n} = [Y_{\text{nii}}, Y_{\text{nm}} + A_{\text{nm}} (I - A_{\text{mm}})^{-1} (Y_{\text{mm}} + Y_{\text{mi}})] \).]. According to the input-output principle, there is the following relationship between the actual demand and complete demand of intermediate goods of province [image: Please upload the image or provide a URL, and I will help create the alt text for it.] in any other province [image: It seems like there was an error in the information provided. If you have an image you would like described, please upload it or provide a URL.]: [image: Equation displaying matrix operations: \(Z_{n-i} = A_{mi}(I - A_{mi})^{-1} FO_{n}\).]. Obviously, the two equations, [image: The image shows the expression \(L_{mi\overline{n_i}} \overline{FO_{ni}}\).] and [image: Mathematical notation showing "L subscript m Z subscript n right arrow n bar", likely representing a transformation or mapping in a mathematical context.] , are mathematically equivalent and both are equal to the [image: Italicized text "ETZ" followed by a subscript "n" with an arrow pointing to "n-bar".].
At this point, we have completed the derivation of the accounting methods for the three target variables of the province complete demand for its own intermediate goods, the complete demand for the intermediate goods of any other province, and the complete supply of the intermediate goods for any other province in the economic system. To sum up, if the inter-provincial trade of intermediate goods in any province is [image: I'm sorry, I cannot see the image you're referring to. Please upload the image directly or provide a URL so I can help create the appropriate alt text.], then we can get the following Expression 12:
[image: Equation showing \( \text{TOT}_n \) as a matrix with elements \( \text{ITZ}_{n \rightarrow m} \), \( \text{DTZ}_{n \rightarrow m} \), \( \text{ETZ}_{n \rightarrow m} \), equal to a matrix with repeated elements \( L_{nm} \text{FO}_n \), and labeled as equation (12).]
If the net supply of provincial participation in domestic inter-regional intermediate goods trade is [image: I'm unable to view the image directly. Please provide the image URL or upload the image so I can help craft appropriate alt text.], its expression is as the following Equation 13:
[image: The formula displayed is \( \text{NCE}_{t+n} = \text{ETZ}_{t+n} - \text{ITZ}_{t+n} \) labelled as equation (13).]
It is worth noting that we use the block matrix for the derivation of the target variable accounting method, but it does not imply a one-to-one correspondence between the direct consumption coefficient matrix and its Leontief inverse, i.e., [image: \( L_m \neq (I - A_m)^{-1} \)].
2.2 Accounting for inter-provincial carbon transfers in China’s domestic production networks
In fact, as long as the inter-provincial intermediate goods trade model derived in this paper is combined with the CO2 emission intensity at the provincial-industry level, the completely embodied carbon calculation model of domestic production network can be obtained. Where, the CO2 emission intensity of any “provincial-industry” is represented by the CO2 emissions per unit of added value of the “provincial-industry”. The CO2 emission intensity of industry [image: Please upload the image you would like described, and I'll create the alt text for you.] in province [image: Please upload the image or provide a URL so I can generate the alt text for you.] is denoted as [image: I'm unable to view images directly. Please upload the image or provide a URL for it, and I can help create the alt text.] and [image: Mathematical formula showing CD subscript nm equals TCD subscript nm divided by VAL subscript nm.]. Where [image: Mathematical notation displaying "TCD" with subscript "mn" in italics.] and [image: I'm unable to view or analyze the image directly. Please upload the image or provide a URL for assistance.] represents the total volume of CO2 emission and value-added of industry [image: Please upload the image or provide a URL so I can create the alternate text for you.] in province [image: Please upload the image so I can provide accurate alternate text.]. The diagonal matrix of CO2 emission intensity is marked as [image: It seems there was an issue with the image upload. Please try uploading the image again, and I'll help with the alternate text.], and its block matrix can be expressed as:
[image: Matrix equation showing \( CD = \begin{bmatrix} CD_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & CD_n \end{bmatrix} \), representing a block diagonal matrix.]
Among them, each block matrix in [image: It seems there is no image uploaded. Please upload the image or provide a URL to it, and I will help create the alt text for you.] is a diagonal matrix containing the CO2 emission intensity of 42 industries [image: It seems like there is no image provided. Please upload the image or share a URL, and I will help you with the alt text.]. Further, if the carbon content of inter-provincial intermediate trade of a province [image: Please upload the image you would like me to describe.] is marked as [image: Mathematical expression displaying "CTOT" with subscript "n" in italic font.], namely the following Equation 14:
[image: Matrix equation showing CTOT with matrices on the right-hand side. The first matrix has elements CITZ, CDTZ, CETZ with subscript n-m and m-n. The second matrix has elements CDL_min, FOn, CD, L_min, FO with subscript n. Number fourteen in parentheses is on the right.]
Where, [image: Variables and notations in mathematical or scientific formatting, including subscripts: C, D with subscript i, L with subscripts j and m, F, O with subscript n.] represents the complete carbon content of the intermediate goods flowing into the province [image: Please upload the image or provide a URL so I can help create the alternate text.] from other provinces [image: Please upload the image or provide a URL, and I will help you with the alt text.] in China, [image: Mathematical expression showing: \( CD_{n}L_{m}FO_{r} \).] represents the complete carbon content of the inter-provincial intermediate goods trade between industries in the province [image: Please upload an image or provide a URL, and I will create the alt text for you.], and [image: Mathematical expression containing subscript and superscript notation: C subscript D subscript n L subscript mi F O subscript n superscript dashed line on top.] represents the complete carbon content of intermediate goods flowing from the province [image: Please upload the image or provide a URL so that I can generate the alt text for you.] to any other province [image: It seems like you've entered text instead of uploading an image. If you want to receive alt text for an image, please upload the image or provide a link to it.]. Similarly, the net outflow of carbon content of inter-provincial intermediate goods trade from province [image: Please upload the image you want described, and I'll create the alternate text for it.] is expressed as the following Equation 15:
[image: The formula represents CNCE subscript it as CETZ subscript m minus n minus CITZ subscript m minus n, and is labeled as equation 15.]
2.3 Data
All data are from the China Carbon Emissions Accounting Database (CEADs). For more information on the data, please refer to these following literature: Shan et al. (2016), Shan et al. (2018); Shan et al. (2020), Guan (2021), Xu et al. (2024), Zheng, H. et al. (2021).
3 RESULTS
3.1 Carbon demand and evolution of each province in China’s production network
We will use two key variables to describe the demand pattern of carbon content of inter-provincial intermediate goods trade in each province: (1) the proportion of carbon content of intermediate goods from other provinces in the total carbon content of intermediate goods in each province, i.e. [image: The formula displayed is θ\(_{i \rightarrow n}\) = ITZ\(_{i \rightarrow n}\) / (ITZ\(_{i \rightarrow n}\) + DTZ\(_{i \rightarrow n}\)), representing a relationship or calculation involving the variables theta, ITZ, and DTZ.]; (2) The difference between the carbon emission intensity of intermediate goods produced in other provinces and those produced in the province, i.e. [image: The formula shows a mathematical expression: Δ\_{i−n}=ITZ\_{i−n}/Z\_{i−n}−DTZ\_{i−n}/X\_n, involving variables with subscripts and mathematical operations of division and subtraction.]. Figures 1, 2 depict the demand pattern for carbon content of intermediate goods in each province in 2012 and 2017, respectively. Among them, the horizontal axis represents the variable [image: Mathematical expression showing theta subscript i one to i n.] , and the national mean is set as the origin, and the vertical axis represents the variable [image: Delta n hat right-arrow n.]. The unit of measurement for both the horizontal and vertical axes is percentage (%).
[image: Scatterplot displaying regional data points in China, with the x-axis ranging from zero point twenty to zero point seventy and the y-axis from negative zero point fifteen to zero point fifteen. Beijing is positioned notably at zero point seventy on the x-axis and zero on the y-axis. Other regions like Shanghai, Tianjin, and Chongqing are dispersed closer to the axes' intersection, with varied x and y values. Regions are labeled beside each point. The diagram likely illustrates some form of regional comparison or distribution.]FIGURE 1 | The Carbon Demand of Each Provinces: 2012, Notes: the horizontal axis represents the variable [image: Lowercase theta with a subscript containing an "n" with an arrow pointing to "n".], and the national mean is set as the origin, and the vertical axis represents the variable [image: Delta n-hat to n with an arrow indicating a transformation or change.]. They are all measured in percentage (%).
[image: Scatter plot showing Chinese provinces plotted along two axes. The x-axis ranges from -0.20 to 0.80, while the y-axis spans -0.12 to 0.13. Notable provinces include Beijing, located far to the right, and Hunan and Jiangxi, among others, clustered around the origin.]FIGURE 2 | The Carbon Demand of Each Provinces: 2017. Notes: the horizontal axis represents the variable [image: Mathematical expression showing the symbol theta with a subscript n tilde, followed by an arrow pointing to n.], and the national mean is set as the origin, and the vertical axis represents the variable [image: Delta n-bar to n.]. They are all measured in percentage (%).
3.1.1 Carbon demand in each province
Figures 1, 2 depict the demand pattern for carbon content of intermediate goods in each province in 2012 and 2017 respectively. It is worth noting that for graphical display aesthetics, the value of [image: Mathematical expression showing theta sub i sub one to n, with an overline above the subscript.] and [image: Δn subscript bar i right arrow n.] in Qinghai is too large to be shown in the graph.
In the first quadrant, [image: \(\bar{\theta}_{n \to n} < \bar{\theta}\)] and [image: Mathematical notation showing delta subscript n arrow n is greater than zero.]. Here, [image: Text displays the Greek letter theta with a horizontal bar over it, typically representing an average or mean in mathematics or statistics.] is the average of [image: Please upload the image or provide a URL so I can help you create the alternate text.] in all provinces. Provinces located in the first quadrant have a lower percentage of carbon content in the intermediate goods they receive from other provinces, as compared to the national average. However, the carbon emission intensity of the intermediate goods received from other provinces is higher than their own. This indicates that these provinces can transfer some responsibility for carbon emissions to other provinces through the domestic production network. In 2012, seven provinces, including Hubei, Shandong, Hebei, Hunan, Liaoning, Jilin, and Fujian, adopted this carbon demand pattern. In 2017, there are still seven provinces followed this demand pattern, including Hunan, Jiangsu, Anhui, Hebei, Hubei, Tianjin, and Jilin. The number of provinces has remained the same since 2012, the newly added provinces are Jiangsu, Anhui, and Tianjin, while the removed provinces are Shandong, Liaoning, and Fujian.
In the second quadrant, [image: Equation showing \(\bar{\theta}_{n} \to n > \bar{\theta}\).] and [image: Mathematical expression showing delta subscript n to infinity is greater than zero.]. Provinces located in the second quadrant have a higher percentage of carbon content of the intermediate goods they receive from other provinces, compared to the national average. Additionally, the carbon emission intensity of the intermediate goods received from other provinces is also higher than their own. This means that these provinces have the strongest comparative advantage in transfer of the responsibility of carbon emissions to other provinces through the domestic production network. In 2012, eleven provinces followed the demand pattern of carbon in the domestic production network. Among them, Beijing has the strongest comparative advantage, followed by Jiangxi, Chongqing, and Tibet. The other seven provinces, including Shanghai, Tianjin, Zhejiang, Jiangsu, Guangdong, Shaanxi, and Hainan, are relatively weak. In 2017, ten provinces adopted the demand model of carbon in the domestic production network, including Beijing, Tibet, Chongqing, Jiangxi, Guangdong, Shaanxi, Shanghai, Zhejiang, Henan, and Hainan. Compared to 2012, the number of members increased by one and decreased by two. Henan was added, and Tianjin and Jiangsu were subtracted.
In the third quadrant, [image: Mathematical expression showing theta subscript n to n t is greater than theta, and delta subscript n to n t is less than zero.]. Provinces located in the third quadrant have a higher percentage of carbon they receive from other provinces than the national average. However, the carbon emission intensity of the intermediate goods received from other provinces is lower than their own. This means that these provinces cannot transfer the responsibility of carbon emissions to other provinces through the domestic production network. It's worth noting that no province followed this pattern of demand for carbon content of the inter-provincial intermediate goods trade in 2012 and 2017.
In the fourth quadrant, [image: Theta-hat sub n converges to theta is less than theta-hat.] and [image: Mathematical expression showing Delta with subscript n to n is less than zero.]. Provinces located in the fourth quadrant have a lower percentage of carbon they receive from other provinces compared to the national average. Additionally, the carbon emission intensity of the intermediate goods they receive from other provinces is also lower than their own emission intensity. This indicates that these provinces cannot transfer the responsibility of carbon emissions to other provinces through the domestic production network. In 2012, ten provinces, including Heilongjiang, Henan, Yunnan, Gansu, Xinjiang, Neimenggu, Shanxi, Ningxia, Guizhou, and Sichuan, followed this demand pattern of carbon. In 2017, eight provinces adopted this demand pattern, including Ningxia, Neimenggu, Xinjiang, Shanxi, Gansu, Liaoning, Shandong and Guizhou. Compared with 2012, the number of members increased by two and decreased by three, with the newly added Liaoning, Shandong, and Heilongjiang, Henan, Yunnan reduced.
3.1.2 Evolution of the carbon demand in each province
By comparing the number distribution of provinces in different quadrants of Figures 1, 2, we can observe that the demand for the carbon in domestic production network has significantly optimized. This is evident as more provinces moved from the fourth quadrant to the first and then the second quadrant. Additionally, based on the change in the proportion of utilizing carbon from other provinces and the difference between the carbon emission intensity of intermediate goods from other provinces and that of its own, we can classify the evolution trend of the demand pattern of carbon in domestic production network into three different situations: Optimal ([image: Mathematical notation showing a delta symbol with a subscript “n bar” pointing to “n”, indicating a transformation or transition in a sequence or set.] ↑ and [image: Mathematical expression: the symbol theta with subscript "pi one" and superscript "arrow towards n".] ↑), sub-optimal ([image: Delta vector n sub i pointing to n describes a change in vector n from initial position i to position n, indicated by an arrow.] ↑ and [image: Mathematical expression showing the variable theta with subscript n one, followed by an arrow pointing right to n two.] ↓ or [image: Mathematical expression showing a difference in a vector quantity, represented as "Delta n sub i" with an arrow, followed by an implication arrow pointing to "n".] ↓ and [image: Stylized mathematical expression showing "theta sub i one arrow n", indicating a transformation or transition from \(i_1\) to \(i_n\) with a theta parameter.] ↑), worst ([image: Delta vector \(\bar{n}_l\) with an arrow pointing towards vector \(n\).] ↓ and [image: Mathematical expression showing the symbol theta with a subscript notation indicating a transformation from n one to n n.] ↓). Table 1 shows that over 50.0% of Chinese provinces have been optimizing demand pattern of carbon in the domestic production network from 2012 to 2017. The symbol “↑” indicates that the variable was in an increasing state during 2012–2017 and symbol “↓” indicates that the variable was in a decreasing state during 2012–2017. The unit of measurement for both variable is percentage (%).
TABLE 1 | Changes of the carbon demand in each province from 2012 to 2017.
[image: Table comparing evolution states of carbon content and emission intensity for various provinces. It includes arrows indicating increasing or decreasing trends for two variables, \( \theta_{n \to n} \) and \( \Delta_{n \to n} \). Evolution states range from optimal to worst. Provinces like Beijing and Zhejiang are marked as optimal, while Shandong and Liaoning are marked as worst. Arrows denote changes from 2012 to 2017. Notes explain the variables and symbols used.]3.2 Carbon supply and evolution of each province in China’s production network
We also use two variables to depict the supply pattern of carbon content of inter-provincial intermediate goods trade in each province: (1) The proportion of carbon content of the intermediate goods supplied to other provinces to that of all of the intermediate goods produced in the province, [image: Mathematical equation showing θ subscript n minus n i equals ETZ subscript n minus n i divided by the sum of ETZ subscript n minus n i and DTZ subscript n minus n i.]; (2) The difference between the carbon emission intensity of the intermediate goods supplied to other provinces and that of total output, [image: The image shows a mathematical equation: \( \Delta_{n-\eta t} = ETZ_{n-\eta t} / Z_{n-\eta t} - DTZ_{n-\eta t} / X_t \).]. In Figures 3, 4, the horizontal axis represents the variable [image: Mathematical expression showing theta subscript n transitioning to theta subscript infinity.], its origin is set as its national mean, and the vertical axis represents [image: Delta n subscript 1 to n subscript 2 with an arrow pointing right.].
[image: Scatter plot showing data points for various Chinese provinces. Axes intersect at the origin. Provinces like Neimenggu and Shanxi are positioned at the top right, while Beijing is further to the right. Hubei is located on the far left. Other provinces are distributed around the central area. The vertical axis ranges from 0 to 0.30, while the horizontal axis ranges from -0.10 to 0.25.]FIGURE 3 | The Carbon Supply of Each Provinces: 2012. Notes: the horizontal axis represents the variable [image: Mathematical expression of theta sub n approaching n.], and the national mean is set as the origin, and the vertical axis represents the variable [image: Delta symbol followed by vector n and an arrow pointing right to n.]. They are all measured in percentage (%).
[image: Scatter plot showing various regions in China plotted on a Cartesian plane with two axes. Data points are labeled with region names like Shanxi, Shandong, and Beijing. The axes have numerical values, with the horizontal axis ranging from -0.05 to 0.3. Some regions cluster around the origin, while others, like Shanxi and Neimenggu, are farther from the center.]FIGURE 4 | The Carbon Supply of Each Provinces: 2017. Notes: the horizontal axis represents the variable [image: Mathematical notation showing a theta symbol with a right-pointing arrow beneath it labeled from vector n to vector n.], and the national mean is set as the origin, and the vertical axis represents the variable [image: Delta symbol followed by a vector notation "n" transitioning to the scalar "n".]. They are all measured in percentage (%).
3.2.1 Carbon supply in each province
Figures 3, 4 depict the supply pattern for carbon content of intermediate goods in each provinces in 2012 and 2017 respectively. It is worth noting that for graphical display aesthetics, the value of [image: Mathematical expression showing the angle θ, denoted as \(\theta_{\mathbf{q}_{i} \rightarrow \mathbf{q}_{j}}\).] and [image: Delta n vector pointing from i to j.] in Qinghai province is too large to be shown in the graph. The unit of measurement for both the horizontal and vertical axes is percentage (%).
In the first quadrant, [image: Mathematical expression showing two conditions: theta sub n to pi is less than theta bar sub n to pi, and delta sub n to pi is greater than zero.]. Here, [image: Mathematical symbol of the Greek letter theta with a bar above it, often used to represent an average or a transformed variable in mathematical equations.] is the average of [image: It seems there was a misunderstanding. Could you please upload an image or provide a detailed description so I can help create alt text for it?]. Provinces located in the first quadrant have a lower percentage of carbon supplied to other provinces compared to the national average, but the carbon emission intensity is higher than their own. So these provinces act as a domestic “pollution refuge” to some extent, even though they do not have a high supply level. In 2012, six provinces (Guangxi, Hunan, Liaoning, Jiangxi, Heilongjiang, and Sichuan) were identified as having this supply pattern of the carbon in domestic production network. The number of members adopting this pattern has increased from 6 to 10 in 2017, including Shandong, Fujian, Hebei, Jiangxi, Zhejiang, Guizhou, Henan, Tianjin, Guangdong, and Hubei, only Jiangxi remains in the first quadrant from 2012 to 2017.
In the second quadrant, [image: Mathematical expression showing theta sub n pointing to vector n is greater than theta bar sub n pointing to vector n.] and [image: Mathematical notation showing delta subscript n as n approaches infinity is greater than zero.]. Provinces located in the second quadrant not only have a higher percentage of carbon supplied to other provinces compared to the national average, but also the carbon emission intensity of the intermediate goods supplied to other provinces is higher than their own, which can be said to be true “pollution havens” in the domestic value chain. 13 provinces adopted the supply pattern of carbon in domestic production network, namely Neimenggua, Shanxi, Guizhou, Hebei, Gansu, Shaanxi, Anhui, Beijing, Ningxia, Henan, Yunnan, Qinghai, and Xinjiang. However, the membership structure has undergone significant changes over the years. Six provinces have emerged as new entrants, namely Shanghai, Hunan, Liaoning, Guangxi, Heilongjiang, and Jilin. Six provinces have witnessed a reduction in membership, including Guizhou, Hebei, Anhui, Henan, Yunnan, and Qinghai. The final list of provinces included was Shanxi, Neimenggu, Heilongjiang, Xinjiang, Ningxia, Shaanxi, Beijing, Shanghai, Hunan, Gansu, Liaoning, Guangxi, and Jilin.
In the third quadrant, [image: The equation displays theta subscript n arrow right n bar is greater than theta bar subscript n arrow right n.] and [image: Mathematical expression showing Delta sub n to n transpose is less than zero.]. Provinces located in the third quadrant had a higher percentage of carbon supply to other provinces than the national average. However, the carbon emission intensity of the intermediate goods supplied to other provinces is lower than their own. These provinces participate in inter-provincial carbon transfer in the domestic production network, but have not become a “pollution refuge”. This represents an optimal supply pattern of intermediate goods. Unfortunately, in both 2012 and 2017, no province was found to have the pattern of carbon supply.
In the third quadrant, [image: Theta subscript n pointing to vector n is less than Theta bar subscript n pointing to vector n bar.] and [image: Delta sub n to m is less than zero.]. Provinces located in the fourth quadrant supply carbon to other provinces with a lower percentage than the national average, and the carbon emission intensity of the intermediate goods supplied to other provinces is also lower than their own. These provinces not only have lower degree of participation in the domestic production network, but also have lower degree of carbon supply. In 2012, there were five provinces with the pattern of carbon supply, including Hubei, Shandong, Zhejiang, Tibet, and Hainan. Although the number of members has not changed in 2017, the membership structure has changed significantly with 60.0%, Anhui, Yunnan, and Chongqing were new members, while Hubei, Shandong, and Zhejiang were no longer a member of it.
3.2.2 Evolution of the carbon supply in each province
The supply patterns of carbon in domestic production network vary among 30 provinces. These patterns are, in order from best to worst, the third quadrant III, quadrant IV, quadrant I, and quadrant Ⅱ. We can categorize the evolution of supply patterns into three scenarios: the first is the optimal ([image: Mathematical expression showing a theta symbol with subscript \( n \to \bar{n} \).] ↑ and [image: Delta n subscript one, leading to an arrow pointing towards overline n subscript two.] ↓), the second is the sub-optimal ([image: Mathematical expression showing the Greek letter theta subscript n transitioning to n-bar with a rightward arrow.] ↓ and [image: Delta n one to n two with a rightward arrow on top.] ↓ or [image: Mathematical notation showing theta subscript n approaching vector n-hat.] ↓ and [image: Mathematical notation showing a delta symbol followed by a subscript n, transitioning with an arrow to a vector n subscript bar.] ↑), and the third is the worst ([image: Mathematical notation showing the symbol theta subscript n, followed by a right arrow pointing towards n with a bar over it.] ↑ and [image: Delta n subscript l to n vector.] ↑). Where the symbol “↑” indicates that the value of the variable is increasing from 2012 to 2017 and symbol “↓” indicates that the value of the variable is decreasing from 2012 to 2017. As per Table 2, from 2012 to 2017, there were six provinces in the optimal evolution state, thirteen with the worst evolution state, and eleven with the sub-optimal evolution state.
TABLE 2 | Changes of the carbon supply in each province from 2012 to 2017.
[image: Table listing various Chinese provinces with data on the proportion of carbon content and carbon emission intensity. Each province has symbols indicating increase or decrease and an evolution state: optimal, sub-optimal, or worst. The notes explain the symbols used for measurements from 2012 to 2017.]3.3 Net carbon supply and net value added gains and evolution of provinces in China’s production network
The net supply of carbon content of inter-provincial intermediate goods trade is denoted as [image: Greek letter Delta followed by the word "carbon" in italics with a subscript letter "n".], which is the total supply of carbon minus the total demand of carbon in each province and measured in millions of tonnes (MT). The added-value gains is denoted as [image: The image shows the mathematical expression "Δ value subscript n" in italic font.], which is the total added-value gains minus the total added-value expenditure in each province and measured in millions of RMB. Figures 5, 6, where the horizontal axis represents net value-added income of inter-provincial intermediate goods trade and the vertical axis represents the net supply of carbon content of inter-provincial intermediate goods trade.
[image: Scatter plot displaying regions in China with labeled points. Axes range from -60 to 120. Locations like Shanghai, Beijing, and Guangdong are included, with varying x and y coordinates indicating diverse data values.]FIGURE 5 | The Net Supply of Carbon and Value-added Gains of Each Provinces: 2012. Notes: the horizontal axis represents net value-added income and the vertical axis represents the net supply of carbon. The unit of measurement on the horizontal axis is RMB million, and the unit of measurement on the vertical axis is million tonnes (MT).
[image: Scatter plot showing data points for various regions in China. Axes are labeled but not clearly titled. Notable regions include Shandong, Shanxi, and Jiangsu, each represented by a labeled dot. The chart's central point is crowded with overlapping labels like Sichuan and Henan. Horizontal and vertical axes range approximately from -140 to 60.]FIGURE 6 | The Net Supply of Carbon and Value-added Gains of Each provinces: 2017. Notes: the horizontal axis represents net value-added income and the vertical axis represents the net supply of carbon. The unit of measurement on the horizontal axis is RMB million, and the unit of measurement on the vertical axis is million tonnes (MT).
3.3.1 The net carbon supply and net value-added gains
Firstly, Provinces in quadrants Ⅱ and Ⅳ of Figures 5, 6 must make a trade-off between paying environmental costs to obtain value-added income and paying value-added income to obtain environmental benefits. The provinces in the second quadrant have undoubtedly gained a net value-added benefit in domestic production network, however, that has come at significant environmental cost. On the contrary, provinces in the fourth quadrant did not experience a net value-added income, however they had significant environmental benefits. In 2012, 15 provinces are in quadrant Ⅱ of Figure 5, including Neimenggu, Hebei, Liaoning, Guangxi, Qinghai, Shanxi, Sichuan, Ningxia, Heilongjiang, Hunan, Guizhou, Gansu, Henan, Xinjiang and Shaanxi. These provinces obtain the net benefit of value-added, i.e. [image: Mathematical expression showing "Delta value subscript n greater than zero."], while also paying the environmental cost, i.e. [image: Delta carbon sub n is greater than zero.]. In contrast, there are 9 provinces in quadrant Ⅳof Figure 5, such as Xizang, Fujian, Hainan, Chongqing, Jiangsu, Hubei, Shanghai, Zhejiang, and Beijing. These provinces pay the net economic cost, i.e. [image: Mathematical expression showing "delta value sub n is less than zero."], but gain the net environmental benefits, i.e. [image: Delta carbon subscript n is less than zero.]. In 2017, the provinces located in the second and fourth quadrants of Figure 6 had the largest number of provinces as of 2012. The provinces in the second quadrant, such as Shandong, Shanxi, Xinjiang, Liaoning, Gansu, Jilin, Fujian, Heilongjiang, Hebei, and Guizhou gained net value-added income at the expense of environmental costs. The number of members has changed, with four newcomers (Shandong, Shanxi, Jilin, and Fujian) and eight dropouts (Neimenggu, Guangxi, Qinghai, Shanxi, Sichuan, Ningxia, Henan, and Shaanxi) compared to 2012. On the contrary, the provinces in the fourth quadrant of Figure 6, including Yunnan, Tibet, Hainan, Anhui, Henan, Guangdong, Beijing, Zhejiang, and Chongqing, obtained net environmental benefits at the cost of net loss of value-added income. Compared to 2012, the number of provinces increased by four and decreased by four, while the total number remained unchanged.
Secondly, there are only a few provinces that fall into quadrants Ⅰ and Ⅲ of Figures 5, 6. They represent the optimal or worst transfer patterns of carbon in domestic production network. Provinces in the first quadrant bear the net environmental costs but did not receive the corresponding net value added income, they represent the worst pattern. On the contrary, the provinces in the third quadrant not only gain net value-added income, but also experience a deficit in the carbon transfer. They represent the optimal pattern of carbon transfer. Figure 5 shows that in 2012, the provinces with the optimal pattern, including Tianjin, Jiangxi, Jilin, and Shandong, are located in the third quadrant. On the other hand, the provinces with the worst pattern, such as Yunnan and Anhui, are located in the first quadrant. Figure 6 shows that in 2017, the provinces with the optimal pattern, including Shanghai, Jiangsu, Shaanxi, and Jiangxi, are located in the third quadrant. The total number of provincial members remained the same, with Shanghai, Jiangsu, and Shaanxi being the newly added members, and Tianjin, Jilin, and Shandong being reduced compared to 2012. On the other hand, the provinces with the worst pattern, including Ningxia and Guangxi, are located in the first quadrant of Figure 6.
3.3.2 Evolution of net carbon supply and net value added gains in China’s production network
From an evolutionary perspective, a province with [image: Delta value subscript n with an upward arrow, and delta carbon subscript n with a downward arrow.] represents the province with the optimal evolutionary state from 2012 to 2017, a province with [image: Equation showing "Delta value sub n" with a downward arrow, and "Delta carbon sub n" with an upward arrow.] represents the province with the worst evolutionary state from 2012 to 2017. A province with [image: Text showing equations: Δvalueₙ ↑ and Δcarbonₙ ↑, or Δvalueₙ ↓ and Δcarbonₙ ↓.] represents the province with the sub-optimal one from 2012 to 2017. According to the report in table 3, five provinces were in the optimal evolution state, six were in the worst evolution state, and the remaining 19 were in the sub-optimal evolution state from 2012 to 2017.
TABLE 3 | Changes of net carbon supply and value added gains in each provinces from 2012–2017.
[image: Table comparing provinces by changes in value (\(\Delta value_n\)) and carbon supply (\(\Delta carbon_n\)), with evolution states from 2012 to 2017. Indicators show increases or decreases. Examples include Beijing and Hebei with decreases in both metrics and a sub-optimal state, Shanxi with mixed changes and optimal state, and Liaoning with decreases in value, an increase in carbon, and the worst state.]4 CONCLUSION AND DISCUSSION
Due to the traditional decomposing model of the intermediate goods trade based on input-output method cannot completely account for the flow volume and its direction of intermediate goods trade, and then the carbon content of intermediate goods trade is also can not be completely accounted under the context of the domestic production network. The paper redefined the concepts of regional final output, total output, actual demand for intermediate goods, and complete demand for intermediate goods and then has constructed the calculation model of carbon content of intermediate goods trade in the domestic production network. Using China’s multi-regional input-output tables and carbon emission accounting inventory, the paper has calculated the inter-provincial circulation of carbon content of intermediate goods trade in China’s domestic production network. We have gotten some important and interesting conclusions as below:
Firstly, Between 2012 and 2017, only five provinces demonstrated a clear win-win optimization evolution between economic and environmental benefits. Conversely, six provinces exhibited a deterioration evolution, with both economic and environmental loss. Nearly two-thirds of the provinces exhibited sub-optimal evolution, with economic benefits and environmental loss, or economic loss and environmental benefits.
Secondly, the majority of provinces increase their use of high-emission intermediate goods from other provinces and lack incentives to reduce their own carbon emissions in domestic production networks. So it is becoming more and more significant to improve the mechanism of inter-provincial collaborative carbon emission reduction under the context of the domestic production network (Zhang et al., 2017; Wang, 2022). These conclusions also provide new ideas for differentiated countermeasures for water pollution management in cross-jurisdictional river basins, and for coordination of the Industrial-Ecological Economy in the Yangtze River Economic Belt, China. Specifically included: Improving the calculation model for the carbon transfer in domestic production network, and exploring the carbon emission responsibility sharing mechanism among provinces, and improving the inter-regional carbon emission compensation mechanism.
From the results of this paper’s accounting of transferring of carbon content of inter-provincial intermediate goods trade and their evolution, inter-regional environmental governance synergies have to be planned in the broader context of domestic production networks. On the one hand, those existing domestic inter-regional carbon transfer accounting models based on the entire life cycle do not involve the inter-provincial intermediate goods trade, and then can not account the inter-provincial transfer of carbon content of the intermediate goods trade. On the other hand, those inter-provincial transfer of carbon emissions accounting models based on the input-output theory, either follow the consumer principle or follow the producer principle, neglect the complete decomposition of the inter-provincial trade of intermediate goods, and thus fail to provide a theoretical basis for the accounting of the carbon content of the intermediate goods trade which includes inter-provincial inflow and outflow of a specific region at the same time. Against the backdrop of China’s growing domestic production network, the carbon content of inter-provincial intermediate goods trade is becoming an indispensable component of inter-provincial carbon responsibility accounting. The decomposition model of trade in intermediate goods developed in this paper is expected to fill the gap in this area and provide a feasible way to bridge the gap between the producer principle and the consumer principle in accounting for carbon emission responsibility.
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Regional carbon budget and compensation are one of the current research hotspots, which is of great practical significance for dealing with climate change and promoting the coordinated development of low carbon. Based on energy consumption and land use data, a carbon budget and carbon compensation measurement model was established to analyze the change characteristics and spatial differentiation of the carbon budget of 11 prefecture-level cities in Jiangxi Province from 2010 to 2020 and carry out functional zoning, and further calculate the carbon compensation value of each prefecture-level city. The results showed that (1) during the study period, the carbon emissions in Jiangxi Province showed an increasing trend, with an average annual growth rate of 6.00 million tons, showing a spatial distribution pattern of “high in the west and low in the east.” The province was mainly represented by net carbon sources. (2) During the study period, the forest land in Jiangxi Province was the main carbon sink. The carbon sink absorption capacity declined from 60.56 million tons in 2010 to 59.69 million tons in 2020. (3) The regional difference in the economic contribution coefficient of prefecture-level cities in Jiangxi Province is relatively tiny. The ecological support coefficient has apparent spatial heterogeneity, showing a spatial distribution feature of “high in the south and low in the north.” (4) The 11 prefecture-level cities in Jiangxi Province could be divided into four regions: the carbon sink functional area, low-carbon optimization area, total carbon control area, and carbon intensity control area. By calculating the carbon compensation value and according to the difference in the carbon compensation value, the 11 prefecture-level cities in Jiangxi province are divided into four high-compensation areas, three low-compensation areas, and four compensated areas. The larger the carbon budget is, the higher the carbon compensation amount; conversely, the smaller the budget, the more carbon compensation amount can be obtained. According to the above conclusions, 11 prefecture-level cities should improve emission reduction mechanisms and strengthen the management of forest land utilization. Meanwhile, Jiangxi Province should formulate differentiated development, and compensation strategies should be developed to promote low-carbon, coordinated, and sustainable development among regions.
Keywords: carbon budget, spatial differentiation, functional zoning, compensation, double carbon target

