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Editorial on the Research Topic
Recent advances in understanding sex-based tumor diversity

Introduction

Sex differences play a fundamental role in cancer incidence, progression, and treatment
response; however, their influence remains underexplored in many aspects of oncology.
Emerging research suggests that biological factors such as sex hormones, genetic variations,
immune system differences, and metabolic pathways contribute to distinct tumor behavior
and therapeutic outcomes between men and women. Understanding these differences is
critical to advancing precision medicine and improving patient care. This Research Topic,
Recent advances in understanding sex-based tumor diversity, brings together 10 cutting-edge
studies that investigate the impact of sex on cancer biology across a range of malignancies.
These investigations examine molecular mechanisms, prognostic markers, and therapeutic
targets, revealing how sex affects tumor initiation, progression, immune responses, and
treatment resistance, paving the way for personalized therapies.

Article description

The first review, published by Zhu and Zhao, explored the influence of sex on bladder
cancer, from incidence to biology and outcomes. They assessed risk factors such as smoking,
occupational exposures, and genetic mutations, along with sex differences in cancer
development. They provided comprehensive insights into the role of hormones,
chromosomes, metabolism, and the microbiome, while also highlighting gender gaps in
diagnosis and prognosis. Their work underscores the need for further research and sex-
specific treatments to improve care for all patients.

Li et al. analyzed cutaneous melanoma using TCGA and GEO data, integrating
mutational, clinical, and single-cell sequencing to identify key genes. They developed a
prognostic model using LASSO, linking genes to immune responses through functional and
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immunological analyses. They demonstrated the role of GMR6 in
melanoma cell proliferation, invasion, andmigration. These findings
identify potential therapeutic targets, offering new avenues to
improve patient outcomes in cutaneous melanoma, particularly
by targeting GMR6-mediated mechanisms.

Amini-review (Su et al.) explored sex differences in hepatocellular
carcinoma, focusing on sex hormones, genetics, and environmental
factors. The authors highlighted the sexual dimorphism of the liver
and sex-specific risks such as alcohol and obesity in cancer
development. The review explores molecular mechanisms,
including androgen and estrogen signaling, that influence tumor
biology and highlights the need for sex-specific research to
improve diagnostics, treatment precision, and personalized
therapies, aiming to enhance outcomes for liver cancer patients.

Wu et al. investigated the role of AIB1 in endometrial cancer,
focusing on its impact on aerobic glycolysis and tumor progression.
AIB1 is linked to poor prognosis and has been identified as a
potential therapeutic target. Using cell lines and mouse models,
researchers confirmed the high expression of AIB1 and its role in
tumor proliferation and invasion. Mechanistically, AIB1 is
acetylated by PCAF, binds to c-myc, and regulates glycolysis-
related genes. These findings suggest that targeting AIB1-
mediated glycolysis may offer a novel strategy for the treatment
of estrogen-dependent endometrial cancer, thereby advancing
personalized therapies.

Another study (Xia et al.) investigated the chromatin
accessibility in peripheral blood mononuclear cells (PBMCs)
from breast cancer patients to assess its diagnostic and
prognostic potential. Using ATAC sequencing and bioinformatic
analysis, they identified 1,906 differentially accessible regions and
1,632 differentially expressed genes. Nine key genes (e.g., JUN,
CDC42, TRIB1) and five transcription factors (NFY, Sp2, ELK1)
were linked to breast cancer progression. Their findings suggest that
chromatin accessibility in PBMCs is a promising biomarker for early
detection and therapeutic innovation in breast cancer.

Yu et al. investigated BYL-719, a PI3K p110α inhibitor, to target
breast cancer stem cells (BCSCs) and overcome drug resistance.
Using a 3D mammosphere model, they found that BYL-719 inhibits
BCSC proliferation, stemness, and epithelial-to-mesenchymal
transition (EMT). The drug suppresses key pathways such as
PI3K/AKT/mTOR, Notch, JAK-STAT, and MAPK/ERK that
regulate the dynamics of the tumor microenvironment. The
authors demonstrated that BYL-719 overcomes resistance in
eribulin-resistant breast cancer cells. These results suggest that
combining BYL-719 with other therapies may enhance breast
cancer treatment strategies.

Yu et al. explored cell communication in hepatocellular
carcinoma (HCC) using single-cell sequencing and clustering
analysis. They identified malignant and cancer-associated
fibroblast subpopulations, emphasizing SPP1-mediated
interactions. Two clusters, C1 and C2, were distinguished, with
C1 showing higher cytotoxicity and invasion. A gene risk model
revealed increased immune pathway activity in C1, while high-risk
scores correlated with poorer prognosis. They showed that
ABCA1 promotes HCC progression by enhancing proliferation,
invasion, and migration while reducing apoptosis. These
findings provide critical insights into the pathogenesis and
prognosis of HCC.

Hong et al. investigated WNT signaling genes in melanoma,
identifying 19 prognostically relevant genes and developing a 13-
gene model using LASSO regression. Key findings linked CSNK1E
and RAC3 to epithelial-to-mesenchymal transition and immune
evasion. They identified a role for CSNK1E in melanoma
progression via the TGF-β pathway. These results suggest that
targeting CSNK1E and WNT/TGF-β pathways could improve
melanoma treatment and address therapy resistance.

Wang et al. investigated inflammatory gene expression in
epithelial ovarian cancer and its role in immunotherapy resistance.
Transcriptome analysis revealed two inflammatory gene patterns that
differed in immune infiltration, prognosis, and treatment response.
The high-risk group showed elevated M2 macrophage infiltration,
increased tumor stemness, poorer prognosis, and reduced sensitivity
to chemotherapy and immune checkpoint inhibitors. These findings
underscore inflammation-related genes as potential targets for
enhancing immunotherapy and prognostic evaluation, offering new
strategies for early intervention and patient management.

Zhang and Pang studied cell senescence-associated genes in
thyroid cancer, developing a prognostic model using differential
expression, Cox regression, and LASSO analyses. Validated with
Kaplan-Meier and ROC curves, the model predicts patient survival,
tumor mutation burden, and response to immunotherapy across
risk groups. Their findings offer new insights into thyroid cancer
progression and immunotherapy, highlighting potential avenues for
personalized treatment strategies.

Collectively, these studies advance our understanding of cancer
biology by uncovering sex differences, molecular mechanisms, and
therapeutic targets, paving the way for personalized treatments and
improved patient outcomes across multiple malignancies.
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Sexual dimorphism in bladder
cancer: a review of etiology,
biology, diagnosis, and outcomes

Sheng Zhu1 and Huasheng Zhao2*
1Department of Urology, Guilin Hospital of the Second Xiangya Hospital, Central South University, Guilin,
China, 2Department of Urology, ShaoYang Hosptial, Affiliated to University of South China,
ShaoYang, China

Bladder carcinoma represents a prevalent malignancy, wherein the influence of
sex extends across its incidence, biological attributes, and clinical outcomes. This
scholarly exposition meticulously examines pertinent investigations, elucidating
the nuanced impact of sex on bladder cancer, and posits cogent avenues for
future research and intervention modalities. In the initial discourse, an exhaustive
scrutiny is undertaken of the etiological underpinnings of bladder cancer,
encompassing variables such as tobacco consumption, occupational
exposures, and genetic aberrations. Subsequently, a comprehensive dissection
unfolds, delving into the intricate biological disparities inherent in sex vis-à-vis the
initiation and progression of bladder cancer. This analytical framework embraces
multifaceted considerations, spanning sex hormones, sex chromosomal
dynamics, metabolic enzymatic cascades, and the intricate interplay with the
microbiome. Lastly, a synthesized exposition encapsulates the ramifications of
gender differentials on the diagnostic and prognostic landscapes of bladder
cancer, underscoring the imperative for intensified investigative endeavors
directed towards elucidating gender-specific variances and the formulation of
tailored therapeutic strategies.

KEYWORDS

bladder carcinoma, etiology, biology, diagnosis, sexual dimorphism

1 Introduction

One prevalent malignant tumor is bladder cancer (BC) (Richters et al., 2020). It has
been widely reported that there are gender disparities in bladder cancer patients’
epidemiology, diagnosis, and prognosis. Bladder cancer is more common in men than
in women worldwide but a diagnosis of advanced bladder cancer is more common in
females (Scosyrev et al., 2009). Extensive research has confirmed women’s association with
poorer oncological outcomes, including an elevated likelihood of mortality, disease
recurrence and disease progression (Zeegers et al., 2000; Castelao et al., 2001; Boffetta,
2008). Treatment disparities cannot fully explain these differences in survival rates between
genders. Currently, various hypotheses, including physiological anatomical structures,
disease phenotypes, hormone changes, sex epigenomics, diagnostic delays, and
treatment strategies, are being used to explain sex-specific adverse outcomes. Therefore,
this article will explore the connection between sex and bladder cancer in detail from four
distinct aspects: etiology, biology, diagnosis, and outcomes (Figure 1).
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2 Etiological difference in
bladder cancer

2.1 Smoking

Smoking is widely recognized as one of the most significant risk
factors for bladder cancer, as those who smoke have a notably higher
chance of getting the disease than people who do not smoke (Strope
and Montie, 2008). Smoking is linked to bladder cancer in one-third
of women and at least 50% of men (Zeegers et al., 2000). Compared
to female smokers, male smokers have a higher risk of developing
bladder cancer (Castelao et al., 2001), which may be attributed to
higher smoking rates and metabolic differences in men.
Furthermore, studies have shown a linear correlation between
smoking and the risk of bladder cancer, and quitting smoking
can reduce the incidence of bladder cancer (Boffetta, 2008). In
men and women, the incidence of bladder cancer is roughly 4:
1 when smoking intensity is similar (Krabbe et al., 2015). The main
cause of the gender difference in bladder cancer incidence is
generally considered to be smoking. However, according to the
study, there is a 3.31 relative risk of incidence of bladder cancer in

women when smoking rates are 70% for males and 10% for women,
which is lower than the global average of 4.04. This implies that the
variations in bladder cancer incidence across genders can only be
partially explained by smoking (Hemelt et al., 2009).

2.2 Occupations

Chemical substances and carcinogens in certain occupational
environments have different effects on the risk of bladder cancer in
women and men, which may be related to gender differences in
metabolic pathways and hormone levels. For example, occupations
including driving, rubber manufacturing, hair styling, and petroleum
product processing can expose workers to higher levels of aromatic
amine chemicals, raising their risk of bladder cancer (Reulen et al., 2008;
Samanic et al., 2008; Bevan et al., 2012). Additionally, studies have
reported a higher risk of bladder cancer in women who use hair dyes
containing permanent dyes, with women with a higher risk for the
N-acetyltransferase-2 slow acetylation phenotype (Koutros et al., 2011).
The statement indicating a higher risk of bladder cancer in women
using hair dyes, especially those containing permanent dyes, in

FIGURE 1
The connection between sex and bladder cancer in detail from four distinct aspects: etiology, biology, diagnosis, and outcomes.
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association with the N-acetyltransferase-2 (NAT2) slow acetylation
phenotype (Gago-Dominguez et al., 2001; Zhang et al., 2020).
However, the evidence is not entirely consistent, and the
relationship may be influenced by factors like dose, duration of
exposure, and individual susceptibility. Long-term and frequent use
of hair dyes has been suggested to be associated with an increased risk of
bladder cancer, but findings across studies vary. To better understand
the potential risks, assessing blood levels of carcinogenic compounds
resulting from hair dye use is crucial, involving biomarkers of exposure
or specific metabolite measurements. While references to such blood
level measurements may require targeted literature searches, consulting
systematic reviews or meta-analyses could offer a broader overview of
the available evidence on the association between hair dye use, bladder
cancer risk, and the role of dose, duration, and biomarkers. However, in
terms of gender disparities, there is a lack of thorough research to assess
the connection between bladder cancer and occupation.

2.3 Gene mutation

Some gene mutations associated with bladder cancer exhibit
different frequencies and effects in men and women. Bladder
cancer is typically believed to occur due to the entry of chemical
substances in tobacco into the bloodstream, accumulating in the urine
through filtration by the kidneys, and subsequently causingmutations
in bladder cell genes. However, gene mutations are random events
that may be influenced by the cellular microenvironment and can
occur even without external stimuli (Wang et al., 2021; Lin et al.,
2020). HRA, KRAS2, RB1, and FGFR3 are known somatic mutation
genes associated with bladder cancer (Kiemeney et al., 1997;
Cappellen et al., 1999). Gene changes such as STAG2, TERT,
ESPL1, UTX, MLL, MLL3, CREBBP, EP300, NCOR1, and
ARID1A are also linked to bladder cancer (Fliss et al., 2000;
Solomon et al., 2013; Cha and Bochner, 2015). A higher risk of
bladder cancer is associated with PTEN mutations in persons with
breast cancer and thyroid cancer (Hemelt et al., 2009; Cordes et al.,
2013). Studies have identified differences in gene mutation patterns
between different genders in bladder cancer, particularly X
chromosome-based genes (Gul et al., 2021). In a large clinical
cohort study, 58 genes were found to undergo significant
mutations in patients with muscle-invasive bladder cancer (MIBC),
clustering into five subtypes (Cumberbatch and Catto, 2018). The
basal-squamous subtype was more common in women. This suggests
that next-generation sequencing technologies can provide a more
comprehensive data foundation for exploring bladder cancer, which is
of great significance for understanding the mechanisms of bladder
cancer development and the reasons behind gender differences.

3 Biological differences in
bladder cancer

3.1 Sex chromosome and epigenetics

Research has indicated that the loss of the Y chromosome inmales
raises the risk of cancer. In contrast, females with Turner syndrome
(loss or partial loss of the X chromosome) have a significantly
increased risk of bladder cancer, while males with Klinefelter

syndrome (extra copy of the X chromosome) have a significantly
reduced risk of solid tumors (Ji et al., 2016; Theodorescu et al., 2022).
Findings further show that sex hormones do not influence gender-
biased effects of the X chromosome and that an extra copy of the X
chromosome guards against bladder cancer (Kaneko and Li, 2018).
Lysine-specific demethylase 6A is one of the most commonly mutated
genes in bladder cancer (KDM6A), a tumor suppressor found on the
X chromosome (Xp11.3) (Robertson et al., 2018; Koti et al., 2020). As
a demethylase for trimethylation of histone H3 at lysine 27
(H3K27me3), KDM6A mutations result in the availability of
H3K27 for acetylation. H3K27me3 modification is a
transcriptionally repressive epigenetic mark that can form bivalent
domains with the active transcription mark H3K4me3, keeping genes
poised (Voigt et al., 2013). Additionally, studies have demonstrated
the involvement of KDM6A in mediating the methyltransferase
activity of H3K4me1 (Jang et al., 2017; Rickels et al., 2017).
Cohort analysis has shown an association between reduced
KDM6A expression and female bladder cancer progression
(Kaneko and Li, 2018). The UTY (KDM6C) gene on the Y
chromosome is a homologous gene of KDM6A (Lan et al., 2007).
UTY can compensate for KDM6A mutation or deletion on the X
chromosome on the Y chromosome (Lam et al., 2022). According to
studies, deleting compensatory UTY on the Y chromosome may
increase men’s bladder cancer risk (Forsberg et al., 2014).

The interaction between sex hormones and their corresponding
receptors plays a crucial role in the occurrence and development of
bladder cancer, and the differences in hormone levels between genders
may explain the variations in bladder cancer incidence. Research has
shown that the presence of the androgen receptor (AR) gene, which is
situated on the X chromosome (Xq11-12), could potentially explain
the differences in bladder cancer occurrence across genders. Bladder
cancer occurrence and development can be facilitated by AR
mutations that affect ligand binding (Rahmani et al., 2013; Izumi
et al., 2014a). According to multiple studies, androgens stimulate
bladder cancer growth via classical and non-classical AR pathways
(Izumi et al., 2014a; Deng et al., 2021). Based on the data, reducing
bladder cancer invasion may be achieved by inhibiting AR, and anti-
androgen Enzalutamide can reduce bladder cancer cell invasion
(Deng et al., 2021). Targeting AR can also lower the expression of
CD44, a gene linked to the invasion behavior of bladder tumors
(Sottnik et al., 2021). Boorjian et al. have shown that more invasive
tumor stage and AR expression are negatively correlated in bladder
cancer, with lower levels of AR expression in female patients (Boorjian
et al., 2004). However, several studies have not detected significant
differences in tumor AR expression between genders (Mir et al., 2011;
Tuygun et al., 2011; Mashhadi et al., 2014). A large body of research
has shown that androgens and their downstream signaling pathways
may not only be related to tumor progression in muscle-invasive
bladder cancer (MIBC) but also have the potential to become
therapeutic targets (Gakis and Stenzl, 2013; Xu et al., 2013; Izumi
et al., 2014b; Mashhadi et al., 2014).

Estrogen binds to one of the two nuclear receptors, ERα and ERβ,
structurally and functionally distinct. It has been found that ERα
inhibits bladder cancer from occurrence, while ERβ has been shown to
promote its development (Hsu et al., 2013)。However, both ER
subtypes have been found to promote bladder cancer progression.
Both nuclear estrogen receptors (ERα and ERβ) are responsible for
transducing hormone signals into transcriptional responses (Xu et al.,
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2013). Shen et al. detected that ERβ is the predominant subtype
expressed in UCB and that high levels of ERβ expression correlate
with higher tumor grades (Shen et al., 2006; Tuygun et al., 2011). The
team has also shown that exogenous estrogens promote bladder
cancer cell growth in vitro, which can be inhibited by anti-estrogen
drugs such as raloxifene (Shen et al., 2006). However, other studies
have found thatmenopause raises the risk of bladder cancer (McGrath
et al., 2006), and the use of combined estrogen and progesterone
therapy can reduce this risk, which is not associated with estrogen use
alone (Daugherty et al., 2013).

In summary, differences in bladder cancer incidence rates across
genders are partly explained by the interaction of sex hormones and
sex chromosomes (Figure 2). One type of cancer that has been
connected to sex steroid hormones and the receptors on the surface
of cells that they bind to is bladder cancer (Gakis and Stenzl, 2013;
Xu et al., 2013), future research directions could focus on molecular
mechanisms underlying gender-related incidence rate differences
and develop potential therapies for bladder cancer targeting the
androgen-AR signaling pathway or identifying patient populations
that may benefit the most from preventive treatments.

3.2 Metabolic enzymes

Gender differences in metabolic detoxification may contribute
to the varying incidence rates of bladder cancer (Zhang, 2013). The

ability of the liver pathway to degrade carcinogens differs between
genders, leading to varying degrees of carcinogen accumulation in
the urothelium (Buckley and Klaassen, 2007; Zhang, 2013). UDP-
glucuronosyltransferases (UGTs), which are involved in the liver’s
process for breaking down aromatic amines, are responsible for
eliminating exogenous and endogenous substances (Zhang, 2013;
Hu et al., 2016; Meech et al., 2019), smoke from cigarettes contain
carcinogens called aromatic amines that damage DNA. Therefore,
the development of bladder cancer is significantly influenced by the
detoxification of aromatic amines. Studies showed a noteworthy
reduction in the UGT1A subtype enzyme expression in elevated
bladder cancer compared to normal urothelium (Izumi et al., 2013).
In liver tissue, males have higher expression of the
UGT2B17 enzyme than females (Gallagher et al., 2010),
indicating differences in enzyme activity between genders in
metabolizing carcinogens. Additionally, it has been found that
androgen receptor-mediated signaling inhibits UGT expression in
bladder (Izumi et al., 2013; Zhang, 2013) and prostate cancer
(Takayama et al., 2007), indicating a gender bias in the UGT
detoxification pathway in bladder cancer. While several research
studies have shown a connection between UGT and bladder cancer,
there is still a need for large clinical cohort studies to definitively
establish the significance of UGT in gender differences in bladder
cancer (Hu et al., 2016).

Moreover, glutathione-S-transferase M1 (GSTM1), which binds
to reduced glutathione to catalyze the detoxification of foreign

FIGURE 2
Sex chromosomes and sex hormones, through the sex epigenome, collectively influence gene expression and response to the environment, thus
leading to the observed gender differences in bladder cancer.
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substances, is also considered a metabolic target for gender
differences in bladder cancer incidence rates (Hengstler et al.,
1998; Karagas et al., 2005; Yu et al., 2017). GST activity regulates
exposure to carcinogens in the bladder urothelium and affects
bladder cancer risk. A study found that females with the
GSTM1 deletion genotype were more likely to develop bladder
cancer, although this link was not found in males (Karagas et al.,
2005; Salinas-Sánchez et al., 2011). Additionally, female smokers
were shown to have a higher risk of bladder cancer when their blood
samples had the GSTM1 deletion genotype, but not in non-smokers
(Karagas et al., 2005), possibly due to females with the GSTM1 null
genotype being unable to metabolize carcinogens in cigarette smoke.
Additional clinical data is required to verify the relationship between
GSTM1 and gender differences in bladder cancer.

According to the research findings on the comprehensive
regulation of androgens on cell metabolism and detoxification, it
can be hypothesized that the reason for the predominance of males
in bladder cancer may be due to gender differences in enzymes
responsible for carcinogen metabolism, resulting in varying degrees
of exposure to environmental carcinogens (such as carcinogens in
cigarette smoke), ultimately leading to differences in incidence rates.
However, further research is needed to explore other potential
metabolic targets contributing to differences in carcinogen
processing and to conduct larger clinical cohort studies to
determine the relationship between the expression of gender-
related metabolic enzymes and the biology of bladder cancer.

3.3 Microbiome and microbiota

Data show that the microbiota may be associated with over one-
fifth of malignant tumors (Garrett, 2015). The mechanisms of
interaction between the microbiota and human cells involve at
least one of the following: direct impacts on the host’s innate
immune system, interactions with their biochemistry, and host
cell proliferation and death (Bhatt et al., 2017). The development
and progression of bladder cancer involve a multifaceted interplay of
sex hormones, chromosomes, liver enzymes, and the microbiome.
Sex hormones, including estrogen and androgens, exert influence
through receptors expressed in bladder cells, with androgens
stimulating cancer growth. Alterations in sex chromosomes, such
as Y chromosome loss in males and X chromosome anomalies in
females, contribute to varying risks. Liver enzymes, notably
metabolic detoxification enzymes like UDP-
glucuronosyltransferases (UGTs) and glutathione-S-transferase
M1 (GSTM1), exhibit gender-specific differences, affecting
carcinogen detoxification and thus bladder cancer risk. The
urinary microbiota, with variations between genders, has been
linked to bladder cancer progression, suggesting that distinct
microorganisms may create different local environments
influencing tumor establishment. Understanding these factors in
diverse pathological conditions, such as muscle-invasive or non-
urothelial bladder cancer, is pivotal for personalized diagnostic and
therapeutic strategies. Further research is essential to elucidate the
nuanced mechanisms and interactions shaping bladder cancer
development under different pathological contexts.

For example, Salmonella typhi may activate the Wnt/β-catenin
pathway, which could lead to hepatobiliary and colorectal cancer

(Villaseñor et al., 2017). As urine can collect many disease-related
changes, it can serve as a good source of biomarkers. According to
recent research, bladder cancer and changes in the urine
microbiome are related (Alfano et al., 2016; Bučević Popović
et al., 2018). Because of the physiological variations between
males and females, females are more prone to urinary tract
infections. Wu et al. found that individuals with bladder cancer
had a markedly elevated urinary microbiota bacterial abundance,
with reductions in Serratia, Proteus, and Roseomonas and increases
in Acinetobacter, Anaerococcus, and Sphingobacterium (Wu et al.,
2018). A series of studies have also demonstrated that dysbiosis of
the urinary microbiota may influence bladder cancer progression (Bi
et al., 2019; Mai et al., 2019). These investigations suggest that
distinct microorganisms in the urine of men and women may
produce comparatively different local habitats, which may
encourage or prevent the establishment of bladder tumors.
Interactions between the immune system’s sex hormones and the
urine microbiome may be closely related (Curtiss et al., 2017).
Sequencing results of urine samples showed that Lactobacillales
and Corynebacterium dominate the urinary microbiota in females
and males, respectively (Fouts et al., 2012). Lactobacillales have a
protective effect against urinary tract infections (Kim and Park,
2018), and clinical trials have shown that oral administration of
Lactobacillus preparations can slow down bladder cancer recurrence
(Aso et al., 1995). Corynebacterium can influence the composition
of the microbiota by hydrolyzing lipids and releasing free fatty acids
with antimicrobial activity (Chen et al., 2018). Pederzoli et al. found
a higher level of Klebsiella species in the urine of women with
bladder cancer than in women with good health (Pederzoli et al.,
2020). Klebsiella is linked to the development of bladder cancer (Mai
et al., 2019), possibly due to the release of toxins by Klebsiella that
cause DNA damage (Kaur et al., 2018). The aforementioned
experimental results demonstrate that differences in urinary
microbiota between different genders can be one of the reasons
explaining the differences between biological genders in bladder
cancer. The relationship between microbiota and cancer has been
explained by various postulated processes, such as the induction of
chronic inflammation, the promotion of cell proliferation, and the
activation of procarcinogens (Xu et al., 2014). However, large-scale
studies are still needed to clarify the precise connection between
differences in the distribution of microbiota and the development of
bladder cancer.

3.4 Immunobiology

Gender differences in immune responses may also impact the
development and prognosis of bladder cancer. In patients with
advanced bladder cancer, the microbiota’s modulation affects
how well they respond to systemic and adjuvant Bacillus
Calmette-Guérin (BCG) immunotherapy (Killock, 2018; Routy
et al., 2018; Stenehjem et al., 2018; Zitvogel et al., 2018). Studies
suggest that Lactobacillus iners, which dominate the urinary
microbiota in females, may preferentially bind to fibronectin,
competing with BCG and weakening its efficacy (McMillan et al.,
2013). When platinum-based chemotherapy fails to treat advanced
bladder cancer patients, or they are not eligible for it, immune
checkpoint inhibitors become the standard treatment. Studies
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suggest that the gut microbiota composition may affect how well
immune checkpoint blockade drugs work for metastatic melanoma
(Matson et al., 2018). However, there is currently no research
involving bladder cancer patients with metastases. A recent study
found an association between Y chromosome loss and poorer
prognosis (Abdel-Hafiz et al., 2023). Y chromosome loss in
bladder cancer refers to the condition where cells, typically in
males, experience a partial or complete loss of the Y
chromosome. This genetic alteration is associated with more
aggressive tumor characteristics, including increased invasiveness
and the development of an immunosuppressive tumor
microenvironment. Despite its negative impact on cancer
aggressiveness, bladder cancers with Y chromosome loss
paradoxically exhibit heightened sensitivity to immune
checkpoint blockade therapy, suggesting a potential therapeutic
vulnerability. The presence of Y chromosome loss in bladder
cancer patients could serve as a prognostic marker, guiding
clinical decision-making and personalized treatment strategies.
Bladder cancers with Y chromosome loss exhibit more invasive
and immunosuppressive tumor microenvironments but are also
more sensitive to immune therapy. This study demonstrates an
association between Y chromosome loss and increased response to
immune checkpoint blockade therapy in humans and mice,
suggesting a potential therapeutic avenue for this subset of
bladder cancer. Additionally, data show a gender bias effect of
CD8+ T cells, leading to faster male tumor growth (Kwon et al.,
2020). The study further indicates an increase in effector CD8+

T cells in the tumor microenvironment (TME) of females, while
males have higher levels of exhausted CD8+ T cells in the TME
(Kwon et al., 2020).

4 Sex-specific diagnostic differences

While males are more likely to have BC, females are frequently
detected at an advanced stage (Mungan et al., 2000a; Lotan et al.,
2005; Scosyrev et al., 2009; Fajkovic et al., 2011; Mallin et al., 2011;
Rink et al., 2012; Kluth et al., 2014; Mitra et al., 2014; Soave et al.,
2015). Over 23,000 MIBC patients were included in a study by
Marieke J. Krimphove et al. (Fickenscher, 1999), which revealed that
the proportion of female patients with non-urothelial bladder cancer
was significantly higher (15.1% in females vs. 9.9% in males p <
0.001). Among patients with histological variations, females
exhibited poorer pathological features at diagnosis, with a higher
prevalence of squamous cell carcinoma (46.9% in females vs. 28.7%
in males; p < 0.001), while males had a higher prevalence of
neuroendocrine carcinoma (12.3% in females vs. 21.8% in males;
p < 0.001) or micropapillary differentiation carcinoma (3.8% in
females vs. 9.0% in males; p < 0.001). Although biological differences
may contribute to this phenomenon, the timeliness and quality of
the initial evaluation of hematuria, the most prevalent presenting
symptom in both genders, maybe the main reason for the diagnostic
stage differences (Fickenscher, 1999; Shephard et al., 2012). Several
studies have demonstrated that compared to men, women with
hematuria are less likely to see urologists for evaluation (Johnson
et al., 2008; Nieder et al., 2010; Henning et al., 2013). Johnson et al.
(Nieder et al., 2010) observed a 65% higher referral rate of urologists
for male patients experiencing recurrent hematuria compared to

their female counterparts (median follow-up time of 26.5 months:
47% vs. 28%; p < 0.001). Henning et al. (Henning et al., 2013)
conducted a survey of 168 UCB patients (including 38 female
patients) and found no gender differences in the initial
symptoms (p > 0.05). However, 78% of male patients directly
consulted urologists, while only 55% of female patients did so
(p < 0.05). 49.2% of female patients and 19% of male patients
were treated symptomatically without receiving a specific diagnosis
(p < 0.04), which did not result in any significant differences in
tumor staging at the time of initial transurethral resection (Henning
et al., 2013). Furthermore, a retrospective analysis of blood in urine
patients in an institutional electronic medical record database found
that only 8% of females were referred to urologists (Buteau et al.,
2014). Similarly, an analysis of US and UK populations found that
females had a significantly lower likelihood of receiving timely and
complete blood in urine evaluation than males (Lyratzopoulos et al.,
2013; Garg et al., 2014; Bassett et al., 2015). Between 2000 and 2007,
35,646 people were diagnosed with UCB following blood in urine
testing, based on an examination of the Surveillance, Epidemiology,
and End Results (SEER) database. The average time from the first
appearance of blood in urine to consulting a urologist was 27 days,
significantly longer for female patients (Garg et al., 2014). The
database comprised 100 health insurance plans from around
40 large US companies. According to the study, the average time
it took for females to be diagnosed with bladder cancer was
significantly longer than that of males. For example, the average
diagnosis time for females was 85.5 days (95% confidence interval
81.3–89.4 days) compared to 73.6 days (71.2–76.1 days) for males
(p < 0.001). After receiving an initial diagnosis of hematuria, this
difference still exists at 3 months, 6 months, and 9 months; females
have a 26%, 16%, and 23% higher likelihood of experiencing delay,
respectively. Additionally, a delay of more than 6 months between
the onset of hematuria and diagnosis of bladder cancer is more
common in females (17.3% vs. 14.1% in males; p < 0.001).

Most bladder cancers originate in the urothelium, the bladder
cavity’s lining epithelium. Since the early signs and symptoms
resemble urinary tract infections, female patients often receive
antibiotic treatment before undergoing comprehensive urological
evaluation. For example, Cohn et al. (Cohn et al., 2014) found in
their survey that females undergo more urine analysis and urine
culture and receive more urinary tract infection diagnoses before
being diagnosed with bladder cancer, with a significantly higher
proportion of females receiving antibiotics before diagnosis (40.1%
in females vs. 35.4% in males; p < 0.001), but fewer females undergo
bladder imaging. This phenomenon was also observed by Aziz et al.
(Aziz et al., 2015) in a smaller study group. In this study, 61.1% of
female UCB patients received antibiotic treatment in the 12 months
preceding diagnosis, while only 20% of male patients did (p = 0.005).
Moreover, voiding difficulties and stomach pain are linked to
bladder cancer, and reports indicate that females with these
complaints are more likely to receive empirical treatment without
further evaluation, with 47% of females receiving treatment without
further evaluation in the year before diagnosis, compared to only
19% of males (p < 0.05) (Henning et al., 2013). According to
Hollenbeck et al. (Bergman et al., 2013), patients who initially
present with hematuria but are subsequently identified with
bladder cancer (CSM) have a significant risk of cancer-specific
mortality when their diagnosis is delayed.
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These results show notable gender variations in the evaluation of
hematuria, which may lead to an imbalance in the prompt
identification of UCB. Females are more likely than males to
present with lower urinary tract infection-related symptoms or
hematuria. This delay could play a significant role in why
females have worse survival rates and are more likely than males
to suffer advanced-stage disease. Therefore, it is crucial to educate
clinicians on standardized, guideline-based diagnostic and
management approaches for all hematuria patients, irrespective
of gender (Patel et al., 2008; Davis et al., 2012; Bergman et al., 2013)

5 Sex-specific differences in outcomes

5.1 Gender disparities in bladder cancer

Aside from the noted variations in the detection stage, female
patients with bladder cancer also face an elevated likelihood of
cancer-specific mortality compared to their male counterparts
(Hashibe et al., 2003; Underwood et al., 2006; Tracey et al.,
2009). Although males are diagnosed with bladder cancer at a
rate approximately three times higher than females, their
likelihood of dying from it is only about twice that of females,
resulting in a lower CSM-to-incidence ratio for males (Shariat et al.,
2010). Furthermore, female patients diagnosed with bladder cancer
have a greater reduction in lifespan compared to males (6.5 years for
females vs. 3.9 years for males) (Scosyrev et al., 2012). While some of
the survival differences can be attributed to the higher incidence of
late-stage disease in females, the differences in the presentation stage
cannot fully explain the gender-related survival differences in
bladder cancer patients, as studies show that female individuals
have a lower prognosis across all disease stages. For example, the
female patients’ 5-year survival rate at stage I is 93.7%, a decrease of
2.8% compared to males; for stage II, it is 59.6%, a decrease of 5.9%
compared to males; for stage III, it is 49.6%, a decrease of 9.2%
compared to males; and for stage IV, it is 15.2%, a decrease of 11.9%
compared to males (Mungan et al., 2000a). Some registry-based
studies focusing on elderly populations have shown that female UCB
patients have higher tumor staging and lower survival rates
(Mungan et al., 2000a; Mungan et al., 2000b). A study by Kluth
et al. (Moschini et al., 2019) used data from the Japanese Kanagawa
cancer registry, which included 13,184 primary UCB patients from
Japan between 1954 and 2010. After adjusting for patient age,
treatment timing, and histological subtype, they found that CSM
increased by approximately 40% in females. Another Japanese
population-based registry study revealed that at the time of initial
diagnosis, women’s cancer staging was higher than men’s, and the
prognosis for women with bladder cancer that was localized or
locally advanced was poorer than that of males.

Currently, in patients receiving radical cystectomy (RC) for
bladder cancer, there is limited data supporting gender
differences in survival rates. Some studies have suggested that
female gender is an independent risk factor for CSM after RC
(85, 112, 113). For example, Kluth et al. (Kluth et al., 2014)
conducted a study analyzing 8,102 patients (including
1,605 females) who underwent RC and found that female gender
was an independent predictor of bladder CSM (HR 1.17, p = 0.004)
after adjusting for various factors. Ingmar Wolff and colleagues

(Gago-Dominguez et al., 2001) analyzed studies published between
2012 and 2015 that focused on standardizing care for muscle-
invasive bladder cancer (MIBC) and analyzing how gender affects
prognosis. Among the 8 RC series studies, 5 reported higher CSM
rates in female patients (Kiemeney et al., 1997; Cappellen et al., 1999;
Fliss et al., 2000; Reulen et al., 2008; Zhang et al., 2020). Two studies
specifically found gender-specific prognostic effects in early-stage
disease (Kiemeney et al., 1997; Fliss et al., 2000). In these two studies,
female patients also had lower survival rates, especially when it came
to younger patients (≤55 years and ≤60 years) and those who had
lymphovascular invasion (LVI). However, no gender effect on
prognosis was seen in two studies focusing on early invasive T1-
high-grade UCB and TURB with intravesical treatment (Solomon
et al., 2013; Cha and Bochner, 2015). Additionally, females were
more likely to undergo RC (odds ratio [OR] 1.39; 95% CI 1.20–1.61)
and had fewer complications (p < 0.05).

Regarding a separate relationship between gender and survival
following RC, there is, however, conflicting evidence. Using
demographic, tumor, and therapeutic data to match 414 female
and 2,153 male patients, Mitra et al. (Mallin et al., 2011) found no
significant gender differences regarding recurrence-free, cancer-
specific, and overall survival. After controlling for tumor stage
and other factors, a different study including 398 male and
119 female RC patients found no relationship between
postoperative survival and gender. Keck et al. (Cordes et al.,
2013) conducted a study on patients undergoing adjuvant
chemotherapy and found that female patients had higher CSM in
a multivariate analysis (HR 2.40, p < 0.001). Zhao et al. studied
233 eligible MIBC patients (177 males [76%] and 56 females [24%])
and 105 NMIBC patients (80 males [76.2%] and 25 females
[23.8%]). According to this study, patients with bladder cancer
who were female had a poorer prognosis than those who were
male at particular stages, and obese females with higher BMI had
poorer survival, while females with normal weight (BMI <24) had a
higher likelihood of recurrence.

When analyzing gender differences in the prognosis of UCB, it is
crucial to focus on patients with T4 bladder tumors. Gender-specific
anatomical distinctions are present in the pT4 tumor stage, wherein
pT4a tumors extend into the vagina or uterus in females and the
prostate in males (Moschini et al., 2019). Women with pT4 bladder
cancer had worse outcomes than men, according to a large study
based on 583 occurrences of the disease among 4,257 patients (Tilki
et al., 2010c). In an analysis by Matthias et al. (May et al., 2013), the
5-year cancer-specific survival rate for 245 pT4a UCB patients who
did not receive chemotherapy before undergoing RC was 15% for
females and 35% for males (p = 0.003). Multivariate analysis showed
that female patients had a poorer prognosis. Similarly, an analysis by
Danielji et al. of 5,625 SEER database-based RC treatment for
pT3–pT4 UCB patients also indicated that females had a higher
independent risk of CSM compared to males (HR 1.20; p = 0.003)
(Liberman et al., 2011a). However, analysis of a small sample (n =
128) of pT4 tumor patients did not find a correlation between gender
and survival rates (Kaushik et al., 2014), although this result may be
due to the small sample size. Additionally, the results of these reports
may be influenced by the heterogeneity of pT4 staging, especially in
males. For example, the transmural infiltration of the primary
bladder tumor is not considered when ductal and stromal
invasion are categorized as pT4a. It is also possible for tumors
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designated as UCB to be poorly differentiated prostate cancer in
cases of extremely undifferentiated tumors (Downes et al., 2013).

The relationship between gender and prognosis differences in
NMIBC is also limited and sometimes contradictory. Fabiano et al.
(Santos et al., 2015) found that similar to delayed diagnosis with
hematuria, females also experienced delays in undergoing
transurethral bladder resection compared to males. Additionally,
studies have shown that the likelihood of receiving BCG therapy is
similar for male and female NMIBC patients (Noon et al., 2013). For
example, Jonathan et al. (Theodorescu et al., 2022) analyzed 472
(77.0%) male NMIBC patients and 141 (23.0%) female NMIBC
patients who received BCG treatment and found no clear evidence of
gender-based differences in treatment response, recurrence, and
tolerability. Since these individuals did not have long-term BCG
therapy or repeat transurethral resection, the generalizability of
these findings is still questionable. It is worth noting that a
population-based cancer registry study found that female NMIBC
patients had significantly higher CSM than males (Noon et al.,
2013). However, Alanee et al. (Alanee et al., 2015) analysis showed
that females had a higher risk of CSM than carcinoma in situ (CIS)
patients. In addition, female T1HG UCB patients had a greater
chance of recurrence but not disease progression or death (Kluth

et al., 2013). Similarly, no association between gender and illness
development or recurrence was discovered in an analysis conducted
by Boorjian et al. (Boorjian et al., 2010)of 756 male and 265 female
patients undergoing BCG treatment. After examining 15,215 high-
grade T1 patients, Martin-Doyle et al. (Martin-Doyle et al., 2015)
found that while there was no association between females and
cancer-specific survival or tumor recurrence, they did have a notably
increased risk of disease progression. Konrad Bilski et al. (Bilski
et al., 2022) conducted a retrospective analysis of 388 male and
131 female patients with primary high-risk NMIBC treated with
transurethral resection (TUR) and found that females were
associated with an increased risk of disease recurrence, but there
was no gender difference in disease progression.

Although the reasons for the gender disparities in post-
cystectomy death rates have not been fully elucidated, several
researchers have provided evidence of inequalities in the quality
of treatment received by male and female cystectomy patients. A
retrospective study by Cárdenas-Turanzas et al. (Cárdenas-
Turanzas et al., 2008) showed that female patients undergoing
RC had significantly longer hospital stays and higher blood
product costs. According to Siegrist et al. (Siegrist et al., 2010),
female patients undergoing cystectomies experienced increased

TABLE 1 Sex-specific differences in outcomes.

Aspect Gender Findings/Results

Bladder Cancer Incidence Male Diagnosed at a rate approximately three times higher than females (Shariat et al., 2010)

Bladder Cancer Mortality Male Likelihood of dying from bladder cancer is about twice that of females, resulting in a lower CSM-to-incidence ratio for
males (Shariat et al., 2010)

Lifespan Reduction Female Female patients have a greater reduction in lifespan compared to males (6.5 years vs. 3.9 years) (Scosyrev et al., 2012)

Survival Differences Female Female individuals have a lower prognosis across all disease stages, including 5-year survival rates at different stages
(Mungan et al., 2000a)

Registry Studies in Elderly Populations Female Female UCB patients in elderly populations have higher tumor staging and lower survival rates (Mungan et al., 2000a;
Mungan et al., 2000b)

Japanese Kanagawa Cancer Registry
Study

Female CSM increased by approximately 40% in females, with higher cancer staging at initial diagnosis (Moschini et al., 2019)

Radical Cystectomy (RC) Female Limited data on gender differences in survival rates; some studies suggest female gender is an independent risk factor
for CSM after RC (Tilki et al., 2010a; Tilki et al., 2010b; Kluth et al., 2014)

RC Series Studies on Muscle-
Invasive BC

Female 5 out of 8 RC series studies reported higher CSM rates in female patients (Gago-Dominguez et al., 2001)

Early-Stage Prognostic Effects Female Some studies found gender-specific prognostic effects in early-stage disease, with lower survival rates in females
(Kiemeney et al., 1997; Fliss et al., 2000)

Non-Metastatic Muscle-Invasive BC Female Female bladder CSM was poorer than that of males; females more likely to undergo RC with fewer complications
(Cappellen et al., 1999)

Adjuvant Chemotherapy Female Female patients had higher CSM in a multivariate analysis (Cordes et al., 2013)

MIBC and NMIBC Female Female patients had poorer prognosis at particular stages, and obese females had poorer survival (Theodorescu et al.,
2022)

T4 Bladder Tumors Female Female patients with pT4 bladder cancer had worse outcomes than males (Tilki et al., 2010c; Moschini et al., 2019)

SEER Database Analysis Female Higher independent risk of CSM in females with pT3–pT4 UCB (Liberman et al., 2011a)

NMIBC Patient Registry Study Female Female NMIBC patients had significantly higher CSM than males (Alanee et al., 2015)

Post-Cystectomy Disparities Female Disparities in treatment for female cystectomy patients, with longer hospital stays and higher blood product costs
(Cárdenas-Turanzas et al., 2008; Siegrist et al., 2010)

SEER Database Analysis (Post-RC) Female Female patients undergoing RC had a 20% higher risk of death within 90 days (Liberman et al., 2011b).
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blood loss, longer operating times, more transfusion needs, and
decreased pelvic lymph node dissection incidence. Additionally, an
analysis of 12,722 UCB patients from the SEER database from
1988 to 2006 showed that female patients undergoing RC had a
20% higher risk of death within 90 days (Liberman et al., 2011b).
However, other research has demonstrated the absence of significant
gender disparities in frequently employed surgical quality measures,
such as lymph node counts and surgical margin status (Horstmann
et al., 2008; Kluth et al., 2014; Messer et al., 2014; Mitra et al., 2014).
As a result, it is unlikely that the marginal differences in overall
survival rates between men and women can be attributed simply to
unequal treatment between the sexes. Future studies should
determine the fundamental causes of gender-specific variations in
diagnostic features and pathological staging (Table 1).

5.2 Sex-specific responses in bladder
cancer treatment

In addressing the efficacy of immune checkpoint inhibitors
(ICIs) in bladder cancer treatment, it is imperative to explore
potential sex-specific responses. Recent studies have suggested
differential efficacy between male and female patients undergoing
ICI treatment (Aragaki et al., 2022; Lindner et al., 2023). These
investigations, characterized by variations in response rates and
survival outcomes, underscore the importance of considering sex as
a critical factor in immunotherapeutic interventions. Mechanisms
underlying these sex-specific differences remain an active area of
research, with hypotheses centered around hormonal,
immunological, and genetic factors. Despite the promising strides
made in systemic immunotherapy, challenges persist in the realm of
bladder infusion chemotherapy, where localized drug delivery
occurs directly into the bladder. Presently, bladder infusion
chemotherapy lacks specific drug treatment options tailored to
sex differences, necessitating further exploration and research.
Ongoing initiatives are focused on identifying novel agents and
optimizing drug delivery methods, urging future studies to delve
into sex-specific responses to emerging treatments for a more
personalized and effective approach.

Gender-related factors significantly influence various facets of
bladder cancer drug therapy. Metabolic enzymes, particularly liver
enzyme activity, exhibit gender-specific differences impacting
chemotherapy drug metabolism and treatment outcomes.
Hormonal influences, exemplified by estrogen and androgen
receptor expression on bladder cancer cells, contribute to
variations in hormone-targeted therapy responses. Studies
indicate potential gender-related differences in immune
checkpoint inhibitor responses, highlighting gender’s crucial role
in immunotherapy outcomes. Gender-specific variations in body
composition and distribution influence drug pharmacokinetics,
impacting treatment effectiveness and toxicity. Additionally,
psychosocial factors and gender-specific side effects influence
patient experiences and compliance with bladder cancer drug
therapy. Ensuring adequate gender representation in clinical trials
is crucial for generalizability, particularly understanding
interactions with hormone replacement therapy in
postmenopausal women. Exploring the reasons behind gender-

related survival disparities in bladder cancer guides efforts to
tailor treatment strategies for improved outcomes.

Leveraging gender-specific characteristics for bladder cancer
treatment involves a comprehensive approach to enhance
therapeutic strategies and patient prognosis. Precision medicine,
driven by genomic profiling, facilitates the development of targeted
therapies tailored to individual profiles. Hormone-targeted
therapies, modulating estrogen and androgen receptors based on
expression patterns, offer gender-tailored interventions.
Optimization of immunotherapy considers gender-related
variations in immunological responses, ensuring enhanced
treatment outcomes. Gender-specific pharmacokinetics in drug
development ensure individualized dosing, optimizing drug
exposure and efficacy. Inclusive clinical trial designs with
adequate gender representation generate robust data to discern
gender-specific responses to emerging therapies. Tailored
psychosocial support programs address unique coping
mechanisms and adherence challenges, contributing to overall
wellbeing during treatment. Gender-tailored screening protocols,
survivorship programs, and educational initiatives empower
healthcare providers and communities to enhance early detection,
survivorship care, and awareness of gender-related risk factors,
advancing personalized, equitable, and effective bladder
cancer therapies.

6 Conclusion

In conclusion, our comprehensive exploration of bladder cancer
underscores the profound impact of sex on its multifaceted
dimensions, illuminating crucial insights for future research and
clinical interventions. The etiological panorama, encompassing
factors such as smoking, occupational exposures, and genetic
mutations, exhibits intriguing disparities in male and female
populations. The nuanced biological differences, including the
intricate interplay of sex hormones, sex chromosomes, metabolic
enzymes, and the microbiome, provide a rich substrate for
understanding the intricacies of bladder cancer initiation and
progression.

Furthermore, our synthesis of gender-specific diagnostic and
prognostic implications reveals substantial variations across all
disease stages, transcending the detection phase and implicating
fundamental disparities in disease outcomes. The dearth of
conclusive evidence regarding gender-specific survival rates post-
radical cystectomy calls for further exploration and validation.
Addressing these disparities necessitates tailored research
initiatives and the development of gender-specific treatment
modalities.

In essence, this comprehensive review serves as a clarion call for
heightened attention to sex-specific considerations in bladder cancer
research and clinical practice. A more nuanced understanding of
these gender-based disparities is essential for advancing
personalized medicine and optimizing outcomes for all patients
afflicted by this prevalent malignancy. Future investigations should
delve deeper into the intricate interplay of sex-related factors,
fostering a more precise and equitable approach to bladder
cancer prevention, diagnosis, and treatment.
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Glossary

BC Bladder Cancer

HRA High-Risk HPV (Human Papillomavirus)-Associated

KRAS2 Kirsten Rat Sarcoma Viral Oncogene Homolog 2

RB1 Retinoblastoma 1

FGFR3 Fibroblast Growth Factor Receptor 3

STAG2 Stromal Antigen 2

TERT Telomerase Reverse Transcriptase

ESPL1 Extra Spindle Pole Bodies Like 1

UTX Ubiquitously Transcribed Tetratricopeptide Repeat X-Linked

MLL Mixed-Lineage Leukemia

CREBBP CREB-Binding Protein

EP300 E1A Binding Protein P300

NCOR1 Nuclear Receptor Corepressor 1

ARID1A AT-Rich Interaction Domain 1A

PTEN Phosphatase and Tensin Homolog

MIBC Muscle-Invasive Bladder Cancer

AR Androgen Receptor

BCG Bacillus Calmette-Guérin

CD Cluster of Differentiation

ER Estrogen Receptor

GSTM1 Glutathione-S-transferase M1

H3K27me3 Histone H3 Lysine 27 Trimethylation

KDM6A Lysine-specific Demethylase 6A

MIBC Muscle-Invasive Bladder Cancer

UCB Urothelial Carcinoma of the Bladder

UGT UDP-glucuronosyltransferase

MIBC Muscle-Invasive Bladder Cancer

UCB Urothelial Carcinoma of the Bladder

SEER Surveillance, Epidemiology, and End Results

CSM Cancer-Specific Mortality

HR Hazard Ratio

NMIBC Non-Muscle-Invasive Bladder Cancer

CIS Carcinoma In Situ

TUR Transurethral Resection
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Integrated transcriptomic and
immunological profiling reveals
new diagnostic and prognostic
models for cutaneous melanoma
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and Mingyuan Xu2

1Department of Dermatology, Wenzhou Hospital of Integrated Traditional Chinese and Western
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The mortality rate associated with cutaneous melanoma (SKCM) remains
alarmingly high, highlighting the urgent need for a deeper understanding of its
molecular underpinnings. In our study, we leveraged bulk transcriptome
sequencing data from the SKCM cohort available in public databases such as
TCGA and GEO. We utilized distinct datasets for training and validation purposes
and also incorporated mutation and clinical data from TCGA, along with single-
cell sequencing data fromGEO. Through dimensionality reduction, we annotated
cell subtypes within the single-cell data and analyzed the expression of tumor-
related pathways across these subtypes. We identified differentially expressed
genes (DEGs) in the training set, which were further refined using the Least
Absolute Shrinkage and Selection Operator (LASSO) machine learning algorithm,
employing tenfold cross-validation. This enabled the construction of a
prognostic model, whose diagnostic efficacy we subsequently validated. We
conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses on the DEGs, and performed immunological
profiling on two risk groups to elucidate the relationship between model
genes and the immune responses relevant to SKCM diagnosis, treatment, and
prognosis. We also knocked down the GMR6 expression level in the melanoma
cells and verified its effect on cancer through multiple experiments. The results
indicate that the GMR6 gene plays a role in promoting the proliferation, invasion,
and migration of cancer cells in human melanoma. Our findings offer novel
insights and a theoretical framework that could enhance prognosis, treatment,
and drug development strategies for SKCM, potentially leading to more precise
therapeutic interventions.

