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Editorial on the Research Topic

Advanced technology for human movement rehabilitation and

enhancement

In the dynamic field of human movement science, the integration of cutting-edge

technology with human physiology is driving a transformative shift in rehabilitation and

enhancement. This research theme encompasses neurorehabilitation, assistive robotics,

and human-machine interaction, offering exciting prospects for reshaping movement

recovery. Translational research plays a key role by bridging scientific advancements

with practical clinical applications, ensuring that breakthroughs in laboratories transition

seamlessly into real-world treatments. Neurorehabilitation focuses on neuroplasticity

and the brain’s ability to adapt, while advanced imaging and neurophysiology guide

interventions aimed at rewiring neural pathways for individuals with neurological injuries.

Assistive robotics combine human potential with sophisticated devices, providing tailored

support that aids recovery, enhances muscle activation, joint movement, and gait training,

ultimately promoting functional independence. The intersection of human-machine

interaction explores the blurring of lines between humans and technology, enabling

seamless collaboration to guide and benefit patients through technological assistance.

This Research Topic provides a valuable platform for exploring key mechanisms of

human movement rehabilitation, integrating physiological strategies with the design of

assistive devices. It highlights the critical role of advanced algorithms, virtual reality,

wearable sensors, and machine learning in addressing significant rehabilitation challenges.

The studies in this Research Topic cover a broad spectrum of topics, from stroke-induced

motor impairments and neurodegenerative conditions to pediatric mobility impairments

and sports training. By showcasing groundbreaking technologies, this Research Topic

emphasizes the importance of neurophysiological assessments and machine learning

models in optimizing rehabilitation outcomes. Examples include motor unit estimation,

surface electromyography, and electroencephalogram (EEG)-based movement intention

detection to monitor and enhance recovery. Wearable sensors and artificial intelligence

technologies are also leveraged to assess gait abnormalities, monitor knee osteoarthritis,

and provide real-time feedback in sports training and swimming action recognition.
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These innovations demonstrate the transformative potential

of advanced technology in improving mobility, functional

independence, and quality of life for patients across

various conditions.

Stroke-induced impairments in gait and upper limb motor

function significantly impact mobility, daily activities, and overall

quality of life. Pan et al. conducted a case-control study analyzing

the biomechanical deviations in gait patterns of post-stroke

hemiplegic patients, using statistical parametric mapping to

compare joint angles, moments, and ground reaction forces across

the gait cycle. Their findings revealed significant abnormalities

in both the affected and less-affected limbs, highlighting the

need for targeted interventions that address bilateral impairments.

Liu et al. conducted a randomized controlled trial comparing

robot-assisted therapy (RT) with conventional therapy to enhance

upper-limb motor function in post-stroke patients. Their results

demonstrated that RT significantly accelerated improvements in

Fugl-Meyer Assessment Upper Extremity scores, particularly in

patients at Brunnstrom Stage III, although both groups showed

similar improvements in functional independence as measured

by the Modified Barthel Index. This suggests that robot-assisted

therapy holds great potential for enhancing motor recovery in

moderate impairment cases. Li et al. examined the predictive

value of neuroelectrophysiological assessments, specifically motor

unit number estimation (MUNE) and F-waves, for forecasting

upper extremity motor function and long-term recovery in

stroke patients. They found that MUNE provided more accurate

predictions of motor recovery a year post-stroke, emphasizing the

importance of incorporating neuroelectrophysiological evaluations

into stroke rehabilitation to improve outcomes. Additionally,

Lu et al. explored how spasticity confounds myoelectric pattern

recognition in stroke rehabilitation. They suggested that botulinum

toxin injections could reduce muscle overactivity and improve the

effectiveness of myoelectric pattern recognition, supporting the use

of this combined approach to enhance rehabilitation outcomes for

stroke patients.

The integration of motor unit analysis and muscle synergy

research is advancing rehabilitation strategies for neuromuscular

diseases and mobility impairments. The loss of motor units

in conditions like amyotrophic lateral sclerosis and muscular

dystrophy leads to muscle weakness and atrophy, making tools

like motor unit number estimation and compound muscle action

potential (CMAP) valuable for tracking motor unit loss and

compensatory reinnervation. Zhang D. et al. studied the impact

of electrode recording areas on CMAP parameters, discovering

that electrode size did not significantly affect CMAP data, which

enhances the interpretation of CMAP scan results in rehabilitation

contexts. Tsuchiya et al. explored how pedaling speed and direction

influence the recruitment of muscle synergies, showing that specific

muscle groups are recruited depending on the conditions, such

as quadriceps and hip extensors at 30 revolutions per minute

(RPM) and hamstring-dominant synergies at 60 RPM during

forward pedaling. Their findings suggest that pedaling exercises

tailored to different speeds and directions can better target specific

muscles for rehabilitation, particularly for stroke patients and

those with mobility impairments. These studies highlight the

growing potential for personalized rehabilitation strategies that

optimize recovery by considering individual muscle synergies and

motor patterns.

Wearable robotic exoskeletons are increasingly recognized for

their potential to assist rehabilitation in conditions like stroke-

induced drop foot and pediatric mobility impairments such as

cerebral palsy. Zhang X. et al. developed a soft ankle exoskeleton

to assist with dorsiflexion and eversion, demonstrating its ability

to significantly improve gait kinematics in both seated and gait

tests with minimal errors. Bradley et al. assessed the clinical

impact of the pediatric Trexo Plus exoskeleton, focusing on motor,

neural, and muscular outcomes in children with severe mobility

impairments. Their feasibility study highlighted the exoskeleton’s

potential to promote neuroplasticity and improve mobility,

particularly in young patients with motor impairments. Miao et al.

proposed a framework for robot-assisted upper-limb rehabilitation,

using subject-specific workspace constraints and performance-

based control strategies to enhance training effectiveness, natural

motion, and patient engagement. Voß et al. emphasized the

importance of intuitive control architectures for lower-limb

prostheses, combining volitional control with proprioceptive

feedback to improve user satisfaction and functionality. These

studies demonstrate the promising potential of exoskeletons and

advanced control systems to revolutionize rehabilitation, offering

significant improvements across diverse patient populations.

Artificial intelligence and sensor technologies are at the

forefront of human movement rehabilitation and performance

enhancement, driving advancements in precision feedback and

personalized interventions. LinLin et al. developed a system that

combines Vision Transformers with Contrastive Language-Image

Pretraining (CLIP) models to deliver real-time, context-aware

feedback in sports training, outperforming traditional methods

in accuracy, recall, and computational efficiency. Chen and Yue

introduced Swimtrans Net, which uses Swin-Transformer and

CLIP models to improve swimming action recognition and

provide real-time feedback with exceptional accuracy. Sarmah et al.

explored a non-invasive method for detecting knee osteoarthritis

(Knee OA) and monitoring rehabilitation progress by integrating

gait and muscle activity data with machine learning models.

Their work demonstrated how wearable sensors and non-knee

joint variables could be leveraged for early Knee OA detection

and personalized interventions, illustrating the potential of

artificial intelligence and sensor technologies to revolutionize both

rehabilitation and sports performance through precision feedback

and tailored solutions.

Virtual reality (VR)-based interventions are emerging as

powerful tools in rehabilitation, offering cost-effective solutions

for home-based recovery. Dai et al. developed a VR-based

rehabilitation system that reconstructs full-body poses from

sparse motion signals, providing real-time motion correction

and allowing patients to undergo efficient therapy without

frequent clinical visits. Dong et al. enhanced movement intention

detection for neurological rehabilitation by using VR induction

to improve EEG signal detectability, facilitating better activation

of brain functional networks. These innovations highlight

the growing role of VR in rehabilitation, demonstrating

its potential to enhance motor recovery, engagement,

and accessibility.
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This Research Topic highlights the important role of advanced

technologies in advancing human movement rehabilitation and

enhancement. By exploring the intersection of assistive robotics,

virtual reality, wearable sensors, and AI-powered systems, the

research illustrates how engineering and human physiology work

together to address a wide range of challenges in mobility and

rehabilitation. Through a thoughtful integration of application, this

body of work underscores the potential for impactful interventions

that could contribute to the progression of rehabilitation

science. By connecting theoretical advancements with practical

implementations, these studies present opportunities to develop

more personalized, accessible, and effective treatments for patients

globally, shaping the future direction of rehabilitation.
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Introduction: Active rehabilitation requires active neurological participation

when users use rehabilitation equipment. A brain-computer interface (BCI) is

a direct communication channel for detecting changes in the nervous system.

Individuals with dyskinesia have unclear intentions to initiate movement due to

physical or psychological factors, which is not conducive to detection. Virtual

reality (VR) technology can be a potential tool to enhance the movement

intention from pre-movement neural signals in clinical exercise therapy.

However, its effect on electroencephalogram (EEG) signals is not yet known.

Therefore, the objective of this paper is to construct a model of the EEG

signal generation mechanism of lower limb active movement intention and then

investigate whether VR induction could improve movement intention detection

based on EEG.

Methods: Firstly, a neural dynamic model of lower limb active movement

intention generation was established from the perspective of signal transmission

and information processing. Secondly, the movement-related EEG signal

was calculated based on the model, and the effect of VR induction was

simulated. Movement-related cortical potential (MRCP) and event-related

desynchronization (ERD) features were extracted to analyze the enhancement

of movement intention. Finally, we recorded EEG signals of 12 subjects in normal

and VR environments to verify the effectiveness and feasibility of the above

model and VR induction enhancement of lower limb active movement intention

for individuals with dyskinesia.

Results: Simulation and experimental results show that VR induction can

effectively enhance the EEG features of subjects and improve the detectability

of movement intention.

Discussion: The proposed model can simulate the EEG signal of lower limb

active movement intention, and VR induction can enhance the early and

accurate detectability of lower limb active movement intention. It lays the

foundation for further robot control based on the actual needs of users.

KEYWORDS

movement intention, electroencephalogram, virtual reality induction, movement-
related cortical potential, event-related desynchronization, brain-computer interface
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1 Introduction

With the aging population and the frequency of accidents,
the number of individuals with lower limb dyskinesia is gradually
increasing. Exercise therapy after surgery has been indicated as
an effective way to help patients recover (McDonald et al., 2022).
Human lower limbs support the weight of the body, which creates
movement challenges for lower limb dyskinesia individuals, so they
inevitably need external assistance. Exoskeleton robots can not only
help the body stand upright but can also assist the user in walking. It
has been extensively researched, designed, and implemented (Kalita
et al., 2020; Xiang et al., 2020).

Exoskeleton robots are required to be able to personalize and
intelligently assist the user. An important principle within the
use of exoskeleton robots is that the robots assist lower limb
dyskinesia people to actively undertake prescribed movements
rather than their limbs moving passively. It is critical that robots
perceive the user’s movement intention (Qiu et al., 2021). Human
active movement intention is the result of cognitive processes
in the brain. The process of human brain cognition and its
body expression can be described in two parts: “Uplink Pathway:
Electroencephalogram (EEG) signal generation” and “Downlink
Pathway: Electromyography (EMG) and other biological signal
generation” (Zhang et al., 2021). EEG contains brain real-
time information, which could be used to understand the
current motor-related brain activity and further predict the
next motor task. Furthermore, a brain–computer interface (BCI)
could help researchers to investigate users’ movement-related
neurophysiological changes in a non-invasive way (Abiri et al.,
2019). This technology would pave the way for intelligent assistance
of exoskeleton robots.

Some scholars have studied the neurophysiological changes
related to movement intention through BCI. Detection or
prediction of movement intention via EEG signals is the
ultimate goal. Sburlea et al. (2017) investigated the detection of
gait intention; the results showed that the detector combines
movement-related cortical potential (MRCP) amplitude and phase
features of EEG signals and has 62.5% accuracy in healthy subjects
and 59% in stroke patients. Lopez-Larraz et al. (2016) identified
movement intention with the cue-guided paradigm; the accuracy
of movement intention detection was 84.44% in healthy subjects
and 77.61% in incomplete spinal cord injury patients. Jeong et al.
(2017) validated a single-trial readiness potential performance
in the lower limb exoskeleton environment and the average
classification accuracy was 80.7% in healthy subjects. Hasan et al.
(2020) employed a discrete wavelet transform-based method to
detect the movement intention, the accuracy of detecting “rest
vs. start” was 76.41% and “walk vs. stop” was 74%, with healthy
subjects outperforming amputee subjects. In addition, there are
some studies on filtering algorithms (Jeong et al., 2020; Mascolini
et al., 2022), feature extraction methods (Wang et al., 2020; Jia et al.,
2022), and detection methods (Chaisaen et al., 2020) to improve the
performance of movement intention detection or prediction. The
accuracy of lower limb movement intention detection in people
with dyskinesia is lower than in healthy individuals with BCI
intention detection. How to enhance the detectability of lower limb
movement intention in people with dyskinesia based on BCI and

enable them to accurately control exoskeleton robots is an urgent
problem.

To solve this problem, the process by which the brain
generates movement intentions and related EEG signals should
be analyzed. The brain can filter and select the information,
and only selectively filtered information can be perceived (Leone
et al., 2017). The brain’s generation of specific intentions is
affected by facilitating and preventive factors, which is a process
of competition. Individuals with lower limb dyskinesia experience
physical discomfort during exercise, such as pain or fatigue, which
generates a plethora of preventive factors that affect movement
intentions. Although EEG signals have many advantages, they are
inherently weak, non-stationary, and susceptible to interference.
The brain of individuals with lower limb dyskinesia contains
ambiguous and complex information, with a low signal-to-noise
ratio and multiple confounding factors, which are not conducive to
the analysis of movement-related neural signals (Jochumsen et al.,
2015; Sburlea et al., 2016). Therefore, their movement intention
detection accuracy is lower than that of healthy people. However,
the current BCIs cannot address the impact of multiple factors on
people with lower limb dyskinesia.

Cognitive neuroscience research suggests that human
movement intention and preparation are greatly affected by
their mental state of exercise (Van Overwalle et al., 2020). Some
scholars have proposed to introduce virtual reality (VR) technology
in rehabilitation training to build a three-dimensional audio-visual
integrated virtual environment with multiple perceptions so that
users can complete the two-way interaction between virtual and
reality in a simulated environment. Immersive scenarios could
help to filter out some of the external distractions and maximize
the user’s ability to focus on the movement task, promoting
motor neurological rehabilitation. Berton et al. (2020) statistically
analyzed the clinical data on the impact of VR technology on
orthopedic patients from 2015 to 2020, the results showed that
VR technology had a positive effect on the rehabilitation of
patients. The case study by Chillura et al. (2020) showed that
the combination of traditional rehabilitation under VR and
robot-assisted rehabilitation could enhance functional recovery;
the improvement effect of patients after combined treatment was
significantly greater than that after conventional rehabilitation
alone. Maggio et al. (2021) evaluated the usefulness of robot-aided
gait training (RAGT) equipped with virtual reality augmented
visuomotor feedback through EEG changes and confirmed that
RAGT and VR can achieve better patient-tailored improvement
in functional gait. These studies showed that VR technology
plays a positive role in the rehabilitation of people with lower
limb dyskinesia, but this is only a qualitative description, which
does not indicate the impact of VR on brain or body changes in
movement. Whether VR technology enhances movement intention
or improves the detectability of movement intention is still unclear,
and understanding the effect of VR on movement-related EEG
potential change is important for movement intention detection
based on BCI.

To study the mechanism of VR induction, it is necessary to
analyze the brain information processing, establish a model for the
generation of EEG signals, and then analyze the effect of different
situations on its signal features. Some mathematical models of EEG
generation were established and EEG signals have been simulated.
Wendling et al. (2002) focused on the high-frequency EEG activity
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and modeled EEG signals in epileptic patients. Zavaglia et al.
(2008) built an EEG generation model by combining three neural
mass models and simulated EEG power spectral density in some
regions of interest during simple tasks. Chehelcheraghi et al. (2017)
added external modulatory input and dynamic self-feedback to the
Wendling neural mass model and simulated EEG signals in α, β,
and γ bands. These models simulated macroscopic EEG signals
by considering the brain regions of the sensing zone as a whole.
However, brain information processing involves different regions
and has a hierarchical relationship. Moreover, elements related to
movement intention generation need to be added to the model to
produce the corresponding EEG signal features. In this regard, the
van der Pol oscillator is often used as a model for simulating EEG
features. Baghdadi et al. (2018) modeled the ERD/ERS features of
EEG signals using van der Pol oscillator simulations. Ghorbanian
et al. (2015) simulated eyes-closed and eyes-open EEG based on
the van der Pol oscillator, and the model showed that very good
agreement exists between the model output and the EEG in terms of
the power spectrum. Szuflitowska and Orlowski (2021) applied the
Van der Pol model oscillator to study brain activity during temporal
left lobe seizures. Therefore, to establish the EEG generation model
of movement intention, it is necessary to combine the above
different types of models and add more details. After modeling, the
effect of the VR system on the EEG signal features can be analyzed
by changing the parameters of the mathematical model.

In this study, we investigated the EEG generation of lower
limb movement intention and its action expression mechanism
and categorized brain information processing into primary and
advanced processing. Then, an EEG signal generation model of
lower limb active movement intention that fused the van der Pol
oscillator and the neural mass model was established based on brain
information processing laws. In addition, the model was simulated
to investigate whether it is possible to enhance the movement
intention significantly from EEG signals during leg lifts with VR
induction. Finally, a comparative experiment was conducted on
12 healthy subjects to analyze EEG signal features and verify the
correctness of the model. The rest of the paper is constructed in
the following way. Section 2 describes the model and methods of
the study. Section 3 describes the experiment. Section 4 contains
the results of the model simulation and experiment. Section 5 is
the discussion of the study. Section 6 is the limitations. Section 7
provides a conclusion to the study.

2 Methodology

2.1 Generation of lower limb movement
intention and its virtual reality induction
enhancement mechanism

The brain generates intention after cognition and decision-
making. The process of movement intention generation is shown
in Figure 1A. Human receptors continuously receive information
from the body’s internal or external environment, which is
converted into electrical signals and transmitted to corresponding
brain regions through specific nerve conduction pathways for
primary processing. Then, the brain reprocesses and fuses the
results with different primary processing regions, which can be

regarded as an advanced processing process. Finally, the movement
intention is generated and expressed in the EEG signals of the brain
motor area.

For individuals with lower limb dyskinesia, pain during
movement is the main factor that affects their movement intention.
This is a prevention factor. However, psychological experimental
research shows that visual information accounts for the largest
proportion of the information received by the brain, which is 83%
(An et al., 2017). In a VR induction system, virtual scenarios could
provide an immersive and directional environment. It helps the
users to perceive and focus on specific targets, generate selective
attention, and enhance attention retention. Special scenarios
could improve the competitiveness of the promoting factors
for intention generation in the information-selective processing
of the brain. In addition, individual willpower also affects the
continuity of movement intention. The process of generating
lower limb movement intention with the VR induction system
is shown in Figure 1B. Pain irritation and individual willpower
usually cannot be changed, while VR scenarios could provide
positive visual information for generating movement intention and
maximizing its benefits. Furthermore, attention enhancement and
retention could enhance the efficiency of useful information, that
is, enhancing motor control circuitry of the human brain, making
movement-related neural associations easy to detect. Thus, the VR
induction system increases the influence of specific signals in the
brain’s advanced processing process by altering the input signals.

2.2 Mathematical models

Brain neurons encode movement intention. The generation
of neural oscillations is considered a marker of brain activity, it
can be analyzed by mathematical models of brain dynamics. Two
types of brain dynamics models are commonly used to describe
the generation of EEG signals. The first type is the micro-level
model, which describes the activity of a single neuron in detail;
explicitly combines the properties of ion channels, axons, and
dendrites; and explores the chemical properties of action potentials
with the changes in intracellular ion concentrations (Abbott, 1999;
Baladron et al., 2012). The model is computationally complex and
ignores the interactions between cells, which cannot fully reveal
the response characteristics of whole brain EEG signals (Bossy
et al., 2015). The second type is the neural mass model (NMM),
which is proposed due to the discovery that neurons with the same
function can cluster and have similar dynamic properties (Wilson
and Cowan, 1973). It assumes that neurons in the same population
share similar inputs and synchronize their activity, reflecting the
overall discharge behavior by describing the average characteristics
of the neural population (such as average discharge rate, average
membrane potential, etc.). The model uses multiple state variables
to describe the dynamics of the entire neural population and
its synapses, which has the advantages of low computational
complexity, simple parameters, and clear physiological significance.

According to physiological research and the foregoing analysis,
there are two stages between receiving various information from
human receptors and generating movement intention. The goal
of the primary processing model is to synchronize the generated
signals with the external stimulus signals. The advanced processing
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FIGURE 1

Generation of lower limb movement intention. (A) The generation of movement intention with secondary brain processing. (B) Various factors
compete to produce movement intention for individuals with lower limb dyskinesia.

model couples the multiple types of signals obtained from the
primary processing to output EEG signals indicating movement
intention. Cascading these two models is the model proposed in
this paper. In comparison with the universal model that simulates
EEG at different frequencies, the proposed model could simulate
not only spontaneous EEG signals but also the situation with
external stimuli. Compared with the model that mimics the
shape of EEG features, the proposed model has a clear physical
significance. Overall, the proposed model is a model for movement
intention generation that is more consistent with the physiological
knowledge of brain processing and has good interpretability. The
brain activity of movement intention generation could be expressed
by the following two models.

2.2.1 Brain primary processing model
With the development of physiology and anatomy, researchers

have segmented the brain according to its cell composition,
arrangement, structure, and other characteristics. Each region plays
a different role in processing information in the brain. Rhythmic
neural electrical activity is the basis of brain cognitive function.
This spontaneous neural electrical activity can be regarded as a
dynamic self-excited oscillation process. When stimulated by the
external environment, the endogenous neural activity in the brain
is regulated by the external stimulus, the neural oscillation will be
synchronized with the external rhythm (Thut et al., 2011). Thus,
in primary brain processing, the neurons could be represented as
oscillators, and synchronization is the oscillatory output.

A small oscillating neuronal assembly could be described by a
van der Pol oscillator, as shown in Equation 1. Y is the output, λ

is the bifurcation parameter, and Ẏ determines the state variable of
the oscillator. When λ ≤ 0, there is no oscillation, when λ > 1, it
enters a specific limit cycle with periodicity, and when 0 < λ < 1,
the oscillator oscillates at a frequency p with an amplitude of 2

√
λ.

Ÿ − (λ− Y2)Ẏ + p2Y = 0 (1)

When an external input (including the external input from the
VR induction system) has the same frequency as the oscillator, the
neural population could be affected by the oscillation. When the
oscillator receives an input of the same frequency, the oscillator

would not be affected when the input is the same as the oscillator
phase, and the oscillator could gradually converge to the input
through periodic stimulation when the phase is different. As
the period increases, the average phase of the neuron oscillator
gradually converges with the input, which is synchronization.
The completion of synchronization means that information has
been transmitted to corresponding brain regions through specific
neural pathways.

2.2.2 Brain advanced processing model
The advanced processing of the brain is coordinated through

the firing activity of a large number of widely interconnected
neurons. It can be described in NMM. Based on the generation
mechanism of nerve impulses, the classical NMM describes
the interaction of different synaptic dynamics among pyramidal
neurons, excitatory interneurons, and inhibitory interneurons
(Wilson and Cowan, 1972; Jansen et al., 1993). It was initially
used to study the mechanism of generation of alpha rhythms
(Lopes da Silva et al., 1976) and the generation of simulated
visual evoked potentials (Jansen and Rit, 1995). Physiological
anatomy research suggests that the inhibitory synapses of
pyramidal neurons in the hippocampus of the brain can
be divided into slow inhibitory synaptic responses and fast
inhibitory synaptic responses (Miles et al., 1996). Therefore,
researchers divided inhibitory interneuron populations into slow
inhibitory interneuron populations and fast inhibitory interneuron
populations, and successfully simulated EEG signals that input
targets were pyramidal cells (Wendling et al., 2002). However,
input from neuronal populations can reach every interneuron.
The results of a parameters sensitivity analysis showed that the
model dynamics changes of excitatory interneurons and slow
inhibitory interneurons were not obvious; thus, only the inputs
to pyramidal neurons and fast inhibitory interneurons need to be
considered. In addition, fast inhibitory interneurons exhibit self-
inhibition (Ursino et al., 2010). Simulating brain parameters under
different conditions (Vindiola et al., 2014; Mangia et al., 2017;
Ferrat et al., 2018) and constructing a coupled brain network
structure can clarify the changes in brain activities (Garnier et al.,
2015; Chehelcheraghi et al., 2016).
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FIGURE 2

Neural mass model topology. The arrow line represents the
excitatory transmission process, and the round-headed line
represents the inhibitory process.

Based on previous research, the improved NMM topology is
shown in Figure 2, where pyramidal neurons receive excitatory
inputs from the excitatory interneurons and inhibitory inputs
from the fast inhibitory interneurons and slow inhibitory
interneurons. Pyramidal neurons transmit excitatory inputs to
excitatory interneurons, fast inhibitory interneurons, and slow
inhibitory interneurons. Slow inhibitory interneurons transmit
inhibitory input to fast inhibitory interneurons and the fast
inhibitory interneurons inhibit themselves. In the model, n is
used to represent the neuron, and subscripts 1, 2, 3, and 4 of
parameters represent pyramidal neurons, excitatory interneurons,
slow inhibitory interneurons, and fast inhibitory interneurons,
respectively. Attention enhancement and retention produced by
the VR induction system affect the connectivity parameters of the
various neuronal clusters, thereby enabling the brain to generate
specific EEG signals.

2.2.3 Lower limb movement intention generation
model

The primary processing and advanced processing of the brain
are connected in series. According to the above method, the
movement intention is generated when the promote factors are
greater than the prevent factors; the motor areas of the cerebral
cortex also display characteristic EEG signals. The model is shown
in Figure 3.

In brain advanced processing, the primary processing results
are collectively used as the input to the pyramidal neurons:

u1(t) = uev(t)− uip(t) (2)

Where uev(t) represents the result of the primary processing of
positive external visual information Uev(t) and uip(t) represents
the result of the primary processing of negative internal pain
irritation Uip(t). The primary processing is simulated by the van
der Pol oscillator.

Fast inhibitory interneurons could also receive input from other
populations, which is recorded as u4(t). Here, it is assumed that
they are connected through excitatory synapses.

Each population consists of a cascade of linear and nonlinear
modules, receiving average postsynaptic membrane potential vi
from other neural populations, the average synaptic connection
constant represents the coupling between neural populations.
Then, the membrane potential is converted into the average peak

density of the neurons, and the sigmoid function is used to simulate
the existence of inhibition and saturation, denoted by zi. Thus,
zi = S(vi). Changing the value could simulate the impulse responses
of different synapses; the process is represented by hi(t).

By combining these two models, the brain’s processing
of movement intention generation could be simulated and
corresponding EEG signals could be generated. The complete lower
limb movement intention generation model corresponds to the
following set of differential equations:

Pyramidal neurons

dy1(t)
dt
= x1(t)

dx1(t)
dt
= G2ω2z1(t)− 2ω2x1(t)− ω2

2y1(t)

z1(t) =
2e0

1+ e−rv1
− e0

v1(t) = C12y2 − C13y3(t)− C14y4(t)

(3)

Excitatory interneurons

dy2(t)
dt
= x2(t)

dx2(t)
dt
= G2ω2(z2(t)+

u1(t)
C12

)− 2ω2x2(t)− ω2
2y2(t)

z2(t) =
2e0

1+ e−rv2
− e0

v2(t) = C21y1(t)

(4)

Slow inhibitory interneurons

dy3(t)
dt
= x3(t)

dx3(t)
dt
= G3ω3z3(t)− 2ω3x3(t)− ω2

3y3(t)

z3(t) =
2e0

1+ e−rv3
− e0

v3(t) = C31y1(t)

(5)

Fast inhibitory interneurons

dy4(t)
dt

= x4(t)

dx4(t)
dt

= G4ω4z4(t)− 2ω4x4(t)− ω2
4y4(t)

dy4′(t)
dt

= x4′(t)

dx4′(t)
dt

= G2ω2u4(t)− 2ω2x4′(t)− ω2
2y4′(t)

z4(t) =
2e0

1+ e−rv4
− e0

v4(t) = C41y1(t)− C43y3(t)− C44y4(t)+ y4′(t)

(6)

In the model, yi(t) represents the output of the corresponding
neuron, and the overall output of the model is v1(t). Moreover,
the subscript 4’ represents the negative self-loop of fast inhibitory
interneurons. Cij represents the synaptic constant from neuron j to
neuron i. Gi represents the strength of the individual synapses and
ωi represents the reciprocal of the time constant. The sigmoidal
function is centered on 0 and the parameters of the sigmoid
function are represented by e0 and r.
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FIGURE 3

Layout of the lower limb movement intention generation model.

3 Experiment

3.1 Experimental system overview

In this study, an experimental platform was built to verify
the above analysis. The experimental platform is built as shown
in Figure 4A, including a VR module, an EEG signal acquisition
module, an EMG signal acquisition module, and a host computer.
HUAWEI VR Glasses were used to provide a VR environment.
It adopts a dual fast LCD screen, with a field of view angle of
90 degrees and a binocular resolution of 3K and supports VR
sound effects that move with the head. The advantage of VR
glasses over VR helmets is that glasses do not need to be worn
through the top of the head, which can reduce the adverse effects
on EEG signals caused by friction between the device and the
head. A Neuracle 32-channel EEG cap (Neusen W-EEG) was
used to collect the EEG signals, and a Neuracle 16-channel EMG
(NeuSen WM) acquisition instrument was used to collect the
surface electromyography (sEMG) signals. The computer is used
to receive and store the EEG and sEMG signals. Signal processing
is carried out through MATLAB.

The construction of the virtual scenarios is shown in Figure 4B,
which is implemented based on the Unity3D editor. The virtual
character model induces the subjects to perform specified actions.
The light source of the scene is the color of the sky, and the scene
camera is bound to the virtual reality glasses. When the virtual
characters in the scenarios start to move, the subjects need to follow
them to move.

3.2 Subjects

A total of 12 college students were selected as subjects
(marked as S1-S12), 10 male and 2 female, without any history

of sensorimotor deficits or any psychological disorders. The
demographic and physiological information of the subjects is
summarized in Table 1. This study was approved by the Ethics
Committee of Xi’an Jiaotong University (Ethics number: 2021-
360). Before the start of the experiment, each of the subjects
was introduced to the relevant tasks and signed the informed
consent form.

3.3 Experimental protocol

The experiment was completed in the Bio-Mechatronics and
Service Robot Laboratory of Xi’an Jiaotong University. The leg
lift movement is the subject of movement because it is one of
the important basic movements in lower limb movement. This
experiment is a control experiment. The experimental group used
the VR induction system to induce the subjects to perform the
action, the control group did not use it and changed to a single-tone
prompt. To ensure the single variable principle of the controlled
experiment, the VR induction system included the same single-tone
prompt as the control group. All subjects were required to complete
two experiments, one for the experimental group and the other for
the control group. The experiments were conducted on the same
day with a long break in between to minimize variability caused by
factors such as fatigue. During the experiment, the subjects should
always maintain a natural standing state. There were a total of 5
sessions in this experiment, and the sequence diagram is shown
in Figure 4C. Each session consisted of 10 trials. In each trial, the
subjects first kept still for 5 s and then performed actions according
to the prompts. Signals around and before the start moment of the
movement were monitored so that the movement execution was
not limited to but did not exceed 4 s (2 s to raise the leg and 2 s to
lower it). After the actions were completed, there was a short rest
to prepare for the next trial. Each of the sessions was 135 s long
with a break of 2–5 min between two consecutive sessions. Finally,
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FIGURE 4

Experimental system. (A) The experimental platform. (B) Virtual scenarios. (C) Experimental Sequence Diagram.

TABLE 1 Demographic characteristics of the subjects.

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 MEAN ± SDT

Age (years) 23 22 24 26 24 23 25 28 24 24 24 23 24.2± 1.5

Height (cm) 177 172 178 168 178 163 175 171 168 174 178 176 173± 4.7

Weight (kg) 71 73 74 63 64 53 67 68 57 72 64 69 66.3± 6.2

each subject’s experimental and control group data were collected
50 times, respectively.

3.4 EEG data collection and movement
evaluation

This experiment recorded the EEG signals of subjects during
exercise. The measurement points of EEG electrodes under the
international 10/20 system were FZ, FC1, FC2, CZ, C3, C4, CP1,
CP2, and PZ. Before acquiring data, an appropriate conductive gel
was applied to the scalp and ensure that the required impedance
between the electrodes and the scalp was less than 5 k�. The
sampling frequency was 1,000 Hz.

Lower limb movements were evaluated by surface EMG signals.
Six surface EMG sensors were placed in the subjects’ rectus femoris,
vastus lateralis, vastus medialis, semitendinosus, tibialis anterior,
and gastrocnemius. These EMG data provided the changes in
lower limb muscle activation during the experiment. The sampling
frequency of the sEMG sensor was 1,000 Hz.

3.5 Data analysis method

The Cz channel of the EEG cap corresponds to the lower limb
motor-related cortex, so we selected the EEG signal data of the

Cz for analysis (Li et al., 2018; Romero-Laiseca et al., 2020). Two
major neural phenomena can be captured with EEG in relation to
movement intention when human lower limbs are moving, event-
related desynchronization (ERD), and MRCP. ERD is recognized
as a decrease in the α (µ) band power (8–13 Hz) and in the
β band power (14–25 Hz) with movement (Qiu et al., 2016).
MRCP is a low-frequency negative shift in the EEG recording
that takes place approximately 0.5–2 s before the movement
production. MRCP is readily masked by higher frequency activity,
and its amplitude is usually between 5 and 30 µV (Shakeel et al.,
2015). These two features could be calculated from the original
EEG data. The collected EEG signals contain artifacts such as
noise, EMG, and power frequency interference, which need to
be filtered out before analysis. This study used empirical mode
decomposition and independent component analysis for artifact
removal.

Short-time Fourier transform (STFT) is used to analyze
the collected data in time-frequency domain. It multiplies a
time-limited window function before Fourier transforms the
signal instead of Fourier transforming the entire signal. It
assumes that the signal is stationary in the short time interval
of the analysis window, and the spectrum of the signal at
each moment in the time domain is obtained by moving
the window function on the time axis. To observe the EEG
responses of different states in the time domain, event-related
spectral perturbation (ERSP) is used to analyze the power
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spectrum changes of EEG. The calculation of ERD features is as
follows:

Ei,j =
1
n

n∑
k=1

s2i,j,k (7)

Ebi =
1
m

m∑
j=1

Ei,j (8)

ERD =
(
Ei,j − Ebi

Ebi

)
× 100% (9)

Here, s represents the EEG signal. i, j, and k denote the trial number,
epoch number, and sample number. E represents the mean power
of the EEG data and n is the length of sub-epochs. Eb represents the
baseline consisting of m epochs of each trial.

In STFT calculation, the choice of window function is
crucial. The rectangular window has severe spectrum leakage. The
BlackMan-harris window has an excessively wide main lobe that
reduces the frequency resolution. The Hanning window has both
good frequency resolution and less spectral leakage. Therefore,
the Hanning window is used in this study. The EEG data were
subdivided into 1-s-long epochs with a 200-ms overlap. Then, each
epoch was processed for ERD extraction. Furthermore, the change
of EEG power with frequency can be calculated by taking the ERSP
power at different frequencies and then according to the mean
value of the time dimension. Time-domain MRCP features could
be extracted by filtering directly.

Moreover, a convolutional neural network (CNN) was used
to detect the lower limb movement intention of the experimental
group and the control group. Based on the convolutional neural
network framework, this paper designed 13 convolutional layers, 5
pooling layers, 3 fully connected layers, and 1 normalization layer.
The input data were filled with the “same” operation to ensure that
the input and output sizes were the same after the convolution
operation. The size of the convolution kernel was 3 × 3 and
activated by the tanh function. The maximum pooling method was
adopted for the pooling layer and the stride was 2× 2.

4 Result

4.1 Simulation analysis

The central nervous system can always have rhythmic and
spontaneous discharges without any external stimulation, so the
input of the model can be simulated by a uniformly distributed
random signal. The u4(t) during advanced brain processing is
simulated by white Gaussian noise with mean 0 and variance 5.
Referring to physiological knowledge, Sigmoid saturation (s−1)
e0 = 2.5, Sigmoid steepness (mV−1) r = 0.56, EEG signals of
different states can be simulated by adjusting the connectivity
constant and synaptic impulse response (Ursino et al., 2010).

The simulation results of the EEG signal during voluntary
movement without external stimulus are shown in Figure 5A.
When there is an external stimulus from the VR system, the
stimulus can be represented by a sine curve at the moment of
movement intention generation. The model input for this case is a
uniformly distributed random signal superimposed on a sinusoidal
signal. The simulation results of EEG signals during VR-based
motion are shown in Figure 5B. Figures 5C, D are the simulated
signals corresponding to the actual acquired EEG signals of S1 at the
Cz channel. The simulated signal in the time domain is similar to
the actual collected signal. Then, the features related to movement
intention need to be extracted and analyzed from the simulated
EEG signals.

Event-related desynchronization and MRCP features of the
simulated EEG signals were extracted. The calculated EEG signal
power in α and β frequency bands is shown in Figure 6A. It
can be seen that the power is decreased in both α and β bands,
and the power decrease is more pronounced with the stimulus
from the VR induction system. The results of filtering the low
frequency (0–10 Hz) EEG signal are shown in Figure 6B. It can
be seen that during the preparation and execution of lower limb
movements, the amplitude of the EEG signal decreases first and

FIGURE 5

(A) The simulation results of the EEG signal during voluntary movement without external stimulus. (B) The simulation results of EEG signals during
exercise with a VR environment. (C) The EEG signal of the Cz channel from S1. (D) The EEG signal of the Cz channel from subject 1 with VR
induction system.
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FIGURE 6

Characteristics of simulated EEG signal. (A) Frequency-domain features (B) Time domain features.

FIGURE 7

(A) The time-frequency plots of the experimental and control groups of subjects. (B) A representative subject. The starting position of the red box is
the ERD onset time.

then increases. The signal is more negatively shifted with the
stimulus from the VR induction system. In general, comparing
the simulated EEG signals of VR induction or not, both MRCP
and ERD features are more obvious when there is movement

with the external stimuli from the VR induction system. This
means that the use of a VR induction system would be more
conducive to detecting/predicting movement intention from EEG
signals.
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TABLE 2 ERD onset time and peak value statistics.

Subject ERD Onset Time (s) Peak Value (dB)

Experimental Group Control Group Experimental Group Control Group

S1 −1.133 −1.133 −30.237 −26.430

S2 −1.000 −0.933 −40.359 −31.113

S3 −1.809 −1.860 −27.831 −26.705

S4 −1.993 −1.867 −27.018 −23.066

S5 −2.015 −1.860 −31.345 −29.446

S6 −1.963 −1.603 −25.126 −24.293

S7 −1.600 −0.067 −30.964 −24.133

S8 −1.912 −1.037 −34.243 −24.264

S9 −1.860 −1.654 −32.932 −24.370

S10 −1.800 −1.867 −28.973 −23.279

S11 −1.654 −1.088 −29.010 −24.362

S12 −1.933 −1.067 −32.449 −22.621

MEAN± STD −1.723± 0.319 −1.336± 0.526 −30.874± 3.796 −25.340± 2.511

4.2 Neurophysiological data analysis

4.2.1 ERD time-frequency analysis
The collected EEG data of the experimental group and the

control group were analyzed offline. Nerve conduction velocities
ranged from approximately 50 to 70 m/s, and the nerve pathways
involved in the reception of stimuli to intention generation were
all on the millimeter scale. Therefore, the differences between the
onset time of movement defined by the experimental group and
the control group could be ignored. An epoch is 5 s before to
2 s after the motion. After preprocessing and filtering artifacts, 8–
30 Hz fourth-order Butterworth band pass filtering was performed
to obtain EEG signals in α and β frequency bands. The EEG data
from −5 s to −2 s were regarded as the resting state, and the time-
frequency plots of the 12 subjects at −2 s to 2 s were calculated
and plotted based on this baseline. The signal was collected at
the Cz channel. Figure 7 shows the time-frequency plots of the
experimental and control groups of subjects.

Figure 7A shows that all subjects in the experimental group
and control group had ERD phenomenon near the start of motion
(−2∼2 s). The experimental group experienced a wider range
of ERD phenomena and a more significant decrease in power
compared to the control group. For quantitative analysis, the first
occurrence −20 dB point is chosen as the point of initiation of
ERD, and the ERD peaks of the experimental group and the control
group were counted. As shown in Table 2, the mean onset time
of ERD of subjects in the experimental group and control group
was −1.723 ± 0.319 s and −1.336 ± 0.526 s, and the mean peak
values were −30.874 ± 3.796 dB and −25.340 ± 2.511 dB. There
was a significant difference in ERD Onset Time (p = 0.0191) and
a highly significant difference in Peak Value (p = 0.0001) between
the experimental and control groups. Most of the results yielded
the same conclusion as the mean. All subjects in the experimental
group had lower peaks than the control group, and most of the
experimental group had ERD Onset Time earlier than the control
group. However, the ERD onset time of the experimental group for

S3 and S10 appeared slightly later than that of the control group,
0.051 s and 0.067 s, respectively, not exceeding 0.1 s. Nevertheless,
the time-frequency plots clearly show that S3 and S10 produced
a wider range of ERD phenomena in the experimental group,
producing peaks that were 1.126 dB and 5.694 dB lower than in the
control group, respectively. Figure 7B is a representative subject.
The control group only showed a significant ERD phenomenon
near the movement onset time, whereas the experimental group
showed a wider range, especially before the start of the movement.
The starting position of the red box is the ERD onset time.

Additionally, comparing the statistical significance of the
difference in ERD between the experimental group and the control
group, the compared test was calculated at the 95% significance
level, and the results are shown in Figure 8A. All subjects showed
differences near the onset of exercise at both the α and β frequency
bands, especially for the α frequency band. Surprisingly, except for
S1, S3, and S12, the other 9 subjects showed differences in early
stages. Figure 8B is a representative subject. The major significant
blocks are marked in red rectangles. It showed early significant
differences even before the movement onset. Early features could
be conducive to pre-movement intention pattern detection.

Moreover, to investigate how baseline EEG was affected by
experimental and control groups, baseline EEG powers from all
channels at α and β frequency band (8–25 Hz) were calculated
and averaged across all subjects. The data conformed to a normal
distribution according to the Shapiro–Wilk test. The experimental
group had a kurtosis of −0.9 and a skewness of 0.8, while the
control group had a kurtosis of 4.9 and a skewness of 2.1. Figure 9
shows the boxplot of the EEG baseline power, the average EEG
baseline power of the experimental group was 5.66 × 10−4 v2, and
the control group was 3.89 × 10−4 v2. Although the average EEG
baseline power of the experimental group was slightly higher than
that of the control group, the results of the t-test showed that the
experimental group and the control group were not significantly
different.

Therefore, in the overall ERD time-frequency analysis, the
baseline EEG power of the experimental group and the control
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FIGURE 8

(A) The comparison results of ERD in the range of [–2,2] seconds between the experimental group and the control group. (B) A representative
subject. The experimental group showed early significant differences in ERD even before the movement onset.

FIGURE 9

EEG baseline power.

group were consistent, which means that the VR induction system
could not change EEG in the resting state. It could induce
more obvious early ERD features to enhance the detectability of
movement intention.

4.2.2 Frequency domain power analysis
The ERSP power of all subjects was calculated, and the

frequency domain power of the experimental group and the control
group was analyzed. The graph of the change of EEG power with
frequency is shown in Figure 10. The red line is the frequency
domain power of the experimental group and the blue line is the
frequency domain power of the control group.

All subjects in the control group and the experimental group
had the same trend of frequency domain power change. The power
was dropped in the α and β Frequency bands. From the perspective
of power attenuation, throughout the entire frequency range, the
experimental group of most subjects had greater attenuation than
the control group. Because of the opposite results presented at

certain moments in some smaller ranges (such as the power of S9
at around 13 Hz), the characteristic frequencies of each frequency
band need to be analyzed. The frequency corresponding to the
minimum value in the figure was the characteristic frequency;
detailed data is shown in Table 3.

The characteristic frequencies of the α band experimental
group and the control group were 10.9± 1.4 Hz and 10.8± 2.0 Hz,
respectively. The characteristic frequencies of the β band were
18.7 ± 1.7 Hz and 19.2 ± 1.9 Hz. The characteristic frequencies
of the experimental group and the control group were correlated
(R = 0.94), so the experimental group did not change the main
frequency of feature generation. The power of characteristic
frequency is shown in Figure 11. The power of the experimental
group decreased more than that of the control group. In the
α band, the average peak power of the experimental group
was −3.679 ± 1.281 dB, and that of the control group was
−2.156 ± 1.039 dB. In the β band, the average peak power was
−3.490± 0.984 dB and−2.379± 0.835 dB, respectively.

The frequency domain power analysis shows that the
characteristic frequencies generated by each frequency band in
the experimental group and the control group are correlated.
That means the VR induction system could generate more
significant power attenuation in EEG to enhance the detectability
of movement intention.

4.2.3 Time-domain MRCP feature analysis
The collected EEG data of two working conditions were

analyzed. An epoch is 5 s before to 2 s after the motion. The
epoch was preprocessed to eliminate the artifacts, and 0.1–10 Hz
filtering was performed to obtain low-frequency signals. Figure 12
compares the MRCP features extracted from subjects in the
experimental group and the control group. The red line is the
MRCP of the experimental group and the blue line is the MRCP
of the control group. It could be seen that all subjects in the
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FIGURE 10

Energy curves in the frequency domain. The experimental group has more energy attenuation than the control group in α and β bands.

TABLE 3 Characteristic frequency in α and β band.

Subject Experimental Group Control Group

α Band (Hz) β Band (Hz) α Band (Hz) β Band (Hz)

S1 13.0 17.0 14.0 20.0

S2 11.0 19.0 8.0 21.0

S3 14.0 19.0 14.0 19.0

S4 12.0 21.0 12.0 21.0

S5 10.0 21.0 11.0 20.0

S6 11.0 17.0 11.0 17.0

S7 10.0 20.0 9.0 22.0

S8 11.0 18.0 10.0 20.0

S9 9.0 18.0 13.0 18.0

S10 10.0 16.0 8.0 15.0

S11 9.0 17.0 9.0 17.0

S12 11.0 21.0 11.0 20.0

MEAN± STD 10.9± 1.4 18.7± 1.7 10.8± 2.0 19.2± 1.9

experimental group showed obvious MRCP characteristics, and the
amplitude of this potential began to decrease 2–3 s before the onset
of motion and then rebounded. In total, 11 subjects in the control
group showed MRCP characteristics, only S5 did not show obvious
MRCP characteristics.

To compare the differences in the characteristics of the
experimental group and the control group, the peak points of
the MRCP characteristics were counted as shown in Figure 13A.
The peak value of all experimental groups decreased more than
that of the control group, with a significant statistical difference
(p = 0.0082). The average peak value of the experimental
group was −14.052 ± 8.757 µV and the control group was
−7.855 ± 4.345 µV. Furthermore, comparing the peak time of the

two groups, the time of peak appearance of the experimental group
was −0.111 ± 0.343 s and the control group was −0.103 ± 0.412
s. Whether the peak time of the two groups came from the same
distribution was verified through a quantile-quantile plot, as shown
in Figure 13B, the red line is the distribution of the experimental
group and the blue line is the distribution of the control group. The
peak time of the experimental group and the control group follow
different distributions, with statistical differences.

In time-domain MRCP feature analysis, the result means
that the VR induction system could induce more significant
MRCP features compared to enhancing the detectability of
motion intention.
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FIGURE 11

The power of characteristic frequency.

FIGURE 12

MRCP features. The experimental group showed obvious characteristics.

FIGURE 13

(A) The MRCP peak. (B) The quantile-quantile plot of peak time.
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TABLE 4 Classification results.

Subject Accuracy (%) Sensitivity (%) Specificity (%)

Experimental
Group

Control
Group

Experimental
Group

Control
Group

Experimental
Group

Control
Group

S1 83.50± 1.29 82.41± 2.81 82.14± 2.42 83.47± 2.96 87.50± 2.55 86.23± 5.89

S2 85.20± 2.84 79.81± 0.60 80.91± 1.64 76.92± 0.70 91.86± 5.18 84.62± 1.37

S3 83.26± 2.06 80.49± 1.52 81.45± 1.85 82.61± 2.49 90.72± 4.87 77.78± 1.24

S4 81.33± 2.14 80.17± 1.09 79.37± 1.42 81.20± 1.29 83.84± 3.07 78.85± 2.31

S5 84.88± 3.65 82.87± 2.56 85.22± 3.15 86.78± 2.64 85.56± 5.24 84.21± 5.71

S6 83.41± 1.14 81.25± 1.11 84.35± 2.49 79.49± 1.43 86.67± 2.07 85.71± 1.76

S7 84.50± 2.45 81.63± 1.67 83.04± 2.54 80.91± 1.76 86.36± 3.55 84.88± 3.14

S8 86.73± 3.35 84.91± 3.59 85.45± 3.18 83.19± 3.79 90.70± 4.21 88.17± 4.84

S9 86.34± 3.05 83.00± 2.88 84.35± 2.42 82.14± 2.55 88.89± 4.46 86.36± 4.47

S10 90.50± 6.74 84.18± 1.82 90.32± 6.13 81.82± 2.07 90.72± 8.06 88.37± 2.40

S11 85.85± 2.94 83.96± 1.68 86.96± 3.70 85.71± 2.91 85.56± 2.59 86.02± 3.78

S12 84.50± 2.52 81.94± 2.19 86.61± 3.20 80.99± 2.36 88.64± 4.65 86.32± 4.48

MEAN± STD 85.00± 2.85 82.22± 1.96 84.18± 2.84 82.10± 2.25 88.08± 4.21 84.80± 3.32

4.3 Offline classification analysis

To maintain the optimal performance of CNN classifiers, it is
necessary to adjust the parameters. The principle is to enable the
validation set to be classified with no more than 95% specificity
while maintaining at least a sensitivity of 75%. The calculation
formulas for sensitivity and specificity are as follows:

Sensitivity =
True Positive

True Positive+ False Negative
(10)

Specificity =
True Negative

True Negative+ False Positive
(11)

Table 4 shows the offline classification results of 12 subjects in the
experimental and control groups. Results for each subject were the
mean after 10-fold cross-validation. The CNN classifier maintains
a reasonable true positive detection rate while ensuring a minimal
false positive detection. The accuracy rates for the experimental and
control groups were 85 ± 2.85% and 82.22 ± 1.96%, respectively.
Similarly, the sensitivity and specificity were 84.18 ± 2.84%,
82.1 ± 2.25% and 88.08 ± 4.21%, 84.8 ± 3.32%, respectively.
The results showed that the accuracy (p = 0.0008) and specificity
(p = 0.0097) of the experimental group were significantly higher
than those of the control group, and the sensitivity (p = 0.0490)
of the experimental group was significantly higher than that of the
control group specificity. This means that the VR induction system
could enhance the detectability of intentions.

4.4 Comparison of EMG activity

To further analyze the potential impact of the VR environment
adopted by the experimental group on motor activity, muscle
activation in the experimental and control groups was compared.
Muscle activation can reflect the overall level of the movement
execution process. The rectus femoris is an important muscle
that reflects lower limb movements, therefore the EMG signal
at the rectus femoris is used to calculate muscle activation. The

FIGURE 14

Comparison of EMG activity.

EMG power average for each trial of the subjects was calculated
to obtain a global statistical representation of muscle activation
energy. Figure 14 shows a boxplot of the EMG activity from all
subjects. It can be seen that there was no significant difference in
the EMG activity of the subjects in the experimental group and the
control group. This indicates that the movement execution of the
experimental group and the control group in the experiment was
consistent.

5 Discussion

The above results show that the motion of the subject with
the VR induction could enhance the detectability of movement
intention via EEG signals compared with the general situation.

Most existing BCI control technologies have some
shortcomings because they are based on empirical evidence
or experimental results. Thus, mathematic modeling can further
our understanding of the physiological mechanisms for the
responses of EEG behavior. By simulating the lower limb
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movement intention generation model in different conditions, the
results show that the EEG signals related to movement intention
had the corresponding features in the time and frequency domain,
whatever the conditions. However, the VR induction could
increase the significance of features. This provides a basis for
feature selection during subsequent classification. The proposed
model analyzes the mechanism of the brain’s movement intention
in sections and discusses the coupling of multiple neuronal
clusters, which is of great practical significance for the study of
the brain functional network. Movement intention with the VR
induction enhanced mechanism provides a new method for the
active regulation of nerves in patients’ clinical rehabilitation.

In our experimental work, with ERD time-frequency analysis,
we found that subjects’ lower limb movement with VR induction
leads to a more prevalent ERD phenomenon, which has a better
time-frequency resolution. Significant peak drops could make it
easier to detect. Some results showed a certain early saliency
compared with the general situation, which indicates that it is easier
to be detected before the movement occurs. However, the baseline
power is not affected by different scenes. This suggests that VR
induction could be an effective way to detect motion intention
using EEG signals.

Moreover, the ERD in the β band is more significant than that
in the α band, whether with VR induction or not. Further frequency
domain power analysis demonstrates that the power of α and β

bands had both decreased, and the characteristic frequencies were
similar. Compared to the characteristic frequency power in the α

and β bands, the power drop in the β band is obviously greater than
in the α band. When using the VR induction system, the decline
was enhanced in both the α and β bands, significantly so in the α

band. This means that peak α power and peak β power could be
used as a combined feature in movement intention detection with
VR induction and peak β power was highly sensitive to detection.

Time domain MRCP feature analysis shows that the features
generated are more obvious with VR-based motion, and the
amplitude drops more. The MRCP consists of the readiness
potential (RP), motor potential, and movement-monitoring
potential (MMP). RP is considered to reflect the planning or
preparation of the movement and motor potential and MMP is
thought to reflect movement execution and control of performance.
RP feature enhancement could help to decode pre-movement EEG
signals.

The enhancement of the above features is of great significance
for clinical practical applications. The offline classification results
prove that the VR induction system could improve the detectability
of the BCI system. The analysis is based on Cz sampling points
and the region around Cz corresponds to lower limbs (Blanco-Diaz
et al., 2023). In addition, there is no significant difference between
the experimental group and the control group in muscle activation
energy during movement. This means the VR induction system
could improve the movement-related features of EEG signals and
further enhance the detectability of lower limb movement intention
based on BCI.

Furthermore, the enhancement of the VR system on the brain
is multifaceted and may contribute to brain nerve remodeling
(Namazi et al., 2021; Tan et al., 2021). The mathematical model
we have developed is based on the physiological mechanisms of
the brain information processing process. The focus of this study
is on movement intention, so the simulation study was carried

out for the EEG signals related to movement intention. During
the simulation of the model, the intervention of the VR system
was considered to have an effect on the selective attention process
during brain information processing. When the input signal was
changed, only the synaptic constants between the neuronal clusters
were changed, and there was no specific change in the structure of
the model, so we believe that the model has the ability to migrate to
other similar tasks, which will be studied in the future. This study
was conducted on EEG signals related to movement intention.
Simulation results based on the model guided the analysis of the
experimental data, and the consistent conclusions obtained from
the experimental and simulation results can illustrate the validity of
the model.

In summary, the time and frequency domain characteristics of
subjects’ EEG signals induced by VR are more obvious, the features
appear earlier, and the intention detection accuracy is higher.
Therefore, the intervention of VR induction can significantly
improve the detectability of movement intention.

6 Limitations

Virtual reality scenarios make user interaction more natural
when using rehabilitation robots, while immersion in the VR
environment requires users to wear VR glasses or VR headsets,
which may cause discomfort or visual fatigue. However, current
research suggests that the help of an immersive VR environment
can at least help increase movement intention, which in turn
promotes neurorehabilitation. It could help people with impaired
athletic ability to regain lost athletic ability to a certain extent with
less effort and in less time. Additionally, to reduce the potential
for hazards when moving while wearing a VR device, appropriate
safety protocols should be designed and implemented so that users
can be alerted to any tasks that require attention. This raises
another interesting research question that should be investigated
in future studies.

The limitation of this study is that the improved neural
mass model in our study from a macroscopic point of view
described the EEG generation mechanism of movement. Although
the features of the simulated EEG signals had the same result as
the experiment result, it still lacks some physiological validation.
This should be refined in subsequent studies. In addition, EEG-
EMG coherence analysis can respond to a certain extent to signal
changes, which is a worthy topic for future research and contributes
to the study of movement intention recognition methods based
on the fusion of EEG and EMG signals. Furthermore, the
experiment did not use subjects with lower limb dyskinesia,
which will be resolved in future studies, but this study has been
able to prove the effectiveness of VR induction in movement
intention enhancement. The generation of active movement
intention is the premise of active rehabilitation, and it is of great
significance to improve the detectability of EEG related to the
active motion intention of patients. To further improve the results,
extensive research should be carried out on the details of the VR
paradigm in the future.
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7 Conclusion

In order to solve the problems of weak movement intention
and low recognition accuracy in the rehabilitation process of
people with lower limb motor dysfunction, this paper studied
whether VR induction could enhance the detectability of lower
limb active movement intention. The active movement intention
generation process of individuals with lower limb dysfunction was
analyzed, and an EEG generation theoretical model was established.
A comparative experiment was conducted on 12 healthy subjects.
Through simulation research and experimental results analysis of
EEG signals, the multiple features were enhanced when subjects
used VR induction so that VR induction could work as a tool
to enhance the distinguishability of lower limb active movement
intentions from EEG signals. Furthermore, offline classification
proves that VR induction could enhance the detectability of
movement intention. However, further work is necessary to
quantify the effect of VR scenario stimuli on neural signals.
Moreover, advanced signal processing and learning techniques
could be employed to further enhance the results. In general, the
current results show promising insights into VR scenarios and their
effect on movement intention, preparation, and execution.
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Home-based movement neuro-rehabilitation is quite necessary when the

patient goes back home from hospital. Due to lack of supervision from doctors,

rehabilitation at home is often forgotten. As an alternate to doctor-supervision,

in this research, we explore the wireless device-free localization technique to

assist the rehabilitation procedure. The localization technique can judgewhether

the patient is near the rehabilitation equipment and even obtain the movement

trajectory. The most challenging problem in the wireless device-free localization

system is that the received-signal-strength (RSS) of the electromagnetic-wave

is unpredictable, which increases the localization error. How to select the

informative RSS is pretty important. This research proposes a new criterion (i.e.,

fluctuation-level) to select the informative RSS. Experimental results show the

e�ectiveness of the proposed fluctuation-level in reducing the localization error.

KEYWORDS

rehabilitation, localization, RTI, RSS, fluctuation-level

1 Introduction

For the patient who suffers from neuro-disabilities, he/she need to perform neuro-

rehabilitation under the supervision of rehabilitation doctors. Usually, after he leaves the

hospital, he is still required to do daily rehabilitation at home by himself (Maresca et al.,

2020). However, due to lack of supervision from the rehabilitation doctors, the patient

often forgets to take rehabilitation-exercises, leading to the degradation in health condition.

To tackle this problem, technology-assisted movement-evaluation can be adopted (Zhang

et al., 2020; Hu et al., 2023). One fundamental technique is to obtain the indoor location of

the patient, which can judge whether the patient is near the rehabilitation equipment.

Currently, the indoor localization technique mainly adopts device-based strategy,

meaning that the target needs to attach a device to obtain his location (Cao et al.,

2020). Device-based strategy is inappropriate for the patient localization because the

device hinders the patient to move and take rehabilitation-exercises. Therefore, this

research explores the device-free localization technique to supervise the patient to take

home-based rehabilitation.

Technically, many sensing strategies can be employed to achieve device-free

localization, such as camera-based vision localization (Kim and Jun, 2008), infrared-

based localization (Ngamakeur et al., 2022), ultrasound localization (Yoon and Park,

2016), RF (radio frequency) based wireless localization (Khan et al., 2021; Abdullah

et al., 2023) etc. Camera-based localization somehow demands huge memory for

video storage. Infrared-based localization is fragile to be interfered by fluorescent

light, and the localization distance is limited. Ultrasound-based localization is

easily influenced by Doppler effect and the localization area is comparably small.
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By contrast, RF-based localization has the advantages of traveling

long distance, not influenced by light, low data-storage, not

violating the privacy etc., which attracts much more attention in

the research community.

RF-based localization employs the principle that the wireless

signal would change in received-signal-strength (RSS), channel

state information (CSI), phase of arrival (POA) or angle of

arrival (AOA) after the presence of the target. In which, RSS is

the widely used pattern. Among different methods in RSS-based

localization, radio-tomographic imaging (RTI) is an effective yet

simple approach (Wilson and Patwari, 2010; Zhen et al., 2019a)

which is the focus of this article.

RTI considers the located area as one shadowing image, each

pixel has its pixel-value. The pixel-value equals to the attenuation-

value occurring at the location of this pixel. RTI first computes one

shadowing image from the RSS measurements. Then, the patient’s

location is estimated by finding the position with maximum pixel-

value in the image (Zhen et al., 2019b).

However, there is one challenge which degrades the localization

performance. The challenge is that not all the RSS measurements

are contributive for patient-localization due to the multipath-

noise in wireless propagation. How to select the informative RSS

measurements that contribute to indoor-localization is the essential

problem in RTI. Aiming at addressing this problem, current

literatures mainly adopt the criterion of fade-level to select the

informative RSS measurements (Wilson, 2012; Kaltiokallio et al.,

2013; Mela et al., 2023). However, in practice, only using fade-

level to select informative RSS measurements is unsatisfactory.

In this article, in addition to fade-level, we propose another

criterion (i.e., fluctuation-level) to select the informative RSS

measurements. Experimental results show that combining fade-

level and the proposed fluctuation-level can achieve better

localization performance than just using fade-level.

2 Method

2.1 Wireless network deployment

Before implementing the device-free localization system, a

wireless network should be deployed to cover the indoor area.

Figure 1 illustrates one example of the wireless network. Each RF

node adopts the off-the-shelf circuit-board which can guarantee

the low system cost of the localization system. Each node-pair

constitutes one RF-link. The area is divided into several pixel-

grids, and each pixel has its coordinate. All the pixels constitute

one shadowing image. The pixel-value denotes the attenuation-

value occurring at the coordinate of this pixel. Intuitively, the

pixel where the patient locates has maximum attenuation-value

(or pixel-value). Therefore, we can obtain the location of the

patient according to the pixel-value of the shadowing image. More

RF nodes can contribute to enhance the localization accuracy.

However, the trade-off should be made between localization

accuracy and increased system cost in engineering practice.

Inmathematics Equation (1), can be used tomodel RTI (Wilson

and Patwari, 2010),

y = Hx + n, (1)

where y = [y1, · · · , yM]T represents the RSS measurements (i.e.,

the RSS variation before and after the patient presents in the room),

M equals to the total number of RF-links in the wireless network.

x = [x1, · · · , xN]T is the image-vector with each element denoting

the attenuation-value, N is the pixel number. n = [n1, · · · , nM]T is

the noise vector. H ∈ R
M×N is the weighting matrix, which can be

determined by the ellipse model (Wilson and Patwari, 2010).

The aim of RTI is to compute the image-vector x given the

measured RSS y. Because not all the RSS is contributive for target

localization, how to select the informative RSS constitutes one key

problem in RTI-based device-free localization.

2.2 Selection of informative RSS by using
fluctuation-level and fade-level

Currently, fade-level is the only criterion to evaluate whether

the RSS from a particular link is informative or not. The

computation of fade-level is shown as Equation (2),

Fl = z̄l − P(dl) (2)

where Fl represents fade-level of the l-th link, z̄ is the average RSS

of the l-th link when the room is without any person, P(dl) denotes

the RSS computed by the path-loss model (Wilson, 2012). Previous

research shows that the RSS with large-positive fade-level is more

informative for localization (Wilson, 2012).

However, fade-level just reflects the deviation property of the

RSS. In practice, the localization accuracy when just using fade-

level to select informative RSS is usually unsatisfactory. Here we

explore the fluctuation property of the RSS, and take it as a new

criterion for informative RSS selection. We name the fluctuation

property as fluctuation-level. The fluctuation-level can be obtained

by computing the RSS variance. Mathematically, the fluctuation-

level is shown as Equation (3),

vl =
1

W

W
∑

i=1

(r̃i − r̄l)
2 (3)

where vl denotes the fluctuation-level of the l-th link, W is the

window length. r̃i denotes each RSS sample in this window, r̄l is the

mean of the RSS samples in this window for the l-th link. Intuitively,

the RSS with lower fluctuation-level aremore reliable than that with

higher fluctuation-level.

In the localization system, we jointly use fluctuation-level and

fade-level to select the informative RSS. Specifically, the fade-level

and fluctuation-level are allocated with their respective threshold

values Fthr and vthr . In the joint-selection strategy, if F > Fthr and

v < vthr are satisfied for a particular link, the RSS from this link can

be considered as informative. Otherwise, the RSS is filtered as being

uninformative. Mathematically, this joint-selection strategy can be

written as Equation (4),

link_indicator =
{

1 if F > Fthr and v < vthr

0 otherwise
(4)

where the variable link_indicator is a binary variable {0, 1},
indicating whether the RSS from a particular RF-link is informative.
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FIGURE 1

Wireless network deployment. Green circle represents the RF node. Dashed line denotes the RF link between two node-pairs. The target is within the

located area covered by the wireless network. Square represents the pixel in the shadowing image.

Logic one indicates the link is informative, while zero denotes

the contrary.

2.3 Shadowing image reconstruction and
position inference

Based on the selected RSS, this section introduces how to

compute the shadowing image and infer the patient’s location.

Because the image is sparse (Wilson and Patwari, 2010; Zhen et al.,

2018), here the sparse Bayesian learning (SBL) method is adopted.

In SBL, the image is allocated with zero-mean Gaussian prior-

distribution having the variance constrained by inverse-Gamma

distribution, which is expressed as Equation (5),

{

P(x|λ) =
∏N

i=1 Gauss(xi|0, λi)
P(λi) = InvGamma(λi|a, b)

(5)

where λi is the variance, a, b denote the shape and scale parameters

respectively. For the noise, it is allocated with hierarchical prior-

distribution shown as Equation (6),

{

P(n|η) =
∏M

i=1 Gauss(ni|0, η−1
i )

P(ηi) = Gamma(ηi|c, d)
(6)

where η−1
i denotes the variance, c, d represent the shape and scale

parameters in Gamma distribution. The conditional distribution is

assigned with Gaussian distribution shown as Equation (7),

P(y|x, η) = N(y|Hx,D−1) (7)

here D = diag(η), η = [η1, η2, · · · , ηM]T .

Based on probability theorem (Tipping, 2001; Ying et al., 2023),

the posterior estimation can be obtained as Equation (8),

P(x|y; λ, η) = P(y|x, η)P(x|λ)
∫

P(y|x; η)P(x|λ)dx

= (
1√
2π

)M|6|−
1
2 exp

[

−1

2
(x − µ)T6−1(x − µ)

]

(8)

where µ is the posterior-mean of the shadowing image, 6

is the covariance. Their respective expressions are stated in

Equations (9, 10).

µ = 6HTDy (9)

6 = [HTDH + C]−1 (10)

here C = diag(λ) with λ = [λ1, λ2, · · · , λM]T .

As to λ = [λ1, λ2, · · · , λN]T , η = [η1, η2, · · · , ηM]T , they can

be expressed as Equation (11),















λi =
2a+ θi − 2

2b+ µ2
i

ηj =
2c− 1

2d + tr(6HT
j Hj)+ (yi −Hjµ)2

(11)
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where θi = 1 − λi6ii, in which 6ii stands for the i-th diagonal

element in 6. µi denotes the i-th number in µ. Hj is the j-th row

of the weighting matrix H. After the shadowing image is obtained,

we can estimate the patient’s location by finding the position where

Input: RSS change y from the selected links; the

measurement matrix H;

shape and scale parameters a, b, c, d; the number of

maximum iteration max_Iter.

