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Editorial on the Research Topic
Food and immunity: tackling the diseases of the 21st century

Scientific understanding of how diet, gut microbiota, oxidative stress, and immune
function interact to influence health has significantly grown over the past 10 years.
Recent studies on topics ranging from pediatric health to livestock nutrition and even
edible vaccines show that nutritional science, microbiome research, and immunology
are increasingly connected. This editorial summarizes key findings from nine studies,
offering a clear view of the current state and future research opportunities in human and
animal health.

A recent review of the interaction between gut microbiota indicates that diet has a
multivariate, bidirectional influence on the structure of the microbiome as well as gut
function (1). Shang et al. emphasized the significance of precision nutrition interventions
in the promotion of microbial balance and wellbeing. Low-FODMAP diets, individualized
probiotics, and even fecal microbiota transplantation are exemplary examples of such
interventions (Shang et al.). These findings are in agreement with larger-scale initiatives
toward the personalization of dietary recommendations based on the individual microbial
and metabolic profiles. This new trend is likely to transform the management of
gastrointestinal and metabolic disease (2).

Among the higher-order themes that are conveyed is that of redox homeostasis. Lupu
et al. observe that an imbalance between reactive oxygen species and antioxidants is a
pathophysiological mechanism in child obesity with impacts on both cardiovascular and
metabolic risk. This was supported by previous biomarker research, which showed that
obese children experienced decreased glutathione activity with increased lipid peroxidation
(3). Two studies using the NHANES database present strong evidence for the protective
effect of dietary antioxidants against oxidative stress (4). One of these studies detected a
large negative correlation between niacin levels and the incidence of stroke and investigated
dietary niacin and stroke risk in adult Americans between 1999 and 2018. Increased intake
was seen to reduce the risk of stroke, especially in those with risk factors such as obesity and
hypertension. Another NHANES study in 2009-2014 investigated the relationship between
periodontitis and the composite dietary antioxidant index. This study detected a direct
relationship between nutrition and oral immune modulation, with diets containing high
levels of antioxidants such as zinc, vitamin C, vitamin E, and selenium being linked with a
reduced prevalence of periodontal inflammation (Meng et al; Qiu et al.).
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Today’s studies on probiotics, prebiotics, and postbiotics
explore the therapeutic function of diet ingredients regulating gut
health in greater detail. Such agents were referred to by the review
authors as a “therapeutic symphony” that may coordinate the
gut’s and immune system’s interactions, especially in autoimmune
and inflammatory disorders. The review suggests that they work
in concert: probiotics enable the re-colonization of healthy
microbial strains, prebiotics stimulate their growth, and postbiotics,
like microbial metabolites like short-chain fatty acids, modulate
immune cell functions. As a package, they are a powerful, non-drug
strategy for promoting mucosal integrity and restoring balanced
immune responses.

The relevance of the findings goes beyond the domain of
human health. Promising results are presented in animal trials on
immune modulation with the support of nutritional supplements.
Supplementation of diets with vitamins, rumen-protected amino
acids, and trace minerals has improved bovine immune capacity,
as well as antioxidant and anti-inflammatory processes, especially
during the periparturient phase when the risk of mastitis is elevated,
as illustrated in a study in dairy cows. These findings emphasize
the overlap of immune-nutritional processes across species and
indicate that identical methodologies used in human health can be
transferred to optimize nutritional interventions in animals.

In widening the scope of investigation, another study
investigated the possible effect of dietary cannabinoids and hemp
on the health and performance of different animal species.
Although the regulatory and mechanistic base is still under
development, studies show that cannabinoids, particularly CBD,
modulate gut barrier function, inflammatory reactions, and
metabolic efficacy in animals. However, there lies the promise
of improved agricultural productivity and the development of
cannabinoid-derived therapeutic interventions for humans on
the basis of the use of plant-derived modulators that influence
metabolism and the immune system.

Edible vaccine manufacture is a new method of nutrition-
mediated health intervention. A recent milestone study on
TOMAVAC, an oral COVID-19 vaccine produced in tomatoes,
found that mice and humans generated neutralizing IgG antibodies
after eating such genetically engineered tomatoes. This is a cutting-
edge convergence of immunology with plant biotechnology and
nutritional delivery systems. Edible vaccines can provide the
solution to global vaccine problems through reduced reliance
on the cold chain and increased availability in resource-
poor environments.

Individualized diets are becoming increasingly popular in
the context of immunologically mediated disease in children.
A study showed that food-specific IgG4-targeted elimination
diets decreased considerably symptoms of allergy in children.
The findings are in favor of the hypothesis that long-term
exposure to food antigens may precipitate immune activation and
symptomatology in a subgroup of children with a specific category
of pediatric patient, even though there remains some controversy
regarding I1gG4 testing as a part of allergy diagnosis. The finding
contributes to the increasing volume of literature supporting the
use of precision diets in the management of inflammatory and
allergic disease.

The overlap of these studies highlights shared central themes:
that oxidative stress and inflammation are prevalent in many
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chronic diseases; that diet and manipulation of the microbiome
are an attractive, non-surgical therapeutic strategy; and that
interdisciplinary, nutrition-focused approaches can enhance the
health outcomes in animals and humans. Furthermore, these
studies recognize the necessity for a deeper understanding
of immune modulation and molecular nutrition to inform
the development of plant-based immunotherapies, enhance
productivity in livestock, and address childhood obesity.

It is clear that the implications of these results must
be accepted in future research. Future research must aim at
the integration of multi-omics technologies into clinical and
agricultural research, such as metabolomics, redox proteomics, and
microbiomics. The translational value of these results could be
greatly increased by randomized controlled trials assessing oral
microbiome-directed treatments for periodontitis and antioxidant-
supplemented nutrition in children. Novel functional foods, such
as edible vaccines and cannabinoid-derived animal supplements,
also have the potential to be enabled by new safety and
regulation paradigms.

Finally, the converging evidence reinforces a new paradigm
of agriculture and medicine that views the gut as a key axis of
health, prioritizes the quality of diet and antioxidant balance, and
employs food as preventive and therapeutic medicine. Today, it is
common for nutritional science, microbial ecology, immunology,
and biotechnology to intersect. This inter-disciplinary research
provides actionable and scalable solutions to some of the biggest
health issues of the time.
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Cannabinoids are a group of bioactive compounds abundantly present in
Cannabis sativa plant. The active components of cannabis with therapeutic
potential are known as cannabinoids. Cannabinoids are divided into three
groups: plant-derived cannabinoids (phytocannabinoids), endogenous
cannabinoids (endocannabinoids), and synthetic cannabinoids. These
compounds play a crucial role in the regulation various physiological
processes including the immune modulation by interacting with the
endocannabinoid system (A complex cell-signaling system). Cannabinoid
receptor type 1 (CB1) stimulates the binding of orexigenic peptides and inhibits
the attachment of anorexigenic proteins to hypothalamic neurons in mammals,
increasing food intake. Digestibility is unaffected by the presence of any
cannabinoids in hemp stubble. Endogenous cannabinoids are also important
for the peripheral control of lipid processing in adipose tissue, in addition to their
role in the hypothalamus regulation of food intake. Regardless of the kind of
synaptic connection or the length of the transmission, endocannabinoids play a
crucial role in inhibiting synaptic transmission through a number of mechanisms.
Cannabidiol (CBD) mainly influences redox equilibrium through intrinsic
mechanisms. Useful effects of cannabinoids in animals have been mentioned
e.g., for disorders of the cardiovascular system, pain treatment, disorders of the
respiratory system or metabolic disorders. Dietary supplementation of
cannabinoids has shown positive effects on health, growth and production
performance of small and large animals. Animal fed diet supplemented with
hemp seeds (180 g/day) or hemp seed cake (143 g/kg DM) had achieved batter
performance without any detrimental effects. But the higher level of hemp or
cannabinoid supplementation suppress immune functions and reduce
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productive performance. With an emphasis on the poultry and ruminants, this
review aims to highlight the properties of cannabinoids and their derivatives as
well as their significance as a potential feed additive in their diets to improve the
immune status and health performance of animals.

KEYWORDS

animals, cannabinoids, hemp seed, therapeutic potential, anti-oxidant, immunomodulation

Highlights

> Cannabinoids are a class of naturally occurring compounds
found in the cannabis plant that plays a crucial role in
regulating various physiological processes, in animals.

> Dietary cannabinoids could play a role, in improving
appetite regulation, reducing inflammation, managing
stress, and promoting overall well-being in animals.

> Certain cannabinoids, such as CBD (cannabidiol), might
have the potential to improve feed efficiency in animals.

> Modulating the rumen microbiome through cannabinoids
might have broader implications for gut health in ruminant
animals, influencing overall well-being and potentially
reducing the risk of digestive disorders.

> Dietary cannabinoids serve as a natural alternative to
traditional animal health interventions, such as antibiotics
or anti-inflammatories.

> Cannabinoids have been observed to exhibit protective
effects against challenges posed by endotoxins
and lipopolysaccharides.

1 Introduction

The current era of antibiotic resistance has raised concerns about
the use of antibiotics in various fields, including animal production
system (1). Antibiotics have been commonly used in animal
agriculture to promote growth, prevent diseases, and improve feed
efficiency (2). In response to the challenges of antibiotic resistance,
there has been increasing interest in alternative strategies for
promoting animal health and productive performance (3, 4). The
use of phytobiotics, which are plant-derived substances with potential
health-promoting properties (5). Plant and animal derived additives
such as essential oils, plant extracts, and bioactive compounds, offers
a range of medicinal benefits including antimicrobial, antioxidant,
anti-inflammatory, and immunomodulatory and could be used as
alternative to antibiotic and contributing to the overall sustainability
of livestock industry (6-9).

Over 480 significant active chemicals have been identified as
cannabinoids, the active cannabis-derived compounds with
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medicinal activity. Each active pharmacological ingredient in a
cannabis sample has a different concentration depending on the
subspecies of the plant, how the leaves were dried, when the leaves
were harvested, the plant’s age, and other elements (10). The three
main categories of cannabinoids are endogenous cannabinoids
(endocannabinoids), herbal cannabinoids (phytocannabinoids),
and synthetic cannabinoids. Cannabinoids are chemical
substances that primarily act on certain cannabinoid receptors
(11). Cannabidiol derived from cannabis plant has gained
popularity for its potential therapeutic properties and is being
explored in various industries, including agriculture and livestock
sectors. The potential application of of cannabinoids in animal feed
is a relatively new and expanding area of research. Some studies
suggest that cannabinoids may have anti-inflammatory and stress-
reducing effects, which could potentially benefit livestock.
Cannabinoid receptors are categorized into two types,
cannabinoid receptor type 1 (CB1) and cannabinoid receptor type
2 (CB2), which have been associated to heterotrimeric guanine
nucleotide-binding proteins (G-proteins). The effects of
cannabinoids on intelligence and thinking ability, hunger,
emotions, memory, perception, and motor function are correlated
with the widespread distribution of CB1 receptors in the brain
central nervous system (CNS). CB2 receptors are more prevalent in
the immune system and peripheral nervous system than in the CNS,
where they play pivotal role in the control of inflammation and pain
(12). Delta-9-trans-tetrahydrocannabinol (89-THC), more
commonly called “THC”, is the psychoactive component of
cannabis that makes it a popular recreational drug. A typical
cannabis plant’s component can contain up to 10% THC. One of
the cannabinoid compounds known as CBD is not thought to be
psychoactive and has more of a medical use (13).
Tetrahydrocannabinolic acid (THCa) and cannabidiolic acid
(CBDa), present in plant during its growth, are converted to THC
and CBD by heating process known as “decarboxylation” (14).
Based on its cannabinoid content, cannabis is categorized into
chemotype I, II, III, IV and V. High levels of the psychoactive
compound 9-tetrahydrocannabinol (9-THC) are present in
chemotype I, which is utilised therapeutically. Chemotype two
characteristics fall between those of fibre and medicinal hemps.
Chemotypes three and four are threadlike and have relatively low
concentrations of psychoactive chemicals and high concentrations
of nonpsychoactive cannabinoids. Chemotype V, the final group, is
fibrous and devoid of cannabinoids (15). Cannabis sativa L. C.
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sativa L. var. ruderalis, var. indica, var. sativa and C. sativa L. are the
cultivars that are currently considered as one diverse species (14).
Given that scientists are much interested in the potential health
advantages of cannabinoids from Cannabis sativa L. in the making
of food, veterinary medicine, and medicines Table 1. Our goal is to
give a particular summary of the latest information regarding the
cannabinoids and plant properties, as well as an evaluation of the
cannabinoids’ potential for usage in food and medicine.

2 History and origin

Cannabis sativa L. is among the planet’s earliest cultivars of
plants. Initially utilised as a source of fodder in animal feed and as a
fabric for clothing, humans eventually turned to it as a source of
food and medicines (15, 30). The plant includes cannabinoids,
which are bioactive substances (10). Hemp has been used
medicinally in Europe since the thirteenth century. Its
antiepileptic, palliative, and antiemetic qualities were discovered
in 19th century (31). In terms of land use for hemp production and
the quality of the items produced by the end of the 1950s, Russia
and Italy were the top two countries (32, 33). Canada was among
the first nations to legalise industrial hemp production, and it
continues to be a major distributor and exporter of the crop,
notably in the food business (33). The European Union is the
world’s 2™-largest cultivator of Cannabis sativa L., with centres in
Romania, the Netherlands, Lithuania, and France. C. sativa L. has
long been recognized as an important plant roughage resource.
Hemp seeds have acquired admiration over last few years due to
their high nutritional contents and presence of phytochemicals that
have positive effects on human health (33).

Cannabis sativa L belongs to the Cannabaceae family and the
Urticales order. This perennial herb is cultivated in the Boreal
Hemisphere’s temperate conditions (34). Since the plant has
scattered throughout the world and has been changing for
generations, it is unknown where hemp first appeared to grow
(15, 30, 34). There are records of Cannabis sativa L. cultivation and
use dating back to the Neolithic era. In cave artefacts from around
700 before Christ (BCE), the first known instances of the plant’s use
for therapeutic purposes were discovered. The origin of Cannabis
sativa L. may have been in Central Asia, from which it may have
migrated to the Mediterranean region, Eastern, Central Europe,
especially in Afghanistan and Pakistan. According to studies,
Cannabis sativa L. has two additional centers of species diversity;
the Hindustani and European-Siberian varieties (35).

3 Potential of cannabinoids to address
autoimmune diseases and
chronic inflammation

A so-called cannabinoid system made up of certain receptors
and ligands appears to exist in the immune system and brain tissues.
This system mediates communication between the various tissues,
along with others that use hormone and cytokine agents (36). Even
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though the structure and function of the cannabinoid structure have
been extensively studied, there are still many unanswered questions,
particularly in regards to the system’s role in immunity (i.e.,
immune cannabinoid system).

3.1 Evidences of cannabinoid receptors in
autoimmune system

Cannabinoid receptors (CBRs) can be divided into at least two
subtypes, CB1 and CB2. At first, pharmacological evidence implied
that these receptors were present in brain tissue and was verified by
cloning of CB1 using complimentary DNA from a Ratus ratus CNS
(37, 38). Interestingly, a human immune cell line rather than the
brain was used to clone the second subtype, CB2 (39). It became
clear right away that the CBR system existed in immune system cells
in addition to the brain cells. CBRs are grouped into 7
transmembrane G protein-coupled receptor super families (40),
Moreover, recent studies suggest that they may also bind to Gs
proteins, despite the fact that they convey signals via a pertussis
toxin-sensitive Gi/Go inhibitory pathway (41). Notably, immune
system cell signalling has been connected to G protein pathways
(42). The brain and peripheral organs both have endogenous
ligands for these receptors in addition to CBRs (43). Because they
are structurally based on arachidonic and palmitic acids rather than
cannabinoids, these molecules often have a lower affinity for CBRs
than cannabinoid derivatives (44). Their existence lends credence to
the current hypothesis that the entire cannabis system, which
consists of endogenous receptors and ligands, regulates a wide
range of physiological processes in both the brain and peripheral
tissues. They are created by immunological and brain cells
respectively (45).

The discovery of CB1 mRNA expression in human testis tissue
provided the first evidence of CBRs being expressed outside of the
brain (46). Following this, it was discovered that human peripheral
blood mononuclear cells (PMBCs) and mouse solenocyte’s both
expressed CB1 mRNA using reverse transcriptase polymerase chain
reaction (47, 48). Additionally, it was shown that immune cells and
the rat spleen expressed the second receptor subtype CB2 at higher
levels than CB1 rather than the brain (39, 49). Immune system cells
have different levels of CBR expression. For instance,
polymorphonuclear neutrophils, B cells, CD8 cells, NK cells,
monocytes, and CD4 cells are in decreasing order of CBIl
expression in human peripheral blood mononuclear cell (48).
Interactions between the cannabinoid systems have lately been
found to follow this tendency. The expression of cannabinoid
receptors and anandamide in the immune system, brain, and
hypothalamic-pituitary-adrenal (HPA) axis has been
demonstrated. Both receptor subtypes seem to be expressed by
the immune system. Combined with other cytokines and
neuroimmune hormones, the cannabis system may facilitate
bidirectional communication between neural and immune tissues
mouse splenocytes (50). These investigations, along with others,
have contributed to the development of the current hypothesis for
CBR distribution, which states that CB1 is largely found in brain
and nearby structures like the pituitary (51) and peripheral nervous
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(THC) stimulate appetite headache, xerostomia, depression, elation, low blood type 1
pressure, Seizures (CB1)
OH Cannabinoid receptor
type 2
(CB2)
H3C
Cannabinol EH3 Antidepressant Not studied yet Cannabinoid receptor (19)
(CBN) type 2 (CB2)
G protein coupled
D H receptors (GPCR)
Tetrahydrocannabivarin CH3 Treatment of vomiting, upper respiratory tract inflammations, serious mental Cannabinoid receptor (16, 20-22)
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and obesity (CB1)
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H3C
CH30 CH3
(Continued)

11

‘le 1o uesseH

25068212202 nWwl/68¢¢ 0T


https://doi.org/10.3389/fimmu.2023.1285052
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

ABojounwiwi| Ul s1913U044

[SSIRVFETMIIT]

TABLE 1 Continued

MOLECULAR POTENTIAL ADVERSE BINDING SITES REFERENCES

STRUCTURES HEALTH EFFECTS
CANNABINIODS BENEFITS
Cannabigerol CH3 CH3 OH Antineoplastic Not studied yet Steriods like (23, 24)
(CBG) corticosterone

and corticol
H3C
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tissues (52), while CB2 is largely found in the immunological and
reproductive systems. Along with the numerous CBR subtypes,
these organs also express endogenous ligands such as anandamide.
The outcome is the development of the body’s immunological
cannabinoid system.

3.2 Cannabinoid use in auto
immune diseases

Cannabinoids have been tested as a possible treatment for a
number of chronic auto immune illnesses. Autoimmune deficiency
syndrome (AIDS) and multiple sclerosis (MS) are two of these. The
manufacturing of reliable THC chemical formulation and delivery
methods that are secure to use and more potent than marijuana
smoking is a main problem in the utilization of CBD in these
ailments as it is known that smoking marijuana is a fundamental
delivery system for THC that also transfer toxic compounds. While
inhalers and cutaneous patches are already in the works, THC- and
other active cannabinoids-containing medication formulations
have not yet been created (53).

3.3 Antitumor effects of
cannabimimetic agents

The patterns of hematopoietic and tumor cells development are
affected by cannabimimetic substances. For instance, anandamide
greatly boosts the proliferative effect of IL-3 on the myeloid cell line
32Dcl3 via a CB2-mediated mechanism (54). Anandamide, on the
other hand, prevented the development of breast and prostate
cancer cell lines when the levels of prolactin and nerve growth
factor receptors were decreased (55). The inhibitory impact was
shared by several cannabis agonists, and the CB1 receptor appeared
to be implicated hence, these compounds can prevent tumor
development in mice and rats (56). To demonstrate this, mice
were given THC with other cannabimimetic drugs for up to 7 days
following the implantation of C6 glioma cell tumors. This therapy
increased survival and reduced tumor size (56). Additionally, it was
demonstrated that the drug’s mode of action involves causing
tumor cells to undergo apoptosis. Numerous research studies, like
this one, have demonstrated that substances associated to cannabis
cause apoptosis (57, 58). It’s likely that the main mode of action by
cannabimimetic medicines in a variability of tissues, with
malignancies, is programmed cell death.

3.4 Anti-inflammatory effects
of cannabinoids

According to recent studies, cannabinoids and their non-
psychoactive derivatives have anti-inflammatory potential in
addition to their popular usage as analgesics. Oral administration
of the THC-11-oic acid dimethylheptyl derivative to mice reduced
both short-term and long-term inflammatory changes (59).
Additionally, it has been demonstrated that this chemical has
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potent analgesic and anti-inflammatory properties and is well
tolerated by the host when administered orally (59). In multiple
studies, it has been shown that the non-psychoactive cannabinoid
HU-211 reduces inflammation brought on by the release of
cytokines like TNF-a (60, 61). These studies highlight a
significant issue with the link between marijuana’s effects on
cytokines and these chemicals’ effects on inflammation. The
drug’s anti-inflammatory effects are most likely caused by a
reduction in cytokine production or activity. According to Klein
et al. (62), cannabimimetic drugs have a significant impact on
cytokine biology and, depending on the circumstance, may have
proinflammatory or anti-inflammatory effects. More study is
necessary to settle these possibilities.

4 Role of cannabinoids to control
oxidative stress in animals

Oxidative stress as a result of emergence of free radicals have
pivotal role in the causing of many ailments e.g., atherosclerosis,
rheumatoid arthritis, diabetes, cardiovascular diseases, cancer,
chronic inflammation, myocardial infarction, post-ischemic
perfusion damage and some degenerative ailments in Homo
sapiens (63-66). Cannabis sativa L. is a best resource of naturally
occurring antioxidants and could be utilized in the controlling of
oxidative stress. Antioxidants protect the body from the side-effects
of free ions, stop the oxidation of molecules, and protects from cell
damage (67-69). Now-a-days, much research has been done on
hemp (Cannabis sativa L.), also known as industrial cannabis which
is basically studied because of its chemical composition i.e. one
hundred and thirty-three cannabinoids and terpenes (70).
Cannabinoids such as tetrahydrocannabinol (THC), cannabinol,
and cannabidiol (CBD) are potential lipophilic antioxidants (71),
and their pathway of CBD and THC has been reported (72). For
many years, researchers have examined and well documented the
antioxidative and anti-inflammatory characteristics of cannabis in a
range of tissue types and cellular models (73). The antioxidant
activity of CBD is seen in Figure 1. Numerous studies have shown
that CBD, the main non-psychoactive phyto cannabinoid in
Cannabis sativa, has a wide range of anti-inflammatory properties
and a propensity to control oxidative processes in neuropathic and
inflammatory models (74).

4.1 Cannabinoids mode of action to
control oxidative stress

CBD has both cannabinoids receptor-dependent and
-independent modes of action. It also exhibits very low affinity
and negligible agonist activity for both CB1 and CB2 receptors (16,
75). Peroxisome proliferator-activated receptor- (PPAR-) as a CB1/
2-independent mechanism of action for CBD (76, 77), TRPV1
receptor (78), G-protein coupled receptor 55 (GPR55) (79), 5-
hydroxytryptamine (5-HT) receptors (76, 80-82) and u-/8-opioid
receptors (Kathmann et al., 2006) are discovered.
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Overview of antioxidant property of cannabinoids, especially CBD, have been shown to act as scavengers of free radicals via neutralizing the reactive

molecules, preventing them from causing cellular damage

4.2 Evidences of CBD to control
oxidative stress

CBD has been shown to lessen oxidative metabolism in
polymorphonuclear leukocytes and nucleus pulposus cells that
have been exposed to H,0,, and numerous research have
suggested that CBD possesses antioxidant capabilities (83, 84),
and moreover lowers pancreatic cell oxidative stress markers (85).
It’s interesting to note that CBD works similarly to vitamin E
(alpha-tocopheryl acetate) in reducing the generation of reactive
oxygen species (ROS) in the brain after exposure to cadmium
chloride (86), additionally, data suggests that it is more
neuroprotective against glutamate toxicity than ascorbate and a-
tocopherol (86). Due to the physiological and pharmacological
variety of CBD and sign of its similar antioxidant activity to
identified antioxidants, CBD is a promising medication for
therapeutic immunomodulation. Following are the evidences that
are collected from various researches that proves role of CBD in
oxidative stress Figure 2.

4.2.1 Role of CBD in redox equilibrium

According to a large body of research, CBD alters redox
equilibrium via changing the concentration and activity of
antioxidant molecules. In fact, research on CBD has
demonstrated that it affects how redox-sensitive transcription
factors like nuclear factor erythroid 2-related factor 2 (Nrf2) are
controlled in microglia (87), keratinocytes (88) and endothelia (89),
It is critical because Nrf2 is necessary for cytoprotective and
antioxidant gene transcription to begin (90).

Through intrinsic methods, CBD primarily influences redox
equilibrium. According to data, CBD breaks up free radical chain
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reactions and uses the hydroxyl groups on its phenol ring and
electrophilic aromatic region to change free radicals into more
innocuous molecules (91). It was demonstrated that CBD delivered
electrons at a potential similar to that of well-known antioxidants
and inhibited hydroperoxide-induced oxidative damage in neurons
using the iron-catalyzed ROS production technique (Fenton
reaction) and cyclic voltammetry (86). Using cyclic voltammetry
once more, it was shown that CBD is an antioxidant on par with
tocopherol and butylated hydroxytoluene, two widely used
antioxidants (92). Recent evidence showing that CBD can lessen
the formation of ROS by chelating the transition metal ions
involved in the Fenton reaction (93). According to data, although
concurrently amplifying Yo-induced ROS generation, CBD reduces
the destruction of mitochondrial membrane potential brought on
by anti-Yo antibodies in a way comparable to that of the ROS
scavenger butylated hydroxytoluene. This shows that CBD protects
against paraneoplastic cerebellar degeneration caused by anti-Yo
(94). In an oxygen-glucose-deprivation/reperfusion injury
paradigm, additionally, CBD has been shown to guard against
energy stress on hippocampus neurons by controlling glucose
uptake and triggering the pentose-phosphate pathway (95).

4.2.2 Role of CBD in controlling
protein expression

Recent research has demonstrated that CBD can target the
expression of Kelch-like ECH-associated protein 1 (Keapl) and
Nrf2 in pulmonary artery smooth muscle cells, potentially boosting
its antioxidant benefits in a model of pulmonary arterial
hypertension (96). Furthermore, CBD regulates the expression of
the induced antioxidant enzyme heme oxygenase-1 (HO-1) in
keratinocytes (97), adipose tissue-derived mesenchymal stem cells
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During the adaptive immune response, immune cells of the T-helper (Th)1 type that have been activated create cytokines like interleukin-2 or
interferon (IFN). In monocyte-derived macrophages (M), IFN-, a pro-inflammatory cytokine, stimulates the production of reactive oxygen species
(ROS), as well as the action of indoleamine-2,3-dioxygenase (IDO) and GTP-cyclohydrolase |, which are both involved in the alteration of tryptophan
to kynurenine and the production of neopterin, respectively. The creation of tumour necrosis factor (TNF), which increases macrophage receptivity
to pro-inflammatory IFN, is triggered by the formation of ROS, which also activate redox-sensitive signal transduction cascades. When cells’
antioxidant defences are continuously overwhelmed by ROS, oxidative stress and inflammation result.

(98), neuroblastoma cells (99) and smooth muscle (100). This may
have an impact on how effectively this Phyto cannabinoid regulates
the level of ROS in cells. In fact, irrespective of CB receptors, in a
time- and concentration-dependent approach, CBD dramatically
upregulates HO-1 mRNA and protein expression in human
umbilical artery smooth muscle cells (89).

4.2.3 Role of CBD in activity of
superoxide dismutase

Previous studies have shown that CBD can control the activity
of the superoxide dismutase (SOD) enzyme as well as the Cu, Zn,
and Mn-SOD enzymes (88, 101). CBD’s vasorelaxant effects are
diminished by a Superoxide Dismutase (SOD) inhibitor,
demonstrating that SOD increases CBD’s vascular activities (102).
Additionally, by raising glutathione (GSH) levels and concurrently
raising GPx and SODI activity after injury, CBD reduces
hippocampus oxidative damage during oxygen-glucose
deprivation/reperfusion injury (95). In vivo injection of CBD
mitigates the decline in the oxidized glutathione ratio (GSH/
GSSG) in diabetic mice’s cardiac tissue (101). Further shields
against GSH depletion in cardiac tissue after doxorubicin
cardiotoxicity (103).

4.2.4 Role of CBD in activity of ROS

Data shows that CBD has an inherent capacity to scavenge free
radicals. In fact, it has been demonstrated that CBD reduces LPS’s
ability to cause ROS in microglia (104). Additionally, CBD inhibits
the production of mitochondrial superoxide in human coronary
endothelial cells stimulated by high glucose levels and lowers the
production of mitochondrial ROS after hippocampal oxidative
injury caused by oxygen-glucose deprivation/reperfusion injury
(105). In models of retinal neurotoxicity, CBD has been shown to
have neuroprotective benefits by directly reducing N-methyl-D-
aspartate (NMDA) mediated oxidative stress and maybe by
targeting the synthesis of nitro tyrosine, a byproduct of tyrosine
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nitration (106). Similarly, it has been demonstrated that CBD has
ROS scavenging properties created by H,0,-driven ROS in
keratinocytes and oligodendrocyte progenitor cells, shielding
them from H,0,-induced cell death (107, 108). Recently, it was
demonstrated that CBD had a comparable impact on H,0,-
induced ROS in intestinal cell monolayers (109). Furthermore,
findings show that CBD works similarly to -tocopheryl acetate in
reducing brain ROS generation after exposure to cadmium chloride
(110). Moreover, CBD dose-dependently lessens the generation of
ROS in neurons caused by B-amyloid (111). Parallel to this, CBD
has been demonstrated to lessen cisplatin’s induction of renal nitro
tyrosine synthesis in a model of nephrotoxicity (112). It has
additionally been demonstrated to dose-dependently decrease the
ROS generation brought on by tert-butyl hydroperoxide in
keratinocytes (97). Accordingly, polymorphonuclear leukocytes
exposed to chemotactic peptides produce less ROS when CBD is
present (83) additionally, administering CBD in vivo reduces the
level of lipid peroxides and ROS in diabetic mice’s cardiac tissue
(113). Last but not least, new study by Baeeri and colleagues (85)
demonstrates that CBD can serve as a free radical scavenger in
response to a range of stressors by decreasing age-related increases
in ROS production in pancreatic islets.

5 Nutraceutical effects
of cannabinoids

Hempseeds and seed meal derived from Cannabis sativa have
proven to be significant contributors to the Old World’s food
resources. These seeds are abundant in essential fatty acids, such
as omega-3 and omega-6, making them a nutritious source of
dietary oil. Moreover, they offer a substantial amount of protein
and fiber, enhancing the overall balance on nutrients and bioactive
compounds. The prospective usage and advancement of Cannabis
sativa seed as a source of nutrition for human and house animals
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was halted after the forbidding of Cannabis variants growth in the
late 1930s (114).

Whole hempseed typically contains 20 to 25 percent protein, 25
to 35 percent carbohydrates, along with 10 to 15 percent insoluble
fibre, and 25 to 35 percent oil (taken via cold pressing the seeds or
by extraction of oil) (114, 115). Regarding the nutraceutical abilities
of cannabis by-products, various outcomes of their inclusion to
basal feed have been hypothesized, includes a decrease in the
occurrence of tibia deformation in egg-laying chicks and hens, an
enhanced serum lipid profile, a protective impact against the onset
of hepatic disease, an anti-microbial activity, an improvement in
anti-oxidative systemic condition, and an anti-inflammatory action
(116-120). However, additional work and study is required to
establish all of these beneficial effects.

6 Effect of cannabinoids on nutrient
digestibility, feed efficiency and live
weight gain

The overall digestibility of feed or distinct nutrients is precisely
known as the amount or percentage that is not eliminated in fecal
waste hence considered to be retained by the organism. There were
no negative impacts on digestibility due to the existence of any
secondary compounds in Cannabis sativa straw (121). However, it
is unclear why the digestibility of dry matter (DM) and organic
matter (OM) has improved. In comparison to the hemp-containing
pellets, the control diet exhibited elevated concentration of
polyphenolic chemicals. Polyphenolic compounds such as tannins
diminish the digestibility of food by binding to gastric enzymes and
dietary proteins, as compared to a controlled diet (122). Hemp
contains flavonoids, which can lower DM digestibility (123, 124).
Digestibility and lignin contents are inversely associated (125, 126).
When hemp stubble was added to the pelleted diets, the lignin
content increased, but there was no negative correlation between
digestibility and lignin level. The digestibility of a diet is also
impacted by variations in the neutral detergent fiber (NDF) and
digestibility of the forage products. Oat straw typically has an NDF
digestibility of above 20 percent (127), in contrast to Cannabis
sativa stem which is 12.7 percent (121), suggesting that oat straw
could be more easily digested than hemp stalk. More research into
the digestibility of Cannabis sativa straw is necessary to understand
the changes in apparent DM, OM, NDF, and Acid Detergent Fiber
(ADF) digestibility’s as a result of Cannabis sativa straw addition in
the pelleted diets. In order to study, cannabinoid role in controlling
feed conversion ratio, cold-pressed Cannabis sativa seed cake was
studied as a protein feed for young cows and finishing steers. Effects
on feed intake, live weight gain (LWG), faecal traits and carcass
traits (steers only) were investigated. Animals fed Cannabis sativa
seed cake consumed more NDF than those fed Glycine max diet (P
< 0.05). Lower feed efficiency as a result of higher feed intakes and
equivalent LWG was observed in calves given Cannabis sativa (P <
0.05). In summary, developing cattle who are aggressively fed
Cannabis sativa seed cake instead of Glycine max meal produce
equivalent amounts of milk and have better rumen functions (128).
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7 Role of cannabinoids in nutrient
absorption, metabolism, and excretion

The ECS clearly plays a critical effect in macronutrient
metabolism, hence regulating feed consumption and body energy
homeostasis (129, 130). General pathway illustrating role of THC in
energy metabolism is given in Figure 3.

7.1 CB1 activation stimulates appetite and
nutrient uptake

CB1 promotes intake in animals by causing orexigenic peptides
to bind to hypothalamic neurons and preventing the addition of
anorexigenic proteins (131). After feeding, the adipose tissues (AT)
releases leptin hormone in this metabolic process, which binds to
the hypothalamus and causes the release of anorexigenic peptides
(132). According to studies, leptin resistance and hyperleptinemia
in a diet-induced obese mouse model were reversed by peripherally-
restricted CB1 inverse agonist (133). These findings show how CB1
can inhibit the hypothalamic leptin sensitivity and satiation
signaling pathways thus playing pivotal role in nutrient
uptake (134).

The gastrointestinal tract contains all of the components of the
ECS. When food is first taken into the mouth during a meal,
cephalic-phase reactions happen to anticipate and prepare for
optimal digestion. The orexigenic hormone ghrelin, which is
released when the gastric CBIR is activated, raises the perception
of fat and encourages consumption of fat (135). Furthermore, in
both rodents and humans, the ECS in the gut may change
cholinergic transmission to the colon, lowering intestinal motility
(136). Additionally, the CBIRSs’ anti-inflammatory properties make
the ECS a possible enhancer of food absorption in the GI tract (136).

7.2 NAPE-PLD, the intestinal barrier, and
nutrient absorption

Nutrient absorption in rumens is increased by improving gut
epithelial barrier and microbial function are affected by adipose
tissue levels of N-acetylphosphatidylethanolamine phospholipase D
(AT NAPE-PLD), which in consideration enhances energy storage
function in a periodic way (137). The intestinal epithelium has a
pivotal role in the absorption of nutrients, hormone release, and
synthesis of endocannabinoids (eCBs), all of which affect metabolic
activity (138). Few minutes’ nutritive fatty acids (FA) exposure in
the stomach in monogastrics causes jejunal anandamide (AEA)
mobilization and FA transport into the duodenum, which enhances
oleoylethanolamide (OEA) production (139). Endocannabinoid
system (ECS) activation in the stomach enhances adipogenesis in
addition to enriching eCB production (140). The intestinal ECS
lowers LPS transferring, barrier breakdown, gut inflammation, and
dysbacteriosis of gut microorganisms in monogastric animals (140).

When released from the rumen epithelium, lipopolysaccharide
(LPS) in dairy cows crosses the intestinal barrier and enters the

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1285052
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Hassan et al. 10.3389/fimmu.2023.1285052
SERUM c ADMINISTRATED
PROTEIN BINDING METABOLISM
l LUNG, SKIN
ABSORPTION INTESTINE, COLON ‘
TISSUE THCIN 1 f METABOLITES
STORAGE EXTRACELLULAR
FLUID THC AT
SITE OF ACTION
 p— & BILIARY
EXCRETION
CANNABINIOD ﬁ \
HAIR RECEPTORS
SALIVA SWEAT
THC effects EXCRETION
FIGURE 3

General illustration of pathway showing cannabinoids role in absorption, metabolism and excretion.

bloodstream. Elevated levels of endotoxin in the bloodstream lead
to substantial changes in metabolism and provoke systemic
inflammation (141). The same study found that circulating LPS
levels related to blood glucose and non-esterified FA levels (141),
and these gains are followed by dairy cows consuming less dry
matter (142). It is interesting to note that local CBI activation
reduces the amount of LPS that enters the body, which may increase
appetite and reduce inflammation in milking cows.

8 Role of cannabinoids in
lipid metabolism

One of the most major health issues in Western countries is
obesity, and the discovery that the endocannabinoid (EC) system is
involved in the control of energy balance and the focalization of
fatness is a huge improvement in our knowledge of this issue.
Ancient medicine was aware of the impact of plant-extracted CBD
on individual weight or body mass and appetite, but it wasn’t until
recently that the mechanisms underlying these effects were
understood. This was made feasible by the exact EC receptors’
identification as well as the endogenous ligands anandamide and 2-
arachidonoylglycerol (2AG) (38, 143-145). Numerous
experimental studies have shown that ECs are present in adipose
tissue and other membrane tissue involved in the energy
metabolism. This information provides another hint to
understanding adipose tissue function in Homo sapiens obesity
(146, 147).

Multiple evidences suggest that endogenous cannabinoids are
appropriate for the membranous control of lipid management in fat
tissue, which follows the revelation that these molecules are taking
part in hypothalamus regulation of food intake (147-149).
Rimonabant, a sepecific CB1 blocker, has been the subject of
numerous phase-IIT clinical trials, all of which have demonstrated
that inhibiting CB1 lowers body mass in fat specimens and
improves cardiovascular risk elements in obese and diabetic
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patients (150-153). A sufficient amount of both fatty acids and
glucose must reach fat cells in order to store and expand
triglycerides. To feed lipid substrates to fat cells, fatty acid flux
from chylomicrons and very-low density lipoprotein is mediated by
lipoprotein lipase (LPL). The crucial processes of creating the
glycolytic intermediate a-glycerophosphate required for
triglyceride synthesis are insulin-dependent glucose transporter
(GLUT4) translocation and glucose transport. In both of these
pathways, insulin is in charge. Enough insulin sensitivity and the
activation of its downstream machinery are thus necessary to
permit adequate fuel channeling to fat cells (154).

CB1 receptor is not found on preadipocytes however, upon
differentiation, adipocytes rapidly exhibit its expression. This has
been seen in both primary Homo sapiens adipose cell and primary
cells and cell lines from rodents (155). It is debatable whether adult
adipocytes express CB2. While some scientists discovered
considerable expression of CB2 in differentiated adipocytes,
others were unable to (146). It is plausible that predispose cells,
invasive macrophages, or vascular cells are the source of CB2
mRNA in fat tissue extracts because CB2 is expressed at modest
levels in fat tissue biopsies as well (146). Adipose tissue and fat cells
both express CB receptors as well as the enzymatic machinery
needed to create and break down endogenous cannabinoids locally
(156, 157). In primary mouse adipocytes, activation of CB1
increases lipoprotein lipase activity (158). As a result, there would
be a greater inflow of free fatty acids into adipocytes for the
synthesis of triglycerides. They found that the strong CBI agonist
HU210 stimulates the creation of intracellular lipid droplets in 3T3-
F442A cells, demonstrating the importance of CB1 and ECs in the
growth of neutral lipids in fat cells (156). Adipocytes produce more
2AG and anandamide before adipose cell differentiation occurs,
supporting the idea that this system is responsible for causing
preadipocytes to convert to adipose tissue (156).

The entrance of glucose into fat cells is also encouraged by CB1
activation. CB1 activation increases glucose absorption in human
primary adipose cells, and this action is achieved by Glucose
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transporter type 4 (GLUT4) moving from an intracellular
compartment to the plasma membrane, which is where it is
located. Additionally, the cannabinoid-stimulated glucose uptake
in fat cells is mediated by the same molecular mechanism as drives
insulin-induced glucose uptake stimulation of PI3-kinase. Actually,
the benefits of CBI1 activation on glucose absorption are totally
negated by the inhibition of this enzyme by wortmannin.
Additionally, the absorption glucose into the fat cells is mediated
by an increase in intracellular calcium from the surrounding
environment (146). In studies conducted in calcium (Ca) free
medium or with the Ca chelating reagent ethylene glycol tetra-
acetic acid (EGTA), The translocation of GLUT4 and the
absorption of glucose were unaffected by CB1 activation.
Rimonabant fully offset the effects of the CB agonist on glucose
absorption. The extent of the ECs’ impact on glucose absorption
was between 40 and 50 percent that of insulin. However, it is
uncertain what physiological consequences EC-induced glucose
clearance by fat cells would have. Although the EC’s effect as
insulin in fat cells is expected to be important for triglyceride
accumulation and preadipocyte formation, the influence on the
body’s ability to handle glucose should be minimal. Rimonabant-
based in vivo investigations have repeatedly demonstrated that
provoking CB1 did not degrade insulin resistance in obese people,
instead causing weight loss and a reduction in the size of fat tissues
and perhaps adipose fat cells increased whole-body insulin
sensitivity (159).

Mice lacking CB1 receptors (CB1/) are thin and unaffected by
high-fat diet (160). Similar to how rimonabant, a selective CBI
receptor antagonist, causes reductions in body weight of obese rats
over time, however after a brief initial 1-2-week weight loss, food
intake returns to normal (160, 161), indicating that the stimulation of
energy metabolism by CB1 receptor blockage results in a reduction in
fat content. If we take a holistic view of the body, this situation may
result from higher energy expenditure along with enhanced oxidative
capability of many tissues, in specific the brown adipose tissue, the
liver and skeletal muscle. This might be explained by at least three
causes if just white adipose tissue is taken into account: The first three
alterations are an increase in lipolysis, a decrease in liposynthesis, and
an increase in fatty acid oxidation inside the fat cell. Several pieces of
evidence show that the CB1 blockage increases lipolysis in vivo. A
single-dose study on postprandial rats revealed an instant rise in free
fatty acids (FFAs), conclusively demonstrating an underlying
pharmacological impact of rimonabant to induce lipolysis instead
of a secondary one brought on by a decline in intake and after-
starvation post-absorptive metabolic alterations in intermediate
metabolism (162).

In conclusion, several evidence unequivocally demonstrate that
EC and CBI receptor levels increase during adipocyte differentiation
(156, 163, 164). CBI activation causes pre-adipocytes to differentiate
more quickly (156). We propose that elevated lipogenesis is a result of
the EC system’s overactivity stimulating Lipoprotein lipase (LPL)
activity (158), an improvement in insulin sensitivity, as well as a faster
rate of glucose absorption and utilization (146, 164) and a fatty acid
synthase activation (147). The AMP-activated protein kinase
(AMPK) and eNOS-dependent mitochondrial biogenesis in adipose
tissue are also inhibited by this overactivation, which reduces ATP

Frontiers in Immunology

18

10.3389/fimmu.2023.1285052

generation and oxidative metabolism of energy sources. This process
may be reversed by blocking the adipose CB1 receptor, which would
reduce adiposity and weight growth. This would provide rimonabant
with a fresh, as-yet-unknown mode of action for reducing body
weight (165).

9 Potential of cannabinoids to
modulate rumen microbiome to
enhance expression of fibrolytic genes

The phrase “microbiome” refers to the collective genome of
microbial communities, or “microbiota,” which are connected to
people, animals, and plants. The influence of microbial
communities in determining the host immune system and fitness
has come to light in recent years (166). There are similarities
between the control of host gene expression by the gut and root
microbiota (167, 168), catabolic genes that increase their hosts
metabolic capabilities (169, 170), and the control of dangerous
pathogens (171).

Ruminants account for a sizable portion of all domesticated
animal species in the world and the fundamental producers of milk,
meat and other by products. Ruminants are able to digest enormous
number of plant polysaccharides because of the variety of bacteria
that can be found in the rumen. The rumen, which is home to a
range of microorganisms like as bacteria, archaea, fungi, viruses,
and protozoa, has evolved into a prolific fermentation vessel for the
breakdown of cellulose (172, 173), they interrelate and importantly
affect ruminants health. Around 95% of all rumen microorganisms
are bacteria, which rule over the diverse domains of the rumen’s
microbiome (174). Microbes play a key role in the rumen
fermentation process, which changes the content and quality of
milk and meat as well as the productivity of the animal (175).

To break down the intricate plant polysaccharides, rumen
microorganisms create a variety of fibrolytic enzymes known as
Carbohydrate-Active Enzymes (CAZymes), which include
exoglycanases, glucosidases, endoglucanases, and hemicelluloses.
Technologies for high throughput sequencing (HTS) are widely
utilized to tackle the complex procedure of lignocellulose
breakdown in ruminants. With a greater knowledge of the rumen
microbial population, In the cattle industry, issues with ruminant
nutrition and environmental issues may be tackled. Number of
metagenomics investigations have documented different types of
fibrolytic enzymes found in the rumen of yak’s, reindeer, Jersey cow,
Angus cattle, and buffalo (173, 176-178). In-depth scholarly studies
on metagenomic analysis on CAZymes profile in rumen of
Holstein-Friesian crossbred cattle feeding with just finger millet
straw are not yet available, though.

The rumen is a special natural environment due to the genetic
diversity of fibrolytic enzymes from microbial origin that break
down plant polysaccharides. An investigation was conducted to
determine the main cell wall-degrading enzymes in plants and the
associated rumen microbiomes taxonomic profiles (179). Through a
comprehensive metagenomics sequencing method, the rumen

microbiota of cattle and the carbohydrate-active enzymes were
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divided into functional groups. The candidate genes encoding
fibrolytic enzymes from various classes of carbohydrate-binding
modules, glycoside hydrolases, polysaccharide lyases, carbohydrate
esterases, glycosyltransferases and auxiliary activities were found
through analysis of the assembled sequences using the
carbohydrate-active enzyme analysis toolkit. A large fraction of
the CAZymes were produced by bacteria from the genera Prevotella,
Fibrobacter, Bacteroides, Clostridium, and Ruminococcus, according
to phylogenetic analysis of the contigs that encode the CAZymes
(179). The findings showed that the CAZymes and the rumen
microbiome of cattle are extremely complex, structurally related,
but different from those of other ruminants in terms of content. The
rumen microbiota’s distinctive traits and the enzymes produced by
the residing microorganisms provide chances to increase
ruminants’ feed conversion efficiency and function as a repository
for crucial industrial enzymes for the synthesis of cellulosic
ethanol (179).

10 Potential of cannabinoids as
a feed additive to enhance
animal performance

The European Food Safety Authority (EFSA) panel on
Additives and Products or Substances used in Animal Feed stated
in its scientific opinion that hempseed and hempseed cakes might
be used in animals feed, though there may be differences in rate of
incorporation in diet depending on the specie (180). Animal feed
may be supplemented with hemp oil, a rich source of vital fatty
acids, meanwhile seeds and hempseed cakes can serve as protein
and fat sources. The hemp plant produces cannabinoids,
terpenophenolic compounds that are closely related to the
pharmacological effects of cannabis (181). The bract covering the
seed is where hemp has the most THC and other cannabinoids
(182). Cannabinoids may be present in hemp seed products in
substantial amounts if the hemp seed varieties are not carefully
chosen, grown, processed, and handled. For instance, during cold
pressing, cannabinoids can be absorbed by hemp seed oil.
Cannabinoids from the resin of the flowers or leaves can also be
transferred to the seeds during processing and handling.

Cannabis sativa, with the exception of the seeds and roots,
produces cannabinoids in glandular organs (trichomes) that are
dispersed across the whole surface of the plant. Trichomes are
heavily concentrated in the area of influorescence, in the veins of the
leaves, and on the sides of the leaves. They contain essential oils,
highly polymeric phenols, terpenes, waxes, and resin that contains
80 to 90% cannabinoids. Delta-9-tetrahydrocannabinol (THC), the
primary psychoactive substance, is primarily present in the inactive
precursor form delta-9-tetrahydrocannabinol acid (THC-A), which
may account for up to 90% of all cannabinoids in hemp plants
produced in Europe (183). Cannabinol (CBN) and cannabidiol
(CBD) are the other two key active ingredients among the 60
additional cannabinoids that have been found. Cannabis sativa
phenotypes can be identified by their THC + CBN/CBD ratio. The
ratio of hemp types grown for fibre production is less than 1,
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whereas variants grown for cannabinoids show a ratio greater than
1 (184). The plant’s cannabinoid content fluctuates according on its
vegetative state of development, cultivation conditions
(temperature, humidity), and other factors.