KEYWORDS

SKCM, melanoma, LASSO machine learning algorithm, differential gene expression,
immune infiltration analysis

1 Introduction

SKCM is globally recognized as the third most prevalent type of skin cancer and the
19th most common cancer overall (Davey et al., 2021). Despite constituting only about 1%
of all skin cancers, SKCM is the most invasive and perilous type, responsible for 90% of skin
cancer-related deaths (Eddy and Chen, 2020). In the United States in 2023, approximately
97,610 new cases of SKCM were projected, accompanied by an estimated mortality of 7,990
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(Siegel et al., 2023). In situ SKCM represents the precursor stage to
malignant SKCM, with its incidence rising even faster than that of
malignant SKCM (Wei et al., 2016; Sacchetto et al., 2018). The 5-
year survival rate for localized SKCM is 99%, but it drops to 63% for
regional metastatic SKCM and further plummets to 20% for distant
metastatic cases (Fakhoury et al., 2024). Major risk factors for SKCM
include environmental factors like excessive UV exposure, genetic
factors, gender, age, race, and immune factors (Hawkes et al., 2016;
Davey et al., 2021). Females have a lower risk of SKCM, and their
prognosis is better than males (El Sharouni et al., 2019).
Socioeconomic status is closely linked to SKCM incidence, with
higher socioeconomic status correlating to higher malignant SKCM
rates, though tumors are thinner, and prognosis is relatively better
compared to lower socioeconomic status patients (Gibson et al.,
2020).Despite advancements in surgery, radiation therapy,
chemotherapy, and targeted treatments such as KIT inhibitors,
SKCM poses challenges due to difficulties in early non-invasive
identification, high invasiveness, and early occurrence of local or
distant metastases, leading to an overall poor prognosis (Lo and
Fisher, 2014; Slipicevic and Herlyn, 2015; Davis et al., 2019).
Therefore, in-depth research into the mechanisms of SKCM
occurrence and development, especially those leading to
metastasis and recurrence, is crucial. Identifying key biomarkers
and exploring crucial target genes are essential for the diagnosis,
treatment, and prognosis of SKCM.

Numerous studies have investigated the role of specific gene
families in SKCM and constructed prognostic models (Luo et al.,
2023; Yue et al., 2023). However, these studies have primarily
focused on subsequent analyses based on specific functional gene
sets. Analyzing the intrinsic correlations and potential therapeutic
targets of gene expression from a holistic transcriptomic perspective
can provide a more comprehensive understanding of the disease.
Additionally, the analysis paradigm has expanded from simple
prognostic model construction and molecular mechanism
analysis to drug prediction. This “treatment-prognosis”
comprehensive analysis offers a theoretical basis for improving
cancer treatment. However, existing studies are based on the
“pRRophetic” R package (Li AA. et al., 2022; Zhao et al., 2023).
Considering the early release year of the “pRRophetic” R package
(Geeleher et al., 2014), it is necessary to perform drug prediction for
SKCM based on the new “oncopredict” package (Maeser
et al., 2021).

In this study, we performed a comprehensive analysis of both
bulk transcriptomic and single-cell sequencing data for SKCM,
sourced from the public databases of The Cancer Genome Atlas
(TCGA) and The Gene Expression Omnibus (GEO). Initially, we
applied dimensionality reduction techniques to the single-cell
dataset, annotating cellular subtypes and examining the
expression of tumor-related pathways across these subtypes. We
then leveraged the bulk transcriptomic data to construct predictive
models, which were rigorously validated using designated training
and validation sets. Differential expression analysis identified a set of
genes (DEGs) from the training dataset. These DEGs were further
scrutinized using the Least Absolute Shrinkage and Selection
Operator (LASSO) machine learning algorithm, enhanced with
tenfold cross-validation, to refine the model development and
perform validation tests. In addition, we conducted Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analyses, as well as mutation analysis on these
DEGs. Furthermore, we utilized three immune infiltration
algorithms to explore immune-related dynamics within two
defined risk groups, uncovering potential links between the
prognostic model and tumor immunity. Sensitivity analysis was
also employed to guide targeted drug selection. Our findings provide
significant new insights and a solid theoretical foundation for
advancing the prognosis and therapeutic strategies for SKCM.

2 Materials and methods

2.1 Data acquisition and preprocessing

We acquired bulk transcriptome sequencing data, mutation
data, and clinical information for a melanoma cohort of
457 patients from The Cancer Genome Atlas (TCGA, https://
portal.gdc.cancer.gov/), designated as TCGA-SKCM. Additionally,
we downloaded bulk transcriptome sequencing data (GSE65904) for
208 melanoma patients and single-cell sequencing data (GSE72056)
from The Gene Expression Omnibus (GEO, https://www.ncbi.nlm.
nih.gov/geo/). All data utilized in this study are freely available
through these public databases, which ensures compliance with
ethical standards and eliminates the need for additional ethical
approval. Our data acquisition and analysis processes conformed
to all relevant guidelines and regulations.

2.2 Single-cell sequencing analysis

We analyzed single-cell sequencing data using the “Seurat”
package. Our initial steps included stringent quality control and
data cleaning to ensure the integrity and accuracy of our analyses.
The quality thresholds set were: mitochondrial gene content
(percent.mt) less than 10%, a minimum of 1000 RNA counts
(nCount_RNA), and RNA feature numbers (nFeature_RNA)
between 100 and 5000. Following data preprocessing, we utilized
Uniform Manifold Approximation and Projection (UMAP) for
dimensionality reduction of the single-cell data. Cell subtypes
were then annotated using specific markers for each subtype,
with expression distributions visualized through dot plots, violin
plots, and feature plots. Additionally, the “cellchat” package
facilitated the analysis of intercellular communication, visualizing
interactions and quantifying proportions of each cell subtype. To
assess pathway activity, the “PROGENy” package calculated
pathway scores for each tumor-related pathway in individual
cells, averaging these scores to determine the overall pathway
activity level for each cell subtype. A heatmap was then
generated to display and compare pathway activity levels across
14 tumor-related pathways among different cell subtypes, aiming to
elucidate variations in pathway engagement.

2.3 Construction and validation of amachine
learning prognostic model

The analysis is based on a cohort of 457melanoma patients from
TCGA-SKCM dataset. Differential gene expression analysis was
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conducted using the “tinyarray” package, with the criteria for
selecting DEGs set at p < 0.05 and | log2(FoldChange) |> 1.
Subsequently, DEGs underwent univariate COX regression
analysis with a significance threshold of p < 0.05 to identify
genes influencing prognosis. The identified prognostic genes
were subjected to LASSO machine learning algorithm using
the “glmnet” and “survival” packages, with ten-fold cross-
validation. The LASSO algorithm, along with cross-validation,
was employed for further gene selection, and coefficients were
calculated to construct the prognostic model. The computation of
the risk score for each patient involved multiplying the
expression value of each gene by its corresponding coefficient
and summing the outcomes. The formula for the risk score is
as follows:

Risk Score � ∑
n

i�1
Expression valuegenei*Coefficientgenei[ ]

In the context provided, the term “Expression value”
represents the expression level obtained from the sequencing
or chip data of the model genes, while “Coefficient” represents
the coefficient corresponding to the model genes when the error
is minimized during cross-validation calculations. Individual
patient risk scores are calculated, and depending on whether
the score exceeds or falls below the median value of all patient
risk scores, individuals are categorized into either the high-risk
group or the low-risk group. To validate the universality of the
model, we selected GSE65904 as an external validation cohort.
Risk scores were calculated based on the above formula and
method, and patients were grouped accordingly. Validation was
performed alongside the training cohort. Risk cumulative factor
plots were visually represented for both the training and
validation cohorts. Survival curves were also plotted to verify
the overall survival (OS) differences between high-risk and low-
risk patient groups. Following this, the training cohort
underwent univariate COX regression analysis for the selected
model genes to ascertain their potential as prognostic factors.
Forest plots were generated for visualization. Furthermore, age,
gender, and risk score were collectively subjected to univariate
COX regression analysis to evaluate their potential as prognostic
factors and to compare the magnitude of risk associated with
each. We further analyzed the differential expression of model
genes between the two risk groups. The expression correlation
among model genes was also analyzed and presented using a
heatmap. Following this, gender, age, risk score, and metastasis
status were incorporated to construct a nomogram
prognostic model.

2.4 Functional enrichment and
mutation analysis

Prior to constructing the LASSO machine learning model, we
conducted univariate COX regression analysis on DEGs.
Subsequently, we performed Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses to
observe the enrichment of these genes in specific functional
pathways, visualizing the results through bubble plots. The GO
and KEGG analyses were executed using the R package

“clusterProfiler” (version 4.0.5), with a significance threshold set
at a False Discovery Rate (FDR) < 0.05.

Utilizing the R package “maftools” (version 2.12.0), we analyzed
and visualized the differential mutation profiles of DEGs in two risk
groups. The waterfall plot presented the top 6 genes in each group,
accompanied by statistics on the proportion of nucleotide
transitions and transversions. Moreover, our emphasis was on
scrutinizing the mutation sites and types of genes exhibiting the
highest mutation frequencies among the two risk groups. Employing
the “RCircos” package, we generated a circular chromosome plot to
annotate the positions of model genes on the chromosomes.

2.5 Immune-related analysis

We employed the Spearman correlation method to analyze
the relationship between the risk score and 43 immune
checkpoint genes, presenting the results in a bar chart.
Furthermore, correlations between model genes and the
immune checkpoint genes were visualized using a
heatmap. To assess immune cell infiltration in two risk
groups, we utilized three algorithms: Microenvironment Cell
Populations-counter (MCPcounter), Single-sample Gene Set
Enrichment Analysis (ssGSEA), and Estimation of Cell Types
in Bulk Expression Data (xCell). These algorithms analyzed
transcriptome-wide gene expression data to estimate immune
cell infiltration scores. Initially, ssGSEA assigned scores to
23 immune cell types for individual patients, with variations
depicted in box plots. We then used Spearman correlation to
evaluate the relationships between the risk score, model genes,
and immune cell levels, visualizing these relationships through
scatter plots and heatmaps. The MCPcounter algorithm
identified differences in 10 immune cell types between high-
risk and low-risk groups, with results shown in box plots and
correlations with model genes and risk score illustrated via
scatter plots and heatmaps. Utilizing the xCell package, the
xCell algorithm computed infiltration scores for 67 immune
cell types, with differences between risk groups depicted in
box plots and correlations presented in a heatmap.

2.6 Drug sensitivity analysis

We accessed drug-related data from the Genomics of Drug
Sensitivity in Cancer (GDSC, https://www.cancerrxgene.org/)
database using the “oncoPredict” R package. Initial analyses
explored differences in drug sensitivity between the two risk
groups, visualized through a volcano plot. Spearman correlation
was then applied to ascertain the relationships between model genes
and 61 drugs, with the findings displayed in a heatmap. Finally, we
assessed the variations in drug sensitivity between the risk groups,
presenting these findings through box plots.

2.7 Cell culture and transfection

In this study, the malignant melanoma cell line of
human(A375) was procured from the Cell Bank of the
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Chinese Academy of Sciences. We cultured the cell line in high-
glucose Dulbecco’s Modified Eagle Medium (DMEM, Sigma,
Darmstadt, Germany) supplemented with 10% Fetal Bovine
Serum (FBS Premium, BI, Israel). Cell culture flasks were
maintained in a humidified incubator with 5% CO2 at 37°C to
promote exponential growth of the cells.

For transfection experiments with the A375 cell line, two primer
sequences and one siRNA sequence targeting GRM6 were custom-
designed and manufactured by GIMA Corporation, China. Initially,
A375 cells were dissociated from culture flasks and resuspended in
complete growth medium. Cells were evenly seeded onto 6-well
plates at a density of 1 × 104 cells per well, with each well
supplemented to a final volume of 2 mL with complete medium.
Upon cell adherence, siRNA and the transfection reagent PolyFast
(catalog number HY-K1014, MCE, United States) were pre-mixed
according to the instructions of manufacturer and incubated at
23°C for 15 min. Then, the mixture was then evenly distributed
into the respective wells using a pipette. We replaced culture
medium after 6 h of transfection, and subsequent experiments
were performed 48 h post-transfection. Primer sequences: GRM6:
Forward: 5′- ACTGATCTGCAGTGGCTCAT - 3′, Reverse: 5′-
GCCCAGCTTTGTGATCTTGT - 3′; β-actin: Forward: 5′-
CCTGGCACCCAGCACAAT - 3′, Reverse: 5′- GGGCCGGAC
TCGTCATAC- 3′. siRNA: siGRM6: Sense: 5′- ACUGUUUAA
GAUCAGUAUA - 3′, Antisense: 5′ -CAAGTATATCGCCTT
CACAA - 3′; siNC: Sense: 5′- UUCUCCGAACGUGUCACG
UTT- 3′, Antisense: 5′ -ACGUGACUCGUUCGGAGAATT - 3′.

2.8 Total RNA extraction and RT-qPCR

In this study, the RT-qPCR technology was employed to
assess the knockdown efficiency of siGRM6. Cells were
digested using trypsin (HyClone, United States), followed by
three washes with PBS and centrifugation at 4°C to remove the
supernatant. Subsequently, 700 μL of Trizol (Takara, Japan) was
added to operate lysing procedure on cells according to the
manufacturer’s instructions. After incubating on ice for 5 min,
200 μL of chloroform (SINOPHARM, China), 500 μL of
isopropanol (SINOPHARM, China), and 1 mL of ethanol
(SINOPHARM, China) were added. Before new chemicals
were added, full mixing was guaranteed, followed by
centrifugation at 4°C and incubation on ice for 15 min. After
discarding all organic solvents and air-drying for 20 min, RNA
precipitate was obtained.

Then, we added 20 μL of DEPC-treated water to dissolve the
precipitate, and we measuring concentration through a Nanodrop
2000 instrument (Thermo, United States). Based on the
manufacturer’s instructions, we reverse-transcribed RNA into
cDNA using the PrimeScript RT kit (TaKaRa, Japan).
Subsequently, we mixed cDNA samples with SYBR GreenER
Supermix kit (TaKaRa, Japan). We operated real-time
fluorescence quantitative PCR analysis at 7500 Real-Time PCR
System (Thermo Fisher Scientific, United States). The parameters
of PCR were set according to the SYBR GreenER Supermix kit
instructions. Based on the Ct values, the relative expression level on
GRM6 was calculated through the method of 2−ΔΔCT normalized to
β-actin.

2.9 CCK8 assay

After transfection for 48 h, GMR6-NC and GRM6-si cell lines
were transferred to a 96-well plate (6000 cells/well) and returned to
the incubator for attachment. Three replicate wells were set up for
each group. Following the manufacturer’s instructions,
CCK8 reagent (KeyGEN, China) was mixed with complete
culture medium to ensure a total volume of 200 μL per well,
which was swiftly added to the 96-well plate using a pipette. The
plate was completely wrapped in aluminum foil to avoid light
exposure, and the absorbance at 450 nm for each well was
measured on the instrument after 2 h. This process was repeated
at 24, 48, 72, and 96-h time points.

2.10 EdU staining for DNA replication

“GMR6-NC” and “GRM6-si” cells were seeded at a density of 5 ×
104 cells/mL in a 48-well plate and incubated at 37°C for 24 h. Then,
200 μL of EdU culture medium was added to each well, and cells
were incubated for 2 h before collection. The 2 cell groups were
observed under a fluorescence microscope, and images were taken to
record DAPI staining, EdU staining, and merged staining.

2.11 Transwell assay

During the study, a layer of matrix gel was coated on the inner
surface of the chamber (Thermo, United States) diluted at a ratio of
1:9, with 30 μL added to each chamber. Next, 600 μL of complete
culture medium was added to each well of a 24-well plate. After 48 h
of transfection, cells were digested and suspended in culture medium
without FBS. To ensure the accuracy of the experiment, cells were
diluted to a concentration of 30,000 cells per well, with 200 μL of
liquid added to each chamber. The chambers were then incubated in
the incubator for 24 h. During this period, the liquid in the chambers
was removed, and a moist cotton swab was used to wipe off the non-
invading cells.

To further analyze the experimental results, the chambers were
immersed in polyformaldehyde for 20 min. Subsequently, they were
washed three times with PBS and stained with 0.1% crystal violet
staining solution for 20 min. After washing again with PBS, the
chambers were dried, and images were captured under a microscope
for further analysis and discussion.

2.12 Wound healing assay

In cell culture experiments, transfected cells were first removed
from the culture medium after 48 h, followed by three washes with
PBS to clean residual substances. Next, using a 200 μL pipette tip
assisted by a ruler, a vertical line was slowly and evenly scratched in
each well. To avoid cross-contamination between different wells, the
pipette tip was changed with each well. Subsequently, basic culture
medium without FBS was added to each well, and the area of the
scratch wound at time 0 was observed and photographed under a
microscope. The plate was then placed in the cell culture incubator
for cultivation, and photographs were taken again after 48 h to
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record the area of the healed wound. Finally, the percentage of
scratch closure was calculated to evaluate the growth and repair
ability of the cells.

2.13 Statistical analysis

All statistical analyses were conducted using R software (version
4.1.3). COX regression analysis was performed with the “survival”
and “survminer” packages. Differential expression analysis utilized
the “limma” package, and visualization tasks were predominantly
carried out using “ggplot2”. Statistical significance was established at
a threshold of p < 0.05, with significance levels marked as *p < 0.05,
**p < 0.01, ***p < 0.001, and ****p < 0.0001.

3 Results

3.1 Single-cell sequencing analysis

UMAP dimensionality reduction was applied to single-cell
sequencing data (GSE72056), resulting in the classification of
cells into six distinct subtypes: T cells, B cells, tissue stem cells,
monocytes, neurons, and endothelial cells (Figure 1A). Among
these, endothelial cells exhibited the highest expression of von
Willebrand factor (VWF), with significant levels of KLF4 and
LYZ also noted. In monocytes, LYZ, C1QB, and
CD68 demonstrated elevated expression compared to other
subtypes and markers. CD79A was the most expressed gene in
B cells, whereas CD3D was predominant in T cells (Figure 1B).

FIGURE 1
Single-Cell Sequencing Data Analysis (A)UMAP dimensionality reduction and annotation of single-cell sequencing data GSE72056, categorizing cell
subgroups into 6 classes. (B) Dot plot illustrating the differential expression of marker genes in different subgroups. (C) Violin plot displaying the
differential expression of marker genes in different subgroups. (D) Coloring and marking marker gene expression distribution in UMAP visualization. (E)
Analysis of communication relationships between cell subgroups using the “cellchat” package, visualized. (F) Heatmap displaying the score
differences of each tumor-related pathway calculated by the “PROGENy” package in each cell.
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Violin plots further illustrated these gene expression variations
across subtypes.

Notably, CD68 not only showed the highest expression in
monocytes but also exceeded the expression of other markers in
different cell subtypes. Similarly, LYZ exhibited a widespread
expression pattern. KLF4 was more prominently expressed in
neurons and monocytes. The neuron subtype showed higher

expression of MAP2 and COL3A1 (Figure 1C). Each marker
gene’s expression was color-coded in the UMAP visualization to
enhance the clarity of their distribution across subtypes (Figure 1D).

We also explored the communication relationships between cell
subtypes, revealing extensive signaling interactions. T cells were the
most communicative, particularly with other immune cells, followed
by B cells (Figure 1E). An analysis of 14 tumor-related pathways

FIGURE 2
Model Construction and Validation (A) Acquisition of DEGs for univariate COX regression analysis and implementation of LASSOmachine learning to
construct a prognostic model. (B) Survival differences in two risk groups in the training set. (C) Survival differences in two risk groups in the validation set.
(D) Risk score changes in two risk groups in the training set. (E) Survival time comparison in two risk groups in the training set. (F) Risk score changes in two
risk groups in the validation set. (G) Survival time comparison in two risk groups in the validation set. (H) Univariate COX regression analysis to
determine ifmodel genes can serve as prognostic factors, visualized through a forest plot. (I)Univariate COX regression analysis to determine if Risk score,
Age, and Gender can serve as prognostic factors, visualized through a forest plot. (J) Analysis of inter-gene correlations in the model.
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indicated differential activation across cell subtypes. B cells showed
higher activity levels in the WNT, PI3K, and Trail pathways,
although other pathways exhibited lower activity, suggesting a
restricted role in tumor-related functions. Endothelial cells
displayed the highest activity in the TGF-β pathway, with notable
activity in the Estrogen and VEGF pathways, indicating their
dynamic involvement in tumorigenesis. Monocytes had
elevated activity in the TNF-α, NF-κB, and JAK-STAT
pathways, reflecting significant pathway activation. Neurons
showed elevated activity in the MAPK, Estrogen, and
Androgen pathways but lower activity in the WNT and
PI3K pathways, highlighting a selective pathway
engagement. T cells exhibited low activity across all
pathways examined. Tissue stem cells showed notable
activity in the Androgen and TGF-β pathways, with reduced
activity in the WNT and PI3K pathways, suggesting a selective
activation pattern (Figure 1F).

3.2 Constructing and validating of amachine
learning prognostic model

In our study, the SKCM patient cohort served as the training set,
while the GSE65904 patient cohort was used for validation. Initial
analysis identified differentially expressed genes (DEGs), and a
univariate COX regression analysis was conducted. These DEGs
were further refined using a LASSO machine learning algorithm,
resulting in a prognostic model comprising six key genes:
TNFRSF18, CAP2, GRM6, RREB1, SYDE2, and FAT3, as
depicted in Figure 2A. The risk score was computed for each
patient using the formula:

Risk score � TNFRSF18* − 0.585 + CAP2 *0.328 + GRM6*0.305

+ RREB1*1.986 + SYDE2 * − 0.223 + FAT3* − 0.006

Patients were categorized into high-risk and low-risk groups
based on the median risk score. The high-risk group demonstrated
significantly poorer overall survival (OS) than the low-risk group
(p < 0.05, Figures 2B,C). A cumulative risk factor plot showed an
increasing trend of deceased patients and a decline in extended OS
with rising risk scores (Figures 2D–G).

Further univariate COX regression analysis highlighted
TNFRSF18, SRD5A3, and GRM6 as significant prognostic
factors. TNFRSF18 was associated with a protective effect (HR =
0.86), while SRD5A3 (HR = 1.26) and GRM6 (HR = 1.21) were
linked to poorer prognosis (Figure 2H). The risk score and age were
both significant prognostic factors (p < 0.001), with the risk score
providing more substantial prognostic information (HR = 2.1)
compared to age (HR = 1.0) (Figure 2I).

Correlation analysis among model genes revealed that
TNFRSF18 mostly exhibited negative correlations with other
genes. Conversely, positive correlations were observed among the
remaining model genes, with CAP2 showing strong positive
associations with RREB1 (R = 0.31) and SYED2 (R = 0.31),
GRM6 with FAT3 (R = 0.28), and RREB1 with SYED2 (R =
0.40) (Figure 2J).

Gene expression analyses between the two risk groups showed
higher expression levels of all model genes, except for TNFRSF18, in

the high-risk group (p < 0.01, Figure 3A). Chromosome circle plots
highlighted the genomic locations of the model genes (Figure 3B).

A nomogram integrating risk score, age, and type was
constructed to enhance the prognostic model’s accuracy
(Figure 3C). Spearman correlation analysis identified mostly
negative correlations between the risk score and most immune
checkpoint genes, except for positive correlations with EDRNB,
VTCN1, and VEGFB (Figure 3D). Most model genes also displayed
significant negative correlations with immune checkpoint genes,
with the notable exception of TNFRSF18, which showed significant
positive correlations (Figure 3E).

3.3 Enrichment analysis and
mutation analysis

Prior to constructing the LASSO machine learning model, we
conducted univariate COX regression analysis of DEGs
(Differentially Expressed Genes). Following this, GO and KEGG
analyses were conducted on the DEGs. The GO analysis revealed
that DEGs are predominantly enriched in the number of pathways
related to Cell Component (CC). In general, DEGs exhibit
predominant enrichment in biological pathways and processes,
encompassing energy metabolism, substance metabolism, cell
signal transduction, cell structure and dynamics, and protein
processing (Figure 4A).

The KEGG analysis results indicated that DEGs are primarily
enriched in biological processes such as cell signal transduction, cell
metabolism, cell growth and death, and endocytosis (Figure 4B).

Additionally, we conducted mutation analysis on the training
dataset. The results showed that FAT3, GRM6, CAP2, RREB1,
SYDE2, and TNFRSF18 exhibit higher mutation frequencies in
both risk groups. FAT3 has the highest mutation rate in both
risk groups, followed by GRM6. Other gene mutation rates are
significantly lower compared to these two. In the analysis of
mutation types, Missense Mutation appeared most frequently,
followed by Multi Hit. FAT3 exhibited various mutation forms,
with Missense Mutation and Multi Hit being the most prevalent
(Figures 4C,D).

Regarding the analysis of mutation frequencies, the transition
(Ti) frequency was higher than the transversion (Tv) frequency in
both risk groups. Among them, the nucleotide substitution rate of
C>T was the highest (Figures 4E,F).

Moreover, mutation sites and types of GRM6 were analyzed in
the two risk groups. Within the high-risk group,
GRM6 demonstrated an elevated mutation rate, a wider spectrum
of mutation locations, and a greater diversity of mutation types
(Figures 4G,H).

3.4 Immune-related analysis

In this study, we employed the ssGSEA algorithm to perform an
immune-related analysis, evaluating the infiltration of immune cells
in two distinct risk groups. For each patient in the two risk groups,
we calculated scores for 23 immune cells. Statistically significant
distinctions were noted in the scores of the 23 immune cells between
the two risk groups (p < 0.05). Remarkably, the scores of all immune
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cells in the low-risk group surpassed those in the high-risk group,
signifying a heightened immune infiltration activity in the low-risk
group (Figure 5A).

Subsequent analysis employing Spearman correlation unveiled
noteworthy negative associations between the risk score and
Macrophage, Activated CD8 T cell, Monocyte, CD56dim natural
killer cell, Gamma delta cell, and Immature dendritic cell (p < 0.001,
R < −0.2, Figures 5B–G). TNFRSF18 demonstrated a marked
positive correlation with Monocyte (p < 0.001, R = 0.64),
whereas CAP2, SYDE2, and FAT3 displayed substantial negative
correlations with Monocyte (p < 0.001, R < −0.1, Figures 5H–K).

Heatmap results further demonstrated a significant negative
correlation between the risk score and all immune cells (p <
0.05), with the highest negative correlation observed between the
risk score and Activated CD8 T cell (R = −0.55), and the lowest
negative correlation with Type 2 T helper cell (R = −0.1, Figure 5L).

Employing the MCPcounter algorithm, we computed variations
in scores for 10 immune cells between the high-risk and low-risk
groups. The findings suggested elevated infiltration levels of the
majority of immune cells in the low-risk group, with the exception of
Endothelial cells and Fibroblasts (Figure 6A). Spearman correlation
analysis suggested positive correlations between most model genes,

FIGURE 3
Further Analysis of the Model (A) Expression differences of model genes between two risk groups. (B) Chromosome circular plot displaying the
genomic locations of model genes. (C) Construction of a nomogram prognostic model incorporating Risk score, Age, Gender, and Type. (D) Calculation
of the correlation between the riskscore model and 43 immune checkpoint genes using Spearman’s correlation method. (E) Heatmap presenting the
expression correlations between model genes and immune checkpoint genes.
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especially TNFRSF18, and immune cells (p < 0.05, R > 0.1, Figures
6B–H). The risk score exhibited a noteworthy positive correlation
with Endothelial cells (p < 0.001, R = 0.17) and marked negative
correlations with Cytotoxic lymphocytes, Myeloid dendritic cells,
and B lineage (p < 0.001, R < −0.3, Figures 6I–L). The heatmap
indicated that, except for TNFRSF18, most model genes were
negatively correlated with immune cells, while FAT3 exhibited a
highly positive correlation with Endothelial cells and Fibroblasts
(p < 0.001, R > 0.5, Figure 6M). The risk score demonstrated a
significant positive correlation exclusively with Endothelial cells and
exhibited negative correlations with the majority of other cells
(Figure 6N). The high-risk group shows significantly higher levels

of infiltration for several immune cell types compared to the low-risk
group (Figure 7A). Additionally, the risk score is negatively
correlated with specific immune cells, such as Activated CD8 T
cells (Figure 7B).

3.5 Drug sensitivity analysis

We initially performed an analysis of divergent drug sensitivity
between the two risk groups and illustrated the outcomes through a
volcano plot (Figure 8A). TNFRSF18, GRM6, and FAT3 exhibited a
negative correlation with most drugs, while CAP2, RREB1, and

FIGURE 4
Enrichment Analysis and Mutation Analysis (A) Bubble plot illustrating enriched functional pathways in GO analysis of DEGs. (B) Bubble plot
illustrating enriched functional pathways in KEGG analysis of DEGs. (C)Mutation analysis in the high-risk group of the training set. (D)Mutation analysis in
the low-risk group of the training set. (E) Top 6 genes and the proportion of nucleotide transitions and transversions in the high-risk group. (F) Top 6 genes
and the proportion of nucleotide transitions and transversions in the low-risk group. (G)Mutation sites and types of GRM6 in the high-risk group. (H)
Mutation sites and types of GRM6 in the low-risk group.
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SYDE2 showed a positive correlation with most drugs (Figure 8B).
RO-3306_1052 and BI-25361086 demonstrated higher drug scores
in the low-risk group (Figures 8C,D), whereas AZ960_1250,
Entospletinib_1630, Navitoclax1011, XAV939_1268, WEHI-
5391997, and 5-Fluorouracil1073 exhibited higher drug scores in
the high-risk group (Figures 8E–J). Personalized drug selection for
treatment based on individual patient groups may result in
improved therapeutic outcomes.

3.6 Impact of GRM6 knockdown on
A375 melanoma cell functions

Through RT-qPCR experiments, we thoroughly investigated the
expression of the “GRM6-NC” control group and the “GRM6-si”

knockdown group in the A375 cell line. It was accurately determined
that GRM6-si had a good knockdown effect (Figure 9A). CCK8 assays
confirmed that the proliferation ability of the A375 cell line significantly
decreased when the GRM6 gene was knocked down (Figure 9B).
Transwell assays confirmed that after knocking down the
GRM6 gene, the number of invasive cells in the si-GRM6 group
decreased, which means the invasion ability correspondingly
weakened (Figure 9C). We also found that the wound healing assay
showed that themigration ability of the si-GRM6 groupwas significantly
reduced (Figure 9D). EdU experiments also confirmed a significant
decrease in the proliferation ability of the A375 cell line when the
GRM6 gene was knocked down (Figure 9E). Overall, our research results
revealed the role of the GRM6 gene in promoting cancer in human
melanoma, achieved by promoting the proliferation, invasion, and
migration ability of melanoma cells.

FIGURE 5
Analysis Based on ssGSEA Immune Algorithm (A) Immunocell scoring using the ssGSEA algorithm for two risk groups. (B) Correlation between Risk
score and Macrophage. (C) Correlation between Risk score and Activated CD8 T cell. (D) Correlation between Risk score and Monocyte. (E) Correlation
between Risk score and CD56dim natural killer cell. (F) Correlation between Risk score and Gamma delta cell. (G) Correlation between Risk score and
Immature dendritic cell. (H) Correlation between TNFRSF18 and Monocyte. (I) Correlation between CAP2 and Monocyte. (J) Correlation between
SYDE2 and Monocyte. (K) Correlation between FAT3 and Monocyte. (L) Heatmap of the correlation between risk score and immune cells. Significance
levels are denoted as follows: *p < 0.05, **p < 0.01, and ***p < 0.001.
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4 Discussion

Cutaneous melanoma (SKCM) is a type of skin cancer that
initially impacts patient quality of life minimally. However, its non-
invasive discrimination during early diagnosis is challenging, often
resulting in missed opportunities for optimal treatment when
patients first seek medical attention. Malignant SKCM is highly
invasive, with about 20% of patients experiencing metastasis at the
time of initial diagnosis. Advanced-stage malignant SKCM often
responds poorly to radiation and chemotherapy, resulting in severe
side effects and a grim prognosis. The lack of specific treatments for
SKCM, other than early surgical excision, highlights the critical need
for research into the mechanistic roles of SKCM-related genes, the
construction of prognostic models, and the prediction of drug

responses to improve early diagnosis, precise treatment, and
patient outcomes.

To investigate the genetic landscape of SKCM, we accessed bulk
transcriptome sequencing data from the public databases TCGA and
GEO, partitioning these into training and validation sets for robust
model construction and validation. Additionally, we collected
mutation data and clinical information from TCGA and acquired
single-cell sequencing data for SKCM from GEO. These datasets
hold significant potential for enhancing patient diagnosis, treatment,
and prognosis assessment.

Using the single-cell dataset GSE72056, we applied UMAP
dimensionality reduction and annotated cells into six subtypes
using specific marker genes for each subgroup. Communication
analysis among cell subtypes highlighted active immune cell

FIGURE 6
Analysis Based on MCPcounter Immune Algorithm (A) Boxplot showing differences in the scores of 10 immune cell types between two risk groups.
(B) Correlation between FAT3 and Monocyte lineage. (C) Correlation between FAT3 and Myeloid dendritic cells. (D) Correlation between TNFRSF18 and
Myeloid dendritic cells. (E) Correlation between TNFRSF18 and Fibroblasts. (F) Correlation between TNFRSF18 and Endothelial cells. (G) Correlation
between RREB1 and Monocyte lineage. (H) Correlation between ERM6 and Monocyte lineage. (I) Correlation between Endothelial cells and Risk
score. (J)Correlation between Cytotoxic lymphocytes and Risk score. (K)Correlation between B lineage and Risk score. (L)Correlation between Myeloid
dendritic cells and Risk score. (M) Heatmap representing the correlation between model genes and immune cells. (N) Heatmap representing the
correlation between Risk score and immune cells.
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subgroups, such as T cells and B cells, within SKCM tissue,
suggesting a potential limitation in their effectiveness at tumor
suppression, possibly due to mechanisms allowing SKCM cells to
evade immune surveillance.

Comparison of cell subgroups across 14 tumor-related pathways
revealed substantial differences. Both endothelial cells and
monocytes showed elevated activity in several pathways, with
endothelial cells exhibiting the highest activity in the TGF-β
pathway. Given the pivotal role of endothelial cells in
angiogenesis, these findings suggest that SKCM may promote
angiogenesis via the TGF-β pathway to facilitate nutrient
acquisition and metastasis. Additionally, notable pathway
activities were observed in neurons and tissue stem cells, with the
androgen pathway most active in neurons, raising questions about
the role of androgens in the onset and progression of melanoma.
Further experimental studies are required to validate these
hypotheses.

Utilizing multiple independent datasets from diverse
platforms for model construction and validation enhances the

model’s generalization capability, leading to more compelling
conclusions. This strategy is currently widely employed in the
analysis of various diseases (Li J. et al., 2022; Guan et al., 2022).
We conducted differential gene expression analysis on patient
data from the training set to identify DEGs. Subsequently, we
performed univariate COX regression analysis on DEGs to filter
out genes that significantly impact prognosis. The selected genes
underwent LASSO machine learning algorithm, applying
L1 regularization to enhance the model’s simplicity and
accuracy by imposing a penalty on the absolute sum of
regression coefficients. Ultimately, a prognostic model
comprising six genes (TNFRSF18, CAP2, GRM6, RREB1,
SYDE2, FAT3) was constructed. TNFRSF18, also known as
GITR, is a co-stimulatory T-cell receptor and a member of the
TNF receptor superfamily (Nocentini and Riccardi, 2009). Some
cancer patients have shown therapeutic efficacy in checkpoint
inhibition of TNFRSF18, particularly in preclinical models.
However, TNFRSF18 involvement is ineffective in controlling
late-stage, immunogenically poor tumors such as B16 SKCM

FIGURE 7
Analysis Based on xCELL Immune Algorithm (A) Boxplot illustrating differences in immune cell infiltration between two risk groups. (B) Heatmap
showing the correlation between Risk score and immune cells.
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(Hirschhorn et al., 2021).CAP2, a muscle actin-binding protein,
regulates cell processes by controlling the dynamics of the cell
cytoskeleton (Pelucchi et al., 2023). Its expression in cancerous

tissues significantly surpasses that in non-tumor tissues,
rendering it a plausible diagnostic and prognostic marker for
individuals with cancer (Li et al., 2020).GRM6, also known as

FIGURE 8
Drug Sensitivity Analysis (A) Volcano plot illustrating differences in drug sensitivity between two risk groups. (B) Heatmap depicting the correlation
between model genes and 61 different drugs. (C) Boxplot showing the sensitivity difference of RO-3306_1052 between two risk groups. (D) Boxplot
showing the sensitivity difference of BI-2536_1086 between two risk groups. (E) Boxplot showing the sensitivity difference of AZ960_1250 between two
risk groups. (F) Boxplot showing the sensitivity difference of Entospletinib_1630 between two risk groups. (G) Boxplot showing the sensitivity
difference of Navitoclax_1011 between two risk groups. (H) Boxplot showing the sensitivity difference of XAV939_1268 between two risk groups. (I)
Boxplot showing the sensitivity difference of WEHI-539_1997 between two risk groups. (J) Boxplot showing the sensitivity difference of 5-
Fluorouracil1073 between two risk groups.
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mGluR6, is a major excitatory neurotransmitter in the central
nervous system. It activates ionotropic and metabotropic
glutamate receptors, mediating glutamate synaptic
transmission between photoreceptors and ON bipolar cells
(Varin et al., 2021). SKCM may lead to SKCM-related retinal
lesions, as evidenced in GRM6 (Dhingra et al., 2011).RREB1, a
transcription factor that specifically binds to RAS response
elements (RRE) on gene promoters, is associated with scrotal
SKCM (Thiagalingam et al., 1996; Fujimoto-Nishiyama et al.,
1997; Zhang et al., 1999; Date et al., 2004; Mukhopadhyay et al.,

2007).SYDE2, an activator of Rho GTPase, has unclear functional
implications in tumorigenesis. Studies suggest a potential tumor-
suppressive role of SYDE2 in advanced clear cell renal cell
carcinoma (Cui et al., 2022).FAT3, a member of the cadherin-
related family, has been previously correlated with adverse
prognosis in cancer patients (Jiang et al., 2023).

In the training and validation sets, we categorized patients
into high-risk and low-risk groups. The survival prognosis of
patients in the high-risk group was significantly lower than that
in the low-risk group, indicating substantial potential for our

FIGURE 9
Functional consequences of GRM6 knockdown in A375 melanoma cells. (A) RT-qPCR results showing effective knockdown of GRM6 expression in
the “GRM6-si” group compared to the control “GRM6-NC” group. (B) CCK8 assay results indicating a significant reduction in cell proliferation ability
following GRM6 gene silencing. (C) Transwell assay results demonstrating decreased invasion ability in A375 cells after GRM6 knockdown. (D) Wound
healing assay data revealing reduced migration ability of cells in the si-GRM6 group. (E) EdU assay results confirming a significant decrease in
proliferation rates in GRM6-silenced A375 cells.
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model to predict patient outcomes. Among the six genes in the
prognosis model, we identified TNFRSF18 as having a protective
effect on prognosis. Expression differences were observed for all
model genes between the two risk groups, with
TNFRSF18 showing higher expression in the low-risk
group. In the examination of the correlation with immune
checkpoint genes, TNFRSF18 exhibited a significant positive
correlation with most immune checkpoint genes. This suggests
that TNFRSF18 may serve as an immunotherapeutic target for
SKCM, and therapeutic approaches aimed at activating
TNFRSF18 expression while inhibiting negative immune
regulatory activity may enhance the efficacy of SKCM
immunotherapy. Further experimental validation is needed to
confirm our hypotheses.

To explore the functional implications of differentially expressed
genes (DEGs), we conducted Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses. These
DEGs were predominantly enriched in biological processes such
as cell signaling, metabolism, growth and death, and endocytosis.
We hypothesize that the high activity across these biological
pathways contributes to SKCM’s malignancy, highlighting
potential avenues for therapeutic intervention.

A mutational analysis performed on the training set identified
FAT3 as having the highest mutation rate, closely followed by
GRM6. Notably, GRM6 mutations were particularly prevalent
within the high-risk group, characterized by a variety of
mutation types and locations. These findings underline the need
for further comprehensive studies to understand the impact of
GRM6 mutations and aberrant expression on melanoma
progression.

Immunological correlation analysis, utilizing three distinct
immune cell infiltration algorithms, assessed the differences in
immune cell infiltration between the two risk groups. The
analysis revealed that the low-risk group displayed more active
immune infiltration than the high-risk group. Scoring differences
between these groups showed that most model genes, particularly
TNFRSF18, positively correlated with immune cell activity.
Conversely, the risk score exhibited a negative correlation with
most immune cells, reinforcing our previous findings that high-
risk SKCM correlates with poorer prognosis. This analysis also
emphasizes the critical role of TNFRSF18 in the context of
SKCM treatment. Additionally, drug sensitivity analysis
conducted on the two risk groups highlighted significant
differences in their response to various drugs. Based on these
findings, we advocate for personalized drug selection strategies
tailored to distinct patient subgroups to optimize
therapeutic outcomes.

5 Conclusion

In conclusion, this study successfully delineated the complex
molecular landscape of SKCM, revealing significant findings
through the analysis of DEGs, mutation profiles, and
immunological correlations. Our comprehensive examination
of transcriptomic and mutational data enabled the
identification of key genes that are enriched in crucial
biological processes and exhibit high mutation rates, such as

GRM6 and FAT3, suggesting their pivotal roles in SKCM
pathogenesis. The construction and validation of a prognostic
model highlighted the differential risk and survival outcomes
between patient subgroups, underscoring the importance of early
and accurate risk stratification in clinical practice. Moreover, our
findings on immune cell infiltration and drug sensitivity
emphasize the potential of personalized medicine in treating
SKCM, advocating for tailored therapeutic approaches based
on individual genetic and immunological profiles. Ultimately,
this study provides valuable insights into the underlying
mechanisms of SKCM, proposes new therapeutic targets, and
supports the advancement of personalized treatment strategies
that could significantly improve patient outcomes.
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This review systematically examines gender differences in hepatocellular
carcinoma (HCC), identifying the influence of sex hormones, genetic variance,
and environmental factors on the disease’s epidemiology and treatment
outcomes. Recognizing the liver as a sexually dimorphic organ, we highlight
how gender-specific risk factors, such as alcohol consumption and obesity,
contribute differently to hepatocarcinogenesis in men and women. We
explore molecular mechanisms, including the differential expression of
androgen and estrogen receptors, which mediate diverse pathways in tumor
biology such as cell proliferation, apoptosis, and DNA repair. Our analysis
underscores the critical need for gender-specific research in liver cancer,
from molecular studies to clinical trials, to improve diagnostic accuracy and
therapeutic effectiveness. By incorporating a gender perspective into all facets of
liver cancer research, we advocate for a more precise and personalized approach
to cancer treatment that acknowledges gender as a significant factor in both the
progression of HCC and its response to treatment. This review aims to foster a
deeper understanding of the biological and molecular bases of gender
differences in HCC and to promote the development of tailored interventions
that enhance outcomes for all patients.

KEYWORDS

hepatocellular carcinoma, gender heterogeneity, gender-specific therapies, cancer
immunotherapy, sex hormone, molecular pathways, drug targets, treatment strategies

1 Introduction

Globally, liver cancer constitutes the third-highest cancer mortality, with approximately
90% through Hepatocellular carcinoma (HCC) (Kuwano et al., 2022). According to the
GLOBOCAN 2020 database survey, it was estimated that about 9.5 and 8.7 ratios of age-
standardized new cases and deaths in the world accounted for liver cancer, respectively,
which has been increasing (Wei et al., 2014). Currently, the tumor has been treated with
surgical resection, liver transplantation, chemotherapy, radiotherapy, and targeted
therapies such as sorafenib (Jiang et al., 2019; Qi et al., 2020; Li et al., 2023a; Su et al.,
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2023a; Zhang S. et al., 2023). While surgery and transplantation can
be done in the early stage of the disease, however, most of the
patients are diagnosed at a later age of the tumor, where the tumor
has advanced and cannot be amenable to surgery and
transplantation (Pan et al., 2014; Chaoul et al., 2020; Su et al.,
2022a). Chemotherapy and radiotherapy treatments are
characterized by systemic toxicity and side effects, but the so-
called targeted treatment is emerging and in advanced stages, it
is already very promising, although it still encounters the problem of
drug resistance and a high relapse rate (Kamimura et al., 2020; Su
et al., 2022b; Li et al., 2023b; Su et al., 2023b; Gao et al., 2023). This
really highlights the urgent need for advances in early detection and
more effective systemic therapies that are individualized and take
into account patient differences at all levels, including gender (Chi
et al., 2023; Grani et al., 2023).

The liver is highly sexually dimorphic, and a combination of
hormonal, genetic, and environmental factors greatly influence the
gender differences observed in hepatocarcinogenesis, treatment, and
incidence (Marker et al., 2023; Huillet et al., 2024). For instance, the
liver is very sensitive to sex hormones that include androgens and
estrogens, and differences in molecular pathways have been noticed
during the hepatocarcinogenesis phase, such as gene expression
associated with the regulation of the cell cycle, apoptosis, and DNA
repair (Singhal and Schlondorff, 1987; LoMauro and Aliverti, 2021).
The liver is a tissue that bears additional sex-specific risk factors, one
being alcohol consumption and obesity for the development of
HCC. Some sex-specific risk factors, including alcohol intake,
obesity, and insulin resistance, have been implicated in
hepatocarcinogenesis, likely due to sex differences in alcohol
metabolism and fat distribution impacting susceptibility to HCC
(D’Souza et al., 2020; Izquierdo et al., 2022; Kardashian et al., 2023).
That highlights the pressing need for a transition to a gender
perspective in the entire flow of liver cancer research, from
epidemiological inquiry to molecular analysis.

Here, we have presented a systematic review of several
dimensions of the impact of gender differences on HCC,
including the genetic background of the disease, pathogenesis,
treatment response, and prognosis. The aim is to promote a
more precise medical approach, leading to better outcomes for all
patients with liver cancer (Nan et al., 2021).

2 Factors affecting gender differences
in HCC

The proposed mechanisms for gender differences in HCC are
thought to be complex and multifactorial (Pok et al., 2016). They are
currently attributed to gender differences in environmental objective
factors, behavioral risk factors, immune responses, metabolic risk
factors, tumor biology and hormonal factors (Bashir Hamidu
et al., 2021).

2.1 Environmental and lifestyle factors

Geographical differences in HCC and its etiology are clear; in
general, they are due to the distribution of risk factors and
different development between regions (Mousavi et al., 2013;

Yan et al., 2020; Enomoto et al., 2021). Indeed, the highest age-
standardized incidence rates (ASRs) of HCC are estimated in East
Asia, North Africa, and South-East Asia (Jiang et al., 2012;
Okoronkwo et al., 2017). Sex differences are also reflected in
the risk factors of HCC: Studies in recent years demonstrate that
HBV and HCV are the major infectious agents associated with
liver cancer (Zhang et al., 2020; Wang et al., 2021). The
prevalence of HBV infection is greater among males than
females (Poorolajal and Majdzadeh, 2009). However, the
incidence of HCV is higher among females at 20.36 cases per
100 person-years than among males at 15.20 cases per
100 person-years (Puri et al., 2014). These days, the impact of
viral hepatitis on liver cancer is waning, due to effective therapies
(HBV, HCV) and vaccines (Nasr et al., 2023).

Non-viral causes (especially heavy consumption of alcohol)
appear to have partially replaced the role of diseases caused
virally in the case of HCC (Lee et al., 2021; Zhang J. et al., 2023).
Effects of alcohol and its metabolites vary with age, race, and gender,
with gender being marked mostly by differences. In terms of alcohol
metabolism and in the context of heavy drinking, the relationship
with HCC in women is stronger than in men, perhaps due to higher
activities of alcohol dehydrogenases in women or a more prominent
link of alcohol intake with cirrhosis risk in women (Bell et al., 2004;
KASL, 2012). In meta-analyses, heavy drinking (≥4 drinks/day) was
associated with about a fourfold risk for women but only about a
59% increase for men (McGlynn et al., 2021). However, a higher
intake of alcohol by men is experienced than women (Milman and
Kirchhoff, 1996). Although heavy alcohol drinking has been
established as one of the risk factors for liver cancer, most data
indicated a weak negative association with light or moderate alcohol
drinking and a reduced risk of HCC (Gao et al., 2020; Liu et al., 2022;
Singh et al., 2023).

2.2 Inheritance and gene expression

Males and females present an active difference in gene
expression. Figure 1 For example, studies have demonstrated that
in male hepatocytes derived from individuals with HCC, the
androgen receptor (AR) significantly enhances the expression of
Enhancer of zeste homolog 2 (EZH2) at the transcriptional level.
This enhancement facilitates an increase in the trimethylation level
at lysine 27 of histone H3 (H3K27me3), effectively repressing the
inhibitors of Wnt signaling pathways. This event activates Wnt/β-
cyclin signaling and promotes the proliferation and transformation
of liver tumor cells (Tsang et al., 2016; Baliou et al., 2020). On the
other hand, estrogen in females, acting through the ERα receptor,
can upregulate the protein tyrosine phosphatase receptor type O
(PTPRO), which serves as a wide spectrum of cancer types (HCC,
colorectal carcinoma, etc.) tumor suppressor protein (Asbagh et al.,
2014; Xu et al., 2014).α binds to the estrogen response element (ERE)
of the PTPRO gene promoter, inducing dephosphorylation of Janus
kinase 2 (JAK2) and phosphatidylinositol 3-kinase (PI3K), which in
turn causes a decrease of the activity of the transcription factor
STAT3, thus leading to inhibition of the HCC cell proliferation (Wu
and Lou, 2023; Su et al., 2024).

Moreover, Erα binds directly to the ERE of the peroxisome
proliferator-activated receptor alpha (PPARα) gene, which is a
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nuclear receptor protein with the function of a transcription factor,
crucial for the oxidative processes in the hepatocytes (Memaj et al.,
2023). Together, they decrease transcription of the PPARα gene and
further regulate PPARα target acyl-coenzyme A oxidase (ACO), cell
cycle proteins D1 and P27, blocking the proliferation of cancer cells
and promoting apoptosis (Meng and Liu, 2022).

ERβ can downregulate PPARα and its downstream genes
through interaction with the EREs of the PPARα gene to inhibit
HCC development (Meng and Liu, 2022). In addition, it is through
the action of ERβ that the translocation of PPARα from the
cytoplasm to the nucleus is prevented, and the transcription
activity of PPARα consequently decreases. This hormone-
receptor complex subsequently induces homodimerization or
heterodimerization of ER, translocation to the nucleus, binding
to EREs on promoters of target genes, and induction of genomic
effects of gene activation and epigenetic changes (Krolick and
Shi, 2022).

In order to gain a comprehensive understanding of the factors
influencing sex differences, it is essential to consider the regulatory
networks downstream of hormones, in addition to genetic factors
and the direct role of sex hormones. Estrogens can indirectly bring
about the expression of genes by interaction with specific
transcription factors through non-genomic effects, which can
influence signaling pathways for the development of HCC

(Mandalà, 2020). For example, ERα interacts with the repressor
NF-κB by inhibiting the IL-6/STAT3 activation pathway (Meng and
Liu, 2022).