1 INTRODUCTION
In September 2020, the Chinese government announced at the 75th United Nations General Assembly that China pledged to strive to achieve peak carbon emissions by 2030 and be carbon-neutral by 2060 in global climate governance (Shao et al., 2019). Optimizing land use is the most effective and low-cost way to achieve carbon neutrality (Dohner et al., 2022). Statistics show that global CO2 emissions from burning fossil fuels reached 33.8 billion tons in 2022. China is the world’s largest carbon emitter, accounting for 29 percent of global greenhouse gas emissions. Unreasonable land use by humans, such as excessive dependence on and consumption of fossil fuels, deforestation, and development, leads to the increasing concentration of CO2 and other greenhouse gases in the atmosphere (Mahowald et al., 2017), resulting in global warming. At the same time, along with the constant high temperatures, drought, and other extreme climates occurring frequently, seriously affecting human production and life, the necessity of mitigating climate change has become a global consensus (Ebi and Loladze, 2019). The carbon budget is the focus of research on global climate change and an essential element of the green development strategy (Kondo et al., 2018; Lahn, 2020). According to the Report on Tackling Climate Change in 2021, the average net carbon balance from 2000 to 2019 has a deficit of 6.22 billion tCO2/year compared with the carbon-neutral target. There is tremendous pressure and a severe situation to achieve carbon neutrality. As a fundamental factor of human production, the change in the human land use structure in industrialization and urbanization will be directly related to the change in the carbon source and sink (Chuai et al., 2021). Research shows that land-use carbon emissions have accounted for 33% of the total carbon emissions over the past 150 years and 14% of the total carbon emissions during 2009–2018 (Friedlingstein et al., 2020). It also shows enormous potential to reduce carbon emissions (Jing et al., 2021). Conducting carbon budget research on land use is helpful in determining the pressure of carbon emission reduction and exploring the potential of carbon sink (Rogelj et al., 2019). In the context of the “double carbon” target, it is necessary to control the total amount of carbon emissions and achieve regional carbon reduction and fairness (Lu et al., 2023). Carbon compensation is a crucial way to promote inter-regional synergistic emission reduction, which is conducive to sustainable economic and environmental development (Han et al., 2024). Hence, in the context of climate change and low-carbon economy, in-depth research on carbon budget from the perspective of land use, functional zoning, and carbon compensation is conducive to quantitative assessment of human activity carbon emission intensity and ecosystem pressure, which is crucial for guiding regional green, low-carbon, and synergistic development.
At present, several scholars have conducted numerous research studies on the accounting of the carbon budget, the factors influencing it, and the relationship between it and land use. First, in carbon budget accounting at different scales, there is mainly a national scale (Sleeter et al., 2018; Arowolo et al., 2018), regional scale (Zhang et al., 2012; Houssoukpèvi et al., 2023), provincial scale (Yang F. et al., 2022; Yuan et al., 2022; Gui et al., 2023), and city and county scale (Deng et al., 2020). Second, heterogeneity in carbon intensity across land-use types is an influencing factor in the carbon budget (Keiichiro et al., 2016). Energy consumption from population growth, industrial development, and urban expansion are the leading causes of the carbon balance imbalance (Rogelj et al., 2015; Lambin and Meyfroidt, 2011). With the enhancement of natural vegetation activities in China, agriculture and forestry activities have a significant positive effect on the carbon budget of terrestrial ecosystems (Cheng et al., 2024). Some scholars also believe that soil carbon reserves provide a solution to the global problem of improving the soil quality and regulating carbon balance. Due to the differences in vegetation litter and rhizosphere (Shahzad et al., 2018), soil carbon reserves vary across different land use types. Changes in land use will directly or indirectly affect soil nutrients and soil carbon sequestration capacity (Yu and Song, 2023). The conversion of cultivated land, forest land, and grassland will have a more significant impact on the soil carbon sequestration capacity (Yu and Song, 2023). Over time, the reduction of the forest land area and farmland reclamation have caused substantial changes in the national land-use structure, leading to a rapid decrease in natural vegetation coverage, soil erosion, nutrient loss, and a significant decline in soil carbon sequestration capacity (Arunrat et al., 2022), thus affecting the change in the carbon expenditure of terrestrial ecosystems. Additionally, farmland transfer, land reclamation, and water and soil development activities are fundamental factors influencing regional carbon income and expenditure (Koch and Kaplan, 2022). Third, the relationship between carbon budget and land use is significant. Land use change is one of the main reasons affecting the carbon budget (Arora and Boer, 2010). Optimizing the land use structure based on the perspective of carbon budget not only meets the model of low-carbon economic development but also meets the requirements of enhancing sustainable development. Due to the heterogeneity between regions, carbon budget capacity varies; carbon compensation is a new field in the context of the low-carbon economy. Existing scholars have mainly conducted carbon offsetting-related research from both theoretical and empirical aspects. Initially, at the academic level, it defines the connotation and characteristics of carbon compensation based on welfare economics (Wu and Li, 2019), public goods theory (Feng et al., 2020), and ecological capital theory (Carpenter et al., 2009), and it systematically expounds the basic framework of carbon compensation and the carbon trading system. It proposes formulating a scientific and unified carbon compensation accounting mechanism based on regional differences (Yang et al., 2019) to build a balanced account of the “carbon sources–carbon sink” based on regional differences and establish a “national carbon compensation system.” Second, at the practical level, scholars mainly focus on the calculation and application of carbon compensation, carrying out the calculation setting of carbon compensation standards in the forest (Latta et al., 2016), agriculture (Leifeld, 2023), and fishery (Cavan and Hill, 2022) and a lot of research on carbon balance (Wen et al., 2022), carbon compensation zoning, and optimization schemes.
The achievements of the existing scholars have greatly enriched the theories and methods in the carbon budget and compensation field. However, there are still many problems that deserve in-depth research and exploration. Overall, the comprehensive literature has some findings. First, most existing studies focused on large-scale regions such as countries, economic zones, and functional zones, ignoring the developmental differences of different areas. The research on carbon budget and carbon compensation at the municipal level needs to be more prosperous. As an integral unit of China’s economic development, municipal space is helpful in scientifically assessing regional carbon ecological pressure by calculating carbon budget and carbon compensation at the municipal level. It has specific theoretical and practical significance in promoting regional low-carbon coordinated development. Second, most scholars mainly analyzed the carbon budget from the single index of total carbon emission and absorption, but they neglected to conduct further comprehensive studies on the multi-dimensional economic contribution of carbon emission and the ecological carrying capacity of carbon sink.
By providing these, this research aims to promote regional low-carbon, coordinated, and sustainable development and explores regional carbon compensation from a carbon budget and functional zoning perspective. With Jiangxi Province as the research object and each city as the primary research unit, the economic contribution coefficient of carbon emission and the ecological carrying coefficient of carbon absorption were included in functional zoning based on the carbon budget calculation. Furthermore, the carbon compensation value of each prefecture-level city was calculated. This has a certain reference value for Jiangxi Province to formulate differentiated carbon emission reduction and carbon sink enhancement schemes and provides experience for regional carbon compensation, which is more conducive to accelerating the coordinated development of economic development and ecological civilization construction in Jiangxi Province.
2 RESEARCH METHOD
2.1 Land-use carbon budget accounting
The carbon budget mainly comes from the difference between carbon emission and absorption. The land is an essential carrier for human survival and development. According to the classification of land use status in this study, construction land in the study area is the primary carbon emission source. According to previous research, carbon emissions can be divided into energy consumption caused by human economic and social activities on construction land and human respiration; carbon sequestration is mainly calculated by using land-use areas such as cultivated land, forest land, grassland, water area, and unused land (Zhang et al., 2013).
2.1.1 Calculation of total carbon emissions
The total carbon emission of energy consumption represents the carbon emissions of construction land Ce. Based on the work of Li et al. (2019), the calculation formula is as follows:
[image: Mathematical equation showing \( C_q = E \alpha \), labeled as equation (1).]
In Formula 1, Ce is the carbon emissions generated by the energy consumption of a certain area (prefecture or province), E is the energy consumption of the region (tons of standard coal), and σ indicates the carbon emissions coefficient of unit energy consumption. Moreover, combined with the carbon emissions coefficient of different types of energy consumption and the standard coal conversion coefficient, the value is 1.87t/C/t.
Based on the work of Li et al. (2019), the formula for carbon emissions from human breathing in a specific region is as follows:
[image: Equation showing \( C_{\rho} = P \theta \) labeled with equation number 2.]
In Formula 2, Cp is carbon emissions for human breathing in a specific region (t), P is the region’s population, and θ represents the annual carbon emissions per person. Drawing on the research of Zhang et al. (2014), the annual carbon emissions per person are taken as 0.079 (tC/a).
Based on the research of Li et al. (2019), the formula for calculating the total carbon emissions Cz in a region is as follows (Formula 3):
[image: Mathematical equation showing \( C_q = C_t + C_p \), labeled as equation (3).]
2.1.2 Calculation of the total carbon absorption
The calculation formula of the total carbon absorption of all kinds of land (cultivated land, forest land, grassland, water area, and unused land) is as follows (Li et al., 2019):
[image: Mathematical equation showing \( C = L \lambda \), labeled as equation four.]
In Formula 4, Ci is the amount of carbon absorption in a specific region (t), L represents the area of various soil types in this area (hm2), and λ represents the carbon emission/carbon absorption coefficient of different land types. According to previous research (Yeh and Liao, 2017), in this paper, the carbon emissions coefficients of cultivated land, forest land, grassland, water area, and unused land are −0.13, −5.77, −0.022, −0.253, and −0.005t/(hm2∙a), respectively. When the carbon emissions coefficient is negative, it is indicated as carbon absorption.
2.1.3 Calculation of carbon budget
Carbon budget (Ct) is the difference between carbon emissions and carbon absorption in a region. Based on the work of Li et al. (2019), the formula is as follows (Formula 5):
[image: Certainly! Please upload the image or provide a URL to generate the alt text.]
2.2 Economic contribution coefficient of carbon emissions
The carbon emissions economic contribution coefficient (ECC) measures regional carbon emissions differences from the perspective of financial contribution, which can be used to evaluate the equity of the financial contribution of regional carbon emission. It is an essential indicator of the size of regional carbon production capacity. Based on the research of Liu et al. (2024), the formula is as follows:
[image: Equation showing ECC equal to C subscript I over C subscript J, divided by C subscript J over C.]
In Formula 6, Gt and G represent the total GDP of a municipal unit and the provincial GDP in a specific area, respectively; [image: Stylized letter "G" divided by a horizontal line, creating an abstract or artistic representation.] is the proportion of GDP of a municipal department of local GDP; Ci and C represent the carbon emissions of the unit and the total carbon emission of the province in a specific area, respectively, and [image: Mathematical expression showing the fraction C subscript I over C subscript C.] is the proportion of the carbon emissions of a particular city unit in the total carbon emissions of the region. If ECC > 1, it means that the economic contribution rate of land use in prefecture i is greater than the carbon emissions rate, indicating that the economic efficiency of carbon emission in this region is relatively high. If ECC < 1, the city has a relatively low energy utilization rate.
2.3 Ecological support coefficient of carbon absorption
Carbon sinks have a significant ecological value and are vital in maintaining the global environmental balance. However, protecting carbon sink resources has an enormous opportunity cost, inevitably affecting regional spatial development equity. As a characterization index of carbon offset ecological environment attributes, the environmental support coefficient reflects the ability of carbon sink absorption of each prefecture-level city in Jiangxi Province to absorb the total emissions from carbon sources from the perspective of ecological and environmental benefits. It measures the ecological capacity contribution of each prefecture-level city unit (Li et al., 2019) to reflect the absorption capacity of a city’s carbon sink to the total carbon emissions from a local scale.
Based on the research of Liu et al. (2024), the calculation formula for the ecological support coefficient (ESC) of carbon absorption is as follows:
[image: Equation for ESC is shown as a fraction with numerator \( \frac{C_{A}}{C_{L}} \) over denominator \( \frac{C_{A}}{C} \), followed by equation number (7).]
In Formula 7, CAi and CA represent the carbon absorption of i city land use and the provincial carbon absorption, respectively. If ESC > 1, it indicates that the carbon absorption capacity of the city i is relatively high, and the contribution rate of the carbon absorption is greater than the carbon emissions, which positively impacts the provincial carbon emissions absorption. If ESC < 1, it indicates that the contribution rate of the carbon absorption of the city i is less than that of the carbon emissions and the carbon absorption capacity is relatively low, which harms the provincial carbon emissions absorption.
2.4 Regional carbon compensation accounting
Based on the principle of carbon balance, the regional carbon budget is standardized to determine the reference value of carbon compensation. If the regional carbon budget is insufficient, it indicates that the region’s carbon absorption capacity is vital. The ecosystem carbon sink can absorb not only the region’s carbon emissions but also the surrounding areas’ carbon emissions, contributing the ecological value to the coordinated development of the region. So, it is essential to receive carbon compensation funds. Otherwise, carbon compensation funds should also be paid. Based on the work of Zhao et al. (2016), the calculation formula is as follows:
[image: Equation depicting the relationship \( L_t = C_t = C_{t_a} - C_{t_u} \) labeled as equation eight.]
In Formula 8, Li is the base value of carbon compensation in a particular area and Ci represents the carbon emissions in a specific region. When Li > 0, the carbon compensation fund should be paid; when Li < 0, the carbon compensation fund should be received; and when Li = 0, the regional carbon balance should be achieved. At this time, it does not matter whether carbon compensation funds should be paid or received.
Nevertheless, in current situations, due to differences in economic development, energy use efficiency, and other factors, if only the carbon budget is considered the benchmark value of carbon compensation, the compensation amount to be paid by a particular region may be too high, resulting in deviation of calculation results. In order to make the carbon compensation results more objectively reflect the current situation, this research corrected the base value Li and set a carbon emission threshold Pi for each region, and the calculation formula is as follows (Zhao et al., 2016):
[image: Equation showing \( \bar{P_l} = ECC \times D \), labeled as equation 9.]
In Formula 9, Pi indicates the carbon emissions threshold for a region (t), ECC indicates the economic contribution coefficient of carbon emissions, and D shows the average value of carbon emissions from the 11 prefecture-level cities in Jiangxi Province from 2010 to 2020.
In addition to the apparent differences in regional carbon budget, the carbon emissions per unit GDP of different prefecture-level cities also have temporal and spatial differences. Therefore, the carbon emissions per unit GDP of different prefecture-level cities in 2010 and 2020 (t/10,000 yuan) were combined to revise the carbon emissions. Based on the research of Zhao et al.(2016), the specific formula is as follows:
[image: Mathematical equation showing \( C'_t = C_t \times \left( \frac{G_{n-t}}{G_{n-t2}} - \frac{G_{T1}}{G_{T2}} + 1 \right) \times \frac{G_{n-t}}{G_T} \). Equation number 10.]
In Formula 10, [image: Mathematical notation representing "C subscript t superscript 1."] is the revised carbon emissions of a particular prefecture-level city; Gt1-i and Gt2-i indicate the carbon emissions per unit GDP of a prefecture-level city in 2020 and 2010, respectively (t/10,000 yuan); GT1 and GT2 indicate the carbon emissions per unit GDP of Jiangxi Province in 2020 and 2010 (t/10,000 yuan), respectively; and GT is the average carbon emissions per unit of GDP of all prefecture-level cities in Jiangxi Province in 2020 (t/10,000 yuan). Based on the research of Zhao et al.(2016), the revised base value of carbon compensation is as follows:
[image: Equation depicting a relationship: \( L'_{t} = C_{f} - C_{t} - P_{t} \). Referenced as equation eleven in the text.]
In Formula 11, when [image: Mathematical expression showing "L sub i superscript 1 is greater than 0."], the carbon compensation fund should be paid; when [image: Mathematical expression showing \( L_i^1 > 0 \).], the carbon compensation fund should be received; and when [image: Mathematical expression showing \(L_i^1 = 0\).], either the carbon compensation fund should be paid or received. The revised carbon offsets and emissions per unit of GDP are closer to reality.
On further measuring the value of carbon compensation by monetary quantity, based on the research of Zhao et al.(2016), the calculation formula of carbon compensation value is as follows:
[image: Mathematical expression showing \( M_i = |L_i| \times \alpha \times |y| \), with a reference to equation (12).]
In Formula 12, Mi represents the monetary amount of carbon compensation received or required to be paid by a region (10,000 yuan), α represents the unit carbon price (yuan/t), and γ represents the regional carbon compensation coefficient (Zhao et al., 2016).
[image: The formula shown is \( \alpha = (P_{\text{max}} + P_{\text{min}}) / (2 \times G_{p1} / G_{p2}) \), denoted as equation (13).]
In Formula 13, Pmax and Pmin represent the maximum and minimum values of domestic carbon sink prices, respectively (Miao et al., 2019), and international carbon sink prices of US $10 to US $15/t; this research uses the average RMB exchange rate published by the National Bureau of Statistics in 2020 to convert the USD to RMB. Here, Gp1 and Gp2 are the per capita GDP of Jiangxi Province and the whole nation in 2020 (10,000 yuan/person), respectively.
Different levels of economic development in different regions will lead to differences in the carbon offsetting capacity. Therefore, the actual payment capacity and economic development level of each region are further combined to determine the carbon compensation coefficient using the modified pal growth curve model. Based on the research of Zhao et al. (2016), the specific formula is as follows:
[image: The image shows a mathematical equation: \( y = \frac{K}{1 + ae^{-bt}} \), labeled as equation 14.]
In Formula 14, γ is the regional carbon compensation coefficient, K is the regional economic development level, and the ratio of the GDP of a prefecture-level city to the GDP of Jiangxi Province is measured in this research. α and b are constants, and the value is 1. t represents the Engel coefficient of Jiangxi Province in 2020, and e is the base of the natural logarithm.
3 DATA SOURCES AND DESCRIPTIVE STATISTICS
3.1 Overview of the study region
Jiangxi Province is located in southeast China, on the south bank of the middle and lower reaches of the Yangtze River, the hinterland of the Yangtze River Delta, the Pearl River Delta, and the Southern Fujian Triangle. With jurisdiction over 11 cities and 100 counties, it is a significant ecological security barrier in southern China, facing the dual pressure of economic development and environmental protection. Since 2010, Nanchang, Ganzhou, Jingdezhen, Ji ‘an, and Fuzhou of Jiangxi Province have been successively ranked as the first, second, and third batches of national low-carbon pilot cities, respectively. In June 2016, Jiangxi Province was listed as one of the first batch of national ecological civilization pilot zones, further pushing the province to attach great importance to ecological civilization construction and actively explore the path of low-carbon economy development. Taking Jiangxi Province as an example, further exploring its carbon emission reduction potential is conducive to accelerating the construction of ecological civilization and realizing the green and low-carbon transformation development of Jiangxi Province.
3.2 Data sources
In this research, 11 prefectural and municipal administrative units in Jiangxi Province were selected as the research objects, and the carbon emissions data mainly adopted relevant statistical data from 2010 to 2020. Specifically, they include population, GDP, and fossil energy consumption. Due to the lack of fossil energy data in the whole society, GDP is used for conversion. When calculating energy consumption, the GDP deflator uniformly converts relevant data into the 2010 constant price. The economic data are mainly derived from the Statistical Yearbook of Jiangxi Province (2011–2021) and supplemented by the statistical yearbook and social development communique of prefecture-level cities. The land use data (2010, 2015, Issue 10,2020) and administrative boundary data (2015) on the study area were obtained from the Resource and Environment Science and Data Center of the Chinese Academy of Sciences with a spatial resolution of 1 km. In the national land-use classification system, using ArcGIS 10.2 software of land use type in Jiangxi province data and the administrative unit data space superposition, intersection, and extraction, land use is divided into six levels: cultivated land, forest land, grassland, water, construction land, and unused land; statistics in Jiangxi province and the prefecture each land use type data of Jiangxi Province and prefectures were counted.
3.3 Descriptive statistics of land use in Jiangxi Province
Based on the land use distribution layer of Jiangxi Province, statistics were carried out on the area of six primary land classes in Jiangxi Province, and the land use changes obtained are shown in Table 1. In 2020, Jiangxi Province’s land was mainly forest and cultivated land. The area of forest land was the most extensive, accounting for 61.34%, followed by cultivated land, accounting for 26.47%. The size of cultivated land, forest land, and unused land decreased during the study period, which was shown as follows: the area of cultivated land decreased by 91,118.6 hm2 from 2010 to 2020, the unused space decreased by 16,343 hm2, and the size of forest land decreased by 150,045.6 hm2. Furthermore, the reasons for the decrease in forest land area in Jiangxi Province were explore. First, the conversion of forest land into land for construction and other purposes is the main reason for the decrease of forests. To adapt to the demand for population growth and industrial development, some forest land is used for urban construction, which decreases the forest land area (Song et al., 2020). Second, the management of forest land directly affects the condition of forest land resources. Research shows that the relevant departments have problems such as neglecting the management of forest land and poor management of forest land, leading to a declining trend in forest land. Third, the frequent occurrence of natural disasters is also an essential factor leading to a decreased forest land area (Yang X. et al., 2022). Data show that from 2010 to 2020, 841 forest fires occurred in Jiangxi Province, with an average annual number of 76 fires, which caused severe damage to forest resources, reducing forest resources and degrading the forest land area. The decline of the forest land area will cause a series of environmental problems, such as the reduction of biodiversity, local climate disorders, and the decline of forest carbon sequestration, oxygen release capacity, and air quality. In addition, the area of construction land, grassland, and water area all increased, and the size of construction land increased rapidly from 341,652.5 hm2 in 2010 to 200,635 hm2, accounting for 1.21% more. Grassland and water area increased by 32, 303.8 hm2 and 26,895 hm2, respectively.
TABLE 1 | Area and change proportion land use types in Jiangxi Province from 2010, 2015, and 2020.
[image: Table comparing land type areas and proportions for the years 2010, 2015, and 2020. Land categories include cultivated, forest, grassland, water, unused, and construction land, with their respective areas in hectares and percentage proportions. Forest land consistently has the largest area and proportion, while unused land is the smallest. Construction land shows an increasing trend over the years.]4 ANALYSIS OF RESULTS
4.1 Carbon emissions and spatial distribution in Jiangxi Province
Using the data on energy consumption and population in Jiangxi Province from 2010 to 2020 and combined with the calculation method above, the calculation of energy consumption, human respiration, and other carbon emissions in Jiangxi Province was carried out. The results found that carbon emissions in Jiangxi Province showed an increasing trend during the study period, which increased from 120.97 million tons in 2010 to 186.99 million tons in 2020, with an average annual growth of 6.00 million tons, which is an increase of 54.57%. Carbon emissions in Jiangxi Province peaked in 2020, with carbon emissions from energy consumption at 183.42 million tons and carbon emissions from human respiration at 3.57 million tons. As the first inland open-economy experimental zone in the central region, Jiangxi Province has been accelerating the process of urbanization and industrialization since 2011, resulting in the land for construction increasing year by year, from 341,652.5 hm2 in 2010 to 542,287 hm2 in 2020. As a primary carbon source, construction land carries most of the energy consumption (Li et al., 2019), and a large amount of carbon emissions will be generated during the conversion of construction land. It implies a continuous increase in the total amount of carbon emissions from human activities, especially from energy consumption in economic construction.
The emissions of carbon sources from the prefecture-level cities in Jiangxi Province are shown in Table 2. During the research period, Nanchang city had the highest carbon emissions, and Yingtan city had the lowest carbon emissions, which is consistent with the actual development. Nanchang city is the provincial capital city with a concentrated population and a relatively developed economy. It is both a production center and a consumption center. Due to the impact of industrialization and urbanization development, energy consumption demands exuberant carbon emissions, and its carbon emissions accounted for 16.14%. At the same time, the economic development of Nanchang city has attracted more population, and with the increasing population, the carbon emissions from human respiration have continued to grow. Yingtan city is located in the fifth echelon of economic growth in Jiangxi Province, with the smallest built-up area, a relatively weak industrial base, and low energy consumption. In 2020, the total energy consumption was 2.73 million tons, accounting for 2.78% of the total energy consumption of the province, with relatively little carbon emissions. Ganzhou city had the most significant increment of carbon emissions during the study period, which was 5.53 million tons in 2010 and increased rapidly to 21.09 million tons in 2020, with an annual increment of 1.41 million tons, which is an increase of 280%. Ganzhou city has a small industrial volume and a thin foundation. In 2010, the total energy consumption accounted for 4.1% of the province, and the carbon emissions were relatively low, so the carbon emissions in 2010 were at a low value in the section. Since 2010, Ganzhou has implemented a plan to attack the industry, and the scale of the secondary sector has expanded. The total industrial growth rate has doubled in 10 years, with an average annual growth rate of 8.9%, maintaining a high growth range, and the energy demand has increased dramatically. In 2020, Ganzhou’s energy consumption accounted for 11.1% of the province’s total consumption, and the carbon emissions from economic activities have increased rapidly. With the continuous improvement of urban functions and infrastructure, the population of Ganzhou increases year by year, resulting in the growth of carbon emissions generated by human respiration. From 2010 to 2020, the cities (districts) of Jiangxi Province’s 11 prefecture-level cities (communities) with a decrease in total carbon emissions are Nanchang city, Pingxiang city, and Yingtan city, which is closely related to the adjustment and optimization of the regional industrial structure layout, the improvement of energy utilization efficiency, and the constraints of government policies and institutions.
TABLE 2 | Carbon emissions of all prefecture-level cities in Jiangxi Province from 2010 to 2020 (unit: million tons).
[image: A table showing annual data from 2010 to 2020 for various cities. Each row represents a city, including Nanchang, Fuzhou, Xinyu, Jian, Jingdezhen, Pingxiang, Shangrao, Ganzhou, Yichun, Yingtan, and Jiujiang. Each column shows the data for a specific year. The values vary across cities and years.]Combined with the current situation of carbon emissions in Jiangxi Province from 2010 to 2020, carbon emissions were divided into four types: (1) less than 50% of the average carbon emissions in 11 prefecture-level cities; (2) 50%∼100% of the average carbon emissions in 11 prefecture-level cities; (3) 100∼150% of the total carbon emissions of the 11 prefecture-level cities; (4) higher than 150% of the average carbon emissions in the 11 prefecture-level cities. The research used ArcGIS software to visualize the spatial distribution of carbon emissions in 2010, 2015, and 2020; the results are shown in Figure 1. In terms of the spatial distribution characteristics, the spatial distribution pattern of carbon emissions in the prefecture-level cities of Jiangxi Province evolved from “high in the west and low in the southeast” to “high in the north and south and low in the middle” during the study period. In 2020, Nanchang, Jiujiang, and Yichun were prefecture-level cities with heavy carbon emissions, respectively. Large industrial cities in Jiangxi Province, Jiujiang, and Yichun have sizeable total energy consumption. With the increase in energy-intensive enterprises in the past year, energy consumption increases yearly, and the total carbon emissions are at a high value.
[image: Three maps from 2010, 2015, and 2020 show carbon emissions in regions of a province. Areas are color-coded: light yellow for emissions under 747, progressing to dark red for emissions over 2241.6. Emission levels generally increase over time across the maps.]FIGURE 1 | Spatial distribution of carbon emissions in all prefecture-level cities in Jiangxi Province from 2010 to 2020.
Carbon emissions are an absolute indicator, which is more valuable for horizontal comparison when combined with GDP (Garrone and Grilli, 2010), population, and other indicators. Carbon emission per unit of GDP is a relative indicator to measure carbon emissions generated by economic development. The carbon emissions per unit of GDP in Jiangxi Province have been decreasing during the study period, from 1.28t/×104 yuan in 2010 to 0.8t/×104 yuan in 2020, indicating that it was gradually weakening with the progress of technology. The spatial differences in carbon emissions per unit GDP of prefecture-level cities in Jiangxi Province were noticeable, showing a spatial distribution pattern of “high in the west and low in the east” and decreasing trend each year. Figure 2 shows that Pingxiang city and Xinyu city are the only prefecture-level cities with high carbon emissions per unit GDP in 2020. It indicates that these two prefecture-level cities were inefficient in energy use. Carbon emissions per unit of GDP in Ganzhou city increased during 2010–2015 and remained constant during 2015–2020. Some possible explanations are as follows: since 2010, Ganzhou has implemented the “3-year industrial attack plan,” which has resulted in rapid industrial development and soaring economic aggregate. However, in the development process, the adjustment and optimization of the industrial structure have been ignored, resulting in the growth rate of carbon emissions exceeding the GDP growth rate, increasing carbon emissions per unit of GDP. During the study period, the carbon emission per unit of GDP decreased the fastest in Nanchang, from 1.47t/×104 yuan in 2010 to 0.57t/×104 yuan in 2020, which is a decrease of 61.06%. It can be seen that Nanchang, one of the first batches of low-carbon pilot cities in China, can actively adjust the energy and industrial structure and improve the efficiency of energy utilization in economic development. Some achievements have been made in promoting industrial transformation, upgrading, and developing a low-carbon economy.
[image: Maps of Jiangxi Province show carbon emissions per unit of GDP for 2010, 2015, and 2020. Colors range from light yellow (lowest emissions, less than 0.6) to dark red (highest emissions, 1.8 to 3.5). Emissions decrease over time.]FIGURE 2 | Spatial distribution of carbon emissions per unit of GDP in Jiangxi Province from 2010 to 2020.
4.2 Carbon absorption status in Jiangxi Province
The results of the study show that the carbon absorption capacity of Jiangxi Province has weakened during the study period, decreasing from 60.56 million tons in 2010 to 59.69 million tons in 2020, with an average annual decrease of 0.08 million tons. Affected by economic growth, construction land expanded, and some carbon sink land was eroded during the study period. For example, cultivated and forest lands were developed into construction land, decreasing 91,118.6 hm2 and 150,045.6 hm2 of cultivated land and forest lands, respectively, leading to the weakening of carbon sink absorption capacity. During the study period, the carbon absorption capacity of forest land in Jiangxi Province was the strongest. The carbon absorption capacity of forest land was 8.92 million tons in 2020, accounting for more than 95% of the total carbon absorption, and carbon sequestration in cultivated land was 5.73 million tons. The carbon absorption capacity of grassland was weaker than that of forest land, and the carbon absorption capacity was only 0.02 million tons, accounting for 0.03%, which was almost negligible.
The carbon sinks absorbed by prefecture-level cities in Jiangxi Province are shown in Table 3. According to the calculation of carbon sink uptake for five types of land use in Jiangxi Province, it can be seen that forest land is the primary source of carbon sinks, mainly due to the rich forest resources in Jiangxi Province, with a forest coverage rate of 63.1%. The age and type of forests exhibit a strong association with carbon sequestration in forest land (Li J. et al., 2023). Arbor and middle-aged forests make significant contributions to the carbon sequestration capacity of Jiangxi’s forest land. In 2020, the area of arbor forests in Jiangxi Province amounted to 822.43 hm2, and its carbon uptake was 47.75 million tons, accounting for 81.03% of the carbon uptake in the forest land. The area of middle-aged forests is 375.35 hm2, accounting for 45.90% of arbor forests. Additionally, there are differences in carbon absorption between plantation and natural forests. Forest resources are dominated by natural forests in Jiangxi Province. In 2020, the area of natural forests accounted for 59.10% of the arbor forests, while the share of the stock reached 62.2%, with a strong carbon absorption capacity. The carbon sinks of cultivated land, grassland, water areas, and unused land are relatively small and weak.
TABLE 3 | Carbon absorption in Jiangxi Province in 2010, 2015, and 2020 (unit: million tons).
[image: Table showing population data for various cities in 2010, 2015, and 2020. For example, Nanchang shows populations of 0.78, 0.77, and 0.76 million for the respective years. Other cities include Fuzhou, Xinyu, Ji an, Jingdezhen, Pingxiang, Shangrao, Ganzhou, Yichun, Yingtan, and Jiujiang. The numbers indicate a general trend of slight decline over the years.]Tillage practices affect the carbon sequestration capacity of cultivated land. Fallowing helps store soil organic carbon; older fallow fields accumulate more leaf litter and other organic debris from above- and below-ground biomass, making them produce more carbon sinks (Arunrat et al., 2023). On the other hand, crop rotation leads to an average loss of 40% of soil organic carbon over 5 years while increasing atmospheric carbon dioxide levels, which is not conducive to enhancing the carbon sequestration capacity of cultivated land. The carbon absorption capacity of Ganzhou city and Ji’an city was intense. In 2020, the absorption distribution rate of carbon sinks in Ganzhou city and Ji’an city accounted for 28.08% and 15.49%, respectively, which are closely related to the two prefectural-level cities’ rich forest and cultivated land resources. The carbon absorption capacity of Nanchang city is the weakest, and the carbon absorption capacity will only account for 1.27% of the whole province in 2020. The possible reason for this is the rapid urbanization and industrialization in Nanchang, with the construction area expanding and compressing the land for carbon sinks, resulting in the lowest carbon uptake in the province.
4.3 Carbon budget, carbon emission economic contribution coefficient, and carbon absorption ecological support coefficient of Jiangxi Province
4.3.1 Carbon budget of Jiangxi Province
According to Table 4, the carbon budget of land use types in Jiangxi Province has the following characteristics: first, the total carbon budget does not match with the carbon emissions, the carbon absorption capacity is fragile, the complete carbon absorption is much lower than the carbon emissions, and the whole province is a net carbon source. Second, the growth rate of carbon emissions is much faster than that of carbon absorption. From 2010 to 2020, the carbon emissions of the whole province proliferated, while the carbon absorption decreased, with the increased rate of carbon emissions exceeding 50%, while carbon absorption showed a downward trend. Third, energy consumption is the primary carbon source, and forest land is the main carbon sink. Over the years, carbon emissions from energy activities accounted for more than 80% of the total carbon emissions, and carbon absorption from forest land accounted for more than 90% of the whole carbon sink. Jiangxi Province should concentrate on controlling carbon sources, improving energy use efficiency, encouraging carbon reduction and emission reduction actions, and increasing the green area within the region to enhance carbon absorption (carbon sink) capacity. Environmental quality should be paid attention to while developing ways to reduce carbon emissions of land use types in Jiangxi Province.
TABLE 4 | Carbon budget in Jiangxi Province from 2010 to 2020 (unit: million tons).
[image: Table showing carbon emissions and absorption from 2010 to 2020. Emissions include energy consumption, human breathing, and their summation. Absorption is from cultivated land, forest land, grassland, and water areas. Carbon budget increases from 60.40 in 2010 to 127.30 in 2020.]On analyzing the carbon budget of 11 prefecture-level cities in Jiangxi Province from 2010 to 2020 (Table 5), the carbon budget of Nanchang and Pingxiang showed a downward trend, while the carbon budget of other prefecture-level towns showed an upward trend. In 2020, Nanchang, Jiujiang, and Yichun ranked in the top three regions in terms of the total carbon budget, and the carbon budget of these three prefecture-level cities remained at the top. It is worth noting that the carbon budget of Fuzhou city, Ganzhou city, and Shangrao city was negative in 2010, indicating that carbon absorption was more significant than carbon emissions; the carbon budget of Ganzhou city and Ji’an city was negative in 2015, meaning that Ganzhou city and Ji’an city functioned as carbon sinks in 2015. In 2020, the carbon budget of the 11 prefecture-level cities was positive.
TABLE 5 | Carbon budget of 11 prefecture-level cities in Jiangxi Province from 2010 to 2020 (Unit: million tons).
[image: A table displaying economic data for various Chinese cities over three years: 2010, 2015, and 2020. Cities listed are Nanchang, Fuzhou, Xinyu, Ji'an, Jingdezhen, Pingxiang, Shangrao, Ganzhou, Yichun, Yingtan, and Jiujiang. Each city's data is represented by numerical values for each year, indicating economic metrics.]4.3.2 Spatial distribution characteristics of the economic contribution coefficient of carbon emissions
During the study period, the carbon emission economic contribution coefficient (ECC) of prefecture-level cities in Jiangxi Province mainly ranged from 0.6 to 1.8, indicating that the financial contribution rate and carbon emission contribution rate of prefecture-level towns were in a relatively balanced state, with relatively little regional differences and a downward trend over time. As shown in Figure 3, Ganzhou city and Shangrao city had a carbon emission economic contribution coefficient greater than 1.8 in 2010. In 2015 and 2020, all cities’ carbon emission economic contribution coefficients were less than 1.8, indicating that the economic efficiency of carbon emission had declined. In 2020, the financial contribution coefficients of carbon emissions in each prefecture-level city were within the range of 0.6–1.8, which has a relative change compared with 2010, fully indicating that the regional differences in the economic efficiency of carbon emissions are decreasing. The spatial distribution is generally characterized by the feature of “high in the south and low in the north.” The financial contribution coefficient of carbon emission is relatively high in the southern region and relatively low in the northern part.
[image: Three side-by-side maps of Jiangxi Province, China, showing ecological carrying capacity evolution in 2010, 2015, and 2020. Color-coded regions depict changes: yellow for less than 0.6, orange for 0.6 to 1.2, dark orange for 1.2 to 1.8, and brown for greater than 1.8. The maps show an increased ecological carrying capacity over time.]FIGURE 3 | Spatial distribution of the economic contribution coefficient of carbon emission in Jiangxi Province from 2010 to 2020.
4.3.3 Spatial distribution characteristics of the ecological support coefficient of carbon absorption
The carbon absorption ecological support coefficient (ESC) of Jiangxi Province showed noticeable regional differences, showing a spatial distribution feature of “high in the south and low in the north.” During the study period, the regional differences decreased but remained stable, and the carbon absorption ecological support coefficient of all prefecture-level cities remained stable from 2015 to 2020. As can be seen from Figure 4, the carbon absorption ecological support coefficient of prefecture-level cities in the western and northern regions is less than one, which is generally lower than that in the southern and eastern areas. The carbon absorption ecological support coefficient of Ji’an city, Fuzhou city, and Ganzhou city was more than 1.8 from 2010 to 2020. The carbon absorption ecological support coefficient of Ganzhou city exceeded five in 2010, indicating that cities with high forest coverage rates have higher carbon absorption capacity, which positively affects the absorption of carbon emissions. From 2010 to 2020, the carbon absorption ecological support coefficient values of Nanchang, Xinyu, and Pingxiang were all less than 0.6, indicating that the carbon emission ratio of these cities significantly exceeded the carbon absorption ratio, which harmed the carbon emission absorption. Therefore, attention should be paid to it, and measures should be taken to improve the carbon sink capacity and alleviate the ecological pressure.
[image: Three maps show the economic spatial change (ESC) of a region in 2010, 2015, and 2020. Areas are color-coded: yellow for less than 0.6, light orange for 0.6 to 1.2, orange for 1.2 to 1.8, and dark brown for greater than 1.8. The maps depict an increasing trend in ESC over the years, with more areas turning dark brown by 2020. A legend and a compass rose are included for reference.]FIGURE 4 | Spatial distribution of the ecological support coefficient of carbon absorption in Jiangxi Province from 2010 to 2020.
Furthermore, taking Shangrao city as an example, the equilibrium relationship between regional carbon emission contribution and economic growth is analyzed. The economic contribution coefficients of carbon emission in Shangrao city during the study period exceeded 1.2, indicating that the economic efficiency of carbon emission and the efficiency of energy use in the region were relatively high. Since 2010, Nanchang City in Jiangxi Province has been listed as one of the first national low-carbon pilot cities, and since then, Ganzhou City and Jingdezhen City, Ji’an City and Fuzhou City have been listed as the second and third national low-carbon pilot cities. At the same time, steadily advancing the work of energy conservation and reduction of energy consumption and the growth of the source consumption of the enterprises of high-energy-consuming industries has been effectively contained. In 2020, the gross regional product will be 262.43 billion yuan, while the energy consumption of 10,000 yuan GDP will be 0.346 tons of standard coal, which is a decrease of 74.5% compared with that in 2010. Since 2015, the reduction rate of energy consumption per unit of GDP in Shangrao city has been positive, indicating that the regional economic growth is steadily reducing energy dependence and gradually realizing the synergy between the contribution of carbon emissions and economic development.
4.4 Functional zoning and the carbon compensation value of Jiangxi Province
4.4.1 Functional zoning of Jiangxi Province