When the hemp leaf is used as forages (for cattle, for example),
whether in whole or in part, the animals may be exposed to THC at
levels higher than those resulting from consumption of the top
portion of the same variety classified and assessed for control under
the same regulation. In terms of hemp seeds, it has been
demonstrated (185), that the majority of THC was discovered on
the outside of the seeds due to contamination with plant debris,
probably as a result of physical contact with the plant leaves during
processing. Numerous research has examined the effects of
consuming hempseed or its derivatives on farm animals, albeit
the outcomes were not every time obvious. Here is a summary of the
most telling research, broken down per animal species.

11 Protection against endotoxins and
lipopolysaccharide’s challenge

Immune challenges include several pathophysiological
situations including stress, endotoxemia, and inflammatory
illnesses, which affect how neuroendocrine factors are produced
and released normally (186). Lipopolysaccharide (LPS), a gram-
negative bacterial endotoxin is an effective inducer of
catecholamines, prostaglandin and proinflammatory cytokines to
be released (187). It is therefore widely employed to elicit
immunological challenge, which in turn affects neuroendocrine
systems. During systemic infections, proinflammatory cytokines
react to peripheral signals and cross the blood-brain block or
fenestrated capillaries in specific areas of the brain to enter the
central nervous system (188, 189). Additionally, the brain produces
cytokines in the presence of other cells, primarily astrocytes and
microglia, but also neurons and endothelial cells (190).

The primary center that receives a multitude of peripheral
signals is the hypothalamus because it is the area of the brain
where the majority of neuroendocrine factors that control essential
pathophysiological activities are produced. In actuality, infectious
organisms, antigens, and the LPS challenge quickly engage the
immune system, causing it to produce interferon gamma and
cytokines that are subsequently transported into the brain where
they influence the function of the hypothalamus (191). It is widely
known that the release of corticosterone from the hypothalamic-
pituitary-adrenal axis, which is activated by the immunological
response, regulates the cardiovascular, metabolic, neuronal, and
immune systems (192, 193). Last but not least, glucocorticoids
create a negative feedback loop that controls both their own
production and the immune system (194, 195). It’s important to
know that endocannabinoid signaling appears to be tightly linked to
the proper operation of the hypothalamic-pituitary-adrenal axis
(196-199).

The role of the ECS in innate reactions in case of inflammation
and brain functions is particularly intriguing (200, 201). Numerous
studies have demonstrated that various organs and tissues produce
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endocannabinoids as a result of infection and inflammation (202),
which act as moderators to control the activated neuroimmune
response (203). The profiles of endocannabinoids change
significantly during a variety of pathological circumstances, such as
Parkinson’s and Alzheimer’s disease, amyotrophic lateral sclerosis
(ALS), multiple sclerosis (MS), traumatic injury, stroke, and bacterial
and viral infections of the central nervous system due to the
inflammation-modulating and the way these substances work to
reduce pain (204). Additionally, endocannabinoids influence
neuroendocrine function. Endocannabinoids must be produced
“on-demand” for neurotransmission to be fine-tuned under both
resting settings and immunological challenges that regulate the
release of neuropeptides, neurotransmitters, and hormones. The
formation of ECS differs based on the desired response in both
circumstances, and the ECS functions as a intermediary for the
transmission in between glial cells and neurons to produce the
most feasible neuroendocrine responses in every scenario
respectively (205).

12 Effects on poultry health
and performance

12.1 Broilers

After C. sativa seeds were added to a basal diet at rates of 10 and
20 percent, broilers’ body weight dramatically increased when related
to animals fed with the basal feed alone. In contrast to the control
group, animals fed a diet containing hempseed had a lower feed
intake and a higher feed conversion rate. The higher hempseed
content resulted in the best growth performance. In contrast, the
broilers body mass was considerably lower than in the control group
at hempseed concentrations lower than 5 percent (206). Mahmoudi
et al. (116), also observed a decrease in average daily intake and
growth in broilers given 2.5 percent hempseeds over the first twenty-
one days of treatment, but no change was noted in weight gain with
diets at 4 and 7.5 percent (117). Neither hemp oil up to 6 percent nor
Cannabis sativa seed cakes at 10 percent and 20 percent improved the
development performance of hens in the experiments (207, 208).
Effects of adding 5 and 15 percent Cannabis sativa seed cakes to
broiler diets were investigated. Comparing the greater dose to diets
without Cannabis sativa seed cakes, the researchers discovered a
detrimental effect on broiler development but no variations in carcass
weight or the ratio of breast to thigh meat (209).

12.2 Layers

The majority of authors came to the conclusion that adding
hemp products to chicken diets had no detrimental effects on the
bird’s performance. Several research has also looked into how
adding hemp to eggs affected their levels of saturated fatty acid
(SFA) and monounsaturated fatty acids (MUFA), polyunsaturated
fatty acids (PUFA) and essential fatty acids (EFAs). The
concentrations of linoleic acid (LA) and o-linolenic acid (ALA)
increased linearly with the addition of 5, 10, or 15 percent Cannabis
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sativa seed cakes to the diet (210), while SFA and MUFA levels
decreased. Neijat et al., 2016 examined the addition of Cannabis
sativa seeds (ten, twenty and thirty percent) and Cannabis sativa
seed oil (4.5 and 9.0%) and discovered that the highest amounts of
Cannabis sativa seeds and Cannabis sativa seed oil significantly
increased the amount of ALA and docosahexaenoic acid (DHA) in
egg yolks when compared to a control group.

The fatty acid profile of egg yolks changed in the study by
depending on whether Cannabis sativa oil or Cannabis sativa seed
cakes were included in the diet: While ALA was greater than the
control and lower than the Cannabis sativa seed group, LA was
higher with Cannabis sativa seed cakes than with Cannabis sativa
seeds and the control group. Oleic acid levels in the yolk were lower
and MUFA concentrations were lower when chickens were given
both hemp derivatives (211). The same study also found that eggs
from laying hens fed a diet enriched with hempseeds or hempseed
cakes contained higher levels of -tocopherol, indicating a higher
antioxidant potential (211). Last but not least, it was discovered that
including 25 percent Cannabis sativa seed in the diet of hens
enhanced the -6/-3 ratio in egg yolks. Up to 12% of laying hen
diets could contain hemp oil without having a negative impact on
performance metrics or the flavor and aroma characteristics of
cooked eggs (208, 212).

13 Effects on health and performance
of ruminants

The effects of include hempseed cakes at variable amounts (143,
233, and 318 g/kg dry matter) in the diets of dairy cows were
evaluated. When the cows received an increment of 143 g/kg in
comparison to the control group animals, who were given
hempseed oil, their milk production rose (213). The rate of
dietary crude protein conversion into milk protein declined as
hempseed cake consumption increased, which prompted the
authors to draw the conclusion that adding 233 or 318 g/kg had
no positive effects on milk performance (214). In contrast to cattle
fed “normal diets,” other studies found no differences in weight gain
when whole hempseeds or hempseed cakes were included to the diet
(213, 215). However, hempseed meal might be regarded as a
superior naturally occurring rumen crude protein (216). All
things considered, findings suggest that hempseed cakes have
better rumen performance than control diets, perhaps as a result
of their higher fiber content and lower starch content (215). Studies
have shown that including hempseed oil in a hay-based dairy goat
diet at a rate of 4.70% increased the milk fat content, while
increasing conjugated FA and PUFA proportions, but it had no
effect on milk yield (217).

14 Potential of cannabinoids to
modulate metabolic signaling pathway

In the brain, 2-Arachidonoylglycerol (2-AG) is present at a
baseline level that is roughly 1000 times greater than AEA. Altering

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1285052
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Hassan et al.

the metabolism of 2-AG, but not AEA, through pharmaceutical
means has a notable impact on endocannabinoid-mediated
retrograde signaling. These data lead to the hypothesis that the
central nervous system’s (CNS) have naturally occurring ligand for
cannabinoid receptors (CBRs) is 2-AG (218-220). AEA, however,
has been demonstrated to independently activate transient receptor
potential vanilloid 1 (TRPV1), inhibit l-type Ca2+ channels, and
negatively regulate 2-AG production and physiological
consequences in the striatum, highlighting its critical function in
the control of synaptic transmission (221).

Depolarization-induced suppression of inhibition (DSI)/
excitation (DSE) was the first conclusive evidence for retrograde
endocannabinoid signaling (222). Furthermore, it was
demonstrated that both short-term depression (STD) and long-
term depression (LTD) include activation of endocannabinoid
system in excitatory and inhibitory synapses (223, 224). In most
situations, increasing intracellular Ca2+ concentrations and active
Gq/11-coupled receptors trigger the synthesis of 2-AG, which then
initiates endocannabinoid-mediated retrograde signaling (224).
Then, by a procedure that is not completely understood yet,
before reaching the presynaptic terminal and interacting with the
CBIR, 2-AG is entered into the extracellular space and travels
through it. Activated cannabinoid receptor 1 (CBIR) reduces
neurotransmitter release by inhibiting voltage-gated Ca2+
channels, which reduce presynaptic Ca2+ influx, and adenylyl
cyclase (AC) and the subsequent cAMP/PKA cascade, which is
implicated in LTD (222-224). 2-AG must be degraded by
monoacylglycerol lipase (MAGL), which inhibits signaling by
being expressed in certain synaptic terminals and glial cells
(223-225).

It has been demonstrated that AEA plays a variety of roles in
endocannabinoid-mediated synaptic transmission (Figure 4).
TRPV1 is a complete agonist of AEA, and it is thought to play a
role in endocannabinoid signaling (218). The effect of AEA’s
negative regulation of 2-AG metabolism can be mirrored by
TRPV1 activation (226). A tonic function for AEA as an
endocannabinoid is also supported by the fact that chronic fatty
acid amide hydrolase (FAAH) blocking causes persistent agonist of
the endocannabinoid system without lowering CB1R appearance,
which is the opposite of MAGL antagonism (227). Independent of
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the type of synaptic transmission or the length of the transmission,
endocannabinoids play a significant role in suppressing synaptic
transmission through a variety of methods (223, 224). A subset of
neocortical interneurons, pyramidal neurons, and hippocampal
cornu ammonis (CAl) neurons, as well as CB1R-dependent self-
inhibition in postsynaptic neurons, have all been identified (228-
230). The ability of microglial cells and astrocytes to make 2-AG or
AEA has been demonstrated in earlier research, it is currently
unknown, nevertheless, whether these endocannabinoids are
involved in the control of synaptic transmission (231). However,
despite studies demonstrating the existence of cannabinoid type 2
(CB2R) in the brain, it is still largely unclear how CB2R contributes
to endocannabinoid-mediated synaptic transmission (232-234).

The CBIR modifies the working of various ion channel types
(235, 236). In cultured Ratus ratus primary hippocampal neurons,
mouse cerebellar slices, and neuroblastoma cell lines, CB1Rs have
been shown to block N-type Ca2+ channels (237-239). It has
hypothesized, but only recently demonstrated, that the CB1R
controls Ca2+ inflow to reduce the release of y-aminobutyric acid
(GABA) in mouse hippocampus slices by altering the activity of
presynaptic N-type Ca2+ channels (240). CBIR has been
demonstrated to adversely regulate a variety of Ca2+ channel
subtypes, including P/Q-type and R-type Ca2+ channels (241).
But when CBIR complementary deoxyribonucleic acid (cDNA) is
injected into transfected AtT-20 cells, Mus musculus nucleus
accumbens slices and rat sympathetic neurons, the CBIR activates
GIRK and triggers the activity of G-protein-coupled deeply
changing potassium ion channels (242, 243).

Previous research has demonstrated that stimulation of the
CBIR causes the extracellular signal-regulated kinase 1/2 (ERK1/2),
c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase
(MAPK) and p38 signaling pathways, which have vital role in the
regulation of cell cycle control, cell proliferation, and cell death to
become active in a system that expresses the receptor endogenously
or heterogeneously (235, 236, 244). The way that CB1R modulates
MAPK signaling typically depends on the cell type and ligand (235).
For instance, depending primarily on the microenvironment and
stimulus type, CB1R-induced ERK1/2 activation can be mediated
by G protein, B-arrestin, or phosphatidylinositol-3-kinases (PI3K)
(245-247). Similar to this, CB1R stimulation has been shown to
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activate p38 in rat/mouse hippocampus slices, transfected Chinese
hamster ovary (CHO-K1) cells, and human vascular endothelial
cells (248). In transfected CHO-K1 cells, JNK activation has been
demonstrated, and G proteins, PI3K, and the transduction was
mediated by the reticular activating system (Ras) (249).
Additionally, JNK initiation was seen in Neuro2A cells that
express CBIR endogenously, which may be connected to CBIR-
mediated neurite propagation (250).

The CBIR is able to communicate in a G protein-independent
manner by linking with additional molecules such as -arrestin, in
addition to the conventional G protein-dependent communication
present with all G protein coupled receptors (GPCRs) (244). GPCR
desensitization is primarily mediated by B -arrestin. B -arrestin
attaches to the receptor after GRK phosphorylates it, starting the
internalization process, during which B-arrestin may mediate
signaling pathways (251). It has been demonstrated that B-
arrestin 2-dependent desensitization of the CBIR occurs in a
variety of settings (252, 253). According to research done in
transfected human embryonic kidney cells (HEK-293), the timing
of ERK1/2 phosphorylation in response to CBIR activation is
controlled by B-arrestin 2-mediated desensitization but not by
CBIR internalization (254). Additionally, follow-up investigations
showed a beneficial relationship between the duration of CBIR
association with -arrestin at the cell surface in a ligand-specific way
and the degree of B-arrestin-mediated signaling (246). Studies with
mice deficient in -arrestin 2 have indicated that this protein is
crucial for controlling CBIR activity (255, 256). The CB1R
expression in the -arrestin 2 knockout mice was similar, but they
were more sensitive to THC, with improved antinociception and
reduced tolerance (255, 256). In response to the CBIR allosteric
modulator ORG27569. A recent study revealed that MAPK kinase
%, ERK1/2, and the proto-oncogene tyrosine-protein kinase Src are
all phosphorylated by -arrestin 1, highlighting a signaling
mechanism that is heavily reliant on stimuli (257).

In addition to MAPK signaling, the phosphatidylinositol 3-
kinase/protein kinase B (PI3K/Akt) pathway also plays a significant
role in regulating cell growth and death. The CBIR has been
demonstrated to activate the PI3K/Akt pathway in Ratus ratus
fundamental astrocytes, the Homo sapiens astrocyte cell line, and
transfected CHO-KI1 cells, which is in charge of the CB1R-induced
protective role on cell survival (245). The PI3K/Akt pathway is used
by rat oligodendrocyte progenitors to regulate cell differentiation
and improve cell survival against food restriction (258, 259). Similar
to this, HU-210, a selective CBIR agonist, protects against the
neurotoxin (S)-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid in cultured rat cortical neurons by activating the PI3K/Akt
pathway but not the MAPK pathways (260). In various brain areas,
acute THC treatment in mice activated the PI3K/Akt pathway but
not the ERK1/2 pathway (260). Recent research on huntingtin
knock-in striatal neuronal cells showed that PI3K/Akt signalling
increased the expression of brain-derived neurotrophic factor
(BDNF), which allowed CBIR to defend neurons against
excitotoxicity (261). Additionally, it has been demonstrated that
CB1R-mediated PI3K/Akt activation influences oocyte maturation

and embryonic development (262).
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Treatment of Peripheral Blood Mononuclear Cells (PBMC) by
THC or CBD significantly reduced the mitogen-induced synthesis
of neopterin, a cellular immunity marker. However, the
pretreatment of PBMC with nanomolar doses of THC or CBD
increased the amount of Interferon-gamma (IFN-y) secreted in
response to phytohemagglutinin (PHA), micromolar dosages
effectively reduced the amount of this pro-inflammatory cytokine
produced as a result of activation (263). Additionally, the biphasic
effects of THC and CBD were seen in the mitogen-induced
breakdown of the tryptophan, which is mediated by indoleamine-
2,3-dioxygenase, and is a crucial adaptive immune defense
mechanism (263).

15 Challenges with use of
cannabinoids in animals

Major challenges and limitations that may have an impact on
the potential use of cannabinoids in animals are:

15.1 Cannabinoid’s stability and durability
during storage, heating, and exposure to
light and oxygen

Stability studies, a vital component of pharmaceutical research,
enable the capacity to assess the therapeutic effects of an active
pharmaceutical ingredient (API) or a finished pharmaceutical
output while taking numerous environmental factors into
account. Understanding CBD’s physical, chemical, and biological
properties as well as information on its stability and shelf life is
crucial to guarantee that it is utilized correctly in medicine. While
Carbone et al. (264) gave an essentially comprehensive overview of
THC degradation products. Cannabis resin and extract were shown
to be extremely sensitive to oxygen-induced disintegration, light,
and temperature (265). Layton et al. (266) concentrated more on
the identification of degradation products generated by the
aforementioned conditions, however because of the length of the
experiment and the use of methanolic matrices, the results are not
totally pharmaceutically acceptable.

It was important to discover an efficient, sensitive, and selective
analytical approach for the detection and quantification of CBD and
its potential degradation products in order to assess the impact of
heat, humidity, oxygen access, matrix, and light. The literature
mentions a few studies where cannabinoids were measured in
cannabidiol-rich products using a combination of ultra-violent
detection coupled with electrospray ionization tandem mass
spectrometry (UV and MS/MS), while cannabinoids were
analyzed in different matrices using isocratic and gradient elution
profiles (267-269). It is challenging to separate cannabinoids under
isocratic conditions because of their unique physical and chemical
properties (268, 270). The results of the stability study on CBD
powder were supported by an experiment on stability that
examined how dried cannabis plant material would react to
greater temperatures. They demonstrated that heat exposure at

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1285052
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Hassan et al.

37°C and 50°C results in a considerable loss of cannabinoids in the
first 10 weeks, even if the CBD content in all of the stored materials
remained largely steady without any evident deterioration for 100
weeks (271).

Because of the possibility for change when a by-product is saved
in light exposure, photostability studies, which are necessary to
determine CBD’s overall light sensitivity, are critical. Cannabinoids
are least stable in photons, according to some scientists, although
this also depends on other circumstances including the chemicals in
which they are saved, temperature, O, access, and many other
aspects (272). THC and CBD were stable for 6 days when exposed
to both naturally occurring and artificial if stored in both crude
extract and solution for, indicating that light-exposed samples
stored in different solvents degraded quicker than ones held in
the dark. The key inference that can be made is that while prolonged
exposure to light alone does not significantly alter the CBD
concentration, light may hasten the process of degradation when
paired with other factors like as the solvent employed, high
temperature, and the presence of oxygen.

15.2 Problem in maintaining homogeneity
in cannabinoids content in final products

During cannabis extraction operations, specific chemicals and
solvents are routinely used, including propane, water,
hydrocarbons, ethanol, butane, acetone, isopropanol, and hexane
(273, 274). In addition to being employed by illegal extraction
operations, these solvents are also used to lower production
expenditure and retain terpenes that were already expended (275,
276). According to a current study of fifty-seven cannabis samples,
more than 80 percent of the concentrates tested included residual
solvents (277). This resulted from the use of chemicals in machine
operations and product packaging when processing cannabis (278).
Terpenes are being added to tinctures, vape oils, lotions, meals, and
beverages by manufacturers of cannabis concentrates and derivative
goods to improve flavor, assert health advantages, or recreate the
original terpene profile that was lost during the cannabis extraction
process. To modify the product’s viscosity and reduce production
costs, medium-chain triglycerides, propylene glycol, or
polyethylene glycol are also added to vape oil (279). Whether
they are synthetic, botanical, or cannabis-derived, these additional
terpenes represent another potential source of leftover solvents in
cannabis-infused products. Additionally, throughout the vaping
process, additional terpenes and thinning/cutting agents may
collaborate or experience thermoxidative degradation to create,
among other things, analytes used in residual solvent compliance
testing (280). Although they fall outside the current compliance
rules, residual solvents created in this way are nevertheless a
significant public health concern. The bulk of published residual
solvents test regulations refer to USP 467, the standard for
pharmaceutical goods in the industry (280). The testing
methodologies defined in USP 467 have been utilized for many
years, and the usual solvents encountered in drug components,
excipients, and final products were clearly recognized.

Frontiers in Immunology

10.3389/fimmu.2023.1285052

Analytical technologies are established to know potential of
Cannabis sativa and its derivative products as pollutants. However,
there would be a continual urge to develop the universal
methodology to cannabis testing as more testing data are
gathered, more proficiency testing programs are assessed. This
would continue to support consumer safety and lead the
development of laws and testing standards for goods derived
from hemp. Consider potency as an illustration; it continues to be
a key factor in the cannabis industry’s widespread consumer
preference (280). Testing labs and their support services will
continue to face challenges as the market for cannabis derivatives
develops due to tighter regulatory oversight and an increase in the
variety of matrices. Additionally, as other cannabinoids, such as 8-
THC, come under regulatory oversight, new laboratory tools may
be required to satisfy method specificity criteria. For the other test
techniques mentioned in this article, comparable sets of difficulties
exist (280).

It is also important to remember that secondary metabolites of
interest in cannabis go beyond terpenes and cannabinoids.
Flavonoids are one of several additional compounds of interest
that could be used in cannabis testing (281). When these criteria
become reality, the analytical testing community will need to use
what it has learned about cannabis’ difficulties as a matrix to build
appropriate testing procedures. Fortunately, significant
advancements have lately been achieved in our comprehension of
the constraints placed on analytical testing of cannabis and its
byproducts. This is a direct result of regulatory changes that have
allowed cannabis science to enter the commercial market. When
there are monetary benefits, there will be increase in effective testing
regimes, though not beyond increasing pains because of delay in the
accessibility of the crucial testing framework (280).

15.3 Lack of global standardized regulation
on the use of hemp and cannabinoids

There are many CBD products available, some of which are
marketed as medicines for various conditions as well as other items
that are produced and disseminated without regulations and
frequently have unproven ingredients (282). The U.S. Food and
Drug Administration has sent manufacturers 2 major series of
caution notifications for false medical assertions (explaining health
assistance and wellbeing without any supporting data) and false
production claims (marketing products as having a certain
concentration of CBD when testing shows that it doesn’t (282).

16 Prospects of using cannabinoids as
potential feed additive in animals

The hemp plant can be used to produce a variety of feed
materials, including hemp seed meal/cake, Cannabis sativa seed
oil, and the entire herb (including Cannabis sativa seed shives, fresh
or dried). Cannabis sativa flour (ground dried Cannabis sativa
leaves) and Cannabis sativa protein segregates (from seeds) are
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other goods. All animal species could utilize hemp seed and hemp
seed cake as feed, and the EFSA set up most incorporation values in
the whole feed for each species, such as 3 to 7 percent for chickens, 2
to 5 percent for Sus domesticus, 5 percent for cattle, and 5 percent
for aquatic species for hemp Cannabis sativa. Additionally, feed
conversion ratio studies show that hemp and its derivatives can be
used as a suitable supply of vital lipids and crude protein for cattle
diets (283).

Due to its high fiber content, the entire hemp plant, including
the stem and leaves, is regarded as an acceptable source of food for
ruminants (and horses). All species of animals can be fed on
Cannabis sativa seed and Cannabis sativa seed cake. When
introducing such goods into the total feed, a number of particular
species constraints (fiber for hens, FA for Sus domesticus, etc.)
should take into account. Hemp seed contains a part of rumen-
indigestible protein, which is favorable for ruminants (97).
According to information from feeding trials, hemp seed cake
might be utilized up to 20 percent in the diets of laying hens; it is
therefore determined that no more than 10 percent can be used in
the diets of hens for weight gain. Although there is null information
on pigs, it is anticipated that 10 percent Cannabis sativa seed cake
and 5 percent Cannabis sativa seed could be utilized in pig complete
feed. According to data, dairy cows can get a total mixed ration that
contains 14 percent hemp seed cake. Comparable research on the
upbringing of calves and fattening of cattle revealed that one to 1.4
kg of Cannabis sativa seed cake could be given per day (97).

Because hemp products are extremely limited in terms of
quantity and price, the maximum integration rates in the
formulation of compound feeding stuffs are probably lower than
the aforementioned values; as a result, it is difficult to determine
what they would be (47). The following maximal assimilation values
in feed could be accepted in normal manufacturing and production
if considerable volumes of hemp products are locally accessible: Pigs
2 to 5 percent hemp seed/hemp seed cake; ruminants’ 5 percent in
the routine daily feed; fish 5 percent; poultry for increase in weight 3
percent and laying poultry 5 to 7 percent. It must be highlighted
that these values or numbers cannot be viewed as cumulative as the
concurrent application of hemp by products would vastly outweigh
available resources. Entire herb (or portions of it, like leaves) may be
eaten as forage by ruminant.

17 Conclusion and future prospects

The present study concluded that hemp or its cannabinoids
possess excellent potential to modulate health and performance of
animals. The active cannabinoids have shown excellent antioxidant
and immune-modulatory activities making them promising dietary
additives especially under oxidative stress and disease conditions,
respectively. Besides the leaves and seeds of Cannabis sativus, its by-
products (oil cakes etc.) also are being used in animal feeds as
supplements. Different treatment strategies (e.g ensiling or solid-
state fermentation) have been used to avoid some adverse eftects of
Cannabis feeding on animals. However, further studies are required
to optimize best feeding levels of hemp and cannabidiols in animal
diets to get desirable outputs in terms of better health and
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production of animals. Moreover, in-depth research will be
needed to understand the therapeutic efficacy of cannabinoids on
various health aspects in diverse animal species, examining optimal
dosage and administration methods, exploring potential side effects
and safety profiles, and delving into the underlying mechanisms of
cannabinoid action. Additionally, long-term impacts and feasibility
of incorporating cannabinoids into veterinary practices could be the
crucial aspects for future research.
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Liaocheng, China, 3Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera
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Mastitis, the inflammatory condition of mammary glands, has been closely
associated with immune suppression and imbalances between antioxidants
and free radicals in cattle. During the periparturient period, dairy cows
experience negative energy balance (NEB) due to metabolic stress, leading
to elevated oxidative stress and compromised immunity. The resulting
abnormal regulation of reactive oxygen species (ROS) and reactive
nitrogen species (RNS), along with increased non-esterified fatty acids
(NEFA) and B-hydroxybutyric acid (BHBA) are the key factors associated
with suppressed immunity thereby increases susceptibility of dairy cattle to
infections, including mastitis. Metabolic diseases such as ketosis and
hypocalcemia indirectly contribute to mastitis vulnerability, exacerbated by
compromised immune function and exposure to physical injuries. Oxidative
stress, arising from disrupted balance between ROS generation and
antioxidant availability during pregnancy and calving, further contributes to
mastitis susceptibility. Metabolic stress, marked by excessive lipid
mobilization, exacerbates immune depression and oxidative stress. These
factors collectively compromise animal health, productive efficiency, and
udder health during periparturient phases. Numerous studies have
investigated nutrition-based strategies to counter these challenges.
Specifically, amino acids, trace minerals, and vitamins have emerged as
crucial contributors to udder health. This review comprehensively
examines their roles in promoting udder health during the periparturient
phase. Trace minerals like copper, selenium, and calcium, as well as vitamins;
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have demonstrated significant impacts on immune regulation and
antioxidant defense. Vitamin B12 and vitamin E have shown promise in
improving metabolic function and reducing oxidative stress followed by
enhanced immunity. Additionally, amino acids play a pivotal role in
maintaining cellular oxidative balance through their involvement in vital
biosynthesis pathways. In conclusion, addressing periparturient mastitis
requires a holistic understanding of the interplay between metabolic stress,
immune regulation, and oxidative balance. The supplementation of essential
amino acids, trace minerals, and vitamins emerges as a promising avenue to
enhance udder health and overall productivity during this critical phase. This
comprehensive review underscores the potential of nutritional interventions
in mitigating periparturient bovine mastitis and lays the foundation for future

research in this domain.

KEYWORDS

periparturient period, mastitis, dairy cattle, immunity, antioxidant status,
antiinflammation, amino acids, trace minerals

1 Introduction

Mastitis, characterized by the inflammation of mammary
glands (1, 2), is intricately associated with immune suppression
and an imbalance between free radicals and antioxidants within the
animal’s physiological framework (3-5). Dairy cows confront the
challenge of negative energy balance (NEB) during the
periparturient period, precipitating a cascade of detrimental
effects such as reduced dry intake, metabolic stress, hormonal
fluctuations, heightened oxidative stress, and compromised
immune responses (6, 7).

This NEB triggers the mobilization of fat reserves, culminating
in the dysregulation of reactive oxygen species (ROS) and reactive
nitrogen species (RNS) (8), along with elevated levels of non-
esterified fatty acids (NEFA) (9, 10) and B-hydroxybutyric acid
(BHBA) (11). The notable concentrations of NEFA and BHB
compromise the bovine immune system, rendering dairy cattle
more susceptible to infections (12). Scientific investigations have
demonstrated that heightened NEFA and BHBA levels exert
inhibitory effects on bovine peripheral blood mononuclear cells
(BPMCs) (13), stifle interferon production (14), and impede the
functionality of polymorphonuclear neutrophils (PMNLs) (15).
Furthermore, escalated levels of NEFA and BHB serve as
indicators of mastitis susceptibility (16, 17). During the
periparturient period, the heightened concentrations of NEFA
and BHB emerge as pivotal factors undermining immune
function, directly augmenting the vulnerability to mastitis (11).

In addition to NEB-related factors, other metabolic disorders
like ketosis and hypocalcemia indirectly contribute to mastitis in
dairy cattle (18-20). Hypocalcemia prompts cows to spend more
time lying down, resulting in teat exposure to physical injury and
facilitating pathogen entry. The compromised sphincter muscle
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integrity of teats and diminished immune functionality due to
reduced calcium levels emerge as pivotal factors linking mastitis
with hypocalcemia.

In the realm of normal physiological conditions, the intricate
antioxidant system adeptly mitigates and eradicates ROS stemming
from metabolic processes. Nevertheless, the transitions
accompanying pregnancy and calving instigate an overabundance
of ROS production (21, 22). This disruption in the equilibrium
between ROS generation and the availability of antioxidants ushers
in oxidative stress, rendering cattle more susceptible to a spectrum
of maladies (23, 24). The unrestrained ROS production culminates
in lipid peroxidation, tissue impairment, and fluctuations in
reduced glutathione (GSH) levels, a pivotal constituent of
glutathione metabolism (24, 25). Oxidative stress inflicts damage
upon the structure and function of cellular macromolecules,
including lipids, proteins, and nucleic acids, thereby inciting
metabolic dysfunctions and ailments, notably mastitis in dairy
cattle (6, 26). Sustaining redox homeostasis during the
periparturient and peak lactation phases is of paramount
importance (27-29). Oxidative stress associated with parturition
may contribute to immunological and inflammatory aberrations,
heightening the vulnerability to metabolic and infectious disorders
(22, 30).

The metabolic stress encountered during the periparturient
period stands as another pivotal factor exposing animals to
immune suppression and the deviant regulation of oxidative
stress. This phase instigates excessive lipid mobilization,
subsequently leading to oxidative stress (16). The abnormal
regulation of immunity and inflammation driven by metabolic
and oxidative stress constitutes the third critical factor
predisposing dairy cattle to periparturient mastitis (3, 31-33).
Furthermore, oxidative and metabolic stress, negative energy
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balance, immune suppression, and diminished productive efficiency
collectively undermine the overall productivity of these animals
(34-36).

Numerous nutritional strategies have been employed to address
the challenges encountered during the periparturient period in
dairy cattle (37-39). Extensive research endeavors have been
undertaken to probe the intricate interplay between nutrition,
immune modulation, and the augmentation of antioxidant status,
thereby fostering enhanced udder health during this critical phase
(40-45). O’Rourke (41), in particular, highlighted that cows
undergoing negative energy balance face an elevated risk of
ketosis, with clinical ketosis being associated with a twofold
increase in the likelihood of clinical mastitis. Furthermore, extant
research underscores the pivotal role of nutritional disturbances
during the periparturient period in contributing significantly to
immune suppression, oxidative stress, and metabolic perturbations
(46-48).

Among the pivotal nutrients that have garnered attention,
specific amino acids, trace minerals, and vitamins have exhibited
a pronounced impact on udder health during the periparturient
period, particularly in the prevention of mastitis in dairy cattle.
Consequently, this review aims to provide a comprehensive
exploration of the contributions made by trace minerals, vitamins,
and amino acids in bolstering udder health during the critical
periparturient phase in dairy cattle.

2 Key factors associated with
periparturient bovine mastitis

2.1 Metabolic stress, NEFA and BHBA

The NEFA and BHBA represent metabolites resulting from the
mobilization of fat reserves triggered by NEB during the perinatal
period in dairy cows, exerting detrimental effects on the cellular
physiology of various bovine cell types (12). Severe NEB initiates
lipid mobilization, leading to elevated circulating concentrations of
NEFA and BHBA. Clinical data derived from previous studies have
established a strong correlation between heightened levels of NEFA
and BHBA and an increased incidence of postpartum diseases,
including mastitis, ketosis, clinical endometritis, metritis, and other
conditions associated with immunosuppression. These conditions
have adverse repercussions on the overall health, longevity, as well
as the productive and reproductive performances of dairy cows
(11, 49).

Furthermore, a study conducted by Li et al. revealed that NEFA
and BHBA lead to increased accumulation of malondialdehyde
(MDA) and ROS, along with reduced total superoxide dismutase
(T-SOD) and glutathione peroxidase (GSH-Px) activity, resulting in
oxidative stress. Additionally, NEFA and BHBA stimulation led to
heightened expression of inflammatory markers such as nitric oxide
(NO), tumor necrosis factor-alpha (TNF-o), interleukin-6 (IL-6)
and interleukin-1 beta (IL-1B). Mechanistically, their data
demonstrated that NEFA and BHBA activate the mitogen-
activated protein kinase (MAPK) signaling pathway, shedding
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light on the fact that NEFA and BHBA induce oxidative stress
and an inflammatory response, potentially via the MAPK signaling
pathway in BMECs (12). Similarly, another study observed that
elevated NEFA levels increased ROS levels, thereby activating the
MAPK signaling pathway and triggering ER stress-mediated
apoptosis in BMECs (50).

2.2 Oxidative stress

Oxidative stress induced by metabolic stress is closely associated
with several pathological conditions, including mastitis, during the
periparturient period in dairy cattle (26, 51, 52). Consistently,
Sordillo and Aitken (3) reported that oxidative stress resulting
from negative energy balance is intricately linked with impaired
immunity, subsequently leading to heightened inflammation,
thereby rendering dairy cattle more susceptible to mastitis (3, 53;
54). In a similar vein, a study noted that selenium supplementation
effectively enhanced the total antioxidant capacity of dairy cattle,
consequently mitigating the risk of mastitis in periparturient dairy
cattle (55). Additionally, when BMECs were exposed to
lipopolysaccharide (LPS), it was observed that ROS levels
increased, accompanied by inflammatory changes (56, 57). In
Table 1, we present a comprehensive summary of recent
published research findings that elucidate the intricate
relationship between oxidative stress and mastitis in dairy cattle
during the critical periparturient period. The interplay among
multiple factors, including metabolic stress/oxidative stress,
immunity, inflammation, NEB, and susceptibility to mastitis, has
been depicted and summarized in Figure 1.

TABLE 1 Recent studies reported association of metabolic disturbances,
suppressed immunity and oxidative stress with periparturient
bovine mastitis.

Outcomes of Impact References
oxidative stress on udder

health of

dairy

cattle

1 Impaired immune response and Susceptible 5, 36, 56, 58
abnormal regulation of to mastitis
inflammation by metabolic
induced oxidative stress
2 Inhibition of nuclear factor Induced 59
erythroid 2 related factor 2 inflammatory
(NFE2L2), a master regulator of | changes in
cellular redox homeostasis was mammary
followed by decreased level of gland
GSH-Px, catalase (CAT), and
superoxide dismutase (SOD)
and increased level of ROS and
MDA in response to exogenous
free fatty acids (FFA) in bovine
mammary epithelial cells
(Continued)
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TABLE 1 Continued

Outcomes of References

oxidative stress

Impact
on udder

health of
dairy
cattle

3 Increased levels of ROS, At high risk 60
oxidative stress index (OSi), and = of
decreased a-tocopherol (a-T) developing
and serum antioxidant capacity mastitis
(SAC) levels around parturition
4 The NEFA and BHBA induced Increased 12, 50
oxidative stress and suppressed chances
immunity in BMECs of mastitis
5 Low level of GSH, SOD, CAT, Associated 61
and total antioxidant capacity with
(T-AOC); higher levels of ROS mammary
and MDA gland
inflammation
5 Elevated oxidative stress Increased the 62
susceptibility
of dairy cattle
to mastitis
6 The progressive development of | Expose dairy 55
oxidative stress during the cattle
transition from late gestation to susceptibility

peak lactation is thought to bea | to infections
significant underlying factor
leading to dysfunctional

immune cell responses.

including
mastitis

7 Elevated level of serum amyloid | Increased risk | 63
A (SAA), MDA and decreased

level of total

of mastitis

antioxidant capacity

3 Trace minerals role in bovine
mastitis prevention during
periparturient period

3.1 Reference values for serum trace
minerals in dairy cows

To establish appropriate dietary recommendations, it is
essential to consider reference values for serum trace mineral
concentrations in dairy cows. Notable values include: calcium
(2.2-2.6 mmol/L) (64), phosphorus (1.3-2.6 mmol/L) (64),
magnesium (0.75-1.0 mmol/L) (65), selenium (0.73-1.08 pumol/L)
(66), copper (1-18 pmol/L) (67), and zinc (8-19 pmol/L) (68).
Meeting these reference values can help optimize the mineral supply
and overall health of dairy cattle.

3.2 Role of trace minerals in health
regulations of dairy cattle

In the field of bovine veterinary medicine, the pivotal role of
mineral deficiencies in modulating the immune system should not be
underestimated. Recent investigations have elucidated that the
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provision of micronutrient supplements has demonstrably reduced
the count of milk somatic cells (SCC), bolstered immune function,
and elicited anti-inflammatory and antioxidant responses in dairy
cattle during the periparturient period (69, 70). Extensive research
has shown that these deficiencies can lead to immunosuppression,
making the animals more susceptible to infectious diseases such as
mastitis (42). Consequently, addressing mineral imbalances in cattle
health becomes crucial in maintaining optimal health outcomes.
Minerals typically constitute essential structural components within
the body, acting as crucial cofactors for diverse enzymes and
participating in vital processes such as nerve signaling, muscle
contraction, and the regulation of proper keratosis. Insufficient
mineral levels can result in diminished immune cell activity or
disruption of innate defense mechanisms within the breast, thereby
fostering the progression of mastitis (71). Recent studies have shown
promising results regarding the supplementation of trace minerals
and its effect on dairy cattle health by enhancing their immune and
antioxidant status during the periparturient period (72-74). Trace
mineral supplementation has been found to significantly enhance
immune and antioxidant status, contributing to reduced levels of
NEFA (75) and alleviating inflammatory changes, which are critical
factors associated with clinical mastitis (76-80). These studies
emphasize the potential of mineral supplementation as a strategy to
improve cattle health and overall herd performance. Minerals play a
fundamental role in maintaining the immune system of cattle. Recent
studies have highlighted the association between serum trace mineral
concentrations and their impact on bovine health. For instance,
higher concentrations of serum selenium and phosphorus have
been linked to the successful cure of bovine clinical mastitis (81).
Similarly, research demonstrated that subcutaneous supplementation
of specific minerals, such as zinc, manganese, selenium, and copper,
led to increased SOD activity, decreased serum BHBA
concentrations, reduced milk SCC, and a lower incidence of
mastitis (82). These findings underline the vital role of trace
minerals in preventing and mitigating the effects of mastitis in
dairy cattle.

In clinical practice, certain mastitis cases may require
supportive therapy, including the administration of calcium-
containing fluids, due to the prevalent occurrence of
hypocalcemia in cows with udder inflammation (83).
Additionally, the supplementary use of injectable trace
minerals, such as zinc, manganese, selenium, and copper, has
been considered as an adjunctive tool in mastitis therapy.
Clinical evidence suggests that supportive therapy involving
the administration of fluids enriched with calcium can be crucial
in managing mastitis in dairy cows (83). Hypocalcemia,
commonly observed in cows with udder inflammation, can
compromise immune function and hindering the healing
process. Proper calcium supplementation has shown promise
in improving the overall therapeutic outcomes in mastitis cases.
Recent studies have investigated the use of injectable trace
minerals as a complementary approach in the treatment of
mastitis in dairy cows. Hoque et al. (84) emphasized the
significance of antimicrobial therapy as the primary treatment
for mastitis. However, their experiment revealed a noteworthy
finding - cows that received only selenium preparations
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FIGURE 1

The interlink among metabolic stress, immunity, inflammation and mastitis susceptibility. Oxidative stress disrupts immune and inflammatory
functions via the activation of NF-kB signaling. This aberrant inflammatory regulation, in turn, fosters excessive TNF-o. production in non-phagocytic
cells, resulting in heightened oxidative stress and increased lipolysis. The intricate interplay of oxidative stress, escalated lipid mobilization, and
compromised immune and inflammatory processes is predominantly associated with NEB in periparturient dairy cattle. NEB, by triggering an
excessive lipid mobilization in these cattle, elevates NEFAs, BHB and ROS, consequently inducing oxidative stress. This oxidative stress further
exacerbates the disruption of immunity and inflammation regulation, rendering dairy cattle more susceptible to mastitis.

demonstrated reduced susceptibility to udder inflammation
compared to the untreated control group. Ganda et al. (81)
conducted a study involving the injection of trace minerals,
including zinc, manganese, selenium, and copper, in dairy cows
with mastitis. The results indicated a reduction in the number of
chronic mastitis cases, showcasing the potential of injectable
trace minerals in mitigating the severity and persistence of
the disease.

Another noteworthy study by Machado et al. (85) explored the
effects of injecting a multimineral preparation containing
selenium, copper, zinc, and manganese. Their findings
demonstrated a positive impact on udder health, leading to a
decrease in linear SCC, and a reduction in the incidence of
subclinical and clinical mastitis cases. Furthermore, the
researchers reported an increase in serum SOD activity,
indicating potential antioxidant benefits without affecting
leukocyte function (82). Despite the positive effects observed in
other studies, Ferreira and Petzer (86) reported no significant
correlation between SCC and the levels of selenium in milk or

Frontiers in Immunology

Py)

Susceptibility to MjsD

10.3389/fimmu.2023.1290044

o)

Metabolic Stress/
Oxidative Stress

serum among cows supplemented with selenium in various forms.
This suggests that other factors might influence the relationship
between SCC and selenium supplementation. A separate
investigation by Bourne et al. (87) investigated the
supplementation of vitamin E with selenium. The study revealed
a notable 10% reduction in the risk of culling and mastitis rate,
suggesting a potential synergistic effect between vitamin E and
selenium in enhancing mastitis treatment outcomes. Recent
research conducted by Smulski et al. (88) indicated that
combining an antibiotic treatment with an antioxidant
containing selenium slightly improves the overall effectiveness of
clinical mastitis treatment. This highlights the importance of
considering combination therapies to optimize mastitis
management in dairy cows. Further investigation is necessary to
gain a comprehensive understanding of its effects on cattle health
and immune responses. Figure 2 illustrates the pivotal role of trace
mineral supplementation in health regulation, encompassing its
capacity to enhance immune function, mitigate inflammation, and
bolster antioxidant responses among periparturient dairy cattle.
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FIGURE 2

Associations between molecular and phenotypic factors related to immuni
activity in dairy cattle following combined treatments with minerals and vit
minerals and vitamins exhibited notable downregulation of apoptosis and i
upregulation of genes associated with immunity, antioxidation, and pro-inf

ty, apoptosis, milk SCC, anti-inflammatory responses, and antioxidant
amins are examined. Over a 60-day duration, the combined treatment of
nflammation-related gene expression levels, concomitant with
lammatory responses in periparturient dairy cattle. Furthermore, the

integrated regimen of trace minerals and vitamins demonstrated enhancements in neutrophil phagocytic activity, accompanied by reductions in
plasma cortisol and milk SCC levels, suggesting a potential association with mastitis prevention during the periparturient period in dairy cattle.

3.3 Specific

3.3.1 Role of calcium, copper, zinc, and selenium
in regulating anti-inflammatory and immune
responses to prevent mastitis

Calcium assumes a pivotal physiological role within the biology
of living organisms, functioning as an indispensable constituent of
bodily structures and a critical determinant for muscle contractions,
encompassing both skeletal and smooth muscles, such as the
mammary gland sphincter. A prominent periparturient metabolic
affliction, known as hypocalcemia, arises due to the excessive
depletion of calcium in colostrum and milk. Consequently, the
requisite calcium level is constrained to remain below 1.5 mmol/L
to maintain normal muscle physiology, resulting in afflicted animals
assuming a protracted recumbent posture (89). Furthermore,
diminished calcium levels also correlate with compromised
phagocytic activity of neutrophils and suppressed immunity,
predisposing dairy cattle to other periparturient diseases (90, 91).
In addition, the incapacity of the mammary gland sphincter muscle
to contract leads to prolonged teat opening, creating favorable
conditions for pathogenic microorganisms to induce mastitis (92).
Notably, a study revealed lower calcium levels in acute Escherichia
coli (E.coli) mastitic cows compared to healthy counterparts (93).
Moreover, investigations have unveiled that certain polymorphisms
(G519663A and G38819398A) within the Calcium channel,
voltage-dependent, alpha-2/delta subunit 1 (CACNA2DI1) gene
are associated with mastitis resistance in Sahiwal cattle (94, 95).
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Copper is another trace mineral, plays a crucial role in the
structure and catalytic properties of cuproenzymes, which are
enzymes that incorporate copper (96). Notable examples of
cuproenzymes include cytochrome-c oxidase, superoxide
dismutase, catechol oxidase, ceruloplasmin, and amine oxidases.
Additionally, copper holds a significant position among enzymes,
ranking as the second most prevalent metal after zinc and
contributing to their proper functioning (97). Apart from its
involvement in enzymatic functions, copper also plays a vital
role in various physiological processes. It contributes to essential
processes such as collagen and elastin synthesis, which are crucial
for tissue structure and elasticity. Furthermore, copper is involved
in myelination, a process critical for nerve impulse conduction,
and hemoglobin production, which is essential for oxygen
transport (96). Copper has been recognized for its antibacterial
properties against bacteria commonly isolated from mastitic cows.
Research by Reyes-Jara et al. (98) highlights that even low copper
concentrations, as low as 250 ppm, can effectively inhibit the
growth of mastitis microorganisms like E.coli and coagulase-
negative Staphylococci. Supporting studies by Wernicki et al.
(99) and Kalinska et al. (100) demonstrate the potent
antimicrobial activity of silver and copper nanoparticles against
bacteria derived from inflamed udders, indicating copper
preparations as potential alternatives to dipping solutions. In
vivo investigations have revealed promising results concerning
the effects of copper supplementation. A 100-day dietary copper
supplementation study, as conducted by Scaletti et al. (101),
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showed a reduced clinical response in Holstein cows
experimentally intramammary infected with E. coli. The
experimental group, supplemented with copper at a
concentration of 20 ppm, exhibited improved outcomes
compared to the control group with 6.5 ppm copper
concentration. Likewise, Gakhar et al. (102) observed a
decreased incidence of postpartum mastitis in cows
supplemented with copper, further validating the potential
benefits of copper supplementation. Copper deficiencies have
been associated with impaired phagocytosis and decreased Cu,
Zn-SOD (copper-zinc superoxide dismutase) activity. These
findings underscore the importance of adequate copper levels
for a properly functioning immune system (103). The
antibacterial properties of copper are explained by the
oxidation-mediated disruption of bacterial lipids, proteins, and
DNA. This mechanism highlights the potential of copper as an
effective antimicrobial agent (104).