2.3 Influence of sex hormone

Estrogen and androgen have a key role in the molecular
mechanisms of HCC (Liu et al., 2020). Estrogen can block the
production of IL-6, a pro-inflammatory tumor growth and
metastasis-promoting factor, through the JAK/STAT signaling
pathway. At the same time, estrogen decreases the expression of
TNF-α, another pro-inflammatory cytokine able to activate
cancer cells through the NF-κB signaling pathway (Miller,
2018). On the other side, androgens could further enhance the
development of HCC through increased expression of the above
pro-inflammatory cytokines, exaggerating the inflammatory
response (Wu et al., 2015). Androgens also have been
demonstrated to upregulate the proliferation of HCC cells by
activating their receptor AR, which in turn promotes the
expression of c-Myc, an important regulator of cell
proliferation and survival (Bao et al., 2020; Cho et al., 2020;
Cui et al., 2020; Zhu et al., 2020; Gao et al., 2021)
(Supplementary Table S1).

FIGURE 1
Gender differences in hepatocellular cancer.
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3 Molecular mechanisms and gender
differences in HCC

3.1 Mechanisms of proliferation, invasion
and metastasis

In HCC, gender differences have profound effects on tumor cell
proliferation, invasion, and metastasis, where mechanistic target of
rapamycin (mTOR) signaling is associated withmany features of cancer
(Ferrín et al., 2020). (FIGURE)On the one hand, ARnegatively regulates
the feedback activation of AKT-mTOR signaling (Zhang et al., 2018).
On the other hand, mTOR promotes the expression of nuclear AR
protein by inhibiting ubiquitin-dependent AR degradation and
enhancing its nuclear localization through enhancing the nuclear
localization of AR, consequently mechanistically explaining AR
overexpression in the nucleus of HCC cells (Zhang et al., 2018). AR
overexpression was strongly associated with advanced tumor stage and
low survival29220539. Approximately a third of HCC tumors showed
overexpressed nuclear AR protein in a series of 142 paired HCC tumors
and their neighboring non-cancerous liver tissues (Zhang et al., 2018).

Furthermore, research has demonstrated that the estrogen receptor
complex inhibits the mTOR signaling pathway, thereby impeding
tumor growth (Ke et al., 2022). The activation of the PI3K-Akt
(~70%) and mechanistic target of rapamycin complex 1 (mTORC1)
(~45%) pathways was observed in HCC and demonstrated a positive
correlation with tumor metastasis, recurrence and poor prognosis
(Chaturantabut et al., 2019). A study using the HCC zebrafish
model suggested that G protein-coupled estrogen receptor 1
(GPER1) could be a factor in the progress of hepatocarcinogenesis
by inducing proliferation of hepatocytes and regulating organ growth
via GPER1-PI3K-mTOR signaling transduction (Wojnarowski et al.,
2022). E2–The pro-proliferative consequences of PI3K-mTOR
signaling activation by GPER1 and the strong response to the
presence of GPER1 antagonist therapy during cancer development
and progression, as evidenced by in vivo human data (Ferrín et al., 2020;
Tian et al., 2023). All these experimental results point to the fact that
drugs targeted at E2-GPER1 should offer a new promising application
for therapeutic use in liver cancer prevention and treatment
(Chaturantabut et al., 2019).

Activation of the PI3K/AKT signaling pathway promotes
hepatocyte proliferation and increases the capability of epithelial
mesenchymal transition (EMT) through increasing HCC cell
growth, migration, and invasion (Cantile et al., 2019). AR
upregulates integrin β1 expression through the PI3K/AKT/mTOR
signal pathway, consequently, increasing in cellular adhesion, which
could be a potential characteristic of advanced hepatocellular cancer
with high metastasis (Carlos-Reyes et al., 2021). However, it was found
that mice lacking hepatic AR developed more undifferentiated tumors
and larger tumor sizes at the late metastatic stage compared to mouse
models expressing AR, and these mice also died earlier due to increased
lung metastasis. This suggests that hepatic AR may play a dual but
opposing role in promoting HCC development and inhibiting HCC
metastasis (Ma et al., 2012; Wen et al., 2014).

Studies have indicated that there should be gender specificity of
p53 gene mutations in the development process of HCC (Shi et al.,
1995). In addition, mutations in p53, a key oncogene for cell cycle
regulation and apoptosis, were seen to hasten tumor progression
(Chuery et al., 2017). Men suffering from liver cancer were more

associated with the frequency of p53mutations thanwomen (Finch and
Tower, 2014). Besides, p53 is a vital regulator for the cellular response to
DNA damage (Li and Wong, 2018). The ERβ complex in estrogen
(ERβ) partially contributes to the stabilization and activation of p53 in
HCC cells, thus prohibiting the delivery of damaged DNA through
aberrant cell cycle arrest and apoptosis.

3.2 Cell cycle regulation and apoptosis

Sex differences exert their influence on cell cycle regulation through
the alteration of key regulatory proteins such as cyclins, cyclin-dependent
kinases (CDKs), and CDK inhibitors, including p21 and p27 (Lim and
Kaldis, 2013). (FIGURE) Estrogens can upregulate the expression of
p21 and p27, which will lead to cell arrest in phase G1 by stopping the
activity of CDK, blocking the tumor cell cycle (Eto, 2010; Madhu
Krishna et al., 2018). On the other hand, androgens downregulate
the expression of these inhibitory proteins, thereby bringing the cell
cycle on and causing tumor proliferation (Yu et al., 2017).

Apoptosis is programmed cell death, a process that assumes huge
importance as a self-regulatory mechanism in the organism (Li et al.,
2019). The identified Bcl-2 family proteins to date have an anti-
apoptotic function, for example, Bcl-2, and pro-apoptotic action, for
example, Bax (Chen et al., 2016). Estrogens will increase the expression
of pro-apoptotic proteins, including Bax, to promote programmed cell
death in damaged cells, whereas androgens may support the
intensification of survival signaling, for example, by increasing the
expression of Bcl-2 proteins that inhibit apoptosis (Arunkumar et al.,
2012; Herson et al., 2013; Sanaei et al., 2022).

4 Medical treatment in HCC

Studies carried out in the tumor microenvironment (TME),
immune response, Liver Transplant (LT) acceptance rate, and
hormone therapy have alluded to a significant effect of gender
differences on the outcomes of cancer treatment and survival.
This fact propounds that future treatment strategies can
incorporate gender-specific immune response and hormone
modulation for more precise and effective anti-cancer strategies.

Sexual dimorphism exists in the immune response (Rehman and
Masson, 2005; Wu et al., 2009; Mitchell et al., 2020). Women
generate both adaptive and innate immunity responses much
stronger than men, but at the same time, they suffer from
systemic autoimmune diseases much more highly than men
(Murgia et al., 2022; Zhang et al., 2022). In the case of non-small
cell lung cancer (NSCLC) at an early stage, males present with a cold
TME in which there is a defect in T-cell rejection. Contrary to that,
female patients have a hotter TME, greater infiltration of dendritic
cells (DCs), CD8 T cells and CD4 T cells, and greater upregulation of
immune checkpoint molecules in T cells (Conforti et al., 2021).

In advanced HCC, liver transplantation is the standard treatment
for end-stage liver disease (ESLD) (Hill et al., 2023). Studies have shown
that women are less likely than men to receive LT because the
hypothesis responsible for the gender-based variation in radical
treatment is limited by the ability of Model for End-Stage Liver
Disease (MELD) scores based on cr measurements in females
(Mindikoglu et al., 2013; Karnam et al., 2021). In one study, females
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received 1–2.4 fewer cr-derived MELD scores compared to males with
similar renal function (Allen et al., 2018). However, researchers came up
with a new multivariate model, MELD 3.0, meant to account for the
factor of gender difference on waiting lists (Kim et al., 2021).

Sex differences in treatments that antagonize sex hormones and sex
hormone receptors. Anti-ER therapy was found to promote tumor
development in a mouse model, however, several studies have
demonstrated that anti-AR therapy inhibits liver tumorigenesis
(Ahotupa et al., 1994; Williams et al., 1997; Ma et al., 2012; Tang
et al., 2021). Anti-hormonal therapy primarily disrupts the interaction
between hormones and hormone receptors, thereby modulating
downstream targets. However, the effect of anti-hormone therapy on
HCC has been controversial. Very few clinical studies or randomized
control trials demonstrate increased survival or survival in patients with
advancedHCC.Most of the studies concluded that patients withHCCdo
not benefit from antihormonal drug therapy, mainly from side effects
from the drugs and variability of the estrogen receptor. Survival outcomes
in patients with HCC are affected by gender differences (Farinati et al.,
1990;Martínez Cerezo et al., 1994; Grimaldi et al., 1998; Li Z. et al., 2023).

Gender differences affect survival outcomes in patients with
HCC.HBV-infected male patients have an increased incidence of
HCC compared to women, while men have higher serum HBV
DNA titres. These data suggest that the overall survival among men
is significantly shortened in comparison to women among patients with
HCC (Chen et al., 2009; Sayaf et al., 2022). Female HBV patients have a
decreased risk for HCC and improved survival with hormone
replacement therapy (HRT) (Hassan et al., 2017; Wang et al., 2022).
Ten thousand four hundred seventy-four women in the cohort study
were postmenopausal and infectedwithHBV. Incidence rate in theHRT
group of HCC and all-cause mortality of the HRT group decreased,
compared with those in the no HRT group. Indeed, parallel research has
concluded that an association exists between HRT and reduced HCC
risk and better survival outcomes (Wang et al., 2022).

5 Discussion

The liver is a highly sexually dimorphic organ, possessing at least
72% of sexually differentiated genes (Yang et al., 2006). Sex hormones
play a central role in gender preference in HCC, and thus multiple anti-
sex hormone therapies or anti-sex hormone receptor therapies have
been tried. Tamoxifen (TMX) therapy and hormone replacement
therapy (HRT) are the two core regimens for hormone therapy in
HCC (Meng and Liu, 2022).Although the efficacy of TMX in HCC
remains controversial, there are still relevant studies reporting a positive
relationship between the cancer inhibitory effect of TMX and ERα
expression levels. In the work of Villa et al., 50 HCC patients were
differentiated by wild-type ERα and ER αmRNA variant lacking exon 5
(ERΔ5) phenotypes and the therapeutic efficacy of TMXwas confirmed
in patients with wild-type phenotype (Villa et al., 1996). Thereby the use
of hormone therapy may largely dependent on the classification of ERα
and screen or amplification of HCC patients with higher ERα
expression may be beneficial to improve the sensitivity of hormone
therapy. The effectiveness of estrogen replacement therapy in HCC has
been demonstrated to some extent, however, estrogen may increase the
risk of breast, ovarian and endometrial cancer in female patients and
may have an unfavorable effects (American Medical Association, 2002;
Meng and Liu, 2022; Wang et al., 2022). Exploring HCC hormone

therapy in combination with first-line drugs may be an option to
improve efficacy.

AR is a crucial player in male dominant hepatocarcinogenesis. On
one hand, abundant evidence shows that androgens exert tumor-
promoting effects. On the other hand, AR blockade has been proved
to do little benefit for HCC patients. It may be a fact that differences in
sex hormone profiles are important not only in the initiation but also at
the different stages of hepatocarcinogenesis, for example, the anti-tumor
functions of AR in metastatic HCC (Ma et al., 2012). In addition, AR
overexpression might also be used as an independent factor to predict
the prognosis of patients with HCC. However, a portion of HCC was
detected with the expression of C-terminal truncated AR-SVs. AR-SVs
have been identified to play an important role in the acquired resistance
to AR inhibitors (Dauki et al., 2020; Qiao et al., 2021; Katleba et al.,
2023). Therefore, we imply that AR-SVs might also be involved in the
occurrence of acquired resistance to AR inhibitors in HCC.
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PCAF acetylates AIB1 to form a
transcriptional coactivator
complex to promote glycolysis
in endometrial cancer
Di Wu1, Mingxia Li2, Mingyang Wang2, Zhifeng Yan2*

and Yuanguang Meng1,2,3*

1School of Medicine, Nankai University, Tianjin, China, 2Department of Obstetrics and Gynecology,
The First Affiliated Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China,
3Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General
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Introduction: Despite rapid advances in molecular biology, personalized

molecular therapy remains a clinical challenge for endometrial cancer due to

its complex and heterogeneous tumor microenvironment.Based on clinical

findings, AIB1 is a marker molecule for poor prognosis in endometrial cancer

and may serve as a potential therapeutic target. Moreover, it is well known that

aerobic glycolysis plays an important role in tumour energy metabolism. It has

been previously reported in various hormone-related tumour studies that AIB1

affects glycolysis and promotes tumour development. However, the link between

AIB1 and aerobic glycolysis in estrogen-dependent endometrial cancer

remains unclear.

Methods: We used two endometrial cancer cell lines to validate the high

expression of target genes and the effect on the proliferative and invasive

capacity of the tumours and verified the pattern of interactions and epigenetic

modifications by CHIP and CO-IP techniques. Finally, the conclusions were

validated on homozygous mice

Results: In this study, we investigated the transcriptional co-activation functions

of AIB1, including its acetylation by PCAF, binding to the c-myc transcription

factor, and recruitment of glycolysis-related gene promoters.

Discussion: Our findings provide new clues that perturbation of normal

homeostatic levels of AIB1 is linked with endometrial cancer. These findings

suggest that targeting AIB1-mediated regulation of aerobic glycolysis may offer a

novel therapeutic approach for endometrial cancer with high AIB1 expression,

opening new avenues for personalized diagnostics and treatment strategies in

this disease.
KEYWORDS

endometrial cancer, aerobic glycolysis, amplified in breast cancer 1, P300/CBP-
associated factor, molecular target
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GRAPHICAL ABSTRACT

.

1 Introduction

Endometrial cancer is one of the most common gynecological

malignancies worldwide, and it ranks sixth in incidence among

female malignant tumors globally in global cancer statistics 2020

(1).Furthermore, 66,200 new cases of EC and 13,030 EC-related

deaths in the US were estimated for 2023 (2). However, in

emerging economies like China, the incidence of endometrial

cancer has been rising significantly in recent years and trending

toward a younger patient population (3). For example, a 2022
Frontiers in Oncology 0247
study found that the incidence of endometrial cancer in China has

been increasing by approximately 3% annually. This calls for an

active search for optimized cancer control strategies, especially in

developing countries experiencing rapid social and economic

changes. Early diagnosis and precise prognostic assessment are

particularly effective ways to control endometrial cancer. In

conjunction with current developments in molecular biology,

individualized diagnosis and treatment based on molecular

markers need to be integrated into existing health plans in

order to cope with complex endometrial cancers that are
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increasingly exposed globally or for which treatment options are

still limited.

Therefore, studying the mechanisms underlying endometrial

cancer development and identifying key regulatory molecules are

crucial for promoting early diagnosis, understanding individualized

differences, and achieving precise treatment to improve prognosis.

Energy metabolism disorder is an important mechanism for tumor

occurrence and development. German biochemist Otto Warburg

discovered that tumor cells primarily obtain energy through

glycolysis, even under conditions of sufficient oxygen supply—a

phenomenon known as “aerobic glycolysis” or the “Warburg effect”.

(4).Glycolysis plays a vital role in various pathological processes

associated with cancer (5). Active glycolysis improves the tolerance

of tumor cells to ischemia and hypoxia conditions and avoids

apoptosis caused by the inhibition of oxidative phosphorylation;

secondly, tumor cells can utilize the intermediates of glycolysis or

provide raw materials for anabolism through upregulation of the

pentose phosphate pathway to satisfy the rapid proliferation of

tumor cells. Thirdly, abnormal alterations in the function of key

enzymes involved in gluconeogenesis can often lead to

tumorigenesis. Additionally, the accumulation of lactic acid, the

end product of aberrant glucose metabolism in tumors, can create

an acidic local environment that disrupts the cellular matrix and

promotes tumor invasion.

Emerging evidence indicates that the glycolytic processes of

tumor cells, and the key regulatory factors, represent promising

targets for cancer diagnosis and treatment. (6–8). Amplified in

breast cancer 1 (AIB1), as a member of the steroid hormone

receptor co activator family (SRC), interacts with multiple

transcription factors to enhance their transcriptional activity.

Studies have shown that the overexpression of AIB1 can affect

various signaling pathways by promoting glycolysis, thereby

initiating the development of diverse cancers, including breast,

colorectal, and liver. (9–11).The posttranslational modification of

AIB1, such as acetylation by the histone acetyltransferase PCAF, is

crucial for regulating its protein expression and activity. PCAF can

acetylate non-histone substrates, including AIB1, p53, and NF-kB,
and participate in various cellular processes like proliferation,

differentiation, apoptosis, and DNA damage repair. (12–14).

However, the interaction site of PCAF and AIB1 and the

molecular mechanism of whether they can affect tumorigenesis

and development through regulation of glycolytic metabolism

remain unclear. Therefore, this study aims to elucidate how

acetylation of AIB1 by PCAF promotes aerobic glycolysis and

proliferation in endometrial cancer.
2 Materials and methods

2.1 Cell lines and cell culture

HEC-1A and Ishikawa cells were cultured in DMEM. The HEC-

1A cell was obtained from the Academy of Military Medical Sciences

and was free of mycoplasma contamination. Ishikawa was obtained

from Cellverse Company (article number: iCell-h113) in Shanghai.

Cell lines were validated using the short tandem repeat (STR)
Frontiers in Oncology 0348
method. All media were supplemented with 10% fetal bovine

serum and 1% penicillin–streptomycin. All cells were cultured at

37°C in an atmosphere containing 5% CO2 and 70%–80% humidity.
2.2 Clinical samples

A total of 112 patients suffering from endometrial cancer who have

accepted standard surgery were obtained from the First Affiliated

Hospital of PLA General Hospital prior to the study. All of the

samples were embedded in paraffin. These patients did not undergo

any therapeutic intervention before surgery. Two senior pathologists

from the hospital’s pathology department examined all pathological

tissue in accordance with World Health Organization standards.
2.3 siRNAs and plasmids

Oligonucleotides of siRNA targeting NCOA3 and PCAF

respectively, and control siRNA were produced by JTS Scientific

(Wuhan, China). The sequences are presented in Supplementary

Table 1. Cells were transfected with the siRNAs at a final siRNA

concentration of 50 nM using Lipofectamine 2000 (Invitrogen),

according to the manufacturer’s instructions. The human

pcDNA3.1-Myc-NCOA3 plasmid was purchased from Gene-bio

(Henan, China). The human pcDNA3.1-Flag-PCAF plasmid was a

gift from Professor Xiaojie Xu at Academy of Military Medical

Sciences. DNA sequencing and enzyme digestion identification

were performed to confirm plasmids integrity and accuracy.
2.4 Construction of stable knockdown and
overexpression cell lines

Firstly, overexpression and knockdown constructs were

generated using the lentiviral backbone vector pLVX-CMV-puro

and the shRNA vector SHC201-u6-puro, respectively. Secondly,

pspax2 and pMD2G were selected as auxiliary plasmids to form the

lentiviral packaging system. Thirdly, 293t adherent cells were

prepared with a convergence rate of 70% and the plasmids

transfected in a 4:3:1 ratio. After 72 h, the lentiviral supernatant

was collected, the viral titer was determined by fluorescence

microscopy, and the virus was stored at −80°C for future use.

Finally, the Ishikawa and HEC-1A cell lines were infected with the

lentivirus, and stable knockdown cell lines were selected

using puromycin.
2.5 RNA extraction and quantitative reverse
transcription polymerase chain reaction

The TRIzol reagent (Invitrogen) was used to extract total RNA

from cells in accordance with manufacturer instructions, and

PrimeScript RT reagent kit (Vazyme, Nanjing, China) was used

to transform RNA to cDNA. Quantitative RT-PCR (qRT-PCR) was

performed on a CFX96 Dice™ real-time PCR system (Bio-Rad
frontiersin.org
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Laboratories, Inc., CA) using Taq Pro Universal SYBR qPCRMaster

Mix (Vazyme, Nanjing, China). Each sample was run in triplicates.

The sequence of primers used in the study are presented in

Supplementary Table 2.
2.6 Western blotting

Proteins were extracted from cells with the addition of protease

inhibitors to prevent degradation during the lysis process. Protein

concentrations were then quantified using the BCA method to ensure

accurate results. Target proteins were separated via SDS-PAGE

electrophoresis, followed by incubation with primary and secondary

antibodies. The specific protein antibodies involved in this study include

DYKDDDDK Tag Monoclonal Antibody (FG4R) (Invitrogen, MA1-

91878); Myc Tag Antibody (PA1-981); c-Myc Antibody (MA1-980);

PCAF Antibody (703379); and AIB1 Antibody (MA5-15898).
2.7 Cell proliferation

The CCK-8 and colony formation assays were utilized to assess

cell viability and proliferation. For the CCK-8 assay, cells were seeded

in six-well plates and incubated with the experimental conditions.

After the desired timepoint, the CCK-8 reagent was added and the

absorbance at 450 nm was measured using a spectrophotometer,

which correlates with the number of viable cells. For the colony

formation assay, cells were seeded, treated with experimental

conditions, and then incubated to allow colony formation. The

colonies were then fixed, stained with methylene blue, and quantified.
2.8 Cell cycle and apoptosis

Cells were synchronized, fixed, and permeabilized to preserve

cellular structures and DNA integrity. The cells were then stained

with propidium iodide (PI) and subjected to flow cytometry analysis

to assess cell cycle distribution. Annexin V staining was also

performed to detect apoptosis.
2.9 Migration and invasion assays

For the Transwell migration assay, cells are seeded in the top

chamber of a Transwell insert with a porous membrane, whereas

the bottom chamber contained serum-containing medium. After

incubation, the cells on the top or bottom of the membrane were

fixed, stained, and quantified using image analysis. The invasion

assay was similar, but the membrane was coated with Matrigel to

assess the cells’ invasive capacity.
2.10 Coimmunoprecipitation assay

Starting by lysing the cells to obtain the supernatant, the

indicated antibody was added for incubation overnight with
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shaking at 4°C. The next morning, washed Protein A/G

magnetic beads were added to the antigen–antibody complex

system for continued incubation. Sediment was centrifuged and

retained. After washing three times with IP washing buffer,

loading buffer was added to the complex system and denatured

at 100°C for 10 min. Then, the samples were subjected to

immunoblot analysis.
2.11 Chromatin immunoprecipitation

The first step was to fix 2 × 106 cells/ml with 1% formaldehyde

for 10 min at room temperature. Glycine (0.125 M) was added

immediately to quench for 8 min at 37°C and wash three times with

PBS. Next, the nuclei were extracted after ultrasonic disruption. The

third step was to incubate overnight at 4°C with an anti-c-Myc

antibody or IgG, along with Protein A/G magnetic beads.

Afterward, washing complexes with high-salt solutions, purified

DNA was obtained for subsequent quantitative PCR (qPCR)

analysis. The primer sequences for the glucose metabolism related

gene promoter are provided in Supplementary Table.
2.12 Immunoblotting

Endometrial cancer tissue chips containing 37 patients were

purchased from Ximin Trading company (Qingdao, China), and

Jiankun Herun Technology Company (Beijing, China) was

commissioned to provide immunohistochemical testing services.
2.13 Cellular energy metabolism assays

Mammalian cells have two key energy metabolism pathways,

aerobic respiration and glycolysis. Aerobic respiration takes place

in the cytoplasm and mitochondria, and the process of consuming

oxygen drives the cell to oxidize and break down the nutrient

substrates (sugars, lipids, proteins) and release energy to

synthesize large amounts of ATP, so the mitochondria are also

known as the “energy factory” of the cell. Glycolysis occurs in the

cytoplasm of cells and is an anaerobic decomposition process that

mainly breaks down glucose into lactic acid and produces small

amounts of ATP. Glycolysis and oxidative phosphorylation are

two key energy-producing pathways in cells. Most cells have the

ability to switch between these two pathways, adapting to changes

in their environment.

Extracellular acidification rate (ECAR) and oxygen

consumption rate (OCR) were measured with a XFe96 Analyzer.

Briefly, cells digested to a density of 1 × 104/well were seeded in

XFe96 assay plates (Agilent Technologies, Santa Clara, CA, USA)

and were then placed in an incubator of 37°C and 5% CO2 for

24 h. Simultaneously, an XFe96 cartridge was hydrated the day

prior to the XF assay. Then, XF Real Time ATP Rate Assay

Medium was prepared and warmed to 37°C at the day of assay.

Next, the cell culture plate was retrieved from the CO2 incubator

and the cells’ state was viewed. Around 1 h before detection,
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FIGURE 1

AIB1 is enriched and predicts outcome in endometrial cancer. (A) Tumor tissue microarrays containing 74 loci from 37 endometrial cancer patients.
Also, immunohistochemistry (IHC) protein analysis of AIB1 was completed in the above samples. (B) Results of applying IHC to detect AIB1
expression at different sites of tumor tissues of the same patient. (C) High AIB1 expression is associated with poor prognosis in tumor patients
according to CPTAC database information. (D) Heat map of AIB1 expression in clinical endometrial cancer patients detected by application of
second-generation gene sequencing technology. (E) There were 10 endometrial cancer patients with good concordance selected to compare the
expression of AIB1 and PCAF in tumor and paracancerous tissues using RT-PCR assays. (F) Positive correlation between PCAF and AIB1 expression
based on genetic testing of clinical patients. (G) Kaplan–Meier analysis of progression-free survival (PFS) according to mRNA expression of AIB1 in
clinical patients (n = 112). Blue dots represent patients with low AIB1 expression, and red dots represent patient with high AIB1 expression.
(H) Multifactorial survival analysis of 112 endometrial cancer tissues from clinical samples using PFS as the primary outcome indicator. High AIB1
expression is an independent prognostic influencer in endometrial cancer patients (P=0.0293). (*P<.05, **P<.01, ***P<.001).
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culture medium was replaced by XF Real-Time ATP Rate Assay

Medium (Agilent Technologies). Subsequently, the cells were

treated sequentially with 1 mM of glucose, 1 mM of oligomycin

(ATP synthase inhibitor), and 0.5 mM of 2-DG (the glycolytic

inhibitor) at time points for measurement of ECAR. For OCR,

once all required ports were filled with drugs, the cartridge and

utility plate were transferred to the XFe96/XF96 instrument and

cartridge calibration was started using the assay template

created before.
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2.14 Animal studies

We purchased 30 BALB/c nude mice (female, 4–5 weeks old,

16–18 g in body weight) from Vital River Company (Beijing, China)

and randomly assigned them to six groups (n = 5 per group). Each

group of mice was placed in a cage for feeding. The mice were

housed at the specific pathogen-free (SPF) facility following the

principles of animal welfare strictly. The animal experiment was

divided into six groups: the control group compared with
FIGURE 2

AIB1 affects endometrial cancer cell proliferation and infiltration. (A, B) Cells were transfected with either sh-NC and oe-NC or sh-AIB1 and oe-AIB1.
Cell proliferation was measured after 5 days. Graphs display absorbance measured at 450 nm using an enzyme meter in Ishikawa (A) and HEC-1-A
(B). (C) Colony forming assay was carried out with cells treated with either sh-NC and oe-NC or sh-AIB1 and oe-AIB1 for a total of 14 days.
Representative images of the cells stained with crystal violet at day 14. Graph displays colony numbers in different conditions in two cell lines. All
experiments are representative of three biologically independent replicates. Two-sided t-tests were used to calculate P values (***P ≤0.001,**P ≤

0.01,*P ≤ 0.05). (D) Transwell assay was performed to assess the migration ability of Ishikawa and HEC-1-A cells. The grouping and replications were
the same as in the colony forming assay.
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overexpression, the AIB1 overexpression group, the AIB1

overexpression and administration of 2-DG group, the control

group compared with knockdown, the AIB1 knockdown group,

and the AIB1 knockdown and administration of 2-DG group. The

administration method of 2-DG is intraperitoneal injection of 500

mg/kg. A tumor-bearing mouse model was established by
Frontiers in Oncology 0752
subcutaneously injecting 100 ml of the transfected cells into the

mice. Tumor volume was measured using a vernier caliper every 4

days and quantified using the following formula: Volume (mm3)

=length×width2/2. After 28 days’ measurement or humane end

point, the mice were sacrificed. Subsequently, the tumors were

isolated from all mice.
FIGURE 3

AIB1 Induces cell cycle and disrupts apoptosis. (A) The effect of AIB1 knockdown and overexpression on the EC cell cycle. (B) AIB1 knockdown
increased the proportion of cells in the G1 phase in both EC cell lines. (*P < .05, **P < .01, ***P < .001). (C) Endometrial cancer cell apoptosis was
detected by flow cytometry analysis. (D) The graph displays the apoptosis rate of both Ishikawa and HEC-1-A cell lines. Compared with the NC
control group, cells treated with the AIB1 knockdown apoptotic index were significantly higher. In opposite, high AIB1 expression disrupts regular
programmed cell death.
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2.15 Bioinformatics analysis

We retrieved expression data and clinical information from

the Department of Obstetrics and Gynecology of the First

Medical Center of the General Hospital of the Chinese People’s

Liberation Army. The LIMMA package was used to identify

DEGs between good and poor prognosis endometrial cancer

tissue samples. An adjusted P < 0.05 and an absolute log2 FC >

1 were considered statistically significant. To determine the

potential biological processes and pathways of the overlapping

DEGs, ingenuity pathway analysis (IPA, www.qiagen.com/

ingenuity) (accessed on 03 July 2020) and protein interaction

network was performed, with P < 0.01 and absolute log2FC > 1

as the threshold values.
2.16 Statistical analyses

GraphPad Prism 8.4.2 was used for data analysis. Data were

expressed as mean ± SD. Comparisons between two groups were

performed by T-test, comparisons among multiple groups were

performed by one-way ANOVA. P-values < 0.05 indicate statistical

significance. * represents 0.01<P ≤ 0.05, ** represents 0.001<P ≤

0.01, *** represents P<0.001.
3 Results

3.1 AIB1 is a novel oncogene and
associated with poor prognosis

Consistent with the Clinical Proteomic Tumor Analysis

Consortium (CPTAC) analysis (Figure 1C), tissue microarray

(Ximin Trading Company) results from 37 patients with

endometrial cancer showed that AIB1 was highly expressed in

tumor tissue, as well as in the nucleoplasm and cytoplasm

(Figures 1A, B). AIB1 gene expression was detected

correspondingly in 57 clinical samples sourced from the General

Hospital of the People’s Liberation Army (PLA), as shown in

Figure 1D. Tissue samples from 10 of these patients were

randomly selected and tested for central and paracancerous AIB1

and PCAF expression. It was found that both molecules were

significantly more highly expressed in the tumor compared with

the paraneoplastic tissue, and the difference was statistically

significant (P<0.01) (Figure 1E). Moreover, a positive correlation

was found between AIB1 and PCAF expression in Figure 1F

(R=0.796, P<0.001). Subsequently, long-term follow-up of 112

endometrial cancer patients with complete genomic and

transcriptomic molecular information in our institution showed

that high AIB1 expression predicted poor prognosis (P=0.042)

(Figure 1G). In addition, high AIB1 expression was also

confirmed to be an independent risk factor for shorter

progression-free survival by a multifactorial prognostic analysis

(P=0.029)(Figure 1H).
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3.2 AIB1 promotes tumor proliferation
and invasion

To investigate the impact of AIB1 on EC cell line growth and

proliferation, AIB1 overexpression and knockdown efficiency were

confirmed by immunoblotting experiments. Next, the effects of

AIB1 overexpression and knockdown status on cell proliferation

viability were verified using two cell lines, HEC-1A and Ishikawa,

respectively. The results showed that AIB1 overexpression

significantly increased tumor proliferation capacity. Conversely,

the effect was significantly weakened in knockdown (Figures 2A,

B). Then, plate cloning experiments again verified the proto-

oncogene function of AIB1, confirming that tumor cells highly

express the gene and promote tumor growth (P<0.001). Conversely,

knocking down the gene inhibits tumor growth (P<0.05)

(Figure 2C). In addition, the results of the invasion assay showed

that overexpression of AIB1 significantly enhanced the migratory

infiltration ability of tumor cells (P<0.01) and vice versa (P<0.05)

(Figure 2D). The differences were all statistically significant.
3.3 AIB1 affects cell cycle and programmed
death processes

The cell cycle is a highly regulated process that controls the

growth and division of cells at the appropriate times and in the

correct manner. It is divided into distinct phases to perform a series

of events, each with specific functions and checkpoints to ensure

accurate replication and division (15). Cells in G1 phase grow in

size, synthesize proteins, and prepare for DNA replication.

Immediately following the replication of the cell’s genetic material

occurs in the S phase. The G2 phase is a period of growth and

preparation for cell division (16). The mitosis phase encompasses

the process of dividing the duplicated DNA and cellular contents

into two daughter cells. To investigate whether growth inhibition

upon AIB1 depletion is related to alterations in the cell-cycle profile

of EC cells, we analyzed cellular DNA content with flow cytometry.

As shown in Figures 3A, B, AIB1 knockdown in Ishikawa and HEC-

1A cells induced G1 arrest. Overexpression of the proto-oncogene

AIB1 affects cell cycle regulation, thereby disrupting the normal

regulation of cell growth and division, leading to uncontrolled cell

division and cancer development. Consistently, we also observed

that the percentage of cells in the G1 phase decreased concurrently

with an increased percentage in the S phase.

Apoptosis, the best-known form of programmed cell death, is a

key physiological mechanism for limiting the expansion of cell

populations, both to maintain tissue homeostasis and to remove

potentially deleterious cells, such as those with persistent DNA

damage (17). Loss of apoptosis can allow the survival and

accumulation of abnormal cells, promoting tumor initiation.

Impaired apoptosis can also contribute to tumor progression and

metastasis. Cancer cells often acquire resistance to apoptosis, which

enables them to evade cell death signals and survive in adverse

conditions. The results of the present study show that AIB1-
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overexpressing endometrial cancer cell lines disrupt a regulated and

evolutionarily conserved cell death program. However, when

knocking down the AIB1 gene, cells activate apoptosis as an

important tumor suppression strategy (Figures 3C, D).
3.4 AIB1 influences tumor occurrence and
development by glycolysis

Given the crucial role of energy metabolism in cancer, we

investigated whether AIB1 could influence tumorigenesis and

progression through its impact on glycolysis, a key metabolic

pathway in cancer cells. We previously successfully identified AIB1

as a prognostic differentially expressed gene using second-generation

sequencing based on a grouping of endometrial cancer clinical samples

with follow-up prognosis. Next, we analyzed the two groups of

differentially expressed genes to form a volcano map based on the

level of AIB1 expression (Figure 4A). Meanwhile, genes involved in

glucose metabolism were screened to be closely related to AIB1

(Figure 4B). Moreover, the key proteins in the glycolysis process

related to AIB1 were associated through a PPI network (Figure 4C).

Immediately afterward, the differential gene enrichment analysis

revealed that the high expression of AIB1 was associated with

glucose metabolism and cell proliferation pathway (Figure 4D).

To determine the functional relevance of AIB1-mediated

glycolysis, we performed rescue experiments by inhibiting

glycolysis using a specific inhibitor, such as 2-deoxyglucose

(2-DG). We found that the inhibition of glycolysis significantly

attenuated the proliferative advantage conferred by AIB1

overexpression in two EC cell lines (P < 0.001), suggesting that

AIB1 promotes tumorigenesis and progression, at least in part,

through enhanced glycolytic metabolism. In Figures 4E, F, it was

shown that 2-DG can significantly reverse AIB1 promotion of

abnormal cell proliferation. Correspondingly, knockdown of AIB1

significantly attenuated the effect of glycolysis on cell viability. The

results of the EDU assay were consistent between the two cell lines

(Figures 4G, H).In addition, the results of the extracellular

acidification assay (ECAR) and oxidative phosphorylation assay

(OCR) confirmed that high expression of AIB1 promotes tumor

glycolysis (Figures 4I, J).
3.5 PCAF acetylates AIB1 at K687 and binds
as a transcriptional coactivator complex

AIB1 (amplified in breast cancer 1), also known as SRC-3 (steroid

receptor coactivator 3), is a transcriptional coactivator protein that

plays a crucial role in regulating gene expression. It consists of several

distinct structural components including the following. N-terminal

basic helix–loop–helix–Per/ARNT/Sim (bHLH–PAS) domain

involved in DNA binding and heterodimerization between proteins

containing these motifs is the most conserved region among SRC

family members (18). The nuclear receptor interacting domain (RID)

immediately following the serine/threonine-rich region (S/T) contains

the LXXLL (where L is leucine and X is any amino acid) motif that is

important for nuclear receptor binding. The intrinsic transcriptional
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activation domain (AD), which is responsible for interacting with the

general transcriptional coactivator CBP/p300, is located at the c-

terminus of the SRC molecule receptor interaction domain (19).

Furthermore, the AIB1 C-terminal HAT structural domain may be

involved in chromatin remodeling and assembly of the peripromoter

transcriptionmachinery during nuclear receptor-directed transcription

initiation. The five functional domains of AIB1 are shown in Figure 5A.

However, its importance in AIB1 transcriptional activation when

considering activity remains to be clarified.

Previous studies have shown that posttranslational modifications

of the AIB1 protein are pivotal in the regulation of gene processes

(20).Our studies revealed that PCAF co-precipitated with AIB1 in

extracts prepared in Ishikawa and HEC-1A cells and that

overexpression of PCAF and AIB1 led to acetylation of AIB1 and

formation of transcriptional co-activation complexes, which enhanced

its transcriptional activity. In order to clarify the specific binding sites,

we constructed plasmids with five separate structural domains of AIB1

with a Myc tag and full-length plasmids, respectively, and co-

transfected them with Flag-PCAF plasmid in endometrial cancer cell

lines, which not only proved the protein interactions but also identified

the specific roles of PCAF and AIB1 in the region of amino acids 580–

840 by immunoprecipitation (Figure 5B).

Next, based on the fact that PCAF has an acetyltransferase role, we

further determined whether PCAF and AIB1 protein interactions are

achieved through an acetylated form. We performed co-

immunoprecipitation assay and acetylation antibody to confirm that

PCAF greatly catalyzes the acetylation of AIB1 (especially in the 580–

840 amino acid region) in endometrial cancer cells (Figure 5C). To

further validate the acetylation active site of AIB1, we mutated the

lysines at positions 616, 619, 620, and 687 to arginine to mimic

deacetylation, resulting in an AIB1 acetylase inactivation mutant.

We subsequently found that the acetylation ability of K616,

K619, and K620 mutants was similar to that of wild-type AIB1, but

the acetylation level of K687 was significantly attenuated in the

precipitates of PCAF and AIB1 interaction. These results suggest

that PCAF acetylates AIB1 at K687 (Figure 5D).
3.6 Co-activation complex regulate
downstream glycolysis through c-myc

c-Myc is a transcription factor that plays a critical role in

regulating cellular metabolism and promoting tumor growth. It is

one of the most commonly deregulated oncogenes in human

cancers, and its overexpression or constitutive activation is

observed in a wide range of cancer types. (21–23). Therefore, we

speculate that AIB1 may induce the glucose metabolism

reprogramming by c-myc in the endometrial cancer. In order to

further explore the mode and extent of action of AIB1 affecting

tumor glycolytic metabolism, we tried to compare the expression of

transcription factor c-myc in the transcriptional co-activation

complex after overexpression of AIB1 alone versus co-transfection

of AIB1 and PCAF plasmid. Fortunately, the results showed that the

ability of the transcriptional co-activation complex to bind

transcription factors was significantly stronger than the

recruitment of AIB1 alone (Figure 6A).
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FIGURE 4

Role of AIB1 in tumor glucose metabolism. (A) Transcriptomics data from 112 clinical endometrial cancer patients were grouped according to AIB1
expression level, and volcano plots were drawn to compare the two groups of differential genes. Red dots and blue dots represent differential expression
((absolute log2 fold change >1 and adjusted P-value <0.05), and gray sections are non-significant differential expression. (B) The graph shows the
interrelationship of differential genes with AIB1 in the volcano map. (C) In protein−protein interaction (PPI) network analysis, it was found that AIB1 can
directly or indirectly interact with several other glucose metabolism-related genes. Larger nodes represent stronger gene connectivity, and thicker lines
indicate more reliable interconnections between genes and higher combined score values. (D) GSEA enrichment analysis showed that DEGs were
significantly enriched in two glucose metabolism-related pathways, namely, oxidative phosphorylation and the citric acid (TCA) cycle and respiratory electron
transport. These two pathways were significantly downregulated in the AIB1 high-expression group compared with the AIB1 low-expression group. In
addition, differentially expressed genes were also significantly enriched in pathways mediating cell proliferation, such as the mTOR signaling pathway (KEGG
enrichment analysis), the PI3K-Akt signaling pathway (GSEA enrichment analysis), and the PI3K-Akt signaling pathway (GSEA enrichment analysis). (E, F) The
graphs demonstrate the effect on cell proliferation viability after addition of the glycolysis inhibitor (2-DG). The results were validated simultaneously in two
cell lines, respectively. (G, H) EdU staining was used to show the effect of 2-DG drugs on cell proliferation in different treatment groups in two cell lines. The
results further evaluate that the AIB1 gene affects tumors through glycolysis processes. (I, J) The extracellular acidification rate analyses of Ishikawa and HEC-
1-A cells stably expressing knockdown control, shAIB1, 2-DG adding to shAIB1 and overexpression control, oeAIB1, 2-DG adding to oeAIB1. The oxygen
consumption rate analysis as the above. ns P>.05, *P<.05, **P<.01, ***P<.001.
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To next investigate how the transcription activation complex

binds to the glycolytic enzymes promoter, which spans −2,000 to −1

(the translation initial site is 0), we performed chromatin

immunoprecipitation (ChIP) and qPCR as shown in Figure 6B.

The results showed that PCAF/AIB1/c-Myc could pull down the

DNA fragment of the PFKL, ENO1, LDHA, PKM2, and GLUT1

promoter region but not PGK1 and HK2 (Figure 6C).
3.7 AIB1/glycolysis axis regulates
endometrial cancer growth in vivo

On the basis of AIB1 regulating tumor proliferation and invasion

in EC cells in vitro, we constructed the in vivo phenotype of the AIB1/

glycolysis axis to perform subsequent verification. We examined the

effect of the axis on tumor growth by subcutaneously injecting EC

cells carrying the construct described in Figure 7 into BALB/c nude

mice. There was no significant difference in initial mouse body weight

among groups. After the mice developed palpable tumors, they were

randomly assigned into 2-DG or PBS in nude mice injected with

Ishikawa cells overexpressing or knocking down the AIB1 gene.
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Unsurprisingly, overexpression of AIB1 significantly promoted

endometrial tumor growth. Moreover, the tumor-promoting effect

of AIB1 was significantly attenuated after pharmacological

intervention with the glycolysis inhibitor 2-DG (Figures 7A, C). In

contrast, when AIB1 was knocked down, tumor growth was inhibited

and the effect of 2-DG intervention on tumor growth was not

significant (Figures 7B, D).
4 Discussion

Endometrial carcinoma (EC) is a highly heterogeneous

disease, with diverse etiologies, pathogeneses, clinical features,

and molecular character is t ics . Recent advancements ,

spearheaded by the landmark Cancer Genome Atlas (TCGA)

project, have ushered in a shift from traditional morphology-

based classification to a more nuanced molecular taxonomy of

endometrial cancer. This four-subtype system, defined by POLE

mutations, microsatellite instability, copy number alterations,

and copy-number high tumors, has important prognostic and

therapeutic implications (24–27).
FIGURE 5

PCAF and AIB1 interact and acetylate at K687. (A) The AIBI protein consists of several functional structural domains, including the N-terminal bHLH,
the serine/threonine-rich region, and C-terminal transcriptionally active structural domains. (B) Co-IP analysis of the interaction of Myc-AIB1 and
Flag-PCA in Ishikawa cells. Flag antibody expression is detected by pulling with Myc-tagged magnetic beads. Results indicate that AIB1 interacts with
PCAF through its RID domain (580 aa–840 aa). (C) PCAF acetylates the RID functional structural domain of AIB1. The interaction of AIB1 with PCAF
was confirmed by the Co-IP assay. (D) PCAF acetylation AIB1 at k687.
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Although there is no precise and effective means to screen and

prevent endometrial cancer, endometrial cancer research has

transitioned into the molecular era, with a growing focus on

understanding the underlying molecular mechanisms driving its

development and progression. This shift has allowed for the

identification of molecular markers with prognostic significance,

providing insights into the heterogeneous nature of the disease and

potential therapeutic targets.

The molecule AIB1 (amplified in breast cancer 1), also known

as SRC-3 (steroid receptor coactivator 3), has emerged as a

promising prognostic marker in endometrial cancer. The AIB1

gene is located on chromosome 20q12 and consists of multiple

exons. Previous studies have shown that AIB1 plays a crucial role in

hormone signaling and glucose metabolic pathways and is

associated with tumor progression, metastasis, and resistance to

hormone-based therapies (28, 29). Building upon this molecular

framework, our study aimed to elucidate the role of the

transcriptional coactivator AIB1 (also known as SRC-3) in

endometrial cancer progression and its potential as a clinically

relevant biomarker.
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Consistent with findings from public databases, our analysis of 66

endometrial cancer patients demonstrated that high AIB1 expression

was an independent predictor of poor clinical outcomes.

Mechanistically, we found that AIB1 plays a crucial role in promoting

aberrant tumor metabolism, specifically by enhancing glycolysis. The

acetylation of AIB1 at k687 by the acetyltransferase PCAF forms a

transcriptional activation complex that binds to c-Myc, a master

regulator of the glycolytic program. This metabolic reprogramming

was functionally validated through cell-based assays, wherein the

inhibition of glycolysis significantly attenuated the proliferative and

invasive capacities of endometrial cancer cells. Notably, knockdown of

AIB1 diminished the effects of glycolysis inhibitors, underscoring the

central role of this coactivator in regulating thesemetabolic pathways. In

addition, in combination with immunoprecipitation experiments, it was

verified that the formation of a transcriptional activation complex

between AIB1 and PCAF activates the glycolytic process to a greater

extent than AIB1 alone to affect tumor progression.

These findings suggest that AIB1 may serve as a promising

prognostic biomarker and a potential therapeutic target in

endometrial cancer. Pharmacological strategies aimed at
FIGURE 6

Glycolysis gene expression is regulated by AIB1 and PCAF complex by mediating c-myc transcriptional activity. (A) COIP analysis showed that both
PCAF and AIB1 could bind to native c-myc alone, but complex formation bound c-myc more pronouncedly. (B, C) ChIP analysis of the AIB1
complex and transcription factor occupancy on the indicated glycolytic gene promoters in Ishikawa cells. The graph shows the enrichment of genes
relative to input. All data shown are mean ± SD of triplicate measurements that have been repeated three times with similar results.
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disrupting the AIB1-driven glycolytic network could hold clinical

promise in curtailing disease progression. Whereas our findings

provide valuable mechanistic insights into the role of AIB1 in

endometrial cancer metabolism and progression, the current

study has several limitations that should be acknowledged. The

interconnected nature of cancer metabolism involves complex

crosstalk between various pathways and interactions with the

tumor microenvironment, which were not fully explored in this

study (30). The focus on AIB1 and glycolysis may overlook immune

microenvironment changing with metabolic reprogramming in

endometrial cancer (31, 32). Additionally, our analysis was based

on a relatively small patient cohort, and broader validation in larger,

more diverse patient populations will be necessary to firmly

establish the clinical utility of AIB1 as a prognostic biomarker.

Future research should investigate the broader metabolic

dependencies and vulnerabilities associated with AIB1
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overexpression, as well as evaluate potential combinatorial

therapeutic strategies targeting these metabolic alterations.

Despite these limitations, our study lays an important foundation

for further exploration of AIB1 as a therapeutic target in endometrial

cancer. Key next steps should include the development of specific

AIB1 inhibitors and the evaluation of their efficacy in preclinical

models and clinical trials. Deeper mechanistic understanding of how

AIB1 coordinates transcriptional regulation of glycolytic and other

metabolic pathways may also uncover additional druggable

vulnerabilities. Integrating AIB1 assessment with comprehensive

molecular profiling of endometrial tumors could also help refine

patient stratification and guide the selection of tailored treatment

approaches. Ultimately, a multifaceted approach combining

biomarker development, metabolic targeting, and personalized

therapy will be crucial to improving clinical outcomes for

endometrial cancer patients.
FIGURE 7

AIB1 regulates glycolysis and promotes tumor growth in vivo. Mice were randomly assigned to six groups (n = 5 per group) and were injected with
vehicle (Control) or overexpression and knockdown AIB1 Ishikawa cells. Then immediately afterward, nude mice were treated with deoxy-d-glucose
(2-DG) or equal volume of PBS. The effects of the drug on mouse weight and body tumor measurements are shown by the growth curve (A, B). In
addition, the excised tumors, tumor size, and tumor weight are shown (C, D). Data are presented as the means ± SEM. ns, No significance.
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Objective: This study was aimed at exploring a specific open region of chromatin
in the peripheral blood mononuclear cells (PBMCs) of patients with breast cancer
and evaluating its feasibility as a biomarker for diagnosing and predicting breast
cancer prognosis.

Methods: We obtained PBMCs from breast cancer patients and healthy people
for the assay for transposase-accessible chromatin (ATAC) sequencing (n = 3) and
obtained the GSE27562 chip sequencing data for secondary analyses. Through
bioinformatics analysis, wemined the pattern changes for chromatin accessibility
in the PBMCs of breast cancer patients.

Results: A total of 1,906 differentially accessible regions (DARs) and
1,632 differentially expressed genes (DEGs) were identified via ATAC
sequencing. The upregulated DEGs in the disease group were mainly
distributed in the cells, organelles, and cell-intima-related structures and were
mainly responsible for biological functions such as cell nitrogen complex
metabolism, macromolecular metabolism, and cell communication, in
addition to functions such as nucleic acid binding, enzyme binding, hydrolase
reaction, and transferase activity. Combined with microarray data analysis, the
following set of nine DEGs showed intersection between the ATAC and
microarray data: JUN, MSL2, CDC42, TRIB1, SERTAD3, RAB14, RHOB, RAB40B,
and PRKDC. HOMER predicted and identified five transcription factors that could
potentially bind to these peak sites, namely NFY, Sp 2, GFY, NRF, and ELK 1.

Conclusion: Chromatin accessibility analysis of the PBMCs from patients with
early-stage breast cancer underscores its potential as a significant avenue for
biomarker discovery in breast cancer diagnostics and treatment. By screening the
transcription factors and DEGs related to breast cancer, this study provides a
comprehensive theoretical foundation that is expected to guide future clinical
applications and therapeutic developments.

KEYWORDS

breast cancer, peripheral blood mononuclear cells, chromatin transposase sequencing,
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1 Introduction

Breast cancer is the first among the major malignancies that
threaten the lives of female patients. Early diagnosis and treatment
are key to improving the prognosis of breast cancer, so an increasing
number of tumor predictive markers are being widely studied and
applied in clinical practice.

The detection of peripheral blood mononuclear cells (PBMCs)
and chromatin transposase sequencing such as the high-throughput
assay for transposase-accessible chromatin sequencing (ATAC-seq)
can provide more sensitive and specific guidance in the diagnosis
and treatment of cancer patients (Ding et al., 2020). PBMC testing
can be used to detect and analyze circulating tumor cells (CTCs),
which are highly relevant to breast-cancer-metastasis-related
studies. CTCs are the means by which tumor cells spread to
other parts of the body through the blood or lymphatic fluid and
constitute one of the important links in breast cancer metastasis.
CTC testing can help physicians and researchers detect metastasis
risks early, thereby guiding individualized treatment; it can also be
used to explore the heterogeneity of gene expressions between
individual tumor cells, providing insights into the molecular
mechanisms of tumor development (Ding et al., 2020). ATAC-
seq technology can be combined with other methods, such as RNA
chip data and ChIP-seq, to further explore the mechanisms of
initiation and development of breast cancer (Wang et al., 2021).

