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Calcific aortic valve stenosis is the most frequent valvular heart disease in Western 
countries, affecting up to 13% of individuals over 75 years. The disease is associated 
with considerable morbidity and mortality. It is characterized by fibro-calcification 
of aortic valve cusps and concomitant left ventricular remodelling due to chronic 
pressure overload, which can evolve into overt heart failure. It progresses very 
slowly until the onset of symptoms, the indication for aortic valve replacement. 
Today, about 300,000 aortic valve replacements are performed annually worldwide, 
either via surgery or transcatheter implantation. This is the only treatment shown to 
improve survival. There is no pharmacological treatment to prevent or slow disease 
progression. Major risk factors include older age, congenital anomalies of the aortic 
valve (bicuspid valve), male gender, hypertension, dyslipidaemia, smoking, and 
diabetes. However, how these factors contribute to the disease in unclear. Due to the 
disease itself, patients are at increased risk of both thrombosis and bleeding, which, 
in addition to advanced age and comorbidities, makes antithrombotic management 
of these patients difficult. Regarding valve prostheses, the ideal prosthesis either 
mechanical or biological still does not exist. Clinically available prostheses can lead 
to major complications, thrombosis or infection, which necessitate reoperation or 
cause death in 50-60% of patients within 10 years post-implantation. Hence, there 
are major unmet medical needs in CAVS and more basic and translational research 
is definitely required. Our Research Topic depicts major challenges and research 
paths that could be followed to address these major health needs.

Publisher’s note: In this 2nd edition, the following article has been updated: Postnatal and Adult 

Aortic Heart Valves Have Distinctive Transcriptional Profiles Associated With Valve Tissue Growth and 

Maintenance Respectively, by Nordquist, E., LaHaye, S., Nagel, C., and Lincoln, J. (2018). Front. Cardiovasc. 

Med. 5:30. doi: 10.3389/fcvm.2018.00030

Citation: Oury, C., Nchimi, A., Lancellotti, P., eds. (2019). From Biology to Clinical  
Management: An Update on Aortic Valve Disease, 2nd Edition. Lausanne: Frontiers 
Media SA. doi: 10.3389/978-2-88963-355-5

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/research-topics/5886/from-biology-to-clinical-management-an-update-on-aortic-valve-disease
http://doi.org/10.3389/978-2-88963-355-5
http://doi.org/10.3389/fcvm.2018.00030


Frontiers in Cardiovascular Medicine 3 December 2019 | From Biology to Clinical Management

04 Editorial: From Biology to Clinical Management: An Update on Aortic 
Valve Disease

Cécile Oury, Alain Nchimi and Patrizio Lancellotti

07 Prosthetic Aortic Valves: Challenges and Solutions

Lucia Musumeci, Nicolas Jacques, Alexandre Hego, Alain Nchimi,  
Patrizio Lancellotti and Cécile Oury

12 Complete Resolution of a Large Bicuspid Aortic Valve Thrombus With 
Anticoagulation in Primary Antiphospholipid Syndrome

Rayan Jo Rachwan, Ghassan E. Daher, Jawad Fares and Rachoin Rachoin

17 Predicting Disease Progression and Mortality in Aortic Stenosis: A 
Systematic Review of Imaging Biomarkers and Meta-Analysis

Alain Nchimi, John E. Dibato, Laurent Davin, Laurent Schoysman, Cécile Oury 
and Patrizio Lancellotti

26 Can Blood Biomarkers Help Predicting Outcome in Transcatheter Aortic 
Valve Implantation?

Cécile Oury, Alain Nchimi, Patrizio Lancellotti and Jutta Bergler-Klein

33 Advances in Pathophysiology of Calcific Aortic Valve Disease Propose 
Novel Molecular Therapeutic Targets

Alexia Hulin, Alexandre Hego, Patrizio Lancellotti and Cécile Oury

41 Postnatal and Adult Aortic Heart Valves Have Distinctive Transcriptional 
Profiles Associated With Valve Tissue Growth and Maintenance 
Respectively

Emily Nordquist, Stephanie LaHaye, Casey Nagel and Joy Lincoln

Table of Contents

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/research-topics/5886/from-biology-to-clinical-management-an-update-on-aortic-valve-disease


EDITORIAL
published: 23 January 2019

doi: 10.3389/fcvm.2019.00004

Frontiers in Cardiovascular Medicine | www.frontiersin.org January 2019 | Volume 6 | Article 4

Edited and reviewed by:

Hendrik Tevaearai Stahel,

Universitätsspital Bern, Switzerland

*Correspondence:

Cécile Oury

cecile.oury@uliege.be

Specialty section:

This article was submitted to

General Cardiovascular Medicine,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 14 December 2018

Accepted: 08 January 2019

Published: 23 January 2019

Citation:

Oury C, Nchimi A and Lancellotti P

(2019) Editorial: From Biology to

Clinical Management: An Update on

Aortic Valve Disease.

Front. Cardiovasc. Med. 6:4.

doi: 10.3389/fcvm.2019.00004

Editorial: From Biology to Clinical
Management: An Update on Aortic
Valve Disease

Cécile Oury 1*, Alain Nchimi 1 and Patrizio Lancellotti 1,2

1Department of Cardiology, GIGA Cardiovascular Sciences, Heart Valve Clinic, CHU Sart Tilman, University of Liège Hospital,

Liège, Belgium, 2Gruppo Villa Maria Care and Research, Anthea Hospital, Bari, Italy

Keywords: aortic valve (AV), aortic valve replacement (AVR), aortic valve calcification, aortic stenosis (AS),

TAVI—transcatheter aortic valve implantation

Editorial on the Research Topic

From Biology to Clinical Management: An Update on Aortic Valve Disease

Calcific aortic stenosis (AS) is the most frequent valvular heart disease in Western countries,
affecting up to 13% of individuals over 75 years (1, 2). The disease is associated with considerable
morbidity and mortality. Major risk factors include older age, congenital anomalies of the aortic
valve (bicuspid valve), male gender, hypertension, dyslipidaemia, smoking, and diabetes (3).

The disease is characterized by fibro-calcification of aortic valve cusps and concomitant left
ventricular (LV) remodeling due to chronic pressure overload, which can evolve into overt heart
failure. AS progresses very slowly until the onset of symptoms (angina, dyspnae, syncope). A
large majority of patients remain asymptomatic for a long period, though at increased risk for
untoward events (death, heart failure, symptomatic deterioration, LV dysfunction). Development
of symptoms is a class I indication for aortic valve replacement (AVR). Today, about 300,000
AVR are performed annually worldwide, either via surgery (SAVR) or transcatheter implantation
(TAVI). AVR is indeed the only treatment shown to improve survival. There is no pharmacological
treatment to prevent or slow disease progression.

The present research topic provides a comprehensive overview of AS clinical management with
a special focus on valve prostheses, imaging and blood biomarkers as well as on recent advances on
pathophysiology and valve biology.

Regarding valve prostheses, the ideal prosthesis either mechanical or biological still do not
exist. Current prosthesis can cause complications, which necessitate reoperation or lead to death
in 50–60% of patients within 10 years post-implantation. In this research topic, Musumeci et al.
reviewed the different types of currently available prosthetic aortic valves and their limitations.
It appears that thrombosis, infection, bioprosthesis calcification, and degeneration remain major
issues, which could be addressed through innovative new generation prostheses.

Rachwan et al. report on a patient who presented with a thrombus on a bicuspid aortic valve in
the setting of antiphospholipid syndrome (APLS). APLS is a systemic autoimmune disease defined
by thrombotic events in patients persistently positive for antiphospholipid antibodies (aPL). In this
case report, 4-months moderate-intensity anticoagulation efficiently eliminated the aortic valve
thrombus. However, due to the rarity of this condition, whether conservative anticoagulation or
AVR should be recommended remains to be determined. More generally, there is currently no
clear recommendation on the choice of antithrombotic regimen for AS patients (4, 5).

Another major challenge in the clinical management of AS is deciding on the correct timing of
AVR (6).
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Regarding clinical imaging, echocardiography is central to
the diagnosis and risk stratification of patients with aortic
stenosis and regurgitation. However, the technique has certain
limitations, and aortic valve imagingmay benefit from alternative
and complimentary multimodality imaging. In the present
topic, Nchimi et al. performed a systematic review and meta-
analysis in order to evaluate the role of imaging biomarkers in
predicting AS progression to clinical symptoms and mortality.
Eight studies regrouping 1,639 patients were included in the
analysis. This study showed significant associations of computed
tomography aortic valve calcification (AVC) and myocardial
fibrosis, measured by cardiac magnetic resonance (CMR), with
clinical outcomes. The findings on AVC are in line with a
recent study showing that sex-specific AVC thresholds accurately
identify severe AS and predicts AVR and death (7). Late
enhancement gadolinium fibrosis was significantly associated
with cardiac mortality, which is in agreement with another recent
meta-analysis indicating that LV fibrosis can also have prognostic
value after AVR (8). Hence, the prognostic efficacy of these
imaging biomarkers for patient management as compared to the
current approach that relies mainly on clinical performance need
to be tested in large randomized studies.

In addition to clinical imaging, several studies strongly suggest
that circulating biomarkers could help for AS patient risk
stratification (9). In this research topic, Oury et al. reviewed
the role of circulating biomarkers in patients undergoing TAVI.
Despite the fact that TAVI offers a marked change in life
expectancy and quality of life of high-risk elderly patients,
(10) early and late mortality after TAVI still remains relatively
high (11–13). Studies indicate that implementing biomarkers of
myocardial injury, cardiacmechanical stretch, inflammation, and
of hemostasis imbalance in clinical practice might help reducing
TAVI-associated complications and mortality. However, the role
of these biomarkers has yet to be confirmed in large randomized
studies.

Nevertheless, the identification of novel biomarkers will
necessitate a better understanding of aortic valve biology and
mechanisms of disease. The review by Hulin et al. draws
a summary of current knowledge on pathogenic pathways
and their potential role as novel therapeutic targets. Heart

valve homeostasis is tightly controlled by valve interstitial cells
(VICs) embedded in extracellular matrix, valve endothelial
cells (VECs) covering the leaflet, and circulating and resident
immune cells. AS is now considered as an active multi-step
process. Early steps of lesion development would occur through
accumulation of lipids and free cholesterol within the fibrosa,
followed by infiltration of inflammatory cells, e.g., macrophages
and T lymphocytes. VICs then enter an osteogenic program,
initiating calcium nodule formation, and valve calcification
(2). All these events likely involve mechanical stress and
strain, and a major role for valve lining endothelial cells.
However, how these complex cellular interplay contributes to
AS remains unknown. Furthermore, thorough knowledge of
the heterogeneity and function of valve cell subtypes, over
the course of the disease, may provide useful informations
to develop targeting strategies of diseased cells. In this sense,
transcriptional profiling studies during valve development could
help to better define valve tissue composition and homeostatic
biological pathways. In this research topic, Nordquist et al.
compared mRNA expression in postnatal and adult valve tissues.
This study nicely unveiled multiple conceivable processes that
contribute to postnatal valve maturation and maintenance that
may pave the way for elucidating mechanisms underlying valve
defects.

Thus, this research topic highlights important unmet medical
needs in AS. More basic and translational research is definitely
required to clarify disease mechanisms, uncover new multi-
biomarker-based diagnostic and prognostic tools, and develop
more biocompatible and durable prostheses with the goal of
improving patient outcome.
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Prosthetic Aortic valves: Challenges 
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Aortic Valve Disease (AVD) is the most common Valvular Heart Disease (VHD), affecting 
millions of people worldwide. Severe AVD is treated in most cases with prosthetic 
aortic valve replacement, which involves the substitution of the native aortic valve with 
a prosthetic one. In this review we will discuss the different types of prosthetic aortic 
valves available for implantation and the challenges faced by patients, medical doctors, 
researchers and manufacturers, as well as the approaches that are taken to overcome 
them.

Keywords: aortic valve replacement, mechanical valve, bioprosthesis, percutaneous, surgical, complications

intRoduCtion

In Europe alone more than 13 million people (1) are diagnosed with Valvular Heart disease (VHD) 
each year and 100 million worldwide (2). VHD primarily affects the elderly (>65 years old) in western 
countries and young people (<30 years old) in developing countries, because of the high incidence of 
rheumatic heart disease and short life expectancy (3 ESC Guidelines; Supplement).

The deterioration of native heart valves (tricuspid, pulmonary, mitral, aortic) once started is 
difficult to treat or revert with medications, leaving valve replacement as the only option, whenever 
valvuloplasty is not possible (4).

Aortic Valve Disease (AVD) is the most common among valvular conditions (44,3% VHD are AVD) 
(5) and the gold standard treatment was Surgical Aortic Valve Replacement/Implantation (SAVR or 
SAVI) until the introduction in 2007 of a new revolutionary procedure, Transcatheter Aortic Valve 
Replacement/Implantation (TAVR or TAVI). TAVI became especially used in inoperable, i.e., high-
risk patients, as it is les s invasive than an open-heart surgery (6).

Both SAVI and TAVI are not risk-free, tough, in fact, patients are subjected to life threatening 
complications associated with the medications given post-implantation and with the deterioration 
of the implanted valve (7).

In this review we will discuss prosthetic aortic valves, pre and post implantation challenges, and 
their solutions.

Aortic valve disease (Avd)
Aortic Stenosis (AS) accounts for the majority of AVD (almost 50% of all VHD). AS prevalence in 
Europe is 3–8% among people over 75 years old. If untreated, 90% of patients with severe AS have 
a life expectancy of less than 10 years, and 50% of the patients will die in the 2–3 years following 
symptoms onset (3 ESC Guidelines; Supplement).
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Calcific Aortic Stenosis (CAS), which is the formation of 
fibro-calcic nodules on the valve has a prevalence of 0,4% in the 
general population and 1,7% in the population over 65 years old 
(8). The pathophysiology of CAS is complex, it involves lipoprotein 
deposition, inflammation and osteoblast transition of valve 
interstitial cells (Hulin A et al. in this issue).

Risk factors for AS in the general population are the same as 
atherosclerotic vascular diseases, i.e., diabetes, hypercholesterolemia, 
hypertension and tobacco usage (9).

Medication is unable to stop or revert the process of native 
aortic valve degeneration, with solutions limited to reparation/
reconstruction or, in most cases, replacement.

Aortic valve Replacement
Worldwide the number of aortic valve replacement in 2003 was 
290,000 and by 2050 is predicted to be 850,000 (10).

Prosthetic aortic valves can be of 3 different types: (1) Surgical 
Mechanical Aortic Valves in different material, including stainless 
steel, pyrolitic carbon or ceramic, and with different shapes - caged-
ball, monoleaflet and bileaflet. They are structurally robust and can 
theoretically have a long service life (25–30 years). (2) Surgical 
Biological Aortic Valves are made of biological tissue that can be 
xenogenic (bovine or porcine) or allogenic (homograft), stented or 
stentless. Durability is the main problem with these valves, which 
last between 10–15 years. (3) Transcatheter or Percutaneous Aortic 
Valves are tissue heart valves and can be of two types: expanded 
over a balloon or self-expandable. They are inserted percutaneously 
and are easy to implant, but, like surgical bioprosthesis, they are 
not long lasting.

The surgical procedure for aortic valve replacement involves an 
open-heart surgery, the heart is stopped and the patient is attached 
to a bypass to oxygenate the blood. Since SAVI is quite invasive, it 
has been slowly replaced by TAVI, which can have 3 different sites 
of vascular access: transfemoral, subclavian or carotid artery and 
clinical trials are currently ongoing to evaluate the approach that 
will give least complications. TAVI is performed in cases where 
patients are at high risk of death during surgery, due to old age or 
the presence of additional diseases. Two randomized prospective 
clinical trials, PARTNER 1 (Placement of AoRtic TraNscatheER) 
(11) and CoreValve (12) have proven the superiority of TAVI over 
SAVI in a high-risk cohort of patients. Moreover, in July 2017 
- the year of the 15 year anniversary of TAVI (13) - the FDA, 
based on the favorable conclusions of two trials, the PARTNER 2 
(14) and the SURTAVI, has approved the use of TAVI in patients 
with intermediate risk of a negative outcome during open-heart 
surgery. But SAVI still remains the reference method, especially 
in low-risk patients. To be able to extend TAVI to all patients, 
regardless of surgical risk, more studies, focused on the outcomes 
of the procedure in the long run, are needed (15).

Both SAVI and TAVI are associated with thrombosis (2), but it is 
becoming evident that during TAVI there are more periprocedural 
ischemic and embolic strokes, caused by the dislodgement of 
debris from the aortic arch, annulus, and native valve (16). To 
reduce such thromboembolic events, the clinical trial GALILEO 
( clinicaltrials. gov, NCT02556203) is at the moment recruiting 
patients to test the hypothesis that, being thrombin a key-player 

in the pathophysiology of thromboembolic events, patients would 
benefit from treatment with anticoagulants, like rivaroxaban.

Management of Aortic valve Replacement
For an aortic valve replacement medical doctors are faced with 
many decisions, e.g.,: define when the aortic valve condition is severe 
enough to perform the replacement; what kind of intervention - 
SAVI or TAVI - to perform; and what kind of prosthetic aortic valve 
to use - mechanical or biological [(17)  ESC Guidelines]. This is why 
it is very important that a multidisciplinary heart team evaluates 
risks and benefits of all pre and post-procedural decision (18).

Usually, mechanical valves, which are more thrombogenic, but 
more durable, are implanted in patients younger than 65 years old, 
which have good hemodynamics, while biological valves are used 
mainly in the elderly. Although less thrombogenic, tissue valves 
(surgical or trasncatheter) are prone to structural valve deterioration 
(SVD), caused mainly by calcification (19) . Nevertheless, more 
than half of valve replacements are bioprosthetic, especially after 
the introduction of TAVI in 2007.

Since mechanical valves are thrombogenic, they require long-
term vitamin K antagonists (warfarin) and antiplatelet drugs 
(aspirin) administration. However, such treatments may increase 
the risk of bleeding. Bioprosthetic, both surgical and transcatheter, 
valves have better hemodynamic properties compared to mechanical 
ones, therefore, the antithrombotic treatment is just required for the 
first months post-surgery (3–6 months) to reduce thromboembolic 
complications, during the process of prosthesis endothelialization 
(neointimal coverage of the frame and leaflets) (2).

