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Toxicogenomics combines the use of toxicology and genomic sciences to 
elucidate chemical, toxic and environmental stressor effects on biological systems. 
Integrative toxicogenomics requires innovation in bioinformatics, statistics and 
systems toxicology and typically a combination of the utility of two of more of these 
disciplines to better understand molecular mechanisms involved in toxic responses. 
This Frontiers in Toxicogenomics Research Topic eBook focuses on integrative 
toxicogenomics more so at the late stage (analyzing each data set separately and 
then merging the results ) and brings together analyses that combine gene expression 
(microarray, TempO-Seq or RNA-Seq) with other data (biological assays, clinical 
chemistry, therapeutic categories or molecular pathways) or highlights data analytics 
that leverage bioinformatics and statistics. The eight articles illustrate the state-of-art 
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in the field and the analysis of toxicogenomics data for a more comprehensive 
deduction of biological mechanisms and cellular functions associated with adverse 
outcomes from environmental exposures, chemicals and toxicants. However, it is 
clear that the field of integrative toxicogenomics needs considerably more attention 
paid to it in order to develop other clever ways of integrating the data for analysis. 
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Editorial on the Research Topic

Integrative Toxicogenomics: Analytical Strategies to Amalgamate Exposure Effects With

Genomic Sciences

Since the advent of toxicogenomics (TGx; Afshari et al., 1999; Nuwaysir et al., 1999), the expectation
of its foreseeable impact to risk/safety assessment has given way to the reality that there is much that
still needs to be done to realize its full potential. One of the advancements is in the area of integrative
TGx which is focused on amalgamating (i.e., merging) diverse data resources with TGx data to
gain a comprehensive understanding of toxicology. This requires innovation in bioinformatics,
statistics and systems toxicology and typically a combination of the utility of two of more of these
disciplines. In addition, integration of data takes place at one of three stages (Bushel, 2016): (1)
early—combining separate data into a single matrix and analyzing it, (2) intermediate—keeping
the data separate and applying a separate analytic function to each followed by combining of the
functions or (3) late—analyzing each data set separately and thenmerging the results. This Frontiers
in Toxicogenomics Research Topic focuses on integrative TGx at the late stage and brings together
analyses that combine gene expression (microarray, TempO-Seq or RNA-Seq) with other data
(biological assays, clinical chemistry, therapeutic categories or molecular pathways) or highlights
data analytics that leverage bioinformatics and statistics. The eight articles illustrate the state-of-art
in the field and the amalgamation of TGx data or incorporation of analytical methodologies for
a more comprehensive deduction of biological mechanisms and cellular functions associated with
adverse outcomes from environmental exposures and toxicants. However, it is clear that the field
of integrative TGx needs considerably more attention paid to the merging and analysis of the data
at the early and intermediate stages.

Dose-response and time-dependency are key features in toxicology. Nowadays, TGx study
designs can easily incorporate at least one of these two features to assess gene expression-
based point-of-departure and/or early biomarkers. Zhang et al. assess the toxic effect of doses of
Zearalenone on cultured donkey granulosa cells (dGCs) by interrogating gene expression data
from RNA sequence (RNA-Seq) analysis and visualization of apoptosis through a tunnel assay.
The integrative analysis of the gene expression data, RT-qPCR and immunofluorescence staining
of dGCs supports the dysregulation of apoptosis-related genes and induction of ovarian cancer-
related genes via the PTEN/PI3K/AKT signaling pathway. Liu et al. leverage a previously developed
methodology called pair ranking (PRank) to compare three preclinical rat TGx microarray data
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sets for assessment of in vitro to in vivo extrapolation. They
show that there was a high degree of agreement between the in
vivo assay systems (24 h and 28 days) and similarity between the
in vitro and the 28 days in vivo systems suggesting that a short-
term in vivo assay system might be practical for some endpoints
in order to save time and resources for drug safety evaluation
and risk assessment. In addition, Souza et al. reverse engineer
gene regulatory networks using in vitro human microarray
gene expression data to reveal dose-dependent, chemical-specific
mechanisms of action in stress-related biological networks.
Although gene expression microarrays and RNA-Seq have a
solid presence in certain areas of application, TGx studies have
begun to explore targeted sequencing using the templated oligo
sequencing detection assay (TempO-SeqTM). House et al. report a
bioinformatics pipeline to analyze dose-response gene expression
data profiled with TempO-Seq in induced pluripotent stem
cell-based cardiomyocytes. TempO-Seq has drawn significant
attention in the TGx community due to its low cost, high
throughput and easy to operate.

One of the most extensive applications of TGx is to gain
an improved understanding of underlying mechanisms of
treatment. While molecular initiative events for many chemicals
are well-studied, their modes-of-action (MOAs) remain to
be determined. Using RNA-Seq data for the aforementioned
purpose can be challenging given the inherent noise. Lozoya et al.
presents a leveraged signal-to-noise ratio (LSTNR) thresholding
method to identify differentially expressed genes and reveal
gene expression patterns especially from samples with very few
replicates. Using their method to analyze RNA-Seq rat liver data
generated through the MicroArray Quality Control phase III
(MAQC3) SEquence Quality Control (SEQC) TGx study, they
show that many of the chemicals cluster by MOA and that there
are several genes that appear to function as biomarkers specific
for chemicals with similar MOA. In addition, Hawliczek-Ignarski
et al. investigate whether TGx profiles are able to group chemicals
by MOA. As a proof-of-concept study, they tested the hypothesis
with data generated after in vitro exposure of an established cell

line to group chemicals with an uncoupling MOA. Furthermore,
Funderburk et al. describe a weighted network analysis of rat liver
gene expression from in vivo studies involving chemicals from
several known MOAs (SEQC TGx study). They demonstrate
that overlaps in toxicologic pathways by chemicals with different
MOAs (receptor-mediated vs. non-receptor-mediated) reveal
points of potential crosstalk between regulatory pathways.

Like mRNAs, microRNAs (short, non-coding RNA molecules
roughly 22 nucleotides) are important in toxicology research as
well because they are known to regulated gene expression (Bartel,
2004). Bisgin et al. evaluate bioinformatic tools and parameters
for RNA-Seq analysis of microRNAs from the livers of rats
exposed to thioacetamide at multiple doses and time points. They
conclude that variation in the hairpin loop of microRNAs is
small relative to the treatment effect and that normalization of
the data introduced a large variation in differentially expressed
microRNAs. In addition, they indicate that the miRDeep2
analysis tool was preferable over the other choices.

From this small collection of articles, the power and promise
of integrative toxicogenomics may seem reassuring. The desire
is that as toxicogenomic studies broaden in scope and design,
and the complexity of the data increases exponentially, new
cutting-edge research and development of novel methodologies
to manage, integrate, and analyze massive amounts of data will
continue to evolve.
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Dose and Time Dependencies in
Stress Pathway Responses during
Chemical Exposure: Novel Insights
from Gene Regulatory Networks
Terezinha M. Souza*, Jos C. S. Kleinjans and Danyel G. J. Jennen

Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht,
Netherlands

Perturbation of biological networks is often observed during exposure to xenobiotics,
and the identification of disturbed processes, their dynamic traits, and dose–response
relationships are some of the current challenges for elucidating the mechanisms
determining adverse outcomes. In this scenario, reverse engineering of gene regulatory
networks (GRNs) from expression data may provide a system-level snapshot embedded
within accurate molecular events. Here, we investigate the composition of GRNs
inferred from groups of chemicals with two distinct outcomes, namely carcinogenicity
[azathioprine (AZA) and cyclophosphamide (CYC)] and drug-induced liver injury (DILI;
diclofenac, nitrofurantoin, and propylthiouracil), and a non-carcinogenic/non-DILI group
(aspirin, diazepam, and omeprazole). For this, we analyzed publicly available exposed
in vitro human data, taking into account dose and time dependencies. Dose–Time
Network Identification (DTNI) was applied to gene sets from exposed primary human
hepatocytes using four stress pathways, namely endoplasmic reticulum (ER), NF-κB,
NRF2, and TP53. Inferred GRNs suggested case specificity, varying in interactions,
starting nodes, and target genes across groups. DILI and carcinogenic compounds
were shown to directly affect all pathway-based GRNs, while non-DILI/non-carcinogenic
chemicals only affected NF-κB. NF-κB-based GRNs clearly illustrated group-specific
disturbances, with the cancer-related casein kinase CSNK2A1 being a target gene only
in the carcinogenic group, and opposite regulation of NF-κB subunits being observed in
DILI and non-DILI/non-carcinogenic groups. Target genes in NRF2-based GRNs shared
by DILI and carcinogenic compounds suggested markers of hepatotoxicity. Finally, we
indicate several of these group-specific interactions as potentially novel. In summary, our
reversed-engineered GRNs are capable of revealing dose dependent, chemical-specific
mechanisms of action in stress-related biological networks.

Keywords: gene regulatory networks, network inference, toxicity pathways, hepatotoxicity, transcription
networks

INTRODUCTION

In the last few years, investigation of biological processes disturbed by chemical exposure and its
potential adverse effects has become the main goal in toxicological assessments targeting hazard
identification and/or drug development. This strategy encompasses two steps: the first being
the identification of such processes/pathways and the second, the estimation of dose–response,
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dynamic relationships that may define the boundaries between
adaptive and adverse responses (Bhattacharya et al., 2011;
Middleton et al., 2017).

Although a substantial amount of mechanistic information
has been gained from applying high-throughput (HT)
technologies (e.g., transcriptomics, proteomics, and
metabolomics) to exposed in vitro models, the ability of
current methods to address the aforementioned challenges
has proven insufficient. Take, for instance, pathway analysis –
omnipresent in HT studies as means to identify biological
processes affected across different conditions. First, functional
annotation does not reflect the diversity of the human genome,
with the repertoire of pathways across multiple databases
being either comprised of general processes (e.g., metabolism,
signaling) or very specific responses (e.g., drug-related pathways)
(Khatri et al., 2012). The choice of arbitrary thresholds for fold
change and/or statistical significance, as well as stratification of
the input gene list by direction of expression are an additional
source of variation that influence the output qualitatively and
quantitatively.

A more realistic portrayal potentially loaded with novel
mechanistic insights can be achieved by reversely engineering
gene regulatory networks (GRNs) using expression data; in
contrast to pathways, GRNs are case specific, referencing multiple
types of physical and biochemical interactions among genes
and gene products (Madhamshettiwar et al., 2012), allowing
more detailed investigations by not (or minimally) relying on
prior knowledge. Previous investigations have attempted to
extract novel biological information from GRNs, the majority
focusing on the predictive value of (sub)networks and their
potential use as biomarkers (Schadt, 2009; Emmert-Streib
et al., 2014), which led to the discovery, for instance, of
striking dissimilarities between networks of smokers with
and without lung cancer (Wang et al., 2011). More than
molecular snapshots of a specific phenotype, GRNs are important
instruments to investigate the interface genotype–environment
(i.e., diet, drugs, and chemical exposure). Early studies with
Saccharomyces cerevisiae have shown that network interactions
undergo critical changes after challenging with a DNA damaging
agent, leading to extensive network rewiring (at least 70%
out of 80,000 tested genetic interactions) (Bandyopadhyay
et al., 2010). Other recent investigations employing low-
throughput gene expression data further indicated that gene–
gene interactions, although compound specific to some extent,
show similar patterns resembling toxic properties across
different chemicals – and incorporating interaction data into
classification algorithms increase prediction accuracy (Yamane
et al., 2016).

Recently, our research group has developed and validated a
tool for inferring GRNs from HT gene expression data during
chemical exposure, taking possible time and dose dependencies
into account (Hendrickx et al., 2016). By using ordinary
differential equations (ODEs), this method establishes a causal
link between external perturbations and gene–gene interactions
within a particular biological process, in addition to identifying
potentially novel interactions. In this study, we aimed to extract
mechanistic information from chemical-induced toxicity by

reversely engineering GRNs using HT gene expression data.
For this, we compare GRNs inferred from groups of chemicals
with distinct adverse effects, namely carcinogenicity and drug-
induced liver injury (DILI), to those generated by exposure
to non-adverse compounds. Through the reconstruction of
gene–gene interactions from four stress-related pathways (TP53,
ER, NRF2, and NF-κB), we aimed to gather causal evidence
for dose dependent, dynamic, and potentially novel biological
information related to chemical exposure.

MATERIALS AND METHODS

Dose–Time Network Identification (DTNI)
Method
Dose–Time Network Identification (DTNI) is a method
for inferring network interactions among genes through
ODEs that relate changes in gene expression over time
and dose and an external perturbation. DTNI requires
measurements from multiple doses and time points – not
necessarily sampled at equal intervals – and expression
values of a reduced gene set (preferentially less than 100
genes). DTNI can be applied to single chemicals but also
allows the use of group-wise approaches – in which a
consensus network is inferred for multiple compounds.
A detailed description of the method, its validation, and script
availability for MATLAB is described elsewhere (Hendrickx et al.,
2016).

Chemical Selection
In order to link network changes to chemical effects, we targeted
compounds with well-known (adverse) effects in humans.
We opted for three groups, two with different mechanisms
of toxicity – carcinogenicity and DILI – and one with no
weight of evidence for human carcinogenicity or DILI. Since
DTNI requires datasets with a minimum of three doses and
three time points, we used the Japanese database TG-GATEs
(Toxicogenomics Project-Genomics Assisted Toxicity Evaluation
system1). TG-GATEs contains microarray data of hundreds of
compounds, generated in vitro (human and rat) and in vivo
(rat), tested at multiple doses and time points. We therefore
mined TG-GATEs for compounds matching the criteria of
full availability of sets (i.e., both replicates and all doses/time
points) and specific classification regarding carcinogenicity
or DILI. To also avoid methodological biases, we aimed
to create groups with fairly equal number of compounds;
based on these constraints, the carcinogenic group comprised
two chemicals [azathioprine (AZA) and cyclophosphamide
(CYC)], while DILI (diclofenac, propylthiouracil, and
nitrofurantoin) and non-carcinogenic/non-DILI (diazepam,
omeprazole, and aspirin) groups contained three chemicals
each (Table 1). Table 1 contains detailed information on
chemicals and evidence for their inclusion in their respective
groups.

1toxico.nibiohn.go.jp/english/
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TABLE 1 | Description of chemical groups used to infer gene regulatory networks
(GRNs).

Chemical abstracts

service (CAS) Group Evidence for inclusion

Azathioprine (446-86-6) Carcinogenic Classified as carcinogenic to

Cyclophosphamide
(6055-19-2)

humans by international agency
for research on cancer (IARC)

Diclofenac (15307-86-5) DILI Use is associated with

Nitrofurantoin (67-20-9) risk of acute liver injury1

Propylthiouracil (51-52-5)

Aspirin (50-78-2) Non-DILI/non- Clinical cases of acute

Diazepam (439-14-5 carcinogenic liver injury are very rare1

Omeprazole (73590-58-6) Not classifiable or not classified as
to its carcinogenicity by IARC

1 Information obtained from LiverTox database (livertox.nih.gov).

Preprocessing of In Vitro Microarray
Datasets
Raw files from each chemical set were downloaded from
TG-GATEs2 and preprocessed (background correction, log2-base
transformation, and normalization) through R scripts provided
on ArrayAnalysis (arrayanalysis.org) (Eijssen et al., 2013). Probes
were annotated using customCDF version 19 with Entrez
identifiers. To obtain differentially expressed genes (DEGs),
we used the R package LIMMA to perform moderated t-test
comparing mean intensities from exposed and time-matched
controls in all three doses tested. Detailed information from
datasets used in this study (accession numbers from microarrays
and respective compounds/dose/time points) is available on
Supplementary Data 1.

Selection of Biological Networks to Be
Assessed by DTNI
Given our goal to identify common features underlying (non-
)toxic mechanisms across chemicals, and DTNI’s requirement
for reduced gene sets, we opted for a group-wise approach for
evaluating how carcinogenic, DILI, and non-carcinogenic/non-
DILI compounds may (differentially) affect networks involved
in toxicological responses. Our selection involves known stress
pathways indicative of DNA damage (TP53), oxidative stress
(NRF2), endoplasmic reticulum (ER) stress, and inflammation
(NF-κB). From KEGG, we retrieved gene components from
pathways ER (166 genes, of which 158 were present in normalized
sets), TP53 (69 genes, of which 68 were present in normalized
sets), and NF-κB (94 genes, of which 89 were present in
normalized sets) – entries hsa04141, hsa04115, and hsa04064,
respectively. NRF2 genes (143, of which 126 were present
in normalized sets) were obtained from WikiPathways (entry
WP2884) (the list of genes for each pathway can be found in
Supplementary Data 1).

To gain insights into the activity of these pathways in the
groups tested, we performed an additional pathway analysis with

2toxico.nibiohn.go.jp/

all DEGs (FDR < 0.05 without fold change thresholds) from
each chemical using the database ConsensusPathDB (CPDB) and
its overrepresentation analysis tool (q-value < 0.05) (Kamburov
et al., 2013).

Network Inference of Selected Networks
through DTNI
For DTNI, we used scripts developed for use on MATLAB
(Hendrickx et al., 2016). For this, we used log2-transformed
ratios from all chemicals within each group as input file.
Then, we performed leave-one-out cross validation (LOOCV)
by excluding data from one compound at a time before
performing a new DTNI. In all cases, parameters from
DTNI were left as default, with a threshold for interaction
strength (p-value) set to 0.05. The final network for each
pathway within a chemical group was obtained after
determining the intersection among the DTNIs (i.e., all
chemicals and LOOCVs). The consensus network for
NF-κB in the DILI group, for instance, was generated
after overlapping the results from DTNI with all three
compounds plus LOOCVs (with a total of four different
runs). Cytoscape was used to generate and visualize the
networks.

Comparison of GRNs across Groups of
Chemicals: Biological Significance
To assess differences across networks generated by DTNI,
we considered four aspects of the inferred GRNs: direct
perturbations to the pathway being analyzed, number
of interactions, genes involved, and overall direction of
expression (up- or downregulation). Furthermore, while
starting nodes (i.e., nodes with only outgoing interactions)
may be used as basis to investigate potential molecular
initiating events (MIEs), target genes may offer a clue
to potential downstream effects. Therefore, those two
categories of genes were investigated in more detail within
the GRNs.

Furthermore, to validate the interactions found by our
method, we used the “induced network modules” tool available
on the database CPDB. For this, we used gene lists from
each pathway as input. We allowed for intermediary nodes
and limited our search to only high-confidence protein
interactions in addition to genetic, biochemical, and gene
regulatory ones. By comparing our inferred GRNs to those
obtained from CPDB, we were able to detect indirect, direct,
and potentially novel interactions. A predicted interaction
was labeled “direct” when the same edge was present in
CPDB and “indirect” when a third node mediated an
interaction between two nodes. Indirect interactions may
appear due to reactions that happen faster than the timescale
measured (e.g., minutes instead of hours) (Hendrickx et al.,
2016). Potentially novel interactions were identified as
direct interactions predicted by DTNI and not present in
CPDB.
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RESULTS

Inferred GRNs Vary across Groups of
Chemicals with Different Toxicities:
Direct Perturbations and Number of
Interactions
GRNs reconstructed from gene expression data showed strong
variation across carcinogenic, DILI, and non-carcinogenic/non-
DILI groups. The number of significant edges (p-value < 0.05)
found for each pathway in each chemical group is summarized in
Table 2. DILI and carcinogenic compounds affected all networks
tested, with the former frequently resulting in the highest
number of gene interactions. In contrast, non-carcinogenic/non-
DILI compounds only affected NF-κB genes. When generating
the networks, we observed that those from DILI are more
connected in comparison with the other groups. TP53 and ER
resulted in sets of unconnected modules in the carcinogenic
group. An overview of such network layouts is represented in
Supplementary Data 1.

The aforementioned results contrast with those from pathway
analysis, which showed that all groups of chemicals affected
biological pathways associated with P53 and NRF2 (Table 3 and
Supplementary Data 1). Protein processing in ER was a hit for
both Carcinogenic and DILI groups, while NF-κB was significant
for non-DILI/non-carcinogenic and DILI groups.

Gene Disturbances in GRNs across
Chemical Groups: Target Genes and
Starting Nodes
Although input gene lists were identical, the resulting
inferred networks showed great variation across chemical
groups. To enable visualization and direct comparison,
pathways were represented as the union of all interactions
predicted in each chemical group, in which edge colors
express different chemical groups (red for carcinogenic,
blue for DILI, and green for non-DILI/non-carcinogenic)
(Figures 1–4).

First, we evaluated similarities in interactions from inferred
networks, and observed that only NF-κB and NRF2 showed an
overlap of two-node interactions in different groups. A negative
interaction between CARD14 and BCL10 was detected in NF-κB
for both DILI and non-DILI/non-carcinogenic groups. For

TABLE 2 | Number of edges obtained after applying DTNI to gene expression
data from primary human hepatocytes exposed to chemicals with distinct toxicity.

Pathway Carcinogenic DILI Non-carcinogenic/non-DILI

ER 22 57 0

NF-κB 20 39 39

NRF2 59 29 0

TP53 8 94 0

Carcinogenic: azathioprine and cyclophosphamide,
DILI: diclofenac, propylthiouracil, and nitrofurantoin,
Non-carcinogenic/non-DILI: diazepam, omeprazole, and aspirin.

TABLE 3 | Number of distinct biological processes affected by groups of
chemicals related to investigated pathways – results from overrepresentation
analysis using differentially expressed genes.

Pathway Carcinogenic DILI Non-carcinogenic/non-DILI

ER 1 1 0

NF-κB 0 2 2

NRF2 3 3 3

TP53 4 4 3

Carcinogenic: azathioprine and cyclophosphamide,
DILI: diclofenac, propylthiouracil, and nitrofurantoin,
Non-carcinogenic/non-DILI: diazepam, omeprazole, and aspirin.

NRF2, we found the negative interactions GCLM-CYP4A11 and
ABCC5-SLC2A1 shared by DILI and carcinogenic groups.

Since only a few interactions were shared among all groups,
we decided to investigate whether this low overlap was due to
distinct starting nodes and/or target genes. These are indicated as
different sections in the networks, with the upper part containing
starting nodes and the lower part the target genes; the latter is
further divided into clusters to highlight genes that are specific
or shared by more than one chemical group. This arrangement
allowed us to detect striking differences among groups. First,
we observed that the only pathway that resulted in shared
target genes among all three groups was NF-κB – TRAF6, a
gene from the TNF receptor associated factor family. Also for
NF-κB, some genes were also shared by DILI and non-DILI/non-
carcinogenic group (GADD45B and BCL10), as well as DILI
and carcinogenic (CXCL12 and CARD10), and carcinogenic and
non-DILI/non-carcinogenic (TNFSF11, RIPK1 and CD14). NRF2
showed the highest overlap, with 12 genes shared between DILI
and carcinogenic compounds: BLVRB, SLC39A4, HGF, SLC39A3,
CBR3, CYP4A11, GSTA1, HSPA1A, SLC2A1, MGST2, SLC5A8,
and RXRA. GTSE1 was the only gene shared between DILI and
carcinogenic chemicals for the TP53 pathway, while EDEM2,
DNJB1, and DNJA1, from the ER pathway, were found shared by
the aforementioned groups.

Overall, we also detected distinct starting nodes, frequently
targeting specific clusters of chemical groups, suggesting that
these potential MIEs may result in different responses within the
same pathway.

Gene Disturbances in GRNs across
Chemical Groups: Validation of Predicted
Interactions and Direction of Expression
To validate the edges predicted by DTNI, we compared our
results to databases sourcing protein, genetic, and gene regulatory
interactions as well as biochemical reactions. The detailed list of
edges analyzed is provided in Supplementary Data 1. At least 40
and 30% of all edges predicted for TP53 and NF-κB, respectively,
were present in CPDB as direct or indirect interactions. The
majority of edges in NRF2 and ER sets, on the other hand, were
labeled as potentially novel.

Since direction of expression is also an important feature to
understand activation/repression of downstream biological
effects, we added expression values to network nodes
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FIGURE 1 | Gene regulatory network (GRN) inferred for members from the endoplasmic reticulum (ER) pathway. Red-colored edges: interactions predicted for
carcinogenic group; Blue-colored edges: interactions predicted for drug-induced liver injury (DILI) group. Cluster in the upper section indicate starting nodes, while
clusters in the lower section are comprised of target genes specific to each chemical group.

FIGURE 2 | Gene regulatory network (GRN) inferred for members from the NF-κB pathway. Red-colored edges: interactions predicted for carcinogenic group;
Blue-colored edges: interactions predicted for drug-induced liver injury (DILI) group; Green-colored edges: interactions predicted for non-DILI/non-carcinogenic
group. Cluster in the upper section indicate starting nodes, while clusters in the lower section are comprised of target genes specific to each chemical group.

representing the average log2-transformed ratio of each
gene. For cross-group comparisons, we partitioned every
node into two or three segments, each containing the average

expression calculated for the highest dose and latest time point –
representing the maximum response across all measurements
(Figures 1–4). With that, we aimed to understand the regulation
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FIGURE 3 | Gene regulatory network (GRN) inferred for members from the NRF2 pathway. Red-colored edges: interactions predicted for carcinogenic group;
Blue-colored edges: interactions predicted for drug-induced liver injury (DILI) group. Cluster in the upper section indicate starting nodes, while clusters in the lower
section are comprised of target genes specific to each chemical group.

of such processes during exposure. Also, by generating individual
chemical group/network graphics interchange format files,
we confirmed these biological interactions as time- and dose
dependent, showing clear oscillatory and/or progressive gene
expression profiles (Supplementary Data 2).

In general, we observed great differences in gene regulation
across chemical groups, especially in group-specific clusters.
Shared genes, on the other hand, usually showed the same
direction of expression with variable intensities. Considering
global expression, we observed that most genes from TP53
pathway were downregulated after exposure to DILI compounds;
the same was observed for NF-κB inferred for non-DILI/non-
carcinogenic group. Both therefore suggest repression of these
processes. On the other hand, widespread activation of NRF2
was indicated by upregulation of most genes in both carcinogenic
and DILI groups, although solute carrier genes SLC2A2, SLC2A6,
SLC2A9, SLC39A10, found to be target genes only in DILI group,
were repressed.

DISCUSSION

The main vision for modern toxicity testing proposes a shift from
apical measurements (i.e., pathological modifications related
to a disease state) in non-human in vivo models toward HT
approaches in vitro. In the present study, we try to address this
challenge with a systematic approach using DTNI, an in silico tool
that models gene expression changes taking into account dose
and time dependencies during chemical exposure.

To investigate the behavior of pathway activation in exposed
models, we investigated the effects of chemicals with different
adverse outcomes (acute organ injury and carcinogenicity)
compared to drugs not implicated in these pathologies. We
aimed to reconstruct pathways based on gene expression data;
for this, we selected four pathways (NRF2, ER, TP53, and NF-κB)
due to their established involvement in mechanisms of toxicity
(Jennings, 2013; Jennings et al., 2013). Our first observation
was that pathway hits did not relate to direct perturbations
to these networks. For instance, even though TP53 and NRF2
were significant in all groups of chemicals, only DILI and
carcinogenic compounds showed direct effect (i.e., activation)
on these networks. On the other hand, direct perturbation
to the NF-κB pathway was only observed for non-DILI/non-
carcinogenic compounds. Interestingly, the inhibition of NF-κB,
in line of our observation of overall repression of these genes,
was confirmed to two components of this group, aspirin and
diazepam. Therefore, it seems that in contrast to pathway hits,
which may reflect indirect effects or common causes, establishing
a causal, direct link between exposure and network perturbations
may offer more accurate evidence for the mechanisms of action
(Woo et al., 2015).

In addition to different levels of perturbation, we also
noticed the distinguishing aspects of GRN composition among
groups. This confirms previous findings on the dynamic traits
of biological networks, where noticeable rewiring was observed
between different disease phenotypes (Mani et al., 2008) and
following chemical exposure (Bandyopadhyay et al., 2010),
with both studies concluding that genetic interactions may be
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FIGURE 4 | Gene regulatory network (GRN) inferred for members from the TP53 pathway. Red-colored edges: interactions predicted for carcinogenic group;
Blue-colored edges: interactions predicted for drug-induced liver injury (DILI) group. Cluster in the upper section indicate starting nodes, while clusters in the lower
section are comprised of target genes specific to each chemical group.

condition dependent. This was evident in our inferred GRNs,
and we suggest that such dissimilarities may be due to distinct
initial perturbations, which in turn lead to alternative routes
within the same pathway. Our results show that edge paths traced
from starting nodes, as well as clusters of target genes, are mostly
group specific (Figures 1–4). This can be illustrated by the GRNs
inferred for genes from the NF-κB pathway (Figure 2). Although
all groups directly affected this process, GRNs indicate that while
non-DILI/non-carcinogenic compounds targeted the inhibition
of NF-KB1 and NF-KBIA, those from the DILI group resulted
in activation of NF-KB2 and RELA. In addition to differences
in direction of expression of these targets, studies have also
shown that some NF-κB units may act independently from each
other, controlling proliferation and immune responses (Ishikawa
et al., 1997, 1998). Therefore, investigation of these branches of
biological events may be crucial to differentiate adverse from
non-adverse outcomes.

Besides these widespread differences, we also detected some
similarities. GRNs inferred for genes from the NRF2 pathway
resulted in the highest overlap of target genes with consistent
direction of expression between carcinogenic and DILI groups
(Figure 3). Among these genes, we identified hepatocyte growth
factor (HGF), known to play a role in tumorigenesis and tissue
regeneration (Huh et al., 2004). Recent studies have shown HGF
to play a role in acute liver injury, by protecting against isoniazid-
and rifampicin-oxidative liver damage (Enriquez-Cortina et al.,
2013). Another interesting target shared by both groups was
enzyme biliverdin reductase B (BLVRB), the gene coding, which
converts biliverdin to bilirubin. Bilirubin, which has long been

regarded as a cytotoxic waste product of heme metabolism, was
recently discovered to possess strong antioxidant activity (Stocker
et al., 1987). CBR3, a gene coding for an enzyme involved in
the biotransformation of carbonyl compounds, was shown to
be involved in predisposition of toxic responses in doxorubicin-
treated patients (Fan et al., 2008). Taken together, these findings
may also suggest that, in an attempt to avoid extreme injury,
cells try to compensate by eliciting potent responders; because
these mechanisms also have deleterious effects, shifts in their
equilibrium may be the tipping point between adaptive and
adverse responses.

Interestingly, NRF2 seemed to be the only GRN denoting
similar toxic effects in DILI and carcinogenic groups.
Perturbations in ER and TP53 pathways by chemicals in the
carcinogenic group were very limited (Figures 1, 4), comprised
mostly by fragmented subnetworks. Since carcinogens AZA and
CYC also share DNA-damaging properties, we expected a large
amount of disturbances in GRNs from both pathways. In view
of this, we hypothesize that due to the different mechanisms
underlying their effects (CYC is an alkylating agent while AZA
is an antimetabolite), common significant interactions could not
be inferred from the available data. The fact that these chemicals
have stronger effects on dividing cells may yet be another cause,
since human hepatocytes show limited proliferative capacity
when cultured (Ramboer et al., 2014).

More importantly, many of the interactions found in our study
were labeled as potentially novel ones. During our validation step,
we noticed that interactions annotated for the NRF2 pathway in
particular were very limited in comparison with the other three
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(only 672 against 1518, 1609, and 1539 in ER, NF-κB, and
TP53, respectively). The fact that TP53 and NF-κB have
been extensively studied over the years due to their clinical
relevance may explain why they showed the highest number
of direct or indirect positive hits (more than 40 and 30% of
all inferred interactions, respectively). Therefore, our results
indicate the need for further studies targeting the validation of
such interactions as means to expand the repertoire of biological
interactions and assess their relevance as potential markers of
toxicity.

It should be pointed out some of the limitations of GRN
methods, in particular ODE-based methods such as DTNI.
Although ODE-based methodology describes time-series data
well, its deterministic nature does not account for statistical
fluctuations in concentrations and kinetic parameters that greatly
influence biological systems (Palmer and Shearwin, 2009). The
generation of a consensus network using multiple compounds
implemented in DTNI partly solves the problem of data
availability, but also constrains chemical selection to substances
with somewhat similar effects whose interactions survive after
steps of LOOCV. It may also result in increased computational
times if a large number of chemicals and input genes are being
assessed.

Nonetheless, our approach demonstrated some
unprecedented mechanistic aspects of GRNs upon exposure

to chemicals with different toxic potential. First, GRNs are
usually condition dependent, indicating distinct molecular
events depending on the type of exposure. To some extent,
however, there are similar gene targets shared by GRNs inferred
for toxic groups – but not present in compounds considered
non-DILI/non-carcinogenic – that may point toward relevant
molecular events indicative of toxicity. Finally, the fact that
disturbances in these molecular targets evolve with increases in
dose reinforces the value of DTNI as an asset in network-based,
HT investigations. Anchoring these dose-dependent events to
apical measurements may therefore reveal molecular signatures
and clarify the tipping points leading to adverse outcomes.
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A criterion frequently used to group chemicals in risk assessment is “mode of

toxic action” (MoA). Routinely, structure-based approaches are used for the MoA

categorization of chemicals, but they can produce conflicting results or fail to classify

compounds. Biological activity-based approaches such as toxicogenomics which

provide an unbiased overview of the transcriptomic changes after exposure to a

compound may complement structure-based approaches in MoA assignment. Here,

we investigate whether toxicogenomic profiles as generated after in vitro exposure of

an established cell line (C3A hepatoma cells) are able to group together chemicals

with an uncoupling MoA, and to distinguish the uncouplers from chemicals with other

MoAs. In a first step, we examined whether chemicals sharing the same uncoupling

of oxidative phosphorylation (OXPHOS) MoA produce similar toxicogenomic profiles

and can be grouped together. In a next step, we tested whether the toxicogenomic

profiles discriminate between OXPHOS and chemicals displaying a (polar) narcotic MoA.

Experimentally, cells were exposed in vitro to equipotent concentrations of the test

compounds and gene expression profiles were measured. The resulting toxicogenomic

profiles assigned OXPHOS to one cluster and discriminated between the OXPHOS and

the (polar) narcotics. In addition, the toxicogenomics data revealed that one and the

same chemical can display multiple MoAs, which may help to explain conflicting results

of MoA classification from structure-based approaches. The results strongly suggest the

feasibility of MoA grouping of chemicals by using in vitro cell assay-based toxicogenomic

profiles.

Keywords: OXPHOS, in vitro, toxicogenomics, microarray, mode of action, uncoupler, chemical risk assessment

INTRODUCTION

Chemical risk assessment has to deal with a large and ever growing number of chemical substances.
At the same time, increasing regulatory demands that are designed to ensure the health and safety
of both humans and ecosystems lead to increasing needs for chemical toxicity testing. In this
situation, a compound-by-compound evaluation using traditional toxicity testing approaches is
hardly feasible given the resources needed in terms of time, labor, and costs, and with respect to
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ethical considerations, as it would necessitate the use of extensive
numbers of experimental animals. Thus, toxicologists are faced
with the challenge to develop novel approaches of chemical
hazard assessment which reduce testing needs and animal usage
while still generating robust safety data (Mantus, 2007; NRC,
2007; ECHA, 2011; Kavlock et al., 2012).

One possibility to increase efficiency of chemical hazard
assessment is to categorize chemicals. In such a group-wise
evaluation the unknown toxicity of untested compounds can
be inferred from the known toxicity of tested compounds. A
criterion that is frequently used to group chemicals is their “mode
of toxic action” (MoA). MoA is a loosely defined term used in
both human toxicology and ecotoxicology, In this article, MoA
is referred to as key toxic processes (e.g., chemical binding to a
nuclear receptor) (Escher and Hermens, 2002; Vonk et al., 2009;
Carmichael et al., 2011; Kienzler et al., 2017). The question is
how to recognize that two chemicals have a common MoA, and
therefore can be grouped together? One possibility is to assign
MoA based on molecular interactions between the chemical and
the biological system which initiate specific toxicity pathways
like binding to the estrogen receptors, or measuring specific
cellular reactions that are indicative for specific effects such as
chlorophyll interference in tests with algae (Hamadeh et al., 2002;
Escher et al., 2005; Nendza andWenzel, 2006; Woods et al., 2007;
Pereira-Fernandes et al., 2014). Another approach is the grouping
of chemicals on the basis of structural rules (Schüürmann,
1998; Verhaar et al., 2000; Enoch et al., 2008; Blackburn et al.,
2011). The chemical similarity principle postulates that chemicals
with similar structure are likely to be toxicologically similar
because they act through similar MOAs (Martin et al., 2002;
Enoch et al., 2008). As recently reviewed by Kienzler et al.
(2017), various structure-based classification schemes have been
developed to group chemicals according to theirMoAs, including
the Verhaar scheme which classifies chemicals on the basis of
correlations between apical toxic endpoints such as lethality
and chemical descriptors like octanol-water partition coefficient
(kow) (Verhaar et al., 1992), or the ASTER scheme of the US EPA
which utilizes, among others, fish behavioral responses for MoA
classification (Barron et al., 2015). The results of the different
existing classifications schemes may differ. For instance, when
comparing the outcome of three MoA classification schemes
for 3,448 chemicals, Kienzler et al. (2017) found that only 432
out of the 3,448 chemicals were classified by all three schemes,
and only for 42% of these 432 chemicals, the three schemes
produced concordant MoA classifications. This illustrates that
the structure-based approaches for MoA classification, although
being highly useful, also have inherent limitations. Therefore, it
has been suggested to extend the structure-based approaches to
biological descriptors (Richard, 2006).

The present study examines the potential of toxicogenomic
information to augment MoA assignment. Toxicogenomics
has been selected as an experimental approach as it enables
unbiased, global profiling of the molecular biological response
space (Richard, 2006; Edwards and Preston, 2008), without pre-
selection of response parameters. For single chemicals, it has been
shown that exposure results in chemical-specific, gene expression
profiles (Hamadeh et al., 2002; Yang et al., 2007; Kiyosawa et al.,

2010; Janssens et al., 2011; Piña and Barata, 2011; Meganathan
et al., 2012; Theunissen et al., 2012). The hypothesis tested in
the present study is whether specific MoAs have common gene
expression profiles that can be used to classify compounds and
whether compounds with multiple MoAs can be classified and
distinguished from those with only one MoA. As the MoA to be
tested in the present study, we selected uncoupling of oxidative
phosphorylation (OXPHOS). The biological mechanism of
uncouplers is relatively well understood (Terada, 1990; Spycher
et al., 2005): they act as protonophores, which dissipate the
pH gradient across the proton-impermeable energy-transducing
membranes of mitochondria. As a consequence, phosphorylation
is uncoupled from the electron transport and from hydrogen
transfer. Uncoupling is normally assessed monitoring changes
in respiration rate or membrane potential of extracted liver
mitochondria or cells (Brand and Nicholls, 2011). Here, we
test a number of chemicals which have been classified as
uncouplers on the basis of biological mechanistic studies and/or
chemical descriptors, and evaluate how similar or dissimilar
their toxicogenomic profiles are, and whether these profiles
can be discriminated from profiles of chemicals with other
MoAs. In order to comply with the aim of reducing animal
experimentation in toxicity testing (Pereira-Fernandes et al.,
2014), we performed the toxicogenomic studies in an in-vitro test
system, the human liver HepG2/C3A cell line.

MATERIALS AND METHODS

Chemicals
All solvents were of pro analysis (p.a.) quality or better, and
purchased from Dr Grogg Chemie AG (Stettlen-Deisswil,
Switzerland) unless stated otherwise. Aniline (99%, CAS 62-
53-3, Product 132934), Benzo(a)pyrene (BaP) (≥ 96%, CAS
50-32-8, Product B1760), 4-Chloroaniline (Cl-aniline) (98%,
CAS 106-47-8, Product C22415), Dimethyl sulfoxid (DMSO)
(99.5%, CAS 67-68-5, Product D4540), Ethylenglycol (1,2-
Ethanediol, analytical standard, CAS 107-21-1, Product
85978), Pentachlorophenol (PCP) (98%, CAS 71-23-8,
Product 402893), 2,3,4,5-Tetrachlorophenol (TCP) (99.9%,
CAS 4901-51-3, Product 442281), were purchased from
SIGMA-ALDRICH (Buchs, Switzerland). Carbonyl cyanide 3-
chlorophenylhydrazone (CCCP) (99+%, CAS 555-60-2, Product
L06932) was purchased from Alfa Aesar (Karlsruhe, Germany).
Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone
(FCCP) (>99%, CAS 370-86-5, Product 0453) was purchased
from TOCRIS (Missouri, USA). 6OH-BDE90 was synthesized
in the Department of Materials and Environmental Chemistry,
Environmental Chemistry Unit, Stockholm University, Sweden
(Marsh et al., 1999, 2003). If needed, stock solutions and
dilutions of the test substances were prepared in DMSO as
vehicle solvent and were added to the culture to give a final
DMSO concentration of 0.1% at maximum.