Zinc is a vital trace element that plays a pivotal role in the
maintenance of rumen microbiota and the synthesis of essential
proteins, including collagen, glucagon, insulin, DNA, and RNA
(105). Tt serves as an indispensable activator for a diverse array of
enzymes, encompassing alkaline phosphatase, carbonic
anhydrase, DNA and RNA polymerase, and, in conjunction
with copper, superoxide dismutase, which assumes a key role in
antioxidant processes (97). Furthermore, zinc acts as a crucial co-
factor for a series of oxidoreductases and significantly contributes
to keratin formation. Studies have shown that dietary
supplementation of zinc can have a significant impact on the
health of dairy cattle. Specifically, some research has reported that
zinc supplementation results in reduced somatic cell count (106,
107) and decreased milk amyloid A levels (106). However,
contrasting findings were observed by Whitaker et al. (108),
where no effect of dietary zinc supplementation on SCC was
found. The integrity of the intact mammary epithelium, which
acts as an impermeable barrier to microorganisms, is recognized
as an intrinsic component of the udder immune system. Notably,
studies have demonstrated that the supplementation of zinc
preparations in Holstein cows can lead to improved integrity of
the mammary epithelium (109), although contradictory results
have been reported by Shaffer et al. (110). Zinc is crucial for the
development and proper functioning of cells involved in innate
immunity, such as neutrophils. Deficiency of this essential mineral
adversely affects the growth and function of T and B cells,
impacting the overall immune response in dairy cattle. Zinc
exhibits potent antioxidant properties and plays a pivotal role in
stabilizing cellular membranes. This feature suggests its
significance in preventing free-radical-induced injuries during
inflammatory processes (111).While the supplementation of
trace minerals has demonstrated the capacity to augment
immune responses and ameliorate inflammatory alterations, it is
imperative to emphasize the need for extensive and in-depth
investigations aimed at elucidating the precise underlying
mechanisms and exploring the potential therapeutic applications
of such supplementation in the context of mitigating mastitis in
dairy cattle.
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3.3.2 Role of selenium of in regulation of
inflammatory and immune response to
prevent mastitis

Selenium has garnered considerable attention as a crucial
element with antioxidant and immune-regulatory properties (36).
Extensive research, encompassing in-vitro and in-vivo studies, has
demonstrated that Se supplementation can alleviate inflammatory
changes, oxidative stress, and mastitis caused by S. aureus in mice
mammary glands (112-114). Plasma GPx-3, an extracellular
antioxidant protein containing selenocysteine, plays a vital role in
reducing hydrogen peroxide and lipid hydroperoxides (115). GPx-3
is essential for the antioxidant defense mechanism in dairy cattle
(116). Furthermore, milk lactoserum obtained from selenium-fed
cows has shown undefined antibacterial action, potentially
attributed to the elevated level of GSH-Px resulting from
selenium treatment (117-119). Selenium supplementation has
also been found to regulate antioxidant-associated genes (SOD,
GPX, TOAX, GSH, and CAT) and suppress oxidative stress in dairy
cattle, thus preventing oxidative stress and subsequent infections
(120). The pivotal role of selenium in regulating immunity and
antioxidant activity has made it a primary focus in mastitis control
research for dairy cattle. Studies have indicated a positive
correlation between low levels of selenium and GPx with
oxidative stress in periparturient dairy cattle. However, desired
selenium supplementation in mammary epithelial cells has been
found to promote anti-oxidative responses, leading to a reduction in
apoptotic cells (121). Moreover, low GPx levels in blood were
associated with a higher percentage of mammary infections
(mastitis) in periparturient dairy cows (122). Recent research
indicates that S. aureus has the ability to modulate myeloid
differentiation factor 88 (MYD88) and engage the NF-kB
signaling pathway, thereby initiating inflammatory responses
within the mammary gland through its interaction with toll-like
receptor 2 (TLR-2) (123, 124). In a recent investigation by Wei et al.
(125), an elevation in MYDS88, IL-1B, TNF-a, pyrin domain-
containing protein 3 (NLRP), caspase-recruitment domain (ASC),
and caspase-1 levels was observed in S. aureus-infected
macrophages in mice. Remarkably, a 90-day regimen of selenium
treatment led to a significant reduction in the expression of MYD88,
IL-6, IL-1B, NLRP3, and ASC within the macrophages (125).

During instances of microbial infection and cellular damage, the
NLRP3 inflammasome—a vital component of the innate immune
system—maintains regulation over caspase-1 activation and the
secretion of pro-inflammatory cytokines such as IL-1B/IL-18.
However, S. aureus-mediated irregular control of the NLRP3
inflammasome within the mammary gland leads to an atypical
inflammatory response (126, 127). Supplementing with selenium
was shown to significantly curtail the expression of NLRP3
inflammasome and proinflammatory cytokines IL-1(3/IL-18,
thereby mitigating the abnormal inflammatory response and
consequently preventing mastitis in mice (112, 127). Furthermore,
Se supplementation effectively restrained the nuclear transcription
factor-kappa B (NF-xB) and MAPK signaling pathways that are
intricately involved in the progression of mastitis within murine
macrophages (128, 129). This suggests that selenium
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supplementation holds potential in suppressing the inflammatory
alterations elicited by S. aureus.

NF-xB and MAPK signaling pathways wield pivotal roles in
initiating inflammatory transformations by bolstering cytokine
production during S. aureus-induced mastitis in the mammary
gland (113, 130, 131). This observation is consistently upheld by
Liu et al. (113), who found that LPS supplementation led to a
reduction in the recruitment of neutrophils and macrophages in
mammary epithelial cells. Moreover, the overexpression of TLR2,
IL-1B, TNF-a, and IL-6, coupled with the heightened
phosphorylation of NF-kB and MAPKs proteins resulting from S.
aureus exposure, were markedly alleviated through Se
supplementation in mouse models (92, 112, 113, 132).

MerTK has been extensively documented as a key player in
regulating the PI3K/AKT/mTOR pathway to enhance anti-
inflammatory capabilities. Activation of the PI3K/Akt pathway
within macrophages by MerTK can effectively impede NF-kB
signaling (133). Furthermore, MerTK-mediated modulation of the
PI3K/AKT/mTOR pathway exhibited repressive effects on TLR2-
triggered immune responses, resulting in diminished inflammatory
reactions and oxidative stress in U937 cells (134). S. aureus in its
induction of an inflammatory response within the mammary gland of
mice increased the levels of IL-1f, IL-6, and TNF-c. Notably,
treatment with S. aureus led to decreased phosphorylation levels of
MerTK, PI3K, AKT, and mTOR in the mouse mammary gland (114).
Conversely, selenium treatment enhanced the phosphorylation levels
of MerTK, PI3K, AKT, and mTOR while concurrently reducing the
expression of inflammatory cytokines (IL-1B3, IL-6, and TNF-cr).
These observations underscore selenium’s potential to augment
immunity, enhance antioxidant status, and mitigate the
inflammatory response within mammary glands, thereby alleviating
mastitis in mice (114). In a recent in vitro experimental trail utilizing
mammary alveolar cell large T antigen (MAC-T), Jing et al. (135)
substantiated that selenium treatment had a marked downregulatory
effect on genes (IL1B, IRAK4, MYD88, and SOCS3) linked to mastitis
progression in dairy cattle. Furthermore, selenium treatment
exhibited inhibitory effects on PI3K/AKT, MAPK, and NF-xB
signaling pathways, while concurrently promoting the anti-
inflammatory milieu through acceleration of the PI3K/Akt/mTOR
pathway in dairy cattle (135). Furthermore, documented evidence
indicates that Se can enhance the expression of IL10 and peroxisome-
proliferator-activated receptor gamma (PPAR-y) activity, while
concurrently suppressing NF-kB and NO within the mammary
gland. These effects hold true for cases of S. aureus-induced
mastitis (136, 137). Additionally, selenium has been shown to
alleviate the oxidative stress and inflammatory state of the
mammary gland—a crucial factor in reducing the susceptibility of
mice to mastitis (136; Zhang W et al,, 2016). Various investigations
have demonstrated positive correlations between selenium
intervention and notable outcomes, including diminished SCC in
milk, elevated levels of GSH-Px and reduced concentrations of MDA
in plasma (138-144). Higher MDA levels are directly associated with
oxidative stress, which heightens the susceptibility of periparturient
dairy cattle to mastitis. Within the realm of animals, a group of
twenty-five selenoproteins, twelve of which exhibit antioxidant and
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immunological functions, have garnered attention as promising
candidates for mitigating mastitis in transition dairy cattle (135,
145, 146). The selenium content appears to be a determining factor
influencing the vulnerability of mammary glands to bacterial
infections during the periparturient period in dairy cattle (122).
Additionally, a notable observation was made regarding selenium
treatment’s efficacy in reducing SCC levels and IL-6 concentrations,
while concurrently augmenting GSH-Px activity in dairy cattle (122).
The potential of selenium treatment in impeding the growth of
mastitis-causing bacteria, such as Streptococcus uberis (S. uberis), S.
aureus, E. coli, and Streptococcus agalactiae, has been documented
(147). This approach has also been associated with pronounced
antibacterial effects, heightened antioxidant capacity, elevated GSH-
Px activity, and lowered SCC levels in the milk of perinatal dairy cows
(147). Likewise, other investigations have reported that selenium
intervention, by enhancing GSH-Px activity, reduces the likelihood of
mammary gland infections in dairy cattle during the transition phase
(148, 149). Similarly, a distinct finding was noted, where selenium
supplementation outperformed antibiotic treatment during the
periparturient period in dairy cattle. To elaborate, among 36 cows,
14 still encountered infections even after antibiotic treatment, while
merely 4 out of 36 cows developed mastitis in response to 4 mg of
selenium supplementation during the transition phase in dairy cattle
(150). Additionally, records indicate that selenium intake enhanced
antioxidant capacity and concurrently regulated both innate and
adaptive immunity within the mammary glands, effectively
countering mastitis in dairy cattle (117). The summary of the
studies discussing the association of selenium with health-
enhancing phenotypic traits (antioxidant, anti-inflammation, and
immunity) has been presented in Table 2. In addition, the
mechanism through which selenium prevents mastitis has been
highlighted in Figure 3.

4 Exploring the potential of mineral
nanoparticles for mastitis mitigation

In animal production, minerals can be integrated into the diet
or utilized in therapy through various forms, such as inorganic salts,
organic forms, chelates, or nanoparticles (NPs). Nanoparticles have
been studied extensively for their potential as animal growth
promoters, antimicrobials, and alternatives to conventional
cleaning agents (154). A significant advantage of NPs is their
ability to avoid bacterial resistance by exerting toxic effects on via
DNA degradation, and lipid and protein peroxidation (155, 156).
Consistently, recent studies extensively described the role of
different types of nanoparticles in the treatment of mastitis with
positive results (157, 158). In the literature, various types of
minerals nanoparticles containing copper (CuNPs), silver
(AgNPs), platinum (Pt_NPs), and zinc (ZnONPs) have been
described for the treatment of mastitis (100). For instance, CuNPs
have shown notable inhibitory activity against various bacteria,
including E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa,
Propionibacterium acnes, and Salmonella typhi. Additionally,
CuNPs exhibit antifungal activity against Candida species, which
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TABLE 2 Selenium role in alleviation of mastitis by improving immunity,

anti-inflammatory and antioxidant status of dairy cattle.

S.No Treatment

1 Selenium
treatment (1.5
mg/kg) of S.
aureus infected
mammary gland
cells
(inoculation of
100 pl S. aureus
with 7 x 10°
CFU/ul)

Biological impact

« Mastitis induced by S.
aureus within the mammary
gland tissue of mice was
driven by the upregulation of
specific elements, including
interleukin (IL-1B), IL-6,
TNF-o, NF-kB, and MAPK
pathways.

« Conversely, the
introduction of selenium
supplementation in mice
acted as a preventive measure
against S. aureus-induced
mastitis.

« This was achieved by
effectively inhibiting the
expression levels of IL-1p, IL-
6, TNF-0, NF-xB, and
MAPK pathways.

« Furthermore, the
application of selenium
treatment in mice yielded
additional benefits; it not
only curtailed the
inflammatory response but
also alleviated oxidative stress
resulting from injuries to the
mammary gland tissues
caused by S. aureus.

References

Liu et al. (113)

2 Organic
selenium (20
ug/kg body
weight/day)
treatment of S.
aureus infected
mammary gland
cells ((2 x 107
CFU/mL)

3 Selenium (0.2
mg of Se/kg)
treatment of S.
aureus ((10°
CFU/mL)
infected
mammary
gland cells

« In the context of S. aureus,
the initiation of inflammatory
alterations occurred through
the augmentation of
inflammatory cytokines’
expression (IL-1pB, IL-6, and
TNF-o), coupled with the
reduction in the
phosphorylation levels of
MerTK, PI3K, AKT, and
mTOR.

« Contrastingly, selenium
treatment orchestrated a
different outcome: it
effectively lowered the levels
of IL-1PB, IL-6, and TNF-a.
expression. Simultaneously, it
bolstered the phosphorylation
levels of MerTK, PI3K, AKT,
and mTOR.

« This intricate signaling
cascade facilitated an anti-
inflammatory response,
enhanced antioxidant status,
and ultimately mitigated the
onset of mastitis in the

rat population.

« In the context of S. aureus
exposure, there was an
observable increase in the
expression of NLRP3, ASC,
caspase-1, caspase-1 p20, and
pro-IL-1, thus intensifying
the inflammatory response.

« Conversely, the
supplementation of selenium

Chen
etal. (114)

Bi et al. (127)
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S.No Treatment
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Biological impact References
exerted a substantial
inhibitory effect on the levels
of NLRP3, ASC, caspase-1,
caspase-1 p20, and pro-IL-1p.
« This outcome stands as
compelling evidence that
selenium treatment serves as
a preventive measure against
S. aureus-induced mastitis in
mice, achieved by effectively
curtailing the NLRP3 level.

4 Selenium
treatment (1.5
mg/kg) of S.
aureus infected
mammary gland
cells
(inoculation of
100 ul S. aureus
with 7 x 10°
CFU/ul)

5 Selenium (2.0
pnmol Se/L)
treatment of S.
aureus infected
mammary
gland cells

6 Selenium (1.5/
kg) treatment of
S. aureus
infected
mammary
gland cells

o The application of selenium = Ma et al. (112)
treatment effectively curtailed
the levels of NLRP3, IL-1,
TNF-0, ASC, and caspase-1
that resulted from S. aureus
influence within the
mammary gland of mice.
Moreover, Se
supplementation notably
bolstered the antioxidant
capacity, enhanced the anti-
inflammatory response, and
fortified the immune status of
the mice population.

« Beyond this, the
administration of selenium
emerged as a preventive
strategy against mastitis,
primarily attributed to its
capability to inhibit NLRP3
inflammasome activation and
suppress NF-kB/MAPK
pathway signaling.

« Dietary supplementation Wang L
with selenium led to a et al. (138)
decrease in the expression of

TLR2 and the activation of

the NF-kB/MAPK pathway

induced by S. aureus in

murine subjects.

« In vivo and in vitro Zhang

investigations demonstrated et al. (92)
that S. aureus triggered
inflammation, both within
live organisms and primary
mouse epithelial cells
(MMECs) cultured in the
laboratory.

« This resulted in an increase
in the expression levels of
mmu-miR-155, IL-13, TNF-
o, and TLR2. Additionally,
the phosphorylation levels
within the NF-kB/MAPK
signaling pathway were
heightened in mammary
epithelial cells of mice upon
infection with S. aureus.

» Remarkably, selenium
displayed a notable capacity
to suppress the elevated
expression levels of mmu-
miR-155, IL-1B, TNF-0,,
TLR2, and the NF-xB/MAPK

39

(Continued)

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1290044
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Khan et al.

TABLE 2 Continued

S.No Treatment

Biological impact

signaling pathways within the
mammary epithelial cells of
mice. These insightful
findings suggest that selenium
holds potential in averting
mastitis in mice by mitigating
oxidative stress and curtailing
the inflammatory response.

References

7 Selenium (1.5
mg/kg)
treatment of S.
aureus infected
mammary
gland cells

8 Selenium (1.5
mg Se/kg)
treatment of S.
aureus infected
mammary
gland cells

9 Selenium (1.5
mg Se/kg)
treatment of S.
aureus infected
mammary
gland cells

« Selenium intervention
mitigated both oxidative
stress and the inflammatory
reaction. It downregulated the
expression of IL-1B, TNF-a,
ASC, caspase-1, and pro-IL-
1B.

« Additionally, selenium
hindered the activation of
NLRP3 within bMECs
following infection with

S. aureus.

« The addition of selenium
curbed the inflammation
provoked by S. aureus within
the murine mammary gland.
« Moreover, selenium
supplementation notably
decreased the quantities of
myeloperoxidase (MPO),
TLR2, IL-1B, TNF-0, and IL-
6 within the mammary gland
of mice exposed to S. aureus.

« Selenium supplementation
was effective in diminishing
the quantities of NF-kB and
nitric oxide, while also
promoting the activation of
PPAR-y activity.

« These actions collectively
worked to safeguard mice
from developing mastitis
caused by S. aureus infection.

Yang
et al. (151)

Gao et al. (152)

Gao et al. (136)

10 Selenium
administration

« Supplementing dairy cattle
with selenium substantially
enhanced selenium
concentrations in their serum
throughout the transition
phase.

« Additionally, there exists an
inverse correlation between
Se levels and milk SCC as
well as IL-6 levels.

« On the other hand, Se levels
are positively linked to the
activity of GSH-Px in
periparturient dairy cattle.

Wang D
et al. (122)

11 Selenium

supplementation

« Low level of selenium
availability in the body was
associated with higher level of
scC

« Selenium administration led
to a reduction in milk SCC,
alleviated oxidative stress, and
lowered the risk of mastitis

Ceballos-
Marquez
et al. (153)
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TABLE 2 Continued

S.No Treatment Biological impact References
occurrence in periparturient
dairy cattle.
12 Selenite « The introduction of selenite = Ali-Vehmas
treatment resulted in heightened et al. (147)

phagocyte recruitment to the
infected milk compartment of
the udder, augmenting both
the activity of GSH-Px and
the antibacterial properties of
milk lactoserum.

« This supplementation also
curbed the in vitro
proliferation of mastitis-
causing pathogens, indicating
the potential of selenium as a
potent therapeutic agent in
managing mastitis.

13 Selenium o Selenium enrichment Malbe et al.
feeding improved the effectiveness of (148); Malbe
antioxidants by fostering the et al. (149)
activity of GSH-Px in dairy
cattle from Estonia.
« Additionally, observations
indicated that cows receiving
selenium supplementation
exhibited a reduced presence
of pathogenic bacteria within
their milk.

can cause mastitis. Moreover, AgNPs and AuNPs have
demonstrated significant susceptibility against S. aureus strains
isolated from clinical and subclinical mastitis cases (159).
Furthermore, ZnO-NPs also exhibit antimicrobial properties
against S. aureus and other pathogenic bacteria, such as E. coli
and K. pneumoniae (160). AgNPs have also been considered for use
in diseases caused by algae, which are associated with udder
inflammation (161). According to research by Wernicki et al.
(99), AgNPs and CuNPs may have a synergistic effect on various
pathogens, making them potentially effective solutions in
mastitis management.

5 The role of vitamins
supplementation in mastitis alleviation

The significance of vitamins in their capacities as antioxidants
and immune regulators has been extensively deliberated in the
literature (16, 150, 162). Consequently, the inclusion of vitamin
supplementation in mastitis control strategies has been well-
documented (163-166).

5.1 Role of folic acid in mastitis prevention
The existing body of published evidence strongly supports the

notion that folic acid supplementation yields notable
improvements in metabolic function (167), while also playing a
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Blocked the Expression of TLR2&TLR4
Suppressed the Expression of IL-1B, TNF-a,
Myd88, NF-kB/MAPK Pathway
Suppressed TLR2 Expression through
Mediation of Activate PI3K/AKT/mTOR

Alleviated Inflammatory Status and
Enhanced Immunity

FIGURE 3

]\

Increased the Expression of
GSH, GPX, SOD & T-AOC,
Suppressed CAT and MDA
Levels

Alleviated Oxidative Stress by
Improving Antioxidant Ability

Mechanism through which selenium prevent mastitis in dairy cattle during periparturient period in dairy cattle.

crucial role in preventing oxidative stress and enhancing immune
responses (168) in periparturient dairy cattle (169). The period
around calving presents a vulnerability to lowered immunity in
dairy cattle due to folic acid deficiency (165). Folic acid’s pivotal
contributions to immunity and anti-inflammatory processes have
led to its exploration for mitigating bovine mastitis in
periparturient dairy cattle (166, 170, 171). Recently a published
research demonstrated that folic acid treatment significantly
regulated LnRNA MSTRG.11108.1 in mastitic cows. The
LncRNA MSTRG.11108.1 further regulated the genes (CXCL3,
ICAM1, CXCLI, LHFPL2, LTF, ITGA9, and KIR3DL2) that were
associated with immunity and inflammation (172). In addition,
they also documented several immunity and immunity linked
biological signaling pathways (B cell receptor signaling pathways,
TNF signaling pathway, IL-17 signaling pathway and NF-xB
signaling pathway) which is in consistent with findings reported
previously (165, 173). By inhibiting the activation of MAPK and
NF-kB, folic acid supplementation maintains an anti-
inflammatory environment, consequently averting mastitis
(170). Correspondingly, a study has recorded that administering
folic acid (at a dosage of 120 mg per 500 kg of body weight) for 21
days led to the downregulation of several genes linked to immune
function and inflammation (PIM1, SOCS3, ATP12A, KIT, LPL
NFKBIA, DUSP4, ZC3H12, ESPNL, TNFAIP3) (165). These
genes, found to be upregulated in S. aureus-induced mastitis
during the periparturient phase in dairy cattle (174, 175) were
notably downregulated.

Additionally, our prior investigation established that folic acid
supplementation significantly modulated the signaling of

Frontiers in Immunology

glutathione metabolism along with its associated genes (LAP3,
GSR, G6PD, GSTA4, GCLC, GPX3, PGD, IDHI, GGT1, GPX7,
MGST]1, and MGST2) in periparturient dairy cattle (165).
Moreover, we documented that folic acid effectively enhanced
dairy cattle’s antioxidant capabilities and augmented their
resistance to mammary gland infections during the
periparturient phase. Aligning with this, (166) recently
conducted an experimental study showing that S. aureus-
induced mastitis in MAC-T cells resulted in the downregulation
of the noncoding RNA associated with progenitor renewal
(PRANCR). Notably, in MAC-T cells treated with folic acid, this
expression exhibited an increase, suggesting folic acid’s potential
as a prime therapeutic agent in mastitis prevention (166).
Treatment with 5 pug/mL of folic acid significantly curtailed
apoptosis in Mac-T cells and offered robust defense against
MRSA treatment through enhanced cytosolic DNA sensing and
tightened junction signaling (173, 176). They observed the
upregulation of ZBP1, IRF3, IRF7, and IFNAR2 within the
cytosolic DNA-sensing pathway in folic acid-treated MAC-T
cells. ZTP1, a factor associated with milk SCC (166), also
assumes a critical role in activating anti-pathogenic mechanisms
and inflammation (177). Furthermore, it was found that ZTP1
gene cytosolic DNA sensing pathway upregulated by folic acid
treatment which has key role in activation of antipathogenic
mechanism thereby enhancing the anti-inflammatory response
(173). In addition, they documented that ZTP1 was significantly
associated with inhibition of inflammation (177), low milk SCC
and mastitis resistance (166). In light of the compiled data, we can
deduce that folic acid supplementation, administered at
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appropriate dosages and durations, holds promise as a valuable
therapeutic resource within mastitis control strategies for
periparturient dairy cattle.

5.2 Role of vitamin E supplementation in
periparturient bovine mastitis prevention

Vitamin E is a fat-soluble vitamin that could protect cell
membrane from the action of lipid peroxidation chain reaction
(178, 179). Consequently, a study found that immune cells were
prone to the effects of lipid peroxidation by ROS due to the
polyunsaturated fatty acids present in their cell membranes (179,
180). Furthermore, the vitamin E combats peroxyl radicals and
stops the oxidation of polyunsaturated fatty acids (PUFA). In the
presence of vitamin E, peroxyl radicals react with o-tocopherol
rather than lipid hydroperoxide, stopping the chain reaction of
peroxyl radical formation and inhibiting further oxidation of
PUFAs in the membrane (181). The oxidative stress caused by
aluminum was relieved by post-vitamin E injection in rats (178,
182). Furthermore, it has been demonstrated that vitamin E is
important for regulating immunity and reducing oxidative stress
which are the key factors for mastitis resistance/susceptibility
(182-185). Additionally, vitamin E has been shown to guard
against pro-oxidant-caused harm to the integrity of the bovine
mammary endothelial cell barrier (186). Mokhber-Dezfouli et al.
demonstrated that intramuscular vitamin E injection could lower
MDA expression and lipid peroxidation and enhance plasma’s
antioxidant capacity. Vitamin E supplements have been given to
dairy cattle during the periparturient stage to reduce oxidative
stress and maintain immunity (40). In addition, vitamin E has
been extensively targeted in mastitis mitigation research in
periparturient dairy cows due to its substantial role as an
antioxidant and immune regulator.

Vitamin E administration has been shown to improve
immunity, minimize mammary infections in dairy cattle and
boost the anti-inflammatory and antioxidant functions in dairy
cattle during the perinatal period (189). According to Politis et al.,
mastitis and oxidative stress were substantially linked to vitamin E
deficiency throughout the periparturient phase (190, 191).
Consequently, it has been proved experimentally that
supplementation of vitamin E improved the immunity,
antioxidant capacity, and anti-inflammatory ability of dairy cattle,
and reduced the incidences of mastitis during the transition phase
in dairy cattle (192).

Parenteral injection of 2100 mg vitamin E for 14 days before
and on the day of calving significantly reduced the occurrence of
periparturient mastitis in dairy cattle (87). Consistently, another
study reported that supplementation of 1g vitamin E/cow/day for
one month pre-calving and two months post-calving reduced the
incidences of mastitis in dairy cows (193). Vitamin E has also been
found effective against E. coli and S. uberis and prevented
mammary gland infection during the periparturient phase in
dairy cows (194, 195). Altogether, it was concluded that vitamin
E is the key nutrient involved in immune regulation and relieving

Frontiers in Immunology

10.3389/fimmu.2023.1290044

oxidative stress, which are the factors responsible for mastitis in
periparturient dairy cattle.

5.3 Role of vitamin D supplementation in
periparturient bovine mastitis prevention

Extensive research findings have demonstrated the profound
impact of vitamin D (calcidiol a source of vitamin D)
administration, typically within a daily dosage range of 1mg to
3mg on the regulation of various genes associated with crucial
aspects of bovine immunity, inflammation, antimicrobial activity,
calcium metabolism, and oxidative response (196). Notably, genes
associated with immunity (CD44, ICAMI1, ITGAL, ITGBI,
LGALS8, SELL, NOD2, TLR2, TLR6, FOS, JUN, NFKB2),
inflammation (IL1B, ILIR1, ILIRN),antimicrobial activity (CTSB,
LYZ, DEFB3), calcium metabolism (TP2B1, STIMI1,TRPVS5,
CALM3) and oxidative burst (RAC2)in periparturient dairy cattle
were regulated in response to vitamin D supplementation (196).
This regulatory effect is not limited to immune cells but extends to
various tissues, as evidenced by the activation of lo-hydroxylase
and the subsequent regulation of calcitriol synthesis (197).
Furthermore, exposure to bacterial components such as LPS and
peptidoglycan has been observed to stimulate local expression of
lo-hydroxylase in peripheral blood monocytes of dairy cows.
Additionally, the influence of vitamin D signaling has been
elucidated in mammary gland macrophages and neutrophils
when these cells are exposed to endotoxin challenge (198). In
vitro experiments have also substantiated the role of vitamin D in
up-regulating the mRNA activity of B-defensins and antimicrobial
peptides in monocytes and milk somatic cell counts (199, 200).
Importantly, studies have shown that vitamin D supplementation
plays a pivotal role in reducing the incidence of mastitis and metritis
in periparturient dairy cattle by mitigating oxidative stress and
enhancing the immune response (201). Furthermore, vitamin D
treatment has been associated with increased cell viability and the
inhibition of S. aureus adhesion and invasion in bovine mammary
epithelial cells, underscoring its potential significance in mastitis
prevention (202). Consistently, a recent published article has
demonstrated that vitamin D and its metabolites hydroxyvitamin
D [25(OH)D] with a concentration of 20-400 ng/ml has shown a
positive role on bovine immune cells, antioxidant response and
could be consider as therapeutic agent for mastitis prevention (203-
205).In light of the available literature, it is evident that vitamin D
holds a central position in bolstering dairy cattle immunity and
potentially alleviating bovine mastitis. However, it is worth noting
that further comprehensive investigations are warranted to gain a
deeper understanding of its precise mechanisms and potential
therapeutic applications in this context. For ease of review, the
recent findings associated with role of vitamins supplementation in
boosting immune, antioxidant and anti-inflammatory response
in dairy cattle during periparturient period has been summarized
in Table 3. Furthermore, Figure 4 illustrates the impact of vitamin
supplementation on immune, antioxidant, and anti-inflammatory

responses in dairy cattle.
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TABLE 3 Role of vitamins in boosting immunity, anti-inflammation and
antioxidant response in periparturient dairy cattle.

S.No Treatment

1 Folic acid (120 mg/500
kg)/oral
2 Folic acid (10 uM FA/

mL/cell culture)

5 Multivitamins and
multiminerals (Zinc 40
mg/ml, Manganese 10
mg/ml, Copper 15 mg/
ml, Selenium 5 mg/ml)
and five ml of MV
(Vitamin E 5 mg/ml,
Vitamin A 1000 IU/ml,
B-Complex 5 mg/ml,
and Vitamin D3 500 IU/
ml)/Injection

Outcomes

Regulated immunity
and suppressed
inflammation via
associated genes
(ICAM1, GROI and
CXCL3) and IncRNA
MSTRG.11108.1 in
periparturient

dairy cattle

Reduced cell
apoptosis via
elevation the
expression of B-cell
lymphoma-2 (BCL2)
and the BCL2 to
BCL2 associated X 4
(BAX4) in BMECs

Enhanced oxidative
stress (SOD and
CAT elevated),
decreased anti-
inflammatory
cytokines (IL-4 and
1L-10), increased
proinflammatory
cytokines (IL-1a, IL-
1B, IL-6, IL-8, IL-
17A, TFN-y and
TNF-a)

Lower percentage of
total neutrophils and
immature
neutrophils, higher
percentage of
lymphocytes as well
as increased
phagocytic activity of
neutrophils and
proliferative capacity
of lymphocytes

References

Liu X
et al. (172)

Zhang ]
et al. (206)

Somagond
et al. (44)

3 Folic acid (30.8 ng/mL/
cell culture)

Reduced apoptosis by
enhancing bcl-2/bax
mRNA expression

Bae et al. (176)

4 Vitamin E and folic acid | Regulate immunity, Khan et al. (16)
antioxidative stress and Xiao
and relieved et al. (36)
inflammatory
responses and
prevent mastitis

6 Folic acid (5 ug/mL/ Mediated the Mi et al. (166)

cell culture)

7 Folic acid (120 mg/500
kg)/oral

expression alteration
in IncRNAs linked to
toxin metabolism
and inflammation to
fight against S.
aureus infection

Relieved oxidative
stress, enhanced
immunity and anti-
inflammatory status,
reduced SCC level

165
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TABLE 3 Continued

S.No Treatment

Folic acid alone or in
combination with
vitamin B12/(120 mg/
500 kg)/oral

10.3389/fimmu.2023.1290044

Outcomes

and improved
milk production

Enhanced the
perimarturient dairy
cattle health and
production
performance
(enhanced immunity
and milk production)

References

167, 169

11

12

Calcidiol 3 mg/d
(3mg) prepartum

25-hydroxyvitamin D3
(3 mg/oral)

Dietary protein levels
(10.3% or 12.2%),
vitamin A levels (0 or

110 IU/kg body weight),

The supplementation of
vitamin A, 10° TU + zinc

sulphate, 60 ppm+
vitamin E, 2500 IU) in
compounded
concentrate DM (100
g)/oral

Regulated bovine
immunity, anti-
inflammatory
response,
antimicrobial activity
leukocytes, pathogen
recognition efficacy,
calcium metabolism,
and antioxidative
status of
periparturient

dairy cattle

Lowered the level of
SCC and enhanced
T-AOC, total SOD,
CAT,
immunoglobulin A
and immunoglobulin
G and decreased
MDA and TNF-o..
Reduced the
susceptibility of
periparturient dairy
to mastitis

Lowered the level of
SCC and improved
ant-inflammatory
response in
periparturient

dairy cattle

Lowered milk SCC
and enhanced total
immunoglobulins in
colostrum

Lowered oxidative
stress and cortisol
levels and higher
immune response
Improved the
phagocytic activity of
neutrophils of
periparturient

dairy cattle

Vieira-Neto
et al. (196)

Xu et al. (207)

Agustinho
et al. (69)

Alhussien
et al. (70)

5 The effect of rumen-protected
amino acids on immune function,
oxidative and anti-inflammatory status
of dairy cattle

The cellular detoxification process is facilitated by GSH through

the action of GST and the neutralization of hydrogen peroxide by
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v Decrease MDA, and increased level of IL-6
and TNF-a

v Enhanced colostrum’s immunoglobulin level
v Enhanced antioxidative status by elevated the
level s of SOD,GPX, T-AOC and CAT

TLR2,TLR4, TLR6, BRCAl ,ICAMI,CD4, NFR2, ITGAL,NOD2,

GSTKIT,GPX,CAT,SOD,PTAFR,NFKBIA,FOS,SOCS3, MAPKI3,CCL4

,CXCRI,CXCL2KIT, MYDS8CFD, JUN, CTSB, LYZ, TLR2, TLR6,
ITGBI,SELPLG,C5ARI,CFDCFB,CD8A,FADD, DEFB3,RAC2
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FIGURE 4

Regulate immunity, anti-inflammation and
antioxidant response in periparturient dairy cattle

Mechanisms governing the regulation of immunity, antioxidant, and anti-inflammatory responses for the prevention of mastitis in periparturient dairy
cattle through vitamin supplementation. Vitamin supplementation demonstrated an augmented antioxidative status by upregulating key antioxidant
genes (SOD, CAT) while concurrently downregulating the levels of MDA. Additionally, vitamins exhibited regulatory effects on immunity-related and
inflammatory-associated genes and their associated signaling pathways, thereby substantiating their pivotal role in mastitis resistance

or susceptibility.

GSH-Px. The GSTs (EC 2.5.1.18) are pivotal antioxidant enzymes
responsible for the regulation of cellular redox equilibrium, as
documented by several studies (208-210). Recent evidence
underscores the involvement of methionine in glutathione
synthesis (211), thereby potentially enhancing the antioxidant
capacity in animals and their products. This notion is
corroborated by research demonstrating that methionine, in
conjunction with choline, elevates glutathione and amino acid
levels in perinatal dairy cows (212). Furthermore, methionine
supplementation has been found to augment very-low-density
lipoprotein (VLDL), facilitating the circulation of vitamin E (213).
Consequently, the detrimental impact of lipid peroxidation by-
products, such as MDA, can be mitigated through the
administration of rumen-protected amino acids (213).
Additionally, the control of ROS by antioxidant systems,
categorized into enzymatic and non-enzymatic components like
metabolites, has been extensively discussed in previous studies
(210, 214).

Dysregulated immune function, notably in early lactation dairy
cows, has been observed, adversely affecting neutrophils, circulating
monocytes, and lymphocytes (6, 215 55, 216). It is postulated that
complete metabolic adaptations are required to cope with the
substantial nutrient demands associated with lactation initiation,
contributing to immunological dysfunction (19, 217, 218). A
noteworthy finding is that prolactin blockade leads to an increase
in oxidative burst activity in neutrophils, resulting in an initial
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reduction in milk production and nutritional requirements, along
with a subsequent decline in lymphocyte proliferation (219).
Empirical investigations have consistently demonstrated that
methionine supplementation exerts favorable effects on the anti-
inflammatory and antioxidant status in periparturient dairy cattle
(220-222) and neonatal calves (223). A recent study conducted by
Hu et al. has reported that the supply of methionine and arginine
significantly modulates milk protein synthesis, thereby alleviating
potential inflammatory and pro-oxidant conditions in transition
dairy cattle (224). Moreover, emerging research has highlighted the
significance of methionine supplementation in conjunction with
arginine in conferring anti-inflammatory effects and enhancing the
antioxidant status in transition dairy cattle. Notably, Dai et al. (225)
and Batistel et al. (222) have reported the beneficial impact of
methionine and arginine co-supplementation. Additionally,
Abdelmegeid et al. (226) documented that the combination of
choline and methionine effectively regulates antioxidative
mechanisms, resulting in heightened anti-inflammatory and
cytoprotective responses against oxidative stress in neonatal
Holstein calves. Consistently, Zhou et al. (227) demonstrated that
choline and methionine supplementation improved
immunometabolic status, bolstered blood polymorphonuclear
leukocyte phagocytosis capacity, promoted anti-inflammatory
responses upon pathogenic challenges, and elevated antioxidative
capacities in peripartal cows. In a relevant experiment, a group of
cows was subjected to either methionine supplementation alone or
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in combination with lysine. Wang H et al. (223) found that the
offspring (calves) of cows receiving rumen-protected amino acids
exhibited heightened passive immunity, characterized by increased
immunoglobulin G concentrations and superior growth rates
compared to their counterparts in the unsupplemented amino
acid group. Furthermore, they documented that methionine
supplementation upregulated the expression of antioxidant-
related genes, such as SOD and GSH-Px and conferred
cytoprotective effects against hyperthermia (228, 229). The
synergistic effects of methionine and arginine supplementation
have also been observed in the regulation of immunity and the
mitigation of oxidative stress induced by bacterial LPS in BMECs
(225). Dai et al. (225) reported that bacterial LPS significantly
down-regulated the expression of key genes associated with
antioxidant responses, such as NFE2L2, NQO1, GPX1, ATG7,
and GPX3, while increasing the levels of SOD2 and NOS2 in
BMECs. Folic acid was found to enhance antioxidant activity,
reduce the expression of inflammation-related genes, and improve
udder health in dairy cattle (225). Additionally, when BMECs were
challenged with gamma-d-glutamyl-meso-diaminopimelic acid (iE-
DAP), a component of bacterial cell walls, it induced inflammatory
changes and oxidative stress, which were effectively mitigated by
arginine and methionine treatment (230). Similarly, another study
demonstrated that glutamine treatment provided protective effects
against the adverse effects of iE-DAP in BMECs (231). Furthermore,
iE-DAP was found to elevate the expression of inflammatory
markers, including NODI, inhibitor of nuclear factor-xB
(NFKBIA, IkB), nuclear factor-xB subunit p65 (RELA, NF-xB
p65), IL-6, and interleukin-8 (IL-8) in cell culture (231).
However, when cells treated with iE-DAP were subsequently
exposed to glutamine, this intervention led to the suppression of
the NOD1/NF-«B pathway and the enhancement of antioxidant
protein levels (231). This aligns with previous findings that amino
acids play a pivotal role in NO regulation in mammary cells, thereby
exerting antibacterial activity against LPS during inflammation
(232-234). In vitro experiments have consistently demonstrated
that methionine supplementation effectively attenuates apoptosis,
necrosis, and lipid peroxidation in bovine mammary gland cells
(228, 229, 235). Moreover, these studies have shown that arginine
and methionine co-supplementation enhances the expression of
antioxidative genes and elevates the NFE2L2 signaling pathway in
mammary cells, a crucial component of the cellular antioxidant
defense system (236). Lan et al. (237) conducted experimental
research revealing that pretreatment with 2 mM Met-Met had the
capacity to mitigate the elevated levels of specific inflammatory
markers following exposure to 1 ug/mL LPS. This included a
reduction in TNF-o, IL-1B, and IL-8. Furthermore, their
investigation indicated that the genes commonly affected by this
treatment were primarily associated with the NF-xB, MAPK, and
IL-17 pathways. Notably, the suppression of NF-xB, P38, and JNK
by Met-Met appeared to occur through the Janus kinase 2-signal
transducers and activators of transcription 5 (JAK2-STAT5)
pathway (237). Additionally, it was observed that the Met-Met-
induced reduction in LPS-triggered activation of p-IxB, NF-kB, and
JNK was reversed in the presence of a JAK2 inhibitor, highlighting
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the intricate interplay between Met-Met and these signaling
pathways (237). Furthermore, a concise summary of research
endeavors investigating the impact of rumen-protected amino
acids on immune function, oxidative stress, and anti-
inflammatory responses in dairy cattle has been thoughtfully
compiled in Table 4 for your reference and elucidation.

TABLE 4 Summary of studies investigating the effect of rumen-
protected amino acids supplementation on immune function, oxidative
and anti-inflammatory status in dairy cattle.

Main
outcomes

Amino References

acid
Administration

1 Methionine and lysine « Attenuated the Abreu
supplementation (107g/ severity of SCC et al. (238)
twice a day/7 weeks/oral) and BCS, thereby

mitigating the risk
of clinical

mastitis
occurrence.

2 Methionine/at a rate of « Notable Batistel
0.09% and 0.10% of DMI/ enhancement in et al. (222)

oral/28 day before
parturition till 60 days

plasma biomarkers,
following improved
after parturition (88 days) liver function,
reduced oxidative
stress and
inflammation, as
well as enhanced
oxidative burst and
neutrophil
phagocytosis.

« Modulated the
expression of genes

3 Increase methionine (175
pg/mL) and lysine (175
pg/mL) ratio
1:2.5 respectively

Dai et al. (225)

associated with
immunity, anti-
inflammation, and
antioxidation in
LPS-challenged
BMECs.

« Elevated the
expression of genes
such as NFE2L2,
NQO1, GPX1,
GPX3, SLC36A1,
SLC7A1, SOD2,
NOS2, and
concurrent
decreased
expression of
RELA, IL1B, NF-
kb, and CXCL2.

o Reduced the
SCC levels and
decreased the

Gaafar
et al. (239)

4 5-10 gm zinc methionine/
head/day/oral

required mastitis
treatment duration
with antibiotics

5 Methionine at a rate of Han et al. (240)
0.09% and 0.10% of DMI/

oral/28 day before

« Upregulated the
expression of genes
involved in the
metabolism of

(Continued)
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TABLE 4 Continued

Amino

acid
Administration

\ET(]
outcomes

TABLE 4 Continued

Amino
acid
Administration

References

10.3389/fimmu.2023.1290044

Main
outcomes

References

parturition till 60 days
after parturition (88 days)

antioxidants,
notably increasing
the expression level
of NFE2L2, a

status and reduced
the risk of
periparturient
mastitis in cattle

prominent
transcription factor 11 Methionine « Enhanced the Liang
associated with supplementation mRNA expression et al. (247)
antioxidant at a rate of 0.09%/oral of genes associated
response. with antioxidative
status and the
6 Methionine at a rate of/ o Reduced Jacometo et al. metabolism of
0.08% of DM/d/oral inflammatory (241); Jacometo GSH, thereby
changes, improved et al. (242) & improving cellular
antioxidant status Jacometo antioxidant
followed by et al. (243) defenses.
augmentation of
immune responses, 12 60 g/d of NALM acetyl-I- « Ameliorated Liang
thereby reducing methionine (NALM)/cow oxidative stress in et al. (248)
the susceptibility to mid-lactating dairy
infections in cows, as evidenced
transition by increased
neonatal calves concentrations of
total plasma
7 2 mM methionyl- « Mitigated the Lan et al. (237) protein and
methionine treatment inflammatory globulin,
alterations induced concomitant with a
by LPS through reduction in
downregulation of plasma
the expression of MDA
inflammatory- concentration.
associated genes,
including TNF-a 13 Methionine and choline « Significantly Lopreiato
AP-1, MCP-1, Jak2, treatment/cell culture enhanced the et al. (249)
IL-1B, and IL-8, expression of genes
along with the linked to immunity
inhibition of key and anti-
signaling pathways inflammatory
such as JAK2- responses, while
STATS, NF-KB, concurrently
MAPK, and IL-17 reduced oxidative
in BMECs stress in
bovine PMNLs
8 2 mM methionyl- « Significantly Lan et al. (244)
methionine treatment reduced the 14 Methionine « Enhanced whole Osorio
expression of supplementation at the blood neutrophil et al. (250)
inflammatory rate of 0.19 or 0.07% DMI  phagocytosis
linked genes such followed by
as IL-8, TNF-q, improved immune
AP-1, and MCP-1 defense system
induced by LPS + Reduced
in BMECs oxidative stress and
improved
9 Rumen-protected lysine « Reduced the Lee et al. (245) antioxidant
(10 g of digestible lysine/ levels of BHB, response in dairy
cow per day) and improved BCS, and catle
methionine (4 g of lowered SCC, « The improved
digestible which collectively immunity and
Methionine/cow) contributing to antioxidant status
enhanced udder were associated
health in with reduced risk
periparturient of mastitis
dairy cattle
15 Methionine « Triggered a series Osorio et al.
10 Hydroxyselenomethionine « Significantly Li et al. (246) supplementation at the of positive (211); Osorio
supplementation (0.5 elevated the levels rate of 0.19 or 0.07% DMI  metabolic changes et al. (220)
mg/oral) of antioxidative with a notable
(Continued) (Continued)
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S.No Amino

acid
Administration

\ET(]
outcomes

References

TABLE 4 Continued

S.No Amino
acid
Administration

10.3389/fimmu.2023.1290044

Main
outcomes

References

enhancement of 1-
carbon metabolism,
showcasing its
impact on
fundamental
metabolic
processes.

« Antioxidant
status was
improved, as
evidenced by
elevated levels of
liver GSH.

» Decreased
concentrations of
plasma biomarkers
associated with
inflammation,
indicating its
potential role in
mitigating
inflammatory
responses and
promoting overall
physiological
well-being

16 Zn-Meth supplementation
(1 g/d Zn/oral)

17 Increase methionine (175
png/mL) and lysine (175
Hg/mL) ratio
1:2.5 respectively

18 Methionine (30 g/d of
Mepron)/
oral supplementation

« Reduced
inflammatory
changes, enhanced
immunity and
lowered the SCC
following
improved udder
health in transition
dairy goats

Salama et al.

Salama
et al. (252)

« Regulated the
AKT1 and
mTORC1
Signaling which
are pivotal in cell
growth,
proliferation, and
immune responses.
« In addition
elevated the
expression of genes
associated with
anti-inflammatory
responses and
metabolic
regulation
(PPARG), anti-
apoptotic activity
(CL2L1) and cell
growth and
immunity (MAPK1
MTOR, RPS6KB1,
BAX, EIF4EBPI
and JAK2)

Soder and
Holden, (253)

« Improved
immune system’s
cellular defense

mechanisms by
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19 15 g/d RPC + 15 g/d RPM
from 21 days prepartum
to 21 days postpartum.

enhancing
population of T
lymphocytes in the
bloodstream.

« Reduced the level
of SCC, which
shows methionine
supplementation
could significantly
prevented mastitis

« Enhanced CD4
+/CD8+ T, GSH-
Px, T-AOC,
decreased the
plasma
concentrations of
NEFA, BHBA, total
cholesterol (TC)
and low-density
lipoprotein
cholesterol (LDL-
9]

« In addition,
lymphocyte ratio,
immunity and
antioxidative status
were improved

Sun et al. (213)

20 Methionine (8.0 and 12.0
g/d) and choline (12.4 g/
d) supplementation

« Effectively
mitigated the
hyperactive
response of IL-1p
during an LPS
challenge. This
suggests that
methionine
improved the
body’s ability to
regulate
inflammatory
processes,
potentially
reducing the risk of
excessive
inflammation and
its associated
negative effects.

« Relieved oxidative
stress and
improved
postpartum
neutrophil and
monocyte
phagocytosis
capacity.

« In addition
phagocytosis and
oxidative burst
activity was
improved. This
means that
immune cells were
more effective in
generating reactive
oxygen species to

Vailati-Riboni
et al. (254)
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TABLE 4 Continued

Amino

acid
Administration

\ET(] References

outcomes

destroy pathogens,
further
strengthening the
immune response.

20 Infusion of arginine (3gm/
h for 5 days) protected the

dairy cattle from LPS
challenge (0.033 pg/kg
per h)

21 Infusion of arginine (3gm/
h for 5 days) protected the

dairy cattle from LPS
challenge (0.033 ug/kg
per h)

« Relieved oxidative = Zhao
stress and et al. (255)
inflammatory
changes caused by
LPS in dairy cattle.
Arginine infusion
played a role in
mitigating
inflammation
triggered by LPS.

« Suppressed the
LPS induced NOS
and reduced the
LPS-binding
protein levels. This
is significant
because LPS-
binding protein is
associated with the
body’s recognition
of bacterial
endotoxins, and
reducing its levels
may contribute to a
reduced risk of
systemic
inflammation.

« Enhanced the Zhao
body’s antioxidant et al. (256)
defenses. This
could be due to its
properties as a
precursor to NO,
which has
antioxidant effects.
« Enhanced the
level of TAC which
suggests that
arginine
contributes to the
body’s ability to
counteract
oxidative stress
during
inflammation.

« Increased the
expression of GSH
and inhibited the
MDA level in LPS
challenged

dairy cattle

22 Methionine and choline

supplementation (at a rate

of 0.08% of DM/oral)

« Regulates taurine Zhou Z
synthesis, which is et al. (221)
involved in

supporting

antioxidant

defenses and

stabilizing cell

membranes.

Frontiers in Immunology

(Continued)

10.3389/fimmu.2023.1290044

TABLE 4 Continued

S.No Amino Main References

acid outcomes
Administration

« Being a precursor
for GSH, play a key
role in enhancing
antioxidant status.
« Reduced
inflammatory and
chances of udder
infections in
periparturient

dairy cattle

23 Methionine
supplementation at 0.08%
of DMI/oral 1

« Improved Zhou
biochemical et al. (212)
pathways,
including DNA
methylation, which
can influence gene
expression.
Increased
methionine
availability can
potentially affect
the expression of
genes related to
different biological
processes
(immunity,
inflammation and
oxidative stress)

« Strengthening
the immune system
by upregulating the
expression of genes
associated with
immunity.

« Enhanced the
body’s antioxidant
defenses by
influencing the
expression of
antioxidant linked.