The choice of the best valve to implant depends mainly on 
two risk factors: anticoagulation-related bleeding and valve 
deterioration. Tissue valves are implanted when the risk of bleeding 
with anticoagulation treatment is high, while mechanical valves 
are implanted when valve tissue deterioration could be accelerated, 
i.e., in younger patients.

Antithrombotic management slows down, but does not 
eliminate the risk of prosthetic valve failure, which depends also 
on the life-style of the patient as well as on the pre-procedural 
metabolic profile and inflammatory status, especially for TAVI.

Causes of Failure of Prosthetic valves
Prosthetic valve dysfunction depends on the valve that has been 
implanted and on the procedure (SAVI or TAVI). Atherosclerosis 
risk factors, like diabetes, smoking, hypercholesterolemia, 
metabolic syndrome may accelerate failure of prosthesis, while 
dental procedures and other surgeries may increase the risk of 
valve infection.

Infection
The risk of infection of the prosthetic aortic valve is much higher 
compared to native valves and can affect all types of prosthesis 
equally, leading to infective endocarditis. Infections can arise just after 
surgery (within a week to one month post-surgery), or appear long 
after surgery (after 6 months). Periprocedural and 30 days infections 
are more common during SAVI compared to TAVI, although such 
differences are not statistically significant (7).
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Since bacteria colonization of prosthetic valves and, of biomedical 
devices in general, is difficult to fight, because of biofilm formation 
(bacteria in the biofilm are more resistant to the usual antibiotics 
doses), it is important to prevent infections that can arise during 
dental procedures or other surgeries, with the use of antibiotics [(20) 
ESC Guidelines].

Thrombosis
Altered local flow due to the presence of prosthetic valve may be a 
trigger for thrombosis. In fact, high shear stress levels could potentially 
damage red blood cells (hemolysis) and activate platelets, promoting 
thrombogenesis.

The disruption of the normal local flow can also be caused by 
implantation errors e.g., when the transplanted valve does not have the 
right geometry/model, with a specific annulus size, different for each 
patient. We talk in this case of a Patient-Prosthesis Mismatch (PPM). 
To prevent PPM cases, medical doctors should use fluid dynamic 
computational simulations before valve implantation.

While bioprosthesis are the least thrombogenic, mechanical 
and transcatheter valves are comparable in terms of thrombogenic 
potential, due to their similar transvalvular flow gradients (21).

Another important mechanism leading to thrombosis is surface–
induced thrombosis, which has been well described in mechanical 
valves and other medical devices. The contact of prosthetic valves with 
blood (biomaterial-blood interaction) triggers a thrombogenic process 
that involves: (1) adhesion of platelets via surface-adsorbed plasma 
proteins, like lipoproteins, fibrinogen, fibronectin, von Willebrand 
factor (VWF) or laminin. (2) Activation of the “Contact Activation 
Coagulation System” via negatively charged surfaces activating Factor 
XII (FXII). (3) Activation of the “Extrinsic Coagulation System” via 
adhered microparticles containing Tissue Factor (TF), released by 
several activated cellular components, like activated leukocytes. (4) 
Adhesion of leukocytes, in particular neutrophils and neutrophil 
extracellular traps (NETs), leading to inflammatory reactions, 
which promote platelet capture and aggregation. (5) Activation 
of complement via FXII, which further amplifies the coagulation 
cascade. All these events result in thrombin generation, activation of 
platelets and formation of platelets-fibrin networks on the prosthetic 
surface. The fate of such thrombus would be to obstruct blood flow in 
the place that it was generated or to detach and enter the circulation. 
To counteract thrombus formation, macrophages can infiltrate 
the thrombus for the clearance of NETs and provide plasminogen 
activator, important for fibrinolytic processes (22).

With the more frequent use of transcatheter aortic valves it is 
becoming important to understand the pathological processes and 
the triggering mechanisms associated with thrombosis of such valves. 
In fact, thrombo-embolic events have been reported in TAVI patients 
especially in the first 3 months post-procedure. One hypothesis is 
that, since the native valve is not removed, but left in place during 
TAVI, the leaflets of the stenotic native valve are still rich in TF, which 
exacerbates platelet activation (2).

Calcification
Calcification occurs more on bioprosthetic valves than on mechanical 
valves. Bioprosthesis are made of glutaraldehyde-fixed porcine valve 
cusps or bovine pericardium, composed of devitalized cells valvular 

interstitial cells (VICs) or fibroblast from porcine or bovine tissues, 
respectively, embedded in an extracellular matrix of collagen, elastin, 
and glycosaminoglycans (GAGs). Glutaraldehyde is the primary 
cause of calcification (23). Although the pathophysiology of valve 
mineralization is poorly understood, collagen and elastin fibers can 
serve as nucleation sites for calcium phosphate minerals. Moreover, 
calcium phosphate minerals have also been observed at the membrane 
of devitalized VICs (24). The mechanism of formation of calcium 
deposits in devitalized cells is probably due to calcium influx from the 
surrounding area of the cells to the inside of cells. The consequence 
is the formation of hydroxyapatite by reaction of such Ca2+ with free 
phosphate groups derived from membrane’s phospholipids.

Procoagulant actors, such as phosphatidylserine-exposing 
activated platelets and TF-expressing immune cells or microparticles, 
lipid accumulation and inflammation may also play a role in 
calcification. However, the relationship between bioprosthesis 
calcification, lipids, inflammation, and thrombosis has never been 
established. Whether thrombosis promotes calcification, and/or vice 
versa is unknown.

outcomes: Challenges and Solutions
Considering all complications of prosthetic aortic valves, there is an 
urgent need to improve their design, biocompatibility and durability 
(25).

The development of a prosthetic aortic valve is a very complex 
matter, achieved with teams of chemists, bioengineers and medical 
doctors. A prosthetic aortic valve to be clinically safe and durable 
has to comply to many regulations, pass extensive in vitro testing, 
preclinical studies in animal models (pig or sheep) (Table 1) and 
clinical trials (26).

Biocompatibility and haemocompatibility of the material of the 
valves is crucial and has to follow the ISO 10993 guidelines. The in 
vitro tests should evaluate the effect of the prolonged contact of the 
prosthetic valve surface with whole blood at 37°C under shear stress. 
Lysis of red blood cells can be measured using Lactate Dehydrogenase 
(LDH) activity, while flow-induced platelet activation can be studied 
in a perfusion chamber or in a cone and plate device.

An important parameter to determine is the clotting time of plasma 
that has been in contact with the biomaterial. Such test, if performed 
using specific inhibitors, allows the discrimination between intrinsic 
and extrinsic pathways of coagulation, which is important if we want 
improve prosthetic valve surfaces. Other important tests are cell 
toxicity as well as immunogenicity of the biomaterial of the valves. 
The latter evaluated is a measurement of complement (C5a and C3a) 
activation.

Anti-fouling properties refer to capacity of the material repulse 
bacteria or other microorganisms. With an anti-fouling biomaterial, 
microorganisms are not able to adhere and form biofilms of the surface 

tABLe 1 |  In vitro and in vivo tests in prosthetic aortic valve development.

Biocompatibility iSo 10993 tests

Infection Anti-fouling tests (ISO 14160)
Hemodynamics Pulse Duplicator (ISO 5840)
Durability Durability Testers + Shelf life testing (ISO 5840–

1 Annex G, H, I, J)
Calcification In vivo animal models 20 weeks (ISO 5840–2)

9

https://www.frontiersin.org/journals/Cardiovascular_Medicine#articles
http://www.frontiersin.org/journals/Cardiovascular_Medicine
https://www.frontiersin.org


May  2018 | Volume 5 | Article 46Frontiers in Cardiovascular Medicine | www. frontiersin. org

Musumeci et al. Prosthetic Heart Valves

of the implanted prosthesis. Biomaterials with anti-fouling properties 
would avoid colonization and accumulation of microorganisms on 
the surface of the valve (27). Examples of anti-fouling surfaces are 
poly(ethylene glycol) PEG, oligo(ethylene glycol) or zwitteronic 
species (28).

Geometry/Design of prosthetic aortic valves is of crucial 
importance to retain similar hemodynamic properties of native 
valves. Despite years of studies on the geometrical design of 
mechanical valves, the super-physiological shear stresses leading to 
valve deterioration, thrombosis and to a lesser extend calcification, 
are still detected with this kind of valves. Usually, hemodynamics of 
prosthetic valves are first tested in silico, using numerical simulations, 
like 2D computational fluid dynamic (CFD) or, more recently, 
3D fluid-structure interaction (FSI) simulations. Hydrodynamic 
performance of a prosthetic valve is then evaluated in vitro using a 
Pulse Duplicator (ISO 5840:2005).

Durability is a critical issue, especially with bioprosthetic 
valves. An ideal bioprosthetic valve should be like a native 
valve, extremely durable, going through 40 million cycles a 
year and 3 billion during a life-time. In native valves durability 
and strength is given by the flexibility and heterogeneity of the 
supportive structures (collagen, connective tissue and elastin) 
and cells (Valvular Endothelial, VECs, and Interstitial cells, 
VICs). Bioprosthetic valves are far from having similar durability, 
making this issue an important point to improve for the next 
generation of bioprosthetic valves. Durability or prolonged 
accelerated wear testing is mandatory. Prosthesis durability 
testers can simulate 10 years of valve usage in 6 months.

Sterility is fundamental for implantable medical devices. Sterility is 
evaluated using the Sterility Assurance Level (SAL), which represents 
the probability of a single viable microorganism occurring on an 
item after sterilization. While this probability can be reduced to a 
very low number, it can never be reduced to zero. Accepted SAL 
values are 10−3 and 10−6 for non-implantable device and implantable 
device respectively. The methods used to sterilize are ethylene 
oxide, radiation (gamma rays), ozone or addition of antibiotics. It 
is important to choose the right sterilization method, as it can affect 
SVD.

ConCLuSionS And FutuRe 
PeRSPeCtive

Although extensive in vitro and in vivo testing is done prior to releasing 
a prosthetic valve on the market, prosthetic valve thrombosis, as well 
as infection and calcification, cannot be avoided.

Several solutions have been proposed to mitigate calcification, like 
chemical anticalcification agents like deritatives of ammino oleic acid 
(AOA). Such delipidating agent has been proven effective in removing 
membrane-bound phospholipids derived from devitalized cells and 
in reducing calcification (29).

Moreover, alternatives to glutaraldehyde fixation, which is the most 
used cross-linking agent, have also been proposed (dye-mediated 
photofication,carbodiimide-based fixation). In fact, glutaraldehyde 

residues in the bioprosthesis have been implicated in calcification 
and lack of endothelization (29).

Prevention of prosthesis failure could be achieved with the new 
generation of smart heart devices, capable of auto-detecting their 
status or by measuring specific markers in plasma that could predict 
prosthetic valve failure. For bioprosthesis, for example, several markers 
have been identified as predictors of SVD: the ratio apolipoprotein B 
and A-I (apoB/apoA-I) (30); Lipoprotein-associated phospholipase 
A2 (Lp-PLA) (31); and the ratio of oxidized low-density lipoprotein 
and high-density lipoprotein (OxLDL/HDL) and proprotein 
convertase subtilisin/kexin 9 (PCSK9) levels (32).

Lots of hopes lie in Heart Valve Tissue Engineering (HVTE), 
involving in vitro coating of a matrix with appropriate cell types. 
The matrix can be biodegradable or not and the cell types can 
be stem or progenitor cells, autologous or allogenic (10). The 
idea is to develop heart valve substitutes containing living cells 
able to actively respond and adapt to surrounding mechanical 
stresses, mimicking more closely the complex functions of native 
valves (33, 34).

Another alternative is Polymeric Heart Valves (PHV), primarily 
made of polyurethane (PU-PHV) (35). The geometry of such 
valves is better controlled (trileaflets) for optimal durability and 
hemodynamics. Since PU-PHVs are not made of animal tissue, they 
are safer and less expensive and could be used in TAVI, due to their 
flexibility. On the other hand, the creation of a flexible polymeric 
material that can withstand aortic valve flows has proven challenging 
and resulted in many failures.

To solve geometry issues, like PPM, the latest technologies use 
stereolithographic 3D printing of models based on X-ray computer 
tomography (CT) scans of native valves (36). Using this technology 
it becomes possible to produce a tailor-made prosthetic valve, made 
of tissue or polymers that would mimic closely the native valve with 
a minimal impact.
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Native aortic valve thrombosis in primary antiphospholipid syndrome (APLS) is a rare 
entity. We describe a 38-year-old man who presented with neurological symptoms and a 
cardiac murmur. Transthoracic echocardiography detected a large bicuspid aortic valve 
thrombus. Laboratory evaluation showed the presence of antiphospholipid antibodies. 
Anticoagulation was started, and serial echocardiographic studies showed complete 
resolution of the aortic valve vegetation after 4 months. The patient improved clinically 
and had no residual symptoms. This report and review of the literature suggests that 
vegetations in APLS can be treated successfully with conservative treatment, regardless 
of their size.

Keywords: antiphospholipid syndrome, aortic valve, thrombosis, anticoagulation, echocardiography

INtRoDUCtIoN

Antiphospholipid syndrome (APLS) is a systemic autoimmune disorder characterized by the pres-
ence of antiphospholipid antibodies (aPLs) and clinical features, mainly arterial and/or venous 
thrombosis and/or fetal loss. APLS can be classified as primary in the absence of another autoim-
mune disease, or as secondary in the presence of an underlying disorder, most commonly systemic 
lupus erythematosus. aPLs have been found in around 5% of the general population (1); however, 
only a small proportion will develop APLS. APLS has been estimated to have an incidence of 5 new 
cases per 100,000 people per year, and a prevalence of 40–50 cases per 100,000 people per year (2). 
According to the Sydney criteria (3), APLS is diagnosed based on the presence of at least one clinical 
event (either a vascular thrombosis and/or adverse obstetric event), and the presence of aPL [either 
anticardiolipin (aCL), lupus anticoagulant (LA), or anti-β2 glycoprotein-1 (anti-β2GP1)] on two or 
more occasions, with a minimum 12-week interval. Several clinical features associated with APLS 
have not been included in the Sydney criteria (3). These features include aPL-associated cardiac valve 
disease (ACVD), nephropathy, livedo reticularis, and thrombocytopenia.

Antiphospholipid syndrome significantly impacts the cardiovascular system. ACVD, presenting 
with a valvular mass and/or valvular thickening, is often encountered in APLS. Approximately one-
third of patients with primary APLS exhibit ACVD (4). The most commonly affected valve is the 
mitral valve, followed by the aortic valve (5), with regurgitation being the most common functional 
abnormality (6). These valvular lesions are usually of minor hemodynamic significance, but have 
been associated with serious thromboembolic events.
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There is no general consensus on the definitive treatment of 
ACVD. Popular regimens used for the treatment of ACVD include 
the following: warfarin, antiplatelet agents, and low-molecular-
weight heparin (LMWH). The efficacy of anticoagulant therapy 
on valvular masses is controversial. Some believe that ACVD 
valvular masses are due to inflammation and thus anticoagula-
tion would be ineffective (7), whereas others were successful with 
anticoagulation in the treatment of these lesions (8). A small 
minority of APLS patients (4–6%) develop a valve disease that is 
severe enough to require valvular surgery (9). However, surgical 
patients had a higher rate of complications, mostly bleeding and 
thrombosis (10).

Bicuspid aortic valve (BAV) is the most common congenital 
heart disease, affecting 1–2% of the population with a higher 
prevalence (2:1) in males (11). Individuals with BAV have a 
potential risk of complications; the most commonly being 
aortic stenosis, aortic regurgitation, aortic dissection, and 
infective endocarditis (IE). Aortic valve thrombosis in the 
setting of BAV is a rare complication, and only few cases have 
been reported (12).

To the best of our knowledge, complete resolution of a large 
bicuspid aortic mass with anticoagulation in the setting of APLS 
has not been reported in the medical literature. Therefore, this 
communication explores this rare phenomenon with a review of 
the literature.

Case RepoRt

A 38-year-old man was referred to us, by his primary care physi-
cian, for evaluation of possible aortic valvulopathy. He is known to 
have dyslipidemia; for which he was not taking any medications. 
He is a heavy smoker (45 pack-year), drinks alcohol occasionally, 
and denies drug-use.

Six months before presentation, he started having short 
episodes (<10  min) of left-arm numbness and weakness with 
headache and dizziness. He also reported having dyspnea upon 
exertion. One month prior to his presentation, the patient was 
hospitalized due to the exacerbation of his clinical symptoms, in 
addition to a 2-h episode of ataxia and diplopia. Initial workup 
included computed tomography (CT) and magnetic resonance 
imaging of the brain, electroencephalogram, and lumbar punc-
ture; all of which were unremarkable. Patient was suspected to 
have simple partial seizure and atypical migraine, and was dis-
charged on carbamazepine and prophylactic propranolol. Upon 
follow up with his primary care physician, the patient’s symptoms 
did not improve and a thorough physical examination revealed a 
cardiac murmur in the aortic region. Based on this new cardiac 
finding, the patient was referred to us for further evaluation and 
management.

Upon presentation to our clinic, he was afebrile and hemo-
dynamically stable. Cardiovascular examination revealed a 
combined systolic–diastolic murmur best heard at the second 
right intercostal space, suggesting aortic valve disease. The rest of 
the physical examination was unremarkable.

An electrocardiogram, done at presentation, revealed left 
ventricular hypertrophy. A transthoracic echocardiogram (TTE) 
showed an irregular ovoid laminated mass, 3.7 cm × 2.1 cm in 

size (Figures 1A,B). The mass was firmly attached to the aortic 
valve surface and exhibited no independent motion. Doppler 
echocardiography revealed Grade II–III aortic regurgitation and 
a mean gradient of 21 mmHg across the aortic valve. There was 
also evidence of moderate left ventricular hypertrophy and dila-
tion with a normal ejection fraction (>55%).