In recent years, given the rapid development of multiple omics,
researchers have attempted to understand the mechanisms of
various organisms. Therefore, we also adopted the multi-omics
method combined with ATAC-seq and RNA chip data to explore
the gene expressions of PBMCs; we also investigated the
relationships between chromatin accessibility from the level of
transcriptomics and epigenetic omics to explore the molecular
mechanism and genetic bases of early-stage breast cancer to
enable prediction of the potential therapeutic targets of
breast cancer.

2 Materials and methods

2.1 Acquisition of the specimens

The blood samples required for the study were obtained through
the Breast Surgery Department of Guangzhou First People’s
Hospital from three early-stage breast cancer patients and three
healthy adult volunteers. This study was approved by the Ethics
Committee of Guangzhou First People’s Hospital (approval no. K-
2023-019-01). All clinical studies were conducted in accordance
with the principles of the Declaration of Helsinki.

2.2 Acquisition, processing, and purification
of PBMC specimens

Three women with early-stage breast cancer were selected as the
experimental group, while three women without breast diseases were
chosen as the control group. Blood samples were extracted from these
subjects from the forearm; we obtained 5 mL of whole blood from each
subject, which was placed in appropriate tubes (BD Vacutainer™)

containing ethylenediamine tetraacetic acid, mixed for 8–10 times, and
marked with the patient name and outpatient/hospital number before
being stored at 4°C and transported to the laboratory for cell treatment
within 2 h. During processing the tubes were centrifuged for 30 min at
2,500 rpm using a centrifuge with a swing bucket rotor. The plasma
layer was removed, and the remaining sample was poured into a 15-mL
conical tube. Next, 5 mL of frozen phosphate-buffered saline (PBS)
containing 2% fetal calf serum (FBS) was added to a separate tube,
capped, and mixed in an inverted position. The contents were then
poured into the 15-mL conical tube and centrifuged at 1,200 rpm for
10 min at room temperature; the supernatant was then discarded for
ATAC detection.

2.3 ATAC sequencing

The sample used for sequencing contained approximately 5 ×
104 cells in 100–200 μL, and the cell survival was controlled above
90% as much as possible. Then, 1 M of DNase was added in the ratio
of 1:50 and mixed at 37°C for 30 min; this sample was centrifuged at
500g for 5 min, and the supernatant was carefully discarded. Next,
1 mL of precooled EPITM ATAC lysis buffer was added to the
sample and mixed in an ice bath for 3 min before being centrifuged
at 500g for 10 min; during centrifugation, the 50 µL transposase
reaction systemwas configured with 35 μL of ddH2O, 10 μL of 5× TT
buffer, and 5 µL of Tn5mix. The supernatant was then removed, and
the nuclei were collected and added to the reaction system before
mixing thoroughly 20 times. Following this, the samples were
incubated for 30 min at 37°C and agitation at 1,000 rpm; lastly,
the DNA was extracted from the incubated samples.

The raw data were obtained in the fastq format using fastp
software (https://github.com/OpenGene/fastp); this procedure
controls the raw data, including IP samples and input samples,
and performs adaptor removal, repetitive sequence, and low quality
sequences to yield clean data in the fastq format. Then, FastQC
(https://github.com/s-andrews/FastQC) was applied to this clean
data for quality control analysis. The clean reads data were then
aligned with the reference genome using BWA software (version 0.7.
17-r1188).

The data were further processed after comparing the bam files. The
mitochondrial genome and duplicates were removed, where the
duplicate refers to the sequence of reads to the genome at exactly
the base and alignment with the reference genome. To avoid the
impacts of these replications on subsequent analyses, we used Picard
to remove the duplicates. Next, we used bedtools to remove the blacklist
region. For reads on the positive strand, the starting position of
alignment was +4, and for reads on the negative strand that are
5 bp to the left, the starting position of the alignment was
-5 bp. We used the deeptools-alignmentSieve software (version:
3.5.1) to remove the offset reads, and HOMER was used to predict
the motif sequences in the possible peak binding data.

2.4 GSE27562 chip data download and
standardization

We downloaded the GSE27562 dataset from the NCBI gene
expression omnibus (GEO) database (http://www.ncbi.nlm.nih.
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gov/geo) to obtain the chip data. This dataset mainly includes
information from female patients diagnosed with breast cancer,
patients with benign breast masses, patients with negative
molybdenum targets, and patients after breast cancer surgery.
We extracted the data of 57 female patients diagnosed with breast
cancer and 31 patients without abnormalities as the control
groups, including their Affymetrix cel and probe annotation
files for the subsequent analyses. The platform used for the
chip data is the GPL570 [HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array (Affymetrix Company,
United States).

After successfully downloading the data from
BRAINARRAY and the GeneChip custom chip description
file (CDF) from GENCODE, the data were background
corrected and normalized using Affymetrix power tools
software. Then, the gene-level probe set was mapped to the
human GENCODE annotation (version 28) using a custom perl
script. Only the RNA in the GENCODE database with probe-set
annotation was retained as “PROTEIN-CODING,” while the
other genes were filtered out. The rationality of line data
normalization in the boxplot was assessed with log2PM. The
differentially expressed genes (DEGs) were defined as genes with
|log2FC| > 0.5 and adjusted p < 0.05. DEGs from the breast
cancer and normal populations from the ATAC-seq and
microarray reanalysis were retrieved for intersection analysis
using the Venn diagram.

2.5 Data normalization and batch effect
correction

To ensure comparability and reliability of our data analyses,
we implemented robust normalization and batch effect
correction. For the ATAC-seq data, we used the fragments
per kilobase of transcripts per million mapped reads (FPKM)
method to normalize the sequencing depth across samples,
which mitigated the impacts of varying sequencing depths.
The GSE27562 microarray data were processed for
background correction, normalization, and probe-level signal
summarization using the robust multiarray average (RMA)
method. To address potential batch effects, we applied the
“ComBat” method to the ATAC-seq data and used the “sva”
R package for the GSE27562 data. These procedures effectively
reduced the technical variability and enhanced the consistency
and accuracy of the downstream analyses.

3 Results

3.1 Baseline and ATAC data quality
inspections

We selected three women with early-stage breast cancer as the
experimental group and three healthy adult women as the control
group. The experimental group did not receive any treatment for
early breast cancer, while the women in the control group had no
breast masses until presentation (Table 1).

The ATAC-seq quality control results are presented in Table 2,
for which we observed the accessible regions and found that all
specimens had 99% match with the genome (Table 3).

3.2 Analyses of association degree and
accessible region data for breast cancer
PBMC ATAC-seq samples

The correlations among the samples are shown in Figure 1A,
and a total of 1,906 differentially accessible regions (DARs) and
1,632 DEGs were identified by ATAC-seq. From Figure 1B, it is seen
that the DARs are mainly distributed in the promoter regions of the
DEGs, followed by distal intergenic as well as other intronic regions.
The ATAC-seq signals were enriched in the open chromatin regions
and were positively correlated with the gene transcription activities.
Heatmap analysis shows the enrichment distribution of the base
sequence between the start positions (TSS) of the transcription
factors (TFs) and the 3 kb upstream as well as downstream
region of all genes: the signals of the two groups of cells are
mostly located within ±3 kb. The overall trend of the control
group is slightly higher than that of the experimental
group. These results suggest intergroup differences, and the
heatmaps of the distances between the DARs and transcription
initiation regions of the samples are shown in Figure 1C.

Based on the Kyoto encyclopedia of genes and genomes (KEGG)
and gene ontology (GO) enrichment analyses of the DEGs
corresponding to the DARs, the differential genes were found to
be enriched for N-glycan biosynthesis, T receptor signaling,
peroxisome, GnRH signaling pathway, protein processing in the
endoplasmic reticulum, and other pathways (Figure 1D). In the GO
enrichment analysis, the DEGs of the experimental group were
mainly distributed in the cells, organelles, and cell-membrane-
related structures and were mainly responsible for biological
functions like cell nitrogen complex metabolism, macromolecular
metabolism, and cell communication, in addition to other functions
like nucleic acid binding, enzyme binding, hydrolase enzyme
reaction, and transferase activity (Figure 1E).

3.3 GEO online database for breast cancer
PBMC microarray analysis

We searched the GEO database for chip data related to the
PBMCs of breast cancer and finally selected the
GSE27562 dataset, which mainly includes information from
female patients diagnosed with breast cancer, patients with
benign breast masses, patients with negative molybdenum
targets, and patients after breast cancer surgery. We extracted
the population data for 57 female patients with breast cancers and
31 mammography cases for secondary analyses (Figure 2A). By
setting |Log2FC| > 0.5 and p < 0.05 in these data, we found that
86 genes were upregulated and 55 genes were downregulated in
the PBMCs of the experimental group. The GO and KEGG
enrichment analyses of the DEGs revealed that the
upregulated genes were primarily clustered in the GO
hematopoiesis as well as hemoglobin-related subterms. The
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KEGG analysis showed that the upregulated genes were mainly
enriched for MAPK signaling, TNF signaling, IL-17 post-
absorption, GnRH signaling, and NOD-like receptor signaling
(Figure 2E; Table 4), while the downregulated genes were mainly
enriched for hematopoietic cell lines, cytokine receptors and their
interactions with cellular proteins, sulfur metabolism, nitrogen
metabolism, and protein outputs (Table 5).

3.4 Association analysis between ATAC-seq
and gene microarray data

Intersection analysis of the peripheral blood ATAC sequencing
and mRNA chip data from public databases revealed nine
differentially expressed genes, namely JUN, MSL2, CDC42,
TRIB1, SERTAD3, RAB14, RHOB, RAB40B, and PRKDC.

Among these, seven DEGs were noted to be regulated by both
mRNA data and ATAC sequencing, namely JUN, MSL2, CDC42,
TRIB1, SERTAD3, RAB14, and RHOB (Figure 3A). The RAB40B
gene showed ATAC upregulation and mRNA downregulation
(Figure 3B), while the PRKDC gene showed ATAC
downregulation and mRNA upregulation (Figure 3C); there were
no intersecting genes between both downregulations (Figure 3D).

3.5 Motif predictions

The open regions of the chromatin may be bound by TFs to
regulate gene expressions, and specific base sequences with high
affinities to certain TFs are called as motifs. In the motif analysis, five
specific TFs were identified: NFY, Sp 2, GFY, NRF, and ELK
1 (Table 6).

TABLE 1 Clinical patient information.

Group Sample number Age Sex Diagnosis Surgical operation Pathological type Clinical stage

Experimental group CSW 42 Female Breast cancer Denied HR-/HER2+ cTisN0M0

CXH 52 Female Breast cancer Denied HR-/HER2- cT1N0M0

QXL 63 Female Breast cancer Denied HR+/HER2- cT2N0M0

Control group CYZ 64 Female Normal Denied None 0

S13 48 Female Normal Denied None 0

S8 48 Female Normal Denied None 0

TABLE 2 ATAC quality controlled results.

Sample
name

Number of
original

sequences

Total base
numbers

Total number of
sequences controlled and

paired

Total number of bases that are
quality-controlled and paired

GC
ratio

CSW 118,518,974 1.78e+10 94,544,598 1.12e+10 0.445

CXH 146,227,086 2.19e+10 113,165,584 1.31e+10 0.443

CYZ 191,688,422 2.88e+10 140,223,270 1.58e+10 0.45

QXL 122,565,338 1.84e+10 89,271,816 8.85e+09 0.451

S13 218,332,778 3.27e+10 176,448,968 2.27e+10 0.437

S8 238,892,846 3.58e+10 198,617,718 2.53e+10 0.443

TABLE 3 Analysis of the sequence alignment results.

Sample name Total number of sequences Number of sequences in the alignment Comparison rate

CXH 113,165,584 113,056,514 99.9

QXL 89,271,816 89,195,666 99.91

CSW 94,544,598 94,466,193 99.92

S8 198,617,718 198,465,443 99.92

CYZ 140,223,270 140,107,764 99.92

S13 176,448,968 176,351,915 99.94
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FIGURE 1
Analysis of the degree of correlation and accessible region data from ATAC-seq samples: (A) Pearson association analysis between the samples; (B)
distribution of the accessible regions of the differential genes; (C) heatmap of the distance of the differentially accessible region (DAR) from the
transcription start region (TSS) for each sample. (D) KEGG enrichment analysis of the top 20 pathways enriched by the differentially expressed genes
(DEGs), where the dot sizes indicate the numbers of differential genes in each of the channels; the larger the dot size, the more are the number of
genes. The colors indicate the p-values, where blue indicates p > 0.01, purple indicates p > 0.005 and p < 0.01, and yellow indicates p < 0.005. (E) Bar
graph of the GO enrichment analysis of the DEGs, where red indicates that the DEG enriched subterms are upregulated in the disease group and green
indicates the subterms that downregulate DEG enrichment in the disease group.
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FIGURE 2
Enrichment analyses of DEGs and their functions in peripheral bloodmononuclear cells between breast cancer patients and healthy controls for the
GSE27562 dataset from the GEO database. (A) Heatmaps of all the genes in the GSE27562 dataset, where blue represents the tumor group and orange
represents the normal group; the red data indicate increased expressions, green data indicate decreased expressions, and darker colors indicate higher
gene expression value changes from the two extremes. (B)GOenrichment analysis of the DEGs for biological processes. (C)GOenrichment analysis
of the DEGs for cellular components. (D) GO enrichment analysis of the DEGs for molecular functions. (E) KEGG enrichment analysis of the DEGs. In
(B–E), the dot sizes indicate the numbers of differential genes in each channel, with larger sizes implying more numbers and colors indicating
the p-values.
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4 Discussion

The determination of transposase-accessible chromatin involves
the use of the hyperactive Tn5 transposase to cut the accessible
genomic DNA and attach sequencing adaptor primers to the DNA
ends to measure the openness of certain DNA regions as well as
obtain important information about the open chromatin state of the
entire genome of a certain cell type (Buenrostro et al., 2013; Gross
and Garrard, 1988; Adey et al., 2010). This transposase preferentially
inserts sequencing junctions at the unprotected regions of the DNA,
thus serving as a probe to measure the genome-wide accessibility of
the chromatin (Buenrostro et al., 2015). ATAC-seq technology
explores how the open regions in the genome may be gene
regulatory elements, such as enhancers, promoters, and TF-
binding regions often enriched for TF-specific binding sites,
which share similar DNA sequence patterns (motifs).

By collecting PBMC suspensions from breast cancer patients
and normal controls, we identified five TFs that were highly
expressed in breast cancer patients: NFY, Sp 2, GFY, NRF, and

ELK 1. Four of these TFs have already been reported in breast
cancer. The nuclear transcription factor Y (NFY) is a cancer-
promoting gene that enhances the value-added invasion and
metastasis of breast cancer by promoting the expression of
proline-rich 11 (PRR 11) (Wang et al., 2019). The Sp 2 TF
regulates the biological functions in breast cancer by modulating
the mitochondrially related differentially expressed genes (mrDEGs)
(Yan et al., 2021). Inhibition of the NFKB (NRF) TF along with non-
coding the RNA TROJAN has been shown to abolish CDK2 activity
and reverse the resistances of breast cancer cells to CDK4/
6 inhibitors (Jin et al., 2020). The ELK 1 TF inhibits cell
proliferation in breast cancer along with the tumor suppressor
small non-coding RNA 135a (miR-135a) (Ahmad et al., 2018).
As a new discovery in this work, the olfactory signaling factor
(GFY regulator) has not been evaluated for its role in breast cancer
and may therefore be used as a prediction target for the diagnosis,
treatment, or prognosis of breast cancer in the future.

The combined use of ATAC-seq and RNA microarray data
reveal differences in the gene expressions and regulations between

TABLE 4 KEGG enrichment analysis of the top 10 upregulated differentially expressed genes in breast cancer patients and normal population.

ID Description Gene ratio Q-value

hsa04010 MAPK signaling pathway 0.14 0.010452

hsa04668 TNF signaling pathway 0.12 0.001096

hsa05167 Kaposi-sarcoma-associated herpesvirus infection 0.12 0.00689

hsa05417 Lipid and atherosclerosis 0.12 0.008378

hsa05120 Epithelial cell signaling in Helicobacter pylori infection 0.10 0.001096

hsa04657 IL-17 signaling pathway 0.10 0.002538

hsa04933 AGE-RAGE signaling pathway in diabetic complications 0.10 0.002698

hsa04928 Parathyroid hormone synthesis, secretion, and action 0.10 0.002989

hsa04380 Osteoclast differentiation 0.10 0.006025

hsa04932 Non-alcoholic fatty liver disease 0.10 0.008378

TABLE 5 KEGG enrichment analysis of the top 10 downregulated differentially expressed genes in breast cancer patients and normal population.

ID Description Gene ratio Q-value

hsa04640 Hematopoietic cell lineage 0.05 0.190316

hsa04061 Viral protein interactions with cytokines and cytokine receptors 0.05 0.190316

hsa04062 Chemokine signaling pathway 0.05 0.190316

hsa04060 Cytokine-to-cytokine-receptor interactions 0.05 0.257848

hsa04080 Neuroactive ligand–receptor interactions 0.05 0.282966

hsa00920 Sulfur metabolism 0.02 0.190316

hsa00910 Nitrogen metabolism 0.02 0.190316

hsa03060 Protein export 0.02 0.190316

hsa00062 Fatty-acid elongation 0.02 0.190316

hsa01040 Biosynthesis of unsaturated fatty acids 0.02 0.190316

Other functional analysis results are shown in Figures 2B–D.
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tumor and normal cells. In our experiments, we used the ATAC-seq
data of human peripheral blood samples from a public database
RNA chip and found nine DEGs, namely JUN, MSL2, CDC42,
TRIB1, SERTAD3, RAB14, RHOB, RAB40B, and PRKDC. Eight of
these genes have already been reported in breast cancer. JUN can be
divided into cellular JUN (c-JUN) and viral JUN (v-JUN). c-JUN is a
member of the activated protein-1 (AP-1) TF family that is
stimulated by upstream signals and can be transmitted by the
JUN N-terminal kinase (JNK) to regulate gene expressions at the
transcriptional level, thereby inducing cancer (Vogt, 2001). c-JUN is
a potential regulator that stimulates the transformation of breast
cells into HR+/HER2-type breast cancers (Zhu et al., 2022). The cell
division control protein 42 homolog (CDC42) is frequently
upregulated by several cell surface receptors and breast cancer
oncogenes, as noted by Cruz-Collazo et al. (2021); the
CDC42 inhibitor inhibits infiltration and metastasis of triple-
negative breast cancer cells while also inducing cell cycle arrest
and apoptosis of HER2-overexpression-type breast cancer cells. It
reduces tumor growth and metastasis while inhibiting the migration
and invasion of HR+/HER2-type breast cancer cells (Khan et al.,
2020). SERTAD3 is a pro-cancer gene located within the
19q13 amplicon that has been shown to inhibit the growth of
breast cancer cells and enhance tumor sensitivity to treatment
with the drug tamoxifen (Li et al., 2021a). The RAS homolog
family member B (RHOB) gene acts as a tumor suppressor and
is the guanosine triphosphate enzyme of the RHO family; some

researchers have found that RHOB plays an important role in
inhibiting breast cancer invasion and metastasis (Wieland et al.,
2021), and reducing RHOB expression can increase the migration
and invasion capacities of triple-negative breast cancer cell lines.
Restoration of the breast cancer 1 (BRCA 1) gene expressions in
BRCA1-mutant triple-negative breast cancer cell lines can increase
the expression of RHOB, resulting in reduced migration capacity.
These results suggest that RHOB protein and BRCA1 mutations are
potential therapeutic targets for breast cancer (Privat et al., 2020).
RHOB alters the hormonal responses of breast cancer cells by
affecting the expressions of the estrogen receptors (ERs) and
progesterone receptors (PRs). We have shown that RHOB
regulates the expressions of ERs and controls their protein and
mRNA levels; furthermore, RHOB regulates the expressions of PRs
by enhancing the recruitment of ERs and other major coregulatory
factors to PR gene promoters. A major consequence of RHOB
regulation is that it differentially affects the proliferation of breast
cancer cell lines. It was earlier demonstrated that RHOB promotes
the expressions of ERs and PRs in a manner related to cell
proliferation in human breast cancer (Médale-Giamarchi et al.,
2013). Some investigators found that RHOB expression was
upregulated after treatment with atorvastatin, implying the
potential application of RHOB as a target for tumor suppressor
gene therapy in breast cancer (Ma et al., 2019). The recombination
process of cellular programs in malignant cells is a stage where the
tumor is very vulnerable. The male-specific lethal 2 homolog (MSL

FIGURE 3
Venn diagrams of the intersections between the ATAC peaks of the peripheral blood mononuclear cells and chip data: (A) intersection of
upregulated genes between ATAC andmRNA; (B) intersection of genes between upregulated ATAC and downregulated mRNA; (C) intersection of genes
between downregulated ATAC and upregulated mRNA; (D) intersection of downregulated genes between ATAC and mRNA.
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TABLE 6 HOMER predicts the top 20 transcription factors motifs with high binding probabilities in ATAC sequencing.

Rank Motif/Name Q-
value

% of Targets
Sequences with
Motif

% of Background
Sequences with Motif

1

Sp1(Zf)/Promoter/Homer

<0.001 21.56% 7.24%

2

NFY(CCAAT)/Promoter/Homer

<0.001 21.20% 7.15%

3

Ronin(THAP)/ES-Thap11-ChIP-Seq(GSE51522)/Homer

<0.001 4.93% 0.33%

4

GFY-Staf(?,Zf)/Promoter/Homer

<0.001 5.35% 0.63%

5

KLF3(Zf)/MEF-Klf3-ChIP-Seq(GSE44748)/Homer

<0.001 22.82% 10.29%

6

KLF1(Zf)/HUDEP2-KLF1-CutnRun(GSE136251)/Homer

<0.001 33.89% 18.61%

7

Sp5(Zf)/mES-Sp5.Flag-ChIP-Seq(GSE72989)/Homer

<0.001 35.10% 20.15%

8

GFY(?)/Promoter/Homer

<0.001 4.93% 0.77%

9

Elk4(ETS)/Hela-Elk4-ChIP-Seq(GSE31477)/Homer

<0.001 16.05% 7.18%

10

Fli1(ETS)/CD8-FLI-ChIP-Seq(GSE20898)/Homer

<0.001 24.34% 13.38%

11

NRF1(NRF)/MCF7-NRF1-ChIP-Seq(Unpublished)/Homer

<0.001 9.50% 3.17%

12

Elf4(ETS)/BMDM-Elf4-ChIP-Seq(GSE88699)/Homer

<0.001 20.83% 10.92%

13

KLF6(Zf)/PDAC-KLF6-ChIP-Seq(GSE64557)/Homer

<0.001 32.90% 20.65%

14

Elk1(ETS)/Hela-Elk1-ChIP-Seq(GSE31477)/Homer

<0.001 15.95% 7.52%

(Continued on following page)
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2) gene suppresses tumor proliferation through disruption-induced
excessive chromosomal instability (CIN) (Valsecchi et al., 2021).
Hence, targeting MSL may be a valuable approach to treating
tumors by increasing the CINs beyond the levels tolerated by
cancer cells without inducing serious side effects (Monserrat
et al., 2021) in normal tissues. For example, in hepatocellular
carcinoma (HCC), MSL 2 overexpression has been found to
partially block the inhibitory effects of the miRNA-296-3p tumor
suppressor gene mode for proliferation and migration of the HCC
cells, which could be used as a target for HCC therapy (Li et al.,
2021b). It was also shown that MSL 2 plays a role in maintaining a
normal histone modification profile that contributes to the repair of
DNA damage (Lai et al., 2013). However, the role of MSL 2 in breast
cancer has not been reported in other studies; hence, it may be used
as a future therapeutic target in breast cancer. Tribbles pseudokinase
1 (TRIB1) is a pro-cancer gene involved in cancer initiation and
progression, which could be used as a biomarker for the diagnosis
and prognosis of diseases. Studies have shown that both
overexpression and knockdown of TRIB1 in myeloid cells
promote the growth of breast tumors in mice; myeloid TRIB1 is
a negative regulator of the antitumor cytokine IL-15. Increased
expression of myeloid TRIB2 reduces IL-15 levels in breast tumors,
resulting in reduced numbers of T cells that are key to the antitumor
immune responses. Thus, the roles of TRIB1 in chemotherapeutic
responses in human breast cancer are critical and provide
mechanistic insights into the importance of controlling myeloid
TRIB 1 expression in breast cancer development (Kim et al., 2022).
TRIB1 can also be developed as a biomarker for direct targeted
therapy and predicting treatment responses (McMillan et al., 2021).
RAB14 inhibition mediated by miR-320a suppresses cell

proliferation, migration, and invasion in breast cancers. It has
also been shown that RAB14 is a miR-320a target in breast
cancer; thus, silencing RAB14 inhibits proliferation, migration,
and invasion of breast cancer cell lines (Yu et al., 2016).
However, RAB14 actively interacts with Nischarin by regulating
the production of exosomes in breast cancer cells, subsequently
affecting tumor cell adhesion, cell migration, tumor growth, and
metastasis (Maziveyi et al., 2019). RAB40B is also a member of the
RAS family of oncogenes and plays an important role in breast
cancer cell formation, invasion, and metastasis (Jacob et al., 2013).
DNA-dependent protein kinase (PRKDC) has been shown to
modulate tumor sensitivity to chemotherapy and is a potential
prognostic and predictive indicator of the efficacy of adjuvant
chemotherapy in cancer patients. Some studies have shown that
PRKDC expression is significantly higher in breast cancer tissue
samples; high expression of PRKDC is also associated with a higher
tumor grade, positive lymph node metastasis, and chemoresistance.
Furthermore, PRKDC downregulates the sensitivity of the HR+/
HER2-type breast cancer cells (MCF-7 line) to chemotherapeutic
agents in vitro and in xenograft mouse models, indicating that
PRKDC is a prognostic biomarker of chemoresistance in breast
cancer patients (Sun et al., 2017). High expression of PRKDC is also
a prognostic marker of poor survival in breast cancer patients
(Zhang et al., 2019).

5 Conclusion

The use of ATAC-seq technology to identify motifs has
important roles in gene regulation and disease; it provides an

TABLE 6 (Continued) HOMER predicts the top 20 transcription factors motifs with high binding probabilities in ATAC sequencing.

Rank Motif/Name Q-
value

% of Targets
Sequences with
Motif

% of Background
Sequences with Motif

15

NRF(NRF)/Promoter/Homer

<0.001 9.86% 3.68%

16

ELF1(ETS)/Jurkat-ELF1-ChIP-Seq(SRA014231)/Homer

<0.001 14.74% 6.87%

17

KLF5(Zf)/LoVo-KLF5-ChIP-Seq(GSE49402)/Homer

<0.001 37.88% 25.79%

18

Sp2(Zf)/HEK293-Sp2.eGFP-ChIP-Seq(Encode)/Homer

<0.001 41.82% 29.46%

19

ETS(ETS)/Promoter/Homer

<0.001 9.86% 3.92%

20

ETV4(ETS)/HepG2-ETV4-ChIP-Seq(ENCODE)/Homer

<0.001 24.29% 14.73%
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important basis for greater understanding of the mechanisms of TF-
specific binding sites as well as new ideas for the study of TFs,
enhancers, and promoters and development of new drugs. The
present study identifies several key genes and TFs associated with
breast cancer, providing a macroscopic theoretical basis for further
research in this area. Future studies should focus on the functional
validation of these identified genes and their interactions with the
TFs to enhance our mechanistic understanding of their roles in
breast cancer progression. Such validation could offer critical
insights into their potential as therapeutic targets and contribute
to the development of more effective treatment strategies. The
combined application of ATAC-seq and RNA-seq can provide
complementary results in tumor genomics research, help
researchers better understand the regulatory mechanisms and
expression profile changes during the occurrence and
development of tumors, and improve the understanding and
treatability of tumors. However, the present study is limited by
its relatively small sample size. To strengthen the clinical relevance
and utility of the identified biomarkers, future studies should focus
on validating these biomarkers in larger cohorts. This would not
only confirm their potential as diagnostic and prognostic tools but
also enhance their applicability in personalized medicine for breast
cancer treatment.

The TFs and differential genes identified and discovered in this
study provide a macroscopic theoretical basis for breast cancer
research and can be potential targets for future breast cancer
treatments.
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Effects of BYL-719 (alpelisib) on
human breast cancer stem cells to
overcome drug resistance in
human breast cancer
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Introduction: Breast cancer continues to be amajor health concern and is currently
themost commonly diagnosed cancer worldwide. Relapse, metastasis, and therapy
resistance are major clinical issues that doctors need to address. We believe BYL-
719, which is PI3 kinase p110a inhibitor, could also inhibit the breast cancer stem cell
phenotype and epithelial-to-mesenchymal transition (EMT). In addition to the PI3K/
AKT signaling pathway, BYL-719 can also inhibit essential cancer-related signaling
pathways, all of which would ultimately act on the microenvironment of cancer
stem cells, which is quite complicated and regulates the characteristics of tumors.
These include the stemness and resistance of malignant tumors, plasticity of cancer
stem cells, and anti-apoptotic features.

Materials and methods: A three-dimensional (3D) mammosphere culture
method was used in vitro to culture and collect breast cancer stem cells
(BCSCs). MTT, clonogenic, and cell apoptosis assays were used to detect cell
viability, self-renewal, and differentiation abilities. A sphere formation assay under
3D conditions was used to detect the mammophore inhibition rate of BYL-719.
The subpopulation of CD44+CD24− was detected using flow cytometry analysis
while EMT biomarkers and essential signaling pathways were detected using
western blotting. All the data were analyzed using GraphPad Prism 9 software.

Results: BCSC-like cells were obtained by using the 3D cell culture method in vitro.
We confirmed that BYL-719 could inhibit BCSC-like cell proliferation in 3D cultures
and that the stemness characteristics of BCSC-like cells were inhibited. The PI3K/AKT/
mTORsignalingpathwaycouldbe inhibitedbyBYL-719, and theNotch, JAK-STATand
MAPK/ERK signaling pathways which have crosstalk in the tumor microenvironment
(TME) are also inhibited. By comparing eribulin-resistant breast cancer cell lines, we
confirmed that BYL-719 could effectively overcome drug resistance.

Summary/conclusion: The 3Dcell culture is a novel and highly effectivemethod for
enriching BCSCs in vitro. Furthermore, the stemness and EMT of BCSCs were
inhibited by BYL-719 by acting on various signaling pathways. Finally, we believe
that drug resistance can be overcome by targeting the BCSCs. Conjugation of BYL-
719 with other anti-neoplastic agents may be a promising treatment for this in clinic.
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breast cancer, breast cancer stem cell, BYL-719 (alpelisib), PI3K/Akt signaling pathway,
stemness, resistance
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1 Introduction

Breast cancer continues to be a serious global public health issue,
with an unprecedented impact on human lifespan and health (Sung
et al., 2021; Wilkinson and Gathani, 2022). Over the last few decades,
thousands of scientists have focused on the mechanisms and
comprehensive therapies of breast cancer, and their research has
made substantial progress in our understanding of the disease (Wang
Z. et al., 2024). They have revealed that the main factors contributing
to breast cancer include aging, family history, reproductive factors,
estrogen, progesterone, and lifestyles (Sun et al., 2017). The
conventional treatments for breast cancer comprise surgery,
radiotherapy, chemotherapy, endocrine therapy, neoadjuvant
therapy, and adjuvant therapy (Wang and Wu, 2023; Zhang et al.,
2023). Although different treatment methods are available, metastasis,
relapse, and resistance are the usual problems that patients and
doctors face after several years of treatment. These problems lead
to a lowered 5-year survival rate and reduced quality of life later on
(Taskindoust et al., 2021). As research continues to evolve, scientists
have found that one of the most important reasons for these problems
is the presence of breast cancer stem cells (BCSCs) (De Angelis et al.,
2019). They have elucidated the concept and function of BCSCs,
emphasizing their existence in humans for long periods and their high
plasticity along with self-renewal properties (Zhang et al., 2020). In
2006, the American Association for Cancer Research defined a CSC as
a cell within a tumor that possesses the capacity to self-renew and
cause heterogeneous lineages of cancer cells that comprise a tumor
(Najafi et al., 2019). It is well known that special proteins that
determine the key phenotype can be used as markers for specific
cells (Luo et al., 2024). Currently, BCSCs are usually identified by
expression of specific phenotypes; CD44+/CD24−/low and/or CD133+

are most frequently used (Li et al., 2017), and it is identified as a small
subpopulation of heterogeneous breast cancer cells with strong self-
renewal and proliferation properties (Zhang et al., 2020). The major
putative mechanisms underlying the properties of BCSCs include the
tumor microenvironment (TME), stem cell-related signaling
pathways, enhancement of epithelial-to-mesenchymal transition
(EMT) cellular programming, DNA damage and repair pathways,
as well as miRNA and epigenetic alterations (Nilendu et al., 2018;
Zhang et al., 2022). Although highly proliferative, BCSCs
predominantly remain in a quiescent state or cycle slowly,
shielding them from chemotherapy and radiation damage.
Collectively, these factors contribute to the survival of BCSCs
during treatment and their ability to re-establish tumor masses
post-therapy.

Commercially available inhibitors target both membrane
proteins and BCSC-related signaling pathways. BYL-719
(alpelisib) is an inhibitor of phosphatidylinositol 3-kinase (PI3K)
that has substantial anticancer action (Markham, 2019). It functions
by specifically inhibiting class I PI3K p110α, the catalytic subunit of
PI3K, a lipid kinase involved in numerous biological processes,
including proliferation, survival, differentiation, and metabolism.
Patients treated with alpelisib have shown better tolerance and
longer progression-free survival (PFS) (Markham, 2019).
Alpelisib also possesses favorable pharmacokinetic properties,
characterized by rapid and significant absorption (Marbury et al.,
2023). Currently, there are no data on the effects of PI3K inhibitors
on BCSC-like cells (Chang et al., 2021). In our research, alpelisib was

established as a highly effective PI3Ka inhibitor which could also
affect the BCSCs and interrupt the crosstalk between signaling
pathways including Notch, JAK/STAT and MAPK/ERK signaling
pathways and studies have already showed there exits cross-talks in
TME of BCSC, which is a complicated microenvironment includes
intrinsic and extrinsic factors. This suggests that between these
important signaling pathways and all these molecules have inter-
linkages and interactions. As previously described, these intricate
signal transduction pathways are not linear. The PI3K/AKT/mTOR
signaling pathway is responsible for the promotion of cell
proliferation, survival, and cell cycle progression (Glaviano et al.,
2023). Notch inhibits the proliferation and differentiation of CSCs,
thus maintains the CSC phenotype and contributes to the
transformation process (Martínez-Pérez et al., 2024). The JAK-
STAT pathway is always considered to have a role which could
regulate the survival and proliferation of BCSCs.It is also believed to
be associated with metastasis and drug resistance. The signal
transducer and activator of transcription (STAT) protein family
plays a major role in cancer (Liongue et al., 2024). Mitogen-activated
protein kinase (MAPK) cascades is important to the cellular
processes, including differentiation, apoptosis, proliferation, and
responses to stress. It is one of the most critical cancer related
signaling pathways (Guo et al., 2020). Furthermore, it is now
confirmed that the activation of extracellular signal-regulated
kinase (ERK) leads to the formation of spheres and the CSC-like
properties (Choi et al., 2018). Additionally, it can block the TME to
disrupt stem cell characteristics, such as self-renewal therapeutic
resistance, tumor recurrence, and metastasis (Fruman et al., 2017).
Now it is confirmed that Notch signaling is related with self-renewal
ability, activating of PI3K signaling leads to enhanced antiapoptotic
ability, JAK-STAT signaling leads to tumor progression and drug
resistance (Butti et al., 2019). Together with tumor
microenvironment-sustaining effects (exosomes or chemokines),
these factors could contribute to a therapy-resistant phenotype of
BCSC, highlighting the importance of precision treatment
approaches in managing complex cancers (Yang et al., 2024).

It has already been showen in much cancer research that the
three-dimensional (3D) cell culturemodels could provide an overview
of cell-to-cell communication and interactions (Habanjar et al., 2021).
Moreover, 3D cell culture models can reproduce important aspects of
tumor structure and microenvironment, and also help to reduce the
use of laboratory animals in drug trials (Barbosa et al., 2021). Using
the 3D cell culture method, we confirmed that BYL-719 could
effectively overcome drug resistance by inhibiting BCSCs, which
may be a prominent clinical tool in the future. Our experimental
methods and research ideas were innovative. However, there is still a
need for in-depth studies on BYL-719 and the mechanisms of
overcoming breast cancer resistance, as there is not much similar
research currently available.

2 Materials and methods

2.1 Cell culture

Human breast cancer cell lines, MCF-7 and T47D, were
purchased from the American Type Culture Collection
(Rockville, MD, United States). The cells were grown in RPMI
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1640 (Gibco) containing 10% fetal bovine serum (Gibco), with
penicillin (100 U/mL), and streptomycin B (100 mg/mL). All
cells were cultured in a 5% CO2 incubator at 37°C with 5%
relative humidity (Zhao et al., 2024).

2.2 Three-dimensional (3D) mammosphere
culture method

Cells (1,000/cm2 cells per well) were added to a low attachment
six-well plate in serum free DMED/F12 medium (Corning,
United States) supplemented with 2 mM L-glutamine, 100 U/mL
penicillin/streptomycin, 20 ng/mL EGF (90201, BPS Bioscience),
10 ng/mL FGF (3718-FB-100, Biotechne), 2.5% Matrigel (Corning,
United States) and 1× B27 supplement (17504044, Gibco). The
plates were incubated for 5–7 days until the mammospheres
(>40 µm) were formed. The mammospheres from each well were
then collected. After slow centrifugation, the spheres were
trypsinized for 2–3 min to separate them into single-cell
suspensions. After at least five repetitions, we collected the
enriched BCSC-like cells for the experiments by the 3D culture
method (Lee et al., 2023).

2.3 Cells viability via 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay

To determine the dose response to BYL-719 (S2814, Selleck,
United States), cells were seeded in a 96-well plate in six replicates at
the density of 2 × 103/well and incubated overnight, then treated
with serial dilutions of BYL-719 at 37°C for 96 h. After 96 h
treatment, cells were incubated with 10 μL yellow MTT solution
(Cell Proliferation Kit I (MTT), Roche) for 2–3 h in the incubator
(Zhao et al., 2020). The 100 μL solubilization solution was then
added and the plate was placed overnight in the incubator in a
humidified atmosphere. Absorbance of the formazan product was
measured at 490 nm using a microplate reader.

2.4 Clongenic assay (2D)

One thousand cells per well in were added to a 12-well plate with
1 mL DMED/F12 medium supplemented with 2 mM L-glutamine,
100 U/mL penicillin/streptomycin, 20 ng/mL EGF, 10 ng/mL FGF,
and 1× B27 supplement containing different concentrations of BYL-
719. After 7 days, the medium was replaced with 1mL fresh medium
with appropriate concentrations of BYL-719 and incubated for
another 7 days. After 2 weeks of incubation, cell colonies (Brix
et al., 2021) were visualized using Quick staining (Merck,
Darmstadt, Germany) and photographed.

2.5 Mammospheres forming assay

Five hundred cells per well were added to a 24-well low
attachment plate in 500 µL mammoshpere media are added to
each well and incubated with different concentrations of BYL-719

for 5 days. The mammospheres (diameter >40 µm) were counted
and mammosphere forming efficiency (Lombardo et al., 2015) were
calculated as percentage of cells seeded and recorded.

2.6 Sphere-formation assay (3D condition)

Two thousand cells/well in with 100 µL mammosphere media
with appropriate concentrations of BYL-719 were added to a 96-well
U bottom low attachment plate. The cells were cultured for 10 days.
After incubation, the diameters of the spheres in each well were
measured and compared with those in control wells.

2.7 Flow cytometry analysis to detect
biomarkers of BCSCs

The reversed cells were digested by Accutase. Cells were washed,
blocked with FC block (1:50), centrifuged and resuspended in 100 μL
fluorescence-activated cell sorting (FACS) buffer (PBS containing
0.5% BSA and 0.1% sodium azide), containing fluorochrome-
conjugated monoclonal antibodies against human CD44 (FITC,
555478, BD Biosciences) at 1:80 dilution and CD24 (PE, 555428,
BD Biosciences) at 1:20 dilution. The cells were then washed again
with cold PBS, suspended, filtered through 40-µm nylon mesh
before analysis and measured with a CytoFlex flow cytometer
(Beckman, United States).

2.8 Cell apoptosis via annexin V/PI assay

Cells were seeded overnight and treated with 1 μM concentration
of BYL-719. After 24 h drug treatment, cells were detached by 0.25%
trypsin, washed and resuspend in 1× binding Buffer at a concentration
of 1 × 106 cells/mL. The solution was then transferred to a 5 mL FACS
tube. 1 μL of FITC (Annexin V PE Annexin V Apoptosis Detection
Kit I) was added, and the cells were gently vortexed and incubated at
RT (25°C) for 15min in the dark. The 1× Binding Buffer (400 μL) and
2 μL PI were added to each tube. Apoptosis was analyzed using flow
cytometry and the FlowJo software (V10).

2.9 Western blotting

The extracted proteins were separated using 10% SDS-PAGE
gels. Blots were incubated at 4°C overnight with the primary
antibodies against NANOG (#4903, 1:2,000, Cell Signaling
Technology), OCT3/4 (#365509, 1:1,000, Santa Cruz), Sox2
(#3579, 1:1,000, Cell Signaling Technology), EMT (#9782, 1:500,
Cell Signaling Technology), p-4ebp1 (#2855, 1:500, Cell Signaling
Technology), p-P70S6k (#9205, 1:500, Cell Signaling Technology),
p-AKT (#9271, 1:500, Cell Signaling Technology), and pARP
(#9542, 1:500, Cell Signaling Technology), the Notch Activated
Targets Antibody Sample Kit (#68309, 1:1,000, Cell Signaling
Technology). Secondary antibodies (Santa Cruz) were then used
and detected using ECL Prime Western Blotting Detection Reagent
(GE Healthcare). Images were obtained using the ImageJ software
(Wang J. et al., 2024).
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2.10 Statistics

Statistical analyses were performed using the GraphPad Prism
9 software (GraphPad Software, La Jolla, United States).
Shapiro–Wilk and Kolmogorov–Smirnov tests were used for
normal distribution analysis. Unpaired t-tests (with Welch’s
correction in data without equal variances) were used for two
independent data sets. One-way ANOVA (with Welch’s correction
in data without equal variances) and Tukey’s multiple comparisons
test were used for more than two independent samples. Half-maximal
IC50 values were calculated using non-linear regression analysis.
Statistical significance was set at P < 0.05. significant. The
following symbols were used: ns, non-significant; *P < 0.05, **p <
0.01, ***p < 0.001, and ****p < 0.0001. Error bars represent the
standard error. The 95% confidence interval (CI) were calculated.

3 Results

3.1 BYL-719 inhibits cell viability of breast
cancer cells and mammospheres

MCF-7 and T47D human breast cancer cells were treated with
increasing concentrations of BYL-719 for 96 h, and the effect of BYL-719
on cell viability was measured. BYL-719 inhibited viability of breast
cancer cells in a dose-dependentmannerwith IC50 values (concentration
of drug that inhibits 50% of cell viability relative to untreated cells) for
MCF-7 and T47D of 0.225 μM and 3.055 μM, respectively (Figure 1A).
In addition, treatment with BYL-719 significantly inhibited proliferation

of BCSC-enriched mammosphere cultures 96 h after a single treatment
(Figure 1A). However, in agreement with other studies demonstrating
that BCSCs are in general more resistant to anticancer drugs, the
IC50 values for BCSC-enriched mammosphere cultures increased
approximately two-fold for both lines (0.453 μM and 5.105 μM for
MCF-7 and T47D, respectively) (Figure 1A). We further confirmed the
toxic effects of BYL-719 via clonogenic assays and assessed its impact on
the cellular self-renewal capacity. The number of colonies formed with
different concentrations of BYL-719 was significantly reduced compared
to that of the controls in MCF-7 and T47D cells (Figure 1B). Colonies
were fixed and visualized using quick stain. Finally, by using Annexin-PI
straining and FACS analysis to detect the apoptosis, we showed that
BYL-719 of the concentration of 1 µM induced apoptosis especially in
BCSC-like cell populations (Figure 1C). Apoptotic cells in the BYL-719
treated group of BCSC-like cell populations were significantly increased
compared to those in the BCSC-like cell groups in both cell lines (MCF-7:
p = 0.00107, 95% CI, 8.246 to 54.77; T47d: p = 0.0079, 95% CI,
9.976–56.72) (Figure 1C). These results suggest that BYL-719 can
activate and promote cell death signaling pathways, including
autophagy, apoptosis, ferroptosis, and necroptosis, through crosstalk
among the BCSC signaling pathways.

3.2 BYL-719 inhibits stem cell marker
expression and self-renewal in breast cancer
stem cells

The self-renewal capacity of BCSCs in both breast cancer lines
was measured using a mammosphere-forming efficiency (MFE)

FIGURE 1
BYL-719 inhibits cell viability of breast cancer cells. (A) Breast cancer cells propagated as monolayers (differentiated cultures, solid line) or
mammospheres (enriched in BCSCs, dotted line) were treated with the indicated concentrations of BYL-719 for 96 h. The % viability of cells at each
doxycycline dose at the end of treatment was measured using a Cell Proliferation Kit I (MTT). The IC50 (MCF7 and T47D was 0.225 μM and 3.055 μM,
respectively). (B) BYL-719 inhibited the clonal growth of breast cancer cell lines in clonogenic assays (2D) in both MCF-7 and T47D cell lines. (C, D)
BYL-719 treatment induced early (Annexin-PI) apoptotic cell death in both breast cancer lines. Ns for non-significant,* for P < 0.05, ** for P < 0.01, *** for
P < 0.001 and **** for P < 0.0001. Errors bars represent standard errors.
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assay. The MFE assay with BCSC-enriched cell populations showed
a strong dose-dependent reduction in MFEs by BYL-719 in both cell
lines. By the concentration of 5 μM,MFE decreased in both cell lines
(MFE for MCF-7, p = 0.047, 95% CI, 1.627–33.04; MFE for T47D,
p = 0.0262, 95% CI, 2.370–27.63) (Figure 2A). Next, we performed a
3D sphere-forming assay using different concentrations of BYL-719
to determine its effects of BYL-719 in 3D condition. After
incubation, the spheres formed in each well were photographed,
and their diameters were calculated using GraphPad Prism
9 software (Figure 2B). In both cell lines, BYL-719 significantly
reduced sphere diameter, indicating that stemness and resistance
could be inhibited by BYL-719 (Figure 2C). We also investigated the
effect of BYL-719 on the BCSC population using a combination of
surface markers for BCSCs. The CD44+CD24− cell population has
been shown to identify a subpopulation of cells in breast cancer
enriched for BCSCs. This is illustrated in Figure 2D. Before the
FACS analysis, each group was treated with BYL-719 at a
concentration of 1 μM for 24 h. After treatment with BYL-719,
the CD44+CD24− cell populations present in BCSCs significantly
decreased compared to those in untreated cells (MCF-7, p = 0.0088,
95% CI, 4.941–18.64; T47D, p = 0.0237, 95% CI, 8.631–45.32)
(Figure 2E). Inhibition of stem cell factors at the gene level was
accompanied by lower protein levels after treatment with 1 μMBYL-
719 for 24 h compared to that in untreated controls (Figure 2F).
Nanog, Sox2, and OCT3/4 levels were significantly decreased in both
MCF-7 and T47D cell lines; for the MCF-7 cell line, Nanog
(p <0.001; 95% CI, 0.9908–1.045); Sox2 (p = 0.0069, 95% CI,
0.5014–1.062); OCT3/4 (p = 0.0014, 95% CI, 0.5370–0.7396), and
for T47D cell line, Nanog (p = 0.0007, 95% CI, 0.6007–0.7528); Sox2

(p = 0.0047, 95% CI, 0.5294–0.9732); and OCT3/4 (p = 0.0026, 95%
CI, 0.7925–1.239).

3.3 BYL-719 inhibits various important
signaling pathways

Western blot analysis demonstrated that the PI3K/AKT/mTOR
inhibitor alpelisib (BYL-719) was highly effective. By comparing
BCSC-like group and BYL-719 treated group (1 μM, 24 h), the
downstream proteins changed significantly (Figure 3A). We
detected a significant rise in BCSC-like group than native cell, in
MCF-7 cell line, p-P70S6K (p = 0.0059, 95% CI, 0.5835–1.167); p-
4EBP1 (p = 0.0296; 95% CI, 0.1505–1.093); p-AKT (p = 0.0457; 95%
CI, 0.0316–1.304); pARP (p = 0.0437; 95% CI, 0.04852–1.334). And
in T47D cell line, p-P70S6K (p = 0.0498; 95% CI, 0.0020–2.362); p-
4EBP1 (p = 0.0447; 95% CI, 0.05451–1.797); p-AKT (p = 0.0371;
95% CI, 0.1561–1.965); and pARP (p = 0.0463; 95% CI,
0.0556–2.654). After treatment with BYL-719, the levels of all the
downstream protein markers decreased. The decrease in p-P70S6K;
p-4EBP1and p-AKT enables us to demonstrate that the PI3K/AKT/
mTOR signaling pathway is active in BCSC and is susceptible to
efficient inhibition by BYL-719. pARP regulates several activities
that are crucial to the functioning of cells, including transcription,
apoptosis, and the response to DNA damage.

Other signaling pathways that crosstalk with the PI3K/AKT/
mTOR signaling pathway in the TME of BCSCs and act as PI3K
inhibitors include the MAPK/ERK, Notch, and STAT signaling
pathways. BYL-719 can affect these signaling pathways as well as

FIGURE 2
BYL-719 decreased the EMT phenotype in both breast cancer cell lines. (A)MFEs of BCSC-like cells were decreased by BYL-719 dose-dependently.
(B, C) Sphere-forming abilities were inhibited by BYL-719 in MCF-7 and T47D cell lines. (D, E) BYL-719 reduced the percentages of CD24−CD44+ in BCSC
enriched cell. (F)Western blot analysis for EMI-related proteins. Treated groups were treated with BYL-719 1 μM for 24 h. Ns for non-significant, * for P <
0.05, ** for P < 0.01, *** for P < 0.001 and **** for P < 0.0001. Errors bars represent standard errors.
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some intrinsic and extrinsic pathways. The levels of some important
proteins in these signaling pathways significantly changed (P < 0.05).