Based on the status quo of districted cities in Jiangxi Province, functional zoning of prefecture-level cities is carried out from the perspective of carbon budget by referring to the ideas of Zhao et al. (Table 6), which can be divided into four categories, namely, carbon sink functional areas, low-carbon optimization areas, total carbon control areas, and carbon intensity control areas, with carbon reduction plans for different functional areas. Applicable zoning focuses on putting forward the future development direction from the perspective of low-carbon, but there are still significant differences among prefecture-level cities. The functional positioning of specific regions needs careful consideration of various factors. Applicable zoning only refers to regional carbon compensation and coordinated development. Yingtan and Jingdezhen are low-carbon optimization areas. The total carbon emissions and carbon emissions per unit of GDP of the two prefecture-level cities are low. Although the carbon sink level is average, the overall carbon emission pressure is relatively small. Ganzhou, Ji’an, and Fuzhou are carbon sink functional areas. The forest land area of these cities is relatively large. The carbon sink function is vital, the effect of carbon source control and environmental protection is good, the ecological pressure is relatively small, and it positively impacts the consumption of carbon emissions in Jiangxi Province. Nanchang has a moderately developed economic aggregate, high energy consumption and carbon emissions, and low ecological support capacity. It is the primary carbon source in Jiangxi Province and a total carbon control area. Jiujiang, Yichun, Xinyu, Pingxiang, and Shangrao are carbon intensity control areas. These cities have a significant proportion of industry, high energy consumption and low utilization rate, and high carbon emission intensity but an average economic contribution rate, which harms the carbon emissions absorption of Jiangxi Province.
TABLE 6 | Basis and characteristics of functional zoning of Jiangxi Province in 2020.
[image: Chart showing functional zoning, division basis, regional characteristics, and cities. Carbon sink functional areas have high carbon absorption in Ganzhou, Ji’an, Fuzhou. Low carbon optimization areas have low expenditure in Yingtan, Jingdezhen. Total carbon control areas have high emissions in Nanchang. Carbon intensity control areas have high GDP emissions in Jiujiang, Yichun, Xinyu, Pingxiang, Shangrao.]4.4.2 Calculation and analysis of the carbon compensation value in Jiangxi Province
The carbon compensation value of 11 prefecture-level cities in Jiangxi Province in 2020 is shown in Table 7. When the compensation amount is negative, carbon compensation funds are available; when the compensation amount is regular, compensation funds must be paid. The calculation shows that the carbon compensation value is similar to the function partition. The carbon sink function area and low carbon optimization area are mostly replenishment areas. In contrast, the carbon intensity control, total, and carbon intensity control areas are mostly payment areas. Among them, Jiujiang pays the highest carbon compensation funds, followed by Yichun, which produces 114.31 million yuan and 54.59 million yuan, respectively. These two prefecture-level cities have developed industries, large total energy consumption, significant carbon emissions, large carbon emissions per unit of GDP, and small ecological carrying capacity.
TABLE 7 | Carbon compensation value of the prefecture-level cities in Jiangxi Province in 2020 (unit: million yuan).
[image: Table displaying amounts corresponding to various cities: Nanchang has 16.20, Fuzhou minus 26.06, Xinyu 39.51, Ji'an minus 44.76, Jingdezhen minus 5.11, Pingxiang 13.13, Shangrao 20.80, Ganzhou 43.22, Yichun 54.59, Yingtan minus 14.01, Jiujiang 114.31.]In contrast, Ji’an, Fuzhou, Yingtan, and Jingdezhen need to receive corresponding carbon compensation funds. These prefectural cities had a late start of industrial development and have small energy consumption, relatively small carbon emissions from human respiration and energy consumption, and a relatively small carbon budget. What needs illustration is that although some prefecture-level cities have a sizeable total carbon emission, they have a high economic contribution. Therefore, after the revision, the allowable carbon source quota will be increased, and the carbon compensation amount to be paid will be reduced. Conversely, regions with lower carbon emissions but a low degree of economic contribution receive a correspondingly lower amount of carbon compensation. This correction method considers the region’s degree of financial assistance, so the final compensation scheme obtained considers equitable development within each prefecture.
According to the difference in the carbon compensation value among prefecture-level cities in Jiangxi Province, these cities can be roughly divided into three categories: high-compensation areas, low-compensation areas, and compensation areas. High-compensation areas include Jiujiang, Yichun, Ganzhou, and Xinyu; common compensation areas include Shangrao, Nanchang, and Pingxiang; the reimbursed areas include Ji’an, Fuzhou, Yingtan, and Jingdezhen. The relationship between carbon revenue and expenditure and the carbon compensation value of each functional area shows that the larger the carbon revenue and spending, the higher the amount of carbon compensation paid, and the smaller the carbon revenue and expenditure, the more carbon compensation amount is obtained. From the economic development perspective, the ecological bearing and carbon compensation value of prefecture-level cities, economic development, and environmental applicability must be more balanced. To achieve regional coordinated development, efforts should be made to narrow the financial gap among prefecture-level cities, achieve fair outcomes within the region, and promote regional coordinated and low-carbon development from the low-carbon level based on carbon compensation.
5 DISCUSSION
Based on the land-use changes in Jiangxi Province, this study examined the spatial distribution characteristics of the carbon budget. This analysis helps identify the regional low-carbon economic development characteristics at the city level, providing a new perspective for optimizing the regional land-use structure and fully exploiting the carbon sink potential. Additionally, the study offers valuable insights for developing differentiated carbon compensation policies and promoting regional low-carbon development.
First, in terms of carbon balance, this study found that regional carbon balance has obvious spatial differentiation characteristics, which is consistent with the results of Li et al. (2019). The primary carbon source in Jiangxi Province is energy consumption, while the main carbon sink is the forest land carbon sink. The reasons why energy consumption is the primary carbon source are further analyzed. Since 2010, Jiangxi Province has experienced rapid economic development and further expansion of construction land, leading to significant energy consumption (Li Q. et al., 2023) and a rapid increase in carbon emissions. Additionally, human production and living activities, such as industrial activities, transportation activities, and residential household activities, consume large amounts of energy and generate large amounts of carbon emissions. The industrial sector is the primary energy-consuming sector. During the study period, Jiangxi province was in a period of accelerated industrialization, resulting in a rigid growth in energy consumption demand. The energy consumption structure is dominated by fossil fuels, mainly coal and oil, which have high carbon emissions. In 2020, the energy consumption of industries above the scale in Jiangxi province was 58.17 million tons of standard coal, with a yearly increase of 2.9%. The residential living sector is the second largest energy-consuming sector. The United Nations Environment Program’s Emissions Gap Report 2020 mentions that approximately 2/3 of global emissions are related to household activities. Carbon emissions from residential energy consumption are significantly influenced by household structure, lifestyle, and residential location (Rong et al., 2020). In addition, transportation is a primary energy-consuming industry (Tian et al., 2023). According to the annual statistics of the International Energy Agency (IEA) in 2019, carbon dioxide emissions from the transportation industry account for one-fifth of the global carbon emissions. These emissions primarily come from carbon dioxide emissions generated by energy consumption of various types of vehicles during transportation.
Second, in terms of carbon compensation, this study found that areas with high economic development have high carbon emissions, while areas with better ecosystems mainly have high carbon sinks, consistent with Long et al. (2021) and Wu et al. (2023). Based on these insights and existing studies (Xia and Yang, 2022), the carbon compensation value is divided according to the regional carbon expenditure level and economic contribution. The carbon sink function areas and low carbon optimization areas are primarily covered areas, while the total carbon control and intensity control areas are primarily payment areas. An important correlation exists between different degrees of carbon balance zoning and regional economic development (Li J. et al., 2023). The economic development level of various regions in Jiangxi Province has significant differences. Relevant ecological restriction policies should be formulated according to the development status of sub-regions of different values when promoting regional carbon emission reduction. Changing the way of energy utilization and improving energy efficiency can effectively reduce carbon emissions. This is crucial for achieving regional carbon balance (Ren et al., 2024) and promoting the “dual-carbon” goal. Additionally, Jiangxi Province has the highest carbon sequestration in forested areas. Increasing the area through afforestation and conservation measures can improve the ecological environment and enhance the carbon sink function of forest ecosystems, which is vital for mitigating climate change. Therefore, it is essential to pay more attention to the varying carbon absorption capacities of different forest vegetation types and formulate more scientific and reasonable carbon compensation policies.
Finally, there are some limitations to our study: (1) in terms of the selection of research scales, most of the existing studies have focused on large-scale areas such as countries, economic zones, and functional zones, often ignoring the development differences among various regions (Jing et al., 2021; Zhang et al., 2014). Some scholars have carried out research on carbon expenditure from the perspective of counties (Zhao et al., 2016). This study examined the partition of functional zoning and carbon compensation value in the city area. Future research should be deepened, taking the county as the research unit and combining the main functional areas to study the carbon compensation mechanism of different functional areas to improve the guiding role of reality. (2) The accounting of carbon income and expenditure and carbon compensation. In this study, when measuring carbon emissions and absorption, the coefficient refers to the study of Li et al. (2019). The data results are consistent with the results of the existing studies, but due to the differences in energy intensity and vegetation cover, the final results may have some deviations.
6 CONCLUSION AND SUGGESTIONS
6.1 Conclusion
By analyzing the carbon budget of Jiangxi Province from 2010 to 2020, this study draws the following conclusions: (1) during the study period, carbon emissions from human activities in Jiangxi Province showed an increasing trend, rising from 120.97 million tons in 2010 to 186.99 million tons in 2020, with an average annual growth rate of 6.60 million tons, which is up to 54.57%. Jiangxi Province is mainly a net carbon source, with carbon emissions from human activities far exceeding the carbon sink uptake of the ecosystem. Energy consumption is the primary carbon source. (2) During the study period, forest land in Jiangxi Province was the main carbon sink. The carbon sink absorption capacity declined from 60.56 million tons in 2010 to 59.69 million tons in 2020, with an average annual decline of 0.08 million tons. The amount of carbon absorbed by the forest land declined with the decrease in area, and the carbon absorption capacity of other land uses was low. (3) During the study period, regional differences in the carbon emission economic contribution coefficient (ECC) of prefecture-level cities in Jiangxi Province were relatively small, while the economic contribution rate and carbon emission contribution rate were relatively balanced. The ecological support coefficient (ESC) of carbon absorption exhibited apparent spatial heterogeneity, showing a distribution pattern of “high in the south and low in the north.” (4) From the perspective of the carbon budget, 11 prefecture-level cities in Jiangxi Province were divided into four categories: carbon sink functional area, low-carbon optimization area, total carbon control area, and carbon intensity control area. The carbon compensation value of each prefecture-level city was calculated. Based on the difference in the carbon offset value among prefecture-level cities, they were categorized into three categories: high-compensation area, low-compensation area, and compensation area. The larger the carbon budget, the higher the carbon compensation amount paid; conversely, the smaller the carbon budget, the more carbon compensation amount can be obtained.
6.2 Suggestions
Combined with the above analysis, the following policy suggestions are put forward: (1) improve energy conservation and emission reduction policies and mechanisms. Accelerate the construction of a clean, low-carbon, safe, and efficient energy system, and improve the efficiency of resource and energy utilization. Jiangxi Province should take advantage of economic development to accelerate the transformation of its economic development; vigorously develop high-tech, tertiary, and modern service industries; and actively promote the green upgrading of industries. At the same time, introducing and applying energy-saving and new energy technologies along with other advanced technologies should improve the energy consumption structure, enhance energy utilization efficiency, and promote green low-carbon transformation actions. Additionally, the proportion of carbon sources and sinks should be coordinated, land should be developed rationally, the land use structure should be optimized, land use should be intensified to improve land use efficiency, and the contradiction between land use and carbon emissions should be coordinated. (2) Forest land has a large potential for carbon emission reduction in the utilization process. Priority should be given to protecting ecological land, such as forest land, strengthening the planning and management of forest land utilization, thereby enhancing the capacity of carbon sinks by improving the effectiveness of land use. Regions in Jiangxi Province should actively implement forest protection and afforestation programs to improve forest coverage, thereby enhancing the capacity of ecosystems to sequester carbon and increase sinks. At the same time, they should focus on establishing an incentive mechanism for carbon sinks, providing corresponding incentives according to the ecological benefits and carbon sinks of the projects. Carbon sink projects should be actively carried out, and mechanisms for realizing the value of ecological carbon sink products should be established through carbon sink trading and other means, synergistically promoting economic development and ecological construction. (3) All urban units in Jiangxi Province should formulate differentiated carbon emission reduction plans, according to the actual situation of local economic development. In the future, the low-carbon optimization zone should pay attention to its advantages in developing the economy and expanding urban construction while coordinating environmental protection and improving ecological capacity. The total carbon control area should strengthen urban functional services, build a modern industrial system, develop low-carbon and high-tech industries, encourage enterprises to implement carbon capture and fixation technologies, and enhance the economic benefits of carbon emissions. Carbon intensity control areas should control carbon emission intensity, restrict the development of high-carbon industries, improve energy efficiency, and promote the low-carbon transformation of industrial structures. In the future, carbon sink functional areas should strive to improve environmental quality, focus on the carbon sink function of the ecosystem, stabilize the source of carbon sink, and alleviate the pressure of carbon emission in the province. (4) A government-led regional horizontal differentiated carbon compensation mechanism should be established. Based on regional carbon budget accounting, compensation funds can be paid from carbon intensity control areas and total carbon control areas (economically or industrially developed sites) to carbon sink areas and low-carbon optimization areas (less developed areas). This can be done to purchase carbon sink emission indicators from less developed areas to meet their own development needs. Horizontal carbon compensation between prefecture-level cities can narrow the regional development gap and achieve intra-regional development equity. Jointly, these efforts contribute to realizing the “carbon peak and carbon neutrality” goal.
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This study investigates the key factors influencing CO2 emissions in the state of Haryana from 2005 to 2023, focusing on economic and demographic determinants. Understanding the relationship between economic growth, population dynamics, and environmental impact is crucial for formulating effective sustainable development policies. The study employs a comprehensive dataset where CO2 emissions serve as the dependent variable, while Net State Domestic Product (NSDP) at constant prices, the square of NSDP, population growth, and life expectancy act as independent variables. To ensure robust analysis, stationarity tests are conducted to assess the data properties, followed by Dynamic Ordinary Least Squares (DOLS) and Canonical Cointegration Regression to explore long-run relationships among these variables. Empirical findings indicate a positive and statistically significant relationship between CO2 emissions, NSDP, and population growth, suggesting that economic expansion and population increase drive higher emissions. Conversely, life expectancy exhibits a negative association with CO2 emissions, implying that improvements in public health and longevity may contribute to reduced emissions. The results highlight the environmental challenges posed by economic and demographic growth, emphasizing the need for balanced policy measures that align economic progress with sustainability goals. The unexpected negative relationship between life expectancy and emissions underscores the complex interplay between socioeconomic development and environmental sustainability, warranting further investigation.
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1 INTRODUCTION
The imminent threat of global warming has garnered widespread attention on both international and national stages, underscoring its urgency. As the Earth’s climate continues to evolve, the consequences of rising temperatures (Ghoshal and Bhattacharya, 2008; CMIE, 2011), shifting weather patterns, and environmental disruptions are becoming increasingly evident. At the heart of this global challenge lies the critical concern of greenhouse gas emissions, with carbon dioxide (CO2) being a pivotal contributor (Lamb et al., 2021). Reducing emissions can help address climate change, expand access to clean energy, and promote socio-economic development in nations (Mehmood et al., 2023). India, as one of the world’s most populous and rapidly developing nations, plays a substantial role in the global climate landscape (Kumar, 2020). The country’s economic growth, industrialization, and urbanization have led to a surge in energy consumption (Wang et al., 2023), often driven by the burning of fossil fuels. India’s energy demand is rising rapidly, with significant implications for the global energy market (Radulescu et al., 2024; Liu et al., 2023). The Government of India has made substantial progress in expanding access to electricity and clean cooking solutions while implementing various energy market reforms and integrating a high share of renewable energy sources into its grid. With a population of 1.45 billion and a rapidly growing economy, India’s energy needs are surging as the nation urbanizes and its manufacturing sector expands (CMIE, 2011). This increased demand is met through a diverse mix of energy sources, with coal expected to remain the dominant energy supplier. Furthermore, India continues to strengthen its institutional framework to attract the necessary investments to meet its growing energy needs. The energy sector, largely reliant on fossil fuels, is a major contributor to greenhouse gas emissions and climate change (Liu et al., 2023). Under the Paris Climate Agreement, India has pledged to decrease the emissions intensity of its gross domestic product (GDP) by 33%–35% from 2005 to 2030, a significant increase from its previous commitment of a 20%–25% reduction from 2005 to 2020 (NAPCC, 2008). Consequently, India’s carbon footprint has expanded significantly, making it one of the top contributors to global CO2 emissions. India’s global share of CO2 emissions reached 7.07% in 2022, marking an increase of 182% since 2000 (OWID, 2024). Haryana, one of the northernmost states in India, is strategically located adjacent to the national capital, Delhi, and is bordered by Uttar Pradesh to the east, Punjab to the west, Himachal Pradesh to the north, and Rajasthan to the south. The state encircles New Delhi from three sides and is one of India’s major automobile hubs, contributing to two-thirds of the country’s passenger car production, 50% of its tractors, and 60% of its motorcycles. In addition to its strength in the automotive sector, Haryana has also emerged as a prominent base for the knowledge industry, particularly in IT and biotechnology. Haryana’s development trajectory, marked by industrial growth, agricultural activities, and urban expansion, offers a unique case study for understanding localized drivers of CO2 emissions. Throughout the reference period, Haryana’s per capita emissions consistently exceeded the national average (OWID, 2024). The state’s emissions witnessed a notable rise, climbing from 39.57 million metric tons of CO2 in 2005 to 75.72 million metric tons of CO2 in 2023. The proportion of emissions originating from the energy sector within the broader spectrum of economy-wide emissions increased from approximately 70% in 2005 to around 77% in 2023. Concurrently, the contribution of emissions from the Industrial Processes and Product Use (IPPU) sector escalated from about 2% in 2005 to roughly 8% in 2018. In contrast, the percentage of emissions associated with the agriculture, forestry, and other land-use sector declined from approximately 24% in 2005 to about 12% in 2023. Haryana’s CO2 emission levels are significantly higher compared to many other Indian states due to its industrial belt, high vehicular density, and extensive agricultural burning practices. Key metrics often show that Haryana’s air quality index frequently exceeds safe limits, with CO2 and particulate matter (PM2.5, PM10) levels consistently above the national averages. As Haryana continues to evolve, so do its challenges and responsibilities in the realm of environmental sustainability. Furthermore, emissions from the waste sector decreased from around 4% in 2005 to roughly 3% in 2023 (GHGPI 2023). Previous studies have extensively explored the relationship between GDP and environmental degradation in India and other countries; however, there is a noticeable gap in research specifically focusing on Haryana, particularly with a quadratic approach to GDP. This study introduces novel dimensions by incorporating indicators such as CO2 emissions, economic growth in terms of GDP per capita, and the square of GDP to test the Environmental Kuznets Curve (EKC) hypothesis. Additionally, factors like population growth and life expectancy are included. This approach provides a more nuanced understanding of the complex relationship between economic growth and environmental degradation, enriching the existing literature by examining less conventional variables.
The remainder of the paper is structured as follows: Section 2 delves into the literature review, while Section 3 expounds on the methodological considerations for estimating CO2 emissions in Haryana, including an overview of the data sources utilized. In Section 4, we present the state-level results, and the concluding remarks can be found in Section 5.
2 LITERATURE REVIEW
Numerous studies have identified a dynamic relationship between economic growth variables and environmental degradation. For example, Danish et al. (2021) analyzed the Indian economy from 1971 to 2018, focusing on CO2 emissions, nuclear energy, population density, and GDP using the Dynamic Autoregressive Distributed Lag Model (DARDL). They concluded that both nuclear energy and population density contribute to the Environmental Kuznets Curve (EKC). Ohlan (2015) explored the impact of population density, energy consumption, economic growth, and trade openness on CO2 emissions during the period 1970–2013. The study confirmed a long-run relationship between these factors, showing that population density, energy consumption, and economic growth significantly increased CO2 emissions. A similar study conducted by Pandey and Rastogi (2018) for the period 1971 to 2017 found that economic growth led to an increase in CO2 emissions. Kartal et al. (2023) investigated the long-term implications of reduced coal consumption on energy usage, CO2 emissions, and economic growth, focusing specifically on China and India. Utilizing yearly data from 1990 to 2021 and employing an innovative dynamic autoregressive distributed lag model, their findings revealed that coal consumption causally influenced CO2 emissions. Mehmood et al. (2024) examined the relationship between various types of CO2 emissions and economic growth in the United States and China using the bootstrap autoregressive distributed lag approach. Their findings indicated that CO2 emissions from coal exceeded those from oil in both countries. The study also revealed a positive correlation between GDP and CO2 emissions. Akram et al. (2023) conducted a study to analyze the convergence and divergence of CO2 emissions across 16 major Indian states from 2003 to 2019. They found that Haryana continues to follow an upward trajectory in per capita CO2 emissions during the study period. Acheampong (2019) examined the complex interplay between economic growth, energy consumption, and CO2 emissions in sub-Saharan Africa and globally over the past decade. The study uncovered that economic expansion stimulated energy consumption in sub-Saharan Africa while simultaneously reducing carbon emissions globally and in the Caribbean Latin American region. Interestingly, carbon emissions positively correlated with economic growth, while energy consumption had an adverse impact on GDP in most regions. An Environmental Kuznets Curve (EKC) phenomenon was observed both globally and within sub-Saharan Africa, highlighting the intricate relationship between economic advancement and environmental considerations over the past decade. Jian et al. (2021) analyzed the influence of non-economic factors on energy consumption and CO2 emissions in China from 1991 to 2019. The study found that education, law and order, and social globalization had a mitigating effect, while population growth positively correlated with energy consumption and CO2 emissions during this period. Yuping et al. (2021) employed advanced econometric methodologies to examine the short- and long-term elasticities of CO2 emissions from various macroeconomic factors. Their findings indicated that renewable energy consumption and globalization contributed to reducing CO2 emissions, whereas non-renewable energy sources had a negative impact. The study also confirmed the EKC hypothesis in Argentina, showing that economic growth initially increased environmental pollution until a certain income threshold was reached, beyond which further growth reduced the environmental impact. Khezri et al. (2022) conducted an in-depth investigation into the impact of renewable energy deployment on short-term emissions reductions across 19 advanced and developing nations, including 17 countries in sub-Saharan Africa. The study revealed that increased economic complexity was associated with higher energy efficiency and reduced CO2 emissions. It also suggested that adopting renewable energy sources could effectively mitigate short-term carbon emissions, particularly in nations with lower economic complexity. Armeanu et al. (2018) explored the relationship between pollution and the economy within EU-28 countries, focusing on the EKC theory. Using data from 1990 to 2014 and a specialized mathematical model, the study provided evidence supporting the EKC theory for specific pollution categories. They found correlations between GDP per capita and greenhouse gas pollution, as well as between energy consumption and greenhouse gas pollution. The analysis indicated that economic growth led to increased greenhouse gas pollution in the short term, and there was a bidirectional relationship between energy usage and greenhouse gas pollution. Liu et al. (2023), Kumar (2019), and Ramadhan et al. (2023) found that urban population growth increased demands for vehicles, buildings, and food, leading to higher greenhouse gas (GHG) emissions. Urbanization triggered changes in housing, household size, and industrial structure, driving up energy demand and CO2 emissions. Cavusoglu and Gimba (2021) found that over the long term, inflation and CO2 emissions negatively affected life expectancy, while GDP per capita, food production, human capital, and health expenditure had a notably positive influence. Das and Debnath (2023) investigated the net impact of CO2 emissions on life expectancy in India. Using the ARDL cointegration technique, the study concluded that there is a long-term and quadratic relationship between life expectancy and CO2 emissions. Wang and Li (2021) investigated 154 countries and observed that population aging, per capita GDP, population density, and life expectancy have non-linear effects on per capita CO2 emissions, whereas population, urbanization, and unemployment have linear effects. Several studies, such as those by Rajan et al. (2020) and Tam et al. (2023), have explored greenhouse gas (GHG) emissions in India using various methodologies, including annual energy statistics and input-output methods, primarily at the national level. However, our review identifies a research gap concerning Haryana, where no studies have examined the relationship between net state domestic product, life expectancy, population growth, and CO2 emissions at the state level. This paper aims to address this gap by analyzing the multifaceted factors influencing CO2 emissions in Haryana from 2005 to 2023.
3 METHODOLOGY
3.1 Theoretical framework
The EKC hypothesis, first proposed by Grossman and Krueger in 1995, posits a link between environmental degradation and economic development. According to this hypothesis, there is an inverted U-shaped relationship between environmental decline and economic progress. Initially, environmental degradation increases with economic growth, but it eventually decreases after reaching a certain income threshold. This concept serves as a key indicator of a country’s stage of economic development. They have described this relationship as follows:
[image: Equation illustrating a regression model: CO2 equals beta sub zero plus beta sub one times NSDP sub t plus beta sub two times NSDP sub t squared plus beta sub three times Z sub t plus epsilon sub t.]
In Equation 1, CO2 represents carbon dioxide emissions, NSDP denotes net state domestic product, NSDPS indicates the square of Net State Domestic Product, while Zt represents other factors influencing the dependent variable (life expectancy and population growth) in our study (Table 1). Additionally, [image: It seems like there is no image provided. Please upload the image or provide a URL for me to generate the alt text.] signifies the error term. To structure our econometric analysis, the econometric methods used in this study draw inspiration from prior research (Charfeddine and Mrabet, 2017; Merlin and Chen, 2021; Moridian et al., 2024).
[image: Equation for CO2 emission: CO2 equals beta sub zero plus beta sub one times NSDP sub p plus beta sub two times NSDP sub s plus beta sub three times PG plus beta sub four times LE plus error term epsilon sub t.]
TABLE 1 | Description of the variables.
[image: Table displaying four variables: CO2 emissions, NSDP, PG, and LE. Each variable is paired with its measure and source. CO2 emissions are measured in metric tons per capita, sourced from GHG Platform India and OWID. NSDP is in log per capita, sourced from MOSPI. PG is population growth, sourced from the Statistical Abstract of Haryana (2005–2023). LE is life expectancy, also sourced from the Statistical Abstract of Haryana (2005–2023).]In our subsequent empirical analysis, author elucidates the procedures for addressing heteroscedasticity’s impact by logarithmically transforming variables, following the approach recommended by Wang and Zhang (2020).
[image: Equation showing the regression model: ln(CO2) equals beta_0 plus beta_1 ln(NSDP_t) plus beta_2 ln(NSDDS_t) plus beta_3 PG_t plus beta_4 LE_t plus e_t.]
In the transformed equation, the ln denotes the natural logarithm; the subscripts’t’ (t = 1, …, T) refer to the time dimensions, respectively. The parameters [image: Equation displaying beta subscript zero, ellipsis, beta subscript four.] represent the slope coefficients, while [image: Please upload the image or provide a URL for me to give you the alternate text.] denote the error terms. We draw this data from trusted sources, as mentioned earlier, including the Ministry of Statistics and Programme Implementation (MOSPI), Govt. of India, Statistical abstract of Haryana and GHG Platform India. Ensuring data consistency and comparability, we standardize the NSDP data to a unified base year, typically 2011–12, employing appropriate base shifting techniques. Additionally, we subject the dataset to thorough scrutiny, rigorously examining it for data integrity by addressing potential issues such as missing values and outliers. We analyzed data spanning from 2005 to 2023 for Haryana, focusing on CO2 emissions as the dependent variable. The independent variables considered in the analysis encompassed Net State Domestic Product (NSDP) at constant price, squared NSDP (NSDPS), population growth (PG), and life expectancy (LE).
In our research, we utilize advanced econometric tools such as the Augmented Dickey-Fuller (ADF) test and the Phillips-Perron (PP) test for unit root analysis, Dynamic Ordinary Least Squares (DOLS), and Canonical Cointegration Regression to systematically investigate the multifaceted factors influencing CO2 emissions in Haryana, India. This rigorous methodology is designed to provide a comprehensive analysis of the intricate dynamics at play within the region, aiming to contribute meaningfully to the broader discourse on climate change mitigation. Our findings will offer valuable insights to inform policymakers’ decisions, empower researchers, and benefit stakeholders invested in Haryana’s sustainable development. Our analytical journey begins with the essential Unit Root Test, a fundamental step in time series analysis, employing the Augmented Dickey-Fuller (ADF) test. The primary objective here is to ascertain whether differencing is necessary to render the data stationary, a crucial consideration for subsequent analyses. We then employ Dynamic Ordinary Least Squares (DOLS) and follow Cheung and Lai (1995) for lag criteria, a powerful econometric technique renowned for its effectiveness in estimating cointegrated time series models. DOLS is particularly valuable when analyzing long-term relationships between variables, as it accounts for endogeneity and autocorrelation issues commonly encountered in time series data, ensuring the robustness of our analysis. Additionally, we utilize Canonical Cointegration Regression to further our analysis. This technique considers the cointegrating vectors among variables, capturing the essence of long-term relationships and allowing us to identify the strength and nature of these interactions over time. By examining how CO2 emissions, NSDP, population growth, and other factors interact, we aim to shed light on the complex dynamics influencing environmental and economic outcomes in Haryana.
4 RESULTS
Descriptive statistics for all variables under analysis are presented in Table 2. CO2 has a mean value of 19.41 in the sample, with a maximum value of 19.66 and a minimum value of 18.95. Regarding NSDP, the average value is 17.03, ranging from a minimum of 15.97 to a maximum of 17.96. Similarly, for Population growth, the mean and median values are 1.56 and 1.43, respectively, with a standard deviation of 0.18. For life expectancy; the mean and standard deviation are 68.68 and 1.10, respectively.
TABLE 2 | Descriptive statistics.
[image: Table displaying statistical data: lnCO2, lnNSDP, lnNSDPS, PG, and LE. Categories include mean, median, maximum, minimum, and standard deviation with values listed for each. Notes: lnCO2 is log of CO2 emissions, lnNSDP is log of net state per capita, lnNSDPS is log of Square of net state domestic product, PG is population growth, and LE is life expectancy.]The pairwise correlation matrix is presented in Table 3. The results demonstrate a strong positive correlation between CO2 emissions, NSDP and NSDP. The correlation coefficient between CO2 emissions and life expectancy is 0.68 and a moderate positive correlation between GDP and life expectancy. However, there exists a weak negative correlation between CO2 emission and population growth (PG).
TABLE 3 | Correlation analysis.
[image: Correlation matrix table displaying relationships between variables: lnCO2, lnNDPS, lnNSDP, PG, and LE. lnCO2 is highly correlated with lnNDPS and lnNSDP, both at 0.95. It has a negative correlation with PG at -0.96, and a moderate positive correlation with LE at 0.68. PG has a notable negative correlation with LE at -0.64. The table includes essential metrics for emissions, net state product, population growth, and life expectancy.]The unit root test results in Table 4 evaluate whether the given variables are stationary at their levels or require differencing to become stationary. The table presents findings from both the Augmented Dickey-Fuller (ADF) test and the Phillips-Perron (PP) test Phillips and Perron (1998). The variables lnCO2, lnNDPS, and lnNSDP are non-stationary at their levels but become stationary after first differencing. In contrast, the variables PG and LE are stationary at their levels. Table 5 provides insights into the annual growth rate of CO2 emissions from 2006 to 2023. The second column represents the percentage change in CO2 emissions specifically related to agriculture and allied activities. Within the Agriculture, Forestry, and Other Land Use (AFOLU) sector, emissions originate from three primary sub-sectors: Livestock, Land and Aggregate Sources, and Non-CO2 Emission Sources on Land. The third and fourth columns also detail various sources of CO2 emissions.
TABLE 4 | Results of Unit root test.
[image: Table comparing ADF and P.P tests for variables: lnCO2, lnNSDP, lnNDPS, PG, and LE. It shows I(0) and I(1) t-statistics and P-values for each variable. Note explains variable acronyms.]TABLE 5 | Annual Growth Rate of CO2 emission.
[image: Table showing data from 2006 to 2023 across five categories: Agriculture, Energy, Industrial Progress, Waste, and Total. Values show variations in each category annually, with noticeable fluctuations, especially in Energy and Industrial Progress. The total figures indicate overall trends per year.]The emissions from the Energy sector are categorized into two main components: Fuel Combustion and Fugitive Emissions. Fuel Combustion includes emissions from various sources such as Public Electricity Generation, Transportation, Captive Power Plants, Industrial Processes, Agricultural Activities, Commercial Operations, and Residential Use. Fugitive Emissions, on the other hand, primarily result from fuel production. In the Industrial Processes and Product Use (IPPU) sector, emissions are predominantly driven by the Chemical, Metal, and Mineral Industries, as well as Non-Energy Products from Fuels and Solvent Use. Within the Waste sector, key sources of greenhouse gas (GHG) emissions include Solid Waste Disposal, Domestic Wastewater, and Industrial Wastewater. In the context of Haryana, the Waste sector contributed nearly 3% of the total economy-wide emissions in 2022 (Figure 1).
[image: Line chart showing trends from 2005 to 2025 for agriculture, energy, industrial progress, waste, and total. Agriculture and energy lines fluctuate significantly, while industrial progress and waste remain relatively stable. Total shows moderate changes.]FIGURE 1 | Annual CO2 emission Growth from different Sectors.
The results of the Dynamic Ordinary Least Squares (DOLS) regression analysis, presented in Table 6, By utilizing Equation 3 offer valuable insights into the intricate relationship between various factors and CO2 emissions. The coefficient for NSDP indicates that a one-percent increase in NSDP leads to a significant increase of 2.22 percent in CO2 emissions. This positive coefficient implies that higher values of NSDP are associated with elevated CO2 emissions, and this relationship is highly statistically significant, with a p-value of 0.00. The coefficient for the log of NSDPS is −0.06. This signifies that with each one-unit increase in the log of NSDS, there is a corresponding decrease of 0.06 units in the log of CO2 emissions. This negative coefficient suggests that as a nation’s Net State Domestic Product (NSDP) grows, there is a tendency for CO2 emissions to decrease. This coefficient is also statistically significant, with a p-value of 0.00, implying a robust and reliable relationship between NSDPS and CO2 emissions. This aligns with the Environmental Kuznets Curve (EKC) concept, indicating that environmental quality may initially deteriorate with economic development before ultimately improving. Our findings are consistent with previous research by Grossman and Krueger (1991), Kumar and Radulescu (2024), Aldy (2005), and Hanif (2018). Examining PG (Annual Population Growth), the coefficient of 0.56 suggests that a one-unit increase in annual population growth results in a moderate increase of 0.56 units in the log of CO2 emissions. A larger population naturally leads to heightened energy demands for heating, cooling, transportation, and electricity, primarily met by fossil fuels like coal, oil, and natural gas, all of which emit CO2 when burned. Additionally, accommodating the growing populace triggers rapid industrialization and urbanization, fostering energy-intensive industries, expanding infrastructure, and extensive transportation networks—all contributors to increased CO2 emissions. The denser population in Haryana necessitates more transportation services, including fossil fuel-dependent modes like cars and airplanes, further elevating emissions. Extensive agricultural activities to feed the larger population, particularly livestock farming, generate methane emissions, adding to the state’s carbon footprint. Moreover, heightened consumerism results in increased production and disposal of goods, often with associated carbon footprints. Infrastructure development, waste generation, and deforestation further compound these emissions. While population is just one factor influencing emissions, these dynamics emphasize the need for sustainable practices, such as energy efficiency, renewable energy adoption, and responsible resource management, to mitigate the impact of Haryana’s high population on CO2 emissions and promote environmental sustainability. Lastly, considering LE (Life Expectancy), the coefficient of −0.01 implies that a one-unit increase in life expectancy is linked to a slight decrease of 0.01 units in the log of CO2 emissions. However, it is important to recognize that this coefficient is characterized by a low t-statistic of −0.31 and a high p-value of 0.05, suggesting that the association between life expectancy and CO2 emissions is statistically significant. Our findings support the conclusions of the previous study by Saidmamatov et al. (2024).
TABLE 6 | Results of DOLS.
[image: Table displaying variables with coefficients, standard error, t-statistics, and probability values. Variables: LNNSDP (2.22*, 0.13, 17.71, 0.00), LNNSDPS (−0.06*, 0.00, −14.77, 0.00), PG (0.56, 0.17, 0.24, 0.01), LE (−0.01, 0.02, −0.31, 0.05). Note: Variables include log of CO2 emissions, net state domestic product, population growth, and life expectancy. Asterisks indicate significance at 5% level.]The robust findings obtained through Canonical Cointegration Regression analysis Table 7 reveal compelling and statistically significant associations between the independent variables (lnNDPS, lnNSDP, PG, and LE) and the dependent variable. In particular, economic growth (lnNSDP) and population growth (PG) are positively correlated with the dependent variable, signifying their substantial impact, in line with the previous study by Mohmmed et al. (2019). Conversely, the square of economic growth (lnNSDP) and life expectancy (LE) exhibit negative correlations, indicating their influential roles in explaining variations in the dependent variable within the regression model. These results underscore the importance of these variables in shaping the observed patterns in the dependent variable.
TABLE 7 | Canonical co integration regression.
[image: Table showing regression results for variables lnNDPS, lnNSDPS, PG, and LE. Coefficients are 0.30, -1.26, 21.65, and -1.28, with standard errors of 0.00, 0.12, 0.15, and 0.02 respectively. T-statistics are 80.11, -10.31, 141.81, and -68.59. Probability values are all 0.000. Variables represent CO2 emissions, net state per capita, square of net state domestic product, population growth, and life expectancy. Coefficients are significant at 5% level.]5 CONCLUSION
This study thoroughly examines the factors influencing CO2 emissions in the state of Haryana, India, spanning the period from 2005 to 2023. Notably, it highlights a positive and statistically significant relationship between CO2 emissions and both NSDP and population growth. This finding underscores the challenge of balancing economic growth and population expansion with environmental sustainability in Haryana. Conversely, the study reveals a negative association between CO2 emissions and life expectancy, suggesting that efforts to enhance public health and life expectancy may inadvertently lead to reduced CO2 emissions. The research emphasizes significant findings, including a strong positive correlation between GDP and CO2 emissions, indicating that as income levels rise, pollution levels also increase. However, the study also uncovers complexities within this relationship, with the emergence of inverted U-shaped (EKC) patterns presenting nuanced scenarios. Overall, these findings underscore the complex interplay between environmental factors and socio-economic indicators in pursuing sustainable development goals in Haryana. They call for a nuanced approach to policymaking that harmonizes economic growth, population management, and environmental conservation in the region. In light of these results, policymakers in Haryana are encouraged to consider strategies prioritizing environmental sustainability alongside economic and social development. These strategies may include promoting renewable energy sources, improving urban planning to reduce emissions from transportation, and implementing policies supporting both public health and environmental wellbeing. In essence, this study contributes valuable insights into the intricate relationship between various factors and CO2 emissions in Haryana, providing a foundation for informed and sustainable policy decisions to mitigate the adverse effects of CO2 emissions while fostering holistic development in the region. The study acknowledges one limitation regarding policy suggestions: CO2 is a transboundary pollutant, so assuming that current atmospheric CO2 concentrations solely arise from production and consumption activities within India’s national states may not be suitable.
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effect benefit benefit effect benefit benefit
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Specific scenario number P decline rate (%) Total carbon emission reduction rate (%)
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B2 -328 658
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B6 =251 -5.87
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dogenous account Total net effect Transfer net benet Open loop net bene Closed loop net bene