Patient was then admitted to the hospital for further workup 
of his condition. Laboratory studies revealed a normal complete 
blood count, an erythrocyte sedimentation rate of 64 mm/h, a 
C-reactive protein of 20 mg/L, and negative blood cultures (three 
separate sets). Cardiac enzymes were normal and chest radiogra-
phy showed no significant findings.

Hypercoagulability workup was done. It revealed the presence 
of aCL (IgG isotype) in serum with a titer of 205 GPL (normal 
level  <  20 GPL) and was positive for LA; anti-β2GP1 was not 
tested for technical reasons. The levels of protein C, protein S, 
factor V Leiden, and homocysteine were normal. Serological 
markers for connective tissue disorders, including antinuclear 
antibodies, rheumatoid factor, anti-neutrophilic–cytoplasmic 
antibodies, anti-double-stranded-DNA antibodies, and anti-
Smith antibodies were all negative. Serologies for hepatitis B, 
C, and HIV were negative. Furthermore, CT scans of the chest, 
abdomen, and pelvis were insignificant.

The diagnosis of non-bacterial thrombotic endocarditis 
(NBTE) in the setting of primary APLS was suspected. The patient 
was started on anticoagulation with LMWH and then bridged 
to oral warfarin; INR 2–3 was maintained. Carbamazepine and 
propranolol were discontinued. The patient was educated about 
the importance of smoking cessation and adherence to his statin 
therapy.

At the 3-month follow-up, only aCL level was repeated and 
was found to be elevated (170 GPL). Serial TTE controls showed 
progressive resolution of the mass, with complete regression 
4  months after therapy (Figures  1C,D). In addition, there was 
regression in the aortic regurgitation to Grade I, and reduction 
in the left ventricular hypertrophy and dilation. Interestingly, 
the resolution of the valvular mass unveiled a BAV that was not 
previously diagnosed (Figure 2).

Furthermore, a cardiac CT was done to rule out APLS-induced 
coronary artery disease; it showed no abnormalities. The patient 
was maintained on warfarin, and subsequent follow-ups showed 
him to be clinically asymptomatic.

DIsCUssIoN

Cerebral involvement is prominent in primary APLS; with stroke 
(19.8%) and transient ischemic attack (TIA) (11.1%) being its 
most common clinical manifestations (13). Hughes et  al. (14) 
reported that in young patients (<45 years), more than 20% of 
strokes are potentially associated with APLS. Recurrent transient 
episodes of visual disturbances, numbness, weakness, and dizzi-
ness can all be expressions of TIA (15). All these were present in 
our patient and might explain his symptoms.

Arterial thrombosis involves the brain vasculature in more 
than 50% of the cases, and it is the main cause of cerebral ischemia 
in primary APLS (16). However, an association has been reported 
between ACVD and central nervous system manifestations of 
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FIgURe 2 | Follow-up transthoracic echocardiography performed 5 months 
after presentation, showing the presence of previously undiagnosed bicuspid 
aortic valve.

FIgURe 1 | Transthoracic echocardiography performed at presentation reveals a large ovoid laminated mass on the aortic valve, measuring 3.7 cm × 2.1 cm on 
apical five chamber view (a) and 2.4 cm × 1.6 cm on parasternal short-axis view (B). Follow-up transthoracic echocardiography performed after 4 months of 
anticoagulation shows complete resolution of the valvular mass on apical five-chamber view (C) and parasternal short-axis view (D).
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the syndrome, which suggests that cerebral emboli from non-
infectious valvular lesions, often referred to as NBTE, may be a 
risk factor (17).

Valvular masses have a wide differential diagnosis, which 
includes NBTE, IE, and cardiac tumor. It is clinically challeng-
ing to distinguish between IE and NBTE due to APLS. In fact, 
both share many clinical features including vascular thrombo-
embolic events, valvular vegetations, and renal and cutaneous 

involvement. In addition, fever can be present in APLS, and aPL 
can be frequently found to be temporarily elevated during infec-
tions (18). Our patient did not satisfy the modified Duke criteria 
for IE. Since these criteria are sensitive for disease detection and 
have a high negative predictive value (19, 20), the diagnosis of IE 
was rejected.

Aortic valvular masses also raise the suspicion of cardiac tumor, 
an important differential diagnosis that should not be overlooked. 
The best way to diagnose a cardiac tumor is by excision and histo-
pathologic examination. However, echocardiography can be used 
to distinguish between a tumor and a thrombus based on imaging 
characteristics of the mass. Thrombotic mass is characterized by 
an irregular or lobulated shape, laminated appearance, micro-
cavitations, and absence of a pedicle (21). In contrast, a cardiac 
tumor usually appears as a small, mobile, pedunculated or sessile 
valvular, or endocardial mass (22). In our case, the characteristics 
of the lesion were typical of that of a thrombus.

The Sydney criteria committee proposes a minimal consensus 
concerning valvular lesions in APLS but argues against adoption 
as criteria (3). This consensus defines ACVD as the presence of 
aPL, in addition to echocardiographic detection of a valvular 
lesion and/or dysfunction (regurgitation and/or stenosis of mitral 
and/or aortic valve or any combination of the above) (3). In our 
patient, such features were present and thus swayed our diagnosis 
toward ACVD manifesting as NBTE.

Echocardiography is essential in the diagnosis of ACVD. 
About 30–40% of valvular lesions in the setting of APLS can be 
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detected by TTE, while 60–80% of lesions can be detected by 
transesophageal echocardiography (TEE) (23). TTE can be used 
initially to detect the presence of a cardiac mass. However, if TTE 
results were non-diagnostic or equivocal, TEE would be a more 
accurate modality due to its higher sensitivity and specificity (24).

Native aortic valve thrombosis is a rare event. In ACVD and 
BAV, valvular dysfunction is associated with abnormal blood 
flow, which can induce endothelial lesion and trigger thrombus 
formation (25). Furthermore, coagulopathy in APLS can induce 
aortic valve thrombosis. This is possibly due to particular affinity 
of aPL to valve endothelium that leads to formation of an immune 
complex, which can cause an injury to the endothelium (26). 
Therefore, we cannot be certain about the exact role that each 
of ACVD and BAV played in the pathogenesis of the thrombotic 
mass observed in our case.

In terms of treatment, there have been no set guidelines for the 
definitive treatment of ACVD. Similar to other reports (27–29), 
our case has shown anticoagulation to be effective in treating 
valvular vegetation in primary APLS. The optimal intensity of 
anticoagulation for the prevention of recurrent thrombosis in 
patients with APLS is uncertain. Two randomized controlled 
trials found that high-intensity anticoagulation (INR  >  3) was 
not superior to moderate-intensity anticoagulation (INR 2–3) 
in patient with APLS, and was associated with a higher rate of 
bleeding complications (30, 31). Therefore, we suggest the use 
of anticoagulation with an INR target of 2–3 as a standard of 

treatment. In addition, most specialists recommend lifelong use 
of anticoagulation due to the high recurrence rate of thrombotic 
events in APLS (32, 33). Modification of concomitant risk factors 
for thrombosis, such as hypertension, dyslipidemia, and smoking 
cessation, must also be addressed.

In conclusion, our report suggests that conservative treatment 
with anticoagulation along with vigilant observation might be the 
best therapeutic plan for patients with aortic valvular masses in 
the setting of APLS. However, these results should be approached 
with caution as whether conservative management with antico-
agulant or aortic valve replacement ought to be recommended 
remains unresolved due to the rarity of this condition and the 
lack of trial data.
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Background: Detecting among patients with aortic stenosis (AS) those who are likely

to rapidly progress, yet potentially benefiting from prophylactic aortic valve replacement,

is needed for improved patient care. The objective of this study was to evaluate the role

of imaging biomarkers in predicting the progression to clinical symptoms and death in

patients with AS.

Methods: We searched the Pubmed and the International Clinical Trials Registry

Platform databases for studies including patients with AS, and investigating imaging

techniques, published in any language until Jan 1, 2018. Eligible sets of data include

effect of imaging biomarkers relative to: (1) Overall mortality, (2) Cardiac mortality,

and (3) Overall events (Symptom onset and Major Adverse Cardiovascular Events).

Meta-analysis was used to examine associations between the imaging biomarkers and

outcomes of AS using Random Effect models.

Results: Eight studies and 1,639 patients were included after systematic review. Four

studies investigated aortic valve calcification (AVC) whereas the remaining investigated

biomarkers provided by cardiac magnetic resonance (CMR). Four articles investigated

the presence of midwall fibrosis on late-gadolinium enhancement imaging, three reported

its extent (LGE%) and two, the myocardial extracellular volume (ECV). By decreasing

strength of association, there were significant associations between cardiac mortality

and LGE% [Relative Risk (RR) = 1.05, 95% Confidence Interval (CI) 1.01–1.10];

overall mortality and AVC (RR = 1.19, 95%CI: 1.05–1.36); overall events and ECV

(RR = 1.68, 95%CI: 1.17–2.41); cardiac mortality and midwall fibrosis (RR = 2.88,

95%CI: 1.12–7.39).

Conclusion: AVC and myocardial fibrosis imaging biomarkers predict the outcomes in

AS, and help understanding AS pathophysiology and setting therapeutic targets.

Keywords: aortic stenosis, meta-analysis, imaging biomarker, myocardial fibrosis, remodeling, calcification
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INTRODUCTION

Degenerative aortic stenosis (AS) is one of the most common
valvular diseases, affecting up to 6% of subjects over 75 years
old in developed countries (1). AS progresses with time in such
a way that the only effective treatment is surgical or transcatheter
aortic valve replacement (AVR). In the recent years, it has been
growingly acknowledged that AS encompasses a wide spectrum
of pathways in response to the progressive obstruction of the left
ventricular (LV) outflow. These include first adaptive responses
such as LV concentric hypertrophy that relieves the wall stress
in response to LV overload, then maladaptive responses such
as myocardial ischemia and fibrosis that eventually lead to
myocardial dysfunction and cardiac output failure (2, 3). The
concurrent progresses in computed tomography (CT), cardiac
magnetic resonance imaging (CMR) and positron emission
tomography (PET) have given rise to imaging biomarkers
allowing quantification of the structural remodeling of both the
aortic valve and the underlying myocardium (4). On a clinical
view, the current indications for AVR are severe AS (peak
aortic jet velocity ≥4 m/s, mean transvalvular pressure gradient
≥40mm Hg, aortic valve area (AVA) ≤1.0 cm2 or ≤0.6 cm2/m2)
causing clinical symptoms, or a decreased LV ejection fraction
(<50%) (5, 6). Nevertheless, intervening too late in the disease
course (i.e., when adverse remodeling and fibrosis processes
have become irreversible) is associated with poor post-operative
outcomes (7). Even with severe AS, the symptomsmay be difficult
to unmask in aged patients, as almost one half report no symptom
at the time of diagnosis (8). There is therefore a need to detect
from clinical, biological, and imaging tests, patients with AS
who are likely to rapidly progress to symptoms, yet potentially
benefiting from AVR. Several imaging biomarkers have been or
are currently being considered at different levels of evidence to
stratify the risk in asymptomatic severe AS. The objective of
this study was to determine which imaging biomarkers (derived
from CT and CMR) were associated with the prediction of AS
progression to clinical symptoms and death.

METHODS

We carried out a systematic review in accordance with
the PRISMA guidelines, following a protocol in accordance
with the PRISMA-P statement (9). The online free database
Medline (via PubMed) was searched for eligible articles.
The date of the last search was January 1, 2018. The
International Clinical Trials Registry Platform was searched
for ongoing studies. The literature search was performed
with assistance from an experienced librarian. The search
strategy combined four sets of search terms (keywords), in
accordance with the “Patient-Intervention-Control-Outcome”
methodology. The first set of keywords defined AS (i.e.:
aortic valve stenosis. . . ), the second defined imaging techniques
(i.e.: Computed Tomography, Electron-Beam Tomography,
Magnetic Resonance Imaging, Positron Emission Tomography
. . . ), the third defined remodeling processes (i.e.: calcification,
hypertrophy, fibrosis, ischemia. . . ), and the fourth defined
the clinical outcomes [i.e.: death, mortality, cardiovascular

events (decompensation, edema, angina), progression, onset,
survival. . . ]. All keyword searches were combined to subject
heading searches when appropriate. The full search strategy is
provided in the Supplementary Table 1. Only original papers,
clinical trials and studies, controlled and observational trials, with
available full-text in English were included. Studies were eligible
if they included only adult patients with AS, and investigated at
least one diagnostic imaging technique focusing on the calcific
remodeling of the valve, myocardial microvascular obstruction,
myocardial fibrosis. Studies that did not relate the imaging results
to AS progression ormortality were not included. Reports of pilot
studies describing fewer than five patients were excluded.

Data Extraction
Two reviewers with experience in cardiovascular imaging
assessed in consensus all titles and abstracts for relevance
and eligibility. The full text of potentially relevant articles
was retrieved. If full text articles were not available, the
corresponding authors were contacted. Reference lists from
included articles were searched for other relevant articles. The
reviewers extracted and processed the data in standardized
extraction forms. Corresponding authors were contacted for
additional information if data were unclear or incomplete.
Items included the last name of the first author and year of
publication, study design, objective, sample size, inclusion, and
exclusion criteria, patient characteristics, AS grade, follow-up
period, funding source, technical aspects of imaging modalities,
methods of measurement, interpretation of imaging results, and
quantitative imaging results, measure of effect sizes [as relative
risk (RR)].

Risk of Bias Assessment
Study quality and risk of bias was assessed using Cochrane
Collaboration’s tool for assessing risk of bias (10). Ten specific
bias domains were used in the form of answering pre-specified
questions about the methods reported by each study in relation
to the risk domain, such that the conclusion is either “no” (“–”,
indicating high risk of bias), “not reported” (“NR”, indicating
unclear risk of bias), or “yes” (“+”, indicating low risk of bias).

Statistical Analysis
Three outcomes of AS were considered for this review: (1)
Overall mortality, (2) Cardiac mortality, and (3) Overall events
[Symptom onset and Major Adverse Cardiovascular Events
(MACE)]. Meta-analyses were done using the metagen function
from the R package meta (11, 12). For each study considered,
measures of effect were represented as RR and its corresponding
95% CIs. Conversion of effect sizes were done using the
approach of Borenstein et al. (13) where RRs were not reported
directly. Biomarkers with more than one effect measures in a
study were combined using fixed effect model. The strength
of association of each biomarker with the outcomes were
quantified by pooling the RRs provided by the original studies
using either Fixed or Random effect models and the results
are represented as forest plots. Statistical heterogeneity between
studies was assessed using the I² and Tau². To investigate
publication bias, funnel plots were produced in addition to the
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use of Egger’s regression test. In order to rank biomarkers with
respect to effects on outcomes, the average RRs and measures
of variability were converted to odds ratios (ORs) using the
formula at the Supplementary Information 1. These ORs were
later on transformed to Hedges’ g, a common index of effect
size, as stated elsewhere (13). With the use of the normal-
normal hierarchical model (NNHM), a Bayesian random effect
model was implemented using the bayesmeta package in R for
evaluating the strength of association for each biomarker with
the outcome. A normal prior was used for the overall mean
whereas a half student-t was used as prior for the measure

of heterogeneity among the effect sizes of each biomarker.
Posterior predictive P-values (PPPV) were computed using 1,000
Monte Carlo sampling. Then, sensitivity analysis for ranking of
biomarker effects was done by fitting a consistency random effect
network meta-analysis (NMA) assuming a common reference
group for each biomarker effect. Hedges’ g was computed for
each study separately before being combined in the NMA
(Supplementary Figure 1). The appropriate NMA model was
conducted in OpenBugs using 2 chains with different starting
values and a burn-in of 50 k after 500 k iterations. Convergence
of the model was assessed using history and density plots

FIGURE 1 | PRISMA flowchart of study selection.
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(Supplementary Figures 3, 4). For each Marcov Chain Monte
Carlo (MCMC) run, each biomarker is ranked using the absolute
value of the Hedges’ g. Probabilities of being the first, second and
up till the last are estimated and represented on a Cumulative
probability plot. These probabilities are used to estimate the
surface under the cumulative rank (SUCRA) curve which
determined the strength of the biomarker with the outcome. All
analyses were done using R studio (R version 3.4.2) and a p-value
of <5% was considered statistically significant.

RESULTS

The search strategy identified 540 citations (Figure 1). After
screening of titles and abstracts, twenty articles were selected
for full-text review. After full-text review, one study was
excluded because it didn’t report the patient status regarding
AS upon inclusion (14). Seven studies were excluded because
they used different endpoints than clinical outcome to investigate
imaging results, or mixed (clinical and imaging) data to
determine the outcome of AS (15–21). One other study (22)
was excluded because it briefly reported the 5-year follow-
up of a cohort assessed previously by Dweck et al. (23). Five
studies were excluded as they report the outcomes of patients
regarding imaging results, after AVR (24–28). One study was
excluded because it was retrospective and evaluated only a
subset of patients with low-gradient and low-flow (29). Three
additional studies were found through cross-referencing (30–
32). Subsequently, eight articles were included in this systematic
review (Supplementary Table 2). All included studies were
prospective and their sample sizes ranged from 34 to 794 patients,
with a total number of 1,639 patients in this review.

The patient and AS characteristics are summarized in
Table 1. Four articles investigated aortic valve calcification (AVC)
with electron-beam CT (EBCT) (33) and conventional photon
multislice CT (MSCT) (30, 31, 34). Four studies investigated
LV myocardial fibrosis using late-gadolinium-enhancement
(LGE) CMR; all investigating midwall replacement fibrosis (23,
32, 35, 36). Three of these studies investigated replacement
fibrosis quantification (LGE%) (32, 35, 36), and two studies
evaluated interstitial fibrosis via the extracellular volume (ECV)
measurement (35, 36). Lastly, single CMR studies investigated
respectively the myocardial perfusion reserve (MPR) as a
marker of microvascular dysfunction in AS (36), and native
(unenhanced) T1 value as a marker of myocardial fibrosis
(32). Included articles reported patient cohorts from Europe,
United Kingdom, USA, Canada and South Korea. The overall
findings of the risk of bias assessment were: a low risk of selection
attrition and outcome reporting bias, and varied risk of detection
and commercial bias as the outcome adjudication blinding was
nearly systematically unreported, and some investigators related
to the industry in four studies (23, 32, 35, 36). All the studies
recorded are of moderate-to-low risk of bias with overall quality
of 50% or more (Supplementary Table 3).

