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Editorial on the Research Topic
Physio-logging in humans: recent advances and limitations in wearable
devices for biomedical applications
s

The recent advancements in wearables and machine learning have paved the way
for unparalleled approaches to monitor physiological parameters, prevent diseases and
medical conditions, and to assist, and treat patients that suffer from them. These
approaches also show great potential in studying human physiology in extreme conditions.
Wearable devices can provide real-time information about human health and wellbeing
in extreme environments, enabling early detection of any changes or abnormalities in
normal physiological function. In addition,wearables and recent advances in physio-logging
can alleviate the impact of numerous diseases, and medical conditions globally. These
approaches will impact our life also by reducing the cost of healthcare and increasing
patients’ quality of life. Noteworthy strides have already been accomplished, evoking
enthusiasm among patients and researchers alike.

Based on the considerations outlined above, this Research Topic, entitled “Physio-
logging in Humans: Recent Advances and Limitations in Wearable Devices for
Biomedical Applications,” aimed to showcase original multidisciplinary research
focused on the development, validation, translational Research Topic and practical
application of wearable technologies for physiological monitoring. Following rigorous
peer review, eight original research papers were selected for inclusion in this Research
Topic.

The work of Brady et al. aimed to explore foundational capabilities and feasibility
of wearable physio-logging for remote monitoring. Recent advances in wearable
technologies have expanded the scope of physio-logging in biomedical applications.
Studies demonstrate the feasibility of remote health monitoring using apps like
Labs Without Walls and devices such as the Apple Watch, with high adherence
across diverse age groups. In a clinical trial conducted over 8 weeks, participants
provided high-quality passive and active data with strong adherence and usability.
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The findings support wearable-based physio-logging as a scalable,
user-friendly approach for decentralized health monitoring,
highlighting its potential for broad population studies and future
enhancements through gamification and improved survey design.

Understanding the validity of wearable sensors to measure
specificmetrics play a crucial role for clinical adoption. In this line of
work, Icenhower et al. conducted validation studies showing PPG-
based heart rate measurements are largely unaffected by skin tone,
however, accuracy declined during rapid activity changes compared
to ECG readings. These results support the reliability of PPG across
diverse populations, while highlighting the need for continued
validation of wearable devices under dynamic conditions to ensure
equitable and accurate physio-logging in biomedical applications.

With a focus on translating technology to market for low-
resource settings, Mendt et al. assessed consumer-grade wearables
against research-grade devices during physical activity. While the
consumer grade device performedwell for heart rate at low intensity,
its accuracy declined with exertion. Step count, energy expenditure,
and temperature readings also showed limited reliability. These
findings, again, highlight both the potential and limitations of
consumer wearables for physio-logging, suggesting they may be
useful for long-term monitoring in low-resource settings, but are
not yet suitable for precise clinical applications or, at least, should
be validated according to their intended use-case.

In the spirit of interdisciplinary research combining biomedical
tech and immersivemedia, the human factors research ofMedarević
et al. assessed the ability of two wearable devices—the Empatica
E4 and Faros 360—to detect physiological distress in interactive
virtual reality (VR) environments. Using heart rate metrics,
both devices successfully identified distress, particularly during
interactive VR scenes. The Faros 360 showed superior signal
quality and consistency, though both devices demonstrated good
agreement in heart rate measurement. These findings highlight the
potential of wearable physio-logging tools in immersive settings,
supporting their use in adaptive VR therapies and user experience
optimization. The study also underscores the importance of
device-specific performance in accurately capturing emotional and
physiological states.

Practical application of wearables must also anticipate use in
extreme environments Pernett et al. concluded that a custom-
made chest strap equipped with strain gages, similar to consumer-
grade devices, still faces limitations in accuracy under physical
stress. Specifically, the study evaluated the ability of their force
sensor to estimate hyperventilation risk in freedivers by predicting
end-tidal CO2 levels. Data from 21 athletes showed that chest
movement amplitude and respiratory rate could explain 34% of
CO2 variability, suggesting potential for detecting unintentional
hyperventilation—a key blackout risk. These findings highlight the
promise of wearable physio-logging for enhancing safety in high-
risk sports, while underscoring the need for further validation and
improved algorithms for freediving safety.

In a dynamic field such as wearables, technical innovations
and modeling abound, Ogata et al. developed a personalized
method for estimating energy expenditure during heavy physical
labor using wearable accelerometers and heart rate sensors. By
calibrating individual models, the combined approach significantly
outperformed accelerometer-only estimates. These findings
underscore the limitations of single-sensor systems and highlight

the value of multimodal wearables in extreme environments. These
results may lead to improved health and nutrition planning for
disaster relief teams and advancing physio-logging applications in
real-world, high-stress scenarios.

Machine learning is increasingly featured in wearables
research and Kishor Kumar Reddy et al. introduces a ResNet-
LSTM deep learning model for non-invasive blood pressure
estimation using ECG and PPG signals. Designed for Smart Health
Monitoring in remote or underserved areas, the model achieved
high accuracy despite greater computational demands. Its strong
performance across datasets highlights the potential of AI-powered
wearable physio-logging to enhance real-time cardiovascular
monitoring and address limitations of traditional cuff-base blood
pressure measurement. In a similar way, Dervieux et al. aimed
to explore predictions and limitations of models for non-heated
transcutaneous CO2 sensors that have the potential to allow more
accessible, real-time monitoring of arterial CO2 partial pressure in
clinical and remote settings to monitor patients severe respiratory
disorders. This study examined how skin temperature influences
transcutaneous CO2 diffusion, a key factor in wearable capnometer
performance. In 40 adults, skin conductivity, CO2 exhalation,
and blood flow increased significantly at 35–38°C—temperatures
achievable without active heating. These findings support the
feasibility of non-heated tcpCO2 sensors, advancing wearable
physio-logging by addressing amajor limitation in currentmonitors
and enablingmore practical, continuous respiratory tracking in both
clinical and remote settings.

Collectively, these contributions underscore the growing
reliability, versatility, and challenges of wearable physio-logging,
paving the way for more inclusive, adaptive, and scalable health
technologies.
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Skin temperature influence on
transcutaneous carbon dioxide
(CO2) conductivity and skin
blood flow in healthy human
subjects at the arm and wrist

Emmanuel Dervieux1,2,3*, François Guerrero2, Wilfried Uhring3,
Marie-Agnès Giroux-Metgès2,4 and Michaël Théron2

1Biosency, Cesson-Sévigné, France, 2EA4324-ORPHY, Univ Brest, Brest, France, 3ICube, University of
Strasbourg and CNRS, Strasbourg, France, 4Explorations Fonctionnelles Respiratoires, Centre
Hospitalier Régional et Universitaire de Brest, Brest, France

Objective: present transcutaneous carbon dioxide (CO2)—tcpCO2—monitors
suffer from limitations which hamper their widespread use, and call for a
new tcpCO2 measurement technique. However, the progress in this area is
hindered by the lack of knowledge in transcutaneous CO2 diffusion. To address
this knowledge gap, this study focuses on investigating the influence of skin
temperature on two key skin properties: CO2 permeability and skin blood flow.

Methods: a monocentric prospective exploratory study including 40 healthy
adults was undertaken. Each subject experienced a 90 min visit split into five
18 min sessions at different skin temperatures—Non-Heated (NH), 35, 38, 41,
and 44°C. At each temperature, custom sensors measured transcutaneous CO2

conductivity and exhalation rate at the arm and wrist, while Laser Doppler
Flowmetry (LDF) assessed skin blood flow at the arm.

Results: the three studied metrics sharply increased with rising skin temperature.
Mean values increased from the NH situation up to 44°C from 4.03 up to
8.88 and from 2.94 up to 8.11 m·s−1 for skin conductivity, and from 80.4 up
to 177.5 and from 58.7 up to 162.3 cm3·m−2·h−1 for exhalation rate at the arm
and wrist, respectively. Likewise, skin blood flow increased elevenfold for the
same temperature increase. Of note, all metrics already augmented significantly
in the 35–38°C skin temperature range, which may be reached without active
heating—i.e. only using a warm clothing.

Conclusion: these results are extremely encouraging for the development of
next-generation tcpCO2 sensors. Indeed, the moderate increase (× 2) in skin
conductivity fromNH to 44°C tends to indicate that heating the skin is not critical
from a response time point of view, i.e. little to no skin heating would only result
in a doubled sensor response time in the worst case, compared to a maximal
heating at 44°C. Crucially, a skin temperature within the 35–38°C range already
sharply increases the skin blood flow, suggesting that tcpCO2 correlateswell with
the arterial paCO2 even at such low skin temperatures. These two conclusions
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further strengthen the viability of non-heated tcpCO2 sensors, thereby paving
the way for the development of wearable transcutaneous capnometers.

KEYWORDS

carbon dioxide, ptCO2, tcpCO2, transcutaneous, exhalation rate, diffusion, blood flow,
hyperaemia

1 Introduction

Due to its clinical significance, continuous monitoring of the
arterial CO2 partial pressure—paCO2—is of paramount importance
in medical practice, especially for patients presenting severe
respiratory disorders (Wagner, 2015). The gold standard to get a
single paCO2 reading consists in an arterial puncture followed by
a gaseous analysis of the collected blood sample. Unfortunately,
this procedure—tersely referred to as the “blood gases” in
clinical settings—is both painful and risky (Scheer et al., 2002),
requiring trained personnel as well as expensive blood gas
analysers. It also calls for a quick analysis of the blood samples
following their collection, which adds stress to hospital logistics
(Nanji and Whitlow, 1984). These major drawbacks led to the
development of transcutaneous CO2 monitors, which consist
in a Stow-Severinghaus electrode—mainly a pH-meter bathing
in a bicarbonate solution—heated in the 41–44°C range, and
placed against a patient’s skin (Severinghaus and Astrup, 1986;
Huttmann et al., 2014). This electrode measures a transcutaneous
CO2 partial pressure—the tcpCO2—which correlates well with the
paCO2 if the skin is heated above at least 38°C (Wimberley et al.,
1985).

Yet, these monitors also suffer from several weaknesses: i)
their important drift requires a recalibration with an appropriate
gas mixture every 8 hours, at most (Bendjelid et al., 2005), ii) the
thin membrane covering the electrode is fragile, and needs to be
replaced every 2 weeks or so (Lermuzeaux et al., 2016), iii) the
heating power required by the electrode to maintain the skin in
the above-mentioned temperature range is about 100–200 mW1,
thus precluding its use in a battery-powered wearable stand-alone
device and iv) their elevated price tag prevents their widespread
use, would it be in a clinical or home-based setting. Consequently,
the development of an alternative to the existing tcpCO2 monitors
appears mandatory, and has been an active research field in the last
decades (Dervieux et al., 2022; Section 4.1).

Recently, in a review article aiming at encompassing the diversity
of CO2 measurement techniques with a focus on biomedical
applications, we divided the issue of developing such an alternative
tcpCO2 monitor into three research areas (Dervieux et al., 2022):

1. Due to the above-mentioned drift, and high cost of the
Stow-Severinghaus electrode, an alternative CO2 measurement
technique is needed.

2. Then, in order to dimension the sensor-to-be, it is essential to
accurately know the CO2 exhalation rate through the skin, as the
latter directly influences the response time of the sensor.

1 Typical value for a TCM4 tcpCO2 monitor (Radiometer, Denmark), as
measured by the authors.

3. Finally, it is mandatory that the tcpCO2 and paCO2 are in good
agreement at the skin temperature considered for measurement.
Id est, that the correlation between tcpCO2 and paCO2 is
satisfactory at the latter temperature.

Regarding the first point, it appeared to us that, among themany
technologies reviewed, a polymer patch embedding a CO2-sensitive
fluorophore would be particularly advisable. Interestingly, this trail
has recently been followed by Cascales et al. (2022) or Tufan and
Guler (2022) with some success, although no in vivo experiment
have been conducted to date. This point will be the object of future
studies and is not developed any further in this paper.

The second and third points, on the contrary, are at the very heart
of the present study. Starting with the exhalation rate, the main issue
with data available in the literature—see Table 3—is that the skin
temperature is only mentioned once—by Eöry (1984)—and never
accurately regulated when this parameter is measured (Fitzgerald,
1957). Even though Levshankov et al. (1983) crafted a heating
device, they do not report the temperature setpoint that they used.
Thus, the present study aims at filling this gap by measuring the
influence of skin temperature on the transcutaneous CO2 exhalation
rate.

While the tcpCO2/paCO2 correlation is excellent at—or
above—42°C (Conway et al., 2018), scarce are the authors
who investigated lower skin temperatures, with none but
Wimberley et al. (1985) experimenting with temperatures as low
as 38°C. The reason for heating the skin in the first place is to trigger
a local reactive hyperaemia (Roustit and Cracowski, 2012). By doing
so, the subcutaneous tissues are flushedwith fresh arterial blood, and
their gaseous content thus gets closer to the arterial one (Koch, 1965;
Rooth et al., 1987; Zavorsky et al., 2007). While temperatures in the
42–44°C range have often been used to triggermaximal hyperaemia,
lower temperatures have been seldom explored (Hodges et al.,
2016), and we thus took advantage of our exhalation rate
measurements tomeasure the skin blood flow at lower temperatures
simultaneously.

Then, the reader should bear in mind the importance of
skin temperature for designing a new kind of tcpCO2 sensor.
Indeed—ideally—such a sensor should heat the skin as little as
possible for two main reasons: i) heating the skin is uncomfortable
for the patient and can wake them up in the case of night time
monitoring, and ii) it consumes a significant amount of power,
which precludes using such sensor in a wearable, as mentioned
above. Yet, such an unnoticeable and wearable tcpCO2 sensor
would be highly desirable in a telemonitoring context for home
use, reducing the need for hospital visits. Indeed, if the positive
impact of tcpCO2 telemonitoring is yet to be demonstrated—for the
obvious reason that the corresponding wearable tcpCO2 monitor
does not exist at the time being—several clinical trials demonstrate
the beneficial contribution of telemedicine—a.k.a. telehealth—on
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FIGURE 1
General outline of the rate sensor and its peripherals. See the text for further explanations.

both patient’s outcome and costs of admission in a variety of
conditions (Steventon et al., 2012; Yun et al., 2018; Kruse et al.,
2019). Additionally, the outbreak of contagious pandemics—such
as COVID-19 (Garfan et al., 2021)—and the rapid development of
the health wearable market (Dunn et al., 2018; Yetisen et al., 2018;
Chung et al., 2019; Dagher et al., 2020) may also promote the use of
telemonitoring in medical practice. For these reasons, not heating
the skin while measuring tcpCO2 would be highly desirable.

The following study focuses on measuring the transcutaneous
CO2 exhalation rate and cutaneous micro-circulation on the full
NH–44°C skin temperature range. Two measurement sites were
investigated: the dorsal side of the wrist and the lateral aspect of
the upper arm, while the skin blood flow was only measured at
the upper arm. Additionally, a strong emphasis was placed on the
transcutaneous CO2 conductivity, which may be preferred to the
well-known exhalation rate because of its more intrinsic nature—in
particular, the latter conductivity does not depend on the ambient
CO2 level, nor on the subject’s paCO2, as opposed to the exhalation
rate, which is influenced by both.

2 Materials

2.1 The transcutaneous CO2 rate sensor

A custom transcutaneous CO2 diffusion rate sensor—hereafter
simply denoted as “the sensor”—was developed for the needs
of this study. Its basic working principle is close to that evoked
by Dervieux et al. (2022)—and will be further detailed in
Section 3.1.1—while its design is inspired by the early works of
Eletr et al. (1978) and Greenspan et al. (1981). The general outline
of the sensor and its peripherals can be seen in Figure 1.

The sensor, designed to be placed against the subject’s skin
by mean of a double-sided adhesive, is connected to three main
apparatuses: i) a calibrated, reference thermometer (Testo 735, Testo,
Germany) equipped with a type K thermocouple (110-4482, RS Pro,
United Kingdom), ii) a Doppler perfusion monitor (Periflux 5000,
Perimed, Sweden) equipped with a 407 probe, and iii) a control and
supply block, consisting in a thermostat, a power supply unit, and

a Universal Serial Bus (USB) to universal Asynchronous Receiver
Transmitter (UART) converter, embedded in a 3D-printed case. For
the sake of conciseness though, the control and supply block is only
detailed in the Supplementary Material S1, which also contains a
thorough analysis of the safety issues that may arise when using this
sensor. The sensor itself can be seen in great details in Figure 2. It
consists in an aluminium (2017A) body, which serves as a support
for the following elements: a CO2 sensor, a heating resistive wire,
a thermistor, a thermocouple, the Doppler probe, a poly-lactic acid
(PLA) 3D-printed cover, and an interfacing Printed Circuit Board
(PCB). Complete drawings of the sensor’s body are provided in the
Supplementary Material S1.

The CO2 sensor is a MinIR (ExplorIR–M5%, CO2Meter, United
States), an off-the-shelf, compact, NonDispersive Infra-Red (NDIR)
CO2 sensor, with a full range of 5% and an accuracy of 70 ppm ±
5% of reading at Standard Temperature and Pressure (STP)—see
Hodgkinson and Tatam (2012) for further details on the operating
principle of such sensors. Its internals—a pair of IR Light Emitting
Diode (LED) and photodiode (PD) facing a spherical, gold-plated
mirror—may be seen in the cut view of Figure 2. The pCO2 inside
the sensor was recorded with a sampling frequency of 2 Hz.

As the gas-tightness of themeasuring chamber is a critical aspect
of the sensor’s operating principle—see Section 5.1.3—a two-stage
sealing was implemented: i) a silicone-grease coated (515520, GEB,
France), soft—60 Shore A hardness—silicone O-ring was placed
between the aluminium body and the CO2 sensor itself and ii)
liquid epoxy resin (Résine Cristal, Gédéo, France) was cast in the
remaining interstice between the latter two elements—illustrated in
the cut view of Figure 2 in vivid red.

The thermoregulation of the sensor is performed by mean
of a resistive wire for heating, coupled to a thermistor for
temperature measurement and regulation. For verification purpose,
an additional thermocouple was also added, as stated above. The
heating wire consists in 2× 15 turns of 28 Ω·m−1, 0.15 mm in
diameter, enamelled, resistive, constantan wire (Isotan, Thomsen),
connected in parallel. The wire delivers a total heating power of
6.1 W under 12 V, and is coiled around the aluminium body, in a
dedicated groove.The bottom of the groove is covered with a layer of
0.25 mm thermally conductive double sided tape (8810, 3M, United
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FIGURE 2
Detailed views of the sensor. (A): exploded view, detailing its different parts. (B): cut view, showing the inner functioning principle of the CO2 sensor.
Note the epoxy resin sealing, in red. (C): isometric views from above, and below, of the fully assembled sensor, illustrating the grid-shaped sensor’s sole.

States) prior to coiling the wire, and the latter is finally covered with
two nitrile quad rings, as can be seen in Figure 2.This covered layout
prevents burns caused by direct contact with the heating wires. The
thermistor (151-237, RS Pro, United Kingdom) and thermocouple
were glued in two dedicated flat-bottommounting holes which were
pre-filled with a thermally conductive, electrically non-conductive,
epoxy resin (8329TFM, MG Chemicals, Canada). Care was taken
that i) the distance between the bottom of the mounting holes and
the heatingwire and ii) that between the sole of the sensor’s body and
the heating wire were equal, in order to ensure that the temperature
measured by the thermistor and thermocouple is close to that of the
skin.

The Doppler probe is housed in a dedicated hole, and can slide
vertically, in such a way that it can be adjusted to outcrop the sole of
the sensor, coming in direct contact with the skin. It holds in place
by mean of a cup-pointed, headless, set screw which compresses
it radially via an O-ring, so as not to damage the probe. The
raw Doppler perfusion signal—originally sampled at 62.5 Hz—was
downsampled to 0.625 Hz and low-pass filtered using a tenth-order
Butterworth filter prior to further analysis—see Section 3.1.2.

The 3D-printed cover and interfacing PCB were added for
usability purposes: the 3D-printed PLA cover allows to attach a
strap (HTH 833 with H83 hooks, Velcro, United Kingdom) to the
sensor in order to maintain it against a subject’s skin, as illustrated
in Figure 3B, while the interfacing PCB gathers the four UART
pins from the CO2 sensor, the two ends of the thermistor, and
those of the heating wire into a single eight-pins Microfit connector
(0430450812, Molex, United States).

The adhesive itself consists in a disposable laser-cut, double-
sided, clinical-grade tape (1567, 3M, United States). For ease of
application, a special tooling was developed to accurately align the
sensor and the adhesive together—see Supplementary Material S1.

2.2 Reference tcpCO2 monitor

In addition to the above-detailed custom-made sensor, a
clinical-grade tcpCO2 monitor (TCM4, Radiometer, Denmark)
was also used on the upper deltoid—one of the recommended
sites for tcpCO2 monitoring (SenTec, 2016)—yielding a
continuous reference tcpCO2 reading. The tcpCO2 sensor itself
(tc Sensor 54) was affixed to the skin using an appropriate
attachment ring and contact gel, and it was re-membraned
and re-calibrated when needed, as per the manufacturer’s
guidelines. All the accessories used to this end were Radiometer’s
(Radiometer, 2020).

2.3 Sensors positioning

The different sensors and measurement sites chosen in the
study are illustrated in Figure 3A. All sensors were placed on the
subject’s left arm: the reference tcpCO2 monitor was placed on the
upper deltoid, as mentioned above, while two custom rate sensors
were positioned as follows. The first one was equipped with the
Doppler probe, and was attached on the distal side of the upper
arm, immediately below the deltoid, at the junction point between
the upper part of the biceps, the lower end of the deltoid, and
the triceps. The second rate sensor was placed on the dorsal side
of the wrist, and did not include a Doppler probe. Both sensors
were affixed to the subject’s skin by mean of the above-mentioned
double-sided adhesive, and secured in place with a Velcro strap.
Additionally, the subject’s arm laid comfortably onto an arm gutter
so that it remains still and relaxed for the whole duration of the
experiments.
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FIGURE 3
(A): outline of the sensors used in this study, and their location. (B): a picture of the sensor with its connection cable assembly and strap, attached on a
wrist. (C): simplified model of CO2 diffusion through the skin inside a closed sensor.

3 Methods

3.1 Measured metrics

3.1.1 Skin CO2 conductivity and exhalation rate
The rate of diffusion—a.k.a. the exhalation rate—of CO2

through the skin per unit of area—hereafter noted Q, of dimension
L3·L−2·T−1—can be measured by affixing to the skin a cup-like
device, which entraps the skin-exhaled CO2. In this situation, the
CO2 diffusion through the skin can be modelled as presented
in Figure 3C. Briefly, the skin is considered as a CO2-permeable
membrane of thickness w and diffusivity D towards CO2 (unit of
m2 s−1). The partial CO2 pressure inside the sub-cutaneous tissues
and inner chamber are tcpCO2 and pSeCO2, respectively, and the
sensor area in contact with the skin is SSe, while its equivalent
height and volume are hSe and VSe. It can be shown under certain
hypotheses (Dervieux et al., 2022) that:

dpSeCO2

dt
= D
w ⋅ hSe
⋅ (tcpCO2 − pSeCO2) (1)

Leading to a first-order behaviour for pSeCO2, given by:

pSeCO2 (t) = tcpCO2 ⋅ (1− e
− t

τ )

+ pSeCO2 (t = 0) ⋅ e
− t

τ , withτ =
hSe ⋅w
D

(2)

And Q is then equal to:

Q (t) = D
w ⋅ P0
⋅ (tcpCO2 − pSeCO2 (t = 0)) ⋅ e

− t
τ (3)

wherein P0 is the total atmospheric pressure at measurement
site. However, since Q depends on both the ambient level of
CO2—via pSeCO2(t = 0)—and the subject’s capnia—via tcpCO2—we

introduced the skin conductivity—from the thermodynamic or
electrical analogy—expressed in m·s−1, and defined as:

K = D
w
=

P0 ⋅Q (t = 0)
tcpCO2 − pSeCO2 (t = 0)

(4)

Contrary to Q, K is an intrinsic property of the skin and is
independent of the tcpCO2/pSeCO2 gradient. Additionally, deriving
Eq. 2 and evaluating it at t = 0 yield:

K =
hSe

tcpCO2 − pSeCO2 (t = 0)
⋅
dpSeCO2

dt
|
t=0

(5)

In practice, K was thus measured as follows, choosing arbitrarily
t = 0 at each temperature change:

– hSe is known by dividing VSe by SSe. The latter is known by
construction of the sensor’s aluminium body, while VSe was
estimated by filling a clone of the sensor with a low viscosity
fluid—pure ethanol—and weighting it.

– the subject’s tcpCO2 was measured using the above-mentioned
reference medical grade monitor. The extraction of a single
tcpCO2 reading for each temperature set-point is detailed in
Supplementary Material S1.

– pSeCO2(t = 0) could be measured with a simple reading of the
CO2 sensor.

– dpSeCO2

dt
|
t=0

was estimated by fitting a linear regression on the
measured pSeCO2. The latter regression was performed on the
pSeCO2 data starting 3 min after a temperature change—to allow
for temperature homogenisation of the different inner parts of the
sensor—and up to 18 min after, for a total of 15 min of data. This
duration was chosen following a preliminary study performed on
ten subjects, which yielded R2 regression scores above 0.95 for a
regression duration above 700 s (about 12 min).

In summary, the diffusion of CO2 through the skin was
quantified by the skin CO2 conductivity K, which was measured
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FIGURE 4
(A): typical skin perfusion response to local heating, based on data from different sources (Minson et al., 2001; Cracowski et al., 2006; Minson, 2010;
Frantz et al., 2012; Roustit and Cracowski, 2012). If we suppose the heat stress to be applied at time origin, three phases are usually observed:① an
onset lag corresponding to i) the heating time required by the sensor to reach its set-point temperature and ii) the time taken by the inner skin layers to
reach this temperature and trigger the axon-mediated hyperaemia.② the axon-mediated hyperaemia which rises quickly and then fades away.③ the
nitric-oxide mediated hyperaemia, whose onset is slower and which slowly fades away if the temperature set-point is not too elevated. (B): perfusion
and skin temperature as a function of time as measured at the arm of a test subject.

at five different temperatures, each temperature corresponding to a
18 min measurement window for a total of 90 min of acquisition per
subject, as detailed in Section 3.2, below. Additionally, Equation 4
was used to compute the corresponding equivalent Q (t = 0) with
pSeCO2(t = 0) ≈ 0—i.e. the skin CO2 exhalation rate in free air as
commonly referred to in the literature. Of note, this Q (t = 0) was
not observed in practice, since the sensor was left in place—and thus
pSeCO2(t = 0) ≠ 0 formost temperatures. For the sake of conciseness,
in the remainder of this article, the letter Q alone or the mention
of “skin CO2 exhalation rate” without further indications always
designate the above-mentionedQ (t = 0). Finally, it should be noted
that these Q values were derived mainly as a mean to compare with
the existing literature, and that the actual statistical analyses were
performed on K—see Section 3.3.

3.1.2 Skin blood flow
The skin blood flow—a.k.a. (sub)cutaneous micro-circulation

or perfusion—was measured using LDF, and expressed in
Perfusion Units (P.U.), a dimensionless arbitrary unit that reflects
both the amount and the speed of moving elements—mainly
erythrocytes—seen by the Doppler probe (Bonner and Nossal,
1990). When the skin temperature rises, perfusion increases,
a phenomenon known as heat-triggered—or thermal—reactive
hyperaemia (Minson, 2010), whose dynamics is illustrated in
Figure 4A. The respective durations of phases ①–③ were not
specified in abscissa since they may vary markedly depending
on the heating rate and temperature (Magerl and Treede, 1996;
Del Pozzi et al., 2016). To give the reader an order of magnitude,
phase ① usually lasts a few minutes, phase ② from 5 up to
10 min, and phase ③ from 30 up to 60 min (Minson et al., 2001;
Cracowski et al., 2006; Minson, 2010; Frantz et al., 2012; Roustit
and Cracowski, 2012).

Such a behaviour calls for some kind of data processing to
yield a single representative perfusion metric for the initial bump,
after-bump nadir, and final plateau. In this paper, SkBF90(T)
was defined as the 90th percentile of the measured skin blood

flow—SkBF—on an 18 min window at temperature T. This choice
was made following preliminary measurements at the arm, an
example of which is plotted in Figure 4B. The latter clearly exhibits
five perfusion plateaux corresponding to the five temperature set
points, and one can also distinguish a small initial bump at the
onset of a new temperature, which is especially visible at 35, 38
and 41°C. Due to i) the high variability exhibited by the measured
perfusion, especially at high temperature, ii) the fact that the nitric-
oxide phase can take up to 30–40 min to establish (Barcroft and
Edholm, 1943; Taylor et al., 1984; Minson et al., 2001; Frantz et al.,
2012; Del Pozzi et al., 2016), and iii) the fact that each temperature
window lasts 18 min, it seemed a good strategy to choose a metric
which was more robust than themean—e.g. the nth percentile—and
focused on the very end of the observation window. In this regard,
SkBF90(T) seemed tomeet the latter requirements and was therefore
chosen as perfusion metric. It was additionally normed by the
maximal perfusion measured on a given subject—i.e. the SkBF90
value measured at 44°C. Finally, the LDF metric used throughout
this study is thus:

nSkBF90(T) =
SkBF90(T)

SkBF90(44°C)
(6)

3.2 Protocol design

Theclinical studywas interventional,monocentric, and involved
40 healthy human subjects. Inclusion criteria were an age between
18 and 80, and having given a free and informed consent. Exclusion
criteria were the presence of cutaneous lesions at the measurement
sites or skin conditions such as dermatitis or psoriasis, and taking
vasodilator therapy. The research was approved by the local ethics
committee (Comité de protection des personnes Sud-Méditerrannée
II, IDRCB ref.: 2020-A02185-38), registered on Clinical Trials
(NCT05637138), and it was carried out in accordance with the
declaration of Helsinki.
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FIGURE 5
Graphical representation of the data analysis workflow, see the text for further details.

After a preliminary visit during which the subjects were
informed of the study modalities and gave consent, all
measurements were performed during a single visit, during which
the subjects were seated. This visit began with a visual inspection
of the measurement sites for detection of cutaneous lesions. The
sites were then shaved if needed for a good adhesion of the sensors,
using an electric trimmer in order to avoid skin inflammation. The
skin was then degreased and cleaned using isopropyl alcohol, and
the three above-mentioned sensors were attached to their respective
measurement sites. These preliminary steps also allowed for subject
acclimation and lasted about 5 min. The measurement itself then
began, consisting of five 18 min periods, corresponding to five
temperatures for the two rate sensors: NH, 35, 38, 41, and 44°C.
At the end of the 90 min measurement period, the sensors were
gently peeled off, and the skin was cleaned again. All tcpCO2 and
pSeCO2 data were recorded on computers for future analysis, and the
room temperaturewas also recorded using a calibrated thermometer
(Testo 735, Testo, Germany).

3.3 Data analysis

The data analysis workflow is summarised in Figure 5. Raw data
were collected for all 40 subjects at five different temperatures and
three metrics were extracted for each ith subject/temperature pair:
K at the arm and wrist, and nSkBF90 at the arm only. For each
of those metrics, an ANOVA was performed across all subjects to
determine whether their mean values differ significantly between
two temperatures. If the ANOVA residuals did not significantly
differ from a normal distribution—according to Shapiro-Wilk
testing—and if the hypothesis of variance equality between
the temperature groups was also verified—according to Bartlett
testing—aTuckey post hocHSD test was then performed.Otherwise,
a Kruskal-Wallis test followed by a series of Mann-Whitney U-tests
were performed. Additionally, Pearson and Spearman correlation
tests were also carried out to study the influence of temperature
on the three afore-mentioned metrics (not represented in Figure 5).
When applicable, all tests were two-sided and a 5% alpha risk was
chosen as significance threshold.

4 Results

4.1 Demographics and temperatures

The fourty subjects consisted in 24 men and 16 women, aged
between 20 and 61 years (mean/median/Standard Deviation (SD):
40/39/13 years). The laboratory temperature was in the 20.1–22.7°C
range for the whole duration of the experiments (mean/median/SD:
21.3/21.2/0.7°C). The skin temperature during the non-heated
18 min phase was measured twice, at 10 and 18 min after sensor
application, and these two measurements were averaged to yield
a single temperature value per subject. The latter was in the
27.1–31.8°C range (mean/median/SD: 29.3/29.2/1.2°C) at the arm,
and in the 24.7–33.1°C range (mean/median/SD: 28.6/28.5/1.7°C) at
the wrist.

4.2 Skin CO2 conductivity

The linear regressions leading to K values—see
Section 3.1.1—yielded excellent regression coefficients, with average
R2 values of 0.98 and 0.96 at the arm and wrist, respectively.
The resulting skin conductivities are summarised in Figure 6,
and show a sharp tendency to increase with an increasing skin
temperature. Interestingly, the five upper outlying values at the
arm—at all temperatures—and the four upper and below outlying
values at the wrist—in the 35–44°C range—belonged each time
to a single subject, who exhibited an especially high, or low
skin conductivity. However, these two latter subjects were not
one and the same person at the arm and at the wrist. The
dispersion of skin conductivity values is also glaring with max/min
ratios for a given skin temperature/location pair in the 2.9–9.0
range.

A normalisation of the variable K—using the change of variable
K↦√K—was carried out prior to the ANOVA, resulting in the
Shapiro-Wilk andBartlett tests to be passed (all p-values above 0.05).
The ANOVA was significant (p-value below 10–15) and the results
of the following Tukey post hoc HSD test are detailed in Table 1.
The apparent increase inKwith an increasing skin temperature seen
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FIGURE 6
Skin conductivities at the arm and wrist. Each black mark corresponds to a subject/temperature pair, the red circles and texts indicate mean values, and
some horizontal jitter was added to the black marks for legibility. The whiskers extend at most to 1.5 times the interquartile range, and descriptive
statistics—range, and SD—are provided in Supplementary Material S1—two properties shared by the three box plots of the present paper.

TABLE 1 p-values for the Tuckey HSD post hoc test for differences of themean K at different temperatures.

Values with a † are considered significant with a risk α = 0.05. (Only the lower-left part of the tables are filled-in for the sake of clarity).

in Figure 6 is hereby confirmed, with significantly different mean K
values for most temperature differences except the closest ones—i.e.
for the 35/38, 41/38 and 44/41°C pairs.

Pearson and Spearman correlations were both significant (p-
values below 10–15) with correlation coefficients of 0.60 and
0.59 at the arm, respectively, and 0.66 and 0.67 at the wrist. These
coefficients indicate a moderate positive influence of the skin
temperature on its diffusivity towards CO2.

4.3 Skin CO2 exhalation rate

In order to provide a more accessible parameter than K for
the reader, as well as to allow direct comparison with existing
literature, equivalent initial exhalation rates Q (t = 0) were also
computed using Eq. 4. The resulting values are presented in
Table 2.

Although our results tend to indicate a higher CO2 exhalation
rate at the upper arm than at the wrist—a MANOVAwas performed
considering the measurement site as independent variable and the
five QT as dependent variables, and yielded a p-value of 0.01 using
Pillai’s trace—the size of this effect is moderate, especially in view of
the wide Q dispersion.

4.4 Laser Doppler Flowmetry

nSkBF90 valueswere computed as described in Section 3.1.2, and
are presented in Figure 7. Skin perfusion exhibits a strong increase
with temperature, with a tenfold multiplication between the NH
basal state and the maximum vasodilation 44°C stage. In particular,
a mild heating to a temperature of 38°C already entails a fourfold
increase in perfusion. As was the case for skin conductivity, the
dispersion of the nSkBF90 values is also considerable, with max/min
ratios for a given temperature in the 2.2–9.7 range.

Regarding statistical analyses, the normality and variance
homogeneity hypotheses could not be verified regardless of the
changes of variable performed. A Kruskal-Wallis test was thus
performed, followed by a series of Mann-Whitney U-tests, all of
which proved significant (all p-values below 10–10).

Pearson and Spearman correlations were both significant (p-
values below 10–15) with correlation coefficients of 0.90 and
0.96, respectively. These coefficients indicate a strong positive
influence of the skin temperature on its perfusion. The fact
that Pearson’s correlation is below Spearman’s is not surprising
since the relationship between skin temperature and nSkBF90 is
strongly non-linear, as emphasised by the sigmoid fit performed in
Figure 7.
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TABLE 2 Q (t = 0) values, as computed using Eq. 4, expressed in cm3·m−2·h−1.

FIGURE 7
Measured nSkBF90 at the arm. Note that since nSkBF90 is normalised
with respect to SkBF90 at 44°C, all subjects merge into a single unitary
value at this latter temperature. Each black mark corresponds to a
subject/temperature pair, the red circles and texts indicate mean
values, and the red curve is a least square sigmoid fit. Contrary to
Figure 6, no horizontal jitter was added to the data, and the dispersion
observed in the 27–32°C range corresponds to the inter-subject
variability in non-heated skin temperatures.

5 Discussion

The main objectives of this research were to ascertain the
influence of skin temperature on i) its permeability towards
CO2—through the study of the skin CO2 conductivity K, and
exhalation rate Q—and ii) the skin blood flow—through nSkBF90.

5.1 Sensor design

5.1.1 Skin contact surface
Although the sensor’s aluminium body was precisely machined

following the drawing given in Supplementary Material S1, the exact
surface area in contact with the skin that participates in gaseous
exchange may slightly vary from one subject to another. Indeed, at
each hole of the sensor’s sole, the skin forms a small dome, whose
convexity is essentially function of the mechanical properties of
the skin. Yet, those mechanical properties are sex-, moisture-, age-,
and temperature-dependant (Salter et al., 1993; Held et al., 2018),
thereby introducing small intra- or inter-subject variations in skin
contact surface area. Since this area is used to calculate K through

SSe—see Section 3.1.1—the latter is in turn influenced by these small
variations.

While this would likely not change the conclusions of the
present study given the order of magnitude of the above-described
phenomenon reported in the literature, future research could look
into replacing the grid-shaped sole that we used by a thin metal
mesh, or a metallic foam. These two latter techniques were for
instance implemented by Eletr et al. (1978), McIlroy et al. (1978),
and Hansen et al. (1980). However, it must be emphasised that the
shape of the sole of a thermally-regulated transcutaneous exhalation
rate sensor is essentially a compromise between: i) the degree
of perforation or porosity of the surface, which should be as
high as possible to ensure a large diffusion surface, and ii) heat
transfer considerations, which call for a plain, dense, surface, with
a minimum number of holes, to ensure temperature homogeneity
of the skin. Additionally, while the use of a wire mesh, or metallic
foam reduces the above-mentioned “dome effect”, it also makes the
surface estimation more tedious. Therefore, this aspect of the sensor
design should be further investigated to find a satisfactory technical
solution which addresses the above concerns.

5.1.2 CO2 sensor choice
The choice of the selected NDIR CO2 sensor was mainly

motivated by its compact form factor and ease of implementation.
Additionally, the 5% range was especially adapted for CO2 diffusion
rate measurement. Indeed, tcpCO2 in healthy subjects is typically
in the 35–45 mmHg range (Rithalia et al., 1984), corresponding
to 4.6–5.2% of CO2. Since the CO2 diffusion rate measurements
taking place in the present study were only limited to the first
moments of CO2 diffusion from the skin into the sensor—see
Section 3.1.1—measured CO2 fraction values stayed below 1–2%.
The 5% range was thus adapted to our need.