Coal 459 1.85 1.23 1.49
Petroleum 517 264 119 136
Natural gas 367 135 113 119
Electric power 482 230 12 132
Agriculture 589 121 175 293
Heavy industry | 541 271 [ 12 148
Light industry | 552 | 243 132 174
Transportation; Construction industry 555 268 128 159
Transportation 428 | 174 124 133
Service 7 421 134 130 ' 155
Labour force | 472 | 000 279 193
Capital 034 000 019 015
Resident 295 000 176 118
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Department Influence IC Sensi
Coal 283 094 161 052
Petroleum 361 118 203 069
Natural gas 233 079 104 034
Electric power 329 110 289 099
Agriculture 223 075 198 070
Heavy industry 374 122 1036 345
Light industry 343 112 395 132
Building 3.66 119 104 036
Transportation 272 0.8 183 063
Service 233 080 337 114
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Carbon trade sub Annual average emission Free distribution Penalty prices for Number

policy reduction rate (%) ratio (%) shoddy work
Standard Scenarios 280 80 20pC s
7 Carbon quota 200 80 20pC Al
I 248 [ 80 20pC x
280 | 80 20PC A3
368 | 80 20pC A4
400 80 20PC As
500 80 20pC A6
Carbon emission permits | 280 [ 0 20PC Bl
280 20 20pC B2
280 | 40 20PC B3
280 [ 60 20PC Cm
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280 100 20PC e
Subsidy policy 280 ‘ 80 15PC cl
280 [ 80 20pC c2
280 80 25PC c3
280 80 3.0PC o
280 [ 80 35PC cs
280 80 40PC [e]
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dogenous account Total net effect Transfer net benet Open loop net bene Closed loop net bene