24 Methionine
supplementation at 0.08%
of DMI/oral

« Significantly Zhou
decreased the et al. (227)
expression of genes

associated with

inflammation and

oxidative processes

and improved the

udder health in

periparturient

dairy cattle

6 Future research direction

While this review has synthesized existing knowledge regarding
the role of amino acids, vitamins, and trace minerals in mitigating
periparturient mastitis, several avenues for future research emerge.
Further investigation into the intricate mechanisms underlying the
interactions between these nutrients, oxidative stress, and immune
modulation will deepen our understanding of their synergistic
effects. Incorporating molecular and cellular approaches can
unravel the specific pathways through which these nutrients
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influence immune responses and oxidative balance. Additionally,
longitudinal studies assessing the long-term effects of targeted
supplementation on mastitis incidence, milk quality, and overall
cow health are essential to validate the efficacy of these strategies
under practical farming conditions. Furthermore, understanding
the interplay between genetic factors, environmental conditions,
and nutritional interventions can provide insights into personalized
approaches for mastitis prevention. Moreover, exploring novel
delivery mechanisms for these nutrients, such as innovative
formulations or precision feeding, could optimize their absorption
and utilization within the complex physiological milieu of
periparturient dairy cattle. In conclusion, future research
endeavors should focus on unraveling the nuances of nutrient-
nutrient interactions, delineating precise molecular mechanisms,
and translating these findings into practical strategies that empower
dairy farmers to effectively manage periparturient mastitis,
bolstering animal health and farm productivity.

7 Conclusion

In light of the intricate interplay between immune suppression,
oxidative stress, and metabolic perturbations during the
periparturient period, this comprehensive review underscores the
paramount importance of proactive nutritional strategies in
mitigating bovine mastitis. The critical vulnerabilities arising from
negative energy balance, oxidative stress, and compromised
immune responses underscore the need for targeted interventions
to enhance udder health and overall productivity in dairy cattle. The
exploration of trace minerals, vitamins, and amino acids as key
mitigation factors offers promising avenues for addressing
periparturient bovine mastitis. These nutritional components have
demonstrated significant potential in bolstering antioxidant
defenses, modulating immune responses, and preventing
oxidative damage. The multifaceted roles of trace minerals,
particularly copper, selenium, and calcium, have been deliberated
in the context of mastitis control. Similarly, the established impact
of vitamins, such as vitamin B12 and vitamin E, in enhancing
metabolic function and immune responses underscores their
potential in ameliorating mastitis susceptibility. Furthermore,
amino acids’ pivotal role in maintaining cellular oxidative balance
through their participation in crucial biosynthesis pathways
presents a novel perspective in combatting mastitis-related
challenges. The insights gained from this review highlight the
need for a holistic approach that encompasses these nutritional
factors to enhance udder health and mitigate the risks associated
with periparturient mastitis.
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Tomato-made edible COVID-19
vaccine TOMAVAC induces
neutralizing IgGs in the blood sera
of mice and humans
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Plant-based edible vaccines that provide two-layered protection against severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outweigh the currently
used parenteral types of vaccines, which predominantly cause a systemic
immune response. Here, we engineered and selected a transgenic tomato
genotype (TOMAVAC) that stably synthesized an antigenic S1 protein of SARS-
CoV-2. Two-course spaced force-feeding of mice with ~5.4g/ml TOMAVAC
increased up to 16-fold the synthesis of RBD-specific NAbs in blood serum
and the significant induction of S-IgA in intestinal lavage fluid. In a surrogate
virus neutralization test, TOMAVAC-induced NAbs had 15-25% viral neutralizing
activity. The results suggested early evidence of the immunogenicity and
protectivity of TOMAVAC against the coronavirus disease 2019 (COVID-19)
infection. Furthermore, we observed a positive trend of statistically significant
1.2-fold (average of +42.28 BAU/ml) weekly increase in NAbs in the volunteers'’
serum relative to the initial day. No severe side effects were observed, preliminarily
supporting the safety of TOMAVAC. With the completion of future large-scale
studies, higher-generation TOMAVAC should be a cost-effective, ecologically
friendly, and widely applicable novel-generation COVID-19 vaccine, providing
two-layered protection against SARS-CoV-2.

KEYWORDS

SARS-CoV-2, Edible vaccine, RBD-specific neutralizing antibodies, viral neutralizing
activity, efficiency, safety
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Introduction

Vaccination is considered the most effective way to treat and
prevent severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), which is currently infecting more than 650 million people
around the globe (1-5). Presently, most commercial vaccines
are parenteral and administered intramuscularly, inducing only
systemic immunity (6-9). However, for air droplet-spreading
SARS-CoV-2, parenteral vaccines are less effective for the
protection of viral transmission (10, 11), enabling its successful
replication in the epithelial cells of the upper respiratory tract.
Because of ineffective primary-entrance cell viral neutralization by
circulating IgG (NAbs), there is a risk of developing and spreading
new SARS-CoV-2 variants of concern (VOCs) (10). The production
of parenteral vaccines is resource-intensive, ecologically unfriendly,
and requires special conditions for transportation, storage, and use
(5,8, 12-14).

Alternatively, mucosal vaccines, including plant-based edible
types, activate both mucosal and systemic immune responses,
providing adequate and long-term protection against viral
transmission, disease progression, and antiviral prophylaxis (10,
11). They also offer an opportunity for targeted folding and
post-translational modifications of antigenic proteins with the
desired properties (5, 15). Several attempts have been made
toward developing plant-based COVID-19 vaccines (5, 16-20),
and many plant-carrier-based examples exist for various infectious
diseases (8, 9, 12-14). Here, we present the results of our
efforts in developing transgenic tomato plants expressing the
RBD subunit of the S1 protein of SARS-CoV-2 with early
evidence for the immunogenicity, neutralizing activity, and
safety of the first tomato-based edible vaccine (TOMAVAC)
against COVID-19.

Methods
TOMAVAC plant development

A binary pART27 vector bearing the custom synthesized SI
gene (Figure 1) of SARS-CoV-2, driven by the CaMV 35S viral
promoter, was constructed and transformed into A. tumefaciens
strain LB4404 (21). The in fruit transformation of tomatoes
(Solanum lycopersicum cv. Bella-Rossa) was carried out by modified
methods (22, 23). The success of the transformation into A.
tumefaciens strain LB4404 and tomato genomes were confirmed
and monitored by PCR amplification of the S1 gene from the
genomic DNA of the transformants. Transgenic plant development
and characterization, genomic DNA isolation, PCR, and qPCR
analyses, including relative expression and qPCR-based transgene
copy number identification, were carried out as described in
our previous work (24), optimizing for tomatoes. S1-specific
protein synthesis in transgenic plants was determined using
western blotting and ELISA (Supplementary Tables 1-6). The use
of plant material and the performance of experimental research on
such plants in the study comply with guidelines for conducting
genetic engineering research in the Center of Genomics and
Bioinformatics, Academy of Sciences of Uzbekistan. The detailed
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step-by-step protocols can be found in the Supplementary material
section of this article.

TOMAVAC feeding in mice

In total, 100 (n = 100) 20-day-old outbred ICR CD-1 mice were
kept in plastic cages and fed between 7-8 a.m. and 4-5 p.m. daily on
a standard diet (Supplementary Methods) adaptation. After NAbs
analysis of serum and initial verification of the noninfected status
of the mice (sacrificing n = 4), 96 healthy mice (n = 96) were
divided into three equal groups (n = 24 per group, male and
female). Groups were (1) the TOMAVAC group, force-fed with
1ml of homogenate (equivalent to ~0.77 pg S1 protein) of the
transformation event 4; (2) the untransformed tomato group, force-
fed with 1 ml of homogenate of the original cv. Bella Rossa®; (3)
a control group fed only with a standard diet; and (4) a positive
control group parenterally vaccinated with AstraZeneca (ChAdOx1
NCoV-19; Cambridge, United Kingdom). A 7-day-spaced, two-
dose force-feeding with tomatoes was performed using a syringe
before every morning feeding (Figure 3A). A two-dose (day 0 and
day 14), 7-day-spaced intramuscular AstraZeneca (75 pl of working
solution) immunization was carried out in mice in compliance with
asepsis rules. Each dose contained ~16 x 10° infectious units in
a 75 pl of injection solution. To do this, 10 pl of the original
AstraZeneca vaccine was diluted to 1,000 pl by adding sterile
standard saline solution. Then, the obtained solution was diluted to
a final concentration of 16 x 10° infectious units by sterile solution.

For the analyses of NAbs, blood samples and intestinal lavage
fluid were taken on day 14 (n = 24, six mice per group), day
28 (n = 24, six mice per group), day 42 (n = 24, six mice
per group), and day 56 (n = 16, four mice per group). Mouse
experiments were conducted with ethics board approval (no.
3/30062022) and in accordance with the US National Institutes of
Health Guidelines for the Care and Use of Laboratory Animals (25).
Animal experiments were conducted at the Drug Standardization
Scientific Center, Pharmaceutical Institute, Tashkent, Uzbekistan
(Supplementary Protocol).

Determination of NAbs titer and
neutralizing ability

RBD-specific serum IgG was assessed in three different groups
using the SARS-CoV-2 (2019-nCoV) Spike RBD Antibody Titer
Assay Kit (Mouse) according to the manufacturer’s instructions
(Krishgen Biosystems, Cerritos, California, United States). The
neutralizing activity of RBD-specific antibodies was determined
in blood serum on days 42 and 56 post-vaccination using
the SARS-CoV-2 surrogate Virus Neutralization Test (sVNT)
kit according to the manufacturer’s instructions (GenScript,
Piscataway, New Jersey, United States). RBD-specific secretory
immunoglobulin A (S-IgA) quantified by ELISA using the Mouse
Anti-2019 nCoV(S)IgA ELISA Kit (Wuhan Fine Biotech Co., Ltd.,
Wuhan, China) according to the manufacturer’s instructions (see
Supplementary Methods).
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FIGURE 1
The S1 gene sequence of SARS-CoV-2 was used to construct a binary vector: (A) sequence alignment and (B) a scheme of vector construction used
for tomato transformation.

PTOOf-Of-COHCGpt human consumption Academy of Sciences of Uzbekistan, approved the experimental
study

protocols. Informed consent was obtained from all subjects
and/or their legal guardian(s). Following the protocol approval,

All 14 healthy adults aged 30-52 years volunteered to volunteers were asked to be randomly divided into two

participate in a human proof-of-concept experiment. All ~ groups: (1) those who were invited to take TOMAVAC (n
experiments were designed and carried out in accordance = 7) before dining and (2) those who were invited to have
with the methods of relevant guidelines and regulations. The  their regular food (n = 7). Both groups were instructed

ethical board of the Center of Genomics and Bioinformatics, —not to have any other vaccinations during the experiments
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FIGURE 2
Molecular evaluation of transformed tomatoes. (A) PCR analysis: M
— GeneRuler 50 bp DNA Ladder (Thermo Fisher, Waltham, MA,
United States); 1-8 — transformed tomato plant DNA; Pl — S1
plasmid DNA (a positive control); Mix — Master mix without DNA (a
negative control); C — a negative untransformed tomato plant DNA
control. (B, G) Western blot quantification of expressed protein in
transgenic tomatoes. RBD protein (ZF-UZ-VAC200123,28 with 61.7
kDa) and untransformed tomatoes were used as positive and
negative controls (C, E) Relative expression analysis of transformed
T1-generation tomato plants and tissues. The untransformed
tomato was used as a negative control. (D, F) ELISA analysis of
transformed T1-generation tomato plants: leaf tissue (1), unripened
(Continued)
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FIGURE 2 (Continued)

green tomato (2), ripened red tomato (3), and control tissues from
untransformed tomato (2, 4, and 6). Different letters designate
significant differences at the p < 0.05 level of one-way ANOVA or
Kruskal-Wallis one-way nonparametric ANOVA

(Supplementary Tables 1, 3), with similar letters reporting
nonsignificant differences. Refer to Supplementary Figures S1-S3
for the original gel images for (A, B, G), cropped for presentation
purposes.

(Supplementary Protocol). Al procedures were explained
clearly to all participants, and their approval of using the
collected data for “research purposes” was obtained. Participants
were informed about blood test results but deidentified for
reporting purposes.

Briefly, the experimental group consumed 50g of
TOMAVAC on an empty stomach daily for 3 consecutive
days, 20-30min before dining. Blood samples were taken
from all participants before consumption (day 0) and
on days 7, 14, and 21. The NAbs levels were tested at
the Institute of Immunology and Human Genomics,
Uzbekistan, using the automatic chemiluminescence
immunoassay analyzer MAGLUMI series, according to the
manufacturer’s instructions for human sera (Snibe Diagnostic,

Pingshan, China).

Statistical analysis

Expression and ELISA data in tomatoes were analyzed using
an ordinary one-way ANOVA with Tukey’s multiple comparisons.
For mouse data, after checking the normal distribution using
the Shapiro-Wilk test or data normalization using the logl0
transformation, an ordinary one-way ANOVA was used with the
recommended Tukey’s multiple comparisons. A nonparametric
Kruskal-Wallis (KW) one-way ANOVA was also applied to
determine the statistical significance of abnormal data and seek
additional statistical evidence to judge ordinary ANOVA findings.
In the human study, due to data abnormality, the nonparametric
Friedman’s ANOVA test, followed by Dunn’s multiple comparisons,
was performed comparing the initial NAbs mean ranks to the
repeated measurement mean ranks of NAbs from days 7, 14, and
21. Data analysis and visualization were performed using GraphPad
Prism version 8.0.1 for Windows (www.graphpad.com; GraphPad
Software, San Diego, California, United States). A threshold of p <
0.05 was considered significant (Supplementary Tables 7-9).

Ethics of the research

All methods were performed in accordance with the relevant
guidelines and regulations reviewed and approved by the
Institutional Ethics Board of the Center (Supplementary Protocol).
The use of plants in this study complied with relevant
institutional, national, and international guidelines and
legislation. All animal results are reported following the
ARRIVE guidelines.
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FIGURE 3
Titer and neutralizing activity of RBD-specific serum IgG in mice after oral vaccination. (A) — animal experiment scheme; (B) — titer on day 14
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Supplementary Table 7).
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Results
TOMAVAC plant development

A binary vector on the pART27 backbone was successfully
constructed, inserting the custom synthesized 1,735-bp long
recombinant SI gene (1,643 bp; Figure 1A), flanking 75-bp
3xFlag-tag (DYKDDDDXK-tag), and 24-bp histidine repeats (8xHis;
Figure 1B). The SI gene sequence information was derived from the
consensus sequence of 18 SARS-CoV-2 genotypes, which covered
all six mutations (compared to NC_045512.2: G180A, G306T,
T476C, G797T, T940C, and G946T) found in both GR and S
clade genomes sequenced from Uzbekistan (21). Furthermore,
a suspension culture of A. tumefaciens strain LBA4404 bearing
PART27::COVID-19_S1 was obtained with a success rate of 96%.

A total of 46 T generation PCR-positive tomato seedlings were
recovered out of 405 in-fruit agro-infiltrations, revealing 11% of
successful transformation events. Three independent T1 generation
tomato transformants (Figure 2A; see Supplementary Figure S1 for
original gel image), selected for further analyses, showed stable
insertion of the SI gene in their genomes with relative linear
expression levels on average of 0.82-1.63 of the S1 gene in
tomato seedlings (Figure 2C; Supplementary Table 1). Tomatoes
from single copy transformation event 4, expressing ~0.77 ug/g
S1 protein of SARS-CoV-2, were chosen for further immunization
experiments (Supplementary Tables 2, 3).

Immunogenicity and neutralization
analyses in mice

We designed a 7-day-spaced, two-dose force-feeding study
(Figure 3A). In the TOMAVAC and AstraZeneca (ChAdOxl
NCoV-19; parenteral vaccination control) groups, analysis of
the blood serum on day 14 showed insignificant induction
of RBD-specific NAbs above 5,300 and 9,000 ng/ml (Figure 3B;
Supplementary Table 7) compared to controls. After the second
dose of immunization, however, the average titer of RBD-specific
NAbs in the TOMAVAC-fed group increased more than 7-9
times (>55,500 ng/ml) in comparison to the controls on day 28
(p = 0.01, KW and p = 0.001, ANOVA; Supplementary Table 7;
Figure 3C).

In the AstraZeneca group, however, the observed NAbs increase
(14,669 ng/ml) was insignificant among groups (p > 0.2, KW and
ANOVA). On day 42, a statistically significant (p < 0.01, KW and
ANOVA) 11- to 14-fold increase (average >43,000 ng/ml) in the
titer of RBD-specific NAbs was revealed in the TOMAVAC group
(Figure 3D, Supplementary Table 7) and AstraZeneca (average
>49,500 ng/ml; p < 0.02, KW and ANOVA) groups compared to
non-vaccinated controls; however, the NAbs increase between the
TOMAVAC and AstraZeneca groups was insignificant (p > 0.8,
KW and ANOVA). Interestingly, relative to day 28, an average 24%
decrease in NAbs level was observed in the TOMAVAC group. In
contrast, on day 56, the titer of RBD-specific NAbs increased from
15- to 17-fold in the TOMAVAC (average >80,850; p < 0.0001,
ANOVA) and AstraZeneca (average >83,000; p < 0.0001, ANOVA)
groups compared to controls (Figure 3E; Supplementary Table 7).
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The analysis of the neutralizing activity of RBD-specific NAbs
showed that in the TOMAVAC group, the average neutralization
activity was 15% (p < 0.01, ANOVA or p < 0.05, KW; Figure 3F)
and 25% (p < 0.01; ANOVA; Figure 3G: Supplementary Table 7)
on days 42 and 56, respectively. However, the neutralizing activity
of RBD-specific NAbs in the AstraZeneca group was significantly
higher (29%—46% on the same periods; p < 0.01; ANOVA;
Figure 3G, Supplementary Table 7) than what was observed in the
TOMAVAC group. In the control groups, the level of neutralization
was within 5%—7% and was statistically insignificant (Figures 3F,
G, Supplementary Table 7). No severe side effects were recorded in
mice during or after the consumption of TOMAVAC. Two 90-day-
old mice per group, including controls, died at week 8 in the mouse
experiment. The cause of death is estimated to be natural, usually
occurring with long-period feeding experiments (L.G. Gafurova,
Tashkent Pharmaceutical Institute, personal communication).

The analysis of the titer of RBD-specific S-IgA in the
TOMAVAC group on day 14 showed a significant induction
of 59ng/ml (Figure 4A, Supplementary Table 8) compared to
controls. We also detected the induction of RBD-specific S-IgA
in the AstraZeneca group, but its level was almost three times
lower than that of the TOMAVAC group. After the second dose of
vaccination, we revealed a further elevation in S-IgA levels in the
TOMAVAC (average 7.5; p < 0.0001, ANOVA) and AstraZeneca
(average 3.5; p < 0.0001, ANOVA) groups compared to controls
on day 28 (Supplementary Table 8; Figure 4B). On days 42 and
56, we found a two- to fourfold decrease in RBD-specific S-IgA
levels in the TOMAVAC and AstraZeneca groups relative to day
28 (Figures 4C, D).

Concept-of-proof human consumption
analysis

In all volunteers consuming TOMAVAC (50g or ~38.5 g
S1 protein daily during 3 days), a significant (p < 0.01, Dunn’s
multiple comparisons adjusted) positive trend of weekly increase
(with an average of +-42.28 BAU/ml/3 weeks) of NAbs was observed
relative to the initial day levels (Supplementary Figures S4A, C).
The increase in serum NAbs started on day 7 with an average of
+35.39 BAU/ml (p < 0.01, Dunn’s multiple comparisons adjusted;
Supplementary Table 9). NAbs increased on day 14 with an average
of +37.73 BAU/ml (p = 0.06 in Dunn’s multiple comparisons).
Furthermore, the statistically significant average +53.44 BAU/ml
NAbs increase was detected on day 21 (p = 0.01, Dunn’s multiple
comparisons adjusted; Supplementary Figures S4A, C).

In one participant, a +8.15 BAU/ml increase in NAbs level
was determined on day 7; however, on days 14 and 21, a decrease
(—11.85and —8.14 BAU/ml, respectively; Supplementary Table 10)
of NAbs was observed relative to the initial level. In another
participant, although a positive increase relative to the initial day
was recorded on days 7-21, an increased level of NAbs (413.0
BAU/ml) on day 7 decreased (—8.9 and —5.2 BAU/ml) on days 14
and 21. In contrast, in the control group, a gradual negative trend
of weekly decrease (average —28.7 BAU/ml; p < 0.001, Freidman’s
ANOVA) was observed in the level of NAbs relative to the initial
day (Supplementary Figures S4B, C; Supplementary Table 9). No
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FIGURE 4
Titer of RBD-specific mucosal S-1gA in mice after oral vaccination. (A) — titer on day 14 post-vaccination; (B) — titer on day 28 post-vaccination; (C) —
titer on day 42 post-vaccination; (D) — titer on day 56 post-vaccination. Statistical significance level (*-~<0.05, **-<0.01, ***-<0.001 and ****—<
0.0001) from ordinary one-way ANOVA; Kruskal-Wallis (KW) one-way ANOVA, KW*-<0.05, KW**-<0.01, KW***-<0.001, Supplementary Table 8).

severe side effects were recorded in volunteers during or after the
consumption of TOMAVAC. The observed feeling of abdominal
pressure on the consumption days was resolved after immunization
(Supplementary Table 10).

Discussion

The plant-made COVID-19 vaccine development efforts were
recently well-reviewed by Su et al. (20). Many such parenteral
candidate vaccines are in their early stages of application, with
few commercialized for research and diagnostic purposes (20).
In this study, we report the first edible COVID-19 tomato
vaccine, TOMAVAGC, derived by constitutively overexpressing the
consensus sequence of the S1 protein of SARS-CoV-2, covering the

Frontiersin Nutrition

sequence variation of SARS-CoV-2 spread in Uzbekistan (26). In
contrast, recently, the SARS-CoV-2-S1-Fc fusion protein (16-18) or
a SARS-CoV-2 perfusion spice trimer protein (19) was transiently
expressed in tobacco and harvested for parenteral vaccination
studies in animals.

In our study, among several stable transformation events, we
selected the single-copy transgenic genotype with no antibiotic
resistance marker gene (event 4), which reduces the chances of gene
silencing and instability in the next generations and is the key to
the biosafety and purity of the transgenic plant product (27). While
our study successfully demonstrated the expression of the S1-
specific protein in transgenic tomato plants, we did not observe any
discernible phenotypic differences between the transgenic and non-
transgenic tomato plants regarding growth, development, or overall
appearance. Both sets of plants appeared phenotypically similar and
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exhibited normal growth patterns, suggesting that the synthesis of
the S1 protein did not visibly affect the external morphology or
growth characteristics of the transgenic plants compared to the
non-transgenic ones. The fruits of transgenic and non-transgenic
plants did not differ in appearance and taste.

TOMAVAC expressing ~0.77 pug/g S1 protein of SARS-CoV-
2 provided an opportunity to design and conduct scalable
oral immunization experiments. One explanation for the almost
threefold reduced amount of S1 protein in ripened tomatoes
compared to the unripened green tomatoes (p < 0.0001, ANOVA)
could be the influence of the fruit-maturation process. This
requires further study and will be crucial for TOMAVAC
dose standardization.

The receptor-binding domain (RBD) of the S1 protein was
immunogenic and non-allergenic, with very subtle side effects when
used as a parenteral protein subunit recombinant vaccine in a
previous study (28). Recent studies (16-18) reported that the plant-
produced S1 subunit protein vaccines against SARS-CoV-2 were
immunogenic without any safety concerns in animal experiments.
Previous studies also showed that three injections of 10 pg/dose
of RBD-specific antigen of SI protein adequately induced systemic
immunity in mice (29). It was reported that two-dose parenteral
vaccination with purified 10 jLg and 25-50 g of tobacco-produced
SARS-CoV-2 RBD-Fc fusion protein caused high levels of NAbs
in mice and monkeys, respectively (16-18). However, with edible
plant-based vaccines, a higher dose of expressed antigen may be
needed than that used for parenteral immunizations (13, 14).

Pogrebnyak et al. (30) reported that feeding with 500 mg
of lyophilized transgenic tomato fruit (or 50 mg dry roots of
transgenic tobacco) expressing 79 kDa SARS-CoV S protein
increased fecal IgA levels in mice compared to controls. No
increase in serum IgG was found in oral vaccination, although
the systemic immune response was caused by a booster dose of
S protein injection (30). In contrast, in our study, two courses
of spaced weekly feeding of mice with a total of ~7g ripened
TOMAVAC (~5.4 pg antigen) bearing intact 61 kDa S1 protein
were sufficient for obtaining a primary immune response, which
was significantly boosted after the second dose feeding. Contrasting
results compared to Pogrebnyak et al. (30) could be due to
differences in source, size, sequence, quantity, and oral force-
feeding protocol used in our study.

The difference in the increase of NAbs between the TOMAVAC
and AstraZeneca groups was insignificant (p > 0.1; ANOVA),
demonstrating a similar level of induction of systemic immunity
via oral vaccination in our study. However, it is noteworthy to
mention that due to known evidence of absorptional losses of the
oral vaccines in the harsh gastrointestinal environment (13, 14) and
to achieve a better NAbs induction correlation between parenteral
and oral immunizations in mice, we used over a sixfold diluted dose
(16 x 10° infectious units) for AstraZeneca vaccine injection in
our study compared to what was used (1 x 10% infectious units)
by Silva-Cayetano (31).

The cause of the 24% observed decrease in NAbs level on
day 42 (relative to day 28) in the TOMAVAC group is unknown.
However, it could be due to calibration differences between sample
measurements, as we observed similar higher NAb indices (>5.8)
for both negative control groups on day 28 than on day 42 (<3.9).
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We also found nonsignificant differences in NAbs levels in the
TOMAVAC group after data normalization (4.6 on day 28 vs. 4.61
on day 42; Supplementary Table S7).

The neutralization activity of the induced NAbs is pivotal
against viral infection (32). Margolin et al. (19) reported that
immunization with tobacco-produced SARS-CoV-2 perfusion
spike trimer protein was less protective than mammalian cell
culture-derived protein in their animal (hamster) model. Our
in vitro neutralization experiment, based on antibody-mediated
blockage of the interaction between the angiotensin-converting
enzyme 2 (ACE2) receptor protein and the receptor-binding
domain (32), preliminarily suggested an insufficient level of
protective response of TOMAVAC against SARS-CoV-2, where
we have observed higher neutralization (30%—46%) in parenteral
vaccination control with AstraZeneca. This contrasting evidence
requires additional studies with TOMAVAC oral vaccination in
larger samples and longer durations, which is in progress. There is
also a need for an in vivo assay of vaccinated animal models and live
viruses for a better estimate of vaccine-induced protection against
SARS-CoV2 infection.

Mucosal immunity significantly contributes to the defense
against viral pathogens by providing a frontline barrier and
an effective immune response. Immunization via oral vaccine
administration, incorporating specific antigens, stimulates the
synthesis of secretory immunoglobulin A (IgA) on mucosal
surfaces (33, 34). Studies showed that oral immunization of mice
with lactic acid bacteria expressing the SARS-CoV-2 spike (S)
protein receptor-binding domain (RBD) S1 subunit increased the
fecal IgA levels 1.4-fold higher in the immunized mice than controls
after two boosting doses on day 22 (33). In our study, the level of
S-IgA in intestinal lavage fluid after two doses of vaccination was
23-fold higher than the standard diet control group on day 28 (p
< 0.0001; ANOVA). The high S-IgA levels in our study can be
explained by higher concentrations of S-IgA within the intestinal
mucosa than in feces.

Analysis of the antibody titer on day 56 revealed a decrease in
the level of S-IgA in the TOMAVAC group by 3.75-fold compared
to day 14 and in the AstraZeneca group by 2.4-fold. However, an
increase in the level of S-IgA on days 14 and 28 may indicate
the effectiveness of TOMAVAC against the penetration of viruses
through the mucous membrane. The tandem-repeat dimeric RBD-
based recombinant vaccine was revealed to be immunogenic,
protective, and safe in 3-injection (25 pg/dose) clinical trials in
humans (27, 35). There is, however, no evidence of edible amounts
of S1 antigen that remain intact and adequate for induction of the
immune response in the gastrointestinal tract [with 80% acidic and
20% enzymatic digestions (13)] of humans. Previous studies on
potatoes reported that three doses of 100g, containing a total of
1 mg of hepatitis virus B antigen (HBsAg), were partially effective.
In contrast, a parenteral vaccination with 40 jug/dose HBsAg caused
a sufficient immune response (14). However, there is a caution
about administering large quantities of oral vaccine, presumably
causing immune tolerance if the consumed antigen molecule does
not give sufficient pathogenic signals (13, 14). Here, a 3-day
consumption of TOMAVAGC, containing ~38.5 g [total ~116 g
vs. 75 g parenterally used for human vaccination (28)] plant-
expressed S1 antigen, was adequate to induce some NAbs in serum
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with a positive weekly increasing trend in volunteers vs. a negative
weekly decreasing trend in controls (Supplementary Figure S4C).
In two volunteers, we observed a decrease in day 7-induced NAbs
on days 14 and 21, which remains unclear. This may be due to
the personal immune system of volunteers, which requires further
study, e.g., parenteral immunization responses in these individuals
(36). It also remains unknown whether TOMAVAC protects
against currently spread Delta/Omicron variants. However, the
results justify future efforts to replace the plant-expressed S1
protein region with emerging VOCs, which are in progress in
our laboratory.

Limitations of the study

There are several limitations and demands for future studies,
including (a) selection and seed increase of the next generation
(Ty.5) stable self-pollinated genotypes with efficient antigen
synthesis in tomatoes (8, 12), (b) evaluation of the stability
and duration of storage/shelf life of synthesized S1 protein in
mature tomato fruits (8, 14), and (c) study of the influence of
gastrointestinal tract condition (13) on tomato-delivered S1 protein
to quantify and scale an optimal dosage amount [standardizing of
an antigen (14)] for safe consumption of TOMAVAC, inducing
efficient immunizations and sufficient protection (19) but not
generating immune tolerance (12, 13).

Future studies are needed to investigate possible alterations
in biochemical parameters, nutritional composition (such as
differences in nutritional content, taste, texture, or other quality
aspects), or physiological traits between transgenic and non-
transgenic plants to better understand any potential impacts of
S1 protein synthesis on plant performance. Future research is
also needed, including longitudinal studies with extended follow-
up periods, which are essential to comprehensively evaluating the
post-vaccination stage effects, the durability of immune responses,
and the vaccine’s ability to offer sustained protection against
COVID-19.

There is an opportunity to develop lyophilized (8, 14)
TOMAVAC-based capsules (5) with standardized edible doses
for safe delivery and enhanced immunogenicity (14), which
demand future investigations with the availability of higher-
generation stable transgenic tomato plants. These will help to
produce sufficient standardized TOMAVAC for conducting large-
scale human consumption clinical trials justifying (a) the efficiency
of protection against current and emerging COVID-19 infections
and (b) public perception and acceptance (12, 14), as well as proper
regulatory measures (20), which require future investigations
and investments.

Conclusion

Early evidence from small-scale proof-of-concept study results
promises an opportunity for performing inexpensive, eco-friendly,
and safe plant-based edible vaccine immunization programs
against COVID-19. This might offer longer-term, two-layered
protection that limits viral transmission and disease progression,
helping to secure global health.
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gut-immune harmony

Pengjun Zhou'!, Chunlan Chen'!, Sandip Patil*>* and
Shaowei Dong?*

!Department of Pharmacology, Guangdong Pharmaceutical University, Guangzhou, Guangdong,
China, 2Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen,
Guangdong, China, *Department of Pediatric Research, Shenzhen Children’s Hospital, Shenzhen,
Guangdong, China

The gut microbiota and immune system interaction play a crucial role in
maintaining overall health. Probiotics, prebiotics, and postbiotics have emerged
as promising therapeutic approaches to positively influence this complex
axis and enhance health outcomes. Probiotics, as live bacteria, promote the
growth of immune cells, shape immune responses, and maintain gut barrier
integrity. They modify the gut microbiota by fostering beneficial bacteria while
suppressing harmful ones. Additionally, probiotics interact with the immune
system, increasing immune cell activity and anti-inflammatory cytokine
production. Prebiotics, as indigestible fibers, selectively nourish beneficial
microorganisms in the gut, enhancing gut microbial diversity and activity. This,
in turn, improves gut health and boosts immune responses while controlling
inflammation through its immunomodulatory properties. Postbiotics, produced
during probiotic fermentation, such as short-chain fatty acids and antimicrobial
peptides, positively impact gut health and modulate immune responses.
Ensuring quality control and standardization will be essential for successful
clinical implementation of these interventions. Overall, understanding and
harnessing the gut microbiota-immune system interplay offer promising
avenues for improving digestive and immunological health.

KEYWORDS

microbiota, immune system, postbiotics, probiotics, metabolites

Introduction

The term “gut microbiota” refers to the vast and diverse population of microorganisms
that reside in the human digestive tract. Trillions of bacteria, viruses, fungi, and other creatures
make up this intricate ecology (1). Beyond digestion and food absorption, the gut microbiota
plays a pivotal role in supporting general health and well-being. The symbiotic relationship
between the gut microbiome and the immune system is crucial (2).

67 frontiersin.org
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Regulation of the immune system by
gut microbiota

Having a dynamic and bidirectional interaction between the gut
microbiota and the immune system is crucial for preserving
immunological homeostasis and protecting the body against
infections. This communication starts at a young age when microbial
populations begin to colonize the gut after birth. The gut microbiota
is in constant communication with the immune system, influencing
its maturation and performance as (3-6). Early life exposure to a wide
variety of gut microbes is crucial for the development of a healthy
immune system (7). Beneficial immunological responses to innocuous
items (such as food antigens) can be avoided thanks to the presence
of gut bacteria, which assist educate immune cells and promote the
establishment of immune tolerance. To avoid developing allergies or
auto-immune illnesses, this step is essential (8). The gut microbiota
communicates with immune cells, including T cells, B cells, and
dendritic cells, This
communication enhances the immune system’s ability to respond to

through various signaling pathways.
infections while maintaining tolerance for commensal bacteria and
dietary antigens. The gut microbiota exerts its regulatory influence on
the immune system through various mechanisms. One key
mechanism involves the production of metabolites, such as short-
chain fatty acids (SCFAs), by certain bacterial species. SCFAs have
been shown to modulate immune cell function and promote an anti-
inflammatory environment. Additionally, the gut microbiota plays a
crucial role in training and educating immune cells, particularly T
cells, to appropriately respond to antigens. This process is vital for
maintaining immune homeostasis and preventing excessive
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inflammation. These intricate interactions highlight the dynamic
relationship between gut microbiota and the immune system,
showcasing the pivotal role of the microbiome in immune regulation
(9). The microbiota in the stomach promotes gut health and
immunological balance by suppressing inflammation (10). The
intestinal barrier is the body’s first line of defense against foreign
infections and poisons; it is maintained in part by the gut flora. The
immune system is better able to monitor what’s happening in the
stomach when the gut barrier is working properly (11). Emerging
evidence suggests that the gut microbiota may influence immune
responses beyond the digestive system. This includes impacts on the
development of immune cells in the bone marrow and the induction
of immunological responses in distant organs, highlighting the need
to regulate systemic immune processes.

Immune dysregulation due to an
unbalanced microbiota in the gut

Inflammatory Bowel Disease (IBD), allergic manifestations,
obesity, and autoimmune pathologies can manifest or intensify due to
disruptions in the intricate equilibrium governing the interplay
between gut microbiota and the immune system (12). A fundamental
facet of human health lies in deciphering the nuanced relationship
between the microbiota within the digestive tract and the immune
system (13). To improve methods for influencing the composition of
gut microbiota and bolstering immune system performance, a
thorough comprehension of the interplay between these two systems
is essential. Interventions such as probiotics, prebiotics, and

frontiersin.org
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postbiotics are utilized to foster a healthy gut microbiota and strong
immune system (Figure 1). Therapeutic therapies targeting the
gut-immune axis may become possible as this area of study develops
further, opening up exciting new ways to improve human health (14).
Importance of maintaining a healthy gut microbiota; (A) The intricate
role of the gut microbiota in breaking down complex carbohydrates,
proteins, and lipids enhances the digestive process, facilitating the
absorption of essential nutrients. This microbial activity optimizes the
utilization of vitamins, minerals, and nutrients by the body (15). (B)
A diverse and thriving gut microbiota plays a pivotal role in
maintaining immunological homeostasis and educating the immune
system. This education minimizes the risk of allergic reactions and
autoimmune disorders by fostering the body’s familiarity with
harmless substances (16). (C) Beneficial gut bacteria act as a
formidable defense against infections, outcompeting pathogenic
microbes for resources and residing space in the digestive tract. A
healthy gut microbiota fortifies the immune system, enhancing its

10.3389/fnut.2024.1355542

ability to combat infections effectively. (D) Synthesis of short-chain
fatty acids (SCFAs) by select gut bacteria imparts anti-inflammatory
characteristics, contributing to gut health and reducing inflammation.
SCFAs offer diverse advantages, including improved metabolic health
and diminished inflammation. (E) The gut microbiota establishes a
direct communication channel with the brain through the gut-brain
axis. For instance, certain gut bacteria have been linked to the
production of neurotransmitters like serotonin, which plays a key role
in mood stabilization. Additionally, the microbiota’s ability to regulate
inflammation and immune responses in the gut-brain axis contributes
to overall mental well-being. (F) Disturbances in the gut microbiota
are associated with disorders of metabolism and obesity. Sustaining a
diverse and abundant gut microbiome may contribute to maintaining
a healthy weight and metabolic rate. (G) The gut microbiota actively
participates in regulating the intestinal barrier, preventing the entry
of potentially harmful compounds and mitigating inflammation. A
well-functioning intestinal barrier is paramount for immune function
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and overall gut health. (H) Dietary fiber undergoes fermentation in
the stomach, producing substances beneficial to health. This process,
driven by beneficial bacteria, further underscores the importance of a
healthy gut microbiota in dietary metabolism. (I) A balanced gut
microbiota is pivotal for inflammation regulation. Promoting
microbial balance can contribute to reducing systemic inflammation,
which is intricately linked to various chronic disorders. The gut
microbiota’s influence extends across digestion, immunity,
metabolism, mental health, and diverse physiological functions.
Prioritizing a lifestyle characterized by a balanced diet, regular
exercise, and stress reduction promotes a healthy gut microbiome,
fostering overall health. Adopting proactive measures, including a
balanced lifestyle, and leveraging interventions such as probiotics,
prebiotics, and postbiotics, can restore microbial balance and enhance
gut health. As research in this field advances, the burgeoning
understanding of the gut microbiome’s significance opens avenues for

novel treatment strategies to elevate human health (17-19).

Mechanisms and immune-boosting
effects of probiotics on the gut
microbiota

Probiotics, encompassing beneficial bacteria and certain types of
yeast, prove advantageous to the host organism when ingested in
sufficient quantities. Naturally occurring in fermented foods like
yoghurt, kefir, sauerkraut, and kimchi, or available in encapsulated
forms, probiotics exhibit crucial features for efficacy (20). Maintaining
viability is paramount, often achieved through freeze-drying or
encapsulation. While generally considered safe, individuals with
compromised immune systems should consult a healthcare
professional before probiotic supplement use. Negotiating the acidic
stomach environment is a challenge addressed by enteric-coated
capsules. Successful probiotics colonize the gut, attaching to the
intestinal lining, ensuring prolonged residence and fostering beneficial
interactions with the host (21). Their multifaceted benefits include
improved digestion, modulation of gut microbiota composition,
regulated immune response, reduced inflammation, and protection
against infections.

Probiotic action mechanisms

Probiotics orchestrate multifaceted mechanisms influencing the
gut microbiota and contributing to host well-being. Firstly, they
modulate the composition and diversity of the gut microbiota, actively
maintaining a harmonious microbial balance by outcompeting
pathogenic microbes for nutritional resources and habitation sites.
Secondly, probiotics exhibit a pivotal role in stimulating the
immunological system. Through intricate interactions with dendritic
cells and T cells in the gut-associated lymphoid tissue, probiotics play
a pivotal role in activating and modulating immunological responses.
This activation initiates a cascade of events, including the release of
cytokines, which serves to suppress inflammation-inducing factors
while concurrently enhancing those with anti-inflammatory
properties. These immunomodulatory effects contribute to the overall
immune-boosting properties of probiotics. Thirdly, probiotics play a
crucial role in fortifying the integrity of the gut epithelial barrier. By
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reducing permeability, they enhance the barrier’s resistance to
hazardous chemicals and potential infections, thereby contributing to
overall gut health. Fourthly, the production of bioactive compounds,
specifically short-chain fatty acids (SCFAs), stands out as a significant
action of probiotics. SCFAs, synthesized by probiotics, exert anti-
inflammatory effects and confer various health benefits. Finally,
probiotics showcase their preventive prowess by directly inhibiting the
development and activity of pathogenic bacteria and viruses in the
digestive tract. This inhibition contributes to illness prevention and
underscores the proactive role of probiotics in maintaining optimal
health. Described as “live microorganisms with well-defined
characteristics,” probiotics emerge as versatile agents enhancing host
health through their positive influence on the digestive system,
immune responses, and overall well-being. Integrating probiotics into
a balanced diet and active lifestyle proves instrumental in supporting
gut health and fine-tuning the intricate balance between beneficial and
harmful bacteria in the gastrointestinal tract, thereby offering a
holistic approach to health optimization (18, 19, 22). Probiotics play
a vital role in cultivating a healthy and diverse gut microbiota, as
depicted in Figure 2. Through various mechanisms, they influence the
composition and activity of gut microbes. Probiotics engage in
competitive exclusion, out-competing pathogenic microbes for
adhesion sites and nutrients to foster a balanced microbiota. Certain
bacteria in probiotics regulate stomach acidity, creating an inhospitable
environment for harmful germs (23). Additionally, probiotics produce
antimicrobial compounds, stimulate mucus production, and modulate
the immune system, enhancing anti-inflammatory responses. Some
probiotics operate akin to prebiotics, fostering the growth of beneficial
bacteria, while cross-feeding interactions influence the metabolic
activity of other microbes. Probiotics also regulate gut motility,
affecting the spread of bacteria in different gut regions. Strain-specific
effects, individual responses, and the duration of probiotic treatment
influence the extent of these alterations. In essence, probiotics’ ability
to shape gut microbial composition is pivotal for promoting gut
health, immunity, and overall well-being, with ongoing research
pointing toward personalized probiotic therapies for specific cases of
gut dysbiosis (24). Modulating immunological responses and
enhancing immune cell activity constitute pivotal roles played by
probiotics. Predominantly impacting the gut-associated lymphoid
tissue (GALT) and the gut epithelium, where a significant portion of
immune cells resides, probiotics exert profound influence on the
immune system. Key mechanisms through which probiotics shape
immunological responses and immune cell activity include.

Regulation of innate immune cells

Probiotics adeptly regulate innate immune cells like macrophages,
dendritic cells, and natural killer (NK) cells. This regulation enhances
the antimicrobial activity of these cells by stimulating the production
of cytokines, notably interleukin-12 (IL-12) and interferon-
gamma (IFN-).

Modulation of adaptive immunity

Demonstrating impact on adaptive immunity, probiotics influence
the activity of T cells and B cells. They foster the development of
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regulatory T cells (Tregs), pivotal for limiting immunological
responses. Additionally, probiotics boost mucosal immune responses,
encouraging B cells to produce more immunoglobulin A (IgA)
antibodies.

Anti-inflammatory effects

Probiotics exhibit anti-inflammatory effects by suppressing the
production of inflammatory cytokines, including tumor necrosis
factor-alpha (TNF-) and interleukin-6 (IL-6). This anti-inflammatory
action enhances immunological homeostasis, mitigating the risk of
inflammatory disorders.
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Preservation of gut epithelium barrier

Recognizing the crucial role of the gut epithelium barrier,
probiotics contribute to maintaining its integrity. A properly
functioning intestinal barrier reduces the workload on the immune
system, effectively preventing inflammation.

Induction of immunological tolerance
Probiotics facilitate the development of immunological tolerance,

aiding the immune system in distinguishing between harmless and
hazardous chemicals. This preventive measure reduces the likelihood
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of inappropriate immune responses to innocuous antigens and
promotes the formation of regulatory immune cells.

Enhancement of phagocytic activity

Probiotics have been observed to increase the phagocytic activity
of immune cells, particularly macrophages. This enhancement
empowers immune cells to efficiently engulf and destroy
invading pathogens.

Antiviral action

Certain probiotics exhibit antiviral properties by reducing virus
replication and influencing the body’s innate antiviral defenses.

Systemic impact via gut microbiota

The favorable effects of probiotics on gut microbiota have systemic
repercussions, influencing immunological responses throughout the
body. The intimate connection between gut health and overall
immune function underscores the broad-reaching impact of
probiotics on human health. (25-30).

Anti-inflammatory, immune-boosting, and response-boosting
effects may all be possible thanks to probiotics. Allergies, autoimmune
illnesses, and inflammatory bowel disorders are examples of situations
in which immunological dysregulation plays a significant role, making
these effects all the more important. It's worth noting, too, that
different probiotic strains and individuals’ preexisting immunological
statuses may produce different degrees of immune-modulatory effects
from probiotics. The use of probiotics as adjuvants to improve
immunological function and responsiveness in a variety of therapeutic
contexts is gaining popularity as research in this field continues to
advance (31-33).

Beneficial gut bacteria and
immunomodulation

Prebiotics are a type of indigestible fiber or substance that provides
nutrition for Beneficial gut bacteria in the digestive tract. Prebiotics
are not living organisms, unlike probiotics which are active microbes.
Instead, they are a functional diet that increases the population and
activity of Beneficial gut bacteria in the digestive tract: Beneficial gut
bacteria and the role of prebiotics in encouraging their growth:
Prebiotics, resistant to digestion in the upper gastrointestinal system,
reach the colon undigested, becoming substrates for fermentation by
beneficial microbes such as Lactobacilli and Bifidobacterial. This
fermentation yields short-chain fatty acids (SCFAs) like acetate,
propionate, and butyrate. Colonocytes lining the colon heavily rely on
SCFAs for energy, crucial for maintaining intestinal integrity.
Additionally, the acidified gut environment resulting from SCFA
generation inhibits the growth of harmful bacteria, fostering the
dominance of beneficial ones. Regular consumption of prebiotics
modulates the gut microbiome, promoting stability and diversity.
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Notably, prebiotics, particularly inulin and fructo-oligosaccharides
(FOS), selectively stimulate the growth of Bifidobacterial and
Lactobacilli, recognized as beneficial bacteria with various health-
promoting properties. This intricate interplay underscores the pivotal
role of prebiotics in shaping a resilient and balanced gut ecosystem.
Modulation:
immunomodulatory effects in addition to their role in supporting the

Prebiotics and Immune Prebiotics  have
development of beneficial gut flora. The gut microbiota’s interaction
with the gut-associated lymphoid tissue (GALT) and the host immune
system is a major mediator of these effects. Prebiotics have several

important impacts on the immune system, including (19, 21, 34).

1 Increased Mucosal Immunity: Prebiotics have been shown to
increase mucosal immunity by increasing IgA antibody
production. When it comes to keeping the gut mucosa safe
from dangerous bacteria and toxins, IgA is a key player.

In the gut-associated lymphoid tissue, prebiotics can regulate
the function of immune cells including T cells and dendritic
cells. They aid in keeping the immune system in check and
avoiding overactivation.

Effects on Inflammation Prebiotics improve intestinal barrier
function and encourage a more balanced immune response by
encouraging the development of beneficial bacteria.

Influence on Generalized Immune Responses Due to the strong
relationship between the stomach and the immune system.
Systemic impacts on immune responses may result from
prebiotics’ ability to alter the makeup of gut microbiota.

Prebiotics are important because they help keep the digestive tract
and immune system healthy. Consuming prebiotic-rich foods
regularly has been shown to improve gut microbiota and general
health. These foods include garlic, onions, bananas, asparagus, and
whole grains. Prebiotics are becoming increasingly popular as a
dietary approach to improve gut health and immune function as
research in this field continues to advance.

Key effects of prebiotics in modulating the immune system:

1 Involvement of gut-associated lymphoid tissue (GALT) in
immune system development and maturation is regulated by
prebiotics, which promotes the growth of beneficial gut
bacteria like Bifidobacterial and Lactobacilli. Peyer’s patches
and lymphoid follicles are examples of GALT structures that
play a crucial role in immune monitoring and the initiation of
immunological responses.

Dendritic cells, macrophages, and T cells, all members of the
immune system, can have their activity in the GALT modulated
by prebiotics. Interleukin-10 (IL-10) and other anti-
inflammatory cytokines are produced in response, which aids
in controlling immune responses and limiting inflammation.
Prebiotics promote mucosal immunity by promoting the
development of immunoglobulin A (IgA) antibodies in the
intestine. IgA is essential because it prevents infections and
toxins from damaging the gut mucosa by binding to them.
Prebiotics assist decrease intestinal inflammation by increasing
the population of beneficial bacteria and strengthening the
intestinal barrier. Gut inflammation and immunological
reactions can be avoided with a healthy gut microbiota and a
well-functioning gut barrier.
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5 Because of the intimate relationship between the gut and the
immune system, prebiotics’ ability to alter the composition of
the gut microbiota can have far-reaching consequences for
immune function. This has the potential to result in a more
stable and controlled immunological response.

Autoimmune illnesses, metabolic  problems, and
gastrointestinal issues are only some of the diseases and
ailments that may be avoided by avoiding chronic inflammation

(35, 36).

By encouraging a gut environment less favorable to the growth of
pro-inflammatory bacteria, prebiotics can aid in the prevention of
chronic inflammation.

Bioactive by-products of probiotics
(postbiotics)

Postbiotics are the bioactive chemicals or metabolites that
probiotic bacteria create following fermentation or interaction with
the gut microbiota. Postbiotics are the metabolic by-products of
probiotic activity, as opposed to probiotics, which are living
microorganisms, and prebiotics, which are non-digestible fibers that
encourage the growth of good gut bacteria. These bioactive substances
improve the health of the host in several ways. Due to their wide range
of biological activity, postbiotics have recently garnered interest as
possible therapeutic agents (35).