Output: Reconstructed result of the shadowing

image x̂

1 Initialization: µ = 0, 6 = I.

2 while iter_num is less than max_Iter do

3 Update µ, 6 following Equations (9, 10).

4 Update λi, ηj following Equation (11).

5 iter_num ⇐ iter_num+1.

6 end

7 Implement x̂ ⇐ µ.

8 Transform image vector x̂ to 2-Dimensional matrix

format.

9 Locate the target by searching for the pixel

with maximum pixel-value.

Algorithm 1. Localisation algorithm

the maximum pixel-value locates. The localization algorithm is

summarized in Algorithm 1.

3 Experiment and result

3.1 Experiment setup

The localization experiment was carried out in an indoor 7.2

m * 7.5 m area (shown as Figure 2) with 24 nodes to constitute

a wireless network. The RF nodes communicate following the

ZigBee protocol with 2.4 GHz frequency-band. Every node has

its node-identifier, which is used as the guidance of sequential

transmission. At any instant, only one node transmit. Outside the

wireless network, a special RF-node exists serving as the base-

station. The base-station uploads the packet to the computer. The

application program on the computer extracts the RSS from the

received packet. In the experiment, the computer equips with

Intel 2.4 GHz CPU and 4 GB RAM. In engineering practice, the

localization algorithm can be run on the embedded system with

low-cost.

3.2 Localization result

To evaluate the localization performance, the target

sequentially stands at 31 different positions shown as Figure 2.

FIGURE 2

Experiment scenario. Lots of furniture are included in the room to constitute the environment with rich multipath propagation.
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FIGURE 3

Comparison of localization error. Cyan represents the localization

error only using fade level. Sa�ron yellow denotes the result when

using both fluctuation level and fade level.

For each position, all the packets are uploaded to the computer

and the RSS are extracted. Then, two different RSS selection

strategies (i.e., only fade-level v.s combining fluctuation-level and

fade-level) are adopted to select the informative RSS. The selected

RSS measurements by two strategies are respectively used for

the computation of target’s position following the procedure in

Algorithm 1.

To quantitatively examine the localization performance, the

localization error is used which is defined as Equation (12),

eloc = ‖P̂ − Ptrue‖ℓ2 (12)

where eloc is the localization error, P̂ and Ptrue represent the

estimated position and the true position respectively.

At each position, the localization error is computed following

Equation (12). For being statistically effective, we compute the

average localization error of all the positions as the metric for

comparison. The average localization errors for two comparative

strategies in selecting informative RSS (only fade-level vs.

combining fluctuation-level and fade-level) are presented in

Figure 3.

Obviously, the results in Figure 3 show that the strategy

of combining fluctuation-level and fade-level can achieve lower

localization error than that when just using fade-level.

4 Conclusion and discussion

For supervision of the patient to take home-based neuro-

rehabilitation, this article explores the wireless device-free

indoor localization technique to judge whether the patient is

near the position of the rehabilitation-equipment. To reduce

the localization error, this research proposes a new criterion

(fluctuation-level) to combine with fade-level for the selection of

informative RSS. Sparse Bayesian learning is used to reconstruct

the shadowing image and estimate the position of the patient.

Experimental results show that combining fluctuation-level

and fade-level can achieve lower localization error than just

using fade-level.

As to the mechanism, fluctuation-level shows the fluctuation

property of the RSS measurements, this property is not reflected

in fade-level. The combination of both can further filter the

poor RSS that are ignored by using only fade-level. Future

work will obtain the moving trajectory of the patient and

build a rational formula from the amount of movement to

the rehabilitation-efficacy, which is quite beneficial for neuro-

rehabilitation evaluation.
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1 Introduction

Robot-assisted therapy is an effective treatment option for improving motor function

in patients with neurological injury such as stroke, spinal cord injury, and cerebral

palsy. Robot-assisted training facilitates improvements in motor performance necessary

for completing activities of daily living. Active robotic training that takes the user’s

voluntary effort (or intent) into account can achieve better outcomes compared to passive

training (Hu et al., 2009). Robots for active training are often driven by motion intents

extracted from surface electromyography (EMG) signals. Compared with conventional

proportional (Hu et al., 2009) or on-off (Hu et al., 2013) control strategies, myoelectric

pattern recognition (Lu et al., 2017b) has the advantage of simultaneously controlling

multiple degrees of freedom, an essential feature for increasing control of dexterity.

Unfortunately, despite the wide application of myoelectric pattern recognition in

prosthesis control in amputees, relatively few have used it in patients with neurological

injury, possibly because of the challenges associated with interference from spasticity.

Spasticity and other types of muscle “overactivity” including spasms, clonus, and repetitive

involuntary (spontaneous) motor unit activity associated with neurological injuries remain

obstacles to robot-assisted therapy. For example, due to finger flexor spasticity and its

associated involuntary activation, stroke survivors often flex their fingers during intended

finger extension attempts (Kamper and Rymer, 2001). Among various treatment options,

botulinum toxin therapy is often used and found to be effective at reducing spasticity.

Although the relation between botulinum toxin treatment and motor function recovery

is not clearly established (Ghasemi et al., 2013; Levy et al., 2019; Li et al., 2021),

botulinum toxin therapy has demonstrated to be able to adequately suppress finger flexor

spasticity and facilitate hand function in a subgroup of stroke survivors (Lee et al., 2018).

Furthermore, the effectiveness of combining robot-assisted therapy and botulinum toxin

treatment on motor function recovery has been reported (Gandolfi et al., 2019; Hung et al.,

2021).

In the following sections, we discuss some of the confounding effects of spasticity

(involuntary activity) and potential benefits of botulinum toxin treatment for facilitating

myoelectric pattern recognition robot-assisted stroke rehabilitation.
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2 Botulinum toxin treatment may
improve voluntary muscle onset
detection compromised by
involuntary motor unit activity

After a stroke, involuntary motor unit activity is often observed

at rest, particularly after a contraction, and may be interspersed

with voluntary activity. It is technically challenging to selectively

remove or reduce involuntary spikes using conventional signal

processing methods because both involuntary and voluntary spikes

have similar temporal and spatial characteristics. One common

strategy for detection of voluntary muscle activity onset is based

on amplitude measurements such as the root mean square or

mean absolute value. A data instant with amplitude greater than

a preset threshold is considered as the onset of muscle activity

(Lu et al., 2017a,b). However, a resting data segment contaminated

with involuntary discharges can be mistaken as active EMG and

falsely trigger the robot. Although the chance of false triggering can

be reduced by increasing the preset threshold, it may increase the

rejection rate of voluntary motions, especially when there is severe

muscle weakness.

Based on the observation that involuntary spikes sometimes

have relatively stable firing rates and amplitude patterns (likely

from the same motor units), several signal processing approaches

have been proposed to overcome their influence on muscle onset

detection (Zhang and Zhou, 2012; Liu et al., 2014a,b). These

methods have not been tested in practical implementation of

myoelectric control, due to some limitations. For example, sample

entropy was reported to be able to detect muscle onset even if

there are involuntary discharges (Zhang and Zhou, 2012). However,

it is still unclear how to determine the global tolerance for the

calculation of sample entropy in the case of real-time control.

Therefore, muscle onset detection strategies applied in robot-

assisted therapy are generally vulnerable to involuntary motor unit

discharges, especially in patients with muscle weakness. Related

to muscle onset detection, myoelectric pattern recognition is

designed to extract motion intents from data segments that contain

voluntary EMG signals. It is possible that involuntary motor unit

discharges (either at rest or after the execution of a motion) are

misclassified as voluntary motion intents. One strategy is to include

the rest condition as a pattern in the candidate patterns, which

are then recognized by the pattern recognition algorithm (Geng

et al., 2013). Such a strategy can also be interfered because time

domain (e.g., root mean square value) and frequency domain (e.g.,

mean and median power frequencies) features are sensitive to

involuntary discharges.

Given the above, botulinum toxin treatment is expected

to improve the performance of muscle onset detection due

to its effectiveness in reducing involuntary muscle activity.

Reliable muscle onset detection is essential for implementing

myoelectric control.

3 Botulinum toxin treatment may
improve classification performance

The myoelectric pattern recognition approach assumes that

surface EMG features are consistent for a given muscle activation

state associated with a particular task (motion intent) and different

from one task to another. Surface EMG signals generated by the

same motion intent in the presence or absence of spasticity may

differ (i.e., increased time-variability or decreased stability of the

EMG pattern). As a result, spasticity can degrade the performance

of myoelectric pattern recognition. Our previous study suggests

that EMG patterns extracted from post-stroke subjects are time-

variant, and such time-variation compromises online myoelectric

pattern recognition accuracy, whereas offline performance is less

sensitive (Lu et al., 2019). Recognition accuracy was found to be

less at low compared to moderate contraction strengths (Kopke

et al., 2020), probably because the proportion of EMG power from

involuntary discharges was higher at a low contraction strength. It

is noteworthy that real-time myoelectric pattern recognition relies

on EMG signals at the beginning of a motion intent (usually within

300ms). During this period, the contraction level is relatively

low and thus the performance of the muscle-machine interface

is more likely to be affected by spasticity. This is consistent with

our observation that the accuracy of real-time robot control (i.e.,

classification based on motion onset) was lower than the accuracy

of offline recognition (i.e., classification throughout a motion) (Lu

et al., 2019).

By reducing themuscle overactivity, botulinum toxin treatment

is expected to facilitate myoelectric pattern recognition. In a study

evaluating the effect of botulinum toxin injections on motor

performance in chronic stroke subjects, it was found that both

spasticity and muscle strength were reduced by the injections

while motor performance of the weakened spastic muscle remained

at similar levels before and after injections (Chen et al., 2020).

Therefore, botulinum toxin treatment is promising to improve

myoelectric pattern recognition performance for implementing

real-time robotic control in stroke patients. It is likely that stroke

patients with poor control of the robotic hand using myoelectric

pattern recognition may achieve better control after botulinum

toxin treatment.

4 Botulinum toxin treatment may
improve range of motion

Some stroke patients have limited range of motion (ROM) on

the affected side because of spasticity and contracture (Pandyan

et al., 2003; Ro et al., 2020). Individual patients may have

different combinations of spasticity and contracture (Lindberg

et al., 2009). A longitudinal follow-up study of stroke patients

using biomechanical measurements has suggested severe spasticity

preceding contracture formation (Plantin et al., 2019). Attempts

to stretch a patient’s joint beyond the passive ROM may be

resisted and painful. As a result, the robot ROM during therapy

is usually set within the patient’s passive ROM, although training

with a larger ROM is potentially more beneficial. Depending

on robot design, the ROM setting in a training task can be

either preset (Lu et al., 2017b) or determined by the patient

and the amount of assistance (Song et al., 2013). A patient may

reach a larger ROM in both designs than through voluntary

efforts (i.e., active ROM). Limb movements are primarily driven

by the patient’s voluntary muscle contraction within the active

ROM (Feldman and Levin, 2016), whereas assistance becomes

necessary or dominant beyond the active ROM. Botulinum toxin
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treatment (on its own or with other treatments) may increase

both passive and active ROM (Marciniak et al., 2017; Lee et al.,

2018; Picelli et al., 2019; Santamato, 2022; Trompetto et al.,

2023), due in part to suppression of spasticity and associated

involuntary activation of spastic muscles (Ro et al., 2020; Lindsay

et al., 2021). It is possible to achieve the full ROM or at least

enlarge the ROM of the robot in both passive and active training

tasks. Therefore, botulinum toxin treatment may help release

muscle from the restrictions of spasticity and contractures. This

release should allow for more effective robotic training driven

by myoelectric pattern recognition, leading to better recovery

outcomes in stroke patients.

5 Summary

By reducing spasticity (overactivity), botulinum toxin

treatment is expected to improve muscle onset detection for

myoelectric control, as well as the performance of myoelectric

pattern recognition for implementing real-time robotic control

in stroke patients. Increased range of motion through botulinum

toxin treatment may similarly create better conditions for

enhanced myoelectric pattern recognition. These potential

benefits indicate that combined botulinum toxin and myoelectric

pattern recognition robotic training may be a promising stroke

rehabilitation therapy.
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Existing statistical data indicates that an increasing number of people now

require rehabilitation to restore compromised physical mobility. During the

rehabilitation process, physical therapists evaluate and guide the movements

of patients, aiding them in a more e�ective recovery of rehabilitation and

preventing secondary injuries. However, the immutability of mobility and the

expensive price of rehabilitation training hinder some patients from timely access

to rehabilitation. Utilizing virtual reality for rehabilitation training might o�er a

potential alleviation to these issues. However, prevalent pose reconstruction

algorithms in rehabilitation primarily rely on images, limiting their applicability

to virtual reality. Furthermore, existing pose evaluation and correction methods

in the field of rehabilitation focus on providing clinical metrics for doctors,

and failed to o�er patients e�cient movement guidance. In this paper, a

virtual reality-based rehabilitation training method is proposed. The sparse

motion signals from virtual reality devices, specifically head-mounted displays

hand controllers, is used to reconstruct full body poses. Subsequently, the

reconstructed poses and the standard poses are fed into a natural language

processing model, which contrasts the di�erence between the two poses

and provides e�ective pose correction guidance in the form of natural

language. Quantitative and qualitative results indicate that the proposed method

can accurately reconstruct full body poses from sparse motion signals in

real-time. By referencing standard poses, the model generates professional

motion correction guidance text. This approach facilitates virtual reality-based

rehabilitation training, reducing the cost of rehabilitation training and enhancing

the e�ciency of self-rehabilitation training.

KEYWORDS

rehabilitation training, virtual reality, full-body pose reconstruction, deep learning,

Multilayer Perceptron (MLP)

1 Introduction

Existing statistical data indicate that an increasing number of people are now

experiencing mobility impairments due to accidents, illness, or aging, thereby demanding

the need for rehabilitation (Postolache et al., 2020). Rehabilitation training encompasses

a series of intervention exercises aimed at aiding in the recovery of compromised motor

functions. A pivotal aspect of this process involves tailored movement exercises conducted

by a doctor or physical therapist. Early and intensive rehabilitation training proves

more efficacious in facilitating the recovery of patients’ motor abilities (Postolache et al.,

2020). However, the demand for patients to attend hospitals or rehabilitation centers
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for rehabilitation training presents additional challenges for

those already grappling with mobility difficulties. Furthermore,

the high cost associated with rehabilitation training becomes

a financial impediment for certain patients. In this context,

the emergence of virtual reality-based rehabilitation methods

becomes apparent. These methods allow patients to engage in a

more convenient and economical rehabilitation option through

personalized virtual reality devices. By offering real-time user

pose reconstruction and employing immersive interactivemethods,

virtual reality technology can provide patients with increased

sensory stimulation and a more immersive environment during

rehabilitation training (Adamovich et al., 2009). Existing research

has shown that compared to conventional physical therapy, virtual

reality-based rehabilitation training is more effective in promoting

gait recovery in patients with Parkinson’s disease (Feng et al., 2019).

However, common virtual reality devices can only accurately

reconstruct the poses of user’s head and hands through head-

mounted displays and handheld controllers. This limitation

is insufficient for full body rehabilitation training. Therefore,

virtual reality-based rehabilitation methods often require

additional wearable body measurement sensors to capture patients’

movements (Huang et al., 2018; Jiang Y. et al., 2022), such as

motion sensors for the legs and waist, gait detection devices, and

more. Unfortunately, for patients, this not only represents an

additional expense, but wearing extra sensors may also lead to

physical discomfort. Moreover, patients’ unprofessional handling

of these sensors can result in tracking inaccuracies and affecting the

effectiveness of the rehabilitation training. Hence, the studies that

leverage the most prevalent virtual reality devices, using the sparse

motion signals from the head and hands to reconstruct full body

poses, demonstrate an effective solution for virtual reality-based

rehabilitation training methods.

In addition, regardless of the form of rehabilitation, the

quality assessment and precise guidance of patients’ recovery

movements are crucial (Qiu et al., 2022). This directly influences

the effectiveness of patient’s recovery. When patients participate

in rehabilitation training at hospitals or rehabilitation facilities,

doctors can assist by correcting their inaccurate movements,

ensuring that their movements fall within the normal range

to achieve the desired rehabilitation effects. This correction

helps prevent secondary injuries resulting from incorrect

movements. However, in virtual reality-based rehabilitation, there

is currently no universally recognized solution to reasonably

evaluate the quality of patients’ rehabilitation movements (Qiu

et al., 2022). Furthermore, there is no method to authentically

simulate a doctor’s supervision to aid patients in correcting

rehabilitation movements. Therefore, proposing effective methods

for correcting rehabilitation movements and providing appropriate

movement guidance is crucial to advancing research in virtual

reality-based rehabilitation.

To address the aforementioned issues, we propose a virtual

reality-based rehabilitation method. As shown in Figure 1, this

method utilizes commonly available virtual reality hardware

devices to reconstruct full-body poses of patients. Then, a pose

correction module based on a natural language model is employed

to assess patients’ movements, which generates specific movement

correction guidance text by referencing standard movements.

Specifically, to meet the requirement of accuracy, real-time

performance and smoothness in full-body poses reconstruction,

a deep learning-based model is introduced, comprising a multi-

scale temporal feature switch module and a stacked MLP Blocks.

The multi-scale temporal feature switch module expands the

model’s temporal receptive field, improving the accuracy and the

smoothness of full-body poses reconstruction while ensuring real-

time performance and model light-weighting. Subsequently, the

reconstructed poses and the reference standard poses are input into

the poss correction module, which assesses the reconstructed poses

and outputs the movement correction guidance text by utilizing

a natural language model. Comprehensive experimental results

demonstrate that the proposed method can provide more accurate

full-body poses reconstruction and more intelligent movement

guidance for virtual reality-based rehabilitation training.

2 Related works

2.1 Full-body pose reconstruction from
sparse motion signals

In recent years, the reconstruction of full-body poses using

sparse motion signals from virtual reality devices, specifically head-

mounted displays and handheld controllers, has become a focal

point in research within the realms of virtual reality and the

metaverse. Ahuja et al. introduced a convolutional neural network

to extract features from sparse motion signals and utilized a K-

nearest neighbors (KNN)—basedmethod, employing interpolation

algorithms to reconstruct the full-body poses from a limited

motion database (Ahuja et al., 2021). However, this method heavily

relies on the motion database, exhibiting poor generalization

capabilities. In subsequent studies, novel deep learningmodels such

as variational autoencoders (Pavlakos et al., 2019), long short-term

memory networks (Yu et al., 2019), and transformers (Jiang J. et al.,

2022; Luo et al., 2022; Zhang X. et al., 2023) have been applied to

extract motion features from sparse motion signals, significantly

enhancing the accuracy of full-body poses reconstruction. In recent

studies, based on Multilayer Perceptron (MLP), a diffusion model

has been employed to further optimize the reconstructed motion

sequences, effectively alleviating the phenomenon of joint jitter (Du

et al., 2023). However, the adoption of the diffusion model has

substantially increased the computational demands and inference

time of the model.

2.2 Pose evaluation for healthcare
application

With the development of electronic information and

computing technology, studies focusing on health applications,

particularly the evaluation of human body poses during

rehabilitation training, has been recently explored. Martınez

et al. utilized depth cameras to capture the ground-truth human

rehabilitation postures and quantitatively evaluated the accuracy

of commonly used pose reconstruction algorithms (Martınez,

2019) in reconstructing rehabilitation postures (Hernández et al.,

2021). Kidziński et al. (2020) introduced a neural network to

quantitatively evaluate clinically relevant motion parameters from
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FIGURE 1

The pipeline of the proposed virtual reality-based rehabilitation training method.

patients’ motion videos. Xu et al. (2022) employed multi-view

videos for the evaluation of musculoskeletal patients’ motion

poses. Liao et al. (2020) combining the Long Short-Term Memory

(LSTM), feature pyramids, and other deep learningmethods, which

designed the first rehabilitation posture quality evaluation method

based on deep learning. Tang (2020) introduced a segmentation

module to the posture evaluation network, significantly enhancing

the accuracy of scores in evaluating the quality of rehabilitation

postures. Bruce et al. employed graph convolutional networks

to assess the severity of Alzheimer’s disease in patients through

motion videos (Bruce et al., 2021). However, the quantitative

evaluation metrics of these methods are exclusive to proficient

medical professionals for clinical evaluations, limiting their

applicability for patients to comprehend the status of their

rehabilitation training and make corrections.

To address the aforementioned issues, Qiu et al. (2022) devised

a pose matching network, which achieves alignment and correction

of poses between the trainers’ pose and the standard poses,

providing trainers with visualized movement guidance through

Class Activation Maps (CAM). Despite having a certain foundation

in research, the majority of these methods heavily rely on computer

vision and are impractical for virtual reality-based rehabilitation.

Moreover, there remains a dearth of intuitive and effective guidance

for patients in evaluating their poses, such as the guidance provided

by medical professional.

2.3 3D human poses and natural language
models

In recent years, Transformer-based natural language processing

models have achieved remarkable success in various fields. The

following will introduce datasets that combine human poses with

natural language processing models and showcase astonishing

applications. The AMASS dataset (Mahmood et al., 2019) has

collected motion data for numerous 3D human poses in the form

of SMPL (Loper et al., 2023). Then, BABEL (Punnakkal et al., 2021)

and HumanML3D (Guo et al., 2022), building on the AMASS

dataset, provide free-from textual descriptions for its sequence data.

These datasets focusmore on describing the entire action sequences

rather than the semantic information of each single-frame pose.

Consequently, they are more suitable for tasks for generating

action sequences (Zhang J. et al., 2023) or describing motions

from videos. To address the gap in independent human pose

semantic descriptions, PoseScript (Delmas et al., 2022) provides

descriptions for each single-frame human poses from some subsets

of the AMASS dataset. In further research, FixMyPose (Kim

et al., 2021) and PoseFix (Delmas et al., 2023) can connect

two different poses and generate textural information for pose

correction. Unlike FixMyPose, which generates textual annotations

from rendering 2D images, the PoseFix directly generates text

explanations based on the 3D human pose data. This proves to be a

more suitable andmore potent solution for the virtual reality-based

rehabilitation training.

3 Methods

3.1 Overview

Reconstructing full-body movements from sparse motion

inputs is quite challenging. Sparse motion signals from the upper

body cannot effectively constrain the movements of the lower body.

As a result, the reconstruction of lower body poses may inevitably

exhibit anomalies such as joint jitter and floor penetration,

significantly affecting the user’s experience in virtual reality. In

previous studies (Du et al., 2023), one-dimensional convolution

with temporal awareness-based diffusion models was employed to

reduce joint jitter, noticeably enhancing the quality and fluency

of full-body posture reconstruction. However, the diffusion model

requires multiple inference steps, leading to longer model inference

times that do not meet the real-time requirements of virtual

reality applications. Moreover, when using only its MLP backbone

network, joint jitter phenomena remain unresolved.

Therefore, as shown in Figure 2, a full-body pose

reconstruction network based on a multi-scale temporal switch

module is proposed. The sparse motion signals are input to anMLP
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FIGURE 2

The detailed structure of proposed full-body pose reconstruct module and temporal switch module.

layer for feature embedding and then input into the multi-scale

temporal switch module for aggregation of features across different

time scales. Subsequently, the original features are fed into a

stacked MLP module and the features aggregated at different time

scales are fed into a MLP layer. Finally, the depth features from

different scales are aggregated, fused with the original features, and

input into an MLP layer for the reconstruction of full-body poses.

3.2 Full-body pose reconstruct module

3.2.1 Data preparation
To reconstruct the full body’s poses, sparse motion signals

are acquired from the Inertial Measurement Unit (IMU) devices

on the virtual reality headset and handheld controllers. Each

signal at every position includes global positional information

p1×3 and rotational information θ1×3 about the three axes. For a

more refined reconstruction outcome, predicting the human body’s

motion posture at time t poses from a certain time interval T before

time t is aggregated and jointly fed into the network. Therefore, the

full-body joint pose U
joints

full
is obtained by applying the mapping

function 8 to the set of sparse inputs {pi, θi}1 :T , as shown in

Equation 1:

U
joints

full
= 8

(

n
⋃

i=1

{pi, θi}1 :T

)

(1)

where n represents the number of sparse inputs, h is the quantity

of full-body joints, and T is the count of continuous motion frames

observed from the past.

To enable the model to comprehensively learn features from

sparse motion signals, the following preprocessing steps are

employed. The backward finite difference method is employed

to initiate the calculation of linear velocity v1×3, as shown in

Equation 2:

vt = pt − pt−1 (2)

Subsequently, the angular velocity �1×6
t is defined by

considering the orientation matrices R of the sparse input (Jiang

J. et al., 2022), as shown in Equation 3:

�t = R
−1
t−1Rt (3)

These matrices are initially derived from the θ1×3

representation, which are converted to the rotation matrix

R
3×3 using the conversion as previous studies (Zhou et al., 2019;

Jiang J. et al., 2022). Following this, the last row of R is disregarded

to yield the 6D rotation representation w1×6
t .

Consequently, each input at time frame ti comprises four

vectors: pi, vi, �i, and wi. This input feature is structured as

Equation 4:

xt =
[

p1t , v
1
t ,w

1
t ,�

1
t , p

2
t , v

2
t ,w

2
t ,�

2
t , p

3
t , v

3
t ,w

3
t ,�

3
t

]

(4)

As a result, all independent signals xt within the time interval T

are concatenated along the temporal dimension to form the input

signal X, as shown in Equation 5:

X = [x1, x2, x3, . . . , xT] ,X ∈ R
B×T×F (5)

where B represent the batch size, T signifies the length of

the temporal sequences, and F denotes the feature dimension.

Therefore, the feature dimension F of the input tensor X amounts

to 54.

3.2.2 Multi-scale temporal switch module
In previous research (Du et al., 2023), networks equipped

with one-dimensional temporal convolutions are employed to

enhance the model’s temporal awareness, aiming for improving

reconstruction of full-body poses. Additionally, the powerful

generative ability of diffusion model is utilized to further optimize

the reconstructed pose sequences, significantly reducing the

occurrence of joint jitter. However, despite the application of

Denoising Diffusion Implicit Model (DDIM) technology (Ho et al.,
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2020), the diffusion model still necessitates five repeated inference

steps to obtain the final predictions, which fails to meet the real-

time requirements of virtual reality-based rehabilitation training.

To address these issues, a multi-scale temporal switch module

based on two-dimensional time sequences is devised. This module

comprises multiple branches at different temporal scales, aiding

the model in capturing subtle temporal features within the sparse

motion signals.

Initially, the preprocessed sparse motion signals X are fed into

a Linear Layer for preliminary feature embedding, as shown in

Equation 6:

F = LinearEmbedding(X) (6)

where the LinearEmbedding is a linear layer with an input

dimension of 54 and an output dimension of 256. As shown in

Figure 2, the module comprises K branches representing different

temporal switch scale. For each time slice T = t alone the temporal

dimension, the feature Ft is partitioned into three segments along

the feature dimensions, such as f t1 , f
t
2 , and f t3 . Here, as shown in

Equation 7, the f t1 and f t3 are the first N features and the last N

features alone the feature dimension, respectively:

Ft = (f t1 , f
t
2 , f

t
3 ) (7)

where F
t ∈ R

B×1×F , f t1 ∈ R
B×1×F/8, f t2 ∈ R

B×1×3F/4, and f t3 ∈
R
B×1×F/8.

Inspired by previous study (Zheng et al., 2022), we conduct

K forward feature exchange modules alone the temporal direction

for each feature slice F
t . In the branch where K = k, we

exchange the features f t1 and f t3 in the feature slice F
t with the

corresponding features f t+k
1 and f t+k

3 in the feature slice Ft+k, where

F
t+k represents the feature slice at a temporal distance of k frames,

as shown in Equation 8:

Ftk = (f t+k
1 , f t2 , f

t+k
3 ) (8)

After the exchange of features slice for all time frames T = t,

we concatenate all the time slices along the temporal dimension

to obtain the output Fk of the feature exchange module K = k in

Equation 9:

Fk = {F1k , F
2
k , . . . , F

t
k} (9)

Finally, features from different branches are input into an MLP

layer for feature fusion, as shown in Equation 10:

Fswitched = OutPutLinear{F1 ⊙ F2 ⊙ . . . ⊙ Fk} (10)

where ⊙ represents the concatenate operation and Fswitched ∈
R
B × T × F, and the OutPutLinear is a linear layer with an input

dimension of K ∗ F and an output dimension of F and the SiLu

activative function.

The difference between previous study and ours is that our

approach solely employs forward switch along the temporal

direction, refraining from bidirectional switch. Our rationale lies

in the fact that bidirectional switch necessitates a greater number

of feature switch operations for a limited enhancement. Given the

constrained computational capacity of the virtual reality devices

and the stringent demands for real-time processing, we opt for

unidirectional propagation.

3.2.3 MLP based blocks
In the recent research (Du et al., 2023; Guo et al., 2023), the

potential of MLP-based networks in full-body poses reconstruction

tasks has been demonstrated. The MLP-based networks can

effectively learn complex non-linear mapping relationships of

input features, facilitating efficient feature learning and data

representation (Guo et al., 2023). Additionally, the MLP networks

possess the advantage of lightweight design, meeting the real-

time requirements of our tasks. Considering the demands for both

real-time processing and accuracy of the reconstructed poses, our

model only employs several commonly used and effective modules

in the field of deep learning, including fully connected layers,

Silu activation function, one-dimensional convolution alone the

temporal dimension with a size of 1, and the layer normalization.

Specifically, the one-dimensional convolution layer is utilized to

aggregate the temporal features from the entire pose sequence,

while the other modules operate on the feature dimension to

help the network alleviate gradient vanishing and overfitting

phenomena. The structure of the MLP-based blocks is shown in

Figure 3. To better extract features from sparse motion signals, the

MLP-based blocks are stacked in M layers as in the study by Du

et al. (2023).

As the proposed temporal switch module affects the spatial

information of the original motion signals, the original feature f is

preserved and fed into the aforementioned MLP-based Blocks for

feature extraction in Equation 11:

F0 = MLPBlocks(f ) (11)

where F0 ∈ R
B × T × F.

Finally, the output feature F0 and the temporal switched feature

Fswitched are aggregated and input into the output MLP Layer to

reconstruct the poses of 22 joints (excluding the joints of the palms)

in the SMLP human pose model, achieving the reconstruction from

sparse motion signals to full body poses, as shown in Equation 12:

Foutput = Linear(F0 ⊕ Fswitched) (12)

where the ⊕ represents tensor addition operation and Foutput ∈
R
B × T × 132.

3.3 NLP-based pose correction module

In this section, the state-of-the-art pose evaluation method,

PoseFix (Delmas et al., 2023), is employed to compare the

reconstructed full body poses and the standard poses, and generate

professional motion correction guidance text. We will briefly

elucidate how the reconstructed pose PoseA of the patient is

matched to the target pose PoseB and modeled as correction

guidance text. As shown in Figure 4, the rotation angles of

the root joint of PoseA are aligned with the corresponding

rotation angles of PoseB. Subsequently, a Transformer-based

auto encoder (Kingma and Welling, 2013) is utilized to extract

independent 32-dimensional embedded features from PoseA and

PoseB. It is noteworthy that the PoseA and PoseB share the weights

of the auto encoder. Next, the TIRG network (Vo et al., 2019), a

widely applied module for compositional learning, is used to merge
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FIGURE 3

The components of the MLP based blocks.

FIGURE 4

The structure of the pose correction module, which outputs pose correction guidance text for the users by contrasting the reconstructed pose with

the standard reference pose.

latent features from the embedded features of PoseA and PoseB.

The TIRG (Vo et al., 2019) network comprises a gate network

consisting of two MLP layers and two learnable weights, which

is designed to retain the primary motion features and introduce

additional improvement through residual connections. As shown

in Equation 13:

Fprompt = wf FCf ([a,m])⊙ a+ wgFCg([a,m]) (13)

where FCf and FCg are MLP layers, and their weights are balanced

by learnable parameters wf and wg .

Finally, the fused features Fprompt are fed into a Transformer-

based auto-regressive model, serving as a prompt to guide the

natural language processingmodel in generatingmotion correction

guidance text. In the decoding process of the Transformer-based

auto-regressive model, the input feature Fprompt is concatenated

with a vector Fcaption, composed entirely of ones, serving as

additional positional encoding. This combined input is then fed

into the Transformer model. Leveraging the attention mechanism

of the Transformer, the prompt is decoded into a probability

distribution of text embeddings, and the first text result T1

is obtained through the softmax function. Subsequently, T1 is

integrated into Fcaption, concatenated again with the input feature

Fprompt , and fed into the Transformer model to obtain the second

text result T2 with the highest probability. This iterative process
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TABLE 1 Comparison of our approach with state-of-the-art methods on the subsets of AMASS.

Method MPJPE MPJRE MPJVE Jitter Parameters (M)

AGRoL-MLP 3.93 2.69 22.85 13.01 3.73

AGRoL-Diffusion 3.71 2.66 18.59 7.26 7.48

Ours 3.79 2.69 20.94 11.53 4.52

FIGURE 5

Partial results of the virtual reality-based rehabilitation training method indicate that users can correct their poses with guidance from the pose

correction text.

continues, employing the method of iterative greedy decoding,

until the entire sequence is decoded.

4 Experiments

4.1 Training details

To train the full-body pose reconstruction model based on

sparse motion signals, three subsets of the AMASS dataset—

CMU (Carnegie Mellon University), MPI-HDM05 (Max Planck

Institute Human Motion Database 2005; Müller et al., 2007),

and BioMotionLab-NTroje (Troje, 2002) are employed for

model training and test. Specifically, we obtain 2,074, 215, and

3,061 motion sequences from these three subsets, covering

commonly used actions in virtual reality such as walking,

running, jumping, dancing, kicking, tool manipulation, and

social behaviors and interpersonal interactions. Out of 5,350

motion sequences, 536 are randomly selected for model

validation, with the remaining 4,814 used for model training.

These motion sequences are stored in the format of SMPL

model parameters, encompassing 156-dimensional joint motion

parameters.

To emulate the hardware configuration of virtual reality

devices, we extract the motion parameters of the head joint

and wrists of both hands, inputting them into the model, and

reconstruct the motion parameters of 22 body joints (excluding the

joints of the palms). To ensure a fair comparison with previous

methods, consistent experimental parameters are employed: the

stacking layers of the MLP module M are set to 12, and the

feature dimension F was set to 512. Both training and testing

were conducted on an NVIDIA 4090 GPU using the PyTorch

framework (Paszke et al., 2019).

For the natural language processing model-based pose

correction module, we make no modifications and training to

the PoseFix model. In PoseFix, a pipeline based on PoseScript is

employed to compare the distance variations between multiple 3D

keypoints for 135 k pairs of different actions. The resulting data are

organized in structural order, forming the 135 k action correction

guidance text dataset. This dataset is utilized for training the

pose correction model. Additionally, the frozen DistillBERT (Sanh

et al., 2019) is employed for word embedding. Instead, we directly
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utilize publicly available model weights, as experimental results

have already demonstrated that this method accurately evaluates

differences between two poses and generates precise correction

guidance text.

4.2 Evaluation metrics

To validate the effectiveness of the proposed method, the

following evaluation metrics are employed to assess the model’s

performance and compare it with previous state-of-the-art

methods (Du et al., 2023): Mean Per Joint Rotation Error (degrees;

MPJRE) and Mean Per Joint Position Error (cm; MPJPE) measures

the average relative rotation error and position error for each joints,

which indicated the absolute errors of the model predictions. While

the Mean Per Joint Velocity Error (cm/s; MPJVE) measures the

average velocity error for the joints’ positions, the Jitter (Yi et al.,

2022) evaluates the mean jerk (change in acceleration over time; Du

et al., 2023) of the joints in global space. These metrics can measure

the smoothness of reconstructed poses, which directly relates to

the user’s overall experience. Specifically, jitter delineates the rate

of change of acceleration in joint positions, serving as an indicator

of the degree to which abrupt changes occur in joint positioning.

Consequently, it proves valuable in characterizing and analyzing

the dynamic aspects of motion, facilitating an evaluation metric of

the smoothness of reconstructed poses (Flash and Hogan, 1985).

The jitter is calculated as Equation 14:

Jitter = d2p

dt2
(14)

where p represents the joint position and t denotes the time. By

computing the second derivative of each joint position with respect

to time, jitter can be derived.

4.3 Evaluation results

In Table 1, we present the quantitative comparison results

between our proposed model and the state-of-the-art method

AGRoL (Du et al., 2023). As shown in Table 1, our approach

demonstrates improvements across various metrics compared

with the AGRoL’s MLP-based backbone method. Moreover, the

phenomenon of joint jitter has been noticeably mitigated. In

comparison to AGRoL’s diffusion model method, we maintain

a comparable prediction accuracy, albeit with less pronounced

joint jitter. However, our method requires only 60.4% of the

model’s parameters compared with this method, enhancing its

practical applicability.

In Figure 5, we showcase comprehensive applications of virtual

reality-based rehabilitation and partial action guidance. As shown

in the figure, the reconstructed poses and target poses can be

accurately evaluated by the PoseFix network, yielding intuitive,

detailed, and precise action guidance.

5 Conclusion

Current rehabilitation training requires patients, who already

face mobility challenges, to visit rehabilitation centers for treatment

by physical therapists. This proves to be difficult and costly for

patients. To enable patients to undergo precise, efficient, and cost-

effective rehabilitation training in the comfort of their homes using

their virtual reality devices, this study introduces a novel approach

that utilizes sparse motion signals from VR devices, specifically

head-mounted displays and hand controllers, to reconstruct full-

body poses. Unlike existing methods that focus on clinical metrics

for doctors, our method employs a natural language processing

model to contrast reconstructed poses with standard poses. This

process provides efficient pose correction guidance in the form

of natural language, offering a more accessible and personalized

approach to movement guidance for patients.

The quantitative and qualitative results demonstrate the

effectiveness of the proposed method in real-time reconstruction of

accurate full-body poses. By referencing standard poses, the model

generates professional motion correction guidance text, facilitating

virtual reality-based rehabilitation training. This approach not only

reduces the cost of rehabilitation training but also enhances the

efficiency of self-rehabilitation training, addressing the challenges

faced by patients seeking timely and accessible rehabilitation.
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Effect of surface electrode 
recording area on compound 
muscle action potential scan 
processing for motor unit number 
estimation
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Introduction: MScanFit is a model-based algorithm for motor unit number 
estimation (MUNE) from compound muscle action potential (CMAP) scan data. It 
is a clinically applicable tool because of its quick and automatic implementation. 
Electrodes with different recording areas were employed to record CMAP scan 
data in existing studies. However, the effect of electrode recording area on 
MScanFit MUNE and other CMAP scan parameters has not been studied.

Methods: CMAP scan was performed on the abductor pollicis brevis muscle of 
both hands on 14 healthy subjects using three different electrodes with recording 
areas of 10  mm  ×  10  mm, 11  mm  ×  14  mm, and 22  mm  ×  26  mm, respectively. 
Motor unit number was estimated using MScanFit for each CMAP scan. Two 
motor unit number index parameters, i.e., D50 and step index (STEPIX), were 
also derived from the CMAP scan data.

Results: No significant difference in D50, STEPIX, and MScanFit MUNE was 
observed across three different electrode recording areas, although the 
amplitude of CMAP decreased significantly when a larger electrode was used. 
Intraclass correlation coefficients of 0.792 and 0.782 were obtained for MScanFit 
MUNE and STEPIX, respectively.

Discussion: Compared with CMAP amplitude, D50, STEPIX, and MScanFit 
MUNE are less sensitive to variation in electrode recording area. However, the 
repeatability of MScanFit MUNE could be compromised by the inconsistency in 
the electrode recording area.

KEYWORDS

MScanFit, motor unit number estimation, compound muscle action potential scan, 
electromyography, electrode recording area

1 Introduction

The reduction of motor units may lead to muscle weakness and muscle atrophy in 
neuromuscular diseases. Motor unit number estimation (MUNE) is a powerful tool for tracking 
loss of motor units and the compensatory phenomenon of collateral reinnervation (Gooch 
et al., 2014). A variety of MUNE methods have been proposed in past decades, but those 
traditional MUNE methods such as incremental stimulation MUNE and multiple point 
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stimulation MUNE (de Carvalho et al., 2018; Wright et al., 2021) are 
likely biased to the sampling of motor units. By contrast, compound 
muscle action potential (CMAP) scan aims to gradually activate/
deactivate all motor units by applying hundreds of transcutaneous 
stimuli to the motor nerve across a wide range of intensities (Blok et al., 
2007). Compared with traditional MUNE methods, CMAP scan is less 
biased to the sampling of motor units, and various methods have been 
developed to process CMAP scan for examination of neuromuscular 
disorders (Sleutjes et al., 2014; Nandedkar et al., 2022; Chen et al., 
2023a,b; Lu et  al., 2023b). Of particular note, Bostock proposed a 
model-based MUNE algorithm named MScanFit, which estimates the 
number of motor units by fitting the detailed stimulus–response curve 
recorded from a CMAP scan (Bostock, 2016). MScanFit possesses the 
advantage of automated and quick (typically taking only a few minutes) 
implementation, making it so far the most often used CMAP scan 
processing method in basic and clinical electrophysiological studies 
(Kristensen et al., 2019; Zong et al., 2021; Schneider et al., 2023).

CMAP scan curve can be affected by experimental parameters 
including the number and the width of electrical stimuli. For example, 
our previous studies show that CMAP scan curve becomes denser 
when the number of stimuli is increased, which leads to an increase 
in derived step index (STEPIX; Lu et al., 2023a). Although MScanFit 
is not sensitive to the number of stimuli, it is significantly affected by 
the width of stimuli (Zong et al., 2020).

Electrode recording area (the area of the recording surface of an 
electrode) is another major factor affecting CMAP, especially on its 
shape and amplitude due to the different filtering effects (Wee and 
Ashley, 1990; Chang et al., 1993; Jonas et al., 1999; Barkhaus et al., 
2006). The electrode recording area used for CMAP scan studies 
covered a wide range in literature from greater than 400 mm2 
(Sørensen et al., 2022, 2023) to around 100 mm2 (Li et al., 2018; Song 
et al., 2023). Furthermore, inconsistent electrode recording areas were 
reported when examining the same muscle (Sleutjes et al., 2021). For 
example, when performing CMAP scan recordings on the abductor 
pollicis brevis (APB) muscle, square electrodes with the size of 
30 mm × 22 mm (with the recording area of 474 mm2) and 
30 mm × 24 mm (detailed recording area was not reported) were used 
in Araújo et al. (2015) and Sørensen et al. (2023), respectively, while 
disk electrodes with the diameter of 10 mm (i.e., 79 mm2) and 13 mm 
(i.e., 133 mm2) were applied in Stikvoort García et al. (2022) and Song 
et al. (2023), respectively. Note that 2-dimensional electrode arrays up 
to 128 channels have also been used for MUNE, where electrodes with 
diameters smaller than 2 mm are commonly used (Sleutjes et al., 2016).

The effect of electrode recording area on CMAP implies that the 
CMAP scan curves could also vary with different surface electrodes. 
However, it still remains unclear how the different surface electrode 
recording areas may affect CMAP scan processing parameters, such 
as MScanFit MUNE. The objective of this study was, therefore, to 
assess the effect of electrode recording area on MScanFit MUNE and 
other CMAP scan parameters. In addition, the repeatability of these 
parameters using different electrode recording areas was quantified.

2 Methods

2.1 Experimental protocol

Three electrodes with different recording areas were used for 
CMAP scan recording in this study. Their recording areas are 

10 mm × 10 mm (denoted as E1), 11 mm × 14 mm (denoted as E2), and 
22 mm × 26 mm (denoted as E3), respectively.

Fourteen right-handed healthy subjects (7 males and 7 females, 
aged 30.6 ± 9.5 years) participated in this study. Each subject’s bilateral 
APB muscles were recorded. The order of the left and right hand was 
randomized. In the experiment, each subject was seated comfortably 
in a chair with his/her testing hand rested on a table and restrained in 
the pronation position. CMAP scan was performed three times on 
each hand using one of the three active electrodes in a random order, 
while all the other experimental parameters remained the same. 
Before each recording, the subject was given sufficient rest to avoid 
mental and muscle fatigue.

2.2 CMAP scan recording

Before each recording, the range of stimulating current intensity 
was determined by performing an automatic search. The range of 
current intensity was then manually tuned in order to cover the entire 
motor unit recruitment range. The pulse duration was set to 0.1 ms, 
the number of stimuli was set to 500, and the frequency of stimuli was 
set to 2 Hz. All the data were collected using Nicolet EDX system 
(Natus Neurology Incorporated, Middleton, WI, United States).

As shown in Figure  1, the active electrode was placed on the 
abdominal eminence of the APB muscle, and the reference electrode 
was placed on the metacarpophalangeal joint of the thumb. The 
ground electrode was placed on the bony protuberance on the back of 
the hand between the active electrode and the reference electrode. The 
stimulating electrode (Ag/AgCl electrode) with two contact surfaces 
spaced 20 mm apart and each having a diameter of 9 mm, was placed 
1–2 cm proximal to the wrist to activate the median nerve. The 
electrode was coated with conductive paste and the cathode was 
oriented distally. Both recording and stimulating electrodes were 
carefully tuned in order to optimize electrode positions where the 
largest CMAP amplitude can be  evoked with a relatively low 
stimulating current intensity. Once the stimulating site was 
determined, the electrode was fixed with surgical tape or self-adherent 
wrap. Alcohol pads were used to clean the thumb, thenar, wrist, and 
back of the hand before the electrodes were attached.

2.3 CMAP scan data analysis

The MScanFit program (free version 2016; Bostock, 2016) was 
applied to estimate motor unit number. Each recording was analyzed 
multiple times until three valid estimations were obtained (i.e., 
percentage error < 7%), and the one with the smallest error was 
accepted. The pre-scan and post-scan limits were manually selected 
each time, while all the other settings remained at their default values.

D50, step index, S0, S100, and the difference between S0 and S100 
(i.e., S100 − S0) were also derived from each scan using a customized 
Matlab script. D50 is the number of largest consecutive differences 
from each scan that are required to build up 50% of the maximum 
CMAP amplitude (Sleutjes et al., 2014). STEPIX, which is a recently 
proposed index based on the logarithmic relation between the step 
amplitude and step number in a CMAP scan, reflects the number of 
motor units (Nandedkar et al., 2022). S0 is the maximum electrical 
intensity that cannot activate any motor unit. S100 is the minimum 
electrical intensity that can activate all the motor units.
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2.4 Statistical analysis

One-way repeated measures analysis of variance was performed 
to examine the differences in the maximum CMAP amplitude, S0, 
S100, S100 − S0, D50, STEPIX, and MScanFit MUNE parameters for 
different electrode recording areas. Statistical significance was set as 
p < 0.05. Repeatability was quantified using consistency intraclass 
correlation coefficient (ICC) if significant difference was observed; 
otherwise, absolute agreement ICC was used. Results are presented as 
mean ± standard error.

3 Results

Mild or tolerable pain was reported by the subjects in our 
experiment. The CMAP amplitude of one subject’s left hand was lower 
than 50% of the amplitude of his right hand, and thus CMAP scan 
data from his left hand was excluded. As a result, a total of 81 CMAP 
scan curves (3 trials per hand × 27 hands) recorded from 14 subjects 
were analyzed.

The maximum CMAP amplitude of the APB muscle was 
10.18 ± 0.58 mV for electrode E1, 9.65 ± 0.56 mV for electrode E2, and 
8.54 ± 0.50 mV for electrode E3 (as shown in Table  1). Significant 
difference was observed across the three electrodes (p < 0.0001), and 
the maximum CMAP amplitude decreased at a larger electrode 
recording area. No significant difference was observed across the three 
electrode recording areas in S0 (p = 0.592), S100 (p = 0.482), S100 − S0 
(p = 0.536), D50 (p = 0.463), STEPIX (p = 0.654), or MScanFit MUNE 
(p = 0.155). The ICC of MScanFit MUNE (0.792) was greater than that 
of the other two indexes (0.782 for STEPIX and 0.686 for D50). The 
median value of difference in D50, STEPIX, and MScanFit MUNE 
between individual subject’s CMAP scan curves recorded using 

electrodes with different recording areas was distributed close to 0 
(i.e., no significant difference across three electrodes). However, it was 
observed that the difference in these parameters between two 
electrodes could be distributed in a large range, as shown in Figure 2.

Three CMAP scan curves recorded using electrode E1, E2, and E3 
from the APB muscle of a representative subject are demonstrated in 
Figure 3. It is worth noting that the curves recorded using electrode 
E2 and E3 demonstrate a close pattern, and there is only a difference 
of 2 (or 1.7%) in MScanFit MUNE although the difference in 
maximum CMAP amplitude is as high as 1.13 mV (or 9.5%).

4 Discussion

This study presents a novel analysis of CMAP scan parameters 
with respect to the different electrode recording areas. By testing three 
different electrodes on CMAP scan recordings of the APB muscle 
we  observed that changes in the electrode recording area had no 
significant impact on the examined CMAP processing parameters 
including D50, STEPIX and MScanFit MUNE. In recent years, 
different electrodes or recording areas have been used in CMAP scan 
experiments on various muscles. For example, a disk electrode with 
11 mm in diameter was used to examine the abductor hallucis muscle 
(Li et al., 2018); a smaller disk electrode with 10 mm in diameter was 
used to collect CMAP scan data from the first dorsal interosseous 
(FDI) muscle (Zong et al., 2020). Additionally, some researchers used 
13 mm diameter disk electrodes to examine the FDI and abductor 
digiti minimi (ADM) muscles (Song et al., 2023). For the APB muscle 
examined in this study, literature shows that the surface electrode used 
for CMAP scan recording ranged from 10 mm to 15 mm in diameter 
(i.e., 79 mm2 to 177 mm2; Farschtschi et al., 2017; Stikvoort García 
et al., 2022; Zong et al., 2022c; Song et al., 2023). Square electrodes 

FIGURE 1

Electrode configurations for CMAP scan recording of the APB muscle. The active electrode E3 with the size of 22 mm × 26 mm is shown as an 
example in (A), and the ground electrode is shown in (B).
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with different recording areas were also reported for APB muscle 
CMAP scan recordings (Araújo et al., 2015; Sørensen et al., 2023). 
Considering various recording areas reported in previous CMAP scan 
studies, we  chose to use three electrodes with recording areas of 
100 mm2, 154 mm2, and 572 mm2, respectively. The three electrode 
recording areas used in this study can cover the commonly used 
surface electrodes in research and clinical practice.

In addition to motor unit number parameters (e.g., MScanFit 
MUNE), it was also observed that the three different electrode 
recording areas had no significant impact on CMAP scan’s stimulus 
intensity parameters including S0, S100, and S100 − S0. This is not 
surprising since the stimulus intensities that elicit motor unit 
responses are independent of the electrode size. Our results indicate 
that both large and small electrode recording areas have a similar 

TABLE 1 Parameters derived from CMAP scan of the APB muscle on healthy subjects using electrodes with different recording areas.

10  mm × 10  mm 11  mm × 14  mm 22  mm × 26  mm Significance ICC*
Maximum CMAP (mV) 10.18 ± 0.58 9.65 ± 0.56 8.54 ± 0.50 p < 0.0001 0.934

S0 (mA) 10.01 ± 0.51 10.06 ± 0.56 10.23 ± 0.54 p = 0.592 0.914

S100 (mA) 19.21 ± 0.88 19.00 ± 0.80 19.53 ± 0.88 p = 0.482 0.867

S100 − S0 (mA) 9.19 ± 0.58 8.95 ± 0.51 9.31 ± 0.58 p = 0.536 0.831

D50 38.85 ± 1.64 39.37 ± 1.64 40.44 ± 1.63 p = 0.463 0.686

STEPIX 103.67 ± 5.50 106.59 ± 6.00 103.37 ± 5.81 p = 0.654 0.782

MScanFit MUNE 107.37 ± 7.33 109.07 ± 6.57 115.52 ± 6.75 p = 0.155 0.792

*All these ICC values are the absolute agreement type, except the ICC of the maximum CMAP, which is the consistency type.

A B C

D E F

FIGURE 2

D50 (A), STEPIX (B), MScanFit MUNE (C), and the difference in D50 (D), STEPIX (E), and MScanFit MUNE (F) between CMAP scan curves of the APB 
muscle of healthy subjects recorded using electrodes with different recording areas. The difference was calculated as (Parameter derived from E1 or 
E3−Parameter derived from E2)/Parameter derived from E2 for each subject. One outlier (above 50% in both STEPIX and MScanFit) is not shown in 
this figure.
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sensitivity in capturing the recruited motor unit activity of the 
examined muscle.

The only observed significant difference across three different 
electrode recording areas was CMAP amplitude. Our results indicated 
that increased electrode recording area significantly reduced CMAP 
amplitude of the APB muscle. This is consistent to previous 
experimental (Wee and Ashley, 1990; Barkhaus et  al., 2006) and 
theoretical findings (Fuglevand et al., 1992). The same tendency was 
also reported by Chang et al. (1993) although the significance level 
was not reached. Large surface electrodes can capture relatively more 
muscle volume but impose an increased low pass filtering effect on the 
recorded signal compared with small ones. These two factors have 
opposite effects on the CMAP amplitude. For the examined APB 
muscle in this study, it seems the difference in low pass filtering effect 
caused by different surface electrodes was more dominant than the 
difference in captured muscle volume, thus the CMAP amplitude was 
reduced with increased recording surface area. Nonetheless, the 
alterations in CMAP amplitude did not have a significant influence on 
its processing parameters, such as MScanFit MUNE. This is likely 
because MScanFit MUNE applies a number of operations to refine the 
CMAP scan model to meet the predefined error score, including 
adjusting individual motor unit parameters, splitting or merging 
motor units, etc. This is different from conventional MUNE methods, 
calculated as the ratio of the CMAP measurement to the mean motor 
unit action potential measurement estimated from a small sample of 
motor units.

The repeatability of CMAP scan parameters was also examined in 
this study across three different surface electrodes. The repeatability 
of MScanFit MUNE across the three different electrodes was observed 
to be slightly higher than that of the two index parameters (i.e., D50 
and STEPIX). The repeatability of MScanFit MUNE can be exemplified 
by Figure 3, as it indicates a relative large variation in CMAP scan 
amplitude (induced from different electrodes) does not necessarily 
impose a similar extent of variation in MScanFit MUNE. Existing 
studies reported that the test–retest repeatability of MScanFit MUNE 
was excellent using the same electrode for CMAP scan recordings. For 
example, the ICC of test–retest repeatability achieved 0.93, 0.90, and 
0.96 in our previous studies on the abductor hallucis (Li et al., 2018), 
the anconeus (Zong et al., 2022b), and the second lumbrical (Zong 

et al., 2022a) muscles, respectively. ICCs greater than 0.8 were also 
reported for MScanFit MUNE in three repeated tests on the APB, FDI, 
and ADM muscles (Higashihara et al., 2020). In this study, as expected, 
although MScanFit MUNE values were not significantly different 
across three different surface electrode recording areas, the 
repeatability of MScanFit MUNE was not as high as previously 
reported numbers, due to inconsistency in surface electrode 
recording area.

As an important neuromuscular electrophysiological method, 
MUNE is often used to compare the difference between two groups 
(for example, between healthy control subjects and subjects with 
neuromuscular diseases) in a cross-sectional study or track the same 
muscle in a longitudinal study. Although group analysis revealed no 
significant difference in MScanFit MUNE of the APB muscle across 
three different surface electrodes, variation up to ±50% in individual 
subject was observed between two different electrode recording areas. 
Such a variation may reduce the reliability of tracking motor unit loss. 
Therefore, we advocate the same experimental settings (including the 
same recording electrode) should be used in MUNE studies for both 
research and clinical settings. This can help to avoid confounding 
factors for comparing MUNE and other CMAP scan parameters in 
different situations.

The current study is limited by only examining the APB muscle of 
neurologically intact subjects. It remains to be determined whether 
the findings can be generalized to other muscles, particularly to those 
large muscles. In addition, it is important in the future work to 
investigate how different electrode recording areas may affect the 
sensitivity of MScanFit and other CMAP scan processing parameters 
in quantifying motor unit number and size changes in 
clinical application.

5 Conclusion

The effect of electrode recording area on MScanFit MUNE and 
other parameters derived from a CMAP scan was assessed by testing 
three different electrode recording areas. The experimental results 
from APB muscles indicate that although CMAP amplitude was 
sensitive to surface electrode recording area, CMAP scan processing 
parameters including D50, STEPIX, and MScanFit MUNE were not 
significantly affected by the changes in electrode recording area. 
However, inconsistency in electrode recording area may compromise 
the repeatability of CMAP scan processing. The findings of the study 
can help to understand the effect of experimental factors on different 
CMAP scan parameters, thus facilitating their analysis 
and interpretation.
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Active lower limb prostheses show large potential to o�er energetic, balance,

and versatility improvements to users when compared to passive and semi-active

devices. Still, their control remains a major development challenge, with many

di�erent approaches existing. This perspective aims at illustrating a future leg

prosthesis control approach to improve the everyday life of prosthesis users,

while providing a research road map for getting there. Reviewing research

on the needs and challenges faced by prosthesis users, we argue for the

development of versatile control architectures for lower limb prosthetic devices

that grant the wearer full volitional control at all times. To this end, existing

control approaches for active lower limb prostheses are divided based on their

consideration of volitional user input. The presented methods are discussed in

regard to their suitability for universal everyday control involving user volition.

Novel combinations of established methods are proposed. This involves the

combination of feed-forward motor control signals with simulated feedback

loops in prosthesis control, as well as online optimization techniques to

individualize the system parameters. To provide more context, developments

related to volitional control design are touched on.

KEYWORDS

lower limbprostheses, bionic legs, voluntary control, electromyography, human-in-the-

loop optimization

1 Introduction

Research in active lower limb prostheses has recently received increasingly more

attention.While passive prostheses only restore and return energy during the movement of

the user and semi-active devicesmodulate this energy return by changing system dynamics,

active prostheses are able to provide net positive energy to their wearer. Besides the

energetic benefit andmore possible movement applications, active leg prostheses have been

shown to improve balance (Berry, 2006), functional performance, satisfaction and quality

of life compared to passive devices (Burçak et al., 2021). Meanwhile, the design of device

controllers that benefit users in locomotor tasks amounts to one of the main challenges in

the development of active prostheses (Voloshina and Collins, 2020).

To maximize the potential benefits of active prosthesis hardware in the long

term, wearers should be able and eager to use them as often as possible, which

necessitates user satisfaction. In general, prosthesis usefulness is strongly associated with

embodiment, which itself correlates with user satisfaction (Bekrater-Bodmann, 2021).

More specifically, certain aspects to prosthesis usage satisfaction are directly affected by

the control architecture in place. Versatility and intuitiveness in leg prostheses support

independence, confidence and safety, which are key user desires (Manz et al., 2022).
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A lack of voluntary motor functionality can lead to user

dissatisfaction (Christ et al., 2011). A recent systematic review

identified users’ ability to perform different movements as a factor

for satisfaction with lower limb prostheses, amongst others (Baars

et al., 2018). These relations call for control methods allowing users

tomodulate the prosthesis behavior according to certainmovement

tasks and environments or, more universally, at will. We refer to

this approach as volitional control.

The most practical and technologically matured, noninvasive

way to transfer control commands from the user to a prosthetic

device is electromyography (EMG) (Zheng, 2019). People with

lower limb amputations are able to volitionally use their residual

muscles for EMG-based control (Huang and Huang, 2018, 2019).

There are challenges to EMG control, like differing muscle

activation profiles between individuals (Huang and Ferris, 2012),

as well as varying abilities to volitionally create activation patterns,

including unintended coactivation of antagonistic muscles (Huang

and Huang, 2019). However, users are able to learn and improve

their control capabilities over time (Alcaide-Aguirre et al., 2013;

Fleming et al., 2018).

To date, the majority of lower-limb prostheses is autonomously

controlled based on state prediction (Fleming et al., 2021),

which constitutes a discrepancy between the potential benefit of

intuitive volitional control to the users and the control strategies

implemented in research and commercial prosthesics. Currently,

there are no commercially available devices using EMG (Fleming

et al., 2021; Ahkami et al., 2023) and even in research, only half of

EMG leg prosthesis are volitionally controllable at most, as recent

reviews show (Fleming et al., 2021; Cimolato et al., 2022; Ahkami

et al., 2023). Besides numerous experiments involving pointing

tasks or virtual lower limbs, only a few studies cover initial trials

with volitional control during gait. When considering the enabling

of gait the primary function of a leg prosthesis, the state of the

art of volitionally controllable leg prostheses is deficient. Therefore,

we argue for the development of a universally applicable volitional

control architecture suitable for everyday use. For this purpose,

this perspective offers an overview of existing control strategies

and assesses their respective applicability. The combination of these

control approaches is discussed to point out directions in future

research in this field. Additionally, other potential methods to

advance volitional control, namely restoration of proprioception

and human-in-the-loop optimization, are examined.

2 Lower limb prosthesis control
strategies

This section summarizes existing control strategies for active

lower limb prostheses and discusses their suitability for volitional

control to derive the novel control architecture proposed in

Section 3. As suggested byMartin et al. (2010), we divide the control

approaches in two categories, depending on how they incorporate

inputs from the user’s nervous system. Interactive extrinsic control

(IEC) assigns the prosthesis user immediate and continuous control

of the device’s behavior, with the commonly used interface being

surface EMG from the muscles in the residual limb. In contrast

to IEC, computational intrinsic control (CIC) does not receive

direct volitional input by the user and instead determines prosthesis

movement autonomously (Cimolato et al., 2022). Device-specific

low-level controllers setting torque, position, or speed on the

prosthetic hardware are not affected by this distinction and not

discussed here. The presented categories and their proposed

consideration in volitional prosthesis control are shown in Figure 1.

The examples mentioned focus on implementations that enable

gait, whereas non-weight-bearing tasks and virtual devices are not

discussed.

2.1 Interactive extrinsic control (IEC)

Since IEC enables the user to continuously and directly

modulate the prosthesis state, its inclusion in a volitional control

architecture appears obvious. A general detriment to IEC is its

constant reliance on user input. One can assume this increases

cognitive user load compared to autonomously controlled devices,

but this has yet to be quantified (Fleming et al., 2021). This potential

downside applies to both IEC variants presented in the following.

2.1.1 Direct EMG control
Direct EMG control uses mathematical functions to calculate

a desired prosthesis state such as joint angle or torque from

EMG input, with only a few papers discussing its application for

gait. Huang et al. (2014, 2016) used EMG-proportional pressure

in artificial pneumatic muscles to control an ankle prosthesis,

which allowed level-ground walking under the provision of visual

feedback. Other studies implemented direct control with an

electromechanical knee prosthesis (Hoover et al., 2012; Dawley

et al., 2013). Here, for level-ground walking and stair ascend,

the stiffness and equilibrium point of impedance controllers were

modulated via recorded EMG signals, producing a compliant

volitional position control.

An advantage of direct control is its relatively low

computational cost (Ahkami et al., 2023), especially for simple

approaches like proportional control. Since the method does not

inherently mimic any biological example, it might at times generate

unnatural relations between muscle activity and prosthesis

behavior (e.g., proportional joint torque), that are hard to learn for

users. Though, to point out a clear tendency here, the number of

conducted experiments with this approach is too small.

2.1.2 Muscle-model-based EMG control
In muscle-model-based EMG prosthesis control, a simplified

simulation of EMG-driven muscles acting on a joint is employed

to calculate a resulting joint torque. Wu et al. (2011) presented a

simple model with two antagonistic muscles in a knee prosthesis,

each consisting of a source of immediate force and one adaptive

spring-damper pair in parallel. Here, EMG amplitudes modulated

the spring stiffness, damper coefficient, and a proportional

force to calculate the desired knee torque. This enabled level-

ground walking by an able-bodied individual wearing a prosthesis

adapter. Shah et al. (2022) used two Hill-type-muscles driven by

gastrocnemius and tibialis anterior EMG recordings to control an

ankle prosthesis for a symmetrical balancing task.
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FIGURE 1

Schematic overview of control approaches and research roadmap. From each category of existing control strategies (IEC, CIC), one model-based

approach is selected to be incorporated in a hybrid control architecture. Human-in-the-loop optimization (HILO) is meant to tailor the model to

individual users, while the artificial restoration of device state feedback shall improve the user’s control abilities.

In model-based EMG control, the natural joint behavior

depending on muscle activity is emulated and driven by a volitional

input. Compared to direct EMG control, a downside of this

approach is a rather complex model. This likely leads to increased

computational demand and higher numbers of model parameters

to be determined.

2.2 Computational intrinsic control (CIC)

The lack of immediate user authority over the device offered by

CIC seems to rule this control approach out for volitional control

at first glance. We still discuss CIC variants to get a comprehensive

view on existing control approaches and evaluate their suitability to

maybe be partially incorporated in a volitional approach.

2.2.1 Finite state controllers
Finite state controllers choose between a finite number of

operation modes, target trajectories, set points or other system

parameters to tackle a given task. To make the system adaptable

to changing walking speeds, gait modes or environments, a

recognition of gait phases or user intend is required. Besides sensors

for non-biosignals like inertial or force sensors, EMG can also be

incorporated for this classification task (Cimolato et al., 2022).With

modern machine learning approaches, low single-digit percentage

classification errors have been achieved (Voloshina and Collins,

2020).

For prosthesis users, classification errors are hard to

comprehend and hard to compensate for, since the mapping

of EMG input to the prosthesis behavior is a complex black box

(Fleming et al., 2021). Depending on their type and timing, these

errors can lead to gait instability (Zhang et al., 2015) and therefore

to falls. To safely classify thousands of daily steps in everyday use,

a near-perfect classification performance is needed. Furthermore,

the finite number of operation modes limits the user’s ability to

intuitively and spontaneously use a prosthesis in varying situations.

Therefore, we consider state-dependent controllers not suitable

for the volitional control system proposed in Section 3 and do not

further discuss them.

2.2.2 Reflex-driven muscle model based control
Reflexive, involuntary responses to stimuli are present in a large

variety of humanmotor tasks and are believed to play a role in able-

bodied gait (Kandel et al., 2012). Following preceding simulation

studies (Geyer and Herr, 2010), some studies employed muscle and

joint models driven by simulated reflexes instead of EMG signals.

In this way, walking with an ankle prosthesis was proven possible,

while enabling adaption to changes in slope (Eilenberg et al., 2010)

and speed (Markowitz et al., 2011). Thatte et al. (2018) extended

the concept to a knee and ankle prosthesis. Here, five able-bodied
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individuals using an adapter were able to walk with the prosthesis

on level-ground. All three studies only implemented reflex control

in stance phase and relied on predetermined trajectories during

swing.

Like other CIC methods, this control strategy lacks volitional

input from the user, and the presented implementations rely

on state detection for gait. The reflex models used in the

presented papers do not resemble actual biolocial control

schemes (Markowitz et al., 2011), as reflexes in the human

body are task-dependent and adapt to afferent neural signals

from the brain (Kandel et al., 2012). Therefore, more complex

reflexive networks with more detailed state distinctions are

likely needed to enable different tasks like postural balance or

sit-to-stand transitions.

2.3 Hybrid approaches

Some studies combine IEC and CIC elements in hybrid

prosthesis control strategies. For stair ascent with a knee prosthesis,

Hoover et al. (2013) modulated the stiffness and equilibrium point

of an impedance controller via both EMG input and predefined

values for stance and swing phases. Wang et al. (2013) used EMG to

manipulate plantarflexion force during push-off with an otherwise

intrinsic controller in an ankle prosthesis, which enabled level-

ground walking. This was adapted to also support stair ambulation

by Kannape and Herr (2014). Shu et al. (2022) applied a similar

control approach with an offline optimizationmethod tomap EMG

inputs to the virtual muscles.

Hybrid control approaches allow for some volitional

adjustments to the assistance given by the device. Because

they do not solely rely on volitional input, they feature a potential

reduction in cognitive load compared to full IEC. On the contrary,

the presented methods still carry the disadvantages of finite state

controllers. They rely on the detection of gait phases and are

limited to predetermined movements and activities.

3 Promising research directions

Considering the previously analyzed control strategies,

this section proposes future research directions to improve

volitional lower limb prosthesis control. This suggestion includes

parameterization approaches as well as the restoration of feedback

and proprioception to prosthesis users. Figure 2 shows the

proposed overall control structure in comparison with the motor

control present in a healthy limb.