5.1.3 Gas tightness
As mentioned in Section 2.1, the gas tightness of the sensor’s

chamber with respect to ambient air was of paramount importance
for the success of the study. Indeed, any leak of inner-chamber
CO2 towards the outer air would subtract from the measured
rate of exhalation of CO2 through the skin, and thus impair the
resulting K values. During the sensor’s design, gas tightness was
assessed by sticking the sensor onto a glass plate using the same
adhesive as for the human-testing part of the study. The so-obtained
glass plate/sensor pair was then put inside a chamber which was
successively filled with a 2.5% CO2/di-nitrogen (N2) mixture and
fresh air. The resulting measurements are presented in Figure 8B,
and clearly demonstrate that the greased O-ring alone was not gas
tight, while the epoxy sealing was. The Figure 8A also illustrates in
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FIGURE 8
(A): close up of the section view of Figure 2, showing the two key elements of the gas tight seal: a grease-coated O-ring, and cast epoxy resin. (B): a
sealing test comparing the greased O-ring alone, with the greased O-ring and the cast epoxy resin. This test clearly indicates that the greased O-ring
alone does not accomplish gas tightness, whereas the cast epoxy resin does. (C): sensor sensitivity towards humidity, showing the onset of
condensation onto the gold-plated dome. This condensation drastically reduces the quantity of light reaching the detector, effectively blinding it,
which is interpreted as an exceedingly elevated CO2 concentration.

a cut view how the epoxy seal complements the O-ring. In practice,
the grease-coated O-ring acts as a resin-proof sealing that prevents
the resin from flowing inside the sensor’s chamber during its casting
process.

This gas tightness allows CO2 to accumulate into the sensor
chamber until an equilibrium is reached between the subcutaneous
tissue and the sensor’s chamber—i.e. until pSeCO2 = tcpCO2. While
this equilibrium—although it would take several hours given the
respective order of magnitudes of Q and hSe—and the associated
CO2 diffusion process are at the very heart of this study, another
undesirable chemical species will also accumulate into the sensor’s
chamber due to the combined action of diffusion and sweating:water
vapour.

While the influence of water vapour on NDIR CO2
measurements due to the infrared absorbance of water vapour is
expected to be negligible given the large gap between CO2 and
water vapour infrared absorption bands (Mranvick, 2023), the onset
of condensation onto the reflective part of the sensor—namely
the gold-coated reflective dome—can still be an issue. Indeed, the
formation of micro-droplets of condensing water onto the latter
domewould drastically reduce its reflectance, fooling the sensor into
believing that a large amount of CO2 is present inside the sensor’s
chamber—a well-known issue in NDIR sensing (Fietzek et al., 2014;
Wang et al., 2018). In order to study the influence of condensing
humidity levels onto the sensor used in the present research, two
experiments were carried out whose outcomes are presented in
Figure 8C. The first experiment consisted in placing the sensor
on a human thigh at increasing temperatures and waiting for
condensation to occur, which happened after 30 min at 44°C.
The second experiment consisted in bubbling ambient air (20°C)
through pumice stone inside a hot water bath, yielding water-
saturated hot air (40°C), which was then flowed onto the un-heated
sensor. Even in these unfavourable conditions—i.e. a cold sensor and
water-saturated hot air—it took about 20 min to detect the onset of

condensation on CO2 measurements. Given that the latter onset
was particularly sudden and visible on pSeCO2 in both experiments,
the influence of water vapour condensation on this study was
deemed negligible. Indeed, it would be easily detected—were it
to happen while measuring a given subject—and the corresponding
measurement would be discarded, something which did not happen
in practice.

Finally, the reader should bear in mind that the gas tightness
of the sensor and the accumulation of humidity underneath it
both create a condition called skin occlusion. This occlusion, while
out of the scope of this paper, has been studied by several
authors (Frame et al., 1972; King et al., 1978; Faergemann et al.,
1983), who reported much higher CO2 exhalation rates for long-
term—i.e. days—occluded skin, as compared to its basal state. This
phenomenon was not investigated in the present study due to the
long time scale that it involves, but further research on this topic
would be welcome.

5.1.4 Sensors positioning
To our knowledge, only three studies compared the influence

of the measurement site on the transcutaneous CO2 diffusion rate
in humans: that of Schulze (1943) on twelve subjects (Table 16 op.
cit.), that of Adamczyk et al. (1966) on one subject and that of
Levshankov et al. (1983) on an unspecified number of subjects. The
results of the latter two authors are summarised in Figure 9—Schulze
indications were difficult to interpret and were thus not illustrated.

The high variability in Adamczyk et al. data—probably caused
by the inclusion of only one subject—is glaring, especially
when studying left-body/right-body differences. Interesting are the
extremely important values reported for the axilla. Those values
may be measurement artefacts, or they may be caused by a peculiar
behaviour towards CO2 diffusion of the apocrine glands, which
are mainly located in the axilla—see Baker (2019). However, we
found no evidence in the literature for or against this hypothesis.
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FIGURE 9
CO2 diffusion rates through human skin at various sites, expressed in cm3·m−2·h−1, based on data from Adamczyk et al. (1966) (A) and Levshankov et al.
(1983) (B).

Alternatively, those elevated values may be caused by the skin
temperature, which is much higher at the axilla on resting subjects
than at the extremities (Niu et al., 2001; Sund-Levander et al., 2002),
since the skin was not heated in their study. At the opposite, the
results of Levshenkov et al. are more homogenous concerning left
and right body measurements. All in all, and apart from the extreme
axilla values, the reported CO2 diffusion rates exhibit no extreme
variations and are of the same order of magnitude, regardless of
the measurement site. In this aspect, it thus seems from the limited
information at our disposal that no measurement site is far better
than the other from the CO2 diffusion rate perspective.

Consequently, we chose our measurement sites mainly for their
ease of access and acceptability, with a view to using these sites for a
future wearable tcpCO2 sensor. In this respect, the dorsal side of the
wrist and the upper arm were found to be particularly interesting, as
evidenced by the rapidly expanding and widespread use of health-
related wristband and armband in the recent years (Al-Eidan et al.,
2018; Cosoli et al., 2020; Soon et al., 2020).

5.2 Skin CO2 conductivity

5.2.1 Metric choice
It must be emphasised here that in the simplified skin diffusion

model introduced in our previous publication (Dervieux et al.,
2022) and detailed in Figure 3, the membrane called “skin” does
not correspond to an actual physiological membrane. Consequently,
its thickness w and diffusivity towards CO2 does not correspond to
any physical property that might have been measured on a specific
part of the dermis or epidermis. Rather, this “skin” membrane
corresponds to a physical modelling of gas transport between the
subcutaneous tissue and the outer air. As such, the latter membrane
models both the diffusion of CO2 through the stratum corneum and

the circulation of blood and diffusion of CO2 in the dermis and
subcutaneous tissues.

Moreover, this model also integrates the difference in tcpCO2
between that measured by the reference Radiometer tcpCO2
monitor, and that measured at the sensor’s location. Indeed, since
the reference tcpCO2 monitor was set to 41°C, it is likely that the
tcpCO2 that we injected in Equation 4 is slightly over-estimated—as
per the dilution principle presented in Figure 11—at temperatures
below 41°C. Consequently, reported K—or Q—values below 41°C
are likely to be slightly over-estimated. The amplitude of this over-
estimation should be in the same order of magnitude as the arterio-
venous pCO2 gradient in resting, healthy subjects—i.e. about 5–15%
in the NH–38°C skin temperature range (Kowalchuk et al., 1988;
Schneider et al., 2013). However, this state of fact was inevitable
since, to the best of our knowledge, no clinical tcpCO2 monitor
working at a temperature below 37°C exists at the time being,
and manufacturers recommend using 41–42°C—an injunction that
we followed. Future research aiming at extending our work may
consider the design of a tcpCO2 sensor working at low temperature
in order to establish the appropriate corrections to the obtained K
values.

5.2.2 Impact on the response time of a future
tcpCO2 sensor

Contrary to perfusion—which increases over elevenfold with
skin heating—K only doubles from NH to 44°C, and its increase
is even smaller between 35–38 and 44°C values. This latter fact is
all the more interesting when having in mind the design of a future
energy-efficient tcpCO2 sensor. Indeed, internal studies measuring
skin temperature under a wearable device positioned at the upper
arm (Bora Band, Biosency, France) on ten healthy subjects revealed
that a mean skin temperature of 33.9°C could easily be achieved
at the upper arm without additional heating, and that covering
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the arm with an additional layer of isolation—i.e. shirt or jumper
sleeves—makes it rise even higher to reach 35.1°C.

With such skin temperatures, there is no strong incentive—from
a response time point of view—to heat the skin actively any
further—i.e. by mean of an external electrical heating system.
Indeed, the measured increase of 35% in K at the arm from 35
to 44°C—see Figure 6—would result in a decrease in response
time of the same magnitude for a given tcpCO2 sensor, according
to the response time model presented in our previous paper
(Dervieux et al., 2022). While having a slower sensor may seem like
a burning issue for critical care applications, it is not the case for
telemonitoring for which long-term tendencies are to be observed
over several months (Jang et al., 2021).

Additionally, it should be noted that since theQ valuesmeasured
in the present study—80–178 cm3·m−2·h−1 on average—are in
line with that used in our previous publication (Dervieux et al.,
2022) for response time calculations—100 cm3·m−2·h−1—the afore-
proposed sensor thickness of 100 μm for a response time below
10 min remains credible. As a reminder, it was shown in the latter
publication that a linear relationship exists between the response
time of an equilibrium-based tcpCO2 sensor, and the volume
to surface ratio—i.e. equivalent thickness—of its equilibration
medium. Thus, there is essentially a compromise to be made
between this thickness, which cannot be infinitely small for
technological reasons, and the response time of a so-designed sensor
(Dervieux et al., 2022).

Of note, and to the best of our knowledge, there is a lack
of clinical guidelines specifying the required response time
for tcpCO2 monitors. Nevertheless, there exists a considerable
amount of literature focusing on transcutaneous monitor testing
in clinical environments, from which it can be inferred that a
typical in vitro 90% response time of about 1 min (Bendjelid et al.,
2005; Eberhard, 2007) is achievable with current tcpCO2
monitors. In vivo performance reports, on their, part mention
an approximatively 10 min initial equilibration time before a
first tcpCO2 reading can be taken (Carter and Banham, 2000;
Domingo et al., 2010; Restrepo et al., 2012). Regarding the response
time of tcpCO2 monitors following a sudden change in paCO2,
a lag has been reported in the literature between end-tidal
pCO2—petCO2—paCO2, and tcpCO2, inducing a higher in vivo
response time than in the ideal in vitro case. Reported values for this
latter lag fall within the 1–5 min range (Kesten et al., 1991; Carter
and Banham, 2000; Cuvelier et al., 2005; Rafl et al., 2018). An overall
response time requirement of approximatively 5 min can thus de
facto be assumed for a tcpCO2 monitor to meet field expectations.
Still, this latter assumption mainly holds for the intensive care of
critically ill patients (Mari et al., 2019) and no information exists
concerning long-term tcpCO2 (tele-)monitoring for the obvious
reason that the corresponding monitors do not exist yet.

5.3 Exhalation Rate

5.3.1 An Imperfect Metric
Considering Equation 1, it readily appears that the exhalation

rate Q is not constant, and logically depends on the initial pSeCO2,
and of the passing of time. This issue has however been largely
ignored by the literature on the topic—see Table 3—and Q has been

considered by most authors as if it had a single constant value. The
latter, which has been reported as the CO2 diffusion rate through
the skin, is actually the initial one in free air—i.e. Q (t=0) with
pSeCO2(t = 0) ≈ 0—and corresponds to the slopes of the tangents to
the pSeCO2 curves at t = 0 in Figure 10A.

Unfortunately, if measuringQ as illustrated in the latter figure is
theoretically feasible at different temperatures, it would also require
to remove the sensor at each temperature change, in order to
renew the gas inside the inner chamber of the sensor with fresh
air. This would in turn require to peel off the sensor from the
subject’s skin at each temperature change, which would distort the
Q measurement, as the skin—and more specifically the stratum
corneum, its outermost layer—would become thinner and thinner at
each sensor replacement—actually, stripping the skin with multiple
tape applications is a well-known technique to drastically increaseQ
(Scheuplein, 1976; Eletr et al., 1978; Greenspan et al., 1981).

Thus, the sensor was left in place in this study, while the
temperature was successively changed fromNHup to 35, 38, 41, and
finally 44°C. This led to measured pSeCO2 alike that represented in
Figure 10B. In that case, using Q as a metric would be unpractical,
since the pSeCO2 value at tH is not null, and Q values would no
longer represent initial CO2 diffusion rates as measured in free air.
In practice, the obtained Q values at different temperatures would
then not be comparable with each other, each one being measured
with a slightly different pSeCO2 initial value.

5.3.2 Comparison with existing literature
Thanks to Equation 4, we can however obtain equivalent Q

values in free air from ourK measurements, and compare themwith
those of the literature, given in Table 3—at least for the NH case.
The values reported in Tables 2 and 3 are of the same magnitude,
and the wide amplitudes that we report here—e.g. 25–192 and
24–141 cm3·m−2·h−1 at the NH arm and wrist, respectively—are on
par with those reported in previous research.

5.4 Laser doppler flowmetry

5.4.1 Choosing nSkBF90 as a metric
Both inter-subject and inter-site LDF variabilities have often

been reported in the literature (Johnson et al., 1984; Cracowski et al.,
2006; Minson, 2010; Roustit and Cracowski, 2012; Cracowski and
Roustit, 2016; Hodges et al., 2016), and appears to be inherent
to this modality of skin blood flow measurement as well as to
human physiology in general. Nonetheless, certain guidelines may
be followed to obtain themost reproducible results (Cracowski et al.,
2006). In particular, when it comes to derive a single explicit
LDF metric from a given measurement period—such as a skin-
site/sensor-temperature pair, for instance—several techniques have
been developed to obtain meaningful results from raw LDF
data.

At first, some authors—e.g. Hodges et al. (2016)—prefer to
express the skin blood flow as Cutaneous Vascular Conductance
(CVC), which is given by the LDF in P.U. or V, divided by the Mean
Arterial Pressure (MAP).TheCVC is said to bemore “physiological”
(Cracowski et al., 2006), since an increase in skin blood flow could
be caused by an increase in MAP but also by an increase in vascular
compliance, for instance. By dividing the LDF-acquired blood flow
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TABLE 3 CO2 exhalation rates through the skin in the literature compared with the present studies.

Exhalation rate Q
[cm3·m−2·h−1]

Temp. [°C] Num. Of Subjects Reference

25–120 22–36 (air) 2 Shaw and Messer (1930a)

10–160 25–37 (air) 1 Shaw and Messer (1930b)

58–169 26–31 (air) 38 Ernstene and Volk (1932), Table 1

12–143 23–37 (air) 1 Whitehouse et al. (1932)

32–69 25–28 (air) 13 Schulze (1943), Table 12

180–2500† – 1 Adamczyk et al. (1966)

25–87 – 5 Thiele and Van Kempen (1972)

11–28 25–35 (air) 3 Frame et al. (1972)

50 – 27 Levshankov et al. (1983)

140–221 36 (skin) 14 Eöry (1984)

25–192 27–32 (skin) 40 This work, NH arm

24–141 25–33 (skin) 40 This work, NH wrist

25–288 27–44 (skin) 40 This work, all temp. arm

24–300 25–44 (skin) 40 This work, all temp. wrist

Past studies with more than ten participants are indicated in bold and were used for sample size determination.
†Axilla measured value, possibly erroneous.

FIGURE 10
(A): schematic evolution of the pCO2 inside the sensor’s chamber when the skin is heated or not. (B): same as Left, but with a non-heated sensor
placed onto the skin for a duration tH before being heated. Note the difference between the two sensing schemes: the left one requires two successive
measurements—one heated, the other one non-heated—while the right one consists in a single measurement during which the skin is successively
non-heated and then heated. The dashed line on the right represents what would have happened without heating during the whole acquisition, which
is equivalent to the solid blue line on the left.

by the MAP, the obtained CVC value is thus in theory more
representative of the arteriovenous compliance, a theory supported
by several works in haemodynamics (Johnson, 1986; Lautt, 1989;
Herring and Paterson, 2018). At the same time, skin blood flow

alone—often abbreviated as SkBF, and either expressed in P.U.
or Volts—has been used for several decades (Johnson et al., 1984;
Frantz et al., 2012) and remains a good alternative to CVC when
MAP is not available.
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Then, once the type of measurement—SkBF or CVC—is chosen,
the question that comes next is that of the extraction of a single
perfusion metric from a long-lasting acquisition. Indeed, due to the
peculiar dynamics of thermal hyperaemia—see Figure 4, above—a
simple time-averaging on the whole acquisition duration would
make little sense.

To circumvent this issue, several research teams used temporal
averaging on manually-set periods of interest in the raw LDF
data. The averaging duration that they used depended on the
studied phenomenon, with durations of 1–3 min for transient
phenomena—i.e. initial bump and after-bump nadir—up to
5–10 min for long-lasting ones—i.e. baseline or maximum
perfusion plateau (Minson et al., 2001; Frantz et al., 2012). Other
authors, for their parts, chose to average the two to three last
minutes of a 10–25 min measurement window at the maximal
perfusion value, which obtention is detailed below (Kellogg et al.,
2008; Hodges et al., 2016). However, Barcroft and Edholm (1943)
and Taylor et al. (1984) mentioned even longer durations for
thermal hyperaemia to fully settle following a change in skin
temperature—up to 40–60 min. Such a lengthy onset period would
result in a total acquisition duration in the 3–5 h range for the
five different temperatures involved in the present study. At the
opposite, a total experiment duration—including informing the
subjects and obtaining their consent—of about 2 h seemed to us
to be an acceptable maximum for easily recruiting volunteers. This
2 h duration in turn entails that each temperature window of the
present study only lasted 18 min, which may not be enough for
the establishment of the nitric-oxide mediated hyperaemia detailed
in Figure 4. Thankfully, this 18 min duration is by far long enough
for the axon mediated response to take place, and the latter often
yields perfusion levels comparable to that reached at the end of
the nitric-oxide mediated phase (Kellogg et al., 2008; Minson,
2010; Frantz et al., 2012). Thus, by taking the 90-th percentile of
SkBF—see Section 3.1.2—the obtained SkBF90 values are likely to
be representative of the SkBF plateau values which would have been
observed by increasing the duration of the temperature windows.
The latter hypothesis is further confirmed by the similarity between
our results and that of the literature, as discussed in the next
section.

Finally, it is also common practice to normalise the measured
skin blood flow—whether expressed as SkBF or CVC—by its
maximum value, often taken after a prolonged (≥15 min) period at
an elevated (≥44°C) temperature (Taylor et al., 1984; Vionnet et al.,
2014; Hodges et al., 2016) or by direct injection of sodium
nitroprusside (Kellogg et al., 2008). Although it has been seldom
proposed to normalise the measured values by the baseline blood
flow value instead of the maximum one (Magerl and Treede, 1996;
Mayrovitz and Leedham, 2001), this is considered bad practice
because intra-subject baseline variations can be important even in a
temperature controlled room (Bircher et al., 1994; Cracowski et al.,
2006).

In this study, CVC was not considered due to the invasiveness
of a continuous MAP measurement and SkBF was thus chosen
as raw perfusion metric. Then, we proposed to take the 90-th
percentile of a given temperature window instead of time averaging.
Finally, normalisation by the maximum perfusion value—i.e. the
one reached at the end of the 44°C window—was performed, as per
literature guidelines.

5.4.2 Comparison with the literature
The LDF measurements that were gathered in the present study

are consistent with existing literature on the topic. In particular, the
sigmoid behaviour observed in Figure 7—revealing a strong onset of
hyperaemia in the 35–41°C range—is onparwith the observations of
Magerl and Treede (1996), Stephens et al. (2001), and Hodges et al.
(2016).

5.4.3 Impact on the accuracy of a future tcpCO2
sensor

The fact that the perfusion is doubled at 35°C and quadrupled at
38°C compared to baseline—see Figure 7—is especially encouraging
for the development of a future energy-efficient tcpCO2 sensor,
since these temperatures can be easily achieved without—or with
minimal—heating, as already discussed in Section 5.2.2 (reaching
over 35°C at the upper arm under jumper sleeves). Indeed, since
arterialised capillary blood—either obtained by local heating or
application of a vasoactive cream—is gaseously close to arterial
blood (Zavorsky et al., 2007), it is to be expected that partially
arterialised capillary blood obtained by a mild heating—i.e. below
44°C—lies somewhere between venous and arterial blood, from
a gaseous content point of view. More specifically, Rooth et al.
(1987) hypothesised that the subcutaneous capillary pCO2—i.e.
tcpCO2—would be a barycentre between venous and arterial pCO2,
as illustrated in Figure 11.

This figure emphasises the fact that—especially for a resting
subject—even a mild heating of the skin in the 35–38°C range
could be enough to yield a tcpCO2 only a few mmHg away from
the paCO2. The latter error may be acceptable depending on the
clinical application targeted. For example, the Food and Drug
Administration (FDA) requires tcpCO2 monitors to be accurate
within 5 mmHg, with an allowed drift of up to 10% of the initial
reading over a 1-h period (Food and Drug Administration, 2002).

5.5 Sample size

The main objective of the present study was to estimate the
mean K value as a function of temperature. The latter mean can be
estimated at each temperature T by:

K̂T =
1
N
⋅
N

∑
i=1

KS,i (7)

wherein the index i stands for the ith subject of the study and N
stands for its sample size. Contrary to hypothesis testing, for which
a sample size may be derived straightforwardly from targeted alpha
or beta risks, and some prior knowledge of the data (Ambrosius,
2007, Chap. 19; Chow et al., 2017), sample size determination in the
case of an exploratory—or pilot—study is more challenging, with its
share of arbitrary decision (Ko and Lim, 2021). Indeed, while a 95%
confidence interval can be computed for KT as:

C.I.95%KT
= [K̂T − ε, K̂T + ε] , and ε = −tN−1(

0.05
2
) ⋅ s
√N

(8)

wherein tN−1 is the percentile score of a Student distribution with
N− 1 degrees of freedom, and s is the SD of the sample—i.e. the
estimated standard deviation of the population—the value of the
latter SD is vastly unknown. In order to estimate an adequate
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FIGURE 11
Capillary pCO2 as a function of relative blood flow considering two venous pCO2 levels: at rest, and while exercising. Relative blood flow values
measured in the present study were also added in red with their respective temperature labels. A normal paCO2 of 40 mmHg (Schneider et al., 2013)
was taken for arterial blood, while venous blood levels were set to 46 and 60 mmHg at rest and while exercising, respectively. Of note, while 46 mmHg
at rest is generally accepted in the literature (Byrne et al., 2014), the 60 mmHg exercising value was mainly chosen for legibility reasons. Indeed,
exercising values may exceed 100 mmHg during heavy exercise, or in case of septic shock (Kowalchuk et al., 1988; Diaztagle Fernández et al., 2017).
Modified from Rooth et al. (1987).

sample size for the study at hand—based on an acceptable margin
of error on K̂T—a prior estimation of s is thus needed, and is
the object of the upcoming section. Importantly, since Q—that
is Q (t = 0) using the above-presented notation—was studied by
earlier authors instead of K, the following reasoning will be made
using the former. This can be done safely since the two values
are linked by a proportionality constant—see Equation 4. Of note,
Equation 8 holds only if the KT follow a normal distribution, which
had neither been confirmed nor denied in the literature, to the
best of our knowledge, but which was verified in the current
study—see Section 5.5.3.

5.5.1 Literature review
Among the literature studies on the topic of skin CO2

exhalation rate measurements on human subjects detailed in
Table 3, only four of them have been performed on more than
ten subjects, and are highlighted in bold in the aforementioned
table. Unfortunately, the latter studies are sometimes unclear
about Q measuring conditions—measurement site and skin
temperature, in particular. We did our best not to distort
or misinterpret the works of their authors, but what follows
is essentially our best interpretation of their writings. These
four studies reported—or made it possible to derive from raw
data—a Q̂ and s value for each measurement site investigated.
These data can be used to compute 95% confidence intervals
on Q estimation—as shown in Equation 8—or on s, yielding
(Ambrosius, 2007, Chap. 4):

C.I.95%σ = [

[

s2 ⋅ (N− 1)
χ2N−1 (

0.05
2
)
;

s2 ⋅ (N− 1)
χ2N−1 (1−

0.05
2
)
]

]
(9)

wherein χ2N−1 is the percentile score of a χ2 distribution with N− 1
degrees of freedom. The resulting confidence intervals are reported
in Table 4 and tend to indicate a relative uncertainty onQ estimation

in the order of 5–30% for relatively small sample sizes—i.e. 13–38
subjects.

5.5.2 Chosen sample size
The reported s value, as well as the upper and lower bounds of

s 95% confidence interval were then used to compute the relative
uncertainty on Q as a function of the number of subjects using
Equation 8. While this relative uncertainty decreases when the
sample size increases, its reducing rate—as well as the associated
uncertainty values—varies wildly depending on the considered
data source. Indeed, while a sample size of 20–30 subjects should
lead to a relative uncertainty on Q in the 5–10% range using
Levshankov et al. (1983) data, much larger sample sizes—i.e. 100-
150 subjects—would be needed to reach the same level of accuracy
using Schulze (1943) or Ernstene and Volk (1932). measurements.
In the end, since the works of the latter two authors were much
older—1932 and 1943, respectively—than that of Eöry (1984),
Levshankov et al. (1983) and , respectively—it was decided to put
them aside. The sample size determination was thus grounded
only on the works of Eöry (1984), Levshankov et al. (1983), and a
sample size of 40 subjects was deemed acceptable, since it should
have resulted into a relative uncertainty on Q estimation below
10%.

5.5.3 Results
Unfortunately, this initial estimation of a 40 subjects cohort

proved to be rather optimistic in practice. Indeed, the relative
uncertainty on measured Q values can be computed using
Equation 8, and falls in the 15–32% range, depending on the skin
temperature and measurement site. In this aspect, our results are
close to those presented by Ernstene and Volk (1932), Schulze
(1943), and Eöry (1984) who reported relative uncertainties in the
11–30% range. Yet, the latter authors used less than 40 subjects, and
our uncertainty range was thus expected to be narrower than theirs.
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TABLE 4 Confidence intervals at the 95% level for σ andQ, computed from s and Q̂ values reported in the literature. Aside from the relative
uncertainties—defined as 2 ⋅ɛ/Xwherein X is σ orQ—all values are given in cm3·m−2·h−1.

Lower bound Reported Upper
bound

Relative
uncertainty

(%)

Measurement
site

Reference

σ

18.7 22.9 29.6 48 Whole arm Ernstene and Volk (1932)

8.5 11.9 19.6 93 Abdomen Schulze (1943)

2.65 3.36 4.60
58

Left forearm Levshankov et al. (1983)

2.41 3.06 4.19 Right forearm Levshankov et al. (1983)

15 21 34
89

Acupuncture site Eöry (1984)

13 18 28 “adjacent skin area” Eöry (1984)

Q

113 120 128 13 Whole arm Ernstene and Volk (1932)

41 48 55 30 Abdomen Schulze (1943)

48.0 49.3 50.7 5.39 Left forearm Levshankov et al. (1983)

48.4 49.6 50.8 4.88 Right forearm Levshankov et al. (1983)

209 221 233 11 Acupuncture site Eöry (1984)

130 140 150 14 “adjacent skin area” Eöry (1984)

Moreover, the present study also exhibits a higher variability than
that of Levshankov et al. (1983)—whose results indicate a relative
uncertainty about 5%, see Table 4.

The origin of these discrepancies between literature-driven
expectations and the above-presented results is not fully understood
at the moment. One possible explanation could be differing
measurement sites between the above-mentioned studies and the
ones that we chose. Indeed, the data reported by Eöry (1984),
Schulze (1943) (Table 16 op. cit.) tend to indicate some degree of
variability in the relative uncertainty expected at different sites—in
particular when comparing the abdomen and hand in Schulze’s data
(30 vs. 45%), or the two sites used byEöry (10 vs. 14%).Thus, it seems
plausible that Q variability at the upper arm and wrist is above that
reported in earlier studies for differing sites.

Ultimately, we cannot but recommend using larger sample
sizes in future studies of a similar nature, considering the
significant variability we observed. As a side note related to
sample size determination, the normality of the Q distribution
was ascertained using a series of Bonferroni-corrected Shapiro-
Wilk tests which were non-significant, further justifying the
approach presented in Section 5.5. To the best of our knowledge,
this is the first report of normality for transcutaneous CO2
exhalation rates.

6 Conclusion

As stated in introduction, the aim of this study was twofold:
measuring the influence of skin temperature on the transcutaneous

diffusion of CO2, and on the skin blood flow. To this end, a custom
sensor was designed and used on 40 healthy human subjects at two
measurements sites: the upper arm, and the wrist.

Our results indicate comparable behaviours at both sites, with an
increasing relationship between temperature on the one hand, and
CO2 exhalation rate, CO2 conductivity and perfusion on the other
hand. These results are encouraging for the development of a future
energy-efficient tcpCO2 sensor for the following reasons:

– Skin conductivity towards CO2 increases only moderately with
an increase in skin temperature, at most doubling from NH
to 44°C. Thus, if the response time of the sensor-to-be is not
critical—i.e. if a 35% slower response is acceptable compared to
the one reachable at maximum skin heating—the latter may not
require additional heating. This is especially encouraging in the
perspective of building a wearable, battery-operated device.

– Perfusion, for its part, increases strongly with an increase in
skin temperature, already doubling from NH to 35°C, and
quadrupling from NH to 38°C. This phenomenon is especially
interesting since—according to Rooth et al. (1987)—this should
bring tcpCO2 close to paCO2 even for skin temperatures as low
as 35–38°C, which are reachable at the arm without additional
heating, given that the latter is covered by warm clothings.
However, this latter hypothesis—i.e. the existence of a clinically-
satisfying tcpCO2/paCO2 correlation in the 35–38°C skin
temperature range—is yet to be demonstrated experimentally in
vivo, which will be the subject of future research.

Additionally, our results highlight the significant variability of
transcutaneousCO2 exhalation rate and conductivitymeasurements
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in human subjects. Hence, we strongly advise future research on the
topic to consider large sample sizes—i.e. more than 40 subjects—in
order to ensure accurate estimates of the latter metrics. The present
study also focuses only on two measurement sites—the upper arm
and the wrist—and further investigations at other sites would be
welcome. In particular, the remarkably high axilla values reported
by some authors is intriguing, and could benefit from a special
attention.Of note, the study data—demographics,K,Q, andnSkBF90
values—are provided in Supplementary Material S2.
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Individually optimized estimation
of energy expenditure in rescue
workers using a tri-axial
accelerometer and heart
rate monitor
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Objectives: This study aimed to provide an improved energy expenditure
estimation for heavy-load physical labor using accelerometer data and heart
rate (HR) measured by wearables and to support food preparation and supply
management for disaster relief and rescue operations as an expedition team.

Methods: To achieve an individually optimized estimation for energy
expenditure, a model equation parameter was determined based on the
measurements of physical activity and HR during simulated rescue operations.
The metabolic equivalent of task (MET), which was measured by using a tri-axial
accelerometer and individual HR, was used, where two (minimum andmaximum)
or three (minimum, intermediate, and maximum) representative reference points
were selected for each individual model fitting. In demonstrating the applicability
of our approach in a realistic situation, accelerometer-based METs and HR of
30 males were measured using the tri-axial accelerometer and wearable HR
during simulated rescue operations over 2 days.

Results: Data sets of 27 rescue operations (age:34.2 ± 7.5 years; body mass index
(BMI):22.9 ± 1.5 kg/m2) were used for the energy expenditure estimation after
excluding three rescue workers due to their activity type and insufficient HR
measurement. Using the combined approach with a tri-axial accelerometer and
HR, the total energy expenditure increased by 143% for two points and 133% for
three points, compared with the estimated total energy expenditure using only
the accelerometer-based method.

Conclusion: The use of wearables provided a reasonable estimation of energy
expenditure for physical workers with heavy equipment. The application of our
approach to disaster relief and rescue operations can provide important insights
into nutrition and healthcare management.

KEYWORDS

rescue operations, metabolic equivalent of task, disaster simulation training, estimation
equation, wearable
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1 Introduction

An accurate estimation of energy expenditure can provide
important information and guidelines for nutrition and
healthcare management of physical workers. In particular,
disaster relief and rescue teams must prepare and transport their
food supplies in advance. The higher the degree of energy deficiency,
the lower the energy expenditure in activity, especially during high-
intensity physical activity, and the more significant the decrease in
energy expenditure (Martin et al., 2011). Based on the studies
conducted by the U.S. military, the lack of energy promotes
muscle damage and muscle soreness, decreases the performance
of physical activities (Margolis et al., 2014), causes weight loss and a
greater percentage of muscle mass loss than fat mass (Berryman
et al., 2017), decreased immune function (T lymphocyte response)
(Kramer et al., 1997), and decreased cardiac function (altered left
ventricular diastolic function) (Planer et al., 2012). Therefore, the
total amount of food supplied must be sufficient to meet the
nutritional needs of the body and to maintain the energy
required for high-intensity physical activity. However, energy
expenditure estimation methods for such workers have not been
well established, and the energy expenditure during such operations
remains unclear.

With recent advancements in sensor technologies, portable
devices are becoming smaller, capable of longer data collection
(because of their storage and battery lives), multidimensional,
and more sensitive (Chen et al., 2012). Many movement sensors
can be used to measure human physical activities, including
electromechanical switches (for heel strike detection), mercury
switches, pedometers, inclinometers, gyroscopes, goniometers (for
angles or postures), accelerometers, and even global positioning
systems (GPS) (Chen et al., 2012). Among these devices,
accelerometers are currently the most widely used sensors for
human physical activity monitoring in clinical and free-living
settings (Chen et al., 2012) because of their small size,
noninvasiveness, and relatively low cost (Plasqui and Westerterp,
2007). Moreover, accelerometers can easily estimate the amount of
energy expenditure during high-intensity physical activities, except
for heavy equipment and static load activities (Bouten et al., 1997).
However, discriminating movements during daily low-intensity
physical activities and estimating the appropriate energy
expenditure remain a challenge (Ndahimana and Kim, 2017).
Some tri-axial accelerometers have shown potential application in
estimating the amount of energy expenditure during low-intensity
physical activities, such as sitting, standing, housework, and walking,
which are important for estimating total energy expenditure
(Midorikawa et al., 2007; Yamada et al., 2009; Ohkawara et al.,
2011). When measuring the total energy expenditure in field
validation studies (double-labeled water (DLW), which is the
gold standard for measuring total energy expenditure in the
field), high correlations with the total energy expenditure
estimate were found in most activity monitors (Van Remoortel
et al., 2012). However, these correlations are to a large extent driven
by subject characteristics, body weight, age, and height, which are
important predictors of total energy expenditure (Plasqui et al.,
2005). Based on previous reports, only 19% of the total energy
expenditure is accounted for by physical activity in healthy subjects
(Plasqui et al., 2005) and in patients with coronary heart disease

(Ades et al., 2005) in a field setting. Previous research demonstrated
that wearable devices, such as movement sensors, do not accurately
represent energy expenditure measured by the DLW (Murakami
et al., 2019; Willis et al., 2022). Several studies have also compared
the DLWmethod to the total energy expenditure estimated by using
accelerometers. The total energy expenditure using an accelerometer
in patients with reduced pulmonary function, particularly chronic
obstructive pulmonary disease, is underestimated by 11% compared
with the DLW (Sato et al., 2021). Even the total energy expenditure
of people who are not engaged in heavy physical activity is
underestimated compared with that of accelerometer. A wrist-
mounted motion sensor accounts for 78% of the variation of
total energy expenditure using the DLW during the free-living
period and 62% during the training period (Kinnunen et al.,
2019). The total energy expenditure using an accelerometer in
firefighters under normal working conditions is underestimated
by 33% compared with the DLW (Touno et al., 2003). In the
literature, the total energy expenditure by the accelerometer is
underestimated compared with the DLW (Touno et al., 2003;
Kinnunen et al., 2019; Murakami et al., 2019; Sato et al., 2021;
Willis et al., 2022) despite the difference between wrist-mounted and
waist/chest-worn accelerometers (Kinnunen et al., 2019). Therefore,
the energy expenditure estimation for heavy equipment and static
load activities has an underestimation bias, although accelerometer-
based methods are convenient and applicable to real-world
situations (Touno et al., 2003).

Various wearable devices to monitor heart rate (HR) have been
developed, such as wristwatches, ear clips, and undershirts, and some
devices can measure HR accurately. These devices can record HR
noninvasively, with minimal technical effort and without the
constraints of laboratory conditions (Karmen et al., 2019; Isakadze
and Martin, 2020). The HR increases almost proportionally to exercise
intensity and intra-individual oxygen uptake (% _VO2 max), and its
dynamics can influence a number of different factors, such as body
temperature, food intake, body posture, and individual cardio-
respiratory fitness level (Hill and Trowbridge, 1998). However, the
use of HR wearable devices, most of which are wrist-worn devices, may
underestimate energy expenditure and provide inaccurate measures of
energy expenditure compared with reference standard criterion
measures, including direct calorimetry and indirect calorimetry
(Fuller et al., 2020; Chevance et al., 2022). Summarizing the total
energy expenditure by most of the aforementioned devices, such as
accelerometer, HR, GPS, and combined motion sensors, provides a
more accurate estimation of energy expenditure at light-to-moderate
intensities; by contrast, underestimation increases at very light and
higher intensity activities (Aparicio-Ugarriza et al., 2015).

A previous review reported that adding indicators such as HR and
heat flux values to acceleration values as a method of estimating daily
energy expenditure and physical activity has not significantly
improved the system (Van Remoortel et al., 2012). Nevertheless,
focusing on the HR that can be measured with a wearable device
can address the underestimation of energy expenditure by using only a
tri-axial accelerometer because HR can relate intensity to energy
expenditure. This study aimed to provide an energy expenditure
estimation method using wearables to support food preparation
and supply management, particularly for expedition rescue team
workers with heavy equipment and static loads. By combining the
characteristics of tri-axial accelerometers and HR monitor
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information, we evaluated the relationship between accelerometer-
based physical activity and HR and provided an individually
optimized energy expenditure estimation equation (model).
Providing an equation/model to predict energy expenditure would
promote the estimation of energy expenditure in the field, which is not
measurable in the laboratory. As an application of this approach, the
energy expenditure of rescue operations was estimated while
mimicking large-scale disasters.

2 Materials and methods

2.1 Subjects

This study included 30 males (age: 34.2 ± 7.3 years; body mass
index (BMI): 23.1 ± 1.7 kg/m2) who participated in a 2-day disaster
simulation training (i.e., rescue operations were unaware of the
training protocol). Note that some of the firefighters of our
previously reported paper were included in the present study
(Koizumi et al., 2021). This study was approved by the local
ethics committee of the University of Tsukuba (approval number:
tai-28-66), conducted in accordance with the principles set forth in
the Declaration of Helsinki, and the subjects were informed of and
agreed to the details of this study. In addition, detailed explanations
were given to each training director and participating organization-
affiliated institution regarding the purpose and content of the
experiment, and the experiment was started only after
obtaining agreement.

2.2 Simulated rescue operations

Rescue operation training was conducted from November 30 to
1 December 2018, in Kanagawa Prefecture, Japan. The mean
temperature of the 2-day training was 12.8°C (8.5°C–18.3°C), with
humidity of 55.5%. The main activities were as follows: rescue
activity training in a skyscraper, in a gas leak accident, in a
collapsed building, at a sediment-related disaster site, in the event
of many injured people on the subway, from vehicles, and in a tunnel
collapse accident; fire-extinguishing activity training in an industrial
complex fire.