In the MAPK/ERK pathway, we detected the ERK protein which
has been proved to be associated with the sphere-formation and
maintainess of CSC-like characteristics. More importantly, ERK
inhibitors are able to overcome the acquired drug resistance
induced by upstream kinases inhibitors. In addition, ERK
inhibition is the most effective target in MAPK/ERK signaling
pathway (Liu et al., 2018). We detected a significant decrease of
ERK protein treated with 1 μMBYL-719 for 24 h (p = 0.0256; 95% CI,
0.5083–2.904) (Figure 3D). The ERK/MAPK signaling pathway was
thought to be inhibited by BYL-719, a widely known PI3K inhibitor.
Notably, altered proteins can be found in a variety of cell types.
Hes1 have an important function in the maintenance of cancer stem
cells self-renewal, cancer metastasis, and epithelial-mesenchymal
transition (EMT) process induction, as well as chemotherapy
resistance (Liu et al., 2015). In BC, CDKN1A/p21 is induced by
the Akt pathway, particularly in HER-2/neu-overexpressing cells,
results in cytoplasmic localization in breast cancer cell lines. This
is particularly noteworthy. This event is essential for the survival of
cancer cells and their resistance to apoptosis. Moreover, the recent
research indicate the p21 protein may lead to the chemoresistance.
After treatment with the same dose of BYL-719, p21 decreased in both
cell lines, and we detected a decrease in Hes1 expression in MCF-7
cells (Figures 3B, C). Although the targeted molecules were different,
the trends were the same in both groups, suggesting that the Notch
signaling pathway was activated in BCSC-like cells and could be
effectively inhibited by the PI3K inhibitor BYL-719. Quantification of
p21 (p = 0.0340; 95% CI, 0.03491–0.3408) and HES1 (p = 0.0418; 95%

CI, 0.01394–0.2904) levels significantly reduced after treatment with
BYL-719.

In the T47D cell line, p21 was also decreased in the BYL-719
treated group (1 μM, 24 h) (p = 0.0237; 95% CI, 0.1697–1.378) and
the STAT signaling pathway, which were associated with breast
cancer and the stem cells (Figure 3E). STAT3 (p = 0.0350; 95% CI,
0.06291–0.6618), P-STAT3 (p = 0.0375; 95% CI, 0.04564–0.5930),
STAT1 (p = 0.0466; 95% CI, 0.03697–1.955), and P-STAT1 (p =
0.0481; 95% CI, 0.02025–1.905) were all significantly decreased,
corroborating our hypothesis that BYL-719 effectively suppresses
the JAK/STAT signaling pathway activity.

3.4 Roles of BCSC-like cells in eribulin
resistance and effects of BYL-719 in
overcoming eribulin resistance in breast
cancer cells

We analyzed whether the addition of BYL-719 to the culture
increased the sensitivity of the cells to eribulin. MTT assays were
performed to determine the effects of the combination of the two drugs.
All the cell lines were proved to be resistant to eribulin via the MTT
assays. Even extremely high concentration of eribulin had poor effects
on the cell lines as shown in Figures 4A–C, while the combination
groups of the BYL-719 and eribulin led to stronger cytotoxicity in ER
cells compared to that with each drug alone, indicating that BYL-719
has the potential to increase the sensitivity of ER cells to eribulin.

Under 3D conditions, BYL-719 inhibited the growth and
proliferation of ER-resistant cells in most cell lines by calculating

FIGURE 3
The inhibition of BYL-719 in PI3K/AKTATOR: Notch; MAPK/ERK; JAK/STAT signaling pathways. All the treated groups were treated with BYL-719 of
the concentration of 1 μM for 24 h. (A) BYL-719 inhibited PI3K/AKT/mTOR signaling pathway in MCF-7 BCSC-like treated group and T47D BCSC-like
treated group (B, C) Notch signaling pathway and p21 protein were inhibited by BYL-719 in MCF-7 BCSC-like treated group and T47D BCSC-like treated
group. (D) ERK was decreased in MCF-7 BCSC-like treated group. (E) JAK/STAT signaling pathway was inhibited by BYL-719 in T47D BCSC-like
treated group. Image (B) and Image (E) are from the same cells in a same experiment, with the same loading control. Image (C) and Image (D) are from the
same cells in a same experiment, with the same loading control. We seperate these images in order to explain the changes in different signaling pathways
more clearly.
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the diameters of the spheres, except for the MDA-MB-231 ER cell
group, which showed a high level of resistance (Figures 4D, E). These
data indicated that there was no cross-resistance to BYL-719 in
eribulin-resistant cells.

In the clonogenic assay, all six groups were inhibited by BYL-
719, indicating that BCSC self-renewal and stemness were inhibited
by BYL-719 (Figure 5A). Inhibition was more apparent in native
breast cancer cell lines than in ER cells. These findings were
attributed to the increased percentage of BCSC in the ER cells.

The mammosphere formation assay under 3D conditions
(Figure 5C) showed that the number of mammospheres in ER
cells significantly decreased after treatment with different doses
of BYL-719 for 5 days. However, a significant reduction in the
number of mammospheres was observed. Both the stemness of ER
cells and their capacity to produce mammospheres decreased.

For further confirmation, we performed FACS sorting and western
blotting to analyze the expression of surface and cytoplasmic BCSC
markers in BCSC enriched ER cells under treatment with BYL-719. As
shown in Figure 5B, we found that the subpopulation of cells with
CD44+/CD24−surface markers in BCSC enriched in ER cells were
reduced after treated by 1 μM BYL-719 for 24 h, indicating that
even small dose of BYL-719 could have a direct effect on BCSCs.
These differences were considered statistically significant, Nanog (p =
0.0152; 95% CI, 0.5036–2.662), SOX2 (p = 0.0116; 95% CI,
0.4989–2.200), and OCT3/4 (p = 0.0320; 95% CI, 0.05508–0.7305).
These findings were confirmed using western blotting, which
demonstrated that BYL-719 substantially reduced BCSC-related
protein levels in BCSC-enriched MCF-7 ER cells (Figure 5D).

In MCF-7 ER cells, important signaling pathways, including Notch
and STAT, which crosstalk with the PI3K/AKT/mTOR signaling
pathway in the TME, showed significant changes (p < 0.05). Some
changes were even more significant than those observed in native cells.

As shown in Figure 5E, by analyzing the Notch signaling pathway,
p21 (p = 0.0361; 95% CI, 0.02892–0.3332) and Hes1 (p = 0.0372; 95%
CI, 0.05508–0.7305) notably decreased in the MCF-7 ER BCSC-like
group. These results confirmed our hypothesis that the Notch
signaling pathway is active in BCSC and inhibited by BYL-719.

The results in Figure 5F showed P-STAT3 (p = 0.0466; 95% CI,
0.0090–0.4803) and P-STAT1 (p = 0.0459; 95% CI, 0.06989–3.057)
were inhibited by BYL-719. However, we did not detect significant
changes in STAT1 and STAT3. We still confirm that the STAT/JAK
signaling pathway could also be inhibited by adding BYL-719
because phosphorylation in the Notch signaling pathway is
closely associated with stem cells.

4 Discussion

4.1 The 3D-cell culture method is a novel
and highly effective method to enrich
BCSCs in vitro

While two-dimensional (2D) cell culture systems in vitro are
widely used, they often fall short in accurately replicating
physiological conditions relevant to clinical research. To address
this limitation, in this experiment, we employed a three-dimensional

FIGURE 4
(A–C)BYL-719 could inhibit the cell viability of ER vells (D, E) Sphere-forming abilities of ER cells were all inhibited by BYL-719. Ns for non-significant,
* for P < 0.05, ** for P < 0.01, *** for P < 0.001 and **** for P < 0.0001. Errors bars represent standard errors.
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(3D) mammosphere culture method, through which BCSC-like cells
were harvested in vitro. These BCSC-like cells were harvested using a
3D cell culture method, whereby spheroids were derived from
primary breast cancer cell lines and collected from differentiated
cells (Habanjar et al., 2021). They are also referred to as “tumoroids”
(Idrisova et al., 2022). The cell population is a subset of cells capable
of dictating invasion, metastasis, heterogeneity, and therapeutic
resistance in tumors (Jaggupilli and Elkord, 2012). CD44 and
CD24 are important and widely recognized BCSC surface
markers (Cataldo et al., 2024) which are found in many tumor
types and are often used together or in combination with other
putative markers to isolate stem cells from solid tumors (Jaggupilli
and Elkord, 2012). This subpopulation of breast cancer cells
(CD44+/CD24−) has stem/progenitor cell properties (Alvarez-
Elizondo and Weihs, 2022). To quantify the ratio of CD44+/
CD24− subpopulation of cells, FACS was performed in this
experiment. Moreover, BCSC-like cells are known to express
higher levels of EMT, a phenomenon in which epithelial cells
acquire mesenchymal properties, a process that has been
observed in tumor progression and invasion (Savagner, 2010).

Therefore, protein markers, including Nanog, OCT3/4, and
SOX2, were detected, as they promote the emergence of CSCs
with mesenchymal properties necessary for proliferation and self-
renewal, which are required for secondary tumor formation
(Vuoriluoto et al., 2011).

4.2 The stemness are inhibited by BYL-719 in
both cell lines

Treatment with BYL-719 significantly inhibited the proliferation
of BCSC-enriched mammosphere cultures 96 h after a single
treatment (Figure 1A) and the IC50 values for BCSC-enriched
mammosphere cultures increased by approximately two-fold for
both cell lines. This indicates that stemness is indeed inhibited by
BYL-719.

Furthermore, by performing an in vitro clonogenic assay, we
detected cell survival. This is significant because clonogenic ability
indicates the stemness of cancer cells, which is crucial in tumors
where the capacity for unlimited proliferation can lead to tumor

FIGURE 5
(A) BYL-719 efficiently inhibit colony-farming and stemness abilities of both native cell lines and ER cells. (B) BYL-719 reduced the subpopulation of
CD44+CD24− in ER treated groups. (C) BYL-719 effectively reduced the mammosphere formation efficiency in a dose dependent manner in Eribulin
resistant cells. (D) EMT was inhibited by BYL-719 in MCF-7 ER treated group. (E) Notch signaling pathway and p21 protein were inhibited in MCF-7 ER
treated group. (F) JAK/STAT signaling pathway was inhibited in MCF-7 ER treated group. (B–F) All the treated groups were treated with BYL-719 of
the concentration of 1 μM for 24 h. Image (E) and Image (F) are from the same cells in a same experiment, with the same loading control. We seperate
these images in order to explain the changes in different signaling pathways more clearly. Ns for non-significant, * for P < 0.05, ** for P < 0.01, *** for P <
0.001 and **** for P < 0.0001. Errors bars represent standard errors.
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recurrences. As demonstrated in Figure 1B, both breast cancer cell
lines exhibited an evident decrease in the number of colonies.
Additionally, apoptosis was detected in both the control and
treatment groups (Figure 1C). These findings suggest that BYL-
719 is highly effective, as it promoted apoptosis in BCSC-like cells.
This implies that BYL-719 could active and promote the cell death
signaling pathways, which include autophagy, apoptosis, ferroptosis,
and necroptosis through crosstalk among BCSC signaling pathways.
Moreover, it inhibited anti-apoptotic mechanisms via survivin, Mcl-
1, Bcl-2, IAPs, and DNA-repairing proteins (Kist and Vucic, 2021).

In the mammosphere formation assay, the volume of
mammospheres decreased by the enhancing concentration of
BYL-719, as shown in Figure 2A. Under the 3D condition, the
diameters of spheres were inhibited, as shown in Figure 2B.
Additionally, the stem cell surface marker CD44 and CD24 were
detected, and the proportion of the subpopulation (CD44+/CD24−)
were then calculated by FACS analysis (Figure 2C). In both cell lines,
the proportion of CD44+/CD24− cells significantly decreased after
treatment with 1 μM BYL-719 for 24 h (Figure 2D). By comparing
the western blot of MCF-7 BCSC-like and MCF-7 BCSC-like cells in
1 μM BYL-719 for 48 h, the decrease of Nanog, SOX2 and OCT3/
4 were statistically significant (Figure 2E).

4.3 BYL-719 inhibited the stemness by acting
on various signaling pathways which play
essential roles in the TME of BCSCs

The PI3K/mTOR signaling pathway is essential for cell survival
and proliferation (Glaviano et al., 2023). In fact, some malignancies,
such as non-small-cell lung, breast, prostate, and colorectal cancer,
exhibit an abnormal activation of PI3K/AKT/mTOR signaling
(Jiang et al., 2020; Yu et al., 2022). Although the PI3K/AKT/
mTOR pathway has been extensively investigated in cancer, few
studies have been conducted on CSCs (Yoon et al., 2024). Blocking
the PI3K signaling pathway to stop tumor growth is not a new
concept; many inhibitors, such as two rapalogues, everolimus, and
temsirolimus, have been used for many years with good efficacy (Bai
et al., 2018). In our study, we confirmed the inhibition of PI3K by
decreasing p-P70S6K; p-4EBP1, p-AKT, and pARP (Figure 3A).

Moreover, other major signaling pathways are also involved in
CSC self-renewal and differentiation, including the Notch, MAPK/
ERK, JAK-STAT, Wnt/β-catenin, and Hedgehog (Hh) signaling
pathways (Bhal and Kundu, 2023). Additionally, other important
signaling pathways in CSCs include TNF-α/NF-κβ, transforming
growth factor-β (TGF-β), and receptor tyrosine kinase (RTK)
signaling pathways (Chia et al., 2024; Borlongan and Wang, 2023).
These signaling pathways are related to self-renewal and differentiation
(Xu et al., 2018). Western blotting was performed to detect changes in
important proteins in the MAPK/ERK, Notch, and JAK-STAT
signaling pathways, which were confirmed to be important in
BCSCs (Figures 3B–E). The mitogen-activated protein kinase/
extracellular signal-regulated kinase (MAPK/ERK) pathway is
associated with cell proliferation, differentiation, migration, aging,
and apoptosis (Sun et al., 2015). Similarly, the Notch signaling
pathway also plays an important role in cell development and
differentiation (Shi et al., 2024). Furthermore, the JAK-STAT
signaling pathway is also activated in BCSCs, and persistent

activation of STAT3 can stimulate cell survival and maintain stem
cell properties in BCSCs (Zhou et al., 2007). Interestingly, the PI3K/
mTOR pathway regulates STAT3 expression and promotes the
survival and proliferation of BCSCs (Zhou et al., 2007). In our
study, important downstream proteins were detected, and we
confirmed the significant inhibition of all these signaling pathways.

4.4 BYL-719 could help overcome the drug
resistance of breast cancer cells by acting
on BCSCs

In the final phase of our experiment, the function and influence
of BYL-719 to the resistance of tumor cells were the focus. To
explore this, several drug-resistant cell lines were also cultured.
Specifically, three eribulin-resistant cell lines, including–MCF-7 ER,
MDA-MB-231 ER, and ZR-75-1 ER–were used in this study. These
cell lines were cultured, collected, and confirmed to be highly
resistant to eribulin, a non-taxane microtubule dynamics
inhibitor with tubulin-based anti-mitotic activity and
chemotherapeutic effects (Perry, 2011).

As is well-documented, CSCs can easily adapt to environmental
changes and are inherently more resistant to conventional therapies
compared to other cells in the tumor (Najafi et al., 2019). This drug
resistance in CSCs could be secondary to radiotherapy or
chemotherapy or may even be induced after isolation from
chemotherapy (Prieto-Vila et al., 2017). The combination of
intrinsic and extrinsic factors significantly contributes to the
CSC-mediated resistance to treatment (Najafi et al., 2019).
Intrinsic factors include EMT, oxidative regulators, stem cells,
and signaling effects, whereas extrinsic factors include cellular
plasticity and some signaling factors (Najafi et al., 2019). To
overcome clinical resistance to treatment, scientists have focused
on novel insights into CSCs. While standard therapies act on rapidly
dividing cells and are generally effective in reducing the size of the
primary tumor, complete eradication remains challenging due to the
presence of CSCs. Despite their high proliferative capacity, CSCs,
such as BCSCs, spend most of their time in a resting state (cell cycle
phase G0), which allows them to protect themselves from
chemotherapy and radiation (Zou et al., 2011). Moreover, the
relative resistance of BCSCs to radiation and cytotoxic agents
may be due to a more efficient DNA damage response
mechanism, which can result in less cell death than that in other
breast cell types (Saha and Lukong, 2022; Chang et al., 2015).
Furthermore, BCSCs are more resistant to radiotherapy and
chemotherapy due to their abundance in hypoxic regions (Chang
et al., 2015). The fact that BCSCs are resistant to standard therapies
highlights the need for novel therapies targeting BCSC populations.
These distinct characteristics, markers, and resistance mechanisms
suggest that targeting BCSCs is an essential breakthrough for
developing more effective therapies for patients with breast
cancer, either alone or in combination with currently used therapies.

Currently, BCSCs are suggested to be novel and essential targets
for clinical BCSC therapy to overcome drug resistance and relapse.
Emerging findings regarding surface markers and signaling
networks support the development of therapeutic approaches
using BCSCs (Conde et al., 2022) as a target. In future, we will
do more experiments at the gene level and in vivo animal
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experiments will be performed. Additionally, we intend to explore
the combination of BYL-719 with other chemotherapeutic agents.
Our hope is to identify the related genes of BCSCs in future.

5 Conclusion

Our research demonstrated that BYL-719 has a significant effect
on BCSCs, and that the combination of BYL-719 with eribulin
further overcomes drug resistance. We are optimistic that these
findings will contribute to the development of therapies that can
directly target BCSCs, thereby reducing metastasis and relapse in
breast cancer. We believe that drug-resistant patients will benefit
from the combination of BYL-719 with other chemotherapeutic
agents in future studies.
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In this study, we delve into the intrinsic mechanisms of cell communication in
hepatocellular carcinoma (HCC). Initially, employing single-cell sequencing, we
analyze multiple malignant cell subpopulations and cancer-associated fibroblast
(CAF) subpopulations, revealing their interplay through receptor-ligand
interactions, with a particular focus on SPP1. Subsequently, employing
unsupervised clustering analysis, we delineate two clusters, C1 and C2, and
compare their infiltration characteristics using various tools and metrics,
uncovering heightened cytotoxicity and overall invasion abundance in C1.
Furthermore, our gene risk scoring model indicates heightened activity of the
immune therapeutic pathway in C1. Lastly, employing a formulated scoring
system, we stratify patients into high and low-risk groups, revealing notably
poorer outcomes in the high-risk cohort on Kaplan-Meier curves. Risk scores
exhibit a negative correlation with model genes and immune cell infiltration
scores, indicating poor prognosis in the high-risk group. Further characterization
elucidates the regulatory landscape of the high and low-risk groups across
various signaling pathways. In addition, we used wet lab experiments to prove
that ABCA1 plays a pro-oncogenic role in hepatocellular carcinoma cells by
promoting proliferation, invasion, migration, and reducing apoptosis. In
summary, these findings provide crucial insights, offering valuable clues and
references for understanding HCC pathogenesis and patient prognosis.

KEYWORDS

hepatocellular carcinoma, single-cell sequencing, tumor microenvironment, risk
stratification, immune therapeutic pathway

1 Introduction

While hepatocellular carcinoma (HCC) ranks as the fifth most common malignancy
globally, it stands as the second leading cause of cancer-related mortality worldwide (Chen
K. et al., 2023). In 2020, there were approximately 906,000 new cases and 830,000 deaths
attributed to HCC, with an incidence of 4.7% and amortality rate of 8.3% (Sung et al., 2021).
In China, there were an estimated 431,383 new cases and 412,216 deaths fromHCC in 2022,
representing roughly half of the global increase in HCC cases and deaths (Fu et al., 2023).
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The incidence of HCC is rapidly increasing among both males and
females (Islami et al., 2017; Jeong et al., 2018), notably serving as a
primary cause of cancer-related mortality in transitional countries
such as Mongolia, Thailand, Cambodia, Egypt, and Guatemala
(Sung et al., 2021; Tong et al., 2020). HCC constitutes 80%–90%
of primary liver cancers, with cholangiocarcinoma (CCA)
accounting for 10%–15%, while vascular sarcomas and
hepatoblastomas represent a smaller proportion (Li et al., 2021).
Chronic inflammatory etiologies, including hepatitis B virus (HBV),
hepatitis C virus (HCV) infections, alcoholic steatohepatitis (ASH),
non-alcoholic steatohepatitis (NASH), aflatoxin exposure, cirrhosis,
smoking, obesity, diabetes, iron overload, various dietary habits, and
sedentary lifestyle, are major risk factors for HCC (Li et al., 2021;
Anwanwan et al., 2020; Li and Wang, 2016; Duan et al., 2014). HCC
may present without evident signs or symptoms, with nonspecific
manifestations including right upper quadrant pain, abdominal
distension, jaundice, poor appetite, persistent fatigue, and weight
loss (Mokdad et al., 2015). Histologically, HCCs are classified by the
World Health Organization (WHO) into well-differentiated,
moderately differentiated, poorly differentiated, and
undifferentiated subtypes, with growth patterns including capsule
invasion, infiltration into adjacent liver parenchyma, satellite nodule
formation, tumor thrombus formation, and intrahepatic metastasis
(Li and Wang, 2016). The incidence of metastatic liver cancer is
18–40 times higher than that of primary hepatic malignancies,
owing to the unique anatomical microenvironment of the liver
facilitating colonization by extrahepatic cancer cells (including
colorectal, pancreatic, breast, melanoma, and lung cancers) (Liu
et al., 2023). Liver metastasis significantly impacts both the 5-year
survival rate and quality of life (Li et al., 2021), with only
approximately 20% of patients with extrahepatic metastases being
suitable for surgery (Zhou et al., 2016). Early-stage HCCmay benefit
from partial hepatectomy, ablation therapy, or liver transplantation,
with varying prognostic outcomes. However, the local failure rate of
ablation therapy is significantly higher than that of surgical
resection, and percutaneous ablation in the pre-transplant setting
carries a risk of tumor dissemination, potentially rendering initially
transplant-eligible patients ineligible (Bruix et al., 2015). Liver
transplantation is limited by donor scarcity and delays between
transplant indications and surgery (Soulen and García-Mónaco,
2021), with a median 5-year survival rate of approximately 70%.
Nevertheless, 15% of liver transplant recipients experience
recurrence post-treatment, with a median 5-year survival rate
ranging from 20% to 35%, complicated by the anatomical
challenges of early cancer detection (Li and Wang, 2016; Gao
et al., 2021; Cheng et al., 2016). For nearly half of HCC patients
diagnosed in advanced stages, conventional treatments such as
curative resection and ablation therapy may be precluded,
although options such as targeted drug therapy or
immunotherapy remain available (Zhou et al., 2016; Chen Y.
et al., 2023). Sorafenib, an orally administered kinase inhibitor
targeting tumor cells, represents a relatively novel therapeutic
option for HCC patients with advanced or metastatic disease.
However, fewer than one-third of eligible patients benefit from
sorafenib, with associated adverse events and a median time to
resistance of less than 6 months from initiation of treatment
(Anwanwan et al., 2020; Hao et al., 2023). Therefore,
comprehensive research into the mechanisms underlying HCC

development and progression is imperative, particularly for
identifying more effective treatment modalities and elucidating
the role of key genetic factors, which are crucial for the
diagnosis, treatment, and prognosis of HCC.

As the culmination of our introduction, this study aims to
unravel the intricate mechanisms of cell communication within
HCC. Utilizing single-cell sequencing, we dissect the interplay
between multiple malignant cell subpopulations and cancer-
associated fibroblasts (CAFs), with a special emphasis on SPP1-
mediated receptor-ligand interactions. Through unsupervised
clustering, we identify two distinct clusters, C1 and C2, and
characterize their infiltration patterns, revealing elevated
cytotoxicity and invasion in C1. Our gene risk scoring model
further highlights heightened immune therapeutic pathway
activity in C1. Moreover, patient stratification based on a
formulated scoring system demonstrates poorer outcomes in the
high-risk group. Wet lab experiments validate the oncogenic role of
ABCA1 in promoting HCC cell proliferation, invasion, migration,
and reducing apoptosis. Collectively, our findings offer novel
insights into HCC pathogenesis and patient prognosis, laying the
groundwork for future research and therapeutic strategies.

2 Material and methods

2.1 Data collection and preprocessing

Firstly, we retrieved bulk transcriptomic data and corresponding
clinical information for HCC from The Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov/) database. Additionally, we
obtained two bulk RNA-seq datasets, GSE14520 and GSE76427,
from The Gene Expression Omnibus (GEO, https://www.ncbi.nlm.
nih.gov/geo/) database. Furthermore, we downloaded the ICGC-JP
dataset from the International Cancer Genome Consortium (ICGC,
https://dcc.icgc.org/) database. Finally, three single-cell sequencing
datasets for HCC, namely, GSE146115, GSE146409, and
GSE166635, were obtained from TISCH2 (http://tisch.comp-
genomics.org/home/) database. All publicly available databases
utilized in this study permit unrestricted access and utilization
without additional ethical approval. Our data retrieval and
analysis procedures adhere to relevant guidelines. We
standardized all sequencing data into Transcripts per million
(TPM) format. Records with missing information were excluded,
and in cases where a gene had multiple entries, the mean value was
calculated across all entries.

2.2 Single-cell sequencing data analysis

Utilizing the “Seurat” package and the SCP pipeline (https://
github.com/zhanghao-njmu/SCP), we conducted analysis on the
single-cell sequencing data. To ensure the accuracy and reliability
of subsequent research, we initially performed quality control on the
acquired data. Our criteria were as follows: percent. mt <25,
nFeature_RNA <9,000. Additionally, we employed the
“harmony” package to integrate and batch-correct the quality-
controlled single-cell data. Subsequently, we employed Uniform
Manifold Approximation and Projection (UMAP) for
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dimensionality reduction and clustering of the single-cell data. We
annotated and visualized several major cell types based on relevant
information provided by the TISCH database. Concurrent with cell
annotation, we validated the subclasses by cross-referencing the
gene expression profiles with established cell type annotations.

To investigate the interaction and communication between
malignant cell clusters and Cancer-Associated Fibroblasts (CAFs)
clusters, we performed UMAP dimensionality reduction again for
both cell types based on the EPCAM expression levels of malignant
cell clusters (n = 7,186) and the expression levels of COL1A1 and
COL1A2 for CAFs clusters (n = 698). We further subdivided them
into several cell subclusters and visualized the results. Next, we
utilized RunSlingshot to construct developmental trajectories of
malignant and CAFs cell subclusters and predicted their
developmental paths.

Subsequently, we conducted Differentially Expressed Genes
(DEGs) analysis for each cell subcluster, with parameters set as
follows: fc.threshold = 1, only.pos = FALSE. Finally, we performed
Gene Ontology Biological Process (GO_BP) enrichment analysis for
each cell subcluster and selected the top six statistically significant
GO_BP enrichment terms for visualization. Parameters were set as
follows: db = “GO_BP,” species = “Homo_sapiens,”DE_threshold =
“avg_log2FC > log2 (1.5) & p_val_adj <0.05.”

2.3 Analysis of cell communication

We conducted an analysis of cell communication by using the
CellChat and NicheNet algorithms on various cell subpopulations.
Firstly, we presented an interaction network in the form of a chord
diagram, demonstrating the frequency and strength of interactions
among different subpopulations of malignant and CAFs cells.
Subsequently, we visualized the ligand-receptor relationships and
pairings between different cell pathways within each subpopulation.
Additionally, we focused on the expression patterns of SPP1 as a
ligand and its various receptors in the malignant and CAFs
subpopulations, using a violin plot. Furthermore, we analyzed the
significance of different subpopulations in the SPP1 signaling
pathway. To explore the interaction network within each cell
subpopulation, we created scatter plots to display the outward
and inward interaction strengths of each subpopulation. Finally,
by using certain genes in the CAFs subpopulation as ligands and
genes in the malignant subpopulation as receptors, we analyzed the
binding potential and biological effects of these ligand-receptor
interactions, which were visualized using a heat map.

2.4 Constructing gene regulatory networks

We utilized the “SCENIC” R package to construct GRNs for
HCC. Leveraging the single-cell dataset of HCC and relevant
algorithms, we particularly focused on the distribution and
expression patterns of five regulatory factors associated with
HCC (BRF1_extended_29g, ARNTL_extended_39g, ARNTL_24g,
BCLAF1_extended_22g, ATF3_extended_16g) across various cell
subpopulations, visualized using UMAP. Additionally, we generated
a heatmap illustrating the differential activity levels of these five
regulatory factors between malignant and CAFs cells. Subsequently,

we amalgamated all target genes regulated by these five factors into a
signature and proceeded with further analysis based on
this signature.

2.5 Unsupervised clustering and
correlation analysis

Utilizing the aforementioned signature, we conducted
unsupervised clustering analysis using the
“ConsensusClusterPlus” R package with the following parameters:
maxK = 9, reps = 1,000, pItem = 0.8, pFeature = 1, tmyPal = color,
title = “ConsensusCluster/,” clusterAlg = “km,” distance =
“euclidean,” seed = 123,456. By subjecting tumor tissue samples
to hierarchical clustering, we attempted sample grouping.
Subsequently, leveraging Cumulative Distribution Function
(CDF) curves and Proportion of Ambiguous Clustering (PAC)
scores, we selected the most appropriate k value for grouping,
resulting in two distinct clusters (C1 and C2). Furthermore, we
employed the TCGA-LIHC dataset and conducted log-rank testing
to plot Kaplan-Meier (KM) curves, demonstrating survival
disparities between the different clusters.

2.6 Differential analysis of HCC tumor
microenvironment

To gain insight into the disparities within the HCC TME across
distinct clusters, we leveraged the clustering results to conduct
comparative analyses of the TME in clusters C1 and C2. Initially,
employing Single-sample Gene Set Enrichment Analysis (ssGSEA),
we evaluated the relative infiltration abundance of diverse immune
cell subtypes within the two clusters. Subsequently, we depicted the
disparities in the activity levels of CYT (cytotoxic activity), GFP
(T cell inflamed gene expression profile), IFNG (INF-γ), and TMB
(tumor mutation burden) between the two clusters using box plots.
Additionally, we assessed the infiltration abundance of immune cell
subtypes in both clusters using five TME deconvolution algorithms
(CIBERSORT, MCP-counter, quanTIseq, EPIC, and TIMER) from
the “IOBR” R package (https://github.com/IOBR/IOBR), scoring the
results accordingly. Furthermore, we downloaded
150 immunomodulators and chemokines from the TISIDB
database (http://cis.hku.hk/TISIDB/), including 41 chemokines,
24 immunoinhibitors, 46 immunostimulators, 21 Major
Histocompatibility Complex (MHC), and 18 receptors. Based on
this data, we constructed a heatmap illustrating the expression
profiles of relevant immune regulatory molecules across different
clusters. Finally, employing Gene Set Variation Analysis (GSVA), we
enriched scores for the anti-cancer immunity cycle and
immunotherapy-predicted pathways in the two clusters, followed
by an analysis of the disparities between the clusters.

2.7 Gene set enrichment analysis

Initially, we utilized the “limma” package to identify
differentially expressed genes between clusters C1 and C2.
Subsequently, employing the “clusterprofiler” R package, we
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conducted GSEA to delineate the signaling pathways enriched and
discovered the upregulated cancer signatures within both clusters.
Concurrently, data visualization was performed using the “GseaVis”
R package to generate bubble plots illustrating the results.
Additionally, GSEA was employed to identify both upregulated
and downregulated signaling pathways within the C1 cluster.

2.8 Construction of prognostic models

Based on the communication signature between malignant and
CAFs cellular subgroups, we employed the Least Absolute Shrinkage
and Selection Operator (LASSO) method to screen prognostic
marker genes within the TCGA-LIHC dataset. Subsequently,
utilizing the multiCOX analysis approach, we constructed a
prognostic model for HCC. Employing the model formula, each
patient was assigned a score, yielding a RiskScore for every sample.
The RiskScore is defined by summing the product of gene expression
levels and their corresponding coefficients, as demonstrated below:

Risk score � ∑
n

i�1
Expgenei*βi[ ⎤⎦

Here, Expgenei represents the expression level of the model gene,
and βi represents the corresponding coefficient of the model gene.
Additionally, we visualized the coefficients of the prognostic model
through a lollipop plot of feature gene coefficients. Based on the
median score, patients were divided into high-risk and low-risk
groups. Using the TCGA dataset (n = 329), we plotted KM curves to
analyze the prognosis of the two risk groups and constructed
Receiver Operating Characteristic (ROC) curves to analyze the
model’s performance at 1, 3, and 5 years. We define a model as
having good diagnostic performance in this dataset when the area
under the curve (AUC) exceeds 0.6. Subsequently, we validated the
prognostic model in external validation sets GSE76427 (n = 115),
GSE14520 (n = 242), and ICGC-JP (n = 240).We utilized KM curves
and ROC curves to validate the predictive ability of the model in
different datasets. Next, we conducted correlation analysis,
demonstrating the correlation between RiskScore and various
immune checkpoint levels and immune cell infiltration levels
through a correlation heatmap. Using the “limma” package, we
performed DEGs analysis between the high-risk and low-risk
groups, identifying differentially expressed genes between the two
groups. Finally, through GSEA, we analyzed the abnormal signaling
pathways that were upregulated and downregulated in the high-
risk group.

2.9 Cell culture and transfection

We used human liver cancer cell lines HepG2 and Huh7 (Cell
Bank of the Chinese Academy of Sciences). Huh7 cells were cultured
in DMEM (HyClone, United States), and HepG2 cells in MEM
(HyClone, United States), both supplemented with 10% FBS (BI,
Israel) and 100 U/mL penicillin/100 μg/mL streptomycin (HyClone,
United States). Cells were maintained in a humidified
CO2 incubator at 37°C.

For transfection, Huh7 cells were treated with ABCA1 shRNA
(Sangon, China) to knock down expression, while HepG2 cells were
transfected with an ABCA1 overexpression plasmid (with a negative
control). Cells were resuspended in complete medium and seeded
into 6-well plates at 1 × 104 cells/well with 2 mL of medium.
Transfection was performed using PolyFast reagent (MCE,
United States, catalog number HY-K1014) according to the
manufacturer’s instructions. After a 15-min incubation at room
temperature, the cells were re-incubated. The medium was refreshed
6 h post-transfection, and subsequent experiments were conducted
48 h later.

2.10 RT-qPCR and total RNA extraction

We used RT-qPCR to measure ABCA1 mRNA expression in
different cell groups. Cells in 6-well plates were trypsinized
(KeyGEN, China), washed with PBS, and centrifuged at 4°C
(800–2,000 rpm). RNA was extracted using 800–1,000 μL Trizol
(Takara, Japan), followed by chloroform precipitation and ethanol/
isopropanol purification (SINOPHARM, China). The RNA was
resuspended in 20 μL DEPC-treated water and quantified using a
Nanodrop 2000 spectrophotometer (Thermo, United States).
Reverse transcription was performed with the PrimeScript RT
reagent kit (TaKaRa, Japan), and RT-qPCR was conducted using
SYBR GreenER Supermix (TaKaRa, Japan) on a 7,500 Real-Time
PCR System (Thermo Fisher Scientific, United States) according to
the manufacturer’s protocols. ABCA1 expression was quantified
using the 2−ΔΔCT method, normalized to β-actin.

2.11 Colony formation assay

Colony Formation Assay was employed to determine differences
in colony numbers among different cell lines. Cells were initially
seeded at a density of 1 × 103 cells per well in a 6-well plate, gently
agitated, and subsequently cultured in a cell culture incubator for
approximately 14 days. Following removal of the culture medium,
the cells underwent three washes with PBS. Colonies underwent
fixation using formaldehyde for 15 min, followed by staining with
1 mL of 0.5% crystal violet (Solarbio, China), three subsequent PBS
washes, air-drying, and subsequent imaging and quantification.

2.12 CCK8 assay

After 48 h post-transfection, Huh7 and HepG2 cell lines were
plated into 96-well plates at a density of 6,000 cells per well and
returned to the incubator for adherence. Each experimental group
was replicated three times. The CCK-8 reagent (KeyGEN, China)
was reconstituted as per the manufacturer’s instructions by diluting
it with complete culture medium to achieve a final volume of 200 μL
per well. Using a pipette, the prepared solution was swiftly aliquoted
into the wells of the 96-well plates. The plates were shielded from
light exposure by covering them with aluminum foil, and
absorbance readings at 450 nm were taken using a
spectrophotometer following a 2-h incubation period. Subsequent
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measurements were taken at 24, 48, 72, and 96-h time points,
repeating the aforementioned steps.

2.13 EDU assay

We used the EdU assay to assess proliferation level differences
among different groups of Huh7 and HepG2 cells. Following a 48-h
transfection period, the culture mediumwas removed, and cells were
washed three times with PBS. As per the protocol, cells were
permeabilized with 0.3% Triton X-100 (Beyotime, China) for
25 min at room temperature. After permeabilization, cells were
incubated with EdU reaction mixture to allow EdU incorporation
into newly synthesized DNA. Subsequently, cells were washed again
with PBS and fixed with a fixing solution. Following fixation, cells
were stained with a fluorescent azide to visualize EdU incorporation.
After washing to remove excess stain, cells were counterstained with
DAPI for 10 min to visualize nuclei. Finally, each well was washed
with PBS, and anti-fluorescence quenching reagent (Beyotime,
China) was added to preserve the fluorescence signal. The plates
were then examined, and images were captured using a fluorescent
microscope.

2.14 Wound healing assay

Following 48 h of transfection, the medium was aspirated, and
PBS was introduced. Using a precise ruler for guidance, a deliberate
single straight scratch was introduced into each well using a 200 μL
pipette. The pipette tip was substituted after each well, and cells
underwent three PBS washes. Subsequently, each well received basic
culture medium lacking FBS. At this point, microscopic images were
captured to document the initial scratch, measure the wound area,
and define this moment as time point zero. After incubating the cells
in a cell culture incubator for 48 h, images were taken again to
measure the healed wound area and calculate the percentage of
scratch closure.

2.15 Total protein extraction and Western
blot analysis

Western blotting was used to assess protein expression of
ZO-1, E-cadherin, Vimentin, Slug, ABCA1, and β-actin in
Huh7 and HepG2 cells. Cells were lysed using RIPA buffer
with protease inhibitors (100:1), sonicated (40% amplitude, 1s
pulses, 3 cycles), and incubated on ice for 30 min with shaking.
Lysates were centrifuged (10,000 rpm, 15 min, 4°C), and
supernatants were collected for protein quantification.
Samples were prepared with loading buffer, heated (95°C,
5 min), and subjected to electrophoresis (20 μg/lane, 10%
SDS-PAGE, 100V). Proteins were transferred to a PVDF
membrane (0.45 μm), blocked (10 min), and incubated with
primary antibodies overnight at low temperature. After washing,
membranes were incubated with HRP-conjugated secondary
antibodies (1.5 h, RT) and visualized using an ECL kit.
Antibodies were sourced from Proteintech.

2.16 Transwell assay

Transwell chambers (Thermo, United States) were coated with
extracellular matrix gel (1:8 dilution, 40 μL/chamber) and dried for
24 h. Cells (20,000/chamber) were seeded in serum-free medium
(200 μL/chamber) on a 24-well plate with 500 μL complete medium
per well. After 20-h incubation in a CO2 incubator, non-invading
cells were removed, and chambers were fixed with 4%
paraformaldehyde, washed, and stained with 0.1% crystal violet.
Microscopic images were then captured.

2.17 Flow cytometry for detecting
cell apoptosis

Flow cytometry was employed to assess apoptosis in Huh7 and
HepG2 cells. Following reagent centrifugation, cells were washed,
digested with trypsin (without EDTA, with 3-min interval checks),
and centrifuged at 2,000 rpm for 5 min. After two additional PBS
washes, cells were suspended in 400 μL of binding buffer. Annexin V
FITC/PI staining solution was added, followed by a 15-min
incubation at 37°C. Cells were then transferred to flow cytometry
tubes and filtered through a nylon mesh. The FL1 channel (for FITC
green fluorescence) and FL3 channel (for PI red fluorescence, Ex =
488 nm, Em ≥ 630 nm) were used for analysis. Voltage and
compensation settings on the flow cytometer were adjusted to
ensure that 99% of cells occupied the lower left quadrant.

2.18 Statistical analysis

All statistical analyses were conducted using R software (version
4.1.3). Differential gene expression analysis was performed using the
“limma” package. The “ggplot2” package was employed as the
primary tool for visualization. A threshold of p < 0.05 was
considered statistically significant (*p < 0.05; **p < 0.01; ***p <
0.001; ****p < 0.0001).

3 Results

3.1 Single-cell data analysis of malignant cell
populations

Utilizing integrated single-cell sequencing data, UMAP
dimensionality reduction clustering identified 28 clusters,
subsequently annotated into 12 major cell types based on
information provided by the TISCH database (Figures 1A, B).
Further analysis of the target malignant cell population
delineated it into 6 cellular subgroups: Malignant_Epi_0,
Malignant_Epi_1, Malignant_Epi_2, Malignant_Epi_3,
Malignant_Epi_4, and Malignant_Epi_5 (Figures 1C, D).
Developmental trajectory prediction revealed two trajectories:
Lineages1 (Malignant_Epi_0- Malignant_Epi_4- Malignant_Epi_
1) and Lineages2 (Malignant_Epi_0- Malignant_Epi_2-
Malignant_Epi_3), all originating from Malignant_Epi_0
(Figures 1E, F).
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In differential gene expression analysis, genes associated with
metabolism, immune inflammation, neuroregulation, and cell
signaling pathways were upregulated across the 6 cellular
subgroups, while genes related to mitochondria, ribosomes,
long non-coding RNA, lipoproteins, and plasma proteins were
downregulated (Figure 1G). GO_BP enrichment analysis

revealed statistically significant enrichment of the top
6 pathways across the 6 cellular subgroups, including cellular
mitochondrial functions, mobility and migration, metabolic
processes, lipid metabolism regulation and transport processes,
ATP synthesis and metabolism, protein synthesis, and energy
metabolism (Figure 1H).

FIGURE 1
scRNA-seq analysis unravels the heterogeneity of in malignant cells in HCC. (A) 28 clusters were identified in the integrated scRNA-seq dataset. (B)
12 major cell types were annotated. (C) UMAP visualization of the expression levels of EPCAM in the integrated scRNA-seq dataset. (D) Malignant cell
subpopulations were identified from the major malignant cell set. (E, F) The predicted developmental trajectories of malignant epithelial cell subsets. (G)
The differentially expressed genes of each malignant cell subset. (H) Top six enriched GO_BP terms of each malignant cell subset.
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3.2 Single-cell data analysis of CAF cell
population

Furthermore, we conducted a detailed analysis of the CAF cell
population, reducing its dimensionality into 3 groups using UMAP:
CAF_0, CAF_1, and CAF_2 (Figures 2A, B). Predicted
developmental trajectories revealed a single trajectory: Lineages1
(CAF_1, CAF_0, CAF_2) (Figures 2C, D). In the analysis of
Differentially Expressed Genes (DEGs), genes related to cell
structure and signaling transduction, protein synthesis, and
nucleic acid metabolism were found to be upregulated across the
3 cellular subgroups, while genes associated with mitochondria,
ribosomes, mitochondrial and nuclear-encoded RNA, extracellular
matrix proteins, and receptors were downregulated (Figure 2E).
GO_BP enrichment analysis indicated statistically significant
enrichment of the top 6 pathways across the 3 cellular

subgroups, including maintenance of normal biological functions
and homeostasis, extracellular matrix, and the muscular
system (Figure 2F).

3.3 Cellular communication analysis and
construction of gene regulatory networks

The figure demonstrates that the interactions and strengths
among Malignant_Epi_0, Malignant_Epi_1, Malignant_Epi_4,
CAF_0, and other cellular subgroups are relatively strong, while
Malignant_Epi_2, Malignant_Epi_3, Malignant_Epi_5, CAF_1, and
CAF_2 exhibit weaker interactions (Figure 3A). We investigated the
receptor communication relationships within different cellular
subgroups, focusing particularly on the SPP1 receptor
relationships. SPP1 expression levels are notably higher in CAF_0,

FIGURE 2
scRNA-seq analysis unravels the heterogeneity of CAFs in HCC. (A) UMAP visualization of the expression levels of COL1A1 and COL1A2 in the
integrated scRNA-seq dataset. (B) UMAP visualization of the 698 CAFs. (C, D) The predicted developmental trajectories of CAF subsets. (E) The
differentially expressed genes of each CAF subset. (F) Top six enriched GO_BP terms of each CAF subset.
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FIGURE 3
Intercellular communications between CAFs and malignant cells. (A) The intercellular interactions between subsets of CAFs and malignant cells. (B)
The ligand-receptor pairs between CAFs and malignant cells. (C) Expression profiles of SPP1 signaling pathway in CAFs and malignant cells. (D) The
importance of each subset of CAFs and malignant cells in the SPP1 signaling pathway. (E) The incoming/outgoing strength of each subset of CAFs and
malignant cells in the SPP1 signaling pathway (left) and the whole signaling pathways (right). (F) Top ligands in the communication network. Ligand-
target gene matrix denoting the potential regulatory relationships between ligands and target genes among CAFs andmalignant cells. The color intensity
represented the regulatory potentials.
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CAF_1, Malignant Epi 0, Malignant Epi 2, and Malignant Epi
4 subgroups. Among the potential targets of SPP1, ITGB1 is
actively expressed in all cellular subgroups, whereas ITGA4,
ITGA8, and ITGB6 are inactive in most cellular subgroups
(Figures 3B, C). Analysis of the SPP1 signaling pathway network
reveals that Malignant_Epi_0 exhibits higher importance in Sender,
Receiver, Mediator, and Influencer aspects, while Malignant_Epi_
3 demonstrates lower importance (Figure 3D). Both CAF cellular
subgroups and malignant cell populations exhibit weaker outward
and inward interaction strengths in the SPP1 pathway compared to
the entire signaling pathway (Figure 3E). The ligand-receptor gene
matrix indicates binding potential and biological effects only when
IL1B serves as the ligand and IL1RAP, IL1R1, IL1R2 serve as
receptors (Figure 3F). Additionally, using the “SCENIC” package,
we focused on five regulatory factors at the single-cell level in HCC
(BRF1 _extended _29g, ARNTL_extended _39g, ARNTL _24g,
BCLAF1_extended _22g, ATF3_extended _16g). We found that
ATF3_extended _16g is expressed at higher levels in three CAF
cellular subgroups and six Malignant cellular subgroups
compared to the other four factors (Figure 4A). Heatmap
results indicate that, except for ATF3_extended _16g, the
remaining regulatory factors exhibit high expression in the
Malignant_Epi_5, Malignant_Epi_4, Malignant_Epi_3, and
Malignant_Epi_2 cellular subgroups (Figure 4B).

3.4 Unsupervised clustering and survival
disparity analysis

In this section, we explore unsupervised clustering of tumor tissue
samples and investigate survival disparities. Utilizing hierarchical
clustering, we identified k = 2 as the optimal grouping based on

CDF curve analysis and PAC scores. Notably, the consensus matrix
plot exhibited robust intra-cluster cohesion and inter-cluster
distinctiveness (Figures 5A–C). Kaplan-Meier survival curves
unveiled significant survival discrepancies between the two clusters,
with cluster 1(C1) displaying inferior prognosis (p = 0.031, Figure 5D).

3.5 Analysis of HCC tumor
microenvironment disparities

We commenced our investigation by analyzing the relative
infiltration of immune cell subtypes within C1 and Cluster 2(C2).
C1 exhibited higher relative infiltration rates in Activated
CD4 T cells, Central memory CD4 T cells, Central memory
CD8 T cells, and Effector memory CD4 T cells compared to C2,
while C2 demonstrated higher relative infiltration rates in
CD56bright natural killer cells, eosinophils, Regulatory T cells,
and T follicular helper cells compared to C1 (Figure 5E).
Moreover, C1 surpassed C2 in CYT indicators, indicating
heightened cytotoxic activity within C1, which may confer a
favorable anti-tumor response (Figure 5F). In the analysis of
immune cell infiltration, C1 showed elevated levels compared to
C2 in Activated CD4 T cells, Central memory CD4 T cells, Central
memory CD8 T cells, Effector memory CD4 T cells, Regulatory
T cells, T follicular helper cells, and Type 2 T helper cells, while
C2 exhibited higher levels in CD56bright natural killer cells and
eosinophils. Overall, C1 displayed higher infiltration levels
compared to C2 in the MCPcounter, quanTlseq, EPIC, and
TIMER analyses, except for the “Other” category, where C2 was
higher (Figure 6A). Furthermore, in the immune modulator
expression profile, we categorized 150 factors into 5 classes
(chemokine, Immunoinhibitor, Immunostimulator, MHC,

FIGURE 4
The gene regulatory networks (GRNs) in HCC. (A) UMAP visualization of the five regulons at single-cell level of HCC. (B)Heatmap demonstrated the
activity of each regulon in CAFs and malignant cells.
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receptor). Notably, C1 and C2 exhibited significant disparities in
immune infiltration, with C1 displaying markedly higher overall
abundance than C2 (Figure 6B). In the anti-cancer immunity cycle,

Enrichment Scores (ES) of C1 consistently exceeded those of C2,
with the majority of pathways in the immunotherapy-predicted
pathway graph favoring C1 (Figures 7A, B).

FIGURE 5
Signature stratifiesHCC TME into two subclusters with distinct prognosis and biological features. (A) The consensus scorematrix of all sampleswhen
k = 2. A higher consensus score denotes higher similarity. (B) The CDF curves of the consensus matrix for each k (indicated by colors). (C) The PAC score
for each k. (D) KM survival curves with log-rank test demonstrate survival discrepancies between two clusters. (E) Relative infiltration abundances of
28 immune cell subsets in two clusters. p values are determined by the Wilcoxon test. ns: non-significant; *p < 0.05; ***p < 0.001. The activities of
CYT (F), GFP (G), IFNG (H), and TMB (I) between two clusters.
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3.6 Gene set enrichment analysis
enrichment analysis

We conducted Gene Set Enrichment Analysis (GSEA) to identify
the pathways enriched in C1 and C2. Notably, C1 exhibited significant
enrichment in HALLMARK EPITHELIAL-MESENCHYMAL

TRANSITION, HALLMARK E2F TARGETS, and HALLMARK
G2M CHECKPOINT, while C2 showed prominent enrichment in
HALLMARK XENOBIOTIC METABOLISM. Additionally, we
observed that C1 cluster harmoniously upregulated pathways
related to Cell cycle, Hippo signaling pathway, MAPK signaling
pathway, PI3K-Akt signaling pathway, and Protein digestion and

FIGURE 6
Signature stratifies HCC TME into two subclusters with distinct TME landscapes. (A) The infiltration abundance of immune cell subsets evaluated by
CIBERSORT, MCP-counter, quanTIseq, EPIC, and TIMER for two clusters. (B) The expression abundances of immunoregulators for two clusters.
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absorption, while concurrently downregulating pathways
associated with Carbon metabolism, Cholesterol metabolism,
Complement and coagulation cascades, Glycine, serine, and
threonine metabolism, and Oxidative phosphorylation
(Figures 7C, D). Our findings are similar to those obtained from
the differential gene enrichment pathway analysis of malignant tumor
cell subpopulations and CAF-related subpopulations in single-cell
sequencing. Our analytical results demonstrate certain enriched
pathway characteristics of tumors from different data dimensions,
indicating a degree of universality.

3.7 Construction and validation of
prognostic model

The final set of 19 genes was obtained through stepwise Cox
proportional hazards regression, with nonzero coefficients (Figures
8A, B). Subsequently, patients were scored using the model formula
to derive individual RiskScores. Based on the median of RiskScore
calculations, patients were stratified into high-risk and low-risk
groups. As depicted in Figure 8C, patients in the high-risk group
exhibited significantly poorer overall performance compared to

FIGURE 7
Signature stratifies HCC TME into two subclusters with distinct dysregulated pathways. (A) The activities of anti-cancer immunity between two
clusters by GSVA. (B) The activities of immunotherapy-predicted pathways between two clusters by GSVA. *p < 0.05, **p < 0.01, ****p < 0.0001. (C)
Upregulated cancer hallmarks in the two clusters by GSEA. (D) Upregulated (left panel) and downregulated (right panel) pathways in C1.
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those in the low-risk group across all four datasets (p < 0.01)
according to the Kaplan-Meier curves. Our model demonstrated
robust validation performance across the four datasets (AUC > 0.6).
A multiple correlation analysis was conducted, revealing mostly
negative correlations between Riskscore and model genes
(Figure 9A). Additionally, Riskscore exhibited negative
correlations with immune cell infiltration scores (Figure 9B).
Differential expression gene analysis was performed using the
“limma” package to compare high- and low-risk groups, followed
by Gene Set Enrichment Analysis (GSEA) on the selected
differentially expressed genes. Finally, GSEA was employed to
identify pathways upregulated (three on the left) and
downregulated (three on the right) in the high-risk group

(Figure 9C). The above results are analogous to those obtained
from the enrichment analysis of single-cell subpopulations.