Meta-analyses were restricted to the biomarkers that were
reported in at least 2 studies. As listed in Table 2, there were
variations in study outcomes and studies with several outcomes T
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TABLE 2 | Associations between imaging biomarkers, effect size (Variability), and outcomes in AS.

References Imaging

method

Biomarker Outcome RR Measure of

variability (CI, SE, P)

LnRR SE(LnRR)

Messika-Zeitoun, et al.

(33)

EBCT AVC OE

LE

ASE

1.06

1.11

1.05

1.02–1.10

1.03–1.23

1.01–1.09

0.06 0.01

Feuchtner et al. (30) MSCT AVC MACE 3.18 1.64 1.16 0.49

Dweck, et al. (23) CMR Midwall fibrosis

LGE %

OM

CM

OM

5.35

6.68

1.05

1.16–24.56

1.51–29.64

1.01–1.09

1.79

0.05

0.54

0.02

Utsunomiya, et al. (31) MSCT AVC OE 1.09 1.04–1.15 0.09 0.03

Clavel, et al. (34) MSCT AVC (severe)

AVCdensity (severe)

AVC

AVCdensity

OM

OM

CM

CM

1.75

2.44

2.14

2.28

1.04–2.92

1.37–4.37

1.08–4.45

1.11–4.95

0.73 0.16

Chin, et al. (35) CMR Midwall fibrosis

ECV

OM 8.88

4.50

2.18

1.50

0.5

0.5

Singh, et al. (36) CMR LGE %

ECV

Midwall fibrosis

MPR

OE 1.06

1.43

1.16

0.62

1.30

1.30

0.23

0.39–0.97

0.06

0.36

0.15

0.26

0.22

0.23

Lee, et al. (32) CMR Midwall fibrosis

LGE %

Native T1

OE 1.56

1.19

4.45

1.05–4.37

1.07–1.90

1.52–12.95

0.44

0.17

1.49

0.36

0.15

0.55

AVC, aortic valve calcification; EBCT, electron-beam computed tomography; MSCT, multisclice computed tomography; LGE, late-gadolinium enhancement; ECV, extracellular volume;

MACE, major adverse clinical event; OM, overall mortality; OE, overall events; LE, late events; CM, cardiac mortality; ASE, aortic stenosis related-event; CI, confidence interval; RR,

relative risk; SE, standard error; Ln, neperian logarithm.

for a biomarker was pooled into one using fixed effect model.
The primary outcome was all-cause mortality in three studies
(23, 34, 35), and a softer endpoint including cardiac- or AS-
related mortality, MACE, AS-related symptoms or AVR in the
remaining. Results from the meta-analyses confirmed significant
associations between AVC and Overall mortality (RR = 1.19,
95%CI: 1.05–1.36); Midwall Fibrosis and Cardiac mortality
(RR = 2.88, 95%CI: 1.12–7.39), LGE percent and Cardiac
mortality (RR = 1.05, 95%CI: 1.01–1.10); ECV and Overall
events (RR = 1.68, 95%CI: 1.17–2.41) (Figure 2). For all the
biomarkers, higher values are associated with higher risks of
having outcomes of AS, but substantial inconsistency of effect
was observed for AVC, and midwall fibrosis with both I2 >75%.
Because of the limited number of studies, assessment of and
further correction for bias could not be sufficiently ascertained.
Ranking of biomarkers in order of decreasing strength of
association with the outcomes resulted in LGE% (PPPV<0.0001)
being at the top and midwall fibrosis (PPPV = 0.456) at the
bottom (Table 3). Similar rankings were observed using the
SUCRA values from the NMA (Supplementary Figure 2).

DISCUSSION

This systematic review and meta-analysis showed significant
associations between imaging biomarkers of aortic valve
remodeling and myocardial fibrosis and clinical outcomes in
patients with AS. Five years after receiving the diagnosis,
approximately two-thirds of conservatively managed patients

with asymptomatic AS will develop symptoms, and 75% will have
either died or undergone AVR (37). During this time period, it is
questionable in how far they would not exhibit raised biomarkers
of poor outcome before developing clinical symptoms, altered
hemodynamic or performance status. Imaging biomarkers with
prognostic value in AS are often correlated with hemodynamic
and clinical performance. The aortic valve calcium (AVC) score
for instance is recommended in the management of patients with
AS, not as a prognostic factor, but to determine the likelihood of
severe AS in case of low-gradient, low-flow and preserved LVEF
(6), due to its association to AS severity (16, 34). The findings
of our analysis advocates for an additional prognostic use this
score, as all four articles investigating AVC reported association
with mortality; with an overall RR of 1.19, 95%CI: 1.05–1.36)
(30, 31, 33, 34). Even though only the largest among these studies
(34) introducedAVCdensity to compensate for differences in aortic
annular area, there were little measurement bias, as a highly
reproducible and standardized score was systematically reported
(16, 17, 38).

Similar risk stratification to AVC is expected from non-
invasively assessed LV myocardial fibrosis, a fourfold potential
courtesy of CMR using the effects of gadolinium-based contrast
agents. These agents strongly decrease the T1 relaxation time of
the tissues. As such, they can be used for track-bolus kinetics
within the myocardium and assess resting and stress perfusion,
thus MPR, which is potentially a marker of microvascular
dysfunction (36). Gadolinium-based contrast agents distribute
in the plasma and extracellular spaces, which means they do
not enter normal cells. Upon equilibrium distribution (i.e.,
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FIGURE 2 | Forest plots showing the average relative risks for the strength of association between imaging biomarkers and outcomes in AS. AVC, aortic valve

calcification; LGE, late gadolinium enhancement; ECV, extracellular volume. (A) (AVC: I2 = 87.1, Tau2 = 0.01, n = 992). (B) (Midwall LGE: I2 = 84.1, Tau2 = 0.76,

n = 647). (C) (LGE %: I2 = 0, Tau2 = 0, n = 444). (D) (ECV: I2 = 77.7, Tau2 = 0.5, n = 377).

10–15min after injection), imaging thus figure the replacement
of lost cardiomyocyte by extracellular space expansion (fibrosis),
which precludes LV decompensation and arrhythmia (39–41).
The presence of midwall fibrosis on T1-weighted imaging is
the second biomarker derivable from contrast-enhanced CMR.
Recognizing midwall fibrosis on LGE is easy and reproducible,
as only requested to differentiate from post-infarct scars that
classically involves the subendocardium, and amyloid, which
is uncommon. In this meta-analysis, there were contradictory
findings regarding the value of midwall fibrosis as a marker of
clinical outcome in AS, with overall, a moderate but significant
association between midwall fibrosis and cardiac mortality (RR:
2.88; 95%CI: 1.12–7.39). The relative amount of midwall fibrosis
similarly accounts for prognostic value, which represents another

biomarker provided by LGE. The method of quantification
of midwall fibrosis depends on patient- and contrast-specific
variables such as enhancement dynamics, CMR equipment and
the “density” of fibrosis (42). Various cutoffs to differentiate
fibrosis from the surrounding “normal” myocardium were
reported across the series analyzed, including Full Width at Mid
Height and Standard Deviations from the mean signal intensity
histogram. Although conflicting across the series (23, 36), the
percent of LGE was overall significantly associated with cardiac
mortality in AS (RR:1.05; 95%CI: 1.01–1.09). A step further,
assessing interstitial fibrosis necessitates more sophisticated
imaging approaches aiming at establishing the T1 relaxation
time mapping of the myocardium; the so-called relaxometry.
Approaches using unenhanced T1 mapping (32), post-contrast
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TABLE 3 | Rank of biomarkers according to posterior predictive p-value.

Biomarker RR 95 % CI Hedges’g 95% CrI PPPV Rank

AVC 1.19 1.05–1.36 0.08 0.01 to 0.13 0.010 2

Midwall

fibrosis

2.88 1.12–7.39 0.11 −0.34 to 0.67 0.456 4

LGE% 1.05 1.01–1.10 0.016 0.01 to 0.02 <0.0001 1

ECV 1.68 1.17–2.41 0.15 −0.06 to 0.44 0.134 3

AVC, aortic valve calcification; MF, midwall fibrosis; LGE, late gadolinium enhancement;

ECV, extracellular volume; RR, relative risk; CI, confidence interval; CrI, credible interval;

PPPV, posterior predictive p-value.

T1 mapping and a mix of both have been investigated and
validated against the extent of myocardial fibrosis on histology,
each with its own potential advantages and limitations (43). Of
these, ECV and derivatives (indexed to the body surface area)
were reported in this meta-analysis. ECV represents the volume
of distribution of the contrast agent within the myocardium,
expressed as the difference of T1 relaxation time changes after
contrast administration, corrected for the volume of distribution
by using the hematocrit. ECV also showed significant prognostic
effect in AS patients in our review (RR:1.68; 95%CI: 1.17–2.41).

Altogether place a special emphasis on the prognostic role
of CMR in AS. However, substantial inconsistency of effect
was observed for the biomarkers and the cut-offs for patient
stratification varied across the cohorts. Valve calcification for
instance is an active process independent from the skeletal
bone calcification (44), not only associated to local factors like
AS severity (15–17) or valve inflammation (45, 46), but also
distant influences in relationship with classical risk factors for
cardiovascular disease (47). As such, themechanisms of initiation
and progression of this biomarker are neither fully elucidated nor
totally predictable. This is epitomized by the fact that females
have lower AVC thanmales even after correction for body surface
area, aortic annular area and other risk factors (48), and that
severe AS with low AVC is not uncommon (49). Likewise, there is
variability on a patient basis regarding both stimuli and responses
to myocardial fibrosis. The investigations regarding myocardial
fibrosis will need similar levels of standardization as for AVC,
and a greater control for the confounders for AS-induced fibrosis
or myocardial dysfunction, such as coronary artery disease or
myocardial steatosis (50–52). Further studies will be needed
to determine the appropriate normal value ranges of above-
reported biomarkers and derivatives among subgroups by age,
sex, ethnicity, and underlying risk factors and comorbidities.
When accounting the current variability of these biomarkers for
strength of effect using network meta-analysis, midwall fibrosis,
and ECV were the weakest prognostic biomarkers (PPPV 0.456
and 0.134 respectively). This is unsurprising, as midwall fibrosis
is too prevalent to make a contributive difference among patient
groups, as being present in up to 62% of patients with severe AS
(23–25). On the other hand, ECV and its derivatives (including
unenhanced T1 values, and partition coefficient) (32, 53, 54)
that are potentially reversible and sensitive to earlier adverse
remodeling show considerable overlaps between normal and
diseased individuals (35).

The association between imaging biomarkers and patient
outcome in AS raises the question of a possible paradigm

shift in the management of AS. The efficacy of a biomarker-
based management as compared to the current approach that
relies mainly on clinical performance need to be tested by
large randomized studies. Both approaches have nevertheless
the potential to be complimentary. Considering this could help
refining the risk assessment in severe AS where patients with
good symptom/performance status and low level of relevant
imaging biomarkers being at low-risk, needing no AVR, whereas
those with altered symptom/performance status and high level
of the same imaging biomarkers requiring AVR. Consequently,
critically evaluating the benefits of AVR in intermediate-risk
groups (i.e., patients with either altered symptom/performance
status or raised imaging biomarker of poor prognosis) could be a
major research issue in the near future.

LIMITATIONS

The aim of this review was to provide an overview of imaging
biomarkers that could possibly predict clinical evolution in
patients with AS. Our search revealed only a small number
of studies, though there are other imaging biomarkers at
earlier phases of their development. Some of these newer
techniques use radiotracers (46) and others evaluate longitudinal
or circumferential myocardial dysfunction (20, 27, 28), or wall
stresses flow and deformation pattern changes (55). Our findings
link imaging biomarkers with mortality, cardiac mortality or
overall events. Nevertheless, AS-related events are often difficult
to report and subject to bias. The proportion of patients with
severe AS upon enrolment varies from 29 to 71 percent across
the series (Table 2), indicating some potentially enriched cohorts,
though the consecutive enrolment information missed in all but
two articles (23, 33). Only one study evaluated potential selection
bias via evaluation of the events that occurred >1month after
enrolment (33). Most articles did not specify the blinding of
the endpoint adjudicator(s). While AVR was often reported in
patients who did not experience symptoms, all-cause mortality,
cardiac mortality, and symptoms account for other risks than the
sole severity of AS. This was underscored in the study of Clavel
et al. where the survival after AVR was improved only in patients
with high AVC (34).

Lastly, it should be acknowledged that: first, the prognostic
value of imaging biomarkers does not necessary outperform
clinical test exploring the same pathway when available. Indeed,
the only study that evaluated the prognostic value of MPR as
a marker of microvascular dysfunction reported a significant
prediction for overall mortality (HR: 0.62; 95%CI: 0.39–0.97;
p = 0.035), which was nevertheless not superior to that of
a positive exercise testing (36). The financial burden of risk
stratification using imaging biomarkers that uses sophisticated
and costly imaging techniques could thus be reduced by
developing more cost-efficient clinical or biological biomarkers
(19, 56–59). Second, whereas the ideal biomarker for a disease
should be sensitive and consistent across age, gender and
ethnic groups, the current imaging biomarkers are imperfect
by nature, partly due to their specificity to only one of the
pathophysiological processes. Indeed, AS is a complex disease
process interplaying several pathways, placing emphasis on
multi-biomarker prognosis.
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In conclusion, AVC and myocardial fibrosis markers are
significantly associated with outcomes in AS, and have the added
potential to help the understanding of AS pathophysiology and
setting therapeutic targets.
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Can Blood Biomarkers Help 
Predicting Outcome in Transcatheter 
Aortic valve implantation?
Cécile Oury 1*, Alain Nchimi 1, Patrizio Lancellotti 1,2 and Jutta Bergler-Klein 3

1 Department of Cardiology, Heart Valve Clinic, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart 
Tilman, Liège, Belgium, 2 Gruppo Villa Maria Care and Research, Anthea Hospital, Bari, Italy, 3 Department of Cardiology, 
Medical University of Vienna, Vienna, Austria

Transcatheter aortic valve implantation (TAVI) has become the method of choice for 
patients with severe aortic valve stenosis, who are ineligible or at high risk for surgery. 
In this high risk patient population, early and late mortality and rehospitalization rates 
after TAVI are still relatively high. In spite of recent improvements in procedural TAVI, 
and establishment of risk models for poor outcome, determining individual risk remains 
challenging. In this context, current data from several small studies strongly suggest 
that blood biomarkers of myocardial injury, cardiac mechanical stretch, inflammation, 
and hemostasis imbalance might play an important role by providing informations on 
patient risk at baseline, and postprocedural progression of patient clinical conditions from 
days up to years post-TAVI. Although the role of biomarkers for predicting survival post-
TAVI remains to be validated in large randomized studies, implementing biomarkers in 
clinical practice might improve risk stratification, thereby further reducing TAVI-associated 
morbidity and mortality.

Keywords: TAvi, blood biomarkers, inflammation, myocardial stress, platelet, thrombocytopenia

inTROduCTiOn

Transcatheter aortic valve implantation (TAVI) has changed dramatically the treatment of severe 
aortic stenosis in inoperable patients or in patients at high risk for surgery. In the high risk 
population, particularly in the elderly, TAVI can offer a marked change in the life expectancy and 
quality of life of patients, and even nonagenarian patients can have successful valve replacement with 
acceptable periprocedural morbidity and mortality rates (1). However, early and late mortality after 
TAVI still remains relatively high. Results from registries and from the PARTNER trials reported 
1 year all-cause mortalities between 22 and 30% (2–4). In order to improve patient evaluation 
and minimize futility, risk models for poor outcomes post-TAVI have been built and validated, 
providing Heart teams with important decision-making tools and informations (5–8). Since the 
prognosis of patients who benefit the most from TAVI is often not only determined by severe 
symptomatic aortic stenosis (AS), but also by multiple comorbidities, it would still be very useful 
to have parameters or biomarkers that would help to better predict the risk of major cardiovascular 
events for these patients.

Here, we present an overview of the role of most studied blood biomarkers for predicting poor 
outcome post-TAVI (Figure  1). Despite recent procedural advances that improved safety and 
flexibility of TAVI, these studies strongly suggest that biomarkers, in addition to risk scores, might 
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help reducing further TAVI-associated morbidity and mortality, 
in a more personnalized manner.

Markers of Myocardial injury: Creatine 
Kinase Myocardial Band, Cardiac Troponin
Periprocedural elevation of cardiac biomarkers of myocardial 
injury is common in TAVI, with greater values observed following 
transapical or transaortic approaches compared to transfemoral 
(TF) approach (9). Higher levels of myocardial injury have been 
associated with reduced early and midterm survival following 
uncomplicated TAVI (10–13). Transapical (TA) procedure 
significantly associates with left ventricular apical fibrosis, 
contributing to apical wall motion abnormalities, which may, in 
turn, impair myocardial recovery (14).