Cell Culture Maintenance
C3A hepatoma cells were obtained from LGC Standards
(HepG2/C3A, Hepatocellular Carcinoma, Human (Homo
sapiens), ATCC-CRL-10741, Middlesex, UK). C3A is a clonal

Frontiers in Environmental Science | www.frontiersin.org November 2017 | Volume 5 | Article 8017

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Hawliczek-Ignarski et al. MoA Assignment Using Toxicogenomics

TABLE 1 | Uncoupler of the oxidative phosphorylation candidate compound list.

Name CAS Paper

1-Naphthol 90-15-3 Ru

2,3,4,5-tetrachlorophenol 4901-51-3 S G

2,3,4,5-Tetrachlorophenol 4901-51-3 Ru

2,3,4,6-tetrachlorophenol 58-90-2 S Ru

2,3,5,6-tetrachlorophenol 935-95-5 G

2,3,5,6-Tetrafluorophenol 769-39-1 G

2,3-dinitrophenol 66-56-8 G

2,4,5-trichlorophenol 95-95-4 S

2,4,6-tribromophenol 118-79-6 S

2,4,6-Trichlorophenol 88-06-2 S

2,4,6-trinitrophenol 88-89-1 S G

2,4-dichloro-6-nitrophenol 609-89-2 G

2,4-dichlorophenol 120-83-2 S

2,4-dinitrophenol 51-28-5 S G Ru

2,5-dinitrophenol 329-71-5 G

2,6-dibromo-4-nitrophenol 99-28-5 S G

2,6-dichloro-4-nitrophenol 618-80-4 G

2,6-dichlorophenol 87-65-0 Ru

2,6-diiodo-4-nitrophenol 305-85-1 G

2,6-dinitro-4-cresol 609-93-8 G

2,6-dinitrophenol 573-56-8 S G Ru

2-sec-butyl-4,6-dinitrophenol 88-85-7 S Ru

2-tert-butyl-4,6-dinitrophenol 1420-07-1 S

3,4,5,6-tetrabrom-2-cresol 576-55-6 G

3,4,5-Trichlorophenol 609-19-8 S

3,4-dichlorophenol 95-77-2 S

3,4-dinitrophenol 577-71-9 S G

3,5-dibromo-4-hydroxy-benzonitrile 1689-84-5 S

3,5-dibromo-4-methylphenol 13979-81-2 S

3,5-dichloro-4-hydroxybenzonitril 1891-95-8 Ru

3,5-dichlorophenol 591-35-5 S

3,5-diiodo-4-hydroxybenzonitril 1689-83-4 Ru

3-chloro-N-[3-chloro-2,6-dinitro-4

(trifluoromethyl) phenyl]-5-

(trifluoromethyl)-2-Pyridinamin

79622-59-6 S

3-Trifluoromethyl-4-nitrophenol 88-30-2 Ru

4,5,6,7-tetrabromo-2-

(trifluoromethyl)-benzimidazol

2338-30-9 S

4,5,6,7-tetrachloro-2-(trifluoromethyl)-

benzimidazol

2338-29-6 S

4,6-dinitro-2-cresol

(4,6-dinitro-o-cresol)

534-52-1 G

4,6-dinitro-o-cresol 534-52-1 S G Ru

4-methyl-2,6-dinitrophenol 609-93-8 S

4-Nitro-2-

trifluoromethylbenzimidazole

14689-51-1 S

4-Nitrobenzamide 619-80-7 Ru

4-Nitrophenol 100-02-7 S

4-tert-butyl-2,6-dinitrophenol 4097-49-8 S

5,6-dichloro-2-(pentafluoroethyl)-

benzimidazol

102516-93-

8

S

5,6-dichloro-2-(trifluoromethyl)-

benzimidazol

2338-25-2 S

5-chloro-2-(2,4-dichlorophenoxy)-

phenol

3380-34-5 S

5-nitro-2-trifluoromethylbenzimidazole 327-19-5 S

(Continued)

TABLE 1 | Continued

Name CAS Paper

6-Chloro-2,4-dinitrophenol 946-31-6 S

Carbonyl_cyanide_m-

chlorophenylhydrazone

555-60-2 S

Carbonyl-cyanide-p-

methoxyphenylhydrazone

370-86-5 S

Pentabromophenol 608-71-9 G

Pentachlorophenol 87-86-5 S G Ru

Pentachloropyridine 2176-62-7 Ru

Pentafluorophenol 771-61-9 G

p-phenylazophenol 1689-82-3 Ru

Each compound is a designated uncoupler of the oxidative phosphorylation based

on structural alerts. The column “paper” refers to the corresponding published paper

(Russom et al., 1997; Schüürmann et al., 2003; Spycher et al., 2008b).

derivative of the HepG2 cell line. Cells were cultured in 75-cm2

vent cell culture flasks (TPP+, Trasadingen, Switzerland) in
Minimal Essential Medium with phenol red indicator (MEM,
Gibco, Product 31095, Zug, Switzerland) adding 10% FCS (Fetal
Calf Serum, Gibco, Product 10290, Zug, Switzerland), 1% NEAA
(MEM Non-Essential Amino Acids, Gibco, Product 11140-035,
Zug, Switzerland), 1mM Sodium Pyruvat (Sigma-Aldrich, CAS
113-24-6, Product P5280, Buchs, Switzerland), and 1% Penicilin-
Streptomycin (Penn-Strep) (Sigma-Aldrich, Product P4333,
Buchs, Switzerland). Incubation temperature was set at 37◦C.
Cells were subcultivated (split 1:2) twice weekly. The subculture
procedure is described elsewhere (Marsh et al., 1999, 2003;
Whitmore et al., 2000). 0.05% trypsin-EDTA was used to detach
cells from the flask (Trypsin, Gibco, Product 15400-054, Zug,
Switzerland).

For toxicity testing, C3A cells were grown in 75 cm2 culture
flasks until ∼80% confluency. Cells were then subcultured as
quoted above until the uptake of trypsinised cells in media. C3A
cells were diluted to reach a final density of 250 000 cells/ml.
Two hundred microliters of cell suspension were seeded in the
inner 60 wells of a black 96-well plate with clear bottom (Greiner
bio-one, Product 655906, Reinach, Switzerland). The outer rows
were filled with 200 µl 1x PBS (phosphate buffered saline,
Sigma-Aldrich, Buchs, Switzerland). Cells were pre-incubated at
37◦C for 24 h. After pre-incubation cells were treated with the
test chemicals. Therefore, the test substances were dissolved in
DMSO and added to culture medium at a final concentration
of 0.1% DMSO to reach the desired test concentration in the
test-medium.

Tetramethylrhodaminemethylester
(TMRM)-Assay
Tetramethylrhodaminemethylester (TMRM) is a positively
charged dye, exhibiting a red color. In cells with intact membrane
potential, TMRM accumulates in the active mitochondria, due
to their relative negative charge. When the membrane potential
collapses, TMRM is no longer retained in the mitochondria
and the observed fluorescence decreases. Culture medium
was aspirated from the cells and 200µl exposure medium
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TABLE 2 | Compounds tested in the different bioassyas (TMRM, TPP+ and Cytotoxicity), abiological proven uncoupler, bQSAR designated uncoupler.

Compound MoA logKOW TMRM assay EC50 inµM TPP+ assay LOEC inµM Cytotoxicity EC50 inµM

CCCP Uncouplera,b 3.4 5.5 0.01 63.5

FCCP Uncouplera,b 3.7 1.2 0.5 26.9

TCP Uncouplera,b 4.45 9.3 0.5 25.7

PCP Uncouplera,b/narcotic 5.1 117.8 0.5 224.8

6OH-BDE90 Suspected uncoupler 6.8 n.t. 1.3 3.5

Ethylenglycol Polar narcotic −1.36 – – 220

Cl-aniline Narcotic 1.83 amb – 9,100

AnilineAniline Narcotic 0.95 amb – 25,800

BaP Receptor mediated n.t. n.t. n.t.

n.t., not tested; amb., ambiguous results; –, no effects.

were gently added. After 2 h incubation, exposure medium
was aspirated and TMRM medium was gently added to
the wells. The TMRM medium was prepared by adding
TMRM [Tetramethylrhodaminemethylester (perchlorate),
99%, CAS 115532-50-8, Product 88065, Anawa, Zürich,
Switzerland] at a final concentration of 125 nM to serum-
and phenol red-free culture medium (MEM without phenol
red, Product 51200, Gibco, Zug, Switzerland). The cells were
incubated in TRMR medium for 20min. Afterwards, TMRM
medium was aspirated, and 100µl of phenol red free medium
was added. Fluorescence was measured instantly using the
EnSpire R© microplate reader (Perkin Elmer, Schwerzenbach,
Switzerland) at 540 nm excitation wavelength and 575 nm
emission. Solvent controls (0.1% DMSO), positive controls
(2.5µM FCCP) and medium controls were included
in all experiments. Per test concentration six well were
measured and each experiment was repeated at least three
times.

Triphenylphosophonium (TPP+) Assay
The TTP+ assay is measuring changes in the inner
mitochondrial membrane potential (19) and mitochondrial
respiration (O2) in isolated rat liver mitochondrial with help
of tetraphenylphosphonium (TPP+) and oxygen sensitive
electrodes. The amount of free TPP+ in the reaction medium
is a relative measurement of 19 . The experimental animals
were sacrificed according to ethical procedures and the rat livers
were immediately collected and kept in cold 0.9% NaCl(aq).
The tissue was homogenized in isolation medium (0.25M
sucrose, 10mM HEPES, 3mM EGTA, 0.2% BSA) and then
centrifuged for 6min at 3,000 rpm 750 g at 4◦C (one liver in
50ml isolation medium). The supernatant was transferred
to a clean tube and was centrifuged for 10min at 10,000 g.
Supernatant was removed, and the pellet washed with wash
medium (0.25M sucrose, 5mM HEPES, 0.1% BSA) and
centrifuged for 10min at 10,000 g. The pellet was resuspended in
a small volume of wash medium. For simultaneous measurement
of respiration and inner mitochondrial membrane potential
(19), the mitochondria were incubated at 25◦C in reaction
medium (85mM KCl, 20mM HEPES, 5 mN KH2PO4, 2.3mM
MGCl2, 25mM creatine, 25mM phosphocreatine) in a closed

and stirred perspex vessel equipped with an oxygen electrode
and a TPP+-sensitive electrode (Kamo et al., 1979). Coupling
between respiration (O2), inner membrane potential (1ψ)
and ATP (Adenosine triphosphate) production in the isolated
mitochondria was demonstrated by addition of succinate
(1mM) and ATP (10mM) to initiate oxidative phosphorylation.
Rotenone was also added to block complex I (NADH-UQ
reductase) of the electron transport chain (ETC), which
allowed us to study inhibitory effects on the ETC as well as
protonophoric uncoupling. All test compounds (dissolved
in DMSO) were injected into the vessel after the membrane
potential was stable (i.e., when state 4-respiration had been
reached). For each compound, different concentrations were
tested. Due to the complexity of the test n = 1 for the LOEC
determination.

Cytotoxicity assay
The cytotoxic action of the test compounds on C3A cells
was measured using the resaruzine dye which assesses cell
viability. Therefore, the amount of resazurine (non-toxic,
non-fluorescent redox active blue dye) that is reduced to
resorufin (non-toxic, highly fluorescent, pink dye) by metabolic
activity in the cells was measured fluorometrically (Abu-
Amero and Bosley, 2005). Therefore, culture medium was
aspirated from the cells and 200µl exposure medium was
gently added. Total volume reached 200µl. After 22 h of
exposure, 10µl of 440µM resazurine (resazurine sodium
salt, CAS 62758-13-8, Product R7017, Sigma-Aldrich, Buchs,
Switzerland) was added to the wells. Fluorescence (excitation
wavelength 530 nm and emission wavelength at 590 nm) was
measured immediately (T0) using EnSpire R© microplate reader.
After 2 h, fluorescence was measured again (T2). Background
fluorescence was subtracted by applying the equation T2h-
T0h for each well. Exposure was carried out in six replicates
per concentration. Finally, the T2h-T0h fluorescence of each
replicate was averaged and the standard deviation calculated.
Solvent control (0.1% DMSO) and positive control (0.03%
H2O2), as well as a negative control (medium) were incorporated
in all experiments. Per test concentration six well were
measured and each experiment was repeated at least three
times.
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FIGURE 1 | Chemical structures of all the compounds studied.

Microarray Experiment
C3A cells were exposed for 2 h to substances as described above
for the TMRM assay. For microarray analysis, six replicate wells
per concentration were pooled. DMSO (0.1%) was used as solvent
control. The concentrations used for the exposure were:

Microarray 1: calculated EC50 values from the 2 h TMRM
assays, BaP 10µM.
Microarray 2: calculated EC25 values from the 24 h
cytotoxicity assays, i.e., CCCP: 22.8µM; FCCP 15.7µM;
TCP: 13.8µM; PCP: 101.7µM; 6OH-BDE90: 4.2µM;
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FIGURE 2 | Dose-response curves for single compounds in the TPP+ assay.

Measurement of respiration rate (V) vs. mitochondria membrane potential

(MMP) (Left). Each point represents the measurements after compound was

added to the vessel. After addition of compound the membrane potential

decreases (non-disrupted MMP ∼180mv) and the oxygen consumption

increases (uncoupling). At higher concentrations, the oxygen consumption

starts to decrease indicating inhibition. Measurement of respiration rate (V) vs.

concentration of compound (Right). After addition of compound the oxygen

consumption increases (uncoupling). At higher concentrations, the oxygen

consumption starts to decrease indicating inhibition.

FIGURE 3 | Dose-response curves for single compounds in the cytotoxicity

assay (Left) and the TMRM assay (Right). For each experiment six wells per

test concentration were averaged and each experiment was repeated three

times. Data points present the mean over all measurements and the bars the

standard deviation. TMRM graphs for Aniline and Cl-aniline where ambiguous,

instead of a decrease an increase of the TMRM signal could be observed.

6OH-BDE90 was not measured in the TMRM assay.
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Aniline: 44.66mM; Cl-aniline: 6.54mM; Ethylenglycol:
558.8mM.

Total RNA was extracted using RNeasy Mini Kit (QUIAGEN,
Product 74104, Hombrechtikon, Switzerland) according to
manufacturers’ instructions. DNA was digested using the
RNeasy Mini Kit optional on-column DNase digestion. Quality
of extracted RNA was checked via the Nanodrop 1000
spectraphotomoeter V3.7, as well as running the samples on a
1.5% agarose gel.

Total RNA was reverse transcribed to cDNA using 1µg RNA
Template. The reaction mix per sample had a total volume
of 25µl. The reaction mix contained the following products
purchased from Promega AG (product number in brackets)
(Promega AG, Dübendorf, Switzerland): 0.5µl RNasin R© Plus
RNAse Inhibitor (N2611), 1.25µl 10mM dNTP (U1201, U1211,
U1221, U1231), 1µl M-MLV Reverse transcriptase (RNase H
Minus, Point Mutant) (M3682), 5µl of 5x Buffer (M3682), 1µl
random primer (C1181), Xµl DEPC-water to reach the final
volume of 25µl. After reverse transcription, samples were diluted
10x to prevent inhibition of the PCR reaction by the cDNA
synthesis buffer. The diluted cDNA was stored at −20◦C until
further usage.

For Microarray 1: Each treatment consisted of two biological
replicates, the control consisted of three biological replicates.
The RNA 6000 NanoChip kit (Agilent Technologies, number
506791511) was used with the Agilent 2100 Bioanalyzer
(Agilent technologies) for analysis of total RNA samples.
Samples with a RIN (RNA integrity number) above 7 were
considered appropriate for consequent microarray testing.
For Microarray analysis, Agilent SurePrint G3 Human Gene

TABLE 3 | Range of the test concentrations for Ethylenglycol, Cl-aniline, and

Aniline which did not induce any effects on the oxygen consumption or membrane

potential (data not shown).

Ethylenglycol tested from 6.3µM up to 260.5mM

Cl-aniline tested from 6.3µM up to 3.8mM

Aniline tested from 3.4mM up to 85mM.

FIGURE 4 | Hierarchical cluster analysis of C3A cells exposed to 3 compounds (FCCP, CCCP, and TCP) with a known uncoupling MoA and BaP). (A) The hierarchical

cluster analysis is based on the 5000 most varying genes. (B) The hierarchical cluster analysis is based on the significantly regulated genes (|M|> 1).

Expression Microarrays (8x60K) were used in combination with
a one-color based hybridization protocol (OneColor RNA Spike-
In Mix, Agilent Technologies, number 51885282). All steps
were carried out according to the manufacturer’s instructions.
Fluorescent signal intensities were detected with Scan Control
A.8.4.1 Software (Agilent Technologies) on the Agilent DNA
Microarray Scanner and extracted from the images using Feature
Extraction 10.7.3.1 Software (Agilent Technologies). A quality
check as described by the manufacturer was performed (e.g.,
SpikeIn controls).

For Microarray 2: In order to analyze more compounds
in a comparative way we changed that microarray approach
as following. Each treatment and controls consisted of three
biological replicates. The RNA 6000 NanoChip kit (Agilent
Technologies, number 506791511) was used with the Agilent
2100 Bioanalyzer for analysis of total RNA samples following
the manual instructions. Samples with a RIN (RNA integrity
number) above 7 were considered appropriate for consequent
microarray testing. For Microarray analysis Agilent SurePrint
G3 Human Gene Expression Microarrays (8x60K) were used
(GPL14550). All replicates of the treatments were labeled
with Cy5 and all corresponding solvent controls with Cy3.
After hybridization, the microarrays were washed using Gene

TABLE 4 | Correlation coefficient between treatments for microarray experiment 1.

BAP CCCP FCCP TCP

A

BAP 1.00 −0.13 −0.25 −0.14

CCCP −0.13 1.00 0.83 0.78

FCCP −0.25 0.83 1.00 0.72

TCP −0.14 0.78 0.72 1.00

B

BAP 1.00 −0.05 −0.07 0.07

CCCP −0.05 1.00 0.90 0.81

FCCP −0.07 0.90 1.00 0.75

TCP 0.07 0.81 0.75 1.00

(A) For the 5000 genes with the highest variation. (B) For the most regulated genes with

a fold change of >2 or <0.5 (|M|>1). Correlation coefficients above 0.7 are marked with

gray background.
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FIGURE 5 | Principle component analysis (PCA) of the 1st microarray experiment (Left) and the 2nd microarray experiment (Right). Clear differences between

uncoupler and non-uncoupler can be observed.

FIGURE 6 | Venn diagram showing the overlap of genes that were regulated

with a fold change of >2 or <0.5 (|M|>1) between treatments of microarray

experiment 1. Only five genes overlap between all treatments.

ExpressionWash Buffer Kit (Agilent Technologies), and scanned
using the Scan Control Software A8.5 with the feature
extraction 10.X Software (Agilent technologies) on the DNA
microarray scanner G2505C (Agilent Technologies). More
detailed description of the design of the microarrays (platform)
is available from Gene Expression Omnibus (http://www.
ncbi.nlm.nih.gov/geo/) under accession number GPL13607. All
microarray data from this study have been deposited in
NCBI’s Gene Expression Omnibus under the accession number
GSE75784. A quality check as described by the manufacturer was
performed (e.g., SpikeIn controls).

Microarray Data Analysis
The microarray data was normalized, filtered, and biological
replicates averaged. The complete microarray analysis was done
using MatlabR2013a.

For the first microarray study a general quality check of the

raw array data was performed (spot integrity, signal distribution).
The data was normalized using quantile-normalization. Control
spots as well as not uniform spots were removed. The solvent
control was averaged and the M value (log2FoldChange)
calculated. Duplicated spots on the array were averaged before
exposure replicates were averaged using the median. This data
set was used for further analysis as described in the results.

For the second microarray study a general quality check
of the raw data was performed. M values (log2FoldChange)
were calculated and LOEWESS and centering normalization
applied. Non-uniform and control spots were removed from
the data set before duplicated spots on the array were averaged
(Median). Then exposure replicates were averaged using median.
To identify significantly regulated genes, genes expressed |M|>2
were selected and a t-test performed. Adjusted p-values were
calculated using the Bonferroni-Hochberg correction and a
cut-off of 0.1 applied. The Pearson correlation coefficient
between normalized and averaged replicates was calculated using
MaltlabR2013a.

Data Analysis (Cytotoxicity and TMRM)
For the TMRM assay as well as for the cytotoxicity assay, the
fluorescence was assessed as described above and dose-response
curves were fitted using GraphPad Prism 5 (GraphPad Software
Inc., Ca, USA). For dose-response curves, a sigmoidal curve with
the formula Y=A+ (D-A/(x/EC50)∧b) was used, where A is
the minimum effect, D is the maximum effect, x is the chemical
concentration, b is the slope was used. Confidence intervals were
set at 95%. This formula was used to calculate the EC25 and
EC50. Significant differences in response were calculated using
the T-test in GraphPad. P-Values were ≤ 0.05.

RESULTS AND DISCUSSION

The aim of the present study was to explore the suitability of an
in vitro-based toxicogenomic approach for MoA assignment of
chemicals. The MoA under consideration in the present study
was uncoupling of OXPHOS. It is known that uncoupling can
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FIGURE 7 | Hierarchical cluster analysis of C3A cells exposed to seven compounds (Ethylenglycol, Cl-aniline, Aniline, PCP, CCCP, FCCP, and TCP). (A) The

hierarchical cluster analysis is based on the 5000 most varying genes. (B) The hierarchical cluster analysis is based on the significantly regulated genes (|M|>2 and

padj <0.1).

FIGURE 8 | Venn diagram showing the overlap of genes from the core

uncoupler set that were regulated in both microarray experiments.

lead to fast transcriptional changes related to the physiological
remodeling due to the disruption of ATP generation (Hänninen
et al., 2010), and this mechanism may be reflected in the gene
signatures of the uncoupler-exposed C3A cells.

Selection of Chemicals with Uncoupling
MoA
The selection of chemicals with uncoupling MoA for the
experiments of the present study was carried out on the one
hand on the basis of biological mechanistic studies and, on the
other hand, on the basis of studies applying physico-chemical
descriptors. For FCCP and CCCP, several reports describe
an interference with proton transfer across the mitochondrial
membranes (LeBlanc, 1971; McLaughlin and Dilger, 1980;
Terada, 1981; Lim et al., 2001; Stöckl et al., 2007). Since also

studies using structural rules identified FCCP and CCCP as
uncouplers (Spycher et al., 2005, 2008a), these two compounds
were selected as positive controls. In addition, we compiled a
list of chemicals that were suggested to have an uncoupling
MoA on the basis of structural alerts and physico-chemical
descriptors (Schüürmann et al., 2003; Spycher et al., 2005,
2008a,b) which, however, were not proven to act as uncouplers
in biological uncoupling assays. From the candidate compounds
listed in Table 1, TCP and PCP were selected as compounds
with uncoupling MoA mainly based on structural rules. Studies
with black lipid bilayer also suggest uncoupling for PCP and
TCP (McLaughlin and Dilger, 1980) and experiments with
chromophores for TCP (Escher et al., 1996). Finally, chemicals
with MoA’s other than uncoupling were included as negative
controls: BaP as a chemical with a specific MoA (agonist
of the arylhydrocarbon receptor), Cl-aniline and aniline as
polar narcotics, and ethylenglycol as a narcotic or baseline
toxicant (Table 2). The structural information about the applied
compounds are shown in Figure 1.

Biological Assessment of the Uncoupling
Activity of the Test Compounds
Two different bioassays were applied to verify if the selected
compounds act as biological uncouplers. The hypothesis was
that FCCP, CCCP, TCP, and PCP should display protonophoric
activity, whereas no such activity should be observed for BaP,
the anilines and ethylenglycol. Two bioassays were used for
measuring the protonophoric activity: the TMRM assay which
is sensitive to alterations of membrane potential (Ehrenberg
et al., 1988) was applied to our test system, the mammalian
C3A cell line. Additionally, we performed the TPP+ assay which
is commonly used to test for uncoupling. The TPP+ assay
provides a direct measurement of mitochondrial respiration and
membrane potential in isolated rat mitochondria (Lichtshtein
et al., 1979). The results are shown inTable 2. Both assays showed
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TABLE 5 | Correlation coefficient between treatments for microarray experiment 2.

Ethylenglycol 6OH-BDE90 Cl-aniline Aniline CCCP PCP FCCP TCP

A

Ethylenglycol 1.00 0.40 0.21 0.40 0.25 0.08 0.21 0.27

6OH-BDE90 0.40 1.00 0.57 0.66 0.46 0.60 0.50 0.68

Cl-aniline 0.21 0.57 1.00 0.74 0.54 0.70 0.50 0.43

Aniline 0.40 0.66 0.74 1.00 0.40 0.53 0.39 0.41

CCCP 0.25 0.46 0.54 0.40 1.00 0.62 0.91 0.71

PCP 0.08 0.60 0.70 0.53 0.62 1.00 0.64 0.66

FCCP 0.21 0.50 0.50 0.39 0.91 0.64 1.00 0.75

TCP 0.27 0.68 0.43 0.41 0.71 0.66 0.75 1.00

B

Ethylenglycol 1.00 0.48 0.38 0.50 0.44 0.26 0.41 0.42

6OH-BDE90 0.48 1.00 0.71 0.72 0.63 0.74 0.67 0.76

Cl-aniline 0.38 0.71 1.00 0.83 0.66 0.77 0.63 0.59

Aniline 0.50 0.72 0.83 1.00 0.57 0.66 0.56 0.54

CCCP 0.44 0.63 0.66 0.57 1.00 0.71 0.94 0.81

PCP 0.26 0.74 0.77 0.66 0.71 1.00 0.72 0.75

FCCP 0.41 0.67 0.63 0.56 0.94 0.72 1.00 0.83

TCP 0.42 0.76 0.59 0.54 0.81 0.75 0.83 1.00

(A) For the 5000 genes with the highest variation. (B) For the most significantly regulated genes. Correlation coefficients above 0.7 are marked with gray background.

TABLE 6 | Number of genes that are significant gene regulation (|M|> 2 and

padj < 0.1) in microarray experiment 2.

Ethylenglycol 6OH-BDE90 Cl-aniline Aniline CCCP PCP FCCP TCP

1,861 1,725 412 2,189 688 1,691 514 206

that FCCP and TCP have uncoupling activity. CCCP was clearly
positive in the TMRM assay, while in the TPP+ assay, first a
decrease in oxygen consumption was observed then an increase
indicating inhibition of OXPHOS together with uncoupling. The
dose-response curves for the TPP+ assay are shown in Figure 2

and the curves for the TMRM assay in Figure 3.
In contrast, for PCP, the TPP+ assay indicated an uncoupling

activity at a very low concentration of 0.5µM, while the TMRM
only showed effects at 118µM with a higher variability between
replicates. On the basis of structural descriptors, PCP is classified
as uncoupler (Terada, 1981; McKim et al., 1987; Nendza and
Müller, 2001; Schüürmann et al., 2003; Spycher, 2005; Spycher
et al., 2005, 2008a). The differences of effect concentrations
between our assays agrees well with what has been observed
by Schüürmann et al. (1997) The authors identified uncoupling
by an excess toxicity above the baseline level using 10 different
biological test systems. None of the test systems was specific for
uncoupling. In this study PCP was not identified as uncoupler.
The authors hypothesized that the uncoupling activity of PCP
exists but does not yield substantial contributions to its total acute
toxicity as quantified by the biological test systems, shown in a
very high baseline toxicity. The high lipophilicity of PCP (log
Kow of 5.04) leads to relatively high doses and correspondingly
high narcotic-type membrane perturbations in the organisms,
so that the additional uncoupling activity may not lead to a

significant increase in overall toxicity. This means that although
chemical descriptors classify PCP as uncoupler, the biological
space only partly reflects this activity.

Surprisingly, the two anilines showed an ambiguous response
in the TMRMbioassay at very high concentrations (mM). Instead
of a decrease of the TMRM an increase of the signal could be
observed. This might be due to an interference of the TMRM-dye
and the compounds. The TPP+ is more specific for uncoupling
activity than the TMRM assay which just measures membrane
integrity. Anilines are known to disrupt membranes which might
also explain the response in the TMRM assay. Only the polar
narcotic compound, ethylenglycol, was clearly negative in both
assays. The concentration range tested for the anilines and
ethylenglycol are presented in Table 3.

MoA Specific Gene Expression Profile at
Effect Based Concentrations
A first and essential pre-requiste to enable comparison of
toxigenomic profiles across compound sis the use of equipotent
concentrations of the test chemicals. These concentrations
were selected in the preliminary experiments and used for
the following experiments. To test whether C3A cells display
a toxicogenomic profile that is common for exposure to
uncouplers. a proof of principle experiment was performed
with the positive control compounds—FCCP, CCCP, and TCP
and BaP as a non-uncoupling negative control. To ensure the
comparability of the gene expression profiles, the test compounds
were applied at equipotent concentrations (Shioda et al., 2006).
The chemicals FCCP, CCCP, and TCP were tested at their EC50

values in the TMRM assay, i.e., the concentration which inhibited
TMRM uptake by 50%. For BaP, the concentration of 10µM
was used which is high enough to induce a significant biological
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FIGURE 9 | Hierarchical cluster analysis of C3A cells exposed to eight

compounds including 6OH-BDE90 (Ethylenglycol, Cl-aniline, Aniline, PCP,

CCCP, FCCP, and TCP). (A) The hierarchical cluster analysis is based on the

significantly regulated genes (|M|>2 and padj < 0.1). (B) The hierarchical

cluster analysis is based on the 5000 most varying genes.

response of the BaP-specific MoA, i.e., cytochrome P4501A
induction via the AhR, while it is low enough to avoid cytotoxicity
(Hockley et al., 2009). The Cyp1a1 expression was the highest
for the BaP exposed cells with an M value of +3. The M value
equals the log2 fold change value. The gene expression profiles
induced by the four test compounds were evaluated by means
of hierarchical clustering. To this end, the 5000 genes with the
highest signal variation over the whole data set were selected
(Figure 4A). Each of the test chemicals displayed an individual
gene expression profile, CCCP, FCCP, and TCP clustered close
to each other, while the BaP profile was clearly separated. In
an alternative analysis of the array data, we selected those
genes that were regulated with a fold change of >2 or <0.5
(|M|> 1). Also with this analysis, a high degree of similarity of
gene expression was evident for the uncouplers (FCCP, CCCP,
and TCP) and a clear separation of the non-uncoupler, BaP
(Figure 4B). Again, it can be seen that CCCP and FCCP are
more closely related in comparison to TCP but all uncouplers are
more similar to each other than to BaP. To further demonstrate
the similarities between the uncouplers the correlation coefficient

between treatments is calculated. TCP, FCCP, and CCCP all
have a correlation coefficient above 0.7, whereas BaP only shows
a negative correlation with the other compounds below 0.25,
for the 500 most varying genes and the most regulated genes
(Table 4). The result of a PCA analysis are shown in Figure 5.
Also in the PCA a clear separation from the uncoupler and BaP
is observable. An overlap of expressed genes showed that only
five genes are regulated by all treatments. Whereas, 125 genes
are regulated by all of the uncouplers (Figure 6, Table S1). In
summary, the gene expression profiles induced by these three
compounds clustered closely together, and separated clearly from
the “non-uncoupling negative control,” BaP. Importantly, the
cluster analysis was not done using genes selected on the basis of
mechanistic knowledge, but it simply relied on those genes which
showed the strongest variation or regulation. It is not only that
similar genes are regulated by these substances, but a majority
of the genes is regulated in the same direction indicating the
existence of a MoA specific gene expression profile.

MoA Specific Gene Expression Profile at
Cytotoxic Based Concentrations
While the former experiment used two strongly contrasting
MoAs—uncoupling vs. AhR activation—in a next experiment we
asked if the toxicogenomic profiles of compounds with more
similar MoA can be distinguished. To this end, two aniline
compounds and PCP were included which are suggested to
have a polar narcotic MoA, as well as ethylenglycol, which has
a narcotic MoA. Structure-based MoA assignments generate
equivocal results concerning the separation between polar
narcosis and uncoupling (Schüürmann et al., 1996), with some
studies classifying the anilines and PCP as uncouplers, while
other studies classifying them as polar narcotics (Russom et al.,
1997; Schüürmann et al., 1997; Argese et al., 2001; Spycher et al.,
2008a; Janssens et al., 2011; Dom et al., 2012). Since these test
chemicals are not unequivocally classified as uncouplers, the
TMRM assay could not be used for the selection of equipotent
test concentrations. Therefore, a cytotoxicity test was applied
to derive EC25 equipotent concentrations (Figure 3). The initial
analysis of the gene expression data was conducted using the
5000 most varying genes. The clustering results are shown in
Figure 7A. Again, each of the compounds tested induced an
individual gene expression profile but additionally similarities
between the profiles existed. The most similar expression profiles
were shown by CCCP, TCP, and FCCP. Thus, for the uncoupler
set, the gene expression profiles confirmed the previous results
and indicate that these three compounds cluster together. When
comparing regulated genes of the uncoupler set between the first
and second microarray experiment, a clear overlap could be seen
(Figure 8). As expected, the higher concentrations of the second
microarray experiment (EC25 cytotoxicity) altered more genes
than the EC50 from the TMRM assay. TCP was applied in both
experiments at similar concentrations therefore there was also
a high overlap of altered genes. The heat map shows a clearly
separated cluster of aniline and Cl-aniline vs. the core uncoupler
cluster (CCCP, FCCP, and TCP). The third cluster exhibited
by cluster analysis was the narcotic compound, ethylenglycol.
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When focusing on the most significantly regulated genes, the
core uncoupler set clustered together (Figure 7B). Again, PCP
clustered together with the uncoupler set but is most distinct.
The second cluster can be observed for the narcotics (Aniline
and Cl-aniline) tested. The polar narcotic ethylenglycol is clearly
separated from the other cluster. The results of the hierarchical
clustering are also reflected in the correlation coefficient analysis
(Tables 5A,B). The core uncoupler all correlate with a coefficient
of above 0.7. The same holds for the anilines. Ethylenglycol
does not correlate with any other treatment. The PCA analysis
also shows that ethylenglycol is separated from the other
treatments (Figure 5B). The number of significantly differently
expressed genes for all treatments is shown in Table 6. Aniline,
Ethylenglycol and PCP changed the most genes whereas TCP
and Cl-aniline altered the least number of genes. This shows that
the grouping of compounds is not based on number of regulated
genes.

Toxiogenomic-Based MoA Assignment of a
Chemical with Unknown MoA
In order to test the discrimination power of the toxicogenomic
approach, we tested the brominated flame retardant metabolite
6OH-BDE90 for which structural criteria do not allow a MoA
assignment, but an uncoupling MoA is suspected on the basis of
bioassay data. 6OH-BDE90 clustered together with the narcotics,
when the 5000 most varying genes were used (Figure 9A). When
analyzed for significant gene regulation (|M|> 2 and padj < 0.1),
6OH-BDE90 clusters together with PCP forming a new cluster
group next to the polar narcotics (Figure 9B).

Other studies confirm the equivocal behavior of PCP and
6OH-BDE90. Tests conducted by Legradi et al. (2014) including
PCP, 6OH-BDE90, and FCCP show in regard to the TPP+ assay
which does not give a positive response for narcotic substances,
PCP and FCCP exhibit a similar LOEC whereas 6OH-BDE90 has
a much higher LOEC, presenting a similar potency of PCP and
FCCP and a much lower potency for 6OH-BDE90. This finding
is in line with our classification analysis based on the 5000 most
varied genes (Figure 9A).

However, when comparing the effects of the three substances
in the a TMRM assay, which also gives a positive response
for uncoupling and narcotic substances, 6OH-BDE90 and PCP
both alter the membrane potential in a similar concentration
range whereas FCCP proves to be highly more potent (Legradi
et al., 2014). In line with our classification analysis based on the
significantly regulated genes, where 6OH-BDE90 and PCP from
a new sub cluster together next to the polar narcotics (Figure 9B).

It appears that 6OH-BDE90 and PCP have the potential
for both uncoupling and polar narcosis, depending on test
conditions (concentration, duration) or test species (Sixt et al.,
1995; Schüürmann et al., 1997; Legradi et al., 2014). The
findings presented in this study suggest that the toxicogenomic
approach is able to elucidate differences in MoA. In the case that
compounds act via several highly similar MoA, toxicogenomics
can reveal this and assign a compound to more than one MoA.
Nevertheless, the array has the advantage to demonstrate in one
single assay the diverse activity potentials of a compound and

this information is a valuable complement to structure-based
classification schemes.

In chemical risk assessment, MoA information is critical for
proper hazard classification as compounds belonging to the
same MoA class should show similar toxicity (Verhaar et al.,
2000; Cronin and Livingstone, 2004; Nendza and Wenzel, 2006;
Vonk et al., 2009). To date, the assignment of a chemical to a
MoA is largely done on the basis of structural rules (Bradbury
and Lipnick, 1990; Russom et al., 1997; Schüürmann, 1998).
This study explored the potential of toxicogenomic profiles in
MoA grouping of chemicals. Classification of chemicals and
MoA identification was made purely with discriminative gene
expression profiles and without any mechanistic profiling like
pathway analysis. The results strongly suggest that transcript
profiling indeed is able to identify MoA of chemicals and
also is able to distinguish between MoA. Furthermore, as
chemicals typically display several MoA, depending on the
exposure concentration, duration, biological receptor etc., this
ambiguity are well revealed by the array data, since high content
methodologies such as toxicogenomics are appropriate tools to
deal with such multi-dimensional properties. The present study
exemplified this for the cases PCP and 6OH-BDE90 where
structural rules yield equivocal results. The applicability of our
approach for more MoA and larger chemical sets needs to be
further investigated. Proper selection of reference compounds is
essential and might be limited. Defining similarity and defining
groups might also be more complicated when more MoA are
included and advanced statistical analysis necessary. Exposure
time could also be adapted to get more specific profiles. For
certain MoA a treatment duration of 2 h might not be enough
to induce a discriminative profile whereas for other MoA a
longer exposure might be too long and mostly general stress
response effects visible. Nevertheless, our results indicate that
toxicgenomics profiling might be a useful approach for MoA
assessment of chemicals.
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Chemicals, toxicants, and environmental stressors mediate their biologic effect through

specific modes of action (MOAs). These encompass key molecular events that lead

to changes in the expression of genes within regulatory pathways. Elucidating shared

biologic processes and overlapping gene networks will help to better understand the

toxicologic effects on biological systems. In this study we used a weighted network

analysis of gene expression data from the livers of male Sprague-Dawley rats exposed

to chemicals that elicit their effects through receptor-mediated MOAs (aryl hydrocarbon

receptor, orphan nuclear hormone receptor, or peroxisome proliferator-activated

receptor-α) or non-receptor-mediated MOAs (cytotoxicity or DNA damage). Four gene

networks were highly preserved and statistically significant in each of the two MOA

classes. Three of the four networks contain genes that enrich for immunity and defense.

However, many canonical pathways related to an immune response were activated

from exposure to the non-receptor-mediated MOA chemicals and deactivated from

exposure to the receptor-mediated MOA chemicals. The top gene network contains a

module with 33 genes including tumor suppressor TP53 as the central hub which was

slightly up-regulated in gene expression compared to control. Although, there is crosstalk

between the two MOA classes of chemicals at the TP53 gene network, more than

half of the genes are dysregulated in opposite directions. For example, Thromboxane

A Synthase 1 (Tbxas1), a cytochrome P450 protein coding gene regulated by Tp53, is

down-regulated by exposure to the receptor-mediated chemicals but up-regulated by the

non-receptor-mediated chemicals. The regulation of gene expression by the chemicals
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within MOA classes was consistent despite varying alanine transaminase and aspartate

aminotransferase liver enzyme measurements. These results suggest that overlap in

toxicologic pathways by chemicals with different MOAs provides common mechanisms

for discordant regulation of gene expression within molecular networks.

Keywords: mode of action, gene expression, gene network, crosstalk, chemicals, toxicants, WGCNA,

toxicogenomics

INTRODUCTION

The environment that humans and other species are exposed to is
a complex space that contains various biologic stressors (natural
andmanufactured) which can alter cellular processes and in some
cases, result in disease and affliction (Wild, 2005; Rappaport and
Smith, 2010). Toxicants elicit their toxicologic effect in the liver
through an engagement of target macromolecules which leads
to a cascade of events referred to as modes of action (MOAs;
Casarett et al., 2001). Genomic signatures manifested from
toxicant exposure reflect the gene regulation that orchestrates
downstream signaling through a particular MOA (Nijman,
2015). Toxicants that act through different molecular initiating
events possess distinct MOAs and therefore exhibit unique
genomic signatures.