Coal 468 170 129 169
Petroleum 517 262 118 137
Natural gas 368 136 113 119
Electric power 483 228 121 134
Agriculture 588 122 174 292
Heavy industry | 541 272 [ 122 147
Light industry | 550 | 244 131 175
Transportation; Construction industry 553 266 127 1.60
Transportation 427 | 173 123 132
Service 7 420 135 129 7 156
Labour force | 471 | 000 277 194
Capital 035 000 020 014
Resident 294 000 177 117






OPS/images/fenvs-12-1426958/inline_18.gif
int,.;





OPS/images/fenvs-12-1346166/fenvs-12-1346166-t004.jpg
Department Influence s Sen:

Coal 238 096 154 0.62
Petroleum 2.61 1.03 182 074
Natural gas 209 084 105 042
Electric power 298 118 253 101
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Construction industry 314 125 105 042
Transportation 231 092 168 0.67

Service 210 085 288 115
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Scenario 1 Scenario 2

Industrial sector Influence IC Sensitivity Influence IC Sensitivity
Coal 273 092 161 055 272 | oa 155 053
Petroleum 365 o 205 06 365 122 209 071
Natural gas 238 077 108 037 243 082 106 033
Electric 332 112 292 099 333 112 3.07 102
| Agriculture 222 075 203 069 221 075 204 0.6
» Heavy industry | 374 s 1031 i 375 s 1031 s
7 Light industry 346 116 396 1 346 L 3.96 [ im
I Construction industry | 367 I 123 107 036 3.69 | 122 1.07 [ 037
Transportation 275 092 189 063 275 091 187 061
Service 238 079 339 114 237 079 339 112
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Keywords Frequency Centrality Rank Keywords Frequency  Centrality
1 Mangrove 93 036 2 Climate change 9 024
2 Blue Carbon 45 022 2 Greenhouse gas 9 001
3 Carbon neutrality 44 017 2 Organic carbon 8 026
4 Seagrass bed 37 025 4 Pasture 8 000
5 Carbon stocks 2 012 25 Beach 8 000
6 Coastal wetlands 2 040 26 Ecological collection 7 000
7 Coastal zone 18 012 27 Carbon flux & 006
8 Protection and restoration 14 006 28 Ocean carbon sink 6 011
9 Methodology 14 017 29 BeiZao breeding 5 000
10 Human disturbance 13 010 30 Land-sea integration 5 014
1 Shanghai 13 000 31 Carbon accounting 5 014
2 abandoned fish and shrimp ponds 13 000 32 Spartina alterniflora 4 008
13 Geological work 13 0.00 33 Biomass 4 0.11
14 season 13 000 34 Carbon market 4 003
15 Guangxi 13 000 35 Carbon peak 3 000
16 Salt marshes 1 038 36 Natural coastline 3 000
17 Air-sea flux 1 000 37 Affecting factors 3 002
18 Marine environment 1 0.00 38 Fujian 3 000
19 Ecological restoration 10 015 39 Carbon sequestration 3 005
20 Seaweed protection 9 0.00 40 Seagrass 3 037
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Rank Keywords Frequency Centrality Rank Keywords Frequency Centrality
1 Blue Carbon 273 000 27 Management 6 005
2 Forest 162 008 2 Posidonia oceanica 2 025
3 Sequestration 138 003 2 Estuary 2 007
4 Storage 129 000 30 Decomposition 40 006
5 Ecosystem 116 010 31 Ecosystem service 40 000
6 Dynamics 115 016 32 Matter 39 000
7 Climate change 115 006 Carbon 38 002
8 Organic carbon 1 005 Variability 37 001
9 Sediment 94 002 3 Productivity 35 003
10 Mangrove forest 92 010 36 Habitat 35 004
1 Organic matter 86 002 3 Bay 34 002
12 bioma 84 004 Restoration 33 004
13 Salt marsh 7 000 Spartina alterniflora 32 007
14 Accumulation 67 001 0 Ground bioma 32 001
15 Impact 66 005 4 co, 32 025
16 Sea level rise 63 000 2 Pattern 2 001
17 Marine 63 004 ) Water 27 004
18 Vegetation 57 015 4 Marine sediment 27 001
19 Conservation 56 005 45 Coastal wetland 27 0.00
20 Coastal 55 000 46 Seagra 26 002
21 Wetland 54 001 47 Coastal habitat 24 001
2 Soil 53 006 48 Flux 2 0.10
2 Emission 52 006 9 Response 2 004
4 Growth 47 032 50 Deforestation 2 005
25 Community 47 000 51 Rate 2 005
26 Nitrogen 47 004 52 Salinity 2 0.00






OPS/images/fenvs-12-1346166/inline_21.gif
KEL;





OPS/images/fenvs-12-1426958/inline_20.gif
>.Y,<) FO, <) X,





OPS/images/fenvs-12-1387655/fenvs-12-1387655-t001.jpg
International journals

Domestic journals

Research institutions Publications Research institutions Publications
1 Deakin Univ 59 Guangxi Academy of Sciences 40
2 Edith Cowan Univ 57 Ministry of Natural Resources 37
3 Univ Queensland 52 Xiamen University 28
4 Univ Western Australia 42 Beijing Normal University 18
5 Chinese Acad Sci 0 Sun Yat-sen University 13
6 Southern Cross Univ 35 Ocean University of China 16
7 Griffith Univ 31 National Marine Information Center 16
8 csic 30 Hainan University 16
9 Natl Univ Singapore 2 State Oceanic Administration of China 13
10 Univ Technol Sydney 29 Shanghai Institute of Geological Survey 13
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Variables

Rural revitalization
Economic urbanization
Urbanization of population
Land urbanization
Industrial structure
Cultivated land scale

Intensity of fixed asset investment of rural houscholds

rect effect
690.730°** (8.68)
~5.229"** (-4.55)
-2685" (-1.85)
~5.018*** (-6.63)
~0.020 (~047)
2.924% (1.84)

-0011** (-2.57)

Indirect effect
‘ 550450°** (2.61)
‘ 7.375*** (2.65)
‘ 11.192* (3.41)
‘ ~12.766"* (-3.33)
| 0559 (-2.10)
‘ 0201 (0.06)

‘ 0.024** (4.87)

otal effect
1,241.180°** (6.00)
2.146 (0.84)
8507 (2.63)
~17.784" (-4.13)
~0579** (-2.06)
3.125 (0.87)

0.013* (233)

Investment in fixed assets in primary industry
tho
Observations

Resquared

0.045 (1.19)
0.248* (2.02)
360

0.6603

‘ ~1.546** (~4.68)

~1501%* (-4.39)

(***p < 0.01, **p < 0.05, *p < 0.1).
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Variables

Rural revitalization
Economic urbanization
Urbanization of population
Land urbanization
Industrial structure
Cultivated land scale

Intensity of fixed asset investment of rural houscholds

Main
682,401+ (8.11)
~5.399*** (~4.77)
~2.827 (-1.87)
-4.855*** (~6.54)

~0.011 (-0.25)
2.807* (1.74)

~0.011** (-2.68)

Wx
222135 (1.32)
6814 (3.03)
8.990%** (3.60)

~8.169 (-3.42)
~0.401** (-2.10)
~0.869 (-0.34)

0022+ (4.61)

Investment in fixed assets in primary industry
tho

Observations

Resquared

0073 (1.93)

0.248* (2.02)
360

0.6603

~1152%* (-5.41)

(***p < 0.01, **p < 0.05, *p < 0.1).
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2001 | Zhumadian, Xinyang, Zhoukou, Luohe, Xuchang, Pingdingshan Sanmensxia, Hebi, Jiyuan, Jiaozuo, Luoyang, Zhengzhou, | Xinxiang
Shanggiu, Nanyang Puyang, Kaifeng, Anyang
2020 | Zhumadian, Xinyang, Zhoukou, Luohe, Xuchang, Pingdingshan, Jiyuan, Jiaozuo, Luoyang, Sanmenxia, Kaifeng Anyang,

Shanggiu, Nanyang Zhengzhou, Puyang, Hebi Xinxiang
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imens Meaning Description Unit

Prosperous Economic level of the primary industry 0122 Primary output value/rural population 100 million yuan/10,000 people
industry t

Rural industrialization level 0.142 Rural electricity consumption/rural population Millions of kilowatt-hours per

million people
Rural mechanization level 0028 Total power/sown area related to farm equipment  Ten thousand kW hours per
hectare
Livable ecology | Chemical input strength 0.021 quantity of fertilizer used in farming production/ Ton per hectare
planted area

Convenience of living infrastructure 0.097 Rural mail line km

Rural population employment 0.104 Rural employment Ten thousand of people
Civilized village ~ Cultural level of consumption among rural | 0.006 Education and entertainment expenditure/per capita %
style residents total expenditure consumption

Health and wellness consumption degree of | 0.017 Health expenditure/total expenditure average %

rural residents individual consumption

Strength level of rural teachers 0013 Number of countryside faculty/agricultural population %
Effective Budget amount for urban and rural affairs of | 0092 Spending on urban as well as rural affairs 100 million yuan
governance each municipality

Villagers’ autonomy level 0.044 Number of village committees/Number of resident  Per 10,000 people

rural population

Rural governance level 0026 Rural minimum guaranteed number/rural population %
Prosperous life Abundance of farmers 0221 Average disposable income per agricultural worker  Yuan

Food expenditure as a proportion of total per | 0.033 Food expenditure Per individual/Total expenditure %

capita expenditure level

‘The level of urban-rural income gap 0034 Per person in cities disposable income/rural disposable %

income
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Emission source

ission coefficiet

Data source

Plowing CO;: 1,1462 kg hm™ China Agricultural University

‘ Fertilizer CO,: 32840 kg kg™ | ORNL, United States

‘ Pesticides CO,: 18.0917 kg kg™ ORNL, United States

‘ Agriplastic CO»: 189933 kg kg™ Nanjing Agricultural University

‘ Farm diesel CO,: 3.1863 kg kg™ 1PCC

\ Field irrigation COy: 91667 kg hm™ [ Dubey (Dubey and Lal, 2009)

‘ Nitrogen fertilizer application N;0: 0.0125 kg kg 1PCC

‘ Rice farming CHy: 236.7 kg hm™ Guidelines for compiling provincial greenhouse gas inventories
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Variables Model (1) Model (2)

Mechanical technological progress Agricultural carbon emission
Rural revitalization 2,293.729% (8.34) 4953147 (5.02)
Mechanical technological progress - 0.107*** (5.87)
Control variable Control control
R-squared 0.9006 09643
» Regional fixed effect Control control
Time-fixed effect | Control | control

(**p < 0.01, **p < 0.05, *p < 0.1).
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1) CEE (2)ICEE ){CEE: (4) CEE
Inirobot 0,053+ 0,049+ 0,048+ 0,054+
(0.012) (0.016) (0.013) (0.018)
Ingpt 0,008+
(0.004)
Ingpq 0019*
(0.008)
ind 0,009
(0.005)
TL ~0.049*
(0.024)
cons 0826 0830 0823+ 0836+
(0.089) (0.091) (0.089) (0.09)
controls Yes Yes Yes Yes
year Yes Yes Yes Yes
city Yes Yes Yes Yes
N 1,620 1,620 1620 1,620
Bootstrap 0,004+ 0,008+ 0.009% 0003+
(z=273) (z=213) (z = 204) (z=233)
R 0050 0.048 0052 0.055
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(1) Ingpt (2) Ingpq (3) ind 4) TL
Inirobot 0529 04274 1,022+ -0.061*
(0.029) (0.095) (0.152) (0.016)
cons -2711 -8321 0484 0.623
(1.866) (3.821) (0:853) (0.541)
controls Yes Yes Yes Yes
year Yes Yes Yes Yes
city Yes Yes Yes Yes
N 1,620 1,620 1,620 1,620
R 0872 0598 0471 0541
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Inverse distance matrix

Adjacency matrix

Economic

stance matrix

W x Inirobot 0031°** (0.013) 0023* (0.013) 0016 (0.007)
» 0.115%* (0.029) 0254 (0.012) 0,043 (0.016)
LR direct 0.035" (0.018) 0.014** (0.006) 0.084** (0.038)
LR Indirect 0,182+ (0.093) 0,055 (0.018) 0127 (0.069)
LR Total 0217* (0.126) 0.069** (0.034) 0211 (0.104)
W x Controls Yes Yes Yes
year Yes Yes Yes
city Yes Yes Yes
N 1,620 1,620 1,620
R 0036 0073 0054
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CEE 0162 0.1617% 068
(352) (4256) ‘ (@235
Inirobot Conar 0.106% ‘ 0.101+
(2733) (2643) ‘ @591

Note: Z statistics are in brackets here; *** indicates significant at the level of 1%.