3.8 ABCA1 plays a pro-oncogenic role in
HCC cells

RT-qPCR analysis revealed that knockdown of
ABCA1 significantly reduced ABCA1 mRNA expression in
Huh7 cells compared to controls. Conversely, overexpression of
ABCA1 markedly increased ABCA1 mRNA expression in
HepG2 cells (p < 0.001, Figures 10A, B). Colony formation
assays demonstrated fewer colonies in the ABCA1 knockdown

FIGURE 8
Signature-based model demonstrates high accuracy and robust performance in predicting prognosis. (A) The selection of prognostic signature
genes based on the optimal parameter λ that was obtained in the LASSO regression analysis. (B) Lollipop chart of the coefficients of signature genes. (C)
KM curves displayed survival outcomes of patients in two risk groups. Time-dependent ROC curves were drawn to assess survival rate at 1-year, 3-year,
and 5-year.
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group of Huh7 cells and more colonies in the ABCA1-
overexpressing group of HepG2 cells, indicating a role for
ABCA1 in promoting HCC cell proliferation (p < 0.001, Figures
10C, D). CCK8 assays showed decreased cell viability in Huh7 cells
following ABCA1 knockdown, whereas increased viability was
observed in HepG2 cells upon ABCA1 overexpression (p < 0.001,
Figures 10E, F). EDU assays indicated reduced proliferation in
Huh7 cells with ABCA1 knockdown compared to controls (p <
0.001), and increased proliferation in HepG2 cells with
ABCA1 overexpression (p < 0.01, Figure 10G). Wound healing
assays demonstrated reduced cell migration capability following
ABCA1 knockdown (p < 0.001), and enhanced migration upon
ABCA1 overexpression in HepG2 cells (p < 0.01, Figure 11A).
Western blot analysis revealed significant expression differences
of ZO-1, E-cadherin, Vimentin, and Slug proteins between
normal and overexpressing ABCA1 conditions in both Huh7 and
HepG2 cells (Figure 11B). Transwell assays showed increased

invasive cell counts in both control groups, with significantly
higher invasion in cells expressing higher levels of ABCA1 (p <
0.001, Figure 11C). Flow cytometry analysis indicated a higher
apoptotic percentage in cells with lower ABCA1 expression,
suggesting a role for ABCA1 in reducing apoptosis in HCC cells
(p < 0.001, Figure 11D). In summary, ABCA1 plays a pro-oncogenic
role in HCC cells by promoting proliferation, invasion, migration,
and reducing apoptosis.

4 Discussion

HCC represents a major histological subtype of liver cancer and
ranks among the deadliest malignancies. According to relevant data,
the global number of new HCC cases reached 905,677 in 2020, with
830,180 new deaths reported (Foerster et al., 2022). Despite
advancements in therapeutic strategies, the mortality rate of HCC

FIGURE 9
Correlation analysis and enrichment analysis. (A)Correlations between RiskScore and immune checkpoints. (B)Correlations between RiskScore and
infiltration levels of 28 immune cell subsets. (C) Dysregulated pathways in high-risk LIHC patients.
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FIGURE 10
Efficiency validation of ABCA1 knockdown and overexpression and their impact on cancer cell proliferation. (A) RT-qPCR experiment validating the
knockdown efficiency of sh-ABCA1 in Huh7 cell line. (B) RT-qPCR experiment validating the overexpression efficiency of oe-ABCA1 in HepG2 cell line. (C)
Colony formation assay reflecting differences in proliferation levels between ABCA1 knockdown group and control group cells. (D) Colony formation
assay reflecting differences in proliferation levels between ABCA1 overexpression group and control group cells. (E) CCK8 assay reflecting
differences in proliferation levels between ABCA1 knockdown group and control group cells. (F) CCK8 assay reflecting differences in proliferation levels
between ABCA1 overexpression group and control group cells. (G) EDU assay reflecting differences in proliferation levels between ABCA1 knockdown
group, ABCA1 overexpression group, and control group cells.

Frontiers in Pharmacology frontiersin.org15

Yu et al. 10.3389/fphar.2024.1498528

98

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1498528


FIGURE 11
Effects of ABCA1 knockdown and overexpression on cell migration, invasion, and apoptosis capabilities. (A) Wound healing assay validating
differences in migration levels between ABCA1 knockdown group, ABCA1 overexpression group, and control group cells. (B) Western blot validating
differences in migration-related protein expression levels between ABCA1 knockdown group, ABCA1 overexpression group, and control group cells. (C)
Transwell assay validating differences in invasion levels between ABCA1 knockdown group, ABCA1 overexpression group, and control group cells.
(D) Flow cytometry validating differences in apoptosis levels between ABCA1 knockdown group, ABCA1 overexpression group, and control group cells.
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remains high, primarily due to its late-stage diagnosis. Once HCC
progresses to an advanced stage, it becomes highly invasive with a
dismal prognosis, resulting in a 5-year survival rate of around 20%
for patients (Chen et al., 2022).

The optimal treatment for HCC is liver resection or
transplantation, yet the surgical cure rate is only about 20%, and
surgical indications are stringent, leaving most patients with
conservative treatment options (Llovet et al., 2024). Concurrently,
CAFs have been implicated in HCC’s tumor proliferation,
angiogenesis, metastasis, and chemotherapy resistance (Biffi and
Tuveson, 2021). Therefore, investigating the correlation between
malignant cells in HCC and CAFs using bioinformatics techniques,
analyzing the role of HCC-related genes and signaling pathways in
the TME, and constructing prognostic models are of significant
importance. Furthermore, the screening and analysis of
differentially expressed genes contribute to early diagnosis and
precision treatment of HCC.

We downloaded bulk transcriptomic data and corresponding
clinical data of HCC from the public database TCGA, datasets
GSE14520 and GSE76427 from the GEO database, ICGC-JP dataset
from the ICGC database, and three single-cell sequencing datasets
GSE146115, GSE146409, and GSE166635 from the
TISCH2 database. These datasets hold immense research and
application potential in the diagnosis, treatment, and prognostic
assessment of patients.

After quality control, we performed UMAP dimensionality
reduction on the single-cell sequencing data, resulting in
28 clusters, annotated into 12 major cell types. Further UMAP
dimensionality reduction was conducted on 2 cell types—malignant
cell clusters based on EPCAM expression levels and CAFs cell
clusters based on COL1A1 and COL1A2 expression
levels—yielding 6 malignant cell subgroups and 3 CAFs cell
subgroups. By constructing developmental lineages and
trajectories for each cell subgroup, we observed that each
malignant cell subgroup generally exhibited two developmental
trajectories, with the Malignant_Epi_0 cell subgroup likely being
their common developmental origin. In contrast, each CAFs cell
subgroup had only one developmental trajectory, with an unknown
developmental origin. We conducted DEGs analysis for each cell
subgroup. Among the 6 malignant cell subgroups, MT-ND3, MT-
CYB, MT-ATP6, MT-CO2, and MT-CO1 were identified as
differentially expressed genes in the Malignant_Epi_2,
Malignant_Epi_3, and Malignant_Epi_4 cell subgroups, while
ALB, AHSG, and APOE were also identified as differentially
expressed genes in the Malignant_Epi_1 and Malignant_Epi_
5 subgroups, exhibiting a consistent downregulation trend across
all subgroups. We infer that the downregulation of these genes may
promote tumor proliferation and metastasis, leading to unfavorable
prognosis. Among the 3 CAFs cell subgroups, RPL17-C18orf32,
AC135178.2, and MTRNR2L8 were identified as differentially
downregulated genes in CAF_0 and CAF_2, but exhibited an
upregulation trend in CAF_1. Finally, we conducted GO_BP
enrichment analysis and extracted the top six statistically
significant signaling pathways for each cell subgroup.

To delve deeper into the correlation between malignant cells and
CAFs, we conducted cell communication analysis on various cell
subpopulations using the CellChat and NicheNet algorithms.
Beyond examining the frequency and strength of interactions

between each cell subpopulation, we also investigated the
receptor relationships of different pathways within these
subpopulations. Specifically, we focused on the SPP1 signaling
pathway to elucidate the ligand-receptor pairing status. Through
detailed analysis of various components of the SPP1 signaling
pathway, we observed that the Malignant_Epi_0 cell
subpopulation is crucial in all four aspects—Sender, Receiver,
Mediator, and Influencer—while the Malignant_Epi_
3 subpopulation exhibits the opposite pattern, indicating
divergent modes of action concerning SPP1. We also studied the
outward and inward interaction strengths of each cell
subpopulation. Finally, by pairing genes expressed by CAFs as
ligands with genes expressed by malignant cells as receptors, we
analyzed their binding potential and biological efficacy. We found
that only when IL1B acts as the ligand and IL1RAP, IL1R1, and
IL1R2 act as receptors, both binding potential and biological effects
are evident. Furthermore, we constructed GRNs based on single-cell
data from HCC. During this process, we focused on the distribution
and expression of five regulatory factors associated with HCC across
different cell subpopulations: BRF1_extended_29g, ARNTL_
extended_39g, ARNTL_24g, BCLAF1_extended_22g, and ATF3_
extended_16g. BRF1 encodes one of the three subunits of RNA
polymerase Ⅲ transcription factor complex, which plays a core role
in initiating transcription of genes encoding tRNA, 5S rRNA, and
other small structural RNAs. Studies have shown that BRF1 is highly
expressed in human tumor tissues of HCC patients, and inhibiting
its expression can suppress HCC development (Lin et al., 2020).
ARNTL encodes a protein with a basic helix-loop-helix structure
and has been shown to exert anti-tumor effects in many human
cancers. Downregulation of ARNTL in HCC patients promotes
growth and metastasis of HCC cells both in vitro and in vivo,
significantly correlating with low survival rates (Yang et al., 2022).
BCLAF1 interacts with members of the Bcl2 family of anti-apoptotic
proteins and enhances HIF1α expression in HCC tissues under
hypoxic conditions, thereby promoting HCC-related angiogenesis
and disease progression. Therefore, BCLAF1 is likely to be a
therapeutic target for anti-proliferation and anti-angiogenesis
treatment in HCC (Wen et al., 2019). ATF3, a member of the
cAMP responsive element-binding protein (CREB) family, has been
found to be a tumor suppressor that inhibits proliferation and
metastasis of HCC cells. It also significantly correlates with
intrahepatic metastasis and overall survival (OS) of HCC patients
(Chen et al., 2018). For these five regulatory factors, we also explored
differences in their activity levels between malignant and CAF cells.
Subsequently, we merged the target genes of these five regulatory
factors to obtain a signature for unsupervised clustering analysis.

We applied unsupervised clustering analysis to hierarchically
cluster tumor tissue samples, aiming to categorize the samples. By
selecting the most suitable value for (k) [where (k = 2)], we
partitioned the samples into two distinct clusters, denoted as
C1 and C2. Subsequently, we performed KM survival analysis on
each cluster, which showed that the survival rates for both clusters
decreased over time. Following this, we compared the TMEs of the
two clusters.

First, we utilized ssGSEA to score 28 immune cell subsets to
measure their relative infiltration abundance. Comparing the
statistically significant data, we found that in cluster C1, there
were higher levels of immune cell infiltration for Activated
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CD4 T cells, Effector Memory CD4 T cells, Regulatory T cells, and
Type 2 T helper cells. Conversely, in cluster C2, Eosinophils
exhibited higher levels of infiltration compared to cluster C1.
These findings suggest that each cluster may play distinct and
significant roles in different immune response regulations.

Next, we analyzed the expression levels of CYT, GFP, IFNG, and
TMB between clusters C1 and C2, finding that only CYT showed
statistically significant differences, with cluster C1 exhibiting
significantly higher activity than cluster C2. To further
understand the TMEs, we used five different
algorithms—CIBERSORT, MCP-counter, quanTIseq, EPIC, and
TIMER—to assess the infiltration levels of immune cell subsets in
the two clusters. The results aligned with our earlier findings.

We then extracted data for 150 immunomodulators and
chemokines from the TISIDB database, including chemokines,
Immunoinhibitors, Immunostimulators, MHC, and receptors. We
analyzed their expression patterns in both clusters. The results
indicated that these five types of substances were generally highly
expressed in cluster C1 and under-expressed in cluster C2. This
could suggest that cluster C1 is more closely associated with immune
regulation and immune response, while cluster C2might be involved
in the inhibition and regulation of immune activity.

Finally, we used GSVA to measure the enrichment scores for the
anti-cancer immunity cycle and immunotherapy-predicted
pathways in the two clusters. Upon observation, we noted that
the C1 cluster exhibited higher Enrichment Scores in both the anti-
cancer immunity cycle and immunotherapy-predicted pathway.
Therefore, we reasonably infer that target genes within the
C1 cluster play a pivotal role in the regulation and treatment of
anti-cancer immunity. This finding contributes to a better
understanding of the mechanisms underlying different cell
clusters in immunotherapy, while also providing significant
guidance for the formulation of cancer treatment strategies.

We utilized the “limma” package to identify differential genes
between the C1 and C2 clusters and performed GSEA. This revealed
upregulated cancer signatures in both clusters. Specifically, in the
C1 cluster, upregulated cancer signatures were closely associated
with various aspects of tumor initiation, progression, immune
microenvironment, metastasis, and cell cycle regulation.
Conversely, upregulated cancer signatures in the C2 cluster
implicated multiple metabolic pathways, suggesting that
modulating aberrant metabolic pathways might be a crucial
therapeutic strategy in HCC treatment. Additionally, GSEA
helped identify upregulated and downregulated signaling
pathways in the C1 cluster. Analysis revealed that upregulated
signaling pathways were linked to tumor cell proliferation and
signal transduction, while downregulated pathways involved
fundamental metabolic processes such as the complement and
coagulation cascade, energy metabolism, and protein synthesis.
Overall, the abnormal proliferation of cells in the C1 cluster,
coupled with suppressed metabolic processes, exacerbates tumor
growth, dissemination, and metastasis. Furthermore, the
downregulation of the complement and coagulation cascade
pathway may be associated with the abnormal coagulation status
observed in HCC patients.

Utilizing the TCGA-LIHC dataset, we employed LASSO and
multiCOX analysis methods to construct a HCC prognostic model
and assigned scores to model factors, yielding a RiskScore for each

sample. Based on the median score, we stratified samples into high
and low-risk groups. Subsequently, KM curves were plotted to
predict prognosis for both high and low-risk groups, revealing a
progressive decrease in survival rates over time for both groups, with
notably poorer prognosis observed in the high-risk group. We
assessed the model’s diagnostic performance at 1, 3, and 5-year
time points through ROC curve analysis, demonstrating good
performance. Furthermore, we validated the prognostic model in
three external datasets (GSE76427, GSE14520, ICGC-JP) using KM
and ROC curve analyses, showing excellent accuracy and predictive
ability across different datasets.

We then examined the correlation between RiskScore and
various immune checkpoint levels and immune cell infiltration
levels. Differential gene expression analysis was performed to
identify DEGs between high and low-risk groups. Subsequently,
GSEA revealed dysregulated signaling pathways in high-risk group
patients. Analysis indicated that upregulated signaling pathways in
the high-risk group were associated with tumor cell proliferation
and cell cycle regulation, promoting malignant tumor growth and
development. Conversely, downregulated signaling pathways were
linked to anti-tumor immune responses and immune regulation,
likely facilitating tumor immune evasion and affecting the regulation
of the TME, thus exerting significant adverse effects on HCC
prognosis. These inferences also corroborated the accuracy of our
prognostic model.

Single-cell sequencing, with its outstanding resolution,
demonstrates significant advantages over bulk sequencing in
elucidating disease mechanisms. However, considering cost-
effectiveness and the convenience of large-scale application, bulk
sequencing still holds its ground. Therefore, combining these two
technologies for comparative analysis can fully leverage their
respective strengths. In this study, we conducted in-depth
differential expression and enrichment analyses on malignant cell
subpopulations and CAF subpopulations at the single-cell level,
while exploring differential gene enrichment among different
clusters and model risk groups at the bulk sequencing level.

The comparative analysis revealed that both single-cell
sequencing and bulk sequencing identified the universal
upregulation of metabolic pathways in the tumor
microenvironment, suggesting that metabolic reprogramming
may be a common feature in tumor development. Furthermore,
both technologies observed the activation of cell signaling
transduction-related pathways, which are closely related to the
proliferation and migration of tumor cells. Notably, single-cell
sequencing uniquely captured the upregulation of immune
inflammation and neuroregulatory-related pathways in malignant
cell subpopulations, which were not explicitly identified in bulk
sequencing, highlighting the powerful ability of single-cell
sequencing in resolving cell subpopulation-specific characteristics.
On the other hand, bulk sequencing detected the upregulation of
pathways related to epithelial-mesenchymal transition (EMT), a
finding not directly reflected in single-cell sequencing. Given that
EMT is a complex process involving multiple cell subpopulations
and pathway interactions, it may be implicitly manifested in single-
cell sequencing as differential expression patterns among different
subpopulations. Furthermore, we speculate that the upregulation of
metabolic and signal transduction pathways observed in single-cell
sequencing may be intrinsically linked to the activation of cell cycle
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regulation, Hippo signaling pathway, MAPK signaling pathway, and
PI3K-Akt signaling pathway observed in bulk sequencing, all of
which jointly contribute to the proliferation and survival of
tumor cells.

Despite the differences in pathway analysis between single-cell
sequencing and bulk sequencing, they both emphasize the
complexity and heterogeneity of the tumor microenvironment.
This heterogeneity may arise from interactions among different
cell subpopulations and the diversity of pathway regulation. By
integrating the results of these two sequencing technologies, we hope
to gain a deeper understanding of the molecular mechanisms
underlying tumor development and progression, and provide new
perspectives and ideas for the formulation of future therapeutic
strategies.

We conducted knockdown and overexpression experiments of
ABCA1 in two HCC cell lines. Subsequent phenotypic assays
confirmed that ABCA1 exerts a pro-oncogenic effect in HCC
cells by promoting proliferation, invasion, migration, and
reducing apoptosis. Our wet lab experiments corroborate the
bioinformatic findings, providing robust evidence for the role of
ABCA1 in liver cancer. This study not only reinforces the
computational results but also lays a foundation for future research.

However, our study still has certain limitations. We are acutely
aware that relying solely on in vitro experimental results poses
significant constraints when directly translating to clinical
applications. To bridge the gap in clinical translation, we plan to
initially utilize animal models, particularly patient-derived xenograft
(PDX) models and humanized mouse models that closely mimic the
tumor characteristics of patients, to simulate a more authentic in
vivo environment and further explore the functions and
mechanisms of ABCA1. This will include, but is not limited to,
assessing the specific effects of ABCA1 on tumor growth, metastasis,
and the tumor immunemicroenvironment in vivo. Subsequently, we
will employ high-throughput screening and precision medicine
strategies to identify potential therapeutic targets for ABCA1 and
develop corresponding therapeutic interventions. Furthermore, we
will closely monitor changes in relevant biomarkers, with the aim of
establishing a biomarker system that can predict treatment efficacy
and patient prognosis. Our objective is to build a solid evidence base
through advanced preclinical research to guide future clinical trials
and facilitate the clinical translation of ABCA1-related research.

5 Conclusion

Through comprehensive integration of TCGA, GEO, ICGC, and
TISCH2 databases, we conducted single-cell sequencing analysis and
cell communication analysis on multiple malignant and CAFs cell
subpopulations, revealing the functional characteristics and receptor
relationships of each cell subgroup. Additionally, we constructed GRNs,
delving into the regulatory factors associated with HCC and their target
genes. Utilizing an unsupervised clustering analysis based on target
genes, we identified two clusters, C1 and C2, and analyzed their TME
differences. Furthermore, through GSEA, we identified upregulated
cancer features in two clusters and signaling pathways that were both
upregulated and downregulated in the C1 cluster.

We constructed a prognostic model and assigned scores,
grouping patients based on RiskScore and predicting their

prognosis accordingly. The results demonstrated the excellent
accuracy and clinical utility of our model. Additionally, we
discovered a correlation between RiskScore, immune checkpoint
expression, and immune cell infiltration levels. GSEA analysis
revealed dysregulated signaling pathways in the high-risk group,
adversely affecting HCC prognosis. Our study provides important
insights for the prognostic evaluation and formulation of treatment
strategies for HCC.
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CSNK1E is involved in TGF-β1
induced epithelial mesenchymal
transformationas and related to
melanoma immune
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Introduction:Melanoma (MM), the deadliest form of skin cancer, originates from
melanocytes. Despite advances in immunotherapy that have somewhat
improved the prognosis for MM patients, high levels of resistance to treatment
continue to result in poor clinical outcomes. Identifying novel biomarkers and
therapeutic targets is critical for improving the prognosis and treatment of MM.

Methods: In this study, we analyzed the expression patterns of WNT signaling
pathway genes in MM and explored their potential mechanisms. Using Cox
regression analysis, we identified 19 prognostic-related genes. Consistency
clustering was performed to evaluate the potential of these genes as
classifiers for prognosis. The Least Absolute Shrinkage and Selection Operator
(LASSO) algorithm was then applied to refine the gene set and construct a 13-
gene prognostic model. We validated the model at multiple time points to assess
its predictive performance. Additionally, correlation analyses were performed to
investigate the relationships between key genes and processes, including
epithelial-to-mesenchymal transition (EMT) and immune responses.

Results: We identified that CSNK1E and RAC3 were significantly positively
correlated with the EMT process, with CSNK1E showing a similar expression
trend to EMT-related genes. Both genes were also negatively correlated with
multiple immune cell types and immune checkpoint genes. The 13-gene
prognostic model demonstrated excellent predictive performance in MM
prognosis. Pan-cancer analysis further revealed heterogeneous expression
patterns and prognostic potential of CSNK1E across various cancers. Wet
experiments confirmed that CSNK1E promotes MM cell proliferation, invasion,
and migration, and enhances malignant progression through the TGF-β
signaling pathway.

Discussion: Our findings suggest that CSNK1E plays a crucial role in MM
progression and could serve as a potential therapeutic target. The WNT and
TGF-β pathways may work synergistically in regulating the EMT process in MM,
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highlighting their potential as novel therapeutic targets. These insights may
contribute to the development of more effective treatments for MM, particularly
for overcoming resistance to current therapies.

KEYWORDS

CSNK1E, TGF-β 1, epithelial mesenchymal transformationa, melanoma, LASSO

1 Introduction

Melanoma (MM) is the deadliest form of skin cancer (Guo et al.,
2021), accounting for over 75% of skin cancer-related deaths
(Rebecca et al., 2020) and approximately 0.7% of all cancer
mortality (Schadendorf et al., 2018). Moreover, MM is among
the few cancers whose incidence is currently on the rise
(Poklepovic and Luke, 2020).

Melanoma incidence and mortality are higher in men than in
women, and the underlying biological mechanisms responsible for
the sex differences in cutaneous melanoma are unknown and
complicated by clinical variables such as anatomical site, skin
light type, body mass index, and variability in immune response.
Therefore, we sought to investigate prognostic and immunological
differences in melanoma by sex.

Melanocytes originate from neural crest stem cells (NCSC), and
their malignant transformation leads to MM. Typically, MM arises
from nevus and/or intermediate lesions, undergoing progressive
dysplasia before becoming invasive and ultimately metastatic (Lin
and Fisher, 2007). The transformation of melanocytes into MM is
primarily driven by carcinogenic signaling pathways, which are
triggered by a combination of environmental and genetic factors.
Common environmental factors include ultraviolet (UV) exposure
in Caucasians, whereas in individuals of Asian and African descent,
trauma, chronic inflammation, and infections are more prevalent
triggers (Liu et al., 2016; Splendiani et al., 2024). Genetic factors
often involve a relevant family history (Splendiani et al., 2024).
Phenotypic heterogeneity exists within MM, which can significantly
affect diagnosis and prognosis (Grafanaki et al., 2023). Studies have
classified MM into four subtypes based on driving mutations:
BRAF-mutant, RAS-mutant, NF1-mutant, and wild-type BRAF/
RAS/NF1, with common mutations also including KIT or
GNAQ/GNA11 (Kiuru and Busam, 2017). Additionally,
transcriptomic analyses have categorized MM into:
undifferentiated (AXL-high, SOX10/NGFR/MITF-low), neural
crest-like (SOX10-high, NGFR-high, MITF-low), transitory
(SOX10-high, NGFR-medium, MITF-medium), and melanocytic
(SOX10-high, NGFR-low, MITF-high) (Comandante-Lou et al.,
2022). Histopathologically, MM is generally classified into
superficial spreading, nodular, malignant lentigo, and acral
lentiginous types, which may correspond to distinct pathogenic
mechanisms, thus influencing treatment approaches. For
instance, UV exposure may drive BRAF mutations, often
resulting in superficial spreading MM (Armstrong and Cust,
2017), while trauma and inflammation can elevate cytokines and
reactive oxygen species, significantly correlating with acral MM
(Zhang et al., 2014). A comprehensive grasp of the molecular
mechanisms driving MM has advanced the creation of targeted
therapies. Research indicates that immune checkpoint inhibitors are
effective in approximately one-third of patients (Sharma et al.,

2017). BRAF inhibitors (BRAFi), as well as combinations of
BRAFi and MEK inhibitors (MEKi), can benefit up to 50% of
BRAF-mutant patients with advanced MM (Flaherty et al., 2012).
Furthermore, combined checkpoint inhibitors, such as anti-PD-
1 and anti-CTLA-4 antibodies, can improve overall survival in
advanced patients (Rogiers et al., 2019). Talimogene
laherparepvec, as the first approved oncolytic virus therapy, has
also shown survival benefits. However, over 80% of patients
experience recurrence after BRAF/MEK inhibitor treatment, and
the efficacy of targeted therapies in wild-type BRAF patients is
limited (Johnpulle et al., 2016), with 60%–70% of patients not
responding to checkpoint inhibitor therapy (Jerby-Arnon et al.,
2018). Therefore, it is essential to further explore the molecular
mechanisms involved in MM development and to identify key target
genes to enhance treatment and prognostic evaluation.

TheWNT signaling pathway comprises 19 glycoproteins, including
β-catenin, Disheveled (DVL), Lrp6, and Axin (Bryja et al., 2017). This
pathway is involved in regulating the cell cycle and embryonic
development, and it plays significant roles in inflammation and
cancer progression (Clevers, 2006). Recent studies suggest that the
WNT pathway could serve as a biomarker and a potential therapeutic
target in cancer (Miete et al., 2022). There are two main classes into
which theWNT pathway is categorized: the canonical pathway and the
non-canonical pathway (Akoumianakis et al., 2022; Liu et al., 2022;
Zhao et al., 2022). The canonical WNT/β-catenin pathway is linked to
the nuclear translocation of β-catenin and usually plays a role in the
proliferation and maintenance of stem and progenitor cells (Tai et al.,
2015). In contrast, the non-canonical WNT pathways may relate to β-
catenin-independent mechanisms (Zimmerman et al., 2012) and
participate in regulating planar cell polarity (PCP) signaling and
WNT/Ca2+ signaling pathways (Anastas and Moon, 2013). The PCP
signaling pathway modulates cytoskeletal remodeling, cell polarity
regulation, and cell migration (Logan and Nusse, 2004; Semenov
et al., 2007), whereas the WNT/Ca2+ signaling pathway influences
cancer progression and intercellular communication (Liang et al.,
2003; Vargas et al., 2019). Alterations in the WNT signaling
pathway are observed in many cancers. Studies suggest that in
breast cancer, the composition of WNT signaling proteins is
modified, with alterations observed at the DNA level, in mRNA
post-transcriptional modifications, and in protein post-translational
modifications. Nevertheless, the activation of WNT signaling is
mainly driven by epigenetic changes (Xu et al., 2020). In colorectal
cancer (CRC), the WNT/β-catenin pathway is crucial for both the
initiation and sustenance of the disease, with suppression of WNT
pathway expression demonstrating therapeutic potential against CRC
(Zhao et al., 2022). Additionally, the abnormal activation of WNT/β-
catenin signaling may be associated with the development of prostate,
breast, ovarian, and pancreatic cancers (Jung and Park, 2020). Many
surface markers of cancer stem cells serve as targets for the WNT
pathway, and when this pathway is dysregulated, it can result in
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resistance to tumor treatment (Ring et al., 2014). These factors suggest
that the WNT pathway significantly influences the occurrence,
development, and prognosis of various tumors. Currently, multiple
studies have elucidated the role of the WNT/β-catenin pathway in
malignant melanoma (MM), but consensus has not been reached.
Activated canonical WNT/β-catenin signaling has been associated with
reducedmelanoma proliferation, acting as a negative regulator of tumor
growth in both patient-derived tissues and mouse models of melanoma
(Kim et al., 2020). However, other studies have shown that WNT
signaling is reactivated during the malignant transformation of
melanoma (Sinnberg et al., 2018). Aberrant activation of the WNT/
β-catenin pathway has been observed in nearly one-third of human
melanoma cases (Vaid et al., 2016). Despite the conflicting findings
regarding the WNT pathway in MM, its diverse roles in cancer
underscore the necessity for further investigation into its specific
functions in MM. Such research could provide valuable insights for
developing novel therapeutic strategies.

In this study, we aimed to explore potential therapeutic targets of the
WNT pathway in MM through bioinformatics analysis. Initially, we
performed a Cox regression analysis on the WNT pathway gene set,
identifying 19 genes. Subsequently, we conducted consistent clustering
analysis on these 19 genes, resulting in the identification of two subtypes.
We then constructed amodel using these genes and selected 13 that were
prognostically relevant. Using the model, we predicted risk scores for
high-risk and low-risk groups and analyzed the expression levels of the
13 genes within both groups, leading to the identification of two
epithelial-mesenchymal transition (EMT) -related genes, CSNK1E and
RAC3.We conducted a further analysis of the relationship between these
genes and immune cells, particularly noting the relationship between
CSNK1E and immune checkpoints. Finally, we performed a pan-cancer
analysis of the CSNK1E gene, investigating its expression across various
cancers and its prognostic implications, as well as its co-expression with
EMT-related genes. Our work offers new targets for MM research and
provides robust support for both scientific and clinical studies. What’s
more, We conducted three phenotypic experiments following the
knockdown of CSNK1E in human melanoma cell lines to enhance
the credibility of our bioinformatics conclusions.

2 Materials and methods

2.1 Data acquisition and preprocessing

We downloaded the dataset GSE91061 from the Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) website. After
integrating the data, we converted it into Transcripts Per Million
(TPM) format and applied log2 transformation to mitigate excessive
data dispersion. GEO is an open-access database that does not require
additional ethical approval. We adhered to relevant guidelines for data
collection and utilization.

2.2 Gene screening and consistency
clustering

We conducted a Cox regression analysis on 5,917 genes related
to the WNT pathway in MM. Genes were deemed significant if they
met the criteria of p < 0.05 and a hazard ratio (HR) not equal to 1,

indicating their impact on survival in MM patients. A forest plot was
generated using the “forestplot” package to visualize these results,
allowing us to identify genes influencing prognosis based on their
HR. For comparative analysis, we performed consistency clustering
on the selected genes using the R package “ConsensusClusterPlus”.
The optimal number of clusters (k) was established by identifying
the value where the cumulative distribution function (CDF) curve
levels off, signifying maximum stability without any significant
increases. We further validated this k value using a Delta Area
Plot, typically choosing the last inflection point as the optimal cluster
number. Visualization of the results was accomplished with
“ggplot2,” revealing a consistency heatmap that illustrated the
“high cohesion, low coupling” characteristics of the clusters.
Finally, we utilized the R package “survival” to conduct survival
analyses on the identified clusters, employing the “ggsurvplot”
function from the “survminer” package to visualize survival
outcomes between different clusters.

2.3 Model construction and risk assessment

To further identify Wnt pathway genes associated with
prognosis, we employed the Least Absolute Shrinkage and
Selection Operator (LASSO) method to screen and construct a
relevant prognostic model. The optimal model fit is established
by identifying the minimum likelihood deviation on the y-axis of the
cross-validation curve, which signifies the best log(λ) value.
Following this, we included the variables related to this optimal
log(λ) value in the equation. The risk score for each patient was
calculated by summing the products of the coefficients and
expression levels of the respective variables (genes). The
GSE91061 cohort data was divided into high-risk and low-risk
groups based on the median score for risk assessment. Utilizing
the R package “ggrisk”, we demonstrate how patients’ survival times
and the expression levels of the model genes change as the risk score
increases. Following that, survival analysis was performed on both
risk groups, utilizing the “ggsurvplot” package to visualize the
survival curves. Additionally, we assessed the prognostic
prediction efficacy of the model for two risk groups using
receiver operating characteristic curve (ROC), where an area
under the curve (AUC) value greater than 0.6 indicates better
performance. Finally, we visualized the correlation between the
model genes and EMT-related physiological processes using the
“ggplot2” package.

2.4 Survival analysis and immune-
related analysis

Firstly, we conducted survival analyses on the model genes. The
“ggsurvplot” function from the R package “survminer” was
employed to visualize the survival curves. To explore the
connection between gene expression levels and immune cell
infiltration, we utilized “ggplot2,” creating lollipop plots that
demonstrated the correlation between the two selected genes and
immune cells. A significant and strong correlation between the two
variables is considered when p < 0.05 and the |R| > 0.2. A positive R
value indicated a positive regulatory relationship between the gene
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and immune cells, while a negative R value suggested a negative
regulatory relationship.

Subsequently, we selected the four types of immune cells most
strongly correlated with these two genes and visualized the
relationships using scatter plots. The statistical significance was
established at p < 0.05, with the magnitude of R reflecting the
strength of correlation. Based on the outcomes of these correlation
analyses, we further explored immune checkpoint genes related to
CNSK1E using the “IOBR” package for correlation analysis of gene
expression data. This yielded several immune checkpoint genes
significantly correlated with CNSK1E expression, which were
visualized as boxplots using the “ggpubr” package.

2.5 Pan-cancer analysis

We analyzed the expression levels of CSNK1E across 33 cancer
types and compared them with normal control groups, utilizing the
“ggpubr” package for visualization to elucidate the potential role of
CSNK1E in cancer development. We then investigated the effect of
the CSNK1E gene on overall survival (OS) in these cancers, treating
results as statistically significant when p < 0.05. Prognostic relevance
was assessed based on the log10 (HR) values: a log10 (HR) >
0 indicated that abnormal CSNK1E expression may correlate
with poorer survival rates, while log10(HR) < 0 suggested a
potential association with better survival rates. Further, we
analyzed the co-expression of CSNK1E with nine genes related to
EMT to investigate the relationship between CSNK1E and EMT,
hypothesizing potential functions of CSNK1E that could accelerate
the discovery and functional analysis of new genes. Finally, we
conducted a dry analysis on 37 different cancer types, identifying
statistical significance at p < 0.05. To assess the strength of the
association with stem cells, the Pearson correlation coefficient was
used, where higher coefficients reflect stronger correlations. This
was visualized using “ggplot2” to examine the similarities between
tumor cells and stem cells.

2.6 Tissue acquisition from patients

We selected melanoma and normal tissue samples from six
patients diagnosed with melanoma at Southern Hospital. All
selected patients received a definitive diagnosis of melanoma,
with other diseases excluded, and none had undergone any
treatment prior to sampling. Informed consent was secured from
all patients to safeguard their privacy and rights. The ethics
committee of Southern Hospital approved our experimental
ethics documents.

2.7 Cell culture and transfection

For the wet lab validation of our results, we utilized human
melanoma cell lines COLO 792, COLO 829, SK-MEL-3, Hs 939. T,
and A-375, along with the normal human skin cell line TE353. sk, all
sourced from the Chinese Academy of Sciences Cell Bank. COLO
792 and COLO 829 were cultured in Roswell Park Memorial
Institute 1,640 (RPMI-1640, HyClone, United States), while SK-

MEL-3, Hs 939. T, A-375, and TE353.sk were cultured in Dulbecco’s
Modified Eagle Medium (DMEM, HyClone, United States). All
media contained 10% fetal bovine serum (FBS, KeyGEN, China)
and 1% penicillin-streptomycin mix (Procell, China), with cell
culture flasks incubated at 37°C in 5% CO2. The medium was
replaced every 36 h to maintain the cells in a good logarithmic
growth phase.

We conducted transfection experiments for the cell lines COLO
792 and COLO 829. To inhibit the expression of the gene CSNK1E
in the cell lines, we commissioned a biotech company to design and
produce siRNA and shRNA (Sangon Biotech, China) for knocking
down CSNK1E, using a negative control (NC) as a comparison.
Trypsin (KeyGEN, China) was used to digest the cells, which were
then thoroughly resuspended in the culture medium. Following this,
the cells were evenly distributed into a 6-well plate at a density of 3 ×
104 cells per well, with each well adjusted to a total volume of 2 mL
using the medium. After observing cell adhesion under the
microscope, siRNA was mixed with the transfection reagent
LipofectamineTM 3,000 (Thermo, United States) in a specified
ratio and allowed to sit at room temperature for 10 min as per
the instructions. The mixture was then added to the wells using a
micropipette. During transfection, the medium was replaced every
5 h, and experiments were carried out 48 h after the transfection was
completed. The sequences of the shRNAs used in our study are as
follows (5′-3′):

sh-Negative control: UUCUCCGAACGUGUCACGU
sh- CSNK1E-1: CUUAGUGUCUUCAUGUAU
sh- CSNK1E-2: AGCGGGUCCUUCGGAGAU.

2.8 Western blot assay

First, we extracted protein from both tissue and cell samples. For
patient and normal control tissues, we added protein lysis buffer
(Beyotime, China, RIPA lysis buffer: protease inhibitor = 100:1) to
the pre-weighed tissues, minced them on ice, and subjected them to
ultrasonic disruption. For the cell lines, the cells in the 6-well plate
were digested and transferred to centrifuge tubes, centrifuged at
800 rpm for 5 min, and the supernatant was discarded. The protein
lysis buffer was added to the cell pellet, and the mixture was
thoroughly mixed using a pipette. Both the disrupted tissue and
cell mixtures were lysed on ice for 30 min, with gentle mixing every
10 min. Subsequently, they were centrifuged at 12,000 rpm at 4°C for
15 min, and the supernatant was retained. Next, we determined the
protein concentration using the BCA method, performed in a 96-
well plate with three replicates for each sample group. Each well
received 2 µL of the protein sample, 18 µL of PBS, varying
concentrations of protein standard solutions, and 200 µL of BCA
working solution (Beyotime, China), followed by incubation at 37°C
for 30 min. Absorbance at 562 nm was then measured using a
microplate reader to determine the concentrations of the protein
samples and to estimate the loading amounts for electrophoresis.
Each lane was prepared by mixing the sample with loading buffer
(Beyotime, China) and PBS in a specified ratio, heated in a 95°C
water bath for 5 min to denature the proteins, and then cooled on
ice. The sample proteins were subjected to SDS-PAGE
electrophoresis at 150V, which was stopped after approximately
1 h. The membrane transfer was subsequently carried out by
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assembling the apparatus and adding the transfer buffer, followed by
setting a current of 200 mA to transfer the proteins onto a PVDF
membrane. The PVDF membrane was placed in an incubation box,
where blocking solution was added and the membrane was
incubated on a shaker at room temperature for 15 min. Dilute
the primary antibody (Polyclonal antibody, Proteintech,
United States) and add it to the incubation box, then shake
overnight at 4°C. Subsequently, introduce the diluted secondary
antibody (HRP-conjugated Goat Anti-Rabbit IgG (H + L), Cat No:
SA00001-2, Proteintech, United States) and incubate at room
temperature for 1.5 h. Prior to the addition of the blocking
solution, primary antibody, and secondary antibody, as well as
after the incubation, wash the PVDF membrane three times with
TBST (KeyGEN, China), allowing 5 min between each wash. Finally,
apply chemiluminescent substrate to the PVDFmembrane, expose it
using a luminescence imaging system, and quantify the protein band
intensity using ImageJ software.

2.9 Colony formation assay

After 48 h of transfection, we performed a colony formation
assay on the cell lines COLO 792 and COLO 829. The cells from
the original six-well plate were digested with trypsin and seeded
into a new six-well plate, with 700 cells per well. The new six-well
plate was placed in a 37°C incubator with 5% CO2 to continue cell
culture, with media changes and cell observations every 72 h.
Cultivation was stopped and images were taken when it was
observed under a microscope that the majority of individual
clones contained more than 50 cells. After washing with PBS,
1 mL of paraformaldehyde (Solarbio, China) was added to each
well to fix the cells for 30 min, followed by the addition of 1 mL of
crystal violet staining solution (Solarbio, China) to each well for
cell staining. After 40 min, the cells were rinsed multiple times
with PBS and then left to dry. Finally, photographs were taken of
the entire six-well plate and each individual well, and the cells
were counted.

2.10 Wound healing assay

We conducted a scratch assay on the COLO 792 and COLO
829 cell lines 48 h post-transfection. Cells were placed in a 24-
well plate, with the culture medium being changed every 6 h. A
200 µL pipette tip was used to gently and uniformly create a linear
scratch in each well, assisted by a ruler, followed by PBS washing
to remove floating cells. Images of the wells were captured at this
point (designated as time zero) to record the wound area. A basic
medium without FBS was then added, and the plate was
incubated at 37°C. After an additional 48 h, we captured
images again to assess wound healing and document the
wound area at the 48-h mark. Furthermore, for the COLO
792 cell line, we also investigated the effects of varying
concentrations of TGF-β1 (0 ng/mL, 10 ng/mL, and 20 ng/
mL) on cell migration capabilities, as well as the impact of
knocking down CSNK1E on high-concentration TGF-β1
(20 ng/mL) induced cell migration.

2.11 Transwell assay

To assess the invasion and migration capabilities of the cells
before and after CSNK1E knockdown, we conducted a transwell
assay on the COLO 792 and COLO 829 cell lines, 48 h following
transfection. The cells were digested with trypsin and resuspended in
serum-free medium. Chambers (Corning, United States) were
placed in each well of a 24-well plate, and the cells were evenly
seeded into the chambers at a density of 4 × 104 cells per well. Each
chamber was filled with a total volume of 200 µL of serum-free
medium, while 600 µL of FBS-rich medium was added outside the
chambers. The 24-well plate was then incubated at 37°C for 24 h.
Following this, the media inside and outside the chambers were
discarded, and the chambers were washed with PBS. After adding
paraformaldehyde to the wells, the chambers were fixed at room
temperature for 20 min. Crystal violet staining was performed in the
dark for 20 min, followed by PBS washing, and any remaining cells
inside the chambers were scraped off using moist cotton swabs.
High-power fields (200× magnification) of the chambers and wells
were captured under a microscope, and cell counts were facilitated
using ImageJ software. We evaluated the cells’ migration and
invasion capabilities in succession through the transwell assay. n
preparation for the invasion assay, the chambers were pre-coated
with Matrigel (Corning, United States) before seeding the cells;
however, this step was omitted for the migration assay. Additionally,
for the COLO 792 cell line, we investigated the effects of different
concentrations (0 ng/mL, 10 ng/mL, and 20 ng/mL) of TGF-β1 on
cell invasion and migration, as well as the impact of high-
concentration TGF-β1 (20 ng/mL) following CSNK1E knockdown.

2.12 Immunofluorescence assay

To examine the alterations in protein levels of CSNK1E,
Vimentin, and ZO1 after CSNK1E knockdown, we conducted
an immunofluorescence assay on the COLO 792 cell line. After
48 h of transfection, the cells were digested with trypsin and
seeded into a 12-well plate, replenishing the well volume with
culture medium to allow for adhesion. Following a wash with
PBS, the cells were fixed with formaldehyde for 30 min and then
washed three times with PBS. Subsequently, 0.2% Triton X-100
(Gibco, United States) was added to permeabilize the cell
membrane at room temperature for 5 min. Afterward, a
blocking solution (Gibco, United States) was added, which was
removed after 60 min using a pipette. The diluted primary
antibody (Proteintech, United States) was then introduced to
the wells, and the 12-well plate was incubated overnight at 4°C on
a shaker. After washing with PBS to remove unbound primary
antibody, the diluted secondary antibody (CoraLite488-
conjugated Goat Anti-Rabbit IgG (H + L), Cat No: SA00013-
2, Proteintech, United States) was added and incubated at room
temperature for 40 min, with unbound secondary antibody also
washed away with PBS. Finally, DAPI fluorescent dye
(SINOPHARM, China) was applied to the wells and incubated
in the dark for 5 min to label the cell nuclei. The results were
examined, and images were taken with a fluorescence
microscope.
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2.13 Statistical analysis

All statistical analyses were conducted using R software (version
4.1.3). Unless otherwise specified, our figures were generated using
the “ggplot2” package. A p-value less than 0.05 was considered
statistically significant (*p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001).

3 Result

3.1 Gene screening and consistency
clustering

We initially conducted a Cox analysis on 5,917 genes involved in
the WNT pathway, identifying 19 genes including PRKCG and
WNT1. Among these, 10 genes, such as PRKCG and WNT1,
exhibited HR less than 1, indicating they may serve as protective
factors against MM, suggesting their expression is associated with a
lower risk of disease or better prognosis. Conversely, 9 genes,
including RAC3 and VANGL1, had HR values greater than 1,
categorizing them as risk factors for MM, where their expression
could indicate a higher risk of disease or poorer prognosis (p < 0.05,
HR ≠ 1, Figure 1A). Subsequently, we performed consistency
clustering on the selected 19 genes. The CDF curve plateaued
when k reached the optimal number of clusters, verified by the
Delta area, resulting in k = 2 (Figure 1B). Thus, we categorized all
samples into two subtypes: C1 and C2, which exhibited
characteristics of “high cohesion, low coupling” in the
consistency heatmap (Figures 1C, D). We then conducted
survival analysis on subtypes C1 and C2. The OS prediction for
C1 was significantly higher than that for C2 (p < 0.05, Figure 1E).

3.2 Model construction and risk assessment

We constructed a LASSO regression model using 19 selected
genes. The cross-validation curve indicated that the optimal fitting
effect was achieved when the variable corresponding to log (λ) was
13, as evidenced by the lowest point on the y-axis (Figure 2A). Basing
on the median risk score, we stratified the GSE91061 dataset into
high-risk and low-risk groups. Over time, both groups exhibited a
significant decline in survival counts and an increase in mortality;
however, the survival count in the high-risk group was markedly
lower than that in the low-risk group. In the low-risk group, there’s
an increase in the expression levels of SFRP1, FZD6, RAC2, PLCB2,
PRKACB, CAMK2B, WNT1, and PRKCG, while in the high-risk
group, PPP2RIA, CSNK1E, WNT11, VANGL1, and RAC3 showed
higher expression levels (Figure 2B). Subsequently, we conducted
survival analysis for both risk groups. As time progressed, the OS
predictions for both groups declined, while cumulative risk
increased. It is important to highlight that the overall survival
predictions for the high-risk group were markedly lower than
those for the low-risk group, which also showed a significantly
lower cumulative risk. In order to evaluate the model’s predictive
performance, we employed ROC curves, which revealed AUC values
exceeding 0.6 for 1-year, 3-year, and 5-year predictions, indicating
satisfactory predictive performance (Figure 2C). Furthermore, we

analyzed the correlation between the model genes and physiological
processes associated with EMT. Our findings demonstrated a
negative correlation between the physiological process of positive
regulation of epithelial cell migration and the genes CSNK1E and
RAC3, while a positive correlation was observed between the
epithelial-to-mesenchymal transition process and CSNK1E and
RAC3 (p < 0.01, Figure 2D).

3.3 Survival analysis and immune
correlation analysis

We conducted survival analyses on the 13 genes identified in our
model, assessing the variations in survival rates associated with high
versus low expression levels. Among these, the high expression group of
CAMK2B, FZD6, PLCB2, PRKACB, RAC2, SFRP1, and
WNT1 exhibited significantly better survival rates than the low
expression group. In contrast, the low expression group of PLAAT1,
RAC3, PPP2R1A, CSNK1E, VANGL1, and WNT11 was associated
with significantly better survival rates (p < 0.05, Figure 3). Additionally,
we conducted an analysis of the correlation between CSNK1E and
RAC3 across 24 different immune cell types. CSNK1E demonstrated
negative regulatory relationships with 21 immune cells, notably the
strongest with T cells, while RAC3 showed similar negative correlations
with 18 immune cells, particularly with Macrophages and activated
dendritic cells (p < 0.05, R < 0, Figures 4A, B). We chose the four
immune cell types that exhibited the strongest correlations with these
genes for scatter plot analysis. This analysis revealed a negative
correlation between CSNK1E expression and T cells, cytotoxic cells,
activated dendritic cells, and dendritic cells (p < 0.001, R < −0.3,
Figure 4C), as well as a similar relationship for RAC3 with
Macrophages, activated dendritic cells, TFH, and T cells (p < 0.001,
R < −0.3, Figure 4D). Notably, both genes exhibit a significant negative
correlation with T cells. Subsequently, the relationship between
CSNK1E expression and ten immune checkpoint genes was
analyzed. Fluctuations in CSNK1E expression correlated with
elevated levels of six immune checkpoints: CD274, CTLA4,
HAVCR2, LAG3, PDCD1, and TIGIT, particularly pronounced in
CNSK1E low expression group. In contrast, IGSF8, ITPRIPL1, and
SIGLEC15 showed no significant differences between the high and low
expression groups of CSNK1E; however, the expression levels in both
groups were higher than those in the normal group. Elevated immune
checkpoint expression suggests a stronger suppression of immune
function, potentially linked to poorer prognoses in MM (p <
0.05, Figure 4E).

3.4 Pan-cancer analysis

We conducted a pan-cancer analysis of CSNK1E across
33 different cancer types, comparing its expression levels in
tumor versus normal groups. Notably, in 15 cancers, including
bladder cancer (BLCA), cholangiocarcinoma (CHOL), colorectal
cancer (COAD), esophageal cancer (ESCA), head and neck
squamous cell carcinoma (HNSC), kidney renal clear cell
carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP),
liver hepatocellular carcinoma (LIHC), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), pan-cancer
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(PCPG), prostate cancer (PRAD), rectum adenocarcinoma (READ),
stomach adenocarcinoma (STAD), and thyroid carcinoma (THCA),
the tumor group exhibited significantly higher expression levels

compared to the normal group (p < 0.05, Figure 5A). Subsequently,
we performed a prognostic analysis across these 33 cancers,
identifying CSNK1E as a risk factor in 12 cancer types, including

FIGURE 1
Gene Screening and Consistency Clustering. (A) Forest plot of Cox regression analysis for WNT pathway gene set; (B) Consistency cumulative
distribution function and Delta area plot; (C)Consistency heatmapwith two clusters; (D)Heatmap of differentially expressed genes; (E) Survival curves for
patient groups C1 and C2.
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FIGURE 2
Model Construction and Risk Assessment. (A) Path plot of regression coefficients and cross-validation curve; (B) Triplet plot of risk scores for high
and low-risk groups in the GSE91061 cohort; (C) Survival curves and ROC curves for high and low-risk groups in the GSE91061 cohort; (D) Heatmap
showing the correlation between 13 genes and EMT.
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adrenocortical carcinoma (ACC), BLCA, HNSC, KIRC, lower grade
glioma (LGG), LIHC, LUAD, mesothelioma (MESO), ovarian
cancer (OV), sarcoma (SARC), skin cutaneous melanoma
(SKCM), and uveal melanoma (UVM), with a correlation to
poorer prognosis (p < 0.05, log10(HR) > 0, Figure 5B). We
further analyzed the co-expression of CSNK1E with genes related
to EMT. In the low expression group, the levels of nine EMT-
regulating genes—TRIM28, GSK3B, NOTCH1, SMAD4, CUL7,
SNAI1, TGFBR1, CTNNB1, and HIF1A—were significantly
diminished compared to those in the high expression group. This
finding suggests a potential association between increased CSNK1E
expression and enhanced EMT activity (Figure 5C). Finally, we
assessed gene stemness across 37 cancers, observing a significant
negative correlation in brain cancer (GBMLGG), acute myeloid
leukemia (AML), and LGG, while a noteworthy positive
correlation was found in both testicular cancer (TGCT) and
thymoma (p < 0.05, Figure 5D).