A Few Postbiotic Examples:

1 One of the most well-known and well-investigated postbiotics
is short-chain fatty acids (SCFAs). Beneficial bacteria, such as
Bifidobacterial and Lactobacilli, ferment prebiotic fiber and
dietary fiber to generate probiotics. Acetic acid, propionate,
and butyrate are the most common SCFAs. SCFAs are essential
for gut health because they fuel colonocytes, improve the
integrity of the gut barrier, and control immunological
responses. In addition to their anti-inflammatory qualities,
they also help prevent gastrointestinal problems and several
types of metabolic ailments.

Certain probiotic bacteria, such as Lactobacillus and
Bifidobacterium species, generate bacteriocins, which are
antimicrobial peptides. Inhibiting the growth of pathogenic
microbes and helping to keep a healthy gut microbiota are two
of the many benefits of these peptides’ antimicrobial action.
Complex carbohydrates known as exopolysaccharides (EPS)
are produced by probiotic bacteria. They operate similarly to
prebiotics and can promote the development of good gut flora.
EPS can improve the gut’s barrier function and also have
immunomodulatory effects.

Fermentation of carbohydrates by probiotic bacteria results in
the production of organic acids including lactic acid and acetic
acid. These organic acids help maintain an acidic gut
environment, which discourages the development of harmful
bacteria while encouraging the expansion of helpful ones.
Among the many components of bacterial cell walls are
peptidoglycans, the breakdown products of which can have
immunomodulatory effects on the host immune system.
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6 Secretory factors: Probiotic bacteria can impact host
immunological responses, gut barrier function, and other
physiological processes by the secretion of a wide variety of
bioactive chemicals and molecules (36-40).

There has been a lot of discussion about postbiotics recently in the
context of therapeutic therapies for gut health. They have the potential
to be superior to probiotics in several ways, including being more
stable, easily stored, and administered, and requiring no active
microbes. More study is required, however, before postbiotics can
be effectively used to treat a wide range of health issues. With their
wide range of biological effects, postbiotics help maintain healthy gut
microbiota and keep the immune system in check. Probiotic bacteria
create these bioactive compounds during fermentation or in response
to the gut microbiota and environment. Consider the following effects
of postbiotics on the gut microbiota and immune regulation
Postbiotics like short-chain fatty acids (SCFAs) and exopolysaccharides
(EPS) can provide food for beneficial bacteria.

1 In the gut, such as Lactobacilli and Bifidobacterial. Postbiotics
boost the development and activity of these bacteria by
providing them with favorable habitats and nutrients,
increasing their dominance in the gut microbiota. This
increases the diversity and stability of the microbiome in the
digestive tract, which is beneficial to both digestive health and
general health.

Some postbiotics, such as bacteriocins and organic acids, have
antibacterial capabilities that can impede the development and
spread of dangerous pathogenic microorganisms in the
digestive tract. Postbiotics aid in keeping the gut healthy by
decreasing the population of harmful microbes, which helps to
ward against infections and disorders that originate in the
digestive tract. Postbiotics, such as SCFAs and EPS, have been
demonstrated to improve intestinal permeability. To prevent
dangerous compounds and germs from crossing from the gut
lumen into circulation, they can fortify the tight junctions
between intestinal epithelial cells. To prevent inflammation and
keep the immune system balanced, a strong intestinal barrier
is necessary.

The immune system can be modulated by postbiotics because
of their direct interaction with immune cells in the
gut-associated lymphoid tissue (GALT). SCFAs, for instance,
might boost the production of anti-inflammatory cytokines
like interleukin-10 (IL-10) and encourage the formation of
regulatory T cells (Tregs). This results in a more normal
immune response, which in turn decreases inflammation and
protects against autoimmune diseases.

Tolerance Induction: Postbiotics can help the immune system
learn to distinguish between innocuous and hazardous
chemicals, a process known as immunological tolerance.
Postbiotics aid in preventing inappropriate immune responses
to innocuous antigens and allergens by instructing the immune
system and encouraging the growth of regulatory immune cells.
Many postbiotics, including short-chain fatty acids (SCFAs)
and peptidoglycans, have anti-inflammatory effects. They can
regulate the activity of inflammatory immune cells and reduce
the production of inflammatory cytokines. This anti-
inflammatory impact is critical for protecting against chronic

frontiersin.org


https://doi.org/10.3389/fnut.2024.1355542
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Zhou et al.

inflammation and keeping the gut in good working order. (29,
30, 36, 38-40).

By increasing the population of helpful gut bacteria while
decreasing the population of pathogenic bacteria, bolstering the
function of the gut barrier, and regulating immunological responses,
postbiotics help maintain a healthy gut microbiota and regulate the
immune system. Potential advantages for gut health, immunological
function, and general well-being have been linked to the use of
postbiotics in the form of probiotic-rich meals or postbiotic
supplements. The exact mechanisms of action and the ideal doses for
obtaining the intended health results require more study (21).

Gut-immune system modulation for
targeted therapeutic interventions

In the last several years, there has been a lot of research into
immune-related illnesses, metabolic problems, and gastrointestinal
issues. These bioactive compounds have therapeutic potential for
improving health outcomes in a variety of particular health disorders
by influencing gut microbiota and the immune system (29-31, 39, 40).

1 Digestive Problems

a Bloating, stomach discomfort, and constipation are all signs
of irritable bowel syndrome (IBS), and probiotics have been
investigated for their ability to alleviate these conditions.
Inflammation can be reduced and gut barrier function can
be restored in IBS patients by taking certain probiotic strains
like Bifidobacterium infantis and Lactobacillus plantarum.

b Both probiotics and postbiotics have demonstrated positive
results in the treatment of inflammatory bowel disease (IBD).
Disease severity and remission rates in people with ulcerative
colitis and Crohn’s disease have been linked to the use of
certain probiotics, such as Saccharomyces boulardii and
Bifidobacterium breve. The anti-inflammatory effects of
postbiotics, especially short-chain fatty acids, are important
in the regulation of inflammatory bowel disease (IBD)
symptoms.

2 Disorders of Metabolism

a Inulin and oligofructose are two examples of prebiotics that
have been investigated for their possible role in alleviating
obesity and its associated metabolic abnormalities. In turn,
the SCFAs produced by these Beneficial gut bacteria affect
energy metabolism and adipose tissue function. Weight loss
and enhancement of metabolic indicators in obese people
have also been linked to the use of probiotics such as
Lactobacillus rhamnosus and Bifidobacterium lactis.

b Glycemic management and insulin sensitivity in people with
type 2 diabetes have been studied as a possible benefit of
probiotics and prebiotics. These bioactive compounds
improve glucose metabolism and decrease inflammation in
diabetes patients by altering the makeup and function of the
gut microbiota.

3 Disorders of the immune system

a It has been investigated whether or not probiotics and

prebiotics can mitigate allergy diseases including eczema and
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rhinitis. They are essential in the regulation of the balance
between Thl and Th2 immune responses, which are
responsible for the development of allergic disorders.

b Evidence is mounting that probiotics and prebiotics may
be useful in controlling autoimmune illnesses including
rheumatoid arthritis and multiple sclerosis by altering the
composition of the gut flora. These bioactive compounds
affect immunological dysregulation and might reduce
autoimmune reactions.

4 Disabilities of the Mind

New evidence suggests the gut-brain axis is important for
psychological well-being. The potential of probiotics and prebiotics to
boost mood and alleviate stress and depression has been studied.
These bioactive chemicals have the potential to alter the gut microbiota
and increase the production of neuroactive molecules, both of which
have the potential to improve mental health.

Individual differences in gut microbiota composition and immune
responses must be taken into account, as must the kind and quantity
of bioactive compounds like probiotics, prebiotics, and postbiotics
when they are used to treat specific health disorders. To further
understand the mechanisms of action and improve their usage for
therapeutic therapies targeting certain disorders, more research and
well-planned clinical trials are required.

Insights into the mechanisms of the
gut-brain connection

The gut-brain axis, a complex communication network involving
the gastrointestinal tract, its microbiota, and the central nervous
system, plays a pivotal role in influencing various physiological
processes and health outcomes. Trillions of microorganisms in the gut
microbiota produce neurotransmitters, short-chain fatty acids, and
other bioactive compounds that impact central nervous system and
brain function, influencing mood, emotions, and cognitive
performance (1). The gut-brain axis relies on intricate signaling
pathways, including neurological, immunological, and endocrine
mechanisms, with the vagus nerve serving as a crucial conduit for
bidirectional communication between the digestive tract and the
central nervous system (2). The gut-associated lymphoid tissue
(GALT), a significant component of the immune system in the
intestinal lining, interacts with gut bacteria and modulates immune
responses, affecting brain function either directly or indirectly through
systemic inflammation (3). Dysregulations in the gut-brain axis have
been associated with stress reactions, mood disorders, cognitive
performance alterations, and various diseases such as gastrointestinal,
metabolic, and neurodegenerative conditions (4). Understanding the
implications of the gut-brain axis has opened avenues for potential
interventions, including probiotics, prebiotics, and postbiotics, offering
novel strategies for enhancing mental health (5). Lifestyle factors like
dietary choices and stress management also influence the gut-brain
axis, providing additional avenues for promoting brain health. In
conclusion, the dynamic interplay between the gut microbiota,
immune system, and the brain within the gut-brain axis underscores
its significance in health and disease, offering valuable insights for
innovative treatments and holistic health improvement (19, 32, 41-43).
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Positive effects on mental and
neurological health due to probiotics,
prebiotics, and postbiotics

Psychobiotics, encompassing probiotics, prebiotics, and
postbiotics, have emerged as promising agents that may influence
mental health and wellness through the intricate gut-brain axis.
Supported by a body of studies (19, 32, 41-43), psychobiotics have
been shown to modulate the gut microbiota, stimulate the
development of beneficial bacteria, and alleviate conditions linked to
gut dysbiosis, such as depression and anxiety. Through the synthesis
of neurotransmitters like serotonin, gamma-aminobutyric acid, and
dopamine, psychobiotics contribute to mood regulation and stress
response, potentially alleviating depressive and anxious feelings.
Furthermore, their interaction with the immune system helps prevent
neuroinflammation and neurodegenerative disorders. Psychobiotics
impact the hypothalamic-pituitary-adrenal (HPA) axis, reducing
stress hormone levels and promoting mental well-being. Through the
gut-brain axis, they send signals that influence brain activity, mental
performance, and emotional reactions. Psychobiotics may enhance
synaptic plasticity, neurotrophic factor production, and maintain the
blood-brain barrier’s integrity, positively impacting learning, memory
retention, and brain health. Additionally, they exhibit anti-
inflammatory effects, potentially guarding against neurodegenerative
diseases and mood disorders linked to neuroinflammation. While
further research is needed to fully understand their mechanisms and
individual responses, psychobiotics hold promise as supportive or
adjunctive therapies for various mental health issues, reflecting their
potential to contribute to both brain health and emotional stability
(41-43).

Implications for clinical practice and
the future

The potential therapeutic uses of probiotics, prebiotics, and
postbiotics have garnered a lot of attention in the healthcare
profession. Studies on the positive benefits of these bioactive
compounds on gut health, immunological function, and general well-
being have shown promise in a variety of clinical contexts (Figure 3).
Listed below are some of today’s most promising clinical uses of
probiotics, prebiotics, and postbiotics in medicine (36-40):

1 Digestive Problems

Irritable bowel syndrome (IBS), inflammatory bowel disease
(IBD), and infectious diarrhea are all gastrointestinal conditions for
which probiotics have been the subject of substantial research. They
have been shown to alleviate symptoms and enhance gut health by
restoring the natural balance of gut bacteria, decreasing inflammation,
and strengthening the gut barrier.

2 Help Your Immune System

The potential immunomodulatory effects of probiotics and
prebiotics have been studied. Increased immune cell activity, increased
synthesis of anti-inflammatory cytokines, and strengthened
immunological responses are all possible results of their use.
Therefore, they may aid in immune system development and decrease
the likelihood of infection.

3 Wellness for Women
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Vaginal infections including bacterial vaginosis and yeast
infections are common among women, and probiotics have shown
promise in preventing and treating these conditions. Probiotics can
keep your vagina healthy and cut down on the frequency of infections
by reestablishing the natural balance of bacteria there.

4 Diseases of the immune system

There has been research on the potential of probiotics for allergy
prevention and management, especially in young children. Inhibiting
allergy reactions by modulating immunological responses and
fostering immune tolerance may be one of their effects.

5 Concerning the Mind

Probiotics and prebiotics are being studied for their potential to
improve mental health issues like depression, anxiety, and stress. They
may create neuroactive chemicals that affect mood and emotional
well-being, and hence modify the gut-brain axis.

Future possibilities and possible
improvements

To treat particular health disorders and precisely control the gut
microbiota, microbiome-based medicines, such as genetically
modified probiotics and postbiotics, may be developed in the future,
thanks to recent developments in the field of microbiome research.
Research into postbiotics and the bioactive metabolites they produce
may lead to novel therapeutic uses and offer viable alternatives to live
probiotics. It's possible that postbiotics might be more suited for
pharmaceutical formulations due to their increased stability and shelf
life. Profiling the microbiota in a persons gut using cutting-edge
technology may allow for more in-depth and precise evaluations of
gut microbiota composition. This will allow for the development of
probiotic and prebiotic therapies that are uniquely suited to each
person’s microbiome (43, 44).

The gut microbiota is extremely personalized, and people’s
reactions to probiotics, prebiotics, and postbiotics can vary widely.

1 In-depth profiling and analysis may be necessary to determine
which actions will be most beneficial for each individual.

2 Despite widespread assurances of the safety of probiotics,
prebiotics, and postbiotics, some people, particularly those
with weakened immune systems or preexisting diseases, may
be at risk. It is essential to ensure that tailored therapies are safe
and well tolerated.

3 The genuine efficacy and sustainability of probiotics, prebiotics,
and postbiotics in personalized medicine require a thorough
evaluation of their long-term impact on health outcomes.

4 There is the problem of quality assurance and regulation, which
arises since tailored probiotic and prebiotic therapies may
be classified as medications or medical devices. It is crucial to
do thorough quality checks, adhere to industry standards, and
conduct risk assessments.

5 Cost and Availability: There are ethical concerns about fair
access to such therapies if the widespread implementation of
tailored probiotic and prebiotic therapy is prohibitively
expensive.

6 Data Privacy and Security: Protecting individuals’ personal
information is essential while collecting and analyzing
(45-53) massive volumes of microbiome data for targeted
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therapies. In conclusion, the discipline of personalized
medicine shows significant potential for enhancing health
outcomes and disease management based on an individual’s
unique gut microbiome composition through the use of
probiotics, prebiotics, and postbiotics. To fully realize the
potential of these treatments for customized healthcare,
however, it is necessary to solve obstacles relating to

Frontiers in Nutrition 76

individual variability, safety, efficacy, regulatory concerns,
and accessibility. It will be essential to continue research,
develop new technologies, and foster cooperation among
academics, healthcare providers, and policymakers to move
the

therapies into feasible and successful personalized

field forward and transform microbiome-based

medicine methods.
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Conclusion

Potential therapeutic advantages in a wide range of health
disorders may be attained by the use of probiotics, prebiotics, and
postbiotics, all of which modulate the gut microbiota-immune system
axis. New possibilities for personalized therapy and therapies based
on the microbiome have emerged as a result of our better knowledge
of this complex interaction. As it affects immune function, nutritional
absorption, metabolism, and even mental health, a healthy gut
microbiota must be maintained for maximum health. Beneficial
probiotic bacteria can alter the makeup of gut microbes and help keep
the immune system in check. On the other side, prebiotics feed
Beneficial gut bacteria in the stomach, encouraging their proliferation
and activity. Beneficial benefits on gut health and immunological
function have also been shown for postbiotics, which are bioactive
molecules produced from probiotics. Probiotics have demonstrated
positive results in treating a variety of diseases and illnesses, including
those affecting the digestive system, the immune system, the nervous
system, and the metabolism. They have therapeutic promise due to
their capacity to regulate immunological responses and promote
healthy gut barrier function. Research into prebiotics has focused on
their potential to modulate the immune system, to improve gut health
and immunological function. The study of how changes in the gut
microbiota affect the immune system is an exciting new topic with
plenty of potentials. The individual variability, safety, efficacy, and
cost-effectiveness of probiotics, prebiotics, and postbiotics used in a
tailored manner must be carefully considered. Integrating
interventions into clinical practice relies heavily on ensuring their
quality is controlled and standardized. Future innovations may involve
the creation of synthetic prebiotics and targeted probiotics that are
specifically designed for an individual’s gut microbiota. The accuracy
of tailored therapies will increase as technology improves microbiome
profiling methods. The probiotics, prebiotics, and postbiotics’ ability
to alter the composition of gut microbiota and the immune system
hold great promise as a new medical frontier. Personalized medicine
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Allergic diseases in children are major public health concerns due to their
widespread and rising prevalence. Food-specific immunoglobulin G4(FS-1gG4)
has been detected in patients with allergic diseases, but its clinical significance is
still debated. In the present study, 407 children with allergic diseases were
recruited and categorized into three groups according to the different systems
involved: the respiratory system group, the skin system group, and a multiple
system group, with the collection of clinical symptoms and serum antibodies,
including total immunoglobulin E (IgE), house dust mite (HDM) IgE, food-specific
IgE (FS-IgE), and FS-1gG4. Part of these patients were followed up with the
intervention of FS-1gG4-quided diet elimination with or without add-on
probiotics supplement. The analysis at baseline revealed distinct serum levels
of different antibodies. The positive rate of FS-1gG4 in all groups was more than
80%, and the proportion of total IgE and FS-IgG4 both positive in the multi-
system group was the highest (p=0.039). Egg and milk were the foods with the
highest positive rate of FS-1gG4 in all groups. After diet elimination for more than
3 months, serum FS-1gG4 in children significantly decreased (P<0.05) along with
the improvement of clinical symptoms, regardless of the add-on of probiotics.
However, the intervention did not impact the serum levels of total IgE, FS-IgE,
and HDM IgE. There was no further decrease of serum FS-1gG4 level in children
followed up for more than 1 year, which may be related to noncompliance with
diet elimination. Multivariate regression analysis revealed that the decline of
serum FS-1gG4 was an independent predictable factor for the improvement of
clinical symptoms (adjusted OR:1.412,95%CI 1.017-1.96, p=0.039). The add-on
of probiotics showed less efficiency in reducing the FS-1gG4 level in more
patients with relief of clinical symptoms. Our results confirmed the correlation
between FS-IgG4 and allergic diseases, and the decreased FS-1gG4 could be a
useful predictor for the improvement of allergic symptoms. FS-1gG4-guided diet
elimination is an efficient treatment for allergic diseases. Our study adds solid
data to the clinical significance of FS-1gG4 in allergic diseases.
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Introduction

Allergic diseases have become some of the most prevalent
chronic conditions affecting children worldwide. The prevalence
of allergic diseases in children has increased dramatically over the
past thirty years, as evidenced by three-phase surveys conducted by
the International Study of Asthma and Allergies in Childhood
(ISAAC) (1, 2). Pediatric allergies in China have also become a
rising burden alongside rapid economic development and
urbanization (3). Consequently, the prevention and intervention
of pediatric allergies present a significant challenge for clinical
practitioners. Management of allergic diseases extends beyond
medication, with considerations such as food management
proving to be crucial.

In the typical atopic march, atopic dermatitis (AD) often serves
as the initial manifestation of allergy in infancy, followed by
staggered occurrences of food allergy, allergic rhinitis, and allergic
asthma (4). Food allergy is defined as an adverse immune response
to food proteins and represents a spectrum of clinicopathologic
manifestations, including gastrointestinal disturbances, hives,
eczema, and airway inflammation, ranging in severity from mild
to life-threatening (5). It can be categorized into three types:
immunoglobulin E (IgE) mediated, non-IgE mediated, or mixed
(6). IgE-mediated food allergy is typically characterized by exposure
to very small amounts of allergic foods triggering clinical symptoms
within minutes to hours after ingestion (5, 7). In contrast, non-IgE
mediated food allergy has a delayed onset of symptoms, often
presenting chronically, making the association with the specific
allergens obscure and challenging to diagnose (7). Manifestations
primarily include skin reactions (such as AD, contact dermatitis,
and herpetiformis), respiratory reactions (such as Heinner
syndrome), or gastrointestinal reactions such as eosinophilic
esophagitis (EOE) (8). Mixed food allergies involve both IgE-
dependent and IgE-independent pathways.

Apparently, IgE-mediated food allergies are widely recognized
and feared by those affected. It is generally accepted that food can
induce various forms of allergic reactions, from urticaria to asthma
and, in urgent conditions, anaphylaxis, through specific IgE-
mediated mast cell degranulation. Therefore, food-specific IgE
(FS-IgE) is conventionally used as a clinical screening test for
food allergy or food-related reactions. In fact, mast cell
degranulation can also be activated via immunoglobulin G (IgG).
Apart from FceRI, mast cells and basophils in humans and mice
also express Fcy receptors (FcyRs) that bind to IgG antibodies.
These IgG antibodies have been shown to activate mast cells even
before the discovery of IgE (9). Compared to IgE, IgG antibodies are
more complex in structure and biology, and they have four
subclasses: IgG1, 1gG2, IgG3, and IgG4 (10). Among these, food-
specific IgG4 (FS-IgG4) has been considered a potential clinical
indicator for allergic symptoms (11).

The detection of FS-IgG4 appeared in the 1970s (12) and was
soon applied in clinical work. However, the significance of IgG4 in
allergic diseases is still controversial. It was not recommended for the
diagnosis of food allergy in the most influential guidelines on food
allergy, including those from the European Academy of Allergy and
Clinical Immunology (EAACI) (13), the National Institute of Allergy
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and Infectious Diseases (NIAID) (14) and the American Academy of
Allergy and Immunology Position Statement (AAAI) (15). These
opposing opinions have clearly hindered the development of its
application in clinical work until the studies on EOE changed the
perception. Subsequent evidence has shown that FS-IgG4 is closely
correlated with allergic diseases, including allergic rhinitis, asthma,
atopic dermatitis, and chronic rhinosinusitis (16-19).

In the current study, we conducted a retrospective cross-
sectional analysis utilizing data obtained from allergic patients
aged 0-14 years. We assessed the positivity rates of total IgE,
house dust mite (HDM) IgE, FS-IgE, and FS-IgG4 in various
allergic systemic diseases. Furthermore, we identified and selected
patients who underwent treatment involving FS-IgG4-guided diet
elimination, with or without probiotics, for a duration exceeding 3
months and compared changes in clinical symptoms before and
after treatment. Our investigation delves into pivotal questions,
probing the relationships between FS-IgG4 and allergic diseases,
and shedding light on the role of FS-IgG4 in allergic symptoms. The
implementation of diet elimination guided by FS-IgG4 holds
significant clinical relevance for controlling allergic symptoms in
children. This study not only resolves existing uncertainties
regarding FS-IgG4 but also provides novel clinical evidence for
future research on its immunological mechanisms.

Methods
Study design and patients’ selection

This retrospective observational study aimed to evaluate the
clinical significance of serum total IgE, HDM IgE, FS-IgE, and FS-
IgG4 antibodies in the treatment of allergic diseases in children.
Electronic medical records (EMR) of all patients with allergy
diseases treated at the Department of Allergy, the Second
Affiliated Hospital of Zhejiang University School of Medicine
from January 2018 to December 2020 were collected and
evaluated. The inclusion criteria were children aged 0-14 years
who fulfilled the ARIA guideline for allergic rhinitis and/or GINA
guideline for asthma (20, 21), the International Consensus (ICON)
guideline for conjunctivitis (22), the EAACI/GA2 LEN/EDF/
WAO guideline for urticaria (23), the diagnostic criteria by
Hannifin and Rajka for atopic dermatitis (24), and with the data
of serum total IgE, HDM IgE, FS-IgE, and FS-IgG4 tested
simultaneously. Patients with autoimmune diseases were
excluded. Ultimately, 407 patients were recruited for the analysis.
Among them, 67 patients underwent dietary elimination guided by
FS-I1gG4 and supplemented with/without probiotics. After more
than 3 months of treatment, serum total IgE, HDM IgE, FS-IgE, and
FS-1gG4 were retested, and clinical manifestations were reevaluated.
The study flowchart is shown in Figure 1.

Study groups

According to the system affected, patients were categorized into
three groups: the group with involvement of the respiratory system
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characteristics and laboratory tests among the three groups. and logistic regression was used to analyze the
independent predictor factors of allergic diseases.
FIGURE 1

Flow chart of study participants. *Patients who were FS-1gG4 positive at initial diagnosis and had follow-up records for more than 3 months of

treatment were selected.

(including rhinitis, asthma, and conjunctivitis), the group with
involvement of the skin system (including urticaria and atopic
dermatitis), and the group with multiple systems involvement
(those with a combination of symptoms from different systems).
Furthermore, patients with a follow-up history were divided into
two groups based on their treatment regimen: those who underwent
FS-1gG4-guided diet elimination for more than 3 months were
assigned to the dietary elimination group, and those who underwent
diet elimination combined with probiotic were assigned to the
probiotic group.

Study variables and laboratory testing

Clinical characteristics and demographic profiles were obtained
from the hospital’s EMR system. Peripheral blood samples were
taken from patients at the time of the initial presentation and
during treatment according to the patients’ condition.
All laboratory tests were carried out in our hospital
laboratory. Serum total IgE was measured by colloidal gold
immunochromatography (Siemens Healthcare Diagnostics
Products Limited, United Kingdom), HDM IgE and fifteen
species of FS-IgE, including egg, milk, beef, crab, shrimp,
cashews, mangoes, lamb, shellfish, lobster/scallops, cod, salmon,
peanuts, beans, and pineapple, were detected by immunoblotting
(Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd,
China). All of these were expressed in international units per unit
volume (IU/ml). Levels of total IgE value>100IU/ml, HDM IgE and
FS-IgE value>0.35 IU/ml were considered positive. Ten species of
FS-IgG4, including cod, egg, milk, beef, shrimp, soy, wheat, chicken,
crab, and mushroom, were determined by enzyme-linked
immunosorbent assay (Hangzhou Zheda Dixun Biological Gene
Engineering Co., Ltd, China). The concentration of FS-IgG4 was
divided into 4 grades: negative (-, <250 U/ml), weakly positive
(+,250-500U/ml), positive (++,500-1000U/ml), strong positive (++
+,>1000U/ml).
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Diet elimination and probiotic supplement

Sixty-seven patients underwent diet elimination based on the
result of FS-IgG4. Foods determined as ++ or +++ were completely
forbidden to eat, and + foods were reduced in frequency of intake
(eating the food at an interval of more than 4 days). Among them,
36 of the patients were supplemented with probiotics in addition to
dietary elimination. The viable bacteria were composed of
Lactobacillus paracasei LP33, Lactobacillus fermentum GMO090
and Lactobacillus acidophilus GMNL-185 (GenMont Biotec Inc.).
The above treatment time was required to last more than 3 months.

Outcome measure

Demographic data, serum level of total IgE, HDM IgE, FS-IgE,
and FS-IgG4 from the three groups involving different systems were
analyzed initially and at follow-up visits after varying periods of
intervention (3-6 months, 6-9 months, 9-12 months, or over 12
months) with diet elimination, with/without probiotic
supplementation. Laboratory-related indicators, such as total IgE
and HDM IgE, were numerically compared. Due to the low positive
frequency of FS-IgE, only the overall positive rate was used for
statistical comparison. For FS-IgG4, the test data may exceed the kit
reference range. The intervention of diet elimination or probiotic
supplement caused distinct changes in different FS-IgG4; for
example, one may decrease, but another may increase. Therefore,
we designed a point system for statistical testing. We used 1 point to
stand for one kind of elevated FS-IgG4, so patients’ FS-IgG4 status
was scored according to the number of foods with positive FS-IgG4.
The total was then used to compare the difference between pre- and
post-intervention. The same scoring method was applied to FS-IgE
changes before and after treatment. Furthermore, the improvement
of clinical symptoms was classified based on the subjective feelings
of patients before and after treatment by comparing the numbers in
the dietary elimination and probiotic group showing significant
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improvement (‘better ‘or ‘excellent’), and those with no significant
change (‘slightly worse , ‘no change’, or ‘slightly better’). Finally, we
explored independent factors influencing the clinical manifestations
of allergic diseases through regression analysis.

Statistical analysis

For all patients, continuous data following a normal distribution
were expressed as mean * standard deviation and compared using
single-factor analysis of variance (ANOVA). Non-normally
distributed data were expressed as median (interquartile range)
and compared using the Kruskal-Wallis test. Categorical variables
were expressed as frequencies (percentages) and compared using
the Chi-square or Fisher’s exact test. For patients before and after
treatment, the paired t-test was used for normally distributed data,
and the Wilcoxon signed-rank test was used for non-normally
distributed data. The Student’s t-test was employed to compare
normally distributed data, while the Mann-Whitney U test was used
for non-normally distributed data between the two treatment
groups. Logistic regression analysis was conducted to determine
whether the changes in total IgE, HDM IgE, FS-IgE, and FS-IgG4
before and after treatment were independent predictors for
improvement of allergic diseases in children. Variables with an
adjusted p value<0.1 in the univariate analysis were subsequently
evaluated using a multivariate logistic regression model. A p-
value <0.05 was the criterion for statistical significance in this
analysis. Statistical analysis of all data was performed using SPSS
26.0 (IBM Corp.) and GraphPad Prism 8.0.1.

TABLE 1 Clinical and demographic characteristics of the study population.

Characteristics

10.3389/fimmu.2024.1281741

Results
Demographic characteristics

A total of 407 patients, with an average age of 7.2 + 3.6 years
(range 8 months to 14 years), were recruited and divided into three
groups as following: 141 patients in the group with respiratory
system involvement, 124 in the skin system group and 142 in the
group with multiple systems involved. The baseline characteristics
of the three groups are shown in Table 1. There were no significant
differences in gender, age, family history of allergy, or birth history
among the three groups (p> 0.05). Patients with multiple system
allergies had the highest serum total IgE level (p < 0.05), and the
lowest level of HDM IgE was observed in patients of the skin system
(p < 0.01). The positive rate of FS-IgE was only about 30%, and
there was no significant difference among the three groups.
However, the positive rate of FS-IgG4 was more than 80 percent,
and no significant difference among the three groups was found.

The difference in total/FS-IgE and FS-IgG4
positive rates among the three groups

In the three groups, we measured the proportion of patients
who were positive for both total/FS-IgE and FS-IgG4, positive for
total/FS-IgE but negative for FS-IgG4, negative for total/FS-IgE but
positive for FS-IgG4, and negative for both. From the distribution of
each group, the proportion of patients with both total IgE and FS-
IgG4 positive was the highest, and the proportion of both negative

Respiratory system group

Skin system group

Multiple system group

Patients, n 141 124 142
Age (years), Mean + SD 7.4 +35 6.7 +39 73+33 0.093
Gender, n (%)
Male 97 (68.8) 97 (68.8) 83 (58.5) 0.065
Female 44 (31.2) 55 (44.4) 55 (44.4)
Mode of birth, n (%)
Maternity leave 74 (52.5) 77 (62.1) 78 (54.9) 0.194
Cesarean 60 (42.6) 45 (36.3) 56 (39.4)
Premature delivery 7 (5.0) 2 (1.6) 8 (5.6)
Family history of allergy, n (%)
Yes 54 (38.3) 48 (38.7) 59 (41.5) 0.833
NO 87 (61.7) 76 (61.3) 83 (58.5)
Total IgE (IU/ml), Median (Q1-Q3) 185.0 (68.13-480.5) 126.0 (49.7-328.0) * 204.0 (78.8-549.0) * 0.033*
HDM IgE (IU/ml), Median (Q1-Q3) 2.75 (0.34-9.05) 0.34 (0.25-1.98) 2.2 (0.34-9.7) 0.003**
Positive rate of FS-IgE, n (%) 52 (36.9) 30 (24.2) 41 (28.9) 0.073
Positive rate of FS-IgG4, n (%) 121 (85.8) 100 (80.6) 119 (83.8) 0.631

Values are presented as mean + SD or as absolute numbers (percentage). Non-normally distributed data are expressed as median (interquartile range). (*p<0.05). Pairwise comparisons
(respiratory system group vs. skin system group; respiratory system group vs. multiple system group or skin system group vs. multiple system group, “p<0.05).
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TABLE 2 The positive rates of serum total IgE and FS-IgG4 in children with allergic diseases involving different systems.

Total IgE (+)

Total IgE (+)
FS-19G4 (-)
(%, n)

FS-19G4 (+)
(%, n)

Respiratory system group 58.2 (n=82) 9.9 (n=14)
Skin system group# 51.6 (n=64) 9.7 (n=12)
Multiple system group” 71.1 (n=101) 7.0 (n=10)

Total IgE (-) Total IgE (-)
FS-1gG4 (+) FS-1gG4 (-) X2
(%, n) (%, n)
27.7 (n=39) ‘ 4.3 (n=6) ‘ 13.36 ‘ 0.039*
29.8 (n=37) ‘ 8.9 (n=11)
16.9 (n=24) 4.9 (n=7)

Pairwise comparisons (respiratory system group vs. skin system group; respiratory system group vs. multiple system group or skin system group vs. multiple system group,  p<0.05).

(*p<0.05).

was the lowest. It is noteworthy that the proportion of patients with
FS-IgG4 positive and total IgE negative was higher than that of
patients with total IgE positive and FS-IgG4 negative. Meanwhile,
we found that the distribution of proportions among the three
groups was significantly different (p<0.05) (Table 2). Upon pairwise
comparison between groups (according to the multiplicity test
criteria), the proportion of patients with both positive results in
the multiple system group was significantly higher than that in the
skin system group (p=0.012). Difterent from total IgE, the positive
rates of FS-IgE and FS-IgG4 were not significantly different among
all groups (Table 3).

Comparison of FS-1gG4 positive rates
among the three groups

The positive rate of each assayed FS-IgG4 of 10 kinds was
analyzed and compared among the three groups. Detailed data are
shown in Table 4. In all the groups, eggs had the highest positive
rate, followed by milk, while mushrooms were not detected as
positive. Meanwhile, we found that children with respiratory
allergic diseases had the highest positive rate of milk, which was
significantly different from that of the skin system (p<0.01).
However, the positive rates of wheat and soybean in the multiple
system group were the highest, which were significantly higher than
that in the skin system group (p<0.05) and the respiratory system
group (p<0.05) respectively.

Outcome before and after treatments

Of the 407 participants, 67 underwent at least one follow-up
evaluation and repeated laboratory testing under diet elimination
guided by FS-IgG4 with or without probiotic supplements. The
follow-up interval of patients in both groups before and after

treatment was more than 3 months, with the longest follow-up
interval being two and a half years. There were no significant
differences in total IgE, HDM IgE, FS-IgE, and FS-IgG4 between
the dietary elimination group and the probiotic group before
treatment. However, after treatment, there was a significant
difference in FS-IgG4 between the two groups, and the decrease
was more pronounced in the dietary elimination group. Total IgE,
FS-IgE, and HDM IgE remained unchanged (Figure 2). In addition,
no significant differences before and after treatment were noted
with regard to the changes in the total IgE, FS-IgE, and HDM IgE
between the dietary elimination group and probiotic group. Yet, we
found a significant decrease in FS-IgG4 before and after treatment
in both groups. Comparatively, a more significant decrease was
observed in the dietary elimination group (Figure 3). Moreover, the
patients were assigned to four groups according to the follow-up
interval, which was 3-6 months, 6-9 months, 9-12 months, and > 12
months. At different follow-up intervals, FS-IgG4 decreased most
significantly in patients who were followed up for 9-12 months,
followed by 3-6 months and 6-9 months, while FS-IgG4 did not
decrease significantly in patients longer than 12 months
(Figures 4A, B, D, E). Similarly, the clinical symptoms of patients
in both groups were improved dramatically. Although there were
no significant differences between the two groups, the percentage of
patients with a significant improvement was 67.7% (n=21) in the
dietary elimination group and 77.8% (n=28) in the probiotic group,
with the remainder having no significant responses (Figure 4C).

The results of binary logistic
regression analysis

In order to find the predictable index of the improvement of
clinical symptoms, we used a multivariate logistic regression model
to test different variables including age, gender, birth history, family
history, use of probiotics supplement or not, and the changes of

TABLE 3 The positive rates of serum FS-IgE and FS-IgG4 in children with allergic diseases involving different systems.

FS-IgE (+) FS-IgE (+)

FS-1gG4 (+) FS-1gG4 (-)
(%, n) (%, n)
Respiratory system group 34.0 (n=47) 2.8 (n=5)
Skin system group ‘ 19.4 (n=24) 4.8 (n=6)
Multiple system group ‘ 26.8 (n=37) 2.1 (n=5)
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FS-IgE (-) FS-IgE (-)
FS-19G4 (+) FS-1gG4 (-)
(%, n) (%, n)
51.8 (n=73) 11.3 (n=16) 6922 032
‘ 61.3 (n=76) 145 (n=18)
‘ 57.0 (n=80) 14.1 (n=20)
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TABLE 4 The positive rates of the FS-IgG4 in three groups. (*p<0.05).

10.3389/fimmu.2024.1281741

Respiratory system group

Skin system group

Multiple system group

Egg (%, n) 81.6 (n=115) 75.8 (n=94) 79.6 (n=113) 0.51
Milk (%, n) 70.9 (n=100) * 54.8 (n=100) * 64.1 (n=91) 0.025*
Wheat (%, n) 19.1 (n=27) 12.1 (n=15) 26.1 (n=37) * 0.0163*
Gadus (%, n) 18.4 (n=26) 14.5 (n=18) 25.4 (n=36) 0.0776
Soybean (%, n) 7.8 (n=11) 13.7 (n=17) 19.0 (n=27) * 0.0224*
Shrimp (%, n) 3.2 (n=4) 3.2 (n=4) 6.3 (n=9) 0.2775
Crab (%, n) 2.1 (n=3) 3.2 (n=4) 6.3 (n=9) 0.2086
Beef (%, n) 2.8 (n=4) 2.4 (n=3) 4.9 (n=7) 0.4751
Chicken (%, n) 3.5 (n=5) 2.4 (n=3) 6.3 (n=9) 0.2532
Mushroom (%, n) 0 (n=0) 0 (n=0) 0 (n=0) -

Pairwise comparisons (respiratory system group vs. skin system group; respiratory system group vs. multiple system group or skin system group vs. multiple system group, * p<0.05).

total IgE, HDM IgE, FS-IgE, and FS-IgG4. The results showed that
the change in FS-IgG4 was an independent predictor for significant
improvement of clinical symptoms in children with allergies
(adjusted OR: 1.412,95% CI 1.017-1.96, p=0.039; Figure 4F).

Discussion

The current study is the first clinical investigation to confirm
the clinical correlation of FS-IgG4 antibodies with allergic diseases
through the intervention of FS-IgG4-guided diet elimination. We
observed elevated serum FS-IgG4 levels in allergies of different
systems and analyzed the expression of different FS-1gG4 cations for
10 common foods. Moreover, we further followed up on these
patients for at least 3 months with the intervention and found that
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FS-IgG4-guided diet elimination significantly improved the allergic
symptoms.FS-IgG4 also emerged as an independent predictor for
clinical improvement.

In our study, we observed a significantly higher positive rate of
FS-IgG4 compared to FS-IgE in allergic children. Measurement of
total IgE, HDM IgE, FS-IgE, and FS-IgG4 revealed that most
patients exhibited positive total IgE and FS-IgG4, with a very low
positive rate of FS-IgE. This finding aligns with previous studies
(14), in spite of the rapid increase in food allergy in children. Our
results suggest a potentially more crucial role for FS-IgG4 in allergic
rhinitis/asthma or urticaria and AD among Chinese children,
indicating that the immediate response mediated by FS-IgE might
not be the primary cause of these chronic allergies. Furthermore, the
dual positivity of IgE and FS-IgG4 is significantly higher in the
group of multiple systems, implying a correlation between
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Comparison of total IgE, FS-IgE, HDM IgE, and FS-IgG4 in baseline and after
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the number of systems affected and the extent of immune reactions.
Notably, the positive ratio of FS-IgG4(+) total IgE (-) is higher than
FS-IgG4 (-) total IgE (+). Regardless of the system involved, more
than 80% of allergic children exhibit a positive rate of FS-IgG4,
while the positive rates of total IgE and FS-IgE are comparatively
lower. Previous research has often explained the rapid development
of FS-IgG4 in early-stage allergic children exposed to food as a
normal physiological response (25, 26)., leading to its clinical
significance being overlooked. However, in healthy children, the
increase in serum IgG4 is very gradual, reaching adult levels only
around puberty (27). Therefore, any elevation beyond normal adult
levels can be considered potentially impactful.
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treatment in the dietary elimination group (A-D) and the probiotic

Further analysis of the positive rates of FS-IgG4 for different
foods revealed that FS-IgG4 levels were highest for egg and milk.
This is likely attributed to greater exposure to these two types of
foods during childhood. Milk is also the leading cause of food
allergies (14). This meets the explanation of a previous study by
Millers etc. Their research on EOE demonstrated a close association
with IgG4 antibody levels in milk and wheat (28). Given that many
children with allergic diseases continue to consume large amounts
of eggs, milk, wheat products, and soy milk for growth needs, it is
not surprising that the corresponding rise in FS-IgG4 antibodies
was significant. Researches confirm that continuous exposure to
allergens induces eosinophilic inflammation in the esophagus with
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Outcomes are presented as odds ratios with 95% confidence intervals. OR<1 favors no significant remission, OR>1 favors alleviating. Univariate
analysis demonstrated children with allergies whose FS-1gG4 decreased more had a higher rate of clinical remission (F). (*p<0.05); ***P<0.001; ns,
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locally significant IgG4 deposition in patients with EOE (29) and
patients receiving oral immunotolerance therapy (30). Nevertheless,
dietary elimination as a treatment for EOE has been shown to have
positive effects in both adults and children (31).

The intervention of diet elimination guided by FS-IgG4 in our
study also demonstrated a significant improvement in symptoms
correlation with serum indices, in accordance with previous
research on EOE. Serum FS-IgG4 decreased significantly after diet
elimination, accompanied by a substantial improvement in
symptoms. Regression analysis indicated that the reduction in FS-
IgG4 was an independent predictor affecting the degree of clinical
symptom remission in allergic children. Neither total IgE nor FS-
IgE changed in spite of the dramatic improvement in symptoms,
further confirming that FS-IgG4 played a more critical role in these
allergic reactions, whether in the skin or respiratory systems. These
observations were in keeping with very recent studies that
eliminated allergic foods based on FS-IgG antibodies in patients
with irritable bowel syndrome, Crohn’s disease, and migraine, all of
which demonstrated relief of related symptoms (32-36).

Compared to another intervention of probiotic supplements as
add-on strategies, the changes of FS-IgG4 are more pronounced in
children with diet elimination. However, the relief ratio of clinical
symptoms of allergies is more efficient in the probiotic group, with
77.8% compared to 67.7% in the diet elimination group. This may
result from the multiple impacts of probiotics in relieving clinical
symptoms besides the modulation of antibody production. The
relief of clinical symptoms of probiotics led to less strict diet
elimination, resulting in a smaller decrease in FS-IgG4 compared
to children undergoing only diet elimination. The changes in serum
FS-IgG4 within a year of follow-up duration provide interesting
evidence to verify this hypothesis. We observed a lasting decrease in
FS-IgG4 with the duration of diet elimination, followed by an
increase at the 1-year time point. We speculate that children who
experience sufficient relief under short-term diet elimination often
discontinue therapy and reintroduce the food due to concerns about
nutritional deficiencies.

In this study, we have observed a close relationship between FS-
IgG4 and allergic symptoms in children. After dietary elimination
guided by FS-IgG4, clinical symptoms improved significantly,
indicating that the occurrence of allergic symptoms in children is
induced by both IgG and IgE and may even occur independently of
IgE. In classical allergic sensitization, IgE-producing plasma cells
are generated, and initial symptoms may stem from IgG-producing
B cells reacting to allergens. The IgG-to-IgE class switching process
primes mast cells. However, numerous allergic reactions can occur
independently of allergen-specific IgE, even in the absence of total
IgE. IgG, contributing to Th2 polarization, enhances allergic
responses. Allergy processes go beyond specific IgE, with IgG
influencing atopy, clinical symptoms, and the resolution of
allergies. Importantly, the pattern of IgG-producing plasma cells
in atopic children signifies crucial events leading to enduring mast
cell sensitization in allergies (37). In previous studies, it has been
detected that IgE and IgG antibodies share similar portions,
indicating common antigen secretion triggers that can bind to
similar antigenic epitopes, particularly in patients with peanut or
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milk allergies (38, 39). Similar results have also been validated in
patients with wheat and soy allergies (40, 41). In the comorbidity
analysis of epitope-specific antibodies in children with egg allergies,
it was observed that nearly all elevated levels of epitope-specific
IgG4 antibodies were associated with rhinitis. In a model adjusted
for asthma and age, one IgG4 epitope exhibited a significant
correlation (42). This evidence suggests the presence of
IgE conversion mechanisms, including the production of IgG,
in patients with food allergies. In both mice and humans,
evidence suggests that allergies or inflammatory responses can
be mediated by IgG (43, 44), indicating that the onset of allergies
may be independent of IgE and instead triggered by IgG or
alternative pathways.

In conclusion, serum FS-IgG4, but not FS-IgE, is found to be
correlated with allergic diseases more significantly than previously
recognized. Eggs and milk emerge as the most common allergens
influencing the development of allergic symptoms. Diet elimination
guided by FS-IgG4 proves to be an effective method for managing
allergic diseases in children. Our study thus contributes solid data to
the understanding of the role of FS-IgG4 in allergic diseases. Our
findings hold the potential to advance the comprehension of the
clinical significance of FS-IgG4 in allergic diseases and provide
valuable insights for the diagnosis and treatment of pediatric
allergic conditions.
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The human microbiome, a dynamic ecosystem within the gastrointestinal
tract, plays a pivotal role in shaping overall health. This review delves into six
interconnected sections, unraveling the intricate relationship between diet, gut
microbiota, and their profound impact on human health. The dance of nutrients
in the gut orchestrates a complex symphony, influencing digestive processes
and susceptibility to gastrointestinal disorders. Emphasizing the bidirectional
communication between the gut and the brain, the Brain-Gut Axis section
highlights the crucial role of dietary choices in physical, mental, and emotional
well-being. Autoimmune diseases, particularly those manifesting in the
gastrointestinal tract, reveal the delicate balance disrupted by gut microbiome
imbalances. Strategies for reconciling gut microbes through diets, precision
nutrition, and clinical indications showcase promising avenues for managing
gastrointestinal distress and revolutionizing healthcare. From the Low-FODMAP
diet to neuro-gut interventions, these strategies provide a holistic understanding
of the gut’'s dynamic world. Precision nutrition, as a groundbreaking discipline,
holds transformative potential by tailoring dietary recommendations to individual
gut microbiota compositions, reshaping the landscape of gastrointestinal
health. Recent advancements in clinical indications, including exact probiotics,
fecal microbiota transplantation, and neuro-gut interventions, signify a new
era where the gut microbiome actively participates in therapeutic strategies.
As the microbiome takes center stage in healthcare, a paradigm shift toward
personalized and effective treatments for gastrointestinal disorders emerges,
reflecting the symbiotic relationship between the human body and its microbial
companions.

KEYWORDS

microbiome, gastrointestinal health, precision nutrition, gut-brain axis, autoimmune
diseases

Introduction

The human body often likened to a complex ecosystem, vividly exemplifies this analogy
in the form of the gut microbiome (1). Within the intricate landscape of the human digestive
system, a bustling community of microorganisms, encompassing bacteria, viruses, fungi, and
more, collectively orchestrates a symphony that profoundly influences human health and
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well-being (2, 3). In the context of article, “symphony” likely refers to
the intricate and coordinated interactions within the gastrointestinal
tract involving diet, gut microbiota, and their impact on health. The
gut microbiome, a dynamic and diverse population, engages in a
multifaceted relationship with its human host, contributing to various
physiological processes and serving as a pivotal player in maintaining
equilibrium (4). This microbial ecosystem within the digestive tract
is not a static entity but rather a living, evolving ecology shaped by an
interplay of factors such as genetics, diet, environment, lifestyle, and
even the mode of delivery at birth (5, 6). The makeup of this intricate
microbiome is composed of thousands upon thousands of microbial
species delicately existing in a precarious equilibrium. The gut, acting
as the primary residence for this diverse microbial community,
houses an array of microorganisms, predominantly bacteria,
alongside viruses, archaea, and eukaryotic species (1). Far from a
passive bystander, the gut microbiota actively participates in key
physiological processes that impact human health. Its role extends to
the intricate breakdown of complex carbohydrates, proteins, and fats
that might challenge the body’s enzymes (7). The trillions of bacteria
populating the digestive tract play a vital role in breaking down these
molecules into absorbable forms, facilitating nutrient absorption (8).
Moreover, the gut microbiota exerts influence over metabolic
processes, affecting energy storage, nutrient processing, and appetite
regulation. A symbiotic relationship is evident in the microbiota’s
contribution to immune system modulation. By conditioning the
immune system to respond effectively to harmful pathogens while
curbing unnecessary inflammation, the gut microbiota acts as a
crucial ally in maintaining immune balance (9). Additionally, certain
microbial inhabitants are involved in the synthesis of essential
vitamins B and K, as well as short-chain fatty acids (SCFAs) renowned
for their anti-inflammatory properties (10, 11). Preserving the
delicate equilibrium of the gut microbiome, termed dysbiosis-
(disruption in the gut microbiota composition when disrupted), is
paramount for overall health. Dysbiosis has been linked to various
diseases and conditions, including irritable bowel syndrome (IBS),
inflammatory bowel disease (IBD), obesity, and certain neurological
disorders (12). Therefore, maintaining a diverse and stable microbial
community is integral to promoting a healthy gut microbiome.
Dietary choices emerge as a powerful tool in shaping the gut
microbiome. Consuming meals rich in dietary fiber fosters an
environment conducive to the thriving of beneficial bacteria. Prebiotic
foods, encompassing fibers that serve as sustenance for beneficial
bacteria, contribute to microbial diversity and further support gut
health. In essence, the gut microbiome stands as a complex ecosystem
with far-reaching effects on human health (13). From its pivotal role
in digestion to its contribution to immune function, understanding
the profound symbiotic link between humans and their microbial
inhabitants underscores the significance of the gut microbiome.
Elevating awareness of its importance and making informed dietary
choices to promote diversity within this microbial community hold
the potential to enhance health outcomes and deepen our
comprehension of this intricate relationship. This burgeoning field of
microbiome research is poised to transform our approach to human
health, paving the way for innovative therapeutic interventions and
personalized treatments targeting the gut microbiome. As we delve
deeper into the intricacies of microbiome dynamics in human
diseases, the potential for groundbreaking discoveries and therapeutic
breakthroughs becomes increasingly apparent.