2.3 Measurements

2.3.1 Accelerometer
Figure 1 shows flow chart of calculating energy expenditure. A

tri-axial accelerometer (Active style Pro HJA-750C, 23 g, 40 mm ×
52 mm × 12 mm; Omron Healthcare Co., Ltd., Kyoto, Japan)
(Ohkawara et al., 2011; Nagayoshi et al., 2019; Nishida et al.,
2020) was inserted into the chest pocket, located near the waist
area (approximately 10 cm above the belt). The accelerometer was
covered with a vinyl material and fixed in the chest pocket with
adhesive tape to avoid the influence of liquid matter (e.g., water) in
fire-extinguishing activities. The basic metabolic rate was calculated
automatically when weight, height, age, and sex were entered, which
was calculate using Ganpule’s formula (Ganpile et al., 2007). The
accelerometer was programmed to save the metabolic equivalent of

task (MET) once every 10 s using a built-in Omron’s algorithm
(Oshima et al., 2010; Ohkawara et al., 2011). MET is defined as the
ratio of the metabolic rate during an activity to the metabolic rate at
rest (Jetté et al., 1990). Next, each transformed data point (METs)
was converted into units of activity energy expenditure in kcal/min
(Oshima et al., 2010; Ohkawara et al., 2011) to understand the
amount of energy intake, and the data were divided and aggregated
for each activity (see Section 2.3.2 Recording paper).

2.3.2 Recording paper
A recording paper was distributed, and rescue squads were asked

to describe the activities that they performed during the disaster
simulation training. This recording paper was used to classify the
types and times of activities.

2.3.3 HR monitor
R–R intervals were measured by electrocardiogram signals

using wearable HR sensors (WHS-1, myBeat, 14 g, 39 mm ×
37 mm × 9 mm; Union Tool Co., Tokyo, Japan) (Arikawa et al.,
2020). The HR sensor was placed on a shirt with attached
conductive fiber electrodes (Kurabo Industries Ltd., Osaka,
Japan, Figure 2). The HR per minute [beats per minute (bpm)]
was estimated using the median of instantaneous HRs during a 1-
min period to reduce the effect of the outliers presented in R–R
interval data. If the absolute difference of the successive R–R
intervals was larger than 200 ms, then the detected R–R interval
was classified as an outlier using R version 3.6.0 (R Foundation for
Statistical Computing, Vienna, Austria; http://www.R-project.org/).
The percentage of the outlier R–R interval for each individual was also
calculated.

2.3.4 Estimation equation (model)
A percent of HR reserve (%HRR) provides a good

approximation (almost linear relation) of _VO2 reserve (% _VO2)
was shown in the previous studies (Swain et al., 1998; Strath
et al., 2000), and an HR-based equation can provide a reliable
estimation of the METs (Swain et al., 1998; Strath et al., 2000). %
HRR is defined as follows:

%HRR � HRactivity −HRrest

HRmax −HRrest
× 100

where HRactivity is the recorded HR during the activity; HRrest is the
HR while sitting at rest, and HRmax is the maximum HR as
estimated by the Karvonen equation, (220 bpm—age) bpm.
% _VO2 reserve is defined as follows:

% _VO2R � _VO2act − _VO2rest

_VO2max − _VO2rest

× 100,

where _VO2activity is the recorded _VO2 during the activity; _VO2rest is
the _VO2 while sitting at rest, and _VO2max is the maximum _VO2 as
estimated by the equation proposed by Jackson et al. (1990). By
assuming %HRR ≈ % _VO2R and dividing the numerator and
denominator of the % _VO2R by the _VO2rest, we obtain the
following equation:

HRact −HRrest

HRmax −HRrest
�

_VO2act
_VO2rest

− 1
_VO2max
_VO2rest

− 1
� METSact − 1
METSmax − 1
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FIGURE 1
Flow chart of calculating energy expenditure.
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Based on the abovementioned relation, we obtain the following
equation for MET estimation (Strath et al., 2000):

METSact � METSmax − 1
HRmax −HRrest

HRact −HRrest( ) + 1

Therefore, if we use two reference conditions with different
METs, METS1 and METS2, instead of resting and the maximum
_VO2 condition, then we can obtain a more general equation forMET
estimation.

METSact � MET2 −MET1

HR2 −HR1
HRact −HR1( ) +METS1, *( )

where HR1 and HR2 are the HR recorded during the activity with
METS1 and METS2, respectively.

We used two (minimum and maximum) or three (minimum,
intermediate, and maximum) representative reference points
recorded in each individual (Figure 3) to obtain the parameters,
(HR1,MET1), (HR2,MET2), in the MET estimation equation [Eq
(*)] optimized to each individual. The lowest HR,HR1, corresponding
MET1 was calculated as follows: 1) the 10th percentile of HR during

napping was calculated as HR1, and 2) we defined the MET1 as
0.95METbased on theMET table (Garby et al., 1987).We selected the
10th percentile of HR instead of the observed lowest value to attenuate
the effect of outliers of the HR measurement. The intermediate HR
was calculated as follows: First, the 50th percentile of HR during
withdrawal was calculated as the intermediate HR because withdrawal
was performed by all groups and was considered to be less affected by
tension as it was performed after all activities were completed, and
then we defined the intermediate HR as 3.0 MET based on the MET
table (Ainsworth et al., 2011).Moreover, the highest HR corresponding
to the highest MET during all activities was calculated as follows: First,
the 90th percentile of HR was calculated for each rescue operation
activity. Although the highestHRwould be induced by the activity with
the highest MET, we selected the 90th percentile of HR instead of the
observed highest value to attenuate the effect of outliers of the HR
measurement. Second, activity’s METs were defined on the basis of the
MET table (Table 1) (Ainsworth et al., 2011), and then the activity with
the highest HR was selected. Finally, the parameters, (HR2,MET2),
were estimated for all participants using a least-square-fitting on the
abovementioned values.

FIGURE 2
T-shirt attached with conductive fiber electrodes (backside). Stretchy shirts with electrodes were placed in the psoas. The size of the T-shirt was
selected on the basis of the physique of the rescue operations.

FIGURE 3
Estimation equation between HR and METs.
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These two rescue squads were excluded from analysis because
one rescue squad was only able to measure their HR for 15% during
their nap time, and the activity of another rescue squad did not
include withdrawal.

2.3.5 Statistical analysis
Data are presented as mean values and standard deviations.

3 Results

3.1 Typical example of measurements

We measured the physical activity and HR from 8:30 to 11:
00 the next day. Figure 4 represents a typical example of METs and
HR during simulated rescue operations (28 years, 173 cm, 72 kg).

TABLE 1 Activities corresponding to the MET table.

Code Major heading Activitya (description) METs

05147 home activities withdrawal (implied walking, putting away household items, moderate effort) 3.0

11240 occupation rescue narrow space, rescue activity, rescue search (fire fighter, general) 8.0

11244 occupation rescue traffic, rescue transport (fire fighter, rescue victim, automobile accident, using pike pole) 6.8

11245 occupation fire training (fire fighter, raising and climbing ladder with full gear, simulated fire suppression) 8.0

11246 occupation gas rescue, rescue gas search, rescue gas transport (fire fighter, hauling hoses on ground, carrying/hoisting equipment, breaking
down walls, wearing full gear)

9.0

11550 occupation rescue sediment, rescue tunnel (shoveling, more than 7.3 kg/min, deep digging, vigorous effort) 8.8

17029 walking rescue activity training in a skyscraper (carrying 22.7–33.6 kg load, upstairs) 10.0

aActivity represents the rescue operations conducted in this study. The code, major heading, description, and METs, are provided in the MET, table (Ainsworth et al., 2011).

FIGURE 4
Typical result of METs and HR for one rescue worker during the 2-day disaster simulation training. The rescue worker engaged in rescue activity
training in a gas leak accident (yellow) and excavation rescue in a narrow space (light orange). Colors were categorized for each activity: gray, nap; orange,
meeting; light blue, movement; blue, rest; ocher, eating; light green, standby; green, withdrawal; yellow, gas leak accident; light orange, rescue narrow
space; and brown, training preparation.
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The rescue worker engaged in rescue activity training in a gas leak
accident (yellow) for 210 min, excavation rescue in narrow space
(light orange) for 150 min, and nap (gray) for 330 min. The basic
metabolic rate of the rescue worker, which is automatically
calculated, was 1,600 kcal, and the total energy expenditure
estimated by using the tri-axial accelerometer was 3,723 kcal
(from 11:00 to 11:00 the next day). This example underestimated
METs in the yellow and light-orange areas because the activities did
not show highMETs despite an increase in HR. Therefore, METs are
more stable than HR during low-intensity activities, particularly
during napping.

3.2 Calculation of HR for each activity

One rescue worker who conducted excavation rescue search and
tunnel accident rescue activities could measure only the first 4 h
(deficiency rate was 83.1%). Thus, the rescue worker was excluded
from analysis. The percentage of missing HR data for each
individual was 4.7% ± 4.4% (range: 0%–15.3%) for 27 rescue
squads (age: 34.2 ± 7.5 years; BMI: 22.9 ± 1.5 kg/m2). The HR
was computed as the 10th percentile for naps, 50th percentile for
withdrawal, and 90th percentile for other activities. The number of
subjects in each activity is summarized in Table 2. Nap had the
lowest HR, and rescue activity training in a skyscraper had
the highest HR.

3.3 Basic metabolic rate and estimated total
energy expenditure by the tri-axial
accelerometer

The tri-axial accelerometer automatically calculated the basic
metabolic rate, with an average of 1,545 ± 92 kcal, and the estimated

total energy expenditure, with an average of 3,414 ± 229 kcal for
27 rescue squads (from 11:00 to 11:00 the next day).

3.4 Estimated total energy expenditure by
combining the tri-accelerometer and HR

Figure 4 shows the estimation equation using two points
(Figure 5A) created using the 10th percentile of HR during nap
(0.95 METs) as the lowest HR and the 90th percentile of HR during
rescue activity training in a gas leak accident (9.0 METs). Using
three points (Figure 5B), the estimation equation was created using
the abovementioned two points plus the intermediate 50th
percentile of the HR during withdrawal (3.0 METs). The results
showed that HR was higher during rescue training in a gas leak
accident (9.0 METs) than during the excavation rescue in a narrow
space (6.8 METs). Therefore, we developed an equation to estimate
the highest HR for the latter (Figure 4). The energy expenditure
calculated using the estimation equation replaced specific rescue
activities, such as rescue activity training in a gas leak accident
(yellow) and excavation rescue in a narrow space (light orange). The
estimated total energy expenditure was 5,456 kcal using the two-
point equation and 4,945 kcal using the three-point equation. The
difference between the estimated total energy expenditure by the tri-
axial accelerometer and that by combining the tri-axial
accelerometer and HR was 1,733 kcal using the two-point
equation and 1,222 kcal using the three-point equation.

The average value of R2 in the estimation equation was 0.895
(95% confidence interval: 0.858–0.932) using the three-point
equation (minimum, intermediate, and maximum). The average
corrected total energy expenditure obtained by the tri-axial
accelerometer and HR was 4,871 ± 486 kcal and 4,555 ± 391 kcal,
respectively. The average difference between the estimated total
energy expenditure by the tri-axial accelerometer and that by

TABLE 2 Heart rate during each activity.

Activity (METs)a Heart rate (bpm)b n

Nap (0.95 METs) 56.2 ± 13.5 27

Withdrawal (3.0 METs) 104.8 ± 17.2 27

Rescue training from vehicles (6.8 METs) 121.9 ± 24.1 5

Search activity (6.8 METs) 125.4 ± 20.7 10

Rescuer transport (6.8 METs) 132.9 ± 16.9 5

Rescue training in a collapsed building (8.0 METs) 116.7 ± 20.3 15

General firefighting (8.0 METs) 132.5 ± 14.6 5

Excavation rescue search activity (8.8 METs) 128.2 ± 13.8 9

Tunnel accident rescue activity (8.8 METs) 131.2 ± 15.7 4

Rescue activity training in a gas leak accident (9.0 METs) 131.2 ± 21.2 15

General rescue activity (9.0 METs) 135.1 ± 17.8 10

Rescue activity training in a skyscraper (10.0 METs) 154.9 ± 23.9 20

The results are presented as mean values ±SD.
aThe table shows the activities extracted to create the equations for the relationship between HR, and METs; the figure is based on the MET, table (Garby et al., 1987; Ainsworth et al., 2011).
bHR, which was computed as the 10th percentile for nap, 50th percentile for withdrawal, and 90th percentile for other activities, is also shown. The number of rescue operations engaged in the

activity is depicted as n.
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combining the tri-axial accelerometer and HR was 1,457 ± 486 kcal
and 1,140 ± 410 kcal, respectively (accounting for an average
increase of 143% and 133%, respectively).

4 Discussion

In this study, we developed a simple energy expenditure
estimation method using wearables (tri-axial accelerometer and
HR) for heavy load physical laborers to achieve a reliable
estimation of energy expenditure for disaster relief and rescue
workers as an expedition team. The relationship between the
MET and individual HR in humans was also explored. If the
minimum HR is known, then the maximum HR can be largely
predicted; therefore, a model with some uniformity can be created
without laboratory assessment. The strength of this study depends
on the measurement of tri-axial acceleration, which can isolate each
activity, capture a wide range of movement, as well as HR for rescue
workers who experience various difficulties at the forefront, and
estimate the total energy expenditure for each individual using a
novel method in the field.

The MET concept, which expresses the intensity of physical
activity by the time it corresponds to the resting metabolic rate,
represents a simple, practical, and easily understood procedure to
express the energy cost of physical activities as a multiple of the
resting metabolic rate (Jetté et al., 1990); one MET represents the
state of sitting and resting. In the present study, an accelerometer
was used to store MET because energy expenditure can be calculated
by multiplying the MET by a coefficient and individual body weight.
The HR is high under the influence of mental and physical fatigue
(Tanaka et al., 2011), stress, tension, and excitement (Cannon,
1929). Many researchers will conduct standardized laboratory
assessments of resting and maximal HR before field testing using
the submaximal test and/or Yo–Yo intermittent endurance test to
determine maximal HR in the field (Sell and Ledesma, 2016). This
approach is advantageous because the HR data in the field can be
normalized to each individual, and other researchers can easily
replicate those standardized tests. However, if only the minimum

HR is known in humans, then the maximum HR can be largely
predicted, that is, %HRR. Consequently, an estimation equation
model with some uniformity can be created. Previous research
demonstrated that estimating the total energy expenditure by
using only an accelerometer is underestimated compared with
the DLW (Touno et al., 2003; Kinnunen et al., 2019; Murakami
et al., 2019; Sato et al., 2021; Willis et al., 2022). Therefore, given the
nature of accelerometers, accurately measuring the total energy
expenditure during heavy equipment or static load activities is
difficult (Touno et al., 2003). In the present study, we combined
METs and HR to improve underestimation.

METs differ depending on posture; therefore, we hypothesized
that the METs during sitting and resting are different. Thus,
0.95 MET was derived from the original paper (Garby et al.,
1987) of METs for a nap. We defined the minimum HR as the
10th percentile of nap time because the participating rescue squads
operating in a blind training environment where they did not know
what to do next slept very differently than usual and slept on their
cots. In this study, the average HR during nap was 68.3 ± 15.3 bpm/
min, which may also be affected by the abovementioned factors. The
maximum HR was set at the 90th percentile of each rescue
operation’s activity because the same HR did not last forever,
although the same activity was continued. Activity and activity
time were classified on the basis of self-reported recording forms;
however, the actual time spent waiting was also included, which may
have reduced the HR during the activity. Although the training was
conducted at relatively low temperatures in winter, the HR, which
was set at the 90th percentile for training in winter conditions, may
need to be higher because the load on the body is expected to be
higher in summer than in winter. As rescue operations include
various activities, not all activities can be applied to appropriate
METs. However, a positive correlation was observed between METs
and HR, indicating that the wearable device could accurately
measure HR without burdening the subject. The HR values
during multiple activities were consistent with those reported in
previous studies (Rodahl, 1989; Parker et al., 2017). Average HRs
during all tasks ranged from 110 to 130 bpm (Rodahl, 1989) and
from 145 to 109 bpm for steep and flatlands, respectively (Parker

FIGURE 5
Estimation equation between HR and METs for a typical example of one rescue worker (Figure 4). (A) two points; (B) three points.
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et al., 2017). We defined withdrawal as an intermediate HR as it was
an activity carried by all groups. In most rescue squad estimation
equations, the intermediate point shifts downward. In this study, the
METsmay not be appropriate because withdrawal includes activities
such as carrying heavy loads, moving, and feeling fatigue. Based on
the error propagation law, the error in the estimated METSact
depends on the accuracy of the measurements in METs and HR
at the assumed maximum intensity. Improving the accuracy of those
measurements with the aid of laboratory measurements is a
future challenge.

A previous systematic review reported that tri-axial and
multisensory devices tend to be more valid monitors compared
with the DLW while adding indicators such as HR and heat flux
values to acceleration values to estimate daily energy expenditure,
and physical activity has only slightly improved the system (Van
Remoortel et al., 2012). In addition, the combination of motion
sensor and HR is valid for estimating free-living energy expenditure
compared with the DLW, but it is less accurate for an individual
assessment (Sliva et al., 2015). Kortelainen et al. (2021) proposed
accurate energy expenditure predictions based on a few calibration
measurements using a nonlinear (logistic) mixed model for energy
expenditure and HR. They found that the logistic mixed model
performed better than the linear mixed model when predicting
energy expenditure at population level and with calibration. In this
study, using the linear model, the result of the estimated equation
with three points was 94% (−316 kcal) compared with the results of
the two points. Therefore, no moderate-intensity activity that did
not affect HR. In addition, using the tri-axial accelerometer method,
the estimation equation with two points of total energy expenditure
was underestimated by 43% compared with the combined
accelerometer and HR. In the present study, we able to improve
the underestimation of total energy expenditure, but we could not
examine whether it was an overestimation or an accurate
assessment. The novel estimation equation of the two points
between the METs and HR is simple, and it has high validity as
an estimation equation for energy expenditure in the field.
Considering its application in the field, the two minimum and
maximum estimation equations used in this study are sufficient.
In estimating the energy expenditure per activity for a short period,
rather than the average energy expenditure for 1 day or several days,
combining tri-axial accelerometers and HR was easy and effective.
Our research objective was to estimate energy expenditure in a real-
world environment. Since our approach was a real-world data-
driven study, rather than a traditional experimental design-driven
study, there were many limitations on the measurement. Under such
real-world, non-uniform, and a priori unforeseeable work
environments, we believe that our method gave improved
estimation results compared to the results of previous studies
that estimated using only acceleration. Also, the results we refer
to are the widely-accepted reference values, METs, estimated based
on experimental studies in previous studies. Nevertheless, indeed,
the values estimated based on experimental studies do not take into
account factors such as individual differences, mental load, different
types of exercise load, the type of heavy equipment, effects of
circadian rhythm, effects of diet, and effects of sleep. It is
difficult to conduct an experiment that takes all these factors into
account. We also believe that in real-world, non-uniform, and a
priori unforeseeable work environments, accurate estimation of

individual tasks is difficult, whether using the DLW or other
methods. We are sure that the accuracy can be improved by
combining it with laboratory studies in the future. Beckner et al.
(2023) reported sustained operations for the military personnel are
often conducted in a state of negative energy balance and are
associated with degraded cognitive performance and mood. In
order to prevent such condition, the amount of energy ingested
should also be considered in the future. The accuracy of the
estimation equation can be further improved by accurately
extracting the reference activities of METs. Moreover, estimating
energy expenditure for a wide range of age groups, sex, and people
with different body sizes, such as obese and overweight, may require
an estimation equation with three or more points, instead of just
two, in the future.

This study had four limitations. First, we focused only on HR
because the measurements were conducted in winter. However, the
temperature should also be considered because the HR can quickly
increase depending on environmental conditions, particularly
during summer. In addition, an equation that considers the
circadian rhythm of the heartbeat should be developed. Second,
the activities were calculated by applying them to the MET table;
however, applying them to special rescue operation activities was
difficult because appropriate METs could not be found. Therefore,
the validity of METs remains to be examined using the Douglas bag
and other methods. Third, we did not consider the diet induced
thermogenesis, because it was automatically calculated by entering
each individual’s data into the accelerometer. Finally, the present
study was conducted in the field, and no controls were used to verify
the energy expenditure calculations. In the future, the energy
expenditure remained to be examined using the Douglas
bag and DLW.

In this study, a method to improve energy expenditure
estimation for heavy-load physical labor, such as disaster relief
and rescue operations, using a tri-axial accelerometer and HR
monitor was proposed. Energy expenditure, which was
underestimated by accelerometer-based energy expenditure
methods, could be compensated by creating an individually
optimized estimation equation between METs and individual HR.
Furthermore, more detailed measurements were necessary for a
large number of rescue operations in a wide range of ranks and
firefighter activities in the future.
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Toward a hyperventilation
detection system in freediving: a
proof of concept using force
sensor technology
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Sweden, 2Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden
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Background and aim: Hyperventilation before breath-hold diving (freediving) is
widely accepted as a risk factor for hypoxic syncope or blackout (BO), but there is
no practical way to address it before dives. This study explores the feasibility of
using a force sensor to predict end-tidal carbon dioxide (PETCO2) to assess
hyperventilation in freedivers.

Methods and results: Twenty-one freedivers volunteered to participate during
two national competitions. The divers were instructed to breathe normally and
perform three dry apneas of 1, 2, and 3-min duration at 2-min intervals in a sitting
position. Before and after the apneas, PETCO2 was recorded. The signal from the
force sensor, attached to a chest belt, was used to record the frequency and
amplitude of the chest movements, and the product of these values in the 60 s
before the apnea was used to predict PETCO2. The mean PETCO2 was below
35 mmHg before all apneas. The mean amplitude of the signal from the force
sensor increased from apnea 1 to apnea 3 (p < 0.001), while the respiratory rate
was similar (NS). The product of the respiratory rate and amplitude from the force
sensor explained 34% of the variability of the PETCO2 in the third apnea.

Conclusion: This study shows that a force sensor can estimate hyperventilation
before static apnea, providing a basis for further research. More studies are
needed to confirm its effectiveness in preventing issues. Freedivers may
hyperventilate without noticing it, and such a system could improve
awareness of this condition. Additional underwater tests are essential to
determine whether this system can enhance safety in freediving.
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Introduction

Breath-hold divers, also referred to as freedivers, often employ a
breathing pattern known as hyperventilation to extend their apnea
duration by reducing the alveolar carbon dioxide pressure (PACO2).
Volitional hyperventilation is a conscious effort to increase the
breathing rate and depth, which increases alveolar ventilation,
leading to a slight increase in alveolar oxygen pressure (PAO2), a
reduction in PACO2, lowering of arterial CO2 levels (hypocapnia),
and an elevation in pH (West and Luks, 2021). In contrast,
metabolism-driven hyperventilation is an automatic, homeostatic
response to increased metabolic activity, such as during exercise, to
expel excess CO2 and stabilize blood gas levels (Forster et al., 2012).
Hyperventilation before breath-hold diving, despite a slight increase
in arterial oxygen pressure (PaO2), leads to a greater risk of losing
consciousness underwater (Craig, 1961; 1976; Edmonds and
Walker, 1999; Lippmann and Pearn, 2012), as the control of
ventilation relies on chemoreceptors that respond to changes in
PaCO2 and hydrogen ion (H+) levels. As PaCO2 decreases due to
hyperventilation, the ventilatory drive is compromised, leading to a
delayed urge to breathe. Consequently, this results in an extended
apnea duration (Hill, 1973; Lin et al., 1974; Bain et al., 2017; Pernett
et al., 2023). A longer apnea duration increases the level of hypoxia
during a breath-hold, which exposes the freediver to an increased
risk of losing consciousness underwater, known as blackout (BO) or
hypoxic syncope (Lindholm and Gennser, 2005; Kumar and Ng,
2010). The risk of severe oxygen desaturation has recently been
found to be exacerbated during repeated series of apnea after short-
time hyperventilation of 15 s (Pernett et al., 2023).

Hyperventilation is reported as a risky practice before breath-
holding among recreational swimmers (Boyd et al., 2015),
spearfishers (Lippmann, 2019), and snorkelers (Dunne et al.,
2021). This breathing pattern increases apnea duration and
desaturation, increasing the risk of BO, with the potential
consequence of drowning if not promptly addressed. In addition,
hyperventilation can reduce cerebral blood flow by 2% for each
1mmHg of decline in PaCO2 (Raichle and Plum, 1972). Experienced
freedivers exhibit enhanced tolerance to hypoxia as training seems to
diminish their hypoxic ventilatory response (Schneeberger et al.,
1986; Ferretti et al., 1991; Lindholm and Lundgren, 2006). This
suggests that trained freedivers, when engaging in hyperventilation,
may experience pronounced hypoxemia since they depend on the
hypoxic stimulus to terminate the breath-hold.

Despite the evidence contradicting the benefits of
hyperventilation, there remains a significant gap in knowledge
concerning the prevalence and role of this practice among
competitive freedivers, snorkelers, and spearfishers. Some insights
into this issue have emerged from blood gas analyses in studies
characterized by relatively modest sample sizes. In elite freedivers,
documented pre-diving PaCO2 levels vary, with reported values of
29 mmHg (Molchanova et al., 2020), 26 mmHg (Muth et al., 2003),
and 21 mmHg (Scott et al., 2021). In contrast, non-elite breath-hold
divers and Ama divers exhibit pre-diving values within the normal
range, registering PaCO2 levels of 38 ± 3 mmHg (mean ± SD; Bosco
et al., 2018) and 42 ± 2 mmHg (mean ± SD; Qvist et al., 1993),
respectively. However, evaluating pre-apnea PaCO2 or PETCO2 in
non-laboratory settings, during diving, poses practical challenges.
Blood gas analysis, while providing precise data, demands specific

expertise and is invasive. Similarly, measuring exhaled gases requires
equipment susceptible to damage in aquatic environments. An
alternative strategy involves the measurement of tidal volume
(Vt) and respiratory rate (RR) to estimate the minute
ventilation at rest.

Various studies have explored methods employing stretch,
piezoelectric, optical, pressure, electromagnetic, or acoustic
sensors; accelerometers; and electrical impedance techniques for
estimating Vt and RR (Panahi et al., 2020; Monaco and Stefanini,
2021). These techniques essentially aim to monitor alterations in
thoracic and abdominal movements to infer Vt. However, applying
these sensors in the underwater environment is complex. Our
laboratory has constructed a unique underwater monitor
involving a force sensor in a buckle attached to a chest belt,
allowing detailed chest movement recording (Sieber et al., 2022).
The main goal of the current study was to determine whether
respiratory data obtained using this custom-built force sensor
could predict PETCO2 before a static breath-hold to assess the
practice of hyperventilation in freedivers. Additionally, the
secondary aim was to visually assess the signal quality when the
sensor was used on divers in the pool.

Methods

Device description

The concept involved designing a U-shaped buckle (Figure 1A)
that is both water- and pressure-proof and equipped with integrated
strain gauges. These gauges enable the detection of pulling forces
exerted on the buckle, facilitating the monitoring of alterations in
chest circumference during underwater activities (Figure 1C). The
description of this force sensor has been previously documented
(Sieber et al., 2022). The custom buckle was crafted through a
conventional biomechanical engineering design process
employing machine drawing techniques. The choice of stainless
steel as the buckle material was made to ensure its suitability for use
in saltwater environments. The sensor was calibrated by applying a
force of 10 N to one of its legs, producing a slight bending of the
section connecting the two legs (Figure 1A). The applied force was
correlated with the electrical signal from the sensor. To ensure water
resistance, the entire buckle, including the strain gauges, was coated
with a multipurpose rubber coating (Plasti Dip International, Blaine,
MN). The strap from a commercially available Polar heart rate belt
(Polar T34, Polar Electro, OY, Finland) was used to place the buckle
on the chest (Figure 1B).

An improved version of a data logger, constructed by our
laboratory previously, was used to read out the signals of the
sensor-equipped buckle (Mulder et al., 2021; Figures 1A, D). Due
to the low amplitude of the signals of the sensor-equipped buckle,
it was necessary to employ an amplifier and a high-resolution
analog-to-digital converter. We opted for the AD7192 analog-to-
digital converter by Analog Devices, which is specifically designed
for strain gauge signal acquisition. This integrated circuit
combines a programmable gate array with a maximum 128x
amplification, a 24-bit sigma–delta ADC, and a filtering stage,
which effectively suppresses noise, particularly from 50 or 60 Hz
power lines. Further improvements to the data logger included a
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USB port, a Bluetooth module, a digital pressure sensor, and a 3 ×
16 character LC display.

Vital capacity calibration

The calibration procedure aimed to test the accuracy of the force
sensor to estimate the vital capacity (VC). Details about the VC
calibration are presented in Supplementary Material. The equation
for the predicted VC was VC = 1.6 + (0.4396 × amplitude). The
difference between the measured VC and the predicted VC was
0.00 ± 0.7 L (Supplementary Figure S1B).

Participants

The study included 21 participants (5 female and 16male) with a
mean ± SD age of 44 ± 7 years, a height of 178 ± 9 cm, a weight of
73 ± 10 kg, and a lung vital capacity of 5.82 ± 1.22 L. All participants
were trained freedivers. Their training load was 5 ± 7 h per week.
The study was conducted during two freediving national
competitions. The divers competed in four pool disciplines. The
participants received written and oral information on the protocol,
after which they signed an informed consent document. The
protocol was approved by the Swedish Research Ethics
Authorities (EPM; #2019-05147) and complied with the Helsinki
Declaration of 2004, apart from preregistration in a database.

Study design

The study involved a dry static apnea ramp test with durations of
1, 2, and 3 min, respectively, spaced by 2 min of recovery (Figure 2).

Procedures

A field laboratory was setup within the same pool area where
the competitions took place. Participants were required to have a
minimum of 12 h of rest following maximal performance and at
least 2 h of fasting before initiating the test. Height, weight, and
slow vital capacity were measured in triplicate in standing
conditions, and the largest volume was used (Compact Expert,
Vitalograph, Buckingham, United Kingdom). The participants
filled out a questionnaire with information on the training load
and personal best achievements in different freediving disciplines
in the last 12 months. The participants performed a series of three
apneas with fixed duration in dry conditions and the seated
position (Figure 2). A researcher carried out a 2-min
countdown before starting. At 30 s before apnea, a nose clip
was applied, and 20 s before apnea, a mouthpiece was offered
to breathe through. Ten seconds before the apnea, the countdown
continued second by second.

Participants were instructed to exhale completely and then
take a large, but not maximal, inhalation before starting the
apnea voluntarily; this technique results in a volume of
approximately 80 - 85% of the vital capacity (Schagatay and
Holm, 1996). The participants were instructed to avoid
hyperventilation. An experimenter closely monitored
peripheral arterial oxygen saturation SpO2 and was ready to
interrupt the apnea should it fall below 65%. The room
temperature was 26.9°C ± 2.0°C.

Measurements

PETCO2 was measured before and after every apnea via an
infrared-based gas measurement module (LifeSense LS1-9R,

FIGURE 1
Custom-made buckle equipped with four strain gauges aligned on the sensor tomeasure the strain created by the applied force along with the data
logger (A). Frontal (B) and lateral (C) view of the buckle in its operational position attached to the chest strap. Details of the data logger in operational
position on the back of the participant (D).
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Nonin Medical Inc., Plymouth, United States). The diver
breathed through a disposable mouthpiece with a bacterial
filter connected to a T-valve with two one-way valves (AFT21,
Biopac Systems, Goleta, United States). SpO2 and heart rate (HR)
were measured using a reflectance sensor (800R, Nonin Medical
Inc., Plymouth, United States) placed on the forehead 1 cm over
the left eye and connected to a clinical monitor (LifeSense, Nonin
Medical Inc., Plymouth, United States). Breathing movements
were measured continuously using the prototype force sensor
(Sieber et al., 2022).

Six male freedivers were also outfitted with the prototype force
sensor prior to engaging in their freediving competition
performances. This was done to assess the signal quality in the
underwater environment.

Data analysis

PETCO2 used was the highest value measured after the last
exhalation before the apnea. The data from the data logger were
extracted and analyzed with custom-made scripts using MATLAB
(R2022b, MathWorks Inc., Natick, United States). Within the final
minute leading up to the last exhalation before commencing the
breath-hold, both breathing frequency and signal amplitude were
extracted for analysis. The number of peaks in the respiratory signal
represented the RR, and the prominence of the signal was used as the
surrogate of Vt. With those values, the estimated minute ventilation
(eMv) was calculated as the product of the RR and the amplitude of
the prominence (RR x prominence; Figure 3).

Statistical analysis

The statistical analysis was carried out using SPSS 27 software
(IBM Corp, Armonk, United States). The data were tested for
normality using Shapiro–Wilk test and are reported as the
mean ± SD. Outliers were defined as cases with a studentized
deleted residual greater than three standard deviations (SD). A
Spearman’s correlation test was run to assess the relationship
between VC and PETCO2 and the amplitude of the signal from
the force sensor. A one-way repeated measures analysis of variance
(ANOVA) was used to compare VC and amplitude of the
respiratory signal and compare PETCO2, amplitude, and eMv
before every apnea. The Bonferroni correction for multiple
comparisons was applied. Significance was observed at p < 0.05.
A linear regression was run to predict PETCO2 from the eMV before
every apnea. The Bland–Altman method was used to assess the
agreement between the measured VC and predicted VC and
between measured PETCO2 and predicted PETCO2 (Bland and
Altman, 1986). The accepted clinical limits of agreement (LOA)
for capnography are ≤5 mmHg (Wu et al., 2003), but the LOA
between PETCO2 and PaCO2 could be as large as + 31 mmHg (İşat
et al., 2023). When comparing two methods for measuring PETCO2,
the LOA could be 11 mmHg (Tamashiro et al., 2023). We set the
accepted LOA to ≤10 mmHg. Effect sizes were estimated by the

FIGURE 2
Apnea test protocol, involving apneas of 1, 2, and 3min duration (A1–A3). Icons represent the time of vital capacity and exhaled CO2measurements.
Baseline (3-min). Between apnea breathing intervals (2-min). Recovery (5-min).

FIGURE 3
Representative respiratory signal from one participant 60 s
before the breath-hold. The inverted triangles show the detected
peaks of the signal, corresponding to the end of inhalation, and are
used to calculate the respiratory rate. The vertical lines show the
amplitude of every wave (prominence) used as a surrogate of tidal
volume. The horizontal lines show the duration measured at the
midpoint of the prominence (width). N, newton; s, seconds.
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partial eta squared (η2p) and the generalized eta squared (η
2
G) and are

presented with a 90% confidence interval (CI). An effect size of
0.01–0.05 was considered small, 0.06–0.13 was considered medium,
and 0.14 and above was considered large (Cohen, 1988; Bakeman,
2005; Lakens, 2013).

End-tidal carbon dioxide (PETCO2) data before the first apnea
were missing for one participant; therefore, analyses for apnea
1 were conducted with data from 20 participants, as indicated in
the results.

Results

All participants completed the apnea protocol as intended,
except four participants, who were unable to reach the full 3-
min duration during the third apnea. These divers were
included in the analysis, resulting in an average duration of
174 ± 13 s for A3.

Respiratory values

PETCO2 was lower before the last apnea (A3) than before the first
apnea (A1, p = 0.034, η2p = 0.16, 90% CI [0.01–0.31], and η2G = 0.03;
Table 1). The RR was lower in A2 than in A1 (p = 0.034, η2p = 0.20,
90% CI [0.02–0.34], and η2G = 0.05; Table 1).

Respiratory signal

The signal from the device was clear, and RR and amplitude
were easily detectable (Figure 3). The amplitude was larger in A2 and
A3 than in A1 (p < 0.001, η2p = 0.36, 90% CI [0.12–0.52], and η2G =
0.05; Table 1). The product of the amplitude and the respiratory rate
(eMV) was higher in A3 than in A1 (p < 0.001, η2p = 0.35, 90% CI
[0.14–0.49], and η2G = 0.04; Table 1).

Correlation analysis of estimated tidal
volume with PETCO2

For A1, the correlation did not reach significance
(rs = −0.371 and p = 0.054, Figure 4A), while there was a
moderate negative correlation for A2 (rs = −0.500 and p = 0.010;
Figure 4B) and for A3 (rs = −0.512 and p = 0.009; Figure 4C).

PETCO2 prediction

A linear regression analysis revealed a significant predictive
relationship between eMv and PETCO2 in A1 (F (1, 18) = 6.629 and
p = 0.019; Figure 4A), A2 (F (1, 19) = 13.994 and p = 0.001; Figure 4B),
and A3 (F (1, 19) = 9.600 and p = 0.006; Figure 4C). eMv accounted for
27% of the explained variability in A1, 42% in A2, and 34% in A3. The
linear regression equation for every apnea (Figure 4) was used to
calculate the predicted PETCO2 (predPETCO2) before the three apneas
(Table 1). The difference between PETCO2 and predPETCO2

was −0.00 ± 4.5 mmHg for A1, −1.15 ± 5.0 mmHg for A2,
and −0.00 ± 5.2 mmHg for A3 (Figure 5).

Underwater respiratory signal

The quality of the respiratory signal recorded in water before
starting apneic performance was satisfactory (Figure 6).

Discussion

Our results indicate that hyperventilation before breath-holding
may be estimated using the signal from the force sensor. However,
our method underestimates PETCO2 values when mean values
exceed 35 mmHg. Measurements appear more reliable when
PETCO2 is in the hypocapnic range of 25–35 mmHg, with
reduced accuracy as PETCO2 approaches normocapnia. These
findings suggest that the prediction is more appropriate for mild
hypocapnia but may be less reliable during normocapnia.

The successful application of the device for underwater
performance, with good signal quality, is promising for future
development. Although swimming motions, arm and leg
movements, and chest compression at depth could affect the
quality of the signal, the force sensor has the potential to identify
involuntary breathing movements that signal the physiological
breaking point (Agostoni, 1963).

Hyperventilation

We also found that freedivers hyperventilate without noticing as
they keep RR within normal or even in the lower range of normal
values, which explains the previous observations in our group
(unpublished work). The hyperventilation is, thus, solely due to

TABLE 1 Pre-apnea respiratory values and data from respiratory buckle signal.

PETCO2 (mmHg) RR (bpm) Amplitude (N) Vt (L) eMv (N/min)

Measured Predicted

A1# 31 ± 5 31 ± 3 10 ± 3 2.9 ± 1.8 2.87 ± 2.39 25.6 ± 12.6

A2 31 ± 7 33 ± 4 8 ± 2* 3.7 ± 2.5* 3.23 ± 2.70 28.7 ± 16.1

A3 29 ± 6* 30 ± 4 9 ± 3 4.0 ± 2.4* 3.36 ± 2.66 32.4 ± 14.1*

Values are presented as the mean ±1 SD. #n = 20. PETCO2, end-tidal exhaled pressure of carbon dioxide; RR, respiratory rate; bpm, breaths per minute; N, newton; Vt, calculated tidal volume; L,

liters, eMV, estimated minute ventilation calculated as the product of the RR and the amplitude of the prominence in the respiratory signal; A1–A3, apnea 1 to apnea 3. *Significantly different

from A1.
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FIGURE 4
Comparison of measured end-tidal CO2 (PETCO2) with the estimated minute ventilation (eMV) before A1 (A), A2 (B), and A3 (C). The orange line
represents the regression line, and the corresponding formula is expressed on each graph. mmHg, millimeters of mercury; n = 20 (A) and 21 (B, C).