0,166 01754 0,166 0178 01710+
(4332) (4.193) (4575) (4.346) (4258)
0,083+ 0,088 oo 0,073+ 0078
(2382) (2433) (2426) (2.143) (2123)
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F Value p-Value

Single threshold 18.80"* 0012 10885 = 13238 ‘ 19213
Double threshold 395 0746 11095 14391 ‘ 23700
Triple threshold 492 0576 11720 | 14231 ‘ 23.898

Inirobot (dig <9.135) 0.057 (0.049)
Inirobot (dig >9.135) 0.118** (0.020)
controls Yes
year Yes
city Yes
N 1,620

F 1212
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Regional heterogeneity

Upstream and Middle region (1)

lower reaches (2)

Resource heterogeneity

Resource-based city (3)

Non-resource-based cities (4)

Inirobot 0.047 0084 0.062 0,067
(0.013) (0032) (0.041) (0.020)
cons 0517 10037 0,632 o851
©.172) ©112) ©.174) (©.108)
controls Yes Yes Yes Yes
year Yes Yes Yes Yes
city Yes Yes Yes Yes
N 1,005 615 465 1155
R 0.047 0.066 0.072 0,032
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(1)

Alternate explanatory variable

)

One-stage lag

()

Tailing treatment

Inirobot 0,010 0,063+ 0050
(0.004) (0.017) (0011)
cons 0,666+ 0831 0848+
(0.096) (0.098) (0.072)
controls Yes Yes Yes
year Yes Yes Yes
dity Yes Yes Yes
N 1,620 1,620 1,620
R 0042 0051 0055
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Variable Inirobot

v 0504+ Inirobot 0,199+
(0.064) | (0.070)
cons Yes cons Yes
year Yes year Yes
city Yes city Yes
N [ 1,620 | N 1,620
R [ 0038 R 0.040
Anderson LM 60.115
[ [0.000]
Cragg-Donald Wald F 62315
[ [1638]

Note: () is a robust standard error; P in []; {} is the critical value at 10% level of Cragg-Donald Wald F statistical weak identification test; Regression results of related commands in two-stage least
S N —
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Inirobot 0041+ 0.057%% 0046 0057+
(0.011) 0012) (0.013) (0.015)
er 0,699+ 0702+ 0707+
(0.117) (0.118) (0.117)
urban -0.041 -0.029 -0.026*
(0.026) (0.027) (0.014)
fdi -0.177* -0.172*
(0.077) 0.077)
Ppop 0.026* 0.030*
(0.014) (0.015)
v -0.178*
(0.093)
fin -0.008
(0.005)
cons 0982+ 0,997+ 0840 08274
(0.008) (0.009) (0.088) (0.090)
year Yes Yes Yes Yes
city Yes Yes Yes Yes
N 1,620 1,620 1,620 1,620
7 R 0.041 0.042 0.047 0.051

Note: Robust standard errors are shown in brackets. *, **, **** represent significant levels of 10%, 5%, and 1%, respectively. The following tables are the same.
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N Meal S.D.

CEE 1,620 0.998 0039 0701 1354
Inirobot 1,620 0.439 0178 | 0049 1147

er | 1,620 0.003 0.001 0004 0012

urban 1,620 0510 0.146 [ 0118 0896

fdi 1,620 0.019 0018 0003 0.108

Pop 1,620 5.886 0632 [ 4152 [ 8047

av 1,620 0.031 0016 0010 0131

fin 1,620 0.892 0510 [ 0213 [ 3664

AMIRobot | 1,620 6251 2261 0178 17521

Ingpt 1,620 0431 1804 0051 0923

Ingpq 1,620 0.268 | 1945 0039 0803

| ind 1,620 0374 0132 [ 0245 4932
TL 1,620 0218 0165 0.001 1791

Souires: Brrtomintianal Rederation af Rebote [IER): nationd imwillociual properiy pabeet datsbass: ths China City: Siatitical Teaibook:
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Dependent
variable

Independent
variable

Control variable

Instrument
variable

Mediating variable

Variable name Abbre:
Carbon emission efficiency CEE
industrial intelligence Inirobot
Environmental regulation er
Population size pop
Foreign direct investment fdi
Government intervention av
Financial development fin
‘The level of urbanization urban
American industrial AMIRobot
intelligence
Number of green innovations Ingpt
Green innovation quality Ingpq
upgrading of industrial ind
structure
rationalization of industrial T

structure

Measure of variable

total factor productivity
Robot permeability
the ratio of environmental word frequency in in city government reports to the total word
frequency in city government reports
the natural logarithm of the resident population at the end of the year
the proportion of foreign capital actually used to GDP
the proportion of government fiscal expenditure to GDP
the proportion of deposit and loan balance of financial institutions to GDP

the ratio of urban resident population to rural resident population

Robot penetration in U.S

the logarithm of the total number of urban green patent applications
the logarithm of the total number of urban green invention patent applications
‘measured by the ratio of output of the tertiary industry to that of the secondary industry
Theil index
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Variables

Rural revitalization
Economic urbanization
Urbanization of population

Land urbanization

Cultivated land scale

Low-level rural

revitalization

126.546 (1.24)

0.176 (0.17)

2673 (1.64)

1.079* (1.71)

Medium-level rural
revitalization

737.995%* (4.04)
-3322 (-162)
~8355* (-3.39)

~6.086*** (-2.71)

High-level rural
revitalization

~183.220% (-2.33)

2895 (3.11)

~3.726 (-1.07)

0.156 (0.18)

60 (0.69) 6391 (1.07) 3,087 (2.68)

Intensity of fixed asset investment of rural -0.007 (~1.01) ~0.019* (-2.02) -0.002 (-0.48)

households

Investment in fixed assets in primary industry | 0.051*** (3.56) ~0.0174* (-2.95) ~0.001 (-0.63)

Individual fixation effect | Yes Yes Yes
Time-fixed effect Yes Yes Yes

Observations 119 120 18

Re-squared 09864 | ooss6 09956

(**p < 0.01, **p < 0.05, *p < 0.1).
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Indicators

input

Expected output

Unespected
output

Compo!

Labor input
Capital investment
GDP

Carbon dioxide
emissions

Measureme

Number of employees

Capital stock

Fitting according to night light

Annual regional real GDP ‘
data ‘
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Variables

Rural revitalization

Economic urbanization

Urbanization of population

Land urbanization

Industrial structure

Cultivated land scale

Intensity of fixed asset investment of rural households
Investment in fixed asets in primary industry

tho

Observations

Resquared

(***p < 0.01, **p < 0.05, *p < 0.1).

Main
669.640** (8.70))
=5.004*** (-4.59)
3,998 (-2.70)
~4.489"** (~6.46)
-0.011 (-0.26)
2.627* (1.69)
0,013+ (-3.28)
0,071 (1.84)
0247+ (2.59)
360

07020

Wx

173.292 (1.35)
4128 (229)
4240 (2.06)
—6.524*** (-2.67)
~0.168" (~197)

=5.777*** (-2.58)

0041 (7.28)

0791 (-5.62)

rect effect

682,213 (9.44)
~4.852** (-4.45)
-3930°* (-2.82)

~4.740"** (-6.58)

~0.017 (-0.42)

2.553* (1.69)
=0.012%** (-2.95)

0,039 (1.03)

Indirect effect
467449 (2.72)
3.837* (1.80)
4302 (1.83)
~10.334* (-2.89)
~0.233** (~2.00)
-6.532** (-2.51)
0,049+ (8.29)

—LO31*** (~4.67)

0.037** (6.44)

Total effect
1,149.662** (6.68)
~1015 (-0.53)
0372 (019)
~15.074** (-3.81)
-0.250" (~1.87)

~3.978* (-1.68)

0992+ (-4.26)
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Variables Model (1) Model (2)

Agricultural GDP Agricultural carbon emission
Rural revitalization 792419 (5.34) 378.566"* (5.58)
Agricultural GDP - | 0.458*** (18.58)
Control variable control control
R-squared 0.8607 09811
» Regional fixed effect control —
Time-fixed effect control control

(**p < 0.01, **p < 0.05, *p < 0.1).
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Index selection

Resource consumption

Descripti

Fixed asset investment stock
Industrial employment

Industrial water consumption

Industrial electricity consumption

Undesired output

Desired output

Industrial sulfur dioxide emissions
Industrial wastewater discharge
Industrial particulate matter emissions

Total industrial output value

Data source

China City Statistical Yearbook, EPS database (2012-2020)
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Region Population (10* Historical emissions (10° per capita GDP (10* Yuan/ Emission intensity (

People) Tons) People) Yuan)
B 2,190.00 83277 1618 0.20
v 1,385.00 139522 1015 | 0.98
W 7,447.00 6,102.00 470 170
x| 3,497.00 13,105.21 485 | 1002
NM 241500 778530 7.3 | 565
LN 427700 532865 581 | 253
o 2,448.00 226719 479 1.69
woo 3,255.00 358838 416 | 252
sh 248100 1,626.30 1531 042
1S 8,469.00 625277 1165 | 0.65
7 637500 3,909.26 9.80 0.67
o 6092.00 370461 605 | 1.08
5o 4,137.00 24571 ] 1023 | 0.65
x| 451600 164873 546 | 075
D 10,106.00 10,570.99 698 176
wo 9,901.00 551870 543 0.86
HB 5,927.00 273180 7.66 0.62
o 6,640.00 2576.15 [ 601 | 061
o 12,489.00 509112 865 0.53
ax | 498200 1,859.26 426 | 107
HI 995.00 58123 536 124
Q 3,188.00 137046 740 | 053
sc 835100 269491 555 0.60
o | 3,848.00 303374 436 | 172
W 471400 188208 193 0.74
SN 3,944.00 4,987.97 | 6.54 237
Gs 2,509.00 173869 347 213
I 590.00 51939 498 | 154
NX 71700 201120 523 672
X 2,559.00 3,805.63 531 38
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Single threshold test 15.244% (0.097) 27.191% [0.085] 24.508*** [0.007] 30.901*** [0.000]
Double threshold test 11564 [0.031] 31.282°° (0.022] 37.725** [0.000] 45.005** [0.000]
Triple threshold test 33.152 (0.629] 12531 [0.846] 29379 (0.157) 6992 (0.881]
Threshold estimate 1 1.849 0941 1828 0857
Threshold estimate 2 1.962 1990 1964 1991
T<s1 -0.630** (-15.12) 0.192°* (4.25) -0.045* (-2.28) 0001 (2.19)
81<T<52 0.309 (0.48) 0054 (1.72) 0.135* (1.68) 0.065* (1.78)
T>82 0.041°** (2.96) 0.0523** (-5.43) 0.151%* (6.26) -0.004** (-3.59)
Control Yes Yes Yes Yes
Time fixed effects No No Yes Yes
City fixed effects Yes Yes Yes Yes
Constant 6.501%* (23.65) 2.998°** (20.88) 8,522+ (33.25) 3166 (18.10)
R 0.4050 03862 0782 0.6683
» Obs 2547 2547 2547 2547

The t statistics are n the brackets; the Pvalueis in ], and the F value s above; ***, **, and * indicate statistical significance when p<0.01, p<0.05, and p<0.1, respectively. The tables below are the

M.
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Entropy Method

(1):1su

(2):Ina

Principal Component Analysis

(3):Isu

(4):Ina

The t statistics are in the brackets; the Pvalue s in [ ], and the Fvalue is above; ***, **,and * indicate statistical significance when p<0.01, p<0.05, and p<0.1, respectively. The tables below are the

S

Dig -0.239%%* (-2.99) 0,195 (-3.66) 0,052+ (-2.85) -0.059%* (-3.07)

sDig 0.013* (2.04) 0,563+ (4.33) 0.009% (1.93) 0.207%* (3.35)

Isu 0,034 (2.03) 0,141 (1.68)

Dig'lsu 0,038+ (-3.13) 0,001 (-3.58)
sDig*lsu 0028+ (3.16) 0002+ (231)

Ina 0527 (227) 0197+ (3.25)
Dig'Ina -0.019°* (-3.61) -0.103%* (-2.86)
sDig'Ina -0.001°** (-3.06) -0.0547* (-4.92)
Control Yes Yes Yes Yes

| Time fixed effects Yes Yes Yes Yes
City fixed effects Yes Yes Yes Yes

R 05348 05982 0.6293 0.6066

Obs 2547 2547 2547 2547
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Regional heterogeneity Urban density heterogeneity

East region Central region Western region Low density city High density city
() () (3) (4) (5)
Dig 0.008* (1.74) 0.028*** (2.66) 0022+ (-4.96) 0,016 (-1.05) 0.827** (8.14)
7 sDig 0,035+ (4.29) | 0.002** (1.96) [ 0,002 (1.29) [ 0.019°** (5.10) -0.008* (-1.93)
Control Yes Yes Yes Yes Yes
Time fixed effects Yes Yes Yes Yes Yes
Gty fied efects Yes Yes Yes Yes Yes
| Rho 0,003 (13.34) 000 (143 0,002+ (15.39) 0,003 (20.70) 0,001+ (12.72)
I3 02328 07509 06597 03121 07169
Obs 909 900 738 828 1719

The t statistics are in the brackets; the Pvalue s in [ ], and the Fvalue is above; ***, **,and * indicate statistical significance when p<0.01, p<0.05, and p<0.1, respectively. The tables below are the
S
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Instrumental variable method Replace independent variable Dynamic SDM Replace spatial weight

(1) ) (3) (4)
W*Mgt,., 0.444** (16.74)
Dig 0312 (-7.10) 01332 (-9.12) -0.008* (-1.83) -0.041%* (-2.37)
sDig | 0.017** (3.70) | 0.0037*** (4.90) 0,000 (211) 0.003*** (2.59)
Tec 0026 (9.31) 00848 (3.13) 0.003 (0.33) | 0.062* (15.20)
urb 0,153+ (-4.24) | 0.1667"** (5.25) 0013 (129 | -0.005* (-3.14)
Eco 0004 (222) 001427 (4.88) 0.002** (2.33) 0.120°* (13.06)
Open 0.851*** (3.66) 03151"** (3.63) 0.069** (2.50) 0.060*** (4.91)
Gi -0.0454°** (-4.30) -0.0485* (-2.97) -0.006 (-1.18) | -0.008*** (-2.71)
Er | 2,683 (4.29) | 0.0439"** (4.39) 0.001 (057) 0.024** (8.43)
Time fixed effects Yes Yes Yes Yes
City fixed effects Yes Yes Yes Yes
Rho 1.083*** (15.80) 0.0435*** (25.50) 1.403*** (38.86) 1484+ (13.93)
| R | 05219 04562 0.6124 06251
» Obs 2,547 2,547 2,547 | 2,547

The t statistics are n the brackets; the Pvalue s in ], and the Fvalue is above; ***, **, and * indicate statistical significance when p<0.01, p<0.05, and p<0.1, respectively. The tables below are the
_—
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Dig -0.419* (-1.89) 0011 (-1.59) 0,008 (-1.97) 0,009 (-2.07) -0.011°* (-2.47)
sDig 0,003 (1.69) 0.000° (1.71) 0.082+** (2.80) 00417+ (2.81) 0.191%** (2.87)
Tec 0.000 (0.09) -0.001 (-0.08) 0.001 (0.23) 0.001 (0.16) 0,028 (249)
Urb 0,011 (0.82) 0,032+ (-220) 0020 (-2.06) -0.020% (-2.11) -0.019* (-1.94)
Eco -0.006°** (-7.56) -0.005** (-4.26) 0002+ (2.87) 0,002+ (2.87) 0.002+** (2.94)
Open 0.615%* (9.62) 0082 (204) 0.051%* (1.96) 0,050 (1.90) LOLI** (454)
Gi 0,025 (-9.32) -0.050°** (-13.345) 0,005 (-121) -0.005 (-1.10) -0.085%* (-2.68)
» Er -0.011* (-1.68) 0.003 (0.76) -0.001 (-0.376) 0001 (039 | 0.030* (203)
Rho 0,897 (46.54) 0.937+* (71.68) 0,847 (27.59)
7 IS 03639 06155 04593 05695 07473
F(Wald test) [P] 326.25 (0.000]
Obs 2,547 2,547 2,547 2,547 2,547

The t statistics are n the brackets; the Pvalueis in ], and the F value s above; ***, **, and * indicate statistical significance when p<0.01, p<0.05, and p<0.1, respectively. The tables below are the

P
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Variable type Indicator indicator Indicator description Data source

selection symbol
Dependent variable Manufacturing green Mgt Industrial green production | China City Statistical Yearbook, EPS database (2012-2020)
transformation efficiency
Independent variable Digital economy Dig Digital economy China City Statistical Yearbook, Digital Finance Research
comprehensive development Center of Peking University (2012-2020)
index
Control variables Technical investment Tec Science and technology China City Statistical Yearbook, EPS database, US National
expenditure amount Oceanic and Atmospheric Administration (NOAA)
(2012-2020)
Urbanization level Urb City night light data
Economic development Eeo GDP per capita
Openness level Open EDI
Government Gi Fiscal expenditure/GDP
intervention
Environmental Er Environmental protection
regulation expenditure/GDP
Moderating variables and Industrial structure Tsu Entropy method istical Yearbook (2012-2020)
threshold variables upgrading
Industrial Ina Location entropy

agglomeration
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10°CNY A G Az
BJ 525 202 147 0.70 3.65
T 293 142 173 0.57 378 324
HE 0.96 118 283 L15 348 220
X 114 0.95 1.66 1 345 237
NM 112 0.93 226 0.86 3.60 276
LN 1.36 117 1.39 0.88 | 359 259
JL 3.01 145 1.64 0.62 378 3.16
HL 212 1.28 1.56 0.69 374 3.01
SH 351 1.82 1.48 0.75 3.61 2.66
IS 252 317 3.04 b % g 3.08 143
z) 3.00 234 1.66 1.28 3.36 1.96
AH 4.00 219 1.51 1.01 352 231
FJ 422 216 1.80 0.90 354 239
JX 4.65 201 5.94 0.76 3.67 2.70
SD 1.00 1.69 3.70 2.38 313 1.53
HA 257 230 3.74 145 3.38 191
HB | 3.02 204 215 1.01 351 226
HN 3.07 203 1.86 0.98 355 232
‘ GD [ 3.69 4.50 1.63 271 | 3.10 1.36
GX 361 178 1.98 0.74 3.70 279
HI 463 155 1.42 0.50 3.87 354
cQ 5.69 [ 213 143 0.75 3.64 2.69
SC 25 229 139 L13 350 214
GZ 298 1.56 1.98 0.72 | 3.70 287
YN 351 1.82 1.26 0.77 3.67 2.70
SN 272 1.60 2.81 0.86 3.59 259
GS 3.01 1.40 192 0.58 382 330
QH 332 132 1.52 0.46 391 374
NX 267 109 1.50 0.51 393 377
XJ 1.66 109 175 0.68 374 3.07
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Region GDP (108 Fixed capital stock (10® Energy consumption Employed population (10*

Yuan) Yuan) (10* TCE) People)
B 59,552.67 38,098.99 922697 124926
v 25,049.05 56,417.01 10,595.19 | 88488
HE 64,464.07 196,689.22 41,291.96 4,086.15
x| 4191054 3977312 26,675.75 1,903.27
Y 3033741 106,715.65 26,900.14 1,398.67
o 4402392 15,238.55 28,366.53 [ 2477.74
L 21,939.03 56,367.68 10,459.76 1457.07
HL 22,860.83 4229693 16,691.18 1,884.99
o 6390832 40,185.56 14,826.37 135921
1S 178,785.26 297,267.72 41,123.63 | 5082.36
7 112,951.76 11834957 27,138.82 3,747.9
o 71,20874 79,103.33 16,779.19 441391
5o 79.692.78 113,135.78 16,042.03 233292
x| 50,984.17 329,644.26 11,283.87 2,446.39
D 127,670.90 289,568.26 50,387.37 6,028.10
HA 9398364 294,672.00 29,650.03 5296.39
HB 82,900.89 165,468.66 22,876.34 3549.43
o 7351620 131,983.22 22,065.62 4,047.67
o 183,924.03 187,314.48 I 40,257.05 | 6939.86
GX 4101027 12377034 13,274.14 2,725.77
HI 1392973 1004121 258920 53532
@ 60,006.78 4498575 911508 172519
SC 85,945.28 75,141.31 24,675.21 4,905.81
GZ | 3371393 111,070.39 13,211.45 | 1,970.21
N 4851565 14,686.96 14,628.33 2976.60
N 47,562.07 188,826.90 7 15,885.98 [ 221010
Gs 16979.19 93,577.58 993565 1414.98
I 514181 2218383 529248 | 33242
N 721754 14334.10 832160 36204
XJ 25,509.65 5848176 20,433.08 | 1364.97






OPS/images/fenvs-12-1349200/inline_8.gif





OPS/images/fenvs-11-1301091/math_6.gif
®





OPS/images/fenvs-11-1301091/math_7.gif





OPS/images/fenvs-11-1301091/math_8.gif





OPS/images/fenvs-11-1301091/math_9.gif





OPS/images/fenvs-11-1301091/math_3.gif
3)





OPS/images/fenvs-11-1301091/math_30.gif





OPS/images/fenvs-11-1301091/math_4.gif
@





OPS/images/fenvs-11-1301091/math_5.gif
©





OPS/images/fenvs-11-1301091/math_28.gif
Di(xh iy zey o
DITLZ) DR Z)

M (XY, 2, X 21

an





OPS/images/fenvs-11-1301091/math_29.gif





OPS/images/fenvs-11-1301091/math_qu8.gif
A YE)





OPS/images/fenvs-11-1301091/math_qu9.gif
oA G ST

D.c
o s






OPS/images/fenvs-11-1290126/crossmark.jpg
©

|





OPS/images/fenvs-11-1301091/math_qu4.gif
1.3 A, < Oy





OPS/images/fenvs-11-1301091/math_qu5.gif
D 413012 i = L





OPS/images/fenvs-11-1301091/math_qu6.gif





OPS/images/fenvs-11-1301091/math_qu7.gif
TFPC(X™ XLYLZY
Dz [ Dz | Dz |
TTDXLYLZ) DUT(XL Y, ZY) DX, Y, Zi)






OPS/images/fenvs-11-1301091/math_qu1.gif
Min






OPS/images/fenvs-11-1301091/math_qu2.gif





OPS/images/fenvs-11-1301091/math_qu3.gif





OPS/images/fenvs-11-1301091/math_17.gif
7





OPS/images/fenvs-11-1301091/math_18.gif





OPS/images/fenvs-11-1301091/math_13.gif





OPS/images/fenvs-11-1301091/math_14.gif
s = iy (H) = w,(l B

(14





OPS/images/fenvs-11-1301091/math_15.gif
(s 4+ s ) = [, s+ )|

as)





OPS/images/fenvs-11-1301091/math_16.gif
iy = k]

(s + i) - [ )

16






OPS/images/fenvs-11-1301091/math_1.gif
0





OPS/images/fenvs-11-1301091/math_10.gif
Y B.s1





OPS/images/fenvs-11-1301091/math_11.gif
Po.zln=1,..