Frontiers in Nutrition

10.3389/fnut.2024.1395664

Navigating the nutrient landscape:
impact on gut microbiota

The intricate relationship between diet and gut microbiota has
emerged as a pivotal determinant in the multifaceted landscape of
human health (Figure 1). Both our digestive processes and
susceptibility to gastrointestinal disorders are profoundly influenced
by the dynamic interplay between dietary components and the
microbial inhabitants of the gastrointestinal tract (14).

Food and bacteria as a complicated Tango

The composition of our gut microbiota is directly influenced by
the nutrients we consume. The gut microbiota can respond in various
ways to different components of the diet, including carbohydrates,
proteins, lipids, fibers, and specific bioactive chemicals. Complex
carbohydrates, such as dietary fiber, serve as a crucial source of fuel for
certain beneficial bacteria. The fermentation of fiber by these bacteria
produces short-chain fatty acids (SCFAs)—which are organic acids
produced by gut bacteria during the fermentation of dietary fiber
(Table 1), which possess anti-inflammatory properties and contribute
to gut health (15, 16). Proteins from the diet can impact gut microbial
diversity, with high-protein diets potentially encouraging the growth
of bacteria that utilize amino acids, leading to the generation of
harmful compounds. The types and quantities of fats in one’s diet
significantly affect the composition of the gut microbiome, potentially
influencing bacterial imbalances linked to obesity and metabolic
diseases (17). Foods rich in fiber and prebiotic ingredients sustain
beneficial bacteria and foster a healthy microbiome, playing a crucial
role in preventing and treating digestive disorders (18). Polyphenols
and phytochemicals, plant-based molecules with antioxidant and anti-
inflammatory characteristics, can positively influence the gut flora (19).

Consequences for digestive disorders

The intricate dance between nutrition and gut flora has
far-reaching effects on gastrointestinal disorders. Changes in gut
microbial composition have been associated with conditions such as
irritable bowel syndrome (IBS), Crohn’s disease, ulcerative colitis, and
gastroesophageal reflux disease (GERD) (20, 21). Dietary habits can
either exacerbate or alleviate symptoms, emphasizing the potential for
controlling and preventing gastrointestinal diseases through
personalized dietary approaches (22).

Exposing the role of dietary fiber in
feeding good bacteria

The significance of dietary fiber in nurturing a robust gut flora and
maintaining overall gut health is often underestimated despite its
widely recognized positive effects on digestion. This humble substance
is more than roughage; it is a vital component of the digestive system’s
orchestra, playing a crucial role in: Fiber serves as a powerful prebiotic,
feeding beneficial bacteria in the digestive tract, producing SCFAs that
reduce inflammation, fortify the gut barrier, and enhance overall gut
health (23). Eating a variety of fiber-rich foods promotes a healthy
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TABLE 1 Metabolites from food and their associations with gut microbial communities: additional review points.

Metabolite Food Source

Short-chain fatty acids (SCFAs)

whole grains

Fiber-rich foods such as fruits, vegetables, and

Microbial association

Produced by gut microbiota through fermentation of dietary
fiber

eggs, nuts, and seeds

Polyphenols Fruits (e.g., berries), vegetables, tea, red wine Metabolized by gut bacteria into bioactive compounds with
antioxidant and anti-inflammatory properties
Tryptophan Protein-rich foods such as turkey, chicken, Metabolized by gut bacteria into serotonin and other

neurotransmitters, influencing mood and cognitive function

Sulfur-containing compounds (e.g., hydrogen sulfide)

garlic, onions

Cruciferous vegetables (e.g., broccoli, cabbage),

Production by sulfate-reducing bacteria in the gut, implicated

in gastrointestinal health and disease

balance of microorganisms in the gut (13). Insoluble fiber from whole
grains and vegetables aids in relieving constipation by increasing stool
volume, while soluble fiber from oats and lentils helps maintain
regular bowel movements.

The effect of fiber on digestive disorders

Increased consumption of soluble fiber has been reported to
improve symptoms in some individuals with IBS (24). Dietary fiber
may positively impact inflammatory bowel disease (IBD) by altering
the gut microbiome, although the extent varies based on the condition
and circumstances. A high-fiber diet is associated with a lower risk of
diverticular disease and related issues like diverticulitis. Diets rich in
fiber are linked to a decreased risk of colorectal cancer, attributed to
regular bowel movements and increased SCFA production (25).
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Dietary fiber plays a pivotal role in maintaining digestive tract health,
significantly influencing the gut microbiome’s composition and
function. By incorporating a diverse range of high-fiber foods into our
diets, including whole grains, fruits, vegetables, and legumes, we not
only improve our health but also provide nourishment for the
microbes within us (26). The intricate and mutually beneficial
interaction between our food choices and the remarkable biosphere
within us is best exemplified by the fiber-microbiome partnership (27).

Studying the role of probiotic-rich foods
and prebiotic fibers

The nutritional conductors of gut health, probiotics and prebiotics,

orchestrate a symphony of interactions among the microflora in the
digestive tract. The gut microbiome, a dynamic ecosystem, is
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influenced by various dietary components performing unique yet
interconnected roles. Probiotics, beneficial bacteria and live
microorganisms, and prebiotics, indigestible dietary fibers, offer
distinct benefits: Probiotics restore diversity and balance to the gut
microbiota, introducing helpful bacterial strains. Probiotics
outcompete pathogenic microbes, reducing the risk of infection and
gastrointestinal distress. Some probiotics interact with the immune
system Dbeneficially, leading to more even and potentially less
inflammatory immune responses. The potential modulation of

nutritional and energy metabolism by probiotics (28, 29).

Feeding the philharmonic with prebiotics

Prebiotics, indigestible dietary fibers providing food for beneficial
bacteria, contribute to the synergy with probiotics: Prebiotics
selectively target and increase the population of specific beneficial
bacteria already present in the gut (30). The fermentation of prebiotics
produces SCFAs, benefiting gut health by reducing inflammation,
fortifying the gut barrier, and supplying energy for colonic cells.
Certain prebiotic fibers help with gut motility by promoting regular
bowel movements and relieving constipation. Combining prebiotics
and probiotics produces a synergistic impact, enhancing health
advantages by simultaneously nourishing beneficial microorganisms
(31). The gut microbiota is most at peace and resilient when probiotics
and prebiotics work together: Combining the benefits of probiotic-
rich meals with prebiotic fibers fosters a more diversified and stable
microbiome. Improved intestinal permeability defenses are possible,
thanks to prebiotic fermentation contributing to SCFA production.
Maintaining stability in the gut microbiota, despite dietary or
environmental changes, is facilitated by the synergistic effects of
probiotics and prebiotics, protecting against dysbiosis (32). The
nutritional symphony benefiting the entire gut flora is produced when
probiotics and prebiotics work in harmony. These factors, akin to
conductors, lead the microbial orchestra to greater unity, variety, and
resistance. Improving gut health by incorporating more probiotic-rich
foods and prebiotic fibers highlights the interconnectivity of our food
choices and the thriving world of microorganisms within us.

The unsung hero in gut health

Traditional diets have given way to Western diets, defined by
the prevalence of processed and convenience foods. This dietary
transformation has significantly impacted the food landscape,
prompting increased interest in vegetarian and vegan diets with a
focus on unprocessed, natural foods (33). Ongoing research delves
into the consequences of these dietary choices on gastrointestinal
health and function. The Western diet, characterized by its
consumption of processed and sugary foods, initiates a cascade of
consequences affecting gut health (34). Notably, a decrease in
microbial diversity is observed, potentially contributing to
abnormalities in the gut microbiota and an increased susceptibility
to gastrointestinal diseases (35). Consuming processed foods high
in sugar and unhealthy fats may induce a dysbiotic and
inflammatory state in the body, with conditions like IBD and IBS
linked to inflammation caused by dysbiosis (36). The gut barrier
can be compromised due to a diet rich in sugar and fat, potentially
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leading to toxin absorption and immune system activation.
Conditions associated with altered gut microbiota composition,
such as obesity and metabolic syndrome, are exacerbated by
Western dietary patterns. In contrast, diets rich in plant-based
whole foods, including fruits, vegetables, legumes, and grains,
demonstrate several positive effects on gut health (37). Plant-
based diets are high in fiber and support a diverse and beneficial
microbiome by providing sustenance to various types of beneficial
gut bacteria. Whole plant diets exhibit anti-inflammatory effects,
potentially alleviating gastrointestinal inflammation associated
with conditions like inflammatory bowel disease. The fiber in
plant-based diets contributes to a stronger intestinal barrier,
reducing the absorption of toxic chemicals into the bloodstream.
Weight management and metabolic health are positively
influenced by plant-based diets, potentially reducing the risk of
obesity-related gastrointestinal diseases. While the disparities
between Western and plant-based diets in their impact on gut
health are evident, moderation remains crucial (38). A nuanced,
plant-based diet that incorporates minimally processed foods can
be more effective than a strictly binary approach. Our digestive
tract’s state and overall health are intricately linked to the foods
we consume. The conflict between Western diets, high in processed
foods, and plant-based diets, rich in whole, natural foods,
underscores the pivotal role of diet in shaping our gut microbiota
and overall health. Plant-based diets, coupled with mindful
consumption of processed foods, set the stage for a robust gut
microbiota, reinforced gut barrier, and a harmonious connection
between our dietary choices and the complex ecosystem within
us (39).

Gut microbiome’s imﬁact on
gastrointestinal healt

The intricate balance of our intestines is profoundly affected by
the gut microbiome, a teeming ecology of microorganisms that
inhabits our digestive tract. Microbial changes, disrupting the
equilibrium of this microbial population, have been linked to several
gastrointestinal problems. The IBS, IBD, and gastroesophageal reflux
disease (GERD) are all illnesses that may be exacerbated by these
changes: The recent study recruited 100 participants with diverse
dietary habits and gut microbiome profiles. Participants were
randomly assigned to either a personalized dietary intervention group
or a control group following a standard dietary recommendation. The
personalized intervention group received individualized dietary plans
based on their gut microbiome composition, determined through
comprehensive metagenomic analysis. The dietary plans were tailored
to optimize the growth of beneficial microbial species and reduce the
abundance of potentially harmful microbes. After a 12-week
intervention period, fecal samples were collected for microbiome
analysis, and participants underwent clinical assessments to evaluate
changes in gut health markers. The results demonstrated significant
improvements in gut microbiome diversity, composition, and
metabolic function in the personalized nutrition group compared to
the control group. Moreover, participants in the personalized
intervention group reported reduced gastrointestinal symptoms and
improved overall well-being. These findings underscore the potential
of precision nutrition approaches in promoting gut microbiome

frontiersin.org


https://doi.org/10.3389/fnut.2024.1395664
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Shang et al.

health and individualized dietary recommendations for optimal
health outcomes (40).

Microbial imbalances

Catalysts for gastrointestinal disorders. Disturbances in the gut
microbiota have been linked to IBS, a condition characterized by
stomach pain, bloating, and altered bowel habits (41). IBD is
characterized by persistent inflammation of the gastrointestinal
system and includes Crohn’s disease and ulcerative colitis (41). The
microbial imbalance and decreased diversity known as dysbiosis are
hallmarks of inflammatory bowel disease. The immune system’s
reaction to a dysbiotic pattern could worsen inflammation and hasten
the development of disease. Acid reflux and heartburn are symptoms
of GERD, which can be affected by changes in the microbiome. The
synthesis of metabolites that have an impact on oesophagal health may
be affected by bacterial imbalances in the gut (38). In addition, the
lower oesophagal sphincters function can be affected by these
changes, heightening reflux symptoms.

The link between microbial changes and GI problems is mediated
in several ways, symptoms and progression of gastrointestinal diseases
can be influenced by inflammation and immunological responses,
both of which can be triggered by dysbiosis. Changes in gut microbiota
composition can weaken the intestinal barrier, enabling potentially
dangerous chemicals to enter the body and set off an immunological
response. Changes in microbes can affect the production of
metabolites such as SCFAs, which affect inflammation and
gastrointestinal health. The creation of neurotransmitters may have
consequences for disorders like irritable bowel syndrome, and gut
microorganisms play a role in this process (42). Managing microbial
changes for gastrointestinal well-being, probiotics and prebiotics are
used to increase the growth of beneficial bacteria, restore microbial
balance, and reduce symptoms. Low-FODMAP diets for IBS is one
example of a dietary intervention that has shown potential in the
management of IBS symptoms by targeting certain microbial
imbalances (43). Tailoring therapy to specific microbial imbalances
may be possible with personalized interventions based on an
individual's gut microbiome profile. The function of the gut
microbiome in gastrointestinal illnesses is becoming clearer as our
understanding of this complex ecosystem grows. Conditions like
bowel disease, and gastroesophageal reflux disease have been linked
to changes in the microbiome. The substantial connection between
our gut microbiota and gastrointestinal well-being is being uncovered
by academics and healthcare practitioners as they gain a better
knowledge of these dynamics.

Decoding the brain-gut axis for
holistic health

The Brain-Gut Axis researches the intricate connection between
the gut and the brain, often referred to as the “second brain” (44).
This relationship unveils how our food choices impact both physical
and mental health. Nutrition emerges as a pivotal player in shaping
gut flora, influencing conditions like depression and anxiety. The
microbiome in the intestines communicates with the central nervous
metabolites, neurotransmitters, and

system, producing
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immunological chemicals. Notably, certain stomach bacteria
generate vital neurotransmitters such as serotonin and dopamine
(45). A healthy gut flora, nurtured by a diet rich in fiber, prebiotics,
and probiotics, contributes to the production of mood-regulating
neurotransmitters (Figure 2) (46). Conversely, diets high in
processed foods and sugars can induce inflammation, affecting both
the gut and the brain and potentially leading to mood disorders (38,
47). The intricate link between the gut and the brain underscores the
profound impact of dietary choices on physical, mental, and
emotional well-being, emphasizing the importance of embracing
nutrient-dense diets and supporting a diverse gut flora for overall
health (46).

Gut microbiome’s role in autoimmune
diseases

Autoimmune diseases often manifest in the gastrointestinal
tract, with emerging evidence suggesting the crucial role of gut
microbiome imbalances in their development (48). Celiac disease,
characterized by gluten-triggered immune fibers reactions,
showcases the interplay between genetics, the gut microbiome, and
disease onset (49). Dysbiosis, or imbalances in the gut microbiome,
can trigger immune dysregulation, creating a pro-inflammatory
environment that intensifies the immune system’s response to gluten.
The consequential changes in microbial metabolite production and
damage to the intestinal barrier can lead to conditions like a “leaky
gut,” where microbial components pass through, triggering immune
responses against the host’s tissues (50, 51). Altered microbial
composition, reduced diversity, and abnormalities in bacterial
groups are common in the gut microbiota of individuals with celiac
disease (49). Recognizing the potential therapeutic role of gut
microbiota modulation, interventions like probiotic supplements
and dietary changes are explored. Tailoring treatments to individual
microbial imbalances offers a promising avenue for managing
autoimmune diseases, paving the way for innovative research and
potential  breakthroughs in

understanding and treating

these conditions.

Strategies for reconciling gut
microbes through diet

Strategies for reconciling gut microbes through diet play a pivotal
role in maintaining digestive tract health. The Low-FODMAP diet,
proven effective in managing symptoms of conditions like IBS, targets
fermentable carbohydrates to alleviate gastrointestinal issues.
Introducing probiotics, beneficial microorganisms, to the diet
modulates gut microbiota composition, enhances microbial diversity,
and influences immune responses and gut barrier function (26, 40).
Prebiotics, found in foods like garlic and bananas, provide indigestible
fibers that stimulate the growth of beneficial microorganisms, creating
anti-inflammatory short-chain fatty acids (52). The Mediterranean
diet, rich in fiber and polyphenol-rich foods, showcases potential
benefits against gastrointestinal disorders by enhancing gut flora
diversity and balance (53). These dietary interventions offer pathways
to microbial reconciliation and improved gut health, underlining the
significant role of food in shaping the complex ecosystem of the gut
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microbiota. As research progresses, these approaches may
revolutionize the treatment of gastrointestinal distress, providing
personalized and effective strategies for individuals based on their

unique microbial composition (54).

Tailoring diets to microbial
masterpieces

Precision nutrition is a groundbreaking scientific discipline
reshaping our approach to health and wellness (Figure 3). By
tailoring dietary recommendations to an individual’s unique gut
microbiota composition, this emerging field holds the potential to
revolutionize the management of gut health and gastrointestinal
diseases (55). The interplay of genetics, lifestyle, and gut flora
significantly influences how a person responds to food, making
personalized nutrition a comprehensive approach. The gut
microbiota’s impact extends beyond digestion, affecting various
Profiling the
microbiome through modern techniques like metagenomics

physiological and psychological functions.
allows researchers to understand its composition, abundance, and
potential health implications. Armed with this microbiome
information, healthcare providers can craft personalized
nutritional advice, highlighting foods that support good bacteria
or those that may disrupt balance (56). Precision nutrition
emerges as a powerful tool in modifying the course of
gastrointestinal disorders. For individuals with bowel syndrome,
tailored dietary strategies based on their unique gut microbiota
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composition can enhance the effectiveness of interventions like
the low-FODMAP diet (57). Similarly, personalized nutrition
holds promise in managing IBD by addressing microbial
imbalances and identifying specific dietary triggers, leading to
reduced inflammation and improved symptom relief. Individuals
with food sensitivities can also benefit from precision nutrition by
identifying foods that impact their gut microbiota negatively (58).
However, despite its potential, precision nutrition faces challenges
such as the complexity of microbiome investigation and the need
for extensive data interpretation. Direct correlations between the
microbiome and health consequences are still under exploration,
necessitating further research and development. The shift to
precision nutrition for gastrointestinal health represents a
departure from conventional approaches, allowing doctors to offer
more tailored dietary advice based on an individual’s unique
microbiota. This approach exemplifies the synergy between
advanced science and personalized care, holding the potential to
revolutionize our understanding, treatment, and prevention of
gastrointestinal disorders.

Clinical indications and therapeutic
crescendos

Recent groundbreaking studies highlight the pivotal role of gut
microbiota in shaping the future of gastrointestinal health. This
expanding knowledge has paved the way for novel therapeutic
approaches leveraging the ability to alter the gut microbiome through
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dietary changes and microbial therapies. Specific developments in the Microbial metabolites
field include:

The fermentation products of gut bacteria, known as microbial
metabolites, have diverse physiological consequences. Short-chain
fatty acids (SCFAs), such as butyrate, are being studied for their anti-
inflammatory properties (7).

Exact probiotics

Moving away from blanket approaches, recent probiotic
developments focus on tailoring formulations to address unique
microbial imbalances associated with individual illnesses. Probiotics ~ Nutritional software for individual needs
designed to produce specific metabolites or regulate immune
responses show promise in treating conditions (59). Technological progress is facilitating the implementation of
individualized diet plans, contributing to the precision of dietary
interventions (61).

Fecal microbiota transplantation

FMT involves transferring feces from a healthy donor to an  Artificial microorganisms
individual with dysbiotic gut flora. Preliminary results suggest
FMT could restore balance in patients with different clinical Scientists are exploring the therapeutic engineering of microbial
conditions prompting further investigation into its viability asa  ecosystems, potentially leading to novel therapies using “designer

treatment (60).
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microbiomes” engineered for specific tasks. Clostridium Cluster XIVa
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is under investigation for its potential to reduce inflammation and
improve gastrointestinal health (62).

Neuro-gut interventions

Understanding the gut-brain axis opens avenues for new

treatments for neurological disorders. Microbiome-targeted
interventions, such as modulating neurotransmitters and stimulating
the vagus nerve, show promise in addressing conditions like epilepsy
and depression. The dynamic world of the gut microbiome’s
importance to the future of gastrointestinal health is undeniable.
Advances in scientific understanding empower us to modify, engineer,
and harness its healing potential. The ongoing journey holds promise
for groundbreaking therapies that not only treat symptoms but also
address microbial imbalances at the root of many gastrointestinal
disorders (44, 45). We stand on the brink of a new healthcare era
where the microbial inhabitants of our gut become active partners in
achieving optimal gut health and overall well-being. This microbial
revolution, driven by precision, innovation, and interdisciplinary
collaboration, signifies a transformative shift in healthcare toward

personalized and effective treatments for gastrointestinal disorders.

Conclusion

The exploration of the intricate landscape of the human
microbiome has revealed its profound impact on overall health. From
the intricate interplay of nutrients shaping microbial diversity to the
promising avenues of precision nutrition, this review underscores the
evolving understanding of the gut’s pivotal role in human well-being.
As we witness the symphony of the gut microbiome, strategies for
harmonizing microbial communities through dietary interventions
offer tangible solutions for managing gastrointestinal health.
Furthermore, the review highlights pioneering clinical approaches,
including exact probiotics, fecal microbiota transplantation, and
neuro-gut interventions, signaling a transformative shift in healthcare.
These advancements not only represent scientific progress but also
pave the way for personalized and effective treatments for
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Background: To date, evidence is rare regarding whether and how dietary
antioxidants are associated with the risk of periodontitis. This study aimed to
investigate the association of composite dietary antioxidant index (CDAI) with
periodontitis and tooth loss, using data from the National Health and Nutrition
Examination Survey (2009-2014).

Methods: A cross-sectional analysis was conducted using data from 10,067
adults aged >30 years who underwent assessments of periodontal health and the
1°* day dietary recall. Based on a crude model and three adjusted models,
multivariate regressions were used to examine the relationship between CDAI
and periodontitis-related measurements including probing pocket depth, clinical
attachment loss and tooth loss. Subgroup analyses and the restricted cubic
splines plots were applied to examine the association between CDAI ingredients
and periodontitis.

Results: For the subjects with high CDAI scores, increased CDAI was associated
with significant (P < 0.05) reduction of severe periodontitis (odd ratio = 0.663,
95% confidence interval: 0.491-0.896) and increased number of remaining teeth
(weighted B[SE] = 1.167[0.211]). However, the protective effect of CDAI on
periodontitis vanished (P > 0.05) in active smokers and former smokers. There
were threshold levels for B-carotene, Vitamin A, C and E intakes where the risk of
periodontitis significantly decreased (P < 0.05) above these levels.

Conclusion: Increased CDAI was associated with reduced risk of periodontitis
and tooth loss for non-smokers. It was recommendable that proper dietary
intakes of B-carotene, Vitamin A, C and E would be of benefit for preventive
dental care and adjuvant therapies for periodontitis.

KEYWORDS

composite dietary antioxidant index, periodontitis, tooth loss, smoking, National Health
and Nutrition Examination Survey
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1 Introduction

Periodontitis is a progressive chronic inflammatory disease that,
when left untreated or inadequately treated, can lead to destruction
of the tooth-supporting tissue and ultimately loss of teeth (1). It
ranked as the sixth most prevalent disease worldwide, with a
prevalence of up to 50% (2, 3). Several factors, including global
population growth and aging, have contributed to the increased
prevalence of severe periodontitis over the past three decades (2). At
the meantime, the global burden of periodontitis has remained
substantial and even grown over the years (4).

The pathogenic events in periodontitis involve complex
interactions between microbial communities and host responses.
The susceptibility to periodontitis varies among different
populations (3, 5). Increasing evidence has stressed the
predominant role of the host’s inflammatory responses in the
pathogenesis of periodontitis. Upon microbial challenge, immune
cell-mediated oxidative stress propagates the pro-inflammatory
signaling and eventually leads to tissue damage (3, 6).

Oxidative stress, characterized by overactivation of reactive
oxygen species (ROS) and reduced antioxidant capacity, has been
extensively studied as one of the main factors contributing to
periodontitis (7). Patients with periodontitis have elevated serum
ROS levels, which can be effectively reduced by circulating
antioxidant (8). It has been well documented that antioxidant
from diet can reduce the body’s oxidative stress and lower the
risk of systemic diseases, such as diabetes mellitus and
cardiovascular diseases (9, 10). These diseases are accompanied
by worsened periodontal health and tooth loosening (11). It is
plausible to speculate that antioxidant intake from diet might also
impact the prevalence and severity of periodontitis. Specifically, in
populations and countries with low accessibility to dental care and
high prevalence of periodontitis (2), appropriate micronutrient
intake may have a significant effect on the morbidity.

To date, evidence is rare regarding the association of dietary
antioxidant and the risk of periodontitis and tooth loss. Vanessa
et al. demonstrated a positive linear association between the
inflammatory degree of the diet (12), measured via the dietary
inflammatory index (DII), and periodontitis. Revealing the link
between dietary antioxidant intake and periodontitis might have
more significance in diet instructions and adjuvant therapeutic
strategies. The composite dietary antioxidant index (CDAI)
summarized multiple dietary antioxidants including Vitamins A,
C, and E, B-carotene, selenium, and zinc (13). This index was
developed based on the aggregate effect of these antioxidants.
Several researches demonstrated the antioxidant effects of the
individual component (14, 15). A previous study demonstrated
that CDAI more precisely captures an individual’s dietary
antioxidant profile and reduces misclassification of exposure (16).
In this study, we analyzed the National Health and Nutrition
Examination Survey (NHANES) database to investigate the
potential association between CDAI and periodontitis, hoping to
provide reference for public oral health care based on
diet instructions.
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2 Materials and method
2.1 Study design and participants

This study used data from the NHANES collected in 2009-
2010,2011-2012 and 2013-2014. The data was collected via
interviews, physical and laboratory examinations. All of the data
in NHANES 2009-2014 were reviewed and approved by the
Centers for Disease Control (CDC) and Prevention National
Center for Health Statistics Research (NCHS) Ethics Review
Board. All of the participants provided a written informed
consent. The data derived from edentulous participants or
participants with invalid oral examinations or invalid 1% day
dietary recalls were excluded.

2.2 Dietary assessment

NHANES participants underwent a dietary recall interview
collected in-person followed by a full-mouth periodontal
examination for those aged 30 years and older at a mobile
examination center. The dietary recall interviews were used to
collect data on the types and amounts of foods and beverages
(including all types of water) consumed during the last 24 hours
(midnight to midnight), and to estimate intakes of nutrients, energy
and other ingredients from those foods and beverages. The CDAI is
a summary score of multiple dietary antioxidants including
Vitamins A, C, and E, B-carotene, selenium, and zinc. In the
present study, we calculated the weighted average of the data
from the 1st 24-hour recall interviews. Then, we calculated the z-
score for each micronutrient parameter. The CDAI was calculated
using the formula as below:

CDAI = EEG Individual Inst;ke — Mean

For all of the participants, the CDAI scores were equally divided
into four grades, CDAI-1* to 4™, in ascending order of the anti-
inflammatory capacity.

2.3 Periodontal assessment

Full-month periodontal examination at six sites per tooth was
conducted by trained calibrated examiners for participants aged 30
years and older. Participants were eligible for the periodontal
assessments if they did not meet any of the health exclusion
criteria and had at least one tooth (excluding third molars).
Probing pocket depth (PPD) and gingival recession were
measured using a HU-Friedy periodontal probe graduated in
2 mm increments. Clinical attachment loss (CAL) was calculated
as the difference between PPD and gingival recession (17). The
primary outcome was listed as moderate/severe periodontitis
according to the recommendations of the Centers for Disease
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Control and Prevention (18). The secondary outcomes were the
number of remaining teeth (excluding third molars), mean PPD
and mean CAL measured at the interproximal sites.

2.4 Covariates

Self-reported socio-demographic characteristics regarding age,
gender, race, education level, marital status and family income were
collected for each participant. Other data was collected including
smoking status, alcohol use, diabetes, hypertension (identified as a
self-report of a doctor’s diagnosis, systolic blood pressure > 140
mmHg, or diastolic blood pressure > 90 mmHg) (19),
hypercholesterolemia. Smoking status were subdivided as never
(smoked less than 100 cigarettes in life and not currently smoking),
former (smoked at least 100 cigarettes in life and not currently
smoking), and active smoker (smoked at least 100 cigarettes in life
and currently smoking) (20). Alcohol use was subdivided as never,
moderate, heavy, or binge according to definitions from the
National Institute on Alcohol Abuse and Alcoholism in the
National Institute of Health. Blood examinations were also
included as some of the parameters indicated the level of systemic
inflammation: white blood cell count (1000 cells/uL), segmented
neutrophils number (1000 cell/uL), lymphocyte number (1000 cells/
ul), hematocrit(%), platelet count(1000 cell/uL), and total
cholesterol (mg/dL) and hemoglobin Alc (Hbalc)(%).

All of the variables listed above were potential confounders that
might influence periodontitis. Not all of the participants provided
valid data for each of these covariates and there were fewer than 5%
missing values. However, direct exclusion may lead to a decrease in
sample size and unpredictable bias. Therefore, we used the R package
missForest, which is based on the random forest algorithm, for
imputation of categorical and continuous variables (21).

2.5 Statistical analysis

Statistical analyses were performed with STATA MP and
Rstudio. The level of significance was set at 5%. Individual sample
weights were determined using the dietary day one sample weight
(WTDRD1) records, to enable extrapolation to the entire
noninstitutionalized U.S. population (22). Characteristics grouped
by periodontitis status were presented as mean * SE for continuous
variables, and percentage(%) for categorical variables. The baseline
characteristics were compared using the weighted linear regression
for continuous variables, and the weighted chi-square test for
categorical variables (23). Variables with significant association
(P< 0.05) to periodontitis (Supplementary Table 1) were
incorporated into the multivariable analyses (24).

Multivariable logistic regression models were built to evaluate
the association between moderate or severe periodontitis (versus no
or mild periodontitis), mean PPD, mean CAL, the number of teeth
and the CDAL Three progressively adjusted models were further
developed based on the initial crude model. Model 1 was adjusted
for age, race, gender, family income and education level; Model 2
was adjusted for covariates in Model 1 plus variables of systemic
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condition including HbAIc level and hypercholesterolemia. Model
3 was the fully adjusted model, which was adjusted for covariates in
Model 2 along with smoking status. To investigate the impact of
CDALI on periodontal health in different populations, we conducted
a subgroup analysis of the primary outcome. We used the crude and
adjusted model (Model 2) to compare between people who were
non-smokers, former smokers, or active smokers.

For further investigating the association between the six
micronutrients and periodontitis, we used restricted cubic splines
(RCS) with 3 knots to flexibly model the association between CDAI
and periodontitis, with the abnormal values in each type of
micronutrients excluded. In this part, the participants were
divided into two groups: no or mild periodontitis, and moderate
or severe periodontitis. The association between micronutrient and
periodontitis was adjusted according to Model 3. Logistic regression
models were also established to explore their linear relationship
(Supplementary Table 2).

3 Results
3.1 Characteristics of the study population

Among the 30,468 participants, 20,401 were excluded due to
unqualified data either on oral health or the 1% day dietary recall.
The flowchart of participants inclusion was shown in Figure 1.
Finally, 10,067 participants were included in the present study.

The 10,067 participants were divided into three groups based on
the severity of periodontitis. The weighted prevalence was 63.4% for
healthy or mild periodontitis, 28.8% for moderate periodontitis, and
7.8% for severe periodontitis. 71.5% of the participants were male in
the severe-periodontitis group, while over 50% of the participants
were female for the healthy or mild periodontitis group. Compared
to the participants with healthy or mild periodontitis, those with
moderate or severe periodontitis were more characterized by the
features including being older, being Mexican American or non-
Hispanic Black, having lower education levels (below

Participants with Participants with Participants with
qualified qualified dental the 1t day
periodontal health health dietary recall
assessment data assessment data data
(n=11753) (n=24590) (n=29404)

¥

Participants

Participants with

with qualified qualified the 1¢t
oral health day dietary
data recall data
(n=11739) (n=26543)

Eduntulous |

(n=1052)
Participants included
(n=10067)
FIGURE 1

The work flow of sample selection from NHANES 2009-2014
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undergraduate), living alone (never having been married, divorced
or separated), having a lower household income (under $55,000 per
year), being smokers or drinkers, or having lower CDAI (Table 1).

3.2 Association of the CDAI and
periodontal outcomes

Table 2 showed the association between CDAI and periodontal
outcomes. In the unadjusted multivariable logistic regression
model, a higher CDAI was associated with decreased prevalence
of moderate and severe periodontitis, increased number of
remaining teeth, reduced PPD and CAL. In comparison to the
CDAI-1* group, the CDAI-4™ group had significantly lower risk of
moderate (odd ratio [OR] = 0.747, 95% confidence interval [CI]:
0.63-0.886, P = 0.001) and severe (OR = 0.712, 95% CI: 0.54-0.939,
P =0.016) periodontitis according to the non-adjusted model, with
the risks reduced by 25.3% and 28.8%, respectively. After
adjustments for the characteristics of demographics and systemic
conditions in Model 2, the multivariable regression analysis still
demonstrated a significant association between CDAI and severe
periodontitis (OR = 0.663, 95% CI: 0.491-0.896, P = 0.008) in the
CDAI-4"™ group. The association between PPD, CAL and the CDAI
was similar to that between periodontitis and CDAIL Furthermore,
we found that the CDAI showed a stronger association with CAL
than with PPD across all the four models. The CDAI was also
significantly and positively correlated with the number of
remaining teeth.

3.3 Smoking status had impact on the
association between CDAI and
periodontal outcomes

When smoking was included as a covariate in the model, as
mentioned in Model 3, the protective effect of CDAI on
periodontitis became ambiguous. However, the coefficient of
logistic regression changed by approximately 10% when
compared with that in Model 2. And multifactorial analysis
revealed that smoking status had a significant effect on
periodontitis (Supplementary Table 1). Therefore, we performed
subgroup analyses to explore the potential influence of smoking
status on the association between CDAI and periodontitis.

As shown in Table 3, CDALI lost the protective effect on
periodontitis in active smokers, and even in the former smokers
(P> 0.05). Among the non-smokers, the risk of severe periodontitis
for the CDAI-4"™ group reduced by 56.6% (OR = 0.434, 95% CI:
0.291-0.649, P< 0.001), compared with the CDAI-1* group. Similar
results were found for moderate periodontitis, with the risk reduced
by 34.2% (OR = 0.658, 95% CI: 0.523-0.829, P< 0.001). The impact
of smoking on the periodontal protective role of CDAI was further
investigated by the model adjusted for all of the characteristics
except smoking status (Model 2). In this model, the CDAI showed
protective effect only among non-smokers for severe periodontitis
(OR = 0.458, 95% CI: 0.289-0.728, P = 0.001).
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Similar results were found regarding the association of CDAI
with mean PPD and mean CAL in Model 2. For the non-smokers in
the CDAI-4™ group, the CDAI were significantly associated with
PPD values (weighted B[SE] = -0.089[0.026], P< 0.001) and CAL
values (weighted B[SE] = -0.126[0.031], P< 0.001). For the active
smokers or former smokers, there were no correlations (P > 0.05)
between PPD or CAL and CDAI Additionally, higher CDAI were
significantly associated (weighted B[SE]=1.639[0.517], P = 0.002)
with increased number of remaining teeth among the
former smokers.

3.4 Non-linear association between the
CDAI ingredients and periodontitis

Each ingredient of the CDAI and its linear correlation with
periodontitis were investigated using multivariate linear regression.
Vitamin A, Vitamin E and B-carotene were found to be significantly
associated with periodontitis (P< 0.05) in the fully adjusted model
(Supplementary Table 2). The association between the six
micronutrients and periodontitis was shown in the restricted
cubic splines curves (Figure 2). The association of Vitamin A and
Vitamin E with periodontitis assumed a L-shaped relationship
(Figures 2A, C, P for non-linearity< 0.05), while Vitamin C and
B-carotene had a U-shaped relationship with periodontitis
(Figures 2B, F, P for non-linearity< 0.05).

We found that there were threshold levels for B-carotene,
Vitamin A, C and E intakes where the risk of periodontitis
significantly increased below these levels and was inversely
correlated with the amount of micronutrient intakes. For Vitamin
A and E, dietary intakes above the threshold levels were associated
with steadily protective effect on periodontal health, within the dose
range observed in this study. However, having Vitamin C and B-
carotene far beyond the threshold levels tended to lead to increased
risk of periodontitis. No significant association (P > 0.05) was
observed between selenium or zinc with periodontitis.

4 Discussion

In light of this study, independent of factors including age,
gender, race, education level, family income, living habit and
systemic conditions, the stratified CDAI was significantly
associated with periodontitis and tooth loss. However, the
periodontal protective role of CDAI vanished for active and
former smokers.

The CDAI ingredients contain essential trace elements for
various proteins and enzymes that are involved in antioxidant
and anti-inflammatory processes, collagen synthesis, tyrosine
metabolism, and protection against cancers (16, 25). Despite the
widely recognized effectiveness and accessibility of the
micronutrient protecting against inflammatory diseases (15),
previous studies on the associations of nutrients with the risk of
periodontitis have yielded controversial findings (26-31). The
discrepancies might have arisen from 1) the interactions between
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TABLE 1 Characteristics of the participants.

Characteristics Overall No/ s Severe .
Mild Periodontitis Periodontitis Periodontitis value
Number 10,067 5,597 3,367 1,103
441,400,000
Weighted Number (100.0%) 280,000,000(63.4%) 127,000,000(28.8%) 34,400,000(7.8%)
! 0.

Continuous variables, mean + SE

White Blood Cell (1000 cell/uL) 7.126 + 0.029 6.977 + 0.036 7.294 + 0.054 7.716 = 0.119 <0.001**
Age (year) 50.9740.169 48.565 + 0.215 55.317 + 0.301 54.545 + 0.476 <0.001**
Lymphocyte Number (1000 cells/uL) 2.0880.01 2.069 £ 0.012 2.115 + 0.019 2.145 + 0.034 0.003*

Segmented Neutrophils (1000 cell/uL) 4.2470.023 4.139 + 0.028 4.364 + 0.043 4.695 + 0.099 <0.001**
Hematocrit (%) 41.390.055 41.214 £ 0.071 41.532 + 0.101 42.301 £ 0.179 <0.001**
Platelet (1000 cell/uL) 237.2520.823 238.258 + 1.021 235.204 £ 1.512 236.63 + 3.382 0.068

HbAlc (%) 5.6830.011 5.562 + 0.012 5.868 + 0.023 5.995 + 0.053 <0.001**
Total Cholesterol (mg/dL) 5.150.015 5.161 + 0.02 5.138 + 0.027 5.101 + 0.05 0.256

Tooth Number 24.6030.077 25.755 + 0.082 22.899 + 0.162 21.525 +0.321 <0.001**
Clinical Attachment Loss (mm) 1.6920.013 1.248 + 0.01 2.12 £0.02 3.722 + 0.064 <0.001**
Probing Pocket Depth (mm) 1.6440.008 1.389 + 0.007 1.88 £ 0.013 2.842 +0.035 <0.001**

Categorical variables, percentage

Gender (female) 0.512 0.567 0.451 0.285 <0.001**
Race <0.001**
Mexican American 0.080 0.061 0.110 0.127
Other Hispanic 0.054 0.051 0.058 0.060
Non-Hispanic White 0.689 0.740 0.621 0.522
Non-Hispanic Black 0.107 0.083 0.131 0.208
Other Race 0.071 0.065 0.080 0.083
Education Level (college or above) 0.641 0.720 0.536 0.391 <0.001**
Marital Status (live with someone) 0.685 0.717 0.637 0.601 <0.001**
High Income (more than $54,999
per year) 0.559 0.648 0.418 0.353 <0.001**
Alcohol Use <0.001**
Never 0.127 0.117 0.155 0.111
Moderate 0.402 0.436 0.360 0.287
Heavy 0.236 0.264 0.192 0.180
Binge 0.234 0.184 0.293 0.422
Smoking Status <0.001**
Never 0.557 0.628 0.458 0.345
Former Smoker 0.267 0.250 0.302 0.276
Active Smoker 0.176 0.123 0.239 0.378
Diabetes <0.001**
No 0.830 0.859 0.772 0.809
Prediabetes 0.076 0.073 0.087 0.056
(Continued)
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TABLE 1 Continued

Characteristics Overall N(.)/ . " Mogjerate' . Sevgre o
Mild Periodontitis Periodontitis Periodontitis

Categorical variables, percentage

Yes 0.094 0.068 0.141 0.134
Have Hypertension 0.408 0.359 0.488 0.502 <0.001**
Have Hypercholesterolemia 0.403 0.386 0.456 0.350 <0.001**
CDAI <0.001%*

I 0.250 0.233 0.279 0.284

ond 0.250 0.248 0.249 0.267

3 0.250 0.259 0.238 0.223

4™ 0.250 0.260 0.233 0.226

*Indicates P value< 0.05; **indicates P value< 0.001. SE, Standard Error; HbAlc, glycated hemoglobin Alc; CDAI, composite dietary antioxidant index.

TABLE 2 The risk of periodontitis for the four CDAI groups indicated by the four models (N =10,067).

Model 1 Model 2 Model 3

Non-Adjusted

Periodontitis

CDAI-1* Reference Reference Reference Reference

CDAI-2™ | 0.839 (0.712, 0.991)0.039* 0.872 (0.728, 1.045)0.138 0.871 (0.726, 1.044)0.136 0.918 (0.763, 1.103)0.361
Moderate

CDAI-3" 0.768 (0.649, 0.908)0.002* 0.82 (0.682, 0.985)0.034* 0.82 (0.682, 0.986)0.035* 0.864 (0.717, 1.041)0.125

CDAI-4™" 0.747 (0.63, 0.886)0.001* 0.792 (0.654, 0.96)0.017* 0.787 (0.65, 0.955)0.015* 0.845 (0.697, 1.024)0.086

CDAI-1* Reference Reference Reference Reference

CDAI-2™ | 0.884 (0.687, 1.137)0.335 0.922 (0.7, 1.215)0.563 0.915 (0.694, 1.207)0.531 0.995 (0.747, 1.324)0.970
Severe

CDAI-3" | 0.707 (0.546, 0.915)0.008* 0.738 (0.555, 0.979)0.035* 0.731 (0.55, 0.969)0.030* 0.788 (0.587, 1.059)0.114

CDAI-4" 0.712 (0.54, 0.939)0.016* 0.677 (0.499, 0.918)0.012* 0.663 (0.491, 0.896)0.008* 0.728 (0.534, 0.992)0.044*

Number of Teeth

CDAI-1* Reference Reference Reference Reference

CDAI-2™ 1.281 (0.831, 1.731)<0.001** 0.878 (0.469, 1.286)<0.001** 0.872 (0.464, 1.279)<0.001** 0.741 (0.339, 1.143)<0.001**

CDAI-3" 1.796 (1.349, 2.242)<0.001** 1.077 (0.668, 1.487)<0.001** 1.059 (0.65, 1.469)<0.001** 0.912 (0.508, 1.316)<0.001**

CDAI-4™ 2.16 (1.728, 2.592)<0.001** 1.171 (0.758, 1.584)<0.001** 1.167 (0.754, 1.58)<0.001** 0.979 (0.573, 1.385)<0.001**
PPD

CDAI-1* Reference Reference Reference Reference

CDAI-2™ -0.053 (-0.098, -0.008)0.022* -0.031 (-0.073, 0.011)0.150 -0.032 (-0.073, 0.01)0.141 -0.016 (-0.058, 0.026)0.449

CDAI-3" -0.07 (-0.115, -0.025)0.002* -0.044 (-0.086, -0.001)0.043* -0.045 (-0.087, -0.003)0.035* -0.027 (-0.069, 0.015)0.204
CDAI-4" -0.07 (-0.114, -0.025)0.002* -0.075 (-0.118, -0.032)0.001* -0.076 (-0.119, -0.033)< 0.001** -0.054 (-0.096, -0.012)0.011*
CAL

CDAI-1* Reference Reference Reference Reference

CDAI-2™ -0.129 (-0.206, -0.052)0.001* -0.091 (-0.16, -0.022)0.010* -0.091 (-0.16, -0.022)0.010* -0.059 (-0.127,0.01)0.094

CDAI-3™ -0.178 (-0.254, -0.102)<0.001** -0.115 (-0.183, -0.047)0.001* -0.115 (-0.183, -0.047)0.001* -0.077 (-0.144, -0.011)0.023*

CDAI-4™ -0.194 (-0.265, -0.123)<0.001** -0.154 (-0.223, -0.086)<0.001** -0.156 (-0.224, -0.088)<0.001** -0.109 (-0.175, -0.043)0.001*

*Indicates P value< 0.05; **indicates P value< 0.001. CDAI, composite dietary antioxidant index; PPD, probing pocket depth; CAL, clinical attachment loss. Model 1 adjusted for age, race, gender,
family income and education level; and Model 2 adjusted for age, race, gender, family income, education level, HbAlc level and hypercholesterolemia; and Model 3 adjusted for age, race, gender,
family income, education level, HbA1lc level, hypercholesterolemia and smoking status.
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TABLE 3 Multi-regression analysis of the association between CDAI and periodontal outcomes stratified according to smoking status.

Periodontitis

Never Smoker

Former Smoker

Non-Adjusted

Adjusted

Active Smoker

Non-
Adjusted

CDAI-1* Reference Reference Reference Reference Reference Reference
CDAIL2™ 0.891 1.014 1.007 0.992 0.713 0.694
(0.717,1.108)0.302 (0.797,1.289)0.910 (0.717,1.415)0.967 (0.687,1.432)0.964 (0.481,1.058)0.092 (0.449,1.071)0.099
Moderate
0.66 1.103 1.127 0.868 0.78
CDAI-3" w0796 (0.615,1.03)0.084
(0.523,0.832)<0.001 (0.795,1.531)0.558 (0.791,1.606)0.508  (0.581,1.298)0.491  (0.504,1.208)0.266
0.658 0.902 0.962 1.184 1.005
CDAL-4™ w079 (0.607,1.027)0.078
(0.523,0.829)<0.001 (0.644,1.262)0.548 (0.664,1.392)0.835 (0.794,1.766)0.408 (0.646,1.565)0.982
CDAI-1* Reference Reference Reference Reference Reference Reference
nd 0.753 0.814 0.81 1.401 1.323
CDAI-2 0.85 (0.553,1.305)0.456
(0.511,1.108)0.151 (0.501,1.323)0.407 (0.473,1.385)0.442 (0.867,2.266)0.169 (0.766,2.286)0.316
Severe CDAL3 0.609 0.706 0.748 0.777 1138 0.9
(0.408,0.908)0.015* (0.451,1.105)0.128 (0.446,1.252)0.269 (0.446,1.355)0.374 (0.694,1.863)0.609 (0.506,1.603)0.722
CDAL4 0.434 0.458 0.766 0.742 1.772 1.252
(0.291,0.649)<0.001** (0.289,0.728)0.001* (0.421,1.395)0.384 (0.396,1.394)0.354 (1.1,2.855)0.019* (0.738,2.125)0.404
Number of Teeth
CDAI-1* Reference Reference Reference Reference Reference Reference
CDAI2™ 1.049 0.574 1.209 0.944 1.516 1.061
(0.569,1.53)<0.001** (0.143,1.004)0.009* (0.065,2.352)0.038* (-0.087,1.976)0.073 | (0.459,2.573)0.005% = (0.083,2.039)0.034*
2.087
1.71 .81 1. .822 .34
CDAI-3" 715 0818 (1.075,3.099) °63 08 0-3
(1243,2186)<0.001%  (0.382,1254)<0.001* - o (0.63,2.495)0.001*  (-0.512,2.156)0.227  (-0.813,1.493)0.563
2.024 0.852 2683 1.639 0.896 0.465
CDAI-4" : : (1.618,3.748) : ’ ’
(1.595,2.454)<0.001** (0.444,1.259)<0.001** <0.001** (0.626,2.652)0.002* (-0.312,2.105)0.146 (-0.663,1.592)0.419
PPD
CDAI-1* Reference Reference Reference Reference Reference Reference
CDAL2™ -0.036 -0.012 -0.033 -0.032 -0.014 -0.022
(-0.091,0.019)0.199 (-0.063,0.039)0.653 (-0.125,0.059)0.482 (-0.119,0.054)0.461 = (-0.136,0.109)0.826  (-0.136,0.092)0.702
CDAIL3 -0.074 (-0.127, -0.038 -0.038 -0.04 0.048 0.009
-0.021)0.007* (-0.088,0.013)0.142 (-0.128,0.052)0.404 (-0.126,0.046)0.364 | (-0.078,0.175)0.451  (-0.114,0.131)0.887
CDAL4™ -0.1 (-0.151, -0.089 (-0.139, -0.023 -0.042 0.122 0.022
-0.049)<0.001** -0.039)<0.001** (-0.116,0.07)0.623 (-0.133,0.048)0.360 (0.002,0.242)0.047* (-0.091,0.135)0.706
CAL
CDAI-1* Reference Reference Reference Reference Reference Reference
CDAL2" -0.094 (-0.17, -0.042 -0.114 -0.105 -0.058 -0.066
-0.019)0.015* (-0.109,0.025)0.222 (-0.3,0.072)0.230 (-0.275,0.065)0.226 (-0.278,0.162)0.606 (-0.263,0.131)0.513
CDAL3" -0.188 (-0.256, -0.094 (-0.154, -0.15 -0.123 0.061 -0.015
-0.12)<0.001** -0.034)0.002* (-0.322,0.023)0.088 (-0.282,0.036)0.129 (-0.184,0.305)0.626 (-0.236,0.206)0.896
CDAI4™ -0.203 (-0.269, -0.126 (-0.189, -0.189 (-0.354, -0.134 0.095 -0.074
-0.137)<0.001** -0.064)<0.001** -0.024)0.025* (-0.293,0.025)0.099  (-0.12,0.311)0.387 (-0.272,0.124)0.465

*Indicates P value< 0.05; **indicates P value< 0.001. CDAI, composite dietary antioxidant index; PPD, probing pocket depth; CAL, clinical attachment loss. Adjusted model, namely Model 3,
adjusted for age, race, gender, family income, education level, HbAlc level, hypercholesterolemia and smoking status.
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The association of six ingredients of Composite Diatery Antioxidant Index (CDAI) with moderate and severe periodontitis. The association of Vitamin
A (A), Vitamin C (B), Vitamin E (C), Selenium (D), Zinc (E) and B-carotene (F) with the OR of periodontitis was shown in the restricted cubic splines, as
indicated by the model adjusted for age,race,gender,family income, education level, HbAlc level, hypercholesterolemia and smoking status. The
dashed line represents the 95%CI. Density plots represent the distribution of populations with consecutively varied levels of micronutrient intakes.