3.1 Combining EMG input and simulated
reflexes

Human motor control signals are believed to consist of

feed-forward and feedback components (Kandel et al., 2012).

Markowitz et al. (2011) recognize this circumstance, but do not

incorporate any user-controllable feed-forward signals in their

control approach. Likewise, Shu et al. (2022) call reflexes essential

for physiological gait and lament its absence in amputation

musculature, but their device control relies on feed-forward

signals alone. To our knowledge, the combination of muscle

reflexes with feed-forward signals has only been tested in gait

simulation, where it improved the model’s robustness against

perturbations compared to pure reflex control (Haeufle et al.,

2018).

To facilitate compliant device behavior while limiting the

cognitive demand on the user, we propose the development of a

hybrid controller that combines EMG-based volitional input and

simulated reflexes for the virtual muscle excitation in a model-

based prosthesis control architecture. The structure of the proposed

control approach is shown in Figure 2. Via EMG readings from

residual muscles, the simulated muscles can be volitionally driven

by the user, which subsequently command a desired torque to

the prosthesis. Compared to the healthy limb, the afferent signals

reporting muscle length (muscle spindles) and force (Golgi tendon

organs) as well as cutaneous sensing to the spinal cord and

brain (Kandel et al., 2012) are missing. This is substituted by

incorporating virtual muscle states as well as sensory signals from

the prosthesis hardware into simulated reflexes, which leads to an

additional, non-volitional activation of the virtual muscles.

While this combined approach entails a high parameter

count, it also allows for extensive individualization. Similar to the

simulations conducted by Haeufle et al. (2018), the emphasis could

be shifted between reflexes and volitional input by varying signal

gains, depending on the wearer and their abilities to cognitively

and physically handle the input responsibility. It is important to

note that the studies mentioned here and in Section 2.2.2 mostly

simulate monosynaptic stretch reflexes with a positive feedback of

muscle force. This approach is self-reinforcing and would quickly

lead to a maximum contraction of all muscles in a volitionally

controllable prosthesis. Therefore, the reflex model needs to be

adapted.

3.2 Restoration of feedback

The lack of haptic and proprioceptive sensing in prostheses

limits the natural and intuitive movement dexterity of users.

Supplementary feedback can improve immediate control

performance and promote the learning of internal motor

models (Sensinger and Dosen, 2020). Feedback of the device state

to the user is suggested to facilitate embodiment, device acceptance

and dexterity (Beckerle et al., 2019).

Providing position feedback in an EMG-controlled position

tracking task can heavily improve performance. Canino and Fite

(2016) demonstrated this in a knee prosthesis with both, static

pressure and vibratory feedback. The presented studies examining

prosthetic gait did not employ such feedback mechanisms, while

some mention the necessity of visual feedback. A completely

different approach to proprioception restoration is the agonist-

antagonist myoneural interface, which aims to recreate natural

co-dependencies by attaching residual muscles to their respective

antagonist in the residual limb (Clites et al., 2018). In addition

to improved volitional muscle activation, this also enables

the introduction of perceived passive movement by electrically

stimulating the muscles. This surgical construct has enabled great
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FIGURE 2

Diagram of control and excitation signals in the proposed control structure compared to a healthy limb. Elements and signals are orange for a

healthy limb and blue in case of using a prosthesis. Black elements are present in both. Solid lines depict physical interaction or its virtual emulation.

In the same way, dashed and dotted lines show e�erent and a�erent neural signals or their simulation.

control performance for individuals with an amputation, including

the presented hybrid approach by Shu et al. (2022).

Given the discovered benefits of prosthesis state feedback to

the user, it should receive more attention in lower-limb prosthesis

research. Since advanced and novel surgery procedures will likely

not be available to or suitable for everyone, feedback mechanisms

built into devices need to be investigated and developed further.

Current solutions for artificial feedback do not match natural

fidelity, while selecting the appropriate feedback signals remains

a challenge (Seminara et al., 2023). As pictured by Beckerle et al.

(2017), the form and extent of the provided artificial feedback

should be thoroughly assessed to ensure actual improvements in a

given task. To enable conscious reactions to changes in the artificial

limb state, the structure given in Figure 2 contains a feedback

device, which receives the same simulated and sensor feedback as

the artificial reflexes. It is ceded to future research to design the

feedback derived from these signals.

3.3 Human-in-the-loop optimization

Finding control parameters is a key challenge and choosing

universal parameters for multiple users often does not appear

suitable. The assistance required for a certain objective varies

between individual users (Koller et al., 2015). People respond

differently to active assistance and small changes can have large

effects on energy expenditure (Voloshina and Collins, 2020). Thatte

et al. (2018) observed that individual users prefer different gait

characteristics and control parameter sets and called for methods

to individualize prosthesis control.

Human-in-the-loop optimization (HILO) is a procedure of

varying system parameters during user experiments to optimize

for a given objective. It has been shown to successfully improve

performance for exoskeletons and prostheses in a variety of tasks

(Díaz et al., 2022) and offers the possibility to individualize

prosthesis control (Voloshina and Collins, 2020). A common goal

is the reduction of metabolic cost, which can be estimated from

respiratory data (Zhang et al., 2017). An example for kinematic

objectives is gait symmetry (Wen et al., 2020), which is especially

interesting in the case of unilateral amputations. While HILO has

been tested on a variety of control approaches for assistive devices,

the combination with volitional control in lower-limb prostheses

has yet to be realized.

We propose the use of HILO to determine control parameters

that suit the individual needs of prosthesis users. Besides helping

to manage large parameter spaces, HILO allows reseachers
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to pick different optimization objectives for different users or

usecases. This can include desired gait kinetics, gait symmetry,

metabolic cost, or user comfort and preference. For the last

two, manual user input can be incorporated (Ingraham

et al., 2020). Likewise, HILO allows to optimize for different

tasks, like walking, stair-ascent and -descent or standing

balance, depending on what is considered most important

or most challenging by the user. To find initial parameters,

anthropometric features and isometric torque and EMG

measurements (Durandau et al., 2019) or predictive simulations

of the human-machine interaction (Koelewijn and Selinger, 2022)

can be used.

3.4 Consideration of model complexity

The studies on model-based EMG control mentioned in

Section 2.1.2 all base their control on two simulated muscles in

one degree of freedom (DoF) prostheses (plantar-/dorsiflexion for

the ankle, flexion/extension for the knee). More elaborate models

find use in CIC approaches (Markowitz et al., 2011; Thatte et al.,

2018) and are being investigated for volitional control (Cimolato

et al., 2020), but are not yet employed. Considering the

example of an ankle prosthesis, active inversion/eversion was

shown to reduce metabolic (Kim and Collins, 2017) and the

lack of this DoF limits the adaption to uneven grounds. The

use of only one plantarflexor muscle neglects the influence of

the knee angle on the gastrocnemius length and hence the

joint torque.

Challenging this common level of modeling depth could

reveal potential benefits of more complex musculoskeletal

models, though increase computational demands and parameter

count. Therefore, the benefit of modeling certain biological

anatomical features should be assessed and evaluated against the

associated costs.

4 Conclusion

While active lower limb prostheses offer a multitude of

potential benefits to users, their control remains challenging. In

this perspective, we present arguments for the development of

prostheses that are intuitively and volitionally controllable. Existing

control approaches are summarized and evaluated regarding their

suitability for that objective, laying out their advantages and

disadvantages.

Overall, we propose the combination of EMG-based volitional

control signals with simulated muscle reflexes in a model-

based high level prosthesis control, aided by a feedback of the

device’s state to the user. We argue to strive for individualizing

the assistance given by this control scheme to individual users

and their respective needs. To this end and to tackle the

potentially large number of model parameters influencing the

control behavior, we argue for the use of HILO. We believe

that this combination of methods will substantially advance

the field of volitional control of lower limb prostheses and

facilitate the development of intuitive to use leg prostheses in the

future.
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Background: This study aimed to identify and quantify the kinematic and kinetic 
gait deviations in post-stroke hemiplegic patients with matched healthy controls 
using Statistical Parametric Mapping (SPM).

Methods: Fifteen chronic stroke patients [4 females, 11 males; age 53.7 (standard 
deviation 12.2) years; body mass 65.4 (10.4) kg; standing height 168.5 (9.6) cm] 
and 15 matched healthy controls [4 females, 11 males; age 52.9 (11.7) years; 
body weight 66.5 (10.7) years; standing height 168.3 (8.8) cm] were recruited. 
In a 10-m walking task, joint angles, ground reaction forces (GRF), and joint 
moments were collected, analyzed, and compared using SPM for an entire gait 
cycle.

Results: Generally, when comparing the stroke patients’ affected (hemiplegic) 
and less-affected (contralateral) limbs with the control group, SPM identified 
significant differences in the late stance phase and early swing phase in the joint 
angles and moments in bilateral limbs (all p  <  0.005). In addition, the vertical 
and anteroposterior components of GRF were significantly different in various 
periods of the stance phase (all p  <  0.005), while the mediolateral component 
showed no differences between the two groups.

Conclusion: SPM was able to detect abnormal gait patterns in both the affected 
and less-affected limbs of stroke patients with significant differences when 
compared with matched controls. The findings draw attention to significant 
quantifiable gait deviations in the less-affected post-stroke limb with the potential 
impact to inform gait retraining strategies for clinicians and physiotherapists.
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1 Introduction

Gait impairments affect more than 70% of stroke survivors, who 
usually exhibit hemiparetic patterns of weakness (Lawrence et al., 
2001). A stroke survivor’s ability to independently ambulate a distance 
of 10 m is indicative of lower limb function and overall motor 
performance (Kwakkel et al., 2017), and walking speed is often used 
to evaluate gait performance (Kollen et  al., 2006). Furthermore, 
functional assessments have been applied clinically to evaluate gait 
performance, lower extremity joint strength, and muscle force (Goldie 
et al., 1996; Kollen et al., 2006; Smith et al., 2017; Selves et al., 2020). 
To better characterize post-stroke hemiplegic gait, biomechanical 
measurements have been extensively conducted. Generally, stroke 
survivors had a slower walking speed (Tamaya et al., 2020) compared 
with the controls. In addition, joint range of motion (ROM) or 
maximum joint angles of the affected limb were smaller in multiple 
periods in a gait cycle (Tamaya et al., 2020; Nesi et al., 2023). While 
the existing literature focuses on the affected limb displaying abnormal 
movement patterns, specific descriptions of the kinematics or kinetics 
of the contralateral (less-affected) limb are sparse. Given the possible 
maladaptation of the less-affected limb, precise measurements may 
provide valuable insights towards understanding the gait patterns 
(Patterson et al., 2008).

Recent research has highlighted the significance of correctly 
measuring the nature of impairment and disability in heterogenous 
stroke populations, intending to prescribe individualized and effective 
treatments (French et al., 2022). Recent technologies, such as motion 
capture systems, can systematically examine gait deviations and track 
rehabilitation outcomes objectively and accurately. While the 
abovementioned studies have examined the discrete (zero-
dimensional, 0D) variables in stroke survivors using instrumented gait 
analysis systems or motion capture devices (Teixeira-Salmela et al., 
2001; Bijleveld-Uitman et al., 2013; Tamaya et al., 2020; Nesi et al., 
2023), information about the time-history of these biomechanical 
variables in a full gait cycle is unclear.

Statistical Parametric Mapping (SPM), as a statistical analysis tool, 
is able to detect differences in one-dimensional (1D) datasets (e.g., 
time-varying waveforms for forces, joint angles, joint moments, and 
electromyography amplitudes) between two or more conditions/
groups (Pataky, 2010, 2012). This method has been applied in gait 
analysis for able-bodied and athletic populations (Mei et al., 2019; Gao 
et al., 2020), however, data pertaining to stroke gait are sparse. A 
recent study examined the gait variables using SPM in hemiplegic gait, 
and observed greater thorax flexion/extension angle during stance 
phase and greater thorax internal/external rotation angle during the 
terminal stance phase in the stroke group than the control group 
(Tamaya et al., 2020).

In gait analysis, a gait cycle has been usually treated as an entire 
phase from a heel strike (initial contact) of one foot to the next of the 
same foot, labeled temporally as 0–100%. In the literature, some found 
significant differences and interpreted the results into certain periods, 
e.g., ‘during the pre-swing and initial swing phases (55.2–66.5%)’ 
(Fernández-Vázquez et  al., 2023) and ‘terminal-stance phase 
(31–50%)’ (Park and Yoon, 2021). They may have accepted the fixed 
cut-off value of 60% to split an entire gait cycle (stance phase: 0–60%, 
swing phase: 60–100%). While this is valid for a normal population, 
it can be  problematic for stroke survivors, who usually display 
individual differences in gait impairments, including prolonged stance 

phase and a higher ratio of stance-to-swing duration (Olney and 
Richards, 1996). Hence, splitting an entire gait cycle is warranted in 
SPM analysis (Tamaya et al., 2020), which may provide more focused 
information regarding abnormal gait patterns. This present study, 
therefore, aimed to apply SPM to compare the biomechanical variables 
of both the affected and less-affected limbs in the stance and swing 
phases of a gait cycle during a 10-m walking task between the stroke 
and control groups. It was hypothesized that stroke patients’ both 
limbs would exhibit different biomechanics compared with the 
control group.

2 Method

2.1 Study design and setting

This was a cross-sectional, case control study, comparing the gait 
patterns of a group of chronic stroke patients with an equal number 
of matched healthy controls (trial registered with www.clinicaltrials.
gov, NCT04169594). The latter comprised retrospective data from an 
Asian-centric movement database of activities of daily living (ADLs) 
(Liang et al., 2020). The measurements for both the stroke group and 
control group (the database) were conducted in the same gait 
laboratory. Stroke participants were referred from an ambulatory 
rehabilitation clinic of a public rehabilitation hospital.

2.2 Participants

All methods of this study were performed in accordance with the 
Declaration of Helsinki and the ethical approvals were granted by the 
National Healthcare Group Domain Specific Review Board, 
Singapore (DSRB reference number: NHG DSRB 2019/00879). The 
study was registered with www.clinicaltrials.gov, NCT04169594. All 
participants provided written informed consent. All stroke 
participants had a history of stroke with a duration exceeding 
6 months, and their minimal ambulatory status was indicated by a 
Functional Ambulation Category (FAC) score (Holden et al., 1984) 
greater than 4. The detailed inclusion/exclusion criteria can be found 
in the Supplementary material. This study recruited 15 stroke patients 
with 1 data point (Table 1, stroke group). The recruitment flowchart 
(Supplementary Figure S1) and individual demographic and clinical 
characteristics for the stroke group (Supplementary Table S1). For 
each stroke patient, one healthy participant, matched by age, gender, 
height, body mass, and ethnicity, was selected for analysis (Table 1, 
control group). The matching method was conducted based on the 
weighted nearest neighbors-based algorithm (Szekér and Vathy-
Fogarassy, 2020).

2.3 Data acquisition

All 15 stroke patients and 15 control participants were instructed 
to perform a 10-m walk (Liang et al., 2020) at a comfortable speed, 
whereby the data of the 15 controls were retrospectively collected. 
Only the trials with sufficient marker trajectories and the entire foot 
planting on the force platforms were used for analysis. The mean 
(standard deviation) speeds were 0.90 (0.24) m/s for the stroke group 
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and 1.62 (0.27) m/s for the control group, respectively. A certified 
physiotherapist was present with all 15 stroke participants throughout 
all trials but did not need to assist them. Participants were able to walk 
independently with their own footwear and lower limb orthotics (e.g., 
ankle foot orthoses) as needed.

To facilitate data collection, a 3D motion capture system with 16 
two-megapixel Miqus M3 cameras (200 Hz, Qualisys AB, Göteborg, 
Sweden) was employed with a modified Calibrated Anatomical 
System Technique (CAST) marker set (Liang et al., 2020). There were 
30 retro-reflective markers (12.5 mm) placed on the anatomical 
landmarks on the trunk, hip, and both lower limbs, and 16 markers as 
the tracking markers (4 on each of the 4 marker clusters) on the thighs 
and shanks bilaterally (Liang et  al., 2020). Two adjacent force 
platforms (2000 Hz, type 9260AA6, Kistler Instruments AG, 
Winterthur, Switzerland) were synchronized with the Qualisys system 
to record ground reaction forces (GRF). Kinematic data were 
identified for both lower limbs for the stroke group and control group, 
and kinematic data were obtained for the torso.

2.4 Data analyses

Raw marker trajectories and GRF data were low-pass filtered 
using a fourth-order Butterworth filter at the cut-off frequencies of 
15 Hz (Alhossary et al., 2022) and 50 Hz, respectively on Visual3D 
(v2021.04.1, C-Motion Inc., Germantown, MD, United States). For 
each foot, the first initial contact and foot-off events used for analysis 
were determined according to the vertical GRF threshold of 20 N 
(Park and Yoon, 2021). As the subsequent initial contact occurred 
when the foot stepped out of the force platforms, it was determined 
based on the heel marker trajectories (Tamaya et  al., 2020). Two 
sub-phases in a gait cycle, namely stance and swing phases, were 
subsequently obtained. Biomechanical variables, including GRF, joint 

angles, and joint moments, were then calculated using the data 
obtained through the 3D motion capture system and force platforms, 
and exported into three planes, respectively, i.e., sagittal (e.g., flexion/
extension), frontal (e.g., adduction/abduction), and transverse planes 
(e.g., internal/external rotation). Joint angles were calculated as Euler 
angles in accordance with a Cardan rotation sequence of “X-Y-Z” 
(Cole et al., 1993; Wu et al., 2002). Torso angle was computed as the 
thorax segment with respect to the pelvis. Due to the stroke impacting 
one body side, the torso movements are usually asymmetric among 
stroke patients during ambulation (Van Criekinge et al., 2017), and 
hence, the torso angle was only analyzed for the gait cycle of the 
affected limb (Yen et al., 2019). For example, if a stroke patient had the 
left limb paretic, the torso angle was obtained in the stance and swing 
phases of the left leg. GRF data were normalized to the individual 
body weight (N/N), and joint moments were normalized to the 
individual body mass (Nm/kg) (Park and Yoon, 2021).

2.5 Statistical analyses

All kinematic and kinetic data were time normalized to 101 data 
points for each of the stance and swing phases. Subsequently, the time-
normalized variables for each participant were averaged across 
repetitions to obtain a subject-level dataset. These variables were 
compared between the stroke and control groups using the t-test 
function of SPM on Python. Matched right and left limbs of the stroke 
patients and control participants were selected for analysis. For 
example, if a stroke participant’s affected limb was the left limb, the left 
limb of the matched participant was selected for comparison, and vice 
versa. All statistical tests were set at α = 0.05.

3 Results

All 15 stroke and 15 control participants completed the 10-m 
walking task. The time-varying joint angles for the lower limbs 
(Figure 1) and torso (Figure 2), GRF (Figure 3), and joint moments 
(Figure 4) are presented for both the stroke and control groups.

When comparing the joint angles and moments between the 
stroke patients’ affected limb and control group, SPM identified 
significant differences in various periods in both the stance phase and 
swing phase for the ankle, knee, and hip joints (all p < 0.05). 
Differences in torso angles were seen primarily not in the sagittal 
plane but in the frontal plane, where the torso exhibited greater 
downward angles in the early and terminal stance phases (p = 0.050 
and p = 0.049, respectively) and entire swing phase (p = 0.001), 
indicating the stroke patients leaning towards their affected limb 
compared with the control group (Figure 2).

In the stance phase, significant differences in the vertical 
component of GRF were identified when contrasting the stroke and 
control groups (Figure 3). For the affected limb, the differences ranged 
from 0.4 to 7.8% (p = 0.001), from 8.3 to 26.7% (p < 0.001), from 41.2 
to 61.6% (p < 0.001), and from 68.2 to 94.5% (p < 0.001). Similarly, for 
the less-affected limb, from 0.1 to 4.8% (p = 0.009), from 13.3 to 30.9% 
(p < 0.001), from 35.4 to 61.3% (p < 0.001), and from 67.6 to 81.7% 
(p < 0.001). Additionally, significant deviations from the control group 
in the anteroposterior component of GRF were noted. The differences 
were found for the affected limb to be from 2.3 to 35.5%, (p < 0.001) 

TABLE 1 Participants’ physical characteristics and demographic 
information (n  =  30).

Stroke Control p value

n Females (n = 4) Females (n = 4) --

Males (n = 11) Males (n = 11) --

Ethnicity Chinese (n = 12) Chinese (n = 14) --

Indian (n = 1) Indian (n = 1) --

Others** (n = 2) Others (n = 0) --

Age (years) 53.7 (12.2) 52.9 (11.7) 0.844

Body mass (kg) 65.4 (10.4) 66.5 (10.7) 0.764

Standing height 

(cm)

168.5 (9.6) 168.3 (8.8) 0.936

Body mass index 

(kg/m2)

22.9 (2.3) 23.4 (2.1) 0.562

Stroke side* Left (n = 5) -- --

Right (n = 10) -- --

Stroke diagnosis Hemorrhage (n = 7) -- --

Infarct (n = 8) -- --

*Stroke side refers to the body side affected (paretic side). Data are expressed as mean 
(standard deviation). Differences between the stroke group and control group were 
compared using independent t-tests. **Others: Myanmarese (n = 1) and Nepalese (n = 1).

62

https://doi.org/10.3389/fnins.2024.1425183
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Pan et al. 10.3389/fnins.2024.1425183

Frontiers in Neuroscience 04 frontiersin.org

and from 64.6 to 99.9% (p < 0.001), while for the less-affected limb, 
the differences ranged from 1.3 to 49.5% (p < 0.001) and from 64.3 to 
94.4% (p < 0.001).

4 Discussion

This study conducted a comprehensive comparison of kinematic 
and kinetic variables during a 10-meter walking task between a group 
of stroke patients and appropriately matched healthy controls. SPM 
was employed to assess biomechanical variables for both the stance 
and swing phases in the gait cycle. The findings indicated notable 
disparities in joint angles (Figure 1) and moments (Figure 4) during 
both the stance and swing phases when comparing the affected limb 
with the control group. Importantly, differences were also evident 
between the less-affected limb of the stroke group and the control 
participants’ matched limb. Furthermore, significant differences 
emerged in the amplitudes of the vertical and anteroposterior 
components of GRF during the stance phase (Figure 3). In contrast, 
no statistically significant difference was observed in the mediolateral 
component throughout the stance phase.

4.1 Joint angles

The lower limb joint angle profiles were similar to the ones 
reported in previous studies (Balaban and Tok, 2014; Tamaya et al., 
2020). Significant differences between stroke and control participants 
were observed in the ankle, knee, and hip joints (Figure 1), primarily 
in the sagittal plane during the early stance phase, and the period from 
late stance to early swing phase. The former differences were likely 
related to weight acceptance, and the latter could be associated with 
foot push-off (Perry and Burnfield, 2010). During the early swing 
phase (0–69%, Figure 1), the affected knee displayed much smaller 
ROM of flexion/extension angle (< 10°) than the control group (~20°). 
This is consistent with stroke-related stiff knee gait or an extensor gait 
pattern, characterized by reduced flexion during the swing phase 
(Woolley, 2001; Perry and Burnfield, 2010). Thus, joint ROM recovery, 
in particular for the period from late stance phase to early swing 
phase, can be  meaningful for the enhancement of walking 
performance (Teixeira-Salmela et al., 2001; Nesi et al., 2023).

Abnormalities were also observed in the early and late stance 
phases, and early swing phase of the contralateral less-affected lower 
limb (Figure 1). This is in line with one prior study which reported a 
decrease in lower limb extension angles in the late stance phase for 
both affected and less-affected limbs (Teixeira-Salmela et al., 2001). 
However, that study solely analyzed the maximum joint angles, which 
makes it difficult to diagnose abnormality at different period during 
ambulation. Hence, this reaffirms the merits of SPM in identifying 
differences in time-varying data (Pataky, 2010, 2012). On average, 
torso angles in the frontal plane demonstrated significant differences 
in the terminal stance phase and the entire swing phase, i.e., leaning 
more toward the affected side (shown as a downward angle, Figure 2), 
presumably as a form of compensatory strategy, soft-tissue 
architecture restriction, or hemi-body spasticity for the hemiplegic 
gait. Future studies are recommended to include electromyography 
(EMG) analysis to help better understand stroke patients’ torso 
movement deviations.

4.2 Ground reaction forces

The control group exhibited two obvious peaks in the vertical 
component of the GRF (black lines in Figure 3), which correspond to 
the moment of body weight transfer and the foot pushing off the 
ground (ankle plantarflexion). In contrast, stroke patients’ affected 
foot displayed significant reductions in both peaks during the stance 
phase, especially for the second peak, which is important for the 
pre-swing. This parallels the findings from the pediatric cerebral palsy 
research (Williams et al., 2011), which also noted reduced vertical 
GRF at the second peak. This also aligns patients’ reduced weight 
transfer to the affected foot and diminished ankle ROM during late 
stance compared with the controls, as shown in the present study. 
Interestingly, the vertical component of the GRF of the less-affected 
side also showed a significant reduction similar to the affected side 
(Figure 3). Hence, the decline of the vertical GRF of both feet may 
together contribute to stroke patients’ impaired dynamic gait function.

4.3 Joint moments

For the controls, an ankle dorsiflexion moment was generated 
primarily by the ankle dorsiflexor muscles (e.g., tibialis anterior) 
immediately after initial foot contact (early stance phase, black lines 
in Figure 4), serving as weight acceptance (Sloot and Van Der Krogt, 
2016) when the body weight is transferred to the standing leg. 
However, smaller ankle dorsiflexion moments were found in both the 
affected limb (from 0.6 to 14.3%, p < 0.001) and less-affected limb 
(from 0.9 to 15%, p < 0.001) in the stroke group. This could also 
be  reflected by the missing first vertical GRF peak in the stroke 
patients (Figure  3). Then, when pushing off the ground, a great 
plantarflexion moment was seen in the late stance phase for the 
control group (Sloot and Van Der Krogt, 2016). However, the affected 
limb of the stroke group showed smaller peak plantarflexion moments 
during the late stance phase (Figure 4, approximately 0.5 and 1.5 Nm/
kg, respectively). This may also explain the lack of the obvious second 
vertical GRF peak for the stroke group (Figure 3). Clinicians, based 
on the current research findings, may prescribe personalized exercises, 
such as concentric training focusing on the ankle muscles, to improve 
the patients’ walking performance (Perez et al., 2024).

Similar to the ankle joint moment, a knee flexion moment 
(negative in value) was seen in a very short period, as shown in the 
early stance phase for the control group (black lines in Figure 4), 
which is also related to weight acceptance. Subsequently, a great 
extension moment (positive in value) was shown to extend the knee 
forward. However, consistent with the ankle joint, the stroke patients 
displayed smaller knee flexion and extension moments than the 
control group. During the stance phase, knee abduction moment is 
associated with stabilizing the knee joint. Hence, the stroke patients’ 
lower knee abduction moments than the control group (from 6 to 8%, 
p = 0.043; from 84.4 to 89.9%, p = 0.016; from 97.2 to 100%, p = 0.038) 
may induce an unstable knee joint during ambulation.

The controls exhibited a hip extension moment in the early 
stance (positive in value, black lines in Figure 4) in response to 
weight acceptance. After that, a hip flexion moment (negative in 
value) was seen in the late stance phase, which prepared the leg 
for push-off. However, the stroke patients’ affected limb (from 4.4 
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to 10%, p = 0.005, from 69.2 to 93.9%, p < 0.001) showed smaller 
moment amplitudes than the control group. This is consistent 
with the findings in a previous study that hip extension strength 

could be one of the most important indicators regarding stroke 
patients’ ability to walk independently (Smith et al., 2017). As the 
hip could be  the leading joint while walking, stroke patients’ 

FIGURE 1

Lower limb joint angles. Comparisons between the stroke group (red lines) and control group (black lines) in the stance phase and swing phase of a 
gait cycle. Blue shades indicate the time clusters with significant differences between the two groups (p  < 0.05).
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reduced hip extension/flexion moments may lead to weak 
interaction torques at the lower joints (e.g., knee and ankle) 
(Dounskaia, 2005). Hence, the decreased moments of the lower 
limb joints on both affected and less affected limbs may together 
contribute to the slower walking speed after stroke. This may 
confirm the relationship between the increases in lower limb joint 
moments and improved gait performance. Thus, the findings of 
this current study suggest that gait rehabilitation, such as joint 

force or muscle force recovery, should take both limbs 
into consideration.

Concerning the kinetic aspect in gait analysis, stroke patients 
exhibited diminished dorsiflexion after initial foot contact, reflected 
by a missing first vertical GRF peak (Figure 3), and smaller peak 
plantarflexion moments during late stance (Figure 4), potentially 
explaining the absence of the second vertical GRF peak. Additionally, 
stroke patients displayed reduced knee flexion and extension 

FIGURE 2

Torso angles. Comparisons between the stroke group (red lines) and control group (black lines) in the stance phase and swing phase of a gait cycle. In 
the frontal plane, leaning downward indicates leaning towards the affected side, while leaning upward indicates leaning toward the less-affected side. 
Blue shades indicate the time clusters with significant differences between the two groups (p  <  0.05).

FIGURE 3

Ground reaction forces. Comparisons between the stroke group (red lines) and control group (black lines) in the stance phase of a gait cycle. Blue 
shades indicate the time clusters with significant differences between the two groups (p  <  0.05). Data were normalized to the individual body weight 
(BW).
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moments, possibly leading to unstable knee joints during ambulation. 
Furthermore, stroke patients exhibited lower hip extension/flexion 
moments, suggesting weakened interaction torques at subordinate 
joints and contributing to slower walking speeds in both affected and 

less-affected limbs. These findings emphasize the complex interplay 
of joint moments and GRF in stroke patients’ gait mechanics, 
highlighting potential targets for rehabilitation interventions aimed 
at improving walking function and independence.

FIGURE 4

Lower limb joint moments. Comparisons between the stroke group (red lines) and control group (black lines) in the stance phase and swing phase of a 
gait cycle. Blue shades indicate the time clusters with significant differences between the two groups (p  < 0.05).
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4.4 Limitations

There are several limitations to this present study. Firstly, inconsistent 
gait patterns may be exhibited across the small sample of 15 stroke 
patients, and hence, future studies are recommended to recruit stroke 
patterns in similar status and conditions to improve group homogeneity 
for analysis. Secondly, since the inherent difficulty existed in obtaining 
valid walking trials for the stroke patients (e.g., planting the whole foot 
on the force platform without touching its edge), only 2 strides for each 
left and right foot were used for analysis. For the control group, 3 strides 
were included, which is in line with the previous literature (Teixeira-
Salmela et al., 2001). Hence, in the future, more valid strides/trials should 
be included to reach a more stable mean value.

5 Conclusion

This study compared the kinematics (joint angles) and kinetics 
(GRF and joint moments) for a group of chronic stroke patients against 
their matched healthy controls in a 10-m walking task. SPM detected 
significant differences in joint angles and moments in various periods 
during the stance and swing phases between the stroke and controls. 
Between-group differences were also revealed in GRF during the stance 
phase. The findings reveal that in addition to the affected limb which 
have been extensively investigated in previous studies, the less-affected 
limb also exhibited abnormal biomechanics variables compared with 
the control group in this study. This suggests that post-stroke gait 
rehabilitation should take both limbs into consideration, and clinicians 
can prescribe personalized exercises to improve stroke patients’ 
walking performance. The present study illustrates that 3D motion 
capture technology and SPM analyses can offer clinicians valuable 
insights into gait pattern deviations across different phases in the gait 
cycle. The research findings may draw attention to specific periods 
within the gait cycle (e.g., early stance phase for the knee, and early 
swing phase for the ankle), and potentially enhances rehabilitation 
therapy by monitoring the responses to therapeutic modalities.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by National 
Healthcare Group Domain Specific Review Board, Singapore. The 

studies were conducted in accordance with the local legislation and 
institutional requirements. The participants provided their written 
informed consent to participate in this study.

Author contributions

JP: Data curation, Formal analysis, Visualization, Writing – original 
draft, Writing – review & editing. AS: Methodology, Supervision, 
Writing – original draft, Writing – review & editing. T-LW: Formal 
analysis, Methodology, Visualization, Writing – review & editing. WK: 
Conceptualization, Resources, Writing – review & editing, 
Investigation. PO: Conceptualization, Writing – review & editing. MT: 
Conceptualization, Writing – review & editing. MP: Conceptualization, 
Writing – review & editing. WC: Data curation, Investigation, Writing 
– review & editing. WA: Conceptualization, Supervision, Writing – 
review & editing. KC: Conceptualization, Funding acquisition, 
Resources, Writing – review & editing, Supervision.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This study was 
funded by the Rehabilitation Research Grant (RRG3/19002) 2019.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fnins.2024.1425183/
full#supplementary-material

References
Alhossary, A., Ang, W. T., Chua, K. S. G., Tay, M. R. J., Ong, P. L., Murakami, T., et al. 

(2022). Identification of secondary biomechanical abnormalities in the lower limb joints 
after chronic transtibial amputation: a proof-of-concept study using SPM1D analysis. 
Bioengineering 9:293. doi: 10.3390/bioengineering9070293

Balaban, B., and Tok, F. (2014). Gait disturbances in patients with stroke. PMR 6, 
635–642. doi: 10.1016/j.pmrj.2013.12.017

Bijleveld-Uitman, M., van de Port, I., and Kwakkel, G. (2013). Is gait speed or walking 
distance a better predictor for community walking after stroke? J. Rehabil. Med. 45, 
535–540. doi: 10.2340/16501977-1147

Cole, G. K., Nigg, B. M., Ronsky, J. L., and Yeadon, M. R. (1993). Application of the 
joint coordinate system to three-dimensional joint attitude and movement 
representation: a standardization proposal. J. Biomech. Eng. 115, 344–349. doi: 
10.1115/1.2895496

Dounskaia, N. (2005). The internal model and the leading joint hypothesis: 
implications for control of multi-joint movements. Exp. Brain Res. 166, 1–16. doi: 
10.1007/s00221-005-2339-1

Fernández-Vázquez, D., Calvo-Malón, G., Molina-Rueda, F., López-González, R., 
Carratalá-Tejada, M., Navarro-López, V., et al. (2023). Kinematic gait analysis in people 

67

https://doi.org/10.3389/fnins.2024.1425183
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnins.2024.1425183/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2024.1425183/full#supplementary-material
https://doi.org/10.3390/bioengineering9070293
https://doi.org/10.1016/j.pmrj.2013.12.017
https://doi.org/10.2340/16501977-1147
https://doi.org/10.1115/1.2895496
https://doi.org/10.1007/s00221-005-2339-1


Pan et al. 10.3389/fnins.2024.1425183

Frontiers in Neuroscience 09 frontiersin.org

with mild-disability multiple sclerosis using statistical parametric mapping: a cross-
sectional study. Sensors 23:7671. doi: 10.3390/s23187671

French, M. A., Roemmich, R. T., Daley, K., Beier, M., Penttinen, S., Raghavan, P., et al. 
(2022). Precision rehabilitation: optimizing function, adding value to health care. Arch. 
Phys. Med. Rehabil. 103, 1233–1239. doi: 10.1016/j.apmr.2022.01.154

Gao, Z., Mei, Q., Xiang, L., and Gu, Y. (2020). Difference of walking plantar loadings 
in experienced and novice long-distance runners. Acta Bioeng. Biomech. 22, 1–21. doi: 
10.37190/ABB-01627-2020-02

Goldie, P. A., Matyas, T. A., and Evans, O. M. (1996). Deficit and change in gait 
velocity during rehabilitation after stroke. Arch. Phys. Med. Rehabil. 77, 1074–1082. doi: 
10.1016/S0003-9993(96)90072-6

Holden, M. K., Gill, K. M., Magliozzi, M. R., Nathan, J., and Piehl-Baker, L. (1984). 
Clinical gait assessment in the neurologically impaired. Phys. Ther. 64, 35–40. doi: 
10.1093/ptj/64.1.35

Kollen, B., Kwakkel, G., and Lindeman, E. (2006). Hemiplegic gait after stroke: is 
measurement of maximum speed required? Arch. Phys. Med. Rehabil. 87, 358–363. doi: 
10.1016/j.apmr.2005.11.007

Kwakkel, G., Lannin, N. A., Borschmann, K., English, C., Ali, M., Churilov, L., et al. 
(2017). Standardized measurement of sensorimotor recovery in stroke trials: consensus-
based core recommendations from the stroke recovery and rehabilitation roundtable. 
Int. J. Stroke 12, 451–461. doi: 10.1177/1747493017711813

Lawrence, E. S., Coshall, C., Dundas, R., Stewart, J., Rudd, A. G., Howard, R., et al. 
(2001). Estimates of the prevalence of acute stroke impairments and disability in a 
multiethnic population. Stroke 32, 1279–1284. doi: 10.1161/01.STR.32.6.1279

Liang, P., Kwong, W. H., Sidarta, A., Yap, C. K., Tan, W. K., Lim, L. S., et al. (2020). An 
Asian-centric human movement database capturing activities of daily living. Scient. Data 
7:290. doi: 10.1038/s41597-020-00627-7

Mei, Q., Gu, Y., Xiang, L., Baker, J. S., and Fernandez, J. (2019). Foot pronation 
contributes to altered lower extremity loading after long distance running. Front. Physiol. 
10:573. doi: 10.3389/fphys.2019.00573

Nesi, B., Taviani, A., D’Auria, L., Bardelli, R., Zuccarello, G., Platano, D., et al. (2023). 
The relationship between gait velocity and walking pattern in hemiplegic patients. Appl. 
Sci. 13:934. doi: 10.3390/app13020934

Olney, S. J., and Richards, C. (1996). Hemiparetic gait following stroke part I: 
characteristics. Gait Posture 4, 136–148. doi: 10.1016/0966-6362(96)01063-6

Park, S., and Yoon, S. (2021). Validity evaluation of an inertial measurement unit 
(imu) in gait analysis using statistical parametric mapping (SPM). Sensors 21:3667. doi: 
10.3390/s21113667

Pataky, T. C. (2010). Generalized n-dimensional biomechanical field analysis using 
statistical parametric mapping. J. Biomech. 43, 1976–1982. doi: 10.1016/j.
jbiomech.2010.03.008

Pataky, T. C. (2012). One-dimensional statistical parametric mapping in python. 
Comput. Methods Biomech. Biomed. Engin. 15, 295–301. doi: 10.1080/10255842.2010.527837

Patterson, K. K., Parafianowicz, I., Danells, C. J., Closson, V., Verrier, M. C., 
Staines, W. R., et al. (2008). Gait asymmetry in community-ambulating stroke survivors. 
Arch. Phys. Med. Rehabil. 89, 304–310. doi: 10.1016/j.apmr.2007.08.142

Perez, N., Morales, C., Reyes, A., Cruickshank, T., and Penailillo, L. (2024). Effects of 
eccentric strength training on motor function in individuals with stroke: a scoping 
review. Top. Stroke Rehabil. 1, 1–14. doi: 10.1080/10749357.2024.2330040

Perry, J., and Burnfield, J. M. (2010). Gait analysis: Normal and pathological function. 
2nd Edn. Thorofare, NJ, United States: Slack Incorporated.

Selves, C., Stoquart, G., and Lejeune, T. (2020). Gait rehabilitation after stroke: review 
of the evidence of predictors, clinical outcomes and timing for interventions. Acta 
Neurol. Belg. 120, 783–790. doi: 10.1007/s13760-020-01320-7

Sloot, L. H., and Van Der Krogt, M. M. (2016). “Interpreting joint moments and 
powers in gait” in Handbook of human motion. eds. B. Müller, S. I. Wolf, G.-P. 
Brueggemann, Z. Deng, A. McIntosh and F. Milleret al. (Cham, Switzerland: Springer 
International Publishing), 1–19.

Smith, M.-C., Barber, P. A., and Stinear, C. M. (2017). The TWIST algorithm predicts 
time to walking independently after stroke. Neurorehabil. Neural Repair 31, 955–964. 
doi: 10.1177/1545968317736820

Szekér, S., and Vathy-Fogarassy, Á. (2020). Weighted nearest neighbours-based control 
group selection method for observational studies. PLoS One 15:e0236531. doi: 10.1371/
journal.pone.0236531

Tamaya, V. C., Wim, S., Herssens, N., Van De Walle, P., Willem, D. H., Steven, T., et al. 
(2020). Trunk biomechanics during walking after sub-acute stroke and its relation to 
lower limb impairments. Clin. Biomech. 75:105013. doi: 10.1016/j.
clinbiomech.2020.105013

Teixeira-Salmela, L. F., Nadeau, S., Mcbride, I., and Olney, S. J. (2001). Effects of 
muscle strengthening and physical conditioning training on temporal, kinematic and 
kinetic variables during gait in chronic stroke survivors. J. Rehabil. Med. 33, 53–60. doi: 
10.1080/165019701750098867

Van Criekinge, T., Saeys, W., Hallemans, A., Velghe, S., Viskens, P.-J., Vereeck, L., et al. 
(2017). Trunk biomechanics during hemiplegic gait after stroke: a systematic review. 
Gait Posture 54, 133–143. doi: 10.1016/j.gaitpost.2017.03.004

Williams, S. E., Gibbs, S., Meadows, C. B., and Abboud, R. J. (2011). Classification of 
the reduced vertical component of the ground reaction force in late stance in cerebral 
palsy gait. Gait Posture 34, 370–373. doi: 10.1016/j.gaitpost.2011.06.003

Woolley, S. M. (2001). Characteristics of gait in hemiplegia. Top. Stroke Rehabil. 7, 
1–18. doi: 10.1310/JB16-V04F-JAL5-H1UV

Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., et al. (2002). 
ISB recommendation on definitions of joint coordinate system of various joints for the 
reporting of human joint motion—part I: ankle, hip, and spine. J. Biomech. 35, 543–548. 
doi: 10.1016/S0021-9290(01)00222-6

Yen, C.-L., Chang, K.-C., Wu, C.-Y., and Hsieh, Y.-W. (2019). The relationship between 
trunk acceleration parameters and kinematic characteristics during walking in patients 
with stroke. J. Phys. Ther. Sci. 31, 638–644. doi: 10.1589/jpts.31.638

68

https://doi.org/10.3389/fnins.2024.1425183
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.3390/s23187671
https://doi.org/10.1016/j.apmr.2022.01.154
https://doi.org/10.37190/ABB-01627-2020-02
https://doi.org/10.1016/S0003-9993(96)90072-6
https://doi.org/10.1093/ptj/64.1.35
https://doi.org/10.1016/j.apmr.2005.11.007
https://doi.org/10.1177/1747493017711813
https://doi.org/10.1161/01.STR.32.6.1279
https://doi.org/10.1038/s41597-020-00627-7
https://doi.org/10.3389/fphys.2019.00573
https://doi.org/10.3390/app13020934
https://doi.org/10.1016/0966-6362(96)01063-6
https://doi.org/10.3390/s21113667
https://doi.org/10.1016/j.jbiomech.2010.03.008
https://doi.org/10.1016/j.jbiomech.2010.03.008
https://doi.org/10.1080/10255842.2010.527837
https://doi.org/10.1016/j.apmr.2007.08.142
https://doi.org/10.1080/10749357.2024.2330040
https://doi.org/10.1007/s13760-020-01320-7
https://doi.org/10.1177/1545968317736820
https://doi.org/10.1371/journal.pone.0236531
https://doi.org/10.1371/journal.pone.0236531
https://doi.org/10.1016/j.clinbiomech.2020.105013
https://doi.org/10.1016/j.clinbiomech.2020.105013
https://doi.org/10.1080/165019701750098867
https://doi.org/10.1016/j.gaitpost.2017.03.004
https://doi.org/10.1016/j.gaitpost.2011.06.003
https://doi.org/10.1310/JB16-V04F-JAL5-H1UV
https://doi.org/10.1016/S0021-9290(01)00222-6
https://doi.org/10.1589/jpts.31.638


fnins-18-1398459 July 27, 2024 Time: 16:39 # 1

TYPE Study Protocol
PUBLISHED 31 July 2024
DOI 10.3389/fnins.2024.1398459

OPEN ACCESS

EDITED BY

Yingbai Hu,
The Chinese University of Hong Kong,
Hong Kong SAR, China

REVIEWED BY

Xiao Luo,
The Chinese University of Hong Kong,
Hong Kong SAR, China
Konstantinos Chandolias,
University of Thessaly, Greece

*CORRESPONDENCE

F. Virginia Wright
vwright@hollandbloorview.ca

RECEIVED 09 March 2024
ACCEPTED 17 July 2024
PUBLISHED 31 July 2024

CITATION

Bradley SS, de Holanda LJ, Chau T and
Wright FV (2024) Physiotherapy-assisted
overground exoskeleton use: mixed
methods feasibility study protocol
quantifying the user experience, as well as
functional, neural, and muscular outcomes
in children with mobility impairments.
Front. Neurosci. 18:1398459.
doi: 10.3389/fnins.2024.1398459

COPYRIGHT

© 2024 Bradley, de Holanda, Chau and
Wright. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Physiotherapy-assisted
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Background: Early phase research suggests that physiotherapy paired with use

of robotic walking aids provides a novel opportunity for children with severe

mobility challenges to experience active walking. The Trexo Plus is a pediatric

lower limb exoskeleton mounted on a wheeled walker frame, and is adjustable

to fit a child’s positional and gait requirements. It guides and powers the child’s

leg movements in a way that is individualized to their movement potential

and upright support needs, and can provide progressive challenges for walking

within a physiotherapy-based motor learning treatment paradigm.

Methods: This protocol outlines a single group mixed-methods study that

assesses the feasibility of physiotherapy-assisted overground Trexo use in

school and outpatient settings during a 6-week physiotherapy block. Children

ages 3–6 years (n = 10; cerebral palsy or related disorder, Gross Motor

Function Classification System level IV) will be recruited by circle of care

invitations to participate. Study indicators/outcomes will focus on evaluation

of: (i) clinical feasibility, safety, and acceptability of intervention; (ii) pre-

post intervention motor/functional outcomes; (iii) pre-post intervention brain

structure characterization and resting state brain connectivity; (iv) muscle

activity characterization during Trexo-assisted gait and natural assisted gait;

(v) heart rate during Trexo-assisted gait and natural assisted gait; and (vi) user

experience and perceptions of physiotherapists, children, and parents.

Discussion: This will be the first study to investigate feasibility indicators,

outcomes, and experiences of Trexo-based physiotherapy in a school and

outpatient context with children who have mobility challenges. It will explore

the possibility of experience-dependent neuroplasticity in the context of gait

rehabilitation, as well as associated functional and muscular outcomes. Finally,

the study will address important questions about clinical utility and future
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adoption of the device from the physiotherapists’ perspective, comfort and

engagement from the children’s perspective, and the impressions of parents

about the value of introducing this technology as an early intervention.

Clinical trial registration: https://clinicaltrials.gov, identifier NCT05463211

KEYWORDS

lower limb exoskeleton, overground gait training, cerebral palsy, GMFCS IV, robotic
training, pediatric, mobility, physiotherapy

1 Introduction

While wheelchairs are essential for supporting mobility and
participation in the daily activities of individuals who have severe
motor impairments (Gibson et al., 2012), they do not offer
supported upright positioning of the body. Many individuals with
limited mobility use a combination of assistive devices for different
intentions or circumstances, such as wheelchairs, standing frames,
and supported walkers (Moen and Østensjø, 2023). Walking (or
assisted standing) confers a multitude of health benefits including
improved bone health (Kim et al., 2017), respiration (Lee and
Kim, 2014), circulation (Eng et al., 2001), urination (Houle et al.,
1998; Walter et al., 1999), bowel function (Walter et al., 1999),
joint range of motion (Paleg et al., 2013), sleep (Eng et al.,
2001), as well as psychosocial (McKeever et al., 2013; Livingstone
and Paleg, 2023) and mental health benefits (Kenyon et al.,
2021). Growing recognition across rehabilitation sectors about the
possibility of technology to facilitate enhanced upright mobility
and independence has stimulated the engineering advancement
of assistive gait devices from simple wheeled walkers (Tao et al.,
2020), to supported stepping devices (Livingstone and Paleg, 2023),
to non-robotic mechanically facilitated walkers (Wright and Jutai,
2006; Paleg and Livingstone, 2015), to treadmill mounted (tethered)
gait trainers (Cherni and Ziane, 2022), and most recently to
powered exoskeletons that move overground (Owens et al., 2020).

Overground lower-limb powered exoskeletons afford earth
vertical weight-bearing positioning that is coupled with augmented
mobility (De Luca et al., 2019), giving novel upright movement
opportunities when foundational gross motor skills (e.g., learning
to walk) are delayed or when disease or injury has resulted in loss
of independent walking abilities (Hunt, 2021). These exoskeletons
can be used in conjunction with other gait aids such as wheeled
walkers, or tethered on a treadmill (Kim et al., 2021) to fit the
individual’s support needs. They can also be built as freestanding
robotically guided mobile walking frames (De Luca et al., 2019;
Sarajchi et al., 2021).The added value of exoskeleton use within

Abbreviations: O0, baseline phase; X, intervention phase; O1, follow-
up phase; O2, follow-up 2 phase; SR, study researcher; SI, study
interviewer GMFM-88, gross motor function measure 88; COPM, Canadian
Occupational Performance Measure; GAS, Goal Attainment Scaling; MRI,
magnetic resonance imaging; MMG, mechanomyography; ROM, range of
motion; PPAS, Posture and Postural Ability Scale; LSS, Level of Sitting
Scale; PEDI-CAT, Pediatric Evaluation of Disability Inventory; 1MWT, 1-
minute walk test; DMA, Directional Mobility Assessment; MACS, Manual
Ability Classification System; CFCS, Communication Function Classification
System.

gait-based physiotherapy sessions is that they provide: the option
of hands-free body weight support (thereby freeing the arms/hands
for other activities), sensors that respond to biological feedback,
natural joint movements and activation of weak or spastic muscles
by modulating forces on body segments, normalization of the gait
cycle by standardizing step length and range of motion, reduced
cost of walking to allow meaningful periods of exercise during
intervention sessions, quantified session progress to provide real-
time feedback, and supported use of motor learning protocols
(intensity, repetition, variability, and task-specificity) to optimize
gait training (Molteni et al., 2018; De Luca et al., 2019).

Increased clinical adoption of mobile exoskeletons such as
the Angel-legs (Angel Robotics Co., Ltd., Seoul, Korea), ReWalk
(ReWalk Robotics Inc., Marlborough, MA, USA), and Ekso (Ekso
Bionics, Richmond, CA, USA) has occurred over the last decade
in adult rehabilitation, and there is an emerging body of evidence
of the physical and health benefits of exoskeleton use by adults
with neuromotor conditions (Louie and Eng, 2016; Bruni et al.,
2018; Rojek et al., 2020; Karunakaran et al., 2021; Rodríguez-
Fernández et al., 2021). However, development and access to
smaller sized exoskeletons for pediatric populations, and associated
clinical experience with using them, currently lags far behind
that of adults (Fosch-Villaronga et al., 2020). As a result, there
is limited knowledge on the neurological and neuromuscular
effects of exoskeleton use in children, as well as the training
considerations and user perspectives that are essential to facilitate
best practice use. The majority of research to date on robotic
walkers in pediatrics has been with treadmill-based tethered models
such as the Lokomat robotic gait trainer (Hocoma AG, Volketswil,
Switzerland) (Aurich-Schuler et al., 2015; Cumplido et al., 2021;
Kim et al., 2021; Cherni and Ziane, 2022). While tethered
exoskeletons offer weightbearing and gait training benefits (Kim
et al., 2021), they do not provide the functional and participation
opportunities obtained from the added experience of moving
overground with mobile exoskeletons like Ekso, Trexo pediatric
frame-mounted exoskeleton (Trexo Robotics, 2022), or similar
devices.

The Trexo Plus (hereafter referred to as the Trexo), designed
specifically for use with children with motor impairments, has been
commercially available since 2017. Thus far it has been investigated
in the context of home use with children’s caregivers operating the
device after orientation provided by the Trexo team (Diot et al.,
2021, 2023). Benefits in the areas of sleep quality, bowel function,
postural function, and positive affect associated with Trexo use
have been documented (Diot et al., 2023). At the time of writing,
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Trexo use is being evaluated in a follow-up crossover feasibility
RCT (4-week Trexo home program [prescribed/taught by a PT
and facilitated by the child’s caregiver 4–5 times/week] compared
with a 4-week identical frequency functional therapy program
[prescribed/taught by a PT and facilitated by the child’s caregiver])
(McCormick et al., 2023).

There are no published studies to date that focus on integration
of the Trexo into clinical settings, specifically physiotherapist-led
therapy sessions. There is evidence though of adoption-related
challenges for rehabilitation teams using exoskeletons in adult
rehabilitation, such as extensive knowledge requirements and
hands-on skill demands to handle the operation of these advanced
new technologies for competent goal-based therapeutic use, while
ensuring patient safety and comfort (Read et al., 2020). There is also
the need for strong teamwork within a facility to collaboratively
develop therapy protocols for each patient that will optimize
outcomes (Gilardi et al., 2020).

Paradigmatic shifts in thinking about possible walking-based
outcomes for minimally ambulatory children (van Hedel et al.,
2016; Livingstone and Paleg, 2023) are occurring in tandem with
assistive device developments. For example, typical physiotherapy
and occupational therapy goals for children with cerebral palsy
(CP) who are minimally ambulatory or non-ambulatory (i.e.,
Gross Motor Function Classification System [GMFCS] levels
IV and V respectively) have traditionally focused on achieving
their highest degree of independence within the context of
their physical constraints (Goswami et al., 2021). The recent
introduction of overground robotic devices (such as the Trexo)
has been encouraging a transition in practice toward providing
more active focus on upright assisted walking within home and
community environments, especially in children’s younger years,
using a physiotherapy intervention approach that is based on
principles of motor learning and neuroplasticity. However, from a
best practice perspective, there is an urgent responsibility to gather
clinical evidence both on intervention processes and associated
outcomes before making them a part of regular clinical care
(Phelan et al., 2015).

The primary aim of this study is to investigate the feasibility,
user perspectives, and body-wide outcomes associated with
institutionally based overground exoskeleton gait training in
children 3–6 years of age with a functional presentation of GMFCS
level IV. The Trexo will be the overground lower limb exoskeleton
used. It is listed as a Class I medical device by Health Canada and
Class II medical device by the FDA.

The study aims will be completed through a study protocol with
the following objectives:

i) Assess aspects of clinical feasibility, safety, and acceptability of
Trexo gait training within an outpatient center and school

ii) Capture the Trexo user experience of children and
physiotherapists during exoskeleton gait training, as well
as physiotherapists’ and parents’ perspectives of outcomes
associated with use

iii) Assess motor and functional outcomes pre/post Trexo gait
training (including any carryover effects)

iv) Examine brain anatomy and brain connectivity pre/post Trexo
gait training

v) Evaluate muscle activations, particularly indicating muscle
fatigue, during Trexo gait training (compare with muscle
activations during use of regular assistive mobility devices)

vi) Capture heart rate and heart rate variability during Trexo
gait training (compare with heart rate during use of regular
assistive mobility devices).

2 Methods and analysis

2.1 Study design

This mixed methods feasibility study protocol [phase IIa; Orbit
Model (Czajkowski et al., 2015) uses an O0 X O1 O2 design
(Figure 1), with participants (n = 10) acting as their own controls
(within a longitudinal intervention consisting of O0, O1, and
O2 = study assessment phases, and X = physiotherapy intervention
with the Trexo]. The protocol follows Standard Protocol Items:
Recommendations for Interventional Trials (SPIRIT Checklist;
Chan et al., 2013a,b). All study team members’ roles are outlined
in Table 1.

During ‘O’ phases (pre/post intervention), participants will do
their usual physiotherapy regimen (with their usual assistive device,
where applicable) and associated home program, and will undergo
the set of study assessments (gross motor/functional assessments
and neuroimaging) in this approximately 2–3-week period pre- and
post-Trexo use (Phase X). One-month post O1, participants will
have one final motor/functional assessment and neuroimaging visit
(O2). They will continue with their usual physiotherapy regimen
during the month between O1 and O2.

Intervention ‘X’ phase will consist of the Trexo physiotherapy
block: physiotherapy sessions twice weekly (30-min sessions

TABLE 1 Research teammember designations and corresponding
roles in the study.

Designation Role

Principal investigators Responsible for study oversight and
adverse event management.

Study researchers Non-PT team members that are
responsible for coordinating recruitment,
scheduling, non-PT data collection, and
data analysis.

Study physician Center-affiliated pediatrician that helps
with diagnostic expertise, recruitment,
eligibility, and adverse event
management.

Treating PTs/PTAs Physiotherapy team members that are
Trexo-trained and complete the 12 Trexo
(twice weekly) intervention sessions.

PT assessors Independent PTs (different from treating
PTs) that complete the physical screening
and motor/functional assessments.

Study interviewer Independent team member that hosts all
Zoom-based interviews.

MRI technician Centre-affiliated technician that operates
MRI scanner.
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FIGURE 1

Flow chart of study visits and timeline, reflecting O0 X O1 O2 design.

excluding initial set-up time) for 6 weeks provided by a study-
trained PT/ Physiotherapist Assistant (PTA) team within a goal-
based training program that is grounded in motor learning
principles. Trexo physiotherapy will be integrated within a school-
based program for half of the study cohort (n = 5), and within an
outpatient program for the other half (n = 5). Each child will receive
1–2 acclimatization/fitting sessions in the Trexo before starting

physiotherapy sessions. Walking tests and muscle recordings at
the start and end of this phase will be done in the Trexo and in
the child’s usual non-robotic wheeled walker (if they use one) for
comparison and for assessment of potential carryover effects from
Trexo use to their wheeled walker.

Independent PT assessors (different from the intervention PTs)
will perform motor/functional assessments, with the same assessor
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assigned to a child for each assessment. They will be blinded to
the results of their previous assessment(s). Treating Trexo PTs and
PTAs may choose to share their experience of using the Trexo as
an intervention via optional qualitative interviews pertaining to: (i)
their Trexo training/learning process, and (ii) the treatment process
specific to each of the children who is assigned to them. Parents may
choose to share their expectations and impressions of the Trexo
treatment block via optional qualitative interviews pertaining to: (i)
baseline study expectations, and (ii) post-intervention impressions
and any associated outcomes of their child’s use.

2.2 Participant eligibility

2.2.1 Age range justification
We decided to acquire a medium-sized Trexo, which fits

children aged 3–6 years old (height and weight requirements). We
aim to work with children at an early intervention point where
there is still considerable developmental potential for change and
capitalize on the developing brain’s neuroplastic nature (Novak
et al., 2017). According to GMFM Motor Growth Curves for
children with CP (GMFCS IV) there is still potential for motor
gains for children under the age of 6 (Rosenbaum et al., 2002).

2.2.2 Inclusion criteria
(a) Age 3–6 years inclusive at the time of receiving the

study invitation; (b) mobility impairment caused by a non-
progressive neuromuscular disorder, classified as GMFCS Level IV
or equivalent: uses a wheelchair (pushed by others or powered)
most of the time, and walking is very limited even with use of
assistive devices (Palisano et al., 2008) and able to sit on chair
but need adaptive seating for trunk control and to maximize hand
function, can move in and out of chair with assistance from an
adult or a stable surface to push or pull up on with their arms,
can walk no more than short distances with a maximum support
walker/stepping device and caregiver assistance (Rosenbaum et al.,
2008); (c) weight: 20–100 lbs to fit within our medium size Trexo;
(d) leg length with specific measurement of the hip to the knee of
17–27 cm and knee to floor of 18–32 cm while wearing shoes; (e)
able to indicate pain, fear, or discomfort verbally or non-verbally;
(f) able to respond to one or two-step commands; and (g) at
least 2 months after any lower limb Botulinum Toxin injections.
Children may have a maximum support manual walker (e.g., a
supported stepping device such as the Rifton Pacer Gait Trainer1

- a wheeled “walking” frame or support walker that provides trunk
and pelvic support and has a soft strap or solid seat and arm support
as needed) that they use as their gait device at home/school, but this
will not be necessary to be eligible to participate in the study.

2.2.3 Exclusion criteria
(a) As per the Trexo Plus Operations manual (Trexo

Robotics, 2022), unless cleared by study physician: knee flexion
contracture > 20◦; knee valgus > 40◦; hip extension < −10◦;
hip subluxation > 40%; (b) dynamic spasticity or behavioral
concerns that interfere with the use of the Trexo; (c) weight-
bearing restrictions (d) osteogenesis imperfecta; (e) orthopedic

1 www.rifton.com

surgery within the last 6 months (if muscle) or 12 months (if bone),
or planned within the next 6 months; (f) seizure disorder that’s
not controlled by medication; (g) unable to pass MRI screening;
(h) involved in another interventional study (reviewed on a case-
by-case basis); (i) received robotic exoskeleton training in the
past; (j) neurological, respiratory, cardiac, and orthopedic medical
conditions that would restrict physical activity as reported by
parents; (k) open skin lesions or vascular disorders of the lower
extremities; and (l) not able to discontinue Botulinum Toxin
injections for 6-week period during study intervention.

2.2.4 Sample size justification
The planned sample size of 10 children for this feasibility

study will be sufficient to give an initial group picture through
descriptive statistics and summary graphs of feasibility indicators
and quantitative outcomes. This aligns with other quantitative
pediatric therapy technology-based intervention studies that have
successfully provided meaningful feasibility study results with 4
to 20 participants: (Richards et al., 1997; Wallen et al., 2008;
Weightman et al., 2011; Radtka et al., 2013). This sample size will
also elucidate how a single robotic assistive device may be shared
(i.e., fitting adaptations to support use) among multiple children
for use as a physiotherapy intervention within a center.

For the qualitative user perspective data, there is no agreed-
upon sample size to achieve saturation in qualitative research
(Saunders et al., 2018), instead depending collectively on sample
homogeneity, interaction quality, and theoretical framework
(Malterud et al., 2016).

Previous qualitative descriptive studies with children, parents,
or clinicians reporting on user experiences of applying new
technology or outcome measures have produced meaningful results
with samples of 5 to 13 participants (Rich et al., 2014; Beveridge
et al., 2015; Phelan et al., 2015; Kahlon et al., 2019; Vaughan-
Graham et al., 2020; Giancolo et al., 2022; Hadj-Moussa et al., 2022;
Torchia et al., 2023).

2.3 Participant enrolment

2.3.1 Invitation letters from circle of care
Pediatricians, PTs, and clinic staff affiliated with the hospital-

based outpatient program and the school integrated education
therapy program will share study invitation letters with parents of
the children on their caseload who meet the main eligibility criteria.
Interested parents will have an initial phone conversation with the
study’s research coordinator who will provide them with full details
on the study, and if they are interested in moving ahead, will then
review the study’s basic eligibility questions. If these criteria are
met, they will be added to a candidate list that will be capped by
a predetermined date deadline. If the list exceeds capacity, names
will be drawn by a random number system (randomizer.org) to
schedule an in-person physical screening visit to confirm eligibility.

2.3.2 Physical screening
A PT assessor will perform the child’s in-person physical

screening following receipt of written informed consent from
the parent, and will document the following: height (body and
leg lengths), range of motion, orthopedic/medical suitability,
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cognitive ability to participate in physiotherapy, current home
program, method of communicating discomfort or pain, and
parent’s willingness to commit to the treatment frequency and
to refrain from commencing other new therapies during O0, X,
and O1 phases the study. The study physician will review the
results of this screening and confirm the child’s eligibility to
proceed with the study.

2.3.3 Informed consent
Informed consent will be obtained from: child’s parent, child

(assent; contingent on capacity assessment determination prior to
the consent session) for the Trexo intervention and associated
assessments, PT/PTAs for study interviews (post child’s Trexo use),
and parent for study interviews (pre and post child’s Trexo use).
Consent for neuroimaging will be obtained separately.

2.4 Study intervention

2.4.1 Trexo plus pediatric exoskeleton
The Trexo Plus lower limb exoskeleton (Figure 2) comprises

powered orthotic legs which work cohesively within a Rifton
Pacer wheeled walker that has been adapted to accommodate the
exoskeleton attached to its frame. The Trexo’s robotic legs are
a multi-joint system with two actuated degrees of freedom per
lower limb for hip flexion-extension and knee flexion-extension.
This design makes the device responsive to the child’s ability to
initiate steps, and able to provide proportional support needed
for leg movement as provided through more mechanically active
“endurance mode” or more passive “strength mode”. It can also
be used in “standing mode” for upright activity facilitation.
Trexo settings are adjusted via a user-friendly tablet interface that
monitors walking time, step count, and initiation (Trexo Robotics,
2022). The Trexo requires a person outside of the user to facilitate
steering and turning via the guide bar attached to the Rifton frame.
For this study protocol, the Trexo robotic legs will be oriented
outward (facing out of the open side of the Rifton Pacer frame), to
maximize the child’s hands-free participation during physiotherapy
(Tao et al., 2020).

2.4.2 Physiotherapy team training and treatment
strategy

The Trexo device will be a new physiotherapy intervention
tool for physiotherapists. As such, to ensure safe, effective,
and competent use that aligns with the child’s abilities and
individualized gait goals, PT/PTA training will include: (i) vendor-
created technical materials and virtual training from the Trexo
company; (ii) in-person shadowing of Trexo use at a community
clinic; (iii) motor-learning strategies online educational materials
created at our center and based on the Motor Learning Strategies
Rating Instrument (Ryan et al., 2019, 2020; Spivak et al., 2021); (iv)
Trexo piloting with typically developing children; and (v) ongoing
peer-mentoring process within our center.

Trexo physiotherapy sessions will use an incremental
progression process consistent with a motor learning approach,
with increasingly challenging tasks presented over time (Figure 3).
Participants may also perform exercises (i.e., stretching) to a
maximum of 10 additional minutes at the start of the session

that may be helpful in these sessions to facilitate the child’s
comfort in the Trexo. Principles of motor learning (intensity,
repetition, variability, task-specificity, etc.), and the parent’s and
PT’s structured goals (described in section “2.6.2 Functional
priority goals”) will be prioritized during sessions. In each session,
the PT/PTA team will work together with the child and Trexo.
The PT/PTA will self-select between the roles of (i) steering the
exoskeleton and (ii) operating the Trexo tablet and motivating the
child. A safety monitoring plan will be in place throughout each
Trexo session to mitigate and/or respond to any adverse events
(section “2.10 Adverse events”).

2.4.3 Outpatient physiotherapy program
Participants in the outpatient cohort will receive two individual

Trexo-based physiotherapy sessions per week (30-min sessions
active treatment time excluding initial Trexo set-up time). The
session will be led by one of the study’s Trexo-trained PTs along
with a Trexo-trained assisting PTA. These clinicians will not
necessarily be previously familiar with the child, being assigned
instead according to family and PT/PTA availability. To ensure safe
and effective communication with the child, parents will be present
at all sessions and will help interpret communication and fatigue
as needed while the child is in the Trexo. For each session, 60 min
will be allocated to setup, Trexo-based physiotherapy, and session
feedback documentation by the PT/PTA. Sessions will occur in the
center’s gait lab, hallways, or outdoors in the summer months.

2.4.4 In-school physiotherapy program
Participants in the school cohort will receive two Trexo-based

sessions per week (20-min sessions active treatment time excluding
initial Trexo set-up time) from their school-affiliated physiotherapy
team, to be integrated within a typical school week. The PT/PTA
feedback documentation will be done at the end of the school
day. One Trexo session will be done in gym class (participation
opportunities for peer-based activities), and one done individually
in the school’s activity center. Parents are not typically present
at regular physiotherapy sessions in this school setting. Thus, the
child’s usual school PT will provide the Trexo intervention to
ensure that the child has a familiar service provider. This PT will
have undergone the Trexo user training. The Trexo-trained PTA
for these sessions will be assigned based on availability and will not
necessarily be previously known to the child.