FIGURE 5
Bland–Altman plots of the difference between PETCO2 and predPETCO2 before A1 (A), A2 (B), and A3 (C). The dotted lines represent the upper limit of
agreement (mean + 1.96 SD) and lower limit of agreement (mean – 1.96 SD); mmHg, millimeters of mercury; n = 20 (A) and 21 (B, C).

FIGURE 6
Respiratory signal from two participants before competition performance in static apnea (A) and dynamic apnea without fins (B), depicting the
differences in the breathing pattern as the diver in (A) shows shallower breaths but at an increased breathing frequency compared to diver (B). The two
vertical lines show the period of lung packing, and the gray rectangle shows the beginning of the apneic performance. N, newton; s, seconds.
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increasing Vt. This emphasizes the challenge of quantifying the
depth of breathing, a parameter that is less easily observed than RR
both by the diver and observer. Quantifying the extent of
hyperventilation is critical as severe hypocapnia correlates with
reduced cerebral blood flow. In healthy participants, a 31%
decrease in cerebral blood flow at a PaCO2 level of 26 ±
2 mmHg has been reported (Fortune et al., 1995). Even moderate
hyperventilation can cause a 20% reduction in brain blood flow
(Reivich, 1964). Additionally, patients with brain hypertension also
demonstrated up to a 34% increase in brain tissue hypoxia when
PETCO2 values fell below 25 mmHg (Carrera et al., 2010). Some
participants in our study, particularly before the third apnea,
experienced severe hypocapnia (PETCO2 ≤ 25 mmHg), and
divers who initiate a dive with severe hypocapnia could be at a
higher risk of BO. Hyperventilation alone could be a contributing
factor to a transient loss of consciousness (Immink et al., 2014). At
present, the relationship between the severity of hypocapnia and BO
remains unclear.

Estimating lung volumes

During quiet breathing, Vt is mainly determined by the
diaphragm contraction, which induces small changes in the
vertical volume of the lung (West and Luks, 2021). As the force
sensor detects changes in the circumference of the thorax, it is
expected to be less sensitive at lower Vt, such as in A1. However,
hyperventilation typically entails a more pronounced movement of
the diaphragm and accessory muscles. Consequently, this amplifies
the thoracic diameter, thereby enhancing the potential to detect an
increase in chest circumference using the force sensor. In our study,
the estimated Vt constituted nearly 58% of the VC. We acknowledge
the limitation at low volumes, which explains why we cannot estimate
VC or Vt with 100% accuracy and why the correlation with PETCO2

was not significant in A1. This limitation applies to all the techniques
used to estimate Vt from wearables as estimating it based on the
movements of the chest wall is challenging (Monaco and Stefanini,
2021). As our intention is not to use it in a clinical setting but to
monitor athletes for high respiratory activity, we consider that our
results are suitable for exploring practical applications in different
freediving situations, including saltwater and depth. This study acts as
a proof-of-concept for applying breath analysis to estimate PETCO2

levels during various underwater performances.
Additionally, the respiratory signal proved instrumental in

detecting thoracic changes associated with “lung packing”—a
maneuver employed by freedivers to enhance their total lung
capacity (Örnhagen et al., 1998; Figure 6). This maneuver was
initially described as glossopharyngeal breathing in post-polio
patients (Dail et al., 1955).

Limitations

Our results apply only to dry static apneas in the sitting position,
so the device should be further tested in underwater scenarios.

Additionally, despite most of the measurements being within the
limits of agreement, there was a tendency to underpredict PETCO2

when it was close to normal values. This means that during normal

ventilation, the changes in the thoracic circumference were small
and did not exert enough force in the sensor, so the amplitude of the
signal was lower than expected. As wemeasured the changes in chest
circumference in only one place, we could have missed information
when ventilation was shallow or was only affecting the upper part of
the chest.

Conclusion

This study demonstrates the potential of using a force sensor to
estimate hyperventilation before breath-holding under static
conditions, providing a foundation for further exploration. While
the prediction model accounts for a moderate proportion of the
variability in PETCO2, additional validation is required to establish its
utility in preventive applications. Freedivers may hyperventilate even
at seemingly regular or reduced breathing frequencies, emphasizing
the importance of refining this approach. Further research, including
underwater assessments, is essential to evaluate the feasibility of this
system for improving safety in freediving.
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Introduction: The growing demand for real-time, affordable, and accessible 
healthcare has underscored the need for advanced technologies that can 
provide timely health monitoring. One such area is predicting arterial blood 
pressure (BP) using non-invasive methods, which is crucial for managing 
cardiovascular diseases. This research aims to address the limitations of current 
healthcare systems, particularly in remote areas, by leveraging deep learning 
techniques in Smart Health Monitoring (SHM).

Methods: This paper introduces a novel neural network architecture, ResNet-
LSTM, to predict BP from physiological signals such as electrocardiogram (ECG) 
and photoplethysmogram (PPG). The combination of ResNet’s feature extraction 
capabilities and LSTM’s sequential data processing offers improved prediction 
accuracy. Comprehensive error analysis was conducted, and the model was 
validated using Leave-One-Out (LOO) cross-validation and an additional dataset.

Results: The ResNet-LSTM model showed superior performance, particularly with 
PPG data, achieving a mean absolute error (MAE) of 6.2 mmHg and a root mean 
square error (RMSE) of 8.9 mmHg for BP prediction. Despite the higher computational 
cost (~4,375 FLOPs), the improved accuracy and generalization across datasets 
demonstrate the model’s robustness and suitability for continuous BP monitoring.

Discussion: The results confirm the potential of integrating ResNet-LSTM into 
SHM for accurate and non-invasive BP prediction. This approach also highlights 
the need for accurate anomaly detection in continuous monitoring systems, 
especially for wearable devices. Future work will focus on enhancing cloud-
based infrastructures for real-time analysis and refining anomaly detection 
models to improve patient outcomes.

KEYWORDS

deep learning, machine learning, smart health monitoring, smart wearables, 
hypertension

1 Introduction

1.1 Smart health monitoring

One of the most significant developments in the healthcare industry in the current digital age 
is smart health care. Traditional medicine based on bioengineering has started to gradually 
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digitalize information due to scientific theory and technological 
advancements. The healthcare system continuously monitors a patient 
by examining a variety of data and extrapolating a positive outcome from 
previous instances of such continuous monitoring. In Intensive Care 
Units (ICUs), continuous monitoring of patients is standard practice, 
allowing healthcare providers to access critical information in real-time. 
This monitoring can be lifesaving for conditions such as diabetes, asthma 
attacks, heart failure, and hypertension. Smart medical devices can 
connect to smartphones, enabling the seamless transmission of 
important patient data to clinicians. These gadgets also record data on 
blood pressure, weight, blood sugar, and oxygen levels. Smart health care 
makes it possible for people from a variety of backgrounds (such as 
doctors, nurses, caregivers for older family members, and patients) to 
find suitable information and results, appropriate information, and 
solutions, reduce medical errors, improve care, and reduce expenses at 
the right time in the health-care department/facilities (1). Several 
methods are used in smart health care, together with the usage of devices 
such as mobiles, computers, and televisions, along with various networks, 
like wide area networks (WANs), local area networks (LANs), and body 
area networks (BANs). The parameters that are most frequently tracked 
include blood heat, heart rate, blood pressure, and motion detection.

This research focuses specifically on arterial blood pressure (BP) 
monitoring, which plays a critical role in managing conditions like 
hypertension and cardiovascular diseases. The continuous monitoring 
provided by smart devices enhances real-time assessments, especially 
in individuals who may lack awareness of their vital signs or have 
varying levels of clinical knowledge (2). Smart medical devices, such as 
wearables, help both patients and healthcare providers to access relevant 
information. These devices track important metrics like blood pressure, 
heart rate, and oxygen levels, thus offering more accessible and timely 
interventions, particularly for those in remote areas or with limited 
access to healthcare (3). SHM empowers diverse users, from patients to 
healthcare professionals, by reducing medical errors, improving patient 
care, and cutting healthcare costs by providing real-time, continuous 
data transmission through networks like LANs and BANs.

Table  1 presents a sample of commonly used wearable sensor 
technologies, focusing specifically on their applications related to 
arterial blood pressure (BP) monitoring and other cardiovascular 
assessments. While this table does not encompass the full breadth of 
wearable devices available, it highlights technologies particularly 
relevant to BP prediction and management, as well as related clinical 
applications such as arrhythmia detection and heart failure management.

1.2 Hypertension: conditions for detecting 
hypertension

Hypertension is a significant global health concern, affecting 
millions and contributing to a higher risk of cardiovascular diseases. 
Blood pressure (BP) is a dynamic physiological measure that fluctuates 
minute by minute, influenced by various environmental and 

physiological factors (4). Continuous monitoring of BP helps detect 
trends that might indicate early signs of hypertension or cardiovascular 
strain. Home BP monitoring is gaining prominence as it offers valuable 
insights into BP fluctuations throughout the day and night, potentially 
unveiling conditions like “white coat” hypertension or irregularities 
linked to stress. This monitoring in diverse contexts allows for more 
informed decisions in treatment and management, reducing risks such 
as heart disease or hypertension-induced mortality. Effective BP 
control is especially crucial for reducing cardiovascular risks, 
particularly in older adults. While BP measurement has been shown to 
be an effective predictor of outcomes in cardiovascular disease, a better 
understanding of BP levels and variability could enhance risk 
stratification. It may facilitate the detection of “white coat” hypertension 
and assess excessive BP responses to various stresses. Variations in BP 
levels between day and night can also provide important information 
regarding the cardiovascular system (5). Furthermore, the comorbidity 
of mental illnesses and hypertension is linked to a higher cardiovascular 
mortality than hypertension alone, as hypertensive patients are more 
prone to experience anxiety. Effective BP control can decrease the risk 
of cardiovascular disease (CVD) and mortality in older individuals. BP 
varies over both short and long periods, including days, months, 
quarters, or years (6). Home BP monitoring, highly advised as a 
supplement to standard BP measurement in recent hypertension 
guidelines, plays a major role in the management of hypertension.

1.3 What are medical anomalies and why 
are they different?

Medical anomalies refer to deviations from typical physiological 
patterns, which may indicate underlying conditions or pathologies. 
These deviations can be congenital (present at birth) or acquired over 
time. For instance, variations in blood pressure (BP) could point to 
cardiovascular disorders, while other anomalies might suggest 
arrhythmias or metabolic imbalances.

A critical distinction must be  made between anomalies and 
artifacts in medical data. Anomalies reflect genuine physiological 
irregularities that could suggest disease or abnormal conditions. In 
contrast, artifacts are errors or distortions in the data—often resulting 
from sensor misreading or environmental factors—that do not 
represent real physiological conditions. For example, sudden 
fluctuations in BP readings could be caused by movement or sensor 
misalignment rather than an actual BP variation. The machine 
learning (ML) system presented in this paper focuses primarily on 
detecting anomalies—deviations in physiological signals such as BP 
that may indicate an abnormal health state. However, distinguishing 
between true anomalies and artifacts is also essential to ensure 
accuracy in diagnoses. This research integrates signal processing 
techniques within deep learning models to filter out artifacts and 
enhance the detection of clinically relevant anomalies. To handle 
medical imaging tasks like classification and segmentation, anomaly 
detection is one potential methodology that can make use of semi-
supervised and unsupervised methods.

Figure 1 illustrates the essential phases of processing medical data 
using machine learning for anomaly detection. The figure outlines a 
step-by-step flow from data acquisition to prediction and diagnosis, 
highlighting how each phase is related to anomaly detection:

Abbreviations: BP, Blood Pressure; SHM, Smart health monitoring; PPG, 

Photoplethysmograms; ECG, Electrocardiograms; LSTM, Long Short-Term 

Memory; MAE, Mean absolute error; RMSE, Root Mean Squared Error; MoN, Model 

of normality; FLOPS, Floating-point operations per second.
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	 a	 Prediction: Machine learning algorithms predict the future state 
of physiological signals such as BP, helping clinicians anticipate 
adverse events or trends (e.g., a gradual increase in BP).

	 b	 Diagnosis: By analyzing physiological signals, machine learning 
models can help identify pathological symptoms (e.g., 
hypertensive crises or arrhythmias).

These two tasks—prediction and diagnosis—are closely linked to 
anomaly detection since they enable identification of abnormal patterns 
in the data. The model extracts distinct features from the data, thereby 
improving diagnostic accuracy and delivering insights into patient health.

Key challenges in medical anomaly detection include:

	 a	 Test sensitivity: High sensitivity is required to detect subtle 
deviations accurately, ensuring that no abnormality is 
overlooked during diagnosis.

	 b	 Patient-specific factors: An effective model must account for 
individual differences in physiological baselines, ensuring that 
anomalies are detected based on personalized norms rather 
than generalized data.

Given these challenges, medical anomaly detection typically falls 
under supervised learning, where models are trained on labelled data 
(normal vs. abnormal) to identify anomalies. This contrasts with other 
domains, where anomaly detection is often an unsupervised task due 
to the absence of predefined labels (7).

1.4 Why use deep learning for medical 
anomalies?

Deep learning (DL) has emerged as a potent instrument in 
biomedical research because of its capacity to handle the intricate 
problems related to the identification of medical anomalies (8). The 
key advantages of deep learning, particularly in this context, include:

TABLE 1  Summary of wearable sensor technologies and clinical applications.

Sensor technology Device type Measurements Clinical applications

PPG Smartwatch or Band

Heart Rate Variability (HRV), Heart Rate (HR), 

Blood pressure (BP) without a cuff, oxygen 

saturation (SaO2), Heart Rate, Sleep Stages, 

Pulse-based Rhythm Detection, and Stroke 

Volume

Prediction of arterial blood pressure; Evaluation of risk in 

both healthy and cardiovascularly ill individuals; screening 

for and treatment of hypertension; identification and 

diagnosis of arrhythmias; tracking of sleep; Management of 

heart failure

ECG Smart Ring

both single- and multiple-lead ECGs, ongoing or 

only when necessary observation, interval 

assessments (such as QTc), detection of 

arrhythmias, Changes in electrolyte 

abnormalities

Prediction of arterial blood pressure; Evaluation of risk in 

both healthy and CVD individuals; screening for and 

treatment of hypertension; identification and diagnosis of 

arrhythmias; diagnosis of acute coronary syndrome; extended 

QTc diagnosis Management of heart failure

Accelerometer Chest Strap
Steps taken, force of impact, speed, amount of 

idle time, and exercise

Monitoring physical activity; Assessing risk in both healthy 

and CVD-afflicted individuals; Cardiopulmonary 

telerehabilitation; management of heart failure

Barometer Wristband Stair count

Monitoring physical activity; Assessing risk in both healthy 

and CVD-afflicted individuals; Cardiopulmonary 

telerehabilitation; management of heart failure

GPS Smart Clothing Travel distance and burned calories

Monitoring physical activity; Assessing risk in both healthy 

and CVD-afflicted individuals; Cardiopulmonary 

telerehabilitation; management of heart failure

Biometric Sensors Smart Earbuds

Constant Monitoring of Electrolytes and Blood 

Glucose monitoring blood sugar levels continuously; managing heart 

failureNon-invasive electrolyte levels in saliva and sweat 

and state of hydration

Biomechanical Smart Shoes
Ballistocardiograms, Seismocardiograms, 

Dielectric sensors

Weight, body vibrations, lung fluid volume, stroke volume, 

and cardiac output

FIGURE 1

Key phases of processing medical data and their connection to 
anomaly detection.
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	 a	 Non-linearity modeling: Medical data is often non-linear, 
with complex relationships between variables. Deep 
learning models, such as the ResNet-LSTM, are capable of 
capturing these non-linear relationships, making it 
easier  to distinguish between normal and abnormal 
physiological states.

	 b	 Handling data discrepancies: Medical data often contains 
inconsistencies or noise, whether due to artifacts or natural 
variability in patient signals. Deep learning models can manage 
these discrepancies by learning patterns from large datasets, 
thereby filtering out irrelevant variations and focusing on 
clinically significant changes.

In this paper, we leverage a ResNet-LSTM architecture for its 
ability to model both spatial and temporal features. This enables 
the model to uncover long-term dependencies in physiological 
data without the need for explicit feature engineering. 
Specifically, this approach helps identify BP anomalies by 
analyzing patterns in photoplethysmogram (PPG) and 
electrocardiogram (ECG) signals over time. The ResNet 
component effectively extracts spatial features from the data, 
while the LSTM component captures temporal relationships, 
enhancing the model’s predictive power in detecting deviations. 
By applying this deep learning framework, the model is able to 
provide continuous, real-time monitoring of physiological 
signals, making it a robust tool for identifying true anomalies 
while minimizing the influence of artifacts. Figure 2 provides a 
hierarchical taxonomy of current deep learning techniques used 
in anomaly detection, illustrating how different models 
(including ResNet-LSTM) fit within the broader landscape of 
anomaly detection approaches.

1.5 Objective of paper

This paper’s main objective is to use DL and ML techniques to 
investigate the transformative potential of SHM. It focuses specifically 
on the application of neural network architectures, ResNet-LSTM in 
particular, for the prediction of arterial blood pressure. The aim of this 
paper is to assess the efficacy of SHM in providing reliable, affordable, 
and timely health monitoring services, especially in remote areas. The 
study aims to contribute to the paradigm shift in health data assessment 
and anomaly detection by integrating intelligent sensors that can 
monitor health in real-time. It emphasizes the significance of continuous 
monitoring through wearables.

The first section of the paper introduces the problems that the 
genesis and transmission of diseases present to the healthcare sector, 
highlighting the need for creative solutions. The concept of SHM and 
its potential to transform the assessment of health data is then 
explored in depth. In the research methodology section, it is explained 
how physiological signals like PPG and ECG are used to predict 
arterial blood pressure using deep learning, specifically ResNet-
LSTM. A thorough analysis of the ResNet-LSTM network’s 
performance, including MAE and RMSE values, is provided in the 
results section. The network’s accuracy across all BP prediction 
scenarios is demonstrated by numerical values. Interpreting the 
results, the discussion highlights the importance of accurate anomaly 
detection and wearables for continuous monitoring. Throughout, the 
research emphasizes the practical implications of the research in 
addressing current healthcare challenges and promoting personalized, 
effective health monitoring solutions.

Table 2 summarizes the types of anomaly detection techniques 
used in your paper, including deep learning, machine learning, 
statistical methods, and hybrid approaches. The precise method used, 

FIGURE 2

A hierarchical taxonomy of current deep anomaly detection techniques.

TABLE 2  Summary of anomaly detection techniques.

Technique Type Data analysis Online/
Offline

Reciprocity Adaptability Data 
processing

ResNet-LSTM Deep Learning Physiological Signals (ECG, PPG) Online Temporal Non-adjustable Central

WaveNet+LSTM Machine Learning Physiological Signals (ECG, PPG) Offline Temporal Non-adjustable Central

Clustering Algorithm Statistical Method Physiological Signals (ECG, PPG) Offline Spatial Non-adjustable Distributed

Transfer Learning Hybrid Image Features Offline - Adjustable Central
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the kind of data analysis, reciprocity, online/offline nature, flexibility, 
and data processing strategy are given for each technique.

The current methods for detecting anomalies and sensor faults are 
briefly explained in the following section. The suggested method for 
detecting sensor anomalies is presented in Section 3. In Section 4, 
experiments and findings are covered along with a comparison of the 
suggested strategy with related approaches. Conclusion and potential 
future work are presented in Sections 5 and 6, respectively.

2 Literature survey

Many important factors, such as data processing algorithms, 
communication networks, sensor selection, contact-based versus 
contactless techniques, and other design considerations, must 
be carefully considered to create a dependable remote monitoring 
system. Numerous review papers offer perceptive evaluations of smart 
technology by examining it from multiple perspectives.

While Ohta et al. (37) focused on developing a health monitoring 
system especially for senior citizens who live alone to ease their 
anxieties and encourage independent living, while Tamura et al. (38) 
investigated the development of a home health monitoring system that 
did not forbid activities like bathing, sleeping, or urinating. These 
studies paved the way for the creation of intelligent wearables for 
health detection that add new features on a regular basis. Deep 
learning techniques are utilized by researchers for medical 
anomaly identification.

Clifford et  al. (4) showcased the potential of computational 
methods in cardiology through their work on the categorization of 
heart sound recordings as normal or abnormal. In automated 
rehabilitation, Wang et al. (9) used deep back propagation–LSTM 
networks for upper-limbs EMG signal categorization. In the context 
of infectious diseases, Singh et  al. (10) created a multi-objective 
differential evolution-based convolutional neural network for 
COVID-19 patient classification from chest CT images. Chang et al. 
(3) demonstrated the precise classification of genetic alterations in 
gliomas using deep-learning convolutional neural networks for 
applications other than healthcare.

Using image, audio, and inspection robot sensors, Hea et al. (39) 
investigated the connection between technology and infrastructure 
maintenance and developed a non-invasive method for fault diagnosis 
and detection in water distribution systems. Motwani et  al. (1) 
provided a comprehensive analysis of machine learning-based 
ubiquitous and intelligent healthcare monitoring frameworks and 
provided insights into novel and developing treatments for patients 
with chronic illnesses. Several review articles covering a range of fields 
discussed anomaly detection. García-Macías and Ubertini (Springer) 
integrated SHM systems, focusing on data fusion and unsupervised 
learning to identify damage. Aliyu et al.’s paper, “Anomaly Detection 
in Wearable Location Trackers for Child Safety,” focused on 
microprocessors and microsystems. Churová et  al. proposed an 
anomaly detection method for real-world data (11).

The study carried out by Hamieh et al. (12) sheds light on a 
noteworthy and demanding application of remote monitoring: 
mental health. They highlight the value of using unsupervised 
learning to spot relapses in individuals with psychotic disorders, 
demonstrating the potential benefits of objective, non-intrusive 
monitoring for early intervention and improved patient outcomes. 

Further research into AI-powered mental health monitoring 
systems that safeguard user privacy and provide carers and 
clinicians with useful information is made possible by this study. 
Jahan et al. (13) introduce us to a new field by using smartwatch 
technology for activity recognition within the context of religious 
rites like salat. This study shows how adaptable remote monitoring 
can be, going beyond traditional applications in fitness and health 
to satisfy cultural and religious demands. Think about the benefits 
that come from tailoring activity detection algorithms to various 
practices so that individuals can meaningfully monitor their 
participation and adherence.

The application of remote monitoring in human behavior analysis 
is elaborated upon by Bozdog et al. (14). Their research demonstrates 
how anomalies can be  detected and intricate human behavior 
patterns can be  deciphered using wearable sensors and machine 
learning. This opens the door to applications like risk prediction, 
personalized coaching, and even environmental adaptation based on 
real-time behavioral data. Our primary concerns as we use these 
technologies to understand human behavior should be ethics and 
user privacy. The resource Kalpana et  al. (40) was helpful as it 
gathered an extensive overview of deep learning methods for anomaly 
identification in human activity recognition, which helped in 
formulating the proposed model and understand the scope and need 
for this research work. This provides a comprehensive summary of 
current research trends and identifies areas that warrant additional 
research. By highlighting the benefits and drawbacks of various 
algorithms, this paper lays the foundation for researchers to build on 
current understanding and push the boundaries of human activity 
detection accuracy and interpretability. By adding to the body of 
knowledge, these combined efforts promote the development of 
remote monitoring systems and increase their efficacy in a range of 
applications. All the existing works have been summarized for a 
better understanding in Table 3.

3 Proposed methodologies

The algorithmic strategies for detecting medical anomalies are:
	 a	 Unsupervised anomaly detection: It does not involve any 

supervision signal that would indicate whether a sample is 
normal or not during the learning process. Unsupervised 
methods are therefore intriguing to the machine learning field 
since they do not require labelled datasets. The following 
subsections introduce two popular unsupervised deep anomaly 
architectures: Autoencoders (AEs) and Generative Adversarial 
Networks (GANs). AEs have been extensively used for 
automatic feature learning ever since they were first introduced 
as a pre-training method for deep neural networks. The model 
is trained to reconstruct the input using a learnt compressed 
representation that is stored at the core of the architecture 
because the AEs are symmetrical. Assume that the current 
input (I) is a dataset made up of samples, and that the encoder 
and decoder networks are denoted, respectively. Next, the 
compressed form is provided as follows: Formally, let us 
assume that the encoder and decoder networks are denoted, 
that the dataset comprises samples, and that the current input 
is p. Next, it is decided what the compressed representation 
using Equation 1.
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	 ( )l h i= 	 (1)

and the reconstruction is performed using Equation 2.

	 ( ).y g l= 	 (2)

To minimize the reconstruction loss, ( )( )K,pKandL(x,g h x this 
model has been trained.

	 b	 Supervised anomaly detection: Due to its high demand in 
diagnostic application because of its high sensitivity and 
durability supervised learning is being applied widely for 
medical anomaly detection. It also has proven to be  better 
performing than unsupervised methods. In This approach, a 
supervised signal is presented which indicates whether the 
samples are from the normal category or abnormal. Thus, 
making the job to behave as a binary classifier, and training the 
models using binary cross-entropy loss. Multi-task learning 
(MTL) which is a subtype of supervised learning, helps to 
transfer pertinent knowledge collected from various linked 
tasks, among them. For example, the difficulties brought on by 
subject-specific differences can be solved using a secondary 
subject identification task. As a result, the model develops the 
ability to classify anomalies while also learning to recognize 
similarities and differences among participants. The deep 
learning architectures that have been explored thus far are 

feedforward designs, meaning that data moves from input to 
output in a single direction. Their capacity to model temporal 
signals is hence constrained. Recurrent Neural Networks are 
used to overcome this restriction.

	 c	 Recurrent neural networks (RNNs): Recurrence is a crucial 
characteristic for tasks like time-series modeling since it 
essentially means that the output of the current time step is 
once more used as an input to the subsequent time step. The 
modeling of sequential medical data, such as EEG and 
phonocardiographic data, is also essential for obtaining the 
temporal evolution of the signal. For modeling long-term 
dependencies, simple RNN architectures are ineffective due to 
BPTT-caused disappearing gradients. Several variations of 
RNN models have been created to mitigate this issue. However, 
because RNNs have a lot of vanishing gradients, they cannot 
accurately represent long-term dependencies; for this reason, 
LSTM networks are developed.

3.1 How do smart watches analyze heart 
rate?

The heart rate monitor of the smartwatch uses an easy and 
economic optical method PPG. It is employed to find changes in 
blood volume in the tissue’s microvascular network. This technique 
uses a combination of green LED and infrared light along with 
photosensitive diodes to illuminate the skin and measure the 
absorption of the green light accordingly (15) as depicted in Figure 3. 

TABLE 3  Summary and insights obtained from existing literature.

Reference Methods Techniques Results Problems identified

García-Macías and Ubertini 

(Springer)

Structural health monitoring 

(SHM) systems

Data fusion, unsupervised 

learning for damage identification

Incorporation of SHM systems, 

emphasis on data fusion and 

unsupervised learning

Customization of activity 

detection algorithms

Aliyu et al.
Wearable location trackers: 

detecting anomalies
Microprocessors, microsystems

Centered on wearable location 

trackers’ anomaly detection for 

kid safety

Privacy concerns

Churová et al. (2020) (11)
Real-world data anomaly 

detection technique
Not specified

Proposed real-world data 

anomaly detection technique
Privacy concerns

Hamieh et al. (2023) (12)
Unsupervised learning for 

mental health monitoring
Not specified

Identification of relapses in 

people with psychotic 

disorders, potential for early 

intervention

Privacy concerns in mental 

health monitoring

Jahan et al. (2023) (13)

Smartwatch technology for 

activity recognition in 

religious rites

Not specified

Flexible remote monitoring 

beyond health and fitness, 

meeting cultural and religious 

requirements

Customization of activity 

detection algorithms

Bozdog et al. (2021) (14)
Remote monitoring in human 

behavior analysis

Wearable sensors, machine 

learning

Potential for understanding 

intricate patterns in human 

behavior, applications in risk 

prediction and coaching

Ethical and privacy concerns 

in human behavior analysis

Kalpana et al. (2022)

Deep learning methods for 

anomaly identification in 

human activity recognition

Not specified

Overview of current research 

trends, advantages, and 

disadvantages of various 

algorithms

Areas that show promise for 

further investigation
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Here, this combination of infrared light and green LED is taken 
because the Red Blood Cells (RBCs) reflect the red light and absorb 
the green light. This helps the sensors compute the amount of blood 
flowing through the wrist at any given time. The green LED is 
generally used when the user is performing any exercise. Normally, 
the watch uses infrared light to calculate the heart rate every 10 min. 
Furthermore, if the watch is loosely worn or the skin is perfused the 
LED increases its brightness and sampling rate to measure the exact 
heart rate. When the watch measures the heart rate every 10 min, it 
switches to the green LED in case the infrared light fails to provide an 
adequate reading (16). These lights flash hundreds of times per minute 
to get a hold of the blood flow which helps the device calculate the 
heart rate precisely.

3.2 Architecture of the anomaly detection 
model and its role in data processing of the 
MIMIC database

The MIMIC database (17), which contains a variety of data 
gathered from ICU patients, is used to calculate the relationship 
between PPG and ABP and assess how the model responds to abrupt 
variations in blood pressure. In this application, LSTM and CNN are 
combined. Since CNN can extract deep features and LSTM can learn 
from past experiences, these models are ideal for anomaly detection. 
Due to fully connected layers and connectionless nodes processing a 
single input between layers, the 2D CNN and LSTM model offers a 
superior classification (18). A temporal sequence is used as the input 
for an LSTM and is connected to the nodes from a directed graph 
along with a typical order.

3.2.1 Convolutional neural network (CNN)
CNN is used in many different applications, such as image 

classification, object recognition, and medical image analysis. CNN is 
mainly used to extract local characteristics from higher-level inputs. 
These characteristics are then forwarded to lower layers for help with 
more complex features. Its three layers are pooling, fully connected 
(FC), and convolutional (FC) (1).

	 A	 Convolutional layer:
A collection of kernels for generating a tensor of feature mappings 

is present in the convolutional layer of the CNN layer. The kernels use 
the striding process to entwine the entire input to produce the output 
volume’s dimensions as integers, while the convolutional layer reduces 

the dimensions of the input volume. To retain the size of the input 
volume using low-level characteristics while padding an input volume 
of zeros, the striding procedure is required. The convolutional layer’s 
function is described as in Equation 3.

	 ( ) ( )( ) ( ) ( ), , , ,G x y M N i j M x i y j N i j= ∗ = ∑∑ + + 	 (3)

where G is the result of a 2D feature map, N is a 2D filter of size 
i × j, and M is the input matrix.

	 B	 Rectified linear unit (ReLU) layer:
The convolutional layer’s operation is indicated by M*N. Feature 

maps can be made more nonlinear by using the ReLU layer. ReLU uses 
a threshold input of zero to calculate activation. The mathematical 
expression for it is as follows as given in Equation 4.

	 ( ) ( )f x max 0,x= 	 (4)

	 C	 Pooling layer:
The pooling layer performs a down sample of the specified input 

scale to minimize the number of factors. Max pooling is the most 
popular technique since it yields the highest result for a certain input 
region. Using the characteristics gathered from the previous two layers, 
the FC layer computes the judgments made by CNN. It serves as a 
classifier, the FC layer.

	•	 Why use ResNet?
Res Nets help in preserving a low error rate in the deeper 

layers of the network hence, making them one of the most efficient 
Neural Network Architectures. It employs a method known as 
skip connections (12). The salient characteristic of this technique 
is that regularization bypasses any layer that reduces or impedes 
the architecture’s performance. To form a residual block, this 
connection skips some layers between the activations of one layer 
and those of subsequent layers. These residual blocks are stacked 
together to create ResNets. leads to training the deep neural 
network without any vanishing or exploding gradient disruptions. 
This network fits the residual mapping by letting the network do 
the fitting. Hence, instead of saying G(x), initial mapping, let the 
network fit as defined by Equation 5.

	 ( ) ( ) ( ) ( ): : iH i G i H i G x= − = +
	 (5)

3.2.2 Long short – term memory (LSTM)
A particular kind of recurrent neural network called an LSTM 

solves disappearing and exploding gradient problems by using 
memory blocks rather than the standard RNN units. The LSTM’s 
cell state also stores the long-term states, enabling it to link data 
gathered in the past and present. Three distinct types of gates 
make up the internal structure of the LSTM, as shown in Figure 4:

px - denotes the current input;
pC  and 1pC −   – denote the new and previous cell states, 

respectively; and
ph  and 1ph −   - denote the current and previous outputs, 

respectively.

	 ( )1. ,p i p p ii W h x bσ − = +  	 (6)

FIGURE 3

Photosensitive diodes (sensors), green LED and infrared lights on the 
base of a smartwatch.
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	 ( )1tanh . ,p i p p iC W h x b− = + 


	 (7)

	 1p p p p pC f C i C−= + 

	 (8)

	 ( )1. ,p f p p ff W h x bσ − = +  	 (9)

Where, pC represents the current moment information and refers 
to a tan h output,

1pC − represents the long-term memory information,
iW denotes a sigmoid output and the weighted matrices of the 

input gate,
ib  represents the LSTM bias of the input gate,

fW represents the weight matrix,
fb represents the offset, and
σ  represents the sigmoid function.
Here, px  and 1ph −  are passed through a sigmoid layer using 

Equation 6. to determine which portion of the data needs to be added. 
Moreover, after px  and 1ph −  have passed through the tanh layer, 
Equation 7 is utilized to extract new information, and Equation 8 
integrates long-term memory and current memory into pC . The 
information from a previous cell that can be forgotten is determined 
using Equation 9.

	 ( )1. ,p o p p oO W h x bσ − = +  	 (10)

	 ( )tanhp p ph O C= 	 (11)

Where, oW  represents the weighted matrices of the output 
gate, and.

ob  represents the LSTM bias of the output gate.

Using Equations 10, 11, the output gate determines the states 
necessary for px  and 1ph −  inputs to continue. To obtain the final 
output, the state decision vectors that transfer new information, Ct, 
across the tanh layer are located and multiplied.

3.2.3 Combined CNN-LSTM network
This design uses the LSTM as a classifier and the CNN to extract 

complex features from images (19). The suggested network has a total 
of 20 layers, as seen in Figure 5. These layers consist of an FC layer, an 
LSTM layer, five pooling layers, twelve convolutional layers, and an 
output layer that applies the SoftMax function. Two or three 2D 
CNNs, a pooling layer, and a dropout layer with a 25% dropout rate 
connect each convolutional block. The 3×3 sized kernel convolutional 
layer is activated by the ReLU function and prepared for feature 
extraction. The max-pooling layer’s 2×2 size kernels are used to reduce 
the size of the input image. The LSTM layer uses the function map 
transferred in the last stage of the model to extract time information.

3.3 How the hybrid network identifies 
high-risk ABP conditions

There are two approaches to detect hypertension and monitor the 
blood pressure. The first method treats the model as though it were a 
regression task—that is, as though it produces continuous values. As 
a result, the systolic and diastolic values of blood pressure are 
calculated using the PPG and ECG signals (20). By using both signals 
or features computed from PPG and ECG (or, in some cases, only PPG 
signal is used) signals as input, various machine learning techniques, 
such as linear regression models and artificial neural networks (ANN) 
for regression tasks, are used to estimate BP values.

The second approach treats the model as if it generates discrete 
values or labels, i.e., like a classification task. In this method, the 
models try to compute the level of hypertension the patient belongs 
to, based on clinical and socio-demographic data (21). This approach 
differs from the first is that, the first approach utilizes raw signals or 
features extracted from the input data used in ML model, whereas the 
second approach makes use of continuous clinical data.

FIGURE 4

Architecture of LSTM input gate.
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	(a)	 Regression task (first approach)
Linear regression formula is defined in Equations 12, 13:

	 y mx b= + 	 (12)

Where:

	•	 y is the predicted blood pressure value.
	•	 m is the slope.
	•	 x is the input signal.
	•	 b is the y-intercept.

	(b)	 Classification task (second approach)
SoftMax function:

	
( )iSoftMax

xi

xj
j

ex
e

=
∑ 	

(13)

where:

	•	 e is the base of the natural logarithm.
	•	 xi is the input value for class i.
	•	 The function outputs a probability distribution over 

multiple class.

The following subsection provides insights on how to use these 
methods along with transfer learning in the hybrid network.

3.4 How to integrate transfer learning in 
the hybrid network

Figure 6 illustrates the flowchart for anomaly detection, which 
feeds N anomaly-free images into the deep feature extractor of the 
transfer learning model. The MoN, which learns/extracts normality 
from the input images, is created using the learnt or extracted features. 
Consequently, a transfer learning model is used to extract the features 
for a given input image. A similarity measure is then used to compare 
the extracted features to the MoN, and the anomaly is identified if the 
resulting anomaly score is greater than the decision threshold.

	 A	 Transfer learning model
We use EfficientNet, which was trained on the ImageNet dataset, 

for transfer learning. It employs a state-of-the-art scaling method that 
uniformly scales each dimension (depth, width, and resolution) using 
a compound scaling coefficient. The balanced scaling of the model 
leads to improved performance. The baseline network of EfficientNet, 
called “EfficientNet-B0,” maximizes FLOPS and precision (22). Next, 
the baseline network was scaled with different compound coefficients 
to create the “EfficientNet-B1 through B7” EfficientNet scaled 
versions. Using a multi-objective Neural Architecture Search (NAS) 

FIGURE 5

Proposed hybrid network.
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that improves accuracy and FLOPS, the core network of EfficientNet 
was built.

	 B	 Model of normality (MoN)
The representations that do not fit its specification are marked as 

anomalies since MoN learns normality from the characteristics that 
are extracted. Therefore, all regular variants must be included in the 
MoN creation for the designated purposes. A MoN is constructed for 
each data class by averaging the learnt features taken from the N 
normal pictures, which are only used to create MoNs and are not 
included in the evaluation set.

	 C	 Similarity measure
The MoN’s subjective similarity to an image can be expressed in 

terms of a distance measure specified on the learnt feature space, since 
each input image’s deep-learned features function as a unique 
identifier. In order to accomplish this, we use Euclidean distance to 

calculate the similarity between MoN and features taken from the 
test photos.

Euclidean distance formula is given in Equation 14:

	
( ) ( )2Distance MoN,Image i i

i
MoN Image= −∑

	
(14)

Since it directly impacts detection efficiency, the decision 
threshold is a critical component of distance-based anomaly detection 
algorithms. Figure 7 shows a flowchart that illustrates the threshold-
setting procedure. By adjusting this level appropriately, it is possible 
to significantly increase detection accuracy while reducing false 
positive rate. Here, based on the vectors Kmax and Kmean, we suggest a 
clear way for setting the working-point threshold in Table 4.

FIGURE 7

Working-point threshold setting process.

FIGURE 6

Anomaly detection.
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3.5 About dataset

The graph illustrated in Figure 8, shows the distribution of heart 
rate zones recorded during a specific date (2019-04-11) as part of 
SHM using wearable sensors, from the dataset (23). Each heart rate 
zone, categorized based on intensity levels such as “Out of Range,” “Fat 
Burn,” “Cardio,” and “Peak,” is represented by a bar in the graph. The 
height of each bar corresponds to the duration (in minutes) spent in 
the respective heart rate zone, while the color coding helps distinguish 
between different zones.