TAVI clinical endpoints have been revisited in the current 
Valve Academic Research Consortium (VARC) −2 document 
(15), defining specific biomarker cut-off values for clinically 
significant myocardial infarction post-TAVI. In a large multicenter 
study of patients undergoing TAVI with different valve types and 
approaches, myocardial injury, determined by postprocedural 
rise in levels of creatine kinase myocardial band (CK-MB), was 
detected in two-third of patients undergoing TAVI, especially 

through transapical approach (16). Higher peak of CK-MB post-
TAVI translated into impaired systolic left ventricle function at 6 
to 12 months follow-up, and were associated with greater acute 
and late mortality (Table 1). Regarding cardiac troponin (cTn), 
correlation with patient outcome is less clear. Two small prospective 
studies of TF TAVI patients showed that baseline high sensitive TnT 
(hs-TnT) independently predicted survival in symptomatic high-
risk patients with severe AS (18, 22). Post-procedural hs-TnT rose 
significantly after TF TAVI until day 3, which had prognostic value 
for 1 year mortality. Determinants of post-procedural hs-TnT were 
baseline renal function, duration of intraprocedural rapid spacing, 
as well as pre-TAVI hs-TnT values (18). Despite hemodynamic 
relief, cTnT levels did not normalize even after months following 
successful TAVI, suggesting that the prognostic value of cTn for  
1 year patient outcome may rely on long-term changes in myocardial 
texture. A larger study indicated that cTnT elevation above VARC-2 
cut-off within 12 h post-procedure was a strong independent 
predictor of 30 day mortality, and remained significant at 2 years 
(17). In disagreement with these findings, a more recent study 
indicated that, in contrast to CK-MB, cTn elevation above normal 
limit defined by VARC-2 had no impact on late mortality of patients 
undergoing TF TAVI (23). Notably, VARC-2 cTnI cut-off values 

FiguRe 1 |  Blood biomarkers of TAVI-related myocardial injury, myocardial stretching, inflammation, and hemostasis imbalance that might provide postprocedural 
prognostic information. BNP, brain natriuretic peptide; CK-MB, creatinine kinase myocardial band; CRP, C-reactive protein; cTn, cardiac troponin; GDF-15, growth 
differentiation factor-15; HTPR, high on-treatment platelet reactivity; MPV, mean platelet volume.
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failed to distinguish myocardial injury from type 1 myocardial 
infarction (angiographically high-grade coronary artery stenoses 
or occlusions) in TF and TA TAVI patients, and therefore could 
not be used as a marker of periprocedural MI (24). Furthermore, 
different cut-offs may apply to TA and TF patients. These results 
should still be confirmed in larger randomized studies.

Markers of Myocardial Stretching: B-Type 
natriuretic Peptides
Elevation of circulating B-type natriuretic peptides (BNP) that 
results from left ventricle myocardial stretching is commonly used 
in clinics to predict the onset of symptoms and adverse events in 
patients with severe AS (25–27).

Several studies performed on TAVI patients have assessed the 
value of preprocedural or serial BNP or of its biologically inactive 
N-terminal-proBNP (NT-proBNP) as predictors of postprocedural 
outcome. Initial studies found no association of baseline BNP or 
NT-proBNP levels and 2 month mortality after TF or TA TAVI 
(28, 29). A high BNP level in high-risk patients with severe AS 
was not an independent marker for higher mortality. These two 
studies showed a transient increase of BNP levels from baseline to 
discharge, followed by a stepwise decrease until 1 year. The authors 
related the transient increase in BNP to the transient left ventricle 
dysfunction with depression of both systolic and diastolic left 
ventricular (LV) function associated with TAVI (30).

In contrast, a more recent study indicated that a high 
preprocedural BNP, and a rise in BNP at 30 days independently 
predicted 1 year outcome post-TF or transaxillary TAVI (20). This 
result was confirmed in another study from the PARTNER trial 
(19) showing that an increase of BNP at 30 days was a predictor of 
1 year mortality of transfemoral TAVI patients, as was moderate 
or severe aortic regurgitation over 1 year, and Society of Thoracic 
Surgeons (STS) score. Therefore, a rise in BNP at 30 days from 
baseline could provide prognostic information that should prompt 
careful clinical evaluation of these patients (Table 1).

Koskinas et al described an association between a high baseline 
BNP and a higher risk of all-cause death and cardiovascular death 
at 2 years, and a more frequent occurrence of VARC-2 clinical 
endpoints at 1 year (21). In this study, BNP levels increased 
or remained unchanged from baseline to discharge in 35% of 
patients, while these levels decreased in 65% of them. A baseline-
to-discharge decrease was related to New York Heart Association 
functional improvement. Patients with persistently high BNP before 
intervention and at discharge had increased rates of death at 2 years. 

The same authors compared the prognostic values of BNP and 
NT-proBNP, revealing superiority of postprocedural NT-proBNP 
to BNP as a predictor of all-cause mortality at 2 years. Another 
study analyzed the prognostic value of preprocedural NT-proBNP 
ratio, defined as the ratio of measured NT-proBNP to maximal 
normal NT-proBNP values specific for age and gender, on short- 
and long-term mortality (31). The authors showed that baseline 
NT-proBNP ratio could predict all-cause mortality at 30 days and 
1 year post-TAVI. Finally, in a later study, preinterventional levels 
of mid-regional (MR), pro-adrenomedullin (MR-proADM), and 
MR-pro-A-type natriuretic peptide (MR-proANP) and N-terminal 
pro-natriuretic peptide (NT-proBNP) were associated with 1 year 
cardiovascular events and all-cause mortality, while no association 
was found with 30 day outcome (32). Among most recently 
studied biomarkers, baseline levels of carbohydrate antigen 125 
were reported to be superior to NT-proBNP to predict adverse 
outcome of TAVI (33).

Thus, altogether these studies depict some prognostic value of 
periprocedural BNP in TAVI that should be validated in larger 
multicenter studies in order to foster their implementation in 
current clinical practice.

Markers of inflammation and Myocardial 
Stress
GDF-15
A prospective observational study was conducted that compared 
the prognostic value of risk scores (logistic European System for 
Cardiac Operative Risk Evaluation [EuroSCORE], EuroSCORE 
II, Society of Thoracic Surgeons predicted risk of mortality, and 
German aortic valve score) and circulating biomarkers (high-
sensitivity C-reactive protein [hsCRP], growth differentiation 
factor [GDF]-15, interleukin-6, interleukin-8, and NT-proBNP) 
to predict all-cause mortality and rehospitalization during the first 
year after TAVI (34). Strikingly, GDF-15, a cytokine belonging to 
the family of transforming growth factor-β, appeared to be the best 
predictor of poor outcome when added to the logistic EuroSCORE 
and EuroSCORE II.

These results are in agreement with another study in which high 
preintervention GDF-15 levels were associated with reduced time 
survival post-TAVI, and were superior to NT-proBNP for patient 
risk stratification (35). Interestingly, high GDF-15 levels were 
significantly associated with several variables of poor outcome, 
such as reduced kidney function, diabetes, STS score, high 

TABle 1 |  Proposed cut-off values of post-procedural biomarkers to predict mortality in TAVI.

Biomarker Cut-off effect References

CK-MB >UNL (within 3 days post-TAVI) ↑30 day and late mortality in overall and non-TA TAVI (11, 16)
>5 × UNL* (within 3 days post-TAVI) ↑30 day and late mortality in overall and non-TA TAVI

cTn >15 × UNL* (within 12 h post-TAVI) ↑30 day and 2 year mortality (overall TAVI) (17)
≥166 pg/ml (3 days post-TAVI) ↑1 year mortality (TF) (18)

BNP Rise at 30 days post-TAVI ↑1 year mortality in TF TAVI (19)
>328 pg/ml (30 days post-TAVI) ↑1 year mortality in TF and transaxillary TAVI (20)
≥591 pg/ml (persistent from baseline to discharge) ↑2 year mortality in overall TAVI (21)

UNL = upper normal limit based on the 99th percentile values in a healthy population *according to VARC-2
BNP, brain natriuretic peptide; CK-MB, creatine kinase-myocardial band; cTn, cardiac troponin; TA, transapical; TAVI, transcatheter aortic valve implantation; TF, transfemoral.
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creatinine and NT-proBNP levels, and VARC-2 criteria, suggesting 
that GDF-15 could integrate numerous complicating factors that 
could contribute to poor TAVI outcome.

Among eight biomarkers measured prior to valve replacement 
(GDF-15, soluble ST2 [sST2], NT-proBNP, galectin-3 [GAL-3], 
hs-cTnT, myeloperoxidase, hsCRP, and monocyte chemotactic 
protein-1 [MCP-1]), Lindman et al identified a combination 
of elevated levels of GDF-15, sST2 and NT-proBNP as the best 
predictors of 1 year mortality post-TAVI (36). However, since this 
study included both TAVI and patients who underwent surgical 
valve replacement, the utility of these three biomarkers should still 
be evaluated in specific populations of TAVI patients.

A recent study assessed the association of preprocedural BNP, 
hs-TnI, CRP, GDF-15, GAL-3, and cystatin-C with LV mycordial 
recovery with long-term all-cause mortality. Again, GDF-15 was 
strongly associated with all-cause mortality, as was CRP. GDF-15 
improved the risk model when added to the STS score. Though 
frailty has been associated with worse 1 year outcome post-TAVR, 
in this study, frailty alone was not superior to GDF-15 and did 
not significantly improve net reclassification when added to STS 
score. The authors also found that a lower baseline level of GDF-15 
predicted improvement of global longitudinal strain (GLS) at 1 year 
follow-up, which may partly explain the effect on survival. Notably, 
GLS at baseline was not as strongly related to outcome as GDF-15 
and CRP. GLS at 1 month could, however, predict 1 year mortality. 
In addition, this study uncovered an intriguing correlation between 
GDF-15 and left ventricular mass index.

Thus, baseline GDF-15 appears as a promising biomarker 
that could improve current risk prediction models for patients 
undergoing TAVI. Furthermore, these findings indicate that 
inflammation may play a major role in ventricular remodeling and 
recovery post-TAVI. Performing serial measurements of GDF-15 
and CRP would thus be interesting to determine the effect of the 
TAVI procedure on the progression of the inflammatory process, 
and its impact on patient outcome.

GDF-15 has been associated with multiple cardiovascular 
outcomes, possibly due to its pleiotropic effects on inflammation, 
oxidative stress, endothelial dysfunction, myocardial stress, and 
aging. Of particular interest, several studies reported an association 
of GDF-15 with a risk of major bleeding in acute coronary 
syndrome patients on dual antiplatelet therapy (37, 38). However, 
no studies have evaluated the possible role of GDF-15 in TAVI-
related bleeding events (see below), so far.

Markers of inflammation and Myocardial 
Stress
Soluble ST2
sST2 is an interleukin-1 receptor family member that acts as a 
decoy receptor for interleukin-33, and inhibits cardioprotective 
IL-33/ST2 signaling (39). Released following hemodynamic 
stress and cardiomyocyte strains (40), sST2 accurately predicts 
cardiovascular outcome of patients with acute and chronic 
heart failure. Consequently, sST2 was introduced in the ACC/
AHA guidelines for risk stratification of patients (41). Our 
team showed an association of sST2 with outcome in aortic  
stenosis (42).

 sST2 levels increase during the 24 h following TAVI, probably 
related to periprocedular myocardial dysfunction (30). Three 
studies recently indicated that preprocedural soluble ST2 might 
have long-term prognostic value after TAVI. The first study showed 
an association of baseline sST2 with 1 year mortality, with no effect at 
1 month (43). sST2 correlated significantly with echocardiographic 
parameters, CRP, creatinine, and BNP. In a second study, sST2 
was independently associated with 1 year mortality after TAVI, as 
were logistic EuroSCORE, chronic renal failure, and left ventricular 
ejection fraction (44). However, it was not superior to NT-proBNP 
or surgical risk scores (STS-PROM) for risk assessment, possibly 
due to confounding effect of inflammation on sST2 levels. In a 
third study, sST2 predicted mortality and the occurrence of major 
cardiovascular events post-TAVI (45). In contrast to the study of 
Stundl et al, adding sST2 to the STS score improved risk prediction 
of 2 year mortality.

Again, regarding sST2, future larger studies are awaited to 
validate these findings.

Markers of Hemostasis imbalance
In aortic stenosis, high shear stress through aortic valve induces 
a loss of high molecular weight von Willebrand factor (vWF) 
multimers (HMWM), platelet activation and release of platelet 
granule content (46). Increased activation of coagulation with 
concurrent hypofibrinolysis is also observed (47), all this 
contributing to the dual clinical picture of AS, characterized by 
mild bleeding tendency (48), and high thrombotic risk.

Thromboembolic events, primarily stroke, are serious 
complications of TAVI procedures, occurring in up to 3–5% of 
patients. In addition, TAVI causes thrombocytopenia in one-
third of patients. Importantly, while thrombocytopenia often 
resolves at discharge, persistent thrombocytopenia accurately 
predict 1 year mortality post-TAVI (49). Moreover, post-TAVI 
thrombocytopenia was found to be related to early post-procedural 
adverse events, including vascular complications, bleeding, and the 
need for multiple blood transfusions. To prevent TAVI-associated 
thromboembolic events and thrombocytopenia, a 3- to 6 month 
dual antiplatelet therapy (DAPT) is currently recommended for all 
approved balloon expandable and self-expandable transcatheter 
heart valve prostheses.

To determine which factors may explain the drop in platelet count 
that occurs after TAVI, Mitrosz et al (50) have prospectivelly analyzed 
changes in platelet count, along with markers of coagulation activation 
(F1 +2) and soluble markers of platelet activation (P-selectin, PF4) in a 
small cohort of severe AS, before TAVI and on the three postoperative 
days. While platelet reduction shortly after TAVI procedure was 
mostly influenced by the amount of contrast agent applied during 
the procedure, levels of PF4 and P-selectin positively correlated 
with the drop of platelet count, suggesting that thrombocytopenia 
is secondary to platelet activation. In-hospital major adverse 
cardiovascular events were observed more frequently in patients with 
more severe platelet count decrease (51). In another study, levels of 
thrombin-antithrombin complexes (TAT), plasmin-α₂-antiplasmin 
complex (PAP), and D-dimers significantly increased after TAVI, and 
D-dimer as well as PAP remained elevated until day 7, indicative of 
TAVI-induced increased thrombin formation and fibrinolysis (52). 
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COnCluSiOn

In conclusion, blood biomarkers may enrich current risk scores 
in the future. BNP is readily available and easy to perform. Large 
studies will clarify the role of further markers.
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Calcific Aortic Valve Disease (CAVD) is the most common heart valve disease and 
its incidence is expected to rise with aging population. No medical treatment so far 
has shown slowing progression of CAVD progression. Surgery remains to this day 
the only way to treat it. Effective drug therapy can only be achieved through a better 
insight into the pathogenic mechanisms underlying CAVD. The cellular and molecular 
events leading to leaflets calcification are complex. Upon endothelium cell damage, 
oxidized LDLs trigger a proinflammatory response disrupting healthy cross-talk between 
valve endothelial and interstitial cells. Therefore, valve interstitial cells transform into 
osteoblasts and mineralize the leaflets. Studies have investigated signaling pathways 
driving and connecting lipid metabolism, inflammation and osteogenesis. This review 
draws a summary of the recent advances and discusses their exploitation as promising 
therapeutic targets to treat CAVD and reduce valve replacement.

Keywords: calcific aortic valve disease, calcification, inflammation, oxidative stress, lipids, signal transduction

inTRoDuCTion

Over the course of an average day, aortic valve (AoV) leaflets open and close 100,000 times allowing 
unidirectionality blood flow from the left ventricle to the systemic circulation. The proper function 
of AoV is achieved by thin leaflets composed of three distinct layers of extracellular matrix (ECM), 
rich in fibrillar collagen, glycosaminoglycans (GAGs) and elastin. Calcific Aortic Valve Disease 
(CAVD) appears first as AoV sclerosis developing into AoV stenosis (1, 2). Macroscopically, leaflets 
are thickened and progressively calcified resulting into stiff leaflets with restricted movement.

CAVD is one of the most common heart valve disease and its prevalence increases with aging (3). 
Nowadays, in western countries, 2.8% of the general population aged over 75 years is affected with 
moderate to severe aortic stenosis (3, 4). With life expectancy increasing, prevalence of heart valve 
disease is expecting to rise. Nevertheless, due to a lack of drug treatment (5), surgery remains the 
only way to treat it through surgical valve replacement or transcatheter aortic valve implantation.

The seeking of therapeutic targets relies on mechanistic understanding of CAVD. Due to its 
association with aging, CAVD used to be considered as a passive disease, but is now established 
that CAVD is an active cellular-driven regulated process (6). Heart valve homeostasis is tightly 
controlled by valve interstitial cells (VICs) embedded in ECM, valve endothelial cells (VECs) 
covering the leaflet, and circulant and resident immune cells. When CAVD develops, lipid 
deposition, inflammation and angiogenesis occur while VICs are entering an osteogenic program as 
a response to exposure to risk factors including age, congenital heart defect, male gender, tobacco 
use, diabetes, hypertension, obesity and dyslipidemia (7–9). As a result, homeostasis is disrupted, 
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ECM is remodeled, and formation of calcium nodules occurs. 
Although mechanisms leading to CAVD are still unclear, studies 
on diseased human aortic valves and animal models of CAVD, 
reviewed by Sider et al. (10), have provided valuable insights 
into cellular components and signaling pathways involved in the 
pathogenesis. This review will summarize the current findings 
with emphasis on valuable therapeutic candidates.