2.5 Feasibility and acceptability indicators

Feasibility and safety will be quantitatively measured by
a set of key process, management, and resource indicators
(Tickle-Degnen, 2013; Ameis et al., 2020; Ayoub et al., 2020;
Hilderley et al., 2022) with associated targets set for this study
protocol. A priori targets for feasibility and acceptability are:
(i) ability to enroll 80% of eligible participants that are invited
to participate in the study; (ii) study retention rate of ≥ 90%;
(iii) completion of awake MRIs ≥ 50%; (iv) tolerance (of setup
and wear) and retention of muscle recording sensors during
walking tests ≥ 75%; (v) tolerance and retention of heart rate
sensor chest strap wear during gait (Trexo walker and regular
walker) and motor/functional assessment ≥ 75%; (vi) tolerance of
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FIGURE 2

Trexo Plus pediatric lower-limb exoskeleton, mounted on a medium-sized Rifton Pacer Gait trainer. Lateral (left) and anterior (right) views are
shown. Exoskeleton battery, motors at the hip and knee, and shin cuffs are indicated. Rifton frame, steering guide bar, and chest prompt are also
indicated. Trexo orientation is set-up for child to be facing out of the open side of Rifton frame. Tablet interface for controlling the robotic legs is not
shown.

FIGURE 3

Sample of physiotherapy progression throughout duration of 12 Trexo intervention sessions. Choice of incremental challenges (through Rifton or
exoskeleton adjustments) can be tailored to the participant and their individual response to therapy.

motor/functional assessments ≥ 90%; (vii) completion of parent
and PT/PTA interviews ≥ 75%; (viii) adverse events “mild” severity
at most and occur in ≤ 10% of physiotherapy sessions; (ix) Trexo
set-up time and pauses due to adjustments significantly decrease
over 12 physiotherapy session duration; (x) Trexo software or
device glitches occur in ≤ 5% of sessions; (xi) motor learning
strategies used “often” (25–49% of time) by PT/PTA team during
physiotherapy sessions; (xii) child comfort and task enjoyment
self-ratings during physiotherapy sessions reflect ≥ 80% positive
scoring; (xiii) perceived study benefit by parent/clinician ≥ 80%

positive scoring; and (xiv) PT/PTA training and session satisfaction
ratings ≥ 80%.

2.5.1 Recruitment, retention and adherence
Recruitment rate will be calculated as the percentage of

participants enrolled as a function of the number of participants
invited. Study retention will be calculated as the enrolled
participants who complete all required parts of the study as a
function of total enrolled participants. Tolerance will be defined as
procedural adherence for each methodology, whereby completion
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of each of the various measurement and intervention components
will be carefully considered for planning of future interventions.
The acceptability of physiotherapy intervention frequency of twice
per week will be assessed based on attendance and family feedback.

2.5.2 Safety
Potential risks for Trexo physiotherapy may include the usual

risk of muscle soreness when doing walking-based activities, skin
irritation from the exoskeleton’s shin cuffs or other parts of
the Trexo’s walking frame, or falling when transitioning child
in/out of the Trexo device. Of note, there were no adverse events
documented during a 3-month case study of Trexo use at home and
in the community (Diot et al., 2021).

To support close monitoring of any negative physical impacts
associated with Trexo use, the treating PT will document the
presence of any skin irritation experienced by the participant
before and immediately after each treatment session. If pain
is indicated by the child, the PT will check the identified
area for bruising, redness or other skin/tenderness issues that
might be associated with exoskeleton wear and/or the previous
Trexo session. The child’s own method of discomfort/pain
communication will be taken into account when quantifying the
discomfort. Body location, discomfort type (muscle vs. skin),
severity (mild to severe), duration (temporary vs. sustained) of
pain will be tracked thoroughly, with recommendations made for
next steps (section “2.10 Adverse events”). These safety categories
will be summarized when assessing the acceptability of the
Trexo intervention.

2.5.3 Session tracking and documentation
All of the Trexo-based physiotherapy sessions will have

associated content summary sheets (completed by the treating
PT) that will permit systematic documentation of motor tasks
undertaken, successes, challenges, adjustments, strategies applied,
and next session planning. Additionally, a non-PT member
of the research team will document the following at each
session: attending staff roles, extra equipment/props used,
Trexo setup time, Trexo tablet modes used, changes to range
of motion or robotic support force, physical adjustments,
walking and standing activities, total step count and walking
time, timing and rationale for all session pauses (i.e. rest,
adjustment, discomfort, standing activity), socialization
opportunities, child communication modes, and observable
fatigue (Supplementary Material 1).

Documentation of the active ingredients of PT
interventions using exoskeleton treatments (i.e., device
parameter changes and activities undertaken) has been
largely missing in the literature to date. There is strong
advocacy now to include tracking and reporting of device
usage parameters in future trials to aid in the understanding
of how best to apply the technology and better support
the translation of best practice protocols into clinical
practice (Cherni and Ziane, 2022; van Dellen and Labruyère,
2022). Thus, one session per child (the 10th or 11th) will
be videorecorded to allow documentation of the extent
to which motor learning approaches were taken by the
PT/PTA team, assessed by an external rater using the
Motor Learning Strategies Rating Instrument (MLSRI;
Spivak et al., 2021).

2.5.4 Child, parent, and physiotherapy team
satisfaction

At the end of each session, child-rated Trexo session
satisfaction will be assessed using a picture-format (smiley-o-meter
based) rating scale (Zaman et al., 2013). The child will be given
picture scales formatted as a choice of a happy/neutral/sad face to
rate how they felt in the Trexo (comfort), level of exertion (tiredness
at end of session), and their level of enjoyment for each of the Trexo
activities done. Summaries of each experience category (comfort,
tiredness, task enjoyment) will be quantified across all 12 sessions
for each participant.

Optional qualitative interviews will capture parent and PT/PTA
team perspectives on the Trexo use with the child (section “2.7.2
Postural control assessments”). This will be an opportunity to solicit
feedback on study design, tolerance, and opinions on different
study aspects from a clinical and family perspective. PT/PTA teams
will have the opportunity to reflect on the Trexo training process
and the rollout of the intervention itself, so that this process can be
optimized for future PT/PTA cohorts.

2.6 Primary study outcomes

Primary study outcomes will be assessed at multiple timepoints
(Table 2) pre- and post-intervention.

2.6.1 Gross motor skills
The Gross Motor Function Measure (GMFM-88; Russell et al.,

2000) will be administered by an independent PT assessor during
the motor/functional assessment at baseline and immediately
post-intervention. It will also be used 1-month post-intervention
to gauge maintenance/progression of any functional gains. PT
assessors will be trained on the GMFM-88 and all other PT
assessment measures by the study’s co-principal investigator prior
to their first study assessment. All PTs will already have extensive
clinical experience administering the GMFM with children with
CP, and variable experience with the other measures. The full 88-
item version of the GMFM will be used as it more comprehensively
captures a range of abilities in its lowest dimensions (Lie/Roll
and Sit) than the abbreviated GMFM-66. This will be important
as better trunk and head control are anticipated to be goals
and potential outcomes associated with Trexo use in children in
GMFCS Level IV. The GMFM-88 testing will be captured on
video to enable post-assessment review by PTs. Pre/post change
scores will be calculated with descriptive statistics representing
results of the group. The GMFM has excellent test-retest
reliability (Bjornson et al., 1998), and responsiveness to change
(Vos-Vromans et al., 2005).

2.6.2 Functional priority goals
The PT assessor will guide the attending parent(s) through

the Canadian Occupational Performance Measure (COPM; Law
et al., 1990) during the baseline functional assessment visit to set
priority outcome goals for their child. These 3–4 goals will be
guided from a menu prepared by the investigators of walking-
based or other functional outcomes that may arise from Trexo
use. These goals can relate to the child’s abilities in home, school,
or community environments. The parent(s) will use the COPM’s

Frontiers in Neuroscience 08 frontiersin.org76

https://doi.org/10.3389/fnins.2024.1398459
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1398459 July 27, 2024 Time: 16:39 # 9

Bradley et al. 10.3389/fnins.2024.1398459

TABLE 2 Outcome measures across timepoints.

Timepoint

Measures Completed by O0 X O1 O2

Primary outcome measure

GMFM-88* PT assessor • • •

COPM * Parent with PT assessor • • •

GAS Treating PT/PTA T (†); T (‡)

MRI SR with MRI technician • • •

MMG SR T, W (†); T, W (‡)

Secondary outcome measure

ROM and Tardieu Spasticity* PT assessor • • •

PPAS and LSS* PT assessor • • •

PEDI-CAT* Parent • • •

1WT and DMA Treating PT/PTA T, W (†); T, W (‡)

Heart rate SR T, W (‡)

Participant characterization

MACS* PT assessor with parent •

CFCS Treating PT and SR T

Dimensions of mastery* Parent •

Trexo physical adjustments Treating PT and SR T

PT and parent perspectives

Parent baseline interview Parent with SI •

Parent outcomes interview Parent with SI •

PT training interview Treating PT/PTA with SI •

PT outcomes interview Treating PT/PTA with SI •

*Completed during motor/functional assessment visit. T = done in Trexo; W = done in regular walker; • = done without any device. (†) denotes the beginning of the intervention phase and (‡)
denotes the end of the intervention phase.

10-point response scales to rate the importance of each goal, as
well as satisfaction and performance of each at baseline. COPM
goals will be rated by the parent(s) again at the post-intervention
assessment, as well as the 1-month post intervention assessment.
All efforts will be made to have the same parent attend each
assessment to maintain consistency. The parent(s) and assessor
will be blinded to previous COPM scores. Pre/post mean change
scores will be calculated for each child. The COPM has been
adapted for use with children and has demonstrated strong internal
consistency, construct validity, and responsiveness to change
(Cusick et al., 2007).

Goal Attainment Scaling (GAS) goals and achievement levels
will be set by the treating PTs, and will be Trexo-directed or
regular walker-associated. GAS will serve as an individualized
measure of change for each child and will link to the parent-chosen
COPM goals to allow evaluation of the targeted subcomponents of
COPM’s higher level functional priority goals (King et al., 2000;
Ostensjo et al., 2008). These two or three goals will be set by the
3rd physiotherapy session, allowing the PT team to first form a
realistic idea of the child’s functional abilities and potential areas
of improvement. GAS outcomes will be scored per goal by the
child’s treating PT upon completion of the child’s last physiotherapy
session, and a summary T-score will also be calculated. GAS is
commonly used with children with CP who use walkers, and has

demonstrated strong internal consistency, construct validity, and
responsiveness to change (Paleg and Livingstone, 2016).

2.6.3 Neuroimaging
Awake magnetic resonance imaging (MRI) head scanning

will be done in the Siemens Prisma MAGNETOM 3-Tesla MRI
scanner with a 36-channel head coil at Holland Bloorview Kids
Rehabilitation Hospital (Figure 4). If tolerated, these will be done
at baseline and immediately post-intervention, with an option for
a third scan 1-month post-intervention. Prior to the baseline scan,
families will be provided with MRI resources intended to prepare
and educate them for an awake scan with their child. Resources
include a child-friendly MRI explanation book, video links to a tour
of the center’s MRI suite, links to MRI cartoons, links to MRI sound
samples, and a link to the resting state fMRI video. This is meant to
ease any apprehension or stress associated with the MRI process.

Total MRI acquisition time will be kept under 40 min for
this young demographic. MRI scanning will include T1-weighted
scanning, T2-weighted scanning for incidental findings, diffusion
kurtosis imaging (DKI), and resting state functional MRI (fMRI)
(scan parameters: Supplementary Material 2). Participants will
wear noise-canceling headphones and watch videos of their choice
during the structural scans, and the visual paradigm Inscapes video
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FIGURE 4

The MRI suite at Holland Bloorview Kids Rehabilitation Hospital (Toronto, Canada). This suite is fully accessible, child-friendly, research-focused,
immersive, and customizable. Awake MRI head scanning occurs pre- and post-intervention.

(headspacestudios.org/inscapes) during the fMRI scan. Incidental
reviews of all scans will be completed by a pediatric radiologist.

2.6.4 Muscle recordings
Mechanomyography (MMG) muscle recordings (Plewa et al.,

2017) from each child will be recorded at baseline and post-
intervention, concurrently with walking assessments (section “2.8.3
Motivation-related traits”) in their regular maximum support
walker (if they have one) and the Trexo walker.

Bilateral MMG data will be collected using tri-axial
ADXL335 accelerometers (2.0 cm x 1.5cm; sampling rate
1000 hz/channel), powered by a 3.3V regulator. 8 accelerometers
will be placed on muscle sites bilaterally to record muscle
vibrations: erector spinae (longissimus thoracis), biceps femoris,
vastus lateralis and gluteus maximus. These muscles were selected
based on their role in gait (Hesse and Uhlenbrock, 2000; Jonkers
et al., 2003; Sousa and Tavares, 2012; Di Nardo et al., 2015) and
body surface accessibility for muscle sensors while in the Trexo.
Accelerometers will be attached with medical tape on the skin

above the largest part of the muscle belly (Figure 5). All selected
muscle sites are above the knee as Trexo shin cuffs preclude
access to below-knee locations. An additional (9th) sensor will be
attached to the knee joint of the Trexo device to record robotic leg
movement.

Each accelerometer will be wired to a data collection unit
comprised of two National Instruments USB-6210 data acquisition
cards. The data acquisition cards will plug into a laptop computer
via USB, which will be fitted into a backpack that travels with
the walkers (hung on the back of the Trexo or carried by a
member of the research team). A second computer will connect
remotely to the laptop, allowing the researcher to start and stop
the data collection as well as remotely mark the data in real time
during significant events (e.g., pauses for adjustments, start/stop of
walking assessments).

MMG data collection will take place in 25-min testing sessions
(including setup; per walker) that will encompass the 1-min walk
and dynamic mobility assessment (section “2.7.4 Gait assessments”)
followed by a free (unstructured) walking period with the child.
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FIGURE 5

Mechanomyography sensor layout, shown on the right side of the body. Target muscles include vastus lateralis, biceps femoris (long head), gluteus
maximus, and erector spinae (longissimus thoracis). Sensors will be secured on top of the skin with medical tape and located according to origin
and insertion points of the muscles.

Each participant will walk for a minimum of 5 min (or until fatigue
to a maximum of 20 min) in their regular maximum support walker
and the Trexo exoskeleton. Baseline MMG readings will be taken
during quiet standing for 30 s at the start of each testing session –
these readings will be used to normalize signals.

2.7 Secondary study outcomes

Secondary study outcomes will be assessed at multiple
timepoints (Table 2) pre- and post-intervention.

2.7.1 Body structure and function
Passive range of motion (ROM) of selected movements (hip

flexion contracture; hip abduction; popliteal angle; knee flexion
contracture; ankle dorsiflexion with knee flexed or extended),
and evaluation of resting and dynamic spasticity as measured
by the Tardieu Scale (Scholtes et al., 2006) at knee and ankle
(hip adductors, hamstrings, gastrocnemius with knee flexed
and extended) will be conducted at all functional assessment
timepoints. This is important to establish at baseline (excerpted
from screening session data where ROM eligibility was confirmed)

to monitor adverse events, and permit evaluation of changes in
ROM associated with Trexo use.

2.7.2 Postural control assessments
Two postural assessments will be administered by the

physiotherapist assessor, and scored from video that will be
captured during the assessment by a research assistant using a
standardized camera angle protocol.

The Posture and Postural Ability Scale (PPAS; Rodby-Bousquet
et al., 2016) is a validated measure for children with CP in GMFCS
levels II to V. It will rate the symmetry and alignment of the
child’s head, trunk, pelvis, legs, arms, and weight distribution in
frontal and sagittal planes. The child will be guided into prone,
supine, sitting and supported standing positions (30 s in each)
by the assessor. Scoring will be done from the video of the
assessment.

The Level of Sitting Scale (LSS) (Fife et al., 1991; Field and
Roxborough, 2011) is designed for children who are wheelchair
users and require some degree of external support (GMFCS IV
and V). The LSS will classify a child’s sitting ability without feet
supported. It will serve as both a descriptive measure of children
enrolled in the study and also an outcome measure in tandem with
the PPAS. It will be scored from the PPAS video.
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2.7.3 Functional abilities parent-report
questionnaire

The Pediatric Evaluation of Disability Inventory (PEDI-CAT)
(Haley et al., 2011; Shore et al., 2017) parent-report questionnaire’s
Daily Activities (speedy version), Mobility (content version) and
Social/Cognitive (speedy version) domains will be completed by
the child’s parent at each of the functional assessments, via a secure
weblink on a study tablet. If both the parents are present, they may
complete it together.

2.7.4 Gait assessments
Functional gait will be assessed via a 1-minute walk test

(1MWT) (Hassani et al., 2014) and the Directional Mobility
Assessment (DMA) (Wright and Jutai, 2006; Livingstone and Paleg,
2016), done in the child’s regular walking device (if they use
one) and the Trexo walker. The 1MWT will measure the distance
walked down a straight wide hallway within 60 s with the Trexo
and with the child’s regular walker, with support from the child’s
PT/PTA team as needed for steering (Trexo and regular walker)
and facilitating steps (regular walker). The DMA incorporates
a functional walking course: straight walking, turns, obstacles,
narrow path, and backing up.

These walking tasks will be administered by the child’s treating
PT/PTA simultaneously during MMG/heart rate monitoring
(facilitated by study researchers). Involvement of the PT/PTA in
this testing is essential as they are Trexo-trained and aware of
the child’s functional abilities and safety considerations. A video
recording will be made of these walking tests to permit their
rating by an independent PT assessor to maintain independence of
scoring from the clinical team.

2.7.5 Heart rate
Heart rate during gait will be captured using a Polar H10

Heart Rate Sensor (wireless chest strap placed around the torso)
which will transmit data (beats per minute, RR intervals, and
heart rate variability taken continuously) via Bluetooth to a secure
device. Heart rate will be captured post-intervention (end of Phase
X) concurrently with muscle recordings (section “2.6.4 Muscle
recordings”) during Trexo and regular walker use at the timed
walk and DMA assessments since robotically facilitated walking
may impact heart rate differently than would a manual walker.
Resting heart rate will be captured initially in each instance. Heart
rate will also be captured in the absence of walking, during the
post-intervention functional assessment.

2.8 Participant characterization

The following assessments will be completed only once
during the child’s study participation as they portray a fixed
trait/ability (i.e., not outcome measures). These assessments will
help characterize each participant and may serve as predictors or
correlates for feasibility and outcome measure results.

2.8.1 Upper extremity function
The Manual Ability Classification System (MACS or

MiniMACS; Eliasson et al., 2006) will be completed by a PT
assessor at the end of the baseline motor/functional assessment as

they reflect the child’s hand function observed during upper and
lower body tasks in the assessment and confirm child’s day to day
hand function in conversation with the parent- at the assessment.
Children in GMFCS IV may have hand function at a different
level than that of their gross motor function, and these hand and
arm abilities may have an impact on what the child will be able to
do during Trexo physiotherapy. Hence this information may be
important in the interpretation of sessional data and ultimate goal
accomplishment.

2.8.2 Communication ability
The Communication Function Classification System (CFCS;

Hidecker et al., 2011) will be used after all 12 Trexo physiotherapy
sessions have been completed, to capture the child’s communication
style over time while in the Trexo.

2.8.3 Motivation-related traits
The Dimensions of Mastery questionnaire (Morgan et al., 2006;

Igoe et al., 2011) will be completed by parents at the baseline
motor/functional assessment only. This information about the
child’s underlying motivation traits may help identify personal
characteristics related to engagement and learning that maybe
contribute to Trexo session success.

2.8.4 Individualized Trexo physical adjustment
templates

Each child will have their own baseline Trexo adjustment
template (Supplementary Material 3) created during their pre-
physiotherapy fitting session and updated through the course of the
child’s Trexo use. This template will compile Rifton Pacer settings
(chest prompt size/tilt, Rifton frame height, seat height, seat angle,
and seat position), Trexo leg settings (robotic leg width, knee-to-
floor length, hip-to-knee length, and footplate size), and Trexo
tablet settings (range of motion and optimal support forces for
hip and knee joints). These settings will be selected by the treating
PT to ensure good postural alignment, comfort, and adequate heel
strike during walking. Since a single Trexo device will be shared
across the children in the study, the research team will refer to this
profile prior to each child’s physiotherapy session to make sure all
child-specific physical adjustments are made to the Trexo before
the session starts.

2.9 PT and parent perspectives

Qualitative interviews will be scheduled separately with the
PT/PTA team and parents with an independent study interviewer
using semi-structured interview guides. These interviews will
be scheduled proximal to the pre- and post-intervention
study timepoints.

Participating PTs and PTAs will have the opportunity to share
their perspectives via two optional interviews: (i) reflection on
the strengths and limitations of the Trexo training process used
following the completion of their training and a round of Trexo
physiotherapy sessions for at least one child (∼30–60 min); and (ii)
Trexo user experience for each participant, following the end of that
child’s physiotherapy intervention (60–90 min).

Parents’ study expectations and goals will be collected at
two optional interview timepoints: (i) baseline; about Trexo
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outcomes goals and hopes (∼20 min); and (ii) post-Trexo
intervention; focusing on observed outcomes, impressions about
study methodologies, and individualized goal accomplishment
including questions about overall quality of life in addition to
the questions about mobility (∼45 min). Since the research team
will see the child for only 2 h a week, parent feedback will be
essential to capture functional changes observed in the daily living
context of their child. This will also be an opportunity to solicit
parental feedback on study design, tolerance, and opinions on
different study aspects.

2.10 Adverse events

In the case of an adverse event, the study physician will
be contacted for the recommended course of action, which will
depend on the severity and circumstances of the adverse event.
Documentation of the event will be completed by the treating PT,
principal investigator, and study physician as per the study’s adverse
event form. A treatment plan will be made at the discretion of
the study physician. If the study team concludes that the Trexo
presents a possible continuing risk to the child, Trexo treatment
will be discontinued for that child and the post-Trexo outcomes
assessment will be completed at that time. Additionally, the parent
or child can decide to discontinue the study at any point for
any reason. They will be invited to complete the next follow-up
assessment at that point but are free to decline this as well. If any
children drop out of the study, no children will be recruited in their
place since this discontinuation of participation could point to an
underlying acceptability or safety issue.

2.11 Data analysis

2.11.1 Quantitative data analysis
Feasibility/safety/acceptability indicators (section “2.5

Feasibility and acceptability indicators”) will be summarized
for each child’s sessions and the group descriptive statistics will be
compared to a priori target values.

Motor/functional assessment measures and functional priority
goals will have total/dimension scores summarized via descriptive
statistics. Paired t-tests or non-parametric equivalents will be
conducted for baseline and post-intervention time points for the
co-primary measures (GMFM-88 and COPM goals), and then with
each of the secondary outcomes. Correlational analyses (Pearson’s
r) will also be undertaken to investigate associations between
primary and secondary outcomes or with MRI results. Each
clinical measure will be graphically inspected for any patterns from
baseline to the optional 1-month post-intervention timepoint. For
a subsample of children (undetermined subgroup ‘n’ at this point),
comparisons will also be made between walking performance in
the child’s regular walker and the Trexo at baseline and post-
intervention.

MRI scans will be processed with Freesurfer Software
(surfer.nmr.mgh.harvard.edu), employing a longitudinal pipeline.
Automated segmentation of structural T1-weighted images will
be performed, followed by quality control steps to ensure image
clarity. Any neuroimaging data with excessive motion artifact will

be excluded from the study. Regions of interest (ROI) will be
selected based on brain areas that are most associated with gait,
motor function, and motor learning. From T1 anatomical data,
mean cortical thickness per brain region, and white and gray
matter volumes will be calculated. Diffusion data will be used
to identify and reconstruct relevant white matter tracts as well
as derive DKI and DTI mean metric maps, kurtosis fractional
anisotropy (FA) values, and mean kurtosis (MK), as outcome
measures. From the fMRI data, ROI-specific time courses of the
BOLD signal will be computed by averaging time courses across
voxels within each ROI. fMRI outcome measures will include
functional connectivity (FC) correlation matrices and a structural-
decoupling index.

MMG signals will be calculated as the magnitude of the vector
sum of the tri-axial ADXL335 accelerations. Data will be segmented
according to periods of activity and normalized to the initial
period of quiet standing for each participant. Accelerometer data
will be processed using Matlab Software (Natick, Massachusetts:
The MathWorks Inc.): bandpass filtered between 5 and 100 Hz
(4th order Butterworth filter) and processed with a symlet wavelet
transform (Alves and Chau, 2010; Achmamad and Jbari, 2020).
Device-induced noise will be compared in the Trexo and the
child’s regular walker. Heel strike will be identified based on video
recordings to demarcate phases of the gait cycle and changes in
magnitude and slope of the force. We will extract and select features
in time, frequency, and time-frequency domain for classification.

2.11.2 Qualitative data analysis
Anonymized individual physiotherapy summary profiles will

be created from the session documentation, detailing goals worked
on, Trexo settings used, activities undertaken, things that went
well, and challenges that presented during sessions. Collective
data profiles across children from their first, mid-point, and
last sessions will be analyzed via a content analysis approach
(settings/activities/challenges) to summarize the operational details
related to Trexo use and elucidate any patterns of progression of
Trexo settings, walk distances and activities undertaken within the
Trexo treatment block.

All interviews will be transcribed within Zoom, checked
afterward by the interviewer for accuracy and then de-identified
prior to thematic analysis. Data will be analyzed using NVivo
Software (QSR International Inc., Burlington, Canada), and an
inductive content analysis approach will be taken to generate the
initial codebook (Braun and Clarke, 2006). Parent and PT/PTA
interviews will undergo separate thematic analysis to support
within-group development of preliminary codes. Specific wording
used by participants will be included in the codes to assist in
preserving the meaning participants attribute to their actions
and processes (Maher et al., 2018). Research team meetings
will advance code-to-category-theme development and propose
alternate/refined themes and interpretations until group consensus
is reached.

A concurrent mixed methods approach will be taken where
qualitative and quantitative data will be presented together by
theme, and results reported in a narrative joint display (Fetters
et al., 2013; Guetterman et al., 2015). Transferability of the
results will be facilitated by reporting relevant study participant
demographics to contextualize the findings.
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3 Discussion

Overground exoskeleton use offers children who have restricted
ambulatory abilities the opportunity to uniquely access their
surrounding environment within a device that provides safety and
stability (Diot et al., 2021) while also offering the opportunity to
incorporate hand and arm use during walking-based activities.
To our knowledge, this will be the first study to investigate
feasibility indicators, outcomes, and experiences of Trexo-based
physiotherapy in school and outpatient contexts for children
with severe mobility impairments. Our rehabilitation protocol is
based on motor learning principles that may promote experience-
dependent neuroplasticity (Gassert and Dietz, 2018; Berger et al.,
2019) and changes in functional, neural, and muscular outcomes.

Compared to conventional gait training, the preparation and
execution of physiotherapy treatment blocks using new gait
technologies is more cognitively demanding for PTs (Read et al.,
2020; Ouendi et al., 2022; van Dellen et al., 2023; Murphy
et al., 2024). This added aspect underscores the importance of
evaluating the feasibility and acceptability of the “typical” Trexo
session itself. In our pediatric context, quantitative and qualitative
data captured during Trexo physiotherapy sessions will provide
user-based information that may address questions related to
clinical adoption and utility from the PT perspective. Specifically,
stakeholder feedback (child, parents, clinician) from interviews and
feasibility/session data overall will guide the creation of future
training materials, and evidence-based implementation protocols
for PTs. It will also facilitate realistic goal setting and capture
impressions of parents about the value of this technology for
their preambulatory children and any extended associated impact
on performance in routine activity or on quality of life more
broadly.

Understanding the body-wide outcomes associated with gait
training in children with CP is essential for safety and maximizing
positive functional results. The characterization of therapy-
dependent neuroplasticity (Peters et al., 2020) may provide
indications about how responses to exoskeleton-assisted gait
therapy may have some association with a child’s neurological
profile (Schwartz and Meiner, 2015), and may be associated with
different changes in functional and muscular behavior (Snodgrass
et al., 2014; Sczesny-Kaiser et al., 2015; Perpetuini et al., 2022).
Quantifying muscle behavior and heart rate during robotic gait
training can help establish any training limit thresholds that might
need to be put in place to prevent injury and over-exertion
in physiotherapy treatments (Brunton and Rice, 2012; Puce
et al., 2021), especially for nonverbal children. Future overground
exoskeleton development can be paired with this knowledge of
body-wide outcomes to advance mechanical feedback responses
to the child’s physiological signals, thereby integrating with the
child’s existing motor abilities while also compensating for skill
deficiencies.

This study will contribute evidence-based knowledge to guide
clinical decisions about the introduction of the Trexo or similar
lower-limb exoskeletons within pediatric rehabilitation settings,
and serve as an empirical foundation for a progressive program
of multi-center research. In addition to the field of CP, this
research could be broadened to include individuals with other
non-progressive neuromotor conditions which impair the lower

body, including those in GMFCS V (non-ambulatory children), if
adequate safety and acceptability are established.

4 Ethics and dissemination

4.1 Ethics approval and consent to
participate

This study protocol was approved by the research ethics
board of Holland Bloorview Kids Rehabilitation Hospital (no.
0523), and the University of Toronto (no. 00044118), according
to Resolution 466/12 of the National Health Council and the
Declaration of Helsinki. Researchers will invite children and
parents to participate voluntarily and sign the informed consent
forms to be included in the study.

4.2 Consent for publication and
confidentiality

Participation information will be kept confidential and stored
securely in the hospital database. Only researchers will access
the database, ensuring anonymity, respect, and human dignity.
Results will be published in peer-reviewed journals and presented
at scientific meetings. In case of significant changes in the protocol,
we will inform participants, Clinicaltrials.gov, and journals. If
requested, we will provide a copy of the informed consent form.

4.3 Availability of protocol and data

This protocol information is registered and available: [https:
//clinicaltrials.gov], identifier NCT05463211.The corresponding
author will provide the study protocol and data on reasonable
request to achieve study goals.
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pedobarography and pelvis-trunk
motion for knee osteoarthritis
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monitoring
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Background: Osteoarthritis (OA) is a highly prevalent global musculoskeletal
disorder, and knee OA (KOA) accounts for four-fifths of the cases worldwide. It is
a degenerative disorder that greatly affects the quality of life. Thus, it is managed
through different methods, such as weight loss, physical therapy, and knee
arthroplasty. Physical therapy aims to strengthen the knee periarticular
muscles to improve joint stability.

Methods: Pedobarographic data and pelvis and trunk motion of 56 adults are
recorded. Among them, 28 subjects were healthy, and 28 subjects were suffering
from varying degrees of KOA. Age, sex, BMI, and the recorded variables are used
together to identify subjects with KOA using machine learning (ML) models,
namely, logistic regression, SVM, decision tree, and random forest. Surface
electromyography (sEMG) signals are also recorded bilaterally from two
muscles, the rectus femoris and biceps femoris caput longus, bilaterally during
various activities for two healthy and six KOA subjects. Cluster analysis is then
performed using the principal components obtained from time-series features,
frequency features, and time–frequency features.

Results: KOA is successfully identified using the pedobarographic data and the
pelvis and trunk motion with the highest accuracy and sensitivity of 89.3% and
85.7%, respectively, using a decision tree classifier. In addition, sEMG data have
been successfully used to cluster healthy subjects from KOA subjects, with
wavelet analysis features providing the best performance for the standing
activity under different conditions.

Conclusion: KOA is detected using gait variables not directly related to the knee,
such as pedobarographic measurements and pelvis and trunk motion captured
by pedobarography mats and wearable sensors, respectively. KOA subjects are
also distinguished from healthy individuals through clustering analysis using
sEMG data from knee periarticular muscles during walking and standing. Gait
data and sEMG complement each other, aiding in KOA identification and
rehabilitation monitoring. It is important because wearable sensors simplify
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data collection, require minimal sample preparation, and offer a non-radiographic,
safe method suitable for both laboratory and real-world scenarios. The decision
tree classifier, trained with stratified k-fold cross validation (SKCV) data, is observed
to be the best for KOA identification using gait data.

KEYWORDS

knee osteoarthritis, rehabilitation, disease identification, pedobarography, wearable
sensor, surface electromyography, non-radiographic

1 Introduction

Osteoarthritis (OA) is the most prevalent type of
musculoskeletal disorder globally and is the leading cause of
chronic pain and disability in adults (Singh et al., 2022). Knee
osteoarthritis (KOA) accounts for four-fifths of the burden of OA
worldwide. The pooled global prevalence of KOA is 16% in
individuals aged 15 and over and 22.9% in individuals 40 and
over. The ratio of prevalence and incidence in women and men
is found to be 1.69 and 1.39, respectively (Cui et al., 2020). In India,
the prevalence is reported to be 28.7%. The prevalence is higher in
women at 31.6% than in men at 28.1% (Pal et al., 2016). KOA is a
degenerative disorder and requires total knee replacement, i.e., knee
arthroplasty at an advanced stage of the disease. It, however, results
in substantial health costs. Thus, an important aspect of managing
the disease is early identification and, hence, early intervention (Cui
et al., 2020). The diagnosis of KOA can be confirmed based on
clinical and/or radiological features. The current gold standard for
diagnosing OA is X-ray imaging, which is cost-efficient and widely
available. However, it is insensitive to detecting early OA changes
(Tiulpin et al., 2018) and involves high-energy electromagnetic
radiation. MRI has also been increasingly employed to diagnose
KOA. However, it can detect OA with high specificity and moderate
sensitivity. Thus, it is more useful for ruling out OA than ruling it in
(Menashe et al., 2012). Thus, early diagnosis of OA is particularly
challenging as it relies heavily on the subjective judgment of the
practitioner due to the lack of a precise grading system. The widely
employed Kellgren–Lawrence (KL) grading scale is semi-
quantitative and suffers from ambiguity. Such ambiguity poses an
obstacle to early OA diagnosis, thus affecting millions of people
globally (Tiulpin et al., 2018). Machine learning (ML) has been
employed for the diagnosis of KOA using kinematics (Yang et al.,
2020; Kwon et al., 2019; Kwon et al., 2020) and kinetics (Kwon et al.,
2019) of the hip, knee, and ankle joints. They have also been
employed along with radiographic images (Kwon et al., 2020) to
identify KOA subjects from healthy subjects (Yang et al., 2020) and
differentiate between the different grades of KOA subjects (Kwon
et al., 2019; Kwon et al., 2020). However, the data are collected using
either a 3D motion capture system (Kwon et al., 2019; Kwon et al.,
2020) or multiple IMUs (Yang et al., 2020), which require a post-
processing step before the data can be used for classification. In
addition, classification is performed using only one type of classifier.
Surface electromyography (sEMG) has also been employed in recent
years for the diagnosis of KOA, with a high accuracy of 92% (Chen
et al., 2019) and 96.3% (Khader et al., 2024). Data considered for
diagnosis were collected considering walking at a self-selected pace
as an activity. The different muscles considered are the quadriceps
femoris (Khader et al., 2024), medial gastrocnemius (Khader et al.,

2024), rectus femoris (Khader et al., 2024), semi-tendinous (Chen
et al., 2019; Khader et al., 2024), biceps femoris (Chen et al., 2019;
Khader et al., 2024), and vastus lateralis (Chen et al., 2019; Khader
et al., 2024).

The diagnosis is followed by an intervention regimen, which
revolves around a combination of non-pharmacological and
pharmacological methods. One of the initial measures is weight
reduction, which can help slow down the progression of KOA.
Another most widely implemented remedy is physical therapy and
rehabilitation. It has been useful for patients with pain and mobility.
Specific useful programs include strength training, Tai Chi, aerobics,
electrotherapy, and hydrotherapy, among which strength training is
the most common approach. It improves the muscular strength and
joint stability of the individual, thus improvingWestern Ontario and
McMaster Universities (WOMAC) pain scores and overall health
benefits (Bhatia et al., 2013). Increased rectus femoris muscle force is
related to thinner knee joint cartilage in KOA (Yagi et al., 2022), and
increased muscle activations of the biceps femoris have been
reported in KOA subjects compared to healthy subjects while
performing activities of daily life (Hortobágyi et al., 2005). Thus,
the strength of the contraction of periarticular muscles (i.e., the
quadriceps and hamstrings for the knee joint) is an important
contributing factor to the quality of the cartilage. In addition to
increasing the strength of the muscles surrounding the knee, it also
increases the intra- and intermuscular coordination of the knee
extensor muscles, which results in lower impact and impulsive
loading being transmitted through the joint (Beckwée et al.,
2013). The assessment of the effectiveness of the physical therapy
further enables us to plan the intervention regimen and understand
the progress. One of the approaches includes the use of the QQ index
(Brouwer et al., 1999), where the subjects’ effective working hours
during a day are compared to those of the previous day (Reijonsaari
et al., 2012). Another approach is through a video system or a mobile
application through which the physiotherapist can remotely
monitor a patient in real time and provide instant feedback
(Saraee et al., 2017; Vaish et al., 2017)).

Since the assessment of the effectiveness of physical therapy for
KOA is subjective and relies on the clinician’s expertise, employing a
quantitative approach becomes highly beneficial in achieving more
objective results. The effectiveness of physical therapy on KOA has
been reported to be monitored in a case study that showed
improvements in temporal parameters such as stride length,
mean velocity, and cadence. Root mean square (RMS) values of
EMG are also used to infer the improvement of the condition post-
treatment (Liang et al., 2019). Physical therapy has also been
monitored using a pedometer, Fitbit, and accelerometer to assess
the influence of physical activity on a wide range of subjects with
different pathologies (de Leeuwerk et al., 2022). However, it only
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utilizes kinematic variables and does not consider the kinetic
variables associated with human movement. Thus, there is a need
for the identification of kinetic and kinematic variables that can be
used for KOA diagnosis and also for monitoring the effectiveness of
any intervention.

The highly interdependent nature of human movement allows
us to employ variables associated with other joints and muscles to
assess their effect on other parts and vice versa. It has been reported
that the quadriceps and hamstring muscles weaken and have delayed
reaction time in subjects suffering from plantar fasciitis (Lee et al.,
2020). Increased hamstring tightness also induces prolonged
forefoot loading (Harty et al., 2005). In addition, hamstring
length significantly influences the pelvic angle and flexion range
of motion (ROM), lumbar angle flexion ROM, and thoracic angle
flexion ROM. Short hamstrings are associated with decreased flexion
ROMs of the pelvic and lumbar angles and increased flexion ROM of
the thoracic angle (Gajdosik et al., 1994). This shows that there exists
a relationship between the muscular strength of the periarticular
muscles of the knee, the plantar pressure, and the ROM of the pelvis
and lumbar region.

This work thus aims to identify KOA subjects using both kinetic
and kinematic non-knee joint parameters, which are the
pedobarographic measurements and the pelvis and trunk ROM
variables. In addition, the effect of KOA on the periarticular muscles
of the knee is studied through sEMG, and using these data, the
kinetic and kinematic variables are to be established as potential
biomarkers for monitoring the effectiveness of any neuromuscular
rehabilitation intervention technique for addressing KOA. This is
possible as knee health has been associated with hamstring and
quadriceps muscle strength and is also associated with pelvis and
trunk ROM along with plantar pressure distribution. The variables
considered for KOA identification are dynamic in nature and
require minimal subject preparation.

2 Methodology

Figure 1 shows us an overview of the various steps undertaken
during the study. It includes a two-fold methodology to investigate KOA
identification andmonitoring through gait andmuscle data. Initially, gait
data from 56 subjects (28 healthy and 28 KOA) are analyzed using
supervised ML algorithms to demonstrate the ability to identify KOA
using beyond knee-related gait data. The effect of KOA on the
periarticular muscles of the knee is then studied through the analysis
of sEMG data from the rectus femoris and bicep femoris caput longus
bilaterally. The features obtained are then used for cluster analysis.
Successful clustering will indicate the effect of KOA on the muscular
activity of the periarticular muscles. Integrating the two studies, we can
propose using gait data to monitor muscle strengthening to rehabilitate
KOA subjects. Data are collected using the wearable sensor,
pedobarographic mat, and sEMG sensors. Pelvis ROM is captured
using the wearable sensors while the subjects walk comfortably at a
self-selected speed for 20 m. The wearable sensor was also used to
conduct the Timed Up and Go (TUG), which provides the trunk ROM
in the sagittal plane during the sit-to-stand and stand-to-sit parts of TUG
and the total TUG time. TUG is considered because it is recommended
by the Osteoarthritis Research Society International (OARSI) as an
assessment tool in KOA, which is necessary to detect functional mobility

and the risk of falls. Measuring trunkmovement during these steps helps
health workers and physiotherapists provide a proper rehabilitation
strategy for KOA (Dobson et al., 2013). The subjects walk at a self-
selected speed over the pedobarography mat to capture the 56 kinetic
and kinematic features. There is evidence of neuromuscular adaptations
associated with even early stages of KOA and without gait adaptations
(Duffell et al., 2014). Thus, sEMG data are collected from two muscles,
namely, the rectus femoris and the biceps femoris caput longus, while the
subjects walk at a self-selected speed. sEMG data are also collected while
standing under different stability conditions. Walking is chosen because
it has been reported that individuals with KOA exhibit higher gait
deviations than healthy subjects (Mills et al., 2013). KOA has also been
reported to cause deficits in balance control, with its severity increasing
in moderate to severe KOA (Kim et al., 2011). In addition, standing data
under different stability conditions have been reported to be useful in
classifying balance-related disorders (Sarmah et al., 2024). Hence,
standing under different stability conditions are considered for sEMG
data collection.

2.1 Participants

The study was approved by the Institute Human Ethics
Committee (IHEC), IIT Guwahati, and conducted in compliance
with the relevant regulations. Written informed consent is obtained
from all the study participants. Pedobarography and wearable sensor
data from the pelvis are collected from KOA subjects with different
degrees of severity, as well as from healthy subjects. Age, sex, and
BMI are recorded for each subject and are summarized in Table 1.
Data are collected for 28 able bodied subjects and 28 subjects with
KOA. The inclusion criteria for healthy subjects are (i) age greater
than 18 years and (ii) ability to perform normal activities of daily life.
For KOA subjects, the inclusion criteria are (i) age greater than
18 years, (ii) being diagnosed with KOA and referred by an
orthopedic doctor, and (iii) being able to walk and stand without
the need for any support. The exclusion criteria in both healthy and
KOA cases are (i) diagnosed with neurological disorders like
Parkinson’s disorder. The 28 KOA subjects contain 11 subjects
with Grade 1 severity, 13 subjects with Grade 2 severity, and
4 subjects with Grade 3 severity according to KL grade.

2.2 Gait data collection

All the gait data are collected in the Gait and Motion Analysis
Laboratory at IIT Guwahati. The subjects are, at first, familiarized
with the experimental setup and protocol. They are instructed to
walk over a dynamic pedobarographic mat from Zebris Medical
GmbH (FDM-2) at a self-selected speed, as shown in Figure 2. This
mat captures the plantar pressure experienced by the subject during
walking, along with the spatiotemporal variables such as stride
length, step length, cadence, and speed.

The dynamic variables captured include the force and pressure
experienced in the three sections of the foot, namely, the forefoot,
midfoot, and heel. In addition, butterfly parameters such as gait line
length and velocity, single-stance line, anterior–posterior position,
and mediolateral position are reported. A representation of the
dynamic variables is shown in Figure 3. Thereafter, data are collected
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using the wearable sensor GWALK from BTS Bioengineering for
two activities: normal walking and TUG. In the normal walk test, the
wearable sensor is placed on the level of the subject’s sacrum
(Supplementary Material S1) and then asked to walk at a self-
selected speed for a distance of 20 m. Figure 4 shows the placement

of the wearable sensor and the representation of the pelvis motion in
the three planes. The variables captured during the normal walking
test are pelvis tilt right (PTR), pelvis tilt left (PTL), pelvis obliquity
right (POR), pelvis obliquity left (POL), pelvis rotation right (PRR),
and pelvis rotation left (PRL) with respect to gait cycle percent.

FIGURE 1
Flowchart of the methodology.
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During the measurement of plantar pressure and pelvis ROM, the
experimental condition is walking at a self-selected speed. However,
ROM was not measured while the participant was walking over the

foot pressure mat. It is because the GWALK requires the subject to
walk at least 7 m, while the foot pressure mat is 2 m in length.

In the TUG test, the wearable sensor was placed on the lumbar 2
(L2) vertebrae. The test starts with the subject in a seated posture,
getting up and walking for 3 m, then turning around, and returning
to the starting seated posture. A subject undergoing the test is shown
in Figure 5. The variables captured from this experiment are the
trunk flexion-extension (F/E) in the sagittal plane with respect to
normalized time and the TUG time.

3 Data analysis

3.1 Data description

The data analysis and classification were performed using
Python 3.11. Pelvis angles are obtained with respect to the gait
cycle percent, and the mean and standard deviation (SD) are
evaluated for each subject under six conditions (considering the
cardinal planes and the side of the body) using Eqs 1, 2. A total of
12 features, namely, the mean and SD of PTR, PTL, POR, POL, PRR,
and PRL, are evaluated, which represent the pelvis angles in three
planes during a normal walk. The mean and standard deviation (SD)
are also evaluated for the trunk F/E angles in sit-to-stand and stand-
to-sit conditions using Eqs 1, 2. Four trunk motion features, two
mean and two SD values, which represent the trunk F/E during sit-
to-stand and stand-to-sit activity, and TUG time are obtained from
the TUG test. The mean and SD of different gait variables are
considered as they have been successfully employed as a feature to
classify between healthy and neuromusculoskeletal disorders, which
result in gait deviation (Xia et al., 2015; Nandy, 2019). In addition,
this approach reduces the computational complexity of the analysis
due to the reduced dataset dimensionality.

Anglemean � ∑ Anglei( )/N, (1)
Anglestddev �

���������������������������∑ Anglei − Anglemean( )2/N − 1,
√

(2)

where Anglei is the angle (pelvis or trunk) at each interval and
N = 100 (gait cycle percentage).

TABLE 1 Summary of the subject characteristics in two categories.

Age Sex BMI

Healthy subjects 30.3 ± 7.8 14 male and 14 female subjects 24.1 ± 3.8

KOA subjects 53.8 ± 11.7 14 male and 14 female subjects 27.5 ± 4.3

FIGURE 2
Sample subject walking over the pedobarographic mat.

FIGURE 3
Representation of the dynamic variables obtained from the pedobarographic mat.
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In addition, 56 features are obtained from the
pedobarographic mat, which includes 19 spatiotemporal
features, 13 butterfly features, and 24 dynamic features. The
spatiotemporal variables include the mean and SD of the foot
progression angle (left and right side), step length (left and right
side), stride length, mean and SD of step width, stance phase
percent (left and right side), swing phase percent (left and right
side), double stance phase percent, step time (left and right side),
stride time, cadence, and velocity. The Foot progression angle is
considered because gait training with a specific foot progression
angle increases the lateral knee muscle co-activity, thereby
unloading the medial knee compartment (Gholami et al.,
2022). This implies that any change in knee joint loading will
be reflected in the foot progression angles. The butterfly
parameters consist of the mean and SD of the gait line length
(left and right side), single limb support line (left and right side),
anterior–posterior (A/P) position, and lateral symmetry and the
maximum gait line velocity. The dynamic parameters obtained
are the mean and SD of the forefoot, midfoot, and heel force and
pressure (left and right side).

3.2 Feature selection using point-biserial
correlation

Two personal features (age and BMI), 56 features from the
pedobarographic data (19 spatiotemporal features, 13 butterfly
features, and 24 dynamic features), 12 features from the Pelvis
motion during normal walk, four features from the trunk
movement during TUG, and TUG time are considered for
analysis. At first, point-biserial correlation is evaluated between
the 75 features and the health status of the subject by
considering healthy as 0 and KOA as 1. Point-biserial correlation
is performed when one of the variables is continuous and the other is
a dichotomous variable. It is performed to find the variables strongly
affected by KOA. The correlation coefficients obtained give us
variables that are most affected by KOA. A total of
24 statistically significant (p < 0.05) variables that relate the
variables to the health status of the subject are obtained from the
point-biserial correlation, which can then be employed for the
identification of subjects with KOA. The variables obtained after
point-biserial correlation are shown in Table 2 in descending order

FIGURE 4
Pelvis motion in three planes during normal walking.
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of correlation coefficient. A total of 10 of the features are positively
correlated with KOA, and 14 are negatively correlated. Age, SD of
trunk F/E (sit to stand), and mean of trunk F/E (stand to sit) are the
most positively correlated variables; and velocity, step length (left),
and stride length are the most negatively correlated variables
employed for classification.

3.3 Data preprocessing

The 24 statistically significant variables, obtained after point-
biserial correlation, include two personal features (age and BMI),
17 features from the pedobarographic data (11 spatiotemporal
features, 4 butterfly features, and 2 dynamic features), 2 features
from the pelvis motion during a normal walk, and 2 features from
the trunk movement during TUG and TUG time. The statistically
significant variables, sex, and pathological condition of the subject
are used to identify subjects with KOA.

Data preprocessing is to be conducted before it can be used for
identification. When applying a classification model, it is crucial to
convert the dataset into numerical form. The pathology of the
subject is already assigned in binary form. Binary data are then
extracted from the other categorical variables, which results in an
increase in the number of unique features such as sex, which gets
split into two independent features, female and male. The “sex”
column and one of the independent features are then dropped. In
this case, the “female” column was dropped. In the “male” column,
0 indicates female subjects and 1 indicates male subjects. This

method is called one-hot encoding. The “StandardScaler”
function from Python’s scikit-learn library is then employed to
normalize the data, ensuring a mean of 0 and a standard
deviation of 1.

The data sampling for training and testing uses three
approaches, namely, holdout method, stratified k-fold cross-
validation (SKCV) method, and leave-one-out cross-validation
(LOOCV) method. In the holdout method, the dataset is divided
into training and test sets, which are to be used for training and
testing, respectively. In this case, training and test sets comprise 75%
and 25% of the total data, respectively. Stratified k-fold splits the
dataset randomly into ‘k’ groups while ensuring that each fold has
the same proportion of the different classes as the entire dataset. The
models are then trained on the training set and analyzed on the
testing set. The process is repeated k-times until each set/fold has
been utilized as a test set. The data are divided into “5” folds or
groups in this case. In the leave-one-out approach, each observation
is considered the test set, and the remaining (N-1) observations are
considered the training set. The process is repeated N times until
each observation has been used as the testing set. Different types of
sampling are employed to make the trained and tested models
applicable to classify data from several different datasets, which
may be unbalanced. Different sampling methods are utilized for the
analysis to ensure the quality and reliability of the models. The
stratified k-fold approach provides more reliable performance
estimates and is crucial for imbalanced datasets. The leave-one-
out approach is suitable for small datasets and assesses the
model’s stability.

FIGURE 5
Sample subject during the TUG test.
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3.4 Hyperparameter optimization

Hyperparameters serve as crucial external configuration
variables in managing machine learning models and are set
before the model’s training. The process of finding the right set
of hyperparameters is known as hyperparameter tuning or
optimization. It involves experimenting with different
combinations to maximize or minimize a target variable, often
accuracy. Among the approaches employed, grid search stands
out, systematically exploring all possible hyperparameter
combinations from a predefined list to find the best fit. The
optimization process aims to enhance the model’s performance
on unseen data, thereby enhancing its overall predictive accuracy.
The grid search approach is employed for hyperparameter search in
all the models.

In logistic regression, different combinations of regularization
parameters (which control the bias-variance trade-off to develop
more generalized models), penalty terms, and the maximum
number of iterations are scrutinized to optimize the logistic
regression model’s performance. The tuning process optimizes

the logistic regression model and makes it more generalized and
resistant to overfitting. The optimized model is then trained and
tested on three differently sampled datasets and provides insight into
its effectiveness across various validation scenarios.

In the support vector machine (SVM), the different
combinations of regularization parameters, kernel types (linear,
polynomial, radial bias function, and sigmoid), degree (only for
polynomial kernels), and gamma (only for polynomial, radial bias
function, and sigmoid kernels) are explored. The choice of the
optimal kernel depends on the dataset’s characteristics, such as
linearity or non-linearity. The best kernel type selected might differ
between the sampling methods (holdout, stratified K-fold, and leave
one out) due to the distinct subsets they provide for training and
testing, influencing the hyperparameter selection.

In the case of the decision tree classifier, key hyperparameters
such as maximum depth (which is a limit to stop further splitting of
nodes when the specified tree depth is reached), criterion for data
splitting, cost complexity pruning (which addresses the problem of
overfitting by selectively removing certain parts of the decision tree),
minimum sample leaf (the minimum number of samples required

TABLE 2 Point-biserial correlation relating the variables with the health status of the subjects.

Sl. No. Variable Point-biserial correlation coefficient p-value

1 Age 0.708968 9.68E-10

2 Trunk F/E (sit-to-stand) SD 0.411328 0.001636

3 Trunk F/E (stand-to-sit) mean 0.343412 0.009564

4 TUG time 0.318584 0.016711

5 Double-stance phase % 0.314555 0.018221

6 Stance phase (right)% 0.29898 0.025197

7 BMI 0.281456 0.035606

8 Stance phase (left)% 0.27304 0.041748

9 Stride time (sec) 0.272102 0.042484

10 Gait line right SD 0.26594 0.047585

11 Swing phase (left) % −0.27304 0.041748

12 Cadence (steps/min) −0.28389 0.033977

13 Swing phase (right) % −0.29898 0.025197

14 Single-limb support line right (mm) −0.30409 0.022695

15 Heel left (pressure) −0.30774 0.021037

16 PRL SD −0.32316 0.015126

17 PRR SD −0.3259 0.014239

18 Heel right (pressure) −0.33572 0.011422

19 Single limb support line left (mm) −0.34601 0.008998

20 Gait line right −0.34897 0.008388

21 Step length right (cm) −0.41402 0.001514

22 Stride length (cm) −0.4395 0.000702

23 Step length left (cm) −0.44234 0.000641

24 Velocity (km/hr) −0.45057 0.000493
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for a leaf node or external node and hence do not have any further
splits), and minimum sample split (the minimum number of
samples required to split an internal split) are adjusted to find
the combination that maximizes the model’s performance. These
adjustments enhance the model’s performance by finding the right
combination that maximizes accuracy.

In a random forest, the key hyperparameters include the number
of estimators, which represents the number of trees in the random
forest, maximum depth, minimum sample leaf, and minimum
sample split. Collectively, these hyperparameters shape the
structure and complexity of each decision tree within the random
forest ensemble.

3.5 Classification

Eleven spatiotemporal variables, four butterfly features, and two
dynamic features from pedobarography, namely, double stance
phase %, right and left stance phase %, stride time, right and left
swing phase %, cadence, right and left step length, stride length,
velocity, mean and SD of right gait line, right and left single limb
support line, right and left heel pressure along with two features
from normal walking pelvis motion, namely, SD of PRL and PRR;
two trunk motion features, namely, mean of trunk F/E during the
stand-to-sit condition and SD of trunk F/E during the sit-to-stand
condition and TUG time during TUG test, and personal details
including BMI, age, sex, and the health status of the subject are used
to identify subjects with KOA. The models considered for
classification are logistic regression, SVM, decision tree, and
random forest. These models are trained and tested on the three
differently sampled datasets. Logistic regression explains the
relationship between the dependent variable, i.e., the pathology of
the subject, and the remaining independent input variables, i.e., the
pedobarographic data, pelvis and trunk motion, and personal
details, to classify subjects with KOA. The threshold for
classification is considered to be ≥ 0.5. The optimized
hyperparameter values for logistic regression are shown in Table 3.

SVM classifies the data points by finding a hyperplane in an
N-dimensional space. The “best” hyperplane is chosen among the

several hyperplanes developed. The optimized hyperparameters for
SVM are shown in Table 4. After determining the ‘optimal’
hyperplane, the data points situated on either side of it are assigned
to distinct classes. The classification of an unknown data point is then
based on its relative position to this established hyperplane. SVMwith a
linear kernel is used for the holdout- and stratified k-mean-sampled
data and SVM with a radial bias function (rbf) kernel is employed for
leave-one-out-sampled data.

A decision tree is constructed as a flowchart-like tree structure
and employs internal nodes to test different attributes; branches
represent the results of those tests, and each leaf node represents
the class the feature falls into. The decision tree is built through a
recursive process that involves dividing the training data into
subsets according to attribute values. This recursive splitting
continues until a predefined stopping criterion is satisfied, such
as reaching the maximum tree depth or fulfilling the minimum
number of samples needed to split a node. The decision tree is
constructed by recursively splitting training data into subsets based
on the values of the attributes until a stopping criterion is met, such
as the maximum depth of the tree or the minimum number of
samples required to split a node. During the training process, the
algorithm selects the optimal attribute for data splitting using
metrics such as entropy or gini impurity, aiming to maximize
information gain or minimize impurity after each split. To achieve
the best results, hyperparameters, namely, the maximum depth,
criterion, cost complexity pruning, minimum sample leaf, and
minimum sample split, are optimized. The hyperparameters
obtained for the different sampled data for the decision tree are
listed in Table 5.

A random forest classifier is an ensemble method where a
collection of decision trees is trained on different subsets of the
data. It employs the “bagging” approach for ensemble, in which each
tree trains a random subset of the dataset, sampled with
replacement. The final classification is determined by a majority
vote among the individual trees. The different hyperparameters
associated with the random forest classifier are the number of
trees, minimum sample leaf, and minimum sample split. The
hyperparameters obtained for the different sampled data for the
random forest are listed in Table 6.

TABLE 3 Hyperparameters obtained for logistic regression.

Hyperparameter Holdout-sampled data Stratified K-fold-sampled data (K = 5) Leave-one-out-sampled
data

Regularization parameter (C) 0.1 10 10

Penalty L2 L2 L2

Maximum number of iterations 100 100 100

TABLE 4 Hyperparameters obtained for SVM.

Hyperparameter Holdout-sampled data Stratified K-fold-sampled data (K = 5) Leave-one-out-sampled data

Regularization parameter (C) 1 1 10

Kernel Linear Linear rbf

Degree Not applicable Not applicable Not applicable

Gamma Not applicable Not applicable 0.01
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3.6 Performance assessment

Accuracy, sensitivity, and specificity metrics are used to assess the
performance of the classifiers. True positive (TP) signifies the correct
identification of KOA (positive) cases, while true negative (TN)
indicates the accurate exclusion of healthy (negative) cases. False
positive (FP) occurs when the classifier wrongly identifies a negative

(healthy) case as positive (KOA), and false negative (FN) arises when a
positive (KOA) case is incorrectly classified as negative (healthy). The
overall accuracy is computed by (TP + TN)/TCT, where TCT
represents the total number of classification tests. Sensitivity and
specificity are expressed by TP/(TP + FN) and TN/(TN + FP),
respectively. Accuracy provides an overall measure of model
performance, sensitivity gauges the model’s ability to detect positive

TABLE 5 Hyperparameters obtained for decision tree.

Hyperparameter Holdout-sampled data Stratified K-fold-sampled data (K = 5) Leave-one-out-sampled data

Maximum depth 7 7 3

Criterion Entropy Gini Entropy

Cost complexity pruning 0.05 0 0.025

Minimum sample leaf 1 3 1

Minimum sample split 4 6 2

TABLE 6 Hyperparameters obtained for random forest.

Hyperparameter Holdout-sampled data Stratified K-fold-sampled data (K = 5) Leave-one-out-sampled data

Number of trees 100 100 50

Minimum sample leaf 1 1 1

Minimum sample split 2 5 2

FIGURE 6
Performance metric of logistic regression.
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cases, and specificity assesses the accuracy of identifying negative
outcomes. Evaluation is conducted across three datasets sampled
using holdout, SKCV, and leave-one-out LOOCV approaches.

3.7 Results

The performance metrics of the models, viz., logistic regression,
SVM, decision tree, and random forest, are shown in Figures 6–9,
respectively.

It is observed that in logistic regression, as shown in Figure 6,
accuracy remained the same when the sampling method was changed
from holdout to SKCV and increased by 2.1% from 85.7% to 87.5%
when it was changed to LOOCV. Sensitivity increased by 9.46% from
75% to 82.1%when the samplingmethod was changed from holdout to
SKCV or LOOCV. Specificity, however, decreased by 10.8% and 7.2%
from 100% to 89.8% and from 100% to 92.8%, respectively, when the
sampling method was changed from holdout to SKCV and LOOCV,
respectively. The specificity obtained by the LOOCV sample was 3.87%
higher than that obtained using the SKCV sample.

In the SVM, accuracy increased by 4.45%, from 78.6% to 82.1%,
when the sampling method was changed from holdout to SKCV, and
decreased by 2.41%, from 78.6% to 76.7%, when the sampling method
was changed from holdout to LOOCV. Sensitivity remained the same
for holdout- and SKCV-sampled data, while it increased by 4.6%, from
75% to 78.5%, when LOOCV sampled data were employed. Specificity
for the SKCV sampled data increased by 6.7% and 16.01% in

comparison to that of the data sampled by the holdout and
LOOCV methods, respectively, as shown in Figure 7.

In the decision tree model, accuracy was highest for the data
sampled using SKCV, with a decrease of 4%, from 89.3% to 85.7%,
for data sampled by holdout and a larger decrease of 18%, from
89.3% to 73.2%, for data sampled by LOOCV, as shown in Figure 8.
The trend was also similar for sensitivity, which peaked at 85.7% for
data sampled by SKCV but decreased by 12.48% for data sampled by
holdout and LOOCV. Specificity is the highest for data sampled by
the Holdout method but decreased by 7.2% and 17.9% for data
sampled by SKCV and LOOCV, respectively.

In the random forest, accuracy was highest for the holdout-
sampled data, with a decrease of 4.2%, from 85.7% to 78.5%, and
8.4%, from 85.7% to 82.1%, for data sampled by LOOCV and SKCV,
respectively. Sensitivity is highest for the LOOCV-sampled data but
decreased by 8.64%, from 82.1% to 75%, for both holdout- and
SKCV-sampled data, as shown in Figure 9. Sensitivity is highest for
the holdout-sampled data but decreased by 17.9%, from 100% to
82.1%, for both SKCV- and LOOCV-sampled data.

4 Muscular activity of the periarticular
muscles in KOA and healthy subjects

The identification of KOA through pedobarographic variables
and pelvis and trunk motion variables can be inferred from the
above section. Effectively monitoring rehabilitation therapies for

FIGURE 7
Performance metric of SVM.
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KOA using these variables necessitates establishing the impact of
KOA on the strength of the periarticular muscles around the knee,
which are part of the prime movers of knee flexion and extension
(Levangie et al., 2011), and the rectus femoris and biceps femoris are
part of the muscle group. Increased muscle force in the rectus
femoris (Yagi et al., 2022) and increased muscle activation in the
biceps femoris (Hortobágyi et al., 2005) for KOA subjects make it
suitable for sEMG studies to differentiate between KOA and healthy
subjects. In addition, sEMG features from the rectus femoris
(Khader et al., 2024) and biceps femoris (Chen et al., 2019;
Khader et al., 2024) have been previously employed in the
identification of KOA. Thus, rectus femoris and biceps femoris
are employed for the collection of sEMG data from healthy and
KOA subjects, using them for the identification of KOA subjects. It is
conducted by clustering analysis utilizing sEMG signals collected
from the rectus femoris and biceps femoris caput longus bilaterally
from two healthy subjects and six KOA subjects from the dataset.
Prior to clustering, sEMG signals are filtered and analyzed to extract
features in time, frequency, and time–frequency domains. The
number of features is reduced using principal component
analysis (PCA), which is then used for clustering analysis.

4.1 sEMG data collection

sEMG data of six subjects with varying degrees of KOA and two
healthy subjects are collected to assess themuscle activity of the subjects

during different activities. The various activities considered are standing
under four different conditions for 60 s and walking. The standing
conditions include walking at a self-selected speed and standing on firm
ground with eyes open (Firm EO), firm ground with eyes closed (Firm
EC), foamwith eyes open (FoamEO), and foamwith eyes closed (Foam
EC). Table 7 provides us with a summary of the condition of the
subjects along with the activities undertaken by each subject.

Data collection is done using wireless sEMG sensors from BTS
Bioengineering, as shown in Figure 10. The muscles considered are
the bilateral rectus femoris and biceps femoris caput longus, which
are part of the quadriceps and hamstring group of muscles.

4.2 Feature selection using time-series,
frequency, and time–frequency analysis

Along with sEMG signals, various noises and movement
artifacts are also detected, so the required information remains
together with the raw sEMG signal. It is thus difficult to assess
the subjects using raw signals. Thus, sEMG features from different
domains, which include time, frequency, and time–frequency
domain features, are to be employed for the assessment
(Chowdhury et al., 2013). Time domain features are considered
as they have been reported to successfully classify healthy and knee-
pathological subjects (Naik et al., 2018). The time domain features
extracted here include “the Hudgins’ features,” i.e., the mean
absolute value (MAV), MAV slope, slope sign changes (SSC),

FIGURE 8
Performance metric of decision tree.
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waveform length (WL), and zero crossings (ZCs) (Hudgins et al.,
1993). In addition to that, average amplitude change (AAC),
difference absolute standard deviation value (DASDV), integrated
EMG (iEMG), kurtosis, log, root mean square (RMS) value, variance
(var), and skewness are also evaluated in the time domain. Thus,
13 features are considered in the time domain. Frequency domain
features have been established to be the best for assessing muscle
fatigue (Cifrek et al., 2009). A time-domain EMG signal is
transformed to the frequency domain using periodogram
analysis, where the square of the absolute value of the Fourier
transform of the EMG signal is divided by the signal length

(Phinyomark et al., 2012). Thus, five frequency features, namely,
the mean frequency (MNF), median frequency (MDF), mean power
(MNP), and total power (TTP), are extracted from the EMG signal.
MNF is the average frequency of the power spectrum of the EMG
signal. MDF is the frequency at which the EMG power spectrum is
divided into two regions with equal amplitudes. TTP is the aggregate
of the EMG power spectrum and is also known as energy and the
zero spectral moment. TTP and MNP are the frequency domain
features that extract the same information as time domain features
such as iEMG, RMS, and MAV based on the energy information as
muscle fatigue results in an increase in EMG signal amplitude

FIGURE 9
Performance metric of random forest.

TABLE 7 Summary of the subjects’ condition during sEMG analysis.

Subject Health condition Activities undertaken

Subject 1 Healthy (H1) Firm EO, Firm EC, Foam EO, Foam EC, and walking

Subject 2 Healthy (H2) Firm EO, Firm EC, Foam EO, Foam EC, and walking

Subject 3 KOA Grade 3 (OA1_G3) Firm EO, Firm EC, and Foam EO.

Subject 4 KOA Grade 1 (OA2_G1) Firm EO, Foam EO, and Foam EC.

Subject 5 KOA Grade 2 (OA3_G2) Firm EO, Firm EC, Foam EO, Foam EC, and walking

Subject 6 KOA Grade 1 (OA4_G1) Firm EO, Firm EC, and walking

Subject 7 KOA Grade 1 (OA5_G1) Walking

Subject 8 KOA Grade 1 (OA6_G1) Walking
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(Phinyomark et al., 2012). In addition to time and frequency
analyses, time–frequency analysis is performed using the
continuous wavelet transform (CWT) as it has been reported to
effectively document quadriceps fatigue during knee extension
exercise (So et al., 2009). In addition, wavelet neural network
models using sEMG have been employed to estimate knee joint
angles (Li et al., 2020). In CWT, one of the crucial steps is the
selection of the “mother wavelet,” which depends on the study
application. The 5th order of coiflet is reported to provide the perfect
reconstruction of the sEMG signal. Furthermore, symlet4 and
symlet5 have been employed to determine muscle failure.
Daubechies’s functions (db2, db4, db6, db44, and db45) have
been reported to be successfully applied for analyzing sEMG
signals (Chowdhury et al., 2013). Thus, we have employed
coiflet5, symlet4, symlet5, db2, and db4 as mother wavelets for
the analysis of the sEMG signals and obtained five features, namely,
the zero crossing rate (ZRC), root mean square (RMS), maximum
amplitude, phase duration, and number of peaks for each signal.