Several efforts have been undertaken to identify gene
expression signatures in response to toxicant exposures and
to classify chemicals according to their molecular fingerprints
(Amin et al., 2002; Bushel et al., 2002; Hamadeh et al., 2002a,b;
Kleinjans, 2014; Wei et al., 2014). There are several known cases
of chemicals that exert their effect through a particular MOA
and have overlaps in the gene expression regulatory networks
that regulate the biological processes. For instance, nuclear
receptor-mediated chemicals such as those that act through the
aryl hydrocarbon receptor (AhR), the peroxisome proliferator-
activated receptor (PPAR), or the constitutive androstane
receptor and pregnane X receptor (CAR/PXR) have a high
degree of agreement between the molecular pathways that are
perturbed (Woods et al., 2007). However, little is known about
the overlapping regulatory pathways between toxicants that exert
their effect through different MOAs.

Reconstruction of gene regulatory networks from gene
expression data has assisted in resolving connections between
genes during static conditions or dynamically as conditions
change over time, dose concentration and/or target tissue
(Karlebach and Shamir, 2008). Comparing gene regulatory
networks to identify overlaps in connected regions is a challenge.
The weighted gene correlation network analysis (WGCNA)
method is designed to resolve preserved co-expression
gene network modules between two conditions (Zhang and
Horvath, 2005; Yip and Horvath, 2007). The approach uses
transformations of the correlation between co-expressed genes
to reveal interconnectedness amongst gene network nodes
and permutation procedures to identify statistically significant
gene network modules that overlap between sample conditions
(Langfelder et al., 2011). Recent utilization of WGCNA on rat
liver gene expression data from drug toxicity studies revealed
415 gene network models that associate with mechanisms of liver
pathogenesis (Sutherland et al., 2017). We used the WGCNA

approach to reconstruct gene networks using microarray gene
expression data from male rat livers and identify preserved
modules between chemicals that exert their MOA through
receptors (RM) vs. those that are non-receptor-mediated (NRM).
We found that the most significant gene network contains 33
genes including tumor suppressor TP53 as the central hub
and that the majority of the genes were regulated in opposite
directions between the RM and NRM samples. Although there is
crosstalk between the two MOA classes of chemicals at the Tp53
signaling pathway, more than half of the genes are dysregulated
in opposite directions. The read across between gene networks
of chemicals with different MOAs suggests flexibility in the
regulatory components of molecular systems to utilize common
gene networks to maximize diversity in biological responses.

MATERIAL AND METHODS

Chemicals and Modes of Action
Fifteen chemicals, each with a given dose and duration
of exposure, were used for this study (Table 1). Sets of
three chemicals share one of five MOAs. Three MOAs
are associated with well-defined RM processes: peroxisome
proliferator-activated receptor-α (PPARA), orphan nuclear
hormone receptors (CAR/PXR), and aryl hydrocarbon receptor
(AhR). The other two are NRM: DNA damage (DNA_damage)
and cytotoxicity (Cytotox). The chemicals were administered
orally or by intraperitoneal, intravenous or subcutaneous
injection (5ml/kg body weight). In order to ensure a maximal
transcriptional response, 5-daymaximum tolerated doses (MTD)
of the chemicals were administered to the study animals. The
MTD was determined in a 5-day dose range-finding study in
which an MTD was determined as a 5–10% reduction in body
weight relative to control.

Microarray Gene Expression Data
Total RNA extracted from the livers of male Sprague-Dawley
rats exposed once daily for 3, 5, or 7 days in triplicate,
depending on the chemical or vehicle control (saline, corn
oil or carboxymethyl cellulose), were processed for microarray
analysis as previously described (Wang et al., 2014). Animals
were handled in accordance with The United States Department
of Agriculture and Code of Federal Regulations Animal Welfare

Act (9 CFR Parts 1, 2, and 3). Ethics committee approval was
not required according to the local and national guidelines.
Fragmented cRNA prepared from liver RNA was labeled and
hybridized to the Affymetrix whole genome GeneChip R© Rat
Genome 230 2.0 Array comprised of 31,099 gene probe sets.
Pixel intensity data was acquired by scanning of the arrays
using the GeneChip R© Scanner 3000 7G. CEL files were
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TABLE 1 | Chemical exposures and modes of action.

MOA Chemical Dose (mg/kg

body weight)

Duration

(days)

Aryl hydrocarbon

receptor (AhR)

3-Methylcholanthrene (3ME) 300 5

Leflunomide (LEF) 60 5

beta-Naphthoflavone (NAP) 1,500 5

Orphan nuclear

hormone receptors

(CAR/PXR)

Phenobarbital (PHE) 54 5

Methimazole (MET) 100 3

Econazole (ECO) 334 5

Cytotoxicity (Cytotox) Chloroform (CHO) 600 5

Thioacetamide (THI) 200 5

Carbon tetrachloride (CAR) 1,175 7

DNA Damage

(DNA_Damage)

Aflatoxin B1 (AFL) 0.3 5

Ifosfamide (IFO) 143 3

N-Nitrosodimethylamine (NIT) 10 5

Peroxisome

proliferator-activated

receptor alpha (PPARA)

Pirinixic acid (PIR) 364 5

Bezafibrate (BEZ) 617 7

Nafenopin (NAF) 338 5

generated using the GCOS software. The pixel intensity data
was preprocessed using the robust multichip average (RMA)
algorithm (Irizarry et al., 2003a,b) which includes background
correction, quantile normalization, and summarization by the
median polish approach and then log base 2 transformed. Due
to a batch effect in the study design, the data was preprocessed
further by mean centering on the route of administration of
the chemicals. Next, we performed principal component analysis
(PCA)-based gene probe filtering on the preprocessed data using
the Bioconductor package “pvac,” where the filtering is based
on a score measuring consistency among probes within a probe
set (Lu et al., 2011). The maximum value of the threshold
for the score is set at 0.5, which corresponds to 50% of the
total variation accounted for by the 1st principal component.
Finally, the preprocessed data was converted to log base 2 ratios
by subtracting the average of the controls from the treated
samples matched according to nutritional status of the vehicle
and route of administration (i.e., non-nutritional-intraperitoneal,
intravenous or subcutaneous injection; nutritional-oral; non-
nutritional-oral). The raw data is available in the Gene Expression
Omnibus (GEO) database (Edgar et al., 2002; Barrett et al., 2013)
under the accession number GSE47792.

Clinical Chemistry
Clinical chemistry evaluations of blood serum samples were
performed using a Roche Cobas Fara chemistry analyzer
(Roche Diagnostic Systems, Westwood, NJ, USA) to numerically
measure enzyme levels and metabolic entities.

Statistical Modeling
The preprocessed log base 2 ratio microarray gene expression
data comprised of 12,288 gene probe sets was analyzed with the
following analysis of variance (ANOVA) model to identify gene

probes that vary by MOA:

Yijklm = µ +Mi + Vj + Rk + D(V∗R)jkl + εijklm (1)

where Yijklm represents the mth observation on the ith MOA

(M), jth vehicle (V), kth route (R) and lth study date (D). µ is
the common effect for the whole study and εijklm represents the
random error. The errors εijklm are assumed to be normally and
independently distributed with mean 0 and standard deviation δ

for all measurements. Significant gene probes that vary according
to the MOAs were detected at a Benjamini–Hochberg false
discovery rate (FDR) < 0.01.

Weighted Gene Correlation Network

Analysis
The log base 2 ratio data of the 2,930 gene probe sets (2,405
genes) that vary significantly according to MOAs were averaged
by replicate chemicals then divided into two data sets based
on the manner in which the chemicals elicit their toxic effect:
RM (AhR, CAR/PXR, and PPARA) and NRM (Cytotox and
DNA_damage). A gene network was reconstructed for each data
set using the WGCNA method (Zhang and Horvath, 2005; Yip
and Horvath, 2007; Langfelder and Horvath, 2008). Briefly, a
similarity matrix S is generated for each data set to determine
how similar in expression genes are. Here, S is comprised of
the Pearson correlation of the ith and jth gene probe sets (sij)
within a data set. Then, S is transformed to an adjacency matrix
A to ascertain groups of co-expressed genes. Here we used the
following soft power adjacency function to generate A:

aij =
∣

∣sij
∣

∣

β (2)

where β ≥ 1 is a user defined power parameter to control the
thresholding of the grouping of the co-expressed genes. The
higher the value of β , the fewer co-expressed genes are grouped
together. We set β = 10. Finally, a determination is made if
two nodes of co-expressed genes overlap. The topological overlap
matrix (TOM) � measures two nodes interconnectedness and is
computed as:

wij =

∣

∣N1(i) ∩ N1(j)
∣

∣ + aij

min
{∣

∣N1(i)
∣

∣ ,
∣

∣N1(j)
∣

∣

}

+ 1− aij
(3)

where N1(i) denotes the set of direct neighbors of node i,
|·| denotes the number of elements (i.e., the cardinality) and
∣

∣N1(i) ∩ N1(j)
∣

∣ denotes the number of neighbor nodes that i and
j have in common. Note that wij is bounded between 0 and 1:
wij = 0 if nodes i and j are not connected and the two nodes do
not share any neighbors; wij = 1 if there is a direct link between
the two nodes and if one set of direct neighbors is a subset of the
other. The topological dissimilarity measure is denoted as

dwij = 1− wij. (4)

Significance of preserved co-expressed genes network modules
between RM andNRMexposures is determined by a permutation
based composite Z statistic (Zsummary) defined as the mean of Z
scores computed for density and connectivity measures (Yip and
Horvath, 2007; Langfelder et al., 2011).
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RESULTS

Chemicals Grouped by Mode of Action
To investigate the gene regulatory crosstalk between RM and

NRM chemicals, we used the microarray gene expression data

recently published from the livers of male Sprague-Dawley rats

exposed in triplicate to various chemicals with different MOAs

(Wang et al., 2014). The chemicals and their MOAs are listed in
Table 1 along with the doses and durations of exposure. Each

MOA consists of 3 chemicals. The five MOAs are mediated
by aryl hydrocarbon receptor (Ahr), orphan nuclear hormone
receptors (CAR/PXR), cytotoxicity (Cytotox), DNA damage
(DNA_Damage) or peroxisome proliferator-activated receptor-
α (PPARA). Clinical chemistry analysis of the samples revealed
that alanine transaminase (ALT) and aspartate aminotransferase
(AST) liver enzymes levels were substantially higher from the
Cytotox and PPARA chemicals than the others indicative of more
marked injury to the organ (Table 2).

TABLE 2 | Clinical chemistry of samples by mode of action.

Measurement NN-IP NN-OG NU-OG AhR CAR/PXR PPARA Cytotox DNA damage

ALT (U/L) 45.50 45.67 69.00 33.44 55.63 93.33 273.83 54.00

11.94 7.55 13.81 9.79 13.33 41.73 106.02 9.70

AST (U/L) 80.50 76.50 84.80 69.56 72.44 155.67 456.00 98.50

13.11 9.14 10.91 16.76 25.23 104.18 217.18 20.23

Albumin (g/L) 3.90 3.73 4.00 3.66 4.01 4.76 3.92 4.07

0.17 0.33 0.11 0.47 0.27 0.24 0.18 0.08

BUN (mg/dL) 13.25 13.67 14.20 30.67 15.38 14.44 34.00 18.33

1.32 2.80 1.47 37.01 3.94 3.24 31.86 2.16

Cholesterol (mg/dL) 73.00 68.67 70.40 117.33 76.67 68.22 66.83 67.33

1.10 17.39 7.06 29.47 16.16 24.38 45.65 19.65

Creatine Phosphokinase (U/L) 571.00 192.33 269.20 178.78 345.56 506.67 521.67 333.83

269.33 37.92 126.44 54.25 376.27 631.03 431.97 192.74

Glucose (mg/dL) 196.75 156.50 165.60 170.00 143.33 133.67 123.00 159.67

20.56 29.32 5.75 28.39 14.05 10.67 11.72 10.19

Lactate Dehydrogenase (U/L) 175.00 145.67 128.20 137.00 141.22 356.67 270.50 145.50

69.31 52.66 44.62 62.97 92.20 300.81 163.12 57.36

Total Bilirubin (mg/dL) 0.15 0.36 0.14 0.31 0.16 0.16 0.42 0.15

0.04 0.21 0.05 0.11 0.05 0.09 0.24 0.04

Shown in the top line of each row is the mean of the measurement for all samples within a MOA. Shown in the bottom line of each row is the standard deviation of the mean.

FIGURE 1 | Workflow to identify preserved gene co-expression network modules. Illustrated is the analytical workflow to preprocess the microarray gene expression

data, detect significant gene probe sets, and identify preserved gene network modules between the receptor-mediated (RM) samples and the non-receptor-mediated

(NRM) samples. MOA is mode of action, ANOVA is analysis of variance and WGCNA is weighted gene correlation network analysis.
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As shown in Figure 1, we use a bioinformatics workflow to
process the gene expression data for statistical analysis. Following
the preprocessing and filtering of the data, we modeled it with
a MOA-ANOVA to identify 2,930 gene probe sets that vary
statistically according to one or more of the MOAs. Using these
dysregulated genes to project the samples into two-dimensional
space by the amount of variability captured in principal
components 1 and 2 (PC#1 and PC#2), we see that although the
majority of the chemicals within eachMOA grouped close to each

other, four chemicals (NIT, THI, ECO, and LEF) are separated
from the other chemicals that are in their respective MOA
(Figure 2A). The NIT samples are separated far from all other
samples possibly because they were the only ones that exhibited
a high level (moderate severity) of centrilobular necrosis of the
liver from the exposure (Data not shown). The THI treated
liver samples exhibited minimal centrilobular necrosis in all
three replicates (Data not shown). This departure from the
cohesiveness of the grouping of the chemicals within their MOA

FIGURE 2 | Separation and clustering of samples exposed to the chemicals in triplicate. (A) Principal component analysis (PCA) separation of the MOA samples using

the 2,930 significant gene probe sets that vary by MOA. The x-axis is PC#1 (31.3% variation captured), the y-axis is PC#2 (17.6% variation captured) and the colors

represent the MOAs as shown in the figure legend. (B) Two-dimensional hierarchical, agglomerative clustering of the MOA samples using the 2,930 significant gene

probe sets that vary by MOA. Clustering performed using Spearman rank as the similarity metric and the Ward minimum variance criterion for grouping. The x-axis is

the MOA samples colored as described in the legend to (A), the y-axis is the 2,930 significant gene probe sets. The data is the log base 2 ratio (treated sample to the

average of the controls matched according to nutritional status of the vehicle and route of administration) and the scale on the bottom displays the color range for the

log base 2 ratio values standardized to mean 0 and standard deviation of 1. Red denotes up-regulation, blue down-regulation, and white relatively no change.
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is also observed in the hierarchical clustering of chemicals by
MOA into two branches of the dendrogram (Figure 2B). RM
chemicals in MOAs CAR/PXR and PPARA cluster together and
NRM chemicals in MOAs Cytotox and DNA_Damage cluster
together. However, the Cytotox chemical THI clusters with the
RM chemicals and the NAP and 3ME chemicals clusters with the

NRM chemicals. This suggests that although the chemicals share
aMOA, the underlying gene expression changes elicited from the
exposures can vary whether mediated by a receptor or not. Of
interest is to determine if there are overlaps (i.e., read across) in
gene expression between RM chemicals and NRM chemicals in
the rat liver.

TABLE 3 | Differentially expressed genes between receptor-mediated and non-receptor-mediated MOAs.

ProbeID Entrez gene Gene symbol Gene description p-value Fold change

1392754_at 499285 Adam8 ADAM metallopeptidase domain 8 3.47E-03 −1.47

1384068_at 306575 Ckap2 Cytoskeleton associated protein 2 1.35E-03 −1.42

1390317_at 500393 RGD1561849 Similar to RIKEN cDNA 3110035E14 6.86E-04 −1.40

1370902_at 286921 /// 296972 Akr1b10 Aldo-keto reductase family 1, member B10 1.35E-02 −1.39

1368271_a_at 79451 Fabp4 Fatty acid binding protein 4, adipocyte 2.01E-02 −1.38

1374775_at 291234 Mki67 Marker of proliferation Ki-67 9.28E-03 −1.38

1383747_at 361921 Ect2 Epithelial cell transforming 2 9.89E-03 −1.37

1379582_a_at 114494 Ccna2 Cyclin A2 4.45E-02 −1.35

1384449_at 100910797 LOC100910797 Uncharacterized 4.02E-05 −1.35

1398540_at 54289 Rgs1 Regulator of G-protein signaling 1 9.50E-03 −1.35

1393041_at 362519 Smc2 Structural maintenance of chromosomes 2 4.19E-03 −1.34

1370462_at 25460 Hmmr Hyaluronan mediated motility receptor 4.16E-03 −1.33

1384231_at 364648 Shcbp1 Shc SH2-domain binding protein 1 5.34E-03 −1.33

1393848_at 362720 /// 100359539 Rrm2 Ribonucleotide reductase M2 1.21E-02 −1.32

1383578_at 499870 /// 100911267 Rad51 DNA repair protein RAD51 recombinase 8.33E-03 −1.32

1390659_at 25406 Cd44 CD44 molecule 2.94E-02 −1.32

1371074_a_at – – – 3.32E-03 −1.30

Gene detected as statistically different in a one-way ANOVA model with the Fisher’s least significant difference test between RM vs. NRM samples based on the average (triplicates per

chemical) log2 ratio values of the 2,930 MOA-varying gene probe sets.

FIGURE 3 | Profile plot of significantly different genes between RM and NRM samples. Gene expression profile plot of the top 3 of 17 genes determined to be

statistically significant between RM and NRM samples (p < 0.05). The x-axis is the MOAs, the y-axis is the MOA average of the log base 2 ratio data [treated samples

(the average of all three replicates for each chemical within a MOA) to the average of the controls matched according to nutritional status of the vehicle and route of

administration]. The gene expression profiles are colored as shown in the figure legend. The variation in the data points from the average of the chemicals in a MOA is

represented by standard error bars.
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Derivation of Gene Co-expression

Networks
Using the 2,930 dysregulated gene probe sets, we grouped the
Ahr, CAR/PXR, and PPARA chemicals into a RM class and the
Cytotox and DNA_Damage chemicals into a NRM class. Table 3

lists the genes detected as statistically significant between the two

classes. The expression of all the genes from exposure to the RM

chemicals are down-regulated in comparison to NRM chemicals.

Figure 3 shows a profile plot of the three genes (Adam8, Ckap2,

and RGD1561849) that are down-regulated most.

FIGURE 4 | Cluster dendrograms and modules representative of gene co-expression networks. (A) RM cluster dendrogram. (B) NRM cluster dendrogram. The

x-axes represent the modules identified relative to the RM clustering. The colors indicate the preserved modules. The significantly preserved modules are labeled by

color. The y-axes show the heights where clusters are merged.
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We then analyzed the 2,930 dysregulated gene probe
sets with the WGCNA method to identify gene networks
preserved between the two classes (Figure 1). Correlation
between gene expression is measured by Pearson correlation and
the determination of co-expression is accomplished by using
an adjacency function. The interconnectedness of nodes of co-
expressed genes in the network is assessed by a topology distance
metric. Figure 4A depicts the RM co-expressed genes nodes as
leaves in the dendrogramwith themore similarly expressed genes
grouped closer together. The colored modules represent the gene
networks that were identified. The turquoise colored module is
the largest of the 18 identified. Figure 4B illustrates the clustering
of the NRM co-expressed genes nodes and the superimposing of
the 18 RM modules. As can be seen by the diffuse overlapping of
the modules in the two classes, the turquoise, magenta, red and
blue colored ones are preservedmost readily. This preservation is
statistically assessed by a permutation test to derive of a summary
Z score. The significant modules (Z_summary score > 10) are
shown in Table 4 with turquoise being the most significant. The
gene network sizes are 540, 176, 325, and 131 gene probe sets for
the turquoise, red, blue, and magenta modules respectively.

Pathways and Biological Processes Read

Across Genes in Preserved Modules
To infer which pathways are over-represented by the genes
in the preserved modules, we performed an enrichment test
using the Protein ANalysis THrough Evolutionary Relationships
(PANTHER) ontology database (Thomas et al., 2003). Table 5
shows the significant biological processes that were enriched
by the genes in each of the preserved modules. Immunity and
defense was overwhelmingly significant (FDR < 10%) by the
genes in three of the four modules. Using the Ingenuity Pathway
Analysis (IPA) knowledgebase, we discovered that TP53 is a
central hub of the 33 genes from the turquoise module that have
connections (Figure 5). Interestingly, although the connections
are the same between the RM and the NRM chemicals due to
the preservation of the turquoise module, the expression of more

TABLE 4 | Preserved modules.

Module Module size Z summary

Turquoise 540 27.27

Red 176 16.93

Blue 325 15.00

Magenta 131 11.92

than half of the genes are dysregulated in opposite directions.
Some of these genes code for proteins that are associated with
cell division (FZR1, CDCA3), metabolism (TBXAS1), and DNA
repair (PCLAF).

DISCUSSION

Exposure to chemicals can elicit pharmacologic effects if
therapeutic, tailored accordingly and given at the right dose for
an appropriate amount of time. In other cases, the exposure can
have no detectable effect or can be toxic resulting in an adverse
effect to biological systems. The molecular initiating events for
many chemicals are well-studied. However, their MOAs remain
to be determined. Having a better understanding of a chemical’s
MOA and the molecular consequences from their exposure
will aid in determining points of potential crosstalk between
regulatory pathways which may lead to unintended side effects
if chemicals act synergistically.

We used gene expression from the livers of male Sprague-
Dawley rats exposed to a number of agents (Table 1) or
vehicle control to identify overlapping gene networks between
chemicals that are receptor-mediated (RM) and those that
are non-receptor-mediated (NRM). The RM class of chemicals
contained those that elicit their effect through either the
peroxisome proliferator-activated receptor-α (PPARA), orphan
nuclear hormone receptors (CAR/PXR) or aryl hydrocarbon
receptor (AhR) while the NRM chemicals do so by cytotoxicity
(Cytotox) or DNA damage (DNA_Damage). Each MOA
contained 3 different chemicals with each chemical exposure
in triplicate. Four gene network modules were preserved in
a statistically significant manner between the two classes of
chemicals (Table 4). The genes in three of the four networks over-
represent immunity and defense biological processes (Table 5).
DNA damage and cytotoxic chemicals are known to trigger
an innate immune defense by eliciting parenchymal cell death
and subsequent DAMP (Danger-associated molecular patterns)
release (Srikrishna and Freeze, 2009). Notably scoring of the
modules using the Nextbio Body Atlas (Data not shown)
reveals that genes in all four modules are over expressed in
inflammatory cells including the blood, suggesting that what
may be being detected are transcripts from inflammatory
infiltrates that manifest following tissue damage. Notably this
is consistent with observations that co-regulation modules in
the liver are related, in part to changes in cellularity (i.e.,
increases or decreases in certain cell types; Sutherland et al.,
2017). Chemicals that act through a receptor have cascades of
signaling that often attenuate cell death by inhibiting apoptosis

TABLE 5 | Pathway enrichment.

Module Panther db ID Biological process Count Fold enrichment p-value FDR

Turquoise BP00148 Immunity and defense 68 2.38 1.48E-11 1.8E-08

Red BP00148 Immunity and defense 54 1.72 8.37E-05 1.0E-01

Blue BP00125 Intracellular protein traffic 33 1.66 4.93E-03 5.8E+00

Magenta BP00148 Immunity and defense 52 1.66 2.73E-04 3.3E-01
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FIGURE 5 | TP53 Interaction network. Using the 540 gene probe sets (462 genes) from the most significant module (Turquoise) preserved between (A) RM and

(B) NRM samples that were mapped to pathways in the Ingenuity Pathway Analysis knowledgebase, molecular networks were generated. Shown is the most

(Continued)
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FIGURE 5 | Continued

significant interaction network with TP53 as the central hub. Colored nodes represent 33 genes (or their products) that are part of the 540 gene probe sets. The gene

expression values are the log base 2 ratio from the average of the triplicates for each chemical treatment to the average of the controls matched according to

nutritional status of the vehicle and route of administration, averaged by MOA and according to either RM or NRM. Red represents increased expression and green

represents decreased expression. Shape representations: circles, protein-coding genes; diamonds, enzymes; squares, cytokines; horizontal ovals, transcription

regulators; vertical ovals, transmembrane receptors. A solid line represents a direct interaction, whereas a dashed line represents an indirect interaction. A line with an

arrow denotes activation, whereas a line with an arrow and a pipe (|) denotes acts on and inhibits, respectively. A line without an arrow or pipe (|) denotes a

protein–protein interaction.

(Mally and Chipman, 2002) therefore decreasing cell turnover.
The decreased cell death may secondarily down-regulate baseline
immune signaling as there is less cellular debris to clear
(Rock and Kono, 2008). In addition, activation of PPAR-α
and CAR/PXR have been demonstrated to down-regulate the
expression of compliment and coagulation factors which may
also be contributing to the decreased immune signaling seen
with the RM chemicals (Kramer et al., 2003; Yadetie et al.,
2003; Cariello et al., 2005; Rezen et al., 2009). Hence, it
is plausible that the convergence point between these two
groups of toxicologic agents occurs at a cellular level and
cascades down into the molecular level where opposite effects
on inflammatory signaling is observed. Although many gene
expression signatures associated with toxicants likely represent
cytotoxicity and cell damage, activation of an immune response
is not just injury per-se, but is very much involved in repair
and regeneration. The toxicant gene signatures likely reflect a
genomic state in the liver during the process of the ensuing
injury vs. the abating of it and beginnings of recovery and
repair.

Here we show that with nine RM chemicals and six NRM
chemicals, a converging point in one of the gene networks
is at the tumor suppressor gene TP53 (Figure 5). Tp53 in
rats is a 391 amino acid containing phosphoprotein with an
amino-terminal transactivation motif, DNA and zinc binding
sites, a tetramerization domain and an unstructured basic
domain at the carboxy-terminus. TP53 regulates the cell cycle,
it plays a role in apoptosis and DNA repair, and functions
as a tumor suppressor. TP53 in humans is highly mutated in
cancers (Olivier et al., 2010) and has been explored extensively
as a potential target for cancer therapeutics (Parrales and
Iwakuma, 2015). In this study of the male rat livers exposed
to the RM and NRM chemicals, Tp53 gene expression is
slightly up-regulated relative to control (but not statistically
significant with a large enough fold change difference). This
is not surprising as a small change in the expression of a
transcription factor can dramatically impact the transcriptional
regulation of its target genes (Niwa et al., 2000; Rizzino, 2008).
In addition, per the IPA knowledgebase molecular network
(Figure 5), TP53 interacts with 32 genes in the turquoise
module; 21 genes with p53 binding sites and the others have
molecular relationships such as protein-protein interaction or
some form of biochemical modification. Of these 32 hub genes,
the majority of them (n = 19) are dysregulated in opposite
directions in RM vs. NRM. Some of these genes function
in metabolism, cell division and DNA repair. This redundancy
in the gene network circuitry is thought to be contrapuntal in

nature to provide organisms the flexibility to diversify function
while conserving biologic resources (Komili and Silver, 2008).
Examples are the coordinated gene expression regulation during
seed development in Arabidopsis thaliana (Ruuska et al., 2002)
and the crosstalk between Janus kinase-signal transducer and
activator of transcription (JAK-STAT) and PPAR-α in COS-1
cells derived from monkey kidney tissue (Zhou and Waxman,
1999).

Although, the number of chemicals per RM and NRMMOAs
limits the granularity in the reconstruction of the networks we
ascertained as preserved between the two classes, the diversity
in the types of chemicals, the varied structure activity groups,
and broad therapeutic indications of the chemicals give credence
to the biological interpretation of the molecular pathways in
common but coordinately dysregulated. Furthermore, despite the
incohesiveness of a few of the chemicals which did not cluster by
gene expressionwith the other chemicals in their respectiveMOA
(Figure 2), the bioinformatics processing of the data that we
employed (Figure 1) was robust enough to elucidate molecular
interaction networks that converge between the RM and NRM
chemicals. However, caution in the interpretation of these results
is prudent since we have not examined the entire scope of all
the chemicals that fall into a given MOA and some chemicals
are known to have multiple MOAs (Russom et al., 1997; Wenzel
et al., 1997; Freidig et al., 1999). In addition, the comparison of
RM and NRM MOAs is a simplistic one and each class does
not cover all the RM or NRM MOAs, therefore is limited in
the inference of the gene regulatory networks. Furthermore, the
doses of the chemicals administered are of a single concentration
and duration albeit the MTD and so essentially the preserved
gene networks that we discovered are not dynamic in nature.
It is important to emphasize that the gene modules described
here are a starting point for MOA characterization and greater
nuance will likely be required to characterize mechanistic
processes associated with specific receptors (e.g., PPAR-α vs.
AhR; LeBaron et al., 2014; Becker et al., 2015) or chemicals
with mixed MOAs. An illustration of such nuance was shown
in a recent study in which clear subgroups of chemicals in the
RM class of compounds was observed (De Abrew et al., 2015).
Further, it is important to note that careful consideration of
the interpretive approach is necessary when evaluating MOA
(Currie et al., 2014). In conclusion, our data and results
provide a framework for investigators to follow-up on to
possibly perturb individual components of biological pathways
that read across between chemicals with different MOAs in
order to better understand the consequences of environmental
exposures.
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Zearalenone (ZEA) is a natural contaminant existing in food and feed products that
exhibits a negative effect on domestic animals’ reproduction. Donkeys possess high
economic value in China and are at risk of exposure to ZEA. However, few information
is available on ZEA-induced toxicity and no report on toxicity in donkeys can be
found in scientific literature. We investigated the biological effects of ZEA exposure
on donkey granulosa cells (dGCs) by using RNA-seq analysis. ZEA at 10 and 30 µM
were administered to GCs within 72 h of in vitro culture. ZEA at 10 µM significantly
altered the tumorigenesis associated genes in dGCs. Exposure to 10 and 30 µM
ZEA treatment significantly reduced mRNA expression of PTEN, TGFβ, ATM, and
CDK2 genes, particularly, the ZEA treatment significantly increased the expression of
PI3K and AKT genes. Furthermore, immunofluorescence, RT-qPCR, and Western blot
analysis verified the gene expression of ZEA-exposed GCs. Collectively, these results
demonstrated the deleterious effect of ZEA exposure on the induction of ovarian cancer
related genes via the PTEN/PI3K/AKT signaling pathway in dGCs in vitro.

Keywords: donkey, granulosa cells, tumorigenesis, gene expression, RNA-seq

INTRODUCTION

Zearalenone (ZEA) is a mycotoxin produced by various Fusarium fungi (Bennett and Klich,
2003) that infects grains and maize worldwide. Similar to aflatoxins (AFs), ZEA is one of the
most important and widespread trichothecenes that cause extensive and recurring economic
damage in cereal grains and animal feedstuffs (Escriva et al., 2015). In domestic animals, ZEA
causes porcine ovarian atrophy (Vanyi et al., 1994) and equine follicular hematomas (Cortinovis
et al., 2013) and exhibits significant genotoxic potential and induces DNA damage (Zhang et al.,
2017a) in experimental animals (mice and rats). Owing to its estrogenic activity, ZEA could cause
reproductive disorders in a wide variety of species-specific organs in animals (Poor et al., 2015).
Both low and high concentrations of ZEA can cause abortion and reproductive failure in livestock
(Osweiler et al., 1990; Dacasto et al., 1995; Zwierzchowski et al., 2005). Moreover, ZEA is a potential
carcinogen with a possible correlation to xenoestrogens and breast cancer risk (Yu et al., 2004).
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The effects of ZEA and some of its metabolites on estrous
mares have only been reported in a few cases. Juhasz et al. (2001)
reported the effects of 10 day low dose ZEA exposure on the
reproductive system of ovulating mares fed with 7 mg purified
ZEA. No effect was observed on the length of the inter-ovulatory
intervals, follicular phases, and ovarian follicular activity (the
maximum size and number of the ovulatory follicles, growth rate,
and the initial increase in the number of large follicles) (Juhasz
et al., 2001). Another study showed that feeding mares with oats
that were naturally contaminated with ZEA (12 mg/kg) had no
relevant effects on the cycle length and the release of reproductive
hormones (Cortinovis et al., 2013). However, the authors stated
that mares fed with the naturally contaminated oats had a high
incidence of follicular hematomas, which did not occur in the
control (Cortinovis et al., 2013). Similar to the findings in estrous
pig (Zhang et al., 2017b), ZEA and its derivatives induced in vitro
apoptosis of the granulosa cells (GCs), which were collected from
estrous mares’ ovaries (Minervini et al., 2006). Hence, the authors
suggested that ZEA could induce follicular atresia in domestic
animals. These effects could be due to the direct interaction with
ERs and 3-α/β-HSD enzymes present in the GCs and ovary,
which are responsible for the synthesis or metabolism of the
endogenous steroid hormones (Minervini et al., 2006).

The mechanism of ZEA toxicity is not fully understood,
but ZEA is known to possess acute and chronic toxic effects
in animals. Ovaries are female reproductive organs comprising
follicles of varying sizes. The early stages of follicular growth
depend on the development of the GCs and oocytes, which are
in constant communication with each other. The development of
one cell type influences the other’s compartment. During follicle
development, GCs replicate, secrete hormones, and support the
growth of the oocyte (Hamel et al., 2008). Previous investigations
demonstrated that ZEA may alter GC’s function in swine
(Ranzenigo et al., 2008; Zhang et al., 2017b). This study aims to
evaluate the in vitro toxicity of 10 and 30 µM ZEA in donkey
ovarian GCs through transcriptome analysis.

MATERIALS AND METHODS

Reagents
Zearalenone was purchased from Sigma Company (St. Louis,
MO, United States). Stock solutions of ZEA were fixed by
dissolving ZEA in dimethyl sulfoxide (DMSO). DMSO (D12345),
fetal bovine serum (FBS; 10100147), M-199 medium (11150-059),
penicillin and streptomycin were procured from Gibco Company
(Carlsbad, CA, United States).

Animals
The mature donkeys’ ovaries used in the experiment were
obtained from the Dong E Donkey Production Company
(Qingdao, Shandong, China). The ovaries were collected from
the slaughterhouse of the company and maintained at 32–35◦C
for the isolation of GCs. All procedures of animal handling in
this study were reviewed and approved by the Ethical Committee
(Agreement No. 2017-18) of Qingdao Agricultural University.

Isolation and Culture of dGCs
Donkey GCs (dGCs) were aspirated from the antral follicles using
a 10 ml syringe (Zhu et al., 2012). Standing for 15–18 min,
the dGCs were centrifuged at 300 g for 5 min in accordance
with previous report (Qin et al., 2015). Then the dGCs were
cultured in DMEM medium (HyClone, SH30022.01, Beijing,
China) supplement with 10% FBS (10099-141, Gibco, Australia)
and 1% penicillin-streptomycin (Hyclone, SV30010) in incubator
with 5% CO2 at 37◦C (Duda et al., 2011).

The primary GCs were passaged after culture 48–36 h.
To avoid the stress of passage response, drug exposure was
performed until 12 h later. The GCs were inoculation in a
6 cm petri dish (Corning, 430166, United States) at a density of
1 × 106 cells. ZEA was added to the cultured medium at final
concentrations of the 10 or 30 µM, then the cells were incubated
with ZEA for 72 h. The control and 10 µM ZEA group added the
same dose of DMSO to 30 µM ZEA group for accuracy.

Immunofluorescence and Cell Counting
The GCs were collected and fixed in 4% paraformaldehyde for
2 h, then heated at 42◦C for 2 h, finally attached onto a poly-
lysine coated slide. For immunofluorescence, the sections were
blocked with the BDT (10% goat serum in TBS, 3% BSA) for
35 min, and then incubated overnight with primary antibodies
at 4◦C (Supplementary Table S1). The sections were then
incubated with Cy3/FITC-conjugated goat anti-rabbit secondary
antibody (Beyotime, A0208, Nantong, China) at a dilution of
1:50 at 37◦C for 1.5 h. Finally, the sections were incubated with
Hoechst33342 (Beyotime, C1022) to visualize nuclei of GCs for
3 min at room temperature. The immunosignal was detected
using a fluorescence microscope (Olympus, XB51, Japan), the
images were captured and analyzed in accordance with cellSens
Standard.

TUNEL Staining
TUNEL BrightRed Apoptosis Detection Kit was utilized to
evaluate the GCs apoptosis (Vazyme, A11302, Nanjing, China).
Briefly, the GCs were fixed with 4% paraformaldehyde for 2 h
after ZEA treatment. Observation under fluorescence microscopy
was carried out after TUNEL reaction following manufacturer’s
recommendations [60 min at 37◦C without light, and DNA
staining with Hoechst 33342 (Beyotime, C1022) incubation at
room temperature for 3 min]. The TUNEL positive cells were
detected under the fluorescence microscope (Olympus, XB51).
To analyze TUNEL positive cell ratio, more than 2,000 cells were
counted in each group, and each group included three biological
replicates at least.

RNA Extraction, Reverse Transcription,
and RNA-seq
Total RNA was extracted from the cultured GCs by the use
of an RNAprep pure MicroKit in line with the manufacturer’s
instruction (Aidlab, RN07, Beijing, China). And the first-strand
cDNA acquisition was utilized a cDNA Synthesis Kit (TransGen,
AT311-03, Beijing, China) with reference to previous study (Pan
et al., 2011). The reaction program was setup at: 42◦C for 15 min,
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85◦C for 30 s, and 4◦C for cooling. Then, RNA sequencing
was performed with Hiseq 4000 platform by Novogene (Beijing,
China). Three biological replicates were manipulated in each
group. Primary RNA-seq data were uploaded to the SRA
repository. The SRA index number was SRP139976. The RNA-
seq data matrix used for DESeq2 analysis were uploaded
to the GEO repository and the GEO accession number was
GSE1169501.

Data Preprocessing and Identification of
Differentially Expressed Genes
R Bioconductor/DESeq2 package was applied to analyze the
dGCs groups (control, 10 and 30 µM ZEA) to identify the
difference of gene expression. DESeq2, the negative binomial
was applied as the reference distribution and taken own
normalization approach for raw counts in differential expression
analysis. In other methods to avoid possible biases, the data of
differential expression analysis has to be previously normalized
(Benjamini et al., 2001; Luo and Brouwer, 2013). Because the
design of sequencing contains biological replicates in each group,
log2|fold change| is not setup as the filter condition. So padj < 0.01
was really considered as statistical significance.

KEGG Enrichment Analysis
R Bioconductor/clusterProfiler package was applied to analyze
functional profiles (KEGG) of differentially expressed genes
(DEGs) (Yu et al., 2012). Furthermore, R Bioconductor/Pathview
package was applied to visualize KEGG enrichment results.
According to the DEGs log2|fold change| value shows enrichment
signaling pathway active status. The p-value adjusted used the
Benjamini & Hochberg (BH) method (Luo and Brouwer, 2013).
Still, the padj < 0.05 was considered as statistical significance.

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) does not need to
specify a clearly differential expression of gene threshold, the
algorithm performs GSEA based on overall trend of the gene
raw read count. The file has to be made suitable for GSEA
software analysis with R script (Subramanian et al., 2005).
The data for GSEA analysis contained nine samples within
three groups. The GSEA software option “Collapse dataset to
gene symbols” parameters was “false” and option “Permutation
type” parameters were “gene set.” Other parameters were set
as default as software manual references. The GSEA gene
set with FDR q-value <0.05 were defined as significant
difference.

Protein–Protein Interaction Network
Construction and Modules Mining
Search Tool for the Retrieval of Interacting Genes/Proteins2

(STRING) is a database of protein–protein interaction (PPI). This
database contains the direct and physically related interactions
between known and predicted protein and genes. The R

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116950
2https://string-db.org/

Bioconductor/STRINGdb was applied for PPI of interested DEGs
(Franceschini et al., 2013). The Cytoscape software was applied to
visualize PPI results (Shannon et al., 2003).

Quantitative Real-Time PCR
Total RNA and cDNA reverse transcription was extracted as
described above. Quantitative real-time PCR (RT-qPCR) was
performed using Light-Cycler R© 480 SYBR Green I Master Kit
(Roche, Germany) on LightCycler 480 real-time PCR instrument.
The RT-qPCR reaction was set as: 10 min at 95◦C, followed
by 45 cycles of 95◦C for 10 s, 60◦C for 30 s, 72◦C for 30 s,
and cooling step at 4◦C. Quantitative RT-PCR primers are listed
in Supplementary Table S2 and the primer efficiency in the
Supplementary Figure S1. The standard curve gene GAPDH in
dGCs was used as the reference to normalize the related genes’
mRNA expression. The difference multiples = 2−11CT method
was employed for relative quantification of PCR. Each gene was
expressed as the mean ± standard deviation (SD), which was
calculated from independent biological replicates at least three
times.

Western Blotting
Protein lysates isolated from dGCs were used for western
blotting according to the standard protocol (Zhang et al.,
2010; Chao et al., 2012). Proteins from each ZEA treatment
were separated by 10% SDS-PAGE, then transferred onto the
PVDF membranes. After, the membranes were incubated with
primary antibodies (Supplementary Table S1) at 4◦C overnight.
Then the membranes were incubated with secondary antibodies
(Beyotime, A0208) at 37◦C for 2 h in TBST after rinsing three
times with TBST. The final detection of related genes was
carried out by AlphaImager R© HP (ProteinSimple, 92-13824-00,
United States). The band intensity was quantified using GAPDH
as internal control and measured with IPWIN software.