This graph is particularly relevant to our discussion on the 
use of physiological signals, such as ECG and PPG, in predicting 
arterial BP through neural network architectures (24, 25). In the 
context of ResNet-LSTM network’s superior performance in 
health monitoring, this graph provides valuable insights into the 
distribution of heart rate zones, which are indicative of the 
intensity levels of physical activity or exertion (26–28). 
Understanding these heart rate patterns can contribute to the 

accurate prediction of BP and overall health monitoring (29). 
Furthermore, the graph aligns with the significance of anomaly 
detection and the need for accurate monitoring through 
wearables. By analyzing heart rate data and identifying anomalies 
or irregularities in heart rate patterns, healthcare professionals 
can intervene in a timely manner to address potential health 
concerns (30, 31). Overall, this graph serves as a visual 
representation of the physiological data collected through SHM, 
supporting the discussion on leveraging innovative technologies 
for real-time health monitoring and prediction (32–34).

The MIMIC (Medical Information Mart for Intensive Care) 
dataset is a critical resource in this research, providing a diverse 
collection of real-world clinical signals that support the 
development and evaluation of the proposed blood pressure (BP) 
prediction models. MIMIC contains rich physiological data, 
including Electrocardiogram (ECG), Photoplethysmography 
(PPG), and Arterial Blood Pressure (ABP) measurements from a 
wide variety of patients with different medical conditions (35, 36). 
This diversity allows models like the ResNet-LSTM to generalize 
across various patient profiles and medical scenarios, improving 
the accuracy and reliability of BP anomaly detection. In the study, 
the dataset was used to train and validate machine learning 
models designed to predict systolic and diastolic BP. The results, 
displayed in Tables 5, 6, show that the ResNet-LSTM model 
outperforms other architectures in terms of Mean Absolute Error 
(MAE) and Root Mean Squared Error (RMSE). This 
comprehensive dataset played a crucial role in the testing and 
validation of the proposed model, ensuring that the models were 
exposed to real-world complexities, thus enhancing their 
predictive power and applicability in clinical settings.

TABLE 4  Working-point threshold based on the vectors Kmax and Kmean.

Threshold (T) K1 - Kmax, K2 – Kmean

T1 max(K1)

T2 max(K1) - std.(K1)

T3 mean(K1) + std.(K1)

T4 max(K2)

T5 max(K2) - std.(K2)

T6 mean(K2) + std.(K2)

FIGURE 8

Distribution of heart rate zones as per our readings.
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TABLE 7  Comparison of complexity of various neural networks.

Neural network Cost estimation 
(FLOPs)

Complexity 
order

PPG + ECG PPG

Fully connected ∼2,500 ∼625 O(L × (Vdim)2)

Long Short-Term 

Memory
∼2,500 ∼625 O(L × (Vdim)2)

WaveNet ∼7,500 ∼1850 O(L × (Vdim)2 × ksize)

WaveNet + Long Short-

Term Memory
∼7,500 ∼1850 O(L × (Vdim)2 × ksize)

ResNet + Long Short-

Term Memory
∼17,500 ∼4,375 O(L × (Vdim)2 × ksize)

4 Results

The results of BP prediction achieved using the distinct settings 
and networks are summarized in Table 5. Performance was improved 
in each setup when PPG was used. The ResNet + LSTM network, 
which accurately predicted BP values, was the best one (Table 6). On 
the validation set, the network overall MAEs were considered. Since 
the networks are designed with the primary objective of generating BP 
values in mind, direct BP prediction appears to be the optimal strategy. 
But when networks need to infer the entire signal, they need to learn 
information that will not be used. Table 7 illustrates that the ResNet + 
LSTM is the optimal network in both scenarios and also illustrates the 
neural network’s complexity for anomaly detection.

The errors in the total BP prediction for various setups using the 
MIMIC database (17) are displayed, as shown in Supplementary Figure S5. 
MAE and RMSE values are shown in the figure to illustrate how different 
configurations—Fully connected, LSTM, WaveNet, WaveNet+LSTM, 
and ResNet+LSTM—perform in terms of performance. As stated in the 
research of Paviglianiti et al. (5) titled “A Comparison of Deep Learning 
Techniques for Arterial Blood Pressure Prediction” published in 
Cognitive Computation, statistical comparisons with current models 
were conducted for more thorough examination. Using a custom dataset 
from the works of Paviglianiti et al. (5) and ECG, PPG, and ABP readings 
taken from the MIMIC database, our model is trained and tested. This 
collection of clinical signal data is a priceless resource that provides an 
accurate representation of physiological parameters observed in daily 
life. With the use of this vast and varied dataset, our models were able to 
learn and generalize across a broad range of medical conditions and 
patient profiles. We  ensured that our models were exposed to the 

nuances and complexities found in actual patient data by utilizing clinical 
signals from the MIMIC database, which increased their 
predictive power.

The MIMIC Database’s Leave-One-Out (LOO) results are shown 
in Supplementary Figure S6, with an emphasis on the optimal neural 
network architecture, ResNet-LSTM. The figure shows whole BP 
prediction scenarios as well as MAE and RMSE values for direct 
systolic/diastolic blood pressure (SBP/DBP) prediction using PPG and 
ECG signals.

In addition, we validated our models’ performance using the Pulse 
Transit Time PPG dataset. To ascertain whether our models could 
be used outside of the training set, this additional dataset was essential. 
Carefully comparing the results to this independent dataset 

TABLE 5  Errors on the total BP prediction using the MIMIC database.

Tested set MAE RMSE MAE RMSE

Dataset Photoplethysmography dataset Photoplethysmography 
+ Electroencephalogram Dataset

Fully connected 18.6 27.2 18.3 25.7

Long Short-Term Memory 8.6 13.3 5.9 9.3

WaveNet 12.3 18.3 11.3 17.5

WaveNet + Long Short-Term 

Memory
10.0 15.6 5.7 9.0

ResNet + Long Short-Term 

Memory
6.2 8.9 3.3 5.0

TABLE 6  LOO outcomes using ResNet-LSTM on the MIMIC database.

Tested set RMSE MAE MAE D MAE S RMSE D RMSE S

Direct SBP/DBP prediction

 � Photoplethysmography (50 pat) - - 10.746 23.598 12.344 27.643

 � Photoplethysmography (40 pat) - - 11.106 24.223 12.642 28.247

 � Electrocardiogram (40 pat) - - 9.548 20.367 10.848 23.070

Entire BP prediction

 � Photoplethysmography (50 pat) 19.155 15.342 10.684 21.467 12.349 25.383

 � Photoplethysmography (40 pat) 19.560 15.679 10.818 22.409 12.411 26.246

 � Electrocardiogram (40 pat) 18.018 14.609 10.105 22.099 11.529 24.587
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demonstrated the robustness and reliability of our models. 
Consequently, we were able to assess our models’ efficacy against state-
of-the-art techniques and gain a better understanding of how well they 
predicted arterial blood pressure.

A thorough comparison of neural network complexities is shown 
in Figure 9. The graph shows the cost estimation and complexity order 
(FLOPs) for several neural network architectures, such as 

ResNet+LSTM, WaveNet, WaveNet+LSTM, and Fully connected. 
Understanding each architecture’s computational efficiency is made 
easier with the help of this visual representation.

Figure 10’s-line plot illustrates the trend of MAE and RMSE in 
several configurations, such as Fully Connected, LSTM, WaveNet, 
WaveNet+LSTM, and ResNet+LSTM. The x-axis represents the 
different setups, and the y-axis shows the error values. Plot 

FIGURE 9

Neural network comparison.

FIGURE 10

Trend analysis of MAE and RMSE for different setups.
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performance for each setup in terms of error distribution and 
prediction accuracy is shown. The MAE and RMSE for direct Systolic 
Blood Pressure and Diastolic Blood Pressure predictions are compared 
in the bar chart shown in Figure 10 for several tested sets, such as PPG 
(50 pat), PPG (40 pat), and ECG (40 pat). The graphic aids in 
evaluating how well the neural network (ResNet+LSTM) predicts 
blood pressure based solely on physiological signals.

The stacked bar chart as depicted in Figures 11, 12, illustrates the 
MAE and RMSE for entire blood pressure prediction across different 
tested sets. The chart is divided into segments representing MAE and 
RMSE values for direct SBP and DBP predictions using the 
ResNet+LSTM neural network. It offers a visual comparison of the 
errors associated with different physiological signals and tested sets.

The heatmap depicted in Figure 13, provides a comprehensive 
overview of the computational complexity (Cost estimation in FLOPs) 
associated with different neural network architectures. Each cell in the 
heatmap corresponds to a specific neural network’s complexity for 
predicting arterial blood pressure using PPG signals. Darker shades 
represent higher computational costs.

4.1 Results from our readings

The line graph illustrated in Figure 14, depicts the variation in 
heart rate values over time, captured at regular intervals during a 
specific monitoring session. Each data point on the graph represents 

a recorded heart rate value at a particular timestamp, with the x-axis 
indicating time and the y-axis representing heart rate values.

The graph in Figure 14 is pertinent to the abstract’s exploration of 
SHM and the utilization of wearable sensors for real-time health 
monitoring. It reflects the continuous monitoring of physiological 
parameters, such as heart rate, which is crucial for assessing overall 
health status and detecting anomalies or irregularities. It provides 
insights into the temporal dynamics of heart rate, which is a key 
physiological signal used in BP prediction models. By analyzing trends 
and fluctuations in heart rate values over time, healthcare professionals 
can infer patterns of physical activity, stress, or other factors that may 
impact BP levels. Changes in heart rate patterns, as depicted by the 
line graph, can serve as indicators of potential health concerns or 
deviations from normal physiological states, prompting timely 
interventions or further investigation.

The histogram depicted in Figure  15, provides a visual 
representation of the distribution of heart rate values, allowing us to 
identify the central tendency and spread of heart rate data. By 
observing the shape of the histogram and the location of its central 
peak, we can gain insights into the typical range of heart rate values 
recorded during the monitoring session. Additionally, the spread of 
the histogram can indicate the variability or dispersion of heart rate 
values around the central tendency. Overall, the histogram provides a 
summary of the overall heart rate distribution, aiding in the 
interpretation of physiological responses and patterns observed 
during the monitoring session.

FIGURE 11

Comparison of direct SBP/DBP prediction for different tested sets.
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FIGURE 12

Stacked bar chart for entire BP prediction based on MAE and RMSE.

FIGURE 13

Neural network complexity heatmap.
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FIGURE 15

Histogram of heart rate distribution from our readings.

The box plot depicted in Figure 16, provides a visual representation 
of the variability in heart rate values, allowing us to assess the spread and 
dispersion of the data. By observing the box plot, we can identify the 
median (central tendency) of the heart rate values, as well as the 
interquartile range (IQR) which represents the spread of the middle 
50% of the data. Additionally, any outliers or extreme values beyond the 
whiskers of the box plot can indicate potential anomalies or irregularities 
in the heart rate data. By visually inspecting the box plot, healthcare 
professionals can identify any outliers or extreme values that may 

require further investigation or intervention, supporting the overarching 
goal of continuous monitoring and early detection of health issues.

By analyzing the correlation matrix illustrated in Figure  17, 
healthcare professionals can identify any correlations or dependencies 
between different physiological signals, which are crucial for accurately 
predicting arterial blood pressure and overall health monitoring. 
Understanding the relationships between physiological signals can aid 
in the development of effective prediction models and personalized 
healthcare interventions.

FIGURE 14

Timestamp vs. heart rate line graph from our readings.
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5 Conclusion

An approach to evaluate personal healthcare is to continuously 
monitor physiological markers. Understanding the underlying 
causes of illness states can be greatly aided by identifying patterns 
that can be discovered by recognizing outliers or irregularities in 
heart rates and other characteristics. The vast amount of data 
collected by wearable device sensors contains irregularities, hence 
finding anomalies requires accurately automated algorithms. Across 
the globe, there is a gradual but continuous transition from hospital-
based care to patient-centric care. This will gradually pave the way 
for a data influx, along with the rise in popularity of wearable 
technology. Any illness status tracking requires continuous 
wearables-related data points, which are outside the purview of 
medical care. Such daily longitudinal data collection over extended 
times can lead to data buildup. The methods used to obtain and 
disseminate the data determine how the data will be  used 
analytically, as has been described throughout this current article. It 
is crucial to build wearables-related software for precise health 
monitoring as well as cutting-edge data collection, analysis, and 
visualization. Exact clarifications that can be linked to activity of the 
user and everyday involvement are necessary for both solo and 
hybrid systems for anomaly identification. The transparency of 
algorithms used to calculate step or sleep data is another crucial area 
that should be  supported. Enhancement of anomaly detection 
algorithms take place continuously. To increase the predictability 
huge datasets have also been made accessible simultaneously. Thus, 
there is a connection between wearable technology and data analysis 

and important sectors like the cloud and data security. A wearable 
device’s ability to communicate with hand-held devices like 
smartphones and the cloud is facilitated by the internet connection, 
particularly Wi-Fi.

6 Discussion

Numerous detection techniques have been suggested to identify 
anomalies due to their clinical importance and the effects they have 
on diagnosis and treatment. Wearable gadget clinical investigations 
are also becoming more common. Several essential conditions must 
be met to get therapeutically useful outputs from wearables-related 
data. To generate suggestions, users must make decisions and align 
their goals, which both could call for platforms in addition to mobile 
apps. It is important to test forth current recommendations regarding 
the correlation of different device-derived data. For instance, when 
exercise and sleep are connected, the underlying physiological 
imbalance can be hidden.

By building a dedicated cloud infrastructure for data analysis 
and storage, wearables can be used more effectively in healthcare. 
The security of these devices should also be considered. Device-
to-device connectivity and an online cloud infrastructure subject 
to strict regulations are prerequisites for the digital healthcare 
framework. Eventually, these components might help with the use 
of wearable big data and accurate anomaly detection in pathology 
research. Apart from these factors, the next improvements ought 
to concentrate on the cutting-edge cloud infrastructure designed 

FIGURE 16

Box plot of heart rate distribution from our readings.
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specifically for the analysis and archiving of health data generated 
by wearables. To ensure scalability, security, and smooth 
integration with healthcare systems, this infrastructure should 
effectively manage the substantial amount of data generated by 
wearables. Moreover, the creation of a networked wearable 
ecosystem may open new opportunities for health monitoring 
synergies, enabling the cooperative use of fitness trackers, 
smartwatches, and medical sensors to provide a thorough 
understanding of a person’s wellbeing.

Work on improving anomaly detection models should 
consider contextual integration of different wearable data 
streams. Comprehending the interplay among variables like 
ambient circumstances, user behavior, and physiological metrics 
can offer a more comprehensive perspective on a person’s health 
state. This strategy is in line with the development of user-centric 
decision support systems, which customize insights and 
suggestions based on data from wearables to personal objectives 
and health goals. To create a seamless data flow between 
wearables and healthcare providers, collaboration with current 

health platforms and electronic health records (EHRs) is essential. 
Ensuring compliance with interoperability standards promotes 
timely interventions based on anomaly detection results and 
comprehensive patient care. In addition, the incorporation of 
behavioral analytics into models for anomaly detection can 
provide a more profound comprehension of patterns concerning 
user behavior, way of life, and compliance with health advice. 
This can improve the accuracy of anomaly detection by 
accounting for individual behavioral differences.

Experiential validation studies should be  carried out as 
wearable technology in healthcare continues to advance to 
evaluate the practicality and user-friendliness of anomaly 
detection systems. Algorithm modifications based on user and 
healthcare professional feedback can enhance the technology’s 
overall usefulness. The responsible and efficient integration of 
wearable technology in healthcare will be  further aided by the 
creation of ethical frameworks, the adoption of explainable AI 
techniques, and the development of strategies for long-term health 
monitoring using wearables.

FIGURE 17

Correlation matrix of physiological signals from our readings.
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consumer-grade and
research-established wearables
for monitoring heart rate, body
temperature, and physical acitivity
in sub-Saharan Africa
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Background: Consumer-grade wearables are becoming increasingly popular in
research and in clinical contexts. These technologies hold significant promise for
advancing digital medicine, particularly in remote and rural areas in low-income
settings like sub-Saharan Africa, where climate change is exacerbating health
risks. This study evaluates the data agreement between consumer-grade and
research-established devices under standardized conditions.

Methods: Twenty-two participants (11 women, 11 men) performed a structured
protocol, consisting of six different activity phases (sitting, standing, and the first
four stages of the classic Bruce treadmill test). We collected heart rate, (core)
body temperature, step count, and energy expenditure. Each variable was
simultaneously tracked by consumer-grade and established research-grade
devices to evaluate the validity of the consumer-grade devices. We statistically
compared the data agreement using Pearson’s correlation r, Lin’s concordance
correlation coefficient (LCCC), Bland-Altman method, and mean absolute
percentage error.

Results: A good agreement was found between the wrist-worn Withings Pulse HR
(consumer-grade) and the chest-worn Faros Bittium 180 in measuring heart rate
while sitting, standing, and slowwalkingon a treadmill at a speedof 2.7 km/h (r≥0.82,
|bias| ≤ 3.1 bpm), but this decreasedwith increasing speed (r ≤ 0.33, |bias| ≤ 11.7 bpm).
The agreement between the Withing device and the research-established device
worn on the wrist (GENEActiv) for measuring the number of steps also decreased
during the treadmill phases (first stage: r=0.48, bias =0.6 steps/min; fourth stage: r=
0.48, bias = 17.3 steps/min). Energy expenditure agreement between the Withings
device and the indirect calorimetry method was poor during the treadmill test (|r| ≤
0.29, |bias | ≥ 1.7 MET). The Tucky thermometer under the armpit (consumer-grade)
and the Tcore sensor on the forehead were found to be in poor agreement in
measuring (core) body temperature during resting phases (r≤0.53, |bias|≥0.8°C) and
deteriorated during the treadmill test.
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Conclusion: The Withings device showed adequate performance for heart rate at
low activity levels and step count at higher activity levels, but had limited overall
accuracy. The Tucky device showed poor agreement with the Tcore in all six
different activity phases. The limited accuracy of consumer-grade devices suggests
caution in their use for rigorous research, but points to their potential utility in
capture general physiological trends in long-term field monitoring or population-
health surveillance.
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1 Introduction

According to the Intergovernmental Panel on Climate Change,
the global average annual temperature is expected to rise by 1.5°C
between 2030 and 2052 (compared to pre-industrial levels) due to
greenhouse gas emissions and other human activities (Masson-
Delmotte et al., 2018). A rise in global temperature causes
extreme weather events, which pose an increased risk to nature,
the economic, and to human health (Eitelwein et al., 2024). For
example, prolonged periods of unusually low rainfall (droughts)
threaten food and water security, heatwaves will lead to a significant
increase in temperature-related diseases and deaths, wildfires will
increase air pollution, and flooding will increase crop damage and
the risk of disease. The World Health Organization estimates that
climate change will cause around 250,000 additional deaths per year
due to malnutrition, malaria, diarrheal diseases, and heat stress
alone (World Health Organization, 2023). Climate change also
adversely affect the ability to work and reduce labor productivity
(Kjellstrom et al., 2009), particularly in low-income regions such as
sub-Saharan Africa (SSA), where subsistence agriculture is crucial
for the livelihood of small rural communities (Asare-Nuamah, 2021;
Ayal, 2021). For example, the simulated effects of climate change on
agricultural production in the eastern and coastal regions of Kenya
predicts a at least 50% rest/hour work intensity during the planting
season and a up to 50% rest/hour work intensity during the maize
harvesting period for the years 2050 and 2100 (Yengoh and Ardö,
2020). As smallholder farmers use a lot of human labor, an increase
in environmental temperature has a considerable impact on their
health. In addition to increased cardiovascular stress and impaired
physical and cognitive functions, physical exertion due to labor
increases the incidence of heatstroke (Bouchama et al., 2022).

Research on the effects of environmental heat-related stress on
health and work ability in low- and middle-income countries
primarily relies on data from hospitals, surveys, and of Health
and Demographic Surveillance Systems (Diboulo et al., 2012;
Egondi et al., 2012; Katiyatiya et al., 2014; Park et al., 2018;
Chavaillaz et al., 2019; Frimpong et al., 2020; Barteit et al., 2023;
Sapari et al., 2023). The ability to monitor physiological responses to
heat stress such as heart rate, body temperature, and physical activity
directly in the field using wearable devices would provide invaluable
data for managing health risks in smallholder farmers and residents
in SSA. Objective monitoring of physical activity has rapidly
advanced in recent decades with the development of commercial
and research-grade wearables. Compared to research-grade
technologies, consumer-grade wearables are often lower in cost,
easier to use, less obtrusive and not tied to a specific location (Dunn

et al., 2018); however, these advantages often come at the expense of
data accuracy.

Despite the growing use of wearables in high-income settings,
there is limited research on their application in low-income, climate-
vulnerable regions such as SSA (Koch et al., 2022). Recent studies
have demonstrated the utility of wearable devices in low-resource
settings though concerns remain about the trade-offs between
affordability and accuracy (Huhn et al., 2022; Matzke et al.,
2024). The present study seeks to fill this gap by comparing the
accuracy of consumer-grade wearables under controlled conditions.
Previous studies already dealt with comparison of different
wearables measuring the same physiological parameter under
controlled conditions (Nelson et al., 2016; Gillinov et al., 2017;
Wahl et al., 2017; Eisenkraft et al., 2023). In this study, however, we
focus on multiple physiological parameters that are relevant for
assessing the environmental impact on human health and
performance at individual level. For this purpose, a sample of
young adults was equipped with a set of wearable devices for
monitoring heart rate, body temperature, and physical acitvity
(steps, energy expenditure) during rest and activity periods in a
laboratory environment.

2 Methods

2.1 Study participants

We recruited young men and women for our study among
medical students through advertisements on the internal Charité
student’s platform and social media. Those interested were eligible
for inclusion if they were between the ages of 18 and 30 and had no
history of competitive training. On the other hand, interested were
excluded if they had any form of cardiovascular, metabolic, and
neurological diseases, or any physical impairments that would
prevent participation in an incremental test on a treadmill.
Following explanations of the study aim and protocol, including
experimental procedures and known risks, participants provided
informed written consent prior to commencing study participation.
Based on a sample size calculation using the results of a comparative
study between commercial trackers and a portable ECG (Godino
et al., 2020), the study sample was planned with 20 participants. To
ensure conclusive statistical results at the end of the study, we
recruited a total of 22 participants (11 women, 11 men). Their
anthropometric data were as follows: age, mean 24.0 (SD 2.4) years;
body weight, mean 70.2 (SD 7.7) kg; height, mean 176 (SD 9.1) cm;
body mass index, mean 22.6 (SD 1.6) kg/m2. The study was
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approved by the Ethics Committee of Charité–Universitätsmedizin
Berlin (Date: 9 April 2021, EA 4/050/21).

2.2 Data acquisition

The research and consumer-grade wearables considered for
evaluation in this study were selected from a study protocol
designed for the purpose of providing scientific information on
their reliability for the use in the setting of population monitoring in
SSA (Barteit et al., 2021). Table 1 provides details of the consumer-
and research-grade wearables in the present study.

2.2.1 Consumer-grade wearables
Withings (Withings France SA, Issy-les-Moulineaux, France):

We used the Withings Pulse HR device to measure heart rate (HR),
steps taken, and calories burned. Data from the internal storage was
wirelessly synchronized with a mobile device via the Health Mate
application.

Tucky (e-TakesCare, Versailles, France): The Tucky device, a
flexible thermometer patch, was used to measure axillary
temperature. The recordings were transfered directly via
Bluetooth to a mobile device that used the Tucky application.

2.2.2 Research-grade wearables
Faros™ (Bittium Corporation, Oulu, Finland): The Faros

Bittium 180 is a gold-standard portable one-lead
electrocardiography monitor. It enables long-duration beat-to-beat
recordings both inside and outside hospital and healthcare facilities
(Laborde et al., 2017; Hartikainen et al., 2019; Bent et al., 2020;
Funston et al., 2022; Lang et al., 2022).

Tcore™ (Drägerwerk AG and Co. KGaA, Lübeck, Germany):
The Tcore sensor calculates core body temperature (CBT) using a
dual-sensor heat flux technology integrated into a soft sensor
attached to the forehead (Werner and Gunga, 2020). Accuracy
and validty of this technology is given elsewhere (Gunga et al.,
2008; Mendt et al., 2017; Soehle et al., 2020; Janke et al., 2021;
Engelbart et al., 2023). In this study, the sensor cable was connected
to a data logger (HealthLabFunkMaster, KORA Industrie-
Elektronik GmbH, Hambühren, Germany) and the data logger
was integrated into a custom-made headband.

GENEActiv (Activinsights, Kimbolton, UK): We used the
GENEActiv to record raw acceleration data (range ±8 g) along
three orthogonal axes (x-, y- and z-axis). Post-processing of the tri-
axial accelerometric data enables an objective assessment of physical
activities (e.g., energy expenditure, step count) and sleep behavior
(Scott et al., 2017; Sanders et al., 2019; Fraysse et al., 2020; Antczak
et al., 2021; Jenkins et al., 2022; Hachenberger et al., 2023).

Cortex Metalyzer 3B (CORTEX Biophysik GmbH, Leipzig,
Germany): The Cortex Metalyzer 3B is a spiroergometry system
designed for measuring oxygen consumption and carbon dioxide
production using breath-by-breath gas analysis to calculate energy
expenditure (EE) via indirect calorimetry. The device was calibrated
once and directly before the study for volume and gas
concentrations. For gas calibration, a mixture of 15% oxygen, 5%
carbon dioxide, and balance nitrogen was used.

2.3 Study procedure

The measurements were conducted in the laboratories of the
Institute of Physiology, Charité–Universitätsmedizin Berlin on

TABLE 1 Overview of selected consumer-grade and research-grade wearbles.

Consumer-grade Research-grade

Weareable
device

Withings Pulse HR Tucky Thermometer Faros Bittium 180 GENEActiv Tcore sensor with data logger
headband

Company Withings France SA, Issy-
les-Moulineaux, France

e-TakesCare, Versailles,
France

Bittium Corporation, Oulu,
Finland

Activinsights,
Kimbolton, UK

Sensor: Drägerwerk AG and Co.
KGaA, Lübeck, Germany,
data logger:
HealthLabFunkMaster, KORA
Industrie-Elektronik GmbH,
Hambühren, Germany

Dimension 18 × 10 × 44 mm 84 × 27 × 7 mm 48 × 29 × 12 mm 43 × 40 × 13 mm Sensor: 60 × 50 × 4 mm,
data logger: 48 × 30 × 5 mm

Weight 45 g 8 g 13 g 28 g Sensor: 3 g
data logger: 15 g

Wear location wrist under armpit 3 electrodes on thorax wrist forehead

Sample rate every minute for heart rate
(1 Hz in workout mode),
steps, energy expenditure

every minute up to 1,000 Hz up to 100 Hz 0.5 Hz

Internal storage yes no yes yes yes (data logger)

Data transfer bluetooth low energy bluetooth low energy USB cable cradle with USB cable USB cable (data logger)

Measurement
features

heart rate, distance,
calories, sleep

body (shell) tempereature,
sleeping position monitor

1-lead electrocardiography, tri-
axial accelerometer

tri-axial accelerometer
light exposure, near
body temperature

body (core) temperature
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weekdays between 9:00 and 14:30 in September 2021. Study
participants followed a structured, laboratory-based protocol that
included two different resting phases followed by different
locomotion phases on a motorized treadmill (Figure 1). In
particular, we wanted to simulate intensities typical of the daily
routines of subsistence farmers in SSA regions. For example, the
metabolic equivalent of task (MET) for the classic Bruce treadmill
protocol is estimated to be 4.2 MET for the first stage and 8.3 MET
for the third stage according to the FRIEND equation (Kokkinos
et al., 2017). MET values of 4.5 and 7.8 correspond to routine chores
with small animals and shovel or pitchfork work, respectively
(Pickett et al., 2015).

Participants were first equipped with various devices. The Tucky
device was placed under the right armpit using Tucky double-sided
adhesive Adh21. Due to an initial detachment on the first study
participant, we have since positioned the device closer to the chest
and additionally secured it with medical adhesive tape. The Tcore
sensor and headband was fastened on the participants’ forehead.
The Faros was positioned on the chest and secured with medical
adhesive tape to ensure signal quality. GENEActiv and Withings
were placed on the wrist of the non-dominant arm, with GENEActiv
positioned directly above Withings.

After these initial setups, participants sat for 10 min and then
rested for an additional 10 min while standing. Following this
period of rest, measurements continued on a motorized treadmill
(h/p/cosmos quasar med 4.0, Nussdorf-Traunstein, Germany).
Similar comparative studies also utilized treadmills as test
environments (Thiebaud et al., 2018; Thomson et al., 2019).
On the treadmill, participants were fitted with a mask over
their mouth and nose which was connected to the Cortex
Metalyzer, and were also fitted with a harness system to
prevent falls on the treadmill. After a 3-min rest on the
treadmill, the study participants started the Bruce protocol
continuing until complete exhaustion. The classic Bruce
treadmill test consists of 3-min stages, with speed and slope
increasing every 3 minutes without breaks (Fletcher et al., 2013).
The first four stages are as follows: Stage1: 2.7 km/h (1.7 mph),

10%; Stage2: 4.0 km/h (2.5 mph), 12%; Stage3: 5.4 km/h (3.4 mph),
14%; Stage4: 6.7 km/h (4.2 mph), 16%.

Following the treadmill test, the collected data were retrieved
and stored on a study computer. Data from Withings and Tucky
were downloaded from their respective platforms and
spiroergometric data were exported via MetaSoft software, while
Tcore, Faros, and GENEActiv data were transferred directly from
their internal storage. To ensure synchronization among all
considered data logs for later data analysis, timestamps were
documented during the experiments. First, the times on the
computers associated with the different monitors were recorded
at the beginning of each measurement day to account for potential
time offsets. This was necessary because GENEActiv, Faros and
Tcore were initialized with the study computer, while Withings and
Tucky were initialized with the same mobile device, and
spiroergometry was conducted using a separate computer.
Secondly, the time (on the study computer) at which the rest and
activity measurements began was noted.

2.4 Analysis

2.4.1 Data processing
For the data analysis, we considered the period fromminute 3 to

8 (6 min) of the 10-min rest phases in sitting (Sit) and standing
(Stand) to reduce variability due to excitement or changes in
posture. Only the first four stages of the Bruce protocol were
analyzed, as all 22 study participants successfully completed these
stages. Recordings required processing due to differing units and
sampling rate. Faros’ R-R intervals were transformed to HR (using
the formula: HR = 60/R-R) and synchronized with the HR
measurements taken every second by the Withings wearable.
Both HRFaros and HRWithings were then averaged to 1-min
intervals. Tucky measures temperature under the armpit (axillary
temperature). To obtain an equivalent rectal (core body, CBT)
temperature and enable comparison with Tcore temperature
(CBTTcore), we added 0.7°C to the recorded Tucky temperature

FIGURE 1
Schematic overview of the experimental protocol: Study participants were first equipped with various devices (T1). After initial setups, study
participants sat for 10 min (T2) and then rested for an additioinal 10 min while standing (T3). Participants were fitted with a mask connected to the Cortex
Metalyzer and rested for 3 min on the treadmill (T4). Study participants started the classic Bruce protocol (T5). The classic Bruce treadmill test consists of
3-min stages, with speed and slope increasing every 3 min without breaks. Speed and slope are displayed for the first four stages.
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(CBTTucky) as suggested by the Tucky sensor description. CBTTcore,
initially recorded at 0.5 Hz, was averaged to 1-min intervals. The
step count estimate from Withings (SCWithings) was compared with
SCGENEactiv, the result of a step counting function implemented in
the R package “GENEAclassify” (Campbell et al., 2023). The input
for this function was the vector magnitude, VM = sqrt (x2+y2+z2),
which we calculated from the tri-axial acceleration data recorded
with the GENEActiv. Since the GENEActiv sampling rate was
initially set to 10 Hz to be consistent with in field studies,
SCGENEActiv was averaged to 1-min intervals. Energy expenditure
during the Bruce test was captured using three different approaches.
The first was the indirect calorimetry method, the gold standard for
determining energy expenditure by measuring the volume of oxygen
consumed and the volume of carbon dioxide produced (Ndahimana
and Kim, 2017). Output of indirect calorimetry (EEIC) was the
objective measure of themetabolic equivalent of task (MET, 1MET =
3.5 mlO2 kg

−1 min−1). The second was with Withings (EEWithings),
which however provide data values in kcal per minute. We
converted this data into MET using an equation presented in
ACSM’s Guideline for Exercise Testing and Prescription (Riebe,
2014). In the third approach, EE was estimated with a prediction
formula (EE = 5.01 + 1.000 ENMO) derived from accelerometry
data (EEGENEActiv) of free-living adults (White et al., 2016). We
calculated the Euclidian norm minus one (ENMO = VM-1) again
using the tri-axial acceleration data recorded with the GENEActiv.

2.4.2 Statistical analysis
For the resting (Sit, Stand) and locomotion phases (Stage1,

Stage2, Stage3, and Stage4), agreement between two approaches
was verified using the following indicators to facilitate comparison
with related previous works.

• Pearson correlation: This coefficient r was determined to
specify the degree of linear relationship.

• Lin’s concordance correlation coefficient (LCCC): Lin’s CCC
includes precision in addition to Pearson’s r (Lin, 1989),
providing a more comprehensive measurement of agreement.

• Bland–Altman method (Bland and Altman, 1986): This
method provided the mean difference between the methods
(bias) and the limits of agreement (LoA, bias±1.96SD of the
differences). Lin’s CCC and Bland-Altman analysis were
carried out with the R package “SimplyAgree”
(Caldwell, 2022).

• Mean absolute percentage error (MAPE): MAPE was
calculated according to the formula:

MAPE � 100
n

∑
n

t�1

CGt − RGt

CGt

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

where CGt represented the consumer-grade measurement and RGt

represented the research-grade measurement.
The difference between two methods was tested using the t-test

or the Wilcoxon signed-rank test, depending on the result of the
Shapiro-Wilk test for normality. The level of significance was set at
0.05 (two-sided), and P values were adjusted according to Holm to
account for multiple testing. All statistical analyses were carried out
using R (version 4.2.0; R Core Team, 2022). Scatterplots and bar
charts were created with the R package “ggplot2” (Wickham, 2016).

3 Results

The final dataset for HR, CBT, SC, and EE analysis included
21 participants. To ensure data quality, we excluded HR data of one
participant, as 40% of the HRWithing readings during Sit, Stand, and
Stage1 were between 43 and 58 bpm, inconsistent with the non-athlete
status of our study participants. Additionally, the associated HRFaros
readings were almost twice as high each time. For CBT, data from one
participant were excluded because the Tucky wearable fell off during
treadmill exercise. For SC and EE, one GENEActiv file was corrupted.

Figure 2 displays scatterplots comparing HR, CBT, SC, and EE
across all phases. Individual differences between methods are shown
in Figure 3. Table 2 provides an overview of HR, CBT, SC, and EE
values during rest and locomotion phases, including statistical
summaries. Table 3 summarizes the agreements between the
methods for all phases.

3.1 Heart rate

In both resting states, the heart rate was similar for both
methods. With increasing physical activity, HRWithings did not
increase to the same extent as the HRFaros (Figure 3A). At the
4th stage, the mean difference between the methods was −12 bpm,
the largest and statistically significant (Table 2). Correlations were
strong and positive for Sit and Stand (r ≥ 0.82, LCCC ≥ 0.76).
However, the agreement between HRWithings and HRFaros decreased
with increasing physical activity (Table 3). For example, MAPE was
more than twice as high from Stage2 (≥10%) as during both resting
phases (≤4%).

3.2 Core body temperature

CBTTucky was consistently lower than CBTTcore in all phases
(Figure 2B), which was confirmed by statistical analysis (Table 2).
The difference between the methods was smallest at rest (Sit, −0.8°C,
t20 = −5.44, P < 0.001) and largest in the fourth stage of the Bruce test
(−1.8°C, t20 = −10.35, P < 0.001). CBTTucky remained unchanged
across different situations (ranged between 36.3°C and 36.5°C), while
CBTTcore increased with physical effort (ranging between 37.2°C and
38.1°C). Similar to HR, the correlations between the temperature
monitors declined with physical activity. In addition, LoA became
wider and the MAPE increased (Table 3).

3.3 Step count

At a treadmill speed of 2.7 km/h (Stage1), step counts were
similar between SCWithings and SCGENEActiv (72.2 vs. 71.5 steps/min,
z = 0.54, P = 0.61). However, the difference between the methods
increased with increasing speed (Figure 3C), while SCWithings

increasingly exceeding SCGENEActiv (Table 2). For example, at a
treadmill speed of 6.7 km/h (Stage4), SCWithings exceeded SCGENEActiv

by about 17 steps/min. (152.2 vs. 134.9 steps/min, t20 = 8.07, P <
0.001). On the other hand, LoA at Stage4 was only half as wide as at
Stage1 (Table 3). MAPE was highest in Stage1 (38%), but was only
around 10% in the following three stages.
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FIGURE 2
Scatterplots with the identity line. The plotted points represent individual mean values (n = 21) for the different test phases (each phase shown in a
different color). The scatterplots illustrate the data for heart rate (A), core body temperature (B), step count (C), and energy expenditure (D, E).

FIGURE 3
Difference between consumer-level and research-grade monitors. Individual differences (n = 21, circles) as well as mean ± 95% CI are shown for
heart rate (A), core body temperature (B), step count (C), and energy expenditure (D, E). Sit, sitting position; Stand, standing position; Stage1 to Stage4, first
four stages of the classic Bruce treadmill test; IC, indirect calorimetry.
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3.4 Energy expenditure

EEIC increased with each subsequent intensity level of the Bruce test
(3.1, 4.6, 6.8 and 9.7 MET for Stage1 to Stage4). Reference EEIC was
significantly underestimated by both alternative methods, EEWithings

and EEGENEActiv, in each of the four treadmill stages (Figures 3D,E). The
bias to IC increased for both methods during the first three stages (up
to −2.9 MET). At Stage4, the bias was only −1.9 MET (EEWithings)
and −1.4 MET (EEGENEActiv), but the LoA was widest at this stage.
Although the agreement between EEGENEActiv and EEIC appeared to be

TABLE 2 Summary of heart rate, core body temperature, step count, and energy expenditure during rest and locomotion phases measured using a
consumer-grade and a research-grade method (n = 21).