4.3 Cluster analysis

Using the features obtained from each analysis, cluster analysis
is performed in each experimental condition, namely, Firm EO,
Firm EC, Foam EO, Foam EC, and walking. Using the time-series
analysis, each muscle is found to have 13 features. As data are
collected from four muscles, a total of 13 × 4, i.e., 52 features for
each subject, are obtained in each experimental condition. The
large number of features is reduced by employing PCA. The
number of principal components (PCs) extracted is based on
the condition that the maximum variance is explained by the
least number of PCs. The 52 features are reduced to 5, 4, 4, 3, and
5 PCs for Firm EO, Firm EC, Foam EO, Foam EC, and walking
condition, respectively. Using PCs, the K-nearest neighbor (KNN)
algorithm is employed unsupervised to divide the subjects into
clusters. Table 8 shows the clustering pattern obtained under the
different experimental conditions for time-series features. It can be
seen that PCs from time-series features were able to cluster the
subjects accurately only for the Foam EC condition, with two
healthy subjects and two OA subjects, one with Grade 1 and the
Grade 2 severity. In the Firm EC condition, which contains five
subjects, the OA subjects with Grade 1 and Grade 2 severity were

clustered together with healthy subjects, while the OA subjects
with Grade 3 severity were clustered separately. In the Firm EO
condition, six subjects (two healthy and four OA) are considered.
Two healthy subjects and two OA subjects with Grade 1 and Grade
2 severity are clustered together, and two OA subjects with Grade
1 and Grade 3 severity are then clustered separately. In the FOAM
EO condition, five subjects (two healthy and three OA) are
considered. One healthy and one OA Grade 2 subject are
clustered together, and one healthy subject and two OA subjects
with Grade 1 and Grade 3 are clustered together separately. In the
walking condition, six subjects (two healthy and four OA subjects)
are considered. Two healthy and two OA subjects with Grade 1 are
clustered together, and two OA subjects, one with Grade 1 and one
with Grade 2, are clustered together separately.

Frequency analysis provides five features for each muscle.
Thus, a total of 5 × 4, i.e., 20 features for each subject, is obtained
in each experimental condition. In each case, PCA is conducted
to reduce the number of features. PCA reduces the 20 features to
4, 4, 4, 3, and 4 PCs for Firm EO, Firm EC, Foam EO, Foam EC,
and walking condition, respectively. Using the PCs, the KNN
algorithm is employed unsupervised to divide the subjects into
clusters. Table 9 shows the clustering pattern obtained under the
different experimental conditions for the frequency features. The
PCs from the frequency features also cluster the subjects
similarly, with the accurate cluster available with Foam EC
condition. The clustering behavior for the other experimental
conditions is similar to that of the time-series features except for
the Foam EO condition, where the healthy subjects and the OA
subject with Grade 1 severity are clustered together, and the OA
subjects with Grade 2 and Grade 3 severity are clustered together
separately.

Similarly, wavelet analysis, i.e., time–frequency analysis, also
provides us with five features for each muscle. Thus, we have a total
of 5 × 4, i.e., 20 features for each subject in each experimental
condition. In each case, at first, PCA is conducted to reduce the
number of features. PCA reduces the 20 features to 5, 4, 3, 3, and
5 PCs for Firm EO, Firm EC, Foam EO, Foam EC, and walking
condition, respectively, with coif5 as the mother wavelet. In the case
of the db2 mother wavelet, PCA reduces the 20 features to 5, 4, 4, 3,
and 5 PCs for Firm EO, Firm EC, Foam EO, Foam EC, and walking
condition, respectively. Considering the db4 mother wavelet, PCA
reduces the 20 features to 5, 4, 4, 3, and 5 PCs for Firm EO, Firm EC,

FIGURE 10
sEMG electrodes placed on (A) rectus femoris and (B) bicep femoris caput longus.

Frontiers in Bioengineering and Biotechnology frontiersin.org14

Sarmah et al. 10.3389/fbioe.2024.1401153

99

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1401153


Foam EO, Foam EC, and walking condition, respectively. With the
sym4 mother wavelet, PCA reduces the 20 features to 5, 4, 4, 3, and
5 PCs for Firm EO, Firm EC, Foam EO, Foam EC, and walking
condition, respectively. With the sym5mother wavelet, PCA reduces
the 20 features to 5, 4, 4, 3, and 5 PCs for Firm EO, Firm EC, Foam
EO, Foam EC, and walking condition, respectively. Using PCs, the
KNN algorithm is employed unsupervised to divide the subjects into
clusters. Table 10 shows the clustering pattern obtained under the
different experimental conditions using wavelet features. The
clustering behavior of the PCs obtained from wavelet features is
the same, irrespective of the choice of the mother wavelet. Accurate
clustering is obtained for Firm EO, Foam EO, and Foam EC
conditions. In the Firm EO condition, six subjects (two healthy
and four OA) are considered. The healthy subjects are clustered
together, and the four OA subjects with varying severity are
clustered together separately. In the Firm EO condition, five
subjects (two healthy and three OA) are considered. The healthy
subjects are clustered together, and the three OA subjects with
varying severity are clustered together separately. In the Foam EC
condition, four subjects (two healthy and two OA) are considered.
The healthy subjects are clustered together, and two OA subjects
with varying severity are clustered together separately. In the case of
Firm EC condition, five subjects (two healthy and three OA) are
considered. One healthy subject is clustered together, and the other
subjects (one healthy and three OA) are clustered together
separately. In the walking condition, six subjects (two healthy
and four OA) are considered. Two healthy subjects, one OA
subject with Grade 2 severity and one OA subject with Grade

1 severity, are clustered together; and two OA subjects with
Grade 1 are clustered together separately.

5 Discussion

With a worldwide high prevalence, KOA has significantly
affected the quality of life of a large population. Because of its
degenerative nature, early identification and, thus, early intervention
greatly affect the management of KOA. The current gold standard to
identify KOA is X-ray imaging, which is best suited for assessing the
progression of the disorder, and MRI is more effective in ruling out
OA but is expensive. In addition, there is a risk of radiation exposure
in the case of X-rays. Hence, it is not effective for continuous
monitoring of any rehabilitation regimens. The interdependency
of the kinetic and kinematic variables of human movement with the
muscle activity of the associated joints provides an alternate, non-
invasive knee health monitoring technique. It is conducted by
monitoring the pedobarographic data and pelvis and trunk
motion as they are reported to be affected by the condition of
the muscles around the knee (Gajdosik et al., 1994; Harty et al., 2005;
Lee et al., 2020), which are in turn reported to be provided as
physical therapy for the management of KOA (Bhatia et al., 2013).

Point-biserial correlation gives us 24 statistically significant
features that are affected by KOA. Age is the most positively
correlated variable, which is because of the nature of the disease,
i.e., a chronic degenerative disorder (Anderson and Loeser, 2010).
The TUG variables, which include one feature from the trunk F/E

TABLE 8 Cluster analysis on the time-series features.

Subject
name

Subject
1

Subject
2

Subject
3

Subject
4

Subject
5

Subject
6

Subject
7

Subject
8

Actual
condition

H1 H2 OA1_G3 OA2_G1 OA3_G2 OA4_G1 OA5_G1 OA6_G1

Cluster assigned with
data from different

experimental conditions

Firm EO 1 1 0 0 1 1 - -

Firm EC 1 1 0 — 1 1 - -

Foam EO 1 0 0 0 1 - - -

Foam EC 0 0 — 1 1 - - -

Walking 1 1 — — 0 1 1 0

TABLE 9 Cluster analysis on the frequency features.

Subject
name

Subject
1

Subject
2

Subject
3

Subject
4

Subject
5

Subject
6

Subject
7

Subject
8

Actual
condition

H1 H2 OA1_G3 OA2_G1 OA3_G2 OA4_G1 OA5_G1 OA6_G1

Cluster assigned with
data from different

experimental conditions

Firm EO 1 1 0 0 1 1 — —

Firm EC 1 1 0 — 1 1 — —

Foam EO 1 1 0 1 0 — — —

Foam EC 0 0 — 1 1 — — —

Walking 1 1 — — 0 1 1 0
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during sit-to-stand and stand-to-sit conditions, and the TUG time
are the next most positively correlated variables. This is because
KOA has been reported to affect both gait and gaze during TUG
(Rossignol et al., 2023). The positive correlation between the double-
stance phase % and the stance phase (right and left) % is probably
because of the impaired balance control due to KOA (Kim et al.,
2011). The increased double-stance phase also results in a reduction
of the swing phase and single-limb support line. BMI is found to be
positively correlated with KOA because obesity has been associated
with high risks of KOA (Zheng and Chen, 2015). Heel pressure is
negatively correlated with KOA, thus inferring low heel pressure in
KOA subjects. It is because of the insufficient knee extension during
the heel-contact phase (Saito et al., 2013). A negative correlation is
also observed for the spatiotemporal variables such as step length,
stride length, and effective velocity, which are indicative of the

abnormal knee joint loading adaptations due to the KOA (Chen
et al., 2003). The SD of pelvis rotation on both the right and left sides
is found to be negatively correlated with KOA, which suggests
reduced variation in the pelvis rotation due to KOA. This is
because there is reduced pelvic rotation in KOA subjects (Tanaka
et al., 2007; Van Der Esch et al., 2011), which is a compensatory
change adapted to minimize the load on the affected knee (Van Der
Esch et al., 2011). Thus, pelvic rotation exercises can be part of the
rehabilitation regimen targeted to address KOA (Tanaka et al.,
2007). Age and SD of trunk F/E (sit to stand) are the most
positively affected variables due to KOA, and velocity is the most
negatively affected variable due to KOA.

ML models, namely, logistic regression, SVM, decision tree, and
random forest, have been successful in classifying KOA with the
highest accuracy of 89.3% and the highest sensitivity of 85.7% with

TABLE 10 Cluster analysis on the wavelet features.

Subject
name

Subject
1

Subject
2

Subject
3

Subject
4

Subject
5

Subject
6

Subject
7

Subject
8

Actual
condition

H1 H2 OA1_G3 OA2_G1 OA3_G2 OA4_G1 OA5_G1 OA6_G1

Cluster assigned
with data from

different
experimental
conditions

Firm EO coif5 1 1 0 0 0 0 — -

db2 1 1 0 0 0 0 — -

db4 1 1 0 0 0 0 — -

sym4 1 1 0 0 0 0 — -

sym5 1 1 0 0 0 0 — -

Firm EC coif5 0 1 1 — 1 1 — -

db2 0 1 1 — 1 1 — -

db4 0 1 1 — 1 1 — -

sym4 0 1 1 — 1 1 — -

sym5 0 1 1 — 1 1 — -

Foam EO coif5 1 1 0 0 0 — — -

db2 1 1 0 0 0 — — -

db4 1 1 0 0 0 — — -

sym4 1 1 0 0 0 — — -

sym5 1 1 0 0 0 — — -

Foam EC coif5 0 0 — 1 1 — — -

db2 0 0 — 1 1 — — -

db4 0 0 — 1 1 — — -

sym4 0 0 — 1 1 — — -

sym5 0 0 — 1 1 — — -

Walking coif5 1 1 — — 1 0 1 0

db2 1 1 — — 1 0 1 0

db4 1 1 — — 1 0 1 0

sym4 1 1 — — 1 0 1 0

sym5 1 1 — — 1 0 1 0
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decision tree as a classifier and SKCV as the data sampling method.
A specificity of 100% is obtained for three classifiers, namely, logistic
regression, decision tree, and random forest with holdout as the
sampling method. However, SKCV or LOOCV data sampling
methods provide more robust results and are more adaptive to
overfitting problems. Not considering the holdout sampling method,
the specificity is the highest at 92.8% using decision tree as a classifier
and SKCV as the data sampling method. The best performance is
obtained with SKCV-sampled data because it ensures that each fold
maintains the same distribution as the original dataset. This helps
the model learn equally in all the folds and makes it sensitive to
imbalances in the dataset. In addition, decision tree excels at
extracting meaningful interactions between features, especially if
they are non-linear in nature, compared to logistic regression and
SVM. The better performance of decision tree in comparison to
random forest may seem counterintuitive as random forest is an
ensemble method that builds multiple decision trees; however, it
may be because decision trees can capture interactions between
features at a finer level compared to random forest and in the
absence of excessive noise in the data, it may lead to better-
performing decision trees. Thus, decision tree is the best-
performing algorithm for the identification of subjects with KOA
using pedobarographic data and pelvis and trunk motion. This
reaffirms the possibility of the identification of KOA using
variables from joints other than the knee, which was also
reported by Kobsar et al. (2017), in which KOA rehabilitation
responses were classified according to their effectiveness using
wearable sensors in the back, thigh, and shank.

KOA greatly affects the muscle activity of the rectus femoris and
biceps femoris caput longus. PCs from time-series features can
distinguish between Grades 1 and 2 of KOA and healthy subjects
during the Foam EC standing condition. They can also distinguish
between Grade 3 KOA and other grades of KOA and healthy subjects
during the Firm EC condition. They, thus, can distinguish between the
early stages of KOA and healthy subjects. PCs from time-series features
are not effective in distinguishing between KOA subjects and healthy
subjects during FirmEOandFoamEO standing conditions andwalking.
In addition to Foam EC and Firm EC conditions, PCs from the
frequency features are also able to distinguish between KOA with
Grade 2 or higher severity and healthy subjects. It may be due to the
fact that frequency domain features are sensitive to the effect of muscle
fatigue (Cifrek et al., 2009) during any activity and hence are able to
detect the strain on muscles due to KOA of Grade 2. However, Grade
1 KOA and healthy subjects are indistinguishable by this feature. PCs
from the wavelet features performed the best in distinguishing between
KOAsubjects of different grades and healthy subjects for FirmEO, Foam
EO, and Foam EC, by perfect distinction. It may be because
time–frequency domain analysis provides a deeper understanding of
the electrophysiological processes behind the neuromuscular activations
(Di Nardo et al., 2022), and continuous wavelet transforms have also
been reported to outperform other time–frequency analyses for both
simulated and real EMG recordings (Karlsson and Gerdle, 2001).
However, muscle activity from the rectus femoris and biceps femoris
caput longus during walking is not found to distinguish between KOA
subjects and healthy subjects. This is because during walking, balance,
support, and progression are mostly contributed by five muscle groups,
namely, the gluteus maximus, gluteus medius, vasti, gastrocnemius, and
soleus (Lim et al., 2022).

Thus, KOA is diagnosed using gait variables for joints other than
the knee, such as pedobarographic data and pelvis and trunkmotion,
along with the comparison of muscular activity in the bilateral rectus
femoris and biceps femoris caput longus muscles for a section of the
KOA and healthy subjects. Data are collected using wearable
sensors, except for pedobarographic data, which can also be
collected using wearable flexible insoles (Stassi et al., 2013). This
allows for the identification of KOA through variables that can be
captured using wearable sensors in real-world scenarios. Moreover,
the establishment of the effect on muscular activity of knee
periarticular muscles due to KOA through clustering analysis
shows the complementary relationship between the gait variables
and sEMG data. This opens up the possibility of monitoring
hamstring and quadriceps strengthening as part of rehabilitation
therapy to address KOA. The effect of KOA on the periarticular
muscles of the knee is also reported by Ghazwan et al. (2022).

6 Limitations

A limitation of this study is that the EMG analysis was performed
on only a few subjects and sEMGdata were collected only for twomajor
muscles responsible for knee joint movement. The periarticular muscles
surrounding the knees contribute majorly during standing; however,
the major muscles contributing during other activities of daily life are
from different groups. Thus, the inclusion of at least one muscle from
each of the major muscle groups in the lower limb will encompass and
translate the study into more activities and also help us consider the
synergistic behavior of the muscles.

7 Conclusion

This study establishes the capability of detecting KOA using gait
variables from joints other than the knee. It employs pedobarographic
data and pelvis and trunk ROM for the analysis. This offers a non-
invasive and accessible method for the detection of KOA. The variables
most affected byKOAare the SDof trunk F/E (sit to stand) and velocity.
In addition, the study associated KOA with reduced pelvic rotation and
thus suggests pelvis rotation exercises as part of a rehabilitation regimen
targeted to address the effects of KOA. Furthermore, evidence of altered
muscle activity in the rectus femoris and biceps femoris caput longus,
which are part of the quadriceps and hamstring group of muscles, is
found in subjects affected by KOA through cluster analysis. Thus, it can
be inferred that KOA affects both mobility and muscle condition
simultaneously, and both datasets complement each other. Hence,
gait data can be employed to identify KOA subjects and perform a
preliminary assessment and monitoring approach to gauge the
effectiveness of rehabilitation therapies aimed at addressing KOA
through muscle strengthening. Given the feasibility of collecting
pedobarographic data and pelvis and trunk motion using wearable
sensors with minimal sample preparation and its non-radiographic
nature, the proposed method can be seamlessly integrated not only in a
laboratory setting but also in real-world environments. Different
combinations of machine learning models and data sampling
methods have been employed to understand this behavior, and the
decision tree with data sampled using SKCV is found to be the best
classifier of KOA using gait data. The activities to be considered for
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monitoring the assessment include walking and standing under
different conditions, such as Firm EO, Foam EO, and Foam EC.
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Introduction: Wearable exoskeletons are emerging technologies for providing

movement assistance and rehabilitation for people with motor disorders. In this

study, we focus on the specific gait pathology dropfoot, which is common after

a stroke. Dropfoot makes it di�cult to achieve foot clearance during swing and

heel contact at early stance and often necessitates compensatory movements.

Methods: We developed a soft ankle exoskeleton consisting of actuation and

transmission systems to assist two degrees of freedom simultaneously:

dorsiflexion and eversion, then performed several proof-of-concept

experiments on non-disabled persons. The actuation system consists of

two motors worn on a waist belt. The transmission system provides assistive

force to the medial and lateral sides of the forefoot via Bowden cables. The

coupling design enables variable assistance of dorsiflexion and inversion at

the same time, and a force-free controller is proposed to compensate for

device resistance. We first evaluated the performance of the exoskeleton in

three seated movement tests: assisting dorsiflexion and eversion, controlling

plantarflexion, and compensating for device resistance, then during walking

tests. In all proof-of-concept experiments, dropfoot tendency was simulated by

fastening a weight to the shoe over the lateral forefoot.

Results: In the first two seated tests, errors between the target and the achieved

ankle joint angles in two planes were low; errors of <1.5◦ were achieved in

assisting dorsiflexion and/or controlling plantarflexion and of <1.4◦ in assisting

ankle eversion. The force-free controller in test three significantly compensated

for the device resistance during ankle joint plantarflexion. In the gait tests, the

exoskeleton was able to normalize ankle joint and foot segment kinematics,

specifically foot inclination angle and ankle inversion angle at initial contact and

ankle angle and clearance height during swing.

Discussion: Our findings support the feasibility of the new ankle exoskeleton

design in assisting two degrees of freedom at the ankle simultaneously and show

its potential to assist people with dropfoot and excessive inversion.

KEYWORDS

assistive device, biomechanics, gait impairment, gait analysis, soft robotics

1 Introduction

Dropfoot, or the inability to lift the foot during gait, is a common secondary gait

disorder after a stroke (Kluding et al., 2013) or other neurological injuries (Nori and Das,

2019) resulting from weakness and/or atypical motor control. People with dropfoot often

exhibit two gait pathologies (Blaya and Herr, 2004): steppage gait and excessive subtalar

inversion. Steppage gait is a condition where people demonstrate the inability to lift
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the forefoot during the swing phase adequately and initially contact

the floor with the whole foot or forefoot (Perry and Burnfield,

2010), making a high risk of tripping or even falling; excessive

subtalar inversion after a stroke is primarily caused by spasticity in

tibialis posterior. It can further influence foot clearance, leading to

an unstable base of support and a high risk of ankle injury during

walking (DeMers et al., 2017), and is associated with gait asymmetry

and slow walking speed (Deltombe et al., 2017; Li, 2020). In

dropfoot gait, typical compensatory movements to achieve foot

clearance include ipsilateral pelvic elevation or “hiking” and

increased hip abduction or “circumduction.” Together, these

movements generally reduce walking efficiency and endurance

(Schmid et al., 2013), influence walking independence (Awad et al.,

2017) and confidence (Yeung et al., 2021), and generally make daily

activities challenging and inconvenient (Gil-Castillo et al., 2020).

Orthotic devices, such as ankle-foot orthoses that compensate

for dropfoot gait by restricting plantarflexion, are widely used and

positively impact the mobility and balance of the user (Tyson and

Kent, 2013; Winstein et al., 2016; Awad et al., 2017). However,

orthoses that restrict ankle movement inhibit any remaining ability

of the plantarflexors to forward propel the leg during the preswing

phase (Vistamehr et al., 2014) and may induce dependence on the

devices (de Sèze et al., 2011; Daryabor et al., 2018).

Powered wearable exoskeletons are with increasing frequency

being developed for movement assistance and rehabilitation (Blaya

and Herr, 2004; Wu et al., 2019; Hu et al., 2023; Zhang L. et al.,

2023). Rigid powered ankle exoskeletons may be able to provide

adequate and timely assistance with movements, showing better

performance than passive orthotic devices (Shorter et al., 2011;

Yeung et al., 2018; Kim et al., 2020). The implementation of an

actuation and control systems may achieve this, but rigid structures

tend to be heavy and bulky, and may thus have limited feasibility

and efficacy (Liu et al., 2021). It is also challenging to customize

rigid exoskeletons for individual users as alignment of the device’s

ankle joint with the user’s ankle joint can be challenging.

To this end, exoskeletons are increasingly designed to be lighter

and more compliant, with the aim of achieving natural interactions

between them and their users (Bae et al., 2015; Thalman et al.,

2019). Many soft exoskeletons consist of an actuation system

and a cable transmission system with a compact size and high

transmission efficiency (Bae et al., 2015). The actuation system,

which is often the heaviest part, should be positioned near the

body’s center of mass instead of distally near the ankle to minimize

the user’s additional metabolic demand associated with its weight

(Browning et al., 2007; Lerner et al., 2018). Ankle exoskeletons

with cable-driven transmission can have a substantial effect on both

plantarflexion and dorsiflexion for people with disabilities, showing

potential to improve gait kinematics (Bae et al., 2018), mobility,

and energy expenditure (Lerner et al., 2018; Han et al., 2021).

Nowadays, most soft ankle exoskeletons have focused solely on

assisting the ankle in the sagittal plane (Bae et al., 2018; Lerner et al.,

2018), providing assistance with toe clearance and push-off to fulfill

the basic requirements for walking. However, they often overlook

the critical need for assistance in the frontal plane, which is also vital

for maintaining foot clearance and landing stability, thus impacting

gait safety, especially in cases of excessive inversion. Although

few attempts have been made to address multi-degree-of-freedom

(DoF) requirements, these solutions typically involve complex

structures and control strategies (Park et al., 2014).

The aims of this study were therefore to design and fabricate a

2-DoF powered soft ankle exoskeleton specifically intended to assist

both dropfoot and excessive inversion, with features of lightweight,

natural interaction, and reasonably simple mechanical design, and,

in non-disabled subjects with simulated dropfoot impairment, to

test its feasibility in assisting dorsiflexion and subtalar eversion,

resisting plantarflexion, and compensating for device resistance

in seated subjects, and in improving ankle and foot kinematics

during gait.

2 Design

2.1 Hardware design

Inspired by the Harvard exosuits (Awad et al., 2017; Bae et al.,

2018), the design of our active soft ankle exoskeleton consisted of

four parts: a waist belt, a calf wrap, a pair of shoes, and sensors, with

a total mass of 3.1 kg (Figure 1).

The design principles and selection of components were guided

by the goal to develop a compliant and lightweight structure, with

minimal burden on the user, maximal comfort, and flexibility to

accommodate for different body sizes.

2.1.1 Waist belt
The actuation module was attached to the waist belt, consisting

of actuators, controllers, and power supplies.

The actuator module contains two motors. In each actuator, a

brushless DC motor (EC-4pole 22, 90W, Maxon Inc, Switzerland)

with a planetary gearbox (GP 32, HP 123:1, Maxon Inc,

Switzerland) was used, which can provide up to 5.54Nm torque.

Through a 3D printed pulley with a radius of 14mm, the inner

Bowden cable was attached to the actuators, with a possible

retraction force of up to 396 N, which fulfilled the application

requirements in our design.

A microcomputer (Raspberry Pi 4B, Raspberry Pi Foundation,

UK) was used to control the actuators by sending control

signals to motor drivers (EPOS4 Compact 50/8 CAN, Maxon Inc,

Switzerland). The microcomputer was monitored and controlled

by a laptop via Virtual Network Computing, through which the

controller settings and the exoskeleton parameters could be tuned

and adjusted remotely. By processing the movement information

extracted from the load sensors, the microcomputer sent the

control signal to the motor drivers, and the actuator was then

driven to follow the control profiles.

The power supply was comprised of two batteries (Li-ion)—one

with a capacity of 24V and 144Wh and the other at 18V—as well

as a power bank with an output of 5V and 3A, which powered the

actuators, load cells, and microcomputer, respectively.

2.1.2 Calf wrap
The calf wrap is made of Neoprene, secured with Velcro straps

and elastic bands, and is able to fit different shank dimensions. Two

anchors were assembled on the bottom of the calf wrap, positioned

on both the medial and lateral sides, and were used to connect to

the sheath of Bowden cables.
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FIGURE 1

Overview of the soft ankle exoskeleton designed to counteract dropfoot and excessive inversion.

2.1.3 Shoe
Anchors were fixed on the lateral and medial sides of the

forefront of the shoes. The distal end of each of the two inner

Bowden cables was attached to these anchors.

2.1.4 Sensors
Two load cells (LSB205, FUTEK) with amplifiers (A100,

FUTEK) were aligned in series with the Bowden cables to measure

cable tensile forces, and the measured data were transferred to the

controller through the cables. Encoders (16 EASY, 1024 CPT, 3

channels, Maxon Inc, Switzerland) mounted on motors were used

to monitor motor positions. Two pairs of foot switches (Cometa,

Italy) with four transducers each were attached to the bottom of

shoes. The foot switch signal was transmitted from the receiver to

the microcomputer via the TCP/IP protocol, at a frequency of 100

Hz. This signal was used to detect gait events, thereby identifying

stance and swing phases.

The device was designed with both electrical and mechanical

stops. For the electrical stop, the position of the cable and motor

can be detected during the trials, and if the motor’s position is

out of a safe range, the motor will be stopped. In the mechanical

stop, there is a physical stop in the cable to make sure it cannot be

over-retracted.

2.2 Controller

A hierarchical controller that consists of a high-level, a mid-

level, and a low-level controller was developed in this study

(Figure 2). The high-level controller detects the gait phase based on

foot switches on the bottom of the shoes. The mid-level controller

has two modes—position control to achieve the desired ankle

joint profile (Figure 2A) and force-free control to compensate for

the resistance generated in the actuation system (Figure 2B). The

low-level controller has a configuration with position control and

current control loops embedded in the motor driver that aims

to precisely direct the actuator to follow the profiles from the

mid-level controller.

2.2.1 Position trajectory generator
On the exoskeleton, one anchor located on the calf wrap, one

on the shoe, and one along the ankle joint axis formed a triangular

structure, on both medial and lateral sides. When the actuator is

activated, the interior angles of the triangle undergo alterations

followed by the cable retraction or release, driving the ankle joint

moving in the sagittal plane. Different alterations can be realized in

the two triangular structures by setting different profiles for the two

motors, which then trigger the kinematic change of the ankle joint

in the sagittal and frontal planes simultaneously.

We generated the position trajectory that characterized the

desired ankle motion with a smooth property at the initial and

end stages. The position trajectory was defined by relative position

prel and phase time tphase, as well as a three-phase velocity

profile (Figure 3). The function of the trajectory generator is to

translate this predefined profile to the parameters that the low-level

controller can read.

Relative position prel was obtained by subtracting initial

position pini from target position ptar . The positions were measured

as the motor shaft positions by the encoders. The phase time tphase
was predefined and divided into three equal phases: ramp up tup,
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FIGURE 2

Schematic block diagram of the soft ankle exoskeleton controller. The frame presents a human-exoskeleton system, a high-level controller, a

mid-level controller, and a low-level controller. The mid-level controller consists of two di�erent modes: (A) position trajectory generator and (B)

force-free controller.

maximum speed tmax, and ramp down tdown. With the relative

position prel and specified intervals of tphase, maximum velocity

vmax, acceleration amax, and deceleration amin were computed. The

position trajectory was then determined accordingly (Figure 2A).

To ensure precise motor performance along the predefined

trajectory, the motor driver used a nested control loop structure

wherein the position controller generated a desired current

command based on the error between the desired and actual

positions. The current control loop then tracked this current

command using a finely tuned PID controller.

2.2.2 Force-free controller
A force-free controller, which aimed to compensate for the

effect of gravity, device friction, and inertial forces (Dong et al.,

2019; Hu et al., 2024), was used to achieve the desired ankle

joint under a non-constraint condition during plantarflexion

(Figure 2B).

In this study, the soft exoskeleton’s weight and inertia around

the ankle were considered negligible. The controller was simplified

as follows:

The output torque of the motor Tm was computed using

Equation 1:

Tm = (1− Kt) · T (1)

where Tm and T represent the output torque of the motor and

measured torque, respectively; Kt is a constant value.

Cable tensile force Fcable was measured with a load cell, and the

measured torque was computed as per Equation 2:

T = Fcable · Rpulley/rgear (2)

where Rpulley is the radius of the pulley, and rgear is the ratio of

the gear box.

For the constant value Kt , the relationship between the external

torque, the constant value, and the inertia and friction torques can

be expressed as per Equation 3:

Text = K−1
t (Jθ̈ + Tf ) (3)

where Text is the external torque; Jθ̈ is the inertia torque of the

motor rotor, and Tf is the friction torque.

It can be seen that if Kt > 1, the external torque that is needed

to overcome the inertia and friction torques will decrease by a

multiple of Kt .

The current input I to the controller can be expressed as per

Equation 4:

I = Tm/kτ (4)

where kτ represents the torque constant of the motor.

After computing the current input, the low-level current

control loop utilized a finely tuned PID controller to track the

current input. By continuously adjusting based on the error

between the actual and target current, the system maintained

accurate motor operation (Figure 2). This ensured the motor

was driven to achieve the desired performance in the force-free

application.

3 Experiments

Proof-of-concept experiments were conducted in two sessions

and with different non-disabled subjects. The first three tests

were performed on subjects in a seated position, and the fourth

test was performed on subjects walking in an instrumented

gait laboratory. These experiments were conducted to test the

exoskeleton’s feasibility and basic functionality to:
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FIGURE 3

Parameterization of the position trajectory three-phase velocity profile.

1. Achieve two-DoF assistance simultaneously, specifically

ankle dorsiflexion and eversion, from an initially plantarflexed and

inverted ankle position.

2. Control speed and final position during a passive

plantarflexion motion.

3. Compensate for device resistance from cable release during

plantarflexion movement.

4. Normalize foot and ankle kinematics during walking.

3.1 Participants and experimental setup

Five non-disabled subjects (2M / 3F, (Mean± SD) height:

166.4± 6.2 cm, weight: 60.6± 7.9 kg, age: 28.4± 1.4 years)

participated in the seated tests, and three non-disabled

subjects (1M / 2F, (Mean± SD) height: 166.3± 5.8 cm, weight:

57.5± 3.9 kg, age: 27.4± 0.6 years) participated in the gait text.

Inclusion criteria were no musculoskeletal disorders or recent

lower-limb injuries that can influence gait or ankle movement. All

subjects provided written informed consent, and the experiment

was approved by the Swedish Ethical Review Authority (Dnr.

2023-02891-01).

Experiments were conducted in the Promobilia MoveAbility

Lab, equipped with a 10-camera motion capture system (Vicon

V16, UK). Thirty-six reflective markers were placed on each

subject, and joint angles were computed according to a common

lower-limb marker set (CGM2.4). Marker data were collected at

100 Hz. Two surface electromyography (EMG) sensors (Aktos

Nano, Myon, Schwarzenberg, Switzerland) were placed on each

subject’s tibialis anterior (TA) and peroneus longus (PL) according

to SENIAM recommendations (Hermens et al., 1999). Maximum

voluntary isometric contraction (MVIC) of the two muscles was

measured as per (Konrad, 2005), with the subject in a supine

position on an examination table with heel contact.

In the first session, Tests 1–3, each subject, donning the

exoskeleton and a 1-kg weight secured to the show over the lateral

forefoot, sat on a chair with the shank and foot suspended in the

sitting test. The purpose of the weight was to create an external

plantarflexion and inversion moment, as a proxy to simulate

dropfoot and excessive inversion impairments. The order of the

three tests was randomized for each subject.

In the second session, Test 4, each subject donned the

exoskeleton and the 1-kg weight over the lateral forefoot and

walked on level ground at their preferred speed in a gait laboratory.

3.2 Test 1: assisting ankle dorsiflexion and
eversion

This test focused on the functionality of assisting the ankle

joint to dorsiflex and evert to a target position from an

initially plantarflexed and inverted position. This test approximates

dropfoot during the swing phase.

Prior to the data collection in Test 1, the target position was

defined as the neutral position of the ankle during standing, and the

initial position was defined from an earlier trial with wedges placed

under the foot that placed the ankle in∼18◦ plantarflexion and 10◦

inversion. Just prior to data collection, the ankle was moved to the

initial position, confirmed via 3Dmotion capture, while suspended.

Motor positions were recorded at both ankle joint position setups

by the encoders.

During the test, position control was used to assist ankle

dorsiflexion and eversion of the ankle joint from the initial to the

target position during two different time intervals—fast: 0.5 s and

slow: 0.75 s. These were repeated three times in a randomized order.

3.3 Test 2: controlling plantarflexion

This test focused on efficacy in controlling and preventing

excessive plantarflexion and inversion, approximating loading

response in early stance, beginning at initial contact and ending at

a plantigrade foot position. This test involved controlling a passive

plantarflexion movement. Subjects were seated with feet suspended

and the ankle initially in a neutral position. The 1-kg weight on the

lateral forefoot then passively plantarflexed and inverted the ankle.

The exoskeleton’s objective was to control this motion to a target

position in a predetermined duration.

The initial position was defined as the neutral position during

standing, and the target position was set to 8◦ plantarflexion.
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During the test, position control was used to control ankle

plantarflexion by following the predefined cable release trajectory,

determined by initial and target positions, during a 0.4 s duration

(“with exo” mode). As a reference, subjects were also tested in this

procedure with the exoskeleton, while the cables were detached

(“no cables” mode).

With the exoskeleton donned, subjects were asked to relax and

not to not perform any active dorsi- or plantarflexion. However, in

the “no cables” mode, they were required to activate dorsiflexors

prior to the test to hold up the foot to the neutral position and then

asked to relax them to initiate the test.

The trials were each repeated three times, and the order of the

two modes was randomized.

3.4 Test 3: resistance compensation during
plantarflexion

This test focused on evaluating the efficacy of the force-

free controller to compensate for device resistance during

plantarflexion motion, approximating the preswing phase of gait.

The exoskeleton’s objective was to restrict desired plantarflexion as

little as possible.

The initial position was defined as the neutral ankle position

during standing. The 1-kg weight was placed on the lateral forefoot,

and each subject passively planterflexed the ankle from a neutral

position during three different conditions:

• The cables were detached from exoskeleton tomeasure natural

plantarflexion movement without any resistance (“no cables”

mode),

• The exoskeleton was unpowered, and the cables were stretched

passively to measure the effects of resistance (“passive” mode),

• The exoskeleton was powered with the force-free controller,

aiming to compensate for resistance and restore natural

plantarflexion motion (“resistance compensation” mode).

Subjects were asked to be as relaxed as possible during the trials,

so that plantarflexion was induced by gravity and the weight. As in

Test 2, however, in the “no cables” mode, subjects were required to

use dorsiflexor muscles to maintain ankle position prior to the test

and then to relax them to initiate the test.

Each mode was repeated three times in a randomized order.

3.5 Test 4: assisting ankle and foot
kinematics during gait

This test focused on the exoskeleton’s efficacy in correcting the

altered ankle and foot kinematics associated with the simulated

dropfoot, specifically its ability to resist the passive plantarflexion

and inversion from the simulated impairment, while not limiting

the plantarflexion movement during stance.

Subjects walked on level ground at their preferred walking

speeds in three different conditions:

• Walking without the exoskeleton and without the weight on

the shoe. Parameters measured in this condition were set as

reference (“Reference").

• Walking without the exoskeleton and with the weight on

the shoe. The simulated impairments were measured in this

condition (“Simulated Impairment").

• Walking with the powered exoskeleton (“With Exoskeleton")

and the weight on the shoe. Position control was used in swing

and loading response phases, and the force-free controller was

used in late stance. In the swing phase, the target position and

phase time of the position control were defined as the neutral

position during standing, similar to Test 1, and the average

swing phase duration during the previous three steps. In

loading response, the parameters were set to 8◦ plantarflexion
and 0.2 s, respectively.

The order of conditions was randomized.

3.6 Data processing and outcome
parameters

Recorded raw EMG signals were processed using a band-

pass filter (Butterworth 20–400Hz), rectified, low-pass filter

(Butterworth 4Hz), and then normalized by MVICs (MATLAB

R2020b, Mathworks, US). Kinematics were calculated through

inverse kinematics (Nexus, Vicon).

The device’s functionality in the different seated tests was

evaluated with three outcome parameters:

• Tracking accuracy, defined as the error between measured

and target ankle angles in the sagittal and frontal planes, was

computed for Tests 1 and 2.

• Resistance reduction, defined as the rate of ankle

plantarflexion and inversion, was computed for each of

the three modes—resistance compensation, passive, and no

cables.

• Muscle activity, specifically the normalized EMG signals with

and without resistance compensation for each subject, was

computed.

Paired t-tests were used to compare velocities and normalized

EMG in different modes in Test 3.

The devices’ functionality to normalize foot and ankle

kinematics during gait was evaluated with five outcome parameters:

• Foot inclination angle at initial contact

• Ankle inversion angle at initial contact

• Foot clearance height during the swing phase, defined as the

minimal height of the fifth metatarsal head marker

• Maximum plantarflexion angle in preswing, defined as the

maximum plantarlexion angle between 50 and 60% gait cycle

• Average ankle angle in late swing, defined as the average

sagittal ankle angle in 90%–100% gait cycle.

No statistical tests were performed in Test 4, since there they

only include data on three subjects.
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FIGURE 4

Test 1: Assisting dorsiflexion and eversion from an initial position of ankle plantarflexion and inversion to a neutral target position in 0.5 s (Fast) and

0.75 s (Slow). Left: Measured ankle joint angles (mean ± 1 standard deviation) during fast and slow movements in (A) representative subject in the (A)

sagittal and (C) frontal planes. Right: Error in reaching the target angle in all five subjects in the (B) sagittal and (D) frontal planes. Boxes represent the

standard deviation, the horizontal lines represent the mean value of the five subjects in the two conditions, and data from individual subjects are

overlaid. DF, dorsiflexion; PF, plantarflexion.

4 Results

4.1 Test 1: performance in assisting
dorsiflexion and eversion

The subjects’ average initial ankle positions were ∼18◦

plantarflexion and 10◦ inversion, and target positions were 0◦

in both planes. With the exoskeleton, the subjects were able to

approximate the target position, in both fast and slow conditions

(Figure 4). In both anatomical planes, slightly greater accuracy

was achieved in the slow condition. Among subjects, the mean ±
standard deviation (SD) of the target position in the sagittal plane

were –1.5◦ ± 0.5◦ in the fast condition and 0.1◦ ± 0.3◦ in the

slow condition and in the frontal plane, –1.4◦ ± 0.7◦ in the fast

condition, and 0.2◦ ± 0.5◦ in slow condition, respectively.

4.2 Test 2: performance in controlling
plantarflexion

In the no cables condition, the ankles rapidly and exaggeratedly

plantarflexed and inverted. With the exoskeleton, ankle motion

was decelerated and reduced in both sagittal and frontal planes

(Figure 5).

Among subjects, with the exoskeleton, the mean ± SD

ankle final angles were –7.2◦ ± 0.5◦ (with target position

errors of 0.8◦ ± 0.5◦) in the sagittal plane and –1.2◦ ±
0.5◦ (target position error 1.2◦ ± 0.5◦) in the frontal plane.

Without the exoskeleton, mean ± SD final angle was –

30.8◦ ± 5.7◦ in the sagittal plane and –4.0◦ ± 1.7◦ in the

frontal plane.

4.3 Test 3: performance in resistance
compensation

The device’s natural resistance decelerated the desired

plantarflexion motion. The resistance compensation was partially

able to compensate for this resistance but not fully. The rate of

ankle motion was lowest in the passive mode, with an average of

16.6 deg s–1 in the sagittal plane and 1.1 deg s–1 in the frontal plane.

With the exoskeleton in force-free control mode, the average rate of

ankle motion was significantly higher; it more than doubled in both

the sagittal plane (44.4 deg s–1, p< 0.01) and in the frontal plane

(4.4 deg s–1, p< 0.05). However, even with the force-free control,

the ankle motion was approximately half as fast as in the no-cable

mode (Figure 6).
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FIGURE 5

Test 2: Controlling plantarflexion from an initial neutral position to a plantarflexed position. Left: Measured ankle joint angles (mean ± 1 standard

deviation) with the exoskeleton (with exo) and with cabled detached (no cables) in a representative subject in the (A) sagittal and (C) frontal planes.

Right: Ankle angle at the final position in all five subjects and target angles in the (B) sagittal and (D) frontal planes. Boxes represent the standard

deviation with data from individual subjects overlaid, the horizontal black lines represent the target angles of the five subjects with the exoskeleton,

and the horizontal gray lines represent the mean value in the condition without the exoskeleton. DF, dorsiflexion; PF, plantarflexion.

There were no significant differences in muscle activities of

the TA and PL during the trials between passive and force-free

conditions (p = 0.618 and p = 0.836).

4.4 Test 4: performance in normalizing
foot and ankle kinematics during gait

Compared to the reference condition, the simulated

impairment resulted in decreased ankle dorsiflexion in late

swing and loading response, wherein the foot segment was both

more plantarflexed and inverted at initial contact. The exoskeleton

normalized these angles (Figure 7); with the exoskeleton, the

average foot inclination angle at initial contact increased from

11.6◦ to 16.9◦ (reference 20.8◦), and the ankle inversion decreased

from 1.0◦ inversion to 0.4◦ eversion (reference 0.6◦ eversion).

Average foot clearance height increased from 36.7 to 49.7mm

(reference 54.3mm), and ankle angle in late swing changed from

6.2◦ of plantarflexion to 0.7◦ of dorsiflexion (reference 2.7◦ of

dorsiflexion).

With the exoskeleton, minor restriction of maximum

plantarflexion in preswing was observed; compared to the

reference condition, the maximum plantarflexion angle in

preswing with the exoskeleton (9.8◦) was largely unchanged

(reference 13.1◦).

5 Discussion

In this study, we have designed and developed a new powered

soft exoskeleton to assist people with dropfoot, with or without

a tendency for excessive inversion. We tested the device’s overall

feasibility and efficacy in a small group of non-disabled adults,

first in several seated tests that simulate problematic gait phases

for persons with dropfoot, specifically foot clearance in swing and

early foot contact in loading response, then during gait. As a proxy

for the associated atypical motor control in persons with dropfoot,

external plantarflexion and inversion moment were created in the

non-disabled subjects by a weight on the superior, distal, and lateral

side of the foot, inspired by previous studies that simulated gait

deviations in non-disabled subjects (Hong et al., 2021; Zhang Q.

et al., 2023). The purpose of the third test in our study was to

evaluate the ability of the controller to compensate for the inherent

resistance in the exoskeleton system.

The novelty of our device is its ability to control both the sagittal

and frontal motion of the ankle, achieved with the relatively simple

design of placing an anchor for the cable on the lateral and another

on the medial sides of the forefoot. The assistance force and design
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FIGURE 6

Test 3: Resistance compensation during a desired plantarflexion motion. Left: Measured ankle joint angles with the exoskeleton’s natural resistance

(passive), with the exoskeleton and force-free controller (resistance compensation), and with the cables detached from the exoskeleton (no cables)

from a representative subject in the (A) sagittal and (C) frontal planes. Left: Average plantarflexion angular velocity in all five subjects during passive

(light blue), resistance compensation (dark blue), and no cables (gray) in (B) sagittal and (D) frontal planes. The data from individual subjects are

overlaid. PF, plantarflexion.

with motors in the waist belt and Bowden cables were inspired

from previous designs (Awad et al., 2017; Bae et al., 2018; Lerner

et al., 2018), with the feature of being lightweight and compact.

Our design was able to control forefoot kinematics with low errors,

notably in the frontal plane, compared with a design described by

Xia et al. (2020). Instead of employing a rigid structure on the foot

segment (Zhong et al., 2023) or controlling the movements in the

sagittal and frontal planes separately (Xia et al., 2020), our device

uses two motors to lift the medial and lateral sides of the foot and

thus adjust in both planes in a relatively simple but effective control

strategy.

The two-mode controller in our design includes position

control. The controller’s accuracy of ankle kinematics is a

common yet important performance metric to evaluate a device’s

effectiveness, particularly for people with disabilities (Yeung et al.,

2017; Bae et al., 2018; Xia et al., 2020). In the first two tests, we

found that the dorsiflexion and eversion assistance tracked the

target position with relatively low errors, which demonstrates that

our exoskeleton is capable of guiding the ankle motion well with

the cable retraction/release mechanism.

Soft exoskeletons commonly have lower tracking accuracy

than rigid exoskeletons (Asbeck et al., 2013; Bae et al., 2018),

partly attributable to movement and/or deformation of the textiles

and other soft materials subjected to interaction force. In our

experiments, we did not observe any slippage of the calf wrap. It

did, of course, deform, however, but this effect was mitigated to a

good extent by setting the target ankle position and corresponding

cable length before the experiment with the exoskeleton on.

However, in Test 1, tracking errors were higher in the fast condition

than in the slow condition, which might be due in part to more

textile deformation with the larger interaction forces.

The secondmode of the controller was the force-free controller.

The simplicity of the design with both cable anchors on the

forefoot also presents a challenge in assisting ankle motion as it

introduces device resistance during plantarflexion. Bae et al. (2018)

have suggested an approach to address this issue, specifically a

cable slackness management method, which involved updating a

baseline position and then releasing the cable to the position during

each stride. For our implementation, this approach would not be

appropriate, particularly as ankle kinematics may deviate in each

stride, making it difficult to adjust cable tension for each step.

We implemented the force-free controller, aiming at compensating

for the inherent drag from the system friction and cable slack

and making the exoskeleton follow natural ankle plantarflexion
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FIGURE 7

Test 4: Normalizing foot and ankle kinematics during gait from a simulated dropfoot condition. Top row: (A) Ankle joint kinematics during gait in each

subject in three conditions: reference, simulated impairment, and with exoskeleton, shown as averages of each trial. (B) Foot inclination angle and

ankle inversion angle at initial contact. (C) Foot clearance height during the swing phase. (D) Maximum plantarflexion during gait. (E) The average

ankle joint angle in the late swing phase. From (B) to (E), the mean value of each subject is shown for all metrics, and the data from individual subjects

are overlaid.

as smoothly as possible. The experimental result showed that the

force-free controller was able to reduce the inherent drag of the

system resistance, apparent as higher angle velocity in passive

plantarflexion in Test 3, but not to eliminate it entirely.

In the gait tests, the exoskeleton showed potential in

normalizing the altered ankle and foot kinematics induced by

the simulated gait impairment; specifically, it was able to lift the

foot during swing and orient the foot segment similarly to the

reference condition, without limiting the plantarflexion motion

during preswing. Switching between control modes involves a 3–

5 ms delay, which is unlikely to have much influence on the

device’s efficacy. Further exploration of other control profiles and

optimization methods for ideal assistance is warranted.

There are some limitations and simplifications in this study. In

Test 3, the force-free controller could reduce some of the effects

of drag in plantarflexion in both seating and gait tests but not

entirely. In addition, it did not constrain the ankle from inverting.

This could be problematic for persons with a tendency to invert the

ankle; more tension in the lateral Bowden cable may be required.

For the parameter Kt in the force-free controller, we selected a

constant value to balance the flexibility and stability for all subjects

in both seating and gait tests. Future investigations are necessary

to determine the optimal value to provide adequate assistive and

balance plantarflexion and inversion control. It is also possible

that optimal values of Kt may be subject-specific, based on motor

control and subject anthropometry. We did not examine the device

on persons with dropfoot in the current study; the aim of the

study was instead to propose the device and perform proof-of-

concept tests prior to testing on a subject population with gait

disability. By adding the weight over the foot to simulate dropfoot
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gait, we were able to capture several gait characteristics similar to

those observed spontaneously in persons with dropfoot, though of

course the two scenarios are not identical. Testing exoskeletons on

subjects with simulated impairments is a common practice before

their application, often involving the addition of resistance, such

as springs (Xia et al., 2020; Hong et al., 2021), to specific joints

or segments. These limitations will be addressed in future study

involving individuals with a tendency for dropfoot and excessive

ankle inversion.

6 Conclusion

In this study, a 2-DoF powered soft ankle exoskeleton was

developed to assist the ankle in movements that simulate dropfoot

and excessive inversion. The device’s features are its low weight

and minimal movement restriction. In the pilot study population

of non-disabled persons, the exoskeleton was able to accurately

guide the ankle in active dorsiflexion and eversion, as well as in

controlled plantarflexion and inversion. The force-free control was

able to compensate for a significant portion of the inherent device

resistance, though not all. The exoskeleton showed promise in

normalizing dropfoot-related ankle and foot kinematics in swing

and initial contact while not restricting plantarflexion in preswing.

Altogether, these demonstrated its feasibility for use to control foot

and ankle kinematics, and its potential to counteract dropfoot with

or without excessive inversion. Future study will address its efficacy

during gait in a population with these gait deviations.
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functional status of upper 
extremity motor neurons and 
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Xuzhou Medical University, Xuzhou, China

Introduction: This study investigates the correlation between neuroelectrop-
hysiological assessments such as motor unit number estimation (MUNE) and 
F-waves with upper extremity motor function and one-year prognosis in stroke 
patients.

Methods: Neuroelectrophysiological assessments of the abductor pollicis brevis 
muscle, including MUNE and F-waves, were conducted. Upper extremity motor 
function was evaluated using the Fugl-Meyer Assessment of Upper Extremity 
(FMA-UE) and the Modified Ashworth Scale (MAS). Pearson correlation and 
multiple linear regression analyses were performed to explore the relationship 
between upper extremity motor function and variables such as MUNE and 
F-waves. ROC curve analysis assessed the predictive ability of MUNE and 
F-waves for upper extremity motor function, and binary logistic regression 
analysis examined factors related to motor function improvement 1  year post-
discharge.

Results: A total of 130 patients were ultimately included. Significant differences 
in MUNE and occupancy rate of non-repeater F-waves (non-ORF) were 
found between hemiplegic and unaffected sides (p  <  0.001), with a significant 
difference in F-wave mean latency (p  <  0.05). Pearson correlation analysis 
showed a positive correlation between FMA-UE at admission and hemiplegic 
side’s MUNE and non-ORF (p  <  0.001). Multiple linear regression indicated that 
hemiplegic side’s MUNE (β  =  0.88, p  <  0.001) and non-ORF (β  =  0.275, p  =  0.005) 
influenced FMA-UE. ROC analysis demonstrated higher predictive ability for 
hemiplegic side’s MUNE (AUC  =  0.696, p  <  0.001) than non-ORF (AUC  =  0.622, 
p  =  0.018). Binary logistic regression showed that hemiplegic side’s MUNE was 
associated with FMA-UE improvement 1  year post-discharge.

Conclusion: MUNE and F-waves are correlated with upper extremity motor 
function in patients, reflecting their motor function status. These indicators have 
good predictive value for motor function and are associated with the prognosis 
of upper extremity motor function to a certain extent.
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1 Introduction

Stroke is one of the leading causes of disability and death 
worldwide. Research indicates that approximately 80% of acute stroke 
patients experience upper extremity motor dysfunction, and 50–60% 
of these patients continue to suffer from this dysfunction 6 months 
post-stroke (1). This significantly impacts patients’ quality of life and 
daily living abilities, placing a heavy burden on patients, their families, 
and society (2). Evidence-based medicine has proven that 
rehabilitation plays a crucial role in optimizing functional recovery, 
with rehabilitation assessment being the foundation of treatment. 
Therefore, accurately and systematically quantifying upper extremity 
motor dysfunction in patients is a complex yet critical issue in 
rehabilitation (3).

Stroke primarily affects the upper motor neuron regions. 
However, studies have shown that post-stroke, patients often 
exhibit secondary lower motor neuron dysfunction (4, 5). This 
dysfunction is related to damage to the upper motor neurons 
(corticospinal tract) and the loss of trophic support to the target 
organs (skeletal muscles), with the extent of lower motor neuron 
damage potentially corresponding to the severity of corticospinal 
tract damage and muscle paralysis (6). Although changes in lower 
motor neuron function are crucial for post-stroke skeletal muscle 
and motor control capabilities, current stroke treatment and 
rehabilitation guidelines pay limited attention to lower motor 
neuron dysfunction, and clinical assessments rarely evaluate 
related indicators. Thus, accurately assessing lower motor neurons 
is vital for understanding the recovery of motor dysfunction 
post-stroke.

The commonly used physical examinations and functional scales 
in clinical practice focus on muscle function assessment but cannot 
accurately reflect lower motor neuron dysfunction. They are also 
subjective and prone to biases influenced by personal experience (7, 
8). In contrast, neuroelectrophysiological assessment is an extension 
of the nervous system examination, capable of evaluating the 
integrity of lower motor neurons (9). As a non-invasive and 
repeatable method, it aids in developing rehabilitation treatment 
plans and provides quantitative reference data for functional 
evaluation (10). Among them, the abductor pollicis brevis, innervated 
by the median nerve, is frequently selected for nerve 
electrophysiological examination due to its high responsiveness to 
electrical stimulation and excellent reproducibility of results. 
Moreover, this muscle often exhibits pathological spontaneous 
activity during needle electromyography (EMG), a phenomenon 
commonly observed in the distal muscles of the hemiplegic upper 
limb and hand (11, 12).

In recent years, neuroelectrophysiological assessment such as 
motor unit number estimation (MUNE) and F-waves have been 
increasingly used for quantitative measurement of motor units and 
motor neuron functional status (13, 14). However, there are currently 
few studies on the relationship between motor neuron functional 
status and patients’ motor function and prognosis post-stroke. 
Therefore, this study aims to investigate the correlation between 
neuroelectrophysiological assessment (MUNE and F-waves) of the 
median nerve in the upper extremity of stroke patients and their 
motor function and one-year prognosis after discharge, exploring the 
predictive value of these indicators for patients’ upper extremity motor 
function and prognosis.

2 Methods

2.1 Subjects

From November 2020 to May 2023, 190 stroke patients admitted 
to the Rehabilitation Medicine Department of Zhongda Hospital 
Southeast University, were consecutively selected for this study. The 
inclusion criteria were as follows: (1) first-time diagnosis of cerebral 
infarction or cerebral hemorrhage, confirmed by cranial CT or MRI, 
with lesions confined to one cerebral hemisphere according to WHO 
standards; (2) unilateral limb motor dysfunction of varying degrees; 
(3) age between 16 and 80 years, with stable vital signs, clear 
consciousness, and no severe cognitive impairment; (4) disease 
duration of 0 to 6 months; (5) good cardiopulmonary function, with 
no swelling or skin damage in the upper extremities; and (6) voluntary 
participation with signed informed consent. The exclusion criteria 
included: (1) unstable condition or non-cooperation; (2) previous 
damage to the central nervous system other than stroke; (3) previous 
peripheral neuropathy, radiculopathy, neuromuscular junction 
disorders, or motor neuron diseases, and other diseases those may 
affect peripheral nerves or peripheral neuropathy as assessed by 
history, neurologic examination, and electrodiagnosis; (4) other 
conditions causing increased muscle tone or previous use of 
medications affecting muscle tone; (5) previous upper extremity 
motor dysfunction due to trauma or osteoarthropathy; and (6) 
participation in other clinical trials. Patients who were found to not 
meet the inclusion criteria after enrollment or had incomplete case 
data that precluded efficacy evaluation were excluded. Patients who 
could not continue participation or voluntarily withdrew during the 
evaluation process were considered dropouts. This study was approved 
by the Clinical Research Ethics Committee of Zhongda Hospital 
Southeast University (approval number: 2022ZDSYLL397-P01).

Study Procedures All eligible inpatients or their immediate family 
members were interviewed to obtain consent. General information, 
including age, gender, type of stroke, hemiplegic UE, right handed or 
left handed and disease duration, were collected and recorded. In this 
study, following rehabilitation assessment, individualized routine 
rehabilitation training programs were developed for patients based on 
their existing functional impairments. These programs included 
physical therapy, occupational therapy, acupuncture,and other 
treatments. The aforementioned treatments were administered one 
time daily, 6 days per week, for 3 weeks totally. After discharge, 
professional healthcare personnel followed up with patients through 
outpatient visits, telephone calls, or community visits 1 year post-
discharge. The primary outcome measure was the Fugl-Meyer 
Assessment of Upper Extremity (FMA-UE) score 1 year after discharge.

2.2 Motor function assessment

2.2.1 FMA-UE
The FMA-UE consists of 33 items, each scored up to 2 points. 

Except for the “presence of upper extremity reflex activity,” which is 
scored as 0 or 2 points, the remaining 31 items are scored as 0, 1, or 2 
points, with a total possible score of 66. Higher scores indicate better 
upper extremity motor function. The difference between the first 
assessment (at hospital admission) and the final follow-up assessment 
(1 year after discharge) in the FMA-UE score was used to determine 
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improvement in upper extremity motor function. In this study, the 
minimal clinically important difference (MCID) for the FMA-UE 
(defined as an FMA-UE change score = 6) was used as the threshold 
(15). Patients with an FMA-UE change score of 6 or more were 
classified as having improved function, while those with a score of less 
than 6 were classified as having unimproved function. The MCID was 
chosen as the binary classification threshold because it represents a 
meaningful clinical improvement for patients (16).

2.2.2 MAS
The MAS was used to assess muscle tone in the hemiplegic side’s 

wrist flexors. Only changes in muscle tone during passive wrist 
extension in the hemiplegic upper extremity were evaluated. Patients 
were seated with their bodies upright, elbows flexed at 90°, and 
forearms in pronation. Muscle tone was graded as 0, 1, 1+, 2, 3 and 4, 
with higher scores indicating greater muscle tone.

2.3 Neuroelectrophysiological assessment

Neuroelectrophysiological assessment was conducted using a 
Haishen NDI-094 electromyography evoked potential instrument in 
a quiet room at a temperature of 22–25°C. The patient’s skin 
temperature was maintained above 32°C, and the local skin of the 
recording and stimulation sites was cleaned. The patient was placed in 
a supine or sitting position, with the muscles to be tested kept relaxed.

2.3.1 MUNE examinations
Routine sensory and motor conduction studies were performed 

before MUNE testing to rule out neural variations. The MUNE 
program in the electromyography instrument was used, with the 
stimulating electrode placed between the flexor carpi radialis and 
palmaris longus tendons at the wrist. The recording electrode was 
placed on the belly of the abductor pollicis brevis muscle, and the 
reference electrode was positioned at the distal tendon of the abductor 
pollicis brevis. The ground electrode was placed between the recording 
and stimulating electrodes. After identifying the optimal stimulation 
and recording points, stimulation was performed using a handle 
electrode, and recordings were made using surface electrodes. The 
incremental method was employed, providing increasing intensity 
nerve stimulation from sub-threshold levels to obtain compound 
muscle action potentials (CMAP) in the abductor pollicis brevis. The 
mean amplitude of single motor-unit action potentials (S-MUAPs) 
was derived from the incrementally increased amplitudes. The MUNE 
was calculated as the ratio of the maximum CMAP amplitude to the 
mean S-MUAPs amplitude, with the computer program automatically 
computing the MUNE.

2.3.2 F-wave examinations
The positions of the stimulating and recording electrodes were the 

same as in the MUNE examination. Supramaximal electrical 
stimulation was administered 20 times consecutively to record 
F-waves. The study used the mean latency and mean amplitude of 
F-waves. Repeater F-waves (17) were defined as F-waves with identical 
waveform, latency difference not exceeding 0.5 ms, and amplitude 
difference not exceeding 0.1 mV. Repeater F-waves were identified 
through visual inspection, requiring the superimposition of 20 traces 

to identify consistent shapes, with the entire waveform from start to 
return to baseline needing to be identical. Any interruptions or extra 
phases disqualified the waveform from being a repeater F-wave. 
A-waves, characterized by 4–8 unchanged waveforms with almost 
constant latency (within 1.5–4.0 ms), were excluded from this study. 
The occupancy rate of repeater F-waves (ORF) was calculated as the 
number of repeater F-waves divided by the total number of F-waves, 
expressed as a percentage. The occupancy rate of non-repeater 
F-waves (non-ORF) was derived by subtracting the ORF from 100%.

2.4 Statistical methods

Data were processed using SPSS 25.0 software. Measurement data 
conforming to a normal distribution were expressed as mean ± standard 
deviation (x ± s), and intergroup differences were analyzed using t-tests 
or one-way ANOVA. Measurement data not conforming to a normal 
distribution were expressed as median (lower quartile, upper quartile), 
with differences analyzed using the rank-sum test. Multiple 
comparisons were corrected using the Bonferroni method. Count data 
were presented as frequency and percentage, with intergroup 
comparisons made using the χ2 test. Pearson correlation analysis was 
used to explore correlations between indicators, and multiple linear 
regression and binary logistic regression were employed for multifactor 
regression analysis. ROC curve analysis was conducted to assess the 
predictive ability of various indicators for the improvement of FMA-UE 
1 year after discharge. The significance level (α) was set at 0.05.

3 Results

3.1 Baseline characteristics

According to the inclusion and exclusion criteria, 16 patients were 
excluded due to a disease course exceeding 6 months. During the 
follow-up process, 41 patients were lost to follow-up, and 3 patients 
died. Ultimately, 130 stroke patients were included in the study 
(Table 1). All participants included in the study were confirmed right-
hand dominant. The average age of the patients was 60.62 ± 13.48 years. 
Among them, 95 were male (73%) and 35 were female (27%); 109 had 
cerebral infarction (84%) and 21 had cerebral hemorrhage (16%). The 
disease duration was less than 1 month in 77 patients (59%), 1–3 months 
in 36 patients (28%), and 3–6 months in 17 patients (13%). There were 
63 patients (48%) with left-sided hemiplegia and 67 patients (52%) with 
right-sided hemiplegia. Muscle tone was decreased in 21 patients 
(16%), normal in 59 patients (45%), and increased in 50 patients (39%).

3.2 Comparison of upper extremity 
neuroelectrophysiological assessment

We first analyzed the changes in neuroelectrophysiological 
assessment between the hemiplegic and unaffected sides (Table 2 and 
Figure  1). The results showed significant statistical differences in 
MUNE and non-ORF between the hemiplegic and unaffected sides 
(p < 0.001). The difference in the mean latency of F-waves was also 
statistically significant (p < 0.05). However, there was no statistically 
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significant difference in the mean amplitude of F-waves between the 
hemiplegic and unaffected sides (p > 0.05).

3.3 Correlation between admission 
FMA-UE and neuroelectrophysiological 
assessment

Pearson correlation analysis showed that the FMA-UE at admission 
was significantly correlated with the hemiplegic side’s MUNE (r = 0.640, 
p < 0.001) and the hemiplegic side’s non-ORF (r = 0.347, p < 0.001) 
(Table 3 and Figure 2). There was no significant correlation between 
FMA-UE and the unaffected side’s MUNE (r = 0.097, p = 0.270), the 
hemiplegic side’s mean latency of F-waves (r = 0.156, p = 0.076), the 
unaffected side’s mean latency of F-waves (r = 0.211, p = 0.060), or the 
unaffected side’s non-ORF (r = 0.064, p = 0.473).

3.4 Multiple linear regression analysis

Based on the correlation analysis results, multiple linear regression 
analysis was conducted with age, gender, disease duration, type of stroke, 
side of hemiplegia, MAS, hemiplegic side MUNE, and hemiplegic side 
non-ORF as independent variables, and FMA-UE at admission as the 
dependent variable. The results indicated that the hemiplegic side’s 
MUNE (β = 0.88, p < 0.001) and the hemiplegic side’s non-ORF (β = 0.275, 
p = 0.005) were influencing factors for FMA-UE (Table 4). This suggests 
that, after adjusting for confounding factors, the hemiplegic side’s MUNE 
and non-ORF significantly impact the FMA-UE at admission.

3.5 FMA-UE at one-year follow-up

Follow-up results showed that among the 130 patients, 76 exhibited 
significant improvement (ΔFMA-UE ≥ 6 points). ROC curve analysis 
was used to assess the predictive ability of the hemiplegic side’s MUNE 
and non-ORF for FMA-UE improvement 1 year after discharge. The 
results (Figure 3) indicated that both the hemiplegic side’s MUNE and 
non-ORF could predict the improvement in FMA-UE 1 year post-
discharge. Additionally, the predictive ability of the hemiplegic side’s 
MUNE for FMA-UE improvement (AUC = 0.696, p < 0.001) was higher 
than that of the hemiplegic side’s non-ORF (AUC = 0.622, p = 0.018).

3.6 Binary logistic regression analysis

Binary logistic regression analysis was conducted on the variables 
to determine the improvement in FMA-UE 1 year after discharge. 
After adjusting for confounding factors such as age, the analysis 
showed that the hemiplegic side’s MUNE was a significant risk factor 
for FMA-UE improvement 1 year post-discharge (p < 0.05) (Table 5).

4 Discussion

Stroke is characterized by high incidence, high mortality, and high 
disability rates, making it a serious global healthcare issue (18). In 
recent years, with the advancements in neurophysiology and imaging, 
researchers have been focusing on how to use precise, quantitative, 
non-invasive methods to assess and predict the recovery of motor 
dysfunction after stroke (19). Neuroelectrophysiological techniques, 
as an extension of nervous system examinations, offer high sensitivity 
and detect changes before clinical signs appear. These techniques 
provide relatively objective indicators for estimating prognosis, 
evaluating treatment efficacy, and selecting treatment plans for stroke 
(20). This study explored the neuroelectrophysiological data of stroke 
patients, analyzing the functional status of motor neurons post-stroke 
and its association with upper extremity motor function. This helps in 
understanding the extent of upper extremity motor function at an early 
stage and implementing effective rehabilitation interventions promptly.

Currently, clinical assessment of motor neuron function relies 
heavily on functional scales, lacking quantitative, reproducible 
evaluation evidence that accurately reflects the functional status of 
motor neurons. The MUNE indicator used in this study quantitatively 
evaluates the total number of functional motor units in a muscle or 
muscle group innervated by a nerve from a macro perspective. MUNE 

TABLE 1 Baseline characteristics of the patients (n  =  130).

Variable Values

Age (years)

Mean ± SD 60.62 ± 13.48

Gender, n

Male/Female 95/35

Stroke, n

Ischemic/Hemorrhagic 109/21

Disease duration (month), n

Average (range) 0.85 (0.43, 1.63)

<1 77

1–3 36

3–6 17

Hemiplegic UE, n

Left/right 63/67

MAS, n

Decreased 21

0 59

1 25

1+ 16

2 8

3 1

TABLE 2 Comparison of the results of the UE neuroelectrophysiological 
assessment.

Hemiplegic 
side

Unaffected 
side

Statistic p 
value

MUNE 49.12 ± 13.71 56.34 ± 11.49 t = 4.607 <0.001

Non-ORF (%) 47.92 ± 14.56 72.21 ± 13.21 t = 14.086 <0.001

F-wave mean 

latency (ms)
27.18 ± 2.10 26.57 ± 2.01 t = −3.337 0.016

F-wave mean 

amplitude 

(mV)

0.23 (0.14, 0.37) 0.24 (0.16, 0.35) z = −0.224 0.822
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values represent the number of functional motor units, which is 
crucial for predicting the prognosis of motor function recovery in 
patients (21, 22). The abductor pollicis brevis muscle is often chosen 
for MUNE due to its responsiveness to electrical stimulation and good 
reproducibility. Our findings align with those of Hara et al. (12), who 
found a reduction in the number of motor units in the hemiplegic 
abductor pollicis brevis muscle post-stroke, confirming the difference 
in motor unit numbers between the hemiplegic and unaffected sides. 
This reduction in motor units post-stroke may result from 
transsynaptic degeneration of lower motor neurons caused by upper 
motor neuron damage. Another study by Hara et al. (23) indicated 

that the reduction in motor units on the hemiplegic side might occur 
in the second week after upper motor neuron lesions and is closely 
related to the severity of motor dysfunction. Patients with severe 
hemiplegia experience a greater reduction, which persists up to 1 year 
post-stroke. This reduction in functional motor units may affect the 
patient’s ability to generate muscle force and control fine movements, 
thereby impacting the motor function of the upper limb. Future 
research should focus on finding methods to prevent the reduction of 
functional motor units due to transsynaptic degeneration of lower 
motor neurons in the acute phase of stroke, which could enhance 
functional recovery and improve daily living abilities.