Statistical Methods
Data are presented by mean ± SD. Different effects between the
control and ZEA treatment groups of donkey was statistically
determined by One-way ANOVA for multiple comparisons.
All analyses were conducted using Graph-Pad Prism analysis
software (San Diego, CA, United States). All experiments were
repeated at least three times unless otherwise noted. Results were
considered statistically significant at p-value <0.05.

RESULTS

The Apoptosis and Apoptosis-Related
Gene Expression of dGCs Exposed to
ZEA
Donkey granulosa cells were cultured in vitro and exposed to 10
or 30 µM ZEA for 72 h (Figure 1A). The percentages of TUNEL
positive dGCs significantly increased as a result of exposure of
ZEA (10 µM: 36.04 ± 1.52%; 30 µM: 44.30 ± 1.33%) compared
to that of the control (0 µM: 9.83 ± 0.21%; P < 0.01; Figure 1B).
As shown in Figure 1C, the ratios of BAX/BCL2 mRNA

Frontiers in Genetics | www.frontiersin.org July 2018 | Volume 9 | Article 29344

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116950
https://string-db.org/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00293 July 29, 2018 Time: 15:54 # 4

Zhang et al. Zearalenone Elevated Tumorigenesis of DGCs

FIGURE 1 | Zearalenone exposure increasing apoptosis and inducing the apoptosis-related gene mRNA abundance in cultured GCs. GCs were stained blue with
Hoechst33342 Solution. TUNEL assay was performed using immunostaining. (A) Immunofluorescent staining of TUNEL and Hoechst33342 of GCs. Bar indicates
50 µm. (B) The percentages of TUNEL positive GCs. (C) The mRNA levels of BAX/BCL2 in cultured GCs exposed to ZEA, and the control determined by Q-PCR.
The results are presented as mean ± SD. All experiments were repeated at least three times. ∗P < 0.05; ∗∗P < 0.01.

expression significantly increased in 10 and 30 µM ZEA exposed
dGCs.

We performed RNA-seq to verify the effect of ZEA exposure
on dGCs. Based on the criterion FDR <0.05, 14,506 DEGs
was observed between the control and the ZEA-treated dGCs
(Figure 2A). A total of 7,253 and 6,984 DEGs were noted
between the control and 10 and 30 µM ZEA treatment groups,
respectively. A total of 269 DEGs were observed between the
10 and 30 µM ZEA treatment groups. In this study, the
DEGs between the control and ZEA treatment groups and
among the treatment groups were obtained from: 0 µM vs.
10 or 30 µM and 10 vs. 30 µM ZEA group, respectively
(Figure 3A).

We obtained three RNA-seq replicates for the 0, 10, and
30 µM ZEA-treated dGCs. The variation of the replicates from
the control and ZEA treatment groups are shown in Figure 2B.
A heat map was drawn from the DEG results (Figure 2C). In
this study, we chose the DEGs from the 0 µM vs. 10 and 30 µM
groups.

To explore the potential mechanism of ZEA exposure
in dGCs, the STRING database was applied in annotating

functional interactions DEGs between the control and
ZEA-treatment group. Also PPI networks was visualized by
Cytoscape (Supplementary Figures S2A,B). The center nodes
of the networks, some interesting genes, were observed, such
as PTEN, AKT, ATM, TGFβ, PI3K, CCND2, HEY2, CDK2,
and FDX1. In addition, the cBioPortal was used to provide
visualization, analysis of DEGs related to the ovarian cancer from
large-scale cancer genomics data sets (Supplementary Figures
S2C, S3).

DEGs Involved in KEGG Pathways
In order to attain functional insights of DEGs, the R package
of clusterProfiler was carried out to establish extremely affected
KEGG pathways. The Venn diagram were constructed by the
results of DEGs (Figure 3A). A total of 5,863 DEGs containing
in control and 30 µM ZEA groups were quantified (Figure 3B).
The DEGs were significantly enriched in the PI3K-AKT signaling
pathway (Count = 125, padj = 0.0049), endocytosis (Count = 91,
padj = 0.049), regulation of actin cytoskeleton (Count = 90,
padj = 0.0001), and proteoglycans in cancer (Count = 83,
padj = 0.0009) in ZEA treated dGCs (Figure 3C).
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FIGURE 2 | The GCs gene expression profiling after ZEA treatment. (A) Scatterplot of gene expression after ZEA treatment. Control group vs. 10 µM ZEA-treatment
group, control group vs. 30 µM ZEA-treatment group, 10 µM ZEA-treatment group vs. 30 µM ZEA-treatment group. Red and blue plot represents genes expressed
differently. (B) The nine samples shown in the 2D plane spanned by the first three principal components. (C) Heatmap indicate the group difference of DEGs in the
10 and 30 µM ZEA-treated groups compared with the control group, and the repeatability within each group. The results are presented as mean ± SD.
All experiments were repeated at three times.
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FIGURE 3 | Gene expression of RNA-seq analysis in granulosa cells between control and ZEA-treated groups. (A) Venn diagram showed that the different
expression of 14,506 genes in control and ZEA-treated groups. (B) Dispersion plot. The dispersion estimate plot shows the gene-wise estimates (black), the fitted
values (red), and the final maximum a posteriori estimates used in testing (blue). (C) KEGG biological processes involving DEGs in ZEA-treatment GCs.

The GSEA analysis showed that OVARIAN_CANCER_LMP
and TNF_SIGNALING_VIA_NFKB gene set was enriched
by 10 µM ZEA vs. the control of dGCs (Figures 4A,B),
while CANCER_HEAD_AND_NECK_VS_CERVICAL and
BREAST_CANCER_16Q24_AMPLICON gene set was enriched
by the 30 µM ZEA vs. the control in dGCs (Figures 4C,D),
respectively. The GSEA enrichment plot revealed a regulated

tendency for most of enriched genes in ZEA-treatment compared
with the control. The GSEA analysis also verified the KEGG
analysis.

In addition, six genes were identified by performing the
KEGG and GSEA pathway analysis in ZEA treatment, the PI3K
and AKT genes were involved in PI3K-AKT signaling pathway
of dGCs upregulating. DGCs in ZEA treatment, another four
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FIGURE 4 | Differentially expressed genes in GSEA analysis. (A,B) GSEA for GCs treated with 10 µM ZEA. (C,D) GSEA for GCs treated with 30 µM ZEA.

genes involved in anti-oncogene process downregulating were
also identified, such as PTEN, TGFβ, CDK2, and ATM. Finally,
CCND2, CDK6, TNF, and TP53 genes in treatment dGCs, were
identified involving in cancer process either upregulation or
downregulation.

Specific Impact of ZEA Exposure to
dGCs
It is hypothesis that 10 and 30 µM ZEA exposure may affect
the proliferation and carcinogenesis of dGCs (Figure 4). RT-
qPCR was conducted to verify the hypothesis by evaluating
the expression of different transcript together with enzymes
in the pathway of dGCs between the control and ZEA
treatments. RT-qPCR analyses indicated that 10 and 30 µM

ZEA exposure significantly downregulated mRNA abundance
of PTEN while upregulated PI3K and AKT genes in dGCs
(P < 0.05 or P < 0.01; Figure 5A). As illustrated in
Figure 5B, ZEA-treated dGCs exhibited lower protein levels
of PTEN but higher protein levels of PI3K and AKT
compared with that of the control dGCs (P < 0.05 or
P < 0.01). Moreover, 10 and 30 µM ZEA exposure significantly
down-regulated the mRNA abundance and protein levels
of CDK2, TGFβ, and ATM genes than the control dGCs
(P < 0.05 or P < 0.01; Figures 6A,B). Interestingly, the
ZEA treatments significantly decreased the number of PTEN
and TGFβ but significantly increased the number of PI3K
immunofluorescence positive dGCs, in comparison to the control
(Figures 7A,B).
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FIGURE 5 | Zearalenone exposure affecting mRNA and protein abundance of PTEN-related genes in cultured donkey GCs. (A) Quantitative RT-PCR for PTEN, AKT,
and PI3K transcription factors. The mRNA levels of all genes were normalized to GCs GAPDH gene. (B) Protein levels of PTEN/GAPDH, AKT/GAPDH, and
PI3K/GAPDH by Western blotting. The protein levels were normalized to GAPDH. The results are presented as mean ± SD. All experiments were repeated at least
three times. ∗P < 0.05; ∗∗P < 0.01.

DISCUSSION

Numerous studies have proven ZEA’s cytotoxic effect on the
reproductive (Kiang et al., 1978; Mehmood et al., 2000;
Nikov et al., 2000), immune (Abbes et al., 2006a,b; Luongo
et al., 2006), and endocrine (Mueller et al., 2004) systems,
as well as on heredity (Kouadio et al., 2005). ZEA indirectly
affects mammalian fertility by impairing the formation of
primordial follicle (Zhang et al., 2017a), thereby causing
changes in gene expression; it also induces DNA damage in
ovarian GCs (Zhang et al., 2017b). Not much information
is available on ZEA-induced alteration in dGC proliferation
and development and impairment of mammalian fertility. This
research is the first to describe the GC transcriptomes of
donkeys.

The RNA-seq results showed that exposure to 10 µM
ZEA significantly transformed the mRNA expression of
thousands of genes in dGCs. In particular, PTEN genes were

downregulated, suggesting that ZEA exposure is involved
with the cancer-related PTEN signaling pathway. The tumor
suppressor gene, PTEN, plays an essential role in cell growth,
survival, and tumor formation. Decrease in PTEN expression,
either at the protein or mRNA level, has been associated
with many primary malignancies, including ovarian cancer
(Kechagioglou et al., 2014). Hence, the downregulation of
PTEN is a hallmark of tumors. The PI3K-AKT pathway is
one of the two major signaling pathways that have been
identified as important in cancer. Through phosphorylation,
PI3K-AKT inhibits the activity of proapoptotic members
while activating anti-apoptotic members. The reduction in
PTEN expression indirectly stimulates PI3K-AKT activity,
thereby contributing to oncogenesis in mammals (Zhang et al.,
2017c). Our studies showed that exposure to 10 µM ZEA
significantly upregulated the PI3K-AKT gene expression in
the dGCs, implying that exposure to low concentrations of
ZEA (10 µM) might increase the donkey’s risk for ovarian
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FIGURE 6 | Zearalenone exposure affecting mRNA and protein abundance of tumorigenesis related genes in cultured GCs. (A) Quantitative RT-PCR for CDK2,
TGFβ, and ATM transcription factors. The mRNA levels of all genes were normalized to GCs GAPDH gene. (B) Protein levels of CDK2/GAPDH TGFβ/GAPDH, and
ATM/GAPDH by Western blotting. The protein levels were normalized to GAPDH. The results are presented as mean ± SD. All experiments were repeated at least
three times. ∗P < 0.05; ∗∗P < 0.01.

cancer via the PTEN/PI3K/AKT pathway by suppressing the
expression of antitumor genes or by activating the expression
of cancer-causing genes (Zhang et al., 2017c). Moreover,
it was reported that decreased TGFβ-mediated signaling
might predispose an individual to develop cancer (Pasche,
2001; Galliher et al., 2006; Jin et al., 2017). Previous studies
have assessed the association between TGFβ and risk for
various forms of cancer, and several meta-analyses have
demonstrated that TGFβ is associated with risk for ovarian
cancer (Akhurst and Derynck, 2001; Nilsson and Skinner,
2002; de la Cruz-Merino et al., 2009). Interestingly, TGFβ
expression in the ZEA treatment samples was significantly
decreased, indicating an increased risk for ovarian cancer. The
direct effect of TGFβ is not solely responsible for influencing
tumor behavior (Hagedorn et al., 2001; Tuxhorn et al., 2002).
Lack of TGFβ in fibroblasts can result in mammary gland
tumor progression (Bhowmick et al., 2004; Matise et al.,
2012).

Bioinformatics analysis confirmed that ataxia-telangiectasia
mutated (ATM) and cyclin-dependent kinase 2 (CDK2) genes
were affected by exposure to ZEA. A previous study showed
that the ATM gene plays an essential role in DNA double-
strand breaks (DSBs) repair (Kurz and Lees-Miller, 2004).
These DSBs if left unchecked can result in the development of
cancer (Weber and Ryan, 2015). Several studies showed that
suppression of ATM is associated with a variety of tumors
(Weber and Ryan, 2015). Here, we provide evidence that
exposure to 10 µM ZEA significantly decreased ATM gene
expression, suggesting a common mechanism of action in
donkeys. Other studies revealed that cell cycle dysregulation,
resulting in uncontrolled proliferation, is also a hallmark
of cancer (Vijayaraghavan et al., 2017). The CDK family is
composed of proteins associated with cell cycle regulation
and is frequently mutated or overexpressed in ovarian cancer.
Deregulation of the CDK2/4/6 signaling pathway is among
the most common aberrations found in ovarian cancer
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FIGURE 7 | Immunofluorescence assay examining the expression of phosphor-PTEN, TGFβ (A), and PI3K (B) proteins. The fluorescence intensity and percentages
of positive cells were analyzed, respectively. Bar indicates 50 µm. Data are presented as means ± SD. ∗P < 0.05; ∗∗P < 0.01.

(D’Andrilli et al., 2004). Interestingly, exposure to 10 µM
ZEA significantly downregulated the expression of CDK2
genes, which regulate the cell cycle and are involved in
ovarian cancer. Finally, exposure to ZEA increased the dGCs’
apoptosis rate and elevated the expression of the BAX/BCL2
genes.

CONCLUSION

This research is the first study to investigate ZEA-induced
impairment of dGCs. ZEA (10 or 30 µM), a potentially
carcinogenic substance, can directly cause tumorigenesis and
in vitro apoptosis of dGCs. This study developed an innovative,
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integrated, and low-cost approach to study GC exposure to
ZEA. ZEA disrupts the endocrine and reproductive performance
of domestic animals, and this study may help elucidate the
mechanism of ZEA toxicity.
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FIGURE S1 | The standard curve and primer efficiency of all Q-PCR primers.
(A–F) represent the standard curve and primer efficiency of PTEN, AKT, PI3K,
CDK2, TGFβ, and ATM genes.

FIGURE S2 | Protein–protein interaction (PPI) network based on the STRING
database to annotate functional interactions between DEGs in control and 10 µM
ZEA-treatment groups (A), in control and 30 µM ZEA-treatment groups (B).
Cancer type detailed summary of DEGs related to the ovarian cancer (C). The
node degree ≥20 was selected as the threshold.

FIGURE S3 | Visualization of DEGs related to the ovarian cancer from large-scale
cancer genomics data sets. The node degree ≥20 was selected as the threshold.

TABLE S1 | Primary antibodies.

TABLE S2 | Primers used for quantitative-PCR.
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Toxicogenomics (TGx) is an important tool to gain an enhanced understanding of
toxicity at the molecular level. Previously, we developed a pair ranking (PRank) method
to assess in vitro to in vivo extrapolation (IVIVE) using toxicogenomic datasets from
the Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System (TG-
GATEs) database. With this method, we investiagted three important questions that
were not addressed in our previous study: (1) is a 1-day in vivo short-term assay
able to replace the 28-day standard and expensive toxicological assay? (2) are some
biological processes more conservative across different preclinical testing systems than
others? and (3) do these preclinical testing systems have the similar resolution in
differentiating drugs by their therapeutic uses? For question 1, a high similarity was
noted (PRank score = 0.90), indicating the potential utility of shorter term in vivo
studies to predict outcome in longer term and more expensive in vivo model systems.
There was a moderate similarity between rat primary hepatocytes and in vivo repeat-
dose studies (PRank score = 0.71) but a low similarity (PRank score = 0.56) between
rat primary hepatocytes and in vivo single dose studies. To address question 2, we
limited the analysis to gene sets relevant to specific toxicogenomic pathways and
we found that pathways such as lipid metabolism were consistently over-represented
in all three assay systems. For question 3, all three preclinical assay systems could
distinguish compounds from different therapeutic categories. This suggests that any
noted differences in assay systems was biological process-dependent and furthermore
that all three systems have utility in assessing drug responses within a certain drug class.
In conclusion, this comparison of three commonly used rat TGx systems provides useful
information in utility and application of TGx assays.

Keywords: toxicogenomics, preclinical models, liver, gene expression, bioinformatics

INTRODUCTION

Toxicogenomics (TGx) combines toxicology with genomics or other high throughput molecular
profiling technologies, offering a powerful method to study the underlying molecular mechanisms
of toxicity (Nuwaysir et al., 1999; Aardema and MacGregor, 2002). Since, it was first described
some 18 years ago (Nuwaysir et al., 1999), TGx has played an important role in various aspects
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of toxicology including mechanistic studies, predictive toxicology
and the development of safety biomarkers (Chen et al., 2012).

Toxicogenomic approaches can be broadly categorized into
three purposes: predictive toxicology, risk assessment, and
mechanistic studies (Suter et al., 2004; Chen et al., 2012).
For example, Fielden et al. (2007) developed a short-term
(5 day) repeated dose TGx assay in rat to predict non-genotoxic
hepatocarcinogenicity with a sensitivity and specificity of 86
and 81%, respectively. Other studies have addressed various
questions of applying TGx including optimal treatment duration
and sample size for a better predictive performance (Liu et al.,
2011; Gusenleitner et al., 2014; Matsumoto et al., 2015; Liu
S. et al., 2017). TGx has also been used in semi-quantitative
risk assessment such as defining points of departure and
benchmark dosing (Yang et al., 2007; AbdulHameed et al.,
2016; Chauhan et al., 2016; Dean et al., 2017; Farmahin
et al., 2017; Kawamoto et al., 2017). Most widely used
application of TGx approaches is to understand the molecular
mechanisms of different toxicological endpoints (Ellinger-
Ziegelbauer et al., 2008; Blomme et al., 2009; Rodrigues et al.,
2016; Hendrickx et al., 2017; Rueda-Zárate et al., 2017). More
recently, in addition to gene expression profiling, the study
of microRNAs (Wang et al., 2009; Yang et al., 2012; Ward
et al., 2014; Liu et al., 2016) and long non-coding RNAs
(lncRNAs) (Aigner et al., 2016; Dempsey and Cui, 2017) are
emerging as new technologies to be integrated into this field
powered by next-generation sequencing technologies (Yu et al.,
2014).

In drug development, TGx has been added as an endpoint to
existing preclinical study designs to gain more information from
these studies. For example, in studies of liver toxicity, preclinical
assessment in rodents may use primary rat hepatocytes or may
use single dose in vivo studies (24 h) or repeat dosing up to
28-days. Each of these test systems may serve a different purpose;
in vitro studies using primary rat hepatocytes may be used for
mechanistic and/or cytotoxicity assessments whereas single and
repeat dose toxicity studies are used to determine tolerability
and target organ toxicity. The addition of TGx to each of these
study types has generated additional data of use in assessment
of toxicological risk and mechanisms. Other researchers have
compared different testing systems for analysis of such endpoints
as identification of biomarkers (Kondo et al., 2009) and gene
expression-induced by genotoxic carcinogens (Watanabe et al.,
2007). However, a systematic comparison of the value of TGx data
generated in the different test systems has not been fully assessed.

Unlike decades ago, there are now several large
publicly available toxicogenomic datasets such as the Open
Toxicogenomics Project-Genomics Assisted Toxicity Evaluation
System (TG-GATEs) database (Uehara et al., 2010; Igarashi et al.,
2015), DrugMatrix (Ganter et al., 2005) and PredTox (Suter
et al., 2011), providing tremendous opportunities for comparing
preclinical testing systems. For example, open TG-GATEs used
four standard preclinical study designs to generate TGx data
(Ippolito et al., 2015; Bell et al., 2016; Liu et al., 2016; Sutherland
et al., 2016). Using TG-GATEs data, we developed a ‘topic
modeling’ approach to explore the underlying relationships
between different TGx assay systems (Lee et al., 2014, 2016)

and other toxicological assessments such as high throughput
screening assay data from the Tox21 project (Lee et al., 2016).

In our previous study, we developed a Pair Ranking (PRank)
method to assess the potential of in vitro to in vivo extrapolation
(IVIVE) among three TGx assay systems (two in vitro assays
using rat or human hepatocytes and a 28-day repeat-dose rat
model) (Liu Z. et al., 2017). The study had an emphasis on
assessing the IVIVE potential for different endpoints of drug-
induced liver injury (DILI). It was concluded that the in vitro
assay using primary rat hepatocytes and rat in vivo 28-day
repeated dose models had high IVIVE potential for most DILI
endpoints. However, several important questions remain for
prediction of liver responses. Firstly, will a short-term in vivo
assay (1-day experiment to detect acute response) correlate
with a standard long-term in vivo repeated dose study (28-day
study)? Secondly, are differences and similarities dependent upon
biolgocial processes? Finally, can the different TGx assay systems
distinguish compounds from different therapeutic categories?

In this study, we analyzed preclinical rat test system data
from TG-GATEs comprising 131 compounds in three assays –
(1) an in vitro study with rat primary hepatocytes (denoted
as InVitro hereafter), (2) a rat in vivo single-dose treatment
wih sample collection after 24 h (denoted as InVivo_S), and
(3) a rat 28 day repeat-dose study (denoted as InVivo_R
hereafter). Comparative analysis among these three assay systems
were analyzed using PRank. Additonal useful comparisons
were genererated by limiting the analyses firstly to compounds
from certain therapeutic categories and secondly to gene sets
representing specific toxicogenomic pathways.

MATERIALS AND METHODS

Toxicogenomics Datasets
The open TG-GATEs1 was employed to investigate preclinical
TGx assay systems in rats (Igarashi et al., 2015). Three rat
toxicogenomic data sets from the TG-GATEs Phase I study were
included covering 131 compounds from different therapeutic
categories. The rat in vitro data had three concentrations (low,
medium, and high) and three treatment durations (2, 4, and 24 h).
The rat in vivo single dose also used three doses (low, medium,
and high) and the samples were collected at four different
timepoints after treatment (3, 6, 9, and 24 h). The in vivo
repeated dose data was generated under the standard in vivo
experiment design with three doses (low, medium, and high) and
four treatment durations (3, 7, 14, and 28 days), where the rat
liver tissue was isolated 24 h after treatment. In this study, we
focused on the highest concentration/dose and longest treatment
duration of 120 common compounds among the three assay
systems for each assay system (the data used are available from
Supplementary Table S1). Specifically, (1) “InVitro” is the data
from in vitro assay with rat primary hepatocytes treated with the
highest dose and the sample is collected 24 h after treatment, (2)
“InVivo_S” is the data from rat in vivo single high dose and the
sample is collected 24 h after treatment, and (3) “InVivo_R” is

1http://toxico.nibiohn.go.jp/english/
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repeated dose daily with highest dose for 28 days. More details on
concentration and dose definition are listed in our previous study
(Liu Z. et al., 2017) and elsewhere (Igarashi et al., 2015).

Microarray Data Normalization and
Differentially Expressed Genes (DEGs)
Calculation
The microarray data from three rat TGx systems was processing
using Factor Analysis for Robust Microarray Summarization
(FARMS) (Hochreiter et al., 2006) with a custom CDF file
from BRIANARRAY2. The details were as described previously
(Hochreiter et al., 2006; Liu Z. et al., 2017). Replicate
measurements were collapsed to one measurement per gene.
The collapsed data can be downloaded from http://dokuwiki.
bioinf.jku.at/doku.php/tgp_prepro. The downloaded data were
transformed as MAT File Format as an input for further analysis.
For each compound in each assay system, the fold change values
were generated by comparing the treatment group vs. matched
control group for each time and concentration/dose condition.

Therapeutic Categories
The Anatomical Therapeutic Chemical (ATC) classification
system was used to group the compounds into different
therapeutic classes. The ATC classification system has five
levels of code to characterize a chemical/drug based on (1)
the system/organ it acts on, (2) its therapeutic use, (3) its
pharmacological functions, (4) its chemical properties, and
(5) the chemical itself. In this study, the second-level of
ATC codes indicating the main therapeutic group were used
(see Supplementary Table S1).

Toxicity Pathways Related Gene Sets
The gene sets related to different toxicity pathways were extracted
from the Comparative Toxicogenomics Database (CTD) (Davis
et al., 2017), which aims to illustrate how environmental
chemicals affect human health. Specifically, the gene and pathway
relationship data were downloaded from http://ctdbase.org/
downloads/. There are a total of 135,815 gene and pathway
relationships. Due to the gene symbols (Entrez Gene IDs) in CTD
database was based on homo sapiens, we mapped Entrez gene
IDs from homo sapiens to Rattus norvegicus based on NCBI
HomoloGene build 683. We clustered the genes based on their
related pathways and kept the pathways containing more than
200 genes for further analysis (see Supplementary Table S2).

Pair Ranking Method (PRank)
The Pair Ranking (PRank) method was used to compare the
three rat TGx assay systems (Liu Z. et al., 2017). First, the
pairwise compound similarity of any two compounds within an
assay system was calculated using their biologically significant
genes which were the top and down 200 ranked genes by
their fold change values. The total number of 400 genes as

2http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/
CDF_download.asp
3ftp://ftp.ncbi.nih.gov/pub/HomoloGene/

the compound signatures were used for similarity calculation.
The Dice’s coefficient was employed to measure the similarity
between the transcriptional profiles of compounds, which were
suggested by SEQC I study (Wang et al., 2014). In this study,
the overlapped genes were counted by taking into consideration
of their regulation direction and the Dice’s coefficient were
calculated by using the following equation,

Dice′s coefficient =
2(Ni,j,up + Ni,j,down)

400+ 400
=

Ni,j,up + Ni,j,down

400
(1)

where, Ni,j,up and Ni,j,down denote the number of overlapped the
up/down regulated genes between compound i and compound
j, respectively. Then, each pair was ranked from high to low by
the pairwise similarity. Lastly, the PRank score was calculated
between any two assay systems by using receiver operating
characteristic (ROC) curve and the area under the curve (AUC).
For ROC-AUC analysis, we need to transform the ranked Dice’s
coefficient to binary values (positive and negative: 0/1). In this
study, the Dice’s coefficient value more than 0.4 was selected as
cut-off, which is close to 95% quantile. The ROC-AUC analysis
was conducted by using function perfcurve.m from MATLAB
R2016a.

To investigate whether the compounds within a therapeutic
category were more similar than across therapeutic categories, we
used the following formula,

stability ratio =
mean (

∑n
i=1 Dice_inter)

mean (
∑n

i=1 Dice_across)
(2)

where, n is the number of compound pairs. For inter therapeutic
category, the compound pairwise similarity was generated by
calculating the Dice’s coefficients between any two compounds
from the same category. For across therapeutic categories, the
pairwise similarity was generated between compounds from the
different therapeutic categories. Finally, we calculated the stability
ratio between inter therapeutic and across therapeutic categories
to investigate whether the assay system could distinguish one
therapeutic category to another. If the stability is more than 1, it
means that the similarity among compounds for inter therapeutic
category is more than across therapeutic category, indicating
the similarity based on toxicogenomic profiles is capable of
distinguishing the compounds from one therapeutic category to
another.

For compound pairwise similarity calculations using the gene
sets from different toxicogenomic pathways, we followed the
following procedures. First, we mapped each gene set derived
from toxicogenomic pathways to rat genes represented by the
microarrays used in open TG-GATEs. Then, we retained the
overlapped genes with fold change more than 1.5 for each
compound as individual signatures. Finally, we calculated Dice
coefficients between any two compounds based on the generated
signatures in each system.

Percentage of Overlapping Pathways
(POP)
The concordance among the three assay systems were also
assessed in the different KEGG pathways. Specifically, the 400
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genes for each compound in each assay system was input to the
Database for Annotation, Visualization and Integrated Discovery
(DAVID) software to carry out KEGG pathway analysis (Huang
et al., 2008). The pathways with a Benjamini–Hochberg adjusted
p-value less than 0.05 were considered as statistically significant
pathways. Then, the enriched KEGG pathways in each assay
systems were ranked based on frequency of pathways perturbed
by the compounds (p ≤ 0.05). Finally, the POP represented
the number of common pathways between any two assay
systems divided by L, the number of pathways in each of
subset of ranked pathway list. In this study, L was set from
5 to 60.

Chemical Structure Similarity
The chemical structure of 120 common compounds could be
found from our previous study (Liu Z. et al., 2017). The Pipeline
Pilot 8.0 (Accelrys, Biovia, and Dassault Systems) was used
to calculate the compound pairwise similarity based on their
functional class fingerprints (FCFPs) with a radius of FCFP-
4. The compound pairwise chemical similarities were listed in
Supplementary Table S1.

Code availability
The scripts and processed data in this study were available in
https://github.com/iguana128/Frontier-source-codes.

RESULTS

Detection Power of Three TGx Assay
Systems
We first examined each assay’s ability to differentiate
drug pairs. Figure 1 illustrates the pairwise similarity
distribution for the three TGx assay systems. The average
Dice’s coefficients in the three assay systems were ranked
as InVivo_R (Dice’s coefficient = 0.200) > InVivo_S (Dice’s
coefficient = 0.187) > InVitro (Dice’s coefficient = 0.166)
(see Supplementary Table S3). The low Dice’s coefficients
indicated that all three TGx assay systems could differentiate one
compound pair to another, where the InVivo_R assay seems to
be less sensitive compared to other two assays.

Read-across have been widely applied to risk assessment
based on chemical structure similarity (Vink et al., 2010; Rand-
Weaver et al., 2013). Recently, the read-across concept has
been expanded to integrate biological data profiles such as
TGx and cell-based in vitro assays (Zhu et al., 2016). Here,
the drug pairs in each assay system were compared with the
compound pairwise chemical similarity (Dice coefficients > 0.2).
It was illustrated that the correlation between assay systems and
chemical space was low with the Pearson’s correlation coefficients
of 0.30, 0.20, and 0.21 for chemical space vs. InVitro, InVivo_S,
and InVivo_R, respectively (Supplementary Figure S1). The
difference between the chemical space and toxicogenomic space
suggested that the read-cross can be improved by combining
the information from both chemistry and toxicogenomics
spaces.

FIGURE 1 | Distribution of compound pairwise similarity in the gene level
across the three rat toxicogenomics assay systems: Dice’s coefficient was
calculated based on top and down 200 genes ranked by fold changes for any
two compounds in each system.

Therapeutic Class Analysis
We further investigated whether the three TGx assay system
could be utilized to discriminate different therapeutic categories.
There was a total of 12 therapeutic categories with at least
five compounds (N02-Analgesics; M02-Topical products for
joint and muscular pain; A10-Drugs used in diabetes; C10-
Lipid modifying agents; N03-Antiepileptics; L01-Antineoplastic
agents; M01-Antiinflammatory and antirheumatic products;
C01-Cardiac therapy; N05-Psycholeptics; N06-Psychoanaleptics;
J01-Antibacterials for systemic use; S01-Ophthalmologicals)
(Supplementary Figure S2). For each therapeutic category
and each assay system, the stability ratios were calculated by
comparing the mean value between and across categories. Almost
all the therapeutic categories in each assay system had a stability
ratio of more than 1 (Figure 2), suggested that the assay
systems could distinguish the different therapeutic categories
from each other. Among 12 therapeutic categories, the high
stability ratios of C10-Lipid modifying agents was observed in
all three assay systems, indicating the lipid modifying agents
including clofibrate, fenofibrate, gemfibrozil, nicotinic acid,
simvastatin could be distinguished from compounds in other
therapeutic categories in TGx assay systems. Furthermore, J01-
Antibacterials for systemic use and S01-Ophthalmologicals with
stability ratios less than 1 in all three assay systems, showing the
lower discrimination power of TGx assay systems for compounds
from these two therapeutic categories. It could be seen that the
high proportion of compounds were overlapped between the
some therapeutic categories (J01-Antibacterials for systemic use
and S01-Ophthalmologicals, and M01-Antiinflammatory and
antirheumatic products and M02-Topical products for joint and
muscular pain) due to the multiple therapeutic uses of these
compounds, indicating the complexity of off-target space of
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FIGURE 2 | Stability ratios for the 12 therapeutic categories in each assay system: for each assay system, the stability ratio was calculated based on the average of
Dice’s coefficient of inter and across therapeutic categories.

these compounds, which may partially explain the unsatisfactory
discrimination power.

Concordance Among Three TGx Assay
Systems
Figure 3A shows the concordance among three assay systems
(InVitro, InVivo_S, and InVivo_R) based on the PRank scores.
The highest concordance was noted for the InVivo_S (24 h)
and InVivo_R (28-day) with a PRank score 0.90, suggesting
the potential to replace long-term treatments with a 1-day
experiment using a single dose treatment without loss of
prediction. As reported in our previous study, the InVitro
and InVivo_R also had a relatively high PRank score (0.71),
suggesting a good IVIVE potential (Liu Z. et al., 2017).
However, the concordance between InVitro and InVivo_S
(PRank score = 0.56) was lower despite the same treatment
duration in these two assay systems.

The concordance among the three assay systems was
compared at the pathway level. Specifically, the percentage of
overlapped pathways (POP) was calculated based on shared over-
represented KEGG pathways (Fisher’s exact test with adjusted
p-value < 0.05) between any two assay systems. As illustrated

in Figure 3B, the highest concordance was for the two in vivo
systems (POP value = 0.875), followed by InVitro-InVivo_R
(POP value = 0.750) and InVitro-InVivo_S (POP value = 0.563).
Therefore, a similar pattern was found at both the gene and
pathway level. Furthermore, pathways related to lipid metabolism
such as steroid hormone biosynthesis and fatty acid metabolism
were consistently over-represented in the three assay systems
(Table 1).

Toxicity Pathway Analysis
We further investigated the concordance among the three assay
systems when limiting the genes to specific toxicity pathways. The
>135K gene-pathway relationships in CTD were employed, and
a total of 106 toxicity pathways related genes sets with at least
200 genes for each were extracted (see Supplementary Table S2).
Figure 4A depicts the concordance among the three assay
systems in different toxicity pathway. The concordance among
the three assay systems in the gene sets level was consistent with
the finding in the whole gene/pathway level with a concordance
ranking as InVivo_S-InVivo_R > InVitro-InVivo_R > InVitro-
InVivo_S. We furthermore compared the top 15 common gene
sets related pathways in the three comparisons based on the
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FIGURE 3 | The concordance among the three rat toxicogenomics assay
systems: (A) PRank methodology based on the top and down 200 genes
based on fold change values. (B) The percentage of overlapping KEGG
pathways based on over-represented KEGG pathways using Fisher’s exact
test with adjusted p-value less than 0.05.

PRank scores (Figure 4B). We found that two lipid related
pathways, i.e., Metabolism of lipids and lipoproteins and Fatty
acid, triacylglycerol, and ketone body metabolism were common
in all three comparisons, which is also consistent with the
finding in the whole gene/pathway level. Furthermore, the similar
conclusion was also drawn based on the stability analysis,
which suggested the lipid modifying agents (C10) were highly
discriminated in all three TGx testing systems.

Confirmation Based on Multiple Time and Dose
Points
The multiple time and dose combination design of TG-
GATEs data sets provides a great opportunity to fully evaluate
the pharmacokinetic and pharmacodynamic characteristics of
chemical-induced toxicity and further facilitate early predictive
biomarkers development for toxicity prediction and prevention.
In the main part of this study, we comprehensively investigated
the concordance among the three rat TGx assay systems at high

TABLE 1 | The overlapping KEGG pathways among the three assay systems.

KEGG entry Pathways names Categories

rno00140 Steroid hormone biosynthesis Lipid metabolism

rno00071 Fatty acid metabolism Lipid metabolism

rno00330 Arginine and proline
metabolism

Amino acid metabolism

rno00280 Valine, leucine, and isoleucine
degradation

Amino acid metabolism

rno00480 Glutathione metabolism Metabolism of other amino
acids

rno00982 Drug metabolism Xenobiotics biodegradation
and metabolism

rno00980 Metabolism of xenobiotics by
cytochrome P450

Xenobiotics biodegradation
and metabolism

rno00830 Retinol metabolism Metabolism of cofactors
and vitamins

rno03320 PPAR signaling pathway Endocrine system

FIGURE 4 | The concordance among the three rat toxicogenomics assay
systems for gene sets related to different toxicogenomic pathways: (A) the
stacked plots of PRank scores for different gene sets in the three assay
systems; (B) a Venn diagram of the top 15 gene set-related toxicogenomic
pathways based on the PRank score ranking in each rat assay systems.

dose and longest duration condition. Moreover, we expanded
the comparisons to the different time and dose combinations.
Figure 5 shows the concordance among three assay systems
at different time and dose conditions based on proposed
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FIGURE 5 | Circle bar plot for the concordance among three rat toxicogenomics systems at different time and dose combinations: the concordance between assay
systems were conducted under a total of 12 time/dose combination by using Prank strategy.

PRank method. The circle bar plot represented the PRank
scores. The similar trends of PRank scores changes (InVivo_S-
InVivo_R > InVitro-InVivo_R > InVitro-InVivo_S) could be
observed in high and medium dose with long and middle
treatment duration. However, the low dose and short treatment
durations were not able to provide enough discrimination power
to assess the concordance among three TGx testing systems.
Furthermore, the N-way ANOVA analysis were used to estimate
the resource of variances contributing to the concordance among
the TGx testing assays by using MATLAB function anovan.m. It
was indicated that dose was more dominated influential factor
of the concordance between testing systems than treatment
duration (see Supplementary Table S4).

DISCUSSION

Animal models are indispensable in drug development and
risk assessment, although extrapolation from animal models to
human responses remains a challenge (Shanks et al., 2009).
A key focus of research into animal models is how they could
better recapitulate the human toxicological and physiological
environment and provide a more reliable and robust prediction of
human toxicity. Cell-based in vitro assays and in silico approaches

have been proposed that could refine, reduce or even replace
animal models (Hamburg, 2011; Goodman et al., 2015). In
support of this, it is key to gain a better understanding on the
similarities and differences between data generated in cell-based
assay (in vitro) systems and animal (in vivo) models. Previously,
we assessed similarities in TGx data between rat and human
primary hepatocyte cultures and rat liver after 28 days of repeated
dosing for a number of drugs and chemicals (Liu Z. et al.,
2017). Here, we carried out a comparative analysis among three
frequently-used rat TGx assay systems (InVitro, InVivo_S, and
InVivo_R) using our previously described Pair Ranking (PRank)
methodology.

The data indicated that there was a high concordance between
the two in vivo assay systems (24 h and 28 days), indicating a
potential to use a short-term in vivo assay for some endpoints
saving time and money. Furthermore, the in vitro TGx data set
had a relatively high similarity to the standard 28-day in vivo
repeated dose experiment data, suggesting a good correlation
of in vitro with longer term treatment in vivo. However, there
was a poor concordance between in vitro and the in vivo single
dose (24 h) treatment. This observation is at first surprising
but one explanation could be that extraction of hepatocytes into
cell culture followed by 24 h of treatment represents a level of
chemical/environmental stress more equivalent to 28 days of

Frontiers in Genetics | www.frontiersin.org March 2018 | Volume 9 | Article 7460

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00074 March 16, 2018 Time: 15:37 # 8

Liu et al. Transcriptional Responses Reveal Similarities

in vivo treatment compared with 24 h (single dose) in vivo where
the liver may only just be responding to a new chemical stress.
Specifically, gene activities associated with the survival cells of the
hepatocytes reflect a level of the adaptation that resemble to these
in the 28-day repeated dosing conditions.

All three TGx assay systems could distinguish compounds
by therapeutic category. Among the 12 investigated therapeutic
categories, the C10-Lipid modifying agents with highest stability
ratios in all the three assay systems, indicating the high
discrimination power. It is very interesting that, when the
analyses were focused on specific pathways, several pathways
such as lipid metabolism-related pathways were consistently
over-represented in all three assay systems, the finding is
consistent with the therapeutic categories, suggesting that
similarity between the systems is to some extent dependent
on different biological process and compounds under different
therapeutic categories.

It is worthwhile to consider some additional studies to
further our knowledge and confirm the findings from this study.
Firstly, the current comparisons among the three TGx assay
systems were based on the perturbation of gene expression
within each of these assay systems. Although this could be the
case, there is no certainty that these conclusions are applicable
to other assay systems where there may be differences in
intrinsic properties such as species or tissue type and extrinsic
properties such as time of exposure and culture conditions.
Therefore, we proposed more retrospective analyses of preclinical
TGx data sets should be undertaken to provide a boarder
and more comprehensive picture of how animal models and
cell-based in vitro assay systems can be translated to predict
human responses. Secondly, in this study we employed TG-
GATEs datasets, currently the largest dataset in the TGx research
arena. Despite this, there are still many classes of chemicals
and drugs missing. Therefore, more comprehensive and larger
scale TGx datasets could yield more robust conclusion. Thirdly,
in the current study, transcriptomic profiles (gene expression)
data were used. With the advance of technology, other data
such as microRNAs profiles should be investigated since these
may be considered more conserved in different species and
organ systems (Mack, 2007). Finally, in the current study we
focused on the top 400 differentially expressed genes (DEGs)
to reveal the relationship between testing systems. In our
previous study, we have discussed the influence of the number
of selected genes to the similarity measure and concluded
that the selected 400 genes could generate the stable similarity

ranking list in each assay system (Liu Z. et al., 2017). With that
said, other methods and/or different lengths of DEGs applied
should be consider to enhance the comprehensiveness of the
investigation.