CAvD: Multi-Step Process with 
endothelium Damage as Starting Point
Endothelium dysfunction is an early feature of CAVD (11, 12) 
and likely the result of altered blood shear stress (13). There is 
indeed a spatial correlation between the calcific lesions, located 
almost exclusively on the aortic side of AoV leaflet, and the 
local hemodynamic environment (14–16).The hypothesis of 
hemodynamic onset is reinforced by the predisposition and 

accelerated progression of CAVD in patients with bicuspid 
aortic valve (17) that display different blood flow patterns than 
observed with tricuspid AoV (18, 19). Endothelium damage 
favors lipid deposit followed by infiltration of inflammatory cells, 
two hallmarks of early AoV lesions (20). Therefore, lipids and 
cytokines will influence neighbored VECs and VICs to promote 
activation of VICs, ECM remodeling and mineralization of AoV 
leaflets (Figure 1).

oxidized LDLs Mediate inflammation and 
Mineralization
The importance of dyslipidemia in CAVD was confirmed by 
prevalence of CAVD in familial hypercholesterolemia caused 
by mutation of LDL receptor (Ldlr) and leading to abnormal 
circulating level of LDL (21–23). Hypercholesterolemia induced 
in animal models by genetic mutation (Ldlr−/−, ApoE−/−, 

FiguRe 1 |  CAVD is a multi-step disease. Upon valve endothelium damage, low-density-lipoprotein (LDL) and lipoprotein a [Lp(a)] accumulate. Oxidation of LDL 
(oxLDL) trigger infiltration of macrophages and T cells that express pro-inflammatory cytokines among which IL-6 and TNF-α. Proinflammatory cytokines impairs 
protective role of valve endothelial by inhibition of endothelial nitric oxide synthase (eNOS) and production of nitric oxide (NO). Therefore, oxidative stress (ROS) 
increases and contributes to enhance oxLDL. Concomitantly, valve interstitial cells (VICs) get activated by cytokines and oxLDL directly, or indirectly through 
autotaxin (ENPP2) and lysophosphatidyl acid (LPA). Therefore, VICs enter an osteogenic differentiation leading to calcific deposit and nodule formation. Activated 
VICs secrete glycosaminoglycans (GAGs), favoring further accumulation of oxLDL. Increased cyclooxygenase 2 (COX2) and its product prostaglandin (PTG), Wnt 
and BMP signaling have been shown to drive osteogenic differentiation while inhibition of IGF-1 signaling by dipeptidyl peptidase-4 (DPP4) contributes as well to 
pathogenesis. Also, Notch signaling, induced by NO, repress osteogenic differentiation. Finally, T cells favor osteogenesis and osteoclast formation by production of 
TNFSF11 but secrete Interferon-γ (IFN-γ) which limits calcium resorption. Altogether, aortic valve leaflets gets remodeled and stiffen leading to aortic valve stenosis. 
ROS: Reactive Oxygen Species. LPAR1: Lysosphosphatidyl Acid Receptor 1. TLR: Toll-like receptor. IL6: interleukin 6. TNF-α: Tumor necrosis factor- α. BMP: Bone 
Morphogenetic Protein. Morphogen. BMPR1: BMP Receptor 1. Fzd: Frizzled. RANK: Receptor Activator of Nuclear Factor kB. TNFSF11: RANK ligand.
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ApoB100/100) and/or combined with enriched diet further 
indicate that increased lipid deposits precede the emergence 
of inflammatory and calcification processes (21, 24). Due to 
association between lipid and CAVD, clinical trial using lipid 
level lowering drug have been carried out, but it has shown 
negative results in regard with reducing CAVD (5, 25–27). One 
of the reasons might be that statins are ineffective to reduce 
Lp(a) level (28, 29) . Lp(a) consists of low density lipoprotein 
(LDL)-like particle in which apoliprotein(a) is covalently linked 
to apoliprotein B100 (30). Histopathologic studies demonstrated 
accumulation of apoliproteins and lipid in early stages of CAVD 
(31). Genome wide association study further described a SNP in 
LPA gene that was strongly associated with CAVD. Individuals 
with that SNP had higher Lp(a) plasma level and higher risk of 
aortic valve stenosis (32–34).

Altogether, Lp(a) appears genuinely to mediate the onset of 
CAVD. Deciphering the pathogenic mechanisms linking Lp(a) 
to CAVD has been recently acknowledged as a priority (35). 
Several studies highlighted a link between lipid metabolism 
and calcification through oxidation of LDLs. Lp(a) is a carrier 
of oxidized phospholipids (OxPLs), used by Lp(a)-associated 
phospholipase A2 (Lp-PLA2), to generate lysophosphatidyl 
choline (LPC), all highly expressed in human CAVD (36, 37). 
LPC is then transformed into lysophosphatidyl acid (LPA) by 
ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), 
secreted by stimulated VICs (38). LPA is also produced during 
non- oxidative transformation of LDLs. Therefore, LPA activates 
VICs through enzymatic LPAR1/RhoA/NF-κb signaling, and 
mediates mineralization through BMP2 expression (38, 39). 
The requirement for RhoA to promote calcific nodule was also 
illustrated in vitro (40). The signaling pathway is confirmed with 
decreased AoV mineralization when using Ki16425, an inhibitor 
of LPAR1, in Ldlr−/−, ApoB100/100 mice fed with high fat and high 
sucrose diet (39). It is important to mention that changes in the 
ECM, with accumulation of glycosaminoglycans, precede and 
favor oxLDL retention (24, 41, 42).

The findings indicate that lowering Lp(a), OxLDL or targeting 
LPAR1 are attractive options and might be used to prevent 
the onset of CAVD. Multiple treatment options are currently 
suggested to decrease Lp(a). IONIS-APO(a)Rx, and IONIS-
APO(a)-LRx, antisense oligonucleotide targeting Apo(a) mRNA 
have been shown to lower Lp(a) level (43). Targeting Proprotein 
Convertase Subtilisin/Kexin type 9 (PCSK9), a hepatic protease 
that promotes LDLR destruction, might be a way to decrease LDL 
and oxidative products. This might be achieved with monoclonal 
antibodies, Alirocumab and Evolocumab (44), or by using 
Inclisiran, a small RNAi targeting PCSK9 (45, 46).

inflammation Contributes to Calcification
Inflammation occurs after endothelium activation and lipid 
deposition. Microarray analysis of human CAVD (47) and 
Rapacz familial hypercholesterolemia swine, an established 
model of human FH (21) shows upregulation of inflammation-
related genes and chemokines. Histological studies present 
inflammatory cells, composed of macrophages, B and T cells 
found near osteoblast-like cells and calcified area in human 

CAVD (20, 48, 49). PET imaging using 18-Flurodexoxyglucose 
uptake (18F-FDG) to monitor inflammation reports higher 18F-
FDG uptake in patients with AoV sclerosis and stenosis and a 
raise of the activity as the disease gets more severe (50).

Besides activation of endothelial cells (11, 12), OxLDLs trigger 
proinflammatory cytokines expression and promotes infiltration 
of immune cells into AoV leaflets (42, 51, 52). In diseased 
AoV, higher oxLDL content correlates with higher amounts of 
inflammatory cells (53) . During inflammation, immune cells 
secrete inflammatory cytokines including IL-2 (54), IL-1β (55), 
TNF-α (56, 57) , IL6(58) and MMPs (55, 59) than stimulates 
VICs, ECM remodeling and promote the expression of genes 
involved in osteogenesis (52). Altogether, data support that 
CAVD is an inflammatory disease, and inflammation may drive 
calcification.

Although inflammation precedes ECM remodeling and 
calcification, inflammation over the course of the disease has not 
been fully explored yet. Similarly, immune cells display a broad 
heterogeneity with specific function. Thorough characterization 
of macrophages, T cells or B cells is now just starting to be 
done in the context of CAVD. M1 macrophage subset have 
recently be found to be the predominant macrophage subset in 
CAVD, promoting osteogenic differentiation of VICs through 
TNF-α and IL-6 secretion (58, 60). T cells are also reported 
surrounding calcified area. T cells favor calcification through 
cytokine TNF-α and TNFSF11 expression (56, 61, 62). Increased 
T cells in diseased AoV is likely the result of increased circulating 
CD8 +T cells (63). Activated T cells infiltrate the leaflets and 
surround calcified area and display high level of inflammatory 
cytokine IFN-γ (62). Although TNFSF11 promotes osteoclast 
activity, aberrant IFN-γ level impairs calcium resorption by 
valve osteoclast. Therefore, calcium accumulates in the leaflets 
and facilitates nodule formations (62). A similar study indicates 
that macrophages surrounding calcium deposits in human 
atherosclerotic are defective and unable to resorb calcification 
(64). Such role of macrophage in CAVD have not been explored 
yet. Circulating Tregs are also measured in patients with CAVD 
and associate with disease progression (65). Although dendritic 
cells are found abundantly in heart valve and accumulate in AoV 
stenosis, their contribution to CAVD is still unknown (51, 66).

Deeper understanding of regulation, timing and functional 
role of immune cells in CAVD will bring valuable information 
to determine how targeting inflammation might help preventing 
pathogenesis.

veCs Are natural inhibitors of 
Calcification, Through no Release, but 
Activators Through oxidative Stress
Inflammatory cytokines, TNF-α and IL-6, induce valve 
endothelial-to-mesenchymal (EMT) transformation through 
Akt/NF-κb signaling and reduce endothelial nitric-oxide synthase 
(eNOS) expression (67). Although some markers of EMT are 
measured in human calcified aortic valves (67), studies have still 
to address if EMT contribute to pathogenesis of CAVD.

VECs have the particularity to display side-specific heterogeneity. 
Endothelium on the aortic side displays an antioxidative and 
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anti-inflammatory phenotype defined by its RNA expression 
profile  (15). Thus, aortic side of AoV demonstrates protection 
against repetitive insult in normal AoV. As consequence, VECs 
are releasing nitric-oxide (NO), a natural inhibitor of pathogenic 
differentiation of VICs into myofibroblast andosteoblasts  (68). 
Increased NO release has been shown to inhibit calcific nodule 
formation in vitro (69) and in vivo with atorvastatin treatment (70). 
On the opposite, in CAVD, altered mechanical stimulus, oxLDLs 
or TNF-α impair eNOS expression (68, 71, 72). Concomitantly, 
uncoupling of NO synthase leads to increased production of 
superoxide and oxidative stress which drives calcification (73).
The critical role of endothelium and eNOS was further illustrated 
through modulation of a multifunctional enzyme dipeptidyl 
peptidase-4 (DPP4) and insulin growth factor-1 (IGF-1). Upon 
NO depletion, DPP4 increases in human VICs and limits IGF-1 
signaling leading to enhanced calcification. Treatment of rabbit 
and mouse model of CAVD with Sitagliptin, a selective DPP4 
inhibitor, was protective against AoV calcification (74). Similarly, 
the protective role of VECs is illustrated by TGF-β1 expression 
that translocates Sox9 into VICs nucleus and prevent calcific 
nodule formation (75, 76). Therefore, enhancing protective role 
of VECs, during early phase of disease, must be exploited. Notably, 
increasing NO production with statins or using DPP4 inhibitor 
,broadly used as hypoglycemic drugs for treatment of type 2 
diabetes mellitus, might mitigate CAVD.

viCs Differentiate into osteoblast-Like 
Cells and Mineralize the Leaflets
Histological studies report the formation of bone nodules in 
stenotic CAVD resulting from deposition of calcium in the 
form of hydroxyapatite in the valve leaflet (49). Once heart valve 
development is complete, VICs become quiescent, but in disease 
get activated and turn into active phenotype. In response to 
pathological stimuli, VICs differentiate into osteoblast-like cells 
with abnormal expression of typical bone genes, including Runx2, 
Alkaline Phosphatase (ALP), Osteopontin (SPP1), Osteocalcin 
(BGLAP) (47) resulting in calcified ECM. Apart from promoting 
inflammation, OxLDLs and Lp(a) can also directly activate VICs 
through LPAR1  (38, 39) and TLR activation (52, 77–79), This 
interaction contributes to trigger GAG accumulation, in a positive 
feedback loop, and upregulates osteogenic gene expression through 
BMP2 and IL6 expression (38, 42, 80).

Different molecular mechanisms are involved in VICs osteogenic 
differentiation and shared with bone formation (81, 82). Stimulation 
of VICs culture with OxLDLs and hypercholesterolemia animal 
model have been used to investigate signaling pathway underlying 
osteogenic differentiation. Also studies in klotho null mice have been 
useful to investigate AoV calcification with minimal inflammation 
(83).BMP2, along with osteogenic gene expression, are the usual 
markers measured to assess VICs osteogenic differentiation. BMP 
signaling is increased in human CAVD illustrated by increased 
BMP2, BMP4 ligands and phosphorylation of Smad1/5/8 (82, 84, 
85). Downregulation of Smad6, an inhibitor of BMP signaling, 
enhance BMP signaling (84, 86). Inhibition of osteogenic gene 
expression and calcific nodule formation by targeting Alk3, BMP 
receptor type-1A, strongly indicate that LDN-193189, a small 

molecule inhibitor of BMP signaling, should be used to prevent 
calcification in late stage of CAVD (85).

Mutation in Notch1 and its association with BAV and AoV 
calcification highlighted the role of Notch signaling in CAVD 
(87). Later, studies confirms that Notch signaling represses 
osteogenic gene expression (88, 89) and is regulated by NO released 
by endothelial cells (90). Decreased Notch signaling is not just 
observed in patients with mutated Notch1 but also in patients with 
idiopathic CAVD where increased long non-coding RNA H19, 
resulting from hypomethylation, prevents Notch1 expression (91).
The role of prostaglandins has been illustrated in osteogenesis (92, 
93), but only recently in CAVD. Prostaglandins are synthesized 
by COX2, an enzyme highly expressed by VICs in CAVD (94). 
Pharmacological inhibition of COX2 activity with Celecoxib, a 
nonsteroidal anti-inflammatory (NSAID) drugs, is sufficient to 
reduces AoV calcification in Klotho null mice (94). Celecoxib 
is clinically used to treat joint and/or muscle pain(95) but was 
associated with increased cardiovascular risk (96). Cardiovascular 
safety of celecoxib is nowadays controversial (97)  as recent report 
indicate that cardiovascular risk associated with moderate doses of 
celecoxib is not greater than associated with non-selective-NSAID 
ibuprofen (98). Additional research must evaluate the effectiveness 
of COX2 inhibitor in human CAVD.

Non-canonical Wnt5b and Wnt11 ligands are found elevated 
in macrophages of human calcified AoV. Moreover, the ligands 
stimulate VICs, apoptosis and calcium deposits (99). Abundant 
expression of Fzd receptors and co-receptors Lrp5/6 also suggest 
the involvement of canonical Wnt/β-catenin signaling in CAVD 
(81, 100). In vitro, Wnt treatment of VICs inhibit chondrogenic 
differentiation and promote osteogenic gene expression (101, 
102) while Lrp5/6 is required to promote calcification in 
hypercholesterolemia mouse model (103). In Axin2 KO mice, 
increased canonical Wnt/β-catenin signaling promotes ECM 
remodeling and BMP signaling but fails to calcify AoV (104). The 
findings illustrate that Wnt signaling is required but might not be 
sufficient to promote end-stage calcification. These data illustrate 
the importance to further study the role of Wnt signaling in CAVD 
as specific inhibitors are being tested (105).

VIC osteogenic differentiation has been one of the most studied 
process in CAVD due to available cell culture model. However, 
VIC remains a poorly defined cell type. Heterogeneity of VIC 
population is underappreciated during heart valve homeostasis 
and disease. Being able to define which cell type is activated and/
or differentiated across disease is a major goal in order to present 
innovative therapeutic options.

ConCLuSionS

CAVD is a complex multi-step event that involves numerous 
biological processes from lipid accumulation, inflammation to 
osteogenesis. Understanding the underlying molecular and cellular 
processes is crucial in the establishment of therapeutic targets. 
Clinical, histological and animal model studies have allowed better 
characterization of the disease and show the importance of cross-talk 
between lipids, immune cells, VECs and VICs. As a result, putative 
molecular targets with available treatments (Table 1) emerge for each 
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TAbLe 1 |  Putative available therapeutic treatments and molecular targets that 
might affect the pathophysiology of CAVD. In brackets, species where the drug 
effect has been reported.

Putative Therapeutic treat-
ments

Molecular Tar-
gets

biological process

IONIS-APO(a)Rx
IONIS-APO(a)-LRx

Apo(a) Lp(a) level lowering (human)

Alirocumab
Evolocumab
Inclisiran

PCSK9 Lipid lowering (human)

Statins HMG-CoA 
reductase

Lipid lowering (human)
Promotes NO release/
inhibition of calcification 
(rabbit)

Ki16425 LPAR1 Inhibition of calcification 
(mouse)

Sitagliptin DPP4 Inhibition of calcification 
(mouse)

LDN-193189 BMPR1A Inhibition of calcification 
(mouse)

Celecoxib COX2 Inhibition of calcification 
(mouse)
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Heart valves are organized connective tissues of high mechanical demand. They open 
and close over 100,000 times a day to preserve unidirectional blood flow by maintaining 
structure-function relationships throughout life. In affected individuals, structural failure 
compromises function and often leads to regurgitant blood flow and progressive heart 
failure. This is most common in degenerative valve disease due to age-related wear and 
tear, or congenital malformations. At present, the only effective treatment of valve disease is 
surgical repair or replacement and this is often impermanent and requires  anti-coagulation 
therapy throughout life. Therefore, there is a critical need to discover new alternatives. A 
promising therapeutic area is tissue regeneration and in non-valvular tissues this requires 
a tightly regulated genetic “growth program” involving cell proliferation. To explore this in 
heart valves, we performed RNA-seq analysis to compare transcriptional profiles of aortic 
valve tissue isolated from mice during stages of growth (postnatal day (PND) 2) and adult 
maintenance (4 months). Data analysis reveals distinct mRNA profiles at each time point 
and pathway ontology identifies associated changes in biological functions. The PND2 
aortic valve is characterized by extensive cell proliferation and expression of mRNAs 
related to the extracellular matrix (ECM). At 4 months, proliferation is not significant and 
a differential set of ECM-related genes are expressed. Interestingly there is enrichment 
of the defense response biological process at this later time point. Together, these data 
highlight the unique transcriptome of the postnatal valve during stages of growth and 
maturation, as well as biological functions associated with adult homeostatic valves. 
These studies create a platform for future work exploring the molecular programs altered 
in the onset of heart valve disease after birth and provide insights for the development 
of mechanistic-based therapies.
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inTrODucTiOn

The average heart beats over a billion times during one lifespan 
to continuously provide blood to every part of the body. Crucial 
to this task are the four heart valves (aortic, pulmonic, tricuspid 
and mitral) that function to maintain the unidirectional blood 
flow. Distinct from the cardiac muscle, the mature valve leaflets 
are highly organized structures comprised of three layers of 
extracellular matrix (ECM) components including collagens, 
proteoglycans, and elastin (1). Formation and maintenance of the 
valve ECM is mediated by a heterogeneous population of valve 
interstitial cells (VICs) that are fibroblast-like in phenotype (2). 
Surrounding the VICs and ECM is a single layer of valve endothelial 
cells (VECs) that physically protect the valve from external stimuli, 
and molecularly communicate with underlying VICs to regulate 
homeostasis of the ECM (3–5). The complex relationship between 
valve cell populations and the ECM is critical for establishing 
and maintaining structure-function relationships throughout 
life. This relationship begins during embryonic development, as 
mesenchymal precursor cells in the endocardial cushions transition 
towards an activated VIC phenotype and degrade primitive ECM 
within the cushions while secreting more diverse ECM components. 
Elongation and remodeling of the immature valve structures 
continues for a short time during the postnatal period until around 
day 10 in the mouse when the ECM components are more defined. 
Once valve formation is complete, VICs convert to a quiescent 
phenotype and in the absence of disease, maintain physiological 
turnover of the ECM to provide efficient function throughout life 
[reviewed (2, 6)]. While the regulation of valve development is 
well established, the mechanisms that regulate postnatal valve 
growth and remodeling, as well as adult homeostasis are poorly 
understood. Despite constant mechanical demand on the valve 
leaflets, turnover of valve cell populations in adult valves is relatively 
low (4). Therefore, it remains unclear how valve cell populations 
and structure-function relationships are maintained throughout 
life in healthy individuals, yet dysregulation of these relationships 
likely underlie the onset and progression of valve dysfunction  
and disease.