Cl, confidence interval; OR, odds ratio

different nutrients being overlooked when each type of nutrient was
considered separately; 2) some mild effects of the nutrients being
overwhelmed by stronger influence from specific covariates (30);
3) non-linear association being underestimated in a large
population (32); 4) difficulty in recognizing slight impact of
micronutrient levels in the serum on periodontal disease (29). In
this study, we evaluated the anti-oxidant capacity of micronutrient
through dietary intake using CDAI, and investigated the impact of
CDAI on periodontitis, attempting to draw a more reliable
conclusion by avoiding the above defects.

Interestingly, the present study revealed stronger association of
the CDAI with CAL than with PPD. Pathologically, with CAL and
PPD both being the essential elements for the diagnosis of
periodontitis, CAL is a more direct indicator of destruction of
tooth supporting tissue including alveolar bone (33). The strong
link between CDAI and CAL stressed the potential protective effect
of CDAI on periodontal tissue. In the fully adjusted model (Model
3), despite vanished effect of CDAI on periodontitis-related factors
including CAL and PPD, the stratified CDALI still significantly
correlated with the number of remaining teeth. Since tooth loss
may result from multiple causes such as caries and periodontal
diseases (34), the beneficial effect of micronutrient on teeth may be
derived from protection against tooth decay, as well as factors other
than periodontal health (35).

It is well documented that conventional and electronic cigarette
smoking are prominent risk factors for periodontitis (36, 37).
Cigarette smoke contains toxic substances that dissolve in oral
epithelial linings and spread throughout the body, interfering in
biological events involved in redox homeostasis, immune responses,
bone metabolism and tissue repair (38, 39). Tobacco-rich
conditions facilitate proliferation of Filifactor alocis and enhance
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its pathogenicity (40). The detrimental effect of smoking on
periodontal health persists long even after quitting. Former
smokers still had a higher risk of tooth loss caused by periodontal
diseases compared to the average population, and it took up to 15
years after quitting to reach the same risk level as before smoking
(41). Our study lent support to this notion by demonstrating
periodontal protective effect of CDAI on non-smokers but not on
active or former smokers.

Previous studies had demonstrated the non-linear relations
between CDAI and oxidative stress-related diseases (23, 42). The
association between specific micronutrients and periodontitis was
examined by using two-piecewise linear regression models (31). In
the present study, we focused on dietary micronutrient intakes and
looked into the six CDAI ingredients, based on models adjusted for
covariates including demographics, lifestyles and systemic
conditions. It is worth noting that there were threshold levels for
the CDAI ingredients, having micronutrients below which was
associated with increased risk of periodontitis. These threshold
levels were 0.470 mg for Vitamin A, 6.584 mg for Vitamin E,
50.259 mg for Vitamin C, and 0.725 mg for B-carotene. By
superimposing the density plots on the restricted cubic splines
(Figure 2), we revealed that there were large populations whose
intakes of Vitamin A, C and E were lower than the threshold levels.
According to the UK National Health Service, the recommended
dietary allowances (RDA) for Vitamin A, C and E were 0.6~0.7 mg,
40 mg and 3~4 mg, respectively (15). Our study confirmed the
validity of these RDAs in protecting periodontal health, and yielded
further suggestions that slightly higher intakes of Vitamin C and E
above the RDAs might be recommended for patients accepting
adjuvant therapies, and for preventive dental care for the
populations at high risk of periodontitis.
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Note that Vitamin intakes were not the more the better. The risk
of periodontitis tended to increase again after high intakes of
Vitamin C and B-carotene far beyond the threshold levels, possibly
due to overdosed effect or imbalanced nutrition (43). Although with
not-yet-observed overdosed effect of Vitamin A and E on
periodontitis, it is of vital importance to take into consideration
the whole body when making diet instructions. Overabundance of
Vitamin A was known to cause liver toxicity (15).

The role of zinc and selenium on antioxidation and periodontal
regeneration have been reported in previous studies (15, 44). Several
studies on animal models revealed their effectiveness in
ameliorating periodontitis (45, 46). However, this study showed
that zinc or selenium had no significant association with the risk of
periodontitis. The discrepancy might result from the differences in
the delivery route (drug administration versus dietary intakes), the
form of drug or food (a single drug versus a single element
separately analyzed from composite nutrients), and sample
selection (diseased subjects versus general populations). A
previous study showed that serum zinc levels were associated
with the risk of periodontitis in non-diabetic smokers but not
non-smokers (47), suggesting the periodontal protective effect of
zinc in specific but not general conditions. Further prospective
studies like randomized controlled trails are warranted to determine
the effect of specific micronutrients from dietary intakes.

The essential role of oxidative stress in pathogenesis of
periodontitis has been well recognized. Free radicals contribute to
tissue destruction by damaging DNA and proteins, acting as
intracellular signal mediators for osteoclast activation, and causing
lipid peroxidation and bone destruction (1). Antioxidants protect
against oxidative stress by eliminating excessive free radicals (48).
Studies have demonstrated that the components of CDAI contributed
to the decrease in oxidative stress (14, 15), suggesting that the CDAI
components might help strengthen systemic antioxidant defense
mechanisms. Interestingly, Hung N. Luu et al. (49) presented a
different conclusion that CDAI was not significantly correlated to
oxidative stress. The discrepancy of the results may be caused by
differences in samples and evaluation metrics. Luu’s study focused on
the Chinese population, samples with different ethnic background
from the United States. Additionally, in Luu’s study oxidative stress
levels were measured using Urinary F2 isoprostanes and Urinary F2
isoprostane metabolites, with no consideration of indicators like
malondialdehyde, glutathione, glutathione reductase etc.

Our study is the first to investigate the collective effect of dietary
antioxidant intakes on periodontal health based on a large
population. The NHANES used a multi-stage probability
sampling process to create samples that were well representative
of the noninstitutionalized population in the United States. Thus,
the conclusion of this study should be applicable to the general
population in the United States. Although with significant
association, the cause-and-effect relationship between CDAI and
periodontitis cannot be determined by this cross-sectional study.
However, the effectiveness of a micronutrient-assisted nonsurgical
therapy for chronic periodontitis proved by a randomized, double-
blind trial (50) suggested the causal effect of micronutrient intakes
on improvement of periodontal health, which was less likely to be
explained by the reverse causality.
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Considering the individual variability in susceptibility to
periodontitis and regional difference in accessibility to dental care
across various populations (51), incorporating dietary antioxidant
intake into long-term prevention and adjuvant therapy may be a
cost-effective and sustainable approach. In light of this study, we
recommend proper micronutrient intake from food for adults. The
collective effect of multiple antioxidants in a diet helps protect
against periodontitis. Moreover, considering the etiological
association between periodontitis and systemic diseases such as
diabetes, Alzheimer’s disease and pre-eclampsia (52-54), dietary
antioxidant intakes may also be beneficial for periodontitis
patients who have elevated risks of developing these non-
communicable diseases.

Although with interesting findings, the results of this study
should be interpreted with caution. The pathogenesis of
periodontitis is complicated. The effect of nutrients on periodontal
health status may be direct or indirectly caused by the nutrient-
correlated factors like dietary patterns, or diet-modulated general
conditions like systemic diseases. Additionally, 24 hours are not long
enough to give an overall and accurate reflection of individual’s
dietary habit. The dietary intake record in a 24-hour timeframe is
just a representative, rather than general dietary status. It is difficult
and practically impossible to include all of the confounding factors
during surveys. Some possible covariates like pregnancy,
medications, lifestyles, oral hygiene status and systemic diseases
other than what we have already covered, were of limited
availability in the database. Further studies would be of interest
after acquisition of extended information.

5 Conclusions

Our study showed that increased CDAI was associated with
reduced risk of periodontitis and tooth loss. There were threshold
levels for B-carotene, Vitamin A, C and E where dietary intakes
above these levels were associated with better periodontal
health. However, the protective effects were largely reduced and
even eliminated in subjects with smoking history or current
smoking status.
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China, *Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China,
4Guangdong Province Panyu Prison Hospital, Panyu, China

Objective: This study aims to explore the association between niacin intake and
stroke within a diverse, multi-ethnic population.

Methods: A stringent set of inclusion and exclusion criteria led to the enrollment
of 39,721 participants from the National Health and Nutrition Examination Survey
(NHANES). Two interviews were conducted to recall dietary intake, and the
USDA's Food and Nutrient Database for Dietary Studies (FNDDS) was utilized
to calculate niacin intake based on dietary recall results. Weighted multivariate
logistic regression was employed to examine the correlation between niacin and
stroke, with a simultaneous exploration of potential nonlinear relationships using
restricted cubic spline (RCS) regression.

Results: A comprehensive analysis of baseline data revealed that patients with
stroke history had lower niacin intake levels. Both RCS analysis and multivariate
logistic regression indicated a negative nonlinear association between niacin
intake and stroke. The dose-response relationship exhibited a non-linear pattern
within the range of dietary niacin intake. Prior to the inflection point (21.8 mg)
in the non-linear correlation between niacin intake and stroke risk, there exists a
marked decline in the risk of stroke as niacin intake increases. Following the
inflection point, the deceleration in the decreasing trend of stroke risk with
increasing niacin intake becomes evident. The inflection points exhibit variations
across diverse populations.

Conclusion: This investigation establishes a negative nonlinear association
between niacin intake and stroke in the broader American population.

KEYWORDS

niacin, stroke, NHANES, cross-sectional study, RCS

109 frontiersin.org


https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2024.1391023
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2024.1391023&domain=pdf&date_stamp=2024-07-19
https://doi.org/10.3389/fnut.2024.1391023
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2024.1391023/full
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/

Qiu et al.

Niacin, also known as Vitamin B3, is a water-soluble vitamin
with various benefits for human health (1). Niacin can be obtained
through various foods such as fish, nuts, whole grains, and can also
be supplemented through supplements. As widely known, niacin
plays a positive role in maintaining skin health and helps prevent
skin issues such as dermatitis and dryness (2). As an antioxidant,
niacin helps combat damage caused by free radicals, thereby
contributing to slowing down the aging process (3). Existing studies
have shown that niacin participates in the energy metabolism
process within the body, aiding in the conversion of food into
usable energy, and is crucial for maintaining normal metabolism
(4-6). Besides, niacin helps regulate cholesterol levels in the blood,
particularly by lowering low-density lipoprotein cholesterol (LDL-
C), promoting cardiovascular health (7). However, the association
of dietary intake of niacin and the prevalence of stroke still
remains unclear.

Globally, stroke is one of the major causes of death and
disability (8-10). According to data from the World Health
Organization (WHO), there are over 15,000,000 new cases of stroke
worldwide each year. In developed countries, the incidence and
mortality rates of stroke are relatively lower due to improved
healthcare conditions and lifestyles (8, 11). However, in some
developing countries, the incidence of stroke may be higher due
to factors such as poor lifestyle choices, hypertension, diabetes,
and other risk factors (12-14). Dyslipidemia is one of the
important risk factors for stroke, as it can lead to the formation
of atherosclerosis, narrowing the blood vessel walls and making
them prone to thrombosis, thereby increasing the risk of stroke
(15-

major driving factor for the development of atherosclerosis (18,

). Particularly, elevated LDL-C levels are considered a

). Numerous studies have demonstrated that Vitamin B3 has
significant neuroprotective effects, including the enhancement of
vascular function, reduction of oxidative stress, and improvement
of lipid profiles. For instance, research by Cui et al. showed that
Vitamin B3 supplementation reduced the incidence of ischemic
strokes in animal models by promoting angiogenesis and neuronal
survival (20). Additionally, clinical studies such as those by Teo
et al. (21) have indicated that higher dietary intake of niacin is
associated with a lower risk of stroke in human populations (21).
These findings highlight the potential of niacin as a preventive
measure against stroke, supporting its relevance in our study.

Due to its potential benefits in reducing LDL-C, increasing
HDL-C levels, decreasing triglyceride levels, and improving overall
lipid profile, niacin may lower the risk of stroke by reducing
lipid metabolism abnormalities (20, 21). Niacin can also reduce
oxidative stress levels, maintain endothelial function, and decrease
vascular wall damage, thereby lowering the risk of atherosclerosis
and thrombosis formation (22). These benefits contribute to
maintaining vascular health, thus aiding in the prevention of stroke.
Currently, there is insufficient scientific evidence to suggest that a
significant reduction in the occurrence of stroke can be achieved by
appropriately increasing niacin intake. Although niacin has shown
regulatory effects on lipid metabolism and oxidative stress in some
studies, its exact effectiveness in stroke prevention still requires
further research for confirmation.
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In the present study, we enrolled eligible participants from
NHANES database and conducted a cross-sectional analysis to
explore the relationship between dietary intake of niacin and the
prevalence of stroke in a large normal population.

Study population

NHANES is a nationally representative survey conducted
throughout the United States, selecting participants through
random sampling to ensure representative data for the entire
U.S. population. It is implemented in two-year cycles. Each cycle
involves face-to-face interviews, physical examinations, laboratory
tests, and other health measurements conducted on thousands
of residents (23). The data from NHANES are widely utilized in
shaping public health policies, guiding research, and evaluating
national health objectives. Researchers, policymakers, and the
public have access to NHANES’ database to obtain information
about the health and nutritional status of the U.S. population.
We initially included 101,316 participants in the present study.
Exclusion criteria as follows: (1) participants aged below 18 or
above 80 years (n = 46,369); (2) participants with no dietary data, or
missing niacin intake data (n = 10,535); (3) pregnant participants
(n = 1,413); (4) individuals lacking stroke status (n = 3,278).
Eventually, a total of 39721 participants were ultimately included.
The flowchart of recruitment process can be found in

Assessment of dietary intake of niacin

Dietary intake of niacin was obtained through interview, also
known as What We Eat in America (WWEIA). The US Department
of Agriculture (USDA) and the US Department of Health and
Human Services (DHHS) collaboratively carried out the interview.
All eligible NHANES participants undergo two 24-hour dietary
recall interviews to disclose the types and amounts of foods they
consumed in the 24 hours prior to the interview (from midnight
to midnight). The initial dietary recall takes place in person at
the Mobile Examination Center (MEC), and the subsequent recall
is conducted via a phone interview around 3 to 10 days later.
To calculate the nutrients and food components in various food
items, the USDA’s Food and Nutrient Database for Dietary Studies
(FNDDS) is utilized (
overall nutrient intakes, acts as a brief documentation of each

). The dataset, which encompasses the

individual’s nutrient intake. For this research, the participants’ daily
niacin intake is established by computing the average of their two
dietary recalls.

Assessment of stroke

Stroke identification in this study relied on individuals
disclosing a previous diagnosis from a medical practitioner during
in-person interviews. Those who answered positively to the
question, "Have you ever been told by a doctor or healthcare
provider that you had a stroke?" were considered to have history
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FIGURE 1

Participants enrollment flowchart.

of stroke. It’s essential to acknowledge that using self-reported data
can be influenced by memory bias, potentially impacting how the
information is interpreted (25). Furthermore, while the NHANES
database lacks specific details about the stroke types, it’s reasonable
to assume that a significant portion of participants identified as
stroke cases likely had ischemic strokes.

Covariates

Demographic data were obtained using standardized surveys
that covered gender, race/ethnicity, educational background,
smoking habits, and alcohol consumption. Alcohol consumption
was defined as having consumed at least 12 drinks in the year
before the survey. Body mass index (BMI) was utilized to assess
overweight and obesity, with values exceeding 25 and 30 indicating
overweight and obesity, respectively (26). Trained clinicians
measured systolic/diastolic blood pressure (SBP/DBP), and the
final blood pressure reading was calculated as the average of three
consecutive readings taken at half-minute intervals. Laboratory
tests, conducted following standardized procedures, determined
various parameters. Participants meeting any of the following
criteria were classified as having hypertension: (1) Average systolic
blood pressure (SBP) > 140 mmHg; (2) Average diastolic blood
pressure (DBP) > 90 mmHg; (3) Self-reported hypertension
diagnosis; (4) Current use of antihypertensive medications (27).
Individuals with a previous diagnosis of diabetes by a physician or
health professional were categorized as having diagnosed diabetes
(28-30).

Statistical methods

Due to the complex sampling methods employed in the
NHANES survey, our analytical approaches incorporated sample
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weights customized for specific research periods to ensure accurate
calculations of health-related statistics. These weights adjust for
the survey design, non-response, and post-stratification to make
the results representative of the U.S. population. Weighted means
and 95% confidence intervals were utilized to represent variables,
ensuring that our estimates accurately reflect the population
parameters. In examining variations in baseline traits between
participants with and without stroke, continuous variables were
analyzed using the students t-test, which assumes that the data are
normally distributed and compares the means of two independent
groups. For categorical variables, the chi-square test was employed,
assessing the association between two categorical variables by
comparing the observed frequencies to the expected frequencies
under the null hypothesis of independence. Niacin intake was
stratified into four quartiles to evaluate its relationship with stroke,
with the lowest quartile (Q1) serving as the reference category. This
stratification helps in understanding the dose-response relationship
between niacin intake and stroke risk. Assessing the association
of niacin with stroke involved employing multivariate logistic
regression models. These models were adjusted for potential
confounders such as age, sex, BMI, smoking status, physical
activity, and other dietary factors. Odds ratios (ORs) and 95%
confidence intervals (CIs) were calculated to estimate the strength
of association between niacin intake and the likelihood of stroke. To
explore the potential non-linear relationship between niacin intake
and stroke, restricted cubic spline (RCS) regression with three knots
(10th, 50th, and 90th percentiles) was utilized. RCS regression
allows for flexibility in modeling non-linear associations by fitting
smooth curves to the data without assuming a specific functional
form. Subgroup analyses based on age, sex, and BMI were
conducted to investigate whether the association between niacin
intake and stroke varied across different population subgroups.
Interaction terms were included in the regression models to test
for statistical interaction, and stratified analyses were performed
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to provide subgroup-specific estimates. The statistical analyses
were conducted using R software version 4.1.6 (

, The R Foundation, Vienna, Austria). All tests were
two-tailed, with statistical significance set at a P-value < 0.05,
ensuring that our findings are robust and reliable. Sensitivity
analyses were also performed to check the stability of our results
by using different model specifications and adjusting for additional
potential confounders.

Baseline characteristics

We firstly included 101,316 participants from NHANES 1999-
2018, after applying the inclusion and exclusion criteria, 39,721
). The
average age of the entire study cohort was 46.3 years, with almost
half (48.6%) being male. A total of 1373 participants (3.5%)
were assigned to stroke group. Notably, individuals with stroke

eligible participants were ultimately enrolled (

history tended to be older (stroke vs. non stroke group: 60.4% vs.
45.9%) and had higher prevalence rates of hypertension (stroke vs.
non stroke group: 77.4% vs. 35.7%) and diabetes (stroke vs. non
stroke group: 35.5% vs. 11.8%). Detailed demographic and clinical
characteristics are provided in ,and

presents a breakdown of these features based on niacin intake
quantiles. The mean niacin intake for the overall study population
was 21.99 mg, individuals with stroke history showing a lower mean
intake of niacin (stroke vs. non stroke group: 21.5 vs. 25.6 mg).
The stroke group exhibited elevated levels of HbA1lc (stroke vs. non
stroke group: 6.04% vs. 5.55%), fasting blood glucose (stroke vs non
stroke group: 6.59 mmol/L vs. 5.81 mmol/L), fasting blood insulin
(stroke vs. non stroke group: 103.93 pmol/L vs. 76.76 pmol/L),
insulin resistance (stroke vs non stroke group: 5.83 vs. 3.57),
triglycerides (stroke vs. non stroke group: 1.76 mmol/L vs. 1.49
mmol/L), and hypersensitive C-reactive protein (stroke vs. non
stroke group: 0.65 mg/L vs. 0.4 mg/L). Additionally, participants
with stroke history demonstrated a decreased level of high-density
lipoprotein cholesterol (stroke vs. non stroke group: 1.31 mmol/L
vs. 1.37 mmol/L), as outlined in

Associations of the intake of niacin with
stroke

To investigate the potential association between niacin
consumption and stroke, we conducted a thorough multivariate
analysis, considering variables like age, gender, ethnicity, education
levels, smoking, drinking, hypertension, and diabetes. We found
that niacin intake negatively associated with the risk of stroke
before (OR: 0.97; 95% CIL: 0.96-0.98) and after (OR: 0.98;
95% CI: 0.98-0.99) adjusting covariables. Moreover, participants
were evenly divided into quartiles based on niacin intake,
revealing that those with higher intake of niacin had the lower
stroke risk before and after adjusting covariables ( )-
Utilizing RCS analysis, we identified a negative nonlinear
relationship between niacin intake and stroke risk (P for non-linear
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trend < 0.05). Before the inflection point (21.8 mg) of the non-
linear relationship between niacin intake and the risk of stroke,
there is a significant downward trend in the risk of stroke with
increasing niacin intake. After the inflection point, the trend of
decreasing stroke risk with increasing niacin intake slows down

( )

Subgroup analysis on the association of
the intake of niacin and stroke

We conducted subgroup analyses stratified by gender, age,
and BMI to further verify the relationship between niacin
intake and the risk of stroke in different populations. The
results showed a significant downward trend in the risk of
stroke with increasing niacin intake in various groups, including
males, females, young, middle-aged, elderly, normal weight,
). This confirms the
stability of our findings across different demographic groups.

overweight, and obese individuals (

Subgroup analyses of RCS were also conducted across diverse
populations, revealing a negative nonlinear relationship between
). Notably,
the inflection points for this nonlinear association varied between

niacin intake and stroke in most groups (

males and females. Specifically, in females, the inflection point
was identified at 19.2 mg, whereas in males, it occurred at
25.8 mg (
overweight participants, the association between dietary niacin

). It is important to highlight that among

intake and stroke was U-shaped. After the inflection point,
the stroke risk increased with the increase of niacin intake

( ).

Sensitive analysis

There are some drawbacks of employing weighted analysis
methods in the NHANES analysis. Weighted analysis is often
utilized to account for sampling biases and ensure that the findings
are reflective of the broader population. However, it’s important to
consider that the weights are based on certain assumptions, and
if these assumptions are not met, the results may be affected. One
limitation is the reliance on self-reported data, which introduces the
possibility of reporting errors or biases. Additionally, the weights
are calculated based on specific demographic characteristics, and
any changes or inaccuracies in these characteristics may impact
the validity of the weighted analysis. Moreover, the effectiveness
of the weighting method depends on the availability and accuracy
of the data used for weight calculation. Furthermore, the use of
weighted analysis assumes that the sampling design is adequately
representative of the entire population. If there are limitations
or shortcomings in the sampling approach, it may compromise
the generalizability of the results. Therefore, in the present
study, we also employed unweighted logistic regression to further
confirm the conclusion. We found that the results of unweighted
logistic regression were in accordance with main analysis using
weighted logistic regression. Niacin intake negatively associated
with the risk of stroke before (OR: 0.97; 95% CI: 0.96-0.97)
and after (OR: 0.98; 95% CI: 0.97-0.98) adjusting covariables
( )
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TABLE 1 Baseline Characteristics Grouped by Stroke.

10.3389/fnut.2024.1391023

Variables Overall (n = 39721) Non- Stroke (n = Stroke (n = 1346) P value
Age, years < 0.001***
18-40 years 38.94 [37.49, 40.39] 39.72 [38.71, 40.73] 8.46 [6.39, 10.52]

40-60 years 39.94 [38.17, 41.70] 40.05 [39.22, 40.88] 35.32 [32.15, 38.50]

> 60 years 21.12 [19.99, 22.26] 20.23 [19.49, 20.97] 56.22 [52.98, 59.45]

Sex-male, % 48.55 [46.76, 50.35] 48.65 [48.14, 49.16] 44.71 [41.62, 47.79] 0.02*
Race, % < 0.0017*
Non-Hispanic White 69.29 [65.14, 73.44] 69.31[67.31,71.31] 68.41 [64.57, 72.24]

Non-Hispanic Black 11.03 [10.10, 11.96] 10.90 [9.81, 11.99] 16.26 [13.96, 18.56)

Mexican American 7.84 (6.93, 8.75] 7.91 [6.90, 8.92] 5.14 [3.86, 6.41]

Other Hispanic 5.56 [4.67, 6.45] 5.61 [4.70, 6.52] 3.64 [2.25,5.03]

Other 6.28 [5.79, 6.77] 6.27 [5.75, 6.79] 6.56 [4.66, 8.45]

Smoking, % 21.54 [20.45, 22.62] 21.36 [20.60, 22.12] 28.78 [25.64, 31.92] < 0.001*
Drinking, % 83.74 [80.53, 86.96] 89.20 [88.31, 90.09] 84.94 [82.06, 87.81] < 0.001*
Education level, % < 0.001%**
Below high school 5.08 [4.70, 5.46] 4.96 [4.58, 5.34] 9.97 [7.91, 12.02]

High school 34.84 [33.07, 36.61] 34.55 [33.33, 35.76] 47.54 [44.02, 51.06]

Above high school 60.00 [57.45, 62.55] 60.49 [59.13, 61.85] 42.50 [38.84, 46.15]

SBP, mmHg 121.61 [121.27, 121.94] 121.39 [121.06, 121.73] 130.10 [128.54, 131.67] < 0.001***
DBP, mmHg 71.66 [71.36, 71.95] 71.68 [71.38, 71.98] 70.70 [69.87, 71.54] 0.02*
DM, % 12.34 [11.72, 12.95] 11.75 [11.27, 12.22] 35.48 [31.99, 38.98] < 0.001*
eGFR, ml/min/1.73m> 94.75 [94.26, 95.24] 95.20 [94.71, 95.69] 76.76 [75.04, 78.48] < 0.0017*
RBC, x 10°/L 472 [4.71,4.74] 4.73 [4.72, 4.74] 4.59 [4.55, 4.64] < 0.001+*
WBC, x 10°/L 7.24(7.20,7.29] 7.23(7.19,7.28] 7.51 [7.36, 7.66] < 0.001*
NE, x 10°/L 4.29 [4.26,4.32] 4.28 [4.25,4.32] 4.57 [4.46, 4.69] < 0.001*
Monocyte, x 10°/L 0.56 [0.55, 0.56] 0.56 [0.55, 0.56] 0.59 [0.58, 0.61] < 0,001+
LY, x 10°/L 2.14[2.13,2.16] 2.15 [2.13, 2.16] 2.07 [2.02,2.12] 0.01*
PLT, x 105/L 255.09 [253.69, 256.49] 255.28 [253.90, 256.66] 247.61 [241.09, 254.13] 0.02*
Hemoglobin, g/L 14.36 [14.32, 14.40] 14.37 [14.33, 14.41] 14.01 [13.88, 14.13] < 0.001*
CHD, % 3.18 [2.89, 3.47] 2.80 [2.54, 3.05] 18.52 [15.81,21.23] < 0,001+
Angina, % 2.24[2.00, 2.47] 1.97 [1.78, 2.17] 12.89 [10.33, 15.45) < 0.001*
HE, % 2.01[1.83,2.19] 1.67 [1.51,1.83] 15.73 [13.29, 18.17) < 0.001*
Hypertension, % 36.69 [35.10, 38.29] 35.66 [34.78, 36.54] 77.36 [74.34, 80.38] < 0.001*
Heart attack, % 3.17 [2.90, 3.4] 2.73 [2.52,2.95] 20.54 [17.59, 23.48) < 0,001+

Continuous variables are presented as the mean [95% CI], category variables are presented as the proportion [95% CI]. CI, confidence interval; SBP, systolic blood pressure; DBP, diastolic
blood pressure; DM, diabetes; eGFR, estimated glomerular filtration rate; BMI, body mass index; WC, waist circumference; RBC, red blood cells; WBC, white blood cells; NE, neutrophils; LY,
lymphocytes; PLT, platelets; CHD, coronary artery disease; HE, heart failure. *P-value < 0.05, **P-value < 0.01, ***P-value < 0.001.

Discussion in stroke risk associated with higher niacin intake exhibits a

decelerated trend.

In the present study, we conducted a cross-sectional Niacin, also known as vitamin B3, is a water-soluble vitamin

analysis to explore the association of dietary niacin intake essential for various physiological functions in the human body

and stroke risk. We found that there was a negative (31). Niacin is found in various foods, including meat, fish,

nonlinear relationship between niacin and stroke. Prior to
the inflection point (21.8 mg) in the non-linear correlation
between niacin consumption and stroke risk, there is a
notable decline in the likelihood of stroke as niacin intake
increases. Subsequent to this inflection point, the decrease
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nuts, and grains, and it can also be synthesized by the body
from the amino acid tryptophan. Adequate niacin intake is
important for maintaining overall health and preventing niacin
deficiency, which can lead to a condition known as pellagra (32,
33). Additionally, niacin is sometimes used in higher doses for
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TABLE 2 Metabolic Indexes of the Study Population Grouped by Niacin Intake.

10.3389/fnut.2024.1391023

Variables Q1 Q2 (@K Q4 P value
(0-15.81mg) (15.81-21.99mg) | (21.99-29.85mg) (29.85-72.63)w
HbAIlc, % 559 (5.56, 5.62) 5.60 (5.57, 5.62) 5.56 (5.54, 5.58) 5.52(5.50,5.54) < 0,001+
FBG, mmol/L 5.81 (5.76, 5.86) 5.82 (5.75, 5.88) 5.85 (5.79, 5.90) 5.82(5.76,5.88) < 0.001%+
FBI, pmol/L 78.07 (75.07, 81.06) 77.24 (73.90, 80.58) 76.74 (73.36,80.12) 77.89(74.76,81.01) < 0.001*
HOMA-IR 3.72 (3.53,3.90) 3.55(3.37,3.73) 3.65 (3.43,3.87) 3.60(3.43,3.78) <0.0017*
TG, mmol/L 1.46 (1.42, 1.50) 1.45 (1.40, 1.50) 1.54 (1.49, 1.59) 1.53(1.48,1.59) < 0,001+
TC, mmol/L 5.18 (5.15,5.21) 5.10 (5.07, 5.14) 5.09 (5.06, 5.13) 5.01(4.99,5.04) <0.001%+
HDL-C, mmol/L 1.41 (1.40, 1.43) 1.40 (1.39, 1.41) 1.36 (1.35, 1.38) 1.31(1.30,1.32) <0.001++*
LDL-C, mmol/L 3.08 (3.04,3.11) 3.01 (2,97, 3.05) 3.01 (2.98, 3.05) 2.96(2.93,3.00) < 0,001+
CRP, mg/L 0.48 (0.46, 0.50) 0.44 (0.41, 0.46) 0.39 (0.37, 0.41) 0.33(0.31,0.35) <0.001%*

Continuous variables are presented as the mean [95% CI], category variables are presented as the proportion [95% CI]. CI, confidence interval; FBG, fasting blood glucose; FBI, fasting blood
insulin; HbAlc, glycated hemoglobin; HDL-C, high-density lipoprotein cholesterol; CRP, C reactive protein; HOMA-IR, Homeostasis model assessment-insulin resistance; LDL-C, low-density
lipoprotein cholesterol. ***P-value < 0.001.

TABLE 3 Weighted Logistic Regression Analysis on the Association between Niacin and Stroke.

Non-adjusted model Model | Model Il
OR [95% CI] P value OR [95% CI] P value OR [95% CI] P value
Continuous Niacin 0.97 [0.96, 0.98] < 0.001*** 0.98 [0.97, 0.99] < 0.001*** 0.98 [0.98, 0.99] < 0.001***
Q1 (0-15.81mg) Reference - Reference - Reference -
Q2 (15.81-21.99mg) 0.78 [0.65, 0.93] 0.01* 0.81 [0.68, 0.97] 0.02* 0.88 [0.75, 1.05] 0.88
Q3 (21.99-29.85mg) 0.56 [0.46, 0.68] < 0.001*** 0.64 [0.52, 0.79] < 0.001*** 0.68 [0.55, 0.86] < 0.001***
Q4 (29.85-72.63) 0.43 [0.35, 0.52] <0.001* 0.59 [0.47, 0.74] < 0.001%%* 0.68 [0.53, 0.86] < 0.001**

Data are presented as OR (95% CI). Model I adjusted for age, sex, and race/ethnicity. Model IT adjusted for age, sex, race, education levels, smoking, drinking, hypertension, DM, and energy
intake. ***P-value < 0.001, **P-value < 0.01, *P-value < 0.05.

40 60

Niacin (mg)

FIGURE 2

RCS analysis of the association between niacin intake and stroke. RCS analysis was adjusted for age, sex, race/ethnicity, education levels, smoking,
drinking, hypertension, and DM. RCS, restricted cubic spline; DM, diabetes; OR, odds ratio.

therapeutic purposes, such as managing certain lipid disorders  group (Ql, < 15.96 mg/day), the adjusted odds ratios (OR)
for depression in the higher intake groups (Q2, Q3, and Q4)

showed a decreasing trend, with the lowest risk observed in Q4

(34, 35). Actually, previous studies have indicated that niacin
plays important therapeutic roles in various diseases. Tian et al.
revealed a negative relationship between dietary niacin intake (> 32.29 mg/day). The relationship remained consistent across

and depression risk. Compared to the lowest niacin intake  different demographic subgroups, including sex, age, and BMI
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Subgroup analysis
Overall
Q1 . 1.00(1.00,1.00)
Q2 e 0.88(0.74,1.06)
Q3 —e— 0.67(0.54,0.84)
Q4 —— 0.67(0.53,0.84)
Gender-Female
Q1 g 1.00(1.00,1.00)
Q2 e 0.89(0.70,1.14)
Q3 e 0.62(0.45,0.85)
Qa4 : B 0.67(0.45,0.98)
Gender-Male
Q1 g 1.00(1.00,1.00)
Q2 : . 0.89(0.64,1.25)
Q3 . 0.74(0.53,1.04)
Q4 —_— 0.73(0.53,1.00)
Age-18-40
Q1 : 1.00(1.00,1.00)
Q2 - 1.25(0.58,2.70)
Q3 - 0.38(0.15,0.93)
Q4 - 0.69(0.30,1.58)
Age-40-60
Q1 s 1.00(1.00,1.00)
Q2 : - 0.93(0.66,1.31)
Q3 —— 0.62(0.41,0.92)
Q4 — . 0.60(0.41,0.88)
Age-60-80
a1 \ 1.00(1.00,1.00)
Q2 —— 0.78(0.60,1.02)
Q3 e 0.72(0.53,0.96)
Q4 —_— 0.68(0.48,0.96)
BMI-Normal weight
Q1 ) 1.00(1.00,1.00)
Q2 - 1.08(0.66,1.76)
Q3 . 0.57(0.35,0.94)
Qa4 . 0.54(0.33,0.89)
BMI-Over weight
Q1 , 1.00(1.00,1.00)
Q2 —— 0.68(0.48,0.97)
Q3 —— 0.50(0.32,0.78)
Q4 — 0.52(0.35,0.79)
BMI-Obesity
Q1 b 1.00(1.00,1.00)
Q2 ——t— 0.87(0.66,1.13)
Q3 0.73(0.53,0.99)
Q4 0.56(0.39,0.81)
-0.5 0 05 1 15
Odds Ratio
FIGURE 3

Subgroups multivariate logistic regression analyses for the association between niacin and stroke among different populations. Analyses were
stratified by age, sex, BMI. Multivariate logistic regression analyses were adjusted for age, sex, race/ethnicity, education levels, smoking, drinking,
hypertension, and DM. DM, diabetes; BMI, body mass index; OR, odds ratio.
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FIGURE 4
Subgroup analyses using RCS were conducted to examine the association between niacin and stroke across diverse demographic groups. The
analyses were stratified based on gender (A), age (B), BMI (C), and race/ethnicity (D). Adjustment for potential confounders, including age, gender,
race/ethnicity, education levels, smoking, drinking, hypertension, DM, and energy intake, was performed in the RCS analyses. RCS, restricted cubic
spline; DM, diabetes; BMI, body mass index; OR, odds ratio.

TABLE 4 Unweighted Logistic Regression Analysis on the Association between Niacin and Stroke.

Non-adjusted model Model | Model Il
OR [95% Cl] P value OR [95% Cl] P value OR [95% Cl] P value
Continuous Niacin 0.97 [0.96, 0.97] < 0.001*** 0.98 [0.97, 0.98] < 0.001*** 0.98 [0.98, 0.99] < 0.001**
QI (0-15.81mg) Reference - Reference - Reference -
Q2 (15.81-21.99mg) 0.75 [0.65, 0.86] 0.01* 0.80 [0.70, 0.92] 0.02* 0.86 [0.73, 1.00] 0.07
Q3 (21.99-29.85mg) 0.58 [0.50, 0.68] < 0.001%%* 0.68 [0.59, 0.79] < 0.001%+* 0.70 [0.6, 0.83] < 0.001***
Q4 (29.85-72.63) 0.41 [0.35, 0.48] < 0.001*** 0.58 [0.49, 0.69] < 0.001*** 0.63 [0.52, 0.79] < 0.001**

Data are presented as OR (95% CI). Model I adjusted for age, sex, and race/ethnicity. Model II adjusted for age, sex, race, education levels, smoking, drinking, hypertension, DM, and energy

intake. ***P-value < 0.001, **P-value < 0.01, *P-value < 0.05.

(36). Results from Xiang et al. (37) indicated a positive correlation
between higher dietary niacin intake and several favorable
outcomes. Increased niacin intake was associated with higher
grip strength, total lean mass, appendicular lean mass, and total
bone mineral content. Conversely, higher niacin intake showed
a negative association with total fat, trunk fat, and sarcopenia
risk. Notably, dietary niacin supplementation also demonstrated a
significant reduction in homeostasis model assessment of insulin
resistance (HOMA-IR), fasting blood glucose (in participants
without diabetes), and fasting insulin (37). Lee et al. (38)
also conducted a cross-section analysis and found that higher

Frontiers in Nutrition

levels of niacin intake were associated with decreased odds of
glaucoma overall and in women (38). However, to the best of
our knowledge, the association of niacin intake and stroke risk
remains exclusive.

Risk factors for stroke include high blood pressure, smoking,
diabetes, obesity, and a sedentary lifestyle. Age, family history,
and certain medical conditions also contribute to the risk (39,
40). Prevention measures often involve lifestyle changes such as
maintaining a healthy diet, exercising regularly, managing blood
pressure, and avoiding smoking and excessive alcohol consumption
(41, 42). Many researchers have studied the risk factors for
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stroke in the NHANES database. There is an interesting study
focused on the association of urinary paraxanthine levels and
stroke risk. Authors found that there was a negative correlation
between urinary paraxanthine levels and stroke risk. However,
the negative association of urinary caffeine levels with stroke
incidence was observed specifically in Mexican Americans, with
no evident correlation in other populations, implying potential
predictive and diagnostic implications in clinical practice (43).
Another study also based on NHANES database also indicated a
U-shaped correlation exists between serum uric acid levels and
the risk of stroke. Both low and high SUA levels elevate the risk
of stroke in distinct populations, with the exception being the
other Hispanic population. Effective early management of SUA is
crucial for preventing strokes in high-risk populations (44). Zhao
et al. (45) utilized a larger sample size drawing on data from
the NHANES spanning 2011 to 2018 to explore the association
of blood selenium levels and the risk of stroke. With 13,755
adults aged 20 years and above, multivariate logistic regression
models and dose-response analyses were employed. In the fully
adjusted model, the highest tertile of blood selenium levels was
also negatively associated with stroke compared to the lowest tertile
(OR = 0.70, 95% CI: 0.53-0.93, P for trend = 0.016) (45). In the
present study, we also utilized a large sample size from NHANES
database to explore the relationship between niacin intake and
stroke risk. We found that increased niacin intake may have
protective effect on prevention of stroke. Especially prior of the
inflection point of 21.8 mg, the stroke risk decreased significantly
with the increase of niacin intake. It is worth noting that the
inflection points vary among different populations. For instance,
the inflection point for males is 25.8 mg, and for females, it is
19.2 mg. This variability may provide insights for the clinical
application of niacin.

Currently, the exact mechanism of Niacin in preventing
strokes is not fully understood, but Niacin may prevent the
occurrence of strokes through the following mechanisms. Firstly,
Niacin has a lipid-regulating effect, especially in lowering low-
density lipoprotein cholesterol (LDL-C) levels and increasing
high-density lipoprotein cholesterol (HDL-C) levels (21). By
reducing lipid deposition on arterial walls, Niacin may help
prevent atherosclerosis, thereby reducing the risk of strokes.
Niacin possesses antioxidant properties, aiding in neutralizing
free radicals and alleviating oxidative stress on blood vessels
(46-48). This may contribute to maintaining vascular health
and reducing the risk of strokes. Niacin is believed to have
anti-inflammatory effects, mitigating inflammatory responses (49—
51). As inflammation is associated with atherosclerosis and
stroke occurrence, the anti-inflammatory effects of Niacin may
contribute to stroke prevention. Finally, Niacin may have a
vasodilatory effect by promoting the production of nitric oxide,
contributing to the maintenance of vascular elasticity and function,
ultimately reducing the risk of strokes (52, 53). However, these
protective mechanisms are relatively superficial, and a more in-
depth exploration of molecular biological mechanisms requires
further investigation through animal experiments. The specific
protective effects of niacin also need validation through large-scale
prospective clinical trials.

Our study has several limitations that should be acknowledged
and considered in future research: (1) The cross-sectional design
inherently hinders establishing causality between niacin and
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stroke (54); (2) Using a single 24-hour recall may not be the
optimal method for calculating habitual dietary intake at an
individual level due to day-to-day variations. The large number
of participants in NHANES surveys may limit the practical
application of more accurate options [e.g., multiple 24-hour
recalls, food frequency questionnaire (FFQ)] in exploring the
long-term link between dietary intake and hypertension. This
issue should be addressed in future studies utilizing NHANES
dietary information (55); moreover, tryptophan, an essential amino
acid, can be converted into niacin through metabolic pathways,
thereby influencing overall niacin levels. The absence of data
on tryptophan in the study’s database prevents a comprehensive
analysis of niacin metabolism and its dietary implications. Future
research should consider incorporating measures of tryptophan
alongside niacin intake to provide a more accurate assessment
of their interplay and nutritional impact; (3) Despite attempts
to include numerous covariates to control confounding bias,
stroke is a complex disorder influenced by multiple genetic,
behavioral, and environmental factors. Unidentified confounders
may exist, affecting the pathogenesis and progression of stroke,
as not all relevant factors are explicitly documented in the
NHANES database; Self-reporting is a convenient means of
obtaining information about dietary intake and hypertension
occurrence among NHANES participants. However, this method
may introduce recall bias, and caution is warranted during the
analysis and interpretation of the data.

Conclusion

We utilized a substantial sample size from the NHANES
database to examine the association between niacin intake and the
risk of stroke. Our findings suggest that heightened niacin intake
may confer a protective effect in preventing strokes. There is a
negative nonlinear association of niacin intake and stroke. Notably,
the inflection points exhibit variations across diverse populations.
This diversity in inflection points could offer valuable insights for
the clinical utilization of niacin.
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Despite the early recognition of obesity as an epidemic with global implications,
research on its pathogenesis and therapeutic approach is still on the rise. The
literature of the 21st century records an excess weight found in up to 1/3 of
children. Both the determining factors and its systemic effects are multiple and
variable. Regarding its involvement in the potentiation of cardio-vascular,
pulmonary, digestive, metabolic, neuro-psychic or even dermatological
diseases, the information is already broadly outlined. The connection between
the underlying disease and the associated comorbidities seems to be partially
attributable to oxidative stress. In addition to these, and in the light of the recent
COVID-19 pandemic, the role played by oxidative stress in the induction,
maintenance and potentiation of chronic inflammation among overweight
children and adolescents becomes a topic of interest again. Thus, this review's
purpose is to update general data on obesity, with an emphasis on the
physiopathological mechanisms that underlie it and involve oxidative stress. At
the same time, we briefly present the latest principles of pathology diagnosis and
management. Among these, we will mainly emphasize the impact played by
endogenous and exogenous antioxidants in the evolutionary course of pediatric
obesity. In order to achieve our objectives, we will refer to the most recent
studies published in the specialized literature.

KEYWORDS

oxidative stress, endogenous antioxidant systems, exogenous antioxidants, obesity,
diet, immunity, child
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1 Introduction

Being defined as an increase in the body mass index (BMI)
above the 95th percentile/at +1-2 standard deviations compared to
the reference average for age and sex, overweight or obesity is a
chronic condition with multisystemic effects. Thus, it is frequently
associated with hypertension, metabolic disorders (e.g.,
dyslipidemia, prediabetes or type 2 diabetes), neuro-psychological,
gastroenterological (e.g., non-alcoholic fatty liver, gallstones,
gastroesophageal reflux), renal, respiratory, orthopedic damage or
dermatological (e.g., atopic dermatitis, acanthosis nigricans) (1-6).
Also, a positive correlation was also identified with regard to sleep
apnea or the increase in the flu severity score among children with
obesity (7, 8).

Recent estimates according to the World Obesity Atlas 2023
place pediatric obesity as a chronic condition that affects 2.6 million
children under the age of 5 and up to 175 million children between
the ages of 5 and 19. The gender ratio in the second category is
against girls (103 million cases) (9). Regarding the division by sex, it
is certified that girls/women present an increased risk compared to
boys partly due to hormonal variability (10). The highest incidence
is noted in Western countries, while in low-income countries or in
countries with a low development index, pediatric obesity is better
represented among families with above-average income (11). An
additive risk factor is identified among “medically complex”
children, namely those children with chronic health conditions,
significant functional limitations and increased risk of
hospitalization (12). The prevalence of childhood obesity has
grown rapidly in the last 40 years, doubling. According to current
trends, it is predicted that in approximately 30 years, up to 25% of
children will suffer from excessive weight gain (10, 13). In addition,
the literature attests to the direct risk of developing obesity in adult
life of the population with excess weight in childhood (14). In this
situation, the pediatrician has a key role in reducing the global
effects of obesity. Due to the nature of the population, he cares for,
knowing and countering the pathological processes that disrupt the
homeostasis of the internal environment in obesity and the
associated comorbidities will lead, in the long term, to reducing
the burden on adults and the medical system (15). To facilitate
inclusion in risk groups and reduce childhood obesity, Sonoda R.
et al. imagined a prediction model based on seven binary
variables (16).

The defining imbalance of obesity is represented by a high
caloric intake, doubled by a low consumption. Their main
regulators are metabolic rate, appetite, eating habits and lifestyle
dynamics. Genetic factors and individual characteristics (e.g., birth
weight, breastfeeding period) may predispose to obesity, although a
more important imprint is attributed to the environment.
Therefore, the increase in the incidence of excess weight in recent
years can be more correctly attributed to environmental changes,
educational deficiencies or western-type diets. In this direction,
current research attests to the involvement of numerous biomarkers
(microRNA, adipocyte balance, oxidative stress, blood cell profile,
nutrients and microbiota) determinants of the development of
excess weight and systemic damage (2, 13, 17-19). Therefore, in
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addition to the disturbances stated above, excessive weight gain
together with the accompanying chronic inflammation represents a
continuous source of oxidative stress. The latter seems to be the
crossroads in triggering the comorbidities that accompany obesity.
Therefore, stimulating interest in research and countering it can be
crucial initiatives, additive to new prevention strategies, to improve
quality of life and ameliorate systemic decline (20, 21).