Toxicogenomics has been used widely to supplement
risk assessment data, to elucidate underlying mechanisms of
toxicology and to support predictive toxicology. One of the
contentious questions in the toxicology field is whether animal
models can provide sufficient predictive power for human
toxicity. In this study, we investigated concordance among TGx
data from three rat assay systems using a Pairwise Ranking
strategy. The data generated provide an insight into the utility
of these assay systems for drug safety evaluation and risk
assessment.
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Comparative Toxicogenomics Database (CTD) database.
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TABLE S4 | Impact of time and dose for correction between assay systems base
on N-way ANOVA analysis.
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Cell-based assays are an attractive option to measure gene expression response to
exposure, but the cost of whole-transcriptome RNA sequencing has been a barrier to
the use of gene expression profiling for in vitro toxicity screening. In addition, standard
RNA sequencing adds variability due to variable transcript length and amplification.
Targeted probe-sequencing technologies such as TempO-Seq, with transcriptomic
representation that can vary from hundreds of genes to the entire transcriptome, may
reduce some components of variation. Analyses of high-throughput toxicogenomics
data require renewed attention to read-calling algorithms and simplified dose–response
modeling for datasets with relatively few samples. Using data from induced pluripotent
stem cell-derived cardiomyocytes treated with chemicals at varying concentrations, we
describe here and make available a pipeline for handling expression data generated by
TempO-Seq to align reads, clean and normalize raw count data, identify differentially
expressed genes, and calculate transcriptomic concentration–response points of
departure. The methods are extensible to other forms of concentration–response gene-
expression data, and we discuss the utility of the methods for assessing variation in
susceptibility and the diseased cellular state.

Keywords: expression-based dose–response modeling, dose–response modeling, bioinformatics-pipeline,
toxicogenomics, bioinformatics & computational biology, iPSCs, cardiomyocytes, expression profiling

INTRODUCTION

Among the key challenges in contemporary toxicity testing is addressing increasing numbers of
commodity chemicals with insufficient toxicity characterization, a trend that is at least partially
attributable to the limitations associated with in vivo testing strategies. Additional challenges are
associated with animal to human extrapolation, as well as concerns over the ethics and expense
of animal testing. These challenges were described in the National Toxicology Program’s (NTP)
2004 Vision and Roadmap for the 21st Century, and the National Research Council’s (NRC) report
on Toxicity Testing in the 21st Century (National Research Council, 2007), which envisioned
a strategic shift from exclusive reliance on animal-derived data in chemical regulation to the
implementation of novel data streams, including high-throughput in vitro testing, omics data,
and computational modeling. More recently the NRC report, A Framework to Guide Selection
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of Chemical Alternatives (National Research Council, 2014) and
the National Academies report, Using 21st Century Science to
Improve Risk-Related Evaluations (National Academies, 2017),
articulated the need to transition from expensive and incomplete
animal testing to high-throughput exposure assessment of new
and existing chemicals. Thus, the use of novel data sources to
conduct human and animal health risk assessment, including
genomic, epigenomic, cell, and in silico-based streams, has
become imperative.

Gene-expression data are also important in evaluating effects
of chemicals on cells and tissues. The Library of Integrated
Network-Based Cellular Signatures (LINCS) is a database of
over 1 million gene expression signatures, or perturbations,
generated using a targeted hybridized bead-base flow sorter
(Peck et al., 2006; Duan et al., 2014) from either drug/chemical
exposure or biological knockdown/knockout with 50 different
cell types (Campillos et al., 2008) on a ∼1,000 gene-set with full-
transcriptome imputation. The related Connectivity Map (Lamb
et al., 2006), a database of transcriptional multiplexed microarray
technology from multiple cancer cell lines exposed to ∼5,000
drugs and small-molecule compounds, has since been combined
into the NIH LINCS database. Further, the DrugMatrix R© database
contains, in addition to a myriad of phenotypic endpoints,
microarray gene-expression data in the rat for over 600 different
compounds in multiple tissues. Lastly, the Toxicogenomics
Project-Genomics Assisted Toxicity Evaluation Systems (TG-
GATEs) database has compiled toxicological endpoints and
gene expression data from rats (in vivo and in vitro primary
hepatocytes) and humans (in vitro primary hepatocytes) on 170
hepato- and renal-toxicants at multiple doses and time points
(Uehara et al., 2010; Igarashi et al., 2015).

The advent of next-generation sequencing (NGS) technology
has allowed for dramatic advances in the characterization of
genomic, epigenomic, and gene expression endpoints. In contrast
to reverse transcriptase PCR and microarrays, NGS results
in reduction or elimination of numerous sources of variation
(Okoniewski and Miller, 2006; Klebanov et al., 2007; Royce
et al., 2007). Anticipating a reduced cost in interrogating only
a portion of the transcriptome, phase III of the Tox21 initiative
has included the development of the S1500 human gene-set
(Merrick et al., 2015) to use for chemical and drug screening.
This S1500 gene-set was designed to be representative of the
human transcriptome, inclusive of the original L1000 (LINCS)
gene-set, and optimized for pathway coverage and co-expression
information. The main goal is to represent diversity of expression
response to disease and chemical exposure in a cost-effective
manner.

RNA-Seq, although considered the gold standard for gene
expression (Ellis et al., 2013), does have shortcomings. These
include bias introduced during mRNA enrichment and library
preparation (Han et al., 2015), as well as substantial monetary,
computing hardware, and bioinformatics costs. Targeted
sequencing technology, such as TempO-SeqTM (Templated
Oligo assay with Sequencing readout), which was originally
adapted from RASL-seq (Li et al., 2012), specifically targets
unpurified RNA in cellular lysates. Two detector oligos are used
that can only be ligated when hybridized next to each other

on RNA, and confer specificity and eliminate positional bias
introduced by poly-(A)+ selection. Sequencing and sample-
specific adapters are then hybridized to the original probes
for sequencing (Yeakley et al., 2017), allowing for assessment
of differentially expressed transcripts in a high-throughput
manner while alleviating some of the shortcomings of untargeted
RNA-seq. These potential improvements in cost and reduction
in sources of variation are attractive for high-throughput
concentration–response transcriptomic profiling.

To date, much of the effort to characterize toxicity
transcriptomic endpoints has focused on individual
concentration–responses from drugs and a small number
of environmental chemicals. Targeted sequencing allows for
more economical interrogation of the transcriptome and opens
the door for high-quantity, high-throughput assessment of
drug/chemical concentration–response. We report here a
pipeline for utilizing TempO-Seq (BioSpyder Technologies,
Inc., Carlsbad, CA, United States), a targeted RNA sequencing
technology, to assess gene-transcript concentration–response
relationships to chemical exposure. Much of the pipeline
is extensible to any transcriptional profiling of chemical
response, where sample sizes are likely to be modest. For
proof of principle, we illustrate using 2,982 selected genes that
include the “S1500+”1 gene-set. Induced pluripotent stem cells
(iPSC)-cardiomyocytes were treated with three different doses
of four chemicals to assess their effects on gene expression
and concentration–response point of departure (POD) (GEO
accession number GSE105050).

MATERIALS AND METHODS

Chemicals and Biologicals
iCell cardiomyocytes (cat. no.: CMC-100-010-001), and
cardiomyocyte plating and maintenance media were purchased
from Cellular Dynamics International (Madison, WI,
United States). Reference chemicals isoproterenol (CAS:
7683-59-2) and propranolol (CAS: 525-66-6) were purchased as
part of EarlyTox Cardiotoxicity Screening kits (cat. no.: R8211)
from Molecular Devices LLC (Sunnyvale, CA, United States).
Nifedipine (CAS: 21829-25-4) and dofetilide (CAS: 115256-11-6)
were purchased from APEXBio (Houston, TX, united States).
Dimethyl sulfoxide (DMSO, cat. no.: sc-358801, CAS: 67-68-5)
was purchased from Santa Cruz Biotechnology (Dallas, TX,
United States). Penicillin/streptomycin solution (cat. no.:
10378016) and 0.4% Trypan Blue solution (cat. no.: 15250061)
were obtained from Life Technologies (Grand Island, NY,
United States).

Cardiomyocyte Cell Culture
iCell cardiomyocytes were plated and maintained according
to the manufacturer’s recommendations (Cellular Dynamics
International, Madison, WI, United States) and in accordance
with previously published protocols with minor adjustments
(Sirenko et al., 2013a,b, 2017; Grimm et al., 2015, 2016).

1https://federalregister.gov/a/2015-08529
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Individual units of cardiomyocytes were thawed for 4 min
in a 37◦C water bath and subsequently resuspended in
10 ml of cardiomyocyte plating medium containing 1:500
penicillin/streptomycin solution. Following microscopic cell
counting using the trypan blue exclusion method, the cell density
was adjusted to a final plating density of 2× 105 cells/ml. Twenty-
five microliters of cell suspension was then transferred per well to
a 384-well microplate, yielding a final cell density of 5,000/well.
Tissue-culture treated microplates (cat. no.: 353962, Corning Life
Sciences, Corning, NY, United States) were gelatinized for 2 h
at 37◦C with 25 µl 0.1% gelatin in water before cardiomyocytes
were plated. After disposal of the gelatin solution and addition of
the cell suspension, microplates were kept at room temperature
for 30 min. Cells were then incubated at 37◦C and 5% CO2 for
48 h. The plating medium was then exchanged with 40 µl of
maintenance medium containing 1:500 penicillin/streptomycin
solution per well. Maintenance medium was replaced every
48–72 h until day 13 post-plating. The maintenance medium was
then exchanged with 50 µl fresh medium per well and incubated
overnight. Cells were treated the next morning (day 14 post-
plating) with 12.5 µl 5× chemical solutions in 0.5% DMSO (v/v)
in media (vehicle) in addition to untreated or vehicle-treated
negative control wells, and incubated at 37◦C and 5% CO2.
Following 24 h of incubation, the cell medium was discarded,
and cardiomyocytes were lysed with 10 µl 1× lysis buffer
provided in the TempO-Seq assay kit (BioSpyder Technologies,
Inc., Carlsbad, CA, United States). Lysate-containing microplates
were agitated at 300 rpm using a benchtop microplate shaker and
stored at−80◦C until further use.

TempO-Seq Library Preparation and
Sequencing
Differential gene expression patterns and concentration–
response relationships were analyzed using TempO-SeqTM

(BioSpyder Technologies, Inc., Carlsbad, CA, United States)
(Yeakley et al., 2017), a targeted RNA sequencing technology
focused on a surrogate transcriptome panel comprising 2,982
transcripts, as described previously (Biopyder Toxpanel Library
DO-01-096) (Grimm et al., 2016). The sequencing library
was prepared according to the manufacturer’s guidelines and
as previously described (Grimm et al., 2015). In brief, RNA
in 2 µl of each cell lysate was hybridized with the provided
detector oligo pool mix (2 µl per sample) using the following
thermocycler settings: 10 min at 70◦C, followed by gradual
decrease to 45◦C over 49 min, and ending with 45◦C for 1 min.
Subsequent steps included nuclease digestion (90 min at 37◦C)
ligation step (60 min at 37◦C, followed by heat denaturation
at 80◦C for 30 min) following addition of 24 µl nuclease mix
and 24 µl ligation mix. Ten microliters of each ligation product
was then transferred to a 96-well amplification microplate
containing 10 µl of PCR mix per well. The ligation products
were then uniquely labeled during product amplification,
when well-specific, “barcoded” primer pairs were introduced to
templates. Sequence-based barcoding is an essential step allowing
for correct identification and recognition of transcript-specific
sequencing counts. Five microliters of sample amplicons from

each well was subsequently pooled into a single sequencing
library. The TempO-Seq library was further processed using a
PCR clean-up kit (Clontech, Mountain View, CA, United States)
prior to sequencing at Texas A&M University Genomics &
Bioinformatics Services. Sequencing was achieved using a 50
single-end read mode in a rapid flow cell (two sequencing lanes
for increased sequencing depth; mean reads per gene = 212)
on a HiSeq 2500 Ultra-High-Throughput Sequencing System
(Illumina, San Diego, CA, united States). The high-expression
genes listed in Supplementary Table 1 were attenuated to allow
for more sequencing depth. Sequence cluster identification,
quality pre-filtering, base calling, and uncertainty assessment
were conducted in real time using Illumina’s HCS 2.2.68 and RTA
1.18.66.3 software with default parameter settings. Sequencing
readouts were demultiplexed to generate FASTQ files, and
passed all internal quality controls (GEO accession number
GSE105050).

Temposeqcount Application: Availability
and Implementation
Temposeqcount installs all dependencies in a Python virtual
environment. It is released as an open-source software under
the GNU General Public License and available from https:
//github.com/demis001/temposeqcount. Complete installation
instructions are provided. Note that a unix operating system is
required for this portion only.

Pathway Analysis
The log2(fold change) (l2fc) and p-values from DESeq2 for
dofetilide and nifedipine were analyzed through the use of IPA
(Ingenuity R© Systems2). A core analysis was run using: User
Dataset as reference, cutoff of p < 0.05, and all other values
as default. The cardiac-related pathways (with p-value < 0.05)
for Tox Functions under Diseases and Functions were chosen for
Supplementary Figure 2.

Differential Gene Expression and
Concentration Response
Sample dataset, hash file, figures, and R Scripts for generating
all figures and processes are available from https://github.com/
jshousephd/HT-CBA.

RESULTS AND DISCUSSION

Process Overview
The transcriptomic analysis methods discussed here focus
on assessment of differentially expressed genes (DEGs) and
concentration–response assessment using counts from TempO-
Seq experiments. However, the methods and processes described
herein are extensible to most types of count data. The sample
dataset used and provided for illustration consists of 2 sets
of 12 vehicle controls and 4 chemical treatments at three
concentration levels (0.1, 1.0, and 10 µM). Two inotropic agents,

2www.ingenuity.com
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the β-adrenergic receptor agonist and antagonist isoproterenol
and propranolol, are known negative controls for cardiac QT
prolongation. Nifedipine is a calcium channel blocker used to
treat hypertension and dofetilide is an antiarrhythmic.

As shown in Figure 1, the analysis pipeline can be broken
into four major steps: (1) generation of the count matrix from
sequenced reads (coded in python), (2) quality control and count
normalization, (3) identification and visualization of DEGs,
and (4) concentration–response modeling and POD assessment.
POD assessment combines output from tcpl (Filer et al., 2017)
augmented with additional model fitting as described below.

TempO-Seq Count Matrix Generation
Prior to assessment of DEGs and concentration response
modeling, raw sequenced reads are aligned to probe sequences
and counted. TempO-Seq is a high-throughput targeted
sequencing technology that uses template-dependent oligo
ligation on a multi-well plate. Generation of a count matrix
from TempO-Seq data requires far less computing resources

than traditional whole-transcriptome RNA-seq. Since the reads
are generated from targeted probes, the reference file is several
orders of magnitude smaller than a genome reference. For
this application, sequencing reads were de-multiplexed by the
sequencing facility. After de-multiplexing, a single experimental
layout can result in up to 384 or 1,536 fastq files (depending on
plate format), each file with reads resulting from an experimental
condition. In traditional RNA-seq, individual fastq files are each
aligned to a reference sequence individually using a short read
aligner such as STAR, BWA, or bowtie (Langmead et al., 2009; Li
and Durbin, 2010; Dobin et al., 2013) and then counted using a
different command line utility. However, these routines are less
useful in a TempO-Seq experiment due to the large number of
fastq files generated in a single Tempo-Seq run and the provision
of reference sequences.

Accordingly, we developed an application called
temposeqcount to facilitate this process using a Ruffus framework
in Python (Goodstadt, 2010) which is illustrated in Figure 2.
Briefly, the application accepts the manufacturer provided probe

FIGURE 1 | Pipeline overview. The pipeline consists of four major parts: I. Generation of the count matrix from sequenced reads, II. Quality-control and generation of
normalized counts, III. Identification of differentially expressed genes (DEGs), and IV. Assessment of point of departure (POD) from count data.
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FIGURE 2 | temposeqcount overview. Self-contained and implemented in a Ruffus framework. A directory of fastq files and the probe manifest are the only inputs to
generate the count matrix required for the remainder of the pipeline.

manifest CSV and a directory of fastq files as input. Initially, the
probe sequence is parsed from the manifest file which generates
the probe fasta and pseudo-gtf annotation files. The probe fasta
file is indexed using genomeGenerate function in the STAR
aligner (Dobin et al., 2013) and STAR aligner is used to align
a fastq file to indexed probe sequences. Lastly, htseq-count in
the HTSeq (Anders et al., 2015) application is used to count
probe-aligned reads. The temposeqcount application accepts
STAR aligned bam and pseudo annotation-gtf files internally
to generate a count for each sample. As output, an alignment
summary is generated and count files are merged and formatted
into a single count matrix (K) consisting of genei rows and
treatmentj columns for downstream analysis.

QC and Normalization of Counts
The remainder of the pipeline (Figure 1; steps II, III, and IV)
consists of R scripts that are publicly available3. The inputs to
the rest of the pipeline consist of the count matrix (K) generated

3https://github.com/jshousephd/HT-CBA

in step I, and an experimental layout file (hereafter referred to
as hash file) from the experimenter. Although we are using this
process for counts from the TempO-Seq assay, the pipeline here
can be applied to other types of high-throughput sequencing
data. Multiple attributes can be included in the hash file for each
treatment, but column names of the count matrix must have
a corresponding column entry in the hash file. Gene features
are filtered for >1 count per row across the experimental count
matrix, which resulted in 100 genes removed, leaving 2,882 for
subsequent analyses (Figure 3D). Prior to normalization, sample
count totals are evaluated graphically (Figure 3A) and samples
(columns) failing to exceed a user defined minimum count
threshold (we used 100,000 per sample for the library of 2,982
features in the TempO-seq kits used in these experiments) are
removed from subsequent analyses. The design of concentration–
response experiments for multiple compounds often uses shared
controls. For the data examined herein, there were 24 vehicle
controls. In the pipeline, controls are examined by principal
component analysis (PCA; Figure 3B). In addition, we examine
the average correlations of each control sample with the
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FIGURE 3 | Raw count quality control assessment. (A) Simulated raw counts for a full 384-well TempO-Seq experiment. (B) First two principal components of
vehicle controls. (C) Histogram of sample correlations for all vehicle controls. Black bar is the mean of sample correlations across all genes. Red bar represents 3
standard deviations from mean. (D) Summary of QC changes to the analysis matrix. 100 features were dropped due to <2 counts across all columns (2982–2882)
and one control was dropped (leaving 23) due to low correlation with other control samples. No samples had <100 k counts.

remaining samples (Figure 3C), an approach termed the “D
statistic” and similar to that used by the GTEx Consortium
(Consortium, 2015) to filter low-quality samples. In this analysis,
we removed control samples for which the average correlation
with remaining control samples was 3 standard deviations lower
than a mean computed for all controls (Figure 3C, red line).
Pairwise correlations and scatterplots were also examined for
controls prior to normalization (Supplementary Figure 1). The
final analysis count matrix (Figure 3D) was then normalized
experiment-wide at the treatment level with DESeq2, which
models read counts using a negative binomial distribution and
normalizes based on a model that uses dispersion estimates for
each gene across all treatments (Love et al., 2014).

Analysis of Differential Gene Expression
Differentially expressed genes were determined using DESeq2
prior to concentration response modeling. DEGs were first
identified for the maximum concentration of each treatment,

with log2 fold change (l2fc) values, p-values, and adjusted
p-values computed for each gene and combined into a single
dataset for each chemical. For the sample data, as seen in the
summary plot of the number of DEGs per treatment (Figure 4A),
nifedipine was the most transcriptionally active treatment with
identified differential gene expression for nearly a third of
interrogated transcripts (918/2,882). Dofetilide affected 425
transcripts, while isoproterenol and propranolol had little effect
on transcription, with 32 and 29 identified DEGs, respectively
(Figure 4A).

A typical TempO-Seq experiment may have 50–75 unique
concentration-chemical combinations making it important to
examine how they group together regarding differential gene
expression. There are several ways to do this, and we have
illustrated some of them in Figure 4 with the sample dataset.
Using all l2fc values for each chemical, the first three principal
components were plotted (Figure 4B). In the sample data,
the two drugs with effects on the heart rhythm (isoproterenol
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and propranolol) clustered together while the others (nifedipine
and dofetilide) were quite distinct. A heatmap of l2fc values
further illustrates the similarities between the isoproterenol
and propranolol, while highlighting how both nifedipine and
dofetilide are each different from these QT-prolongation controls
and from each other (Figure 4C). The overall magnitude of
transcription effects from each chemical is shown in the boxplot
of absolute l2fc values (Figure 4D).

Concentration–Response Modeling
Decision Logic
A critical step in human health assessment for a chemical
compound is the determination of the POD from a
dose/concentration–response relationship. In the sample data,
iPSC cardiomyocytes were exposed to either vehicle or three
increasing drug concentrations (0.1, 1.0, and 10 µM). Vehicle
controls were assigned a dose value on the log10 scale that is one
average dose distance below the lowest treatment concentration
(Figure 5B). Our dataset contained 24 vehicle controls and
a single treatment at each of the three concentrations. Thus,
since one control was removed in QC, the dosing vector for this
experiment consists of 23 values of −2, followed by −1, 0, and
1, while the response vector consists of normalized counts data
at each control/treatment. To allow for zero counts, normalized

counts were log2(counts + 0.5) transformed and mean-centered
to vehicle controls. An example plot of the data is shown in
Figure 5B.

To facilitate decision-making accompanying our
concentration–response modeling, we created a process tree that
utilizes statistical flags (Figures 5A,B). The q-values (FDR values
for each p-value threshold), are calculated for: (1) the moment-
corrected correlation (MCC) trend test (Zhou and Wright, 2015)
for the entire concentration–response range (Figure 5B, purple
oval), (2) MCC for treatment doses only (Figure 5B, green oval),
and (3) Wilcoxon’s statistic for a difference between vehicle
control values vs. treatments (Figure 5B green oval vs. orange
oval). MCC is a trend procedure that is intended to be powerful
while retaining robustness to a wide variety of distributional
forms of the data test (Zhou and Wright, 2015). These flags
were used to decide which gene/treatment combinations should
be fit for a concentration–response (Figure 5A). If the overall
trend (Figure 5B, purple) in the concentration–response is not
significant, the experimental maximum dose is assigned as the
POD. For those genes where the overall trend is significant,
control counts are compared to treatment counts using a
Wilcoxon Rank Sum test. If these two groups are different from
each other (Figure 5B, green vs. orange), the gene/treatment is
selected for concentration–response modeling. If controls are not

FIGURE 4 | Differential gene expression assessment. Cleaned count data are normalized and assessed for DEGs (at max treatment dose) by treatment using
DESeq2. Magnitude of transcriptomic effects and comparison of chemicals are illustrated in: (A) number of DEGs in each treatment, (B) PCA of the log2(fold
changes), (C) heatmap of the log2(fold changes), and (D) mean magnitudes and dispersions of the absolute log2(fold changes).
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FIGURE 5 | Statistical flag generation for concentration-response modeling.
(A) Flowchart of decision logic used in determining the gene-treatment
combinations to assess for concentration response. (B) Example
concentration–response curve used for statistical flag generation.
Concentration–response relationships where overall ρ (purple circle) is
significant, and controls not equal to treatments (green vs. orange), are
chosen for subsequent concentration response modeling, as are relationships
where ρ for treatments only (green circle) are significant.

different from treatments but did pass the overall trend test for
significance, we then assess whether a trend exists in treatments
only (Figure 5B, green). If the treatment-only trend is significant,
it is also selected for POD modeling. For those remaining genes
that are not significant for the treatment only trend test, a report
is generated for the remaining items for manual experimenter
follow-up.

Concentration–Response Modeling and
Point of Departure Calculation
As seen in Figure 5B, our data had only a single replicate at
each of three concentrations of a given chemical. To illustrate
clearly dose response modeling we show simulated data for 12

control replicates and three concentrations with three replicates
each (Figures 6A,B). For those gene/treatments identified for
concentration–response modeling, “dose” vectors and response
counts are first fit with tcpl functions (Filer et al., 2017) with
a constant model that represents a null fit, a gain-loss model,
and a three-parameter hill model with the “floor” set to zero
(Figure 6A). We also assess a four-parameter hill function
fit using the R-DRM package (Ritz et al., 2015) where the
“floor” is not set to zero, and assess the best-fitting model
by the smallest Akaike information criterion (AIC) which
penalizes model over-fitting. Following selection of the best
model, the POD is assessed by determining the concentration
that elicits a 1 standard deviation departure from the control
mean (Figures 6A,B; dotted purple line), although other POD
approaches or benchmark dose (Sirenko et al., 2013b; Wignall
et al., 2014; Filer et al., 2017) could be used. For the sample
with only three treatment concentrations, the three-parameter
hill function was the predominant “winner” in terms of minimum
AIC, although a four-parameter hill function provides the
best fit in 28% of the fitted curves (Figure 6C). Although
nifedipine caused more than twice the number of differentially
expressed genes as dofetilide (Figure 4A), dofetilide actually had
a smaller mean POD (Figure 6D). Propranolol is not shown in
Figure 6D as it had no genes exhibiting concentration–response
relationships.

TempO-seq is a new technology with few
publications to date and no standard pipeline for
analysis. A recent study by Yeakley et al. (2017) (GEO
GSE91395_Dose_Response_Read_Counts.xlsx) also followed a
concentration–response study design. We thus used their data
as another highlight speed and utility of our pipeline. First,
using our pipeline we found 4,178 genes that were differentially
expressed in MCF-7 cells treated with 1 µM Trichostatin A, while
Yeakley et al. (2017) had reported 4,154 differentially expressed
genes. We then used our concentration–response pipeline to
calculate POD estimates for several top upregulated genes and
two of the novel genes they reported for Trichostatin A response.
These are graphically represented in Supplementary Figure 2.

CONCLUSION AND SUMMARY

As sequencing has become more affordable, the number of
experiments with sequencing (expression) data has grown
exponentially, and multiple computational tools are available for
different steps in the analysis. Similarly, many dose–response
modeling tools are available (Wignall et al., 2014; Filer et al., 2017;
Sirenko et al., 2017), including for gene expression data at the
level of genes and pathways (Yang et al., 2007).

Gene expression data have been an important contributor to
the mechanistic studies in toxicology and other biomolecular
fields (Luo et al., 2017). Toxicogenomics is a valuable tool
for predictive modeling (Uehara et al., 2008; De Abrew et al.,
2015) and read-across (Low et al., 2011; Grimm et al., 2016).
However, the high cost of gene expression studies has largely
precluded the use of toxicogenomics as a standard tool for dose–
response assessment in studies of adverse effects of drugs and
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FIGURE 6 | Concentration–response modeling and POD calculation. (A) Baseline deviation (BSD) is set to 1 SD from mean of controls (dotted purple line). The tcpl
package is used to fit (1) constant, (2) gain loss, and (3) three-parameter hill models. (B) The DRC package in R is used to fit a four-parameter hill function and the
model with the smallest AIC is chosen as “best” with corresponding POD used where fitted model crosses BSD. (C) Distribution of the winning model for these data.
(D) Evaluation of the dispersion, mean, and median of calculated POD deviations by chemical treatment.

chemicals. While some databases do include dose- and time-
dependent profiling of hundreds of drugs and chemicals (Luo
et al., 2017), the potential power of dose–response expression
profiling has not been fully harnessed. The potential of dose–
response toxicogenomics data as a truly predictive tool was
first demonstrated by Thomas et al. (2011, 2013), who showed
that gene expression data-based PODs derived from short-
term studies are well-correlated with the PODs for the apical
endpoints from 90-day and 2-year animal studies (Farmahin
et al., 2017). A recent study demonstrated the value of dose–
response genomics in a comparative analysis of chlorinated
solvents in liver and kidney (Zhou et al., 2017). Thus, with
the advent of lower cost and higher throughput platforms for
gene expression profiling, dose–response modeling will become
a major output of these experiments, including in in vitro studies.

The methods outlined in this manuscript provide a
framework for highly automated assessment of transcriptomic
concentration–response POD estimates. Although we have used
targeted sequencing data, these methods are extensible to any
kind of concentration–response count data, including whole-
transcriptome RNA sequencing. Probe-based targeted RNA-seq
technology does have many advantages. These procedures are
extremely fast and can be run on desktop computers instead of
computing clusters. The biases associated with the purification
and library creation in RNA-seq are not applicable with this
technology. However, it is important to note that this targeted
RNA-seq technology does not capture underlying genetic

variation in a region of interest. The probes are highly specific to
the 50-mer being interrogated. The methods described here have
been made freely available, to provide tools to characterize the
transcriptomic dose response and concentration response effects
of drugs and chemicals in novel targeted-probe high-throughput
formats.

The gene expression response signatures identified by our
pipeline can be used for hazard assessment, drug repurposing,
and disease characterization (Stegmaier et al., 2004; Hieronymus
et al., 2006; Wei et al., 2006; Sirota et al., 2011). We note that
agonism is the characterized mode of action for isoproterenol
and propranolol, and antagonism of the β-adrenergic receptor
for positive and negative inotropic effects. We report few
transcriptional effects from treatment with either of these drugs.
One possible interpretation is the presence of very little non-
receptor-mediated mode of action. In contrast, treatment of
iPSC cardiomyocytes with nifedipine, a calcium channel blocker
used to treat hypertension, resulted in substantial transcriptional
changes. Dofetilide, an antiarrhythmic agent that increases the
QT interval by selectively blocking the rapid component of
the cardiac ion channel delayed rectifier current (Roukoz and
Saliba, 2007), also resulted in substantial transcriptional changes.
Further extension of these results into pathway analysis and
biological read across will facilitate additional decision-making
processes for hazard and risk characterization, drug repurposing,
and hypothesis formation. Although our sample data provided
contained few replicates at each dose, we still were able to

Frontiers in Genetics | www.frontiersin.org November 2017 | Volume 8 | Article 16872

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-08-00168 October 31, 2017 Time: 16:9 # 10

House et al. Expression-Based Concentration–Response Pipeline

identify DEGs and calculate POD estimates. As a proof of
principle, we examined DEGs for dofetilide and nifedipine
using Ingenuity’s Pathway Analysis. The top identified toxicology
pathways were heart and liver related for dofetilide, and more
diverse for nifedipine. The statistically significant overlapping
cardiac-related pathways are shown in Supplementary Figure 3.

In summary, with the advent of cheaper sequencing
technology and targeted sequencing technology, it has become
feasible and necessary to utilize the value of gene expression
data in high-throughput experiments, for dose response
characterization, for perturbation signature identification, and
for biological read-across assessment. The methods herein
provide a reproducible, largely automated framework to utilize
such sequencing data to identify treatment-induced DEGs and
concentration response estimates.
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A Leveraged Signal-to-Noise Ratio
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Health, Durham, NC, United States

To life scientists, one important feature offered by RNAseq, a next-generation sequencing

tool used to estimate changes in gene expression levels, lies in its unprecedented

resolution. It can score countable differences in transcript numbers among thousands

of genes and between experimental groups, all at once. However, its high cost limits

experimental designs to very small sample sizes, usually N = 3, which often results

in statistically underpowered analysis and poor reproducibility. All these issues are

compounded by the presence of experimental noise, which is harder to distinguish

from instrumental error when sample sizes are limiting (e.g., small-budget pilot

tests), experimental populations exhibit biologically heterogeneous or diffuse expression

phenotypes (e.g., patient samples), or when discriminating among transcriptional

signatures of closely related experimental conditions (e.g., toxicological modes of action,

or MOAs). Here, we present a leveraged signal-to-noise ratio (LSTNR) thresholding

method, founded on generalized linear modeling (GLM) of aligned read detection limits

to extract differentially expressed genes (DEGs) from noisy low-replication RNAseq data.

The LSTNRmethod uses an agnostic independent filtering strategy to define the dynamic

range of detected aggregate read counts per gene, and assigns statistical weights that

prioritize genes with better sequencing resolution in differential expression analyses. To

assess its performance, we implemented the LSTNR method to analyze three separate

datasets: first, using a systematically noisy in silico dataset, we demonstrated that LSTNR

can extract pre-designed patterns of expression and discriminate between “noise” and

“true” differentially expressed pseudogenes at a 100% success rate; then, we illustrated

how the LSTNR method can assign patient-derived breast cancer specimens correctly

to one out of their four reported molecular subtypes (luminal A, luminal B, Her2-enriched

and basal-like); and last, we showed the ability to retrieve five different modes of action

(MOA) elicited in livers of rats exposed to three toxicants under three nutritional routes by

using the LSTNR method. By combining differential measurements with resolving power
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to detect DEGs, the LSTNR method offers an alternative approach to interrogate noisy

and low-replication RNAseq datasets, which handles multiple biological conditions at

once, and defines benchmarks to validate RNAseq experiments with standard benchtop

assays.

Keywords: DEG, RNAseq, LSTNR, noise, expression patterns, biomarker discovery

INTRODUCTION

At their core, RNAseq and qPCR are two flavors of the same
principle: by quantifying how many copies of different molecular
templates are accumulated after a discrete number of duplication
rounds, it is possible to estimate their abundance in the original
sample as long as the amplification has occurred in exponential
fashion (Livak and Schmittgen, 2001; Pfaffl, 2001). Viewed
under this light, the realization that RNAseq data analysis
offers the same challenges qPCR faces is somewhat expectable;
nevertheless, discriminating good RNAseq data from bad is all
but impossible if following the traditional in-depth inspection of
qPCR data quality.

For starters, RNAseq can collect information from thousands
of genes in a massively parallel fashion within a single
experiment; given the scale of generated data, this means
inspection of differential expression levels from each individual
gene one at a time is impractical. Also, the discrete form of raw
RNAseq output, i.e., countable reads, is of a different nature and
statistical behavior than the output of other techniques, such as
qPCR and hybridization microarrays, in the form of a digitized
continuous-valued signal mass (Roy et al., 2011). Finally, in
RNAseq experiments the expected variation in total number
of representative reads for each detected transcript within a
sample depends, among other factors, on each transcript’s size,
abundance, and GC-composition. Efforts to control the effects
of such sequencing biases during library assembly have been
posited early on during the development of RNAseq technologies
(Auer and Doerge, 2010; Bullard et al., 2010); at the same time,
development of various programmatic strategies to adjust against
those biases during statistical analyses has continued ever since
(Hansen et al., 2010; Aird et al., 2011; Risso et al., 2011; Benjamini
and Speed, 2012; Wu et al., 2013; Law et al., 2014; Finotello and
Di Camillo, 2015).

In many pipelines for RNAseq analysis, read outputs are
transformed to a normalized measurement of relative expression
between two samples, such as fold-change differences. However,
performing read normalization can be problematic because it
“divides out” the net output of detected reads. Without that
information, it is impossible to determine whether observed
experimental variation is consistent with the detection capacity
of sequencing hardware or not. As a result, the ability to
discern between a real signal and instrumental noise is lost.
These issues are magnified in experiments with low replicate
numbers—a common limitation that RNAseq users face due
to costs of these technologies—or when specimens under
inspection show highly heterogeneous transcriptional profiles
within statistical groups (Hansen et al., 2011; Oberg et al.,

2012; Robles et al., 2012). To this day, financial constraints to
acquire and maintain RNAseq instrumentation, combined with
complex structure of output data, remain the primary obstacles
preventing RNAseq technologies to join clinical diagnostic
settings when characterizing transcriptional profiles of patient-
derived specimens (Nazarov et al., 2017).

Still, RNAseq remains the most powerful technique to assay
gene expression genome-wide. The accuracy in gene expression
measurements afforded by RNAseq relies on the volume and
diversity of aggregated cDNA fragments, each distinguished from
all others by their nucleotide sequences (Cloonan et al., 2008;
Mortazavi et al., 2008; Oshlack et al., 2010); conversely, errors
in RNAseq measurements are usually ascribed to nucleotide-
integration errors during PCR amplification (Finotello and
Di Camillo, 2015) because it is assumed that the exquisite
sensitivity of detection hardware in next-generation sequencers
guarantees accuracy. However, this assumption is not entirely
correct: digital detection systems will generate output data
from faithfully replicated sequences, trace contaminant templates
and misconstrued sequences all the same depending on
the quality of base-calling. This means that distinguishing
detection noise that stems from PCR bias, instrumental
error, contamination or any of them combined is not only
difficult, but perhaps irrelevant—all of them happen, and
all of them distort gene expression measurements the worst
when calculated from low read counts. In other words, while
base-calling in RNAseq depends on how precisely nucleotides
are detected, measuring expression differences is a resolution
problem.

Challenges to resolving expression differences by RNAseq
are complicated further when the number of experimental
samples is small and rates of detection for differentially expressed
genes (DEGs) is poor. In those scenarios, the traditional
route is to increase the sequencing depth for each sample
with additional rounds of sequencing. Adding sequencing
rounds surely increases the number of aligned reads per
gene (or coverage); however, no matter how low the rate of
misconstrued and contaminant reads that contribute to the
total read output may be, they will amount to higher numbers
of “phantom reads” undistinguishable from sequencing noise
as more sequencing rounds pile up (Tarazona et al., 2011; Li
and Tibshirani, 2013). This means that, without a threshold to
discriminate the rate of contaminant templates that randomly
align to a reference genome, the assumption that aligned
reads measure the different cDNA copies in a sample’s RNA
pool is as “true” as assuming that they represent sequencing
artifacts. Determining such a threshold of expectable detected
artifacts from RNAseq data calls for a statistical treatment of
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raw sequencing output, one that deems collected reads as a
combination of faithful and artefactual sequences that align to a
reference genome.

Here, we present a leveraged signal-to-noise ratio (LSTNR)
thresholding method, founded on generalized linear modeling
(GLM) of aligned read detection limits to extract DEGs from
count-based and noisy low-replication RNAseq experiments.
The LSTNR method uses an agnostic independent filtering
strategy to define the dynamic range of detected aggregate read
counts per gene that can be explained by the variation in
sequencing coverage across genes and experimental replicates.
This approach not only determines a minimum read count
density that true expressed genes must accrue for reliable
detection, but also qualifies genes as more or less reliable
for differential expression measurements based on how distant
they are from the reliable detection minimum. By taking into
account that expression measurements based on read counts
have different levels of resolution for different genes, the LSTNR
method relies on one fundamental difference between the nature
of scale-dependent dispersion in sequencing output (uniquely
aligned reads) and the behavior of differential expression
estimates secondary to the original output (log-transformed
relative fold changes between genes or treatment groups): that
RNAseq-based estimates of gene expression differences between
groups are as robust as the sequencing depth that underlie
them.

MATERIALS AND METHODS

Implementation of LSTNR Method
A diagram of the LSTNR method pipeline is depicted
in Figure 1. Briefly, expression levels of individual genes
(Ensembl annotation) were calculated as the normalized rate
of deduplicated and uniquely aligned reads per million of
total sequenced reads (RPM) overlapping their annotated
genomic coordinates (reference genome: hg19). Statistical tests
of differential gene expression were performed using a weighed
two-way ANOVA model (gene × group blocks) of log2-
transformed fold changes (Log2FC) in RPM relative to gene-
wise mean RPM either from all samples (for phenotype
profiling experiments) or from a reference group (for treatment
vs. control experiments) with N ≥ 3 replicates per group.
Resolution weights of genes corresponded to the cumulative
hazard of gene-wise significance scores from two-way ANOVA
testing of the linear predictor of RPM from GLM of the
natural parameter B(ϑ) to an exponential continuous-valued
distribution with a canonical inverse link function (Nelder
and Wedderburn, 1972). Gene-wise significance of Log2FC
variation based on weighed ANOVA inference testing were
adjusted by the Benjamini–Hochberg method for multiple
comparisons (Benjamini and Hochberg, 1995). Further details
on the statistical treatment of count-level data under the
LSTNR method are available in the Supplementary Methods
section. All metrics and statistical analyses were carried
out using JMP R© 13.0.0 64-bit statistical software (SAS,
Cary, NC).

Stratification of Significantly Expressed
Genes
Significant genes (SGs) were identified as those with significantly
different weighed ANOVA scores (FDR adj. p < 0.05);
DEGs equaled the subset of SGs with a minimum practical
effect size δLog2FC > δEffect and post-hoc pairwise-significant
Log2FC differences between at least two groups (Student’s
t-test p < 0.05). As a reproducibility benchmark, we refer to
LSTNRs as the subset of SGs in which a minimum practical
effect size δLog2FC > δEffect was detected and at least one
group exhibits average Log2FC signal vs. baseline greater
than transcriptome-wide measurement noise (or SNR > 1)
where noise is defined as the 95% Tolerance Interval (Odeh
and Owen, 1980; Hahn and Meeker, 1991; Tamhane and
Dunlop, 2000) of gene × group residuals among SGs.
Finally, we refer to the subset of genes classified as both
DEGs and LSTNRs as DEGs with reproducible expectation
estimates (DEGREEs)—i.e., genes with relevant effect size,
significant post-hoc pairwise differences, and prospective
SNR > 1.