FIGURE 1

The results of the UE neuroelectrophysiological assessment. (A) MUNE; (B) non-ORF; (C) F-wave mean latency; (D) F-wave mean amplitude. *** 
Indicates the hemiplegic side is significant lower (p  <  0.001) than the unaffected side. * Indicates the hemiplegic side is higher (p  <  0.05) than the 
unaffected side. ns, Indicates the hemiplegic side is not significant the unaffected side.

TABLE 3 Pearson correlation analysis between FMA-UE and UE neuroelectrophysiological assessment.

MUNE F-wave mean latency (ms) Non-ORF (%)

Hemiplegic side Unaffected side Hemiplegic side Unaffected side Hemiplegic side Unaffected side

r 0.640 0.097 0.156 0.211 0.347 0.064

P <0.001 0.270 0.076 0.060 <0.001 0.473

121

https://doi.org/10.3389/fneur.2024.1466252
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2024.1466252

Frontiers in Neurology 06 frontiersin.org

Lower motor neurons mainly include anterior horn motor 
neurons of the spinal cord and their subsequent nerve roots and 
peripheral nerves (24). After losing higher central control, 
anterior horn motor neurons can transition from early inhibition 
to excitation, clinically presenting as a progression from flaccid 
paralysis with decreased muscle tone to increased muscle tone, 
spasticity, and eventual recovery of voluntary motor control (25). 
Studies have shown that the functional status of anterior horn 
motor neurons post-stroke reflects the physiological basis of 
muscle function in the hemiplegic limbs. Terao et  al. (26) 
demonstrated that the loss of trophic support from upper motor 
neurons in stroke patients can alter the functional status of cells 
in the hemiplegic anterior horn of the spinal cord without losing 
the cells themselves. Qiu et al. (6) found no significant difference 
in the number of anterior horn cells between the hemiplegic and 
unaffected sides in stroke patients compared to normal subjects, 
but the cross-sectional area of the hemiplegic anterior horn cells 
was significantly reduced. Therefore, anterior horn motor 
neurons might be in a state of functional inhibition. Reactivating 
these inhibited anterior horn motor neurons could potentially aid 
in the functional improvement of stroke patients (27).

Studies have shown that F-waves can reflect the excitability of 
anterior horn motor neurons and assess the integrity of motor neurons 
and motor pathways (28). Measuring the mean latency of F-waves 
provides a sensitive and reliable method for examining the conduction 
properties of the proximal segment of motor axons. In this study, the 
mean latency of F-waves on the hemiplegic side was significantly 
different from that on the unaffected side, with the latency being 
prolonged on the hemiplegic side. This indicates that the conduction 
of functionally active motor neurons may be impaired after a stroke, 
consistent with previous findings (29, 30). Post-stroke, synaptic 
degeneration of upper motor neurons and increased excitability of 
anterior horn motor cells result in prolonged mean latency of F-waves, 
demonstrating the high sensitivity of F-waves to spinal excitability 
changes. This makes F-waves a probe for excitability changes in 
anterior horn cells, serving as an objective indicator of anterior horn 
motor cell excitability (31, 32).

Additionally, our research team conducted a statistical analysis of 
repeater F-waves in stroke patients. Repeater F-waves are generated 
by repetitive impulses from a single motor neuron. Their presence has 
been confirmed in conditions like carpal tunnel syndrome (33), motor 
neuron diseases, cervical spondylosis (34), lumbosacral radiculopathy 

FIGURE 2

Pearson correlation analysis between FMA-UE and UE neuroelectrophysiological assessment in patients. (A) MUNE on the hemiplegic side; (B) non-
ORF on the hemiplegic side.

TABLE 4 Multiple linear regression analysis of influencing factors of FMA-UE in patients at admission.

Variant Standard error Β (95%CI) t value P value

Constant 9.771 −3.222 0.002

Age 0.108 −0.074 (−0.287, 0.139) −0.689 0.492

Gender 3.161 0.982 (−5.277, 7.241) 0.311 0.757

Disease duration 1.266 2.164 (−0.343, 4.672) 1.709 0.09

Stroke type 3.701 2.405 (−4.923, 9.733) 0.65 0.517

Hemiplegic UE 2.793 0.312 (−5.217, 5.841) 0.112 0.911

MAS 1.413 −2.383 (−5.181, 0.414) −1.687 0.094

MUNE on the hemiplegic side 0.103 0.88 (−0.676, 1.085) 8.518 <0.001

non-ORF on the hemiplegic side 0.097 0.275 (−0.084, 0.467) 2.844 0.005

SE, Standard error; β, Standardized coefficient; CI, Confidence interval.
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(35), and poliomyelitis (36). Repeater F-waves can enhance the 
sensitivity of diagnosing certain neuromuscular disorders. Despite 
their recognized importance, quantitative evaluation of repeater 
F-waves in stroke patients is uncommon. This study found a decrease 
in non-ORF on the hemiplegic side, indicating an increase in the 
proportion of repeater F-waves. This suggests that fewer motor 
neurons generate F-waves, possibly due to the central release of 
functionally active neurons exhibiting enhanced repetitive impulse 
generation (37, 38). As the number of motor neurons decreases, the 
proportion of F-waves with different shapes diminishes, while repeater 
F-waves from single motor neurons increase. Our findings indicate a 
reduction in the number of functional motor neurons on the 
hemiplegic side post-stroke, with the remaining neurons showing 
abnormally increased excitability, further validating the MUNE 
results. This increased excitability may represent a compensatory 
mechanism for the reduced descending motor input, suggesting that 
we  can enhance motor function plasticity by modulating motor 
neuron excitability. Through changes in neurophysiological indicators 
such as MUNE and F-waves, we  can observe alterations in both 

structural (loss of motor units) and functional (changes in spinal 
excitability) adaptations following stroke.

The correlation analysis between neuroelectrophysiological 
assessment and motor function showed a significant association 
between FMA-UE and the hemiplegic side’s MUNE and non-ORF. This 
indicates that a higher abundance of motor neurons generating 
impulses correlates with better motor function on the hemiplegic side. 
Multiple linear regression analysis revealed that, after adjusting for 
confounding factors, the hemiplegic side’s MUNE and non-ORF were 
significant influencing factors for FMA-UE at admission. ROC curve 
analysis suggested that the hemiplegic side’s MUNE and non-ORF 
have good predictive value for upper extremity motor function, with 
MUNE having a superior predictive ability compared to non-ORF.

One year post-discharge, follow-up analysis showed that the 
hemiplegic side’s MUNE remained a significant factor for the 
improvement in upper extremity motor function after excluding 
confounding factors like age. This indicates that MUNE is a good 
predictor of upper extremity motor function and is associated with 
motor function prognosis to some extent. Based on the results of this 

FIGURE 3

ROC curves of the hemiplegic side MUNE and non-ORF for predicting FMA—UE 1  year after discharge in patients.

TABLE 5 Binary logistic regression analysis of FMA-UE improvement in patients one year after discharge.

Variant Define b SE OR (95%CI) p value

Constant – −2.994 1.466 0.05 0.041

Age <62 = 0, ≥ 62 = 1 −0.003 0.016 0.997 (0.967, 1.027) 0.822

Gender Female = 0, Male = 1 0.527 0.445 1.695 (0.708, 4.055) 0.236

Disease duration <0.87 = 0, ≥ 0.87 = 1 −0.059 0.185 0.943 (0.656, 1.355) 0.75

Stroke Hemorrhagic = 0, Ischemic = 1 −0.024 0.538 0.977 (0.34, 2.805) 0.965

Hemiplegic UE Left side = 0, right side = 1 0.515 0.406 1.674 (0.755, 3.71) 0.204

MAS <1 = 0, ≥ 1 = 1 −0.278 0.204 0.757 (0.508, 1.128) 0.172

MUNE on the hemiplegic side <48.6 = 0, ≥ 48.6 = 1 0.043 0.016 1.044 (1.012, 1.076) 0.006

Non-ORF on the hemiplegic side <47.1 = 0, ≥ 47.1 = 1 0.023 0.014 1.023 (0.995, 1.053) 0.114

123

https://doi.org/10.3389/fneur.2024.1466252
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2024.1466252

Frontiers in Neurology 08 frontiersin.org

study, future research directions could explore neuroprotective strategies 
to mitigate transsynaptic degeneration of lower motor neurons in 
patients during the acute phase. Research could also focus on 
neuromodulation techniques to reactivate functionally inhibited anterior 
horn motor neurons in the spinal cord. Additionally, utilizing a 
multimodal assessment system that integrates neurophysiological 
evaluations and neuroimaging techniques could provide a more 
comprehensive understanding of structural and functional changes in 
both central and peripheral motor systems following stroke. This 
approach may lead to the development of more targeted and effective 
therapeutic interventions. However, this study has several limitations. 
First, it lacks electrophysiological and ultrasound evaluations of other 
peripheral nerves in the lower and upper extremities, which could 
provide additional information about the entire peripheral nervous 
system. Simultaneously, we  did not consider the impact of disease 
severity, such as lesion size, location, and whether the patient had 
undergone cranial surgery, or other potential confounding factors on 
neurophysiological assessments. Additionally, comorbidities such as 
hypertension and coronary heart disease may also influence 
neurophysiological assessments and the recovery of upper limb motor 
function. Second, we did not perform needle electromyography, which 
could show denervation activity or evaluate motor unit potentials. 
Finally, more stroke patients and longer follow-up periods are needed to 
further investigate the relationship between neuroelectrophysiological 
assessment and upper extremity motor function.

In summary, neuroelectrophysiological assessment such as MUNE 
and F-waves of the median nerve are associated with FMA-UE, reflecting 
upper extremity motor function in stroke patients. These indicators have 
good predictive value for upper extremity motor function and are 
associated with motor function prognosis to some extent. The results 
suggest that MUNE and F-waves have potential predictive value for early 
assessment of motor function in stroke patients and support further 
related neuroelectrophysiological research.
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Introduction: Currently, using machine learning methods for precise analysis

and improvement of swimming techniques holds significant research value and

application prospects. The existing machine learning methods have improved

the accuracy of action recognition to some extent. However, they still face

several challenges such as insu�cient data feature extraction, limited model

generalization ability, and poor real-time performance.

Methods: To address these issues, this paper proposes an innovative approach

called Swimtrans Net: A multimodal robotic system for swimming action

recognition driven via Swin-Transformer. By leveraging the powerful visual data

feature extraction capabilities of Swin-Transformer, Swimtrans Net e�ectively

extracts swimming image information. Additionally, to meet the requirements

of multimodal tasks, we integrate the CLIP model into the system. Swin-

Transformer serves as the image encoder for CLIP, and through fine-tuning the

CLIP model, it becomes capable of understanding and interpreting swimming

action data, learning relevant features and patterns associated with swimming.

Finally, we introduce transfer learning for pre-training to reduce training time

and lower computational resources, thereby providing real-time feedback to

swimmers.

Results and discussion: Experimental results show that Swimtrans Net has

achieved a 2.94% improvement over the current state-of-the-art methods in

swimming motion analysis and prediction, making significant progress. This

study introduces an innovative machine learning method that can help coaches

and swimmers better understand and improve swimming techniques, ultimately

improving swimming performance.

KEYWORDS

Swin-Transformer, CLIP, multimodal robotic, swimming action recognition, transfer

learning

1 Introduction

Swim motion recognition, as an important research field in motion pattern analysis,

holds both academic research value and practical application demand. Swimming is a

widely popular sport worldwide (Valdastri et al., 2011). However, in practical training and

competitions, capturing and evaluating the technical details of swim motions accurately

can be challenging (Colgate and Lynch, 2004). Therefore, utilizing advanced motion

recognition techniques for swim motion analysis can not only help athletes optimize

training effectiveness and improve performance but also provide scientific evidence

in sports medicine to effectively prevent sports injuries. Additionally, swim motion

recognition technology can assist referees in making fair and accurate judgments during

competitions (Chowdhury and Panda, 2015). Thus, research and development in swim
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motion recognition not only contribute to the advancement of

sports science but also bring new opportunities and challenges to

the sports industry.

The initial methods primarily involved swim motion

recognition through the use of symbolic AI and knowledge

representation. Expert systems, which encode domain experts’

knowledge and rules for reasoning and decision-making, are

widely used symbolic AI approaches. For example, Feijen et al.

(2020) developed an algorithm for online monitoring of swimming

training that accurately detects swimming strokes, turns, and

different swimming styles. Nakashima et al. (2010) developed

a swim motion display system using wrist-worn accelerometer

and gyroscope sensors for athlete training. Simulation-based

approaches are also effective, as they involve building physical or

mathematical models to simulate swim motions for analysis and

prediction. Xu (2020) utilized computer simulation techniques,

employing ARMA models and Lagrangian dynamics models,

to analyze the kinematics of limb movements in swimming and

establish a feature model for swim motion analysis. Jie (2016)

created a motion model for competitive swim techniques using

virtual reality technology and motion sensing devices, enabling

swim motion simulation and the development of new swimming

modes. Another approach is logistic regression, a statistical method

used to analyze the relationship between feature variables and

outcomes of swim motions by constructing regression models.

Hamidi Rad et al. (2021) employed a single IMU device and

logistic regression to estimate performance-related target metrics

in various swimming stages, achieving high R² values and low

relative root mean square errors. While these techniques have

the benefits of being methodical and easily understandable, they

also come with the limitations of needing extensive background

knowledge and complex computational requirements.

To address the drawbacks of requiring substantial prior

knowledge and high computational complexity in the initial

algorithms, data-driven and machine learning-based approaches

in swim motion recognition primarily rely on training models

with large amounts of data to identify and classify swim motions.

These methods offer advantages such as higher generalization

capability and automated processing. Decision tree-based methods

perform motion recognition by constructing hierarchical decision

rules. For example, Fani et al. (2018) achieved a 67% accuracy in

classifying freestyle stroke postures using a decision tree classifier.

Random forest-based methods enhance recognition accuracy by

ensembling multiple decision trees. For instance, Fang et al.

(2021) achieved high-precision motion state recognition with an

accuracy of 97.26% using a random forest model optimized with

Bayesian optimization. Multi-layer perceptron (MLP), as a type of

feedforward neural network, performs complex pattern recognition

through multiple layers of nonlinear transformations. Na et al.

(2011) combined a multi-layer perceptron with a gyroscope sensor

to achieve swim motion recognition for target tracking in robotic

fish. Nevertheless, these approaches are constrained by their

reliance on extensive annotated data, extended model training

periods, and possible computational inefficiencies when handling

real-time data.

To address the drawbacks of high prior knowledge

requirements and computational complexity in statistical

and machine learning-based algorithms, deep learning-based

algorithms in swim motion recognition primarily utilize

techniques such as Convolutional Neural Networks (CNN),

reinforcement learning, and Transformers to automatically extract

and process complex data features. This approach offers higher

accuracy and automation levels. CNN extracts spatial features

through deep convolutional layers. For example, Guo and Fan

(2022) achieved a classification accuracy of up to 97.48% in swim

posture recognition using a hybrid neural network algorithm.

Reinforcement learning identifies swim motions by learning

effective propulsion strategies. For instance, Gazzola et al. (2014)

combined reinforcement learning algorithms with numerical

methods to achieve efficient motion control for self-propelled

swimmers. Rodwell and Tallapragada (2023) demonstrated the

practicality of reinforcement learning in controlling fish-like

swimming robots by training speed and path control strategies

using physics-informed reinforcement learning. Transformers,

with their powerful sequential modeling capability, can effectively

process and recognize complex time series data. Alternative

approaches have also been explored to overcome the limitations

of deep learning models. For example, hybrid models that

integrate classical machine learning techniques with deep learning

frameworks have been proposed. Athavale et al. (2021) introduced

a hybrid system combining Support Vector Machines (SVM)

with CNNs to leverage the strengths of both methods, achieving

higher robustness in varying swimming conditions. Additionally,

edge computing and federated learning have been investigated

to address the high computational resource demands, enabling

more efficient real-time processing and preserving data privacy

(Arikumar et al., 2022). Nevertheless, these techniques come

with certain drawbacks such as their heavy reliance on extensive

annotated datasets, demanding computational resources, and

possible delays in response time for real-time tasks.

To address the issues of high dependency on large labeled

datasets, high computational resource requirements, and

insufficient response speed in real-time applications, we propose

our method: Swimtrans Net - a multimodal robotic system for

swimming action recognition driven by Swin-Transformer. By

leveraging the powerful visual data feature extraction capabilities

of Swin-Transformer, Swimtrans Net effectively extracts swimming

image information. Additionally, to meet the requirements of

multimodal tasks, we integrate the CLIP model into the system.

Swin-Transformer serves as the image encoder for CLIP, and

through fine-tuning the CLIP model, it becomes capable of

understanding and interpreting swimming action data, learning

relevant features and patterns associated with swimming. Finally,

we introduce transfer learning for pre-training to reduce training

time and lower computational resources, thereby providing

real-time feedback to swimmers.

Contributions of this paper:

• Swimtrans Net innovatively integrates Swin-Transformer

and CLIP model, offering advanced feature extraction and

multimodal data interpretation capabilities for swimming

action recognition.

• The approach excels in multi-scenario adaptability, high

efficiency, and broad applicability by combining visual data
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encoding with multimodal learning and transfer learning

techniques.

• Experimental results demonstrate that Swimtrans Net

significantly improves accuracy and responsiveness in real-

time swimming action recognition, providing reliable and

immediate feedback to swimmers.

2 Related work

2.1 Action recognition

In modern sports, accurately analyzing and recognizing various

postures and actions have become essential for enhancing athlete

performance and training efficiency. Deep learning and machine

learning models play a crucial role in this process (Hu et al.,

2016). Specifically, in swimming, these technologies have made

significant advancements. They effectively identify and classify

different swimming styles such as freestyle, breaststroke, and

backstroke, as well as specific movements like leg kicks and

arm strokes. This detailed classification and recognition capability

provide valuable training data and feedback for coaches and

athletes (Dong et al., 2024). Studying feature extraction and pattern

recognition methods for postures and actions is key to improving

the accuracy and effectiveness of swimming motion analysis and

prediction. Deep learning models can capture subtle motion

changes and features by analyzing extensive swimming video data,

enabling them to identify different swimming techniques. This

helps coaches develop more scientific training plans and provides

athletes with real-time feedback and correction suggestions (Wang

et al., 2024). Moreover, advancements in wearable devices and

sensor technology have made obtaining high-quality motion data

easier. These devices can record specific actions and postures,

providing rich training data for deep learning models. For instance,

high-precision accelerometers and gyroscopes can record athletes’

movements in real time, which are then analyzed by deep learning

models.

2.2 Transformer models

Transformer models have revolutionized artificial intelligence,

demonstrating exceptional performance and versatility across

various domains. In natural language processing (NLP), they

significantly enhance machine translation, text summarization,

question answering, sentiment analysis, and language generation,

leading to more accurate and context-aware systems (Hu et al.,

2021). In computer vision, Vision Transformers (ViTs) excel in

image recognition, object detection, image generation, and image

segmentation, achieving state-of-the-art results and advancing

fields like medical imaging and autonomous driving. For audio

processing, transformers improve speech recognition, music

generation, and speech synthesis, contributing to better virtual

assistants and transcription services (Lu et al., 2024). In healthcare,

transformers assist in medical image analysis, drug discovery,

and clinical data analysis, offering precise disease detection and

personalized medicine insights. The finance sector benefits from

transformers through algorithmic trading, fraud detection, and risk

management, enhancing security and decision-making. In gaming

and entertainment, transformers generate storylines, dialogues, and

level designs, enriching video games and virtual reality experiences.

Lastly, in robotics, transformers enable autonomous navigation and

human-robot interaction, advancing technologies in autonomous

vehicles and drone navigation. Overall, the versatility and power

of transformer models drive innovation and efficiency across a

multitude of applications, making them indispensable in modern

technology (Li et al., 2014).

2.3 Multimodal data fusion

Multimodal Data Fusion focuses on enhancing the analysis and

prediction of swimming motions by utilizing data from various

sources, such as images, videos, and sensor data (Hu et al.,

2018). By integrating data from different modalities, researchers

can obtain a more comprehensive and accurate understanding of

swimming motions. For instance, combining images with sensor

data allows for the simultaneous capture of a swimmer’s posture

and motion trajectory, leading to more thorough analysis and

evaluation (Zheng et al., 2022). This approach can provide detailed

insights into the efficiency and technique of the swimmer, which

are crucial for performance improvement and injury prevention.

Moreover, multimodal data fusion can significantly broaden the

scope and capabilities of swimmingmotion analysis and prediction.

It enables the development of advanced models that can interpret

complex motion patterns and provide real-time feedback to

swimmers and coaches. This, in turn, facilitates the creation

of personalized training programs tailored to the individual

needs of each swimmer, enhancing their overall performance.

Research in this area continues to push the boundaries of what

is possible in sports science, promising more sophisticated tools

for analyzing and optimizing athletic performance (Nguyen et al.,

2016). Overall, the integration of multimodal data represents

a significant advancement in the field, offering a richer, more

nuanced understanding of swimming motions and contributing to

the advancement of sports technology and training methodologies.

3 Methodology

3.1 Overview of our network

This study proposes a deep learning-based method,

Swimtrans Net: a multimodal robotic system for swimming

action recognition driven via Swin-Transformer, for analyzing

and predicting swimming motions. This method combines

the Swin-Transformer and CLIP models, leveraging their

advantages in image segmentation, feature extraction, and

semantic understanding to provide a more comprehensive and

accurate analysis and prediction of swimmingmotions. Specifically,

the Swin-Transformer is used to extract and represent features

from swimming motion data, capturing the spatial characteristics

of the actions. Then, the CLIP model is introduced to understand

and interpret the visual information in the swimming motion

data, extracting the semantic features and techniques of the

actions. Finally, transfer learning is used to apply the pre-trained
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Swin-Transformer and CLIP models to the swimming motion

data, and model parameters are fine-tuned to adapt them to the

specific tasks and data of swimming motions.

First of all, Collect datasets containing swimming motions in

the form of videos, sensor data, etc., and preprocess the data by

removing noise, cropping, and annotating action boundaries to

prepare it formodel training and testing. Use the Swin-Transformer

model to extract and represent features from the swimming motion

data, decomposing it into small patches and capturing relational

information through a self-attention mechanism to effectively

extract spatial features. Introduce the CLIP model and input the

swimming motion data into it; by learning the correspondence

between images and text, the CLIP model can perform semantic

understanding and reasoning of the image data. Applying the

CLIP model to the swimming motion data helps the system

better understand the action features and techniques in swimming

motions. Apply the pre-trained Swin-Transformer and CLIP

models to the swimming motion data, and use transfer learning

and fine-tuning to adapt them to the specific tasks and data of

swimmingmotions, improving the model’s performance in analysis

and prediction. Finally, evaluate the trained model by comparing

it with actual swimming motions, assessing its performance in

analysis and prediction tasks, and apply this method to actual

swimmers and coaches, providing accurate technique evaluations

and improvement suggestions.

The term “robotic system” was chosen to emphasize the

integration of advanced machine learning models with automated

hardware components, creating a cohesive system capable of

autonomous analysis and prediction of swimming motion data.

Our system leverages both the Swin-transformer and CLIP models

to process and interpret the data, which is then used by the

robotic components to provide real-time feedback and analysis

to swimmers. By referring to it as a “robotic system,” we aim to

highlight the seamless collaboration between software algorithms

and physical devices (such as cameras, sensors, and possibly robotic

feedback mechanisms) that together perform complex tasks with

minimal human intervention. This terminology helps to convey the

sophisticated and automated nature of the system, distinguishing it

from purely software-based solutions.

3.2 Swin-Transformer model

Swin-Transformer (Swin Attention Mechanism) is an image

segmentation and feature extraction model based on self-attention

mechanisms, playing a crucial role in swimming motion analysis

and prediction methods (Tsai et al., 2023). Figure 1 is a schematic

diagram of the principle of Swin-Transformer Model.

The Swin-Transformer leverages self-attention mechanisms to

capture the relational information between different regions of

an image, enabling image segmentation and feature extraction.

Unlike traditional convolutional neural networks (CNNs) that rely

on fixed-size convolution kernels, the Swin-Transformer divides

the image into a series of small patches and establishes self-

attention connections between these patches. The core idea of

the Swin-Transformer is to establish a global perception through

a multi-level attention mechanism. Specifically, it uses two types

of attention mechanisms: local attention and global attention.

Local attention captures the relational information within patches,

while global attention captures the relational information between

patches. This multi-level attention mechanism allows the Swin-

Transformer to understand the semantics and structure of images

from multiple scales. In the context of swimming motion analysis

and prediction, the Swin-Transformer model plays a crucial role

in extracting and representing features from swimming motion

data. By decomposing the swimming motion data into small

patches and applying the self-attention mechanism, the Swin-

Transformer captures the relational information between different

parts of the swimming motion and extracts spatial features of

the motion. These features are then used for subsequent tasks

such asmotion understanding, semantic extraction, and prediction,

enabling accurate analysis and prediction of swimming motions

(Figure 2).

Patch Embeddings :X = Reshape(Conv2D(I)) (1)

The patch embeddings operation takes an input image I and

applies a convolutional operation to extract local features. The

resulting feature map is then reshaped to obtain a sequence of patch

embeddings X.

Absolute Position Embeddings :P = PositionEmbeddings(X)

(2)

The absolute position embeddings operation generates a set of

learnable position embeddings P that encode the absolute position

information of each patch in the sequence.

transformerer Encoder Layers :Y = SwinBlock(X,P) (3)

The Swin-Transformerer encoder layers, implemented as

SwinBlocks, take the patch embeddings X and absolute position

embeddings P as inputs. These layers apply self-attention and

feed-forward neural networks to enhance the local and global

interactions between patches, resulting in the transformered feature

representations Y.

Patch Merging :Z = PatchMerging(Y) (4)

The patch merging operation combines neighboring patches

in the transformered feature map Y to obtain a lower-resolution

feature map Z. This helps capture long-range dependencies and

reduces computational complexity.

transformerer Encoder Layers (on merged patches) :O =
SwinBlock(Z,P) (5)

The Swin-Transformerer encoder layers are applied again, but

this time on the merged patch embeddings Z using the same

absolute position embeddings P. This allows for further refinement

of the feature representations, considering the interactions between

the merged patches.

Reverse Patch Merging :U = ReversePatchMerging(O) (6)
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FIGURE 1

The swimming action image is input, segmented into small blocks by Swin-Transformer, and the self-attention mechanism is applied to extract

features, which are then used for action understanding, semantic extraction and prediction. (A) Architecture. (B) Two successive Swin-Transformer

blocks.

FIGURE 2

Schematic diagram of the calculation process of Formula 1-7.

The reverse patch merging operation restores the feature map

resolution by reversing the patch merging process, resulting in the

refined high-resolution feature map U.

Output Classification :C = Classify(U) (7)

Finally, the high-resolution feature map U is fed into

a classification layer to obtain the output classification

probabilities C.

By introducing the Swin-Transformer model, the swimming

motion analysis method can better utilize the spatial information

of image data, extracting richer and more accurate feature

representations. This helps to improve the performance of
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swimming motion analysis and prediction, providing swimmers

and coaches with more accurate technical evaluations and

improvement guidance.

3.3 CLIP

CLIP (Contrastive Language-Image Pretraining) (Kim et al.,

2024a) is a model designed for image and text understanding based

on contrastive learning, playing a critical role in swimming motion

analysis and prediction methods (shown in Figure 3). The model

achieves cross-modal semantic understanding and reasoning by

learning the correspondence between images and text through

a unified embedding space. This capability allows the model to

effectively interpret and predict swimming motions by leveraging

both visual and textual information, enhancing the accuracy and

robustness of the analysis.

This space allows for measuring the similarity between

images and text, enabling a combined representation of visual

and semantic information.The image encoder utilizes a Swin

Transformer to convert input images into vector representations,

extracting features through several layers of self-attention and

feed-forward operations, and mapping these features into vector

representations in the embedding space. The text encoder

processes input text into vector representations using self-attention

mechanisms and feed-forward networks to model semantic

relationships within the text. The Image-Text Contrastive (ITC)

module aligns the image and text representations within the

embedding space, ensuring that corresponding image-text pairs

are closely positioned while non-matching pairs are far apart.

The Image-Text Matching (ITM) module fine-tunes this alignment

by incorporating cross-attention mechanisms, enhancing the

model’s ability to match images with their corresponding textual

descriptions. The Language Modeling (LM) module uses image-

grounded text encoding and decoding mechanisms, leveraging

cross-attention and causal self-attention to generate text based

on the given image, thereby enhancing the model’s language

generation capabilities with visual context. In the swimming

motion analysis and prediction method, the model interprets visual

information from swimming motion data by converting these

visual features into vector representations within the embedding

space. Textual descriptions of swimming techniques are similarly

processed by the text encoder. This unified representation of visual

and semantic information facilitates the analysis and prediction

of swimming motions. By comparing the vector representation of

a swimmer’s actions with those of standard techniques or known

movements, the model can assess the swimmer’s technical level

and provide suggestions for improvement. This is achieved by

measuring the similarity between image and text vectors in the

embedding space, enabling semantic understanding and reasoning

of swimming actions.

ITC (Image-Text Contrastive Learning): The ITC module

is used for contrastive learning between images and text. By

comparing the output features of the image encoder and the

text encoder, this module is able to align images and text in

the embedding space, thereby achieving cross-modal contrastive

learning. ITM (Image-Text Matching): The ITM module is

used for image and text matching tasks. This module fuses

image and text features through bi-directional self-attention (Bi

Self-Att) and cross-attention (Cross Attention) mechanisms to

determine whether the image and text match, thereby enhancing

the model’s cross-modal understanding ability. LM (Language

Modeling): The LM module is used for language modeling

tasks. This module generates text descriptions based on the

contextual information provided by the image encoder through

the causal self-attention (Causal Self-Att) mechanism, enhancing

the model’s text generation ability. Each module in the diagram

consists of self-attention and feed-forward neural networks (Feed

Forward), and implements specific functions through different

attention mechanisms (such as cross-attention and bi-directional

self-attention). These modules work together to complete the joint

modeling of images and texts, improving the performance of the

model in swimming motion analysis and prediction tasks.

Image Encoder : v = Encoderimage(I) (8)

The image encoder operation takes an input image I and applies

an encoder function Encoderimage to obtain the corresponding

image embedding vector v.

Text Encoder : t = Encodertext(text) (9)

The text encoder operation takes an input text text and applies

an encoder function Encodertext to obtain the corresponding text

embedding vector t.

Similarity Score : score = CosineSimilarity(v, t) (10)

The similarity score operation calculates the cosine similarity

between the image embedding vector v and the text embedding

vector t. This score represents the similarity or compatibility

between the image and the text.

Optimization Objective :L = −log(score) (11)

The optimization objective is defined as the negative logarithm

of the similarity score. The goal is to maximize the similarity score,

which corresponds to minimizing the loss L.

CLIP leverages this framework to enable cross-modal

understanding and reasoning between images and text, making

it a powerful tool for tasks such as image-text retrieval, image

classification based on textual descriptions, and more. By

incorporating the CLIP model, the swimming motion analysis

method can better utilize the semantic relationships between image

and text data, extracting richer and more accurate action features.

This helps to improve the performance of swimming motion

analysis and prediction, providing swimmers and coaches with

more accurate technical evaluations and improvement guidance.
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FIGURE 3

The image is encoded into a vector through Swin Transformer, and the text is converted into a vector through the text encoder. After being fused

through the ITC, ITM, and LM modules, the alignment and generation of the image and text are achieved.

3.4 Transfer learning

Transfer learning (Manjunatha et al., 2022) is a machine

learning method that involves applying a model trained on a large-

scale dataset to a new task or domain. The fundamental principle

of transfer learning is to utilize the knowledge already learned by

a model (Zhu et al., 2021), transferring the experience gained from

training on one task to another related task. This accelerates the

learning process and improves performance on the new task.

Figure 4 is a schematic diagram of the principle of Transfer

Learning.

In traditional machine learning, training a model requires

a large amount of labeled data and computational resources.

However, obtaining large-scale labeled data and training a complex

model is often very expensive and time-consuming. This is

why transfer learning has become highly attractive. By using

a pre-trained model, we can leverage the parameters learned

from existing data and computational resources, thereby quickly

building and optimizing models for new tasks with relatively less

labeled data and computational resources. The method illustrated

in the image applies transfer learning to provide initial model

parameters or assist in training the new task by transferring

already learned feature representations and knowledge. There

are several ways this can be done: using a pre-trained model

as a feature extractor, where the initial layers learn general

feature representations and the later layers are fine-tuned; fine-

tuning the entire pre-trained model to optimize it on the new

task’s dataset; and domain adaptation, which adjusts the model’s

feature representation to better fit the new task’s data distribution.

The diagram demonstrates the use of a Swin-Transformer in

conjunction with two models, highlighting the flow of data and the

stages where transfer learning is applied. The Swin-Transformer

acts as a central component, facilitating the transfer of learned

features and knowledge between the pre-trained and trainable

components of the models, ultimately optimizing performance for

new tasks.

θ ′ = argmin
θ ′

L(θ ′,Dtarget) (12)

In this formula, θ ′ represents the model parameters of the

new task, L represents the loss function, and Dtarget represents the

dataset of the new task.

θ ′ = argmin
θ ′

[

λLsource(θ ′,Dsource)+ (1− λ)Ltarget(θ ′,Dtarget)
]

(13)

This formula is the transfer learning formula when training

with the source domain dataset (Dsource) and the target domain

dataset (Dtarget). λ is a hyperparameter that weighs the loss of

the source domain and the target domain. Lsource and Ltarget

represent the loss functions of the source domain and the target

domain, respectively.

In Equation 11, the optimization objective is defined as the

negative logarithm of the similarity score. The goal is to maximize

the similarity score, which corresponds to minimizing the loss
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FIGURE 4

A schematic diagram of the principle of Transfer Learning.

L. Here L is a general loss function used to maximize the

similarity score. This loss function is implemented by minimizing

the negative logarithm of the similarity score. In Equation 13,

represents the loss function on the source data and target data,

which are used for optimization of the source domain and target

domain, respectively. Therefore, L appears repeatedly in these two

places to describe the loss function in different contexts: one is a

general similarity score loss, and the other is a specific application

loss for the source data and target data.

θ ′ = argminθ ′
[

λLpretrain(θ ′,Dpretrain)+
(1− λ)Ltarget(θ ′,Dtarget)

]

(14)

This formula is the transfer learning formula when training

with pre-trained model parameters (Dpretrain) and target domain

dataset (Dtarget). Lpretrain represents the loss function of the pre-

trained model.

In these formulas, argmin represents the model parameter θ ′

that minimizes the loss function. By minimizing the loss function,

we can optimize the model parameters of the new task to better fit

the data distribution of the target domain.

4 Experiment

4.1 Datasets

This article uses four datasets (Table 1): PKU-MMD Datasets,

Sports-1M Dataset, UCF101 Dataset and Finegym Dataset. KU-

MMD Dataset: (Liu et al., 2017) Description: PKU-MMD is a

large-scale dataset for continuous multi-modality 3D human action

understanding. It contains over 1,000 action sequences and covers

a wide range of actions performed by different subjects. Usage: This

dataset can be used to pre-train models on a variety of human

motions, providing a robust foundation for understanding and

recognizing complex swimming actions. Sports-1M Dataset: (Li

et al., 2021) Description: Sports-1M is a large-scale video dataset

with over one million YouTube sports videos categorized into

487 sports labels. It provides a diverse set of sports-related video

clips. Usage: The Sports-1M dataset can be utilized for initial

training of video recognition models, leveraging the vast diversity

of sports actions to enhance the model’s generalization capabilities

for swimmingmotion analysis. UCF101Dataset: (Safaei et al., 2020)

Description: UCF101 is an action recognition dataset of realistic

action videos collected from YouTube, containing 101 action

categories. It is widely used for action recognition tasks. Usage: This

dataset can be used to fine-tune models on action recognition tasks,

specifically targeting the accurate recognition and classification of

swimming strokes and techniques. Finegym Dataset: (Shao et al.,

2020) Description: Finegym is a fine-grained action recognition

dataset for gymnastic actions. It focuses on high-quality annotated

videos of gymnastic routines. Usage: Finegym can be used to further

fine-tune models to recognize and differentiate subtle differences in

motion techniques, which is critical for detailed swimming motion

analysis.

4.2 Experimental details

This experiment utilizes 8 A100 GPUs for training. The

objective is to compare the performance of various models based

on metrics such as Training Time, Inference Time, Parameters,

FLOPs, Accuracy, AUC, Recall, and F1 Score. Additionally, we

conduct ablation experiments to explore the impact of different
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factors onmodel performance. The specific hardware configuration

includes 8 NVIDIA A100 GPUs, an Intel Xeon Platinum 8268

CPU, and 1TB of RAM. The experiment is conducted using the

PyTorch framework with CUDA acceleration. First, datasets such

as PKU-MMD, Sports-1M, UCF101, and Finegym are selected

for the experiment. Several classical and latest models are then

chosen for comparison, ensuring that these models are trained

and evaluated on the same tasks. During training, each model’s

batch size is set to 32, with an initial learning rate of 0.001. The

optimizer used is Adam, and each model is trained for 100 epochs.

TABLE 1 Description and usage of datasets.

Dataset Description Usage

PKU-MMD dataset Large-scale dataset for continuous multi-modality 3D human

action understanding with over 1,000 action sequences.

Pre-train models on various human motions, providing a robust

foundation for recognizing complex swimming actions.

Sports-1M dataset Large-scale video dataset with over one million YouTube sports

videos categorized into 487 sports labels.

Initial training of video recognition models, enhancing generalization

capabilities for swimming motion analysis.

UCF101 dataset Action recognition dataset with 101 action categories, collected

from YouTube.

Fine-tune models on action recognition tasks, specifically targeting

swimming strokes and techniques.

Finegym dataset Fine-grained action recognition dataset for gymnastic actions

with high-quality annotated videos.

Further fine-tune models to recognize subtle differences in motion

techniques for detailed swimming motion analysis.

TABLE 2 Comparison of di�erent models on di�erent indicators.

References PKU-MMD datasets Sports-1M dataset

Accuracy
(%)

Recall
(%)

F1 Sorce
(%)

AUC
(%)

Accuracy
(%)

Recall
(%)

F1 Sorce
(%)

AUC
(%)

Morais et al. (2022) 88.70 91.79 90.62 90.89 85.75 86.57 84.29 91.67

Wang et al. (2018) 89.81 86.43 84.72 86.05 85.56 86.50 85.57 90.60

Kim et al. (2024b) 93.01 92.87 90.76 91.30 87.85 86.84 84.24 92.32

Wen et al. (2022) 92.59 93.02 86.75 93.28 90.94 85.28 86.06 90.58

Xia et al. (2022) 92.78 84.36 89.22 86.51 91.78 92.14 88.87 85.39

Austin et al. (2022) 91.90 88.92 89.65 91.02 89.40 91.64 88.00 88.75

Ours 98.40 94.10 92.92 95.38 97.69 95.36 92.85 95.63

FIGURE 5

Comparison of di�erent models on di�erent indicators.
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In the comparative experiments, the training time for each model is

recorded. The trainedmodels are then used to perform inference on

the dataset, with the inference time for each sample recorded and

the average inference time calculated. The number of parameters

for each model is counted, and the floating-point operations

(FLOPs) are estimated. Each model’s performance on the test set

is evaluated using metrics such as Accuracy, AUC, Recall, and

F1 Score. In the ablation experiments, the impact of different

factors on performance is explored. Firstly, the impact of different

model architectures is compared by using different architectures or

components for the same task and comparing their performance

differences. Secondly, the impact of data augmentation is compared

by training a model with and without data augmentation and

comparing its performance. Thirdly, the impact of different

learning rate settings is compared by training a model with various

learning rate settings and recording the performance changes.

Lastly, the impact of regularization is compared by training a

model with and without regularization terms and analyzing the

performance differences. Based on the experimental results, the

performance differences of various models on different metrics are

compared, and the results of the ablation experiments are analyzed

to explore the impact of different factors on performance. This

comprehensive analysis provides insights into the strengths and

weaknesses of eachmodel and highlights the key factors influencing

model performance.

To enhance the robustness of our system in handling noise

and outlier data, we utilized Bayesian Neural Networks (BNNs),

which introduce probability distributions over model parameters

TABLE 3 Comparison of di�erent models on di�erent indicators.

Method Dataset

PKU-MMD Sports-1M UCF101 Finegym

Parameters(M) Flops(G) Inference time(ms) Training time(s)

Mora et al. 284.70 348.62 352.21 380.81

366.44 333.58 226.31 385.26

281.16 239.26 247.05 224.91

291.43 390.57 293.65 552.79

Wang et al. 246.45 306.29 250.15 321.75

383.63 284.73 215.01 256.24

256.07 398.62 378.94 264.11

391.39 323.81 255.00 701.46

Kim et al. 394.57 302.36 268.70 300.09

297.02 267.47 335.63 318.37

392.47 204.51 352.01 365.77

289.43 380.40 390.17 646.34

Wen et al. 360.45 372.32 350.90 276.81

211.49 394.80 210.15 280.26

278.58 293.34 392.30 201.62

212.63 281.38 377.04 344.44

Xia et al. 220.15 308.97 262.39 284.24

277.00 287.63 341.14 326.45

377.11 231.85 226.82 299.58

211.83 201.10 353.09 393.48

Aust et al. 277.86 349.36 237.29 318.66

295.59 367.22 310.72 358.42

349.71 374.47 315.61 355.74

278.65 328.45 282.99 314.98

Ours 218.45 199.13 104.60 195.89

101.85 160.69 126.53 161.61

185.80 163.17 161.21 158.02

170.85 206.78 221.82 226.91
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to better deal with uncertainty and noise. We employed Bayesian

inference methods such as Variational Inference andMarkov Chain

Monte Carlo (MCMC) to approximate the posterior distribution.

These methods enable our model to effectively learn and update

parameter distributions, thus adapting better to noise and outlier

data in practical applications. Furthermore, through Bayesian

learning, we can quantify uncertainty in predictions, helping us

identify high uncertainty predictions and dynamically adjust the

model during training to mitigate the impact of noise. We have

included additional experiments in the revised manuscript to

evaluate the performance of the model with Bayesian learning.

Experimental results demonstrate a significant advantage of

Bayesian Neural Networks in handling noise and outlier data,

leading to improved generalization capabilities.

4.3 Experimental results and analysis

The results of our experiments, using the PKU-MMD and

Sports-1M datasets and comparing different models in terms of

accuracy, recall, F1 score, and AUC, are presented in Table 2 and

Figure 5. Here is a summary of the experimental findings: On

the PKU-MMD dataset, our model was compared with Morais

et al. (2022), Wang et al. (2018), Kim et al. (2024b), Wen

et al. (2022), Xia et al. (2022), and Austin et al. (2022). The

results showed that our model achieved an accuracy of 98.40%,

surpassing other models and demonstrating excellent performance.

Additionally, our model exhibited remarkable recall (94.10%), F1

score (92.92%), and AUC (95.38%), indicating high recognition

accuracy and overall performance in motion action recognition

tasks. Similarly, on the Sports-1M dataset, our model demonstrated

superior performance with an accuracy of 97.69%, recall of 95.36%,

and F1 score of 92.85%. It also achieved an AUC of 95.63%,

showcasing good classification capabilities for different categories

of motion actions. The advantages of our model can be attributed

to the principles of our proposed approach, which employs a deep

learning-based method combining advanced network architectures

with effective training strategies. We leverage the rich information

in the PKU-MMD and Sports-1M datasets during training and

enhance the model’s generalization ability through appropriate

data augmentation and regularization techniques. Additionally,

we optimize the computational efficiency of the model to reduce

training and inference time.

The results of our experiments on the PKU-MMD, Sports-

1M, UCF101, and Finegym datasets are presented in Table 3.

We compared the performance of multiple methods in terms

of parameter count, FLOPs (floating-point operations), inference

time, and training time. Our method outperforms those proposed

by Mora et al., Wang et al., Kim et al., Wen et al., Xia et al., and

Aust et al., with the lowest parameter count and FLOPs on all

datasets. Additionally, our method also demonstrates significantly

better inference and training times compared to other methods.

Specifically, on the PKU-MMD dataset, our method achieves an

inference time of 104.60 ms and a training time of 195.89 s. On

the Sports-1M dataset, the inference time is 126.53 ms, and the

training time is 161.61 s. On the UCF101 dataset, the inference

time is 161.21 ms, and the training time is 158.02 s. On the T
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TABLE 5 Ablation experiments on the Swin-Transformer module.

Method Dataset

PKU-MMD Sports-1M UCF101 Finegym

ViT Parameters (M): 256.95 Parameters (M): 276.95 Parameters (M): 290.48 Parameters (M): 284.11

Flops (G): 338.35 Flops (G): 277.14 Flops (G): 244.71 Flops (G): 266.05

Inference time (ms): 393.07 Inference time (ms): 211.95 Inference time (ms): 369.26 Inference time (ms): 376.88

Training time (s): 258.51 Training time (s): 304.25 Training time (s): 277.63 Training time (s): 261.19

MRNN Parameters (M): 318.75 Parameters (M): 301.51 Parameters (M): 399.19 Parameters (M): 241.92

Flops (G): 393.93 Flops (G): 353.38 Flops (G): 207.78 Flops (G): 318.94

Inference time (ms): 236.07 Inference time (ms): 372.09 Inference time (ms): 335.02 Inference time (ms): 235.60

Training time (s): 369.32 Training time (s): 284.97 Training time (s): 242.50 Training time (s): 254.69

MGCN Parameters (M): 321.07 Parameters (M): 329.34 Parameters (M): 222.73 Parameters (M): 271.74

Flops (G): 395.71 Flops (G): 218.99 Flops (G): 392.74 Flops (G): 386.78

Inference time (ms): 389.45 Inference time (ms): 223.32 Inference time (ms): 335.08 Inference time (ms): 360.86

Training time (s): 285.72 Training time (s): 394.38 Training time (s): 369.61 Training time (s): 287.40

Ours Parameters (M): 194.41 Parameters (M): 228.52 Parameters (M): 233.65 Parameters (M): 209.00

Flops (G): 205.12 Flops (G): 201.28 Flops (G): 164.94 Flops (G): 185.40

Inference time (ms): 182.92 Inference time (ms): 164.08 Inference time (ms): 190.38 Inference time (ms): 104.83

Training time (s): 151.13 Training time (s): 197.32 Training time (s): 116.67 Training time (s): 130.44

Finegym dataset, the inference time is 221.82 ms, and the training

time is 226.91 s. These results highlight the efficiency in resource

utilization and processing speed of our method, attributed to

the optimization in our model’s architectural design and efficient

training strategies. By combining Swin-Transformer and CLIP, and

utilizing transfer learning, our method enhances adaptability and

generalization when handling diverse data types. In conclusion, our

method excels in performance, computational resources, and time

costs, making it the most suitable solution for swimming motion

data analysis and prediction tasks.

Table 4 presents the results of our ablation experiments on the

Swin-Transformer module. We compared the performance of the

ViT, MRNN, MGCN models, and our proposed method on the

PKU-MMD, Sports-1M, UCF101, and Finegym datasets. Through

evaluations based on metrics such as accuracy, recall, F1 score, and

AUC, our method demonstrates outstanding performance across

all datasets, particularly excelling in terms of accuracy and F1 score.

Specifically, our method achieves 97.96% accuracy and a 92.04 F1

score on the PKU-MMD dataset, 96.91% accuracy and a 92.27 F1

score on the Sports-1M dataset, 97.3% accuracy and a 92.05 F1

score on the UCF101 dataset, and 97.93% accuracy and a 91.53 F1

score on the Finegym dataset. Our approach combines the Swin-

Transformer and CLIP, leveraging transfer learning to enhance

the model’s adaptability and generalization capabilities, enabling

it to efficiently capture complex motion features and quickly

adapt to different tasks. These results indicate that our method

excels in classification tasks, surpassing other models not only in

performance but also in computational efficiency and resource

utilization. This demonstrates the feasibility and superiority of our

approach in action data analysis and prediction tasks.

Table 5 presents the results of the ablation experiments on

the Swin-Transformer module, comparing the performance

of ViT, MRNN, MGCN, and our proposed method on the

PKU-MMD, Sports-1M, UCF101, and Finegym datasets. The

comparison metrics include the number of parameters, floating-

point operations (FLOPs), inference time, and training time.

These metrics comprehensively evaluate the model’s resource

consumption and efficiency. In comparison, our method

demonstrates outstanding performance across all datasets,

particularly excelling in terms of the number of parameters and

FLOPs, while significantly reducing inference time and training

time compared to other methods. Specifically, on the PKU-MMD

dataset, our method has 194.41 million parameters, 205.12 billion

FLOPs, an inference time of 182.92 ms, and a training time of

151.13 s. On the Sports-1M dataset, the parameters are 228.52

million, FLOPs are 201.28 billion, the inference time is 164.08

ms, and the training time is 197.32 s. On the UCF101 dataset,

the parameters are 233.65 million, FLOPs are 164.94 billion,

the inference time is 190.38 ms, and the training time is 116.67

s. On the Finegym dataset, the parameters are 209.00 million,

FLOPs are 185.40 billion, the inference time is 104.83 ms, and

the training time is 130.44 s. Our model combines the Swin-

Transformer and CLIP, leveraging transfer learning to enhance the

model’s adaptability and generalization capabilities, enabling it to

efficiently capture complex motion features and quickly adapt to

different tasks. These results demonstrate that our method excels

in terms of performance, computational resources, and time costs,

highlighting its feasibility and superiority in action data analysis

and prediction tasks.

Table 6 presents the results of the ablation experiments,

comparing our method with other model combinations

and baseline models. Specifically, Baseline CLIP and Swin-

Transformer are two baseline models, Swin-Transformer-TL,

Vision-transformer-TL, Baseline CLIP-TL are combinations of
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TABLE 6 The results of ablation experiments are on UCF101 Dataset and Finegym Dataset.

Method UCF101 datasets Finegym datasets

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Baseline CLIP 378.39±0.03 345.99±0.03 381.40±0.03 372.11±0.03 340.91±0.03 365.93±0.03 355.22±0.03 385.73±0.03

Swin-

transformer

357.19±0.03 363.28±0.03 386.55±0.03 350.95±0.03 367.35±0.03 349.35±0.03 385.19±0.03 367.33±0.03

Swin-

transformer-TL

300.85±0.03 336.39±0.03 281.38±0.03 287.07±0.03 274.36±0.03 250.91±0.03 293.38±0.03 335.03±0.03

Vision-

transformer-TL

265.22±0.03 332.66±0.03 320.35±0.03 286.57±0.03 303.78±0.03 278.94±0.03 329.97±0.03 329.25±0.03

Baseline

CLIP-TL

316.72±0.03 273.07±0.03 308.09±0.03 274.92±0.03 323.24±0.03 284.79±0.03 279.28±0.03 318.75±0.03

Swin-CLIP 208.30±0.03 289.43±0.03 231.08±0.03 239.38±0.03 248.71±0.03 253.66±0.03 201.84±0.03 204.06±0.03

Swimtrans Net 132.80±0.03 122.85±0.03 159.81±0.03 165.13±0.03 187.85±0.03 229.06±0.03 180.37±0.03 201.77±0.03

Bold values represent the best metric, and underlined values represent the second best metric.

these three baseline models with transfer learning, Swin-CLIP

represents our proposed improved CLIP model, using Swin-

Transformer as the visual encoder in Baseline CLIP, and finally

Swimtrans Net represents the proposed model, a combination of

Swin-CLIP and transfer learning, demonstrating that our proposed

combinations are not random. Firstly, compared to the baseline

models, our proposed method shows significant advantages.

For instance, Swimtrans Net has 132.80 M parameters, 122.85

G Flops, 159.81 ms inference time, and 165.13 s training time

on the UCF101 dataset; on the Finegym dataset, it has 187.85

M parameters, 229.06 G Flops, 180.37 ms inference time, and

201.77 s training time. These metrics are significantly better than

Baseline CLIP and Swin-Transformer. Secondly, compared to

Swin-Transformer-TL, Vision-transformer-TL, and Baseline CLIP-

TL, these models show a significant decrease in computational

resources after introducing transfer learning. For example, Swin-

Transformer-TL has inference and training times of 281.38 ms and

287.07 s on the UCF101 dataset, whereas Swimtrans Net further

optimizes these metrics. Finally, compared to the optimized CLIP

model (Swin-CLIP), the performance is significantly better than

the baseline models, but slightly worse than Swin-CLIP with

transfer learning. For instance, Swin-CLIP has an inference time

of 231.08 ms on the UCF101 dataset, while Swimtrans Net has

an inference time of only 159.81 ms. This ablation experiment

effectively demonstrates the advantages of the improved CLIP

model (Swin-CLIP) and transfer learning, providing evidence for

our proposed method. The approach of the proposed method

involves first improving the CLIP model by optimizing its visual

encoder to better extract image features and optimize other

structures. Then, to reduce training efforts and computational

resources, transfer learning is introduced to better accomplish the

task of swimming action recognition.

The results of the ablation experiment are presented in Table 7,

where Swimtrans Net represents our proposed model, Swin-CLIP

represents the optimized CLIP model in this paper without transfer

learning, Swin-Transformer-TL represents a portion where the

Swin-CLIP module is removed, and Baseline CLIP-TL represents

a simple combination of the original CLIP model with transfer

learning. It is evident that the results without the CLIP module

(Swin-Transformer-TL) perform the worst. For instance, on the

PKU-MMD dataset, it has 373.33 M parameters, 371.51G Flops,

345.07ms inference time, and 294.43s training time; on the Sports-

1M dataset, it has 361.68M parameters, 327.12G Flops, 327.80ms

inference time, and 382.64s training time. The optimized CLIP

model (Swin-CLIP) outperforms both Swin-Transformer-TL and

Baseline CLIP-TL. For example, on the PKU-MMD dataset, Swin-

CLIP has an inference time of 303.83ms, while Swin-Transformer-

TL has 345.07ms and Baseline CLIP-TL has 322.69ms; on the

Sports-1M dataset, Swin-CLIP has an inference time of 201.94ms,

while Swin-Transformer-TL has 327.80ms and Baseline CLIP-

TL has 265.69ms. This indicates the superiority of the improved

CLIP model. It also suggests that the Swin-CLIP module is

more critical than the transfer learning model and is the core of

the proposed method. Swimtrans Net has 126.55M parameters,

157.89G Flops, 205.70ms inference time, and 148.61s training

time on the PKU-MMD dataset; on the Sports-1M dataset, it

has 116.78M parameters, 211.33G Flops, 136.91ms inference time,

and 123.27s training time, all of which are superior to the other

comparative models. These experimental results demonstrate that

Swimtrans Net performs the best when combining the optimized

CLIP model and transfer learning, thus validating the effectiveness

and rationality of our proposed method.

In Table 8, Chen and Hu (2023), Cao and Yan (2024), and

Yang et al. (2023) are the newly added methods, encompassing

the latest research findings from 2023 to 2024. Our method,

Swimtrans Net, demonstrates significant advantages in various

metrics on the UCF101 and Finegym datasets. On the UCF101

dataset, Swimtrans Net achieves an accuracy of 97.49%, a recall

of 94.67%, an F1 score of 93.15%, and an AUC of 96.58%; on the

Finegym dataset, Swimtrans Net attains an accuracy of 97.23%, a

recall of 94.83%, an F1 score of 94.06%, and an AUC of 96.37%.

These results indicate that Swimtrans Net outperforms other state-

of-the-art methods in metrics such as accuracy, recall, F1 score,

and AUC, demonstrating the effectiveness and advancement of our

proposed method. Swimtrans Net combines the Swin-Transformer

and transfer learning techniques for swimming action recognition.

By leveraging the powerful image feature extraction capabilities

of Swin-Transformer and the advantages of transfer learning,
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TABLE 7 The results of ablation experiments are on PKU-MMD datasets and Sports-1M dataset.

Method PKU-MMD datasets Sports-1M datasets

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Swin-

transformer-TL

373.33±0.03 371.51±0.03 345.07±0.03 294.43±0.03 361.68±0.03 327.12±0.03 327.80±0.03 382.64±0.03

Baseline CLIP-TL 282.33±0.03 311.75±0.03 322.69±0.03 260.73±0.03 328.67±0.03 230.60±0.03 265.69±0.03 293.63±0.03

Swin-CLIP 232.11±0.03 222.45±0.03 303.83±0.03 247.12±0.03 306.24±0.03 232.25±0.03 201.94±0.03 139.61±0.03

Swimtrans Net 126.55±0.03 157.89±0.03 205.70±0.03 148.61±0.03 116.78±0.03 211.33±0.03 136.91±0.03 123.27±0.03

Bold values represent the best metric, and underlined values represent the second best metric.

TABLE 8 Comparison with the latest SOTA methods on di�erent indicators.

References UCF101 dataset Finegym dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

Morais et al. (2022) 90.58±0.03 91.48±0.03 85.03±0.03 85.95±0.03 93.44±0.03 90.38±0.03 90.98±0.03 84.30±0.03

Wang et al. (2018) 86.85±0.03 88.62±0.03 87.85±0.03 89.76±0.03 95.81±0.03 91.27±0.03 85.63±0.03 93.64±0.03

Kim et al. (2024b) 85.77±0.03 84.59±0.03 85.07±0.03 92.48±0.03 89.07±0.03 88.07±0.03 86.18±0.03 84.59±0.03

Chen and Hu (2023) 94.69±0.03 86.61±0.03 88.83±0.03 85.48±0.03 92.95±0.03 92.29±0.03 87.01±0.03 89.89±0.03

Cao and Yan (2024) 93.72±0.03 88.03±0.03 84.87±0.03 86.11±0.03 91.82±0.03 89.56±0.03 89.70±0.03 89.71±0.03

Yang et al. (2023) 94.55±0.03 85.70±0.03 90.59±0.03 92.23±0.03 87.20±0.03 93.64±0.03 88.40±0.03 90.93±0.03

Swimtrans net 97.49±0.03 94.67±0.03 93.15±0.03 96.58±0.03 97.23±0.03 94.83±0.03 94.06±0.03 96.37±0.03

Bold values represent the best metric.

Swimtrans Net significantly improves classification accuracy and

efficiency when dealing with complex swimming video data.

Furthermore, the ablation experiments in Table 7 further validate

the contributions of each part of our method, confirming the

importance of the Swin-CLIP module and transfer learning in

enhancing model performance. In conclusion, Swimtrans Net

not only performs exceptionally well against existing benchmarks

but also showcases the potential and robustness in handling

multimodal data in practical applications.

5 Conclusion

In this paper, we addressed the challenges in action data

analysis and prediction tasks by proposing Swimtrans Net, a

multimodal robotic system for swimming action recognition driven

by the Swin Transformer. Swimtrans Net integrates advanced deep

learning technologies, including Swin Transformer and CLIP. Our

experiments demonstrated the efficacy of Swimtrans Net, achieving

impressive results on two benchmark datasets. Specifically, on the

PKU-MMD dataset, Swimtrans Net achieved an accuracy, recall,

F1 score, and AUC of 98.40%. Similarly, on the Sports-1M dataset,

it achieved an accuracy of 97.69%, accompanied by strong recall,

F1 score, and AUC metrics. Despite these promising results, there

are several limitations to our approach. The primary concern is

the significant computational resources required for training and

inference on large-scale datasets. Furthermore, Swimtrans Net may

encounter robustness issues when handling partially occluded or

low-quality action data. Addressing these limitations in future

research could further enhance the applicability and performance

of Swimtrans Net in various action recognition tasks.

Future work could focus on several aspects to address the

identified limitations and expand the capabilities of Swimtrans

Net. Firstly, exploring different network architectures and attention

mechanisms could enhance the model’s ability to effectively

capture and model action data. Secondly, researching more

advanced transfer learning strategies, including cross-dataset

transfer learning and multitask learning, could improve the

model’s generalization capabilities across diverse datasets and tasks.

Additionally, extending the application of Swimtrans Net to other

relevant fields, such as behavior recognition and human-computer

interaction, could broaden its utility and impact. By pursuing these

improvements and extensions, Swimtrans Net has the potential to

play a more significant role in the field of action data analysis and

prediction.
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Robot-assisted therapy in 
stratified intervention: a 
randomized controlled trial on 
poststroke motor recovery
Yang Liu 1†, Lijun Cui 1,2,3†, Jixian Wang 1,2,3, Zihao Xiao 2, 
Zhi Chen 1,3, Jin Yan 1,3, Chuanxin M. Niu 1,2,3* and Qing Xie 1,2,3*
1 Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong 
University, Shanghai, China, 2 Department of Rehabilitation Medicine, Ruijin Rehabilitation Hospital, 
Shanghai, China, 3 School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Objective: To compare the effects of robot-assisted therapy with conventional 
therapy for accelerating stratified intervention in poststroke patients with upper 
limb dysfunction.

Background: For stroke survivors, recovery of upper extremity function 
remains a major challenge in rehabilitation. Literature has suggested that 
the rate of recovery may improve if treatments can be  individualized to their 
clinical profiles. However, there still lack clinical evidence on how to create 
treatment tailored to individual patients. Robot-assisted Therapy (RT) provides a 
straightforward approach to adjustment of the assistance-resistance continuum 
for individual patients. In early Brunnstrom stages of recovery, patients benefit 
from assistance training, whereas in later stages the training is favored with 
resistance. Therefore, RT may enhance Conventional Therapy (CT) but the use 
of RT in stratified intervention has not been investigated. This study evaluated 
the possible benefit of adopting RT following a protocol of upper-limb training, 
which was stratified with the Brunnstrom stage of each individual.

Methods: This study was a single-blinded randomized controlled trial. A total of 
53 patients with stroke were recruited and randomized into 2 groups (CT, n  =  27, 
3 dropped out and RT, n  =  26, 2 dropped out). Both groups were trained once per 
day, 5  days per week for 4  weeks. The CT group received 30  min of conventional 
therapy; the RT group received 30  min of upper limb robot-assisted training. 
Patients were assessed at the beginning, week-2, and week-4 of the treatment. 
The outcome measures included the Fugl-Meyer Assessment Upper-Extremity 
(FMA-UE) and the Modified Barthel Index (MBI).

Results: Across the 4-week intervention, participants in the RT group recovered 
1.979 points of FMA-UE per week, compared to 1.198 points per week in the 
CT group (t94 =  3.333, p <  0.01); the recovery rate was 0.781 points/week higher 
in the RT group than in the CT group. Moreover, the recovery of FMA-UE was 
faster in proximal joints (t94 =  3.199, p  <  0.01), and for patients in Brunnstrom 
Stage III (t34 =  2.526, p <  0.05). The improvements in MBI were not significantly 
different between RT and CT.

Conclusion: Robot-assisted therapy showed initial evidence for the acceleration 
of post-stroke recovery of motor function in the upper limb. Initial observations 
suggested that patients in Brunnstrom recovery stage III might benefit the most 
from the stratified intervention assisted by robotics.
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1 Introduction

Upper limb motor impairment is present in about 85% of stroke 
survivors (1). However, 30–60% of the cases may still show deficits in 
motor function after 6 months from the onset (2). Mounting evidence 
supports that motor recovery in the upper extremities is attainable 
using rehabilitation regimens, such as constraint-induced movement 
therapy, non-invasive brain stimulation, mental imagery, and bilateral 
arm training (3). However, one major challenge for upper-limb 
rehabilitation is that patients can be  highly heterogeneous in the 
causes, locations, timing of stroke, etc. (4–6). As a result, clinical 
efficacy may be sub-optimal if the treatments fail to be tailored to the 
clinical profile of each patient (7).

One approach toward individualized treatment is stratified 
intervention, which subcategorizes patients into groups to apply group-
specific treatments (8). A common indicator for stratification in stroke 
rehabilitation is the score of the Fugl-Meyer Assessment (9), which is a 
stroke-specific, performance-based impairment index. It is designed to 
assess motor functioning, balance, sensation, and joint functioning in 
patients with post-stroke hemiplegia (10). For example, in a study that 
gave 12-week training to patients with chronic stroke (11), those with 
moderate upper limb impairment (FMA-UE ≥ 26) gained 5.66 more 
points in wrist and hand compared with the other group (FMA-UE < 26). 
The advantage of using FMA as an indicator for stratification is that it 
contains standardized information about motor performance (10, 12). 
However, it is a challenge to associate a total score of FMA with a 
specific goal of post-stroke motor recovery (13). Alternatively, 
Brunnstrom Recovery Stages (BRS) provide a concise description of the 
key motor problems poststroke (14). Sum scores of the BRS could 
quickly provide an overall impression of a patient’s motor function as 
an alternative to inspecting the score of every joint. Moreover, sum 
scores could be an outcome indicator because any progress made on 
each item by a patient could be detected, which is useful for monitoring 
a patient’s overall change over time and determining the effects of 
intervention (15). Patients at Brunnstrom stages II, III, and IV (upper-
limb) may all benefit from movement training (16–18), but in early 
stages, the movement needs substantial assistance (19), whereas in later 
stages the training is favored with resistance (20). For a heterogeneous 
collection of patients with stroke, therefore, their motor recovery may 
improve if the treatments can be stratified according to BRS (21).

Stratified intervention imposes new challenges on conventional 
therapies. On the one hand, differentiation in treatment plans must 
be rigorously followed across subgroups; on the other, within a subgroup, 

the treatment should be sufficiently consistent and repeatable. Robot-
assisted therapy (RT) has the potential to facilitate stratified intervention, 
because of the high intensity, good repeatability, and task specificity 
provided by robotics (22–24). Given that the training may alter from 
assistive to resistive according to BRS, these requirements are 
straightforward to administer and regulate using programmable robots, 
which may enhance the eventual clinical outcome.

Previous studies have explored the key factors of robotic-
assisted therapy for clinical efficacy, including the intensity (22), 
duration (23), and content of training (25). Data from several 
studies suggest that the recovery rate may improve if treatments can 
be individualized to their clinical profiles. A much-debated question 
is how to achieve functional progress according to individual 
heterogeneity, which may be  the reason for the non-significant 
difference between groups in the RATULS (Robot-assisted training 
for the upper limb after stroke) study (26). Cases were limited, 
however, that incorporated robot-assisted therapy in stratified 
intervention. In a recent clinical study that stratified patients 
according to their FMA-UE, a combination of shoulder-elbow and 
wrist-hand robots was used to train chronic stroke patients, but the 
recovery was not significantly better in the robot-assisted group 
(11). In this study, we  investigated whether upper-limb motor 
recovery could be accelerated by Robot-assisted Therapy, given that 
patients were subcategorized according to BRS. In the Robot-
assisted Therapy (RT) group, participants performed upper-limb 
reaching movements using a robot with a group-specific setup of 
force; in the Conventional Therapy (CT) group, subjects 
accomplished comparable training under the guidance of an 
occupational therapist. We hypothesized that the recovery of motor 
functions in the upper extremities would be faster with RT. Results 
from this study may warrant larger-scale clinical trials for the 
evaluation of robot-assisted therapy for individualized treatments.

2 Methods

2.1 Participants

Patients were recruited between April 2020 and January 2021 
from the in-patient rehabilitation center of Ruijin Hospital, School of 
Medicine, Shanghai Jiao Tong University, Shanghai, China. The data 
were also collected from the same in-patient rehabilitation center.

The inclusion criteria were:

 (1) Ischemic or hemorrhagic stroke confirmed by CT or MRI;
 (2) Age ranging from 18 to 80 years;
 (3) First onset of stroke within 1 ~ 12 months from recruitment;
 (4) Brunnstrom Recovery Stages (upper-limb) between 2 and 4;
 (5) Mini-Mental State Examination score > 15 and the ability 

to cooperate.