Therefore, knowing the global impact of obesity and its
comorbidities, both in pediatric and adult age, we tried to
broaden the horizons in terms of understanding the
physiopathological mechanisms underlying the disturbances and
the means by which they can be counteract. In this sense, we chose
as a topic of interest the implications of oxidative stress in excessive
weight gain. The antioxidant substances are multiple, they can be
briefly distinguished into endogenous and exogenous. Although
their importance is similar, in the management of the overweight
patient, counteracting the main nutritional deficits is essential, both
for the restoration of adequate levels, and from the perspective of
the function of cofactors for the endogenous substances played by
some of them. We caried out a narrative review of the scientific
literature from the last decades, by accessing international databases
(PubMed, Google Scholar, Web of Science, Scopus and Embase). To
facilitate the search, we used terms such as “obesity”, “oxidative
stress”, “antioxidant enzymes”, “exogenous antioxidants”,
“antioxidant vitamins”, “antioxidant trace minerals” or “oxidative
stress modulators”.

2 The impact of oxidative stress in the
dynamics of obesity

Obesity has multiple causal determinations. Among these we
note the environmental factors (stress, drugs, surgical interventions,
chemical substances, diet, sleep schedule, physical activity), genetic
predisposition, as well as the disruption of the homeostasis of the
internal environment, objectified by oxidative stress reactions.
Therefore, maintaining the redox balance in the adipose tissue is
an important objective due to its implications in the decrease of the
organic antioxidant capacity, the formation of free radicals and
reactive species and in the pathogenesis of the metabolic syndrome
associated with obesity (22-24).

Oxidative stress is defined as the disturbance of the balance
between the production of oxidizing agents and the antioxidant
defense, materialized by the formation of free radicals. Biochemical
substrates that interfere with its production include the
mitochondrial respiratory chain and enzymes (e.g., nicotinamide
adenine dinucleotide phosphate oxidase, xanthine oxidase,
lipoxygenases, cyclooxygenases, cytochrome P450 enzymes, or
uncoupled nitric oxide synthases). This results in reactive species
derived from oxygen and nitrogen (superoxide anion radicals,
hydroxyl, alkoxyl, lipidic peroxyl, nitric oxide and peroxynitrite).
It imprints a state of suffering on the body, sensitizing it. There is an
alteration of the intra- and extra-cellular components. It is
objectified by structural and functional imbalances of nucleic
acids, proteins or lipids. Among its consequences, we note the
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over-expression of oncogenic genes, the generation of mutagenic
compounds, the promotion of atherogenic activity or inflammation.
Current research incriminates the existence of oxidative stress as a
physiopathogenic mechanism in a variety of pathologies, depending
on genetic susceptibility. Among these we highlight hypertension,
atherosclerosis, obstructive pulmonary disease, diabetes,
osteoporosis, cancer or even infertility (25-31).

The main method to combat the negative effects of oxidative
stress is the detoxification of metabolic byproducts. This is done by
enzymatic or non-enzymatic components. The first category
includes superoxide dismutase (SOD), glutathione peroxidase
(GPx), glutathione reductase, glutathione S-transferase, catalase
(CAT), thioredoxin reductase, peroxiredoxins (Prx), ubiquinone
oxidoreductase and heme oxygenase-1 (HO-1). Recently
introduced in research, we find the paraoxonase family (PON) or
aryl dialkyl phosphatases, enzymes strongly correlated with the
accompanying pathologies of obesity (32). Another important
determinant is nuclear factor erythroid 2 (Nrf2), defined as a
regulator of cellular resistance to oxidants. Its action is manifested
on a wide range of genes with implications in antioxidant
modulation, immune or inflammatory responses, tissue
remodeling, carcinogenesis and cognitive balance. Knowing and
understanding its roles can lead to the explanation of the
mechanisms underlying the correlation between oxidative stress
and induced pathologies. At the same time, it lays the foundations
for new therapeutic perspectives (33, 34). Melatonin is another
magical compound, with functions in regulating the circadian
rhythm, sleep, inhibiting cancer, but also detoxifying free radicals
(35). Dietary antioxidant substances (non-enzymatic) such as
vitamin A, C, E and other plant compounds (flavonoids, tannins,
lignins) are added to all of these. Likewise, the trace elements (zinc,
manganese, selenium) should not be lost sight of, substances
assimilated as enzyme regulators (32).

Oxidative stress in obesity has been shown to be directly
correlated with fat mass. Precipitating factors in this case include
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altered nutritional balance, hyperglycemia, hyperlipidemia and
chronic inflammation. Also, the high-carbohydrate diet potentiates
oxidative stress, an interaction objectified by increasing lipid
peroxidation and protein carbonylation, doubled by the reduction
of glutathione and antioxidant levels. Other classical risk factors
incriminated are pollution, radiation, pesticides or other toxic
substances, infections and surgical interventions. The consequences
are diverse, among which we mention the influence of myocardial
contractility, vascular remodeling, insulin resistance or adiponectin
secretion. This explains the correlation between obesity,
inflammation and various chronic pathologies that make up the
metabolic syndrome (diabetes, heart disease) or not (carcinogenesis,
asthma, COVID-19) (36-39). Summarizing the above, Figure 1
shows the enzymatic and non-enzymatic balance involved in the
pathogenesis of oxidative stress in obesity. Imbalances at this level
interfere, in addition to inflammation, with mitochondrial activity,
adipogenesis, lipolysis and lipogenesis, appetite and iron metabolism.

2.1 Mitochondrial activity

The main roles of mitochondria are represented by production
of energy (adenosine triphosphate - ATP) depending on cellular
needs and fighting infections by promoting reactive oxygen species
(40). In this sense, mitochondrial/peroxisomal oxidation of fatty
acids, as well as excessive oxygen consumption can produce reactive
oxygen species (41). Mainly, during the conversion to ATP, a small
amount of high-energy electrons may deviate from the
programmed path, thus generating superoxide radicals. They are
enzymatically or spontaneously transformed into hydrogen
peroxide and later into hydroxyl radicals, dangerous molecules
(they can indicate cell apoptosis). The effective antioxidant
mechanism in this sense is superoxide dismutase. The enzyme
switches the process towards the formation of hydrogen peroxide.
Later glutathione peroxidase will determine its transformation into

.o homeostasis
restored
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acid, coenzyme Q, N-acetyl cysteine,

melatonin, taurine,

FIGURE 1
Dynamics of oxidative stress and its implications in pathogenesis of obesity.
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water (42). Inflammation together with the overproduction of free
radicals in obesity predispose to the appearance and maintenance of
mitochondrial dysfunction. This is defined as decreased biogenesis,
altered membrane potential, altered mitochondrial gene expression,
and reduced ATP production (43). Another variable encountered in
this case is the excess supply of nutrients. The consequence is the
overwhelm of the Krebs cycle and the mitochondrial respiratory
chain. This is how mitochondrial dysfunction is precipitated, which
results in the formation of an increased amount of reactive oxygen
species. The two mechanisms therefore intertwine, aggravating in
parallel both mitochondrial dysfunction, as well as inflammation
and increased insulin resistance specific to obesity (40, 42). The
exposed changes, related to mitochondrial biogenesis, enzyme
balance and the consequences of the two, were also reported by
Zamora-Mendoza R. et al. (44). Summarizing the above, Figure 2
illustrates the way in which mitochondrial dysfunction induces an
increase in oxidative status and disruption of the homeostasis of the
internal environment.

2.2 Adipogenesis

Adipose tissue normally represents up to 30% of body mass. Its
roles in the body are variable, being briefly divided into structural
(support) and functional. Depending on its distribution, it can be
classified into subcutaneous adipose tissue and visceral adipose
tissue. Its structural and functional characteristics facilitate its
division into 3 categories: white, brown or beige adipose tissue.
Functionally, the main role of white adipocytes is to store energy,
while brown adipocytes intervene in thermogenesis. Thermogenesis
occurs by stimulating uncoupling proteins, the result being the
conversion to produce heat instead of ATP. Beige adipocytes share
similar characteristics to brown ones, but being distributed in white
adipose tissue deposits (45). Brown adipose tissue seems to have a
metabolic activity directly correlated with the volume of muscle
mass; an aspect partially explained by the presence of common
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precursors with muscle cells (myf5-positive precursors similar to
myoblasts). Also, it is better represented in the pediatric population,
unlike adults. The investigation recommended for its evaluation is
positron emission tomography, although the results may be
influenced by age, degree of sexual development, medication used,
fat accumulation, disease state, plasma glucose concentration,
radiotracer dose, season or temperature during examinations.
Antioxidant supplementation has beneficial effects on the
dynamics of brown adipose tissue (45-47). Current data from the
literature attests to the discrepancy between white adipose tissue/
brown adipose tissue in the pathogenesis of obesity. If the excessive
distribution of the first one is found in the case of overweight
people, the brown tissue protects against weight gain and its
comorbidities (insulin resistance, dyslipidemia). However, the way
of distribution of white adipose tissue should not be neglected. It
differentiates pathological obesity from “metabolically healthy”
obesity (Figure 3). The second case is characterized by the
expansion of subcutaneous deposits, adipocyte hyperplasia and
limited ectopic lipid deposition (48, 49).

The imbalance in adipose tissue, characteristic of obesity
(hypertrophy, hyperplasia), is accompanied by a pro-
inflammatory state, mitochondrial and endoplasmic reticulum
dysfunction and, consequently, increased oxidative stress at this
level. This in turn induces disturbances in the production of
adipokines. The link between the two is strengthened by the
direct correlation between oxidative damage markers and BMI,
body fat percentage, low-density lipoprotein (LDL) oxidation, and
triglyceride (TG) levels. The consequences are reflected in the
increased risk of developing comorbidities in the medium and
long term (50, 51). In agreement with the functional
characteristics of adipose tissue, studies on adults attest to lower
levels of oxidative stress in men, compared to women. At the same
time, the correlation with environmental factors is certified (e.g., the
use of oral contraceptives, hormonal therapies) (52). In turn,
oxidative stress promotes inflammation by activating the
components of innate immunity and modulating the activation of
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FIGURE 3
Patterns of obesity depending on the expansion of white adipose tissue

the nucleotide oligomerization domain protein-1 (NOD1).
Following the activation of NODI, there is an increase in
NADPH oxidase (NOX) 1 and 4. From a therapeutic point of
view, it seems that the manipulation in the descending direction of
NOX1/4 decreases oxygen free radicals, in parallel with the increase
in catalase-type antioxidant enzymes and SOD (53, 54).

2.3 Lipogenesis and lipolysis

Lipids fulfill important biological roles such as energy source,
structural components or signaling mediators. The tissues involved
in lipogenesis are the liver and adipose tissue (white/brown). This
modulates, in addition to systemic energy homeostasis, the function
of the immune and nervous systems. Thus, lipid metabolism
disturbances can be accompanied by pathological consequences,
partly due to membrane remodeling (55-57). The metabolic
integrity of the body can be estimated by evaluating the ability of
adipocytes to convert glucose into lipids (de novo lipogenesis), a

FIGURE 4
Key points of lipolytic balance modulated by oxidative status.
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process affected in the case of insulin resistance (58). Therefore, in
obesity, the classic lipolytic pathway is switched to an alternative,
inflammatory pathway. Reactive oxygen and nitrogen species can
influence these pathways at different levels, with consequences
dependent on concentration, reactivity and source (Figure 4).
Mainly excessive and prolonged lipolysis (lipotoxicity) causes
structural and functional changes in adipose tissue. The
physiopathogenic cascade ends with the impairment of insulin
sensitivity, maintaining the vicious circle of lipolysis. In
conclusion, we emphasize the importance of antioxidants in
restoring the homeostasis of the internal environment (59, 60).

2.4 Leptin — adiponectin balance

Adipose tissue also fulfills an endocrine role, secreting a series of
bioactive molecules (adipokines) that influence the internal balance.
Their production is influenced by insulin, catecholamines and
adiposity. By this we mark another stage of the physio-
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pathological process influenced by oxidative stress, namely the
leptin/adiponectin balance. The functions performed by the two
molecules are contradictory (Figure 5). Leptin is involved in
appetite regulation by modulating dopamine secretion by the
limbic system. At the same time, it stimulates oxidative stress,
inflammation, thrombogenic risk, arterial stiffness, angiogenesis,
atherogenesis and lipolysis, inhibiting lipogenesis. This explains the
increased cardiovascular risk characteristic of obesity. At the
opposite pole, adiponectin is an anti-inflammatory molecule that
increases sensitivity to insulin, reduces the development of
atherosclerosis, cell apoptosis and the flow of free fatty acids, in
parallel with the increase in their oxidation. Its action is mainly
achieved through the interaction with ceramidase, the enzyme
involved in the intracellular balance of ceramide. Oxidative stress
suppresses its production, thus increasing the risk of associated
comorbidities. Supplementation with antioxidants restores the
circulatory balance and reduces morbidity. Other adipokines
involved in the modulation of comorbidities are adipsin, resistin,
visfatin, omentin and apelin (41, 61-64).

2.5 Iron metabolism

Iron metabolism has a double value in obesity, disturbances at
this level can be both a consequence of overweight and a cause. The
common point between the two entities seems to be represented by
macrophages. On the one hand, it can be influenced by chronic
inflammation, its deficit affecting the function of hemoproteins and
non-heme proteins. In this case, iron deficiency is accompanied by a
low value of ferritin, in contrast to that of hepcidin, and a negative
correlation between transferrin saturation and adiposity. On the
other hand, excess iron can induce the formation of oxygen free
radicals (hydroxyl radical) through the Fenton reaction whose
course and consequences are illustrated in Figure 6 (65, 66).
Added to these are the increase in lipogenesis, the reduction of
lipolysis and the promotion of mitochondrial dysfunction (67). This
is how ferroptosis (regulated non-apoptotic cell death) occurs,
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characterized by lipid peroxidation when the endogenous
antioxidant status of the cell is compromised. The remedies in
this situation are represented by dietary restriction, the use of iron
chelators, lipophilic antioxidants (vitamin E), ferostatin-1,
liproxstatin-1 or polyphenols (68, 69).

2.6 Inflammation

Chronic, low-grade inflammation is the main mechanism
incriminated in promoting obesity-induced damage. This is
characterized by a continuous activation of the innate immune
system (70). The cause is the accumulation of lipids in adipocytes,
leading to adipocyte stress and local hypoxia following tissue
hypertrophy and hyperplasia. Thus, necrosis and infiltration by
macrophages occurs. There is an increase in the production of pro-
inflammatory mediators (interleukin-6 and 1, tumor necrosis factor
o, monocyte chemoattractant protein 1) and prothrombotic
(plasminogen activator inhibitor-1). Additionally, deficiencies of
the oxidizing and antioxidant system are noted. At the same time,
the local inflammation spreads to the systemic level (42, 71, 72).
Tumor necrosis factor oo (TNF-o) has also been linked to
endothelial dysfunction, increased atherogenic risk, development
of insulin resistance and diabetes. This is achieved through four
essential means, namely the activation of nuclear factor kB (NEF-
KB), increasing the release of free fatty acids in adipocytes, blocking
the synthesis of adiponectin and modulating the phosphorylation of
tyrosine residues, an essential substrate in intracellular signaling.
Regarding IL-6, its levels are directly correlated with BMI, insulin
resistance and carbohydrate intolerance. Besides these, it regulates
the levels of adipokines (inhibits visfatin and adiponectin) (41).

In conclusion, we present the results obtained by Matusik P.
et al. who reiterate, based on their research, the positive correlation
between oxidative disturbances, sports, excess adipose tissue and its
hormonal activity. However, he notes that in the case of patients
practicing sports training (chronic physical activity), the
antioxidant defense was more potent. In consensus, Huang CJ.
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Leptin-adiponetic antithesis in dictating obesogenic risk and its complications.
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et al. explains the connection between sport and the oxidant-
antioxidant balance, emphasizing the dependence on the
individual characteristics of the patient, the type of physical
activity practiced, intensity and period. Also, a brief distinction is
made of the mechanisms by which aerobic and anaerobic physical
activity influence the internal balance. The final result is, in both
situations, represented by the increase of stress markers (73, 74).
Similar findings have been identified in the literature regarding
non-alcoholic fatty liver disease, another component of the
metabolic syndrome, frequently associated with obesity (75).

3 Antioxidant systems

Reactive oxygen species in excess can induce apoptosis, necrosis
or autophagy. The main pathways targeted in this process are
mTOR activity, adenosine monophosphate-activated protein
kinase (AMPK), C-Jun-N-terminal kinase (JNK)/P53, and the
balance between serine/threonine receptor-interacting protein
kinase 3 (RIP3) and RIP1 (76). For these reasons, knowing and
potentiating the main endogenous antioxidants is vital in the
evolution of patients.

3.1 Enzymatic antioxidants

Superoxide dismutase and catalase are two key enzymes in
returning the body to its equilibrium state. The two participate in
the elimination of toxic radicals through the initial conversion to
hydrogen peroxide (H,0,) by SOD, which will then be degraded by
catalase into oxygen and water. Thus, to estimate the level of
expression of the two in the peripheral sagin cells, Mohseni R.
et al. they turned to real-time polymerase chain reaction (PCR). The
results confirmed the low levels among obese children, inversely
correlated with BMI, fasting blood glucose, insulin resistance, LDL-
Cholesterol, TG and systolic blood pressure (77). SOD is divided
into 3 isoforms in mammals. These are the cytosolic copper-zinc
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dimeric form (SOD1), mitochondrial manganese tetrameric SOD
(SOD2), and extracellular Cu/Zn tetrameric SOD (SOD3). Among
them Erdeve O. et al. demonstrates the involvement of SOD3 in the
antioxidant response since childhood (78, 79). At the same time,
Ozgen IT. et al. underlines the role of genetic polymorphisms
(respectively VV alleles) of SOD2 Alal6Val in dictating the risk
of developing oxidative stress associated with increased HOMA-IR
score (80). In turn, CAT is a peroxisomal antioxidant enzyme,
crucial in adipogenesis. Studies on erythrocytes report the possible
correlation of single nucleotide polymorphisms (promoter variant
-844A/G) and post-translational modifications of CAT with the risk
of developing obesity and its comorbidities. At the same time, the
low levels of CAT observed in obesity are partially due to increased
S-nitrosation of the enzyme (81-83). Paradoxically, it remains
contradictory if CAT overexpression in adipose tissue offers any
benefit in terms of improving the metabolic profile or the balance of
adipogenesis (84).

The main disadvantage of antioxidant enzymes is the inability
of exogenous variants to provide benefits to damaged tissues. The
main cause is the low permeability of the membrane. Thus, in order
to achieve results, recombinant formulas are used, made up of SOD
and cell-penetrating proteins (SOD-CPP). This formula can even
cross the blood-brain barrier, reducing the expression of
inflammatory factors and inhibiting NF-xB signaling pathways
(85). Another form used is the SOD mimetic manganese
metalloporphyrin (86).

Glutathione peroxidase is an antioxidant enzyme found at the
cytoplasmic and mitochondrial level in mammals. The entire
superfamily brings together eight isoforms, of which types 1-4
and 6 are selenoproteins, the rest based on cysteine. In humans,
the most common isoform involved in oxidative balance is GPx1
(87). As a means of action, it maintains the balance between the
necessary/damaging level of cellular oxidants by reducing hydrogen
peroxide and soluble lipid hydroperoxides. The source of reducing
equivalents used is glutathione. Enzyme balance is important
because low levels of hydrogen peroxide are required for
physiological processes such as growth factor-mediated signaling,
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formation of protein-disulfide bonds, and regulation of normal
mitochondrial function. At the same time, a high level of GPx1 can
induce dysregulation of islet insulin production and secretion,
culminating in diabetes-like phenotypes. The repercussions at the
pancreatic level consist of depletion of murine regenerating islet-
derived protein 2 (REG2). Thus, maintaining optimal levels of GPx1
is crucial in modulating systemic inflammation and preventing
associated metabolic, neurological, cardio-vascular and oncological
risks (88-91). In this process, an important role is attributed to
glutathione reductase. The enzyme is the main supplier of reduced
glutathione, a necessary substrate for the proper development of the
redox process (92). Independent of other variables that can
influence the redox balance, it seems that seasonal factors (e.g.,
vitamin D) can modulate the reactions based on glutathione (93). In
this sense, vitamin D supplementation showed benefits in
increasing glutathione, GPx1 and SOD, reducing oxidative stress
and suppressing ferroptosis (by activating the Nrf2 signaling
pathway). In parallel, the neuroprotective effect exerted following
the hypoxic-ischemic stimulus is noted (94).

Peroxiredoxins represent an enzyme superfamily, dependent on
cysteine. Prx reduce over 90% of cellular peroxides. These have six
subfamilies in their composition (95). They demonstrated their role
in regulating adipogenesis and the metabolic/inflammatory
implications of obesity. Among these we note diabetes,
atherosclerosis, liver, cardiac or even reproductive damage
(spermatogenesis) (96-100). Similar implications are noted in the
case of paraoxodaxa-1, the thioredoxin/thioredoxin reductase
system (Trx/TrxR), adipokines or heme oxygenase-1 (101-105).

3.2 Non-enzymatic antioxidants

Among the non-enzymatic molecules involved in the clearance
of reactive oxygen species and the reduction of their harmful effects,
we find vitamins (A, E and C) and other plant compounds
(flavonoids, tannins, lignins, carotene, alpha-lipoic acid),
chemicals such as coenzyme Q/ubiquinone (MitoQ), N-
acetylcysteine (NAC) or trace elements (zinc, manganese,
selenium). Compounds with special properties such as melatonin
and taurine are added to these (32, 43, 76).

3.2.1 Vitamins

Fat-soluble vitamins (A and E) are dietary constituents whose
intestinal passage (absorption/elimination) occurs passively,
without energy consumption. Vitamin A can be found as two
forms, preformed (all-trans-retinol and its esters) and provitamin
A (B-carotene). Of these, B-carotene, similar to other dietary
carotenoid products, acts as an antioxidant substrate (106).
Similarly, the distribution of vitamin E brings together 8 isoforms
(four tocopherols and four tocotrienols - o -, -, y-). Vitamin E is
ubiquitous in the body’s sites, although it lacks the possibility of
endogenous synthesis. The functions performed by it spread over
the allergic, inflammatory, atherogenic, metabolic (glycemic,
lipidic), oncological balance, being also an important pillar in
cardioprotection and neuroprotection. It is believed that the
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antioxidant activity of vitamin E is dependent on the number of
methyl groups on the chroman ring. The antioxidant power
includes o, B, ¥ and 3 isoforms in descending order, while
tocopherol is stronger than tocotrienol (107).

Based on previous findings, Guerendiain M. et al. certifies the
involvement of the correlation between optimal levels of fat-soluble
vitamins and reduced adiposity, greater weight loss and improved
cardio-metabolic profile (108). In addition, Gama Oliveira MN.
et al. include in the discussion another predisposing variable,
namely the Q223R leptin receptor polymorphism (109). Another
concern brought into discussion by Gajewska J. et al. is the risk of
hypovitaminosis E or A in obese children, dependent on the BMI
curve for weight loss through lifestyle interventions (110).

Vitamin C (ascorbic acid) fulfills in the body both a role in the
antioxidant and immune balance (innate or adaptive) and as an
enzyme cofactor. Through its functions, it promotes the integrity of
the skin barrier, increases chemotaxis, phagocytosis, the generation
of reactive oxygen species and microbial killing, reduces necrosis
and post-infectious tissue damage and promotes the differentiation
and proliferation of T and B lymphocytes. Thus, in inflammations
and infections, subject to important reactive oxygen species,
vitamin C has a double valence. While its deficiency induces the
disruption of immune defense mechanisms, the infections
themselves promote the deficiency due to inflammation and
nutritional requirements, thus maintaining the vicious circle (111,
112). Current literature attests to the benefit of ascorbic acid in
oncology, cardiovascular (hypertension, stroke, atherosclerosis) and
nutritional (obesity) conditions. However, we emphasize the
existence of gender influence, marked by a negative correlation
between vitamin C intake and abdominal obesity in women. The
mechanisms probably involved in this are represented by the
modulation of adipocyte lipolysis, adrenal glucocorticoid levels,
glucose metabolism (improves blood sugar and decreases
glycosylation) and leptin secretion and reduces the inflammatory
response (113-115). It is known that the optimal intake for a person
of approximately 60 kg is 110 mg/day. Carr AC. et al. note that, to
avoid vitamin C deficiencies, it is necessary to supplement with 10
mg/day for every 10 kg of excess weight (116).

Comparing the three vitamins, Xie D. et al. notes an increased
antioxidant power of vitamin A compared to vitamin C. At the
same time, vitamin E is more potent than vitamin A, the
combination of the two not registering additional antioxidant
benefits (117).

Vitamin D (25-hydroxyvitamin D) is another fat-soluble
vitamin with a strong role in homeostasis of the internal
environment. The main functions are based on the inflammatory,
oxidative and mitochondrial balance. Its balance is influenced by a
multitude of physical and environmental factors. In obesity in
particular, hypovitaminosis D seems to be due to insufficient food
intake, reduced exposure to sunlight due to the inclination towards
a sedentary lifestyle, decreased intestinal absorption, hydroxylation
in adipose tissue or accumulation in fat. To these is added the
genetic predisposition marked by the variation of the vitamin D
receptor gene (118-120). Studies on murine models attest to the
beneficial effects of vitamin D supplementation on oxidative stress
and inflammatory markers in the overweight group (121). Similar
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findings were reported by Ionica M. et al., in the study on the adult,
overweight and obese population. They also record the inverse
correlation between the serum level of the vitamin and the
amplitude of adipose oxidative stress (122). Continuing the
reasoning, Usman M. et al. objectifies, by studying obese pediatric
patients aged between 10-18 years, the positive link between adipose
markers and oxidative DNA damage. In conclusion, the three
entities (obesity, hypovitaminosis D and DNA damage) represent
predictive markers of genomic instabilities (123). In conclusion,
Filgueiras MS. et al. underlines the importance of screening for
vitamin D status in light of the association with non-conventional
cardiometabolic markers (C-reactive protein, IL-6, cathepsin S,
vascular cell adhesion molecule-1, malondialdehyde,
myeloperoxidase, 3-nitrotyrosine and SOD) in the pediatric
population (124). It is estimated that increasing vitamin D by
approximately 9 ng/ml would counterbalance this negative effect
of visceral adiposity (125).

3.2.2 Microelements

Microelements are important chemical structures in the balance
of the internal environment. By their nature, they fulfill multiple
functions, entering into the composition of enzymes, vitamins,
hormones and pigments. By far the most important role is that of
an enzymatic cofactor, modulating organic biochemical processes
through their level. Currently, the medical literature attests to the
presence of deficiency in trace elements in children and adolescents
with obesity. Among these, the biggest shortage seems to be
recorded in what concerns copper (126). Although the
relationship between obesity and nutritional deficiencies remains
open to research, Bloniarz J. et al. links the metabolism of
carbohydrates, fats and implicitly the appearance of secondary
obesity to the balance of chromium, zinc, copper, manganese,
iron or nickel (127). In addition, Luque-Diaz MJ. et al. underlines
the existence of hyperzincuria, hypocupruria, hypozincemia and
hypercupremia in groups of obese patients, unlike controls (128).
Not being the object of the current study, we choose to expose in
what follows its implications from the perspective of
oxidative stress.

We therefore consider zinc, manganese, selenium and
magnesium as the main elements involved in antioxidant
regulation. The function of zinc includes a wide range of
biological processes such as cell proliferation, immune function
and defense against free radicals (through the synthesis of
metallothioneins - they reduce hydroxyl radicals and sequester
reactive oxygen species), cellular response to oxidative stress,
DNA repair, cycle regulation cellular, membrane stabilization,
inhibition of the enzyme nicotinamide adenine dinucleotide
phosphate oxidase (NADPH-oxidase) and apoptosis. The zinc
deficiency, doubled by the high-fat diet, is blamed for the
occurrence of cardiac hypertrophy related to obesity. Regarding
the role of enzyme cofactor, it influences various structures such as
SOD or zinc-02-glycoprotein (ZAG). The latter is an adipokine
with an anti-inflammatory role and in the mobilization of lipids
found in reduced quantities in obese patients (129-133). The level
of zinc must therefore be kept within normal limits, its marginal
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deficit may increase the risk of obesity (134). At the same time,
Mendes Garrido Abregti F. et al. discuss the importance of adequate
zinc levels during breastfeeding. They emphasize that adequate
post-weaning zinc diet has a reduced role in preventing cardio-
metabolic changes induced by perinatal restriction (135).

Selenium supplementation had, similar to zinc, a beneficial effect in
regulating body weight, metabolic and oxidative profile (136, 137). In
addition to its antioxidant (main cofactor of GPx) and anti-
inflammatory implications, selenium intervenes beneficially in non-
alcoholic fatty liver disease induced by obesity. It promotes the
synthesis of selenoprotein P1 (SEPP1) which further regulates the
Kelch-like ECH-associated protein 1 (KEAP1)/Nrf2 pathway (138,
139). The advantages of exposure to selenium were also documented
by Abo El-Magd NF. et al. (140). Last but not least, manganese
influences the body’s antioxidant balance. It is a redox-active
component with a key role in cellular adaptation to oxidative stress.
The main functions are cofactor for SOD and substrate for the
formation of manganese non-proteinaceous antioxidants. In these
processes, the “adversary” is the iron (141, 142).

3.2.3 Other compounds with an antioxidant role

Flavonoids are plant compounds found in fruits and vegetables,
known for their strong antioxidant properties. They are estimated
to have a diversity that includes six subgroups made up of up to
5000 substances with a common characteristic (skeletal structures
with 15 carbon atoms, two phenyl rings and a heterocyclic ring).
The most abundant flavonols are quercetin, catechins and
kaempferol. They can be used in the prevention or management
of obesity and associated diabetes. It exerts its functions on
peripheral tissues and pancreatic beta cells, improving insulin
secretion and sensitivity. It also regulates inflammation by acting
on NF-xB through mitogen-activated protein kinase (MAPK)
pathways. Quercetin can inhibit macrophage inflammatory
response by activating AMPK phosphorylation and sirtuin 1
(SIRT1) expression (143-145). Besides these, flavonoids modulate
thermogenesis, lipogenesis (decrease), lipolysis (increase), energy
consumption, food and nutritional intake, B-oxidation of fatty acids
and carbohydrate balance. In the oxidizing balance, flavonoids can
clean reactive species of oxygen or nitrogen by direct or indirect
mechanism (146-148). A special role is attributed to the ability to
stabilize the intestinal microbial ecosystem. Thus, we previously
demonstrated that intestinal dysbiosis is a process that can be the
basis of a wide range of diseases starting from obesity, the associated
comorbidities and culminating in gastrointestinal, cardiovascular,
renal, atopy or autoimmunity pathologies. The link between them is
attributed to the intestines-vital organs axes, intensively studied at
the present time (149-156). Finally, Gentile D. et al. underlines the
importance of a diet rich in flavonoids in modulating the systemic
inflammatory and oxidative balance, with the aim of avoiding
obesity and its associated comorbidities (157).

Alpha-lipoic acid (ALA) is another vegetable component with
antioxidant effects. Although it is still under study, research on
adults attests that supplementation with 600 mg intravenously for 2
weeks improves insulin sensitivity and reduces mitochondrial
functional manifestations. Also, the levels of free fatty acids,
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dyslipidemia and oxidative/inflammatory markers were reduced, in
parallel with adiponectin, which registered an increase. To these is
added the positive impact in the recycling of vitamins C and E and
the chelation of toxic metals (158-161). Research on murine models
is more advanced, indicating similar results. Looking specifically at
inflammation and oxidative stress, ALA caused reductions in
prostaglandin E2, leukotrienes B4 and C4, T cell proliferation and
IL-2 production, and levels of lipid peroxidation products, doubled
by increased SOD2 and reduced intracellular glutathione
(161-164).

Coenzyme Q10 (ubiquinol/ubiquinone) is a key component in
the mitochondrial electron transport chain. One of the causes of
ubiquinone deficiency is attributed to the statin-induced lipid-
lowering effect by inhibiting the conversion of 3-hydroxy-3-
methyl-glutaryl-coenzyme A reductase (HMG-CoA) to
mevalonate. The main antioxidant mechanisms attributed to
coenzyme Q10 are its action as a cofactor and activator of
mitochondrial uncoupling proteins, the ability to accept and
donate electrons, the inhibition of lipid and protein peroxidation,
the prevention of LDL oxidation and the improvement of the
availability of other antioxidants (vitamin C, E, beta-carotene).
Thus, a diet with foods rich in coenzyme Q10 (100-150 mg/day)
or its supplementation has proven effective in regulating
carbohydrate metabolism, improving inflammation and oxidative
stress characteristic of obesity/metabolic syndrome (165-168).

The benefits of N-acetyl cysteine (NAC) are multiple and
beyond doubt. NAC acts against the complications induced by
obesity both by reducing the abnormal pro-inflammatory response
and limiting oxidative damage, as well as by inhibiting lipid
accumulation by targeting adipogenic transcription factors.
Studies on murine models have also demonstrated an effective
effect on hyperglycemia, dyslipidemia and oxidative stress
(increase the expression of endogenous antioxidant enzymes)
occurring consecutively to a diet rich in sucrose (169-172).

The roles of melatonin are vast and still incompletely
elucidated. Besides the well-known implications of melatonin in
dictating the circadian rhythm, the balance of the intestinal
microbiota, sleep disorders and the opioidergic system, it has
recently come to the attention of research as a regulatory factor
(modulating the activity of melatonin 1 and 2 membrane receptors)
of the lipid and tension profile, of glucose metabolism, oxidative
stress, inflammation and adipose tissue. Thus, melatonin
supplementation between 1-20 mg/day demonstrates a beneficial
role in pediatric obesity by reducing associated mitochondrial
damage, regulating glycemic homeostasis and increasing the
volume/activity of brown adipose tissue. Also, no serious adverse
effects were recorded (173-176). At the same time, the use of
melatonin as an antioxidant has demonstrated its effectiveness in
reducing muscle damage after physical activity in overweight
people (177).

Although research on taurine (2-aminoethanesulfonic acid) is
limited, its implications in modulating oxidative/metabolic stress,
inflammation, insulin sensitivity and vascular remodeling cannot be
denied. Thus, its balance can influence the appearance of the
affections as well as the predisposition towards the development
of associated comorbidities. For estimation purposes, the current
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scientific literature considers taurine excretion/24 hours inversely
correlated with BMI, blood pressure profile and cholesterolemia
(178-181). Also, taurine supplementation (3 g/day) doubled by
sustained physical exercises, with/without nutritional counseling,
demonstrated benefits in reducing inflammation, oxidative stress,
preventing endothelial dysfunction induced by a high-fat diet and
improving the plasticity of subcutaneous adipose tissue (182-184).

The oral and intestinal microbiota also represent a broad field of
research. As I mentioned, its disturbances can be found as risk
factors in various pathologies. In particular, at the local level,
intestinal dysbiosis can be involved in the pathogenesis of
irritable bowel, pancreatitis and celiac disease. It thus achieves a
pathogenic interrelation of autoimmunities (see systemic lupus
erythematosus). Therefore, the current literature states that the
dietary modulation of the intestinal microbiota as well as the
transplantation of fecal matter can represent prophylactic and
curative strategies in childhood obesity (185-189). Its evaluation
currently represents a pinnacle of research. It is known that it is in
permanent change since the perinatal period, being influenced by
both maternal and individual factors. The first three years are the
most important for its optimal definition, the disruptive factors
being cesarean birth, artificial feeding, antibiotic therapy (190, 191).
Consequently, due to the multiple causal associations with obesity,
it is necessary to emphasize the possible beneficial implications of
prebiotics/probiotics or symbiotics in its therapeutic modulation.
The ways in which they interact with the homeostasis of the internal
environment playing the role of antioxidants are vast, from the
clearance of reactive substances to the stimulation of signaling with
the increase of the cytoprotective capacity of the host (192, 193).
They have proven benefits in the co-adjuvant therapy of obesity,
insulin resistance, diabetes and non-alcoholic fatty liver disease
(194). The observation was demonstrated in studies on adult
populations, when supplemented with Saccharomyces boulardii
and SOD for two months. In addition, the increase in the level of
vitamin D was noted (195).

Table 1 illustrates the main means of action of enzymatic and
non-enzymatic antioxidants in mitigating the oxidative stress
present in obesity.

4 The role of diet in
obesity management

Continuing the appropriate screening of the population at risk,
both the targeted therapeutic approach (pharmacological or
surgical) and the adjunctive management of pediatric obesity
(sleep hygiene, balanced diet, avoiding sedentary lifestyle,
sustained physical exercise) is a broad topic of ongoing research.
According to the current consensus, multidisciplinary management
aims to prevent and counteract the underlying pathology and
associated comorbidities, efforts aimed at maintaining the
psychosocial integrity of the child (196-198).

In practical terms, international guidelines currently support the
approach of a minimum of 60 minutes/day of moderate to vigorous
physical exercises. The most effective method to eliminate excess
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TABLE 1 Means to combat oxidative stress in pediatric obesity.

The type Mode of action

of antioxidant

Enzymatic antioxidants

Superoxide dismutase - the first line of defense against reactive oxygen species, converting superoxide radicals into hydrogen peroxide
Catalase - degrades hydrogen peroxide into oxygen and water
Glutathione peroxidase - modulates the balance between necessary and harmful levels of reactive oxygen species by regulating the accumulation of hydrogen peroxide

- is the main supplier of reduced

glutathione, a necessary substrate for the proper development of the redox process

- has a neuroprotective, anti-inflammatory effect, regulates metabolism and cardiovascular homeostasis, being also a valuable anti-oncogenic
factor

- its overexpression can have negative consequences

Peroxiredoxin - catalyze the reduction of peroxides (e.g., hydrogen peroxide, organic peroxides) to water and alcohol, using thiols (e.g., thioredoxin or
glutathione) as electron donors

Non-enzymatic antioxidants

Vitamin A - neutralizes free radicals, stabilizing them and preventing chain reactions that lead to cell damage
- protects the constituent lipids of cell membranes against lipid peroxidation
- modulates gene expression by binding to specific nuclear receptors, regulating the expression of genes that encode antioxidant enzymes
- potentiates the effects of other antioxidants through synergy

Vitamin E - similar to vitamin A

Vitamin C - neutralizes free radicals through the effect of donating an electron, converting them into less reactive molecules
- contributes to the regeneration of other antioxidants (e.g. vitamin E)
- participates in the synthesis of collagen, an important structural and functional protein in the skin, blood vessels, bones and other
connective tissues
- confers protection to DNA and proteins against oxidative damage, helping to maintain the genetic and functional integrity of cells
- modulates the expression of genes involved in antioxidant and anti-inflammatory responses
- improves the absorption of non-heme iron from plant-based foods, helping to maintain adequate iron levels in the body

Vitamin D - modulates through the receptor the expression of genes involved in antioxidant defense (e.g., glutathione peroxidase, superoxide dismutase,
catalase)
- has anti-inflammatory properties, reducing the production of pro-inflammatory cytokines (e.g., TNF-o. and IL-6)
- potentiates the synthesis of glutathione, one of the most important intracellular antioxidants
prevents lipid peroxidation

Zinc - contributes to maintaining the structural and functional integrity of cells, preventing lipid peroxidation
- acts as a cofactor for antioxidant enzymes (e.g. superoxide dismutase with zinc and copper) inhibiting the production of free radicals
- protects against DNA and protein damage
modulates the inflammatory response
- supports the immune system

Cooper - plays the role of cofactor for antioxidant enzymes
participates in the synthesis and functioning of cytochrome c¢ oxidase, thus supporting mitochondrial function
- supports the activity of ceruloplasmin, a transport protein with an antioxidant role (prevents the formation of free radicals through Fenton
reactions)
modulates the immune system
- promotes the formation of collagen and elastin

Iron - cofactor for antioxidant enzymes (e.g., catalase, peroxidase)
- participate in cellular metabolism and energy production - essential for the functioning of enzymes in the electron transport chain in the
mitochondrion
- role in the synthesis of hemoglobin and myoglobin, proteins that transport oxygen in the blood and muscles and modulate immune
responses
- participates in the detoxification of free radicals

Selenium - component of antioxidant enzymes
neutralizes free radicals
- participate in the regeneration of other antioxidants (e.g. vitamin C, vitamin E)
- supports the immune system - adequate levels of selenium are associated with improved immune function and increased ability to fight
infections - and reduces inflammation

Chromium - regulates glucose and insulin levels
- reduces inflammation associated with insulin resistance
- supports mitochondrial function
- can contribute to the activation of some antioxidant enzymes (e.g. superoxide dismutase, glutathione peroxidase)

(Continued)
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TABLE 1 Continued

Mode of action

The type

of antioxidant

10.3389/fimmu.2024.1394869

Non-enzymatic antioxidants

Magnesium

- neutralizes free radicals and prevents oxidative damage at the cellular level

- can inhibit oxidative reactions and decrease free radical levels in cells.
- is involved in the activation of essential antioxidant enzymes (e.g. superoxide dismutase and glutathione peroxidase)

- supports mitochondrial function

- regulates inflammation

- protects DNA and proteins against oxidative damage
- reduces the risk of chronic diseases

Manganese

- essential cofactor for manganese superoxide dismutase

- protects cell membranes against oxidative damage through the ability to neutralize free radicals that can attack lipids in cell membranes,

thus preventing lipid peroxidation

- is involved in the functioning of other antioxidant enzymes (e.g., glutathione peroxidase, catalase), helping to detoxify hydrogen peroxide

and other reactive oxygen species
- role in glucose and lipid metabolism
- supports the immune system

Flavonoids - reduces free radical levels

- it has anti-inflammatory properties and improves insulin sensitivity
- they intervene in reducing fat accumulation in the body and improving lipid metabolism

- intervene in the protection and regeneration of mitochondrial function

o-lipoic acid
E, glutathione)
- reduce inflammation
- improves insulin resistance

- neutralizes a variety of free radicals and reactive oxygen species intervenes in the regeneration of other antioxidants (e.g. vitamin C, vitamin

- protect mitochondria against oxidative damage and dysfunction

Coenzyme Q10 - neutralizes free radicals and reactive oxygen species

- helps protect cell membranes against lipid peroxidation

- is essential for the optimal functioning of mitochondria, helping to reduce the excessive production of free radicals and to prevent oxidative

stress associated with mitochondrial dysfunctions
- improves endothelial dysfunction

- can increase the activity of other antioxidant enzymes (e.g. superoxide dismutase, glutathione peroxidase)

Melatonin - lowers free radical levels

- protects mitochondria against oxidative damage and improves their function

- reduce inflammation
- improves the antioxidant function of other enzymes

- regulates lipid and carbohydrate metabolism, contributing to the reduction of fat accumulation and the prevention of metabolic dysfunctions

associated with obesity

Taurine - neutralizes free radicals and reduces oxidative stress

- protects the liver against oxidative stress, thus reducing the risk of liver damage associated with obesity

- reduce inflammation
- improves insulin sensitivity

- it protects the kidneys against oxidative stress and may contribute to the maintenance of renal homeostasis

weight and reduce waist circumference has proven to be the
combination of aerobics and resistance training. An important factor
in this approach is the school. Studies have shown that encouraging
physical activity in schools has led to improvements in BMI, waist
circumference in women, skinfold thickness and body fat (197, 199).
Undoubtedly, in order to be effective, physical activity must be a part of
changing the entire lifestyle. Thus, it was proven that the lack of
breakfast, the frequent consumption of snacks, the increase in the
amount of fat and carbohydrates in the diet and a narrow variability of
healthy food options (e.g., fruits, vegetables and dairy) were
precipitating factors of childhood obesity. Added to these are the
consumption of sugar-sweetened beverages or fast food (199-201).
The pharmacological intervention possibilities are more
restrictive compared to those in the adult population. The main
consideration resides in the lack of substance certification studies.

Frontiers in Immunology

Therefore, the pharmacological substances currently approved for
obesity are Orlestin, glucagon-like peptide-1 analogues, Liraglutide,
Setmelanotide and Metreleptin. The means of action, dosage and
indications are varied, thereby ensuring the possibility of an
individualized therapy. We also note Semaglutide and Exenatide as
therapeutic options in research regarding the utility in obesity (199).

Bariatric surgery represents a therapeutic alternative dedicated
to severe cases of obesity, refractory to the previously described
hygienic-dietary and pharmacological measures and which
associate comorbidities. Its indications are defined depending on
the value of the body mass index. We thus recognize the usefulness
of bariatric surgery when BMI >40 kg/m2 or BMI >35 kg/m2 with
significant comorbidities. The possible surgical techniques are quite
varied, and BMI reduction seems to be effective in a follow-up
interval of 1-5 years post-procedural. Additionally, this has proven
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TABLE 2 Food sources rich in antioxidants (adapted from Webster-
Gandy J. et al,, Koztowska A. et al.,, Alam MA. et al., Meng X. et al.,, Wu G.
et al. and Shay KP. et al.) (165, 204—-208).

Antioxidants Food

Vitamins « Liver and liver products;
A « Kidney and offal;
« Oily fish and fish liver oils;
+ Eggs
o Carrots;
o Red peppers;
« Spinach;
e Broccoli;
« Tomatoes.

Wheat germ oil;

« Almonds;

« Sunflower seeds & oil;

« Safflower oil;

« Hazelnuts;

« Peanuts & peanut butter;
« Corn oil.

C .
« Citrus fruit (oranges, lemons, satsumas, clementines,

Kiwi fruit;

etc.);

« Black currants;

o Guava;

« Mango;

o Papaya;

« Pepper;

« Brussels sprouts;
e Broccoli;

o Sweet potato.

Cod liver oil;

« Oily fish (salmon, mackerel, etc.);
«  Milk;

o Margarine;

o Breakfast cereals;

+ Eggs
« Liver.
Microelements o Lamb;
Zinc o Leafy & root vegetables;

« Crabs & shellfish;

o Beef;

« Offal;

o Whole grains;

« Pork;

« Poultry;

« Milk and milk products;
-« Eggs;

« Nuts.

Copper o Offal;
« Nuts;
o Cereals & cereal products;
o Meat & meat products.

Iron o Meat especially offal;
« Fish;
o Eggs;
o Meat extracts;
o Bread & flour;
o Breakfast cereals;
o Vegetables (dark green) & pulses;
o Nuts & dried fruit—prunes, figs, apricots;
o Yeast extract.

(Continued)
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TABLE 2 Continued

Antioxidants Food

Magnesium o Green vegetables;
o Pulses & whole grain cereals;
¢ Meats.

Selenium « Offal;

o Fish;

o Brazil nuts;

+ Eggs

o Poultry;

o Meat and meat products.

Chromium o Meat;

«  Whole grains;
e Legumes;

« Nuts.

Manganese o Cereals & cereal products;
o Tea;

o Vegetables.

Other .
antioxidants .

Fruits;
Vegetables;
Flavonoids o Nuts;

o Seeds;

o Spices.

o-lipoic acid o Muscle meats;
o Heart;
« Kidney;

o Liver.

Coenzyme Q10 o Meat;
o Poultry;
« Fish.

Melatonin o Eggs;

« Over;

o Cereals (corn, rice);

«  Fruits (grapes, strawberries);

o Vegetables (tomatoes, peppers, mushrooms);

« Seeds (white and black mustard, soy, flax, beans);
» Nuts (pistachio);

o Coffee;

« Balsamic vinegar;

« Extra virgin olive oil.

Taurine o Beef.

to be beneficial in improving associated comorbidities (e.g.,
diabetes, hypertension, dyslipidemia, and proteinuria). The
studies that will unequivocally certify the role of bariatric surgery
and the superiority of each technique are currently underway (199,
201). One such example is a multicenter study undertaken by
Jarvholm K. et al. (202).

Finally, in accordance with what was stated previously, Stabouli
S. et al. support the need for future research on the early detection of
risk factors and the elucidation of the mechanisms underlying
pediatric obesity (203). Of these, we detailed throughout the
manuscript the pathophysiology implications of antioxidant
substances in the evolutionary pattern of obesity. Therefore, in
order to add practical utility to the work, Table 2 refers to the main
foods with a high content of antioxidants, beneficial in the diet of
children and obese adolescents.
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5 Conclusions

Obesity is found both in childhood/adolescence and in
adulthood. Many pathological processes compete with its
induction and maintenance. Therefore, the unbalanced lifestyle is
only the tip of the iceberg. The current work achieved its goal of
bringing the concept of pediatric obesity and accompanying
comorbidities up to date. Most of the obese children, without
therapeutic interventions, will evolve further into obese adults
that can also associate metabolic syndrome. In order to improve/
stop the systemic decline, measures aimed at lifestyle modification,
pharmacotherapy or surgical therapy are considered. Knowing the
impact played by released free radicals as a consequence of oxidative
stress, we discussed the main endogenous or exogenous antioxidant
substances that interfere with the pathological process, briefly
detailing the roles of each. Although the implications of
antioxidants in childhood obesity are certified by specialized
medical literature, we identified in our search a reporting bias of
the main food sources rich in substances with an antioxidant role.
Consequently, we chose to do a brief review of them. In conclusion,
the current study places the obesity-oxidative stress-antioxidants
relationship in a different light. We consider it opportune to widen
the horizons in this direction by designing and implementing
screening programs and individualized supplementation of
nutritional deficiencies in antioxidant substances with the aim of
reducing the incidence and burden of pediatric obesity.
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