Extraction of Candidate Genes for
Transcriptional Profiling and Biomarker
Analysis
To extract a list of DEGREEs with the highest transcriptional
profiling potential and minimal Type II error rates, we calculated
within-gene observed effect sizes (1Log2FC), as well as estimated
retrospective statistical power means (≪π≫) and 95% lower
confidence limits (πlow). DEGREEs with π > 90% were listed
in descending order by 1Log2FC first, and then by πlow. The
difference between successive values of 1Log2FC going down
the list of ranked DEGREEs (also known as lag differences)
were calculated, with the expectation that genes with higher
retrospective statistical power also show larger 1Log2FC values;
when true, this expectation results in a list of negative-valued
lagging differences. The minimal subset of characteristic genes,
or Profiler DEGREEs, corresponds to the subset of DEGREEs
ranked by πlow that all show negative 1Log2FC lag differences
before the first positive instance is found.

To obtain a reductive set of biomarker gene candidates, we
performed sequential partition tree analysis (without repetition)
based on the list of Profiler DEGREEs. The predictive machine-
learning power of partitioned data is reported graphically
via receiver operating characteristic (ROC) curves specific to
each known phenotype. The minimum number of biomarkers
needed for partitioning equals the number of phenotypes being
partitioned minus one. Partitioning performance was then
evaluated by all-at-once discriminant analysis based exclusively
on the data from the biomarkers selected by sequential
partitioning. Predictive machine-learning power of the canonical
multivariate factors of discrimination, estimated using only
biomarker data, is reported graphically via ROC curves for
each expected phenotype. Phenotype segregation is depicted
in multivariate space using 2-component canonical factor
plots.
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FIGURE 1 | LSTNR method workflow. The schematic depicts the main steps involved in detection of statistically significant genes (SGs) starting from uniquely aligned

reads for each gene in individual samples: coverage normalization as reads per million total sequenced reads (RPM); parametric distribution fitting; independent

filtering based on fit parameters; generalized linear modeling (GLM), leading to gene resolution weights; log-fold expression measurements (Log2FC) vs. a fixed

reference; and two-way resolution-weighed ANOVA of Log2FC. Top right: stratification criteria for SGs and their respective nomenclature: differentially expressed

genes (DEGs), leveraged signal-to-noise-ratio genes (LSTNRs), and DEGs with reproducible expectation estimates (DEGREEs). The subset of Profiler DEGREEs

corresponds to DEGREEs with a mean retrospective statistical power ≪π≫ > 90% which, when ranked by within-gene observed effect sizes (1Log2FC) first and by

their 95% lower confidence limit of retrospective statistical power (πlow) next, show monotonically decreasing 1Log2FC values. Profiler DEGREEs can then be used for

benchtop validation or for additional statistical analysis to obtain a reductive set of prospective biomarkers through a variety of machine-learning analytics (e.g.,

partition trees, canonical factor analysis).

Analyzed Datasets
For this work, an in silico dataset of simulated RNAseq counts—
originally assembled in the development of EPIG-seq (Li and
Bushel, 2016)—was used to validate the performance of the
LSTNR method. In addition, the ability of the LSTNR method to
extract transcriptional signatures and expression patterns from
experimental data was tested on two publicly available RNAseq
data sets: one for breast cancer primary tumors under 4 breast
cancer molecular subtypes deposited in The Cancer Genome
Atlas (TCGA) (Cancer Genome Atlas, 2012), and another one
from the MAQC phase III SEQC crowd source toxicogenomics
(TGxSEQC) effort using livers of male Sprague-Dawley rats after
exposure to hepatotoxic agents sharing modes of action (MOA)
(Gong et al., 2014; Wang et al., 2014). Further details for each
of the three datasets in this study, as well as gene annotation
conventions used for each, are outlined in the Supplementary
Methods section.

RESULTS

EPIG-Seq Simulated Data
We used a data set of simulated RNAseq counts to validate
the performance of the LSTNR method. The simulated data
set was originally assembled in the development of EPIG-
seq, a similarity scoring methodology for count-based data
that catalogs co-expressed genes under patterns of differential
expression among multiple conditions (Li and Bushel, 2016). To

perform independent filtering, we fit empirically observed RPM
averages from each of the 20,000 simulated pseudogenes across
the entire 140-pseudoreplicate set to parametric distribution
functions. We found the best fit model corresponded to
a 3-parameter lognormal distribution (Figure 2A), which is
equivalent to a normal distribution of RPM in logarithmic
scale, with a threshold value γ representing the minimum and
positive value of gene-wise average RPM supported by the
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FIGURE 2 | Analysis of EPIG-seq in silico test data by the LSTNR method. (A) Quantile plot of pseudogene-averaged RPM across pseudoreplicates, overlaid onto

their best-fit threshold lognormal distribution parametric model (purple); shading around the parametric fit represents the simultaneous 95% confidence interval of

predicted means. (B) Linear fitting and distribution of relative expression metrics for pseudogene × group blocks with respect to individual pseudoreplicates. Left:

average of Log2FC measurements vs. Log2FC from individual pseudoreplicates; right: values of the canonical link function log (RPM) of pseudoreplicates vs.

pseudogene × group block averages of the linear predictor function, ≪B(θ)≫, estimated by GLM. Colors of individual data points corresponds to the estimated

quantile density of Log2FC values in mean vs. replicate space (left panel) as indicated by the adjacent color scale. (C) Gene resolution weights as a function of

FDR-adjusted significance levels of pseudogenes as determined by pseudogene × group two-way ANOVA based on the linear predictor B(θ). Point coloring

corresponds to that in B; size of each data point is representative of pseudogene-averaged RPM across pseudoreplicates. (D) Distribution of range-scaled residuals

around the average of pseudogene × group blocks before (left) and after (right) multiplying Log2FC measurements by gene resolution weights depicted in (C); point

coloring corresponds to that in (B). (E) Heatmap plot for two-way unsupervised clustering of pseudoreplicates (horizontal) and 4,541 significant pseudogenes (FDR

p < 0.05) detected by LSTNR analysis based on Log2FC vs. the mean RPM in the baseline group. Left: bird view of the entire heatmap; center: magnification to subset

(Continued)
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FIGURE 2 | of 1,000 pseudogenes from five simulated co-expression patterns and their correspondence with inferred hierarchical clades; right: heatmap is colored

on a green-black-red gradient scale of Log2FC values relative to baseline (green, downregulated; black, same; red, upregulated). (F) Distribution of net residuals

around pseudogene×group Log2FC averages, based on 20,000 analyzed pseudogenes (before LSTNR testing) and 4,541 pseudogenes with statistically significant

resolution-weighed differences (after LSTNR testing). Dotted blue lines to the left and right of the x-axis origin enclose the predicted 95% tolerance interval of residuals

in each respective plot. (G) Average Log2FC expression ± s.d. of pseudogenes in simulated patterns vs. inferred clades of co-expression across groups.

(H) Heatmap depicts Pearson’s correlation coefficient r values between 4,541 statistically significant pseudogenes. Pseudogenes are displayed by groups of inferred

co-expression clades; heatmap is colored on a blue-white-red gradient scale of Pearson’s correlation coefficient r values (blue, negative correlation; white, not

correlated; red, positive correlation). N = 35 pseudoreplicates in each of 4 simulated condition groups: baseline, and groups 1 to 3; number of simulated

co-expression patterns: five, with 200 pseudogenes each. Simulation comprises 140 total pseudoreplicates with reads distributed among 20,000 total pseudogenes.

fitted distribution. We reasoned the fitted threshold γ = 2.4
× 10−3 (95% prediction CI: 0.9 × 10−3-3.5 × 10−3) was the
best candidate value to use for independent filtering across
pseudogenes with simulated reads. In the case of this simulated
data set, independent filtering against the threshold parameter
γ did not exclude any pseudogenes from subsequent analysis—
meaning all listed pseudogenes were “detectable” assuming the
estimated error model of simulated read counts was properly fit
by a lognormal distribution (Table 1).

The next step to implement the LSTNR method was
to find a metric that places RPM-values from each of the
detected pseudogenes (i.e., that passed independent filtering)
in the context of the entire dataset to describe the relative
resolution in detected RPM-values for each pseudogene. This
can be achieved through generalized linear modeling, or GLM
(Nelder and Wedderburn, 1972). In the case of the EPIG-
seq in silico data, which followed a lognormal distribution,
rewriting in exponential family form showed the linear predictor
B= log(RPM) (Figure 2B). Further algebraic inspection revealed
the best model to match averages of lognormally distributed
B with their underlying variation is a normal distribution.
Thus, transformant values of B did not require a normalizing
manipulation (i.e., η = B) going further down the LSTNR
pipeline.

Transformant log(RPM) B-values were tested by two-way
ANOVA to estimate transformant significance scores for each
pseudogene; after multiple testing adjustment by the false-
discovery rate approach (Benjamini and Hochberg, 1995),
we found transformant FDR p < 0.05 in 9,492 of the
20,000 total pseudogenes, meaning 47.46% of all pseudogenes
showed variability in read counts in one or more groups
that was statistically discernible (resolvable) from that of all
pseudoreplicates combined (Table 1). We then ranked those
transformant significance scores from least to most significant
and calculated their position within the ranking; this is the
complement of the cumulative density function, also known
as the survival function. Finally, to create a metric that gives
higher weight to pseudogenes detected with better resolution,
we took the negative logarithm of the survival for transformant
significance scores function (known as the cumulative hazard
rate). This metric is smallest for pseudogenes with low resolution
in RPM-values that change little across replicates, and largest
for pseudogenes with RPM-values that are either very large,
very variable or both (Figure 2C). We estimated these metrics
and assigned them to their corresponding pseudogenes; later on,
we used them as “resolution weights” to account for different
resolution levels for pseudogenes based on their net read counts.

TABLE 1 | Step-by-step output as numbers of qualifying genes along the LSTNR

analytical pipeline for a validation in silico dataset (courtesy of Li and Bushel, 2016;

doi: 10.1186/s12864-016-2584-7).

Criteria In Silico: EPIG-seq

(N = 140)

Simulated pseudogenes 20,000

Distribution of pseudogene-wise RPM means P(y) ∼

Normal3P (log[y];σ
′,µ′,γ);

y = RPM

σ′ = 25.4

µ′ = 25.4

γ = 2.5×10−3 RPM

Independent filtering:

pseudogenes with average y > γ 20,000

Linearized normalizing transformant:

GLM Linear Predictor Log[y]

Transformant two-way ANOVA:

resolved pseudogenes across groups with respect to

pseudogene-wise mean

9,492

Resolution-weighed ANOVA:

significant pseudogenes with FDR adj. p < 0.05 based

on differences in resolution-weighed RPM log-fold

changes (Log2FC) relative to baseline group

4,541

To detect significantly expressed pseudogenes, we first
calculated log2-fold changes (Log2FC) relative to the average
RPM in the baseline group for each gene; then, we combined
Log2FC of genes with their resolution weights in a two-way
multivariate ANOVA model. We reasoned that scaling Log2FC
relative expression measurements by their resolution metric
would also homogenize the scale of variation around the means
of individual genes in each experimental statistical group. Indeed,
we found that the relative dispersion and homogeneity of Log2FC
residuals improved after scaling by gene resolution weights
(Figure 2D). In all, we detected 4,541 statistically significant
pseudogenes by resolution-weighed two-way ANOVA (FDR adj.
p < 0.05). This pool of statistically significant pseudogenes
contained all 1,000 differentially expressed pseudogenes with
simulated co-expression patterns, as well as an extra pool of
3,541 pseudogenes from the unpatterned group exhibiting only
random noise (Figure 2E).

One important aspect to consider in benchtop validation
of RNAseq experiments is how well the dispersion in RNAseq
output can be projected. This projection is critical to confirm
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RNAseq estimates by qPCR, since it helps determine both:
(a) how large should RNAseq expression differences be in
validation assays to be reliable; and (b) which genes are the most
reliable validation candidates based on their RNAseq expression
differences. With that principle in mind, we calculated 95%
tolerance intervals around the mean log2(RPM) measurements
of all 20,000 pseudogenes in the EPIG-seq simulated data set
that passed independent filtering, as well as among the 4,541
statistically significant pseudogenes identified after resolution-
weighed ANOVA. We found log2(RPM)95%TI = ±7.7 among all
20,000 pseudogenes, and log2(RPM)95%TI = ±7.0 among 4,541
statistically significant ones. In other words, assuming these data
were derived from a “true” sample of biological specimens, one
could project with 95% confidence that 95% of differences in
expression between groups, and for any particular pseudogene,
may be ∼200-fold off from their “true” expected value, or ∼130-
fold when adjusted for noise among significant pseudogenes, due
only to experimental variability between replicate experiments
(Figure 2F).

The unpatterned pseudogenes with statistically significant
expression levels detected through LSTNR could aggregate to
excessive levels of “background noise.” This “noise” could be
detrimental to statistical clustering or discriminant analyses, and
may undermine the capacity to extract “true” expression patterns.
To address this point, we performed naïve hierarchical clustering
(Ward’s method) and found that, even though unpatterned
pseudogenes accounted for most of the detected differential
pseudogenes overall, all differentially expressed pseudogenes
were agglomerated in the hierarchical tree under simulated
patterns. We also found that the 3,541 unpatterned but
statistically significant pseudogenes were segregated apart from
the 1,000 patterned ones (Figure 2E). Furthermore, 927 out of
the 1,000 patterned differential pseudogenes were assigned into
five well-separated clades of expression trends that matched the
co-expression patterns prescribed in silico (contingency analysis
Pearson’s p < 0.0001). Altogether, the LSTNR method detected
statistically significant pseudogenes belonging to both patterned
and unpatterned expression trends, but did not compromise the
ability to discriminate between both kinds of pseudogenes, nor
their correct expression patterns, by standard clustering analyses.

Still, any benefit of implementing the LSTNR workflow is
only substantial if it matches or surpasses the performance
of already existing methodologies to tease out coordinated
patterns of differential gene expression, such as EPIG (a pipeline
tailored for microarray data) and EPIG-seq (a modified version
of EPIG to handle count-based data) (Chou et al., 2007;
Li and Bushel, 2016). To address this point, we assembled
the confusion matrix of pseudo-gene cluster assignments per
LSTNR analyses of the in silico dataset, and compared to
those obtained by EPIG and EPIG-seq analyses (courtesy of
Li and Bushel, 2016) in terms of the sensitivity (the true
positive rate) and specificity (the true negative rate) of inferred
cluster membership among differential pseudo-genes detected
per platform (Table 2). We found the LSTNR method showed
>94.5% specificity rates across simulated clusters, much like
those from EPIG and EPIG-seq, thus indicating that pseudo-
genes identified as differentially expressed are rarely misclassified

under their originally prescribed expression patterns regardless
of the chosen methodology. However, LSTNR detected more
differential pseudo-genes than either EPIG or EPIG-seq, as
shown by improved sensitivity rates per cluster when using
LSTNR (77.5–100%) vs. either EPIG (17.5–68%) or EPIG-seq
(55.5–84.5%). Put together, these results indicate that the LSTNR
method successfully extracts more DEGs, all while grouping
them by their true underlying expression patterns at the same or
improved rates, than other similar pipelines.

Among the 927 differential pseudogenes correctly assigned
to simulated patterns of expression detected by the LSTNR
method, 400 were classified into clades that matched their in silico
counterparts in full (patterns B and D); in contrast, the EPIG-
seq method matched pseudogenes completely to their simulated
pattern only for B. The five hierarchical clades identified by
LSTNR also matched their respective in silico patterns in
terms of average expression levels within statistical groups
(Figure 2G). We found similar pattern-detection performance
among the 4,541 statistically significant pseudogenes detected
with the LSTNR method when clustering them by the Pearson
product-moment correlation scores of their Log2FC vs. the
baseline average (Figure 2H). In sum, the LSTNR method not
only identified the five simulated expression patterns just like
the EPIG-seq pipeline, but did so by assigning differential
pseudogenes to their correct patterns with greater accuracy, by
routing read count data to traditionally robust statistical tests
(e.g., multivariate ANOVA), and without relying on user-defined
parameters.

Breast Cancer Classification by
Hierarchical Clustering of LSTNR-Detected
DEGs
Next, we used RNAseq data from breast ductal carcinoma
biopsies deposited in The Cancer Genome Atlas (TCGA) to test
the LSTNR method. The data set collected for this assessment
consisted of 160 primary tumors classified under 4 breast cancer
molecular subtypes groups in equal sample sizes (luminal A,
luminal B, Her2-enriched and basal-like) and 40 matching
normal breast tissue biopsies as controls (Cancer Genome
Atlas, 2012). Besides consisting of patient-derived data that is
clinically relevant, this collection of TCGA specimens presents
some practical and common challenges associated with clinical
data, including high variability between patients and between
cohorts from an epidemiological perspective, and batch effects
from a technical one. All these challenges, which severely
undermine significance testing, have clinical consequences: if the
only solution to understand the performance of RNAseq as a
diagnostic tool is to design large patient cohorts, it risks rendering
RNAseq too expensive or slow to be useful in a clinical setting.
Here, our goal was to implement the LSTNR method and define
how successful it was in sorting out the correct breast cancer
molecular subtypes (and their transcriptional signatures) based
on a much smaller cohort of patient-derived specimens than the
TCGA database itself.

We analyzed TCGA dataset following two approaches: (a) we
split the specimens from each of the four molecular subtypes
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TABLE 2 | Confusion matrices for differential pseudo-gene pattern assignment by EPIG, EPIG-seq, and LSTNR implementation based on a validation in silico dataset

(EPIG and EPIG-seq: courtesy of Li and Bushel, 2016; doi: 10.1186/s12864-016-2584-7.

Method Clustered Clades Simulated Expression Pattern Total Sensitivity (%) Specificity (%)

Pattern A Pattern B Pattern C Pattern D Pattern E

EPIG Group A 0 0 46 0 0 46 23 100

Group B 0 0 0 0 136 136 68 100

Group C 0 39 0 0 0 39 19.5 100

Group D 0 0 0 60 0 60 30 100

Group E 35 0 0 0 0 35 17.5 100

EPIG-Seq Group A 7 132 11 0 0 150 66 98.2

Group B 0 0 169 0 0 169 84.5 100

Group C 135 26 5 0 0 166 67.5 96.9

Group D 0 0 0 15 166 181 83 98.5

Group E 9 23 0 111 43 186 55.5 92.5

LSTNR Clade A’ 177 0 12 0 4 193 88.5 98.4

Clade B’ 0 200 0 0 0 200 100 100

Clade C’ 1 0 155 0 1 157 77.5 99.8

Clade D’ 0 0 0 200 0 200 100 100

Clade E’ 22 0 33 0 195 250 97.5 94.5

into four independent and mutually exclusive sample subsets (or
realizations) of equal size, performed parallel statistical analyses
for each, and identified the subset of DEGs detected in common
by all four separate per-realization analyses; and (b) we analyzed
the entire dataset all at once in a single run. Altogether, this
strategy comprised a total of 5 separate implementations of the
LSTNR method on patient-derived breast cancer data: four per-
realization analyses and one single-shot analysis. By following
this analytical design, we sought to establish the degree of
observed concordance between DEGs detected by a single-shot
analysis vs. the consensus from multiple tests on subsampled
statistical groups. We also aimed at determining whether
capturing more DEGs with an all-encompassing single-shot
analysis is superior in quality and performance to performing
split tests in tandem and extracting a consensus DEG list.

A total of 20,532 annotated genes (hg19) with uniquely aligned
reads were represented in any one of the specimens used to
test the LSTNR method. Empirically observed RPM averages
within realizations were fit to parametric distribution functions
independently. In all cases, the best-fit model for within-
gene RPM averages corresponded to a 3-parameter Weibull
distribution function P(y) ∼Weibull3P(y;α,ß,γ) where y = RPM
(Figure 3A); the estimates for the threshold parameter γ in each
separate realization ranged between 1.5 × 10−3-11 × 10−3 RPM
(Table 3). The threshold parameter γ, representing the minimum
average RPM-value explained by the parametric Weibull fit, was
added across the dataset to circumvent arithmetic issues with
zero-valued data when estimating relative expression ratios.

It is well-known that, for GLM, Weibull distributions with
fixed shape parameter ß can be restated by simple algebraic
substitution in the form of an exponential distribution, for
which the linear predictor B∼(y–γ)ß−1 and the normalizing link

function η ∼ 1/B (Nelder and Wedderburn, 1972; Aitkin and
Clayton, 1980). Therefore, to determine the resolution level of
detected reads per gene, we calculated transformant B-values
from within-gene RPM averages, normalized their distribution
by using their reciprocal values, and tested them by multivariate
ANOVA (see Supplementary Methods for details). Analysis of
the entire dataset at once also identified, with parameters almost
equal to the ones estimated from realizations, a 3-Parameter
Weibull distribution as the best parametric fit (Table 3).

The number of retained genes following independent filtering
with respect to the Weibull scale parameter α (Table 3)
was about the same in all five analyses (8,005–8,562 across
realizations; 8,538 single-shot), yet the estimated number of
significantly resolved genes, defined by genes with transformant
FDR p < 0.05, was sensitive to the realization they came
from. The number of resolved genes varied by up to one
order of magnitude (e.g., 381 genes in realization 2 and
4,295 genes in realization 1). Even though the number of
resolved genes estimated by single-shot analyses (2,851 total
with transformant FDR p < 0.05) fell within the order of
magnitude resolved genes by the other four per-realization
analyses, it was still over 50% larger than the average of
1,899 resolved genes per realization (Table 3). These findings
illustrate that the independent filtering criteria used to exclude
poorly represented genes were equally valid whether they were
calculated from a subset or from the entire set of individual
specimens in an experiment. In contrast, estimates of the
dynamic range of sequencing representation are off-target when
using different data subsets. Therefore, expecting independent
RNAseq experiments to detect the same pool of significantly
resolved genes is sensible only when the replicate sets in one
experiment are statistically indistinguishable from the replicate

Frontiers in Genetics | www.frontiersin.org May 2018 | Volume 9 | Article 17682

https://doi.org/10.1186/s12864-016-2584-7
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Lozoya et al. LSTNR Method for DEG Analysis

FIGURE 3 | Molecular subtype discrimination of transcriptional signatures from patient-derived breast cancer specimens using the LSTNR method by split-pool and

single-shot approaches. (A) Quantile plot of gene-averaged RPM across replicates, overlaid onto best-fit threshold Weibull distribution parametric models per

individual realization; fit lines and points are colored by the realization they were tested under. (B) Gene resolution weights calculated within each realization, as a

function of FDR-adjusted significance levels of genes, based on linear predictor B(θ) gene × group two-way ANOVA. Point coloring indicates realization tested; size of

each data point is representative of gene-averaged RPM across replicates within each realization; also, the top 10 genes found in all realizations with highest RPM

scores, and their identities, are shown with dark outlines. (C) Venn diagram depicting the number of shared gene symbols among consensus SGs, DEGs, LSTNRs,

and DEGREEs identified in all realizations. (D) Venn diagram depicting the concordance between DEGREEs detected by all-at-once single-shot analysis of the TCGA

(Continued)
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FIGURE 3 | dataset vs. the set of consensus DEGREEs identified across separate realizations. (E) Heatmap plots for two-way unsupervised clustering of all

specimens (horizontal) and DEGREEs detected by single-shot analysis (top) or consensus across realizations (bottom) based on differential expression levels. Coloring

of row dendrograms and labels represent the phenotype as annotated in TCGA database for each specimen. Dot columns on the left of heatmap plots depict inferred

specimen clades via unsupervised clustering of depicted genes in each heatmap separately. Right: heatmaps are colored on green-black-red gradient scales of

Log2FC values relative to baseline (green, downregulated; black, same; red, upregulated). (F) Three-factor discriminant analysis and plots of tested specimens based

on Log2FC measurements of single-shot DEGREEs (top) vs. consensus DEGREEs (bottom). Coloring of lines and points in depicted plots represent the phenotype as

annotated in TCGA database for each specimen. ROC curves and their AUC values are also shown. (G) Volcano plots of 200 Profiler DEGs across all breast cancer

subtype specimens relative to normal group; y-axis: post-hoc pairwise significance scores of Log2FC measurements; x-axis: mean Log2FC vs. mean RPM of normal

specimens. (H) Heatmap depicts Pearson’s correlation coefficient r-values between 200 Profiler DEGREEs. Order of Profiler DEGREEs corresponds to their

arrangement by unsupervised clustering, as shown in (E). Heatmap is colored on a blue-white-red gradient scale of Pearson’s correlation coefficient r-values (blue,

negative correlation; white, not correlated; red: positive correlation). (I) Heatmap plots of all breast cancer specimens sorted by phenotype and replicate number

(rows) vs. Profiler DEGREEs detected by consensus across realizations (columns) based on differential expression levels. Order of Profiler DEGREEs corresponds to

their arrangement by unsupervised clustering, as shown in (E,H). Coloring of row labels represent the phenotype as annotated in TCGA database for each specimen.

Right: heatmap is colored on a green-black-red gradient scale of Log2FC values relative to normal specimens (green, downregulated; black, same; red, upregulated).

(J) Inferred diagnostic biomarkers of breast cancer subtypes by sequential partitioning tree analysis of Profiler DEGREEs. Coloring of lines and points in depicted plots

represent the phenotype as annotated in TCGA database for each specimen. Partition analysis ROC curves and their AUC values are also shown. N = 40

independent specimens per breast cancer molecular subtype: normal, luminal A, luminal B, HER2+, and basal-like. Specimen classification as annotated in TCGA

database. TCGA dataset comprises 200 total individual specimens with reads aligned onto 20,532 genes overall, analyzed as a whole (single-shot) or evenly split into

four separate and mutually exclusive realizations (split-pool). Reference genome: hg19.

sets in another—an expectation that is grossly misguided among
patient-derived specimens.

Significance scores of estimated RPM transformants are only
as good as the samples they reflect, and will change depending
on whether variation within statistical groups is more or less
heterogeneous for different subsets. We premised that each
of the subsets is representative of the entire set, and that
ranking of the significance scores of genes should be similar
across subsets no matter their actual p-values; that was the case
when we calculated resolution weights of genes per realization
(Figure 3B). Interestingly, we found that many genes at the high-
end of the resolution weight curve tended to show high read
count numbers, yet many genes with high RPM averages showed
poor significance scores for their transformant B-values. These
results suggested that average RPM of genes, though likely to
capture finer differences, were not reliable predictors of gene
expression resolution.

We then performed resolution-weighed multivariate ANOVA
tests of Log2FC differences relative to the average of normal
tissues, either per realization or single-shot. We found that, by
including resolution scaling, the number of detected significant
genes (SGs) became more consistent: between 4,465 and 5,086
SGs from the four independently analyzed realizations, and 6,193
SGs by the single-shot analysis (Table 3; see Table S1 for gene
symbols). These results were striking because the resolution
scaling strategy of the LSTNR method effectively stabilized the
number of detected SGs across all five separate tests, even though
the number of genes with significant transformant variation
(FDR p < 0.05) were quite different in each of these separate
analyses (as mentioned earlier).

In all, we found a common pool of 1,617 SGs across all
four realizations (Table 3; see Table S1 for gene symbols),
corresponding to 32–36% concordance rates with respect
to the total SGs in each one separately (range of SGs
per realization: between 4,465 and 5,086). Those observed
concordance rates carried down to increasingly stringent levels
of stratified practical significance across separate realization
tests (see section Materials and Methods and Supplemental

Materials for further details): from the pool of 1,617 common
SGs from per-realization analyses, we detected 976 DEGs
(vs. number of DEGs between 3,377 and 3,736 in separate
realizations; 26–29% concordance rates), and 368 LSTNRs
(vs. number of LSTNRs between 1,102 and 1,370 in separate
realizations; 27–33% concordance rates). Overall, between DEGs
and LSTNRs, we found an intersecting set of 366 genes (37% of
DEGs), which we termed DEGs with reproducible expectation
estimates (DEGREEs) because they: (a) were statistically
significant when adjusted for sequencing resolution; (b) showed
Log2FC variation between groups greater than a reference 5%
practical effect size; (c) exhibited post-hoc pairwise significant
differences in Log2FC between groups; and (d) exhibited Log2FC
differences with SNR > 1 relative to transcriptome-wide Log2FC
measurement error (Figure 3C). Likewise, refining the pool of
6,193 single-shot SGs with additional stringency resulted in
6,093 DEGs and, among them, 1,511 LSTNRs all contained
within the DEG pool. Hence, all 1,511 LSTNRs (or 25% of
DEGs) were also DEGREEs (Table 3; see Table S1 for gene
symbols).

Next, we interrogated whether detected SGs were similar
between per-realization and single-shot analyses at different
levels of statistical stringency. Of the 1,617 common SGs across
realizations, 1,509 (over 93%) were also among the 6,193
SGs detected in the single-shot analysis using the entire data
set. This means that about three out of four (75.6%) of all
SGs identified by single-shot testing of the entire dataset are
not replicated in parallel tests of mutually exclusive subsets
of samples from the same experiment. We then evaluated
the concordance rates between intersecting genes across per-
realization vs. single-shot analyses, and detected final overlaps
of 908 DEGs (93% concordance w.r.t. common per-realization
pools; 15% concordance w.r.t. single-shot pool), 337 LSTNRs
(92% concordance w.r.t. common per-realization pools; 22%
concordance w.r.t. single-shot pool), and 336 DEGREEs overall
(92% concordance w.r.t. common per-realization pools; 22%
concordance w.r.t. single-shot pool) (Figure 3D and Table 3; see
Table S1 for gene symbols).
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TABLE 3 | Step-by-step output as numbers of qualifying genes along the LSTNR analytical pipeline for RNAseq data deposited in TCGA from four realizations of

patient-derived breast cancer transcriptomes across four molecular subtypes (courtesy of Li and Bushel, 2016; doi: 10.1186/s12864-016-2584-7).

Criteria Breast Cancer Molecular Subtypes (TCGA) (N = 200)

Realization 1

(N = 50)

Realization 2

(N = 50)

Realization 3

(N = 50)

Realization 4

(N = 50)

All Specimens

(N = 200)

Genes with uniquely aligned reads 20,532

Distribution of gene-wise RPM means P(y) ∼ Weibull3P (y;α,ß,γ); y = RPM

α = 25.4 RPM α = 24.1 RPM α = 25.0 RPM α = 21.9 RPM α = 22.2 RPM

ß = 0.53 ß = 0.53 ß = 0.54 ß = 0.49 ß = 0.49

γ= 9.9× 10−3 RPM γ= 6.6× 10−3 RPM γ= 1.1× 10−2 RPM γ= 1.6× 10−3 RPM γ= 1.5× 10−3 RPM

Independent filtering:

Genes with average y > α 8,005 8,110 8,083 8,562 8,538

Linearized normalizing transformant:

GLM Linear Predictor

(y–γ)ß−1

Transformant two-way ANOVA:

resolved genes across groups with respect to

gene-wise mean

4,295 381 638 2,281 2,851

Resolution-Weighed ANOVA:

Significant Genes (SGs) with FDR adj. p < 0.05

based on differences in resolution-weighed RPM

log-fold changes (Log2FC) relative to baseline

condition

4,465 5,086 4,537 4,618 6193

Altogether: 7,749 Final Overlap:

1,509

Intersection: 1,617

Differential expression:

DEGs = subset of SGs that exhibit both:

• resolution-weighed effect size above 5% of

gene-wise variation (δLog2FC >0.3×σSSR ); and

• post-hoc pairwise-significant Log2FC differences

between at least two groups (Student’s t-test

p < 0.05)

3,736 3,377 3,497 3,617 6,093

Altogether: 6,407 Final Overlap:

908

Intersection: 976

Reproducibility:

LSTNRs = subset of SGs that exhibit both:

• resolution-weighed effect size above 5% of

gene-wise variation (δLog2FC >0.3×σSSR ); and

• at least one group with Log2FC differences vs.

baseline greater than 95% Tolerance Interval of

gene×group residuals among SGs (post-hoc

pairwise-significance not required)

1,370 1,102 1,130 1,210 1,511

Altogether: 2,193 Final Overlap:

337

Intersection: 368

Expectable DEGs:

DEGREEs = Ensembl-annotated DEGs with a

reproducible expectation estimate (i.e., DEGs that

are also LSTNRs) and official Entrez symbol

Intersection: 366 1,511

Final Overlap:

336

(Continued)
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TABLE 3 | Continued

Criteria Breast Cancer Molecular Subtypes (TCGA) (N = 200)

Realization 1

(N = 50)

Realization 2

(N = 50)

Realization 3

(N = 50)

Realization 4

(N = 50)

All Specimens

(N = 200)

Transcriptional profiling:

Profiler DEGREEs = top DEGREEs

ranked by retrospective statistical

power with monotonically decreasing

within-gene effect sizes 1Log2FC

200 Profiler DEGREEs (consensus)

Diagnostic targets:

Biomarkers = minimal subset of

Profiler DEGREEs with predictive

discriminant power based on

sequential partition tree analysis (ROC

scores>0.9 per phenotype)

CBX7, ESR1, FOXC1, and FOXM1

We also asked to what extent using DEGREEs as a gene
set of choice for transcriptome-based phenotype segregation
was adequate, and whether using a consensus minimal set was
superior than using a larger set of DEGREEs extracted from
a single-shot differential expression analysis. To do this, we
performed two-way unsupervised hierarchical clustering (Ward
method) of the entire set of 200 specimens based on Log2FC
expression differences vs. normal breast biopsies with: (a) 366
consensus DEGREEs across all per-realization analyses; and (b)
the 1,511 DEGREEs identified from the single-shot analyses. We
found that unguided sorting of specimens in hierarchical clusters
was in agreement with the known molecular classification
of the specimens, irrespective of the set of DEGREEs used
(Figure 3E). An alternative test, discriminant analysis, also
showed that separation of specimens in multifactorial space
was highly predictive of the correct phenotype. Surprisingly,
the same tests also revealed that discrimination and predictive
power both were superior when using the consensus set of 366
DEGREEs (0% misclassified specimens) instead of the larger set
of 1,511 DEGREEs from single-shot analysis (3.5% misclassified
specimens) (Figure 3F). This outcome suggests that the LSTNR
method not only extracted the same phenotype groups by
splitting specimens into parallel data subsets and extracting
a consensus DEG set rather than using the entire cohort at
once, but profiled them successfully using far fewer genes and
specimens, and with greater accuracy, than ever reported (Perou
et al., 2000; Sørlie et al., 2001; Cancer Genome Atlas, 2012).

The objective of collecting clinical data from large cohorts,
as those in TCGA, is to determine what are the most reliable
diagnostic signatures that distinguish closely related diseases.
Thus, we tested the ability to discriminate breast cancer subtypes
when using the smallest possible set of genes with reproducible
expression differences that we detected by LSTNR. To that end,
we selected a minimal set of 200 consensus DEGREEs that
exhibited, simultaneously, the largest within-gene retrospective
statistical power (≪π≫ >90%) and within-gene effect size
1Log2FC; we termed these Profiler DEGREEs (Table 3; see Table
S1 for gene symbols). We observed >1.66-fold statistically

significant post-hoc pairwise absolute differences (p < 0.05) in
at least one of the four breast cancer subtypes vs. normal tissue
biopsies in each of the 200 Profiler DEGREEs (Figure 3G), which
also showed highly correlative associations (Figure 3H). The
increased statistical strength of Profiler DEGREEs over all other
sequenced genes was sufficient to distinguish different expression
patterns among the 200 breast tissue specimens by ordering them
by subtype (Figure 3I).

Finally, to extract a minimal set of diagnostic biomarkers, we
performed sequential partition tree analysis and defined what
subset of genes among the 200 Profiler DEGREEs had the highest
discriminative power. We found that breast cancer subtypes
could be assigned with >90% diagnostic accuracy, as indicated
by the area under the ROC curve of the partition tree, by
differential expression analysis with respect to a normal breast
tissue reference using only 4 genes: CBX7, ESR1, FOXC1, and
FOXM1 (Figure 3J). Of the four biomarkers we detected, ESR1 is
the only one in common with the reported signature for luminal
breast cancers (ESR1, GATA3, FOXA1, XBP1, and cMYB)
(Cancer Genome Atlas, 2012). Notably, only ESR1, GATA3, and
XBP1 are also present in our list of Profiler DEGREEs. The
fact that we detected closely related transcription factors other
than FOXA1 and cMYB specifically, i.e., four members from
the FOX family (FOXC1, FOXM1, FOXN3, FOXO1) and one
from the MYB family (MYBL2), lends confidence to our analysis,
which captured the same underlying biological mechanisms that
distinguish each breast cancer subtype. However, our analysis
achieved the same results with a considerably smaller cohort
(N = 200) than the one reported previously by the TCGA
consortium (N = 825) (Cancer Genome Atlas, 2012).

In all, these results confirm that single-shot analyses of
differential gene expression yields higher numbers of detected
significant differences as sample size grows. However, they also
suggest that statistical testing of excessively large sample sizes
at once comes at the expense of experimental reproducibility,
regardless of statistical stringency. Instead, data splitting into
modestly sized subsets of samples for parallel statistical analysis
can extract a minimal set of representative DEGREEs shared
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among parallel per-realization tests.We showed that the resulting
consensus DEGREE set shows a higher chance of reproducibility.
Furthermore, split data processing allows for multi-threaded
computation, which in principle accelerates data analysis speed
and performs at a much more accessible computational footprint
than a single-shot analysis.

Most importantly, a minimal consensus set of DEGREEs
deduced by parallel subsampled analyses is not only more
statistically powerful in theory, but also more useful in practice.
Because any inferred biomarkers need to be experimentally
validated, diagnosing between disease phenotypes by gene
expression assays is more amenable and affordable at the bench
when the number of targets is kept at their fewest; it is also
less prone to practitioner’s mistakes, and easier to translate to
clinical practice. In the case of breast cancer subtypes, the LSTNR
method excelled in extracting a theoretical minimum number
of diagnostic biomarkers (a total of 4) necessary to discriminate
among 4 predetermined subtypes. In practice, diagnostic testing
can be carried out to validate findings, to confirm observations
by other researchers, or for clinical purposes where sample
numbers are limiting. Our data indicate using the 4 biomarkers
detected by LSTNR to diagnose breast cancer subtypes would
be at least as reproducible as using 50-gene subtype predictor
microarrays reported previously (Parker et al., 2009)—onlymuch
cheaper.

Discrimination of Hepatotoxic MOAs
Following Chemical Exposure in Rats
The LSTNR method, like many others, can discriminate among
disease conditions with known molecular signatures (such
as breast cancer) in spite of the heterogeneity in the gene
expression profiles among patients because the transcriptional
signatures are often overt. In the case of specimens deposited
in TCGA, the evidence supporting the classification of each
specimens is a combination of both histopathological criteria
and transcriptional profiling, an approach pioneered almost two
decades ago and refined since by Perou and others based on
microarray data (Perou et al., 2000; Sørlie et al., 2001; Parker
et al., 2009). This means that, although successful in phenotyping
breast cancer subtypes, LSTNR implementation in the context of
breast cancer subtypes is somewhat recursive.

The same cannot be said when characterizing transcriptional
signatures from data generated by toxicogenomics experiments,
in which healthy specimens are exposed transiently to chemical
insults and assayed soon after to understand which genes respond
to the exposure, and to what extent their response is coordinate
or follows particular signaling pathways (also known as the mode
of action, MOA). Usually, these studies use large sample sizes, but
that is often the case because specimens tested for the sameMOA
are often exposed to more than one eliciting chemical agents,
each with minimal sample sizes. In the end, this means most
toxicogenomics datasets cannot be split into realization subsets,
and so they must be inspected with single-shot analyses. For
all these reasons, identifying MOA from toxicogenomics studies
can be more challenging than transcriptional profiling of disease
phenotypes.

To assess the performance of LSTNR for toxicogenomics
analyses, we used a MOA training RNAseq dataset
generated through the MAQC phase III SEQC crowdsource
toxicogenomics effort (TGxSEQC). The TGxSEQC training
dataset consists of liver transcriptomes from male Sprague-
Dawley rats following exposure to hepatotoxicants (Gong et al.,
2014; Wang et al., 2014). The experimental designed included
five known modes of action, each induced by exposure to
three different chemical agents unique to each MOA, with a
replicate size of N = 3 per combined MOA × Agent group. In
all, the experimental design comprised 45 individual specimens
equally split among 15 different agents and stratified under
5 MOAs with N = 9. Because the purpose of this particular
TGxSEQC crowdsourced experiment was to create a benchmark
training set to attest performance of newly developed statistical
pipelines, additional levels of complexity were introduced in
the experimental design by controlling their exposure scheme:
some of the chemical agents were supplied by intraperitoneal
injections, and others by oral gavage using either nutritive (corn
oil) or non-nutritive (water) delivery vehicles. In addition to the
45 agent-exposed specimens, an additional set of 9 livers was
also collected as a control group from male rats that underwent
mock treatments by different combinations of exposure schemes
(i.e., intraperitoneal vs. oral gavage, and corn oil vs. water as oral
vehicles).