(1)





OPS/images/fenvs-11-1301091/math_12.gif
(12)






OPS/images/fenvs-11-1301091/math_27.gif
(27)





OPS/images/fenvs-11-1301091/math_23.gif
Vi Y (@)

Vet e Vo e Yl





OPS/images/fenvs-11-1301091/math_24.gif
o By - e

(@
Z=|zp - 2y

P





OPS/images/fenvs-11-1301091/math_25.gif
(25)






OPS/images/fenvs-11-1301091/math_26.gif
byj= =25+ max,., _n{zglming,_.{zgf  (26)





OPS/images/fenvs-11-1301091/math_2.gif
@





OPS/images/fenvs-11-1301091/math_20.gif
(0





OPS/images/fenvs-11-1301091/math_21.gif
W(S(C) = ¥ Bau(i,)+ LI g





OPS/images/fenvs-11-1301091/math_22.gif
@)






OPS/images/fenvs-11-1301091/math_19.gif
N 19






OPS/images/fenvs-12-1426958/math_3.gif





OPS/images/fenvs-12-1404760/crossmark.jpg
©

|





OPS/images/fenvs-12-1426958/math_qu2.gif
cp =

O

D,






OPS/images/fenvs-12-1426958/math_qu1.gif
= Awa(Yaa + Yan) + Anafia (Yan + Yan)
+ Ay (Yaa + Yau) +
A (T=Aua) (Yoo + You)





OPS/images/fenvs-12-1426958/math_9.gif
LunAun (I = Aun) " FOu = ITZ o = LunZon

FO,

)





OPS/images/fenvs-12-1426958/math_8.gif





OPS/images/fenvs-12-1426958/math_7.gif
AunFO, + AuAuFO, + AuALFO, +
L (- Au) 'FO,





OPS/images/fenvs-12-1426958/math_6.gif
FO,

Y

You + Ay (I - Ayy)






OPS/images/fenvs-12-1426958/math_5.gif





OPS/images/fenvs-12-1426958/math_4.gif





OPS/images/fenvs-12-1404760/inline_2.gif
OO





OPS/images/fenvs-12-1404760/inline_1.gif
o 19





OPS/images/fenvs-12-1404760/fenvs-12-1404760-t007.jpg
City Nanchang Fuzhou Xinyu Jian Jingdezhen Pingxiang Shangrao  Ganzhou Yichun Yingtan  Jiujiang

Amount 2080





OPS/images/fenvs-12-1404760/math_11.gif
L

C ~-C-P.





OPS/images/fenvs-12-1404760/math_10.gif
o)





OPS/images/fenvs-12-1404760/math_1.gif





OPS/images/fenvs-12-1404760/inline_6.gif





OPS/images/fenvs-12-1404760/inline_5.gif





OPS/images/fenvs-12-1404760/inline_4.gif





OPS/images/fenvs-12-1404760/inline_3.gif
C,





OPS/images/fenvs-12-1404760/fenvs-12-1404760-g002.gif





OPS/images/fenvs-12-1404760/fenvs-12-1404760-g001.gif





OPS/images/fenvs-11-1301091/crossmark.jpg
©

|





OPS/images/fenvs-11-1301091/fenvs-11-1301091-g001.gif





OPS/images/fenvs-11-1301091/fenvs-11-1301091-g002.gif
o =5
iu— :i
h-—“ \::5






OPS/images/fenvs-11-1302089/math_2.gif





OPS/images/fenvs-11-1302089/math_3.gif
F(z) = 2(Ey - Ey) = (-1 + 2)z(aPx + (bL. - abPx + bPx)y
+ Ry (1 ~d) (-1 + ax - abxy + bxy))
3)





OPS/images/fenvs-11-1302089/math_4.gif
F(x)

{rm-( e, Abz)

FG = (1 2e{aPe s G, - abPx s )y Ry (1) (-1 o -abey + bey)
A





OPS/images/fenvs-11-1302089/math_5.gif
OF(x) oF(x) oF(x)
w5y o
£ 0 B0 |arcy ares on
E() B0) F() |- |20 20) F0)|
F.(2) F.(2) F.(2) y =

() IF(E) IFE)
o 9y oz





OPS/images/fenvs-11-1302089/fenvs-11-1302089-t003.jpg
Active regulation by local governments (x)

Monitoring by media (y) No monitoring by

media (1-year)

Negative regulation by local government (1-x)

Monitoring by media (y) ~ No monitoring by

media (1-year)

Falsification by enterprises (2)

No falsification by enterprises (1-z)

(1-(a+b-a b)) Ry (1-d)-(a+b-a b) P-b L,

Uy Ctlatb-a b) P-b A UgCgra P

UpeCot b A I 0

(1-0) R (1-d)-a P

Ce UeCe
Up-Con 0
0 0

0 0
Up-Con 0
R (1-d)}b L, R (1-d)
0 0
Uni-Con 0
0 0






OPS/images/fenvs-11-1302089/fenvs-11-1302089-t004.jpg
Equilibrium

B (0,00 Cg+ U Cou + Up Ry (1-d)

B0 Crapiuy, | ot U, R, (1)

‘ E (0,1,0) G+ Uy CaUn b Lo+ Ry (1-d)

‘ Ei(1,0,0) Gl | Cur U | Peetra) By (1)

‘ Es(1,1,0) Gl CoUn b L(a+b) Pra b P-(-Lsa-a b+ b) Ry (1-d)
B (1,0, 1) [ Cea P-Ug ['a b-Cor + U Ia Pi(-1+a) Ry (1-d)

‘ E(0,1,1) -A b-Cyta P-(a bb) P+ U, Gt b LR, (1-d)

‘ E (L1 1) Ab+ Cea Pi(a b-b) P-U, | Ab+cu, b Lot(arh) P-a b Pr(-1+a-a b + b) Ry (1-d)






OPS/images/fenvs-11-1302089/math_1.gif
Flx)=x(En=E)
= (14 0x(C, ~U, + (-aP + Aby + (ab - b)Py)z) (1)





OPS/images/fenvs-12-1404760/fenvs-12-1404760-t006.jpg
Functional
zoning

Division basis

Regional characteristic

Carbon sink functional
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“The economic contribution efficiency of carbon emission and the
ecological support level of carbon absorption are relatively highs the
carbon sequestration capacity is strong

Ganzhou, Ji'an, and Fuzhou

Low carbon
optimization areas

Total carbon control
areas

Carbon intensity control
areas

ECC>1, ESC<1, and
Ct < 7.47 (Mt)

ECC>1, ESC<1, and Ct > 22.42 (Mt)

ECC<1, ESC<1, and carbon emission
per unit of GDP >1t/10* yuan

The economic contribution efficiency of carbon emission is high, the
ccological support level of carbon absorption is low, and the total carbon
expenditure is low

‘The economic contribution of carbon emissions is high, the ecological
support level of carbon absorption is low, and the total carbon income
and expenditure are incredibly high

‘The economic contribution rate of carbon emissions and the ecological
support level of carbon absorption are both low, and the carbon
emissions per unit of GDP are high

Yingtan and Jingdezhen

Nanchang

Jiujiang, Yichun, Xinyu,
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. Land type  Cultivated land  Forest land  Grassland  Water area  Unused land  Construction land

2010 Area (hm?) 4,498,347.1 10,361,860.1 682,741.8 691,644.8 69,843.0 | 341,652.5
Proportion (%) 27.02 6225 4.10 | 415 042 2,05

2015 Area (hm?) 4,456,450.6 10,283,075.5 717,926.4 697,344.8 67,043.0 4242490
Proportion (%) [ 2677 6177 431 4.19 0.40 255

2020 Area (hm?) 4,407,228.5 10,211,814.5 715,045.6 718,540.0 53,500.0 542,287.5
Proportion (%) [ 2647 6134 [ 429 432 0.32 3.26






OPS/images/fenvs-12-1404760/fenvs-12-1404760-g004.gif





OPS/images/fenvs-12-1404760/fenvs-12-1404760-g003.gif





OPS/images/fenvs-12-1426958/inline_108.gif





OPS/images/fenvs-13-1391418/fenvs-13-1391418-t002.jpg
InCO2

InNSDP

InNSDPS

PG

‘ Mean 1941 17.03 290.38 1.56 68.68
kMedian | 19.50 17.05 290.78 | 143 68.70
‘ Maximum 19.66 17.96 32246 1.85 70.00
‘ Minimum [ 18.95 1597 255.04 141 66.00
‘V Std. Dev. 0.24 0.68 | 2293 0.187 110

N 00, dands Tk S bl o Aibloba, TnMEDE: Wi ol ek skt 1o cipiia. INISHIDS lin of Butiart of et st doieas wrcda

I —”——






OPS/images/fenvs-12-1426958/inline_107.gif





OPS/images/fenvs-13-1391418/fenvs-13-1391418-t001.jpg
Variables Measure urce

CO, emissions Log of Co, emissions (metric tons per capita) GHG Platform India, OWID

NSDP | Log of NSDP per capita (Base Year 2011-12) MOSPL Statistical Abstract of Reserve Bank of India
PG Population growth (annual percentage) Statistical abstract of Haryana (2005-2023)

LE Life Expectancy Statistical abstract of Haryana (2005-2023)
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Subjective factor “To reduce the shortfall of carbon emission quotas or pass the carbon emission assessment, deliberately modify or falsify carbon accounting data,
making its carbon emissions lower

Objective factor There are still deficiencies in the regulatory system, responsibility mechanism and punishment for carbon emission data, making it difficult to
form an effective constraint and incentive mechanism

‘The accounting basis involves a variety of policies and regulations and allows for multiple sets of accounting rules to be used in parallel, leading
to problems such as inconsistent accounting boundaries and inconsistent data sources

Challenges to the verification capacity and independence of third-party verification bodies, which may produce false verification reports of
emissions data to save financial costs or with the complicity of verified enterprises
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Meanings

U, ‘The political performance of active government regulation
G [ Adminisratve costs of active government regulation
P Penalties for falsifying enterprise carbon emissions data when actively regulated by the government
a Probability of being able to detect falsification of enterprise’ carbon emissions data when actively regulated by the government
Ry Excess carbon emission benefits from enterprise with false carbon emission data and not regulated by the government
d Degree of industry self-regulation in carbon accounting and data disclosure
Us Reputation benefits of media involvement in monitoring
Cn Costs of media involvement in monitoring
7 A Government incentives for media participation in monitoring
b Probability of being able to detect falsification of enterprise carbon emissions data during media monitoring
L Reputation losses to businesses from media exposure
x Probability of active regulation by local governments
y Probability of monitoring by media
z [ Probability of data falsification by enterprises
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Variables Co-efficient Std. Error 5 Prob. Value

‘ InNDPS 030% 0.00 i 80.11 0.000

InNSDPS [ -126% | 0.12 ‘ -10.31 [ 0.000
» PG 21.65* o ‘ 14181 0.000
‘ LE [ -1.28% 0.02 ‘ -68.59 0.000

Note: InCO, stands for log of Co, emissions, InNSDP; log of net state per capita, InNSDPS; log of Square of net state domestic product PG; population growth, and LE, lfe expectancy.
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‘ LNNSDP 222¢ 0.13 i 17.71 0.00

LNNSDPS [ -0.06* | 0.00 ‘ -14.77 0.00
» PG 056 o7 ‘ 024 0.01
‘ LE -001 0.02

‘ -031 0.05

Note: InCO, stands for log of Co, emissions, InNSDP; log of net state per capita, InNSDPS; log of Square of net state domestic product PG; population growth, and LE, Life expectancy. The
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Agriculture nergy Industrial progress Waste
2006 035 1459 -275 427 1141
2007 057 683 1748 570 605
2008 261 1220 1545 33 1063
2009 246 946 33.68 361 897
2010 221 7.04 1484 5.69 663
2011 0 1003 789 27.03 948
2012 -418 13.98 090 216 113
2013 368 795 452 155 652
2014 -123 026 546 188 031
2015 045 665 731 1005 -575
2016 -220 -9.00 1021 097 350
2017 -125 1182 2146 365 1117
2018 -0.22 290 -351 285 207
2019 -021 198 200 250 200
2020 ~0.19 190 207 200 245
2021 -020 525 517 258 230
2022 025 625 525 298 278
2023 035 650 3625 3.00 265
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testat P-Value tstat ‘ P-Value testat | P-Value testat P-Value

InCO, -175 040 -7.80 ‘ 000 -163 ‘ 046 -861 000
InNSDP ~064 085 626 ‘ 0.00 064 ‘ 085 626 000
InNDPS 329 100 -5.42 ‘ 000 352 l 1.00 -574 000
b6 [ 505 0.00 -9.32 ‘ 000 510 0.00 -9.42 0.00
LE -423 000 1068 ‘ 000 446 000 -1076 000

Note: InCO, stands for log of Co, emissions, INNSDP; log of net state per capita, INNSDPS; log of Square of net state domestic product P¢

opulation growth, and LE, life expectancy.
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Selected corporates Ticker symbol

China Vanke Co., Ltd. 000002.57
China International Marine Containers Group Co., Ltd. 00003957
GF Securities Co,, Ltd. 000776.57.
China Merchants Shekou Industrial Zone Holdings Co., Ltd. 00197957
Sichuan Keelung Pharmaceutical Co., Ltd. 00242257,
Bank of Zhengzhou Co,, Ltd. 002936.57.
Bank of Qingdao Co,, Ltd. 002948.57.
CITIC Securities Co., Ltd. 600030.5H
CSSC Offshore & Marine Engineering Group Co, Ltd. 600685.5H
Chongging Rural Commercial Bank Co., Ltd. 601077.5H
Guotai Junan Securities Co., Ltd. 601211.5H
New China Life Insurance Co, Ltd. 601336.5H
Great Wall Motor Co., Ltd. 601633.5H
Shanghai Electric Group Co,, Ltd. 601727.5H
Yangtze Optical Fibre & Cable Joint Stock Co,, Ltd. 601869.5H
China Zheshang Bank Co,, Ltd. 601916.5H

China Construction Bank Corporation 601939.SH
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Country Coupling degree Coupling coordination degree

2012 2014 2012 2014
Afghanistan 09699 0.9565 09926 09930 02922 02846 03117 03382
Albania 09782 0.9902 [ 09546 0.9686 02918 0.2965 | 02787 03099 |
Angola 09918 0.9816 09750 09648 s oz | 02728 02771
Armenia 09975 0.9982 09764 09637 03044 03042 02817 03102
Azerbaijan 1.0000 09577 | 0899 09887 02791 03113 03019 03123
Bahrain 09438 09182 0.8297 09487 | 03185 03190 03711 03768
Bangladesh 09258 0.9070 09134 09712 03496 03397 03384 03538
Belarus 08793 0.8671 0.8681 08926 04200 03995 04017 03871
Bhutan 09598 0.9774 09710 0.8955 03020 03103 03099 03134
Bosnia and Herzegovina 09650 0.9882 0.9870 09974 04197 03888 0.3860 03765
Brazil | 09653 0.8951 0.9004 0.9851 [ 03149 03470 03498 03097
Brunei Darussalam 0.9821 0.9839 0.9788 09321 0.2694 02674 0.2650 0.2809
Bulgaria 09471 0.9659 09799 0.9653 04170 04720 04438 04234
Cabo Verde 09959 0.9932 0.9842 09412 02779 02712 0.2644 02774
Cambodia 09935 0.9967 0.9998 09791 | 03327 03229 03119 03155
China 09796 0.9780 [ 0.9982 09972 08151 08324 0.8838 09041
Croatia 09999 0.9930 09778 09943 02885 03086 03198 03622
Cyprus 07625 0.6204 0.6472 06739 04622 05319 05144 05748
Czech Republic 09930 0.9964 09910 0.9660 | 03792 03798 03954 04074
Egypt 09479 0.9359 09320 09512 03177 03283 03409 03112
Estonia - osnss 0978 1ooon 092 | oms | om0 | 0308 03573 ‘
Georgia 09015 0.9360 0.8881 09959 03370 03488 03746 03333
Greece 09469 0.9530 0.9673 09849 | 03277 03374 03216 03129
Hungary 07571 0.8093 0.8573 09679 04294 0.4096 0.4060 04075
India 09989 0.9918 0.9944 0.9901 06801 06306 06276 06578
Indonesia 09035 0.9439 09292 08453 | 04022 04098 04042 03874
Iran 09965 1.0000 0.9869 09448 | 04513 04592 04582 04281
Iraq 09869 0.9511 0.9850 09820 02800 02912 02745 02694
7 Israel 0.8956 o017 sz os24 | o | 03001 03388 03703
Jordan 09906 0.9994 0.9988 09791 02764 02438 02503 03040
Kazakhstan 09713 0.9997 09973 09299 [ 05143 04638 | 04819 03946 |
Kuwait 06991 0.7509 07093 0.8606 03708 03785 03619 03746
Kyrgyzstan 08325 0.9374 09641 1.0000 [ 03449 03131 | 0.2988 02883
Laos 09827 0.9885 0.9868 09677 02659 02655 02636 02831
7 Latvia 09707 0.8973 08726 | 09999 02833 | 03245 | 03517 03347
Lebanon 09813 0.6092 07709 08824 02720 04189 03655 04588
Lithuania 08830 0.9282 09151 09998 | 03089 03054 03099 03246
Malaysia 09918 0.9969 0.9997 09992 04849 04543 04766 04951 |
Maldives 09814 0.9999 1.0000 1.0000 02848 02994 02939 03547
Moldova 09418 0.9358 0.9648 09840 02851 02913 02767 02978
Mongolia 09897 0.9895 0.9908 09402 | 02750 02747 02656 02774
Mozambique 09980 0.9991 0.9962 09653 02816 02773 02727 02889
Nepal | 0.9830 0.9993 [ 0.9859 | 09844 0.2826 | 03150 | 0.2998 03155
Oman 09804 0.8912 0.9605 09435 03296 03717 03437 03137
Pakistan 08820 0.8371 0.8865 08556 | 04106 04202 03983 04336 |
Philippines 09500 0.9402 [ 09758 0.8697 03482 03312 03476 03777
Poland 07688 0.9635 09283 08733 04011 03051 03288 03913
Portugal 09028 0.8777 0.9074 08271 03920 04046 04105 04655
Qatar 08011 0.7669 0.8559 09716 | 04531 03874 | 04465 03838
Romania 09125 ooss | 0sssi 09976 03680 03586 03548 03550
Russian Federation 09548 09783 [ 0.9946 09823 07693 07485 07322 07849
Sao Tome and Principe 09610 0.8933 09186 08574 02995 03057 02958 03093
Saudi Arabia 09198 09815 09720 0.9860 [ 06235 04487 | 04336 04372
Singapore 07358 07232 07567 o 0sest 05236 05154 05451
Slovakia 09956 0.9996 0.9998 09933 02865 02775 02789 02876
Slovenia 09992 0.9947 0.9992 oosel | 03029 0.2863 02962 03157
Sri Lanka 09996 0.9973 09863 1.0000 02823 02727 03049 03252
Syria 09957 0.9999 0.9982 09998 02898 02674 02903 03400
Tajikistan 09705 0.9704 09788 09999 02896 02773 02833 03421
‘Thailand 09777 0.9957 09835 09997 04614 04991 05255 05248
Turkiye 08364 0.8444 [ 0.8275 09468 05610 | 05463 0.6300 06402
Turkmenistan 09590 0.9338 [ 0.9007 09416 [ 02967 | 02869 | 02930 02795
Ukraine 09452 0.9309 09358 09275 04722 04869 04540 04137
United Arab Emirates 09606 0.8700 0882 | 09631 0476 | 05260 05245 05712
Uzbekistan 08462 09147 0.8874 0.8868 03422 03713 03566 03012
Vietnam 09701 0.9992 09936 0.8991 | 03119 02964 03178 03833
Yemen 09825 0.9945 09942 09802 02610 02993 03012 02991
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Abbreviations  Variables

Definition

Data
sources

References

PGDP Economic development | Difference matrix of GDP per capita WDI Mahadevan and Sun (2020)
level
15 Industrial structure Differences matrix in the proportion of industrial value-added to GDP. | WDI Wei et al. (2023)
Q Institutional quality Differences matrix in institutional quality WGI Khan et al. (2022)
El Energy intensity Difference matrix in the proportion of energy consumption to GDP | WDI Wang et al. (2021)
ES Energy structure Differences matrix in the proportion of fossil fuel energy consumption | EIA Liand Li (2020)
to total energy consumption
LR Labor rate Differences matrix in the percentage of the total labor force WDl Wei et al. (2023)
participation rate among the population aged 15-64 years
UR Urbanization level Difference matrix in the proportion of urban population wDI Wei et al. (2023)
DL Infrastructure Differences matrix in the level of infrastructure development WDIand EIA  Zhang et al. (2021), Zhao
development level et al. (2022)
GA Geographical adjacency | Geographical adjacency matrix CEPII Huo et al. (2022)
BITs Bilateral Investment Whether to sign a bilateral investment agreement UNCTAD Hwe et al. (2020), Su and
Treaties Shen (2023)

“Institutional quality is synthesized using the entropy weight method based on six indicators from the World Governance Index. These six indicators are Corruption Control (CC), Government
Efficiency (GE), Political Stability (PSAV), Regulatory Quality (RQ), Rule of Law (RL), and Voice and Accountability (VA). The level of infrastructure development is comprehensively assessed
using the entropy weight method based on three categories: transportation infrastructure, energy infrastructure, and communication infrastructure. Within these categories, transportation
infrastructure includes air transport and freight transport (million ton-kilometers), communication infrastructure includes mobile cellular subscriptions (per 100 people), and energy

inlastonctare thdudes e propertion-af ks

generation from fossil fuels.
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Coordination level

0<D < 0.2 Extreme non-coordination
02<D < 04 Mild non-coordination
04<D < 05 Basic non-coordination
05<D < 0.6 Primary coordination
06<D < 0.8 Intermediate coordination

08<D <1

Excellent coordination
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twork name

Indicator symbols

Indicator name

EDI flow network (undirected) Y, Degree centrality of FDI mobile network node countries 0192
Y2 Closeness centrality of FDI mobile network node countries 0070
Y Eigenvector Centrality of FDI mobile network node countries 0123
Y Betweenness centrality of FDI mobile network node countries 0616
Carbon Transfer Network (Directed) Yo Out-Degree centrality of carbon transfer network node countries 0195
Yo In-Degree centrality of carbon transfer network node countries 0.047
Y, Out-closeness centrality of carbon transfer network node countries 0073
Yo In-closeness centrality of carbon transfer network node countries 0021
Yo Out-Eigenvector Centrality of carbon transfer network node countries 0220
Yio In-Eigenvector Centrality of carbon transfer network node countries 0.054
b Betweenness centrality of carbon transfer network node countries 0389
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Database

Reporter

countries

Reporter
sectors

Data source

GTAP GTAPI0 141 6 2004, 2007, 2011, | https//www gtap.agecon purdue.edu/databases/v10/
2014 indexaspx
OECD —_ 76 45 1995-2020 https://www.oecd org/sti/ind/inter-country-input-
output-tables.htm
WIOD Release 2013 ‘ 4 35 1995-2011 hitps://www.rug nl/ggdc/valuechain/wiod/lang=en
Release 2016 ‘ 44 56 2020-2014

EXIOBASE EXIOBASE2 ‘ 48 163 2007 hitps://www.exiobase.eu/index php/about-exiobase
Eora _ ‘ 189 26-511 1991-2016 https://worldmrio.com/
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countries
1 33 AFG. LAO, AGO. ARM. AZE. BHR. BGD. MNG. BTN, NPL, BRA. PAK. PHL. CPV. KHM. UZB. KGZ. ‘
VNM, STP, LBNN, TKM. GEO, MDV, LKA, SYR, IDN, IRN, IRQ. KAZ, JOR, YEM, MOZ. TJK
1 9 ‘ CHN, SGP, SAU, KWT, MYS, BRN, OMN. IND, THA
m 15 ‘ BLR. SVN, EGY, BGR. POL, MDA, HRV, ALB, BIH, RUS, TUR, ROU, SVK. HUN, UKR

v 10 ‘ PRT, GRC. CZE, LTU. EST, LVA, ARE. QAT. ISR, CYP ‘
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QAT 58 PRT 26 QAT 58 IND 317 sTP 462 SVK 1 QAT 1 ARE | 960.925
ARE 57 CZE 20 ARE 56 [ MYS 317 MDV | 462  CZE 0.945 ARE = 0966 = RUS = 413.189
ISR 54 SVK 17 ISR 54 JOR 304 BTN 462 SVN 0.893 ISR 0797 | CHN 309.897
SAU 41 UKR 17 SAU 40 [ SGP. 268 TKM =~ 462  HUN | 0.889 SAU | 0781 | QAT = 302780
KWT 39 ARE 17 KWT 36 LBN 263 GEO ‘ 12 UKR | 086t | KWT 0688 TUR | 291915
SGP 34 ROU 16 SGP [ 34 SYR 263 MNG 462 BLR 0.826 [ EGY = 0618 GRC = 245949
PRT 29 GRC 16 TUR " BRN 260 MOZ 462 PRT 0819 | PAK | 0515 | ISR 240419
TUR 28 MDA 16 CHN 20 ISR 254 LAO | 462 ALB 0812 TUR = 0509 SGP = 232348
CHN 25 ALB 16 EGY 17 BHR 252 ARM 42 MDA | 0771 IDN | 0502  UKR = 199.650
GRC 24 BGR 15 GRC 17 cyYp 251 v | 4@ BGR | 0766 RQ | 0481  KWT 196153
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QAT 59 PRT 23 QAT 59 JOR 330 NPL 528 SVK 1 QAT 1 GRC 597.965
ISR 55 CZE 21 ISR 55 MYS 307 MNG | 528 | CZE 0.99 ISR 0839 QAT 441.811
ARE 49 SVK 18 ARE 49 BHR 294 STP 528 | HUN 0836 ARE 0763  OMN 424596
KWT 44 UKR [ 17 [ KWT = 42 SYR 285 GEO | 528 BLR 0832 | KWT 0681  CHN 325749
GRC 44 EST 17 GRC 39 LBN 285 ARM | 528 | UKR  0.802 EGY = 0674 | ARE 251.337
SAU 35 KAZ [ 16 SAU 34 ISR 280 BTN | 528 | PRT | 0786 SAU | 0626  KWT | 233838
SGP. 30 MDA 16 SGP 30 SGP 275 MDV | 528 | MDA 0733 GRC = 0539  UKR 214.623
PRT 27 BLR 15 | OMN | 21 IND 273 MOZ =~ 528 | SVN 0702 TUR 0523 | UZB 204.525
CZE 26 STP 15 CHN 19 cyp 267 CPV | 528 | POL 0.679 IRQ = 0512 | TUR 192856
RUS 25 GRC 15 CZE 17 IRN 266 LAO | 528 | LVA 0.663 IRN 0453 | ISR 191,597
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Threshold Hypothetical 1% 5% 10%

variable test threshold threshold threshold

ER Single threshold 5300 | 0.003 300 40718 22215 18454
Double threshold 3967 0.047 300 44,627 28316 21784
Three threshold 3482 0300 300 122504 82,696 67.737