Variable and condition Consumer-gradea Research-gradea Consumer minus research

95% CI P value P valueadj

HR

Sit 80.5 (13.2) 78.7 (9.3) −1.7 to 5.3 0.97b 0.99

Stand 86.6 (10.3) 86.1 (10.5) −1.0 to 2.0 0.49 0.99

Stage1 100.4 (17.5 103.5 (15.0) −7.4 to 1.2 0.15 0.62

Stage2 115.7 (18.7) 112.8 (15.7) −6.9 to 12.5 0.55 0.99

Stage3 128.2 (15.1) 136.3 (14.2) −15.1 to 0.3 0.06 0.31

Stage4 154.0 (12.4) 165.7 (13.2) −19.3 to −4.1 0.004 0.026

CBT

Sit 36.4 (0.8) 37.2 (0.4) −1.1 to −0.5 <0.001 <0.001

Stand 36.4 (0.5) 37.4 (0.3) −1.2 to −0.8 <0.001 <0.001

Stage1 36.5 (0.6) 37.4 (0.3) −1.2 to −0.6 <0.001 <0.001

Stage2 36.4 (0.6) 37.4 (0.4) −1.3 to −0.7 <0.001 <0.001

Stage3 36.4 (0.6) 37.5 (0.4) −1.5 to −0.9 <0.001 <0.001

Stage4 36.3 (0.6) 38.1 (0.7) −2.3 to −1.5 <0.001 <0.001

SC

Stage1 72.2 (22.1) 71.5 (9.4) −8.2 to 9.4 0.61b 0.61

Stage2 106.3 (5.2) 98.1 (11.4) 3.2 to 13.2 <0.001b 0.001

Stage3 131.9 (13.5) 118.0 (11.3) 9.6 to 18.2 <0.001 <0.001

Stage4 152.2 (11.1) 134.9 (4.8) 1.28 to 21.8 <0.001 <0.001

EE1

Stage1 1.3 (0.5) 3.1 (0.4) −2.0 to −1.4 <0.001b <0.001

Stage2 2.1 (0.3) 4.6 (0.4) −2.7 to −2.1 <0.001 <0.001

Stage3 4.1 (2.7) 6.8 (0.7) −4.0 to −1.6 0.004b 0.008

Stage4 7.8 (3.1) 9.7 (0.8) −3.4 to −0.4 0.015 0.015

EE2

Stage1 1.0 (0.2) 3.1 (0.4) −2.3 to −1.9 <0.001 <0.001

Stage2 1.7 (0.2) 4.6 (0.4) −3.1 to −2.7 <0.001 <0.001

Stage3 3.9 (1.7) 6.8 (0.7) −3.6 to −2.2 <0.001b <0.001

Stage4 8.3 (1.5) 9.7 (0.8) −2.2 to −0.6 0.001 0.004

Variable: HR, heart rate (bpm) of Withings and Faros; CBT, core body temperature (°C) of Tucky and Tcore; SC, step count (steps/min) of Withings and GENEActiv; EE1, energy expenditure

(MET) of Withings and indirect calorimetry; EE2, energy expenditure (MET) of GENEActiv and indirect calorimetry. Condition: Sit, sitting position; Stand, standing position; Stage1 to Stage4,

first four stages of the classic Bruce treadmill test. P valueadj: P value corrected for multiple comparison.
aMean (SD).
bWilcoxon signed-rank test (otherwise t-test).
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better than between EEWithings and EEIC, the agreement between the
methods for EE was generally low (Table 3).

4 Discussion

In this study, we measured HR, CBT, SC, and EE during both
rest and treadmill phases using reference methods and consumer-

grade devices (Withings Pulse HR and Tucky thermometer). We
evaluated the accuracy of these parameters against established
reference methods (Faros for HR, Tcore for CBT, GENEActiv for
SC, and indirect calorimetry for EE). Our results showed that the
wrist-worn Withings wearable demonstrated poor agreement or
significant differences compared to Faros for HR, indirect
calorimetry for EE, and to step-count method using tri-axial
acceleration data from GENEActiv. The agreement between

TABLE 3 Relationship and agreement between the methods for heart rate, core body temperature, step count, and energy expenditure during rest and
locomotion phases (n = 21).

Variable and condition r LCCC LoAa MAPE (%)

HR

Sit 0.82 0.76 1.8 (15.1) 4

Stand 0.95 0.95 0.5 (6.3) 3

Stage1 0.84 0.81 −3.1 (18.6) 7

Stage2 0.24 0.23 2.8 (41.8) 12

Stage3 0.33 0.29 −7.4 (33.3) 11

Stage4 0.16 0.11 −11.7 (32.7) 10

CBT

Sit 0.53 0.22 −0.8 (1.3) 2

Stand 0.40 0.10 −1.0 (1.0) 3

Stage1 0.23 0.07 −0.9 (1.1) 3

Stage2 0.23 0.07 −1.0 (1.2) 3

Stage3 0.17 0.04 −1.2 (1.4) 3

Stage4 0.19 0.04 −1.8 (1.6) 5

SC

Stage1 0.48 0.35 0.6 (38.0) 38

Stage2 0.30 0.16 8.2 (21.6) 8

Stage3 0.73 0.43 13.9 (18.4) 10

Stage4 0.48 0.11 17.3 (19.2) 11

EE1

Stage1 −0.02 0.00 −1.7 (1.3) 200

Stage2 −0.09 0.00 −2.4 (1.1) 118

Stage3 0.29 0.07 −2.8 (5.1) 113

Stage4 −0.19 −0.07 −1.9 (6.5) 60

EE2

Stage1 0.16 0.00 −2.1 (0.8) 228

Stage2 0.25 0.01 −2.9 (0.9) 176

Stage3 0.46 0.09 −2.9 (2.9) 100

Stage4 −0.16 −0.07 −1.4 (3.5) 26

Variable: HR, heart rate (bpm) of Withings and Faros; CBT, core body temperature (°C) of Tucky and Tcore; SC, step count (steps/min) of Withings and GENEActiv; EE1, energy expenditure

(MET) of Withings and indirect calorimetry; EE2, energy expenditure (MET) of GENEActiv and indirect calorimetry. Condition: Sit, sitting position; Stand, standing position; Stage1 to Stage4,

first four stages of the classic Bruce treadmill test. LCCC, Lin’s concordance correlation coefficient; MAPE, mean absolute percentage error.
aLoA: limits of agreement, bias (1.96SD).
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Tucky’s rectal equivalent and Tcore’s CBT was low at rest and
during the treadmill test with significant temperature differences
ranging from −1.8 to −0.8°C.

4.1 Comparison with previous work

In a previous validation study of wearables for HRmeasurement,
a LCCC>0.80 was presented as an acceptable accuracy (Gillinov
et al., 2017). Accordingly, our results showed that the Withings
device demonstrated acceptable agreement with Faros for low
physical activities (Sit: LCCC = 0.76, Stand: LCCC = 0.91, Stage1:
LCCC = 0.81). The same applies if MAPE threshold is less than 10%
(Boudreaux et al., 2018). In our study, MAPE was ≤4% during both
resting states and ranged between 7 and 12% during the treadmill
locomotion. However, in another study, the device under test was
only considered valid if several criteria were met, e.g.,
LCCC>0.90 and MAPE<5% (Navalta et al., 2020). Furthermore,
agreement in HR with the criterion measure during physical activity
seems to be lower than during rest, which is in line with previous
findings (Thomson et al., 2019; Bent et al., 2020). Devices that use
photoplethysmography to monitor HR tend to be inaccurate at
higher intensities of physical activity due to artifacts caused by
intense hand movements (Castaneda et al., 2018; Bent et al., 2020;
Navalta et al., 2020). In addition to motion artefacts from physical
activity, ambient light, misalignment between the skin surface, and
poor tissue perfusion can also be a source of error (Alzahrani et al.,
2015). Skin tone is apparently not a source of errors (Bent et al.,
2020), which is an important observation for studies involving
African populations, for example. Interestingly, Stahl et al. (2016)
observed a decrease in MAPE at treadmill speeds of >3.2 km/h,
attributing this to improved perfusion due to increased intensity. In
the present study, a small decline inMAPE was observed at treadmill
speeds of >4.0 km/h. Nevertheless, not only the user of wrist-worn
HR monitor or the ambient conditions seem to affect measurement
accuracy, but also the device itself. Müller et al. (2019) investigated
the validity of HR measures of a high-cost consumer-based tracker
and a low-cost tracker in a laboratory setting, showing the high-cost
tracker had smaller errors and a higher agreement with the criterion
measure than the low-cost tracker.

For a step counter to be considered accurate, the MAPE should
be less than 1% compared to the criterion measure when walking on
a treadmill at a speed of 4.8 km/h (Tudor-Locke et al., 2006). In a
recent review of the validation of treadmill step-counting
technologies, median MAPE values for wrist-worn monitors
ranged from 6.6% to 10.7% at speeds between 3.2 and 6.4 km/h
(Moore et al., 2020). In our study, theMAPE ranged from 8% to 38%
at speeds between 2.7 and 6.7 km/h (Stage1 to Stage4). In addition,
the bias was lowest for Stage1 at 0.6 steps/min and highest for
Stage4 at 17.3 steps/min, indicating an increasing overestimation in
steps by the Withings Pulse HR with increasing treadmill speed. On
the other hand, one could argue that estimating steps using a step
counting algorithm with tri-axial acceleration data is not a gold
standard. Therefore, we compared the estimates in our study with
published hand-counted steps from treadmill experiments of
Ducharme et al. (2021) and Tudor-Locke et al. (2019)
(Supplementary Table S1). It was shown that both the SCWithings

and the SCGENEActiv estimated about 17 steps/min less at speed of

2.7 km/h, which was the largest difference compared to published
data. Low accuracy of step counting at slow walking speeds is a
common issue with wrist-worn wearables (Moore et al., 2020). At
treadmill speeds of 5.4 and 6.7 km/h, differences between hand-
count SCWithings were about −12 and −18 steps/min, while
differences between hand-count and SCGENEActiv were only about
2 and -1 steps/min. These observations suggest a paradox: bias was
best at slow walking speed of 2.7 km/h because both wearables were
equally inaccurate. Since the use of raw acceleration data provides a
flexibility in processing, selecting a better performing step count
function should be considered. For example, Ducharme et al. (2021)
recently published a transparent algorithm for step detection, and
the open-source Verisense step count algorithm has been optimized
(Maylor et al., 2022; Rowlands et al., 2022). While Withings Pulse
HR utilizes changes in the acceleration caused by foot impact during
walking, the exact algorithm is not disclosed.

The EEWithings showed low overall agreement with EEIC during
the treadmill test. The same applies to EEGENEActiv, where
acceleration data from GENEActiv was used to estimate EE using
a prediction formula for physical activity energy expenditure (White
et al., 2016). In both comparisons, the MAPE value was very high at
Stage1 (≥200%), but decreased with increasing treadmill locomotion
levels and was lowest in Stage4 (Withings: 60%, GENEActiv: 26%).
However, Passler et al. (2019) considered a tested device valid if
MAPE is less than 10%. The decrease in MAPE with increasing
treadmill speed (and grade) indicates better agreement with higher
physical workload. In fact, estimated HR by wrist-worn
photoplethysmography devices in combination with physiological
modeling tended to have lower MAPE for EE estimation during
activities above the aerobic threshold (Parak et al., 2017). Moreover,
in the present study both wrist-worn devices for EE estimation
clearly underestimated the EE for the criterion measure (indirect
calorimetry). Wearable trackers for EE estimation predominantly
underestimate EE even in a controlled environment (Evenson et al.,
2015; Wahl et al., 2017; Fuller et al., 2020). Wearables were typically
examined while worn on the wrist (Fuller et al., 2020), though a
greater accuracy can be achieved when placed on the hip or shirt
collar (Woodman et al., 2017). EE estimates from devices worn on
the wrist or hip generally vary in accuracy depending on physical
intensity and type of activity (Howe et al., 2009; O’Driscoll et al.,
2020). Recently, Ogata et al. presented an equation to improve EE
estimation using accelerometer-based MET value and individual HR
and showed that estimated total energy expenditure in rescue
workers was one-third higher with the combined approach than
with the accelerometer-based method alone (Ogata et al., 2024).

Most wearable thermometers were developed to continuously
monitor skin temperature, few in order to reflect changes in CBT
(Tamura et al., 2018). In the present study, we compared two sensors
attached to the skin: the Tucky thermometer under the right armpit
and the Tcore sensor on the forehead. Although adding 0.7°C to the
measured values of Tucky improved agreement with rectal
temperature, correlations between Tucky’s rectal measurements
and Tcore’s CBT estimate decreased with increased physical
activity (highest during Sit and the lowest during Stage4 of the
Bruce treadmill test). In addition, the bias in each of the six activity
phases was at least −0.8°C, indicating that Tucky’s rectal
measurements underestimated traditional rectal temperature
measurement. For example, Gunga et al. (2008) validated the

Frontiers in Physiology frontiersin.org09

Mendt et al. 10.3389/fphys.2025.1491401

74

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2025.1491401


Tcore precursor with rectal temperature measurement during treadmill
activities (25%–55% maximum work intensity) at different ambient
temperatures, demonstrating a good agreement during resting (Bias:
0.01°C, LoA: 0.74 to 0.72) and working periods (Bias: 0.08°C, LoA:
0.77 to 0.61) at ambient temperature of 25°C. Wearable thermometers
are considered in agreement if they comply with the clinically
meaningful recommendations of bias of ±0.5°C and LoA of ±1.0°C
(Tamura et al., 2018). In our study, however, the bias was at least−0.8°C
and the LoA were −2 to 0°C at Stand (narrowest) and −3.5°C to 0.2°C at
Stage4 (widest). Our results suggest that the higher the intensity of
physical activity, the lower the accuracy of Tucky’s measurements. This
inaccuracy could be attributed to the thermoregulatory processes of the
skin. Increased physical activity can lead to increased perspiration,
which aims to cool the skin and CBT through evaporation. In the
context of varying and intensive physical activity, Tucky under the
armpit did not achieve sufficient accuracy with CBT. Similar
observation was reported for another adesive axillary thermomenter
patch. Temperatures of adesive axillary thermomenter showed good
agreement with those from the conventional axillary method (Bias:
0.15°C, LoA: 1.13 to 0.99), but failed to those of the bladder as the CBT
(Bias: 1.11°C, LoA: 3.19 to 0.98) (Boyer et al., 2021).

4.2 Strength and limitations

This study has several strengths. Firstly, we investigated two
devices, Withings Pulse HR and Tucky thermometer, that had not
been validated in an independent lab study previously, focusing on
their utility for in-field assessment of physiological variables in
different situations of varying physical activity. Therefore, a
structured protocol consisting of successively changing intensities
of activity was implemented. A structured procedure and
laboratory-based setting enabled a high precision of comparison
and reproducibility of results.

This study was limited to healthy, fair-skinned adults aged
20–29 years. Future research should include a more diverse
cohort and a comparison of multiple skin tones, especially when
using optical heart rate monitors. Motion that largely affects
positioning of wearables, such as treadmill running for a wrist-
worn tracker, may impact accuracy and the significance of validation
research. Potential interference between devices worn
simultaneously on the same wrist might also represent a possible
limitation of the study. Additionally, although treadmill-based
incremental testing can represent the cardiovascular strain of
physical activity during agricultural work, it does not correspond
to the actual biomechanics and motions of such physical activity.

5 Conclusion

In recent years, research interest in consumer-grade wearables has
surged, driven by the potential of these sensors for a broad range of
applications, from on-the-field ergonomic assessments to follow-ups
in rehabilitation medicine. In this study, we evaluated the Withings
Pulse HR wearable for HR, SC, and EE quantification and the Tucky
thermometer for CBT. The Withings device demonstrated good
performance in HR monitoring at low physical activity intensities
and in SC at higher activity levels. However, the agreement between

the Tucky thermometer measured temperature and CBT was low at
rest and gradually declined with increased physical activity. In
summary, both evaluated consumer-grade wearables did not
achieve adequate accuracy for research purposes in controlled
environments. However, Withings Pulse HR may be useful for
long-term monitoring in the field, as it can effectively detect and
recognize general changes in activity and corresponding physiological
variables (HR, SC, EE) despite its lack of precision.
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Introduction: Distress detection in virtual reality systems offers a wealth of
opportunities to improve user experiences and enhance therapeutic practices
by catering to individual physiological and emotional states.

Methods: This study evaluates the performance of two wearable devices, the
Empatica E4 wristband and the Faros 360, in detecting distress in a motion-
controlled interactive virtual reality environment. Subjects were exposed to
a baseline measurement and two VR scenes, one non-interactive and one
interactive, involving problem-solving and distractors. Heart rate measurements
from both devices, including mean heart rate, root mean square of successive
differences, and subject-specific thresholds, were utilized to explore distress
intensity and frequency.

Results: Both the Faros and E4 sensors adequately captured physiological
signals, with Faros demonstrating a higher signal-to-noise ratio and consistency.
While correlation coefficients were moderately positive between Faros and E4
data, indicating a linear relationship, small mean absolute error and root mean
square error values suggested good agreement in measuring heart rate. Analysis
of distress occurrence during the interactive scene revealed that both devices
detect more high- and medium-level distress occurrences compared to the
non-interactive scene.

Discussion: Device-specific factors in distress detection were emphasized due
to differences in detected distress events between devices.

KEYWORDS

virtual reality, user experience, wearables, Empatica E4, Faros 360, distress detection,
mean heart rate, RMSSD

1 Introduction

Virtual Reality (VR) environments have gained significant popularity in recent years,
offering immersive and interactive experiences that can simulate realistic scenarios.
Alongside the visual and auditory components, the measurement within VR environments
can provide a deeper understanding of human responses and experiences. By capturing
physiological signals such as heart rate (HR), electrodermal activity (EDA), and
motion data (MD) like acceleration, researchers can explore the correlations of
user engagement, emotional states, cognitive processes, and user experiences during
VR interactions (Egan et al., 2016). VR’s ability to create a strong sensation of
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being physically present in the virtual environment and the
perception that virtual events are genuinely occurring ensures
that users react to virtual scenarios as they would in real-life
and collectively contribute to overall sense of presence in virtual
environment (Slater et al., 2022).

The information collected with distress detection in VR systems
has the potential to enhance user experience and holds promising
implications across various fields. In VR therapy, it can be used
to monitor and regulate patients’ emotional states during exposure
sessions (Rahman et al., 2022), such as in the treatment of phobias
(Raghav et al., 2016) or Post-Traumatic Stress Disorder (PTSD)
(Wout et al., 2017). Physiological monitoring systems, detecting
indicators like increased heart rate (Rahman et al., 2022) and skin
conductance (Wout et al., 2017), allow therapists to dynamically
adjust virtual environments in real-time, optimizing therapy
based on individual needs. In training simulations, particularly
in high-pressure scenarios such as medical (Rahman et al.,
2022) or military (Wout et al., 2017) training, distress detection
becomes a valuable tool. By evaluating trainees’ stress levels,
VR systems can identify areas requiring additional support or
practice (Parsons and Reinebold, 2012). Beyond therapy and
training, distress detection contributes significantly to human-
computer interaction, enabling VR systems to adapt the presented
content based on the users’ emotional states for more natural
and intuitive interactions (Duric et al., 2002). Additionally, VR
systems equipped with physiological sensors can offer stress
management experiences, providing guided meditation or calming
environments that respond to users’ distress levels, creating a
feedback loop to enhance relaxation (Gromala et al., 2015). The
field of Neuroergonomics, which examines brain function in real-
world environments, offers another potential application of distress
detection in VR, particularly in optimizing user-performance in
safety-critical professions (Parasuraman, 2003).

One of the primary physiological signals used for distress
detection is heart rate, which measures the number of heart beats
per minute. Heightened distress or emotional responses can lead
to changes in HR (Mack et al., 2006), making it a fundamental
parameter in assessing distress levels during VR experiences
(Robitaille and McGuffin, 2019). Recent research suggests that
there might be subtle differences in HR patterns between males
and females. Studies have indicated that females tend to exhibit
slightly higher average resting HRs compared to males, which
could be attributed to hormonal and physiological variations
between the sexes (Altini and Plews, 2021; Quer et al., 2020).
Beyond sex-related distinctions, HR is influenced by a variety
of factors, including physical activity levels, stressors, emotional
states (Wu et al., 2019), fatigue (Tran et al., 2009), and even
caffeine consumption (Koenig et al., 2013) and environmental
conditions (Tiwari et al., 2021).

For reliable distress detection, the non-intrusivity of
measurement devices is paramount. In VR, user immersion and
experience are crucial, and intrusive devices can compromise
data accuracy and user comfort. Wearable sensors and cameras
provide non-intrusive data acquisition (Heikenfeld et al., 2018),
preserving the naturalness of the VR experience and encouraging
user compliance. In this context, we decided to utilize Empatica
E4 (E4) wristband and Faros 360 chest strap (Faros), particularly
as in the previous research we already validated E4 against Faros

(Gruden et al., 2019). This study focused on evaluating E4 and
Faros 360 devices in assessing drivers’ physiological responses
during various driving conditions, emphasizing their effectiveness
in measuring heart rate variability (HRV) and EDA, but noting
challenges with motion artifacts affecting data quality, particularly
in distinguishing different driving demands.However, it showed that
the user-friendly nature of E4 sets it apart in experimental settings,
offering easy mounting and usage—crucial factors when subjects
are engaged in multitasking scenarios requiring sustained focus.
Such non-intrusive nature of E4 wristband ensures seamless data
collection (Heikenfeld et al., 2018) contributing to the authenticity
and reliability of physiological responses in virtual reality settings.

However, it is important to note that results of (McCarthy et al.,
2016) point out the low data quality of physiological signals obtained
using E4 due to motion artefacts, especially the Blood Volume Pulse
(BVP) signal, often used to estimate the HR signal. Even though
Empatica released a new device – (Empatica Embrace Plus, 2024),
we chose E4 device as its data is easily accessible (Looff et al., 2022),
since the new device does not provide the API or access to the raw
data in real time anymore. With the new device the data collection
should be performed through a proprietary Empatica app and web
server which is not ideal for research purposes, but it is worth noting
that, for offline purposes, researchers can access raw.avro files from
the server, and if needed, convert it to .csv format (Béquet, 2023).
Furthermore, E4 device is still present on the market and majority
of researchers still use it. One of Faros’ main limitations is direct-
skin placement, which may be uncomfortable for some subjects,
especially those with skin sensitivities or those requiring prolonged
wear. Adhesive reactions, pressure from the chest strap, and sweating
can impact user comfort and compliance. Its placement makes it
less practical in applied settings like workplace monitoring, and
its requirement to have precise sensor placement adds to setup
complexity and potentially affects data quality.

Through the E4 measurement evaluation and comparison with
Faros, this paper explores the importance of reliable data acquisition
inVR environments for distress detection.Our proposedmethod for
distress detection involves a straightforward thresholding approach
and a rule-based system, contributing to the precision and efficiency
of the analysis. The method uses distress detection thresholds that
are subject-specific in order to tailor the method to each subject’s
unique physiological profile.

Subjects were exposed to a baseline measurement and two
VR scenes–a non-interactive scene (NIS) in which the subjects
observed nature, and an interactive scene (IS) with distress
induction in which the subjects were required to solve the Hanoi
tower problem using a VR controller while being surprised with
various distractors.

The main research questions addressed in this study
are as follows:

1. Can both the Faros and E4 devices effectively detect distress in
individuals in IS?

2. What is the level of data quality (determined through level
of noise contamination) achieved by the E4 device when
measuring heart rate used for distress detection?

The first research question explores firstly the possibility of using
Faros/E4 in distress intensity and frequency detection based on the
HR parameters, and secondly also the E4 performance compared to
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Faros. Only responses collected in the IS are considered since this
scene is created for the purpose of eliciting distress in test subjects.

The second question is primarily focused on validating the
performance and data quality of the E4 device assessed by evaluating
the level of noise present in the heart rate measurements used for
distress detection. The goal is to confirm if E4 can emerge as a user-
friendly option for future studies, by exploring whether its heart rate
measurements exhibit sufficiently high data quality, ensuring that
distress detection remains unaffected. Baseline measurements, NIS
and IS data is considered, since it is expected that the data quality is
high for each measurement.

In summary, these research questions form the core inquiries
guiding the investigation, aiming to assess the accuracy and
potential of the E4 device and the comparative performance of the
Faros and E4 devices in distress detection.

2 Materials and methods

In this section, the experimental design and procedures used to
investigate physiological responses in a motion-controlled virtual
environment are outlined. Two commercially available devices,
Empatica E4 wristband and Faros, which were utilized to measure
and record various physiological parameters during the study, are
introduced. Before the experiment description, an overview of
each device’s capabilities and functionalities is provided, setting the
context for their use in this research. Subsequently, the experiment
design is presented, along with subject details, and the VR scenes
employed to capture physiological data.

2.1 Empatica E4 wristband device

Empatica E4 wristband (shown in Figure 1) is a commercially
available physiological monitoring device (Empatica, 2024). It is
equipped with several sensors that enable the measurement of
multiple physiological parameters. Using photoplethysmography
(PPG) it can capture the Blood Volume Pulse, which provides
information on changes in blood volume in the microvascular
bed, allowing for the estimation of HR and inter-beat interval
(IBI) (Allen, 2007). Additionally, the device includes an EDA
sensor, which measures changes in the electrical conductance of the
skin, reflecting the user’s sympathetic nervous system activity and
emotional responses (Boucsein, 2012). Moreover, the E4 wristband
incorporates a temperature sensor, enabling the monitoring of
skin temperature variations, a 3-axis accelerometer that measures
acceleration in three directions, enabling the detection of motion
and physical activity that can help researchers understand the
subjects’ movements and activity levels during data collection.

Utilizing E4 wristband within a motion-controlled VR
environment offers several advantages, particularly in the context
of capturing physiological responses. The devices’ less obtrusive
and user-friendly nature allows seamless data collection without
disrupting subjects’ experiences in the VR scenarios. Being worn
on the wrist, it enables continuous monitoring and real-time data
transmission, making it well-suited for prolonged data collection
during immersive VR sessions.

However, it is crucial to address potential limitations associated
with the E4 wristband. Subjects’ activities during VR sessions may
introduce motion artifacts and affect data quality. To mitigate this
issue, carefulmeasureswere taken to control subjects’motion during
data collection, ensuring more accurate and reliable physiological
measurements (Böttcher et al., 2022). Considering the context of our
study, the E4 wristband ease of use, portability, and compatibility
with VR scenarios make it an appropriate choice for HR.

2.2 Faros 360 device

Faros 360 (shown in Figure 2) is a commercially available
physiological monitoring device designed for electrocardiographic
(ECG) signal recording. It allows the measurement of the electrical
activity of the heart, providing information on heart rate and
cardiac rhythm. The device is equipped with high-quality ECG
sensors that enable accurate and reliable data collection, and
enables 3-channels ECG measurement and data streaming via
Bluetooth (Bittium Faros, 2024).

This device focuses on ECG measurements and high-quality
ECG signals which makes it well-suited for providing precise HR
data, crucial in understanding subjects’ cardiovascular responses
during VR scenes in a motion-controlled VR environment.

However, it is essential to consider the limitations associated
with Faros application in the VR context. The device is not capable
of capturing other physiological parameters, such as EDA or
skin temperature, which can also provide important information
about subjects’ emotional and physiological states during VR
experiences. Additionally, the placement of ECG electrodes on the
chest may introduce potential challenges, as subjects may have
to wear additional equipment that could affect their comfort and
immersion during the VR sessions. There are three different ways
to mount Faros to a participant’s chest, including Fast-Fix (Bittium’s
proprietary electrode), cable sets, and using a textile belt with two
electrodes and amounting pad for Faros. For our study, we chose the
third option, using a textile belt with two electrodes and a mounting
pad, to balance signal quality and participant comfort. Faros 360was
chosen for this study due to its specialization in ECGmeasurements,
allowing the acquisition of precise HR data during the motion-
controlled VR scenes. By leveraging the capabilities of Faros 360,
subjects’ cardiac responses can be understood, enhancing insights
into their physiological reactions. Moreover, Faros 360 serves as a
valuable reference for evaluating the performance of E4 wristband.
Through a comparison of the data obtained from both devices,
the consistency and reliability of the E4 wristband physiological
measurements in the VR environment can be assessed. This
comparative analysis has the potential to provide a comprehensive
understanding of the strengths and limitations of each device,
enabling informed decisions about their applications in future
physiological research within VR settings.

2.3 Virtual reality

The study was conducted with the HTC Vive Pro Eye (2024)
VR Headset (HTC Corporation, Vive, 2024). The system consists
of a headset with integrated glasses with stereoscopic screens for
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FIGURE 1
Empatica E4 device. This photography was taken at the Faculty of Electrical Engineering, University of Ljubljana.

FIGURE 2
Bittium Faros 360 device. This photography was taken at the Faculty of Electrical Engineering, University of Ljubljana.

displaying content in virtual reality, and two hand-held controllers
that are used to manipulate and interact with the environment and
the displayed objects in it. The two screens (one for each eye) of the
glasses are high-definition OLED screens with a diagonal of 8.89 cm
(3.5 inches). Each screen has a resolution of 1440 × 1600 pixels,
whichmeans that the headset displays content with a total resolution
of 2880 × 1600 pixels or 615 pixels per inch. The refresh rate is
up to 90 Hz and offers 110-degree field of view. The headset straps
and the distance between the screens are adjustable, which allows
for adaptations that best conform to the subjects’ needs (head size,

pupillary distance, etc.). The hand-held controllers have a touch-
sensitive surface, which the subject uses to input controls in a similar
way as they would when using a touchpad on a laptop computer.The
headset is equipped with speakers for playing sound.

For the baselinemeasurement subjectswere equippedwith Faros
and E4 wristband for measuring the HR and BVP (respectively) and
seated quietlywith no significantmovement, on a chair in themiddle
of the cabinet for 4 minutes. The length of the baseline data capture
was consistent with the second and third parts of the experiment
to ensure uniformity across all phases. This initial phase provided
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FIGURE 3
Left) Fall of the first box, center) fall of the second box, right) monster attack.

data on participants’ resting state and physiological responses in the
absence of virtual reality stimuli.

In the second part of the experiment, participants remained
seatedwith both Faros andE4, but this time they alsoworeHTCVive
Pro Eye VR headset. The basic scene of Steam VR Home was used
as the non-interactive scene (NIS), which is a virtual environment
consisting of a house with a terrace on top of a mountain. The
house is surrounded by trees, and in the distance the subject has a
beautiful view of the surrounding mountains. In the background,
the subject can hear the wind blowing and birds chirping. During
the experiment, the subjects were placed on the mentioned terrace,
where they could observe the view in the distance and the birds
flying around them. This environment was chosen with a goal to
keep the subjects calm during this scene and to not induce distress.

The interactive VR scene (IS) was created using Blender
(Stichting Blender Foundation, Amsterdam, Netherlands) for
the visual elements, and Unity (Unity Software Inc., San
Francisco, United States) for the creation of the actual scene and
implementation of the Hanoi Tower problem game. The scene was
set in a poorly lit and slightly dimmed warehouse. A forklift is
driving in the background and ambient sound of a warehouse and
the forklift moving is played through the speakers. Shelves with
cardboard boxes are placed left and right from the subject.

The subject is (virtually) seated in front of a table in the middle
of the room (Figure 3), so they cannot see any of the walls of the
space. A table lamp is lit red at the beginning of the test, which turns
green upon successful completion of the Hanoi Tower task.

The scene test starts when the subject is satisfied with the
placement of the VR and the view (and distance) they have of the
table in front, which enables easy and comfortable moving of the
cubes to complete the task. The subject is instructed to only move
the dominant hand, keeping the non-dominant hand on the armrest.
On the table, bases and cubes with different sizes are presented for
solving the Hanoi Tower problem. The subject is first presented with
three cubes and asked to arrange them in a predefined pattern. Upon
successful completion, the scene ends. The scene is then reset, and
the subject is presented with an additional cube, resulting in four
cubes. Again, the subject is asked to arrange them in a predefined
pattern. Upon successful completion, the scene ends. After that,
the last scene is presented, where the subject is presented with five
cubes and again asked to arrange them in a predefined pattern. Two
minutes (120 s) after the start of the scene, one of the boxes falls from
the left shelf to the floor accompanied by a loud bang. A few seconds

before the end of the 3 minutes (180 s), a tension sound effect like
typical sounds used in horror movies is played. This effect adds an
extra level of suspense by telling the test taker that something is
about to happen. As soon as the tension sound effect ends, another
box falls from the right shelving unit, this time with a louder bang
and further into the room. Unlike the first event, the second fall
causes the lights on the ceiling to flicker, which can also be heard,
for 1.5 s. Boxes falling are very short events, lasting less than 5 s.

After 4 minutes (240 s), a monster, making loud noises, jumps
from the ceiling in front of the test subject and starts attacking them.
As the monster lands on the ground, the lights in the background go
out and the warehouse becomes very dark. A light placed under the
table and aimed at the monster begins to flicker, illuminating the
monster’s face. This lasts less than 5 s, and at this point, the scene
and the whole trial ends. The subject is at that moment instructed to
take off the VR glasses.

2.4 Experiment design

The study involved subjects aged over 18 and under 40,
due to the difference in physiological signals after a certain age
(Quer et al., 2020; Zhang, 2007; Acharya et al., 2004), with no known
cardiovascular diseases. Each subject participated on a voluntary
basis, and they could withdraw or stop the experiment at any point.
The studywas conducted in accordancewithDeclaration ofHelsinki
(General Assembly of the World Medical Association, 2014) and
the study design as well as the study execution strictly followed the
Code of ethics for researchers and Guidelines for ethical conduct in
research involving people issued by (University of Ljubljana, 2024).
Before the study, the participants were informed about the study
goals and asked to sign the Informed consent provided by the
ethical committee of University of Ljubljana. We acquired data
on the subjects’ sex referring to the biological features related to
both physical and physiological characteristics (Coen and Banister,
2012). The information on participant’s sex was self-reported on a
voluntary basis.

We have followed Cohen’s guidelines for interpreting effect
sizes (Cohen, 1988), with a slight modification for effect
size distribution analysis for HRV studies as suggested by
(Quintana, 2016; Laborde et al., 2017). The data for three subjects
was not recorded appropriately in total, so the final sample size
resulted in 8 female and 10 male subjects participated in the
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study, with a mean age of 22.3 ± 1.3 years (minimum age: 20,
maximum age: 25).

The experiment was conducted in a motion-controlled virtual
reality environment. Prior to the experiment, both the E4 and Faros
devices were attached to the subject. Subjects were seated, with the
E4 device positioned on their non-dominant hand, which they were
instructed to keep on an armrest throughout the experiment to
minimize movement. They were also instructed on the importance
of remaining still to ensure data quality. Interaction with the VR
scene was conducted using their dominant hand. Faros was placed
with the textile belt right below the chest muscle. Once the VR
headsetwas turned on, physiological responsesweremeasured using
both devices simultaneously. Each subject was exposed to a:

1. Baseline measurement
2. Non-interactive scene (NIS)
3. Interactive scene (IS),

and for each condition a 4-min recording was obtained.

2.5 Variables

In order to perform data quality assessment and distress
detection, several key metrics had to be calculated.

2.5.1 Data quality metrics
The Signal-to-Noise Ratio (SNR) was estimated for each heart

rate signal, measuring the strength of the desired signal relative to
backgroundnoise or interference (Box, 1988).Psignal was calculated
as the average of squared HR values recorded by each device, and
Pnoise was estimated as the average squared difference between the
HR values and their mean–essentially the variance of the HR signal.
This calculationwas performed separately for both the Empatica and
Faros devices.

SNR = 10 log10
Psignal

Pnoise

Higher SNR values indicate stronger and more reliable
heart rate signals, providing insights into signal fidelity and
measurement accuracy.

Correlation is a statistical method used to evaluate the
potential linear relationship between two continuous variables. The
correlation coefficient, a dimensionless quantity ranging from −1
to +1, quantifies the strength of this presumed linear association.
A coefficient closer to +1 indicates a strong positive correlation,
while a value closer to −1 suggests a strong negative correlation.
A coefficient near 0 indicates a weak or no linear relationship
between the variables (Swinscow and Campbell, 2002; Witte R.S.
and Witte J.S., 2017). In this study, both Pearson (Kirch, 2008) and
Spearman (Dodge, 2008) correlation coefficients were employed to
assess the linear and monotonic relationships between the Faros
and E4HR signals, respectively.While Pearson correlationmeasures
linear associations, Spearman correlation evaluates monotonic
relationships, making it less sensitive to nonlinear associations
or outliers (Siegel and Castellan, 1981).

Furthermore, the Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) (Willmott et al., 1985) were computed for
both Faros and E4 HR signals for each subject. The MAE represents

the average absolute difference between corresponding heart rate
values from Faros and E4, with Faros considered the reference
or “ground truth” value. A smaller MAE indicates a lower overall
error, reflecting a higher level of agreement between the two
devices. On the other hand, RMSE represents the square root of
the averaged squared differences between heart rate values, placing
greater emphasis on larger errors compared to MAE.

Each of these metrics was calculated for 16 out of 18 subjects’
baseline, NIS and IS scene, excluding two subjects with corrupted
signals in IS. Out of the remaining 16 subjects, six were female and
10 were male.

2.5.2 Distress metrics
To compare the distress detection capabilities of E4 wristband

and Faros based on HR features, two parameters were used:

1. Mean Heart Rate (Mean HR) provides an average HR value
over a specific time period and serves as a measure of central
tendency for HR data. It can be useful for understanding the
overall level of cardiac activity during a specific time interval.
It is commonly used to compareHRvalues between individuals
or different conditions, such as rest and exercise (Karvonen and
Vuorimaa, 1988). Mean HR is typically expressed in beats per
minute [bpm].

2. Root Mean Square of Successive Differences (RMSSD) on the
other hand, quantifies the variability in time intervals between
consecutive heartbeats. It is calculated by taking the square
root of the average of the squared differences between adjacent
HR values. RMSSD reflects the high-frequency components
of HRV, which are primarily influenced by parasympathetic
(vagal) activity (Shaffer and Ginsberg, 2017). Higher RMSSD
values indicate greater variability in HR, suggesting a more
flexible autonomic nervous system and better cardiac health.
RMSSD is often used as a marker of parasympathetic activity
and can be used to assess the balance between sympathetic and
parasympathetic regulation of the heart.

As outlined in (Stauss, 2014), it is crucial to avoid using
HRV parameters in isolation without considering the mean level
of HR, as this approach can lead to serious misinterpretation of
experimental data. In this study, we chose Mean HR and RMSSD
since their accuracy is preserved even when short-term recordings
are used (Baek et al., 2015). Also, these two features are both
important parameters in the analysis of HRV and are commonly
used in research and clinical settings to assess autonomic function,
cardiac health, and the impact of interventions or conditions on the
cardiovascular system (Kamath et al., 2012).

Ultra-short-term (UST) recordings for HRV estimation have
shown promise due to their efficiency in clinical and research
settings. While UST measurements exhibit strong correlations with
longer recordings for certain HRV parameters, such as mean HR
and RMSSD, their accuracy may vary for other parameters like
standard deviation of NN intervals (SDNN). Contextual factors,
such as recording method (e.g., ECG vs PPG), age, health and
artifact removal procedures, and the choice of HRV parameters
can influence the reliability of UST measurements (Shaffer and
Ginsberg, 2017). In this study, a 10 s window for segmentation
and calculating mean HR and RMSSD was employed, since the
correlations with the longer short-term recordings was reported
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as high enough–for mean HR in (Baek et al., 2015; Shaffer et al.,
2016) and for RMSSD in (Baek et al., 2015; Nussinovitch et al.,
2011; Salahuddin et al., 2007). Also, using a time window of 10 s
helps capture short-term fluctuations in heart rate. It provides a
balance between capturing immediate changes and avoiding noise
or transient spikes that may occur within shorter time intervals.
Munoz et al. (2015) conducted a comprehensive investigation into
HRV measurements across a large adult sample (N = 3,387) and
found that averaging over multiple 10-s segments, regardless of
whether they are continuous, can provide reliable estimates of
RMSSD. This approach aligns with contemporary practices in HRV
analysis, where shorter recording periods are deemed sufficient
for capturing meaningful physiological variability in quasi real-
time. However, further research is needed to standardize protocols,
establish normative values, and ensure consistent application of
UST HRV measurements in place of conventional 5-min and 24-h
recordings (Electrophysiology, 1996).