The TGxSEQC dataset consisted of 30,852 RefSeq-annotated
transcripts (rn6 reference genome) uniquely aligned reads, which
we refer to as “genes” hereafter for simplicity. The best-fit
model to the average RPM-values within annotated transcripts
across all 54 individual liver specimens was a 3-parameter
Weibull distribution function P(y) ∼ Weibull3P(y;α,ß,γ) where
y= RPM. We then performed independent filtering with respect
to the Weibull scale parameter α = 6.7 RPM and retained
9,593 transcripts for differential expression analysis (Table 4).
Next, to determine the resolution level of detected reads per
gene, we calculated transformant B-values from within-gene
RPM averages by GLM with linear predictor B∼(y–γ)ß−1 and
normalizing link function η ∼ 1/B as appropriate for fixed-
ß Weibull distributions (Nelder and Wedderburn, 1972; Aitkin
and Clayton, 1980). Then, transformant B-values were tested
by gene×MOA multivariate ANOVA, i.e., irrespective of the
chemical agent, route, or nutritional status of the vehicle of each
specimen. We identified 3,975 significantly resolved genes, based
on a transformant B FDR p < 0.05 criterion (Table 4). Gene
resolution weights were estimated from the cumulative hazard
rate of the gene × MOA multivariate ANOVA significance
scores of B. Also, we added the threshold parameter γ = 2.5
× 10−3 RPM to each individual replicate across all transcripts,
and estimated Log2FC differences relative to the average of
mock-treated controls. Then, we performed a resolution-weighed
gene × MOA multivariate ANOVA of Log2FC differences.
We detected a total 5,983 SGs; among them, we found 5,864
DEGs and, of those, 1,953 were also LSTNRs. The list of
LSTNRs included 386 non-protein encoding transcripts based
on their RefSeq annotation (i.e., XR_, XM_, or NR_ accession
prefix), which we discarded from subsequent analysis. The
remaining 1,567 LSTNRs corresponding to mRNA transcripts
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TABLE 4 | Step-by-step output as numbers of qualifying genes along the LSTNR

analytical pipeline for liver transcriptomes from male Sprague-Dawley rats after

toxicant exposure based on the mode-of-action training RNAseq dataset by the

MAQC phase III SEQC crowdsource toxicogenomics (TGxSEQC) effort (GEO

accession number: GSE55347).

Criteria Hepatotoxicity:

Mode-of-Action Rat

Models (N = 54)

Genes with uniquely aligned reads 30,852

Distribution of gene-wise RPM means P(y) ∼ Weibull3P (y;α,ß,γ);

y = RPM

α = 6.7 RPM

ß = 0.38

γ = 2.5 × 10−3 RPM

Independent filtering:

Genes with average RPM y> α 9,593

Linearized normalizing transformant:

GLM Linear Predictor

(y–γ)ß−1

Transformant two-way ANOVA:

resolved genes across groups with respect to

gene-wise mean

3,975

Resolution-Weighed ANOVA:

Significant Genes (SGs) with FDR adj. p < 0.05 based

on differences in resolution-weighed RPM log-fold

changes (Log2FC) relative to baseline condition

5,983

Differential expression:

DEGs = subset SGs that exhibit both:

• resolution-weighed effect size above 5% of

gene-wise variation (δLog2FC >0.3×σSSR ); and

• post-hoc pairwise-significant Log2FC differences

between at least two MOAs (Student’s t-test

p < 0.05)

5,864

Reproducibility:

LSTNR genes = subset of SGs that exhibit both:

• resolution-weighed effect size above 5% of

gene-wise variation (δLog2FC >0.3×σSSR ); and

• at least one group with Log2FC differences vs.

baseline greater than 95% Tolerance Interval of

gene×group residuals among SGs (post-hoc

pairwise-significance not required)

1,953

Expectable DEGs:

DEGREEs = Ensembl-annotated DEGs with a

reproducible expectation estimate (i.e., DEGs that are

also LSTNRs) and official Entrez symbol

1,510

Transcriptional profiling:

Profiler DEGREEs = top DEGREEs ranked by

retrospective statistical power with monotonically

decreasing within-gene effect sizes 1Log2FC

65 Profiler DEGREEs

Diagnostic targets:

Biomarkers = minimal subset of Profiler DEGREEs

with predictive discriminant power based on

sequential partition tree analysis (ROC scores>0.9

per phenotype)

Ucp3, Tmem86b, Sugct,

Acaa1b, Hadhb, Tfam,

Acaa1a, and Gsdmd

(NM_ accession prefix) were consolidated into a final list 1,510
DEGREEs with official non-duplicate Entrez gene symbols. Then,
after comparing the ranks of retrospective statistical power and
within-DEGREE effect size for Log2FC measurements across
MOA groups, we identified aminimal set of 65 Profiler DEGREEs
for transcriptional profiling (Table 4; see Table S2 for gene
symbols).

We asked to what extent the DEGREEs detected by our
method captured the underlying organization of specimens
into MOA groups. Using two-way unsupervised hierarchical
clustering (Ward method), we found the set of 1,510 DEGREEs
sorted not only 43 of the 45 treated specimens into their original
MOA and chemical agent groupings, but also recovered their
stratification by route of exposure, nutritional status of vehicle,
and one of two means of pathway activation: receptor mediated
(RM) and non-receptor mediated (NRM). We also detected five
co-expression patterns among DEGREEs, which were supported
by separate clustering of correlation scores for the differential
expression of DEGREEs across MOA groupings (Figure 4A).
Still, we found that clustering based on 1,510 DEGREEs resulted
in interleaved MOA groups, except for PPARA (Figure 4A).
This kind of transcriptional cross-talk among 1,510 DEGREEs
has been previously reported for this same dataset, suggesting
that downstream pathways elicited by different chemical agents
under the same MOA classification can converge to the same
regulatory hubs through different molecular cascades and lead
to distinctive transcriptional effects; conversely, chemical agents
classified under differentMOA can exhibit similar transcriptional
signatures just as well (Funderburk et al., 2017).

Next, we investigated the capacity of Profiler DEGREEs to
segregate MOA groups, and their underlying strata, compared
to the pool of DEGREEs. Unsupervised clustering based on
the 65 Profiler DEGREEs revealed seven MOA clades among
treated specimens (I-VII) and, like its larger counterpart with
1,510 DEGREEs, five minimal gene co-expression patterns (a–e)
(Figure 4B). Using only Profiler DEGREEs also recovered the
experimental stratification of the treated specimens with the
exception of 6 specimens interspersed between the Cytotoxic,
DNA damage, and CAR/PXR MOA groups (Figure 4B). Yet,
hierarchical clustering by Profiler DEGREEs also segregated each
of the MOA from each other, unlike clustering with the entire
pool of 1,510 DEGREEs (Figure 4B). This highly discriminative
capacity indicates that Profiler DEGREEs represent the most
discriminative subset of DEGs to extract transcriptional
signatures.

The ability to segregate entire MOA groups from each other
based on Profiler DEGREEs allowed comparing transcriptional
profiles of each MOA across the five expression patterns.
Among RM MOA groups, PPARA showed the strongest and
most dissimilar transcriptional response; it was also the MOA
with the most pronounced effects across the entire dataset
and across all co-expression patterns (Figure 4C). Both Ahr
and CAR/PXR exhibited modest Log2FC levels relative to the
effects elicited in the PPARA groups; interestingly, expression
regulation trends in Ahr groups were opposite to those in
PPARA across all five expression patterns (a–e), and in three
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FIGURE 4 | LSTNR method analysis of the MOA training RNAseq dataset by the TGxSEQC crowdsource effort. (A) Heatmap plots of expression differences (top) and

Pearson’s r correlation coefficients (bottom) for 45 Sprague-Dawley rat liver specimens exposed to toxic agents classified under 5 different MOAs (rows; N = 9 per

MOA) and 1,510 DEGREEs (columns) based on Log2FC measurements vs. the average of 9 mock-treated controls. The expression heatmap of DEGREEs (top) is

colored on a green-black-red gradient scale (left) of Log2FC values (green downregulated; black, same; red, upregulated); the correlation heatmap of DEGREEs

(bottom) is colored on a blue-white-red gradient scale (left) of Pearson’s correlation coefficient r-values (blue, negative correlation; white, not correlated; red, positive

correlation). Order of DEGREEs in both heatmaps (columns) is illustrated by the column dendrogram in the expression heatmap, and was based on two-way

unsupervised hierarchical clustering of DEGREEs and specimens based on Log2FC expression differences (expression heatmap, top). Dot plots on the right of the

expression heatmap (top) depict experimental classifications of treated specimens based on: means of transcriptional activation of MIEs (left to right: non-receptor

mediated, or NRM vs. receptor-mediated or RM); MOA (left to right: Ahr, CAR/PXR, Cytotoxic, DNA damage, PPARA); route of exposure (left to right: intraperitoneal

injection, or oral gavage); and nutritional status of vehicle (left to right: not nutritive solution, or nutritive oil-based vehicle). Inferred specimen clades, represented in the

(Continued)
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FIGURE 4 | expression heatmap (top) by row dendrograms and their respective MOA × Agent labels, are shown with alternating orange and blue coloring for clarity.

(B) Expression heatmap for two-way unsupervised clustering of Log2FC differences, as in (A), using only 65 Profiler DEGREEs (columns). Profiler DEGREE columns

are labeled by their respective Entrez gene symbol (top); the names of 8 biomarkers selected from the set of Profiler DEGREEs by sequential partition tree analysis are

shown raised and in bold. Coloring of the row dendrogram and its labels (left) represent inferred grouping of treated specimens into 7 MOA clusters (I-VII). Inferred

co-expression patterns represented by the column dendrogram (bottom; a–e) are shown with alternating gray and black coloring for clarity. Top left: heatmap is

colored on a green-black-red gradient scale (top left) of Log2FC values relative to mock-treated controls (green, downregulated; black, same; red, upregulated). Dot

plots on the right of the expression heatmap depict experimental classifications of treated specimens based on route of exposure (left to right: intraperitoneal injection,

or oral gavage) and nutritional status of vehicle (left to right: not nutritive solution, or nutritive oil-based vehicle). (C) Average Log2FC expression ± s.e.m. based on

Profiler DEGREEs, split into co-expression patterns from (B), and separated by experimental MOA classification. (D) Concordance of relative expression estimates

normalized to house-keeping glyceraldehyde-3-phosphate dehydrogenase (Gapdh) gene between RNA-seq and qPCR experiments for eight annotated gene

symbols across hepatotoxic agents with DNA damage MOA; all assays were performed from cDNA templates derived using the same total RNA extracts for both

techniques (N = 3 per hepatotoxic agent); qPCR assays were performed in technical duplicates per reaction plate with matched untreated samples as controls (CTR).

Overall linear regression (regression mean: solid black line; ±95 CI of regression: dashed black lines) corresponds to qPCR-based average normalized Log2FC

expression levels of each gene (x-axis) vs. normalized Log2FC expression measurements per sample among mRNA transcripts with matching gene symbols detected

by RNA-seq (y-axis). (E) Enriched signaling pathways and (F) inferred upstream regulators for Profiler DEGREEs with |Log2FC|>0.82 under each MOA cluster

identified in (B), based on Ingenuity Knowledge Base ontologies; equal analyses are depicted in regards to (G) metabolic pathways and (H) inferred disease and

biological functions, respectively. Pathways depicted in (E,G) heatmaps showed enriched representation p < 0.05 in at least one MOA cluster; upstream regulators

and functions in (F,H) showed both enriched representation p < 0.05 and predictive |z| > 2.0 in at least one MOA cluster. Intensity of purple coloring in pathway

heatmaps (E,G) represent increasing levels of significance; coloring of activation heatmaps (F,H) on a blue-white-orange gradient scale depicts prediction z-score

values (blue, inhibited; white, inactive; orange, activated). (I) Expression heatmap for two-way unsupervised clustering of Log2FC differences based on the 8

biomarkers highlighted in (B) (columns). Coloring of the row dendrogram and its labels (right) matches the 7 MOA clusters (I-VII) depicted in (B). Top right: heatmap is

colored on a green-black-red gradient scale (top left) of Log2FC values relative to mock-treated controls (green, downregulated; black, same; red: upregulated). Dot

plots (left) depict experimental classifications of treated specimens based means of transcriptional activation of MIEs (left to right: non-receptor mediated, or NRM vs.

receptor-mediated or RM). N = 9 independent specimens per MOA classification with three different hepatotoxic agents each (N = 3 per MOA×Agent combination):

Ahr (3ME = 3-methylcholantrene, 300 mg/kg/day, 5 days; NAP = β-naphthoflavone, 1,500 mg/kg/day, 5 days; LEF = leflunomide, 60 mg/kg/day, 5 days); CAR/PXR

(ECO = econazole, 334 mg/kg/day, 5 days; MET = methimazole, 100 mg/kg/day, 3 days; PHE = phenobarbital, 54 mg/kg/day, 5 days); Cytotoxic (CAR = carbon

tetrachloride, 1,175 mg/kg/day, 7 days; CHL = chloroform, 600 mg/kg/day, 5 days; THI = thioacetamide, 200 mg/kg/day, 5 days); DNA damage (AFL = aflatoxin B1,

0.3 mg/kg/day, 5 days; IFO = ifosfamide, 143 mg/kg/day, 3 days; NIT = N-nitrosodimethylamine, 10 mg/kg/day, 5 days); and PPARA (BEZ = bezafibrate, 617

mg/kg/day, 7 days; NAF = nafenopin, 338 mg/kg/day, 5 days; PIR = pirinixic acid, 364 mg/kg/day, 5 days). Log2FC measurements were calculated relative to 9

vehicle-only mock-treated controls. The TGxSEQC training dataset comprises 54 total individual specimens with reads aligned onto 30,852 RefSeq-annotated

transcripts overall. To designate the final list of Profiler DEGREEs, Log2FC of differentially expressed transcripts (resolution-weighed ANOVA FDR p < 0.05 and

δLog2FC > 0.3 × σSSR, and both post-hoc p < 0.05 and Log2FC > 95%TISSR in at least one MOA vs. average of controls) annotated as mRNA-encoding (RefSeq

NM_ suffix) were consolidated by the average of Log2FC values under matching and nonduplicate gene symbols from the Entrez database. Reference genome: rn6.

for CAR/PXR groups (a-c). Of the three RM groups, CAR/PXR
exhibited the weakest differential expression levels. In general,
MOA groups with NRM activation show muted expression
effects compared to RM MOAs, in both cases reminiscent of
CAR/PXR expression trends, and with DNA damage agents
showing slightly greater effects than cytotoxic ones (Figure 4C).
Even then, LSTNR analysis produced accurate estimates of weak
differential expression levels, such as those elicited by DNA
damage MOA agents, that showed significant concordance with
matching qPCR validation data (Gong et al., 2014) as shown in
Figure 4D.

To infer the biological mechanisms underlying the
transcriptional signatures detected by unsupervised clustering,
we performed pathway enrichment analysis using Profiler
DEGREEs for each of the seven MOA clades separately (I-VII;
Figure 4B) via the Ingenuity R© platform. Profiler DEGREEs in
each MOA clade were filtered for inclusion against a threshold
|Log2FC|>0.82 (i.e., >1.76 expression fold-changes vs. average
of controls). This threshold is the LSTNR filter, and equals
the 95% tolerance interval for SNR = 1 among SGs based
on residuals of gene Log2FC means within MOA × Agent
groups. Expectably, PPARα activation was among the top
enriched pathways, indicative not only of the strength of
differential expression with PPARA MOA agents, but also
of the signature in the AHR and CXR/PXR groups with the
same genes, but with opposite expression regulation. Viewed
together, the top enriched signaling pathways were consistent

with acute-phase inflammation-related mechanisms (e.g.,
IL1, IL12, complement system), transcriptional regulation of
xenobiotic and steroidal pathways (activation of RXR, LXR, FXR,
TR, and estrogen-dependent pathways), and mitochondrion-
linked metabolic remodeling (AMPK and Ca2+ signaling)
(Figure 4E).

The results for signaling pathway enrichment analysis were
further supported by sets of predicted upstream regulators
via activation z-scores (Figure 4F). In particular, from the
perspective of the PPARA MOA group, exclusively represented
by Clade VII, the strongest predicted regulator was PPARA
itself, and was also one among three other inferred activated
factors characteristic of PPAR signaling (PPARG, PPARD, and
PPARGC1A). Other factors included KLF15 and PML, showing
opposite activation scores from each other, and both of which
modulate TP53 activation (also predicted) by regulating the
activity of lysine acetyltransferases such as EP300 and KAT6A
in opposite manners (Haldar et al., 2010; Rokudai et al.,
2013). Interestingly, our analysis also inferred the activation of
TCF7L2, a transcription factor known to associate with genomic
enhancers coincident with epigenetic H3K27ac post-translational
modifications (Frietze et al., 2012). Activation of TFAM, the
master transcription factor of mtDNA (Ekstrand et al., 2004)
and one of the upregulated Profiler DEGREEs in PPARA MOA
specimens based on our analysis (Figure 4B), was also predicted
by the transcriptional signatures of the rest of the Profiler
DEGREEs (Figure 4F).
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Inferred regulation scores for upstream regulators were
opposite to those in PPARA specimens for all other clades, except
for clade IV. The distinct behavior of clade IV, which included
two of the three liver specimens treated with carbon tetrachloride,
did present distinctive enrichment of LXR/RXR activation and
atherosclerosis signaling pathways, along with inferred activation
of PPARA and KLF15. Those results for clade IV were consistent
with known effects of carbon tetrachloride, a traditional model
of chronic liver injury that elicits fibrogenic activity in hepatic
stellate cells and loss of fenestration along liver sinusoids due
to thickening of basal membranes with fibrillar collagens; both
these responses are relayed via LXR signaling (Beaven et al., 2011;
Xing et al., 2016). In this context, activation of PPAR signaling
would offer a counteracting mechanism to deactivate fibrogenic
stellate cells; in fact, PPARA is a known transcriptional regulator
with reported protective roles against steatosis in hepatocytes
(Tsuchida and Friedman, 2017).

When inspected from a metabolic standpoint, pathway
enrichment analysis pointed to three pillars of mitochondrial
function: fatty acid β-oxidation, degradation of xenobiotic agents,
and sourcing of TCA cycle intermediates via amino acid
catabolism (Figure 4G). The same predictions were inferred
based on the activation z-scores of biological functions in
the Ingenuity Knowledge Base (Figure 4H). Clade IV was the
least enriched for pathways involving lipogenic activity, perhaps
indicative of stalled fatty acid synthesis in steatotic hepatocytes
(Ogrodnik et al., 2017). Once again, clade VII (i.e., PPARA
MOA group) presented the most overt levels of significance
and predictive inference, and predicted the opposite biological
response with respect to all other clades, except for clade V
(Figure 4H).

Of note, clade V consists of two agents from different MOA
groups: thioacetamide (THI) from the cytotoxic MOA group,
and N-nitrosodimethylamine (NIT) from the DNA damage
group (Figure 4B). Still, the ability of THI to elicit secondary
oxidative DNA damage has long been reported in its function
as a free-radical generator (Clawson et al., 1997). Enrichment
analysis and predicted biological activities suggested that both
agents under clade V elicited increased biosynthesis of ketogenic
precursors, oxidation of long-chain fatty acids, defective glucose
metabolism, and hepatic steatosis—all of which are processes that
synergize withmitochondrial respiration and rely on the integrity
of the mitochondrial genome. We interpreted the combination
of predicted glucose disorders and enhanced metabolism of
ketogenic intermediates triggered by exposure to clade V agents
to have a compensatory function in response to mtDNA damage.
In a sense, these endogenous responses to NIT and THI exposure
would be analogous to the effects of ketogenic diets in the Deletor
mouse model, in which high-fat feeds ameliorate the chronic
bioenergetic crisis that stems from defective maintenance of
mtDNA integrity and copy number (Ahola-Erkkilä et al., 2010).

Last, we performed sequential tree partitioning analysis of
Profiler DEGREEs to extract candidate biomarkers and test
their ability to discriminate MOA groups compared to using
all 65 Profiler DEGREEs. The process of biomarker selection
was a two-tier process: first, tree partitioning analysis was
performed with all MOA groups; then, to preempt disparately

larger transcriptional responses in PPARA MOA groups
from undercutting our analysis, we repeated the partitioning
analysis without including PPARA specimens. We detected
eight biomarkers from both analyses combined: Ucp3, Acaa1b,
Acaa1a, Sugct, Hadhb, Tfam, Gsdmd, and Tmem86b (Figure 4I).
Altogether, these eight biomarkers represented four out of
the five co-expression patterns we identified by clustering all
65 Profiler DEGREEs (Figure 4B). The ability to sort treated
specimens by biomarker-based clustering into MOA clades was
commensurate to that of Profiler DEGREEs with one notable
exception, clade V, split into two well defined biomarker-
based groups: the first one, for NIT-treated specimens, showed
upregulated Gsdmd and downregulated Tmem86b vs. controls;
the second one, for THI-treated specimens, showed upregulation
of Tfam and downregulation of Sugct instead (Figure 4I).
Among the eight biomarkers, Ucp3 showed the most striking
differences among MOAs, and clearly distinguished three types
of transcriptional responses. In the case of the RM Ahr and
CAR/PXR MOAs, the response was consistent with silencing
of Ucp3 expression; instead, RM activation of PPARA MOAs
exhibited the largest levels of Ucp3 overexpression throughout;
finally, NRM activation of cytotoxic and DNA damage pathways
were met by modest upregulation of Ucp3 (Figure 4I).

In principle, the purpose of defining a minimal set of
biomarkers by subsequent refinements of candidate gene
signatures—e.g., DEGREEs down to Profiler DEGREEs, and
Profiler DEGREEs down to biomarkers—merely seeks to
determine a realistic and manageable set of testable target
genes for an experimentalist to carry out validation and
reproducibility assays with at the bench. The underlying
assumption is that the reductive process involved in curating
among candidate targets will not only reflect similar or
improved sample partitioning for the selected gene subset vs.
the original list of candidates (as shown in Figure 4I), but
that the predictive strength of each selected gene improves
as the list of genes becomes smaller with higher statistical
stringency. To test this, we performed bootstrap forest models
using all 1,510 DEGREEs, only the 65 Profiler DEGREEs,
or only the 8 biomarkers as candidate lists vs. the inferred
MOA clusters (I-VII) depicted in Figure 4B; then, we tracked
the predictive strength of the 8 selected biomarker genes
common to all lists in terms of G²—the likelihood-ratio
test—which: (a) represents the relative contribution of a gene
among all others to assigning samples into expected clusters
across bootstrapped partition trees; and (b) approximates a
χ² distribution to estimate the statistical significance of each
gene’s predictive capacity. As we surmised, the contributions of
biomarker genes to MOA cluster assignment showed increasing
significance as the tested candidate gene lists were curated
in favor of genes with more robust expression differences
(Table 5). Notably, Ucp3 ranked as the top contributor
among any candidate genes retained in all tiers of statistical
stringency (Table 5). This last observation agreed with our
earlier interpretation (based on unsupervised clustering of
samples using 1,510 DEGREEs, 65 Profiler DEGREEs, or 8
biomarkers) that Ucp3 overwhelmingly outpaced any other
individual gene in the training dataset in its ability to
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TABLE 5 | Partitioning contribution statistics by likelihood ratio tests of eight

selected biomarkers via bootstrap forest modeling of sample classification under

seven inferred MOA clusters with reference gene lists at different tiers of statistical

stringency (mode-of-action training RNAseq dataset, TGxSEQC; GEO accession

number: GSE55347).

Gene

Symbol

1,510

DEGREEs

65 Profiler

DEGREEs

8 Biomarkers Statistic

Ucp3 8.4178 14.2830 14.5505 G²

(9.89%) (17.12%) (22.92%) (G²gene/G²total , %)

1 1 1 Rank by G² [highest: 1]

0.2091 0.0266 0.0241 p-value [df : MOA Clusters-1]

Tmem86b 0.0000 2.4276 8.5938

(0.00%) (2.91%) (13.54%)

1363 6 2

1.0000 0.8765 0.1977

Hadhb 0.3465 1.4197 8.3181

(0.41%) (1.70%) (13.11%)

83 20 3

0.9992 0.9647 0.2157

Gsdmd 0.0000 0.1950 7.5273

(0.00%) (0.23%) (11.86%)

603 50 4

1.0000 0.9999 0.2748

Acaa1b 0.0000 2.3052 7.3439

(0.00%) (2.76%) (11.57%)

142 9 5

1.0000 0.8896 0.2902

Acaa1a 0.4146 2.1847 6.5803

(0.49%) (2.62%) (10.37%)

61 12 6

0.9987 0.9020 0.3614

Tfam 0.0000 2.2218 6.3974

(0.00%) (2.66%) (10.08%)

1331 10 7

1.0000 0.8982 0.3802

Sugct 0.0000 0.0000 4.1599

(0.00%) (0.00%) (6.55%)

1308 56 8

1.0000 1.0000 0.6551

assign samples to their inferred MOA cluster memberships
(Figure 4I).

Differentially regulated Ucp3 expression across MOAs
is particularly relevant in the context of mitochondrial
metabolism. Besides functioning as an uncoupler of oxidative
phosphorylation, Ucp3 also facilitates fatty acid metabolism
and ROS regulation in mitochondria (MacLellan et al., 2005),
perhaps through a role for fatty acids as competent ROS
scavengers (Lemke et al., 2014). We interpreted the stark
contrasts between MOA groups on the basis of Ucp3 expression
alone to be indicative of remodeled lipid store management in
cells, perhaps to alleviate insults on mtDNA integrity or ROS
imbalances. This interpretation is supported by the functions of
all other biomarkers detected by the LSTNR method (Figure 4I):

(a) Sugct, an enzyme involved in lysine degradation that
metabolizes glutarate (Marlaire et al., 2014); (b) Acaa1a and
Acaa1b, both enzymes that participate in lipid metabolism in
peroxisomal compartments (Schram et al., 1987; Ferdinandusse
et al., 2001); (c) Hadhb, a critical subunit of the mitochondrial
trifunctional protein that governs fatty acid beta-oxidation inside
mitochondria (Spiekerkoetter et al., 2004); (d) the gene encoding
for lysoplasmalogenase, Tmem86b (Braverman and Moser,
2012); (e) Gsdmd, or gasdermin D, a lipid-porating protein that
effects pyroptotic cell death during inflammation (Rathkey et al.,
2017); and (f) Tfam, the master transcription factor for mtDNA
(Woo et al., 2012; Stiles et al., 2016).

From a biological perspective, implementation of the LSTNR
method unveiled different levels of transcriptional cross-talk
in response to chemical exposure. Perhaps unsurprisingly,
the ability to discriminate different forms of liver toxicity
by transcriptional profiling was founded on maintenance of
mitochondrial function, in particular by remodeling lipid
metabolism to counterbalance toxic effects on aerobic respiration
machinery. Still, the LSTNR method did harbor one particular
strength: it provided a systematic strategy to distinguish between
interconnected transcriptional signatures and characteristic ones
based on tiers of statistical stringency. In that regard, the
different tiers of differential gene expression that LSTNR dissects
may outline the difference between targeted (or causal) triggers
and their secondary (or consequential) effects in transcriptional
responses to toxicants. We believe these types of results from
LSTNR implementation, as shown by the analysis of the
TGxSEQC dataset, reflect the underlying basis of bottom-up
transcriptional networks that become more intertwined as more
gene nodes are added—and yet, the LSTNR method can unravel
them systematically from the top down.

DISCUSSION

Independent Filtering in LSTNR: Data
Worth Making Is Not Always Worth
Keeping
A key element of RNAseq analysis is choosing a sensible
threshold that reflects the dynamic range of gene detection based
on total aligned reads from a sequencing run. In our analyses of
the TCGA and TGxSEQC datasets, we used the scale parameter
α of a 3-parameter Weibull fit to gene RPM means as the
independent filtering threshold. Mathematically, this ensured no
more than 63% of genes with aligned reads will be retained for
analysis, since by definition the α parameter is the 37th percentile
of a Weibull-distributed variable (Aitkin and Clayton, 1980). In
contrast, we found that our approach to independent filtering,
based on a lognormal distribution, estimated a dynamic range
that was valid for every pseudogene in the EPIG-seq in silico
dataset. This outcome, which rarely occurs in the analysis of bona
fide experimental data sets, is consistent with using simulated
data since: (a) pseudogene averages in statistical groups are
prescribed under known patterns for all pseudoreplicates; and
(b) read count variation is modeled around those fixed averages
across the entire dataset. Given these properties of simulated
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data, it follows that an explanatory parametric fit of pseudogene
averages should include every pseudogene if those gene averages
are also parametrically tailored; if true, the estimated dynamic
range of average RPM-values should be valid for all pseudogenes
and, consequently, all pseudogenes should pass independent
filtering—just as we saw in the EPIG-seq in silico dataset.

It is worth mentioning that the point of independent filtering
has little to do with estimates of relative expression. In fact,
fold-change differences across groups are scored within genes
in RNAseq, meaning differential expression measurements for
individual genes are separate from each other whether they
fall within the dynamic range of detection or not. However,
subjecting all genes to multivariate differential expression
analyses, including underresolved ones indistinguishable from
instrumental noise, undermines the ability to adjust significance
tests for multiple comparisons (Benjamini and Hochberg, 1995;
Tamhane and Dunlop, 2000). Therefore, if DEGs are selected
based on significance scores alone, their numbers will be inflated
(Type I error) if underresolved genes are not discarded ahead of
inferential testing.

Empirical Fitting of Gene-Wise Coverage
It is in this context that effect size filtering at the gene level
becomes particularly relevant to the analysis of deeply sequenced
RNAseq data sets. Depending on the type of experimental design,
additional levels of DEG discrimination may be needed, for
example, when dealing with transient expression differences,
such as mtDNA depletion time courses in DN-POLG cells
(Martínez-Reyes et al., 2016). In time course experiments,
differences in gene expression are expectably smaller between
successive time points than comparisons between start and end
points. With shorter sampling intervals in an experiment come
smaller expression differences—yet instrumental noise, which is
relatively fixed, may be more prominent than the dispersion of
differential expression measurements. This is one major reason
why relying exclusively on pairwise significance tests to detect
DEGs across 3+ groups are prone to Type II errors. If a practical
effect size criterion is not imposed to discriminate genes that
show statistical significance (or not) in RNAseq tests with small
sample sizes, it is difficult to separate between genes whose
significant expression differences are more likely to be real,
rather than anecdotal, in an underpowered experimental design
(Ioannidis, 2005).

Average sequencing depth across detected genes in RNAseq
experiments account predominantly for random dispersion and
instrumental error combined—except in DEGs. In that sense, one
can interpret the behavior of accrued reads in each detected gene
as a fingerprint of how read counts vary with sequencing depth.
From such perspective, the within-gene sample size is the total
number of experimental samples, and the between genes sample
size is the number of genes retained after independent filtering.
One can then “studentize” read count variation across gene ×

group statistical blocks by producing an “image” of transformed
RPM rates. This can be achieved by fitting a generalized linear
model (GLM), which are statistical instruments to account for
magnitude and resolution differences all at once in non-linear
and non-Gaussian systems (Nelder and Wedderburn, 1972).

To perform GLM, it is necessary to restate an observed
probability density function in the general form of the
exponential family. The purpose is to devise a transformation that
turns RPM data into a set of values showing a linear relationship
between samples and their averages, known as a linear predictor
or transformant B(ϑ) [or B in short]; furthermore, if the chosen
linear predictor B yields transformant values whose variation
around within-gene averages behave like a classical distribution
from the exponential family (e.g., normal, binomial, Poisson,
or exponential), then the transformant values of B can be
manipulated algebraically into normally distributed scores using
what is known as a link function η(B) [or η in short]. As a result,
η is a representation of RPM that, unlike RPM-values themselves,
are linear and normally distributed—which meets requirements
for ordinary multivariate ANOVA tests of significance; this is
the basis of GLM (see Supplementary Methods) (Nelder and
Wedderburn, 1972).

The metric of interest when using GLM to model gene-
wise RPM averages is not the actual values of the transformant
B-values, but what those values represent: an instrument to
explain which genes are better resolved based on statistical
evidence about their location in the dynamic range of sequenced
read detection. In that context, significance levels of genes based
on ANOVA testing of the linear predictor B are a proxy for
how robust are the differences between groups within one gene
vs. all other genes based on their RPM data and its non-
linear variation. Therefore, those significance scores rank the
experiment’s sensitivity to changes in each gene. In the LSTNR
method, we used these scores to produce gene “resolution
weights” when testing log-fold expression measurements.

The weight function of choice is the cumulative hazard
of gene significance scores. The cumulative hazard function,
which is the complement of the cumulative density function
in negative logarithmic scale, becomes a score for how strong
is the expectation that read counts from individual genes
estimate “true” relative expression differences between groups.
The cumulative hazard function has many advantages in regards
to how it represents RPM resolution: it can be determined from
bounded population data (i.e., the number of detected genes
is a finite number), it is continuous-valued (i.e., not ordinal),
and monotonically increasing (larger weights for better resolved
genes). Also, it is derived from read count data without being
a direct transformation of read count values; the benefit is that
the same weight can be applied to each gene across samples or
experimental realizations whether net read counts are the same
or not between individual replicates. In the context of RNAseq
output, the behavior of cumulative hazard functions resembles
that of the “tightness” of relative expression measurements
around the mean from sequencing data: genes with low read
counts are poorly detected and yield noisy estimates of log-fold
differences; genes with more aligned reads produce more robust
estimates with increasing coverage; and genes near saturated
sequencing levels plateau to the absolute resolution limit of the
sequencing instrument.

Based on the TCGA dataset, we found the behavior of
resolution weights to be consistent with how read count
differences in RNAseq data behave: genes with better resolution
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will often present either low read counts and large differences
between groups, or high read counts with modest differences
and tight within-group variability. Since RNAseq is based on
PCR amplification, observing tight distributions for abundant
transcripts may occur rarely, since amplification errors are
propagated exponentially. Using separate implementations of the
LSTNR method in each individual realization ameliorated the
impact of such features, all too common in noisy RNAseq data.
In effect, resolution scaling in the LSTNR method adjusted for
differential expression tests for exponential propagation of PCR
errors.

In theory, there is an additional benefit worth noting that
LSTNR offers. GLM with canonical link functions relies on
the statistical sufficiency of exponential family distributions,
and the resolution weights of genes are derived from linear
predictor ANOVA based on ranks, not scores, of statistical
significance. If individual experimental replicates are a true
representative sample of a population, and their distribution
belongs to the exponential family (as implemented in the
LSTNR method), then a notable statistical corollary follows:
the resolution power of gene detection from one experiment
is valid for separate realizations from the same population. In
practical terms, this means the resolution weights for genes
detected in one study are valid for any additional sequencing
of its replicates, entire repeated experiments, and replicate
studies—regardless of sample size or sequencing depth. If true,
the GLM basis of the LSTNR method makes it a particularly
attractive pipeline to determine consensus resolution weight
matrices from small training sets heading into consolidatedmeta-
analyses of much larger cohorts. As our findings suggests, the
use of LSTNR-derived gene weight matrices would protect DEG
analysis against detrimental batch effects and subsampling errors,
both of which are characteristic of epidemiological and clinical
studies.

Detecting DEGS by Resolution-Weighed
Multivariate Analysis in the LSTNR Method
The customary methods of inferential testing among multiple
groups are ANOVA models because of their computational
efficiency and ease of implementation. The main caveat of
ANOVA models pertains statistical power, which strongly
depends on sample sizes, normally distributed responses, and
homoscedasticity across statistical blocks. These requirements
are a major impediment to the management of RNAseq data
sets; for one, sample sizes are limiting in RNAseq applications
due to cost constraints, since sequencing reagents, equipment
and necessary computational support to convert raw sequencing
output into genome-aligned reads are all expensive. In regard to
normality of measurements, it is common practice to represent
expression levels as log-transformed read counts, such that
expression fold-changes between groups become arithmetic
differences between means with distributions that approximate
normality; this is not only questionable for most RNAseq
experiments, mainly due to the impedingly small sample sizes
mentioned earlier, but also insufficient as it does not address lack
of homoscedasticity.

Log2FC values, which are read count ratios, are a
measurement of relative expression levels for a gene between
conditions; however, Log2FC values by themselves do not
offer any information on their own measurement resolution
because the read counts used to estimate them are “divided out.”
Calculating significance scores based on Log2FC values is only
statistically fair if all genes show equal levels of read coverage or,
as in the LSTNR method, if relative expression measurements
are adjusted to reflect different resolution levels among detected
genes. Introducing resolution weights to multivariate ANOVA
testing of relative expression differences posited attractive
statistical advantages. In principle, resolution scaling of log-fold
differences should: (a) improve homoscedasticity across genes,
as shown in Figure 2D; (b) discriminate between highly variable
(largest fold-differences) and highly granular (largest read
counts) genes, as shown in Figures 2C, 3B; and (c) prioritize
genes whose prospective differential expression are the most
reproducible should RNAseq experiments be repeated. Above all
else, the issue of reproducibility described in (c) was the reason
behind our split-pool analyses approach to the TCGA dataset,
and the identification of a consensus set of Profiler DEGREEs
(see Table 3).

When we analyzed the breast cancer dataset from TCGA, we
found large discrepancies in the number of significantly resolved
genes among separate analyses, yet the number of SGs was very
consistent across the board. In our view, this illustrates the
main strength behind the LSTNR method: whether particular
sample groupings lead to statistically significant dispersion in
RPM-values in one subset vs. another is less relevant than
the actual ranking of their relative resolution within replicate
experiments. Our interpretation is based on the premise that
estimates of variability in observed RPM-values within genes
are representative of how accurately they were detected by
instrumentation with respect to each other, not whether accuracy
in sequencing was exactly the same for all detected genes between
two different replicate experiments. In that sense, our findings
showed how coupling of individual sequencing resolution
of genes with relative expression differences in the LSTNR
method alleviates discrepancies in the number of detectable
SGs across replicate experiments, and performs well when the
statistical groups are well-defined in advance—e.g., treatments,
phenotypes, controls, etc.

The LSTNR Method Can Estimate Signal,
Noise, and Reproducibility Benchmarks
Benchmarking the expected dispersion range in RNAseq output
is the foundation to a power analysis that outlines what are
the smallest differences to expect ahead of deeper sequencing;
often, though, access to RNAseq and costs are too prohibitive
to pursue any benchmarking efforts. In such cases, the same
projection for expected dispersion ranges can be used as a
practical signal-to-noise (SNR) threshold of reproducibility that
a select subset of genes can be validated against, even if the
expression differences measured with RNAseq data for those
genes were statistically significant or not. A benchmark SNR
threshold of within-gene dispersion in sequenced RPM-values
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is a key metric for experimentalists, because it helps justify or
rule out additional rounds of sequencing (or patient recruitment
in clinical settings) when the statistical significance of any
transcriptional differences is marginal—or, if all else fails, to shift
focus to better experimental alternatives or re-design a project
altogether.

To perform relative expression analysis, we determined a
reference expression value in each gene equal to the average
log2(RPM) in a reference control group. The advantage of
establishing a fixed “null hypothesis” reference, instead of
using the distribution of samples in the control group, is that
sample means and variation from individual replicates can
be estimated for all groups, including the baseline condition,
and before inferential testing of significance. The benefits are
many: in practice, RNAseq experiments often produce expression
measurements that, in retrospective, are underpowered, biased
or unable to detect relevant biological effects because intrinsic
biological variability among specimens is simply too large;
in other cases, cost constraints limit studies using RNAseq
technology to low replication models (Conesa et al., 2016).
Faced with these challenges, one could instead project from
existing data (even if it is only available for control samples) how
large the dispersion in RNAseq output will be; for example, we
calculated the predicted 95% tolerance intervals around themean
Log2FC measurements as a surrogate estimate of expectable
measurement variability. Those tolerance levels, which can be
calculated directly from the residuals of DEGs, represent a
transcriptome-wide signal-to-noise (SNR) thresholds of practical
reproducibility. Furthermore, since these are based on the
variation of individual Log2FC measurements around means
of gene × group blocks, they project the scales of expression
differences that should be reproduced by other techniques (e.g.,
targeted qPCR) or in repeated experiments with reasonable
sample sizes (e.g., 95% prediction intervals). In the case of the
simulated EPIG-seq data, our results suggested that dispersion
of Log2FC measurements was roughly the same whether it was
calculated based on all genes passing filter or only on statistically
significant ones (Figure 2G). This entails that SNR-based criteria
for reproducible differential expression can be established ahead
of statistical testing based solely on the distribution of Log2FC
residuals. In practical terms, would allow confirmatory qPCR
assays to be designed from low replication RNAseq studies,
simply because noise benchmarking does not require detecting
DEGs.