3.5 CSNK1E plays a pro-cancer role
in melanoma

According to the results from Western blot assays, CSNK1E is
expressed in both normal and tumor tissues, with significantly

higher levels in tumor samples. In six cell lines—COLO 792,
COLO 829, TE353. sk, SK-MEL-3, Hs 939. T, and A-
375—CSNK1E expression was notably greater in cancer cell lines
in comparison to normal skin cells. The bar graph depicting the
relative expression levels of proteins indicates that the silencing of
CSNK1E resulted in a marked decrease in protein levels, dropping
below 50% of the NC group, indicating effective transfection (p <
0.001, Figure 6A). Images and corresponding bar graphs from the
colony formation assays for COLO 792 and COLO 829 reveal that
silencing CSNK1E significantly decreased the number of colonies
formed, indicating reduced cell proliferation (p < 0.001, Figure 6B).
Results from wound healing assays demonstrated a significant
decrease in wound healing percentage after CSNK1E silencing,
reflecting diminished cell migration capabilities (p < 0.001,
Figure 6C). Transwell assays demonstrated that the number of
invasive and migratory cells in the CSNK1E knockdown groups
was significantly reduced compared to the NC group. Further
indicating reduced invasive and migratory abilities (p < 0.01,
Figure 7A). After silencing CSNK1E, there was a notable rise in
the protein levels of E-Cadherin and ZO1, while levels of
N-Cadherin, Vimentin, and MMP9 significantly decreased (p <
0.001, Figure 7B). Immunofluorescence results indicated that
following shRNA-mediated CSNK1E knockdown, intracellular
levels of CSNK1E and Vimentin decreased, while ZO1 levels

FIGURE 3
Survival curves for the 13 genes.
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FIGURE 4
Immune-Related Analysis. (A) Lollipop plot depicting the correlation between CSNK1E and 24 immune cell types; (B) Lollipop plot depicting the
correlation between RAC3 and 24 immune cell types; (C) Scatter plot illustrating the correlation between CSNK1E and four immune cell types; (D) Scatter
plot illustrating the correlation between RAC3 and four immune cell types; (E) Boxplot of expression differences for 10 immune checkpoint genes
associated with CSNK1E across high, low, and normal expression groups.
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increased (Figure 7C). Additionally, TGF-β1 was found to enhance
cell migration, with varying effects at different doses. Specifically, as
TGF-β1 concentration increased from 0 ng/mL to 10 ng/mL and
20 ng/mL, wound healing percentage significantly improved (p <
0.05). However, following CSNK1E knockdown, the migratory
enhancement effect of TGF-β1 was diminished, showing no
statistical difference in wound healing percentage at 20 ng/mL

TGF-β1 compared to controls. This suggests that silencing
CSNK1E can reverse the TGF-β1-induced migration in cancer
cells, implying a potential synergistic role of CSNK1E in TGF-
β1-related pathways (Figure 8A). Transwell experiments yielded
similar results: increased TGF-β1 concentrations significantly
enhanced cell invasion and migration, but the effects were
attenuated following CSNK1E silencing, although the number of

FIGURE 5
Pan-Cancer Analysis. (A) Violin plot of differential expression of CSNK1E across 33 cancer types; (B) Heatmap of survival analysis for CSNK1E in
33 cancer types; (C) Co-expression heatmap of CSNK1E with EMT-related genes across high and low expression groups; (D)Graphical representation of
stemness analysis across 37 cancer types.
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FIGURE 6
Expression of CSNK1E in various tissues and cell lines, and its impact on proliferation and migration. (A)Western blot images and corresponding bar
graphs of relative protein expression levels of CSNK1E in different tissues and cell lines, as well as following knockdown; (B) Images from the colony
formation assay along with the corresponding bar graph of colony numbers; (C) Images from the wound healing assay and bar graph showing the
percentage of wound healing.
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FIGURE 7
Effects of CSNK1E on invasion andmigration, along with its influence on related protein expression. (A) Images from the transwell assay stained with
crystal violet and bar graph of relative cell numbers; (B) Western blot images and corresponding bar graph of relative expression levels; (C)
Immunofluorescence images.
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FIGURE 8
Investigation of the interaction betweenCSNK1E and TGF-β1. (A) Images from thewound healing assay and bar graph of wound healing percentages
after CSNK1E knockdown at different concentrations of TGF-β1; (B) Images from the transwell assay stained with crystal violet and bar graph of relative
cell numbers at varying concentrations of TGF-β1; (C)Western blot images and bar graph of relative expression levels of proteins in the COLO 792 cell line
under different doses of TGF-β1; (D) Western blot images and bar graph of relative expression levels after CSNK1E knockdown at a fixed
concentration of TGF-β1 in the COLO 792 cell line.
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invasive and migratory cells at 20 ng/mL TGF-β1 remained higher
than controls, indicating partial reversal of TGF-β1’s effects by
CSNK1E knockdown (p < 0.001, Figure 8B). Finally, protein
band and expression level bar graphs indicated that following
TGF-β1 addition, E-Cadherin levels significantly decreased, while
Smad2, N-Cadherin, Vimentin, and MMP9 levels increased.
Notably, when TGF-β1 concentration increased from 10 ng/mL
to 20 ng/mL, the levels of Smad2 and MMP9 decreased. Post-
CSNK1E knockdown, only E-Cadherin levels significantly increased
compared to controls, while the other four proteins showed
significant reductions, further supporting the notion of CSNK1E’s
synergistic role in TGF-β1-related pathways at the molecular level
(p < 0.001, Figure 8C).

4 Discussion

Melanoma (MM) is the most lethal type of skin cancer and
presents significant treatment challenges among solid tumors
(Wolchok and Saenger, 2007). Its onset is linked to the
malignant transformation of melanocytes (Lo and Fisher, 2014),
and it exhibits a high level of immunogenicity, making
immunotherapy a significant treatment modality. However, early
immunotherapy approaches have shown substantial cytotoxicity
(Ozbay Kurt et al., 2023). Data indicate that 40%–80% of
patients may possess innate resistance to immune checkpoint
inhibitors (ICIs), and the therapy combining CTLA-4 and PD-1
has been associated with severe adverse effects (Ballotti et al., 2020).
Consequently, investigating the mechanisms underlying resistance
in MM, identifying key biomarkers and exploring pivotal target
genes are of great importance, as these factors are essential for
diagnosis, treatment, and prognosis. There’s a close association
between the WNT signaling pathway’s abnormal activation and
the development and progression of several cancers (Zhang et al.,
2018), including its role in promoting tumor dissemination and the
development of resistance. Several proteins within the WNT
pathway have been identified as potential therapeutic targets and
biomarkers. However, research on the WNT pathway in MM
remains limited. This study investigates the potential roles of
WNT-related genes in MM and develops a prognostic model,
thereby offering constructive insights and directions for
discovering new therapeutic targets and enhancing
prognosis in MM.

We conducted a Cox regression analysis on the gene set
associated with the WNT pathway, identifying 19 genes linked to
the occurrence and prognosis of malignant melanoma.
Subsequently, these 19 genes underwent consistent clustering,
resulting in two distinct subtypes. The consistency heatmap
demonstrated characteristics of “high cohesion and low
coupling”. The survival differences between clusters C1 and
C2 were statistically significant, indicating the reliability of the
classification and establishing that k = 2 is the optimal number
of clusters. Next, we developed a LASSO regression model
incorporating 13 of the identified genes, including PPR2R1A,
CSNK1E, and WNT11. Using the risk scores generated by this
model, we classified the samples into high-risk and low-risk groups.
The high-risk group exhibited poorer survival outcomes,
characterized by elevated expression of five genes, including

CSNK1E and RAC3, suggesting their potential influence on
prognosis. There was a statistically significant difference in
survival between the high- and low-risk groups, with the low-risk
group exhibiting a substantially higher survival rate. The ROC curve
analysis revealed that the model demonstrated strong predictive
performance, indicating that the results might be widely applicable.
Additionally, we examined the relationship between the 13 genes
and the EMT process. Notably, CSNK1E and RAC3 demonstrated a
significant correlation with EMT, indicating their potential
involvement in mediating the metastatic process of MM cells, as
EMT facilitates tumor cell invasion through the basement
membrane into the bloodstream. Survival analysis of the 13 genes
revealed that high expression levels of CAMK2B, FZD6, PLCB2,
PRKACB, RAC2, SFRP1, andWNT1 were associated with improved
survival rates, suggesting that the activation of these genes may
positively influence MM prognosis. Conversely, the activation of
PLAAT1, RAC3, PPP2R1A, CSNK1E, VANGL1, and
WNT11 correlated with poorer prognostic outcomes.

We assessed the relationship between CSNK1E and
RAC3 across 24 immune cell types, discovering that CSNK1E
had the strongest correlation with T cells, whereas RAC3 was
most closely linked to macrophages and also showed a notable
association with T cells. Considering the crucial impact of immune
checkpoint expression on T cell functionality, we further explored
the connection between CSNK1E and ten immune checkpoints.

We then performed a pan-cancer analysis of CSNK1E across
33 different cancer types. Remarkably, in 15 of these cancers,
including BLCA, CSNK1E expression levels in tumor samples
were significantly elevated compared to normal tissues. This
finding implies that CSNK1E might have a comparable role in
various cancers, leading us to propose that it could act as a
potential biomarker for early diagnosis and treatment across
multiple cancer types. Additionally, we investigated the
relationship between CSNK1E expression and prognosis across
the 33 cancer types, identifying it as a risk factor in 12 of them,
including ACC and BLCA. Following this, we analyzed the co-
expression patterns of CSNK1E with genes linked to EMT. The
high-expression group of CSNK1E exhibited more active expression
of EMT-related genes, leading us to speculate that CSNK1E may
influence the invasiveness and metastatic capabilities of MM cells
through its regulatory role in EMT. This could potentially provide
new therapeutic targets for MM treatment and prognosis
assessment. Finally, we explored the relationship between stem
cells and 37 cancer types. Our findings may offer a novel target
for MM therapy and provide theoretical support for advancements
in biotechnology.

Using the LASSO machine learning algorithm, we identified
19 genes associated with the WNT signaling pathway and
constructed a regression model comprising 13 genes, including
PRR2R1A, CSNK1E, WNT11, VANGL1, and RAC3. The CSNK1E
gene encodes casein kinase 1 epsilon (CK1ε), which primarily regulates
circadian rhythms by phosphorylating clock gene products
(Knippschild et al., 2005). Additionally, CK1ε influences cell
differentiation and proliferation through protein phosphorylation
(Meng et al., 2010). Moreover, CK1ε is capable of phosphorylating
other critical proteins within the WNT signaling pathway, so that it
can regulate cell division and tumor growth in pancreatic cancer,
salivary gland cancer, and colorectal adenocarcinoma (Brockschmidt
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et al., 2008; Frierson et al., 2002). For example, CK1ε is involved in
phosphorylating low-density lipoprotein receptor-related proteins
5 and 6 (LRP5/6) as well as Dvl (Price, 2006), which subsequently
promotes the recognition of the Axin and glycogen synthase kinase
3 beta (GSK-3β) complex (Mao et al., 2001). The phosphorylation of β-
catenin by GSK-3β is inhibited by the LRP5/6 complex subsequently
(Piao et al., 2008), thereby extending the half-life of β-catenin (Del
Valle-Pérez et al., 2011). Additionally, CK1ε collaborates with GSK3β
to phosphorylate adenomatous polyposis coli (APC), thereby
facilitating the binding of β-catenin to APC (Rubinfeld et al.,
2001). In the p53 signaling pathway, DNA damage facilitates the
interaction between CK1ε and its binding partner, MDM2, resulting in
multivalent phosphorylation of MDM2 and enhancing p53 activity
(Schittek and Sinnberg, 2014). Nonetheless, there is a notable absence
of literature on the role of CSNK1E inMM at present, highlighting the
need for further research into its functions in tumor biology. RAC,
belonging to the Rho GTPase subfamily (Hodge and Ridley, 2016),
encompasses three isoforms: RAC1, RAC2, and RAC3 (Haataja et al.,
1997). These proteins, along with their closely related homolog Cdc42,
play multifaceted roles in cellular processes such as cytoskeletal
regulation, EMT, transcription, proliferation, cell polarity, apoptosis,
phagocytosis, and vesicular transport. They serve as central regulatory
factors in the metastasis and invasion of cancer cells (Maldonado et al.,
2020). Notably, overexpression of RAC3 has been implicated in the
development of various cancers. In typical circumstances, RAC3 is
mainly found in brain tissue and neuronal cells (Corbetta et al., 2009),
yet its expression is upregulated in breast cancer, prostate cancer, and
brain tumors. In aggressive breast cancer, RAC3’s specific binding
partner CIB1 facilitates the recruitment of RAC3, promoting integrin
activation at invasive pseudopodia, thereby regulating adhesion and
degradation of the extracellular matrix (ECM) (Wang et al., 2022).
With its ectopic expression allowing cells to avoid excessive autophagy
and cell death caused by the inhibition of isoprenylcysteine carboxyl
methyltransferase (Icmt) (Zhu et al., 2011). Nevertheless, the precise
function of RAC3 in MM is still not well defined, highlighting the
necessity for further research into its roles.

5 Conclusion

In this study, we first conducted Cox regression analysis on a gene
set associated with the WNT signaling pathway, followed by consistent
clustering. We then employed the LASSO algorithm to construct a
model and assessed risk within the GSE91061 cohort. Additionally, we
examined the relationship between 13 genes and EMT, conducting
immune analysis on the two genes that showed the strongest
correlations. Finally, a pan-cancer analysis of CSNK1E was
conducted, and we explored the co-expression of EMT-related
genes. Our findings offer new targets for MM research, providing
theoretical support for both scientific inquiry and clinical investigation.
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Transcriptome analysis of ovarian
cancer uncovers association
between tumor-related
inflammation/immunity and
patient outcome
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Wenhao Wang1*
1Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan,
Shanxi, China, 2Department of Stomatology, Changzhi Medical College, Changzhi, Shanxi, China

Background: Epithelial ovarian cancer (EOC) is a cancer that affects the female
reproductive system and is highly lethal. It poses significant challenges in terms of
treatment and often has a poor prognosis. In recent years, with the advent of
PARPi, the treatment of ovarian cancer has entered a new stage of full-process
management. Although more and more drugs have been approved, the
therapeutic effect of PARPi is still very limited. With the rapid development of
PD-1/PD-L1, CTLA-4, oncolytic viruses, cancer vaccines, adoptive cell therapy,
etc., tumor immunotherapy has provided new opportunities for the treatment of
ovarian cancer.

Methods: This study used comprehensive transcriptome analysis across multiple
databases to gather gene transcripts and clinical features of normal ovarian
samples and tissue samples from ovarian cancer. The aim was to explore the
mechanisms underlying tumor immunotherapy resistance and to reveal the
relationship between ovarian cancer’s immune microenvironment and genes
linked to inflammation. Various R packages were used for differential gene
analysis, enrichment analysis, co-expression network construction, and
prognostic model building.

Results: It has been found that the prognosis of ovarian cancer patients is closely
associated with sets of genes involved in inflammation. The immune infiltration
microenvironment, clinicopathological features, and survival rates differed
significantly between two inflammatory gene expression patterns identified
using cluster and immune microenvironment analyses. Further analysis
revealed that the high-risk group had a higher abundance of M2-type
macrophage infiltration, more active anti-tumor immune response, higher
tumor stemness score, potentially worse prognosis, and lower response rates
to multiple chemotherapy drugs and immune checkpoint inhibitors.

Conclusion: These findings provide new perspectives and potential targets for
immunotherapy and prognostic evaluation of ovarian cancer and offer new
strategies and directions for clinical treatment and patient management. This
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study provides crucial information to further our comprehension of drug response
mechanisms and tumor immunotherapy. It offers new strategies and methods for
the treatment and prognostic improvement of ovarian cancer.

KEYWORDS

epithelial ovarian cancer, tumor immunotherapy, tumor immune microenvironment,
cancer prognosis model, tumor-associated macrophages (TAM)

1 Introduction

In the female reproductive system, the deadliest cancerous
growth is called epithelial ovarian cancer (EOC). Ovarian cancer
ranks seventh among malignant tumors in women globally,
accounting for over 310,000 new cases annually, according to the
2020 Global Cancer Statistics (Lee et al., 2022; Konstantinopoulos
and Matulonis, 2023). Every year, ovarian cancer claims the lives of
about 210,000 people. In 2020, ovarian cancer was diagnosed in
60,000 new cases and killed 40,000 people in China (Zhao et al.,
2023). Patients with advanced stage ovarian cancer have an
approximately 30% 5-year survival rate. With multiple
recurrences, the interval between treatments and recurrences
becomes shorter, leading to decreased sensitivity to platinum-
based drugs and eventually developing into platinum resistance.
The treatment is highly challenging, and the prognosis is often poor
(Marchetti et al., 2021; Porter and Matulonis, 2023). Overcoming
chemotherapy resistance in ovarian cancer is an urgent and
important clinical issue.

Inflammation reactions are mainly divided into acute and
chronic types. Acute inflammation occurs mainly in physical,
chemical, or acute infection conditions as the body’s early
defense mechanism, and it usually resolves quickly on its own
(Yang et al., 2023). Chronic inflammation, on the other hand,
occurs in chronic infections or autoimmune diseases, where the
body’s normal feedback regulation cannot stop the inflammation,
leading to chronic inflammation (Liu et al., 2022). Statistics show
that chronic inflammation contributes to about 20% of malignant
tumors worldwide (Kennel et al., 2023; Venakteshaiah and Kumar,
2021; Haas et al., 2021). Non-steroidal anti-inflammatory drugs
clinically reduce the incidence and metastasis of various solid
tumors and decrease tumor-induced mortality. Chronic
inflammation is thought to significantly influence the initiation,
growth, and progression of cancers.

The mechanisms through which chronic inflammation initiates
tumor occurrence, and development are diverse but often involve
the microenvironment provided by inflammation for tumors. As a
crucial part of the cancer stroma, cancer-associated fibroblasts
(CAFs) are intimately associated with inflammation and the
tumor immune microenvironment (TME) (Chen et al., 2021).
CAFs interact with various signaling pathways such as NF-κB,
PI3K-Akt, IL6-JAK-STAT3, and TGF-β to help form and
maintain the TME, influencing ECM structure and generating
immune therapy resistance (Mao et al., 2021; Wu F. et al., 2021).
Additionally, activated CAFs promote monocyte adhesion and drive
macrophages toward M2 polarization, further inhibiting immune
responses in the TME (Lavie et al., 2022; Galbo et al., 2021).
Therefore, analyzing the relationship between genes linked to
inflammation and the tumor immune milieu can aid in

comprehending reasons for EOC immunotherapy resistance and
contribute to developing innovative immunotherapy strategies.

2 Methods and materials

2.1 Data acquisition

The TCGA database (https://portal.gdc.cancer.gov/) included the
gene transcripts and clinical details of 429 ovarian cancer tissue
samples from patients with the disease. The patient’s clinical
features encompassed survival status, time, tumor grade, age, etc.
In the meantime, the GTEx database (https://www.gtexportal.org/
home/) was accessed to download 88 normal ovarian samples. For
validation, the gene expression profiling microarray datasets for
ovarian cancer tissues were acquired from the GEO database
(https://www.ncbi.nlm.nih.gov/geo). These datasets, GSE26712
(Zheng et al., 2019) and GSE102073 (Ye et al., 2021), each
contained 153 and 84 ovarian cancer tissues, respectively.
Additionally, ovarian cancer single-cell datasets EMTAB8107 (Ding
et al., 2024), GSE118828 (Yu et al., 2022), GSE130000, and
GSE154600 (Jiang et al., 2023) were downloaded to explore gene
expression at the single-cell level.

2.2 Acquisition of inflammation-related
gene sets

Inflammation-related gene sets were obtained from the
Molecular Signatures Database (MSigDB) (Castanza et al., 2023)
(https://www.gsea-msigdb.org/gsea/msigdb/), including
BIOCARTA_INFLAM_PATHWAY (v2023.2.), GOBP_
CHRONIC_INFLAMMATORY_RESPONS (v2023.2),
HALLMARK_INFLAMMATORY_RESPONSE (v2023.2.), and
REACTOME_INFLAMMASOMES (v2023.2.).

2.3 Scoring of inflammation-related gene
sets and prognostic evaluation

With the help of the GSVA (Hänzelmann et al., 2013) R package
(v2.0.4), we evaluated the gathered sets of gene sets associated with
inflammation using single-sample gene set enrichment analysis
(ssGSEA). ssGSEA is an extension of the GSEA method,
primarily designed for individual samples where GSEA is not
applicable. The algorithm uses the empirical cumulative
distribution function to calculate enrichment scores (ES) and
rank normalized gene expression values for a given sample. The
prognostic correlation between gene sets associated with
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inflammation and patients with ovarian cancer was assessed
simultaneously using the Cox proportional hazards model.

2.4 Consensus clustering based on
inflammation-related gene set scores

Consensus clustering was often used in cancer subtype
classification studies using the Consensus ClusterPlus R package
(v4.12.6) (Wilkerson and Hayes, 2010). This study’s ovarian cancer
subtype classification was conducted based on the aforementioned
inflammation-related gene set scores. The optimal clustering effect
was determined by combining the consensus cumulative
distribution function (CDF) with the Proportion of Ambiguous
Clustering (PAC) score. In the CDF plot, the consensus
matrix’s cumulative distribution function was displayed for
different values of k (represented by colors), aiding in
identifying the approximate maximum CDF value, where
consensus and cluster confidence are maximized, resulting in
the most reliable clustering analysis. In PAC analysis, lower
PAC values indicate more ideal clustering effects.

2.5 Kaplan-Meier (KM) survival analysis

Currently, the most widely used method for survival analysis is
the Kaplan-Meier approach. The KM approach, as it is commonly
called, was proposed by Kaplan and Meier. The Kaplan-Meier
survival analysis compares the survival circumstances of two
patient groups using a univariate analysis that integrates patients’
survival times and terminal states. The Kaplan-Meier survival curve,
a commonly encountered representation, visually reflects survival
differences under various conditions.

2.6 Immune cell infiltration analysis

Based on the IOBR (Zeng et al., 2021) R package (v2.0), we
employed built-in algorithms such as TIMER, CIBERSORT,
MCPcounter, EPIC, and quanTIseq (Newman et al., 2015;
Becht et al., 2016; Finotello et al., 2019; Racle et al., 2017; Li
et al., 2016) to assess the abundance of immune cell infiltration
in the tumor immune microenvironment of each ovarian
cancer tissue.

2.7 Drug sensitivity analysis

The OncoPredict (Maeser et al., 2021) R package (v1.2)
was created by Maeser et al. and was used to predict
medication reactions in cancer patients. OncoPredict adapts
tissue gene expression patterns to the semi-maximal inhibitory
concentration (IC50) of drugs taken from cancer cell lines in the
Genomics of Drug Sensitivity in Cancer (GDSC) database and the
Cancer Cell Line Encyclopedia (CCLE) maintained by the Broad
Institute. An unpaired t-test was used to assess the sensitivity of
198 drugs (between high-risk and low-risk groups). Set at p <
0.05 was the significance level.

2.8 Prediction of immunotherapy sensitivity

The Cancer Immunome Atlas (TCIA) (Charoentong et al., 2017)
database (https://tcia.at/) was used to download the Immunophenotype
Scores (IPS) for CC. Subsequently, IPS were compared across different
tumor groups to predict sensitivity to immunotherapy.

2.9 Differential gene identification

Using the limma (Ritchie et al., 2015) R package (3.60.4),
differential gene expression analysis was performed on the TCGA
data. This involved data preprocessing, normalization, and
identifying significant differences in gene expression levels
through linear modeling. Statistical thresholds were set (adj. P.
Val. < 0.01 and |log2(FC)| > 1) to screen for significantly
differentially expressed genes. Finally, to decipher the biological
significance of these differential genes, enrichment analysis and
functional annotation were performed.

2.10 Enrichment analysis

The clusterProfiler (Wu T. et al., 2021) R package (v4.12.6) was
used to perform enrichment analysis, which consisted of two steps:
(1) Over-Representation Analysis (ORA) to investigate the
functional enrichment of gene sets through Genomes (KEGG)
analyses, Kyoto Encyclopedia of Genes, Gene Ontology (GO),
and (2) Gene Set Enrichment Analysis (GSEA) to examine the
enrichment of validated gene sets in KEGG pathways. These
enrichment results revealed the gene sets’ biological functions
and pathway associations.

2.11 Weighted gene Co-Expression network
construction

In systems biology, co-expression gene modules and their
correlation to phenotypes are identified using Weighted Gene Co-
Expression Network Analysis (WGCNA) (Langfelder and Horvath,
2008). Gene co-expression networks are constructed by calculating
gene-gene correlations and then converting the correlation matrix
into a weighted matrix. Gene modules are then built based on
the weighted matrix, and the eigengene for each module is
computed. Subsequently, the correlation between module
eigengenes and phenotypic data determines the module-phenotype
relationship. Ultimately, gene modules associated with phenotypes of
interest are identified, revealing underlying biological pathways and
mechanisms. The WGCNA method aids in uncovering key modules
and gene correlations within gene regulatory networks.

2.12 Prognostic model construction and
validation

The TCGA dataset was initially used to construct a survival
prognostic model using the multiCox and Least Absolute Shrinkage
and Selection Operator (LASSO) techniques. Gene features were
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selected using LASSO, and multiCox was employed for
multivariable Cox regression to establish the prognostic model.
The model was then used for independent external validation
datasets, and its ability to predict survival was evaluated using
Kaplan-Meier survival analysis and time-dependent ROC curve
analysis. These validation analyses verified the prognostic
predictive efficacy of the model across different datasets, ensuring
its reliability and generalizability.

2.13 mRNA Stemness Index (mRNAsi)

Derived from the PCBC database’s mean-centered RNA-Seq
data of PSCs (syn2701943) (Gul et al., 2023). A stem cell feature
signature was found using the One-Class Logistic Regression
(OCLR) machine learning approach, and it was confirmed
using leave-one-out cross-validation. A Spearman correlation
analysis was then used to compare the stem cell features and
the normalized expression matrix of tumor samples. Finally, by
scaling the Spearman correlation coefficient between 0 and 1, the
mRNA Stemness Index (mRNAsi) was determined. A higher
mRNAsi indicates a higher degree of tumor dedifferentiation
and stronger stemness.

2.14 Single-cell analysis

The following methods were used to process ovarian cancer
single-cell sequencing data: We first converted the scRNA-seq
data into a Seurat (Hao et al., 2024) object using the Seurat R
package. We performed quality control (QC) by determining the
percentage of ribosomal or mitochondrial genes and eliminating
low-quality cells. FindVariableFeatures was used to determine
the top 2000 genes exhibiting high variability. Furthermore,
dimensionality reduction techniques were used to group
approximately 2000 genes using Principal Component Analysis
(PCA) and Uniform Manifold Approximation and Projection
(UMAP). We could identify marker genes for each cluster using
the FindAllMarkers tool with |Log2FC| and min. 0.3 and
0.25 are the respective pct cutoff values. Different cell types
were annotated using the SingleR (Aran et al., 2019) R
package. Finally, we used the AddModuleScore function to
compute the expression levels of prognostic model genes at the
single-cell level.

2.15 Cell lines

Fenghuishengwu in China is where human ovarian surface
epithelial cells (HOSE) are sourced (HOSE, CL0154). From the
American Type Culture Collection, the SKOV3 cell line was
acquired. Mycoplasma is routinely tested for in all cell lines. A
complete medium, consisting of 1% double antibiotics and 10%
fetal bovine serum (FBS), is used to cultivate both HOSE and
SKOV3. When the cell confluence reaches 80%–90%, they
are passaged.

2.16 Cell transfection

Similarly, 5 × 105 cells were cultured in each well of a 6-well plate.
For transfection, HOSE and SKOV3 cells were treated with 15 nM of
siRNA IL-6, siRNA TGF-β1 and siRNA NC (P4157, GenePharma,
Shanghai, China), respectively, using Lipofectamine 3000 (L3000150,
Thermo, New York, Waltham, MA, United States).

2.17 qPCR

HOSE and SKOV3 cells were lysed to obtain total RNA using a
TRIzol reagent (15,596,026, Invitrogen, New York, NY,
United States). The qRT-PCR analysis was performed using the
HiScript II One Step qRT-PCR SYBR Green kit (P131, Vazyme,
Nanjing, China) and a Bio-Rad CFX96 PCR system (Bio-Rad,
Hercules, CA, United States). RuiBiotech (Beijing, China) created
and manufactured the primers used in this investigation.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used
as the internal reference for assessing the target gene expression
using the 2−ΔΔCT method.

2.18 Western blot

The total protein was extracted using a cell lysate solution, and
the proteins were separated using 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE). PVDF
membranes were then used to hold the separated proteins
(03010040001, Millipore, Billerica, MA, United States). After a
30-min blocking, the membranes were subjected to adding
primary antibodies and incubated at 4°C. The primary
antibodies were obtained from Abcam (Abcam, United States).
Secondary antibodies (BA1054, 1:5000, Boster, Wuhan, China)
were added to the membranes and incubated for 2 h at room
temperature after washing. The membranes were then visualized
using an ECL development kit (A38554, Invitrogen, New York,
NY, United States) and photographed with a GE Las-4000 (GE
Healthcare, Piscataway, NJ, United States). After conducting the
experiment thrice, the gray values were obtained using Media
Cybernetics’ ImageJ 1.8.0 program (Silver Spring, MD,
United States). An internal reference was beta-actin.

2.19 Statistical analysis

The analysis was conducted using SPSS 26.0 and the R
programming language. The measurement data was expressed
using the standard deviation (x ± s). A one-way ANOVA was
employed to compare the groups. Dunnett’s multiple comparisons
were performed to determine whether the variance was uneven.
Measurement data with a normal distribution were displayed as
mean ± standard deviation, and t-tests were used to compare
groups. The Mann-Whitney U test was performed using
measurement data that was not normally distributed and
displayed as the median and interquartile range to compare
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groups. Count data were expressed as rates, and group
comparisons were conducted using the χ2 test.

3 Results

3.1 Identification of inflammatory molecular
subtypes in ovarian cancer based on
consensus clustering

First, we obtained four inflammatory-related gene sets
from the MSigDB database, including BIOCARTA_INFLAM_

PATHWAY, GOBP_CHRONIC_INFLAMMATORY_RESPONS,
HALLMARK_INFLAMMATORY_RESPONSE, and REACTOME_
INFLAMMASOMES. Most inflammatory-related genes had
significantly different expression profiles in tumor and normal
tissues, with most genes significantly elevated in tumor tissues,
according to our analysis of the TCGA ovarian cancer dataset and
the corresponding normal tissues from the GTEx database (Figure 1).
This suggests a correlation between inflammatory phenotypes and
tumor development.

Meanwhile, based on ssGSEA, we performed enrichment
scoring of inflammatory-related gene sets for each ovarian
cancer tissue (Figure 2A). Univariate COX regression analysis

FIGURE 1
Expression profiles of inflammation-related markers in OV reveal distinct patterns. Four key inflammation-related signatures, such as the
BIOCARTA_INFLAM_PATHWAY, have been examined for their expression levels (A), GOBP_CHRONIC_INFLAMMATORY_RESPONS (B), HALLMARK_
INFLAMMATORY_RESPONSE (C), and REACTOME_INFLAMMASOMES (D).
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FIGURE 2
Distinct TME landscapes in OV. (A) The GSVA score of each signature is associated with inflammation between two subclusters. (B) A forest plot
displaying the hazard ratio for each signature associated with inflammation was found using univariate Cox regression analysis. (C) The TCGA-OV
consensus score matrix for the glioma sample, with k = 2 clustering number. The consensus score indicates the degree of interaction between two
samples. (D, E) The consensus matrix’s PAC scores (E) and CDF curves (D) for each (K) (F) Boxplots that display the distribution of GSVA scores for
every inflammatory signature between two subclusters; (G) Kaplan-Meier curves that analyze survival differences between two subclusters using the log-
rank test. (H) Stacked bar graphs showing the distributions between two subclusters for age populations (left panel) and stages (right panel). Using Chi-
squared testing, P values were calculated.
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identified three inflammation-related gene sets as significantly
and positively associated with better prognosis (HR < 1) in
ovarian cancer patients. These gene sets are thought to be
protective prognostic factors (Figure 2B). This suggests these

inflammatory-related gene sets’ potential research value and
clinical significance. We, therefore, performed consensus
clustering analysis using the Consensus ClusterPlus R package
based on the enrichment scores of these four inflammatory-related

FIGURE 3
A hot-TME is shaped by the C2 subcluster in OV. (A) The immune cell subset infiltration abundances for two TME subclusters were measured using
CIBERSORT, MCP-counter, quanTIseq, EPIC, and TIMER. (B) The patterns of immunoregulator expression for each of the two TME subclusters.
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gene sets. The maximum number of clusters was set to 10, with
100 subsamples drawn, a sample proportion of 0.8, K-means as the
clustering algorithm, and Euclidean distance as the metric.
Ultimately, we performed nine clusters with k values ranging from
2 to 10. Through comprehensive evaluation using CDF curves and
PAC analysis, we selected the ideal number of clusters as 2 (Figures
2C–E). At the same time, we found significant differences in
inflammatory enrichment scores (Figure 2F) and overall survival
rates (Figure 2G, log-rank p = 0.076) among patients with
different inflammatory gene expression patterns. Chi-square tests
for clinicopathological features revealed differences in the age
distribution (with 65 years as the cutoff) and clinicopathological
grading among patients in different groups (Figure 2H).

3.2 Distinct immune infiltration
microenvironments, responsiveness to drug
treatment, and deregulated signaling
pathways among subtypes

Previous studies have reported that different tissue types often
have distinct immune infiltration microenvironments. Thus, we
used five immune microenvironment analysis methods in this
study—CIBERSORT, MCPcounter, quanTIseq, EPIC, and
TIMER—for integrated evaluation and analysis of immune cell
infiltration profiles to thoroughly examine the immune profiles
among various subtypes. We found that the C2 subtype had
much more infiltrating NK cells, B cells, macrophages, CD8+

FIGURE 4
The drug sensitivity of the two subgroups. (A) Violin plot showing the estimated half-life (IC50) of chemotherapy drugs between two subgroups. (B)
A raincloud plot that shows the difference in IPS scores between two subclusters.
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T cells, and CD4+ T cells than the C1 subtype, with consistent results
across various analysis methodologies. This suggests that the
C2 subtype exhibits the biological characteristics of a so-called
“hot” tumor immune microenvironment (Figure 3A). In the
meanwhile, we found that the C2 subtype had far higher
amounts of immunomodulators and cytokines expressed than the
C1 subtype, based on a list of genes encoding immunomodulators
and chemokines that we downloaded from the TISIDB
database (Figure 3B).

With the deepening of research on the immune tumor
microenvironment, substantial evidence suggests that tumors
with different levels of immune cell infiltration have distinct
response rates to chemotherapy and immunotherapy. Therefore,
we examined the IC50 values of vinblastine, paclitaxel, docetaxel,
and cisplatin. We found that, except cisplatin, the C2 subtype’s
IC50 values were considerably higher than the C1 subtype’s,
indicating a noticeably lower response rate of the C2 subtype to
these three drugs (Figure 4A). Simultaneously, we utilized IPS, IPS-

PD1/PD-L1/PD-L2, IPS-CTLA4, and IPS-PD1/PD-L1/PD-L2 +
CTLA4 to assess differences in the response rates to immune
checkpoint inhibitor therapy among different subtypes. We found
that IPS, IPS-PD1/PD-L1/PD-L2 and IPS-CTLA4 were significantly
higher in the C2 subtype compared to the C1 subtype (Figure 4B).

We hypothesize that the distinct immune infiltration
microenvironments and responses to drug treatment among
different subtypes are based on significantly different signaling
pathways and biological differences. Therefore, we identified
genes that were differently expressed among various subtypes
using the limma R package (Figure 5A). We carried out an over-
representation analysis (ORA), which included GO_BP/CC/MF
(Figure 5B), and last, we performed a GSEA analysis. The results
suggested multiple signaling pathways were significantly
deregulated in C2 (Figures 5C, D). In summary, subtypes based
on inflammatory gene enrichment scores exhibit distinct immune
infiltration microenvironments, responses to drug treatment, and
deregulated signaling pathways, warranting further investigation.

FIGURE 5
DEGs between the two subclusters. (A)The volcano map shows the genes classified as downregulated (blue) and upregulated (red) inside the two
subclusters. (B) The 10 most gene-enriched GO terms in hubs. (C, D): GSEA of the dysregulated pathways in the C2 subclusters.
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FIGURE 6
WGCNA detects modules associated with subclusters and hub genes embedded within them. (A) Examination of network configuration for various
soft-threshold power levels. On the scale-free topology fit index, the left panel illustrates the effect of a soft-threshold power of 3. The effect of the same
criterion on the average connectivity is shown in the right panel (B)Cluster dendrogram of themodules exhibiting coexpression. Each color corresponds
to a co-expression module. (C) Amodule-trait heatmap shows how clinical traits andmodule eigengenes relate. (D) Bar charts showing the top five
enriched phrases for every module gene. The connection between gene significance and module membership in the brown modules. (E) Hub genes of
the appropriate module were identified as dots in color with MM > 0.6 and GS > 0.3. (F) Top 10 enriched GO terms of hub genes.
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3.3 Identification of biological features of
different inflammatory subtypes using
WGCNA gene co-expression
network analysis

To conduct the WGCNA analysis, we first added the
differentially expressed genes identified in the previous step. Four
co-expression modules were obtained after setting the soft threshold
β to three and the minimum number of genes in a module to 30
(Figures 6A, B). We utilized GO enrichment analysis and found that
modules other than the gray module possessed distinct biological
characteristics. Since previous analyses suggested that patients in the

C2 subtype had a better prognosis, responsiveness to drug treatment,
and deregulated signaling pathways, we hypothesized that genes
significantly associated with C2 might be involved in tumor
development, invasion, and resistance to drug treatment. Based
on WGCNA co-expression network analysis, we found that the
C2 subtype had the strongest positive correlation with the turquoise
module (Figure 6C, Cor = 0.54), which contained 2323 genes. We
could run functional enrichment analyses on these genes using
thresholds (MM > 0.6 and GS > 0.3) to identify key genes inside
the module (Figures 6D, E). The results showed that immune
receptor activity and other biological processes were the primary
roles of the module’s key genes (Figure 6F).

FIGURE 7
Construction and validation of an inflammatory prognostic signature. (A) Identification of prognostic hub genes using the optimal parameter (λ)
obtained from the LASSO regression analysis. (B) The coefficients of signature genes are shown in a multiCox regression analysis-calculated lollipop
chart. (C–E) Comparing how two groups’ survival rates differed throughout the three datasets. Time-dependent ROC examination of the three
datasets’ model.
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3.4 Construction of an ovarian cancer
prognosis model based on inflammatory-
related prognostic genes

The key genes found in the previous step served as the prognosis
model’s input genes. In this study, we used the TCGA dataset to
train the model. Then, we assessed the model’s prognostic efficacy
using independent external datasets based on time-dependent ROC
curves and Kaplan-Meier survival analysis.

With the help of multivariate COX regression analysis, Least
Absolute Shrinkage and Selector Operation (LASSO) (Figure 7A),
and module key genes, we constructed a prognosis model in this
study. The genes included in the model and their corresponding
regression coefficients are shown (Figure 7B). Risk scores based on
the prognostic model were simultaneously computed for all
ovarian cancer samples in the training and validation sets. The
samples were divided into low-risk and high-risk groups based on
the median risk score. Our result shows the plotted Kaplan-Meier
curves, which indicate substantial differences between the two
groups (Figures 7C–E). Using a time-dependent ROC curve
analysis, the prediction efficiency at 1, 3, and 5 years was also

evaluated, and the results indicated that the prognostic model had
good prediction performance.

3.5 Relationship between risk score and
tumor immune microenvironment

Based on the CIBERSORT immune microenvironment analysis
algorithm, we analyzed the TCGA dataset divided into high-risk and
low-risk groups. We found that the low-risk group had higher
M1 macrophages and CD8+ T cell infiltration abundances, while
the high-risk group had significantly higher abundances of
M2 macrophage infiltration (Figure 8A). This suggests an active
anti-tumor immune response in the tissue immunological
microenvironment of the high-risk group. Further analysis of
T cell exhaustion markers and M2 macrophage markers showed
that the high-risk group had significantly higher expression levels
than the low-risk group (Figures 8B, C). Simultaneously, analysis of
cellular stemness levels also indicated higher stemness scores in the
high-risk group, suggesting more pronounced tumor stemness,
i.e., dedifferentiation (Figure 8D). Since cellular stemness levels

FIGURE 8
Shows the TME phenotypes in various risk categories. (A) Box plot showing the distributions across two risk categories of 22 immune cell subsets
found by CIBERSORT. (B, C) The box figure illustrates the TEXterm characteristics and M2 polarization regulators expression patterns in two risk groups.
(D) A violin plot comparing the two risk groups’ mRNAsi index values.
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are negatively correlated with prognosis, these results imply a poorer
prognosis for patients in the high-risk group.

3.6 Relationship between risk score and
responsiveness to drug treatment

The amount of immune cell infiltration substantially impacts
immunotherapy and chemotherapy, according to previous studies,
with the high-risk group having less anti-tumor immune cell
infiltration than the low-risk group. To determine if the high-risk
group responded less frequently to these four drugs, we examined
the IC50 values of cisplatin, vinblastine, paclitaxel, and docetaxel.
Compared to the low-risk group, the IC50 values of the high-risk
group were much greater (Figure 9A). We employed IPS, IPS-PD1/

PD-L1/PD-L2, IPS-CTLA4, and IPS-PD1/PD-L1/PD-L2 +
CTLA4 simultaneously to evaluate variations in immune
checkpoint inhibitor therapy response rates across various risk
groups. IPS, IPS-PD1/PD-L1/PD-L2, and IPS-CTLA4 levels were
considerably lower in the high-risk group than in the low-risk
group (Figure 9B).

3.7 Relationship between risk score and
cancer hallmark signaling pathways

We hypothesize that the distinct immune infiltration
microenvironments and drug responsiveness observed among
risk groups are based on significantly different signaling
pathways and biological differences (Zeng et al., 2021).

FIGURE 9
Comparison of therapeutic sensitivity between two risk categories. (A) Violin plot illustrating the expected IC50 values of therapeutic drugs for two
different risk groups. (B) Raincloud plot illustrating two defined risk groups’ IPS scores.
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Consequently, we initially employed the limma R package to find
genes differently expressed amongst various risk groups. Then, using
cancer hallmarks as a guide, we ran a GSEA analysis on these
differentially expressed genes. According to the findings, the high-
risk group had significantly higher levels of several signaling
pathways and significantly lower levels of others, including IL6-
JAK-STAT3, hypoxia, and glycolysis. In summary, the prognostic
model based on inflammatory genes exhibits distinct immune
infiltration microenvironments, drug responsiveness, and
deregulated signaling pathways, which has important implications
for clinical decision-making (Figure 10).

3.8 Single-cell level analysis of risk scores

We integrated four single-cell datasets and obtained 88,089 ovarian
cancer single cells after quality control, dimensionality reduction, and
clustering. With a clustering resolution set to 0.4, we identified
20 clusters (Figures 11A, B). Out of these 20 clusters, we identified
12 cell subpopulations by combining manual annotation methods with
SingleR automatic annotation. We then analyzed the risk scores of
these 12 cell subpopulations (Figures 11C, D). The results showed that

the prognostic model genes related to inflammation were primarily
expressed in immune-related cells, further validating the findings from
traditional transcriptome analysis at the single-cell level.

3.9 Upregulation of IL6 and TGFβ1 in ovarian
cancer cells promotes cell proliferation

Following the bioinformatics analysis, the study explored the
expression levels of CCL2, IL10, IL6, and TGFβ1 in normal ovarian
epithelial cells (HOSE) and ovarian cancer cells (SKOV3). The
research team used qPCR to detect the mRNA expression levels in
cells. Compared with HOSE, CCL2 (p = 0.003), IL10 (p = 0.003),
IL6 (p = 0.002), and TGFβ1 (p = 0.002) were all highly expressed in
SKOV3, and the differences were statistically significant
(Figure 12A). Subsequently, the study used siRNA IL6 and
TGFβ1 to transfect the SKOV3 cell line. qPCR results revealed
that following transfection, there was a drop in the mRNA
expression levels of TGFβ1 (p = 0.0002) and IL6 (p = 0.002)
(Figures 12B, C). Further, CCK8 was used to evaluate the
proliferation of SKOV3 after transfection. Following the
knockdown of IL6 and TGFβ1, the capacity of SKOV3 cells to

FIGURE 10
Hallmarks of dysregulated cancer in two risk groups.
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proliferate decreased in comparison to the siRNANC group. There
was a statistically significant difference (p < 0.0001, p < 0.0001)
(Figure 12D). Finally, we used Western blot to further evaluate the
protein expression levels of IL6 and TGFβ1 in HOSE and
SKOV3 cells. The SKOV3 group had higher levels of TGFβ1
(p = 0.0001) and IL6 (p = 0.004) protein expression compared
to HOSE, and these changes were statistically significant
(Figures 12E, F).

4 Discussion

Chemotherapy resistance in EOC results from various
processes, including reduced drug sensitivity, the influence of
the tumor microenvironment (TME), changes in the
metabolism of tumor cells, interactions between stromal cells
and tumor cells, and immune evasion mechanisms (Veneziani
et al., 2023). Among these, the TME and immune evasion
mechanisms play crucial roles in chemotherapy resistance in
EOC. The TME has a major impact on drug resistance,

metastasis, and tumor growth. It comprises stromal cells,
immune cells, and blood vessels surrounding tumor cells
(Agarwal and Kaye, 2003). In ovarian cancer, the tumor
microenvironment can promote drug resistance through various
mechanisms (Pujade-Lauraine et al., 2019). For example, tumor-
associated macrophages (TAMs) can secrete multiple growth
factors and inflammatory cytokines, promoting tumor cell
proliferation and survival while reducing their sensitivity to
chemotherapy drugs. Immune evasion mechanisms (Khan et al.,
2021; Kim et al., 2012): Although tumor cells can employ several
defence mechanisms to evade immune system attacks, which is
crucial to antitumor processes. For instance, tumor cells can
express immune checkpoint molecules to inhibit T-cell activity
or secrete immunosuppressive factors to suppress the proliferation
and function of immune cells.

Several studies have shown that inflammatory oxidative stress
responses play a role in the pathogenesis of several cancers,
including colon, stomach, and liver (Bast et al., 1993; Ray et al.,
2023). Phagocytes and leukocytes recruited during inflammatory
responses can induce DNA damage by producing peroxides and

FIGURE 11
The highly active signature associated with inflammation in OV’s scRNA-seq datasets. (A) UMAP visualization of three public OV scRNA-seq cohorts
with 88,089 cells. (B) A manual annotation was done on 12 major cell types. (C) Vlnplots showing cell type-specific marker expression values. (D) Single-
cell signature gene expression is determined via Seurat’s AddModuleScore method.
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reactive nitrogen species, leading to gene mutations, deletions, and
rearrangements, which in turn cause tumorigenesis. The massive
secretion of pro-inflammatory factors is a hallmark of chronic
inflammatory response processes and plays a vital role in the
development of tumors. For example, IL-6 reduces the
expression of tumor suppressor genes and DNA repair genes by
inducing DNA methylation, thereby promoting tumorigenesis
(Macciò and Madeddu, 2013; Torres et al., 2009). IL-6 and its
downstream targets are closely related to processes such as cell
proliferation and metabolism, suggesting its contribution to
tumorigenesis. The expression of the proto-oncogene Kras in
the pancreas activates the Stat3/Socs3 signaling pathway, which

relies on IL-6 and its downstream signaling pathways, ultimately
promoting pancreatic cancer development. Inflammatory
cytokines released during inflammatory responses facilitate
tumor metastasis and invasion. Epithelial-mesenchymal
transition (EMT) of tumor cells is a crucial process for their
metastasis and invasion. TGFβ (Monavarian et al., 2022; Brewer
et al., 2003; Vergara et al., 2010) has been reported to promote
EMT in tumor cells, while TNFα, IL-6, and IL-1 can also promote
tumor ETM by upregulating gene expression related to
transcription factors such as NF-κB and STAT3. Additionally,
pro-inflammatory factors upregulate chemokine receptors such as
CCR1, CCR4, and CXCR7, enabling tumor cells to metastasize to

FIGURE 12
Upregulation of IL-6 and TGFβ1 in ovarian cancer cells promotes cell proliferation. n = 3. **p < 0.01, *p < 0.05, ****p < 0.0001, ***p < 0.001. (A)
Comparison of themRNA expression of CCL2, IL6, IL10, and TGFβ1 in normal ovarian cells and ovarian cancer cell SKOV3. (B–D) After knocking down IL6
and TGF-β1, the proliferation ability of ovarian cancer cells decreased. (E,F)Comparison of the protein expression of IL6 and TGFβ1 in normal ovarian cells
and ovarian cancer cell SKOV3.
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specific organs. Therefore, inflammatory cytokines and mediators
in the tumor microenvironment are essential for tumor cell
survival, metastasis, and development. Our research has found
that in the high-risk group of EOC (Macciò and Madeddu, 2012;
Browning et al., 2018), various signaling pathways, including
hypoxia and glycolysis, are significantly upregulated, while
pathways such as IL6-JAK-STAT3 are downregulated. These
findings further confirm the significance of targeting
inflammatory genes to improve drug responses in the immune
microenvironment.

Moreover, in the risk model based on inflammatory gene
scoring, the high-risk group exhibits higher infiltration of
M2 macrophages with pronounced anti-tumor immune
responses and a higher degree of dedifferentiation. Additionally,
patients in the high-risk group show significantly lower response
rates to IPS, IPS-PD1/PD-L1/PD-L2, and IPS-CTLA4 inhibitors
compared to the low-risk group. Single-cell transcriptome
sequencing data confirms this, with inflammatory prognosis
model genes primarily expressed in immune-related cells. In the
tumor microenvironment of ovarian cancer, the immune cells
comprise innate and adaptive immune cells. B lymphocytes and
T lymphocytes are components of the adaptive immune system,
with T lymphocytes being particularly prevalent in ovarian tumor
tissue and ascites (Fucikova et al., 2022; McMullen et al., 2021).
Tumor-infiltrating lymphocytes (TILs) are T cells found in
primary/metastatic tumors; tumor-associated lymphocytes
(TALs) are T cells seen in ascites (Cummings et al., 2021).
Through suppressing immune responses, CD4+ Tregs preserve
immune homeostasis and promote self-tolerance. Tregs inhibit
anti-tumor responses in cancers, and their presence in the ovarian
cancer tumor microenvironment has been associated with a poor
prognosis. The loss of human leukocyte antigen (HLA)-I
expression by tumor cells is the primary mechanism of immune
evasion in T cell-mediated anti-tumor immunity (Lavoué et al.,
2013; Zhang et al., 2022). There is a direct correlation between the
frequency of TILs and the quantity of HLA-I-positive tumor cells
in various solid tumors, including ovarian cancer. T-cell
exhaustion is another method of immune evasion. Studies have
revealed that TILs and TALs exhibit elevated expression levels of
ICRs for PD-1, CTLA-4, TIM-3, BTLA, and LAG-3.