L Single threshold 28378 | 0.000 300 32019 24577 20507
Double threshold | 8108+ | 0.000 | 300 [ 29324 20475 1 17.049
Three threshold i 0617 300 10732 97487 s

= and * denote statistical significance at 1%, 5%, and 10% level.
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(17234 (173.04) (-837.74)
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(1,715.75)
L2.PTE ~0303+
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Lk 1125
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1 (GTFP) 1I(PTE) 1I1(SE)
InEDI ~0.130°* 0022 00447+
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LInEDI 0,354 0.146%* ~0.040°+*
(27.90) (15.14) | (-7.56)
LGTEP 1138
(564.40)
L2.GTFP ~0.146"* I
(-79.06)
LPTE 1242
(740.85)
L2PTE 0237+
(-152.40)
LSE 1053
| (348.00)
L2SE 0055+
| (-17.66)
ER ~2729% ~2432% 0,668
(-8.66) (-1177) L
InTP ~0.004 0,037+ ~0.076"*
(-048) (382) | (2566)
RGDP 02474 0259 oo
(60.53) (86.72) | (2281)
15 ~0.033*% ~0.030% 0003+
(-1251) (-14.04) e
Constant ~0366" -0.091 0110
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AR (1) test 0.085 0.045 0017
AR (2) test s 0.103 Losst
Hansen test osw 0315 0184
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Province Evolution state Province Evolution state

Bejing 1 1 optimal Zhejiang 1 i optimal
Tianjing 4 1 | sub-optima Anhui ! 1 sub-optima
Hebei 1 1 optimal Fujian | ! 1 worst
Shanxi T 1 sub-optima Jiangxi T 1 worst
Neimenggu i 1 sub-optima Shandong | ! 1 worst
Liaoning 1 ! worst | Henan | T 1 optimal
Jilin 1 1 optimal Hubei ! 1 sub-optima
Heilongjiang i) 1 optimal Hunan T 1 optimal
Shanghai ¥ T sub-optima, Guangdong T T optimal
Jiangsu 1 1 sub-optima Guangsi T 1 optimal
Hainan T optimal Xeng |11 optimal
Chongging 1 1 optimal Shaanxi T 1 optimal
Sichuan i 2 sub-optima Gansu ! 1 worst
Guizhou 1 ! sub-optima Ningxia T il sub-optima
Yunnan 1 T optimal Xinjiang | ! 1 worst

Notes: 6 the proportion of carbon content of intermediate goods from other provinces in the total carbon content of intermediate goods in each province, ie.

s = ITZy ol (ITZy .y + DTZ,yy); Az The difference between the carbon emission intensity of intermediate goods produced in other provinces versus those produced within the
province, i.e. Ay = ITZy ! Zn ~ DTZyy /X, The symbol “T” denotes increasing state and the symbol “|” denotes decreasing state from 2012 to 2017. The unit of measurement for both
iabhie B pereatiin T8N
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Replace independent variables

Replace dependent variable

1 (GTFP) 1I(PTE) 11I(SE) \Y(e)]
InFDI 0098 0091+ ~0.034°+* 09347+

(~40.86) (-3764) (-279.04) (865)
LInEDI 0162 0133+ 0014+ ~2264%*

(108.03) (5938) (24.18) (-19.01)
LGTFP L144e%

(2:625.22)
L2GTFP 01544

(-392.29)
LPTE 1269

(3.481.54)
L2.PTE ~0255%*
(-546.15)
LSE 1099+
(1,529.79)
L2SE 0089
(-112.68)
LCEI 0.874"
(322.86)
L2.CEI 0,033+
(17.65)

ER 2079 ~1.509 0195 18418+

(-33.81) (-30.63) (-7.94) (1641)
InTP. 0082+ 0112+ 0059 0,895

(94.42) (84.21) (-83.90) (14.26)
RGDP 0239+ 02647 0035 1003+

(384.84) (361.42) (-75.50) (33.15)
1S 0029 ~00174 ~0002+%* 0,627

(-33.74) (-1737) (-879) (94.10)
Constant 03547 0752 ~0236"* ~6943+*

(481) (-14.53) (-7.89) (-24.54)
AR (1) test 0081 0056 0018 0.000
AR (2) test 0232 0115 0505 0445
Hansen test 0997 0999 0998 0.999
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Variables (1) (2) (3)
migint ~11.036 8.169
(-098) (0.66)
Inurban 5269 8348 11798
(0.67) (1.06) (1.09)
Inpop 3599 12367 6504
(042) (1.26) (0.56)
Ingsp 1277 -7824 8054
(0.15) (-0.79) (-0.70)
Ingsper -2.660 6816 8846
(-0.30) (0.66) (0.75)
Infci 0,290 -0327 ~0288*
(-238) (-2.74) (-1.87)
Inso, -0031 0005 0.096
(-047) (-0.08) (L12)
Inrd 0066 0.105 ~0010
(0.74) 117) (-0.11)
migdom 75507 -45323
(-1.66) (-087)
Constant ~14.860 ~156.045 150188
(-0.11) (-0.98) (:0.79)
N 39 39 42

Note: Robust standard errors in brackets; ***, ** and * denote significant at the 1%, 5% and 10% levels respectively.
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Constant o206 16340 0206 0545+ ~1.080+* e
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Variables (L )

migint -98.297* -76322
7 (-192) [ | (-1.65)
Inurban 8143 -18.021 ~131.631%%
(0.12) [ (-0.20) [ (-279)
Inpop 126001% 87.726 141933+
(191) 137 (2.40)
Ingsp -99.251 [ -63.310 131065
(-1.55) [ (-1.01) (-224)
Ingsper 113861 70399 124358+
(1.67) (1.08) (2.04)
Infei 0428 0377 0351
(-:033) [ (-:028) [ (0.34)
Inso, 0408 0089 0696
(-051) [ (0.11) [ (-0.89)
Inrd -0211 0305 0836
(-041) [ (-0.55) (-207)
migdom 380405 47656
[ (-0.93) [ (-032)
Constant ~1,788.873 ~1,075811 ~1229873
(-183) [ (-1.14) (-157)
N 6 6 | 70

Note: Robust standard errors in brackets; ***, ** and * denote significant at the 1%, 5% and 10% levels respectively.
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ER 1161 0.520 | 00900 0230 0740
IL 1161 omo io.m o 3320
LNTP 1161 s 270 o 1272
RGDP 1161 300 a0 -15.4 2
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1) )
mig_int mig_dom
migint 00157
(0.0595)
migdom ~1.578%
(0.513)
Lco, 0.457° 0719
0242) (0.163)
Ingsp 1.206 -3.698
(4.191) (4.009)
Ingspper 0.261 4482
(4.147) | (4.229)
Inurban 1540 ~00251
(2795) (2.796)
Infei ~0346* -0212
(0.163) (0.120)
Inpop -0744 3983
(3978) (4.044)
Inrd ~0.00863 00167
(0.0385) (0.0381)
Inso, -000197 00189
(0.0319) | (0.0242)
_cons. -12.63 [ -2672
(1332) (13.26)
N 104 [ 104






OPS/images/fenvs-12-1389876/fenvs-12-1389876-t001.jpg
Variable Code Variable description

Green Total Factor Productivity | GTFP | GTEP index measured according to formula (1)

Technological Progress Index | PTE  Index of technological progress derived from the decomposition of GTEP, measured according to formula (2)
Technological Efficiency Index | SE Index of technological efficiency derived from the decomposition of GTFP, measured according to formula (3)

Direct Investment from China | InFDI | Stock of FDI from China in the country

Environmental Regulation ER Mean of three scores related to environmental protection and pollutant management in the Environmental Performance Index
Innovation Level L Average number of patent applications per thousand residents

Technological Progress IWTP Total mumber of patent applications by residents

Economic Growth Indicator RGDP | GDP growth (annual %)

Industrial Structure Is Industry (including construction), value added (% of GDP)
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Variables @ )

migint 0047 0010
(L1 (0.33)

Inurban 9237 7.732% ~0927
(2.68) (@18) ‘ (-0.29)

Inpop 0928 1048 1.726"
(1.47) (1.65) (2.50)

Ingsp 0461 0192 -1.823+
0.72) (0.30) (-3.54)

Ingsper 21197 2376 36310
(3.60) (4.05) (6.17)

Infei 0570 0553+ 0420
(-9.69) (-937) (-749)
Inso, 0037 0.039 0016
(124) (1.34) | (049)

Inrd 0028 0.037 ~0032
(0.68) 0.92) 7 (-0.85)

migdom ~0358* ~0253*
(-171) (-1.73)
_cons ~47.720 ~40776" 3.183
(-3.02) (-251) (023)

N 104 104 12

Note: Robust standard errors in brackets; ***, ** and * denote significant at the 1%, 5% and 10% levels respectively.
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Serial numbel Frequency Centrality Vintages Institutions
1 148 0.62 2009 Carbon emission
2 81 04 2010 Low carbon agriculture
3 16 023 2010 Carbon reduction
4 32 0.09 2011 China
5 31 011 2012 Influence factor
6 27 0.06 2021 Carbon neutrality
7 26 0.08 2012 Agriculture
8 25 01 2014 Planting industry
9 23 0.02 2021 Carbon peaking
10 18 0.14 2010 Greenhouse gasses
1 17 0.07 2010 Climate change
12 17 0.01 2011 Regional differences
13 15 0.08 2009 Carbon sequestration and emission reduction
14 15 0.02 2017 Animal husbandry
15 15 0.03 2011 Spatial-temporal features
16 14 0 2010 Factor decomposition
17 12 0.02 2018 Carbon footprint
18 12 0.02 2009 Carbon sink
19 12 0.07 2009 Reduction
20 11 0.01 2013 Carbon absorption
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Serial number

Frequency Cel

Ins ons

1 6 001 2011 School of Economics and Management, Huazhong Agricultural University

2 2 0 2012 School of Business Administration, Zhongnan University of Economics and Law

3 20 0 2011 Hubei Rural Development Research Center

4 15 001 2011 School of Economics and Management, China Agricultural University

5 14 0 2015 School of Management, Sichuan Agricultural University

6 1 001 2009 Institute of Geographic Sciences and Resources, Chinese Academy of Sciences

7 1 001 2014 University of Chinese Academy of Sciences

8 10 0 2011 School of Economics, Central South University for Nationalities

9 10 0 2012 School of Economics and Management, Nanjing Agricultural University

10 10 001 2011 Institute of Agricultural Economy and Development, Chinese Academy of Agricultural Sciences

1 10 0 2012 School of Economics and Management, Northeast Forestry University

12 8 0 2010 Institute of Agricultural Resources and Agricultural Regionalization, Chinese Academy of
Agricultural Sciences

13 8 0 2018 School of Economics and Management, Northwest A&F University

14 7 0 2014 School of Economics and Trade, Xinjiang Agricultural University

15 6 0 2016 School of Economics and Management, Shandong Agricultural University

16 6 0 2021 School of Economics, Guizhou University

17 5 0 2017 School of Economics and Management, Nanchang University

18 5 0 2009 Graduate University of Chinese Academy of Sciences

19 5 0 2013 School of Economics and Management, Northeast Agricultural University

20 5 0 2013 Institute of Rural Development, Chinese Academy of Social Sciences
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Serial number Frequency Centrality Vintages Author
1 36 0 2011 Tian et al.
2 35 0 2011 Zhang et al.
3 13 0 2015 He et al.
4 2 0 2014 Wu etal.
5 1 0 2011 Lietal
6 8 0 2014 Dai et al.
7 7 0 2014 Suetal.
8 6 0 2015 Cheng et al.
9 5 0 2005 Pan et al.
10 5 0 2018 He et al.
1 5 0 2017 Wuetal.
2 4 0 2014 Wau etal.
13 4 0 2023 Zhang et al.
14 4 0 2019 Yang et al.
15 4 0 2014 Ma et al.
16 4 0 2014 Yuan et al.
17 4 0 2016 Tang et al.
18 4 0 2009 Lietal
19 4 0 2020 Wu etal.
20 4 0 2023 Ji etal.
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Citation Title of publication Author(s) Year of

frequency publication

1 1,054 Spatiotemporal Characteristics and Influencing Factors of Carbon Emissions from | Li Bo et al. 2011
Agriculture in China

2 488 Research on Carbon Emissions from Agriculture in China: Calculation, “Tian Yun et al. 2012
Spatiotemporal Comparison, and Decoupling Effects

3 476 Analysis of Carbon Emission Effects from Different Land Use Methods in Jiangsu | Li Ying et al. 2008
Province

4 433 Provincial Agricultural Carbon Emissions in China: Calculations, Efficiency Changes, | Wau Xianrong et al. 2014

and Influencing Factors—Based on the DEA-Malmquist Index Decomposition
Method and Tobit Model Application

5 328 Research on Agricultural Carbon Footprint: A Case Study of Zhejiang Province | Huang Zuhui et al. 2011

6 318 An Empirical Analysis of the Decomposition of Factors Contributing to Carbon | Li Guozhi et al. 2010
Emissions from Energy Consumption in Agriculture in China—Based on the LMDI
Model

7 266 ‘The Structure, Efficiency, and Determining Mechanisms of Agricultural Carbon | Zhang Guangsheng 2014
Emissions in China etal.

8 261 Study on the Variations of Net Carbon Effects in Agricultural Production in China | Tian Yun et al. 2013

9 231 An Empirical Study on Carbon Emissions and Economic Development in Chinese | Li Bo et al. 2011
Agriculture

10 209 Driving Green Transformation in Agriculture with Low Carbon: Characteristics of | Jin Shu tai et al. 2021

Carbon Emissions in Chinese Agriculture and Its Mitigation Pathways
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Mode (1) Mode (2)

The result of the real model Model results after excluding northeast China
treat;* period, 0.0420%
(3.490)
treat]™* period, 00313+
[ (2.561)
Inky 0.0794+* 00795+
(15.463) [ (14910)
Indebt;, | 0.0986+ 00998+
(15.847) [ (15.090)
Inpiyy | 0.1180% [ 01183+
(50.568) [ (48.694)
subj, | 0.0117* [ 0.0097
(1673) [ (1.366)
Inly 02607 | 02560
(28.403) (27.048)
Cons 7.2288** [ 7.2484%*
(82.679) [ (78.825)
Individual effect Yes [ Yes
Time effect Yes Yes
R2 0946 0.946
Observations | 43870 40939

Bhnci, Bk s il
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Model (1) Model (2) Model (3)
High-dimensional regression Fixed effects panel regression OoLS
treat;* period, 00420 00420+ 00420+
(3.490) (2.693) (3:339)
Ink, 00794+ 00794+ 00794+
(15.463) (13.414) (14.795)
7 Indebty 00986+ 00986+ 0.0986+
(15.847) (13.599) (15.162)
Inpiy 01180 0.1180"* 01180+
(50.568) (42816) (48.384)
suby 00117 00117 00117
(1.673) (1.523) (1.600)
Inly 02607+ 02607+ 02607+
(28.403) (22.108) (27.176)
Cons 72288 65580+ 65580
(82.679) (65.582) (75421)
Individual effect Yes Yes Yes
Time effect Yes Yes Yes
Regional effect Yes Yes Yes
R2 0.950 0622 0950
Observations 43870 47921 47921

Note: Four valid values are reserved for parameter estimation after decimal points. The contents in () are statistics, and three significant digits are reserved after the decimal point. ***, ** and *
pereestit Signibicanics Toveli of 19, 5% aud 108 reaectively. Tho followise table i this same.
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Variables Sample amount Average value NEEI R mum value Maximum value

Inyy 61000 1108 1512 0.693 1801

treat; ‘ 61000 0303 | 0459 0 1

» period, 61000 0508 0500 0 1
Inky 61000 9.649 | 1911 [ 0 [ 1720
Indebty | 61000 1019 1775 0 1702
Inpiy 48000 7493 2590 0 | 1566

suby 61000 0.164 0371 0 1
Inly, 61000 5271 | 1151 [ 0 [ 1034

S i Soea tlinee skmsiciict Ram albes Thi decaral piot. This tvble o calouvied by the-autlios using Samdis
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Variables Meaning of variables Calculation method

Inya ‘The actual output value of energy enterprises ‘The natural log of the real output of the firm
treat, | The weatment group of virtual varibles | Virtual variables (0,1)
period, Processing dummy variables Virtual variables (0,1)

Ink; Enterprise fixed asset investment level Natural logarithm of total investment in fixed assets of enterprises after depreciation (PIM)
Indebt; Enterprise debt level ‘The natural log of the level of enterprise debt

oty | Net profit of enterprise ‘The natural logarithm treatment of the total profit of the enterprise after deducting taxes in the current

period
suby Whether the enterprise receives government Virtual variables (0,1)
subsidies
Inly Labor input of enterprises ‘The natural logarithm of the annual average employee input of an enterprise

LR il
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-045 | (-071)
InTP -0233 0383
(-125) (-1.49)
RGDP 0111 0113
-43 388
1 0.036 005
=LA -1.08
LInFDI (REC<0.6584) 0393
-391
LInFDI (0.6584<REC<0.9471) 0281+
414
LInFDI (REC>0.9471) -0175
(-0.84)
LInFDI (R&D/GDP<1.1097) 0239+
-295
LInFDI (1.1097 < R&D/GDP<2.5976) 02314
-294
LInFDI (R&D/GDP>2.5967) 04420
-5.07
Constant 8477 41288
~039 -139

“**,**,and * denote statistical significance at 1%, 5%, and 10%, respectively. Corresponding
T-statistics for regression coefficients are in parentheses.
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“**,**,and * denote statistical significance at 1%, 5%, and 10%, respectively. Corresponding
T-statistics for regression coefficients are in parentheses.
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Province Avalue, carbony, Evolution state Province Evolution state
g 1 1 sub-optimal 1 1 sub-optimal
Tjianjing T 1 sub-optimal 1 1 optimal
Hebei 1 1 sub-optimal Fujian 1 1 sub-optimal
Shanxi T 1 optimal Jiangxi 1 1 sub-optimal
neimenggu 1 T worst Shandong T % sub-optimal
Liaoning ! g worst Henan ! ! sub-optimal
Jilin 1 1 worst Hubei 1 1 sub-optimal
Heilongjiang T 1 sub-optimal Hunan 1 ! sub-optimal
Shanghai i 1 sub-optimal Guangdong 1 1 optimal
Jiangsu T 1 optimal Guangxi L i worst
Hainan i} 1 sub-optimal Xizang i 1 sub-optimal
Chongging ! 1 sub-optimal Shaanxi 1 1 sub-optimal
Sichuan ! ! sub-optimal Gansu 1 T sub-optimal
Guizhou 1 1 optimal Ningxia 1 i§ worst
Yunnan ! ! sub-optimal Xinjiang 1 1 worst

Notes: The net supply of carbon is denoted as Acarbor, which i the total supply of carbon minus the total demand of carbon in each province, the unit of measurement is million tonnes (MT).
The added-value gains is denoted as Avalue,, which is the total added-value gains minus the total added-value expenditure in each province, the unit of measurement is RMB million. The

symbol “” denotes the variable with increasing state and the symbol “|” denotes the variable with decreasing state from 2012 to 2017.
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Province Evolution state Province Evolution state

Bejing T 1 optimal Zhejiang 1 i worst
Tjianjing i 1 | worst Anhui ! i sub-optimal
Hebei 1 ! sub-optimal Fujian | T 1 worst
Shanxi 1 1 sub-optimal Jiangxi T 1 optimal
Neimenggu i 1 optimal Shandong | T 1 worst
Liaoning T i worst | Henan | ! il sub-optimal
Jilin T worst Hubei T by worst
Heilongjiang i) 1 worst Hunan T 1 worst
Shanghai T T worst Guangdong T T worst
Jiangsu i 1 sub-optimal Guangxi T 1 optimal
Hainan T | 1 worst Xizang | 1 [ i | sub-optimal
Chonging i 1 sub-optimal Shaanxi 1 i optimal
Sichuan 1 1 sub-optimal Gansu ! 1 sub-optimal
Guizhou 1 ! sub-optimal | Ningxia T il optimal
Yunnan 1 1 sub-optimal Xinjiang | 1 ik worst

Notes: f.: the proportion of carbon content of intermediate goods from other provinces in the total carbon content of intermediate goods in each province, ic.
O = ITZsnd (ITZyy o + DTZ;;); Dy: The difference between the carbon emission intensity of intermediate goods produced in other provinces and those produced in the province, i.e.
i = ITZynlZppsn = DTZyy .l X . The symbol “1” denotes the variable with increasing state and the symbol “|” denotes the variable with decreasing state from 2012 to 2017. The unit of
measurement for both variables is percentage (%).
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Inly 02742 02854 02081
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Individual effect Yes Yes Yes
Time effect Yes Yes Yes
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Continents Variable EN CO, CMIC GDPC IVA
REN 1.000
EAS co2 0442+
SES 0,408+
ECA 0,138+
MENA 0243+ 1000
EAS e 0072 ~0.620°*
SES 0076 0036+
ECA 0032 014144
MENA 0,176+ 03740 1.000
EAS e 02120 0783+ ~0618*
SES 0,440 0759 0176
ECA 0,104+ 09220 0190
MENA 0174 0,888 030744 1.000
EAS GDPC 0,159 0778 ~0572% 0911+
SES 0,267+ 0,892+ 0142 0727+
ECA ~0285"* 0,399 0138 0385+
MENA 0,190+ 0,882 0,480 07347+ 1.000
EAS VA 0,696 0,405+ 0135 0239+ 0078+
SES | 0229 0713 0274 0290+ 0529+
ECA 04220 0225 0,163 0243+ ~0258°*
MENA 0,642 0,633+ 023474 0539+ 0469+ 1.000
EAS | ERE 024444 0,653+ ~0476* 0,685+ 0591+ 03747
SES 0.069** 0756 ~0291%% 02350+ 0708+ 0793+
Eca 03590 0,139 0,114+ 0,030+ 0.029% 0262+
MENA 0359 04340 0110 0414+ 0376+ 0461+ 1000

The definition of the variables is provided in Table 1. *** defines the levels of statistical significance at 1%; **, 5%; *, 10%.
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A 03607+ 2380 o788 o675+ 23800 Lo 5o -l RETIE 0747 a3 0742
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Ordinary  Huber-White Ordinary  Huber-White Ordinary ~ Huber-White Ordinary ~ Huber-White

REN 30977 3093+ 17| 378 020 2a3 | 220w 2623 1215 7o 2506 20150
o, 1860 1720 0935° 0192 o314 0221 2675 2409 L s 2030 Lo
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The definition of the variables is provided in Table 1. ** defines the level of statistical significance at 1% **, 5% *.





OPS/images/fenvs-12-1396288/inline_27.gif





OPS/images/fenvs-12-1405001/fenvs-12-1405001-t002.jpg
Variable Mean Median Maximum  Minimum Standard deviation = Skewness Kurtosis Jarque Bera

REN 0914 0312 1952 | 0.001 1095 0335 0917 3476
co, [ 0808 0644 1827 ‘ -1.796 0.887 [ 0506 1254 4233
cMIC 1294 1270 1753 ‘ 0.001 1.020 ~0.256 0503 1913
EPC 3363 3196 4342 | 1939 3397 0.443 1171 4042
GpPC 4056 3680 5.056 | 2376 4.185 0371 1.002 3665
VA | 1529 1485 2330 ‘ 0783 1197 0479 1411 4555
FFE 1.893 1935 2000 ‘ 0219 1367 -1218 0.600 2649

Variable’s definition is provided in Table 1.
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Variable

escription

REN Renewable energy (metric tons per capita) It is renewables’ share of the TPES

c0, CO, emissions (metric tons per capita) Burning fossil fuels and making cement produce CO, emissions. It includes solid, liquid,
and gas fuel use and gas flaring

cMIC CO emissions from manufacturing industries and construction (% | CO; emissions from manufacturing and construction includes fuel combustion

of total fuel combustion) emissions

EPC Energy use per capita (kilograms of oil equivalent per capita) Electric power per $1,000 GDP

GDPC GDP per capita growth (constant 2010 USS) GDP per capita is divided by midyear population. GDP is the total of all resident
producers’ gross value added plus product taxes and minus product subsidies

VA Industry value added (% of GDP) Manufacturingis in ISIC divisions 05-43. It includes mining, construction, power, water,
and gas

FEE Fossil fuel energy consumption (% of total) Fossil fuels are non-renewable since they require millions of years to generate and

Data availabil;

0, emissions, CMIC, EPC, GDPC, IVA, and FFE statistics from World Bar

supplies dwindle fast

EN from the Intergovernmental Econor

Organization (IEA).
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