We must point out, going back to the EPIG-seq in silico
dataset, how the 73 patterned pseudogenes that did not match
their simulated trends originated from prescribed in silico
patterns A, C, or E (Figure 2E). All these three patterns show
higher average expression levels in all treatment groups vs. the
baseline average; in contrast, the matched patterns B and D
both exhibit a dominant downregulation trend: expression in
pattern B pseudogenes decreases further when looking across
treatment groups, and patternD exhibits a return to baseline after
an “expression spike” in the first treatment group (Figure 2H).
These results, which suggest that downregulation trends are
easier to discriminate than upregulation ones, may simply
reflect the fact that resolution is finite—meaning the number

of possible values for RPM differences is countable, since they
are ultimately based on integer-based read counts. This implies
that, when the number of read counts drops relative to a
control, it reduces the number of combinations available to
measure gene expression ratios. To clustering algorithms, larger
downregulation differences may become easier to discriminate as
they behave more like piecewise jumps. In contrast, differences
of equal magnitude, but upregulated relative to controls, tend
toward a continuum because the scale of possible values is refined
with increasing numbers of reads per gene—and, by similar
logic, upregulation differences are harder to discriminate by
clustering analysis. Such behavior of countable differences in read
counts has somewhat intuitive implications: for genes with low
coverage to be detected as differentially expressed, both the net
and proportional differences in read counts between groups must
be large and far from the instrumental background so as to be
more accurate and less piecewise; for genes with high read counts,
significance is possible for smaller and more precise proportional
differences, but is only justifiable if the variation in net read
counts is also tight. Above everything else, these are the governing
premises behind our design strategy for the LSTNR method.

Co-expression Patterns Detected Through
LSTNR Method Are Reproducible at
Different Statistical Stringency Levels
To define candidate biomarkers for different transcriptional
signatures, the LSTNR method defines a subset of Profiler
DEGREEs, equal to the largest subset of ranked DEGREEs with
monotonically decreasing retrospective statistical power (≪π≫

>90%) and effect size 1Log2FC at the same time. The rationale
behind this approach is to maximize discriminatory potential
among transcriptional signatures of each breast cancer specimen
by accounting for the largest possible differences between
subtypes (i.e., effect size) while minimizing the commensurate
false-positive rate projected from the available experimental data
(statistical power).

In both experimental datasets, Profiler DEGREEs matched the
discriminant capacity of other pipelines, but with considerably
less genes overall. The strongest evidence for this came from
our analysis of the TGxSEQC training dataset. If stratified by
agent, the TGxSEQC dataset is a 15-group experimental design
with minimal replication level (N = 3). Hence, it cannot be
split into realizations for parallel testing, and has to be tested
through a single-shot analysis. Another challenge to testing the
TGxSEQC training set deals with prospective statistical power:
given 15 groups, the number of possible comparisons between
them is very large. Therefore, if the analysis is performed
based on pairwise gene expression differences, there is a large
risk of over-correcting for multiple testing. As a result, this
would underestimate the number of DEGs, and limit the
ability to discriminate specimens from different MOA groups.
Consequently, grouping the pool of 45 specimens under too
many categories is detrimental to the statistical power of the
experimental design as a whole. To circumvent this challenge,
and based on the fact that each of the individual chemical agents
belongs to one out of five overarching MOAs, we opted to group
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specimens under one out of five MOA groups with N = 9. Even
then, analysis of the TGxSEQC training set using the LSTNR
method captured additional sample classifications at different
tiers of statistical stringency, based on MOA information alone,
and simply by unsupervised hierarchical clustering. In addition,
each of the three tiers of discriminant power (i.e., based on
1,510 DEGREEs, 65 Profiler DEGREEs, and 8 biomarkers) were
consistent with each other in regards to clustering and detection
of co-expression patterns. Most importantly, each increasingly
stringent filter improved on the ability of its predecessor to
segregate individual MOA groups: clustering by 1,510 separated
MOA × Agent groups, but displayed interlaced strata from RM
and NRM activation modes; based on 65 Profiler DEGREEs,
clustering effectively separated each MOA from all others; and
the 8 biomarkers effectively refined the discriminative power
between NRM cytotoxic and DNA damage MOA strata.

CONCLUSION

We put forth the LSTNR method as an alternative pipeline

to tackle current obstacles in RNAseq analysis: first, it defines
a detection limit for genes with respect to random errors

in instrumental sequencing and read alignment by fitting the
observed distribution of aligned read counts; in return, this

empirical fit offers a data-driven threshold for independent

filtering. Then, the pipeline accounts for non-linear and non-
homogeneously distributed variation in read counts per gene;

this is used to generate a gene-wise resolution score based
on read counts that, when implemented as a weight function,
improves the normality and homogeneity of relative expression
measurements. With the LSTNR method, the improvements in
homoscedasticity by resolution scaling of Log2FC differences
allow experimental designs with multiple groups to be tested
by standard ordinary ANOVA techniques. Furthermore, DEGs
detected by the LSTNR method capture the same transcriptional
signatures at different tiers of statistical stringency with high
accuracy; we found the performance of the LSTNR method was
so robust that it required less genes than previously reported to
discriminate breast cancer phenotypes and hepatotoxic MOAs
using the same experimental datasets (Perou et al., 2000; Cancer
Genome Atlas, 2012; Gong et al., 2014; Wang et al., 2014; Li and
Bushel, 2016; Funderburk et al., 2017). As an added benefit, the

LSTNR method can produce noise benchmarking estimates to
validate RNAseq experiments against by benchtop techniques,
regardless of statistical significance or sample replication levels.
Altogether, these features set the LSTNR method apart as an
agnostic pipeline that: (a) can be programmed for automated
processing of RNAseq data with minimal user intervention; and
(b) can estimate thresholds of experimental reproducibility for
confirmatory assays using RNAseq studies with limiting sample
sizes.
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MicroRNAs (miRNAs) are key post-transcriptional regulators that affect protein
translation by targeting mRNAs. Their role in disease etiology and toxicity are well
recognized. Given the rapid advancement of next-generation sequencing techniques,
miRNA profiling has been increasingly conducted with RNA-seq, namely miRNA-seq.
Analysis of miRNA-seq data requires several steps: (1) mapping the reads to miRBase,
(2) considering mismatches during the hairpin alignment (windowing), and (3) counting
the reads (quantification). The choice made in each step with respect to the parameter
settings could affect miRNA quantification, differentially expressed miRNAs (DEMs)
detection and novel miRNA identification. Furthermore, these parameters do not act
in isolation and their joint effects impact miRNA-seq results and interpretation. In
toxicogenomics, the variation associated with parameter setting should not overpower
the treatment effect (such as the dose/time-dependent effect). In this study, four
commonly used miRNA-seq analysis tools (i.e., miRDeep2, miRExpress, miRNAkey,
sRNAbench) were comparatively evaluated with a standard toxicogenomics study
design. We tested 30 different parameter settings on miRNA-seq data generated from
thioacetamide-treated rat liver samples for three dose levels across four time points,
followed by four normalization options. Because both miRExpress and miRNAkey
yielded larger variation than that of the treatment effects across multiple parameter
settings, our analyses mainly focused on the side-by-side comparison between
miRDeep2 and sRNAbench. While the number of miRNAs detected by miRDeep2 was
almost the subset of those detected by sRNAbench, the number of DEMs identified
by both tools was comparable under the same parameter settings and normalization
method. Change in the number of nucleotides out of the mature sequence in the
hairpin alignment (window option) yielded the largest variation for miRNA quantification
and DEMs detection. However, such a variation is relatively small compared to the
treatment effect when the study focused on DEMs that are more critical to interpret
the toxicological effect. While the normalization methods introduced a large variation in
DEMs, toxic behavior of thioacetamide showed consistency in the trend of time-dose
responses. Overall, miRDeep2 was found to be preferable over other choices when the
window option allowed up to three nucleotides from both ends.

Keywords: miRNA, next generation sequencing (NGS), miRNA-seq, miRNA profiling, toxicogenomics,
thioacetamide
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INTRODUCTION

MicroRNAs (miRNAs), which are ∼22 nucleotides (nts) short
non-coding RNAs, comprise a class of gene regulatory elements
that have a major effect on the stability and translation of
messenger RNAs (mRNAs). The regulatory effect of miRNAs
has been observed in the development stages, tissue-specific
expressions, disease states and toxicological effects. Recent
studies reveal that the role of miRNAs is more profound than
it was suspected (Zhang and Su, 2009) as they target ∼30%
of all genes in animals (Lewis et al., 2005) and contribute
to a spectrum of human diseases with potential therapeutic
options (Chen and Verfaillie, 2014; Finch et al., 2014). For
example, in cancer research, miRNAs (e.g., miR-374a) can
serve as prognostic markers (Vosa et al., 2011). Despite
their low abundance in body fluids, miRNAs have been
studied as non-invasive biomarkers for diseases (Cortez et al.,
2011).

Due to their crucial role in regulatory processes, miRNAs
are also associated with toxicity (An and Hwang, 2014). As
toxicogenomics studies aim to elucidate the relation between
toxicant exposure and genome-wide gene expression patterns,
miRNAs play an important role as key mediators in toxicological
research (Lema and Cunningham, 2010). miRNA profiling
associated with environmental toxicants, industrial chemicals,
and drugs have been studied on different organisms such as
humans, mice, and rats (Marsit et al., 2006; Fukushima et al.,
2007; Pogribny et al., 2007; Sathyan et al., 2007; Shah et al.,
2007). While most of these studies apply qPCR or microarray
techniques, RNA sequencing (RNA-seq) has gained a larger role
in miRNA profiling due to its use of next-generation sequencing,
namely miRNA-seq.

RNA-seq has several advantages over conventional profiling
techniques such as qPCR and microarrays, particularly as its
cost has lowered in recent years. For example, RNA-seq is
not bound with the pre-defined genes to be assayed, which
increases the number of genes to be detected and reveals new
transcripts (Mestdagh et al., 2014). In addition, RNA-seq has been
demonstrated with low variation between platforms compared to
the conventional techniques (Consortium, 2014). Furthermore,
RNA-seq has a better dynamic detection range (Zhao et al.,
2014). However, the choice of analysis methods has been a
crucial step for RNA-seq data analysis and subsequent biological
interpretation. In-depth analyses of RNA-seq pipelines for
mRNA expression analysis were reported but a comprehensive
analysis of various bioinformatics pipelines for miRNA-seq
applied in toxicogenomics study has yet been conducted.
A toxicogenomics study design usually involves both dose- and
time-dependent features. It is important that the choice of
miRNA-seq analysis methods should not shadow the dose
and time-dependent treatment effect. Therefore, this study
aims to assess various miRNA pipelines for miRNA profiling
exposed to a toxicant with multiple dose and time points.
Of note, this study is to assess the joint effect of various
parameters involving mapping, quantification, and selection of
the profiling tool, rather than novel discoveries and isoform
identification.

There are several tools for miRNA-seq data analysis and some
have been evaluated for different purposes in previous studies.
Li et al. (2012) compared eight tools: miRDeep (Friedlander
et al., 2008), miRanalyzer (Hackenberg et al., 2009), miRExpress
(Wang et al., 2009), miRTRAP (Hendrix et al., 2010), DSAP
(Huang et al., 2010), mirTools (Zhu et al., 2010), MIReNA
(Mathelier and Carbone, 2010), miRNAkey (Ronen et al.,
2010), and mireap (Sourceforge, 2015). They selected three
data sets (Caenorhabditis elegans, Gallus gallus, and human
embryonic stem cells) to evaluate the sensitivity, accuracy and
potential for novel miRNA discovery of these tools. They
provided a preference list of tools for these three organisms
in predicting novel miRNAs. To observe miRNA response
to acute nerve crush, Metpally et al. (2013) conducted an
analysis on miRDeep2 (Friedländer et al., 2012), miRExpress, and
miRNAkey which was followed by the computation of DEMs
by DESeq (Anders and Huber, 2010) and EdgeR (Robinson
et al., 2010). miRDeep2 was consistently reported to identify
the highest number of DEMs. Whereas the former study was
focused on novel miRNA discovery in comparison, the latter
measured the DEM concordance of tools and provided novel
miRNA predictions for a neurological disease. However, to
the best of our knowledge, such an extensive evaluation on
bioinformatics choices for toxicogenomics data has not been
conducted. It is also important to note that miRDeep2 is the
evolved version of miRDeep while sRNAbench has recently
become the latest version of miRanalyzer. Their parameters in the
earlier versions were not extensively studied to confirm whether
such changes cause any major downstream perturbations. This
not only necessitates revisiting the current versions of these
tools and comparing with other tools, but also provides the
opportunity for a new study design with a toxicogenomics
focus.

We propose a toxicogenomics study design that is based
upon time-dose resolution of a toxic treatment to addresses
questions. The study conducted focused on the parameter
choices of selected tools for miRNA profiling as it may have
an impact on DEMs that plays a central role in toxicogenomics
for mechanistic interpretation of toxicity. Whereas an ideal
design would require a comparison based on a ground truth
set of DEMs, we introduced a method that used the number
of DEMs as a means in the absence of such ground truth.
In specific, we examined the variability in the number of
quantified miRNAs and detected DEMs under certain conditions
for selected profiling tools: miRDeep2, sRNAbench, miRExpress,
and miRNAkey. For a comprehensive analysis including time-
dose response, we employed miRNA-seq data acquired through
rat liver samples that were treated by thioacetamide, a well-
known carcinogen (Fitzhugh and Nelson, 1948), in four
time points and at three dose–levels with their concurrent
control. The dataset allowed us to measure the effect of
treatment as we changed the parameters of the tools as
well as the normalization methods. Especially important for
downstream analysis was the use of change in the number
of DEMs as a measure to assess the stability of a tool as
well as the competition between treatment and parameter
combinations.
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MATERIALS AND METHODS

Data Acquisition and Processing
The data used in this analysis is reported from our lab (Dweep
et al., 2017) and available in the GEO repository (GSE87446)1.
Briefly, thioacetamide was administered to rats for 3, 7, 14, and
28 days with 4.5, 15, and 45 g/kg, daily. On a concurrent basis,
another group of healthy rats were kept as a control group. Being
the main target organ in this project, liver samples obtained from
both the treated and the control groups were further processed
for RNA isolation and the isolates exceeding the RNA integrity
number (9.0) were sent out for sequencing.

Following the separation of miRNAs from other RNAs,
sequencing was conducted on the Illumina HiSeq 2500 platform
and sequencing data were de-multiplexed. Resulting fastq files
were inspected for quality control purposes. Lanes having low
sequence depth were discarded, which in turn caused the loss
of one control sample for 3 days. Other discarded lanes only
led to the excise of some technical replicates, but did not cause
any further exclusion of time-dose points and control samples.
Average Phred scores for the sustained lanes varied from 38 to 40.
Before employing the profiling tools on the reads, we trimmed the
Illumina 3′ adapter by using fastx_clipper in the FASTX-Toolkit
(Metpally et al., 2013).

miRNA Profiling Tools
Several miRNA-seq tools have been reported with different
underlying algorithms and running environments, i.e., web
server vs. a stand-alone application. These tools usually provide
both expression profiling and miRNA prediction. In this study,
we selected four popular tools that can run on a local system since
uploading big data sets to the web-based tools is time-consuming
and brings further limitations. We used the 21st release of
miRBase (Kozomara and Griffiths-Jones, 2014) as the reference
database for all tools in the alignment step. In Table 1, we
summarize the features of the tools by also giving the applicability
information of an option and the number of choices we examined
for parameters. Most variations are for windowing (more than
four options for each tool) and quantification (two options for
each tool).

During the biogenesis of miRNAs, there might be errors in the
Dicer process and therefore some mismatches can be tolerated
out of the mature sequence during mapping. While sRNAbench
introduces the terms WinUp and WinDown, miRDeep2 allows
such tolerance by –e and –f parameters in the quantifier.pl
module. These parameters refer to a window size in both
directions of mature sequence and we used windowing as a
profiling parameter that took values in {0, 3, 5} and {0, 3}
for 3′- and 5′-UTR directions, respectively. Hence, windowing
introduces six combinations for the profiling step. However,
this was not applicable to miRNAkey and miRExpress. While
miRNAkey did not support any extensions, miRExpress worked
with the total window size regardless of the direction. For
instance, if the window size (or tolerance parameter –g) is set

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=gpevyqegphgxbwb&
acc=GSE87446

to 8, miRExpress might be allowing 2 nts from 5′ UTR and 6 nts
from 3′ UTR. Alternatively, it might be tolerating 8 nts from
5′ UTR, but none toward 3′ UTR. Finally, those six combinations
were only tested for miRDeep2 and sRNAbench as a part of their
evaluations.

Read fragments that can be mapped to multiple miRNAs are
handled differently by all four tools. In this step, tools distribute
mapped reads to known miRNAs in their own way and output
the expression values accordingly. miRNAkey employs SEQ-EM
for additional preferences for the allocation of multiply aligned
reads. In this step, we had both the multiple mapping and
single mapping values for sRNAbench and miRDeep2 which were
computed on the basis of their outputs.

miRDeep2
miRDeep2 (Friedländer et al., 2012) is a software package which
consists of Perl scripts and is the updated version of miRDeep.
The use of its components allows both expression profiling and
identification of novel miRNAs. Preprocessing of the reads is
accomplished through its mapper.pl script while quantification
is achieved by quantifier.pl. For the novel miRNA identification,
mirDeep2.pl is utilized. miRDeep2 offers various options for each
script. Since the underlying alignment tool is Bowtie, alignment
parameters can either be set on the command line or modified
in the source code. Default parameters consider mismatches
outside the mature sequence for both 3′ and 5′ directions through
“windowing,” that is, tolerating mismatches from both ends.
miRDeep2 also introduces further flexibility when counting the
mapped reads in quantification, i.e., single mapping, multiple
mapping, and unique counts.

sRNAbench
Similar to miRDeep2, sRNAbench is also an improved version
of an earlier tool, i.e., miRanalyzer, in which novel features,
such as genome and library mapping, have been added. In
addition, its prediction capability has been improved for novel
miRNAs and isomiR support. It consists of different modules
such as preprocessing, mapping, and profiling/detection. For
the mapping module, it also employs Bowtie. With a variety
of output options, it can also provide a differential expression
analysis by using EdgeR. With the parameters WinUp and
WinDown it provides the windowing option that sets a tolerance
value for the mismatches toward 3′- and 5′-UTR. Moreover,
the user has the option to incorporate genome mapping in the
pipeline.

miRExpress
Unlike miRDeep2 and sRNAbench, miRExpress (Wang et al.,
2009) employs the Smith-Waterman (SW) algorithm (Smith and
Waterman, 1981) for the alignment. It comes with different
constituents including preprocessing steps such as adapter
removal. miRExpress also differs in that it does not need genome
mapping, directly mapping the reads to the known miRNAs
documented in miRbase instead. While the tools mentioned
above allow for a tolerance value in both directions of the mature
sequence, miRExpress only allows a total number of mismatches
from either direction. That is, the user sets a window size through
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the windowing option and miRExpress tolerates any number of
mismatches that do not exceed this size.

miRNAKey
Another profiling tool which directly maps the reads to known
miRNAs is miRNAKey (Ronen et al., 2010). It comes with a
stand-alone Java package that can be used either on the command
line or through a GUI. It further allows for adapter removal and
performs alignment by using BWA (Smith and Waterman, 1981).
As for the counting option in Table 1, it utilizes the SEQ-EM
algorithm (Pasaniuc et al., 2011) to optimize the distribution of
multiply aligned reads.

Applicability of Parameters across Tools
Although the tools mentioned above have unique features, they
also have similar parameters that can be compared to some
extent. While tool-specific parameters were used for internal
evaluation of each tool by measuring the variability and treatment
effect in the number of DEMs, compatible ones were utilized for
a cross-tool comparison. Windowing and quantification with two
counting options (single and multiple) served as two factors for a
side-by-side comparison of miRDeep2 and sRNAbench.

Side-by-Side Comparison of sRNAbench
and mirDeep2
Since both tools detected around 500 miRNAs with expression
values greater than zero, we ranked miRNAs in a decreasing order
based on those quantifications for every parameter combination.
Thus, we compared the agreement between these tools at each
increment of 5 in the ordered lists under the same conditions.
This procedure enabled us to follow the concordance in terms of
percentages as we cover the whole list for a given parameter set.

We conducted a similar analysis for the DEMs obtained from
different tools under the same parameter set and normalization
method (upper quartile) in the EdgeR package. However, the
number of DEMs was much lower than the detected miRNAs
and varied drastically from one treatment to another. For these
reasons, we performed this analysis for the treatment points for
which we obtained more than 35 DEMs and considered miRNAs
with a p-value less than 0.05 regardless of their fold changes.

Pairwise Concordance of Tools
In this part of the study, we measured the agreement between
tools by computing the Jaccard similarity. In other words,
we normalized the overlapping quantity by the union of two
miRNA sets that were obtained using different parameters. In the

quantification stage, 24 parameters (2 tools × 6 windowing
options × 2 quantification options) were used to achieve this
pairwise evaluation. The resulting similarity values were used
to generate hierarchical clusters that provide a visual aid to
distinguish the impact of parameter selections.

Analysis of Variance for Quantified and
Differentially Expressed miRNAs
Two profiling elements (windowing and quantification) have
become factors with different levels for the analysis of variance
(ANOVA). Due to the available options for windowing, its
effect was measured based on six levels that will be detailed
later. Quantification, however, was limited to two levels. In this
particular design, our dependent variables were the number of
DEMs for which we measured the impact of each profiling
element in terms of variance. In the following steps, we included
the selection of the tool as another factor, which accounted for
the effect of any tool on the variance. Then, we incorporated
treatment elements as another set of factors. Specifically, we
defined three more variables: (i) time, (ii) dose, and (iii) time-dose
interaction, which introduced 4, 3, and 12 levels, respectively. In
order to see the normalization effect in the number of DEMs,
we further added normalization into the equation with three
methods [TMM (Robinson and Oshlack, 2010), RLE (Bullard
et al., 2010), and upper quartile (Bullard et al., 2010)] in EdgeR
while also observing the changes without any normalization
(NO).

Time-Dose Response
All the parameters above are expected to have an effect on the
downstream. Beside the magnitude of such an effect, we are
also interested in whether the trend in time-dose response is
affected by the choice of parameters. Therefore, we calculated the
correlation in the number of DEMs across different treatments
for every pair of parameter combinations.

RESULTS

Study Design
Rat liver miRNA data from thioacetamide treatment at multiple
doses and time points provided a two dimensional resolution of
the treatment effect in both dose and time directions. As such,
the number of DEMs across treatments has become a means
for assessing the parameter effect and its association with the
treatment pattern. As depicted in Figure 1, four analysis tools

TABLE 1 | Summary of tool features along with their options.

Alignment algorithm Genome mapping Windowing Quantification Total parameter

miRDeep2 Bowtie Y Y(6) Y(2) 12

sRNAbench Bowtie Y Y(6) Y(2) 12

miRExpress SW NA Y(4) NA 4

miRNAkey NA NA Y(2) 2

SW, Smith–Waterman algorithm; Y, yes; NA, not applicable.
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FIGURE 1 | Study design.

were selected. For each tool, parameter choices constituting the
next three steps (i.e., mapping, hairpin alignment and counting)
introduce further options. For each treatment point, we employ
the same parameter combinations for miRNA quantification
and DEM detection. Due to the incompatibility issues, 30
parameter combinations shown in Table 1 are tested based on
their applicability through the pipeline in Figure 1. Once the
miRNAs are quantified, each tool is evaluated within its own
parameter space by measuring its sensitivity in the number of
DEMs and the impact on the treatment effect. As described
below, these evaluations are used as selection criteria for further
investigation of miRDeep2 and sRNAbench. Finally, we compare
these two tools along with their parameter combinations in terms
of miRNA quantification and DEM detection that introduces four
normalization choices.

Parameter Setting Introduced a Large
Variation in miRExpress and miRNAKey
Selection of a tool is followed by the appropriate option to be
employed with parameter manipulations for miRNA profiling as
listed in Figure 1. For instance, the user needs to decide whether
a tolerance value should be set for mismatches in 5′ UTR and
3′ UTR if applicable. Here, we introduce these parameters by
discussing the applicability issues.

Each tool comes with own its features, underlying algorithm,
and parameter set. Aiming for a comparable analysis of
parameter combinations, we considered all parameters that can
be manipulated and observed their responses (in terms of number
of DEMs) to such changes. For a fair comparison, we performed
the DEM calculations under the same normalization method
(upper quartile) in EdgeR. Then, we computed the variance in
the number of DEMs as we changed the parameters of each
tool by which we obtained the coefficient of variation (CoV). It
was observed that miRExpress showed higher CoV due to the
change in its tolerance (windowing) parameter. Since it was not
employing any other parameters, only the tolerance value for
windowing was tuned and it was found to be more sensitive to
the changes (Supplementary Figure S1).

miRNAkey had a comparable CoV with sRNAbench mainly
due to its SEQ-EM option when counting the mapped reads.

FIGURE 2 | Variance analysis on the number of differentially expressed
miRNAs (DEMs) produced by each tool.

However, when we performed ANOVA analysis on the number
of DEMs to compare the impact of tools with their parameters
on the treatment effect, we observed that both miRExpress and
miRNAkey shadowed the treatment effect more as illustrated in
Figure 2.

On the other hand, in the case of miRDeep2 and sRNAbench,
neither their individual parameters, nor their combined
parameters dominated the treatment effect in terms of variance.
Therefore, we chose miRDeep2 and sRNAbench for an in-depth
investigation of parameter effect on the number of DEMs, which
is an essential part of downstream analysis. Compatible options
between these two tools also gave us the opportunity to perform
further variance analyses.

miRNA Quantification by sRNAbench
and miRDeep2
Concordance for sRNAbench and miRDeep2
In this study, we considered a miRNA that has a non-zero
expression value as detected. Then, we compared the total
number of detected miRNAs for both tools and computed the
overlaps in the ranked lists based on expression values. For
varying profiling parameters, we counted the number of miRNAs
that have an expression value greater than zero (Supplementary
Table S1). This analysis showed that sRNAbench mostly reported
more miRNAs than miRDeep2 (Figure 3A). Nevertheless,
they had a high overlap of around 95% for each parameter
combination. For each treatment point, we compared their sorted
lists which were in decreasing order w.r.t. expression values.
Excepting their top positions, which still showed an agreement
around 80%, both tools were able to capture the same miRNAs
within the top 500 candidates (Figure 3B).

Variance Analysis
In the analyses above, we presented the agreement across
different bioinformatics choices pictorially. However, a holistic
view is still needed to quantify the level of such impact and to

Frontiers in Genetics | www.frontiersin.org February 2018 | Volume 9 | Article 22103

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00022 February 2, 2018 Time: 18:18 # 6

Bisgin et al. Evaluation of Bioinformatics Approaches for miRNA-Seq

FIGURE 3 | (A) Number of detected miRNAs for each tool under the same pipeline parameters. (B) Detection comparison in sorted lists from sRNAbench and
miRDeep2 under the same parameter sets.

further assess the significance of a choice against treatment effect
or toxic exposure. Therefore, we performed ANOVA for various
scenarios.

For the detection task, we performed ANOVA for two cases
based on: (i) profiling parameters, (ii) profiling parameters
with treatment components such as dose, time and dose-time
interaction. In the first case, the choice of tool dominated
the windowing effect that was also very effective in detecting
the miRNAs (Figure 4A). Once we incorporated the treatment
elements, their shares decreased, but their impact was still more
than treatment factors (Figure 4B).

Differentially Expressed miRNAs by
sRNAbench and miRDeep2
Concordance for sRNAbench and miRDeep2
The number of DEMs was much smaller than the detected
miRNAs and, for some cases, such as 3 days with medium dose,
the number dropped down to 1. In order to get reasonable
statistics, we excluded those cases having less than 35 DEMs
and considered only p-values less than 0.05 as a DEM criterion
as indicated in Section “Materials and Methods.” Thus, we
represented 11 treatments out of 12 in Figure 5 in which the
level of agreement between tools under the same parameters
was illustrated in terms of percentages. Due to the difference in
prioritization in the DEM lists acquired through miRDeep2 and
sRNAbench pipelines, the overlapping ratio started at 40% in top
5 DEMs (2 DEMs were in common in top 5). As we went through
the rest of the lists, we observed an increasing agreement which
even reached 100% and converged around 80%.

As both tools prioritize different miRNAs either in the
detection step or at the DEM computation stage, their pipelines
produce nearly the same amount of DEMs whereas there was a
bigger gap in their detection levels. More interestingly, we also
observed treatments where sRNAbench suggests fewer DEMs
than miRDeep2, although sRNAbench consistently detected
more miRNAs. In Figure 6, we present DEM set sizes for
upper quartile normalization in which DEM set sizes are close,
but they do not necessarily overlap 100%. We have similar
observations for other normalization choices (Supplementary
Figure S2).

In Figure 3A, both tools show an increasing number of
detected miRNAs as choices involve wider windows which
tolerate more mismatches beyond the mature sequence. This
trend is not preserved for the number of DEMs as illustrated
in Figure 6. Indeed, there are cases, such as 14 days with
medium dose, where DEM set size is almost constant even though
profiling parameters change. This demonstrates the fact that
miRNAs detected incrementally due to parameter change may
not be differentially expressed.

Variance Analysis
We conducted ANOVA on the number of DEMs to have a better
understanding of the parameter effect on downstream analysis.
Similar to the ANOVA in the detection step, we incrementally
carried out our analysis by incorporating additional parameters.
In the first analysis, we only measured the impact of profiling
parameters on the number of DEMs. It resulted that selection
of the tool and the windowing option sustained their effects as
they had in the detection rate, but ANOVA resulted in high
residue (Figure 7A), which might be due to some other factors
such as dose and time. Therefore, in the next step, we wanted to
determine the effect of profiling parameters and treatment factors
under a single normalization method, which was randomly
chosen to be upper quartile. In Figure 7B, it is clearly observed
that the share of the profiling parameters in the variance does not
exceed 8% which indicates that the treatment has a much stronger
impact on the number of DEMs and implies freedom of choice
in the selection of pipeline. However, normalization introduces
a huge variance that competes with that of treatment effect
(Figure 7C). Even though profiling elements still have a minor
effect on the number of DEMs, normalization drastically changes
the number of DEMs as much as the dose level. Furthermore,
it dominates the impact of treatment duration and therefore
implies that it is a crucial step for downstream studies. When we
excluded un-normalized data from our analysis, we still observed
the same outcome (Supplementary Figure S3).

Pairwise Concordance of Possible
Bioinformatics Choices
After comparing each tool under the same parameter
combinations, we also made a comparison that took into
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FIGURE 4 | ANOVA results for detection rate. (A) Profiling parameters (B) treatment factors are added to the analysis.

FIGURE 5 | Differentially expressed miRNA comparison in sorted lists from sRNAbench and miRDeep2 under the same normalization (upper quartile).

account all possible choices including choice of the tool itself as
well as the normalizations for the DEM step. More specifically,
we performed three types of analyses that rely on Jaccard
similarities for detection rate, DEM calculation under upper
quartile normalization, and DEM calculation with additional
normalization choices in EdgeR.

Initially, we had 24 choices that included the selection of
any tool with windowing and quantification options. For each
treatment, we performed hierarchical clustering which illustrates
agreement across different pipelines in terms of detection
concordance. It was found that windowing was the major
factor in determining the clusters of bioinformatics choices
(Supplementary Figure S4). While bioinformatics choices
having a tolerance value of 5 in the downstream were consistently
clustered together regardless of their upstream end, those with
exact match (0, 0) formed another cluster. Depending on
the dose, bioinformatics choices with intermediate tolerance
values joined one of the clusters determined by those extreme

parameters. In all cases, neither sRNAbench nor miRDeep2
were split under the same parameters, showing the power
of windowing parameter over all other parameters from the
concordance point of view.

For the same set of parameters, we obtained clusters of
bioinformatics choices based on DEM concordance for each
treatment. Under the same normalization method, i.e., UQ
(upper quantile), we observed that clusters were mainly
built by the choice of tool and windowing (Supplementary
Figure S5). Including 3 days with medium dose, in
which we did not have a high enough number of DEMs
for such analysis, pipelines belonging to the same tool
form the bigger clusters and windowing determines the
subclusters.

In the third step, we increased the number of bioinformatics
choices by incorporating normalization methods that resulted
in four times larger dendrograms than the earlier analyses. In
specific, we either worked with un-normalized data (NO) or used
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FIGURE 6 | Differentially expressed miRNA set sizes for each tool under the same pipelines with upper quartile normalization.

FIGURE 7 | ANOVA results for the number of DEMs. (A) Impact of profiling parameters, (B) Profiling parameters and treatment components were compared and
(C) Normalization methods were added on the top of earlier ANOVA designs.

one of the normalization methods that come with EdgeR, i.e.,
UQ, LRE, and TMM. The selection of a tool was still found
to be a primary reason to form clusters, which implies that
DEMs obtained from a tool are mostly shared by bioinformatics
choices (Supplementary Figure S6). Even though normalization
methods determine the second level of clustering for most of
the cases, windowing still preserves its potential to affect the
outcome of DEM calculations. Therefore, there are also clusters

in which pipelines using different normalization methods are
grouped together.

Parameter Sensitivity for sRNAbench
and miRDeep2
Through hierarchical clustering, we presented the Jaccard
similarities of all possible parameter combinations including the
tools. We further utilized these similarities for the DEM sets
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FIGURE 8 | Density curves for similarity values obtained from the pipelines within each tool.

under upper quartile normalization to illustrate the sensitivity
levels of tools for given parameter changes. We then plotted
the density curves for the similarity values, which effectively
outline the accumulation points. A peak around a high similarity
value means that there are many parameter combinations giving
very similar outcomes under the same tool. As illustrated in
Figure 8, similarities for miRDeep2 mostly start at higher values.
In addition, peaks are shifted toward the right, which might be an
indication that miRDeep2 is less sensitive to parameter changes.
However, when it comes to the 28th day with high dose, which
is the strongest treatment, we observed similar behavior within
both tools.

Consistency in the Time-Dose Response
Both the concordance and the ANOVA results showed that
downstream analysis was significantly affected by the choice
of normalization. Nevertheless, the pattern in the number of
DEMs across treatments needed to be investigated to elucidate
the treatment effect (which we found to be competing with
the normalization effect). We already discovered that number
of DEMs fluctuated due to the normalization choice, but we
wanted to determine whether this fluctuation would follow
a pattern as we proceeded in time and dose. In order to
capture a possible pattern, we computed the correlation in the
number of DEMs across different time and dose combinations.
In other words, we picked every possible pair of parameter
combinations and compared the number of DEMs resulting
from these pipelines for 12 treatment points. We found that

correlation scores start from 0.92 even for the bioinformatics
choices that not only differ in profiling elements, but also in their
normalization step. These high correlations imply that this trend
is sustained due to the treatment effect, although the numbers
are drastically affected by the change in the normalization
method.

DISCUSSION

Techniques such as qPCR and microarray have been widely
used to assess the role of miRNAs in toxicogenomics research.
With the advance of sequencing technologies, NGS has become
a popular means for miRNA profiling and has led to novel
discoveries. Thus, miRNA-seq also stands as a promising tool for
toxicogenomics experiments where linking toxicants to mRNAs
through miRNAs helps us understand genome-wide alterations.
While miRNAs target a considerable portion of mRNAs, it
is important to investigate miRNA profiling tools and their
parameters to obtain a robust number of DEMs, which will
potentially affect protein translation.

In a toxicological context, we examined different tools which
can be run as stand-alone applications so that we could study
a data set which provided a two-dimensional resolution in
time and dose. Having the advantage of 12 treatment points
in this particular data set, we pursued a study in which
treatment effect can be a measure to analyze the miRNA-seq
profiling tools. Initially, we started with four tools (miRNAkey,
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miRExpress, sRNAbench, and miRDeep2) whose stability was
observed in terms of the number of DEMs by manipulating
their own parameters. We found that miRExpress showed the
most fluctuating number of DEMs as we changed its windowing
(tolerance) parameter. sRNAbench and miRNAkey showed close
variances, but the treatment effect was shadowed in terms of
variance in the choice of miRNAkey. Thus, sRNAbench and
miRDeep2 were selected to inspect the parameter effect on
downstream analysis.

In our experimental setting, the number of DEMs was
considered to be the indicator of the downstream effect
of a toxicant. Therefore, our measurements or observations
mostly relied on the change across time and dose, which was
assumed to be an indicator of the treatment signal or toxic
effect of thioacetamide. We then interpreted such changes to
assess the magnitude of the pipeline effect on downstream
analysis.

Since the detection rate is the only measure that does not need
the DEMs, our first analysis relied on the number of miRNAs
which had non-zero expression values. Those miRNAs, regardless
of their expression levels, were considered as detected. Since the
expression level was not our focus, miRNA sets from different
bioinformatics choices showed high overlaps. Furthermore,
ANOVA did not attribute much variance to the treatment effect.
In fact, the choice of the tool played the most significant role.
This observation is expected as the presence of a miRNA is
not necessarily due to the toxic effect. Rather, differences in
the expression levels between groups can statistically account
for such an effect. For this reason, we delved deeper into DEM
analysis.

In the subsequent DEM analyses, we observed that highly
overlapping bioinformatics choices in the detection stage started
to show differences which in turn led to decreasing agreement
between bioinformatics choices. These discrepancies might be
due to the selection of a profiling tool or its interaction with
the parameters. Therefore, further research is warranted to
investigate which tool can lead to more accurate DEMs for
downstream analysis by examining the tool-specific DEMs.
Current measurements, which were illustrated with the density
curves in Figure 8, favored miRDeep2 by indicating that it is
less sensitive to parameter changes. Namely, different parameter
combinations resulted in very similar DEM sets for mirDeep2.
Nevertheless, the same findings also emphasized that tool
selection may not be that significant in the presence of a strong
treatment signal. For instance, at the high dose on the 28th day, all
the pipelines within each tool produce highly overlapping DEMs.

When we inspected the windowing option, we noticed an
increasing number of detected miRNAs as both tools allow
more mismatches. However, the number of DEMs remained
almost constant and did not show considerable change beyond
3 nts. This may indicate that tolerated mismatches helped in
quantifying more miRNAs with low expression values, which
were not differentially expressed most of the time.

We performed ANOVA on the number of DEMs without
the treatment factors, which indicated that change in DEM was
not only due to the selection of the tool. Once the time and
dose factors are included in the variance analysis, the treatment

effect explained not only the remaining variance, but also
demonstrated that the profiling elements were not that effective
in downstream analysis. This finding suggests more flexibility
in bioinformatics choice under the same normalization method.
However, the choice of normalization can be as dominant as the
treatment effect as it was shown by another ANOVA. Thus, the
normalization step may require more attention than the earlier
steps in miRNA-seq profiling.

The similarity between parameter combinations decreased
gradually as we proceeded toward downstream analysis,
especially for those that employ different normalization choices.
Whereas normalization causes fluctuations in the numbers, the
treatment effect enforces a pattern on these fluctuations. Namely,
high correlations between parameter combinations prove the
persistence of the toxic effect of thioacetamide in terms of a
fluctuation pattern. Finally, the DEM sets present a diverging
characteristic with lowering overlaps, but this characteristic does
not attenuate the treatment signal, which is the most valuable
information to be observed in an experiment.

Even though we were able to reach ∼80% overlap between
DEM sets from different pipelines, one of the limitations of our
study remains the lacking ground truth for toxic implications
of discovered DEMs. Under this constraint, we developed our
study design to evaluate different miRNA profiling tools by solely
relying on the number of DEMs, which are an essential part of
the downstream analysis. While different levels of discrepancies
were observed between tools and protocols, focusing on the size
of DEM sets and their concordances provided the opportunity
to assess consistency. Namely, we not only measured the
robustness of each tool, but also monitored whether the dose-
and time-dependent pattern of DEM sizes would remain the same
regardless of the protocol. In the absence of a ground truth set,
we believe our methodology and findings provide an insight in
pipeline selections not only for toxicogenomics studies, but also
for other research endeavors in the community.

CONCLUSION

miRNAs are important regulatory elements which are also
sensitive to toxicants and require well-established bioinformatics
choices for expression analysis. With a toxicogenomics focus, we
studied different tools with their parameter combinations and
their impact on the downstream analysis in terms of DEM sets.
Our results indicated that the selection of tools and parameter
manipulations could cause a limited difference in DEM sets
and their variability, whereas the choice of normalization
method might have more impact on concordances. We further
demonstrated that the treatment effect was highly preserved
despite the discordances in DEM sets, concluding that biological
variance overcomes other factors in parameter choices, especially
in the presence of a strong treatment signal. With different
detection sensitivities, sRNAbench and miRDeep2 produced
a close number of DEMs. However, mirDeep2 demonstrated
lower sensitivity to parameter changes, which makes miRDeep2
preferable over other choices when windowing allows up to three
nucleotides from both ends.
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