2.6 Data analysis

The data analysis section focuses on the processing and
evaluation of the physiological data collected from both the E4
wristband and the Faros device during the motion-controlled VR
experiment. The data undergoes thorough preprocessing to ensure
data quality, followed by an assessment of E4 data quality. The
section further explores distress detection using data from both
devices and examines distress intensity and frequency. Additionally,
a detailed analysis of distress during the interactive scene is
conducted to gain insights into subjects’ physiological responses.

2.6.1 Preprocessing
The collected physiological signals underwent comprehensive

preprocessing to improve data quality and reliability. For this
step and the analysis, Python version 3.9.7 (Python Software
Foundation, Delaware, United States) was used. Synchronization
between physiological recordings and VR events was achieved
using timestamps from both data sources, since the distress events
timestamps were known. The Faros ECG signal, sampled at 500 Hz,
was subjected to various preprocessing steps using the biosppy
Python package (Carreiras et al., 2018) and its ecg.py script. The
first step was the application of a bandpass Finite Impulse Response
(FIR) filter to eliminate artifacts outside of ECG frequency range.
The order of this filter was calculated as 0.3∗sampling rate, and the
cutoff frequencies were set to 3 and 45 Hz, with a goal to eliminate
baseline drift, remove low-frequency noise such as muscle artifacts
and electrodemotion artifacts, preserve ECGwaveform and exclude
higher-frequency noise. Hamilton segmentation (Hamilton, 2002)
was used to accurately detect and isolate the QRS complexes and
correction of R-peaks was done using template matching. Heart rate
was calculated based on the array of R-peaks, and it was smoothed
using moving average filter of type boxcar and window size equal to
three samples (6 ms).

Similarly, the E4 BVP signal, sampled at 64 Hz, underwent
preprocessing using the ppg.py script of the biosspy package.The first
preprocessing step for the BVP signal involved filtering using 4th
Butterworth bandpass filter with cutoff frequencies set at 1 and 8 Hz,
applied with a goal to remove respiration influence (0.2–0.33 Hz),

high frequency noise, and preserve heart rate range (from 1 Hz to
3 Hz, or 60–180 bpm). Both filters from ppg.py and ecg.py scripts
use filtfilt function from the scipy package to perform zero-phase
filtering, meaning that the filter is applied in both the forward
and reverse directions, effectively eliminating any phase distortion
introduced by the filtering process.

Onset detection was performed utilizing Elgendi’s method
(Elgendi et al., 2013), and heartbeat extraction was done using
detected peaks. The final HR signals were obtained using moving
average smoothing of type boxcar and window size set to three
samples (46.88 ms).

Both HR signals were upsampled to 4 Hz, to ensure accurate
alignment between the two datasets, facilitating meaningful
comparative analysis of the physiological responses captured by
the Faros and E4 devices.

2.6.2 Data quality assessment
To ensure the quality and reliability of the HR signals, key

metrics described in Section 2.5.1. were calculated. SNR was used
to evaluate each signal, with higher SNR values being preferable.

The correlation coefficient was used to quantify the similarity
between the Faros and E4 HR signals, providing insights into their
relationship. A higher correlation indicates a stronger connection
and similar patterns, validating the accuracy and reliability of E4
HR measurements compared to Faros as the reference. A strong
correlation signifies good E4 signal quality and reliability, while
lower correlation may suggest potential measurement errors or
artifacts.

MAE and RMSE were compared in order to determine the level
of agreement between E4 and Faros for each of the conditions, with
lower values indicating a higher degree of agreement.

In addition to the calculated metrics, Bland-
Altman plot (Altman and Bland, 1983), a statistical method for
assessing the agreement between two measurement techniques, was
generated, and analyzed to further assess the agreement between
Faros and E4 HR signals. This plot provides a comprehensive
visualization of the mean differences and limits of agreement,
offering valuable insights into the overall consistency and potential
bias between the two measurement methods, aiding in the
identification of any systematic bias or trends that may not be
apparent in individual metrics.

2.6.3 Distress detection using Faros and E4:
intensity and frequency

In order to detect distress during both scenes, three
additional preprocessing steps needed to be performed: HR
signal segmentation, HR feature calculation and feature threshold
calculation, after which the detection analysis was performed.

HR signal was segmented using a 10 s window, and features
were calculated as described in Section 2.5.2. The calculation of
feature thresholds was guided by the recognition that heart rate
can vary significantly among individuals due to factors such as
sex, age, fitness level, health conditions, and other physiological
differences (Alexandre et al., 2012). To account for these individual
variations (Whitehead et al., 1977), a personalized threshold
approach was implemented, aiming to establish distinct thresholds
for each subject based on their unique baseline HR.
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The baseline measurement served as the reference for deriving
feature thresholds to compare with signal segments fromNIS and IS.
For the Mean HR feature, the threshold was determined by setting
it to the minimum value of each subject’s baseline HR, which is
considered as the resting or normal HR. On the other hand, the
threshold for the RMSSD feature was calculated as the median of
the RMSSD values computed during the entire baseline period, in
order to make it more robust to outliers and work with non-normal
distribution (Altman and Bland, 1983; Rossi, 2022).

The utilization of individualized thresholds allows for a
relative comparison of the features, as it considers the baseline
HR specific to each subject. Specifically, when comparing the
Mean HR feature with its threshold, a 30% increase above
the personalized threshold was employed. Likewise, for the
RMSSD feature, a 50% decrease below the subject’s personalized
threshold was used. This relative difference approach offers a
more meaningful indication of significant changes in physiological
responses, as it considers the unique baseline characteristics of each
individual (Alexandre et al., 2012).

These two features are used in the analysis that compares the
distress detection capabilities of E4 and Faros. The following steps
were performed to compare the HR signals and their performance
in detecting distress during each scene, so each step was performed
on both E4 and Faros data, for each subject and each scene:

1. Threshold calculation: based on the Baseline measurement,
calculated for each subject and its features.

2. Segmentation: HR signal is divided into non-overlapping
segments of 10 s.

3. Feature calculation: Mean HR and RMSSD were calculated for
each segment of the HR signal.

4. Threshold comparison: For each HR signal segment, both
Mean HR and RMSSD are compared to their respective
thresholds.

5. Distress detection: If the Mean HR of a segment exceeded
its baseline threshold by 30%, it was considered elevated and
labeled as one in the output vector. Similarly, if the RMSSD
of a window was 50% below its baseline threshold, it was
considered low and labeled as one in the output vector.
Otherwise, a value of 0 was assigned, in both cases.

6. Threshold comparison vectors: for bothMeanHR and RMSSD
a threshold comparison vector was obtained.

7. Interpretation: A value of one in either the Mean HR and
RMSSD threshold comparison vector pair indicated “medium
distress level”, a value of one in both the Mean HR and RMSSD
threshold comparison vector pair indicated “high distress
level” and a value of 0 in both the Mean HR and RMSSD
threshold comparison vector pair indicated “low distress level”
or absence of it. This step was performed to granulate the data
and present a more detailed distress state of a subject.

For example, if aMeanHR threshold comparison vector is equal
to [0 1 0 1], and its RMSSD threshold comparison vector is equal to
[1 1 0 0] the resulting distress vectorwould be equal to [1 2 0 1]which
would translate to:

• 1: medium distress level
• 2: high distress level
• 0: low distress level

8. Distress level cases occurrence: number of occurrences for
each level of distress was counted.

A statistical analysis was done to compare the occurrence
of distress of a certain level (low, medium, or high) for IS,
between Faros and E4. For this analysis, the Wilcoxon signed-
rank test (Wilcoxon, 1992) was used, since it is suitable for
comparing paired data from the same group if the data is not
normally distributed. We have used it along with Cliff ’s delta (Cdelta)
as the effect size measure. In this case, the Faros and E4 data
came from the same subjects, and it was measured during IS. The
hypothesis related to this test is that there should be no statistically
significant difference between the distress level occurrences detected
by E4 and Faros during IS.

The test was conducted with a confidence level of 95%, ensuring
a reliable measure of statistical significance. The obtained p-
values were then compared to the predetermined alpha level of
0.05, allowing us to assess whether the observed differences were
statistically significant.

2.6.4 Interactive scene distress analysis
As it was already mentioned, during the interactive

scene (IS) subjects are required to solve the Hanoi tower
problem using a VR controller while being surprised by
various distractors:

1. A box falls from the shelf in the 2nd min (120 s) after the
scene starts.

2. The second box falls from the shelf in the 3rd minute
(180 s) after the scene starts and the suspense sound effect
is played.

3. Themonster appears 4 min (240 s) into the scene, and it marks
the end of the scene.

The idea of this analysis was to try to detect distress (if there is
any) during the events at 120/180/240 s, for both Faros and E4. Since
each HR signal is segmented into 10 s segments, the following steps
are performed:

1. Segment extraction: For each event, three segments were
extracted: (1) the segment immediately before the event, (2)
the segment starting at the onset of the event with 10 s
duration, and (3) the segment capturing the 10 s following
the event onset. This approach accounted for potential delays
in physiological responses while ensuring comprehensive
coverage of distress reactions.

2. Distress detection was conducted by checking if distress
was detected in at least one or two segments out of the
three for each event situation. The resulting distress vectors
explained in Section 2.4.4., step 7 was used to perform
these checks.

3. Calculate distress occurrence in percents: based on the
previous step values, the percentage of situations in which
detected distress coincided with the VR events for each
subject was calculated. This was done using two criteria:
one-third (1/3) of the segments detecting distress and two-
thirds (2/3) of the segments detecting distress. The resulting
percentages ranged from 0% (no detected distress coinciding
with VR events) to 100% (all detected distress coinciding with
VR events).
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FIGURE 4
Visual comparison of Faros and E4 heart rate signals for three distinct cases (Subject 1, Subject 16, and Subject 11), for each scene.

3 Results

3.1 Data quality assessment results

To provide a comprehensive understanding of the data
quality assessment, we start with a visual inspection of the HR
signals from both devices. We specifically highlight three distinct
cases, represented by Subjects 1, 11, and 16. These cases show
case varying degrees of overlap between Faros and E4 signals:
high overlap, medium overlap with E4 signal contamination,
and low overlap with substantial E4 signal contamination,
respectively (Figure 4). This visual representation serves as a
foundational step in our analysis, allowing us to closely examine the
specific differences in noise-related data quality assessment between
the two devices.

In the case of Subject 1, there is little difference between
Faros and E4 signals, for both scenes. However, occasional peaks
in the E4 HR signal indicated the possibility of bad contact or
unfiltered movement artifacts. Subject 16 exhibited a similar trend
between the Faros and E4 HR signals. However, E4 signal was
heavily contaminated with artifacts, likely caused by movement or
other sources of unfiltered interference. For Subject 11, there was

a clear lack of overlap between the Faros and E4 HR signals most
of the time. The discrepancy could again be attributed to poor
contact between the E4 device and the subject’s skin and/or data
loss issues.

The Bland-Altman plot is visualized in Figure 5, and it
implies similar conclusions as the ones obtained by observing
visual comparison of Faros and E4 HR signals in Figure 4.
This plot is often used to assess how similar a new instrument
or technique is at measuring something compared to the
instrument or technique used as the reference (Giavarina, 2015).
The abscissa of the plot displays the average measurement
of the two devices, and the ordinate displays the difference
in HR measurements between E4 and Faros. The further the
value of the average difference (orange horizontal line) is
from zero, the larger the difference in measurements between
the instruments.

Figure 5 shows that that value is further away from zero if
we observe Subjects from top row to the bottom row, coinciding
with Figure 4 and confirming that the measurement noise increases
the average difference in measurements between E4 and Faros.
Besides that, for Subject 1, most of the data points are inside
the 95% confidence interval (purple horizontal lines), while for
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FIGURE 5
Bland-Altman plot showing the agreement between Faros and E4 heart rate signals for Subjects 1, 16, and 11. Orange line represents the mean
difference in measurements between the two devices, and the two purple lines represent the upper/lower limit of the 95% confidence interval for the
mean difference.

Subjects 16 and 11 we can observe that the data points are
following a diagonal spread, indicating the discrepancy between
measurements of E4 and Faros is biased proportionally to the
magnitude of measurements. Also, in the upper right graph it can
be seen that themeasurements above the average line indicate biased
comparison and are a consequence of subjects’movements andmore
pronounced artifacts, as revealed in Figure 4.

Table 1 presents themean and standard deviations of SNR values
for each sensor and scene utilized in this study, calculated across
all subjects. The results indicate that Faros consistently exhibited a
higher mean SNR than E4 for all measurements.

Furthermore, the standard deviations provide insights into the
variability of the signal quality among the subjects for each sensor.
Faros demonstrated smaller standard deviation values compared to
E4, implying a greater degree of consistency in the SNR values across
measurements.

Pearson and Spearman correlation coefficients mean values
and standard deviation values, calculated between Faros and E4
across all subjects and for each scene, are displayed in Table 2.
The correlation coefficients provide insights into the degree
and direction of association between the data collected by
the two devices.
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TABLE 1 Signal-to-Noise Ratio (SNR) mean value and standard deviation calculated across all subjects, for both Faros and E4 and each scene.

Scene Baseline NIS IS

Sensor E4 Faros E4 Faros E4 Faros

Mean ± SD [dB] 17.5 ± 3.2 22.4 ± 2.0 18.1 ± 3.9 24.2 ± 1.6 18.6 ± 3.3 22.9 ± 2.0

TABLE 2 Pearson and Spearman correlation coefficients mean values and standard deviation calculated between Faros and E4 across all subjects, for
each scene.

Scene Baseline NIS IS

Sensor Pearson Spearman Pearson Spearman Pearson Spearman

Mean ± SD 0.24 ± 0.32 0.30 ± 0.34 0.19 ± 0.24 0.27 ± 0.27 0.31 ± 0.27 0.36 ± 0.29

TABLE 3 Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) mean values and standard deviation calculated between Faros and E4, across
all subjects, for each scene.

Scene Baseline NIS IS

Sensor RMSE MAE RMSE MAE RMSE MAE

Mean ± SD [bpm] 14.4 ± 8.2 9.9 ± 6.5 13.7 ± 8.0 8.9 ± 6.0 13.2 ± 7.1 9.2 ± 5.9

The results show that both Pearson and Spearman correlation
coefficients consistently showed positive values for all scenes,
indicating a positive linear relationship between the data captured
by Faros and E4 sensors. The mean Pearson correlation coefficients
ranged from 0.19 to 0.31, while the mean Spearman correlation
coefficients ranged from 0.27 to 0.36. These positive correlation
values suggest that as the physiological measurements from Faros
increase, the measurements from E4 also tend to increase, and vice
versa. However, these values do not indicate a strong correlation
between the measurements, and that may be caused by the noise
present in E4measurements. Standard deviation values ranged from
0.24 to 0.34 for Pearson and from 0.27 to 0.29 for Spearman. These
standard deviations represent the variability in the correlation values
among the scenes.

The Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) were computed to assess the agreement between the heart
rate signals obtained from Faros and E4 devices for each subject
and scene. The results presented in Table 3 indicate that for all three
measurements (Baseline, NIS, and IS), the RMSE and MAE values
were relatively small. For example, in NIS, the mean RMSE was
13.73 bpm, indicating an average difference of approximately 13.73
bpm between the HR measurements obtained from the two devices.
The mean MAE in the same scenario was 8.87 bpm, representing
an average absolute difference of around 8.87 bpm between the two
measurements.

Furthermore, the standard deviations of RMSE and MAE values
were also reported for each scene, providing information about the
variability in accuracy across different subjects. In general, smaller
standard deviation values suggest a higher degree of consistency and
reliability in the accuracy of heart rate measurements between Faros
and E4 for individual subjects.

3.2 Distress detection using Faros and E4:
intensity and frequency results

The results in Table 4 provide information on the frequency of
distress events at different levels (low,medium, and high) duringNIS
and IS as captured by both Faros and E4 devices.

Table 4 shows that, on average, there were more high- and
medium- and less low-level distress occurrences detected in IS than
in NIS both when using Faros and E4 HR signal. Standard deviation
was higher for Faros-detected distress occurrences compared to E4-
detected distress occurrences for all cases except for medium-level
distress in NIS where the trend was reversed.

Comparing the two devices, it can be observed that there
are differences in the number of detected distress events in each
category. For example, in NIS, E4 detected more medium-level
distress events compared to Faros, while Faros recorded more low-
level distress events. In IS, E4 detected noticeably more medium-
level distress events compared to Faros, but a similar amount of
high-level distress events.

The Wilcoxon signed-rank test comparing distress detection
capabilities of both devices at all distress levels, is visually
represented using boxplots in Figure 6 for IS, and the p-values for
are displayed in Table 5.

The p < 0.01 indicates that the difference in distress intensity
occurrences between the devices is statistically significant for the
Low andMediumdistress levels.However, for theHigh distress level,
the p-value of 0.57 suggests that there is no statistically significant
difference in distress intensity occurrences between the devices.
Cliff ’s deltawas calculated for comparison of distress occurrences of
each level between Faros and Empatica, and it was equal to −0.652,
0.667 and −0.018 for Low, Medium and High distress occurrences,
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TABLE 4 Faros and E4 detected distress level occurrences for NIS and IS mean value and standard deviation.

Faros NIS IS

Low Medium High Low Medium High

Mean ± SD [counts] 19 ± 8 3 ± 4 2 ± 6 9 ± 9 11 ± 7 7 ± 8

E4 NIS IS

Low Medium High Low Medium High

Mean ± SD [counts] 6 ± 8 14 ± 7 4 ± 5 1 ± 2 20 ± 6 6 ± 5

FIGURE 6
Boxplot comparisons of E4 and Faros for different distress level counts (left, middle, right plot) in IS.

TABLE 5 Distress intensity occurrences comparison between Faros and
E4 device for different distress levels in IS. P-values were obtained using
the Wilcoxon signed-rank test with 95% confidence interval.

Scene Distress Intensity

Low p < 0.01

Medium p < 0.01

dHigh p = 0.57

respectively. These values showed a significant difference between
devices for Low and Medium distress occurrences, since any value
above |0.474| is considered a large effect.

3.3 Interactive scene distress analysis
results

The analysis of distress occurrence during the interactive IS was
conducted using two criteria: detection in one-third (1/3) or two-
thirds (2/3) of the segments (before, during, and after the triggering
stimulus/event).The stricter criterion required distress presence for at
least20 saroundthetriggeringevent.Themeanandstandarddeviation
of the percentage of distress occurrences detected for both criteria (1/3
and 2/3) are shown in Table 6 for both Faros and E4 devices.

TABLE 6 Mean and Standard Deviation (SD) of percentage of distress
occurrences detected coinciding with VR triggering situations during IS.

Device Faros E4

Criteria 1/3 2/3 1/3 2/3

Mean ± SD [%] 88.9 ± 24.1 90.9± 21.6 98.2 ± 7.9 96.3 ± 15.7

The results indicate that both Faros and E4 devices detected a
relatively high percentage of distress occurrences coinciding with
triggering events during IS, with E4 showing slightly higher mean
percentages compared to Faros. The standard deviation reflects the
variability in event-related distress detection across participants for
each criterion and device, showing that the results obtained using
E4 HR signal were in a narrower range than the ones obtained
using Faros HR signal (7.86% and 15.71% compared to 24.1%
and 21.6%, respectively).

Figure 7 shows the periods of medium (yellow) and high (red)
level distress occurrences for both E4 and Faros HR signals during
NIS and IS. Although in NIS E4 HR signal is contaminated with
more noise than Faros HR signal, there is no distress detected,
which is expected since NIS is the scene without emotional events
or triggers. The impact of noise on false positive distress occurrence
detection can be seen in IS E4 HR signal, where Medium-level
distress occurrence was detected from 0 to 80 s due to multiple
high-intensity HR peaks that are not present in Faros HR signal.
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FIGURE 7
E4 (upper row) and Faros (lower row) heart rate signal with annotated medium- (yellow) and high- (red) level distress occurrences during NIS (left) and
IS (right).

4 Discussion

The presented study compared the distress detection capabilities
of two wearable devices, Faros and E4. The results shed light on
the strengths and limitations of each device and their potential
applications in assessing emotional responses during interactive
scenarios. Moreover, the analysis of distress occurrence during the
interactive scene provided valuable insights into the physiological
responses of participants during the dynamic and immersive
virtual reality experience.

To explore if both devices used in this study can effectively
detect distress during IS and answer the first research question,
the analysis of distress occurrence was conducted, and it revealed
interesting patterns during IS. Faros and E4 detectedmore high- and
medium-level distress occurrences in IS than in NIS, demonstrating
the impact of surprising elements on participants’ emotional
responses. While E4 showed slightly higher mean percentages
of distress occurrences compared to Faros, the devices exhibited
similar overall performance in detecting distress occurrences during
interactive scene-induced distress events. However, differences
in detected distress events between two devices highlight the
importance of considering device-specific factors in distress
detection studies.

The Wilcoxon signed-rank test indicated that Faros and E4
exhibited statistically significant differences in distress intensity
occurrences for low and medium levels, but not for high level
in IS. Since the high distress level occurrences are the ones, we
aimed to detect in the interactive scene, this is a significant result
that indicates that both devices detected strong subject responses
to distress inducing events, which implies that E4 could be used
for high distress detection in motion-controlled environment. The
significant differences between distress intensity occurrences for low
and medium levels could be attributed to the noise contamination
problem characteristic of E4 causing false positive distress detection.
Noisy HR signal results in increased RMSSD values which prevents
successful distress detection as with RMSSD we are looking for a
decrease below the threshold. The significant difference between
the two devices for low and medium distress levels is primarily the
consequence of multiple false positives of E4 (cases where E4 detects
distress even if it is not present). Since with E4 the RMSSD was
less frequently below the designated threshold, therefore correctly
interpreted as no distress, the occurrences of these false positive
detections can mainly be attributed to the Mean HR signal of E4.
This is not completely in line with the results from (Menghini et al.,
2019) that clearly state that Mean HR measures for E4 show
the best accuracy over various conditions. We believe the false
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positives observed in our study could also be attributed to the
selected duration of the segments used for calculation as a 10 s
segment is more prone to erroneous distress detection in case of a
noisy HR signal.

Ragot et al. (2018) compared a laboratory based Biopac
sensor to wearable E4 device for detecting emotion valence and
intensity (distress) using selected features, for which the correlation
coefficients ranged from 0.13 to 0.99, indicating non-consistency
among different parameters. Our approach showed that higher
distress levels are consistently detectedwith both deviceswhen using
appropriate feature engineering, comparable to the results of the
Machine Learning approach used in (Ragot et al., 2018) on a similar-
sized study sample of 19 volunteers. While valuable comparison
presented in (Ragot et al., 2018) confirms that Empatica can be
used for emotion valence and intensity classification in a non-noisy,
static environment, our study shows that E4 device can be used for
high-level distress detection in motion controlled, interactive VR
environment.

With regards to our second research question, we addressed
specifically the problem of data quality of E4 as this device is
known to be more prone to motion artifacts and results in poorer
SNRs. This was done mostly through noise contamination analysis
and direct comparison of both devices. While Faros consistently
exhibited higher mean SNR and smaller standard deviation, E4
signals occasionally showed false peaks indicating possible bad
contact or unfiltered movement artifacts.

Both Pearson and Spearman correlation coefficients showed
positive linear relationships between Faros and E4 data across all
scenes. However, the correlation coefficients are relatively moderate,
with large standard deviations, indicating that the strength of
the association between the data from these two devices is not
exceptionally strong. The moderate correlation can in our opinion
again be explained by the motion (and other) artefacts, common for
E4 measurements.

Despite relatively low correlation coefficients, small Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE)
values indicate good agreement in measuring heart rate. The
smaller standard deviation values for Faros further suggest higher
consistency and reliability in accuracy compared to E4. It is
important to consider that the Faros HR, obtained from the
ECG signal with a higher sampling frequency of 500 Hz, provides
better temporal resolution compared to E4 HR. This difference
in resolution could also contribute to potential errors and
discrepancies in the E4 HR signal.

It becomes evident that the presence of artifacts, poor contacts,
data loss and different sampling frequency impact the reliability and
alignment between the Faros and E4HR signals.This corresponds to
findings reported in (Schuurmans et al., 2020) where E4 also proved
to be a practical and valid tool for research on HR and HRV, but
only inmovement-controlled conditions (in this study, subjects were
meditating). With that, our third research question can be answered
by stating that E4 device exhibits good performance in measuring
heart rate, but with lower reliability and accuracy compared to
Faros, due to the limitations based on lower sampling frequency and
presence of artifacts and poor contacts that introduce noise to the
measurement.

The results of our study and their interpretation should be
considered with several limitations:

1. The noise present in the E4 HR signal after preprocessing
still impacts the accuracy of distress detection, as observed in
the example of Subject 2, IS with false positives. Future work
should include the employment of advanced signal processing
techniques to recognize noisy segments and to minimize the
impact of noise on distress analysis.

2. We did not assess Heart Rate Variability (HRV) from
Faros, as it may differ from Pulse Rate Variability (PRV)
from E4 and thus could introduce even more discrepancies
in results (Park et al., 2022).

3. The study focused on specific triggering events during IS to
assess distress occurrences. While these events were carefully
designed, they may not fully represent the complexity and
variability of emotional responses in real-world scenarios.
Further investigations incorporating a wider range of
emotional stimuli and experiences would provide a more
comprehensive understanding of distress detection in dynamic
environments.

4. The main limitation of this study was the sample size, which
was relatively small and age cohort as it included only
university students and consisted of 8 females (6, since for two
females the measurements were corrupted) and 10 males. This
may limit the generalizability of the findings. Future studies
with larger and more diverse samples are needed to validate
the observed trends.

5. The study focused on distress intensity occurrences, which
can be influenced by sex, age, individual differences and
contextual factors. Incorporating these factors in future
research would contribute to a more nuanced understanding
of the complex interplay between physiological responses,
individual differences, and emotional experiences. This
includes intra-individual factors such as caffeine intake and
fatigue levels, which may influence physiological responses
and heart rate variability.We should consider controlling these
variables in the future, for their potential impact on distress
detection in VR settings.

6. We have mostly focused on the participant comfort and
non-intrusivity of the setup, which is why we didn’t include
measurement of signals like EEG, which require additional
equipment, adding bulk and pressure and reduces participant
comfort, but, for example, has been shown useful in classifying
distress and no distress situations (Eldeeb et al., 2021). We
should aim to assess additional physiological measurements
that could provide more insights into the physiology behind
the distress assessment using VR in healthy subjects.

7. No self-reported measures of distress were included in
our study. While validated questionnaires could provide
valuable ground truth data, they are inherently limited by
biases such as social desirability, recall errors, acquiescence,
and participant fatigue. Future studies should incorporate
these measures, such as the Generalized Anxiety Disorder-7
(GAD-7) questionnaire (Spitzer et al., 2006), while carefully
considering their limitations when interpreting self-reported
data alongside physiological measurements

In this paper we presented a comprehensive approach to
measuring and understanding subjects’ physiological responses
within the motion-controlled VR environment by using two
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commercially available wearable devices. The study highlights
primarily the importance of considering device-specific factors and
data quality when using such wearable devices for distress detection.
Faros demonstrated superior signal quality and consistency
compared to E4 by retaining higher mean signal-to-noise ratios
(from 4.3 dB to 6.1 dB) for all scenes, making it a more reliable
choice for studies requiring high-quality HR data. Although
correlation coefficients between datameasured by Faros and E4were
consistently positive, they revealed relatively weak correlations with
correlation coefficients below 0.4. Both devices, however, showed
good agreement in measuring heart rate with average absolute
difference less than 9 bpm, indicating their potential utility in
assessing emotional responses during motion controlled interactive
VR scenarios. Moreover, both devices performed well in detecting
distress occurrences related to the triggering events and to the
high distress levels. We found no statistically significant difference
between Faros and E4 data for comparing high distress intensity
occurrences (p-value = 0.57), while this is not true for low and
medium distress intensities (p-value <0.01).

In addition to device comparison, we have also proposed a
simple rule- and subject-specific threshold-based distress detection
method that showed promising results and performance, especially
when detecting distress coinciding with the distress-inducing events
which were included in the interactive scene by design. Threshold
fine-tuning and exploring different options and threshold values is
out of scope of this paper, but it is one of the directions we would
consider in our future work.

While E4 device shows promising potential as a practical
alternative to Faros for distress detection, especially in scenarios
where wrist-worn monitoring is preferred, researchers must be
mindful of the specific research objectives and the level of data
accuracy and consistency required. For studies that demand the
highest level of data reliability and signal stability, Faros remains
the preferred choice. Nonetheless, these findings open the door for
further investigations and advancements in wearable physiological
monitoring technologies. Our future research could include adding
more distress-inducing scenarios and improving existing ones,
considering more physiological features for distress detection,
testing multiple commercially available devices, and trying to
minimize the movement artifacts through device placement or
differentmovement artifact removalmethods. Future research could
be directed towards examination of different distress inducing
scenarios, comparison of other relevant physiological features for
distress detection, testing multiple wearable devices, minimization
of themovement artifacts with appropriate processingmethods, and
fine-tuning the feature thresholds for distress detection.
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Investigating the accuracy of
Garmin PPG sensors on differing
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Megan Irby1, Kindia N’dah1, Justin Robison1 and Jason Fanning1*
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Background: Commercial wearable devices, which are often capable of estimating
heart rate via photoplethysmography (PPG), are increasingly used in health
promotion. In recent years, researchers have investigated whether the accuracy
of PPG-measured heart rate varies based on skin pigmentation, focusing
particularly on the accuracy of such devices among users with darker skin tones.
As such, manufacturers of wearable devices have implemented strategies to
improve accuracy. Given the ever-changing nature of the wearable device
industry and the important health implications of providing accurate heart rate
estimates for all individuals no matter their skin color, studies exploring the
impact of pigmentation on PPG accuracy must be regularly replicated.
Objective: We aimed to contrast heart rate readings collected via PPG using the
Garmin Forerunner 45 in comparison with an electrocardiogram (ECG) during
various levels of physical activity across a diverse group of participants
representing a range of skin tones.
Methods: Heart rate data were collected from adult participants (18–64 years of
age) at a single study session using the Garmin Forerunner 45 PPG-equipped
smartwatch and the Polar H10 ECG chest strap. Skin tone was self-reported via
the Fitzpatrick scale. Each participant completed two 10 min bouts of moderate-
intensity walking or jogging separated by a 10 min bout of light walking.
Results: A series of mixed ANOVAs indicated no significant interaction between
Fitzpatrick score and phase of the activity bout (i.e., rest at the start, first intensity
ramp-up phase, first steady-state phase, active rest, second ramp-up phase, and
second steady-state phase). Similarly, there was no significant main effect for the
Fitzpatrick score, although there was a significant main effect for phase, which
was driven by greater ECG-recorded heart rate relative to PPG during the first
ramp-up phase.
Conclusion: Our findings support prior research demonstrating no significant
impact of skin tone on PPG-measured heart rate, with significant differences
between PPG- and ECG-measured heart rate emerging during dynamic
changes in activity intensity. As commercial heart rate monitoring technology
and software continue to evolve, it will be vital to replicate studies
investigating the impact of skin tone due to the rapidity with which widely
used wearable technologies advance.
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1 Introduction

Regular physical activity promotes overall health and well-

being across the lifespan and accompanies improvements in

cognition, learning and judgment skills, and symptoms of

depression and anxiety (1, 2). According to a 2022 report from

the World Health Organization, more than 80% of the world’s

adolescent population is insufficiently physically active, and

people who do not engage in sufficient physical activity are at

20%–30% greater risk of death compared to sufficiently active

people (3). Wearable activity monitors have risen in popularity

both for consumers and researchers given their ability to

objectively monitor key health behaviors including physical

activity, sleep, and stress, which are each facilitated based on

heart rate monitoring (4, 5). These are useful technologies for

those interested in activity promotion, as a core component of

successful activity behavior change is self-regulation, which is

characterized by the motivation, control, and modification of

behavior to achieve a desired goal (6). Successfully changing

behavior through self-regulation depends on one’s ability to

accurately and consistently self-monitor their behaviors, as

developing an accurate awareness of one’s behaviors is a pre-

requisite for supporting behavior change.

Consumer physical activity self-monitoring technologies

represent an important and growing industry (7–9) and are

increasingly common in clinical physical activity trials (10–12).

Contemporary monitoring devices integrate various sensing

technologies such as accelerometry, global positioning, and

optical sensing to measure the intensity and duration of activity.

These data are of immense value to those interested in

developing novel and highly tailored activity programs. However,

concern over whether sensors work similarly across individuals—

and the potential to introduce a systematic bias when using

monitoring technologies—has risen in popular consciousness in

recent years. Wrist-worn consumer devices leverage light

(photoplethysmography; PPG) to monitor peripheral blood flow,

and there is concern that darker skin tones may affect the

accuracy of PPG sensors (13, 14). A systematic review by

Koerber and colleagues indicated that heart rate-sensing

smartwatches were significantly less accurate when used on

darker skin tones in comparison to lighter skin tones (13). In

contrast, Bent and colleagues failed to identify significant

differences in accuracy resulting from differing skin tones,

though they did find that accuracy varied by device manufacturer

and type of activity, regardless of skin tone (14).

One potential cause of heterogeneity in findings in the

relationship between skin tone and PPG accuracy is the

continuous evolution of heart rate monitoring hardware and

software in the consumer market. This presents both challenges

(e.g., changing study endpoints) and benefits (e.g., enhanced

accuracy) in the research context. For instance, companies such

as Garmin and Apple have implemented technologies to increase
Abbreviations

PPG, photoplethysmography; ECG, electrocardiogram; HRR, heart rate reserve;
BPM, beats per minute.

Frontiers in Digital Health 0296
the intensity of the PPG light if a strong signal is not detected by

the device, such as for individuals with darker skin (15). Because

consumer technologies are continuously refined and improved

upon, replication studies are critical—a notion increasingly

recognized in mHealth research (16). To this end, the purpose of

this study was to revisit the investigation of differences in

electrocardiogram (ECG) and optical heart rate (PPG) data

collected by Garmin Forerunner 45 and Polar H10 devices,

respectively, across self-reported skin tone scores.
2 Methods

Participants with varying skin tones were recruited between

Spring 2022 and Spring 2023 to compare heart rate recordings

during rest, exercise, and recovery between wrist-worn PPG and

chest ECG. Participants were recruited via word of mouth, flyers,

and listserv emails within a college community in the southeast

United States. Participants were eligible if they were between 18

and 64 years of age with no forearm tattoos that would interfere

with the PPG sensors on both wrists. Participants were

intentionally recruited such that no more than half of the sample

self-identified as White. In addition, eligible participants had to be

fluent in English, capable of communicating with research staff

over the phone, willing to wear two Garmin wristwatches and a

chest strap for approximately 35 min, and able to engage in

aerobic exercise for at least 20 min. Eligible participants completed

a pre-screen interview including a physical activity readiness

questionnaire to confirm eligibility and subsequently were

scheduled for a single testing session. At the session, and prior to

all study procedures, research staff conducted the informed

consent process, obtained written consent from the participants,

and collected participant demographic characteristics and the

Fitzpatrick scale as a proxy for skin tone.

PPG data were collected via the Garmin Forerunner 45, which

leverages the same Garmin Elevate PPG technology used across all

modern Garmin devices (17). We selected this device as Garmin

devices are well-represented in both physical activity research (18)

and in the commercial sectors (19, 20). Additionally, because

Garmin devices all leverage the same PPG technology, selecting a

single device equipped with this sensor offers an efficient means of

investing in PPG accuracy in a large segment of the consumer

wearable market. We want to emphasize the importance of

expanding the work presented in this study to other widely used

consumer devices. Participants were fitted with one Garmin

Forerunner 45 on their left wrist and another on their right wrist.

One Garmin collected data via the PPG sensor, and the second was

connected to a Polar H10 ECG chest strap and therefore did not

collect data via PPG. Electrode gel or water was placed on the

sensors of the chest strap before being fastened to the participant.

Participants remained seated for 5 min to collect their resting heart

rate. Resting heart rate was then used to calculate heart rate reserve

(HRR), which was computed by subtracting resting heart rate from

the participant’s estimated maximum heart rate, which was

calculated using the formula: estimated maximum heart rate

(BPM) = 220-age (21). Participants were then instructed to walk or
frontiersin.org
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jog on an outdoor track at 60% of their estimated HRR for 10 min

during an “exercise bout.” Participants then walked at a self-selected

light intensity for 10 min (i.e., “rest”) and then initiated a second

“exercise bout” wherein participants again were instructed to walk

or jog at 60% of their estimated HRR for 10 min. We selected this

protocol to give insight into both steady state and changing

intensity given prior research demonstrating differential performance

of PPG vs. ECG during intensity changes (14). Upon completion of

the participant visit, data were downloaded from each Garmin

Forerunner 45 and extracted via a custom Python script (22).
3 Measures

3.1 Heart rate

As noted above, Garmin Forerunner 45 devices were used to

collect data during each session, with one paired to a Polar H10

ECG chest strap and the other using the on-device PPG sensor.

The Polar H10 is among the most widely used chest ECG

devices with excellent validity (23). Heart rate data are provided

approximately every 5 s, and a custom Python script was utilized

to time-match data collected via both devices. Specifically,

datasets were merged based on closest matching timestamps,

which were allowed to differ by up to 5 s. These data were

subsequently plotted, and periods of rest, the first exercise bout,

the rest bout, and the second exercise bout were identified with a

timestamp and visual inspection of ECG data. As it has been

reported that PPG data may be delayed relative to ECG data

during changes in activity intensity (14), we investigated exercise

bouts as a whole as well as subdivided into a “ramp” and

“steady-state” period. Specifically, we visualized ECG-based heart

rate data and classified the rapid increase in heart rate during the

initial period of the exercise bout as the “ramp” period and the

plateau in heart rate as “steady state.” If a participant did not

have a clear delineation between these stages (e.g., a consistent

rise in heart rate across the bout), all activity was classified as

exercise. In sum, PPG and ECG differences in a total of eight

“phases” were investigated: rest, the first ramp, the first steady-

state exercise bout, the first full exercise bout (comprising both

the ramp and steady-state period), rest, the second ramp, the

second steady-state exercise bout, and the second full exercise

bout (comprising both the ramp and steady-state period).

Average readings and differences for the ECG and PPG data

were computed for each period. Differences were computed as

ECG minus PPG, such that positive values indicated higher

ECG-measured heart rate whereas negative values indicated

higher PPG-measured heart rate. Notably, the Association for the

Advancement of Medical Instrumentation recommends a

maximum error of ±5 BPM for heart rate monitoring (24).
3.2 Skin tone

The Fitzpatrick scale was originally designed to classify how

different skin types may react to ultraviolet light, though as Fine
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and colleagues note, the Fitzpatrick scale “is often used within

the biophotonics community due to the effect eumelanin has on

how light travels through skin. This is due to the high

absorbance of eumelanin with a peak in the ultraviolet

wavelength (220 nm) and a steady decay through the visible

wavelength region” (25). Participants responded to 10 items

related to physical traits (e.g., eye color and color of the skin in

unexposed areas), sensitivity to sun exposure, and how often one

typically engages in intentional sun exposure. Responses are

provided on a 0–4 scale, with final scores ranging from 0 to 40.