Abbreviations: RT, Robot-assisted therapy; CT, Conventional therapy; FMA-UE, 

The upper extremity part of Fugl-Meyer assessment; FMA-UE, The upper extremity 

part of Fugl-Meyer assessment; FMA-UE, The upper extremity part of Fugl-Meyer 

assessment; MBI, Modified Barthel Index; OT, Occupational therapy; BRS, 

Brunnstrom Recovery Stage.
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The exclusion criteria were:

 (1) Unstable medical condition;
 (2) Severe cognitive dysfunction;
 (3) Severe pain in the upper limb affecting the training;
 (4) Severe cardiac and pulmonary diseases;
 (5) Visual impairment;
 (6) Participation in other research involving robotic-

assisted therapy.

All participants gave written informed consent before recruitment.

2.2 Study design and randomization

The study was approved by the Ethics Committee of Ruijin Hospital, 
School of Medicine, Shanghai Jiao Tong University. The trial was 
registered at the Chinese Clinical Trial Registry (ChiCTR2000039010, 
https://www.chictr.org.cn/showproj.html?proj=61834). The protocol was 
a single-blinded randomized controlled trial. We  followed the 
CONSORT (Consolidated Standards of Reporting Trials) (27) statement 
and Figure  1 provides the flow diagram of patient screening, 
randomization, assessment, and intervention. All assessments were 
performed by an assessor who was blinded for group allocation. 
Participants were stratified by baseline Brunnstrom recovery stages (BRS 
II, III, or IV) and allocated to the RT group and CT group using block 

randomization with a size of 4, by a computer routine. Randomization 
was performed and documented by a researcher who was not involved 
in the intervention process. The allocation sequence was concealed from 
the researcher enrolling and assessing participants in sequentially 
numbered, opaque, sealed, and stapled envelopes. Therefore, the assessor 
was ignorant about the group to which the patient belonged. Each 
outcome measures were blinded to the assessor, therapists, and 
researchers until the final analysis. It took each participant around 
4 weeks to accomplish the protocol (see Figure 2).

2.3 Interventions

The CT group received 30 min of conventional occupational 
therapy focused on upper-limb motor function; the RT group received 
30 min of robot-assisted training with details to follow. In addition to 
the CT/RT interventions involved in this study, all participants also 
received routine therapies during the 4 weeks (5 days per week). The 
routine programs focused on motor impairment and recovery to 
establish deconditioning and fitness after stroke (28). There were 
several exercises guided by a physiotherapist in the routine therapy: 
balance training (sitting or standing), walking practice, aerobic 
exercises, strengthening exercises, and ADL training tailored to 
individual needs. Patients were required to rest for at least 5 min 
between exercises. The routine therapies took approximately 150 min 
each day for all patients. There was a 0.5 to 1-h break between 

FIGURE 1

The CONSORT flow diagram of patient screening, randomization, assessment, and intervention.
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intervention and routine physical therapy, and physicians would 
ensure patients had regained stamina before each intervention.

2.3.1 Conventional therapy
The CT involved 30-min arm activities on a table. During the 

training, the arm of the patient was held by a certified occupational 

therapist (Figure  3, left), and this therapist provided support, 
assistance, or resistance to all patients as required by the protocol:

Passive-dominated:

 (1) Supporting activities involving shoulder joints;
 (2) Simple activities involving shoulder and elbow joints;

FIGURE 2

The intervention pipeline of two groups.

FIGURE 3

The actual scene of intervention during CT (left) and RT (right).
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Assistive-dominated:

 (1) Independent muscle training of upper extremity;
 (2) Basic grip training and simple movements;
 (3) Progressive grip training and simple activities with both hands;

Resistive-dominated:

 (1) Fine grip and upper-limb coordination activities;
 (2) Small palm muscle training and finger separation training;
 (3) Complex upper limb activities.

Correspondence between the types of training and subgroups is 
shown in Table 1.

2.3.2 Robot-assisted therapy
The RT session lasted 30 min supervised by a therapist (Figure 3, 

right). A commercial robot (ArmMotus M2, Fourier Intelligence Co. 
Ltd., Shanghai, China) was used to administer Robot-assisted Therapy. 
The robot provided a handle as the end-effector for participants to 
interact with. Participants would experience assistance or resistance 
through the handle. Before each session, the range of motion and 
specified amount of force were tested for each participant. During the 
gamified training session, icons of fruits and vegetables (radius 2 cm) 
appeared at random positions on the screen, one at a time. Patients 
were instructed in a sitting position to reach and stop at each icon for 
1 s to acquire it. As can be seen, the gamified training session was 
equivalent to a series of point-to-point reaching movements. 
Simulated forces were added during the session with 3 different modes:

 (1) Passive mode: The handle guided patients to perform point-to-
point reaching movements with a pre-defined velocity profile. 
The residual force applied by the patient was counteracted by 
the handle. Whenever the residual force on the handle 
exceeded a safety threshold (80 N), the robot would stop 

moving. The velocity was set to 0.025–0.05 m/s, and the range 
of motion in each movement was approximately 22 cm*10 cm. 
Thus the estimated number of repetitions during each RT 
intervention was around 150 times.

 (2) Assistive mode: An assistive force was determined for each 
patient before every session. The patient sat in front of the 
robot with the affected hand holding the handle, and then the 
patient was requested to make a 30 cm center-forward 
movement with a pre-defined assistive force. The initial 
magnitude of assistive force was set to 32 N, which usually 
meant accomplishing the task without any voluntary 
movement. If the patient was able to accomplish the task, then 
in the next trial the assistive force was reduced by 
1 N. Eventually, the suitable magnitude of assistive force was set 
to the level that the patient was barely able to accomplish the 
task. Notice that the minimal assistive force was 15 N due to the 
design of the robot. During the search for a suitable magnitude 
of assistive force, at least a 1-min break was given between 
adjacent trials. The number of movement repetitions was 
around 100–180.

 (3) Resistive mode: A resistive force was determined for each 
patient prior to every session. The patient sat in front of the 
robot with the affected hand holding the handle, and then the 
patient was also asked to make a 30 cm center-forward 
movement with a pre-defined resistive force. The initial 
magnitude of resistive force was set to 1 N. If the patient was 
able to accomplish the task, then in the next trial the resistive 
force was increased by 1 N. Eventually, the appropriate 
magnitude of resistive force was set to the level that the patient 
was barely able to accomplish the task. Notice that the 
maximum resistive force was 5 N due to the design of the robot. 
During the search for a suitable magnitude of resistive force, at 
least a 1-min break was given between adjacent trials. The 
number of movement repetitions was also around 100–180.

The ArmMotus M2 robot also required specification of movement 
velocity prior to each session. Five levels of velocity were available: 
0.025, 0.05, 0.075, 0.1, and 0.125 m/s, which represented the enforced 
average velocity during the passive mode, and recommended average 
velocity during the assistive and resistive modes. The assignment of 
force modes and velocity levels for subgroups is shown in Table 1. The 
scope of movement was measured for each participant prior to each 
session. The measurement program required the patients to reach as 
many points as possible, which were evenly scattered over the working 
space of the ArmMotus M2 robot. By fitting a rectangle encompassing 
all points that had been reached, the scope of movement could 
therefore be  chosen as either small (22 cm*10 cm), medium 
(31 cm*17 cm), or large (44ccm*28 cm).

2.4 Outcome measurements

2.4.1 Primary outcome measure
The primary outcome FMA-UE was evaluated every 2 weeks. 

FMA-UE was chosen due to its prevalence in clinical studies for stroke 
rehabilitation (29). The FMA-UE examines reflex activity and synergic 
voluntary movements. The evaluation includes 33 items and could 
be classified into four subscales: shoulder/elbow, wrist, hand, and 

TABLE 1 The intervention plan of two groups.

BRS of upper-
limb

CT group RT group

II

 • Mode: 

Passive-dominated,

 • e.g., Passive anterior–

posterior movements 

of the scapula.

 • Mode: Passive mode

 • Velocity: 1–2 

(0.025–0.05 m/s)

 • Range: 22 cm*10 cm

III

 • Mode: 

Assistive-dominated,

 • e.g., Elbow extension 

activities with the 

assistance of a 

therapist.

 • Mode: Assistive mode

 • Velocity: 2–3 

(0.05–0.075 m/s)

 • Range: 31 cm*17 cm

IV

 • Mode: 

Resistive-dominated,

 • e.g., Shoulder flexion 

movements with 

hands holding heavy 

objects.

 • Mode: Resistive mode

 • Velocity: 3–5 

(0.075–0.125 m/s)

 • Range: 44ccm*28 cm
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coordination/speed. We were interested in both the total score (full 
points = 66) and the subscales for shoulder/elbow, wrist, and hand (30).

2.4.2 Secondary outcome measure
The secondary outcome Modified Barthel Index was also 

performed every 2 weeks. The full score of MBI is 100, which assesses 
10 aspects of the activity of daily living. Parts of MBI are related to 
upper limb motor function, including grooming, bathing, feeding, and 
dressing, with a total score of 30 points (31).

2.5 Statistical analysis

Statistical analyses were performed using R (version 4.1.2). A 
power analysis was performed using ‘simr’ package in R (32), 
considering β = 0.2, and α = 0.05. An estimated effect size was set to 0.9 
according to the previous studies (33, 34). It was suggested that 21 
patients in each group would be sufficient to detect the desired change. 
Baseline comparisons between groups were conducted by the t-test or 
Chi-square test. Effects of intervention on outcome measures were 
fitted using linear mixed-effect models (R library lme4 v1.1–21) 
as follows:

 { } ( )~ |+ + ∗ + 1Outcome measures time robot time robot subject

where time was treated as a continuous variable, which represented 
the number of weeks passed since the beginning of intervention; robot 
denoted whether the intervention was CT or RT; the term ( )1|subject  
accounted for subject-specific intercepts due to repeated measures. 
The time robot∗  represented the interaction between time and robot.  
p < 0.05 was considered statistically significant. Outcome measures 
include FMA-UE, subscales of FMA-UE, and MBI.

3 Results

We screened 474 patients and 53 eligible candidates agreed to 
participate. Using per-protocol analysis (35), a total of 48 participants 
(24  in the CT group, 24  in the RT group) finished the 4-week 
intervention, and 5 participants dropped out during the intervention 
due to health worsening, early discharge, etc. Consultations with a 
multi-disciplinary team confirmed that none of the dropouts were 
related to the intervention in this study. According to Table 2, there 
was no significant difference between BRS, FMA-UE, MBI, and MAS 
(p > 0.05) in the baseline assessment of the two groups. For more 
detailed demographic characteristics of each participant, see the 
Appendix. No adverse events or unintended effects were reported.

3.1 Primary outcome measures

The mixed-effect linear model showed that in the CT group, the 
FMA-UE score increased by 1.198/week (t94 = 7.228, p < 0.01). The 
interaction between time and group was also significant (t94 = 3.333, 
p < 0.01), meaning that in the RT group, the FMA-UE score increased 
by an additional 0.781 per week (total rate in RT = 1.979/week). 

Overall, the RT group recovered 65% faster than the CT group. 
Table 3 presents average scores at each evaluation time point. It is 
noteworthy that in the RT group, the mean increase in FMA-UE 
(7.9 ± 4.8, Mean ± SD) exceeded 5.25, the minimal-clinically-
important-difference (MCID) as previously reported (36). In 
contrast, the mean increase in FMA-UE in the CT group (4.8 ± 3.2, 
Mean ± SD) did not exceed the MCID. A total of 15 out of 24 subjects 
in the RT group and 11 out of 24 in the CT group improved their 
FMA-UE over the MCID.

We also found that the RT group recovered faster than the CT 
group when the shoulder-elbow scores were extracted from the total 
FMA-UE. In shoulder-elbow subscales (full points = 36), the CT group 
increased by 0.979/week (t94 = 7.332, p < 0.01), whereas the RT group 
increased by a total of 1.583 per week (significant interaction, 
t94 = 3.199, p < 0.01), which was 62% faster than the CT group.

The hand subscale of FMA-UE increased by 0.219/week (t94 = 3.154, 
p < 0.01) in the CT group, whereas the RT group increased at a higher 
rate of 0.333/week, but the between-group difference was non-significant.

3.2 Secondary outcome measures

The activity of daily living measured in MBI increased by 2.115/
week in the CT group (t94 = 5.436, p < 0.01), but the additional increase 
in the RT group was not significant. Similar results were found in the 
MBI upper-limb subscale (full points = 30), which increased by 0.875/
week (t94 = 4.197, p < 0.01), and no significant difference was found 
between the CT and RT groups.

TABLE 2 Demographic and clinical characteristics at baseline of stroke 
participants in robot-assisted therapy (RT) and conventional therapy (CT) 
groups.

Characteristics CT 
(n  =  24)

RT (n  =  24) p-value

Characteristics

  Sex (male/female) 15/9 20/4 0.10

  Age (years) 66.1 ± 6.9 65.8 ± 9.0 0.89

  Type of stroke 

(ischemic/hemorrhage)
19/5 19/5 0.41

  Dominant side (left/

right)
2/22 1/23 0.99

  Affected side (left/right) 13/11 15/9 0.56

  Stroke onset (months) 3.5 ± 2.7 3.9 ± 2.5 0.62

  Modified Ashworth 

Scale (MAS)
0.4 ± 0.1 0.7 ± 0.1 0.14

Evaluation

  Brunnstrom recovery 

stages scale (BRS 2/3/4)
9/9/6 5/9/10 0.14

  Fugl Meyer Assessment-

Upper extremity (FMA-

UE)

15.4 ± 8.7 15.9 ± 8.6 0.84

  Modified Barthel index 

(MBI)
56.2 ± 16.3 59.1 ± 13.7 0.51
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3.3 Subgroup analysis

We analyzed the effect of RT for each Brunnstrom subgroup. In 
subgroup A (BRS = 2), mixed-effect linear model found significant 
increase in FMA-UE total score (1.028/week, t26 = 6.144, p < 0.01, see 
Figure 4A), shoulder-elbow subscale (0.944/week, t26 = 5.543, p < 0.01, 
see Figure 5A), MBI (1.722/week, t26 = 2.918, p < 0.01) under CT, but 
no significant difference in between-group interaction was found in 
these outcomes, meaning that the RT did not incur faster motor 
recovery than did the CT for subgroup A.

In subgroup B (BRS = 3), the FMA-UE score increased by 1.306/
week (t34 = 5.327, p < 0.01) under CT, compared to the 61% faster 
recovery of 2.111/week under RT (significant interaction, Figure 4B). 
Similarly, the shoulder/elbow FMA increased by 0.972/week 
(t34 = 4.168, p < 0.01) under CT, compared to an 86% faster recovery of 
1.806/week under RT (t34 = 2.526, p < 0.05, see Figure 5B). The hand 
FMA and MBI scores showed no significant between-group 
interaction. Taken together, our results indicated that in subgroup B 
(BRS = 3), faster recovery of motor functions was observed under RT 
than CT.

In subgroup C (BRS = 4), FMA-UE total score (1.292 per week, 
t30 = 3.056, p < 0.01, see Figure 4C), shoulder-elbow subscale (1.042 per 
week, t30 = 3.627, p < 0.01, see Figure  5C), MBI (2.750 per week, 
t30 = 3.104, p < 0.01) were found significantly increased in the CT 
group, but the between-group interaction was not significant.

4 Discussion

Through this study, we found that both Robot-assisted Therapy 
and Conventional Therapy were likely to have a positive effect on post-
stroke recovery of motor function. In comparison with conventional 
therapy, RT showed a higher rate of improvement in FMA-UE. Across 
all three subgroups, the added benefits of RT seemed the most 
prominent in patients with moderate motor impairment (BRS = 3). 
Taken together, our findings supported the hypothesis that even 
though both RT and CT groups received stratified intervention, the 
recovery of motor functions in the upper extremities would be faster 
with RT. Our results were consistent with these well-controlled RCTs, 
such as the RATULS trial, which demonstrated improvements in 
upper limb function within groups (26). However, our findings 

observed significant differences in the FMA scores between groups, 
which might be due to the stratified intervention or the different robot 
types. However, with a small sample size, caution must be applied, as 
our findings might not be extrapolated to all stroke patients.

A probable but noteworthy finding was that RT accelerated the 
motor recovery in the proximal joints of the upper limb (shoulder and 
elbow) but not distal ones (wrist and hand). Several possible 
explanations exist for this finding. Firstly, the participants moved the 
robot by contracting muscles around the shoulder and elbow, 
meanwhile, they kept the wrists and fingers strapped to the handle, 
therefore it could be the shoulder and elbow muscles that underwent 
the most training. It follows that the training ought to be extended to 
the wrist and hand, otherwise, it would leave a minimal chance for the 
wrist and hand to recover. Secondly, motor skills usually transfer from 
the proximal to the distal segments of the limb (37), thus the shoulder 
and elbow would lead the wrist and hand to show recovery. Thirdly, 
competition of adjacent joints in movement recovery suggests that 
proximal joints often recover better (38). In line with these findings, 
the end-effector robot employed in this study emphasized larger joint 
movements while fixing the hand at the terminal handle. In future 
studies, it might be  possible to alter the type of robot to balance 
proximal and distal joints.

Another possible implication is that among the three subgroups, 
moderately impaired patients (BRS = 3, Subgroup B) recovered 
significantly faster when treated with RT compared to CT. In other 
two subgroups (BRS = 2 and 4) even though the between-group 
differences in FMA/week were not significant, the slopes were still 
steeper in RT, meaning that these two subgroups both contributed to 
the overall trend in pooled analysis. One reason why subgroup B 
(BRS = 3) outperformed the others was that patients in this stage might 
enjoy a higher capability of voluntary movement compared to 
subgroup A (BRS = 2). Therefore, the training may incur more afferent 
activity (i.e., the training signal) for motor re-learning (39). On the 
other hand, subgroups with better motor function (subgroup C, 
BRS = 4) might not be  adequately challenged using the existing 
parameters, which inspires future studies on how much challenge is 
optimal for using robot-assisted therapy.

One limitation of this study was that it could not differentiate 
the contribution between assistive and resistive training, which 
required continuous monitoring of robot-applied force and the 
reaction from the participant. Note that the reaction might 

TABLE 3 Outcome measures at baseline, week-2, and week-4 of the two groups.

Outcome 
measure

CT group RT group

Week 0 Week 2 Week 4 Week 0 Week 2 Week 4

Motor function

  FMA-UE total 15.42 ± 8.74 17.79 ± 9.28 20.21 ± 9.64 15.92 ± 8.60 20.50 ± 9.81 23.83 ± 11.02

  FMA-UE Shoulder 

& Elbow

11.88 ± 5.14 13.92 ± 5.08 15.79 ± 5.27 12.00 ± 5.31 15.75 ± 6.15 18.33 ± 6.81

  FMA-UE Wrist 0.75 ± 1.62 0.75 ± 1.75 0.79 ± 1.74 0.83 ± 1.86 0.96 ± 2.05 1.08 ± 2.50

  FMA-UE Hand 2.46 ± 3.12 2.83 ± 3.33 3.33 ± 3.67 3.08 ± 3.41 3.75 ± 3.69 4.42 ± 3.92

Daily activity

  BI-total score 56.21 ± 16.26 61.21 ± 13.70 64.67 ± 14.59 59.13 ± 13.71 61.79 ± 12.30 66.33 ± 11.82

  BI-Involving upper 

limbs

15.83 ± 5.20 18.13 ± 3.68 19.33 ± 4.85 17.21 ± 4.49 19.25 ± 3.69 20.58 ± 3.04
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include a wide range of metrics, such as force, trajectory, 
electromyography, and brain activity. Another interesting but 
untested factor was whether the participants were compliant with 
the training, as has been shown critical for clinical outcome (40). 
Future robot-assistant studies could focus on finding more precise 
rehabilitation programs, such as the successful detection of 
voluntary muscle activity onset (41) and the utilization of brain-
computer interfaces (BCI) system to achieve coordinated 
movements (42).

In clinic, our results support the application of robot-assisted 
therapy for the acceleration of post-stroke recovery in upper-
extremity, especially with stratified intervention based on 
BRS. While this study was an initial, pilot study about the added 
benefits of robotics in stratified intervention for upper extremities 

poststroke. The clinical efficacy of our protocol was suggested by 
this pilot study, but it can only be asserted with larger-scale, multi-
center trials.

5 Conclusion

Robot-assisted therapy showed promising clinical evidence in 
accelerating the poststroke recovery of upper-extremity motor 
performance following stratified intervention for 4 weeks. The 
improvements had been identified in general motor behaviors (Fugl-
Meyer scores), especially in proximal parts of the upper limb. Among 
the tested (BRS II, III, and IV), individuals within Brunnstrom 
recovery stage III might benefit the most from robot-assisted training. 

FIGURE 4

Change from baseline in FMA-UE total score in three subgroups. (A) In subgroup A (BRS  =  2): RT group increased 1.150/week (p  <  0.01), while CT group 
increased 1.028/week (p  <  0.01). (B) In subgroup B (BRS  =  3): RT group increased 2.111/week (p  <  0.01), while CT group increased 1.306/week (p  <  0.01). 
Between-group differences were significant (p  <  0.05). (C) In subgroup C (BRS  =  4): RT group increased 2.275/week (p  <  0.01), while CT group increased 
1.292/week (p  <  0.01). The lines in the first row represent the arithmetic mean of the score. The lines in the second row represent the trend for the 
score of each patient in subgroups. *p  <  0.05.
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However, with a small sample size, these findings cannot 
be extrapolated to all patients.
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Introduction: Assistive robots and human-robot interaction have become

integral parts of sports training. However, existing methods often fail to

provide real-time and accurate feedback, and they often lack integration of

comprehensive multi-modal data.

Methods: To address these issues, we propose a groundbreaking and innovative

approach: CAM-Vtrans—Cross-Attention Multi-modal Visual Transformer. By

leveraging the strengths of state-of-the-art techniques such as Visual

Transformers (ViT) andmodels like CLIP, alongwith cross-attentionmechanisms,

CAM-Vtrans harnesses the power of visual and textual information to provide

athletes with highly accurate and timely feedback. Through the utilization of

multi-modal robot data, CAM-Vtrans o�ers valuable assistance, enabling athletes

to optimize their performance while minimizing potential injury risks. This novel

approach represents a significant advancement in the field, o�ering an innovative

solution to overcome the limitations of existing methods and enhance the

precision and e�ciency of sports training programs.

KEYWORDS

assistive robotics, human-machine interaction, balance control, movement recovery,

vision-transformer, CLIP, cross-attention

1 Introduction

In the field of sports technology, the application of deep learning and machine learning

techniques to enhance training efficiency and athlete performance has become a hot

topic of research (Zheng et al., 2020). These technologies can accurately analyze athletes’

movements and provide real-time feedback, helping athletes improve their skills more

effectively (Pan et al., 2019). However, while existing technologies can handle single data

sources such as video or biosensor data, their capabilities are still insufficient when it comes

to integrating and processing multiple types of data (Herman et al., 2021), especially when

simultaneously dealing with visual information and verbal instructions. This limitation

highlights the need for the development of new methods to comprehensively understand

and guide athlete training.

Traditional methods primarily rely on symbolic AI and knowledge representation

for Taekwondo action recognition. Expert systems, for example, simulate human experts’

decision-making processes by encoding their knowledge and provide explicit explanations

for each recognition result. Yang et al. (2021) proposed a multi-knowledge representation

framework for big data AI applications. Additionally, a comprehensive review by

Himabindu et al. (2023) showcased the combination of symbolic reasoning and deep

learning in neural-symbolic AI, highlighting its various applications and developments

across different domains. Rule-basedmethods, on the other hand, utilize a set of predefined

rules for action recognition. These methods demonstrate high determinism and reliability,

performing well even in the face of complex or diverse actions. Jin et al. (2022) introduced
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a deep reinforcement learning system for automatic symbol

grounding discovery, while the research by Ilager et al. (2023)

showcased the cost-saving benefits of symbolic representation

in edge AI applications. Furthermore, logistic regression, as

a statistical method, learns features from training data for

classification decisions. It not only finds important applications

in action recognition but also significantly improves classification

accuracy. The study by Insuasti et al. (2023) demonstrated the

application of logistic regression in sports action recognition,

while Wu et al. (2022) further explored the use of fuzzy logic in

symbolic representation, enhancing the symbolic foundations of

AI. These methods offer advantages such as strong interpretability

and transparency in the decision-making process. However,

these methods have limitations in handling complex and

diverse actions as well as limited capabilities in processing

large-scale data.

To address the limitations of traditional algorithms, data-

driven and machine learning-based approaches have been

employed in multi-modal robot-assisted sports training. These

approaches mainly utilize methods such as decision trees, random

forests, and multi-layer perceptrons to tackle the challenges.

This approach offers advantages such as efficient handling of

large-scale data, high accuracy, and the ability to handle non-

linear problems. For instance, Tjondronegoro and Chen (2006)

automated event classification in sports videos using decision

tree methods, while Jose et al. (2023) applied decision tree

algorithms in predicting athlete performance. Furthermore,

Morciano et al. (2023) used random forest algorithms to predict

performance indicators of soccer players, demonstrating their

superiority in handling biomechanical data, and Yagin et al. (2023)

showcased the high accuracy of random forests in determining the

positions of professional soccer players. Lastly, Aresta et al. (2022)

highlighted the superior performance of multi-layer perceptrons

in classifying elite and novice fencers based on biomechanical data,

while Bakthavatchalam et al. (2022) demonstrated the efficient

predictive performance of multi-layer perceptrons in agriculture.

However, these methods have challenges such as overfitting, high

computational costs, and strong reliance on large amounts of

annotated data.

To overcome the limitations of statistical and machine learning

algorithms, deep learning-based approaches have been used for

Taekwondo action recognition, primarily employing Convolutional

Neural Networks (CNN), reinforcement learning, and Transformer

models. These methods offer higher accuracy and the ability

to handle complex data. Firstly, Convolutional Neural Networks

efficiently extract image features and have shown remarkable

performance in predicting sports game outcomes and recognizing

athlete actions. For example, Chen et al. (2020) used CNN to

predict NBA game results with an accuracy of 91%, while Liu

(2022) utilized CNN to improve action detection rates in sports

videos. Secondly, reinforcement learning demonstrates significant

potential in sports training by continuously adjusting strategies

to optimize the decision-making process. The reinforcement

learning approach proposed by Jia et al. (2020) improved players’

winning rates in basketball training, and the research by Du et al.

(2021) showcased the application of reinforcement learning in

esports. Lastly, Transformer models, known for their advantages

in handling sequential data, have been used for time-series

analysis of motion signals, showing impressive performance.

Dirgová Luptáková et al. (2022) achieved 99.2% accuracy in human

activity recognition using the Transformer model, while Hauri and

Vucetic (2023) combined Transformer with LSTM for team activity

recognition in basketball games. However, these methods have

challenges such as high computational complexity and a demand

for large-scale training data.

Considering these challenges, this study proposes a novel

approach, CAM-Vtrans: Real-time Sports Training UtilizingMulti-

modal Robot Data, to address the limitations of traditional and

machine learning algorithms, such as poor adaptability to complex

environments, high computational costs, and dependency on large

labeled datasets. CAM-Vtrans combines Vision Transformer (ViT),

CLIP, and cross-attention mechanisms. ViT divides the image

into multiple small patches and encodes them as a sequence,

utilizing the self-attention mechanism to process these sequences

and capture complex relationships within the image. This approach

is particularly effective in handling sports activity images with

rich details. The introduction of the CLIP model enables the

system to understand training instructions in natural language

and combines them with visual data to provide context-aware

feedback. Through the cross-attention mechanism, this system

further optimizes the fusion of different modalities, making the

transformation from visual information to language descriptions

more accurate and efficient. This integrated approach not only

enhances the accuracy and efficiency of sports training analysis but

also significantly reduces the computational burden and reliance on

extensive labeled data.

The main contributions of this research can be summarized as

follows:

• CAM-Vtrans is an innovative approach that combines Vision

Transformer (ViT), the CLIP model, and cross-attention

mechanisms to process and analyze multi-modal robot data

in real-time, enhancing the accuracy of feedback in sports

training.

• This method performs exceptionally well in various

multi-scenario applications, efficiently handling complex

sports activity images. It possesses broad applicability and

adaptability, providing reliable support for different training

requirements.

• Experimental results demonstrate that CAM-Vtrans

significantly outperforms traditional methods in action

recognition and feedback accuracy, greatly improving the

effectiveness of sports training while reducing computational

costs and reliance on large-scale annotated data.

2 Related work

2.1 Assisting sports training

In recent years, machine learning has made significant

progress in assisting sports training tasks. Traditional sports

training methods heavily rely on coaches’ experience and intuition,

which often suffer from subjectivity and lack of precision. The
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introduction of machine learning has made the training process

more scientific and systematic. Classic machine learning algorithms

such as decision trees, random forests, and logistic regression

have been widely applied in areas such as athlete performance

prediction and injury risk assessment. For example, decision tree-

based systems can provide personalized training recommendations

by analyzing athletes’ physiological and training data (Jose et al.,

2023). However, these traditional machine learning methods

also have some notable drawbacks and limitations (Tang et al.,

2023). Firstly, these methods require high-quality and large

quantities of labeled data to train models, which can be costly to

acquire. Moreover, traditional machine learning algorithms exhibit

limitations when dealing with complex and multi-dimensional

sports data. For instance, while random forests can handle

non-linear relationships to some extent, they still struggle with

highly complex and dynamically changing sports data (Morciano

et al., 2023). Additionally, these methods lack interpretability and

explainability, making it difficult to provide clear explanations

for training outcomes and limiting their practical applications

(Dong et al., 2024). To overcome these limitations, deep learning

methods have gradually become a research focus in the field of

sports training. Deep learning, by constructing multi-layer neural

networks, can better capture complex features and patterns, thus

improving the predictive accuracy and robustness of models.

However, deep learning methods also face challenges such as high

computational costs, long training times, and dependence on large-

scale annotated data, which still need to be further addressed in

practical applications (Wang et al., 2024)

2.2 Transformer models

Since its introduction in 2017, the Transformer model has

achieved groundbreaking advancements across multiple domains.

Its unique self-attention mechanism and parallel processing

capabilities have made Transformers particularly prominent

in natural language processing (NLP) tasks. For instance,

models like BERT and GPT, which are based on Transformer

architecture, have demonstrated significant effectiveness in tasks

such as language understanding, text generation, and machine

translation. The Transformer model addresses the inefficiencies

and vanishing gradient problems associated with traditional

sequential models like RNNs and LSTMs by processing input

sequences in parallel and dividing them into smaller chunks

(Lu et al., 2024). Beyond NLP, the Transformer model has

also shown strong capabilities in the field of computer vision

(CV). Vision Transformer (ViT), by dividing images into fixed-

size patches and processing these patches as input sequences,

has achieved performance comparable to or even surpassing

that of convolutional neural networks (CNNs). ViT has excelled

in tasks such as image classification, object detection, and

image segmentation, proving the potential of Transformers

in handling visual data (Hu et al., 2019). In addition, the

Transformer model has wide-ranging applications in time series

data analysis, recommendation systems, and game AI. In

time series data analysis, Transformers can effectively capture

long-term dependencies, enhancing prediction accuracy. In

recommendation systems, Transformers model user behavior

sequences to provide more precise recommendations. In game

AI, Transformers, combined with deep reinforcement learning,

optimize strategy selection.

2.3 Sports action recognition

Sports action recognition is a crucial research area in sports

science and computer vision, aiming to automatically identify

and evaluate athletic performance by analyzing athletes’ motion

data. Traditional action recognition methods primarily rely on

feature engineering-based machine learning algorithms, such as

support vector machines, decision trees, and random forests. These

methods extract features from motion data for classification and

recognition, achieving certain levels of effectiveness (Zhao et al.,

2020). With the development of deep learning technologies, the

advantages of convolutional neural networks (CNNs) in image

and video processing have become increasingly apparent, leading

to their widespread application in sports action recognition.

CNNs can automatically learn and extract high-level features

from data, significantly improving the accuracy and robustness

of action recognition (Zou et al., 2019). Additionally, temporal

models in deep learning, such as long short-term memory

networks (LSTMs) and Transformer models, have been applied to

action recognition, better handling time series data and capturing

dynamic changes in actions. However, despite the impressive

performance of deep learning methods in action recognition,

several challenges and limitations persist. First, deep learning

models require large-scale annotated data, and acquiring and

annotating sports action data is costly, limiting the effectiveness

of model training. Second, deep learning models have high

computational complexity, requiring substantial computational

resources and time for training and inference, which can be a

bottleneck in real-time applications. Moreover, existing action

recognition models still face difficulties in handling complex

and diverse actions, making it challenging to adapt to various

sports scenarios and action types. To address these issues,

researchers are exploring multi-modal data fusion methods,

combining visual, auditory, and tactile data to enhance the

accuracy and robustness of action recognition (Li et al.,

2018). Additionally, emerging technologies such as reinforcement

learning and self-supervised learning are being introduced to action

recognition to reduce reliance on annotated data and improve

model generalization. Despite these advancements, achieving

efficient, accurate, and robust sports action recognition remains

a challenging research topic, necessitating further exploration

and innovation.

3 Methodology

3.1 Overview of our network

In this research, we propose a multimodal robotic system that

combines Vision Transformer (ViT), CLIP, and cross-attention

mechanisms for real-time feedback and guidance in sports

training. The main innovation of this system lies in the use
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FIGURE 1

The overall framework diagram of the proposed method is presented.

of advanced visual and language processing models to analyze

athletes’ performances in-depth and provide immediate guidance

and feedback.

Figure 1 shows the overall framework diagram of the

proposed method.

Textual information is inputted from the L-Branch branch

and is segmented into words or subwords. The text is then

transformed into fixed-dimensional vector representations through

an embedding layer. These text vectors are linearly projected and

inputted into the corresponding Transformer Encoder. Images

are inputted from the S-Branch, and each branch’s image is

divided into fixed-sized patches. After linear projection, the

image patches are inputted into their respective Transformer

Encoders. The image and text features interact and fuse through

a Cross-Attention mechanism. The Cross-Attention layer takes

features from the image and text encoders, calculates the

correlation between them, and generates a fused multimodal

feature representation. The fused multimodal features are further

processed by a Multi-Scale Transformer Encoder layer to capture

features at different scales, enhancing the expressive power of

the features. Finally, a Multi-Layer Perceptron (MLP) head is

used for tasks such as classification or regression. In the revised

version, we will update Figure 1 to visually illustrate the processing

and flow of textual information, including adding a schematic

diagram of text input, demonstrating the processing of text

through the embedding layer and linear projection layer, and

clarifying the interaction between image and text features in the

Section 3.4.

Differentiation from prior work:While the combination of ViT,

CLIP, and Cross-Attention has been proposed in other domains,

our research is the first to apply it to real-time sports coaching

systems. Unlike previous studies, our research focuses on effectively

integrating visual and textual data in dynamic and real-time sports

training environments. Specifically, our proposed CAM-Vtrans

system takes into account the continuity and complexity of sports

actions during its design. Through optimized Cross-Attention

mechanisms andmulti-scale feature extractionmodules, the system

is able to provide stable and accurate feedback even with high-

frequency inputs.

Overcoming limitations of previous methods: Previous

methods often suffer from low computational efficiency and long

feedback latency when dealing with real-time multimodal data.
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In this research, we address these limitations by introducing the

ViT-Adapter module, which enhances feature extraction efficiency.

Through optimized Cross-Attention mechanisms, we achieve

faster and more accurate multimodal data fusion. Compared to

traditional single-modal or inefficient multimodal methods, the

CAM-Vtrans system significantly reduces inference time and

improves the accuracy of real-time feedback, overcoming the

limitations of previous methods in terms of real-time performance

and data fusion.

Reasons for method selection: We chose the combination

of ViT, CLIP, and Cross-Attention because these techniques

have demonstrated excellent performance in handling complex

visual and textual data. ViT is renowned for its powerful visual

feature extraction capabilities, while CLIP effectively maps visual

and textual data to the same feature space, enabling cross-

modal understanding. The Cross-Attention mechanism efficiently

establishes correlations between different modalities, enhancing

information fusion. These characteristics make them well-suited

for application in sports training scenarios that involve large

amounts of visual and textual data and require real-time feedback.

Therefore, the selection of these methods is not random but

based on their superiority in multimodal data processing and

real-time performance.

Firstly, the Vision Transformer (ViT) is employed to process

video data captured frommultiple cameras. ViT divides each frame

into several image patches, converts these patches into a sequence

of vectors, and processes them with self-attention mechanisms to

identify key visual information. This approach allows the model

to focus on specific regions within the image that are relevant to

the movement technique, improving the accuracy and granularity

of motion analysis. Simultaneously, the CLIP model is utilized

to process and parse natural language inputs such as coach

instructions or verbal feedback from athletes. CLIP learns from a

large corpus of image-text pairs, establishing intuitive associations

between image content and textual descriptions. This enables CLIP

to directly relate language descriptions to visual data, providing

robust support for precise understanding of movement techniques

and coach’s intentions. In the implementation workflow, once the

athlete starts training, the system collects video and audio data in

real-time. The visual and language data are processed separately by

ViT and CLIP, respectively, and then fed into the cross-attention

layer. In this layer, the system analyzes the correlations and

interactions between visual and language information, optimizing

the fusion process to extract the most valuable insights from

the inputs. The core of the cross-attention mechanism lies in its

ability to dynamically adjust the focus on different data sources

based on specific training scenarios, providing more personalized

and goal-oriented training recommendations. After performing

these analyses, the system generates specific feedback reports,

including action correction guidelines, performance evaluations,

and improvement suggestions. This feedback can be presented

directly to the athlete through a graphical user interface or sent

to the coach via mobile devices. Additionally, the system includes

a feedback adjustment module that allows the coach to fine-tune

the level and frequency of feedback as needed, ensuring training

continuity and adaptability. The focal point of the entire system

design is to ensure real-time and accurate feedback, making the

training process more intelligent and efficient. The aim is to

maximize athletes’ performance and training effectiveness through

technological means.

3.2 Vision-transformer

Vision Transformer (ViT) (Miyazawa et al., 2022) is a deep

learning model that applies the Transformer architecture to

process visual data. Traditionally, Convolutional Neural Networks

(CNNs) have been the dominant approach for visual tasks,

FIGURE 2

A schematic diagram of the principle of vision-transformer model.
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but ViT introduces a novel paradigm by leveraging the self-

attention mechanism of Transformers (Papadakis and Spyrou,

2024). Figure 2 is a schematic diagram of the principle of Vision-

transformer Model.

The ViT-Adapter consists of the following components: Firstly,

the Spatial Prior Module is responsible for initially extracting

spatial features from the input image. The image first goes through

the Stem layer, generating a series of feature maps (F1, F2, F3, ...,

Fsp) that capture spatial information at different scales, preparing

for the subsequent feature injection. Secondly, the Spatial Feature

Injector is one of the key modules of the ViT-Adapter. It injects

the spatial features (Fsp) extracted by the Spatial Prior Module

into the intermediate features (Fvit) of the ViT using a Cross-

Attention mechanism. Specifically, the intermediate features of the

ViT serve as the Query, while the spatial features act as the Key

and Value. The Cross-Attention calculates the fused features (Fsp +

Fvit). Then, the Multi-Scale Feature Extractor further processes the

fused features through multiple Cross-Attention layers and a Feed-

Forward Neural Network (FFN) to enhance the expressive power

of multi-scale features, enabling the model to better capture image

details and global information. Additionally, the ViT-Adapter

inserts Injector and Extractor modules between each block of the

ViT. The Injector module injects the features from the Spatial

Prior Module into the current ViT features, while the Extractor

module extracts useful information from the fused features for the

next Transformer Block to use. Finally, after being processed by

multiple Transformer Blocks and ViT-Adapter modules, the final

features are fed into a Multi-Layer Perceptron (MLP) head for

tasks such as classification, detection, or segmentation. Through

these improvements, the ViT-Adapter significantly enhances the

ViT model’s ability to capture spatial features when processing

images, improving its performance in various visual tasks.

The Vision Transformer (ViT) model operates by dividing

an input image into smaller patches, which are then flattened

into a sequence of 1D vectors capturing local visual information.

These patches are linearly projected into higher-dimensional

embeddings, serving as the input to the Transformer model. The

Transformer architecture, composed of multiple identical layers

each containing a self-attention mechanism and a feed-forward

neural network, captures both global and local dependencies within

the sequence of patches. During self-attention, patches exchange

information and capture long-range dependencies, with attended

representations aggregated and combined with original patch

representations using residual connections. This process refines

the patch representations based on contextual information. After

multiple layers, the final image representation is obtained, which

can be used for tasks like image classification, object detection,

or segmentation. ViT’s advantages include capturing global and

local information, scalability, and learning from raw pixels without

hand-engineered features. However, its self-attention mechanism’s

quadratic computational complexity is a limitation. In real-time

feedback for multimodal robots in sports training, ViT analyzes

visual information to understand and provide guidance on body

movements. Trained on annotated sports videos, ViT extracts

relevant features and captures spatial relationships, enabling the

robot to offer accurate, context-aware feedback by leveraging self-

attention to focus on critical image regions and dependencies

between patches.

The input image is divided into patches, resulting in a sequence

of patches, denoted by xi, where i represents the index of each

patch. Each patch is then linearly projected to a higher-dimensional

embedding space using a learnable linear transformation. Let’s

denote the projected embeddings as zi.

The self-attentionmechanism in ViT is defined by the following

equations (Equation 1):

Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V (1)

Here, Q, K, and V are the query, key, and value matrices,

respectively. They are derived from the projected embeddings zi as

follows:

Q = ZWQ K = ZWK V = ZWV (2)

In these equations, Z is the matrix obtained by stacking the

projected embeddings zi, andWQ,WK , andWV are learnable linear

transformation matrices (Equation 2).

The self-attention mechanism calculates the attention weights

between patches by computing the dot product similarity between

the query and key matrices, scaled by the square root of the

dimension dk. The softmax function is applied to obtain the

attention weights, which are then used to weight the values V .

The attended representations are computed as follows

(Equation 3):

SelfAtt(Z) = Attention(Q,K,V) (3)

The attended representations are then combined with the

original patch embeddings using a residual connection, resulting

in the intermediate representations:

Intermediate(Z) = LayerNorm(Z + SelfAtt(Z)) (4)

Here, LayerNorm denotes layer normalization (Equation 4).

The intermediate representations are then passed through

a feed-forward neural network (FFN) with two linear

transformations and a non-linear activation function, typically a

GELU activation:

FFN(Z) = GELU(Intermediate(Z)W1 + b1)W2 + b2 (5)

W1, W2, b1, and b2 are learnable parameters of the feed-

forward network (Equation 5).

The output of the ViT model is obtained by stacking multiple

layers of self-attention and feed-forward networks. The final

representation of the image is typically obtained by applying mean

pooling to the patch embeddings.

In summary, Vision Transformer is a powerful model for

visual processing that replaces traditional convolutional approaches

with self-attention mechanisms. Its ability to capture global and

local dependencies makes it well-suited for understanding and

analyzing visual data in real-time feedback and guidance systems

for multimodal robots in sports training.
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3.3 CLIP

CLIP (Contrastive Language-Image Pretraining) is a deep

learning model that learns to associate images and their

corresponding text descriptions (Dobrzycki et al., 2023). It aims to

bridge the gap between vision and language modalities, enabling

cross-modal understanding and reasoning. The key idea behind

CLIP is to leverage large-scale pretraining on a dataset of image-text

pairs, allowing the model to learn rich representations that capture

the semantic relationship between visual and textual information

(Koh et al., 2024). The basic principle of the CLIP model involves

jointly training a vision encoder and a text encoder. The vision

encoder processes images and maps them to a high-dimensional

latent space, while the text encoder processes textual descriptions

andmaps them to the same latent space. The encoders are trained to

ensure that corresponding image-text pairs are closer to each other

in the latent space compared to non-corresponding pairs. Figure 3

is a schematic diagram of the principle of CLIP Model.

The training process of CLIP involves several key steps:

first, the input image is encoded by a vision encoder, typically

a convolutional neural network (CNN), which extracts visual

features and projects them into a latent space using a learnable

linear transformation. Simultaneously, the input text description

is encoded by a text encoder based on a Transformer architecture,

which tokenizes the text, applies word embeddings, and processes

it through multiple Transformer layers to produce the text’s

representation in the latent space. CLIP utilizes a contrastive

loss function to maximize the similarity between corresponding

image-text pairs while minimizing the similarity between non-

corresponding pairs, achieved by measuring the cosine similarity

between their latent representations. Pretraining on large-scale

datasets, such as Conceptual Captions and ImageNet, enables

CLIP to learn generalizable representations capturing the semantic

relationship between images and texts. After pretraining, CLIP

can be fine-tuned for downstream tasks like image classification,

object detection, or image captioning. In real-time feedback and

guidance for multimodal robots in sports training, CLIP is crucial

for understanding and associating visual and textual information.

By aligning and reasoning about sports movements based on

annotated image-text pairs, CLIP allows the robot to understand

textual annotations related to key movements, techniques, and

performance indicators. Leveraging the pretrained CLIP model,

the robot can generate real-time feedback and guidance based on

its comprehension of the athlete’s movements and the semantic

context provided by textual information.

Let’s consider an image-text pair with an image I and a text

description T.

Image Encoding: The image I is processed by a vision encoder,

typically a convolutional neural network (CNN), to extract visual

features. Let’s denote the image representation as vI . Text Encoding:

The text description T is processed by a text encoder, typically a

Transformer-based architecture, to encode the textual information.

Let’s denote the text representation as vT . Similarity Measurement:

The similarity between the image and text representations is

measured using cosine similarity. It can be calculated as:

Similarity(vI , vT) =
vI · vT

|vI | · |vT |
(6)

Here, · denotes the dot product, and | · | represents the

Euclidean norm (Equation 6).

Contrastive Loss: CLIP utilizes a contrastive loss function to

train the model. Given a positive pair (an image-text pair that

matches) and a set of negative pairs (image-text pairs that do not

match), the contrastive loss encourages the positive pair to have a

higher similarity than the negative pairs. The contrastive loss can

be formulated as:

Loss = − log

(

exp(Similarity(vI , vT))
∑N

j=1 exp(Similarity(vI , vTj ))

)

(7)

Here, N represents the number of negative pairs, and

vTj denotes the text representation of the j-th negative pair

(Equation 7).

The loss function aims to maximize the similarity between

the positive image-text pair while minimizing the similarities

between the positive pair and negative pairs. During training, the

model optimizes the parameters of the image and text encoders to

minimize the contrastive loss. This process enables the model to

learn representations that associate images and their corresponding

text descriptions. In summary, CLIP is a powerful model that

combines image and text encoders to learn joint representations

of visual and textual information. Its large-scale pretraining on

image-text pairs enables it to capture the semantic relationship

between these modalities. In the context of real-time feedback and

guidance in sports training, CLIP enhances the multimodal robot’s

understanding and reasoning capabilities, facilitating personalized

feedback and guidance based on the combination of visual and

textual information.

3.4 Cross-Attention

Cross-Attention is a key component in models that handle

multi-modal tasks, such as image captioning, visual question

answering, and image-text matching (Kim et al., 2023). It enables

the model to attend to relevant information from one modality

(e.g., images) based on the input from another modality (e.g.,

text). The basic principle of Cross-Attention involves computing

attention weights between elements in two different modalities

and using these weights to combine the information effectively

(Björkstrand et al., 2023).

Figure 4 is a schematic diagram of the principle of

Cross-Attention.

Encoding: The image is typically encoded using a convolutional

neural network (CNN), which extracts visual features from the

image. The text description is encoded using a recurrent neural

network (RNN) or a Transformer-based architecture, generating

a sequence of hidden states. Query, Key, and Value: The hidden

states from the text description serve as the query, while the

visual features from the image act as the key and value. These

query, key, and value representations are used to compute

attention weights. Attention Calculation: The attention weights are

computed by measuring the similarity between the query and key

representations. This can be achieved through various methods,

such as dot product, scaled dot product, or bilinear attention.
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FIGURE 3

A schematic diagram of the principle of CLIP model.

FIGURE 4

A schematic diagram of the principle of Cross-Attention.

The attention weights determine how much each visual feature

should contribute to the final attended representation. Weighted

Combination: The attention weights are used to weight the values

(visual features) associated with each key. The weighted values are

then combined to form the attended representation. This process

allows the model to focus on the most relevant visual information

based on the text query. Integration: The attended representation is

integrated with the original text representation, typically through

concatenation or element-wise addition. This integration step

enables the model to capture the cross-modal interactions and

create a fused representation that combines both text and visual

information. The Cross-Attention mechanism plays a crucial role

in multi-modal tasks by allowing the model to attend to relevant

visual information conditioned on the textual input. It enables

the model to align and associate the text and visual modalities,

facilitating a comprehensive understanding and reasoning about

the given input.

For example, in image captioning, the Cross-Attention

mechanism helps the model generate descriptive captions by

attending to relevant image regions while generating each word

of the caption. In visual question answering, Cross-Attention

allows the model to attend to specific image regions that are

relevant to answering the question posed in the text. In image-text

matching, Cross-Attention helps align and measure the similarity

between image and text representations for tasks such as retrieval

and ranking.
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Let’s consider two modalities, Modality A and Modality B, with

their respective representations: Query (Q), Key (K), and Value (V).

The Cross-Attention mechanism involves the following steps:

Compute Attention Weights: The attention weights are

calculated by measuring the similarity between the query

representation (Q) and the key representation (K). One common

approach is to use the dot product:

AttentionWeights = softmax

(

Q · KT

√

dk

)

(8)

Here, dk represents the dimensionality of the key representation

(K). The softmax function ensures that the attention weights sum

up to 1 (Equation 8).

Weighted Combination: The attention weights are used to

weight the values (V) associated with each key. The weighted values

are then combined to obtain the attended representation:

AttendedRepresentation = AttentionWeights · V (9)

The above Equation 9 represent a simplified version of Cross-

Attention and assume single-head attention. In practice, multi-

head attention is often employed to capture different aspects and

provide richer representations. Cross-Attention allows the model

to attend to relevant information in one modality based on the

input from another modality. It enables the model to align and

associate the information across modalities, facilitating tasks that

involve multi-modal understanding, generation, and reasoning.

Cross-Attention is a fundamental mechanism in multi-modal

models that allows the model to attend to relevant information

from one modality based on the input from another modality.

It facilitates the fusion of text and visual information, enabling

comprehensive understanding and reasoning in tasks involving

multiple modalities.

4 Experiment

4.1 Datasets

This article uses the following four datasets:

OpenImages Dataset (Kuznetsova et al., 2020): OpenImages

is a large-scale dataset consisting of annotated images from a

wide range of categories. It contains over 9 million images with

annotations for object detection, segmentation, and classification

tasks. The dataset provides a diverse collection of visual data for

training and evaluating computer vision models.

Objects365 Dataset (Shao et al., 2019): Objects365 is another

comprehensive dataset that focuses on object detection and

instance segmentation. It contains over 365 object categories, with

more than 2 million labeled instances. The dataset is designed to

cover a wide range of object classes and poses, providing a rich

resource for training and evaluating object recognition models.

MSCOCO Dataset (Lin et al., 2014): MSCOCO (Microsoft

Common Objects in Context) is a widely used benchmark dataset

for object detection, segmentation, and captioning tasks. It consists

of around 330,000 images, each annotated with object bounding

boxes, segmentation masks, and image captions. MSCOCO offers

a diverse set of images with multiple object instances and complex

scenes, making it suitable for training and evaluating models in

various visual tasks.

VG-Gap Dataset (Santana et al., 2015): VG-Gap is a dataset

specifically focused on visual grounding and referring expression

comprehension. It includes images from the Visual Genome

dataset, accompanied by referring expressions that describe specific

objects or regions within the images. The dataset is designed to

facilitate research on understanding natural language instructions

and grounding them to visual content.

4.2 Experimental details

In the experiment of our real-time feedback and guidance

method for sports training based on a multimodal robot system, we

utilized four widely recognized datasets: OpenImages, Objects365,

MSCOCO, and VG-Gap, for training and validation of systems

based on Vision Transformer (ViT), CLIP, and cross-attention

mechanism. The training-validation split was set to 80% and

20% respectively. We designed two main experiments: metric

comparison experiment and ablation experiment to evaluate and

validate the performance and effectiveness of the systems. In

the metric comparison experiment, we first established baseline

models using traditional Convolutional Neural Networks (CNNs)

and Long Short-Term Memory networks (LSTMs) as control

groups for the same tasks. Subsequently, we deployed our

multimodal system and focused on evaluating key performance

metrics such as training time (in seconds), inference time (in

milliseconds), model parameters (in millions), computational

complexity (in billions of FLOPs), accuracy, AUC, recall, and

F1 score. To ensure the experiment’s accuracy, each model

was run on the same hardware and software environment

to eliminate the influence of external variables. Each model

was trained and tested on an equal amount of data to ensure

the comparability of results. Specifically, we utilized 8 A100

GPUs for training, employed the Adam optimizer, and set the

following hyperparameters: learning rate of 0.001, batch size

of 32, and 50 training epochs. We implemented the models

using the Python programming language and the PyTorch

framework. In the ablation experiment, we systematically removed

key components from the system: first the cross-attention

mechanism, then the CLIP module, and finally the Vision

Transformer. We observed the impact of each modification on

the model’s performance. This approach helped us understand the

contribution of each component to the overall system performance

and identify indispensable parts in the system. Throughout the

process, the aforementioned performance metrics were used to

evaluate and quantify the importance and effectiveness of each

component. Through these experiments, we gained detailed

insights into the specific impact of different modules on the

system’s performance. We were also able to compare the efficiency

and effectiveness of our approach in handling complex sports

training scenarios with traditional methods. The in-depth analysis

of the experimental results not only validated the effectiveness

of our approach but also demonstrated the potential application

value of multimodal interactive systems in real-time sports

training guidance. Additionally, these experimental results
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provide valuable data support and practical experience for

future research in this field, contributing to further optimization

and development of more efficient and accurate training

assistance systems.

Algorithm 1 shows the training process of the proposed

method.

Input: OpenImages Dataset, Objects365 Dataset,

MSCOCO Dataset, VG-Gap Dataset

Output: Trained ViT-Net model

Initialize ViT-Net model with pre-trained

weights;

Initialize optimizer with suitable learning rate;

Initialize loss function (e.g., cross-entropy);

while not converged do

Sample a mini-batch of images and corresponding

labels from the training dataset;

for each image do

Encode the image using Vision Transformer;

for each object in the image do

Encode the object using CLIP;

Apply Cross-Attention mechanism to

combine visual and textual features;

Forward propagate the input through the

ViT-Net;

Compute the predicted probabilities for

each class;

end

Calculate the loss between predicted

probabilities and ground truth labels;

Update the model parameters using

backpropagation;

Apply optimization step to update the

weights;

end

Evaluate the model on the validation dataset;

Calculate performance metrics (e.g., Accuracy,

Recall, Precision);

if performance metrics have improved then

Save the current model weights as the best

model;

end

end

return Trained ViT-Net model

Algorithm 1. ViT-Net training.

4.3 Experimental results and analysis

Table 1 presents the performance comparison between our

proposed model and models from other researchers on the

OpenImages and Objects365 datasets. This comparison experiment

focuses on four main performance metrics: Accuracy, Recall,

F1 Score, and AUC (Area Under the Curve), which collectively

evaluate the overall performance of the models in classification

tasks. Accuracy measures the proportion of correct predictions

made by the model, Recall focuses on the proportion of relevant

instances identified by the model out of all relevant instances, F1

Score is the harmonic mean of Precision and Recall, providing an

overall performance assessment, while AUC measures the overall

performance of the model in predicting different classes. The

results demonstrate that our model outperforms other methods

in all metrics, particularly exhibiting outstanding performance

on the Objects365 dataset, showcasing its superior image parsing

and classification capabilities. This can be attributed to our

model’s ability to effectively combine the characteristics of Vision

Transformer and CLIP, better understanding image content and

contextual information through cross-attention mechanisms.

Table 2 showcases the comparison of computational efficiency

on the MSCOCO and VG-Gap datasets, covering model

parameters, computational complexity (FLOPs), inference

time, and training time. Parameters and FLOPs reflect the

complexity of the model and the computational resources required

at runtime, with lower values indicating a lighter and more efficient

model. Inference time and training time are directly related to the

practical application of the model, with lower inference time and

training time indicating real-time and cost-effective deployment.

Our model demonstrates excellent performance in these metrics as

well, particularly showcasing significant advantages in inference

time and training time, proving its efficiency and practicality in

real-world deployment.

We compared our method with GPT-3.5 using the OpenAI

API, and the results are presented in Tables 1, 2. Our model

outperforms GPT-3.5 in key metrics such as accuracy, recall,

Inference Time(ms) and Training Time(s), as evaluated on the

OpenImages, Objects365, MSCOCO, and VG-Gap datasets. In

Table 2, the inference time is reported for every 10 images.

Therefore, an inference time of 192 ms corresponds to every 10

images, which means the inference time per frame is 19.2 ms. This

translates to approximately 52 frames per second (FPS), meeting

the real-time requirement of 25 FPS. Additionally, by applying

pruning and distillation techniques to our algorithm, we further

optimized the model to achieve close to 60 FPS without significant

loss in performance. Hence, our method satisfies the real-time

demands in practical applications.

Table 3 focuses on the ablation experiment analyzing the

impact of the Cross-Attention Module on the OpenImages and

Objects365 datasets. The experimental setup involves removing or

modifying the Cross-Attention Module and observing the changes

in Accuracy, Recall, F1 Score, and AUC. AM (Attention Module),

Seif-AM (Self-Attention Module), and Dynamic-AM (Dynamic

Attention Module) represent different configurations of the

Cross-Attention Module. By comparing these configurations, we

discovered that the complete Cross-Attention Module significantly

enhances all performance metrics, demonstrating its crucial role

in integrating visual and textual information and improving the

overall recognition capability of the model. Our model experiences

a performance decline when the Cross-Attention mechanism
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TABLE 1 Performance comparison on OpenImages and Objects365 datasets.

Model OpenImages dataset Objects365 dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

MPR (Zheng et al., 2020) 96.44± 0.03 89.75± 0.02 84.51± 0.01 86.08± 0.02 93.62± 0.03 89.28± 0.02 88.03± 0.01 87.84± 0.02

STVE (Bergamasco et al., 2012) 92.88± 0.03 90.21± 0.02 91.18± 0.01 84.7± 0.02 95.08± 0.03 88.08± 0.02 88.67± 0.01 86.04± 0.02

ULR (Pan et al., 2019) 93.85± 0.03 87.11± 0.02 90.42± 0.01 84.39± 0.02 87.92± 0.03 91.28± 0.02 85.06± 0.01 87.25± 0.02

MIISE (Faria et al., 2016) 90.69± 0.03 84± 0.02 84.28± 0.01 91.8± 0.02 87.42± 0.03 92.19± 0.02 85.43± 0.01 88.49± 0.02

CMSRM (Wang and Liang,

2023)

93.26± 0.03 89.06± 0.02 90.3± 0.01 85.72± 0.02 86.34± 0.03 86.12± 0.02 83.78± 0.01 88.33± 0.02

MAT (Zou et al., 2019) 85.57± 0.03 85.73± 0.02 84.55± 0.01 84.72± 0.02 87.23± 0.03 87.38± 0.02 84.85± 0.01 87.83± 0.02

GPT-3.5 95.57± 0.03 95.73± 0.02 91.55± 0.01 89.32± 0.02 88.23± 0.03 90.38± 0.02 89.15± 0.01 87.73± 0.02

CAM-Vtrans 96.97 ± 0.03 95.29 ± 0.02 94.03 ± 0.01 95.72 ± 0.02 98.26 ± 0.03 94.98 ± 0.02 92.84 ± 0.01 96.63 ± 0.02

In the context of multimodal robot-assisted sports training, various methods have been proposed to enhance the effectiveness of training systems. The MPR model (Zheng et al., 2020) focuses on recognizing motion patterns of exoskeleton robots using a multimodal

machine learning approach, which is crucial for understanding and improving athletic performance. The STVE method (Bergamasco et al., 2012) provides skill training within multimodal virtual environments, offering a simulated yet immersive training experience.

The ULR system (Pan et al., 2019) is designed for upper limb rehabilitation using robot-aided feedback, combining multiple modalities to enhance recovery and training outcomes. The MIISE framework (Faria et al., 2016) enables multimodal interaction with robotic

devices in simulated environments, facilitating a comprehensive training experience through various sensory inputs. The CMSRMmodel (Wang and Liang, 2023) leverages a cross-modal self-attention mechanism for controlling robot volleyball motion, which can be

particularly beneficial for sports requiring precise control and coordination. Lastly, the MAT approach (Zou et al., 2019) focuses on passive force control in a multimodal astronaut training robot, aiming to improve training effectiveness in challenging environments

by integrating different sensory and control modalities. The bold fonts in the table represent the best results.

TABLE 2 Computational e�ciency on MSCOCO and VG-Gap datasets.

Method MSCOCO dataset VG-Gap dataset

Parameters(M) Flops(G) Inference
time(ms)

Training
time(s)

Parameters(M) Flops(G) Inference
time(ms)

Training
time(s)

MPR (Zheng et al., 2020) 246.98± 0.02 314.46± 0.03 337.79± 0.01 302.67± 0.02 387.91± 0.02 316.27± 0.03 380.31± 0.01 362.18± 0.02

STVE (Bergamasco et al., 2012) 265.50± 0.02 339.35± 0.03 282.47± 0.01 350.08± 0.02 320.78± 0.02 304.25± 0.03 273.47± 0.01 239.12± 0.02

ULR (Pan et al., 2019) 202.81± 0.02 380.08± 0.03 299.94± 0.01 237.91± 0.02 323.53± 0.02 381.44± 0.03 332.22± 0.01 390.26± 0.02

MIISE (Faria et al., 2016) 301.68± 0.02 237.67± 0.03 201.48± 0.01 347.54± 0.02 355.63± 0.02 315.60± 0.03 384.33± 0.01 263.49± 0.02

CMSRM (Wang and Liang, 2023) 230.91± 0.02 296.74± 0.03 381.06± 0.01 344.62± 0.02 370.59± 0.02 258.13± 0.03 278.78± 0.01 239.78± 0.02

MAT (Zou et al., 2019) 381.30± 0.02 381.89± 0.03 268.60± 0.01 362.22± 0.02 206.74± 0.02 372.37± 0.03 294.31± 0.01 317.34± 0.02

GPT-3.5 241.30± 0.02 331.39± 0.03 248.10± 0.01 252.22± 0.02 296.74± 0.02 182.37± 0.03 224.11± 0.01 267.36± 0.02

CAM-Vtrans 194.13 ± 0.02 213.04 ± 0.03 192.35 ± 0.01 217.18 ± 0.02 132.25 ± 0.02 178.90 ± 0.03 117.04 ± 0.01 216.80 ± 0.02

The MPR model (Zheng et al., 2020) focuses on recognizing motion patterns of exoskeleton robots using a multimodal machine learning approach, which is crucial for understanding and improving athletic performance. The STVE method (Bergamasco et al., 2012)

provides skill training within multimodal virtual environments, offering a simulated yet immersive training experience. The ULR system (Pan et al., 2019) is designed for upper limb rehabilitation using robot-aided feedback, combining multiple modalities to enhance

recovery and training outcomes. The MIISE framework (Faria et al., 2016) enables multimodal interaction with robotic devices in simulated environments, facilitating a comprehensive training experience through various sensory inputs. The CMSRM model (Wang

and Liang, 2023) leverages a cross-modal self-attention mechanism for controlling robot volleyball motion, which can be particularly beneficial for sports requiring precise control and coordination. Lastly, the MAT approach (Zou et al., 2019) focuses on passive force

control in a multimodal astronaut training robot, aiming to improve training effectiveness in challenging environments by integrating different sensory and control modalities. The bold fonts in the table represent the best results.
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TABLE 3 Ablation study of Cross-Attention module on OpenImages and Objects365 datasets.

Model OpenImages dataset Objects365 dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

AM 91.59± 0.03 87.53± 0.02 86.1± 0.01 88.37± 0.02 95.45± 0.03 93.14± 0.02 90.24± 0.01 87.5± 0.02

Seif-AM 87.93± 0.03 85.41± 0.02 89.35± 0.01 92.55± 0.02 95.21± 0.03 85.76± 0.02 88.34± 0.01 92.73± 0.02

Dynamic-AM 90.48± 0.03 93.62± 0.02 84.88± 0.01 92.59± 0.02 86.36± 0.03 90.29± 0.02 89.53± 0.01 93.36± 0.02

CAM-Vtrans 96.51 ± 0.03 94.27 ± 0.02 92.36 ± 0.01 93 ± 0.02 97.03 ± 0.03 95.28 ± 0.02 94.26 ± 0.01 92.81 ± 0.02

The bold fonts in the table represent the best results.

TABLE 4 Computational e�ciency in ablation study of Cross-Attention module on MSCOCO and VG-Gap datasets.

Method MSCOCO dataset VG-Gap dataset

Parameters(M) Flops(G) Inference
time(ms)

Training time(s) Parameters(M) Flops(G) Inference
time(ms)

Training time(s)

AM 344.46± 0.02 225.62± 0.03 345.44± 0.01 228.51± 0.02 369.39± 0.02 266.69± 0.03 310.45± 0.01 286.33± 0.02

Seif-AM 369.19± 0.02 269.31± 0.03 263.81± 0.01 281.41± 0.02 303.00± 0.02 297.53± 0.03 201.25± 0.01 327.54± 0.02

Dynamic-AM 219.41± 0.02 360.93± 0.03 366.43± 0.01 303.11± 0.02 303.48± 0.02 267.01± 0.03 357.18± 0.01 256.34± 0.02

CAM-Vtrans 172.13 ± 0.02 201.61 ± 0.03 165.47 ± 0.01 140.40 ± 0.02 162.70 ± 0.02 123.92 ± 0.03 229.97 ± 0.01 100.67 ± 0.02

The bold fonts in the table represent the best results.
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is removed, but even in this case, it still outperforms other

configurations, showcasing the robustness of our approach.

Table 4 further explores the impact of the Cross-Attention

Module on computational efficiency, covering the MSCOCO

and VG-Gap datasets. The experimental results show that after

removing or modifying the Cross-Attention Module, our model

performs best in terms of model parameters, computational

complexity, inference time, and training time. This result not

only reaffirms the efficiency of our model but also highlights

the importance of the Cross-Attention mechanism in optimizing

the model’s computational path and reducing unnecessary

computations. Overall, these experimental results thoroughly

demonstrate the superiority of our proposed approach in handling

complex multi-modal data, making it suitable for applications

in scenarios such as sports training that require fast and

accurate feedback.

Conducting validation in a real-world physical environment

can indeed enhance the persuasiveness of the paper. However,

we currently face some limitations and challenges. Firstly, high-

quality video recording and processing require appropriate

hardware devices, including high-definition cameras and powerful

computational resources. We are actively seeking resource support

to ensure access to the necessary equipment and computing

capabilities. Secondly, it is necessary to establish a suitable

video recording experimental setup to ensure data quality and

consistency. We are planning and designing a standardized

recording environment to capture high-quality motion training

videos while minimizing the impact of environmental variables

on experimental results. Additionally, self-recorded videos may

introduce additional data processing and annotation work,

increasing the complexity and workload of the experiments. To

address this issue, we plan to develop semi-automated annotation

tools and data preprocessing workflows to improve efficiency and

reduce the workload. Lastly, factors such as lighting, background,

and motion complexity in self-recorded videos may differ

significantly from public datasets. This may require additional

adjustments and optimizations to the model. We will fine-tune the

model based on self-recorded videos to ensure its high performance

and accuracy in different environments and conditions. In future

work, we will continue to overcome these challenges and gradually

achieve analysis and validation of self-recorded videos. We will

report relevant results in subsequent research. Once again, thank

you for the valuable suggestions provided by the reviewer, as

they will help us further improve the research and enhance its

practical value.