Heart valve disease is a growing public health problem that can 
affect both adult and pediatric patients. Significant defects during 
embryonic valve development lead to congenital malformations 
which compromise the typical structure of the valve, often 
resulting in reduced ability to function correctly [reviewed (7)]. 
Distinct from valve disease present at birth, pathology can also 
be acquired and is most prevalent in the aging population, with 
up to 13% of people aged over 75 affected by diseases including 
calcification or myxomatous degeneration (8). Currently, the 
only effective treatment for valve disease is surgical repair or 
replacement, resulting in over 90,000 valve replacement surgeries 
performed in the US each year (9). Surgical treatment comes with 
many complications including the need for repeat surgeries due 
to low valve durability and high thrombogenicity, in addition 
to the large personal and societal economic burdens (10). 
Therefore, there is a critical need for the development of alternate  
therapeutics.

A promising therapeutic area is emerging in the field of self-
repair and regenerative medicine. Common to both congenital 

and age-related valve disease is the damage and consequent loss of 
healthy cell populations alongside the development of pathological 
cell populations that are therefore unable to preserve valve structure-
function relationships (11). The field of cardiac regeneration has 
recently made significant advances in elucidating the molecular 
mechanisms of regeneration, and it has been reported that the 
neonatal myocardium has remarkable regenerative capacity during 
the first seven days of life (12–14). Furthermore, several pathways 
have been identified as key players, and the ability to recapitulate 
these neonatal programs in adults has proven successful in 
promoting myocardial regeneration after injury and in disease 
models (15–18).

Neonatal, adult and potential regenerative programs have 
not been examined in heart valves and therefore the goal of 
this current study is to initiate this discovery. To do this, we 
used RNA-seq analysis to explore differential molecular profiles 
between postnatal and adult valve cell populations. This analysis 
will help define potential regeneration indicators that in the 
future might be reintroduced in diseased or aging adult valves 
to increase their self-repair capacity and improve structure-
function relationships. Our study has defined transcriptional 
differences between postnatal day 2 (PND2) and adult (4 months) 
aortic valves and identified significant changes in key biological 
functions related to cell proliferation, ECM, and defense response 
that may be important for determining the regenerative capacity 
of the valve to aid in the future development of alternative  
therapeutics.

MaTerial anD MeThODs

Mice
C57BL/6J mice were fed regular chow mix and housed in a 
controlled environment with 12 h light/dark cycles at 21°C 
and 23% humidity and water ad libitum. Animals were 
euthanized by CO2 exposure followed by secondary euthanasia 
by cervical dislocation (adult mice) or decapitation (pups). All 
animal procedures were approved by The Research Institute at 
Nationwide Children’s Hospital Institutional Animal Care and 
Use Committee (Protocol # AR13-00054).

Tissue Preparation
Hearts were collected from postnatal day 2 (PND2) and 4 month 
old C57BL/6J mice and fixed in 4% paraformaldehyde/1xPBS 
overnight at 4°C. For paraffin sections, tissue was embedded in 
paraffin wax and sectioned at 10 µm. Paraffin was removed in xylene, 
and tissue sections were re-hydrated through a graded ethanol 
series and rinsed in 1xPBS as previously described (19). Tissue 
sections containing aortic valves were then subjected to Movat’s 
Pentachrome staining, EdU staining, or immunohistochemistry/
immunofluorescence (described below). For cryo sections, tissue 
was embedded in OCT and frozen, then sectioned at 7 µm. 
Prior to staining, tissue was permeabilized using 0.1% Triton-X 
100 in 1xPBS and then subjected to immunofluorescence  
staining.
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immunohistochemistry/
immunofluorescence
Whole hearts from PND2 and 4 month old C57BL/6J mice were 
collected and prepared according to above methods. Movat’s 
Pentachrome staining was performed on paraffin tissue sections at 
each time point according to the manufacturer’s instructions (Russel 
Movat, American MasterTech, #KTRMP), then mounted using 
VectaMount Permanent Mounting Medium (Vector Laboratories, 
H-5000). For antibody detection, fixed paraffin tissue sections were 
subjected to antigen retrieval by boiling for 10 min in unmasking 
solution (Vector Laboratories), and both cryo and paraffin sections 
were subjected to blocking for 1 h at room temperature (1% BSA, 
1% cold water fish skin gelatin, 0.1% Tween-20/PBS) as described 
(20). Tissue sections were then incubated overnight at 4°C or 1 h at 
room temperature with primary antibodies against Mmp3 (rabbit, 
1:100 paraffin, Abcam ab53015), Nid2 (rabbit, 1:200 cryo, Abcam 
ab14513), Ptgs2 (Rabbit, 1:100 paraffin, Cell Signaling 12282), 
and Rarres2 (Mouse, 1:100 paraffin, Santa Cruz sc-373797). For 
immunofluorescent primary antibody detection of Mmp3, Nid2, 
and Ptgs2, sections were incubated for 1 h at room temperature with 
Donkey anti-rabbit or Goat anti-rabbit Alexa-Fluor IgG secondary 
antibodies (1:500) (LifeTechnologies), then mounted in Vectashield 
anti-fade medium with DAPI (Vector Laboratories) to detect cell 
nuclei. For diaminobenzidine (DAB) staining of Rarres2, sections were 
stained using Mouse and Rabbit Specific HRP/DAB (ABC) Detection 
IHC kit (Abcam, ab64264), counterstained with hematoxylin (Vector 
Laboratories, H-3404), and mounted using VectaMount Permanent 
mounting medium (Vector Laboratories, H-5000). Images were 
visualized using an Olympus BX51 microscope and captured using 
an Olympus DP71 camera and CellSens software. Image brightness 
and contrast were edited using Adobe Photoshop CC.

edu staining and Quantification
PND2 and 4 month old C57BL/6J mice were injected subcutaneously 
with 10 µg/g body weight EdU (Invitrogen) dissolved in 1xPBS. 24 
h later, mice were sacrificed and hearts were collected and prepared 
according to above methods. Fixed tissue sections were blocked 
for 1 h at room temperature (1% BSA, 0.1% Cold water fish skin 
gelatin, 0.1% Tween 20 in PBS with 0.05% NaN3), followed by use of 
Click-it EdU Kit (Invitrogen) to detect presence of EdU according 
to the manufacturer’s instructions. Sections were then mounted in 
Vectashield anti-fade medium with DAPI (Vector Laboratories) to 
detect cell nuclei. The total number of cell nuclei in one leaflet were 
counted using ImageJ cell counter. The number of EdU + cells were 
then counted and calculated as a percentage of total cells. An average 
of 9 leaflets were counted and averaged for each mouse, with a total 
n = 3. Statistical analysis was performed in GraphPad Prism 7.0a.

aortic Valve isolation and rna-
sequencing
Aortic valves from wild type PND2 and 4 month old C57BL/6J 
mice were isolated with minimal myocardial contamination and 
immediately flash frozen in liquid nitrogen. Frozen samples were 
sent to Ocean Ridge Biosciences LLC (Deerfield Beach, FL), 
where RNA isolation and sequencing was performed as follows. 
Total RNA was extracted using the TRI Reagent® (Molecular 

Research Center; Part #: TR118) method, and isolated RNA was 
quantified using chip-based capillary electrophoresis (Agilent 
2100 Bioanalyzer Pico Chip). RNA was digested with RNase 
free DNase I (Epicentre; Part # D9905K) and purified through 
minElute columns (Qiagen; Part #: 74204). Final RNA samples 
were quantified by O.D. measurement and re-quantified using 
chip-based capillary electrophoresis. Amplified cDNA libraries 
were prepared from 200 ng on DNA-free total RNA using TruSeq 
Stranded Total mRNA Library Prep Kit LT (Illumina Inc.; Part 
#s: RS-122-2101 and RS-122-2102). Chip-based capillary 
electrophoresis was used to assess quality and size distribution of 
the libraries. KAPA Library Quantification Kit (Kapa Biosystems, 
Boston, MA) was used to quantify the libraries. Libraries were 
pooled at equimolar concentrations and were clustered on an 
illumina cBot cluster station. Clustering was performed with the 
HiSeq PE cluster kit v4 and sequenced on an Illumina HiSeq Flow 
Cell v4 with 50 nt paired-end reads plus dual index reads using 
the Illumina HiSeq SBS Kit v4. An average of approximately 48.3 
million passed-filter 50 nucleotide paired-end reads were obtained 
per sample (24.1M per direction).

Raw FASTQs were split into files containing 4,000,000 reads 
and checked for quality using the FASTX-Toolkit. The reads were 
filtered (removing sequences that did not pass Illumina’s quality 
filter) and trimmed based on the quality results (3 nucleotides at 
the left end of the R1 reads and 1 nt at the left end of the R2 reads). 
Sequence alignment was performed using TopHat v2.1.0 to the 
mm10 genome. BAM files were merged on a per sample. Exon 
and gene level counting were performed using the easyRNASeq 
version 2.4.7 package. A binary annotation file, built using the 
annotation file generation function of EasyRNASeq, was used for 
this analysis; the Ensembl release 83 GTF file was used as input. 
Annotation was performed using a Gene Transfer Format (GTF) 
annotation file for Mus musculus, which was downloaded on 
February 11, 2016 and contains the current Ensembl Mouse release 
83. Filtering of the RPKM values was performed to retain a list of 
genes with a minimum of approximately 50 mapped reads in 25% 
or more samples. The threshold of 50 mapped reads is considered 
the Reliable Quantification Threshold, as the RPKM values for a 
gene represented by 50 reads should be reproducible in technical 
replicates. To avoid reporting large fold changes due to random 
variation of counts from low abundance mRNA, RPKM values 
equivalent to a count of ≤10 reads per gene were replaced with 
the average RPKM value equivalent to 10 reads/gene across all the 
samples in the experiment.

An unpaired two-sample heteroscedastic t-test was performed 
on the log2 RPKM values to compare the overall effects of age 
(PND2 or 4 month) on gene expression. Fold changes were also 
calculated for 4 month / PND2 using the mean of each group 
being compared. If the mean of both groups considered in the 
fold change comparison was below RQT, “NA” is reported. All 
statistical analysis was performed using R version 3.2.2 statistical 
computing software. A total of 7,496 genes were determined to have 
a low FDR-value (FDR <0.1) for the unpaired t-test. Full dataset is 
available through NCBI GeoDatasets, accession code GSE108083, 
“RNA-seq analysis of aortic heart valves in mice”.
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rna-sequencing Data analysis
A heatmap was generated from 23,303 differentially expressed 
genes. Log2 transformed RPKM values were utilized and 
hierarchical clustering analysis was performed with Cluster 3.0 
software (21). Genes and samples were clustered using centered 
correlation as the similarity measure and average linkage as the 
clustering method. A volcano plot was generated utilizing ggplot2 
and is plotted as the -Log10(p-value) vs. Log2 Fold Change. The 
volcano plot highlights the differential gene expression between 
postnatal day 2 and 4 month aortic valves. A Venn diagram was 
generated based only on genes with a low t-test p value (p < 0.05), a 
fold change >2, and RPKM values above the Reliable Quantification 
Threshold for all biological replicate samples from either group. 
If at least one of the gene reads from a triplicate set was proven 
undetectable while all gene reads in the comparative sample set 
was proven detectable, the gene was considered to be uniquely 
expressed. If the gene read from both triplicate sample sets had 
detectable RPKM values about the Detection Threshold, the gene 
was considered common amongst sample groups. Genes with at 
least one triplicate below the Detection Threshold in both samples 
sets are not represented in the Venn diagram.

Functional annotation was performed through the utilization 
of Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) version 6.8 (22). 2,082 differentially 
expressed genes with an FDR <0.05 and fold change >2, were 
assessed utilizing Gene Ontology (GO) FAT terms, which 
were employed to filter out broad GO categories based on a 
measured specificity of each term. Visualization of GO term 
analysis was performed using the GOPlot R package version 
1.0.2 (23). To reduce the redundancy of GO terms, the reduce 
overlap function was used, with the threshold set to 0.75, which 
removes GO terms that have a gene overlap greater than or 
equal to the set threshold. Bubble plots were generated for the 
reduced GO term list using the GoBubble function, and the top 
15 GO terms from biological processes, cellular component, and 
molecular function were visualized. Each bubble represents a 
term, where the size of the bubble correlates to the number of 
genes within the term, and it is plotted as –log (FDR) vs. z-score. 
The z-score is a crude measurement, predicting if a term will 
be upregulated or downregulated, and is calculated by taking 
the number of upregulated genes and subtracting the number 
of downregulated genes and then dividing this number by the 
square root of the number of genes in each pathway. The circle 
plot was generated using the GoCircle function, and highlights 
the gene expression changes within each of the selected terms. 
The circle plot highlights the overall gene expression change by 
showing increased expression in red and decreased expression 
in blue. The circle plot also highlights the p-value of the GO 
term by the height of the inner rectangle, which is also colored 
by z-score. A chord plot was generated using the GoChord 
function, and it represents 59 differentially expressed genes and 
their correlation to the following associated terms: extracellular 
matrix, cell proliferation, cell cycle, mitotic cell cycle process, 
defense response, and regulation of immune system processes. 
The chord plot also highlights the log fold change of each 
differentially expressed gene that is shown. 

qrT-Pcr
RNA was extracted from isolated aortic valves from PND2 and 4 
month old C57BL/6J mice to validate RNA-seq findings. Briefly, 
Trizol reagent (Invitrogen) was used to extract RNA according 
to manufacturer’s instructions, and cDNA and PCR reactions 
were performed as previously described by our lab (24). Primers 
for genes selected for validation were designed in NCBI Primer-
BLAST based on FASTA sequence and shown below:

gene 
name

Forward Primer sequence (5′ 
to 3′)

reverse Primer sequence (5′ 
to 3')

Nid2 AGGAGTGAGCATGTTTCGG  AGGGGTATTGCCAGCTTCAC

Mmp3  TGCATGACAGTGCAAGGGAT  ACACCACACCTGGGCTTATG

Marckls1  CCCGTGAACGGAACAGATGA  CCCACCCTCCTTCCGATTTC

Gsn  GGGACGGCCGGTTACTTAAA  CTTCAGGAATTCGGGGTGCT

Filip1l  AGGCTCCACTGCTGGATTTC  GACTTCTCTGACACGGGACG

Myoc  ACGACACTAAAACGGGGACC  TTCTGGCCTTTGCTGGTAGG

Retnla   GGA ACTT CTTG CCAA TCCAGC  CAGTGGTCCAGTCAACGAGT

Npdc  GCACTCCCGACACTTTTCTC GGTACCCACTCCGGGAACT

Sfrp4  CCTGGCAACATACCTGAGCA  AGCATCATCCTTGAACGCCA

Mki67

Nrg1  CCATCTCTCGATGGGCTTCC  ATGCAGAGGCAGAGGCTTAC

Nrep   GCA TGAT GCCC TTTT TCATCCA  TCCTTAGGCACGGGAAGTCT

Acta2  CCTTCGTGACTACTGCCGAG  GAAGGTAGACAGCGAAGCCA

Dlk1  AGAGTACCCCTCTCCTCACC  CGCCGCTGTTATACTGCAAC

Cfd  TACATGGCTTCCGTGCAAGT  GGGTGAGGCACTACACTCTG

Quantitative real-time PCR using a Step One Plus Real Time PCR 
system (Applied Biosystems) was used to detect changes in gene 
expression with Sybr Green reagents. Cycle counts for each target 
gene were normalized to β-actin expression and differences in gene 
expression were reported as a fold change from the 4 month time 
point. Statistical analysis was performed in GraphPad Prism 7.0a.

resulTs

Postnatal Valve Maturation and adult 
Maintenance are associated with Distinct 
Transcriptional Profiles
As previously described, the valve structures continue to grow 
and remodel after birth (1). As shown by Movat’s Pentachrome 
stain, murine aortic valve structures at postnatal day 2 (PND2) 
are thick and composed of predominantly proteoglycan (blue), 
with less extensive collagen and elastin (Figure 1A). By 4 months 
of age, the leaflets have elongated and display distinct layers 
of collagen (fibrosa, yellow), proteoglycan (blue), and elastin 
(black) (Figure 1B).

In order to further define molecular profiles associated with 
the structural changes in postnatal and 4 month old aortic valves, 
we performed RNA-sequencing on isolated samples. Overall, 
RNA expression for samples consistently clustered by time point, 
as shown several ways including a Pearson’s correlation matrix 
(data not shown), principal component analysis (PCA) (data 
not shown) and hierarchical heatmap (Figure 2A). Of 23,303 
detectable genes, 3,659 genes were found to have a p-value < 
0.05 and a fold change >2, and include 1,858 upregulated and 

AGAGCTAACTTGCGCTGACT ACTCCTTCCAAACAGGCAGG
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1,801 downregulated transcripts. Of these 3,659 differentially 
expressed genes, 602 were unique to the PND2 time point and 
include Dlk1, Hif3a, Agtr2 and S100A9, while 477 were only 
expressed at 4 months (Cfd, Rtn1a, Clec3a, Adipoq, etc.), leaving 
2,580 common to both groups (Figure  1C). Table  1 includes 
the top 20 mRNAs uniquely expressed at each time point based 
on RPKM value, which is indicative of mRNA abundance. 
Additional RT-qPCR analysis of independent cDNA samples 

validated RNA-seq findings in 10 out of 12 genes (85%) at a 
significance threshold of p < 0.05 (Figures 1D, 4A and 5A,D 
and data not shown).