Six total categories are derived from these scores, ranging from

pale white skin to deeply pigmented dark brown skin to black

skin (26). In the present study, we investigated Fitzpatrick scores

continuously (14, 27) as well as in three categories containing

two Fitzpatrick types each (i.e., 0 = types I/II, corresponding to

scores of 0–13; 1 = types III/IV, corresponding to scores of 14–

27; 2 = types V/VI, corresponding to scores of 28–36). This scale

is commonly used in research and clinical settings to classify

one’s skin tone (28), largely due to its availability, historic use,

and ease of administration. However, while it is frequently used

by healthcare providers as a means of describing skin color (29),

it is notable that it was originally designed to measure the

propensity of the skin to burn during phototherapy (29).

Important limitations to this approach include that Fitzpatrick is

often conflated with a measure of race or ethnicity and that there

is a large degree of within-group variability in skin tone (29). We

deem it important to note early that the use of the Fitzpatrick

scale is a limitation driven by a lack of widely available tools and

will explore opportunities for future research within the discussion.

We leveraged a series of descriptive analyses to contrast heart rate

collected via chest ECG and wrist PPG among individuals with

varying skin tones assessed via the Fitzpatrick scale. First, we

present descriptive statistics, including mean (SD) for continuous

variables and count (%), for the whole sample. Similarly, we

computed descriptive statistics for the difference in heart rate

within each phase of the exercise bout (start, first ramp, first

steady-state exercise, first full exercise bout, rest, second ramp,

second steady-state exercise, second full exercise bout), with

descriptives presented for Fitzpatrick subgroups and the sample as

a whole. Note that we observed two extreme outliers in the

difference between ECG and PPG-recorded heart rate, and as such,

we also present median and interquartile range in supplemental

materials. Both individuals fell into the Fitzpatrick type V/VI

category. Bland–Altman plots were produced for each phase to

investigate differences in ECG and PPG heart rate by average heart

rate. To investigate whether heart rate varied by Fitzpatrick score,

phase of the exercise bout, or the interaction of the two, we next

conducted a mixed ANOVA including phase as a within-subject

factor and Fitzpatrick subgroup as a between-subject factor,

confirming the assumption of homogeneity of variances. Finally, to

investigate relationships between continuous Fitzpatrick scores and

differences in heart rate by device during each phase, we computed

a series of Pearson correlations that were interpreted as

recommended by Evens and colleagues such that 0–0.2 was

considered very weak, 0.2–0.4 was considered weak, 0.4–0.6

was considered moderate, 0.6–0.8 was considered strong, and 0.8+
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was considered very strong (30); significant associations were

visualized via scatterplot. Given the outlying values described

above, we also present Spearman rho correlations in the

supplemental materials. All analyses were completed in SPSS

version 29 (IBM Corp., Armonk, NY, USA).
TABLE 2 Mean and standard deviations for the difference of heart rate in
each task overall and by Fitzpatrick category.
4 Results

Participant characteristics are displayed in Table 1. A total of 33

participants agreed to participate in the study, and 29 completed the

study protocol and had complete data from both devices during the

1-year pilot period. Characteristics of these participants are displayed

in Table 1. Briefly, 8 identified as Black, 4 as Asian, 15 as White, and

2 self-identified as more than one race. With regard to sex, 15

participants (52%) were male, and 14 (48%) were female. The

average age of the participants was 22.24 ± 4.54 years, and the

average Fitzpatrick score from the research sample was 21.45 ± 6.48.

Table 2 depicts the descriptive statistics during each phase by

Fitzpatrick category. Supplementary Table S1 contains median

and interquartile range values during each phase by Fitzpatrick

category. Figure 1 depicts the Bland–Altman plots for each

phase. Note that there was a violation of the sphericity

assumption for the mixed ANOVA, and therefore we corrected

degrees of freedom using the Greenhouse-Geisser ε = 0.509. The

mixed ANOVA did not reveal a significant phase–Fitzpatrick

category interaction (P = 0.27), nor was there a significant main

effect for the Fitzpatrick category (P = 0.68). There was, however,

a significant main effect for phase [F(2.55,63.64) = 19.84, P < .001,

η2 = .44], and a series of post hoc contrasts revealed this was

driven by significantly higher ECG-recorded heart rate relative to

PPG during the first ramp phase, which was significantly larger

than differences during any other phase (P < .001). Differences in

ECG and PPG between other phases were not statistically

significant. A second model wherein ramp and steady-state

phases were not separated demonstrated similar results. Namely,

the interaction between the Fitzpatrick category and phase was

not significant (P = 0.21) nor was the main effect for the

Fitzpatrick category (P = 0.57). The main effect for phase was

significant [F(2.16,56.13) = 8.36, P < .001, η2 = .24], and this was

driven by significantly greater differences in the first exercise
TABLE 1 Participant demographics (N = 29).

Characteristic M (SD)
Age, M (SD) 22.24 (4.54)

Male, n (%) 15 (52)

Female, n (%) 14 (48)

Race, n (%)
White 15 (52)

Black 8 (28)

Asian 4 (14)

More than 1 2 (7)

Fitzpatrick score, M (SD) 21.45 (6.48)

BMI M (SD) 23.19 (3.60)

M, mean; SD, standard deviation; BMI, body mass index (kg/m2).
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phase (Ps≤ 0.006). Notably, several individuals had at least one

extreme outlying value during at least one phase. As sensitivity

analyses, we conducted the mixed ANOVAs without the outlying

values, and the interpretation did not differ.

Regarding Bland–Altman plots (depicted in Figure 1), limits of

agreement were >±5 BPM during all tasks. Table 3 depicts the

number of cases during each phase with differences that

exceeded ±5 BPM. The mean bias was 0.67 BPM during rest

(a positive number indicating higher heart rate recorded via ECG

relative to PPG), 10.82 BPM during the first ramp phase, 0.20

BPM during the first steady-state exercise phase, 3.49 BPM

during the first overall exercise phase, −1.15 BPM during rest,

0.34 BPM during the second ramp phase, −1.11 during the

second steady-state exercise phase, and −0.70 during the second

exercise bout on the whole. Table 4 displays the Pearson

correlation coefficients for the relationships between continuous

Fitzpatrick scores and differences in heart rate. There was a

significant, moderate negative correlation between Fitzpatrick

score and heart rate differences during the second ramp phase,

indicating those with darker skin tones demonstrated a relatively

higher PPG score during this period. A scatterplot depicting this

relationship can be observed in Figure 2. Spearman rho

correlations are depicted in Supplementary Table S2, and,

notably, interpretation does not meaningfully differ.
5 Discussion

This study aimed to examine the agreement between ECG and

wrist-based PPG-measured heart rate, and whether agreement was

affected by self-reported skin tone using the Fitzpatrick skin typing

scale. Our results generally indicate that ECG- and PPG-measured

heart rates did not differ by skin tone, except when individuals

were increasing the intensity of activity after an active rest period.

Here, those with lighter skin as reported via the Fitzpatrick skin

typing scale demonstrated a similar response as to the first ramp

phase (i.e., ECG detected higher heart rate) whereas those with

darker skin reported relatively higher PPG-recorded heart rate.
Phase Fitzpatrick score Total
(N= 29)

0–13
(N = 5)

14–27
(N= 17)

28–36
(N= 7)

Start −1.51 (6.49) 1.58 (3) 0.04 (1.97) 0.67 (3.67)

First ramp 14.35 (7.00) 8.48 (9.06) 13.99 (12.66) 10.82 (9.82)

First steady-state exercise −0.08 (1.97) −1 (6.48) 3.32 (8.43) 0.2 (6.57)

First full exercise bout 5.01 (3.59) 1.84 (3.87) 6.42 (9.32) 3.49 (5.76)

Rest −1.00 (1.28) −1.25 (2.78) −1.01 (1.99) −1.15 (2.35)

Second ramp 2.51 (3.77) 0.89 (3.45)a −2.49 (4.62) 0.34 (4.07)a

Second steady-state
exercise

−0.23 (2.33) −1.56 (5.72) −0.64 (2.69) −1.11 (4.62)

Second full exercise bout 0.42 (2.35) −0.92 (3.97) −0.97 (2.89) −0.7 (3.44)

Differences were computed as ECG− PPG such that more positive scores indicate higher
ECG-recorded heart rate. Values are in average beats per minute.
aOne observation missing due to a lack of clear delineation between the ramp and steady-

state exercise and therefore time was all categorized as exercise.
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FIGURE 1

Bland–Altman plots contrasting differences in ECG vs. PPG by average across both devices. The lines are plotted for average difference and 95%
confidence limits around the mean difference.
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Importantly, most of these differences were small in magnitude (i.e.,

71% had differences <5 BPM, which falls within an acceptable range

of accuracy). More generally, we observed a range of bias (1.15–10.82

BPM) between devices, with the greatest bias observed during the

initial increase in activity as individuals began their first bout of

exercise from complete rest. The tendency for PPG signals to lag

behind ECG during changes in heart rate is widely reported and

may be attributable to several physiological causes, including a
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delay between changing heart rate and changes in blood volume at

the wrist (14). As others have reported, this suggests utility for

wrist PPG-based heart rate measurement for monitoring steady-

state activity above, and less so for activities like high-intensity

interval training where heart rate might rapidly accelerate and

decelerate. This may be especially true for those with darker skin,

as we observe a significant correlation between Fitzpatrick score

and differences between ECG and PPG only when individuals
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TABLE 3 Count of participants exhibiting differences between ECG- and
PPG-recorded heart rate exceeding 5 BPM.

Phase N (%)
Start 5 (17)

First ramp 21 (72)

First steady-state exercise 3 (10)

First full exercise bout 8 (28)

Rest 2 (7)

Second ramp 8 (28)

Second steady-state exercise 1 (3)

Second full exercise bout 2 (7)

TABLE 4 Pearson correlations between Fitzpatrick score and differences
in heart rate collected via chest and wrist monitor.

Stage Fitzpatrick score
Start 0.31

First ramp 0.10

First steady-state exercise 0.10

First full exercise bout 0.14

Rest −0.12
Second ramp −0.49a

Second steady-state exercise −0.16
Second full exercise bout −0.28

0–0.2, very weak; 0.2–0.4, weak; 0.4–0.6, moderate ; 0.6–0.8, strong; 0.8+, very strong.
aCorrelation is significant at the 0.05 level (two-tailed).

FIGURE 2

Scatter plot showing the relationship between participant Fitzpatrick scores
second ramp phase.

Icenhower et al. 10.3389/fdgth.2025.1553565
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increased intensity following an active recovery period. Indeed, we

observed two outlying individuals who had much greater

differences between ECG and PPG ratings during the ramp and/or

exercise phases, and both individuals fell into the highest

Fitzpatrick category.

In sum, our data, in combination with the wider body of

evidence (15, 31–36), give helpful guidance to clinicians and those

interested in promoting activity behavior from the perspective of

selecting a heart rate monitoring device. Specifically, the use of

PPG-based monitoring should be cautioned for those interested in

promoting or engaging in behaviors where rapid changes in

intensity are expected to be frequent. Moreover, we would note the

critical importance of additional validation testing. As raised in

recent reports, there remain a number of factors that could

interact with skin tone to produce bias, including factors such as

the presence of arm hair, ambient temperature and humidity, level

of motion, skin thickness, and body mass (31). As researchers gain

access to better tools to measure these factors in the field and as

consumer wearable devices continue to enter the market, it will be

critical to revisit this topic.
5.1 Strengths and limitations

There are several important strengths to the present study.

First, participants completed study procedures outdoors while
and the difference between ECG and PPG heart rate values during the
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walking overground, capturing the potential negative impact of

uneven motion and light on the accuracy of wrist data, which

may be missed in the laboratory. Additionally, our protocol

allowed for the investigation of both steady state and changes in

activity intensity. This provides the ability to challenge the

validity of these devices over varying conditions and various

phases of activity to properly capture every phase of activity that

the PPG sensor would record. Of course, there are several

important limitations to consider. As described earlier, there are

well-documented criticisms of the Fitzpatrick skin typing scale

related to how values are interpreted and variability in tone

within categories. Given the potential harm produced by biases

in widely used health technologies, it is promising that

researchers are actively working to create more representative

cost-efficient scales, such as the newly developed 10-shade Monk

skin tone scale, which became available for use following the

completion of data collection for the study presented herein (37),

and relatively cost-efficient and portable technologies such as the

Delfin Skin Color Catch that researchers have successfully used

to observe skin pigmentation (38–40). In combination, these

tools may facilitate still further replication work to address

several of the research gaps (31). These include investigating

interactions between skin tone, arm hair, perspiration, and body

mass among other potentially confounding variables. Second, as

our research occurred on the campus of a small liberal arts

campus, participants were college-aged adults, limiting age

diversity in our sample. Extending this work to older adults may

cause other discrepancies, as older adults tend to have stiffer

arteries, weaker blood flow, and thinner skin (41). Third, our

sample was relatively small, which may influence the stability of

our findings and the width of our limits of agreement. We

acknowledge that a larger, balanced sample size would yield

stronger conclusions and also better consider the individual

variability in PPG accuracy (25). However, we would note our

findings are in line with other recent studies on the topic and are

encouraged by the consistent results we observed within our

diverse sample (34, 42). Fourth, the discrepancy between PPG

and ECG may be subject to motion factors, although this is

outside the scope of our study (43). This minor limitation was

not assessed in the data processing because all our participants

did the same activities, and we are focusing on skin tone. Finally,

we did not quantify weather conditions during testing, and

evidence suggests that both temperature and humidity may affect

the quality of a PPG signal (44). It may be valuable for future

research to examine whether there are any interactions between

temperature, humidity, and skin pigmentation on PPG accuracy.
6 Conclusion

Wearable devices have become a mainstay in clinical trials

research and in the consumer sector, and as such, understanding

whether and to what extent important characteristics such as

skin tone may introduce a bias into heart rate measurement is

critical. Herein, we present further support that PPG and ECG-

measured heart rates generally exhibit low bias but wide limits of
Frontiers in Digital Health 07101
agreement, with differences being exaggerated as activity intensity

changes, but generally not varying by the skin tones represented

in our sample. These findings are encouraging, supporting the

utility of accessible and inexpensive PPG heart rate measurement

in health research, especially when one is interested in heart rate

at rest or during steady-state activity. Given the rapidity with

which widely used wearable technologies advance, it will be

critical that researchers routinely replicate research meant to

capture any potential bases introduced by the use of these devices.
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Objective: This study evaluated the Labs Without Walls app and paired Apple

Watch devices for remote research among Australian adults aged 18–84.

Methods: The study app, built using Apple’s open-source ResearchKit

frameworks, uses a multi-timescale measurement burst design over 8-weeks.

Participants downloaded the app, completed tasks over 8 weeks, and wore

Apple Watch devices. Feasibility was assessed by recruitment, remote consent,

and data collection without training. Adherence was measured by task

completion rates. Usability was assessed by response times, a post-study

survey, and qualitative feedback.

Results: 228 participants (mean age 53, age range 18–84; 62.7% female) were

recruited nationwide, consented remotely, and provided data. 201 (88.16%)

completed the 8-week protocol. Task adherence ranged from 100% to

70.61%. Health, environmental, and sleep data were collected passively.

Usability feedback was excellent, with 84% rating the app as “extremely” or “a

lot” user-friendly, 88% finding alert frequency “just right,” and 95.7% finding

the schedule manageable. Few age or sex differences were found.

Conclusions: The Labs Without Walls app and paired Apple Watch devices are

user-friendly and enable adults aged 18–84 to complete surveys, cognitive

and sensory tasks, and provide passive health and environmental data. The

app can be used without formal training by males and females living in

Australia, including older adults. Future iterations should consider gamification

and strategies to improve daily-diary survey user experience.

KEYWORDS

life-course, digital health, mHealth, mobile app, usability

Introduction

ResearchKit, a software framework developed by Apple, allows researchers to create

research apps for iOS devices. It provides a set of tools for building apps that can

collect data from participants, such as survey templates, and pre-built cognitive and

sensory tasks. ResearchKit easily integrates with HealthKit, allowing researchers to

access health data from participants’ iPhones and paired Apple Watch devices. Being

open-source, researchers can also customise and extend ResearchKit to fit their specific

needs. The rise of digital health has fundamentally transformed health promotion,
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offering innovative avenues for data collection and intervention

delivery. Mobile technologies, like those supported by

ResearchKit, are pivotal in this transformation, enabling

researchers to reach diverse populations and gather rich, real-

time data. This context highlights the growing importance of

understanding the feasibility and acceptability of digital health

tools in research. In this study, we used ResearchKit to create a

research app, Labs Without Walls (1), to collect novel data on

micro-longitudinal ageing processes among Australian adults

aged 18–84.

Micro-longitudinal studies, which involve repeated

measurements over various time scales (2–4), are essential for

understanding human development across the lifespan. Lifespan

developmental theories (5, 6) suggest that human development is

a continuous process throughout life, with individual variations in

developmental patterns. Mobile technologies, such as smartphones

and watches, offer several advantages for conducting these studies,

including improved accessibility, engagement, and temporal

granularity (7–9).

Evaluating digital health interventions often begins with

assessing feasibility, task adherence, and usability (10). These

evaluations can identify methodological elements that are

acceptable for different participants and contribute to data

quality over time. Benchmarks for success can vary widely,

influenced in part by wide variation in the nature, intensity and

duration of digital health studies. For example, a review of

participant engagement in mobile app interventions found an

average overall study retention rate of 67.83% from 54 included

studies (11). Study retention ranged from 14% in a mental health

study among 348 participants across 12 weeks (12) to 100%

retention in a weight loss study among 12 participants across

four weeks (13).

The acceptability of research apps and wearables, including

task adherence and usability, might vary by participant age or

sex. While some studies suggest potential differences, the

literature lacks evidence on age or sex differences in multi-

timescale measurement burst designs among life-course samples

over extended periods.

Demonstrating the acceptability of research apps built with

ResearchKit is crucial. Despite age-related differences in digital

literacy (14), research has shown that older adults can effectively

use digital technologies. For example, a review by Wrzus and

Neubauer (15) found no clear age-related trend in compliance

rates in ecological momentary assessment (EMA) studies, though

women were generally more compliant than men. This aligns

with research on gender differences in conscientiousness (16). By

demonstrating the acceptability of research apps and wearables

across the lifespan, researchers can challenge stereotypes and

expand the potential reach of research to hard-to-reach

populations, including older adults and others who may not

usually be included in research.

This study aims to evaluate the feasibility, adherence, and

usability of the Labs Without Walls research app (1) and paired

Apple Watch devices (Apple Inc) for studying micro-longitudinal

processes among Australian adults aged 18–84 over an

8-week period.

We pre-registered the following hypotheses:

• H1 (Feasibility, Adherence): Participants aged 18–84 years will

be able to be successfully e-consented, able to input survey data

through the Labs Without Walls research app, and have passive

data collected using an Apple Watch (Apple Inc) over 8 weeks.

• H2 (Usability): The user experience of the Labs Without Walls

research app and Apple Watch (Apple Inc) will be rated as

acceptable by research participants aged 18–years.

Materials and methods

This study was approved by the University of New South Wales

Human Research Ethics Committee (approval number HC200792).

The study design and hypotheses were preregistered on May 4,

2022, using Open Science Framework, before completing data

collection. The study protocol is published elsewhere (1).

Participants

228 Australian adults (18–84) participated in the 8-week study

using the Labs Without Walls app. Sample size was estimated based

on thresholds of.05 (two-tailed) probability of rejecting the null

hypothesis and power of.80, and a previous meta-analysis which

estimated the odds ratio of subjective age (one of the primary

interests of this broader project) impacting overall health to be

1.57 (17). G*Power determined a minimum sample size of 129.

We over-recruited to account for covariates and potential

attrition. Participants were recruited through social media,

mailing lists, and volunteer databases. Eligible participants (aged

18–85, residing in Australia, owning an iPhone, not requiring

text-to-speech to use iPhone) were invited to download the app.

Non-responders were followed up with three attempts. Informed

e-consent was obtained, and explicit permissions were required

for passive data collection on health and environmental measures.

Design

As described in the study protocol (1), the research app was

built for iOS using customised templates provided by Apple

ResearchKit (Apple Inc). Amazon Web Services was used to host

secure back-end data collection. All participants were provided

with an Apple Watch Series 5 (Apple Inc) and Apple wired

EarPods (Apple Inc) to use for the duration of the study.

Participants returned the Apple Watch (but not the EarPods) at

the end of the study, with postage paid for by the study team.

Over eight weeks, participants completed a multi-timescale

measurement burst protocol, including a baseline survey,

repeated surveys on COVID-19 experiences, week-long daily

survey sprints which explored daily subjective aging and gender

expression, repeated game-like cognitive and sensory tasks, and

an end of study usability survey. Participants also provided

passively collected health and environmental data from the
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iPhone and Apple Watch (Apple Inc). Following the baseline

survey, study tasks were intended to take no more than a few

minutes per day to complete. Further details regarding the

technical architecture of the app, study tasks and schedule are

reported elsewhere (1).

Outcomes

Feasibility
Feasibility was assessed by the ability to remotely recruit a life-

course sample, the location of participants indicating the ability to

recruit from a wide geographic area, and overall completion rates.

Our benchmarks were successful enrolment and retention of adults

aged between 18 and 85 years, recruitment from a wider

geographical area than traditional lab-based methods, and a

completion rate of 68% or higher (11).

Adherence

Adherence was assessed by task completion rates and data

completeness. Lower completion rates might indicate difficulty

completing tasks in the context of their daily lives (18) or

declining adherence over time (19). Incomplete health,

environmental, or sleep data might indicate less compliance with

the study protocol. Our benchmark for task adherence was 60%

completion. We did not set specific benchmarks for passively

collected data but anticipated higher completeness for daily

behaviours and non-optional tasks.

Usability
Usability was assessed by task completion times, an end-of-study

survey, and qualitative feedback. Our benchmark for task completion

times was alignment with estimated times. For the survey, we aimed

for 80% positive ratings for study schedule manageability, watch

wearability, usability, alert frequency, and setup/charging ease.

Qualitative feedback was sought for future iterations.

Statistics

Descriptive statistics (frequencies and percentages or means and

standard deviations) were used to describe the characteristics of the

sample, geographic spread of participants, study completion, task

adherence, and the amount of health and environmental data

collected from participants across study days. Survey and task

completion times were presented as a median for the full sample, to

avoid skew due to outliers (e.g., where a study survey remained

open and incomplete for several hours). Due to a higher number of

females than males in the study sample, Independent-samples

Mann–Whitney U-tests were used to compare males and females

on study outcomes. Linear regression analyses explored the

relationship between age-in-years and continuous outcomes. Logistic

regression explored the relationship between age and binary

outcomes. To allow for possible non-linear effects of age, a

quadratic age term was entered into each regression model. Pairwise

deletion was used to account for missing data. All statistical

analyses were completed using SPSS version 27 (20). Qualitative

data provided by participants was reviewed and coded according to

the topic(s) raised in each comment. Codes were then used to

quantify the frequency of mentions of each topic, and illustrative

comments were reported verbatim.

Results

Participants

As shown in Supplementary Figure S1, 500 participants

expressed interest in joining the study between May 2021 and

February 2023. Of those, 342 met our inclusion criteria and were

invited to download the Labs Without Walls app and join the

study. 228 participants provided study data. Sociodemographic

characteristics are summarised in Table 1. The sample was more

highly educated and included slightly lower rates of White adults

than the general Australian population (21).

Location of participants

Participants were recruited from all but one of Australia’s

States and Territories, spanning the breadth of the continent.

2.65% joined the study from the Australian Capital Territory,

63.27% from New South Wales, 12.39% from Queensland, 4.87%

from South Australia, 1.17% from Tasmania, 8.85% from

Victoria, and 4.87% from Western Australia. Participants were

mostly located in urban centres or regional coastal areas,

reflecting Australia’s population density.

General study completion

201 participants completed the Day 56 sprint survey, suggesting

an overall study completion rate of 88.16%. A logistic regression

analysis was conducted to examine the effect of age and its

squared term on the likelihood of completing the final study day.

Note, the Wald statistic reported below, calculated as the square of

the ratio of the regression coefficient to its standard error, is used

in association with p values to assess the statistical significance of

the predictor variable (in this case, age). Neither age in years

(B = 0.116, SE = 0.070, Wald = 2.754, p = .097, OR = 1.123), nor the

age-squared term (B = -.001, SE = 0.001, Wald = .779, p = .377,

OR = .999) were significant, suggesting that there was no linear or

non-linear effect of age on likelihood of completing the day 56

survey. Males and females did not differ in the proportion who

completed the Day 56 survey, χ2 = 2.44, p = .118.

Adherence

Surveys, cognitive and sensory tasks, and sprints
Figure 1 shows the percentage of the sample who completed

each survey, cognitive and sensory task and sprint day.

Brady et al. 10.3389/fdgth.2025.1520971

Frontiers in Digital Health 03 frontiersin.org106

https://doi.org/10.3389/fdgth.2025.1520971
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Adherence ranged from 100% for the baseline survey, to 70.61% for

each of the Tone Audiometry tests.

Apple watch, health, and environmental data
The percentage of the sample who wore an Apple Watch

(Apple Inc) and provided health and environmental data is

presented in Figure 2. Watches were worn for a median of 55/56

days (range 0 to 56 days) and for an average 16.76 h (SD = 5.38)

on the days worn. Over the course of the 8-week study, the

percentage of the sample who wore the watch each day

fluctuated from 96.05% (n = 219) on Day 1, to 79.39% (n = 181)

on Day 56.

Independent-samples Mann–Whitney U-tests revealed that

males and females did not differ in the median number of days

that the watch was worn, standardised U = 1.844, p = .260, or the

median number of hours that the watch was worn per day,

standardised U =−.013, p = .989.

Separate linear regression analyses were conducted to explore

the relationship between a) total number of days the watch was

worn, and b) total number of hours worn per day and age,

including a quadratic term to account for potential non-linear

effects of age. Only the regression model predicting total number

of days the watch was worn was significant, F(2, 227) = 15.714,

p < .001, and accounted for approximately 12.3% of the variance

in user satisfaction (R2 = .123). Age in years was a significant

predictor, β = 1.097, t(227) = 3.936, p < .001. The positive

coefficient suggests that higher age was associated with higher

number of days wearing the Apple Watch. The quadratic age

term was also significant, β =−0.009, t(227) =−3.200, p = .002,

indicating a non-linear relationship between age and number of

days wearing the watch showing that the positive relationship

between age and days of wear diminishes at higher ages (see

Supplementary Figure S2). Age did not predict the average

number of hours that the watch was worn each day.

Sleep tracking
132 participants provided sleep tracking data. Excluding those

who did not provide sleep data, sleep was tracked for a median of

7.00 nights (M = 8.59, SD = 7.13, range 1–36 nights). Independent-

samples Mann–Whitney U-tests showed that males and females

did not differ in the median number of days that sleep was

tracked, standardised U = .319, p = .750. Linear regression was

conducted to explore the relationship between the number of

nights that sleep was tracked and age. Neither age in years

[β =−.181, t(227) =−1.257, p = .210] or the quadratic age term

[β = .001, t(227) = .810, p = .419] were significant.

Usability
Median completion times for surveys and active tasks were as

expected (see Supplementary Table S1). 183 participants started

the optional end of study usability module, and 180 provided

complete data regarding usability. Figure 3 summarizes the

usability feedback. Most of the sample reported that the

assessment schedule was manageable in the context of their daily

life, and that they wore an Apple Watch (Apple Inc) during the

study. Due to a lack of variability in these responses, we were not

able to look for age or sex differences in these variables.

As shown in Supplementary Table S2, Independent-Samples

Mann–Whitney U-tests showed that the distribution of responses

to usability questions were the same for males and females for

most items rated. However, males and females differed in the

frequency of responses to two items: The comfort of the Apple

TABLE 1 Sociodemographic characteristics of the Labs Without Walls
sample (N = 228).

Sociodemographic characteristic n (%) or mean
(SD)

Age in years 53.09 (18.43),

range 18 to 84 years

Years of educationa 17.84 (3.90)

range 8 to 32 years

Sex-at-birth

Female 143 (62.7%)

Male 85 (37.3%)

Gender Identity

Man 84 (36.8%)

Woman 139 (61.0%)

Non-binary or gender fluid 4 (1.8%)

Another term (no self-description provided) 1 (0.4%)

Race/Ethnicity

Arab/West Asian 4 (1.75%)

Black 1 (0.44%)

East Asian 15 (6.58%)

Hispanic/Latin American 2 (0.88%)

South Asian 13 (5.7%)

South-East Asian 8 (3.51%)

White/Caucasian 177 (77.63%)

Other Identity: Arab/West Asian and White/Caucasian 1 (0.44%)

Other Identity: Black and White/Caucasian 1 (0.44%)

Other Identity: East Asian and Arab/West Asian 1 (0.44%)

Other Identity: East Asian and South-East Asian 1 (0.44%)

Other Identity: East Slavic and White/Caucasian 1 (0.44%)

Other Identity: Hispanic/Latin American and White/

Caucasian

1 (0.44%)

Other Identity: Jewish 1 (0.44%)

Other Identity: Mediterranean/Southern European 1 (0.44%)

Relationship Status

Married 111 (48.7%)

In a relationship 45 (19.7%)

Single 51 (22.4%)

Widowed 10 (4.4%)

Divorced 11 (4.8%)

Household Income

<$300 per week 5 (2.2%)

$300 - $575 per week 16 (7.0%)

$576 - $1,075 per week 45 (19.7%)

$1,076 - $1,700 per week 43 (18.9%)

$1,701 - $2,400 per week 34 (14.9%)

>$2,400 per week 67 (29.4%)

Don’t know 18 (7.9%)

Employment

Employed 142 (62.3%)

Unemployed 17 (7.5%)

Retired 69 (30.3%)

aYears of education indicates a sum of the number of years participants reported attending

primary school, secondary school, TAFE and/or University.
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FIGURE 1

Percent of Labs Without Walls Sample (N= 228) who completed each survey, cognitive task, sensory task, and sprint.

FIGURE 2

Percent of the total Labs Without Walls sample (N= 228) who wore the Apple Watch and provided health and environmental data per study day.
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Watch (which was rated as slightly more comfortable by a higher

proportion of males), and difficulty charging the Apple Watch

(which was rated as marginally more difficult by males).

Separate linear regression analyses were conducted to explore

the relationship between usability outcomes and age. Only the

regression model predicting perceptions of the frequency of alerts

was significant, F(2, 178) = 7.076, p = .001, and accounted for

approximately 7.4% of the variance in user satisfaction

(R2 = .074). Age was a significant predictor, β = 0.23, t

(178) = 2.390, p = .018 such that higher age was associated with

slightly greater satisfaction with the frequency of alerts. The

quadratic age term was not significant, β =−0.00, t

(178) =−1.854, p = .065. Age did not predict any other

usability outcome.

Summary of qualitative feedback on the study
122 participants provided an optional typed response when

asked if they had any other feedback they would like to share

regarding the study. Of those, 24 provided comments on the

study devices, including the iPhone and/or Apple Watch

(Apple Inc).

11 participants noted difficulty completing tasks or surveys

based on device characteristics,

Some tasks were not really suitable for phones with a smaller

screen (I have an iPhone 7)

I found the fine motor task didn’t work particularly well on my

phone for some reason. Really enjoyed everything else though!

Three participants also noted that the Apple Watch required

charging more often than expected,

I found the watch ran out of charge a bit often.

12 participants commented on a potential or experienced

technical issue. Of the specific technical issues mentioned, five

participants experienced minor display issues with the custom

keyboards used to respond to some survey questions or active tasks,

The correction button wasn’t visible so if a typo occurred the

task had to be cancelled & restarted.

Two participants experienced an issue with the sleep tracking,

Not sure why but the sleeping tracker didn’t work. I accepted

and then later that day it said it was finished.

27 comments mentioned cognitive or sensory tasks. Six

participants noted how much they enjoyed the cognitive and

sensory tasks,

All the activities were so fun!

FIGURE 3

Usability feedback on the Labs Without Walls study, as a percentage of participants who endorsed each response option.
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However, 13 participants noted difficulty with the Tower of

Hanoi (disk stacking) task, or the 9-hole peg task,

I didnt understand what to do in the disc stacking task. Ive

done similar things in the past without a problem. But this

one had me stumped.

Some tasks required getting the technique using a phone right

first (e.g., the pinching and moving the dot).

48 comments addressed the surveys. Most noted was the

repetitious daily surveys within the survey sprints, which 37 of

those who commented found to be monotonous, irritating,

or boring.

Doing the surveys became really repetitive, as they were the

same questions for days on end.

A small number of participants provided feedback on specific

survey inclusions, such as

…mood options were limited.

I enjoyed it and was intrigued by the two survey questions that

involved gender and did not seem to fit with the idea of

perceptions of aging.

21 comments offered suggestions for future content inclusions.

Suggestions included:

The ability to add contextual comments on days with a

scheduled survey or task,

The option to explain some answers may be useful. For

example my first hearing test was effected by a fire alarm.

Survey results effected yesterday by a reaction to

COVID vaccination

The addition of definitions for core constructs of interest,

Some definition of terms would have been helpful in the survey

to ensure reporting on what the researcher wants

The ability to pause the schedule or reset the schedule to an

earlier point if interrupted for a block of days,

I was in a mobile/internet black spot for 10 days. I would have

liked to rewind back to that block to allow me to

fully participate

And the provision of personalised results following surveys or

tasks,

Results on each of the tests. Ie you do/do not have colour vision

issues, hearing is better in left or right.

Two participants lamented the lack of face-to-face contact with

the research team. For one participant, the…

Lack of any face to face researcher/subject meeting meant lack

of commitment to study.

38 participants shared positive feedback and/or notes

of thanks.

Discussion

This study evaluated the feasibility, adherence, and usability of

the Labs Without Walls research app and paired Apple Watches

for 8-week remote micro-longitudinal research. We found strong

evidence that this approach is feasible and effective. This

supports the growing use of Apple’s ResearchKit for cost-effective

and accessible app-based research [e.g. (7, 22)]. Our ability to

remotely recruit a diverse sample of adults across Australia,

including older adults, demonstrates the potential of mobile

technologies to reach hard-to-reach participants, regardless of age

or location, and is in-line with global research showing that

digital research participation is acceptable to people of a range of

ages [e.g., (23)].

The 88.16% study completion rate exceeds the average reported

in a recent review (11). Despite a large sample and intensive 8-week

period, strategies like customizable task notifications likely boosted

retention. Age and sex did not impact completion rates, contrary to

some previous research that has shown higher completion rates

among females compared to males (15).

Adherence ranged from 100% for the baseline survey to 70.61%

for Tone Audiometry tests. In-line with advice from Broekhuis

et al. (18), poorer adherence for these tests may be due to their

longer duration and specific testing requirements. However, all

tasks exceeded the 60% completion benchmark. While there was

a slight decline over 8 weeks, it was less substantial than in other

longer studies [e.g., (19)].

As anticipated, completeness of passively collected health and

environmental data varied depending on the frequency of the

behaviours being measured. Completeness was excellent for

many measures across the full 8-week schedule, including greater

than 80% completeness on each study day for wearing the Apple

Watch (Apple Inc), active and basal kilijoules, resting heart rate,

heart rate variability, and step count. Completeness was lower for

measures that required dedicated periods of specific activities

(e.g., walking speed, walking assymetry, walking heart rate, and

stairs climbed). The poorest completeness was seen for stair

ascent and stair descent speeds—the least regular of physical

activity patterns studied. Future studies should consider the

impact of behaviour regularity on missing data in ambulatory

assessment studies. The optional sleep week had a 57.89%

completion rate, with no age or sex differences. Future studies

should consider lower completion rates for optional elements

when planning sample sizes.

The usability ratings were extremely positive. 95.7% of

participants found the intensive schedule manageable. This is
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similar to previous research with smaller, age-restricted samples

and less intensive testing schedules [e.g., (24)]. The app was

rated user-friendly and enjoyable, and 88% found the alert

frequency “just right”. Over 98% wore the Apple Watch, with

most reporting no setup or charging difficulties. However,

improving support for less tech-savvy participants is

an opportunity.

A significant proportion of participants reported increased

physical activity due to wearing the Apple Watch. While Labs

Without Walls was designed as an observational study,

providing the watch may have unintentionally influenced

behavior. Longer studies may find that there is an initial

increase in activity followed by a return to baseline for most

people, however, research is needed to explore this hypothesis.

Alternatively, future studies could seek to recruit participants

who already own and use an Apple Watch into their research

studies. Doing so would reduce or remove the novelty

associated with the devices which we believe was the reason

for the increased activity in the current study, while also

lowering the cost of conducting similar research by removing

the need for device purchase and/or postage.

We recommend open-ended feedback as a core element of

usability testing in future studies. In this study, participant

feedback highlighted opportunities for improvement. Among the

most prominent constructive feedback was that participants

found the repeated daily surveys to be monotonous. In hindsight,

this is understandable given that the questions each day were the

same for 7 days at a time, with only a brief justification provided

to participants for why the questions were being asked. This

daily-diary style approach was important to be able to answer

our research questions, however, future research may be able to

disrupt the perceived monotony by reducing the overall length of

daily surveys and providing greater transparency to participants

about the purpose of the sprints which may increase their

perceived value and thereby decrease boredom. We note that

future research would likely benefit from consultation with

community members regarding survey and task scheduling and

approaches to improving interest in repetitive aspects of research

apps prior to launching full scale data collection.

Qualitative feedback also suggested that participants’

experiences of the app as well as data quality could be impacted

by device screen size and characteristics of certain active tasks.

For example, several participants who joined the study with

smaller iPhone devices (e.g., iPhones 6 and 7) found some of the

game-like tasks difficult to complete on the smaller screens. This

appears to be particularly true for tasks that involved using the

touch screen function in a precise way (such as the Tower of

Hanoi or the Hole Peg task, both pre-built within Apple’s

ResearchKit). Future remote research that aims to include such

active tasks may benefit from recruiting participants who own

iPhones with larger screens.

While the open-source resources provided by Apple’s

ResearchKit lowered the cost to conduct the study (compared to

developing an app from the ground up), there were still

considerable additional costs including additional iOS

development, return-paid postage of study devices, and cloud

storage of study data. Now that the Labs Without Walls app is

built and validated as an acceptable research tool, it offers a

scalable and relatively cost-effective means of conducting high

volume remote research.

Finally, we also acknowledge the inherent selection bias in

this study which results from offering a research app that is

not compatible with Android devices. There were several

important considerations that guided the decision to develop

the app for iOS and not Android or both. First, iPhones are

the most common smartphone device in the Australian market

(25). Second, developing apps is expensive, and associated

costs can more than double once you consider developing for

both iOS and Android. In this case, developing for iOS was

the most cost effective option given the availability of open-

source ResearchKit tasks (26) which substantially reduced

development time—particularly for the game-like cognitive

and sensory tasks we administered from the ResearchKit

library—and a grant of Apple Watch devices (Apple Inc)

which can be more seamlessly integrated with an iOS app.

Additionally, there is evidence for response latency differences

across operating systems and devices, which is particularly

evident among Android devices given the much greater

variability in device manufacturers (27). This calls into

question the current comparability of performance across

devices on some tasks. There is no doubt that technological

innovations in the coming years will remediate some of the

concerns above and make it more feasible to build and

administer research apps that are equivalent across both iOS

and Android devices. We believe this will be an important

future step in improving the accessibility of app- and

wearable-based research.

Conclusion

This study provides strong evidence for the feasibility,

adherence, and usability of the Labs Without Walls research app

and paired Apple Watch devices. By addressing challenges and

incorporating participant feedback, future research can further

enhance the accessibility and impact of app-based studies in the

field of aging research.
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