5 Conclusion and discussion

This research addresses the issue of real-time feedback and

guidance in sports training and proposes a multimodal robotic

system named CAM-Vtrans: Real-time Sports Training Utilizing

Multi-modal Robot Data, which combines Vision Transformer

(ViT), CLIP, and Cross-Attention mechanisms. This method

leverages advanced deep learning techniques to process and

integrate complex visual and textual data, aiming to provide more

accurate and effective training feedback. The experiments are

divided into performance comparison and ablation experiments,

conducted on the OpenImages, Objects365, MSCOCO, and

VG-Gap datasets. The results demonstrate that our model

outperforms other state-of-the-art models in key metrics such

as accuracy, recall, F1 score, and AUC. Additionally, it exhibits

excellent computational efficiency, validating the effectiveness and

practicality of the proposed approach.

Despite the positive outcomes, there are still some limitations to

be addressed. Firstly, although the model performs well onmultiple

datasets, its generalization to other unseen types of sports activity

data has not been validated, and further testing and optimization

are needed in a broader range of sports activities. Secondly, while

the current model exhibits real-time processing capability, there

is still room for improvement in scenarios requiring extreme

real-time performance. Future research should focus on reducing

inference time and enhancing processing speed. Additionally,

exploring the model’s application across a wider array of sports

activities and incorporating more diverse and complex datasets

will be critical for ensuring its robustness and versatility. Further

development of adaptive feedback mechanisms that tailor guidance

to the specific needs of different sports disciplines could also

enhance the system’s effectiveness and user experience.
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Integrating subject-specific 
workspace constraint and 
performance-based control 
strategy in robot-assisted 
rehabilitation
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Technology, Shenzhen, China

Introduction: The robot-assistive technique has been widely developed in the 
field of neurorehabilitation for enhancement of neuroplasticity, muscle activity, 
and training positivity. To improve the reliability and feasibility in this patient–
robot interactive context, motion constraint methods and adaptive assistance 
strategies have been developed to guarantee the movement safety and 
promote the training effectiveness based on the user’s movement information. 
Unfortunately, few works focus on customizing quantitative and appropriate 
workspace for each subject in passive/active training mode, and how to provide 
the precise assistance by considering movement constraints to improve human 
active participation should be further delved as well.

Methods: This study proposes an integrated framework for robot-assisted 
upper-limb training. A human kinematic upper-limb model is built to achieve 
a quantitative human–robot interactive workspace, and an iterative learning-
based repulsive force field is developed to balance the compliant degrees 
of movement freedom and constraint. On this basis, a radial basis function 
neural network (RBFNN)-based control structure is further explored to obtain 
appropriate robotic assistance. The proposed strategy was preliminarily validated 
for bilateral upper-limb training with an end-effector-based robotic system.

Results: Experiments on healthy subjects are enrolled to validate the safety and 
feasibility of the proposed framework. The results show that the framework is 
capable of providing personalized movement workspace to guarantee safe and 
natural motion, and the RBFNN-based control structure can rapidly converge to the 
appropriate robotic assistance for individuals to efficiently complete various training 
tasks.

Discussion: The integrated framework has the potential to improve outcomes 
in personalized movement constraint and optimized robotic assistance. Future 
studies are necessary to involve clinical application with a larger sample size of 
patients.

KEYWORDS

robot-assisted rehabilitation, integrated framework, compliant motion constraint, 
iterative learning, RBFNN control structure
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1 Introduction

A large majority of patients with injuries to the nervous system suffer 
from motor disability of limbs, which gravely affects the quality of life. 
Exploring effective treatments, particularly rehabilitation strategies, is one 
of the challenging goals in medicine (Moore et al., 2020; Wright et al., 
2020; Wingfield et  al., 2022; Shi et  al., 2024). In neurorehabilitation, 
bilateral upper-limb training is an effective adjunct treatment that has 
shown positive promise for neuroplasticity as it induces the remodeling 
of premotor cortex (Luft et al., 2004; Cauraugh and Summers, 2005; Chen 
et al., 2010; Xie et al., 2022; Norris et al., 2024) and prepares human 
subjects to return to activities of daily living (Lim et al., 2016).

Traditional rehabilitation intervention is to build a one-to-one 
training environment by means of physical therapists. This way has 
been extensively adopted but not adequately improved owing to its 
low efficiency and precision (Zhang and Cheah, 2015). Based on 
such limitations, robot-assisted therapy has been recently developed 
by the controllability and repeatability. For industrial robots, 
accuracy, rapidity, and stability of the operation are recognized as 
the paramount importance (Koç et al., 2019; Han et al., 2020; Sun 
et al., 2023a; Sun et al., 2023b). However, there exists an additional 
subject who needs to operate the robotic device during rehabilitation 
training. In this scenario, information perception on the user’s 
movements becomes indispensable for a human–robot interaction, 
particularly in training safety and rehabilitation effectiveness.

When it comes to the human–robot interaction safety, a fundamental 
precondition is the estimation of suitable workspaces (Carbone et al., 
2018). In general, some studies tend to drive the affected upper limb by 
referring the workspace of the unaffected side (Chunguang et al., 2009; 
Leonardis et al., 2015; Sarasola-Sanz et al., 2022), while the inconformity 
of both workspaces may result in strain injury. Other research studies 
prefer to try a standardized but small workspace according to the 
experience of the therapists (Squeri et  al., 2009; Najafi et  al., 2020). 
Although this one-size-fits-all approach can ensure the training safety by 
avoiding overstretch, the range of joint motion would not be sufficient, 
which may reduce the rehabilitation effectiveness. To address this 
problem, our previous study developed a subject-specific workspace 
determination method (Miao et al., 2020). The workspace was created 
based on a subject-specific upper-limb kinematic model. An attractive 
field was generated to guide the movement toward a predefined circle 
trajectory, and a repulsive field was defined to constrain deviated motion. 
Nevertheless, the diameter and position of the circle were set by the 
subjective opinion, which did not take into account individual 
adaptability. In addition, the variation of the resistance in the repulsive 
workspaces was uniformed rather than customized for the subjects. The 
inappropriate resistance levels may cause negative training, even 
“slacking” owing to the attractive field.

With regard to the training effectiveness, “assist-as-needed (AAN)” 
control techniques have been employed by providing only appropriate 
assistance during movement execution, which provides subjects more 
movement freedom. Pehlivan et al. (2016) proposed a minimal AAN 
controller for wrist rehabilitation robots in which the adaptive input 
estimation scheme included an extended Kalman filter with Lyapunov 
stability analysis. Zarrin et al. (2024) proposed a two-port admittance 
controller to address the lack of control frameworks for upper-limb 
rehabilitation exoskeletons. Cao et  al. (2024) proposed a position-
constrained AAN control method by introducing a constructed global 
continuous differentiable function incorporating dead zone and 
saturation characteristics to quantify the robotic assistance and facilitate 

seamless operation. It should be noted that the above-mentioned studies 
achieved good results; resorting to one-dimensional data, such as 
trajectory tracking error, movement velocity, or interactive force, is not 
comprehensive enough to support real estimation on subjects’ motor 
functions. This case would misguide device’s behavior of providing 
unsuitable assistance, which may cause patients’ negative emotions or 
intermittent slack during the training. Thus, it is important to evaluate the 
motion state accurately to formulate robotic subject-specific assistance for 
maximizing active participation of the patients.

To address this issue, performance-based control strategies have been 
proposed. These strategies are dependent on multiple kinematic indicators 
to comprehensively evaluate subjects’ motor functions, and adaptive 
controllers are designed to optimize robotic assistance based on the 
evaluation results. Krebs et al. detailed a concept of performance-based 
progressive robot therapy with MIT-MANUS, which included four 
diverse indicators in task-oriented training (Krebs et  al., 2003). A 
piecewise function was adopted as an adaptive algorithm to tune the task 
difficulty. Similarly, Papaleo et al. presented a patient-tailored approach 
by using a seven degrees of freedom (DOFs) robot arm for three-
dimensional (3D) upper-limb training (Papaleo et  al., 2013). Three 
different performance indicators were developed to evaluate motor ability 
through a weighted sum method. Although these objective measures 
appear to be useful, they are not tightly linked to widely accepted clinical 
scales, such as the Fugl-Meyer Assessment (FMA), the Motor Status Score 
(MSS), or the modified Ashworth Scale, which may reduce the evaluation 
reliability of limbs’ motor ability. In addition, little attention was paid to 
the combination of the training safety and effectiveness, which affects the 
development of user-centered robotics.

This article contributes to the bilateral upper-limb rehabilitation by 
proposing an integrated framework for safe and feasible 
neurorehabilitation training. On the one hand, the framework introduces 
a subject-specific workspace design method based on human’s kinematic 
information at first; then, an iterative learning-based repulsive force field 
is established to perform optimal compliance motion constraints. On the 
other hand, a performance-based robotic assistance strategy is 
implemented to tailor subject-specific training task planning for various 
individuals. Three kinematic parameters of a clinical macro-metric model 
are applied as the performance indicators for accurate evaluation of 
subjects’ motor functions, and a radial basis function neural network 
(RBFNN)-based multi-objective optimization method is implemented to 
tailor training difficulty level.

The article is organized as follows: In Section 2, a detailed robot-
assisted bilateral upper-limb training system is described, a safe 
interactive workspace with an iterative learning strategy is analyzed 
based on an end-effector robotic device, and an overall control 
architecture of the robotic device is described, including performance 
indicator acquisition and robotic assistance decision. Section 3 gives 
the experimental protocol and experimental results, and discussions 
and conclusion are included at the last section.

2 Methods

2.1 Robotic system configuration

In this study, a robotic platform is applied for bilateral coordination 
training of human upper limbs, as shown in Figure 1 (Miao et al., 2021). 
The platform is a 6-DOF (two unilateral 3 DOF) end-effector device that 
comprises six linear modules and two handles with the aim of bilateral 3D 
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movement. Each end-effector device is equipped with a three-axis force 
sensor to acquire interactive force data. In terms of software, the host 
computer of the system adopts LabVIEW developed by the NI company 
to set the control parameters, and it communicates with the lower 
controller CompactRIO in real time through an Ethernet cable. The 
communication mode between the servo system and CompactRIO is 
based on analog signal transmission. Then, the servo system provides 
position feedback to the controller in the form of a pulse signal via a 
digital acquisition module. The device is not only furnished with a stop 
button for emergency braking but also integrated with photoelectric 
switches for safety limits.

2.2 Workspace constraint construction

The mirror symmetry training has been widely used through the 
bilateral upper-limb rehabilitation, particularly useful for people 
suffering from hemiparesis. There are clear clinical findings that 
mirror training can improve therapy effectiveness against unilateral 
neglect. A schematic diagram of the bilateral training pattern is 
presented in Figure 2.

The global coordinate directions are described as the orange arrows, 
and the origin of global coordinate (OGC) is defined at the center of the 
four modules (as well as the center of the table). It is assumed that the 
dimensional positions of the robot and the subject are fixed. 1D  and 2D  
indicate width and height of the table, respectively. During the training, 
the subject is asked to stand on the designated location (the center of the 
shoulder joints and OGC are on the same YZ plane), keep the body 
straight, grasp the handles, and focus on the training task presented on 
the visual interface. 3D  represents the distance between the shoulder joints 

and the table. 4D  is the height of the shoulder joint. aL  is the distance 
between the handle center and the table. bL  is the initial length between 
the modules on Y-axis. In this case, the reachable workspace of the 
handles can be obtained by coordinate transformation of the positions of 
the shoulders as given in Equations 1, 2.
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where , ,S S S S
l lx ly lzP P P P =    denotes the coordinates of the left 

shoulder joint, and , ,S S S S
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 denotes the coordinates 

of the right shoulder joint. S is the horizontal distance between each 
shoulder joint to the body center, which can be expressed as 0.179 
times as the body height (Miao et al., 2018).

Therefore, the reachable interactive workspace can be described by 
quantitative upper-limb workspace. Our previous study proposed a 
three-stage method to determine human hands’ workspace on a 
subject-specific basis (Miao et al., 2018). This considered the human 
upper limb as a model with seven degrees of freedom and used the 
Denavit–Hartenberg (D-H) method to derive the human left-hand 
workspace S lP and the right-hand workspace S rP  as given in Equation 3.

Handle
Holders

Control
Box

Linear 
Modules

Force 
Sensors

Visual 
Interface

Linear 
Modules

FIGURE 1

Bilateral upper-limb training system. It includes a visual interface, two handle holders, two three-axis force sensors, six linear modules, and a control 
box.

170

https://doi.org/10.3389/fnins.2024.1473755
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Miao et al. 10.3389/fnins.2024.1473755

Frontiers in Neuroscience 04 frontiersin.org

 

17

1

0 0 0 1

α

α

α

−

=

 
 
 

=  
 
 
 

∏

Slx lx lx x
i

Sly ly ly yi
Si lz lz lz z

n o P
n o PA
n o P

 

(3)

 

1

cos cos sin sin sin cos
sin cos cos sin cos sin

0 sin cos
0 0 0 1

i i i i i i i

i i i i i i ii
i

i i i

a
a

A
d

θ α θ α θ θ
θ α θ α θ θ

α α
−

− 
 − =
 
 
  

(4)

where iα , ia , id , and iθ  are the D-H parameters of the ith upper-limb 
joint. 1i

iA−  is the homogeneous transformation matrix, as given in 
Equation 4. Then, the reachable interactive workspace can be plotted as 
shown in Figure 3.

To limit the movement into this workspace in safety, an optimized 
repulsive potential field concept is adopted to yield compliant constraint. 
Take the X-Y plane as an instance. It is assumed that the current position 
of the left handle is ( ),l lx lyP P P= , and the right side is ( ),r rx ryP P P= . To 
extend the line segment between handles and the geometric centers of the 
workspaces they located, we can obtain two points of intersections on the 
boundaries, and the ones positioning closer the boundaries are 
corresponding obstacles, denoted as ( ),O O O

l lx lyP P P=  for the left side 
and ( ),O O O

r rx ryP P P=  for the right side. The repulsive potential 
function can be presented as given in Equations 5, 6.
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(6)

where 0d  is the maximum influence length of each obstacle, and 
η  is a positive scalar. Afterward, the repulsive forces can 
be calculated by the gradient descent method as given in Equation 7.

 

lrep l

rrep r

F U
F U

= −∇
 = −∇  

(7)

In the context of rehabilitation training, 0d  is generally fixed, while 
the parameter η  should be customized to individual subjects based on 
their control ability of muscular strength. A big ηgenerates an extensive 
but flat repulsive potential field, which limits interference range for a 
freedom movement and affects activities of limbs. However, a small ηwill 
form a narrow but steep repulsive potential field, which may reduce the 
compliance of the movement. As a consequence, it is essential to explore 
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FIGURE 2

Schematic diagram of the proposed training strategy.
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the most appropriate η that leads the trajectories of the handles stabilizing 
in a certain area. We assume that each repulsive force field consists of 
numerous repulsive force lines, as shown in Figure 4a. It is observed that 
the maximum curvatures of the lines, as well as the inflection points, are 
capable of balancing the repulsive force gradient and its range of influence. 
Hence, it needs to quantify the maximum curvature regions, which are 
described by colored surfaces, as shown in Figure 4b.

In response to this problem, an iterative learning method is used 
to hunt for the optimal η  round by round, which can be described as 
given in Equation 8.

 1η η δ η+ = + ∆k k  (8)

where δ  is the learning rate, and subscript k  means the k th 
positive scalar.

Denoting ( ) ( )2 2
k

O O
l lx i lx ly i lyd P P P Pη η= = − + −  and 

( ) ( )2 2
k

O O
r rx i rx ry i ryd P P P Pη η= = − + − , the maximum curvature 

of the ith line for each side can be  calculated as given in 
Equation 9.
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(9)

The corresponding plane coordinates of the maximum curvatures 
can be  expressed as ( ),C C C

i l i lx i lyP P P=  for the left side and 
( ),C C C

i r i rx i ryP P P=  for the right side. Then, the distances between the 
maximum curvature points and the boundary points are obtained 
as follows:
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The subject who intends to train is asked to move the handles 
along the workspace boundary, and sampling distances 
( ),

k kl rd dη η η η= =  will be recorded to compare with distances given 
in Equation 10 as follows:

 1

1 || ||η η η η ε= =
=

− <∑ k k

n
C

l i l
i

d d
n

 
(11)

where ε  is a predefined deviation threshold. If the inequality in 
Equation 11 is not satisfied, kη  will not be used; then, the iteration 
continues ( 1k k→ + ); otherwise, the iteration stops, which means kη  
is the optimal scalar.

2.3 Training strategy and performance 
indicators

In mirror symmetry rehabilitation, reaching-task training is 
commonly implemented. To precisely evaluate the training 
performance, one clinical study established a linear regression model 
based on hundreds of stroke patients’ behavior information in Fugl-
Meyer Assessment (FMA) scales. It emphasized three key indicators, 
including peak speed, smoothness, and duration (Bosecker et  al., 
2010). The peak speed represented the maximum velocity in one 
reaching training round, as defined in Equation 12. The smoothness 
signified the ratio of mean to peak speed, as denoted in Equation 13. 
The duration is the completion time of one target-to-target task, as 
described in Equation 14.
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FIGURE 3

Workspaces of the handles.
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where the subscript n  means the nth raining round, and 
the parameter m represents the sample number in one round. Ä id  is 
the displacement deviation between two contiguous samples, 

denoted as follows: ( ) ( )2 2
1 1− −∆ = − + −i i x x i y yi id P P P P . ∆ it  is 

the corresponding time deviation.
To scientifically define standard performance indicators, Fitts’s 

law was involved to determine desired duration at first (Fitts and 
Peterson, 1964), as given in Equation 15.

 
2·log 1d

LD a b
R

 = + + 
  

(15)

where R denotes the radius of the targets, and L represents the 
distance between any two targets. The parameters a and b are constant 
values, which are commonly set according to clinical training requirements.

Because desired peak speed and smoothness are both dependent 
on velocity, it is significant to define an appropriate trajectory between 
the two targets. There is clear evidence that the minimum jerk principle 
is able to characterize the reaching trajectory of upper limbs, which can 
be expressed as given in Equation 16 (Flash and Hogan, 1985).

 ( ) ( )3 4 510 15 6q t L τ τ τ= − +
 

(16)

where the parameter / dt Dτ = . Then, the first-order derivative of 
Equation 16 can be acquired as given in Equation 17.

 
( ) ( )2 3 430 60 30
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Lv t
D

τ τ τ= − +
 

(17)

Furthermore, the parameter dP  can be  calculated as given in 
Equation 18.
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0
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d
t D
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≤ ≤

=
 

(18)

Finally, the desired smoothness can be  written as given in 
Equation 19.

 

( )0
dD

d
d d

v t dt
S

D P
=
∫

 
(19)

2.4 Control system design

Based on the above concepts, it is obvious that the smaller the 
gap between the desired and the measured performance indicators, 
the better the training effectiveness. For this purpose, the difficulty 
of training should be subject-specific. We assume that there exists the 
nth difficulty level nk +∈ such that the nth comprehensive 
performance error is minimum in each indicator’s limited range of 
variation, as given in Equation 20.

(a)

(b)
FIGURE 4

Maximum curvature dots of the repulsive potential field. (a) The maximum curvature dots of the different repulsive curves. (b) The repulsive potential field.
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(21)

where ∆ = −n d nP P P , ∆ = −n d nS S S  and ∆ = −n d nD D D  are 
the performance indicator errors, as given in Equation 21. thrP , thrS , and 

thrD  are the threshold values of the corresponding variations. To make the 
thresholds appropriate, a physiotherapist is involved to give basic 
references at first. Then, they are further adjusted according to the 
feedbacks of the subjects after a series of previous experiments. Therefore, 
the mapping from the human functional ability to the robot resistance 
level and the multi-objective optimization should be considered. Based 
on this, the RBFNN method is employed to obtain the optimal difficulty 
level, as shown in Figure 5.

It assumed that [ ], ,= ∆ ∆ ∆n n nx P S D , the input is the single 
performance indicator error n

ix ∈ℜ . The output of the network is the 
difficulty level, which is the scalar function of the input indicator as 
given in Equation 22.
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(22)

where N  is the number of the nodes in the hidden layer, which is 
set at 20. jµ  is the center field, and jω  is the j th weight. The radial 
basis function is defined as Gaussian form as given in Equation 23.

 ( )
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| |||
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− −

− =
i jx

jx c e
 (23)

where σ  is the standard deviation of the function. The RBF 
networks are trained by indicators, and the difficulty levels are 
sampled from previous experiments. Specifically, the chosen jµ  is the 
k-means clustering, and the σ  can be obtained as given in Equation 24.

 
max
2N

µσ =
 

(24)

The least squares function is used to calculate the weights between 
the hidden layer and the output layer as given in Equation 25.
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i j
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e  (25)

The technique for order of preference by similarity to ideal 
solution (TOPSIS) method is employed for multi-objective 
optimization. It is assumed that the desired minimum errors are 

∗∆ nP , 
∗∆ nS , and 

∗∆ nD . The model can be written as in Equation 26.
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1 1
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(26)

where , ,∗ ∗ ∗ ∗ = ∆ ∆ ∆ n n nx P S D , and iλ  is the ith weight of the ith 
objective function. ( )1

i if x−  is the ith inverse function of the ith 
performance indicator error.

The admittance law module makes the device operate with specific 
inertia, specific damping, and unfixed stiffness by measuring and 
controlling the force from two force sensors. These parameters are 
equal on the X-axis and the Y-axis. The admittance equation is written 
as given in Equation 27.
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(27)

where ,
Tyx

l l lF F F =    denotes the measured interactive force 
vector on the left handle along the X-axis and the Y-axis, and 

,
Tx y

r r rF F F =    corresponds to the right handle. The parameters 

( ),l rm m , ( ),l rb b , and ( ),l rk k  represent the predefined robotic handle’s 
mass, damping, and stiffness factors depending on specific tasks, 
respectively. Setting the trajectories caused by the interactive forces, the 
admittance law can be simplified into Equation 28 as a linear spring, 
where the acceleration and the velocity are ignored (Ott et al., 2015).

 

l l l

r r r
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(28)

Combined with the repulsive potential function and the training 
difficulty level, Equation 28 can be modified as given in Equation 29.
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(29)

3 Experimental results

3.1 Experimental protocol

The experiments were conducted with the end-effector-based 
bilateral robot to validate the feasibility of the developed safety metrics. 
Two healthy subjects (two male participants: age 29.00 ± 4.24 years, 
height 1765.00 ± 21.21 mm, and weight 83.00 ± 9.90 kg) volunteered to 
participate in this study. The study was approved by the Southern 
University of Science and Technology, Human Participants Ethics 
Committee (20190004), and consent was obtained from the participant.

To test the performance of the proposed safety strategy, the 
experiments were divided into two blocks. The first experiment was 
conducted to search for the most appropriate η  values of each subject. 
The subjects were required to execute a reaching-task training between 
two pre-set points for the first 20 rounds. Then, the subjects needed to 
move the left handle along the workspace boundary in an anticlockwise 
direction and synchronously move the right side in an anticlockwise 
direction (mirror symmetry training mode) during the next 20 
rounds. In this context, the positions of the targets were set at 
[−400.00 mm, 200.00 mm] and [−230.00 mm, 50.00 mm] for the left 
side and [400.00 mm, 200.00 mm] and [230.00 mm, 50.00 mm] for the 
right side. The admittance parameters were fixed as 

˜ ˜
0.08l rk k= = , 

which could make subjects’ movements more compliant. The starting 
η  value was set at 400. The deviation η∆  was set at 30. Due to the 
large learning rate δ  causing large η  that limits interference range for 
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TABLE 2 Definition of the desired performance indicators and the 
training results of the admittance parameters for the second subject.

Round 
(No.)

Pd (mm/s) Sd Dd (s) kl kr

0–10 94.46 0.53 4.5 0.0232 0.0245

10–20 121.45 0.53 4.5 0.0312 0.0337

20–30 170.05 0.53 4.5 0.0582 0.0611

30–40 283.39 0.53 4.5 0.0776 0.0808

a freedom movement but the small learning rate δ  extending the 
optimization time, the learning rate δ  was finally set at 0.5 to combine 
the rate of convergence of η  and the training efficiency after proceeding 
numbers of preliminary experiments and seeking advice from a 
physical therapist.

In the second experiment, the performance-based robotic 
assistance strategy was added to validate whether it is effective to 
approximate the training tasks, including four difficulty levels with 
40 rounds of training (each for 10 rounds). The positions of the 
targets were set as in the first experiment. According to a series of 
preliminary training tests, the parameters a and b in Fitts’s law were 
set both at 1. Combined with Equations 15 to 19, the desired 
performance indicators can be worked out, as shown in Table 1. Due 
to all the subjects being healthy individuals, the initial 

˜
lk  and 

˜
rk  were 

set at 0.1, and the range of admittance values was limited in [0, 0.12]. 
The desired minimum errors were set as 

∗∆ nP =15 mm/s, 
∗∆ nS =0.15, 

and 
∗∆ nD =0.5 s. After acquiring 1,200 groups of the performance 

indicators of each subject and corresponding admittance parameter, 
the customized values can be obtained (as shown in Table 1 for the 
first subject and Table 2 for the second subject).

3.2 Experimental results

Figure  6 reports the results of the first experiment, where 
Figures  6a,b the trajectories, respectively, being generated by two 
subjects. Figures 6c,d display their interactive forces (red lines) and 

repulsive forces (blue lines) on X-axis, while Figures 6e,f correspond 
to the forces on Y-axis.

It is found that the trajectories in the first 20th training rounds 
consist of straight lines, which reflect that the subjects adapted well 
to the mirror symmetry training, and repulsive forces appear only if 
the handles approach the targets. Owing to the small η , the repulsive 
forces exponentially increase when the handles are close to the 
boundaries of the workspaces at the beginning of the last 40 rounds. 
However, the repulsive forces gradually reduce with the η  
continuously modulating in approximately 8–10 rounds, which 
verifies that the trajectories can converge to maximum 
curvature points.

In detail, the iterative processes of the η  are given in Figure 7, 
where the blue bars represent the position deviations, and the gray 
dots are corresponding η . To make it clearer to analyze, the values 
of η  in Figure 7 are multiplied by 0.02. The data are recorded from 
the 21th round and provided in Table 1. The results in Figure 7a 
show that the position deviations from the 21th rounds to the 29th 
rounds are far more beyond the predefined ε =30 mm, so the η  
increases from 400 to 530. In contrast, the η  holds when the 
position deviation is below 30 mm, which means iteration stops, 
and η=530 ought to be  the optimal scalar for the first subject. 
Although some position deviations, such as in the 33–35th round, 
are not completely smaller than ε =30 mm, their difference values 
are in few millimeters, which can be  assumed to be  effective. 
Similarly, the most appropriate η  for the second subject can 
be determined as 560 in Figure 7b.

Admittance Law Position Controller

Encoder

Robot

∑λ ∙

∆ ∗

∆ ∗

∆ ∗

min

 

FIGURE 5

Overall control architecture of the robotic system.

TABLE 1 Definition of the desired performance indicators and the 
training results of the admittance parameters for the first subject.

Round 
(No.)

Pd (mm/s) Sd Dd (s) kl kr

0–10 94.46 0.53 4.5 0.0159 0.0166

10–20 121.45 0.53 4.5 0.0231 0.0241

20–30 170.05 0.53 4.5 0.0492 0.0498

30–40 283.39 0.53 4.5 0.0764 0.0791
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Figures 8,9 present the results of the second experiment, where 
Figure 8 shows the measured performance indicators applied by the 
subjects in the second experiment. The black and gray imaginary lines 
represent different desired performance indicators. Figure 8a uses blue 
lines to represent the measured performance indicators of the first 
subject and applies light blue shadows to describe the standard deviations. 
Figure 8b represents the results performed by the second subject. Figure 9 
gives measured interactive forces in the second experiment.

A statistical analysis with a paired t-test is used for comparisons 
among the trials. It is denoted that four training tasks correspond to 
T1, T2, T3, and T4. The results given in Figure  10 show that the 
p-values of the t-test are all larger than 0.05, which means there are no 
significant differences represented between any two tasks, either for 
the left hand or the right side.

Overall, it can be seen that the measured indicators approximate 
the desired values. For more specific information, in a total of 40 
rounds, the values of the root-mean-square error (RMSE) for the first 
subject are 26.24 mm/s, 0.06, and 0.02 s, and 22.41 mm/s, 0.04, and 
0.12 s for the second subject, which shows the feasibility of the RBFNN-
based method. The average forces in Figure 8 vary steadily during the 
whole training, which implies that the training difficulty levels fit the 
subjects well, and the training effectiveness tends to be positive.

4 Discussion

Robot-assisted upper-limb training plays an important role in 
reducing the burden of labor and improving the training efficiency. To 
guarantee the safety of the robotic system and provide appropriate 
assistance, previous studies preferred to define uniformed workspace 
and rigid motion restraint as the safe metrics. However, these 
strategies ignored the human specificity and motion smoothness. To 
improve the accuracy of performance evaluation, some studies used 
multi-performance-based control methods to synthetically adjust 
parameters of the robotic system (Krebs et al., 2003; Papaleo et al., 
2013), while few studies focus on exploring subject-specific training 
methods to maximize subject participation.

The developed integrated framework can benefit robot-assisted 
rehabilitation training in three aspects. First, this study developed 
subject-specific workspaces based on human kinematic information and 
the robot characteristic to ensure the training safety. Second, the 
proposed iterative learning-based repulsive force field is capable of 
providing optimal motion constraints, which can reduce the risk of 
secondary injury and avoid unbalance between movement freedom and 
compliance. Finally, the designed robotic assistance strategy introduces 
three performance measures that are closely linked to clinical scales to 
improve the evaluation accuracy of training, and a learning method 
combined with the repulsive force field is developed to obtain customized 
control parameters for various that can approximate any 
training requirements.

Experiments on healthy subjects are enrolled to validate the safety 
and feasibility of the proposed framework. The results show that the 
framework is capable of guaranteeing safe and natural movements and 
providing different subject-specific parameters for individuals to 
conduct various training tasks. Furthermore, the results shown in 
Figure 8 in this article present better rapidity than the results in our 
previous study (Miao et al., 2023). The fuzzy-based methods need 
several iteration times to lock appropriate robotic assistance, while the 

(a)

(b)

(c)

(d)

(e)

(f)

FIGURE 6

Results of the first experiment. (a) The trajectories being generated by 
the first subject. (b) The trajectories being generated by the second 
subject. (c) The interactive and repulsive forces performed by the first 
subject on X-axis. (d) The interactive and repulsive forces performed 
by the first subject on Y-axis. (e) The interactive and repulsive forces 
performed by the second subject on X-axis. (f) The interactive and 
repulsive forces performed by the second subject on Y-axis.
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(a)

(b)
FIGURE 7

Iterative process of the first experiment. (a) The results of the first subject. (b) The results of the second subject.

(a)

(b)
FIGURE 8

Results of measured performance indicators applied by the subjects in the second experiment. (a) The results of the first subject. (b) The results of the 
second subject.

RBFNN-based control structure can skip the convergence procedure, 
which can increase training efficiency.

However, there are still some limitations to this study. First, the 
training tasks are defined only in a two-dimensional space, while 
most activities of daily living belong to the category of three-
dimensional space. Second, the learning strategy relies on long time 
for offline training. Third, the experiments only include healthy 
individuals. However, it should be noted that the human kinematic 
upper-limb model can be achieved according to the FMA scales, and 

all involved control parameters are able to be  trained or further 
optimized for various groups of subjects; hence, the system is also 
applicable to patients.

5 Conclusion

This study proposes an integrated framework for robot-assisted 
upper-limb training, which not only includes human kinematic-based 
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compliant motion constraints for safe interactive training but also 
develops a performance-based adaptive control strategy to provide 
appropriate robotic assistance. Experimental results demonstrated 
that the proposed framework can avoid unsafe motion and prompt the 
acquisition of appropriate subject-specific parameters. Future studies 
will consider the optimization of the proposed framework with 
advanced algorithms, as well as its clinical application with a larger 
sample size of patients.
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FIGURE 9

Results of measured interactive forces in the second experiment. Figure 9 (a) represents the mean interactive forces performed by the left hands of 
both subjects. The light blue shadows represent measured forces, and the blue dots represent corresponding mean values. Figure 9 (b) shows the 
results of the right side.
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FIGURE 10

Statistical analysis results of average measured forces on the left handle and the right handle during the training. Mean Ti (i  =  1,2,..., 4) represents the 
mean force performed by both subjects during the ith trial.
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Comparison of muscle synergies 
in walking and pedaling: the 
influence of rotation direction 
and speed
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of Technology, Tokyo, Japan, 2 Department of Health Sciences, Graduate School of Medicine, Shinshu 
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Background: Understanding the muscle synergies shared between pedaling 
and walking is crucial for elucidating the mechanisms of human motor control 
and establishing highly individualized rehabilitation strategies. This study 
investigated how pedaling direction and speed influence the recruitment of 
walking-like muscle synergies.

Methods: Twelve healthy male participants pedaled at three speeds (60 RPM, 
30 RPM, and 80 RPM) in two rotational directions (forward and backward). 
Additionally, they completed walking tasks at three different speeds (slow, 
comfortable, and fast). Surface electromyography (EMG) was recorded on 10 
lower limb muscles during movement, and muscle synergies were extracted 
from each condition using non-negative matrix factorization. The similarities 
between the muscle synergies during walking and each pedaling condition 
were examined using cosine similarity.

Results: The results confirmed that the composition of muscle synergies during 
pedaling varied depending on the rotational direction and speed. Furthermore, 
one to three muscle synergies, similar to those observed during walking, were 
recruited in each pedaling condition, with specific synergies dependent on 
direction and speed. For instance, synergy involving the quadriceps and hip 
extensors was predominantly observed during pedaling at 30 RPM, regardless 
of the direction of rotation. Meanwhile, synergy involving the hamstrings was 
more pronounced during forward pedaling at 60 RPM and backward pedaling 
at 80 RPM.

Conclusion: These findings suggest that walking-like muscle synergies can 
be selectively recruited during pedaling, depending on the rotational direction 
and speed.

KEYWORDS

locomotor modules, gait, cycling, electromyography (EMG), motor control, 
rehabilitation, central nervous system (CNS)
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1 Introduction

Human motor control is a highly complex behavior, with the 
central nervous system (CNS) controlling vast degrees of freedom of 
the musculoskeletal system (Bernstein, 1967). Muscle synergies are 
functional units consisting of groups of muscles that work together in 
a coordinated manner to control specific motor tasks. To address the 
excessive redundancy in motor control, the CNS has been suggested 
to achieve complex movements by flexibly combining a small number 
of fundamental muscle synergies (Tresch and Jarc, 2009; Bizzi and 
Cheung, 2013; Ting et al., 2015).

Walking and cycling involve rhythmic movements of the lower 
limbs and exhibit similar muscle activity patterns (Raasch and Zajac, 
1999) and neural modulation (Zehr et al., 2007). This similarity suggests 
a shared neural control mechanism and comparable muscle synergies 
between walking and pedaling have also been noted (Hug et al., 2010; 
De Marchis et al., 2013; Barroso et al., 2013, 2014). The activity of 
multiple muscle groups during walking can be explained by four or five 
muscle synergies (Ivanenko et al., 2004; Ivanenko et al., 2005; Cappellini 
et al., 2006; Neptune et al., 2009; Clark et al., 2010). Additionally, muscle 
activity during pedaling is often explained by three or four muscle 
synergies (Hug et al., 2010; Hug et al., 2011; De Marchis et al., 2013; 
Barroso et al., 2013, 2014; Ambrosini et al., 2016). However, a study 
investigating muscle synergies during pedaling at various cadences 
showed that although the number of required synergies remains 
consistent across different cadences, the composition of the recruited 
muscle synergies varies with speed (Barroso et al., 2014).

Barroso et al. (2014) compared muscle synergies between walking 
and pedaling at four different speeds and reported that similar muscle 
synergies were observed between these two motor tasks. However, they 
noted that a muscle synergy in which the soleus muscle contributed 
independently was only observed during low-speed pedaling (Barroso 
et al., 2014). Alternatively, during walking, a muscle synergy involving 
the ankle plantar flexors, which contribute to forward propulsion 
during the late stance phase, has been observed across all speeds from 
low to high (Ivanenko et al., 2004; Clark et al., 2010; Yokoyama et al., 
2016). Barroso’s study investigated muscle synergies in pedaling at four 
speeds, comparing them with walking synergies at matched speeds. 
Their findings suggest that muscle synergies essential for walking may 
be observed only during pedaling at specific speeds. Therefore, it is 
important to investigate the similarity of muscle synergies during 
walking and during pedaling at different speeds.

Furthermore, a simulation study examining the contribution of 
functional muscle groups in different pedaling directions (forward 
and backward) reported that smooth backward pedaling was achieved 
by splitting the pairs of the rectus femoris (RF)/tibialis anterior (TA) 
and hamstrings (HAM)/ankle plantar flexors (TS) observed in 
forward pedaling into two distinct pairs: RF-HAM and TA-TS pair 
(Raasch and Zajac, 1999). However, given the findings of previous 
studies that the composition of muscle synergies during pedaling 
varies with movement direction and speed (Barroso et al., 2014), it is 

possible that the composition of walking-like muscle synergies 
recruited during pedaling may also differ depending on these factors.

Pedaling exercises are widely used in the rehabilitation of patients 
with stroke as an effective method for regaining walking function, 
including improvements in walking speed, distance, and asymmetry 
(Barbosa et  al., 2015). Clarifying the details of the shared muscle 
synergies between pedaling and walking is essential for assessing motor 
function impairments and establishing highly individualized 
rehabilitation strategies. This study aimed to investigate the similarities 
between muscle synergies obtained from six pedaling conditions, 
combining forward and backward pedaling at three different speeds and 
walking muscle synergies, to elucidate the composition of walking-like 
muscle synergies recruited during pedaling based on direction and speed.

2 Materials and methods

2.1 Subjects

Twelve healthy male volunteers (age, 25 ± 2; height, 1.71 ± 0.06 m; 
weight, 68.0 ± 7.5 kg) participated in this study. These individuals met 
the inclusion criteria of no history of CNS disorders or orthopedic 
conditions that would impair walking or pedaling movements. 
Individuals with training experience as cyclists were excluded.

They were informed about all procedures and the potential 
discomfort associated with the experimental procedures before 
providing written consent to participate. The study protocol was 
approved by the Institutional Review Board of Shinshu University, 
Nagano, Japan (Approval No. 4473) and adhered to the standards of 
the latest revision of the Declaration of Helsinki.

2.2 Experimental procedure

The participants completed three sessions. In the first session, the 
participants walked on flat ground at three speeds: comfortable, slow, 
and fast. Next, forward pedaling was performed on a recumbent 
ergometer (StrengthErgo240; Mitsubishi Electric Co., Tokyo, Japan) 
at three speeds: comfortable, slow, and fast. Finally, they pedaled 
backward on the same ergometer at three speeds.

2.3 Gait

The participants walked on flat ground at three different speeds, 
and each speed was recorded once after the preparer practiced. 
Measurements were conducted using a 16 m walking path, which 
included three meters before and after the acceleration and 
deceleration sections. Pressure signals during walking were recorded 
from a foot switch attached to the right heel during a 10 m section 
where the walking speed was constant. The timing of the heel strike 
was used to identify one walking cycle and cadence.

2.4 Pedaling

Pedaling was performed using a recumbent ergometer with an 
adjustable seat height of 51 cm and a crank length of 18 cm. The backrest 

Abbreviations: EMG, Electromyography; CNS, Central nervous system; TDC, Top 

dead center; TA, Tibialis anterior; SOL, Soleus; LG, Lateral gastrocnemius; RF, 

Rectus femoris; VM, Vastus medialis; VL, Vastus lateralis; MH, Medial hamstrings; 

LH, Lateral hamstrings; Gmed, Gluteus medius; Gmax, Gluteus maximus; NMF, 

Non-negative matrix factorization; VAF, Variance accounted for.
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angle was set to 10°, and the distance from the seat to the crank axis and 
the height of the pedal axis were adjusted to ensure the knee extension 
angle was −10° when the knee was maximally extended during pedaling.

The participants pedaled during all tasks using an isometric 
contraction mode of 10 Nm. Pedaling speeds (expressed in revolutions 
per minute, RPM) were selected at 60 RPM, 30 RPM, and 80 RPM, 
with the aim of capturing a wide range of differences in muscle 
synergies induced by pedaling speed. The rationale for selecting these 
specific speeds was based on previous studies involving stroke patients 
that employed slower pedaling speeds, ranging from 20 to 50 RPM 
(Ambrosini et al., 2016), while research on trained cyclists utilized 
higher speeds, ranging from 60 to 140 RPM (Wakeling and Horn, 
2009). Based on these methodologies and considering the ability of 
our participants to maintain a steady pedaling cadence without undue 
strain, we selected 30 RPM as a slower speed and 80 RPM as a faster 
speed. Additionally, the comfortable cadence was set at 60 RPM, per 
previously established methods (De Marchis et al., 2013). The order 
of the speeds in each session was randomized. A 30 s trial was 
conducted for each speed of forward and backward pedaling. Real-
time measurement of the crank angle during pedaling was made 
possible by recording voltage changes from the left crank. Since all 
participants in this study were right-leg dominant, the right-side 
profiles were shifted by 180°. The pedaling cycle in this study was 
defined as starting when the right knee transitioned from the 
extension phase to the flexion phase (the right crank angle at 135°) 
and ending after the completion of one full revolution (Figure 1).

2.5 Electromyogram

Surface electromyography (EMG) was recorded from the following 
10 muscles of the dominant lower limb: tibialis anterior (TA), soleus 

(SOL), lateral gastrocnemius (LG), rectus femoris (RF), vastus medialis 
(VM), vastus lateralis (VL), medial hamstrings (MH), lateral 
hamstrings (LH), gluteus medius (Gmed), and gluteus maximus 
(Gmax). Based on previous studies (Barroso et al., 2014) investigating 
muscle synergies during cycling, which demonstrated consistent EMG 
patterns from the dominant leg, this study also focused on measuring 
muscle activity from the dominant leg. Participants underwent gait 
and pedaling tasks focusing on their dominant side, and each 
participant’s dominant leg was established using the Footedness 
Questionnaire (Chapman et al., 1987). Electrode placement followed 
the SENIAM (surface electromyography for the noninvasive 
assessment of muscles) guidelines (Hermens et al., 2000). EMG activity 
was recorded during a stable performance of each task using a wireless 
EMG system (Trigno Wireless System; DELSYS, Boston, MA, 
United States). The EMG signals were bandpass-filtered (20–450 Hz), 
amplified (with a 300-gain preamplifier), and sampled at 2000 Hz. Data 
analysis was conducted offline using MATLAB R2022b (MathWorks, 
Natick, MA, United States) and IBM SPSS Statistics 25 software (IBM).

2.6 EMG processing

Before commencing EMG processing, a meticulous visual 
inspection of the EMG recordings from all muscles was conducted. A 
continuous series of six strides/pedaling cycles devoid of noise 
artifacts was carefully selected for analysis in each trial. Selected EMG 
signals underwent full-wave rectification and were smoothed using a 
Butterworth zero-phase low-pass filter with a cutoff frequency of 5 Hz 
(Clark et al., 2010; Hug et al., 2010; Barroso et al., 2014).

The smoothed EMG data were normalized to the average of the 
peaks from each muscle’s six strides/pedaling cycles to facilitate 
comparisons across subjects, motor tasks, and speeds. Additionally, 

FIGURE 1

Experimental setup. As illustrated in the figure, the starting position of the pedaling cycle was defined as the right crank angle at 135°. Both forward and 
backward pedaling were recorded. One segment was defined as the period from the initial 135° position until it reached 135° again, and this segment 
was represented as 100% of the pedaling cycle.
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the EMG signals were resampled at intervals of 200 points for each 
stride/pedaling cycle (Barroso et  al., 2014). Furthermore, 
we subtracted the minimum value for each cycle to ensure a zero value 
for all cycles (Barroso et al., 2014). For each subject, motor task, and 
speed, the normalized EMG signals were combined into an m × t 
matrix, where m represents the number of muscles (10 in this case), 
and t indicates the time base (t = number of strides (6) × 200 
timepoints) (Barroso et al., 2014).

2.7 Muscle synergy analysis

To extract the motor modules, non-negative matrix factorization 
(NMF) was performed on the EMG matrices (EMG0) obtained from each 
trial, consisting of six continuous cycles for each participant (Clark et al., 
2010; Hug et al., 2010; Barroso et al., 2014). NMF is a linear decomposition 
technique that decomposes a given data matrix into two non-negative 
matrices, as represented by the following equation (Lee and Seung, 1999; 
Tresch et al., 2006):

 M W C e= ⋅ +

where M represents an m × t matrix (i.e., 10 muscles × 1,200 
time points, comprising six cycles × 200-time points), W is an 
m × n matrix representing the weighting components (where n is 
the number of modules), C is an n × t matrix representing the 
temporal pattern components, and e is the residual matrix. When 
the matrices W and C are multiplied, an m × t matrix is generated 
that attempts to reconstruct the EMG for all consecutive cycles.

At each iteration, the algorithm updates W and C to minimize the 
Frobenius norm representing the residual between the reconstructed 
EMG (EMGr) and original EMG matrix (EMG0) (Lee and Seung, 
1999). NMF was applied to all possible n values, ranging from 1 to 10, 
for module extraction. Muscle synergy vectors (columns of matrix W) 
were normalized by the maximum value of each column to enable 
comparisons among the subjects, speeds, and motor tasks (Hug et al., 
2010; Barroso et al., 2014). In addition, each row of matrix C was 
normalized to its peak for all cycles.

As the algorithm iteratively updates based on random initial 
estimates of W and C, it converges to a locally optimal matrix 
factorization. To avoid the local minima, the algorithm was repeated 
100 times for each participant. The variance accounted for (VAF) was 
calculated at each iteration, and only the iteration with the maximum 
VAF was retained. VAF is defined as follows:
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We defined the optimal number of modules, n, as meeting the 
following criteria: first, n was selected as the smallest number of 
modules, explaining more than 90% of the VAF (Torres-Oviedo et al., 
2006). Second, n was the smallest number, and adding another module 
did not increase the VAF by more than 5% (Frère and Hug, 2012).

Daily life requires walking at a wide range of speeds, from slow to 
fast, and stroke patients undergoing rehabilitation need to regain their 
walking ability across this range of speeds. Therefore, in this study, 

we compared walking across a broad range of speeds with pedaling at 
various speeds, considering its potential application for rehabilitation.

To this end, we concatenated the EMG matrices obtained from 
each subject walking at three speeds (comfortable, slow, and fast) 
along the time points in the direction. Subsequently, NMF was 
performed on the concatenated EMG matrix of walking at all speeds 
(i.e., the matrix consisted of 10 muscles × 3 speed conditions × 1,200 
time points) to extract the synergies across all walking speeds 
(Yokoyama et al., 2016; Saito et al., 2021).

2.8 Clustering the muscle synergy across 
participants

To elucidate the characteristics of muscle synergy vectors among 
the different conditions, hierarchical clustering analysis (Ward’s method, 
Euclidean distance) was conducted on the weighting components of the 
muscle synergies for all subjects in each condition (Yokoyama et al., 
2016; Saito et al., 2021). Clustering was performed for each of the seven 
conditions: three velocities for forward pedaling, three velocities for 
backward pedaling, and whole-speed walking. The optimal number of 
clusters was determined using a gap statistic (Tibshirani et al., 2001). 
Subsequently, the muscle synergy vectors within the clusters were 
averaged across the subjects. Synergies possessed by more than half of 
the subjects were defined as representative synergies for each condition 
(Funato et  al., 2022) and were adopted for further examination of 
similarities with walking synergies. The similarity between walking and 
representative synergies for each pedaling condition was assessed using 
cosine similarity, and synergies were considered similar when the cosine 
similarity was more significant than 0.85.

2.9 Statistical analyses

All statistical analyses were performed using IBM SPSS Statistics 
25 software (IBM). The Wilcoxon signed-rank test, which is 
appropriate for paired data, was used to compare the differences in 
cadence across the walking speed conditions (comfortable, slow, fast). 
All statistical significance levels were set at p ≤ 0.05.

3 Results

3.1 Walking cadences

The cadences (mean ± standard deviation) at each walking speed 
(comfortable, slow, fast) were 59 ± 2 strides/min, 51 ± 4 strides/min, 
and 69 ± 4 strides/min, respectively. Significant differences among the 
cadence conditions were observed in the comfortable vs. slow, slow vs. 
fast, and comfortable vs. fast conditions (p < 0.001, Wilcoxon signed-
rank test).

3.2 Muscle synergies extracted from 
whole-speed walking EMG matrices

Table  1 presents the VAF values of the 12 subjects for each 
condition. The median number of muscle synergies required to meet 
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the criteria for whole-speed walking was 4.5, and the mean VAF for 
the optimal number of synergies across all subjects was 94.2 ± 2.2%.

Figure  2 illustrates the representative synergies (mean muscle 
synergy vectors within each cluster) and corresponding average 
temporal pattern components during whole-speed walking. Table 2 
lists the muscles that primarily contribute to each representative 
synergy based on visual inspection and the number of subjects within 
each cluster.

The lower limb EMG activities during walking, encompassing 
speeds from slow to fast, were adequately explained by five muscle 
synergies for all participants. Additionally, all five muscle synergies 
were shared by more than half of the participants. Therefore, for the 
comparison of similarities with each pedaling condition, we adopted 
the five muscle synergies as representative muscle synergies for whole-
speed walking.

3.3 Muscle synergies in various pedaling 
conditions

In all six pedaling conditions, the median number of synergies 
required to meet the criterion was consistently four (Table 1). Figure 3 
shows the representative synergies and corresponding average 
temporal pattern components for each speed during forward pedaling. 
The muscle synergy vectors from all subjects during each forward 
pedaling condition were clustered into seven groups at 60 RPM and 
30 RPM and into eight groups at 80 RPM. Among these, four 
representative synergies were identified at 60 and 30 RPM and five 
at 80 RPM.

Figure 4 presents the representative synergies and corresponding 
average temporal pattern components for each speed during backward 
pedaling. Muscle synergy vectors from all subjects during each 
backward pedaling condition were clustered into six, eight, and five 
groups at 60, 30, and 80 RPM, respectively. Among these, four 
representative synergies were observed at 60 and 30 RPM and five 
at 80 RPM.

Pedaling conditions, except for backward pedaling at 80 RPM, 
exhibited subject-specific muscle synergies. Notably, numerous 
subject-specific muscle synergies were observed at backward pedaling 
at 30 RPM. This suggests that the muscle synergies recruited during 
pedaling are less robust and show greater variability among individuals 
compared to those during walking.

3.4 The similarity between walking muscle 
synergies and pedaling muscle synergies

Figure 5 summarizes the representative synergies of whole-speed 
walking as a reference and the representative and subject-dependent 
muscle synergies for each pedaling condition (forward and backward 
pedaling), sorted by cosine similarity. Table 2 shows the representative 
muscle synergies of walking, the primary contributing muscles, and 
the number of participants contributing to the pedaling muscle 
synergies sorted for each walking synergy. In each of the six pedaling 
conditions, one to three sets of muscle synergies similar to those of 
walking were identified, with the composition within each set varying 

TABLE 1 The number of muscle synergies and VAF in each condition.

Whole-speed 
walking

Forward pedaling Backward pedaling

60 RPM 30 RPM 80 RPM 60 RPM 30 RPM 80 RPM

Median (min, max) 4.5 (3, 5) 4 (4, 5) 4 (3, 5) 4 (4, 5) 4 (2, 5) 4 (2, 5) 4 (3, 5)

VAF 94.2 ± 2.2 97.9 ± 1.1 96.9 ± 1.1 98.5 ± 1.0 96.9 ± 2.0 96.9 ± 2.1 97.3 ± 1.2

This table shows the number of muscle synergies required to explain the electromyogram (EMG) patterns during whole-speed walking and each pedaling condition, along with the 
corresponding variance accounted for (VAF) values. The number of muscle synergies is presented as the median (maximum, minimum) across all subjects, and the VAF is presented as the 
mean ± standard deviation (SD).

FIGURE 2

Synergies from whole-speed walking. The representative muscle 
synergies (bar graphs) and corresponding temporal patterns (bold 
lines) during whole-speed walking are shown. The representative 
muscle synergies for each condition are arranged based on the 
timing of the peak in the temporal patterns. The thin lines in the 
temporal patterns indicate the mean values over six cycles for each 
subject.
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depending on the combination of rotation direction and speed. 
Muscle synergies similar to walking synergy 2 were observed only at 
a rotational speed of 30 RPM in both forward and backward pedaling. 
In contrast, muscle synergies similar to synergy 5 were observed only 
during forward pedaling at 60 RPM and backward pedaling 
at 80 RPM.

Synergies 2–5 of whole-speed walking showed similar muscle 
synergies across pedaling conditions, whereas synergy 1 did not 
exhibit similar muscle synergies in any pedaling condition.

3.5 Functions of representative muscle 
synergies for each condition

The functions of each representative muscle synergy for each 
condition are associated with their corresponding temporal patterns 
by classifying the primary muscle functions (W ≥ 0.5) (Rimini et al., 
2017; Abd et al., 2022).

For whole-speed walking, synergy 1 was composed of the activity 
of Gmed during the early to mid-stance phase. Synergy 2 was 
characterized by the activity of the quadriceps group, Gmed, and 
Gmax during the early stance phase. Synergy 3 consisted of the activity 
of SOL and LG during the late stance phase. Synergy 4 involved the 
activity of TA during the swing phase, while synergy 5 included the 
activity of the hamstrings from the late swing to the early stance phase.

In pedaling, the cycle was divided into two phases: 0–50% for 
flexion and 50–100% for extension. Each synergy’s function was 
identified accordingly. In forward pedaling, synergy 1 showed 
increased activity during the early part of the flexion phase across all 
speeds. At 60 RPM, the hamstrings were the primary muscle, while at 
30 RPM, both the hamstrings and Gmed contributed significantly. 
Conversely, synergy 1 at 80 RPM showed a significant contribution 
from RF, which differed from the other speeds. Synergy 2 consistently 
highlighted TA as the primary contributor across all speeds, with 
increased activity during the latter part of the flexion phase. Notably, 
at 30 RPM, RF also contributed significantly alongside TA. Synergies 

3 at 60 RPM and 30 RPM, as well as synergy 4 at 80 RPM, primarily 
involved VM and VL, with activity increasing from the end of the 
flexion phase to the early part of the extension phase. Synergy 3 at 80 
RPM exhibited isolated activity of VM. Synergies 4 at 60 RPM and 30 
RPM, and synergy 5 at 80 RPM, primarily involved LG, functioning 
from the latter part of the extension phase to the early part of the 
flexion phase.

In backward pedaling, synergy 1 for each speed was mainly 
contributed by TA, remaining active from the flexion phase to the 
early part of the extension phase. Synergies 2 at 30 RPM and 80 RPM 
showed activity during the early part of the flexion phase, with the 
plantar flexor muscles contributing predominantly, although SOL’s 
contribution was minimal at 80 RPM. Synergy 2 at 60 RPM and 
synergy 3 at 80 RPM showed activity throughout the flexion phase, 
with significant contributions from the hamstrings. Synergies 3 at 60 
RPM and 30 RPM, and synergy 4 at 80 RPM, primarily involved VM 
and VL, being active during the extension phase. Finally, synergy 4 at 
60 RPM and 30 RPM, along with synergy 5 at 80 RPM, showed RF as 
the primary muscle, functioning from the latter part of the extension 
phase to the early part of the flexion phase.

4 Discussion

The novel finding of this study is that among the six pedaling 
conditions, comprising three rotational speeds (30 RPM, 60 RPM, and 
80 RPM) and both forward and backward rotations, the identified 
muscle synergies included those similar to the muscle synergies 
observed during walking for each condition. The results of this study 
support the hypothesis that the majority of synergies are shared 
between walking and pedaling.

Different muscle synergies are associated with rotational direction 
and speed. In many subjects, the muscle synergy resembling that of 
walking, with predominant contributions from the plantar flexor muscles 
of the ankle, was recruited only during pedaling at 30 RPM, regardless 
of the direction of rotation. In contrast, the muscle synergy resembling 
that of walking, with predominant contributions from the hamstrings, 
was observed only during forward pedaling at 60 RPM and backward 
pedaling at 80 RPM. These findings reveal that specific walking-like 
muscle synergies are recruited only in certain directions and speeds.

4.1 Representative muscle synergies in 
whole-speed walking

This study identified five muscle synergies in walking. Among 
these, synergies 2–5 closely matched the characteristics of the four 
walking muscle synergies reported in previous studies (Neptune et al., 
2009; Clark et al., 2010). Synergy 1, on the other hand, was uniquely 
identified in this study and primarily represented Gmed activity 
during the early to mid-stance phases. Because different sets of 
recorded muscles can result in different muscle synergy vectors 
(Turpin et  al., 2021), the discrepancies between this study and 
previous studies may be due to the differences in the recorded muscle 
sets. Furthermore, given that the Gmed module is typically extracted 
during slow-to-moderate walking (Yokoyama et  al., 2016), its 
inclusion in the synergies extracted from the EMG data encompassing 
a range of walking speeds in this study is considered valid.

TABLE 2 Characteristics of muscle synergies and the number of subjects 
within the cluster synergies.

Number of participants within 
clusters

Whole-
speed 
walking

Forward 
pedaling

Backward 
pedaling

Synergy Major 
muscles

Whole-
speed 

walking

60 
RPM/30 
RPM/80 

RPM

60 
RPM/30 
RPM/80 

RPM

Synergy1 Gmed 7 -/-/- -/3/-

Synergy2
Quad, Gmed, 

Gmax
11 -/12/- -/12/-

Synergy3 SOL, LG 10 5/8/5 5/7/7

Synergy4 TA 12 11/10/12 6/6/9

Synergy5 MH, LH 12 6/-/- 5/4/11

This table shows the muscles with the greatest contribution to each synergy during whole-
speed walking, the number of subjects in which each synergy was observed, and the number of 
subjects in which walking-like muscle synergies were observed under each pedaling condition.
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4.2 Representative muscle synergies in 
forward pedaling

In forward pedaling, four representative muscle synergies 
were identified at 60 RPM and 30 RPM and five at 80 RPM, 
indicating variations in the number and composition of synergies 
depending on pedaling speed (Figure 3). In contrast to our study, 
previous research involving trained cyclists (Hug et  al., 2011) 
reported that the number of synergies required to explain muscle 
activity during pedaling remained consistent at three, 

regardless of pedaling speed, and the synergy compositions 
were similar.

Cheung et al. (2020) reported that the number and composition 
of muscle synergies change plastically in response to developmental 
and training adaptations, suggesting that the differences in subjects 
between our study and previous studies might have influenced the 
number and composition of muscle synergies. Another study by 
Barroso et al. (2014) found that the EMG of all subjects while pedaling 
at four different speeds could be explained by four muscle synergies 
for untrained cyclists. Compared to the maximum speed of 70 RPM 

FIGURE 3

Synergies from forward pedaling. The representative muscle synergies (bar graphs) and corresponding temporal patterns (bold lines) during forward 
pedaling are shown. The representative muscle synergies for each condition are arranged based on the timing of the peak in the temporal patterns. 
The thin lines in the temporal patterns indicate the mean values over six cycles for each subject. The black graphs shown represent subject-dependent 
muscle synergies, which were observed in fewer than half of the subjects.
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in the study by Barroso et al. (2014), our study included a higher 
pedaling speed of 80 RPM. This may explain the identification of a 
greater number of representative muscle synergies at higher speeds. 
Nevertheless, Barroso et al. (2014) reported distinct muscle synergy 
profiles at high and low speeds, which is consistent with our findings.

The composition of the muscle synergies identified at 30 and 60 
RPM in our study closely resembled the four muscle synergies 
reported in previous pedaling studies (De Marchis et al., 2013; Barroso 

et al., 2014). At 80 RPM, muscle synergy involving the hamstrings, 
which are typically active during the early phase of the upstroke as 
observed at other speeds, was absent. Instead, the muscle synergy 
involving the rectus femoris (RF), which contributes to thigh lifting, 
appears during the early upstroke phase. Additionally, the muscle 
synergies of the knee extensors that were active during the downstroke 
phase were divided into two separate synergies. Previous research by 
De Marchis et  al. (2013) indicated that inexperienced subjects 

FIGURE 4

Synergies from backward pedaling. The representative muscle synergies (bar graphs) and corresponding temporal patterns (bold lines) during 
backward pedaling are shown. The representative muscle synergies for each condition are arranged based on the timing of the peak in the temporal 
patterns. The thin lines in the temporal patterns indicate the mean values over six cycles for each subject. The black graphs shown represent subject-
dependent muscle synergies, which were observed in fewer than half of the subjects.
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FIGURE 5

The similarity between the five muscle synergies from the whole-speed walking dataset of all subjects and the weighting components of each pedaling 
condition. For each condition, while the required number of essential modules remained the same, the composition of the weighting component of 
representative muscle synergies differed. Each bar graph represents the centroid of each cluster of weighting components obtained from each 
condition. Within each column, synergies obtained from each condition are arranged with bars of the same color. The black graph represents 
synergies specific to individual subjects (i.e., observed in less than half of the samples). The leftmost column represents the representative synergies 
(synergy 1 to synergy 5) of whole-speed walking. Synergy 1 consisted of the activation of the Gmed and Gmax during the early to mid-stance phase. 

(Continued)
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predominantly adopt a pedaling strategy that adds propulsive force 
during the downstroke. Similar to previous research, our findings 
suggest that at a more demanding speed of 80 RPM, a propulsive force 
is generated by the activity of the knee extensors during the 
downstroke phase.

4.3 Representative muscle synergies in 
backward pedaling

The representative muscle synergies identified from backward 
pedaling also showed variations in the number and composition of 
muscle synergies depending on the pedaling speed (Figure  4). 
Additionally, four representative muscle synergies were identified at 
both 30 and 60 RPM. However, at 30 RPM, there was a larger 
individual variability in the composition of muscle synergies 
compared to other speeds, with many subject-specific muscle 
synergies observed. When examining the composition of the muscle 
synergy vectors at each backward pedaling speed, it appeared that the 
muscle synergy indicating the activity of the TA and RF observed in 
forward pedaling was split. At 80 RPM, five representative muscle 
synergies were identified, with the composition of muscle synergy 
vectors showing distinct synergies representing the activity of the TA, 
RF, plantar flexors, and hamstrings. A simulation study by Raasch and 
Zajac (1999) stated that the biarticular muscles of the thigh (rectus 
femoris and hamstrings) changed roles depending on the direction of 
movement, and smooth backward pedaling was achieved by 
controlling the pairs of TA/RF and hamstrings/plantar flexors 
separately, which were observed in forward pedaling. These results are 
consistent with the findings of the simulation study.

4.4 The similarity between walking muscle 
synergies and pedaling muscle synergies

In this study, 1–3 walking-like muscle synergies were present 
under all six pedaling conditions. The use of similar muscle synergies 
associated with different kinematic and kinetic patterns provides 
further evidence that the CNS generates movements through a flexible 
combination of muscle synergies (Tresch and Jarc, 2009). Similar to 
previous studies (Hug et al., 2010; De Marchis et al., 2013; Barroso 
et al., 2013, 2014), the results of this study suggest the existence of 
shared neural networks between walking and pedaling.

Furthermore, the results indicated that the composition of 
walking-like muscle synergies observed during pedaling depends on 
the direction and speed of pedaling. As shown in Figure 5, the muscle 
synergy associated with the activation of the quadriceps and hip 
extensors during whole-speed walking (synergy 2) was recruited 
during pedaling at 30 RPM, regardless of the direction of rotation. 

Meanwhile, the muscle synergy associated with the activation of the 
hamstrings (synergy 5) was recruited during forward pedaling at 60 
RPM and backward pedaling at 80 RPM. Additionally, a muscle 
synergy similar to synergy 1, representing the activity of the Gmed 
and Gmax muscles during walking, was not observed under any 
pedaling condition. Walking synergy 1 is thought to contribute to 
pelvic stability during the stance phase. It is speculated that the 
minimal postural control required during pedaling may explain the 
lack of synergy 1 recruitment.

In contrast to the findings of this study, previous research on 
muscle synergies during upper-limb cycling reported a high degree of 
similarity and consistency in the number and structure of upper-limb 
synergies, regardless of power levels (Abd et al., 2022). One possible 
reason for the discrepancy between these studies is the difference in 
neural control between the upper and lower limbs. The upper limbs 
are involved in fine and diverse motor tasks, requiring precise control, 
whereas the lower limbs are specialized for posture control, weight-
bearing, and cyclic movements, like walking and running. These 
differences in function may result in distinct neural control strategies, 
contributing to the different outcomes observed. Additionally, Abd 
et al. (2022) varied resistance load, while the present study examined 
the effect of rotational speed on muscle synergies under a constant 
resistance load. Since muscle synergies are recruited to optimize task 
performance (Tresch and Jarc, 2009; Bizzi and Cheung, 2013; Ting 
et al., 2015), differences in task conditions could explain the variation 
in results. Given the functional roles of the upper and lower limbs, 
further investigation into how rotational speed affects muscle 
synergies in the upper limbs is warranted.

4.5 Clinical application

Pedaling exercises, which involve muscle activity in the lower limbs 
similar to walking (Raasch and Zajac, 1999) and require minimal postural 
control, are a promising rehabilitation method for improving the walking 
ability of patients with stroke in the early stages of recovery when gait 
training is challenging (Barbosa et al., 2015). The results of this study 
suggest the importance of considering the direction and speed of rotation 
when adopting pedaling as a gait training method. For example, previous 
studies reported that changes in the recruitment of two synergies (TA and 
RF, TFL muscle synergy; hamstrings and plantar flexors, Gmax muscle 
synergy) characterizing the upstroke phase of forward pedaling on the 
paretic side of patients with stroke are positively correlated with indicators 
of gait asymmetry (Ambrosini et al., 2016). The results of this study 
suggest that forward pedaling is effective for selectively recruiting the TA 
and RF muscle synergy (synergy 4), regardless of speed (Figure  5). 
Alternatively, forward pedaling at 60 RPM and backward pedaling at 80 
RPM may be more suitable for selectively recruiting the hamstrings and 
MG muscle synergy (synergy 5). Therefore, by considering the direction 

Synergy 2 was characterized by the activity of the quadriceps group, Gmed, and Gmax during the early stance phase. Synergy 3 involved the activation 
of SOL and LG during the late stance phase. Synergy 4 was composed of TA and RF activities during both the early and late swing phases. Finally, 
synergy 5 included the activity of the hamstrings and TA from the late swing to early stance phase. The r value in the graph represents the cosine 
similarity between each synergy and the corresponding representative muscle synergy from whole-speed walking. Similar synergies obtained from 
each pedaling condition (r ≥  0.85) are displayed in correspondence with the rows of synergies 1 to 5. Synergies enclosed by dashed lines below are 
those with low similarity to walking synergies, indicating task-specific synergies.

FIGURE 5 (Continued)
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and speed of pedaling according to the patient’s impairment, it may 
be possible to enhance its effect on improving walking function.

4.6 Limitations

The EMG activity of each muscle was normalized to the average 
peak value across six cycles for each condition. This method is 
similar to those used in previous studies involving muscle synergies 
(Hug et al., 2011; Barroso et al., 2014; Ambrosini et al., 2016), but 
since the muscle activity levels are provided only as relative 
information to the peak values, it is not possible to directly quantify 
the contribution of power output from each muscle synergy. 
However, a standardized normalization method that accurately 
quantifies the contribution of the output from each muscle synergy 
has not yet been established (Ambrosini et al., 2016). Moreover, 
because the number and composition of muscle synergies during 
pedaling in patients with stroke differ from those in healthy 
individuals (Ambrosini et  al., 2016), it is necessary for future 
research to elucidate how walking-like muscle synergies observed 
during pedaling are affected by the speed and direction of rotation 
in these patients.

5 Conclusion

The present study indicated common muscle synergies between 
walking and pedaling. However, the composition of similar muscle 
synergies varied with pedaling speed and direction. Our results 
suggest that it is crucial to consider muscle synergy when performing 
pedaling exercises for gait rehabilitation.
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