Transcriptional analysis identifies age-
Dependent Transcriptional Profiles and 
Biological Functions
Heatmap hierarchical clustering analysis, where 23,300 
differentially expressed genes and samples were clustered using 
center correlation as the similarity measurement and average 
linkage as the clustering method, revealed molecular similarities 
between biological replicates at each time point and distinct 
differences between PND2 and 4 months (Figure 2A). Additional 
volcano plot analysis graphically displays the differential 
expression of 23,300 individual transcripts based on significance 
and fold change (Figure 2B). To determine functions associated 
with differential gene expression changes at each time point, 
Gene Ontology (GO) pathway analysis was performed. The 
bubble plot in  Figure  3A  visualizes  the biological processes, 
cellular components, and molecular functions enriched by 
the differential data set and the table highlights the top 15 GO 
terms represented. These include biological processes such as 
cell proliferation, mitotic cell cycle, and defense response, along 
with cellular components such as extracellular matrix (ECM), 
indicating that valve maturation involves considerable changes 
in cell proliferation, ECM composition, and immune system 
programs. This is further highlighted in Figure 3B circle plot 
displaying genes which are known to be expressed in the heart 
valves based on previous publications, and their association with 

Figure 1 |  Postnatal and adult aortic vales display differences in ECM 
composition and gene expression. Movat’s Pentachrome staining to show 
extracellular matrix composition at PND2 (a) and 4 months (B) (black: elastic 
fibers and cell nuclei, blue: proteoglycans, yellow: collagen, red: muscle and 
fibrinoids). (c) Venn diagram to show distribution of the detected mRNAs that 
were uniquely or commonly expressed at PND2 or 4 months. (D) RT-qPCR 
validation (black bars) of RNA-seq findings (white bars) (n = 3, *:p < 0.05; 
two-tailed unpaired t-test, #:FDR <0.05). Ao, aorta; AoV, aortic valve.

Figure 2 |  RNA-seq analysis reveals transcriptional differences between 
PND2 and 4 month old murine aortic valves. (a) Hierarchical heatmap cluster 
shows clustering analysis of biological replicates (n = 3). (B) Volcano plot of 
differentially expressed genes sorted according to fold change and 
significance (FDR). Green dots represent genes with log2 fold change >1 and 
FDR <0.05, pink dots represent genes with FDR < 0.05, and blue dots 
represent genes with log2 fold change >1.

TaBle 1 |  Top 20 unique genes at PND2 and 4 month time points.

PnD2 4 Month

Dlk1 Cfd

Hif3a 2210407C18Rik

Agtr2 Retnla

S100a9 Clec3a

Slc38a5 Adipoq

Col24a1 Ces1d

Bmp7 Thrsp

Vash2 Pck1

Igf2bp3 Mgl2

Stfa1 C7

S100a8 Inmt

Cited1 Cidec

Gm5483 Fmo3

Frem2 Angpt4

Gipr Hamp

Ube2c Art1

Dctd Tmem45b

1110032F04Rik Olfr224

C1qtnf3 Plin1

Cdkn3 Rpl3l

Genes are listed in order of RPKM with the most highly expressed at the top of the 
list. Only genes with a low t-test p value (t-test P: Age < 0.05), a Fold Change: 4mo/P2 
>2 up/down, and  above the Reliable Quantification Threshold in all samples from 
either group (i.e., the gene RPKM values were >RQT in all three P2 samples or in all 
three 4mo samples) were retained for further filtering.
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each GO term. More specific trends in these GO terms are shown 
in Figure 3C, with individually upregulated and downregulated 
genes in each category shown as red and blue dots, respectively. 
The inner rectangles are sized to positively correlate with the 
significance of each GO term, and colored to represent the overall 
direction of change in expression of each individual term. For 
example, the term “mitotic cell cycle process” has an overall down 
regulation at 4 months of age, while the “defense response” has an 
overall upregulation. In contrast, the “extracellular matrix” GO 
term is overall neither up-, nor downregulated, but the change 

in many individual transcripts is significant. Together these 
genomic analyses have defined transcriptional profiles of PND2 
and 4 month aortic valve structures, and identified changes in 
functions associated with these mRNA patterns.

Proliferation Programs are Downregulated 
in 4 month Old aortic Valves
Based on enrichment of cell proliferation-related genes from 
GO analysis (Table  2), we first validated the fold change 

Figure 3 | Pathway analysis identifies diverse key biological processes, cellular components and molecular functions between PND2 and 4 month old murine 
aortic valves. (a) Gene ontology (GO) analysis reveals top differentially regulated GO terms, graphically displayed according to significance (p-value) and z-score, a 
measure of overall up or down regulation for the category. Data represented as a bubble plot (left). The size of each circle represents the number of differentially 
expressed genes in that GO term, while color represents the category (green: biological process pink: cellular component, blue: molecular function). Table (right) lists 
the top GO terms along with count, FDR, and z-score. (B) Chord plot showing 59 differentially expressed genes previously associated with healthy and 
diseased valves, and their overlap between significant GO terms as determined in (a). Color below each gene corresponds to log fold change, with red representing 
increased expression at the 4 month time point and blue representing decreased expression at 4 months. (c) Circular plot highlighting gene expression differences 
within each selected GO term, with each red dot depicting a gene upregulated at 4 months in that category, and each blue dot showing a gene downregulated at 4 
months. The height of the inner rectangle represents the p-value of the GO term and is colored according to z-score, with red being increased at the 4 month time 
point and blue being decreased at 4 months.
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trends observed by RNA-seq using RT-qPCR (Figure 4A) on 
independent biological samples. These validated genes include 
three positive regulators of proliferation mKi67, Nrg1 and 
Marcksl1, which all decreased in 4 month old aortic valves, 
and an anti-proliferative gene, Sfrp4, found to have increased 
expression at this time point (Figure 4A) (25–28). To further 
validate mRNA findings, we utilized 5-ethynyl-2′-deoxyuridine 
(EdU) to visualize and compare the number of cells actively 
undergoing mitosis in the aortic valve at PND2 and 4 months 
of age (Figure  4B-D). At the earlier time point, ~10.5% of 
cells were found to be EdU-positive, while only 0.16% of cells 
were proliferating at 4 months (Figure  4B). These data are 
consistent with transcriptional changes and previous reports 
from our lab showing that ~6.2% of VECs (of the total VEC 
population) and ~3.3% of VICs (of the total VIC population) 
are proliferative at post natal stages, while in the young adult, 
proliferation rates of both VECs (~2%) and VICs (~1.1%) were 
significantly lower (4). Together, these observations suggest that 

a decline in cell division at 4 months is due to a combination 
of decreasing expression of postnatal proliferation programs 
while simultaneously increasing adult programs which inhibit  
proliferation.

Postnatal and adult aortic Valves have 
Distinct extracellular Matrix mrna 
Programs
As indicated by the GO term z-score in Figure 3A, the overall 
expression of ECM transcripts does not significantly increase or 
decrease with age, yet there are considerable differences in the 
specific ECM-related mRNAs that are expressed between the two 
time points (Table 3). Matrix metalloproteinases, or Mmps, are 
known to be expressed in both healthy and diseased valves and 
are associated with physiological and pathological remodeling 
of the ECM respectively (29–31). Also known as stromelysin-1, 
Mmp3 targets degradation of proteoglycans, collagens, and 

Figure 4 | Positive regulators of cell proliferation are enriched at PND2 in murine aortic heart valves. (a) RT-qPCR performed on independent samples (black 
bars) validates the RNA-seq fold change (white bars) trends for proliferation-related genes. Expression is normalized to 1, indicated by the x-axis. (n=3, *:p<0.05; 
two-tailed unpaired t-test, #:FDR<0.05). (B) Quantification of 5-ethynyl-2′-deoxyuridine (EdU) positive cells as a percentage of total cell nuclei (indicated by DAPI, 
blue) at PND2 and 4 month time points. (n=3, *:p<0.05, two-tailed unpaired t-test). (c) Representative images of staining for incorporation of EdU into 
replicating DNA (white arrows point to EdU-positive cells) reveals high levels of proliferation in PND2 AoV as compared to (D) EdU staining in 4 month old aortic 
valve. Ao, aorta; AoV, aortic valve; Myo, myocardium.
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elastins (32) and this Mmp family member has been described 
in cancer (33, 34), but little is known about Mmp3 in mouse 
valves. In this study, Mmp3 increased from 1.22 reads per million 
kilobases (RPKM) at PND2 to 86.14 RPKM at 4 months. This 
significant increase was confirmed by RT-qPCR (Figure 5A,B) 
and immunofluorescence of aortic valve tissue sections, where 
Mmp3 is localized primarily to the sub-endothelial region of the 
leaflet (Figure 5B, Figure S1). In our previous VEC RNA-seq 
study, Mmp3 transcript was not detected in the VEC population 
at any time point (4), and this is consistent with predominant 
expression of the protein in VICs; largely those close to the sub-
endothelial location at 4 months (arrows, Figure  5C, Figure 
S1). In this study we show that the basement membrane ECM 
protein Nidogen 2 (Nid2) was more highly detected in PND2 
samples at 76 RPKM, while only 15 RPKM were detected at 4 
months. This expression pattern was confirmed by RT-qPCR 
(Figure 5D) and immunofluorescence data shows broad Nid2 
localization in both VECs and VICs at PND2, but more localized 
within the endothelial cell layer at 4 months (Figure 5E,F, Figure 
S1), and this pattern of decreased expression with maturation 
is consistent at the RNA level in VECs as previously described 
(4). These data show that PND2 and 4 month old aortic valves 
have distinct ECM-related transcriptional profiles associated 
with growth and maintenance respectively.

gene Ontology Defense response 
Markers are highly enriched in 4 month 
Old aortic Valves
As shown in Figure  6A and Table  4, a large majority (77%) 
of defense response genes are most highly expressed in aortic 
valve structures at 4 months of age and include Ccl19, Ptgs2 and 
Cxcl9. The increased expression of Ptgs2 (also known as Cox2) 
(Figure 6B,C) and Rarres2 (also known as Tig2) (Figure 6D,E) 
are confirmed here by immunofluorescence. Ptgs2 is an enzyme 
involved in the synthesis of prostaglandins which are known to 
mediate pain and inflammation responses (35), and has been 
described in the valve as a pro-osteogenic marker (36). Consistent 
with this previous valve study, we observed expression towards 
the endothelium at 4 months of age (Figure 6C, Figure S1), and 
this is consistent with RNA expression in the VEC population 
(4). Like Ptgs2, Rarres2 is also known to regulate inflammation 
and has been linked with hypertension (37), a known risk factor 
of aortic valve stenosis (38). By immunofluorescence, Rarres2 is 
widely expressed throughout the valve leaflet including VECs 
and VICs at 4 months of age, which is a significant increase 
compared to PND2 (4). Overall, our RNA-seq data shows that 
expression of defense response-related genes increases with age 
in the murine aortic valve.

Figure 5 | ECM molecular profiles between PND2 and 4 month old murine aortic valves are distinct. (a) RT-qPCR performed on independent samples (black 
bars) validates the trends seen in RNA-seq data (white bars). Expression is normalized to 1, indicated by the x-axis (n=3, *:p<0.05; two-tailed unpaired t-test, 
#:FDR<0.05). (B) Immunofluorescence staining for Mmp3 reveals low expression at PND2 compared to (c) 4 months (white arrows indicate Mmp3-positive cells). 
(D) RT-qPCR performed on independent samples (black bars) validates the trends seen in RNA-seq data (white bars) for ECM gene Nid2. Expression is normalized 
to 1, indicated by the x-axis (n=3, *:p<0.05; two-tailed unpaired t-test, #:FDR<0.05). (e) Immunofluorescence staining for Nid2 reveals high expression atPND2 
(white arrows indicate Nid2-positive cells) compared to (F) Nid2 staining at the 4 month timepoint. Ao, aorta; AoV, aortic valve.
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TaBle 2 |  Genes included in the “Cell Proliferation” GO term.
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DiscussiOn

This current study explores transcriptional differences in PND2 and 
4 month old murine aortic valve expression profiles with the goal of 
identifying genetic programs representative of valve growth and valve 
maintenance, respectively. Long term, this may be important for the 
development of alternative therapies; specifically, those exploring the 
growth or regenerative capacity of adult diseased valves. Our results 
indicate that at PND2, dynamic leaflet growth is associated with a 
unique transcriptional profile compared to homeostatic adult valves 
at 4 months. Of the 23,303 detectable genes in our RNA-seq data, 
the number of differentially expressed transcripts found to be up 
and down regulated at each time point were approximately equal, 
suggesting that gene transcription patterns were not overtly altered, 

Downregulated at 4 months upregulated at 4 months
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Genes are sorted according to fold change with the highest fold change at the top of 
the list.

TaBle 2 |  continued TaBle 3 |  Genes included in the “Extracellular Matrix” GO term.
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but rather transitioned from a postnatal to adult expression profile. 
Such profiles are related to enriched biological functions including 
cell proliferation at PND2 and defense response at 4 months of age. 
Interestingly,  ECM components were enriched at both time points, 
but the associated mRNA profiles were unique. Together these 
analyses contribute to the current knowledge and further advance our 
understanding of the molecular signatures and biological functions 
characteristic of the whole aortic valve structure at PND2 and 4 
months. provide critical information related to genetic programs in 
the growing and homeostatic heart valve.

PND2 murine aortic valves are defined by a specific transcriptional 
profile including the unique expression of 602 genes (Figure 1C, 
Table  1) that were not detected at 4 months of age. In addition, 
1,801 transcripts were upregulated at PND2, while 1,858 were 
decreased compared to the adult homeostatic valve. According to 
Gene Ontology analysis, many of the transcripts enriched at PND2 
suggest an overall upregulation of active cell proliferation by a specific 
set of genes. These include increased expression of those associated 
with active cell division (Ki67, Aurkb), pro-proliferation markers 
(Bub1, Cdk1, Foxm1, Nrg1) (27, 39, 40) and decreased expression of 
proliferation inhibitors (Nox4, Sfrp) (41–44). This specific expression 
profile of cell proliferation markers supports EdU observations and 
represents active elongation of the immature valve structure. It will 
become important to understand how this molecular signature of 
cell proliferation is downregulated after maturation is complete and 
explore the potential of re-introducing key regulators to stimulate 
cell division and replenish dysfunctional cell populations in the adult 
following injury or disease.

In addition to high levels of cell proliferation, the PND2 
valve is characterized by a specific ECM mRNA profile (Table 3) 
which likely corresponds to the mechanical demands during the 
postnatal period. When comparing PND2 to 4 months, RNA-seq 
analysis reveals significant enrichment of highly expressed fibrillar 
collagens including Col24a1, Col9a1, and Col5a1, indicating the 
need for additional stability as the growing postnatal valve adapts to 
hemodynamic changes in response to closing of the foramen ovale 
(45, 46). RNA-seq analysis also uncovered higher PND2 levels of 
ECM proteins such as Frem1/Frem2 and Nidogen2 (Nid2), which 
have been shown to stabilize basement membranes underlying 
endothelial cells and may provide further structural integrity to the 
developing valve (47, 48). Besides identifying the enrichment of 
differentially expressed fibrillary collagens and specific proteoglycans, 
RNA-seq analysis shows that the PND2 valve also expresses a 
distinct profile of ECM enzymes, such as Mmp15 and Adamts17, 

Downregulated at 4 months upregulated at 4 months
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LMCD1

APOE
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Genes are sorted according to fold change with the highest fold change at the top of 
the list.

TaBle 3 |  continued TaBle 4 |  Genes included in the “Defense Response” GO term. 
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Downregulated at 4 months upregulated at 4 months
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Genes are sorted according to fold change with the highest fold change at the top of 
the list.
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indicating the need for physiological remodeling during growth  
and maturation

The 4 month adult valve is physically and molecularly distinct 
from the postnatal valve, with elongated leaflets containing distinct 
layers of collagen, proteoglycan, and elastin (Figure 1B). At this 
time point, 477 transcripts were found to be uniquely expressed, 
with the most abundant unique mRNAs including Cfd, Retnla, 
and Clec3a. In contrast to the PND2 aortic valve, the adult valve 
displays significantly decreased levels of cell proliferation, likely 
due to increased expression of proliferation inhibitors and lack of 
enrichment of positive regulators. At 4 months, the valve ECM is 

diverse compared to PND2 (Table 3) and likely reflects differences 
in biomechanical demand in response to the adult circulatory system 
(49, 50). Similar to the PND2 valve, collagens and proteoglycans 
are predominant. However, the most highly differentially expressed 
collagens are those associated with basement membranes, including 
Col4a6 and Col18a1, which act as a cell scaffold to maintain current 
cell populations and cell integrity as opposed to providing support 
for high cell turnover. In addition, the proteoglycan profile is 
moved towards enrichment of decorin (DCN) and biglycan (BGN) 
consistent with previous studies in aging pigs (51). Furthermore, the 
contribution of ECM remodeling enzymes is shifted to Mmp3 and its 

Figure 6 |  Expression of defense-related genes increases with valve maturation. (a) RNA-sequencing fold changes of defense-related genes. Expression is 
normalized to 1, indicated by the x-axis (#:FDR < 0.05). (B) Immunofluorescence staining for Ptgs2 validates RNA-seq trends, showing low expression at PND2 
compared to (c) Ptgs2 staining at the 4 month time point (white arrows indicate Ptgs2-positive cells). (D) Immunofluorescence staining for Rarres2 validates 
RNA-seq trends, showing low expression at PND2 compared to (e) Rarres2 staining at the 4 month time point. Ao, aorta; AoV, aortic valve.
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