Tumor macrophages, in addition, comprise a very diverse and
heterogeneous cell population that can be divided into type 2 (M2)
and classically activated type 1 (M1) macrophages. The
microenvironment of ovarian cancer tumors is rich in IL-6, IL-
10, and CSF-1, which promotes M2 polarization and the
accumulation of M2 macrophages (Truxova et al., 2023). An
increase in the proportion of M2 macrophages often indicates a
poor prognosis in ovarian cancer. These data imply that tumor
macrophages may stimulate tumor growth, invasion, and
metastasis via various pathways. The extracellular matrix
(ECM) is another component of the immune microenvironment
in addition to immune cells (Lin et al., 2022; Khatoon et al., 2022),
which affects tumor growth and metastasis. Studies have shown
that ECM affects cancer cells via biochemical and biophysical
mechanisms in addition to acting as a physical structure and
growth factor reservoir. Activating the signaling pathways for
ERK, PI3K, and Rac; changing the function of cell cycle
regulatory elements; regulating pro- and anti-apoptotic

regulators (Bcl-2 and NF-κB); influencing tumor invasion and
migration through the signaling pathways for TGFβ and RhoA/
Rac; influencing tumor cell stemness through the activation of
STAT3 and Wnt; and activating the previously mentioned anti-
apoptotic and stem cell signaling pathways, in addition to acting as
a physical barrier to the delivery of anticancer drugs, which results
in chemotherapy resistance (De Nola et al., 2019; Rodriguez et al.,
2018; Damei et al., 2023; Majidpoor and Mortezaee, 2021).

Numerous studies have demonstrated the complex interplay
between inflammation, the immune microenvironment, and the
development and progression of EOC. Our findings imply that by
using genes linked to inflammation, a better understanding of the
characteristics of the immunological milieu in EOC patients can be
achieved. This approach can facilitate the development of targeted
immunotherapy drugs for different risk groups, ultimately improving
patient prognosis.

Although the study comprehensively analyzed multiple data sets
related to ovarian cancer, the sample size is still very limited. Patients
of different races, regions, and genetic backgrounds may have
different molecular characteristics and immune response
mechanisms, and may not fully represent the diversity of ovarian
cancer patients worldwide. In addition, bioinformatics tools play an
important role in gene expression analysis, mutation detection, and
pathway enrichment, but these tools themselves have limitations.
Although in vitro experiments are an important means to verify gene
function and pathway activity, the in vitro environment cannot fully
simulate the complexity of the in vivo environment. Therefore, the
results of in vitro experiments may not be directly applicable to the
in vivo environment, and subsequent studies need to be further
verified in animals and multi-center clinical samples.

5 Conclusion

In conclusion, the construction of an ovarian cancer prognosis
model based on inflammatory-related prognostic genes can stratify
EOC patients by risk. Developing corresponding drugs based on
the characteristics of the immune infiltration environment, drug
responsiveness, and signaling pathways of different risk groups is
of great significance for clinical decision-making.
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Introduction: Thyroid cancer (THCA) is the most common endocrine tumor.

Research on Cell Senescence Associated Genes (CSAGs), which impact many

cancers, remains limited in the THCA field.

Methods: In this study, we downloaded THCA sample data from several public

databases and selected a set of CSAGs for subsequent analysis. Differential

expression genes (DEGs) obtained through differential analysis were

intersected with prognostic genes identified by Cox regression analysis to

explore the correlation among these crossed genes. We constructed a

prognostic model using the Least Absolute Shrinkage and Selection Operator

(LASSO) algorithm and verified its efficacy. Kaplan-Meier survival curves were

plotted, and Receiver Operating Characteristic (ROC) curves rigorously

confirmed the accuracy of model predictions.

Results: To evaluate the predictive power of prognostic models across different

phenotypic traits, we performed survival analysis, Gene Set Enrichment Analysis

(GSEA), and immune-related differential analysis. Differences in tumor mutation

burden (TMB) and treatment response between high-risk and low-risk patient

groups were also analyzed. Finally, the predictive effect of our model on

immunotherapy response was validated, showing promising results for

THCA patients.

Discussion:Our study enhances the understanding of THCA cell senescence and

provides new therapeutic insights. The proposed model not only accurately

predicts patient survival but also reveals factors related to immunotherapy

response, offering new perspectives for personalized medicine.
KEYWORDS

thyroid cancer, cellular senescence, least absolute shrinkage and selection operator,
tumor immune microenvironment, prognosis
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1 Introduction

Accounting for 3-4% of all cancers, thyroid cancer (abbreviated

as THCA or TC) holds the position of being the endocrine tumor that

occurs most frequently (1). Over the past few decades, there has been

a consistent rise in its incidence, with some studies suggesting this

may be related to the rising incidence of differentiated thyroid cancer

(DTC) (2, 3). Compared to 40 years ago, the detection rate of THCA

has increased by more than 400%, with the rise in diagnoses of small,

indolent papillary thyroid carcinomas (PTCs) likely contributing to

the overall increase in THCA incidence (4). Globally, the incidence of

THCA is influenced by geographic location, with higher rates

observed in high-income countries and certain island nations (5).

The origin of THCA can be traced back to either the follicular

epithelial cells or the parafollicular cells, alternatively referred to as C

cells, within the thyroid gland. Based on the tumor’s origin and its

level of differentiation, it encompasses various subtypes: PTC, which

is the most prevalent, follicular thyroid carcinoma (FTC), thyroid

oncocytic carcinoma (OCA, previously termed Hürthle cell thyroid

carcinoma), differentiated high-grade thyroid cancer (DHGTC),

poorly differentiated thyroid carcinoma (PDTC), anaplastic thyroid

cancer (ATC), and medullary thyroid carcinoma (MTC). Clinically,

PTC, FTC (6), OCA, and DHGTC are collectively referred to as DTC,

which accounts for more than 90% of all THCA cases, making it the

most common subtype of thyroid cancer (7). MTC accounts for only

1-2% of THCA cases (5). DHGTC, PDTC, and ATC are all of

follicular epithelial cell origin, while MTC originates from

parafollicular cells (7). Due to the asymptomatic nature of THCA,

it is difficult to detect early in clinical practice. Approximately half of

cases are not suspected or detected until other diagnostic procedures

or thyroid-related surgeries are performed (8). Despite the generally

favorable prognosis for the majority of THCA patients, with certain

studies reporting a 5-year relative survival rate surpassing 90% for

those with localized disease, 10-15% of THCA patients will

experience disease recurrence. Approximately 5% of patients will

have distant metastasis to organs such as in the instance of the lungs

and bones, and occasionally, cancer-specific mortality may occur (9).

Furthermore, not all THCA patients have a good prognosis. The

survival rate for patients with distant metastasis varies by pathological

subtype (10). The survival rate after 10 years stands at roughly 45%

for patients with metastatic DTC, whereas for those with MTC, it

drops to approximately 20%. ATC has an exceptionally grim

prognosis, characterized by a median survival duration of merely 3

to 6 months (11).Currently, the primary options for treating THCA

include thyroid surgery, therapy with radioactive iodine, and TSH

suppression. Surgery remains the preferred initial treatment when

criteria for resection are met. Postoperative radioactive iodine therapy

or observation as standard care is effective for most DTC patients,

however, for a specific group of patients, its effectiveness is

constrained. For progressive or symptomatic DTC and MTC

patients, although existing targeted therapies can extend

progression-free survival (PFS), they do not provide a cure (12).

Conventional treatments such as radioactive iodine ablation and

chemotherapy are ineffective for highly invasive and fatal ATC (9).

Additionally, studies have suggested that PD-L1-targeted

immunotherapy may prolong disease-free survival (DFS) and could
Frontiers in Oncology 02142
potentially become an effective treatment option for advanced THCA

(13). In summary, early diagnosis and effective treatment of THCA

remain significant challenges, necessitating continued exploration of

new therapeutic targets.

Cellular senescence-associated genes (CSAG) refer to a cell state

triggered by various physiological processes. Among the various

factors contributing to this state are DNA damage, malfunctioning

telomeres, the activation of oncogenes, mitochondrial dysfunction,

as well as oxidative stress, and others (14). Senescent cells exhibit

numerous characteristics, such as alterations in chromatin and

secretory proteins, increased expression of senescence markers,

immune evasion (15), loss of proliferative capacity, and secretion

of inflammatory cytokines, chemokines, and growth factors (16).

The intricate secretory proteins produced during the process are

collectively referred to as the senescence-associated secretory

phenotype (SASP). The International CSAG Association has

proposed a consensus defining the phenotype of senescent cells

based on four key features: cell cycle withdrawal, macromolecular

damage, SASP, and metabolic dysregulation (17). Cell cycle

inhibitors (CKIs) (14), p27KIP1 (18), p21CIP1 (CDKN1A), and

Cyclin-dependent kinase inhibitor 2A (p16INK4A, CDKN2A) can

participate in the CSAG process by regulating the cell cycle. For

instance, upregulation of CDKN1A and CDKN2A can lead to

hypophosphorylation of the retinoblastoma protein, thereby

inhibiting E2F transcriptional activation and causing cell cycle

arrest (19). Macromolecular damage, such as DNA, protein, and

lipid damage, can also contribute to the CSAG process through

activation of the tumor suppressor pathways involving p53/

p21CIP1 and p16INK4A/RB (20). SASP is a complex secretory

process that includes hundreds of different proteins and non-

protein molecules. The full composition of SASP remains

incompletely defined, but common molecules include interleukins

such as IL-1a, IL-1b, IL-6, chemokines such as CXCR2 and CCL2,

and growth factors like IGFBP7 (21). Studies indicate that AMP-

activated protein kinase (AMPK), a kinase activated by the ratios of

AMP: ATP and ADP: ATP during the CSAG process, has a function

in modulating the cellular cycle (17). The physiological processes

associated with CSAG play crucial roles in normal human

development and are closely related to biological processes such

as cancer therapy and tissue repair (16, 22). In cancer, the SASP

secreted during CSAG can alter the tumor microenvironment

(TME), induce immune surveillance of precancerous cells, and

suppress cancer progression (14, 23). However, the persistent

DNA damage and inflammatory factors generated by the

senescence process may also promote tumor development and

angiogenesis (24). In THCA, studies have indicated that the B-

RafV600E mutation may participate in the senescence process of

PTC cells by upregulating dual-specificity phosphatases (DUSPs)

(25). Nevertheless, the role of CSAG in THCA remains

insufficiently explored, different subtypes of thyroid cancer may

respond differently to CSAG, highlighting the need for further

investigation into its specific applications and interpretations in

thyroid cancer research, as well as the correlation between CSAG

and gender.

In this study, we not only downloaded THCA sample data from

multiple public databases, but also selected a set of cellular senescence-
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associated genes (CSAGs) for subsequent analysis. Differentially

expressed genes (DEGs) obtained through differential expression

analysis were intersected with prognostic genes identified via Cox

regression analysis, and the correlation among the intersecting genes

was further investigated. Based on this, we employed the Least Absolute

Shrinkage and Selection Operator (LASSO) algorithm both for

finalizing the selection of model genes and for constructing the

prognosis model. The precision of the predictions made by the

model was rigorously confirmed using both Kaplan-Meier (KM)

survival curves and Receiver Operating Characteristic (ROC)

analysis. To evaluate the predictive capability of the prognostic

model across different phenotypic characteristics, we subsequently

conducted a thorough analysis comparing the risk groups. Besides

performing survival analysis and Gene Set Enrichment Analysis

(GSEA), we also carried out immune-related differential analyses that

centered on the expression patterns of immune regulators, tumor-

associated immune cells, and immune checkpoints. We examined

variations in tumor mutational burden (TMB) and treatment

responses between patient groups categorized as high- and low-risk.

Additionally, we performed stratified KM survival analysis based on

risk scores, giving special attention to immune checkpoints and TMB.
2 Material and methods

2.1 Data acquisition and preprocessing

Initially, we utilized the R package named “TCGAbiolinks” to

obtain RNA sequencing data, comprehensive clinical details, and

mutation information pertaining to THCA patients, sourced from

the Cancer Genome Atlas (TCGA) database, which can be accessed

at https://portal.gdc.cancer.gov. For the aim of facilitating better

gene differential expression analysis between samples, the

transcriptomic data was transformed into Transcripts Per Million

(TPM) format. By employing the “GEOquery” package, we

acquired transcriptomic data along with the corresponding

clinical information for THCA patients (GSE84437) from the

Gene Expression Omnibus (GEO) database, accessible at http://

www.ncbi.nlm.nih.gov/geo. The cohort that underwent

immunotherapy, known as IMvigor210, was downloaded through

the R package “IMvigor210CoreBiologies”. The list of age-related

genes used in this paper were all obtained from previous literature

summary (Supplementary Table 1). In addition, we included CSAG

in the list and extracted intracellular gene expression levels from

TCGA samples. The open-source databases involved in this study

have no restrictions on data acquisition and use, and no additional

ethical approval is required. All analytical procedures in this study

strictly adhere to ethical guidelines.
2.2 Constructing and validating the
predictive model for prognosis

Differential expression analysis of CSAG between normal and

tumor tissues was conducted using the “limma” package, with the

results of the DEGs being graphically represented through a volcano
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plot. Our criterion for DEGs selection was set as |logFC|> 0.585, and

the adjusted p value was <0.05. Subsequently, we applied univariate

Cox regression analysis to ascertain CSAGs that hold prognostic

importance, and the resulting prognostic genes were displayed in a

forest plot. A Venn diagram was utilized to illustrate the

overlapping DEGs and prognostic genes, while an analysis was

performed to investigate the relationships among these prognostic

genes that were differentially expressed. Outcomes of this

correlation analysis were displayed in a circular correlation plot.

Afterwards, the TCGA cohort formed the training dataset, and the

GSE84437 cohort was assigned for validation. LASSO is a regression

analysis method, which can simplify the model and improve the

prediction accuracy by introducing a penalty term to achieve both

variable selection and model parameter estimation. In

bioinformatics, the advantage of LASSO is that it can effectively

process high-dimensional data to screen out features or genes that

have a significant impact on response variables, so as to assist in

disease diagnosis, drug target discovery and other studies. The

parameter standard for LASSO is “cvfit$lambda.min”. Utilizing

the LASSO algorithm, a prognostic prediction model was built

within the training set. The source of gene list input in LASSO

model was differentially expressed prognostic genes. The model’s

predictive outcomes were quantified as risk scores, which were

derived by summing up the products of the levels of expression for

each gene multiplied by its respective coefficient, as the formula

presented below:

Risk score =o
n

i=1
½Expgenei*bi�

The level of expression for each gene in the model is denoted as

Expgenei, with bi representing the gene coefficient. The selection of

model genes is determined by the optimal l value, and the variation

of coefficients across different genes with respect to log(l) is

illustrated in the coefficient distribution plot. The l value that

yields the lowest partial likelihood deviance is taken as the optimal

one. Subsequently, we perform the following analyses on both

training and validation datasets, applying the same procedure to

two independent cohorts. Within each cohort, using the median

risk score as a benchmark, patients are grouped into high-risk and

low-risk categories. The “survival” and “survminer” packages were

then used for KM analysis to visually show the difference in overall

survival (OS) of different risk groups over time. In order to assess

the model’s predictive capabilities, the survival probabilities for 1-

year, 3-year, and 5-year durations are depicted via ROC curves, and

the model’s prognostic accuracy is assessed using the area under the

curve (AUC) as a metric. AUC > 0.5 proves that the model has good

testing efficiency.
2.3 Prognostic and enrichment analysis for
different risk groups

We standardized the expression profiles of model genes and

compared them between the two groups across both datasets. A risk

curve was generated by ordering individual samples in ascending

order of their risk scores, and the variation in survival time as the risk
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score increased was analyzed. Furthermore, within the TCGA cohort,

after stratifying the patients into either Stage I-II or Stage III-IV, we

performed survival analysis on them. To assess prognostic differences

across various tumor stages, we utilized KM curves to compare high-

risk and low-risk groups, in order to explore the impact of tumor

stage on the model’s predictive outcomes.

Subsequently, using pathways obtained from the MEDICUS

module of the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database, we applied GSEA to identify functional pathways with

differential distribution between the two groups and subsequently

represented the findings visually. Functional pathways that exhibited

an enrichment score above 0 were interpreted as having gene

expression upregulated in the high-risk cohort, whereas those

showing a score below 0 implied upregulation in the low-risk cohort.
2.4 Analysis of differential immune features

We conducted an immune regulatory expression profiling

analysis, including five categories of immune regulatory

molecules: chemokines, growth factors and regulators, soluble or

shed receptors/ligands, and interleukins. Heatmaps were utilized to

visualize the disparities in expression between the high-risk and

low-risk groups. The following six algorithms utilized for TME

deconvolution: CIBERSORT, CIBERSORT ABS, EPIC, MCP-

counter, quanTIseq, TIMER, and xCell, were implemented using

R packages. Utilizing these algorithms, we conducted a thorough

examination of the relationships between the model genes and the

degrees of immune cell infiltration, and then portrayed the findings

of these associations through various heatmaps.

Additionally, we carried out a comprehensive examination of

immune checkpoints to explore potential immune therapy targets

relevant to THCA. The gene expression levels of 31 selected

immune checkpoints were compared between the two patient

groups. Within each group, patients were categorized into two

subgroups, based on whether their expression values for the

immune checkpoint molecules exceeded or fell below the median

value, followed by KM survival analysis to assess the survival

probability differences across the four subgroups. This procedure

was performed independently for each immune checkpoint

molecule, resulting in 31 survival curve plots.
2.5 Mutation analysis and survival analysis
of TMB

By sourcing mutation data from the TCGA database, we

conducted computations and comparisons of the TMB between

two patient groups, and subsequently visualized the disparities

through the use of box plots. To gain a deeper insight into how

risk scores correlate with TMB, we carried out a Pearson correlation

analysis and developed scatter plots to provide a clear visual

representation of the findings. Additionally, we divided the TCGA

samples into two subsets using the median TMB value as the

threshold: high-TMB (H-TMB) and low-TMB (L-TMB). KM

survival curves were then plotted to clearly illustrate the survival
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differences between these two groups. In order to determine the joint

impact of TMB and risk scores on survival outcomes, patients were

divided into four distinct categories, each representing a unique

combination of their TMB and risk level: the high TMB-high risk

group, the high TMB-low risk group, the low TMB-high risk group,

and the low TMB-low risk group. Survival differences among these

four subgroups were also visualized using KM survival curves.
2.6 Predictive role of the model in
immunotherapy response

We obtained immune phenotype score (IPS) data for TCGA

samples from The Cancer Immunome Atlas (TCIA, https://tcia.at/).

By examining patient responses to anti-CTLA-4 and anti-PD-1

antibodies, the IPS was categorized into four distinct groups: those

negative for both anti-CTLA-4 and anti-PD-1 (ips_ctla4_neg_

pd1_neg), negative for anti-CTLA-4 but positive for anti-PD-1

(ips_ctla4_neg_pd1_pos), positive for anti-CTLA-4 but negative for

anti-PD-1 (ips_ctla4_pos_pd1_neg), and positive for both

(ips_ctla4_pos_pd1_pos). Following this classification, a comparative

analysis was undertaken to explore the varying responses of high-risk

and low-risk groups to different immune checkpoint inhibitor

treatment strategies. A violin plot was generated to visualize these

results. Next, we validated the robustness of the model prognostic

predictions using the IMvigor210 immunotherapy cohort using

the”IMvigor210CoreBiologies” packages. After applying the

prognostic model to the IMvigor210 cohort, utilizing the median risk

score as a cutoff, the samples were categorized into two distinct groups:

those belonging to the high-risk category and those in the low-risk

category. A survival analysis was then carried out for these groups, with

the results being graphically represented using KM survival curves. The

outcomes of chemotherapy were classified into four categories:

complete response (CR), partial response (PR), progressive disease

(PD), and stable disease (SD). These categories were then simplified

into two binary groups: CR/PR versus SD/PD. Within this setup, a

comparison was made of the risk scores belonging to the two patient

groups. Additionally, we selected 48 immune checkpoint molecules for

further investigation. The IMvigor210 cohort’s patients, within each

risk group, were additionally subclassified into high and low subgroups,

according to the expression levels exhibited by the chosen checkpoint

molecules. Thus, for each immune checkpoint molecule, patients were

grouped into four subgroups. To identify immune checkpoints that are

significantly correlated with survival outcomes, we conducted another

KM survival curve analysis to assess the prognostic differences among

these subgroups.
2.7 Statistical analysis

Depending on the distribution of the data, we evaluated the

relationships among variables by utilizing either Pearson or Spearman

correlation coefficients. When continuous variables met the normality

assumption, a t-test was applied to compare paired samples;

otherwise, the Mann-Whitney U test was used for those that did

not conform to normality. Based on the situation, either the Chi-
frontiersin.org

https://tcia.at/
https://doi.org/10.3389/fonc.2025.1545656
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang and Pang 10.3389/fonc.2025.1545656
square test or Fisher’s exact test was utilized for making comparisons

among categorical variables. For the prognostic assessment of

categorical variables, survival curves were generated through the

KM method, and statistical significance was evaluated using the log-

rank test. Statistical significance was established at a p-value below

0.05, denoted as follows: * indicates p < 0.05, ** for p < 0.01, *** for p <

0.001, and **** for p < 0.0001. R software, specifically version 4.1.3,

was utilized to carry out all statistical analyses. Unless mentioned

otherwise, the “ggplot2” package was used to produce the graphs.
3 Results

3.1 Constructing and validating the
predictive model for prognosis

Through differential gene expression analysis, we identified

significantly upregulated (red) and downregulated (green) DEGs in

tumor samples, as visualized in the volcano plot (Figure 1A). To

ascertain 21 CSAGs that impact the prognosis of THCA, a univariate

Cox regression analysis was executed (p < 0.05, HR ≠ 1, Figure 1B).

By intersecting the 61 DEGs with the 21 prognostic genes, we

identified 9 genes that were present in both gene sets (Figure 1C).

These genes were: HDAC4, NDRG1, NEK1, NINJ1, PLA2R1, SNAI1,

ASPH, CDKN2A, and E2F1. An analysis of the correlation network

for these 9 genes showed that HDAC4, NDRG1, NEK1, NINJ1,

PLA2R1, SNAI1, and ASPH exhibited predominantly positive

correlations amongst themselves. Additionally, CDKN2A and E2F1

displayed a positive correlation with each other. However, the

expression levels of these genes were inversely related to the

majority of the other genes in the network (Figure 1D). Taking

these observations into account, we refined the gene set further and

developed a prognostic model employing the LASSO algorithm. The

coefficient path distribution for the 9 genes showed that as log(l)
increased, the coefficients of the genes gradually approached zero in a

stepwise manner (Figure 1E). The optimal number of genes,

determined when the cross-validation curve reached its minimum,

corresponding to the lowest partial likelihood deviance, was found to

be 6 genes (Figure 1F). The model equation is as follows:

Risk score =  ASPH*0:236612398528079 

+  CDKN2A*0:55903013908233  +  E2F1*(

− 0:429431075541726)  +  DRG1*0:455159278181108 

+  NINJ1*( − 0:555409521362013) 

+  SNAI1*1:1381189402696

In comparison to the high-risk group, the TCGA cohort’s low-

risk patient group demonstrated a notably superior OS outcome (p

< 0.001, Figure 2A). The prognostic difference between the two

groups in the GEO cohort was further validated by us (Figure 2B).

Furthermore, by analyzing the ROC curves associated with 1-year,

3-year, and 5-year survival rates, it was demonstrated that the

model demonstrated robust diagnostic capabilities in both

independent patient groups (Figures 2C, D).
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3.2 Enrichment and prognostic analysis
conducted for various risk groups

An analysis of THCA samples focusing on the expression levels

of six model genes (ASPH, CDKN2A, E2F1, NDRG1, NINJ1, SNAI1)

revealed that those who exhibited high expression of ASPH,

CDKN2A, NDRG1, and SNAI1 were predominantly grouped into

the high-risk category. In contrast, those who showed elevated

expression of both E2F1 and NINJ1 were mainly classified into the

low-risk group. Additionally, a higher percentage of patients in the

low-risk group were found to be 5-year survivors (Figures 3A, B).

Further analysis of KM survival curves for TCGA-THCA patients

with tumor stages I-II revealed no statistically significant difference in

survival probabilities between the two risk groups (p = 0.060,

Figure 3C). For patients in stages III-IV, the risk groups showed a

more distinct difference in prognosis, with the high-risk group having

a significantly lower survival probability than the low-risk group (p =

0.003, Figure 3D). In addition, through GSEA analysis, it was found

that genes in the high-risk group showed considerable enrichment in

the pathways related to the mitochondrial electron transport chain,

among which the following five pathways related to the electron

transport process in the mitochondrial respiratory chain in the

KEGG MEDICUS database had the highest enrichment: ENV_

FACTOR_ARSENIC_TO_ELECTRON_TRANSFER_IN_

COMPLEX_IV, REFERENCE_ELECTRON_TRANSFER_IN_

COMPLEX_I, REFERENCE_ELECTRON_TRANSFER_IN

_COMPLEX_IV , VARIANT_MUTATION_CAUSED_

ABERRANT_SNCA_TO_ELECTRON_TRANSFER_IN

_COMPLEX_I, VARIANT_MUTATION_INACTIVATED_PINK1

_TO_ELECTRON_TRANSFER_IN_COMPLEX_I. Conversely, the

low-risk group genes exhibited significant enrichment in pathways

related to cell proliferation, survival, and metabolic regulation,

especially within the five most enriched pathways listed in the

KEGG MEDICUS database: REFERENCE_GF_RTK_PI3K_

SIGNALING_PATHWAY, REFERENCE_GF_RTK_RAS_ERK_

SIGNALING_PATHWAY, REFERENCE_GF_RTK_RAS_PI3K_

SIGNALING_PATHWAY, REFERENCE_GPCR_PLCB_

ITPR_SIGNALING_PATHWAY, REFERENCE_IL6_FAMILY_

TO_JAK_STAT_SIGNALING_PATHWAY (Figure 4A).
3.3 Differential immune
characteristics analysis

Upon examining the heatmap depicting the differential expression

levels of immune modulators across various risk groups, it was evident

that the high-risk group demonstrated heightened activity of five

immune regulatory molecules (p < 0.05, Figure 4B). Our results,

utilizing the CIBERSORT algorithm, revealed a positive correlation

between the abundance of several immune cell types and the risk score,

particularly memory B cells, M1 macrophages, monocytes, activated

myeloid dendritic cells, and resting myeloid dendritic cells. Conversely,

a significant negative association was observed for CD8+ T cells.

Additionally, a significant negative relationship was noted between

both CD8+ T cells and regulatory T cells (Tregs) and over half of the
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model’s genes. Among the six model genes, ASPH, CDKN2A, and

NINJ1 exhibited strong correlations with tumor-associated immune

cells. In particular, the expression level of CDKN2A exhibited a positive

link with the level of immune cell presence, whereas NINJ1 showed a

negative correlation with immune cells at the expression level (p < 0.05,

Figure 4C). Employing various algorithms yielded consistent results,

suggesting that, apart from the general positive link between risk score

and immune cell abundance, a substantial number of model genes

exhibited notable correlations with the levels of immune cell

infiltration. Notably, CDKN2A exhibited a stronger positive
Frontiers in Oncology 06146
correlation with immune cells compared to the other genes, while

NINJ1 showed a more pronounced negative relationship with immune

cells (p < 0.05, Figures 4D–I).

Furthermore, a comparison of the expression profiles of 31

immune checkpoint genes was conducted between the two risk

groups. Boxplot analysis revealed that all immune checkpoint genes

were significantly upregulated in the high-risk group (p < 0.05,

Figure 5A), suggesting that high expression of immune checkpoints

might be associated with unfavorable tumor prognosis. To further

explore the impact of different immune checkpoint gene
FIGURE 1

Gene Selection and Model Construction. (A) Differential gene analysis was performed to identify genes that differ between the normal and tumor
groups. (B) Cox regression analysis was conducted on genes associated with cellular senescence. (C) The intersection of differential genes and
prognostic genes was extracted. (D) The correlation between nine differentially expressed prognostic genes was analyzed and visualized using a
correlation circle plot. (E) A prognostic prediction model was constructed using the LASSO algorithm. (F) The optimal number of variables was
determined based on the l value.
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expressions on patient prognosis, we performed KM analysis.

Survival curves for different subgroups indicated that, regardless

of whether immune checkpoint genes were highly expressed,

samples with higher risk scores consistently showed significantly

lower survival probabilities compared to those with lower risk

scores. The prognostic model demonstrates a strong capacity for

prediction, underlining its robustness. Certain immune checkpoint

genes, when upregulated in the high-risk group, showed a degree of

association with improved patient prognosis. Specifically, higher

expression levels of BTLA, CD28, CD48, CD70, CD86, CD160,

CD200, CD200R1, CD276, CTLA4, HAVCR2, ICOS, ICOSLG,

IDO1, LAIR1, LGALS9, NRP1, TIGIT, TNFRSF8, TNFRSF9,

TNFSF14, TNFSF18, and VTCN1 were associated with better

prognosis. Patients exhibiting high expression of ADORA2A,

BTNL2, CD27, CD80, IDO2, TNFRSF4, TNFSF4, and TNFSF9

had a worse prognosis in comparison to those with low expression

levels, conversely (p < 0.01, Figures 5B–J, 6A–V).
3.4 Mutation analysis and survival analysis
of TMB

A comparison of TMB between the high-risk and low-risk groups

revealed no statistically significant variation between the two (p =
Frontiers in Oncology 07147
0.089, Figure 7A). Nevertheless, additional correlation analysis

unveiled an inverse relationship between TMB and risk score,

where an increase in risk score was accompanied by a decrease in

TMB (R = -0.11, p = 0.016, Figure 7B). After stratifying patients by

their TMB and analyzing the survival curves of the H-TMB and L-

TMB groups, we found the H-TMB group had a notably lower

survival rate than the L-TMB group, which indicates that there may

be a potential association between higher TMB and a poorer

prognosis (p < 0.001, Figure 7C). In order to delve deeper into how

both TMB and risk score collectively influence the prognosis of

THCA, we performed a KM survival analysis incorporating the risk

score. On one hand, high-risk scores corresponded to lower survival

probabilities. Conversely, while the prognosis of low-risk patients

remained relatively unaffected by TMB, high-risk patients who also

had high TMB demonstrated significantly diminished survival rates

in comparison to their counterparts with low TMB within the group

with elevated risk (p < 0.001, Figure 7D).
3.5 The model’s capacity to predict tumor
treatment outcomes

Moreover, after conducting an analysis of the IPS across distinct risk

groups, specifically ips_ctla4_neg_pd1_neg, ips_ctla4_neg_pd1_pos,
FIGURE 2

Model Validation Using Training and Validation Sets. (A) Survival analysis was performed on the training set. (B) Survival analysis was conducted on
the validation set. (C) The model’s performance in the training set was evaluated using a ROC curve. (D) The model’s performance in the validation
set was assessed using a ROC curve.
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ips_ctla4_pos_pd1_neg, and ips_ctla4_pos_pd1_pos, it became evident

that the IPS within the low-risk group surpassed those in the other

categories, suggesting a superior responsiveness of the low-risk group to

both CTLA-4 and PD-1 inhibitors, especially in scenarios involving

monotherapy with PD-1 inhibitors (p < 0.01, Figure 7E).

Finally, the IMvigor210 immunotherapy cohort was used to

validate the model. The survival curves generated by the Kaplan-

Meier method for the two risk groups within the IMvigor210 dataset

revealed that high-risk samples exhibited a worse prognosis

compared to low-risk samples, thereby reinforcing the model’s

capacity for generalization (p < 0.01, Figure 7F). Moreover, the

predictive capability of the risk model concerning chemotherapy

response was assessed, revealing that patients in the CR/PR category

had notably lower risk scores compared to those in the SD/PD

category (p = 0.0021, Figure 7G). Based on these findings, we propose

that the risk model may serve as a reliable predictive tool for

treatment response in patients with THCA. Additionally, we

broadened our analysis, which was aimed at gauging the effect of

the immune checkpoint co-modeling on the prognosis within the
Frontiers in Oncology 08148
IMvigor210 dataset. In general, irrespective of the expression levels of

immune checkpoint genes, patients categorized in the low-risk group

exhibited notably superior survival outcomes compared to those in

the high-risk group. Specifically, the upregulation of genes including

CD40, CD200, CD244, CD276, NRP1, TNFRSF14, TNFSF14,

TNFSF15, and VTCN1 was associated with a significant

enhancement in the survival probability of patients belonging to

the low-risk group. In contrast, when genes like BTLA, CD27, CD28,

CD40, CD40LG, CD80, CD244, CD274, CTLA4, HHLA2, ICOS,

IDO1, IDO2, KIR3DL1, LAG3, TNFRSF8, TNFRSF18, and TNFSF15

were highly expressed, high-risk patients exhibited significantly

improved prognosis (p < 0.01, Figures 8, 9).
4 Discussion

Human THCA stands as the most frequent endocrine tumor and

ranks seventh among cancers most commonly diagnosed in women

(26). Over the past few decades, there has been a consistent rise in its
FIGURE 3

Analysis of Different Risk Groups. (A) Risk scores were calculated and the training set was divided into high- and low-risk groups. Heatmaps were
used to visualize the differential model genes between the two risk groups. The cumulative risk factor plot illustrates the changes in patient survival
time and status with respect to the risk score. (B) Risk scores were calculated and the validation set was divided into high- and low-risk groups.
Heatmaps were used to visualize the differential model genes between the two groups. The cumulative risk factor plot illustrates the changes in
patient survival time and status with respect to the risk score. (C) Survival analysis was performed on the high- and low-risk groups of stage I and II
patients. (D) Survival analysis was performed on the high- and low-risk groups of stage III and IV patients.
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incidence, resulting in a current prevalence that constitutes 3-4% of all

cancer cases (1). Although the prognosis for most THCA patients is

favorable, early detection and diagnosis remain challenging (8). Once

tumor cells metastasize to distant sites, survival rates vary significantly

depending on the pathological subtype (10), with the median survival

for ATC often limited to only 3-6 months (11). Worse still, the

standard therapies, such as surgery and postoperative radioiodine

ablation, are ineffective for ATC patients (9). Moreover, targeted

therapies and immunotherapies have limited success in achieving

curative outcomes for certain DTC and MTC patients (12).

Therefore, the objective of this study extends beyond merely
Frontiers in Oncology 09149
exploring the influence of cellular senescence on THCA and its

fundamental mechanisms, but also to develop a prognostic

prediction model, with the goal of identifying novel and effective

therapeutic targets to improve the prognosis and therapeutic

outcomes for THCA patients.

Initially, a detailed examination of CSAG variations between

normal and tumor tissues was carried out, resulting in the discovery

of 61 DEGs. Subsequently, we conducted a Cox regression analysis

of the CSAG, which yielded 21 prognostic-associated aging-related

genes. By intersecting these 21 prognostic genes with the 61 DEGs,

we identified 9 DEGs that were associated with prognosis. The
FIGURE 4

Enrichment analysis and immune characteristic differential analysis of high- and low-risk groups. (A) GSEA enrichment analysis of the high- and low-
risk groups. (B) Differential expression analysis of immune regulatory genes between the two groups. (C) CIBERSORT analysis of the correlation
between immune cell scores and model genes/risk score. (D–I) Analysis of immune cell scores and their correlation with model genes/risk score in
the samples using CIBERSORT-ABS, EPIC, MCPCOUNTER, QUANTISEQ, TIMER, and XCELL algorithms.
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genes that overlap may offer significant understanding of CSAG’s

role in predicting the outcome of THCA and might be candidates

for new prognosis prediction targets and therapeutic approaches.

However, Nonetheless, there is a scarcity of research investigating

the connection between these genes and THCA, and the

interactions between these genes remain unclear. Therefore, we

analyzed the correlations among the 9 genes and found that

HDAC4, NDRG1, NEK1, PLA2R1, and ASPH showed strong
Frontiers in Oncology 10150
positive correlations with other genes, with ASPH, HDAC4, and

NEK1 demonstrating particularly strong associations. It is known

that HDAC4 promotes carcinogenesis by limiting the transcription

of tumor suppressor genes (27), while NEK1 is involved in DNA

damage repair (28). Although CDKN2A and E2F1 are positively

correlated, they show negative correlations with the expression

levels of most other genes. Next, we used LASSO to perform gene

selection for model construction in the training set, ultimately
FIGURE 5

Comparison of immune checkpoint expression levels and their impact on prognosis between high- and low-risk groups. (A) Comparison of
expression levels of 31 immune checkpoint genes between the high- and low-risk groups. (B–J) Survival analysis of high- and low-risk groups
stratified by immune checkpoint gene expression levels. *p < 0.05; **p < 0.01; ***p < 0.001.
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identifying six model genes: ASPH, CDKN2A, E2F1, NDRG1,

NINJ1, and SNAI1. The transmembrane protein Aspartate b-
hydroxylase (ASPH), weighing approximately 86 kDa and

belonging to the highly conserved a-ketoglutarate-dependent
dioxygenase family, is classified as a type II protein. ASPH has

been found to be overexpressed in various malignant tumors (29),

and The hydroxylase activity it possesses holds a crucial function in
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fostering malignant tumor characteristics, encompassing tumor

growth, proliferation, invasion, and metastasis. Research has

shown that ASPH not only influences the prognosis of

hepatocellular carcinoma under the regulation of inositol

polyphosphate-5-phosphatase F (INPP5F) (30), but also promotes

tumor progression and poor prognosis by activating Notch and

PI3K-dependent signaling pathways, inducing a delay in tumor cell
FIGURE 6

Survival analysis. (A–V) Stratification of the high- and low-risk groups based on immune checkpoint gene expression levels.
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senescence and impairing mitochondrial integrity (31). One of the

most frequently deleted homozygous genes in human cancers is

CDKN2A, situated on chromosome 9 (32). The tumor suppressors

p16 and p14arf are both products of CDKN2A (33, 34). Since p16

inhibits the G1 to S phase transition and p14arf activates the tumor

suppressor p53 (34, 35), the loss of CDKN2A function leads to cell

cycle dysregulation and promotes tumor development. E2F

transcription factor 1 (E2F1) is the archetype member of the E2F

family, which includes transcriptional activators that bind to the

adenoviral E2 promoter (36). In regulating the expression of a

multitude of oncogenes and tumor suppressor genes, E2F1 serves as

an activator. The E2F family precisely regulates the cell cycle,

apoptosis, and DNA replication processes (37). E2F1 not only

promotes cell migration and metastasis but also plays a critical
Frontiers in Oncology 12152
role in stem cell-mediated carcinogenesis and estrogen-mediated

cell proliferation (38). Its non-transcriptional activities further

promote DNA repair or induce autophagy and apoptosis (39). N-

myc downstream regulated gene 1 (NDRG1), a gene that functions

to suppress tumorigenesis, located on chromosome 8q24.3, encodes

a 3.0 kb mRNA and inhibits cell proliferation, migration, invasion,

and autophagy, while promoting apoptosis and differentiation, thus

suppressing tumor invasive phenotypes (40). Overexpression of

NDRG1 downregulates cyclin D1, a Wnt-responsive gene, and

inhibits cell cycle progression (41). Although NDRG1 primarily

exhibits anti-cancer and anti-metastasis functions, it has also been

shown to promote cancer in certain cancers such as gastric cancer

and hepatocellular carcinoma (42). Therefore, some researchers

suggest that NDRG1 may exert pleiotropic effects depending on the
FIGURE 7

Mutation analysis and survival analysis based on TMB, and prediction of tumor treatment responses by the model. (A) Tumor mutation burden
analysis of the high- and low-risk groups. (B) Analysis of the correlation between tumor mutation burden and risk score. (C) Survival analysis of high-
TMB and low-TMB groups. (D) Survival analysis of high- and low-risk groups within high- and low-TMB subsets. (E) Analysis of immune treatment
responses in high- and low-risk groups. (F) Survival analysis of high- and low-risk groups in the IMvigor210 immunotherapy cohort. (G) Analysis of
risk model score differences between disease status groups in the IMvigor210 immunotherapy cohort.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1545656
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang and Pang 10.3389/fonc.2025.1545656
cancer type (43). Initially discovered as a gene that undergoes

significant upregulation in Schwann cells and dorsal root ganglia

following nerve injury, Ninjurin1 (NINJ1) serves as a homophilic

cell adhesion molecule (CAM) (44). The regulation of

neovascularization in vitro and the formation of the hyaloid

vascular system in vivo are mechanisms through which NINJ1

contributes to angiogenesis, and NINJ1 forms a feedback loop with
Frontiers in Oncology 13153
p53, whereby NINJ1, as a p53 target, suppresses p53 mRNA

translation. Moreover, NINJ1 exerts opposite effects on cell

growth, migration, and tumor development through wild-type

and mutant p53 (45). Additionally, NINJ1 inhibits the IL-6

signaling pathway both in vitro and in vivo, suppressing lung

cancer migration, invasion, and metastasis (46). Snail family zinc

finger 1 (SNAI1) is the first and most extensively studied E-cadherin
FIGURE 8

Survival analysis. (A–X) In the IMvigor210 cohort, the high-risk and low-risk groups were stratified according to the level of immune checkpoint gene
expression and the difference in prognosis was compared.
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transcriptional repressor, and E-cadherin, encoded by the epithelial

gene CDH1, is a marker of epithelial-mesenchymal transition

(EMT), a developmental process that cancer cells use to promote

invasion, metastasis, and therapy resistance (47). In normal tissues,

the regulation of SNAI1 expression is precise, whereas its

deregulation is linked to the advancement of several types of

cancer (48, 49). In addition to repressing the E-cadherin gene, the

core function of SNAI1 includes the transcriptional repression of

tight junction genes and fructose-1,6-bisphosphatase genes, which
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regulate glycolysis rate (50). In ovarian cancer cells, SNAI1

primarily regulates intercellular and cell-matrix adhesion (51).

We built a model for predicting prognosis by utilizing six model

genes, and subsequently assessed the scores for patients in not only

the training but also the validation datasets. Following that, the

patients from both cohorts were divided into two categories – high-

risk and low-risk – according to their respective risk scores. An

analysis comparing the survival rates of the two groups within both

cohorts unveiled that patients in the low-risk category of the TCGA
FIGURE 9

Survival analysis. (A–W) In the IMvigor210 cohort, the high-risk and low-risk groups were stratified according to the level of immune checkpoint
gene expression and the difference in prognosis was compared.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1545656
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang and Pang 10.3389/fonc.2025.1545656
cohort exhibited a notably superior prognosis compared to those in

the high-risk category. Additionally, we assessed the model’s

predictive power by employing ROC curves and found that it

demonstrated high accuracy in both the two datasets. Given the

roles of these six genes in malignant tumors, we propose that they

are likely to serve as prognostic biomarkers for THCA and may

influence the initiation and progression of THCA. An additional

analysis was conducted across two datasets to explore the variations

in the expression of model genes across the cohorts stratified as

high-risk and low-risk. It is apparent that ASPH, CDKN2A,

NDRG1, and SNAI1 demonstrated increased expression in the

high-risk group, irrespective of whether they were in the training

set or the validation set. In the low-risk group, E2F1 and NINJ1

were more expressed. An analysis was conducted to compare the

survival differences between the two groups, revealing that,

although the high-risk group had a lower survival rate, the

maximum survival duration of patients did not significantly differ

from that of the low-risk group. We then conducted survival

analysis for the TCGA cohort, stratifying patients into high-risk

and low-risk groups based on Stage I-II and Stage III-IV, in order to

investigate how tumor stage influences the predictive ability of the

model. Comparable survival rates were observed between the high-

and low-risk groups in Stage I-II, with no statistically significant

differences emerging. However, in Stage III-IV, a notable disparity

in survival rates was observed between the two groups. We interpret

this as suggesting that our model holds greater predictive value in

patient populations with more advanced stages. Additionally, an

analysis using GSEA, focusing on the KEGG MEDICUS pathway,

was conducted, revealing the enrichment of five pathways,

primarily associated with cellular proliferation, differentiation,

and signaling, for those at high risk. Genes in the high-risk group

were highly enriched in pathways associated with the mitochondrial

electron transport chain, reflecting changes in cellular energy

metabolism in the high-risk group and increased apoptosis that

may result from mitochondrial dysfunction. Conversely, for

those at low risk, the primary association of the enriched

pathways was with mitochondrial electron transport and

oxidative phosphorylation processes. The results of our study

introduce novel understandings into the realm of THCA

treatment, implying that a customized exploration of therapeutic

options for patients stratified into high- and low-risk groups may

facilitate the development of more precise targeted therapies.

Following that, an analysis of the immune regulatory expression

profiles was conducted for both groups, with the results showing

that the high-risk group had significantly increased expression

levels of five immune regulatory molecules compared to the low-

risk group. This suggests that the response to immune checkpoint

inhibitors or immunotherapies in THCA may differ based on the

risk scores. This also indicates that the patient’s immune status is

strongly associated with clinical outcomes. Afterwards, various

algorithms were employed under the purpose of examining the

relationship existing between the abundance of immune cell

infiltration and six model genes. The analysis revealed a positive

association between the risk score and CDKN2A, both related to

increased immune cell abundance, whereas NINJ1 displayed an

inverse relationship with the expression levels of immune cells. The
Frontiers in Oncology 15155
indication is that CDKN2A and NINJ1 potentially impact tumor

prognosis by regulating the infiltration of immune cells. We

subsequently conducted an analysis to assess the variability in the

expression of immune checkpoints across patient groups stratified

by high and low risk. The results of our study indicated that there

was an upregulation of 31 immune checkpoints among those in the

high-risk category, hinting at a potentially more favorable efficacy of

immune checkpoint inhibitors in this group. By utilizing the

median expression levels of these 31 immune checkpoints, we

further divided both high- and low-risk groups into two

subgroups and conducted survival analysis for each checkpoint.

Despite immune checkpoint expression having little effect on the

survival of patients in the low-risk group, the high-risk group

exhibited a notable correlation between immune checkpoint

expression and their survival rates. Eight immune checkpoints—

ADORA2A, BTNL2, CD27, CD80, IDO2, TNFRSF4, TNFSF4, and

TNFSF9—were associated with poorer prognosis when highly

expressed, while the high expression of most immune checkpoints

was generally linked to better outcomes. This finding provides novel

insights into the development of novel immunotherapy agents

targeting immune checkpoints, and indicates that the level of

immune checkpoint expression may serve as a marker for

evaluating disease progression and prognosis, thereby laying the

groundwork for tailored treatment approaches.

After computing and contrasting the TMB of the two patient

groups, we observed no notable disparity, which could be attributed

to the influence of potential confounding factors. The Pearson

correlation analysis was conducted by us to deeply evaluate the

correlation between the risk score and TMB, with the aim of

bolstering the credibility of our findings. The results of our analysis

revealed an inverse relationship between the risk score and TMB,

implying that patients with higher risk scores had correspondingly

lower TMB levels. With patients categorized into H-TMB and L-

TMB groups using the median TMB value as a cutoff, we proceeded

to analyze their survival rates. Our analysis revealed that patients

belonging to the H-TMB group had significantly diminished survival

rates in comparison to those in the L-TMB group. Subsequently, we

combined TMB and risk scores to classify the patients into four

subgroups for survival analysis. Our results showed that, although

TMB had no substantial effect on survival among patients in the low-

risk group, patients in the high-risk group with high TMB had

significantly inferior survival rates compared to those with low TMB.

This finding supports our previous conclusion that TMB is not an

independent prognostic factor. TMB levels appear to influence the

prognosis primarily in high-risk patients. Although high-risk groups

generally correspond to lower TMB, patients within these groups who

have higher TMB tend to experience poorer outcomes. Some studies

suggest that a higher TMB reflects greater exposure to tumor

antigens, and thus TMB could potentially serve as a marker for the

response to therapy utilizing immune checkpoint inhibitors (52). A

deeper exploration into the function of TMB in THCA is necessary,

as it could potentially present a new method for therapeutic

intervention and prognosis assessment in THCA.

Finally, we conducted an immunotherapy analysis on the

patients, separately assessing high-risk and low-risk patients’

reactions to anti-CTLA-4 and anti-PD-L1 antibodies. This led to
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the identification of four distinct IPS. Our results suggest that,

regardless of whether patients received anti-CTLA-4 or anti-PD-L1

antibodies, those in the low-risk group responded significantly

better to immune checkpoint inhibitor treatment strategies.

Notably, patients receiving monotherapy with PD-1 inhibitors

exhibited the most pronounced difference. Our model suggests

that it can direct the choice of more precisely targeted

immunotherapy strategies according to a patient’s risk score,

which may lead to an enhanced response to immune suppressors

for high-risk patients and, consequently, a better prognosis. To

further assess the predictive efficacy of the model, we used the

IMvigor210 cohort for validation. After determining the risk scores

for the patients, the IMvigor210 cohort was categorized into those at

high risk and those at low risk, upon which survival analysis was

subsequently performed. The predictive performance of the model

was validated by the results as being robust. We then classified

patients into two groups based on therapeutic response: complete or

partial response (CR/PR) and stable or progressive disease (SD/PD),

and compared their risk scores. The CR/PR group exhibited

significantly decreased risk scores when compared to the SD/PD

group. Subsequently, the patients’ risk scores were combined with

the expression levels of 48 immune checkpoint molecules, leading

to the classification of patients into four subgroups, each

characterized by the expression pattern of a particular immune

checkpoint molecule. The analysis of survival outcomes showed

that, when compared to patients in the high-risk group, those in the

low-risk group exhibited a remarkably better prognosis. Within the

low-risk group, there was an upregulation of specific immune

checkpoint genes, such as CD40, CD200, CD244, CD276, NRP1,

TNFRSF14, TNFSF14, TNFSF15, and VTCN1, was linked to a

notable elevation in the likelihood of survival, suggesting that these

genes may serve as promising therapeutic targets for low-risk

patients. Other studies have also linked these genes to thyroid

cancer (53, 54). When it comes to the group with higher risk scores,

over one-third of the immune checkpoint genes studied were

identified as having a positive correlation with a better prognosis.

Genes like CD40, CD244, and TNFSF15 were found to be beneficial

for the prognosis of both groups. These findings open up new

possibilities for targeted therapies in THCA.

While our study established a prognostic model for THCA and

uncovered the role of CSAGs, limitations exist. First, using public

database data may introduce sample bias. Additionally, findings are

primarily data-driven, lacking experimental validation. Lastly,

analysis of immune checkpoints and TMB was limited to risk

stratification, requiring further investigation into their mechanisms.
5 Conclusion

In this study, we used bioinformatics to explore cellular

senescence’s impact on THCA prognosis. By integrating public

database data and focusing on CSAGs, we developed a robust

prognostic model validated by KM and ROC curves. By stratifying

patients into high- and low-risk groups, the model uncovered notable

disparities in prognosis, immune activity, and treatment response.

Risk-stratified analysis provided insights into immune checkpoints
Frontiers in Oncology 16156
and TMB. Our findings deepen understanding of cellular senescence

in THCA and suggest new therapeutic targets.
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